
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Self-aware Memory Management for Emerging Architectures

Permalink

https://escholarship.org/uc/item/55c372p7

Author

Maity, Biswadip

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55c372p7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Self-aware Memory Management for Emerging Architectures

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Biswadip Maity

Dissertation Committee:
Distinguished Professor Nikil Dutt, Chair

Professor Fadi Kurdahi
Professor Nalini Venkatasubramanian

2023

Portion of Chapter 2 © 2020 IEEE
Portion of Chapter 3 © 2020 IEEE
Portion of Chapter 3 © 2021 ACM

Portion of Chapter 4 © 2023 Springer
Portion of Chapter 4 © 2024 ACM
Portion of Chapter 5 © 2021 ACM

All other materials © 2023 Biswadip Maity

DEDICATION

To my beloved parents, Papiya and Santanu Kumar Maity, whose sacrifices have shaped
my journey and made me who I am today. And to Aheli Ghosh, for fostering my love for

research and being my constant source of inspiration.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

VITA xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Background and Related Work . 3

1.1.1 Systems and Machine Learning Landscape 3
1.1.2 Computational Self-Awareness (CSA) 6

1.2 Challenges and Contributions . 7

2 Self-aware Memory Management using CSA 10
2.1 Self-* properties and how it applies to Memory Management 12
2.2 Overview of Memory Approximation and its Challenges 16
2.3 Conclusion . 17

3 Hardware Abstraction Layer 18
3.1 Overview of memory approximation and its challenges 18
3.2 Brief intro to Formal control theory, Self-adaptivity, Self-optimizing properties 22

3.2.1 Related work - Bit Error Rate (BER) models 23
3.2.2 Simulation infrastructure . 25
3.2.3 System Model . 28
3.2.4 Runtime control algorithms . 31

3.3 Challenge: Design memory systems that eases the programmer’s burden and
guarantees a desired quality of service (QoS) 32
3.3.1 Approximation: State-of-the-art . 38
3.3.2 Benefits of Model-independence . 39

3.4 Case study 1: Self-Adaptive Memory Approximation 39

iii

3.4.1 Detailed explanation of the formal control-theoretic approach for tun-
ing memory approximation knobs . 39

3.4.2 Comparison of self-adaptive with a manual calibration scheme 43
3.5 Case study 2: Self-Optimizing Runtime Manager 46

3.5.1 Overview of limitations in existing approximation techniques for full
memory hierarchies . 46

3.5.2 Explanation of the proposed self-optimizing runtime manager, SEAMS 51
3.5.3 Discussion of SEAMS’ key features 61
3.5.4 Coordinate runtime decisions for interdependent knobs and subsystems 62
3.5.5 Demonstrating SEAMS’ energy savings and reduction of QoS violations 69

3.6 Discussion . 77

4 Operating System Abstraction Layer 79
4.1 Memory Management Techniques at the Operating System Layer 80
4.2 MARS Middleware . 82
4.3 Case Study 1: Workload Characterization for Runtime Memory Management 84

4.3.1 Memory access pattern and working set size 86
4.3.2 Methodology for estimating the WBP metric 90
4.3.3 Evaluation of the proposed WBP-based memory management approach 92

4.4 MARS 2.0: Scalability and ML-based DVFS Boosting 96
4.4.1 Case Study 2: Expanding Datacenter Capacity with DVFS Boosting 98
4.4.2 Challenges for Scalable Deployment 98
4.4.3 Memory Counters used and Insights 101

4.5 Discussion . 102

5 Application Abstraction Layer 104
5.1 Emerging data-centric architectures and end-to-end applications 104
5.2 Motivation for benchmarking and optimization of data-centric applications on

embedded systems . 105
5.3 Case study 1: Chauffeur The First Open-Source End-to-End Benchmark Suite

for Self-Driving Vehicles . 106
5.3.1 Requirements of a benchmark suite for self-driving vehicles 108
5.3.2 Limitations of existing benchmark suites 111
5.3.3 Description of self-driving application categories 113
5.3.4 Characteristics of Chauffeur: representative workloads, and perfor-

mance evaluation . 120
5.4 Case study 2: OAsys : Self-Optimizing Autoscaler for ML Inference Serving

Systems: A Holistic Approach . 129
5.4.1 Challenges of ML Inferencing with Traditional Autoscaler 130
5.4.2 Partially Observable Markov Decision Process 133
5.4.3 OASys as a Self-Optimizing Autoscaler 140

5.5 Discussion . 145

6 Conclusions 148

iv

Bibliography 151

v

LIST OF FIGURES

Page

1.1 Abstraction layers in the application layer of the memory subsystem. 2
1.2 Representation of abstraction layers divided into chapters. 8

2.1 Observe-Decide-Act (ODA) loop in an embedded system with reflection (R)
for self-aware management [129]. The layers shown are application (blue),
vendor libraries (green), kernel (orange), hardware (red), and device (black).
Each layer has sense (S) and act (A) capabilities. 11

3.1 Open-loop knob settings vs. closed-loop quality control. 21
3.2 Runtime management of approximation knobs using output quality monitoring. 21
3.3 Bit error rate for an SRAM cell with varying Vdd values in 90nm. Figure

from [4]. 24
3.4 Energy vs. error probability trade-off for an STT-MRAM bit-cell from [105]. 25
3.5 Root locus and step response for system identification of L1 data Writes. . . 27
3.6 Quality tracking of a streaming video using different controllers. The L1 data

cache writes are exposed to errors based on the value of the BER knob. . . . 31
3.7 (a) and (c) shows variation of the quality of the edge detection in a video

scene when the BER is constant. (b) and (d) shows a frame in the video with
the expected score for the given setting of BER. 33

3.8 Effect of configuration knobs on cache layers (L1 data cache and L2 shared
cache) for two different applications (A and B), and different inputs within
an application (B1 and B2 within B). The dot diameter indicates the number
of errors (smaller is better: no dot means no errors), and the color indicates
normalized total energy usage (normalized to 1V:1V case). The outer circle
represents the quality-constraint which the system must meet. For knob con-
figurations where there is no outer circle, the system fails to meet the quality
constraint. Feasible operating regions that can achieve the target QoS are
outlined in dashed rectangles, and the optimal setting is indicated by a star. 35

3.9 Closed loop approach for tuning memory approximation knob(s). 40
3.10 Runtime quality tracking for L1 Data cache write errors. Self-evaluation done

every 5 frames. 44
3.11 Runtime quality tracking for L2 cache write errors. Average settling time for

PI control = 2.04s, and average settling time for Manual control = 6.25s. . 45
3.12 Runtime management of approximation knobs using output quality monitoring. 46
3.13 Error and Power models used for (a) L1/L2 cache and (b) DRAM 48

vi

3.14 Overview of SEAMS system architecture. 52
3.15 SEAMS taking actions against the environment, and the environment returns

observations (updated state) and reward. 56
3.16 Sensitivity analysis of memory configuration knobs on QoS (RMSE, top) and

memory power (normalized to L1:1V, L2:1V, DRAM:0.064 s) for canny. . . 60
3.17 Modification of Ariane RISC-V core to emulate on-chip approximate mem-

ory. 1○ Addition of new CSRs to communicate with SEAMS kernel module.
2○ Modification of address translation logic in Memory Management Unit
(MMU) to generate approx signal. 3○ Fault injectors that introduce errors in
the memory bus. 63

3.18 Tools flow for experimental setup. The RISC-V Fault injector (shown in
dashed lines) allows us to emulate faults using different models while consid-
ering a full system running an operating system. The Sniper+McPat simu-
lations determine power consumption without approximation, which is scaled
based on technology-specific models for approximation. 68

3.19 Power (normalized to exact execution) consumption achieved by different
learning algorithms provided a goal to minimize power. Ideally, the policy
should learn to reduce power consumption as quickly as possible toward the
minimum (black dashed line). 70

3.20 SEAMS self-optimizing power within quality constraint 71
3.21 SEAMS self-adapting to user-specified quality constraints by coordination

across the memory hierarchy. 74
3.22 Additional workloads. 75
3.23 SEAMS QoS at different invocation intervals for k-means. Blue ticks indicate

evaluation instances. 76
3.24 SEAMS overhead for different intervals . 77

4.1 Total energy consumed as memory controller frequency is varied statically
from 800MHz to 1866MHz for PARSEC workloads on the Jetson TX2. The
frequency that results in the minimum energy spent varies. 85

4.2 Change in average EDP (energy-delay product) of PARSEC workloads across
frequencies at different values of WBP (working set size - bandwidth product). 89

4.3 EDP reduction with proposed classification using WBP compared to static-
frequency baselines. Applications marked with a * have an optimal static
configuration with the proposed scheme. 93

4.4 Runtime memory profile of blackscholes. Dynamic memory access pattern
calls for the exploration of a runtime policy. 95

4.5 Overview of MARS 2.0 architecture [30]. 96
4.6 Feature Selection and Model used in [99]. 100

5.1 Software components and flow of information in a self-driving vehicle. Inter-
faces with sensors and actuators are marked with a circle. 106

5.2 Implementation-specific instances of the generic self-driving pipeline with dif-
ferent tasks. 108

5.3 Tool flow for using Chauffeur suite. 120

vii

5.4 Architecture of exemplar NVIDIA evaluated platforms. 121
5.5 Comparison of instructions per cycle (IPC) (averaged across all cores) across

different NVIDIA embedded platforms. 123
5.6 Speed-up of application execution time with increasing number of online cores. 126
5.7 Main-memory access pattern of selected Chauffeur applications from CPU

cores. Applications demonstrate memory accesses phases. 127
5.8 Power breakdown for Jetson TX2 using onboard I2C power sensors 128
5.9 Datacenter operators rely on autoscaling of compute resources based on ML

inferencing demands. 129
5.10 Effect of Batch size on Quality of Service. Enabling Turbo increases through-

put and decreases latency. 131
5.11 Overview of how OASys agents interact with the datacenter rack for both

training and deployment. 137
5.12 12 nodes (3 sleds × 4 nodes) of Yosemite V3 Open Compute Project (OCP)

used for experiments. These servers are representative of datacenter racks. . 141
5.13 Four nodes running different ML inference models with OASys and can meet

dynamic latency constraints. 142
5.14 Throughput improvements compared to traditional autoscaler 145

6.1 Self-aware Memory Subsystem: (a) past, (b) present and (c) future. 148

viii

LIST OF TABLES

Page

2.1 Examples of self-awareness properties for realizing a runtime memory-approximation
manager. 15

3.1 DRAM error rate under different refresh cycle (at 40◦C). Table from [69]
based on results from [13]. 24

3.2 Examples of approximate memory technology knobs. (*) used to evaluate
SEAMS’ performance in Section 3.5.5. 47

3.3 Memory approximation approaches and the key challenges addressed (∗ =
uniquely addressed by SEAMS). 51

3.4 Example instance of memory hierarchy knob used to evaluate SEAMS 56
3.5 System configuration used for SEAMS evaluation. 64
3.6 Applications used for SEAMS’ evaluation along with their inputs and QoS. . 66

4.1 Classification of PARSEC workloads based on average WBP (working set size
- memory bandwidth product) during runtime. 90

5.1 Popular benchmark suites and the key challenges addressed. (∗ = uniquely
addressed by Chauffeur). 112

5.2 Applications in a typical self-driving vehicle; highlighting inputs and outputs
and how different applications are related. 116

5.3 Implementations used in Chauffeur. 119
5.4 Comparison of memory access and main memory (DRAM) bandwidth (B/W)

of Chauffeur applications on the Jetson TX2. Measured numbers are only
from CPU performance counters and do not consider memory traffic from
GPU. Unit is million-transfers/sec (MT/s) 126

5.5 Workload mixes used to evaluate OASys . 145

ix

LIST OF ALGORITHMS

Page
1 Manual Re-calibration . 30
2 Pseudo-code for manual recalibration algorithm used in tuning of memory

approximation knob. 30
3 TD(λ) algorithm [123] for determining SEAMS policy. 58
4 OASys Algorithm . 139

x

ACKNOWLEDGMENTS

None of the work presented here would have been possible without my advisor, Nikil Dutt.
Nik’s unwavering guidance and support throughout my doctoral journey gave me the freedom
to explore my research interests I am grateful for his patience and constant encouragement
during the ups and downs of my graduate life. I would also like to thank my committee mem-
bers, Fadi Kurdahi and Nalini Venkatasubramanian, for their valuable feedback, suggestions
and the opportunity to collaborate with their research groups.

Parth Malani for his continued guidance and for industry perspectives that shaped the direc-
tion and impact of my research. David Carrillo-Cisneros for his mentorship and extending
the scope of my research from academia to an large-scale industrial setting. My colleagues
and friends at Dutt Research Group: Amir, Donny, Tiago, Kasra, Majid, Hamid for guiding
me through the initial years of my PhD. Alex, Caio, Hans for being an incredible source of
friendship and making my time at UCI memorable. Aditi and Gopi who have made my time
at UCI feel like a home away from home.

My work was generously supported by funding and resources from the Donald Bren School
of Information and Computer Sciences, National Science Foundation (NSF) grant CCF-
1704859, Deutscher Akademischer Austauschdienst (DAAD) grant 57440917, and a research
gift from Meta Platforms, Inc.

Finally, thanks to IEEE, ACM, and Springer for granting permission to reuse previously
published work in my thesis. Portion of Chapter 2 of this dissertation is a reprint of the
material as it appears in [74], used with permission from IEEE. Portion of Chapter 3 of
this dissertation is a reprint of the material as it appears in [79], used with permission from
IEEE. Portion of Chapter 3 of this dissertation is a reprint of the material as it appears in
[75], used with permission from ACM. Portion of Chapter 4 of this dissertation is a reprint
of the material as it appears in [76], used with permission from Springer. Portion of Chapter
4 of this dissertation is a reprint of the material as it appears in [99], used with permission
from ACM. Portion of Chapter 5 of this dissertation is a reprint of the material as it appears
in [80], used with permission from ACM.

xi

VITA

Biswadip Maity

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2019
University of California, Irvine Irvine, CA

Bachelor of Engineering in Computer Science and Engineering 2011
Jadavpur University Kolkata, India

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Associate Instructor 2022
University of California, Irvine Irvine, California

Teaching Assistant 2017–2021
University of California, Irvine Irvine, California

INDUSTRY EXPERIENCE

Research Intern 2022
Meta Platforms Inc. Menlo Park, California

Research Intern 2020
Meta Platforms Inc. Menlo Park, California

Cloud Infrastructure Intern 2019
Tinder West Hollywood, California

Software Engineer 2015–2017
Microsoft India R&D Hyderabad, India

xii

REFEREED JOURNAL PUBLICATIONS

The Self-Aware Information Processing Factory
Paradigm for Mixed-Critical Multiprocessing

2022

IEEE Transactions on Emerging Topics in Computing

SEAMS: Self-Optimizing Runtime Manager for Ap-
proximate Memory Hierarchies

2021

ACM Transactions on Embedded Computing Systems

Chauffeur: Benchmark Suite for Design and End-to-
End Analysis of Self-Driving Vehicles on Embedded Sys-
tems

2021

ACM Transactions on Embedded Computing Systems

Self-Adaptive Memory Approximation: A Formal Con-
trol Theory Approach

2020

IEEE Embedded Systems Letters

HESSLE-FREE: Heterogeneous Systems Leveraging
Fuzzy Control for Runtime Resource Management

2019

ACM Transactions on Embedded Computing Systems

REFEREED CONFERENCE PUBLICATIONS

Expanding Datacenter Capacity with DVFS Boosting:
A safe and scalable deployment experience

2024

Architectural Support for Programming Languages and Operating Systems

Locate: Low-Power Viterbi Decoder Exploration Using
Approximate Adders

2023

Great Lakes Symposium on VLSI

Information Processing Factory 2.0 - Self-awareness for
Autonomous Collaborative Systems

2023

Design Automation & Test in Europe

ProSwap: Period-aware Proactive Swapping to Maxi-
mize Embedded Application Performance

2022

International Conference on Networking, Architecture, and Storage

Self-aware Memory Management for Emerging Energy-
efficient Architectures

2020

International Green Computing Conference

Workload characterization for memory management in
emerging embedded platforms

2019

International Embedded Systems Symposium

xiii

The information processing factory: a paradigm for life
cycle management of dependable systems

2019

CODES/ISSS

SOFTWARE

Chauffeur https://github.com/duttresearchgroup/Chauffeur/

Open source benchmark suite for self-driving cars.
MARS https://github.com/duttresearchgroup/mars/

Middleware for Adaptive Reflective Computer Systems

xiv

https://github.com/duttresearchgroup/Chauffeur/
https://github.com/duttresearchgroup/mars/

ABSTRACT OF THE DISSERTATION

Self-aware Memory Management for Emerging Architectures

By

Biswadip Maity

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Distinguished Professor Nikil Dutt, Chair

The ever-increasing demands of data-intensive applications and the rapid evolution of com-

puter architectures have posed significant challenges in memory performance and energy

efficiency. Efficient memory management is crucial to meet the requirements of these appli-

cations while optimizing the utilization of memory resources. Traditional approaches that

rely on workload-specific optimizations and static memory configurations are no longer suf-

ficient to address the dynamic nature of modern computing systems.

To overcome these challenges, the concept of computational self-awareness (CSA) has emerged

as a promising approach. Computational self-awareness draws inspiration from psychology

and neuroscience and aims to develop intelligent systems that can learn from past experi-

ences, reason about their current state, and make informed decisions at runtime.

In this thesis, I explore the application of computational self-awareness in the context of

memory management. I investigate the different degrees of self-awareness applied across the

memory subsystem and examine their benefits on memory performance and energy consump-

tion. The results highlight the potential of computational self-awareness in addressing the

challenges posed by data-intensive applications and evolving computer architectures, paving

the way for improved performance, energy efficiency, and bandwidth utilization in memory

systems.

xv

Chapter 1

Introduction

The ever-increasing demands of data-intensive applications and the rapid evolution of com-

puter architectures have posed significant challenges in memory performance and energy

efficiency. Efficient memory management is crucial to meet the requirements of these appli-

cations while optimizing the utilization of memory resources. Traditional approaches that

rely on workload-specific optimizations and static memory configurations are no longer suf-

ficient to address the dynamic nature of modern computing systems.

To overcome these challenges, the concept of computational self-awareness (CSA) has emerged

as a promising approach. Computational self-awareness draws inspiration from psychology

and neuroscience and aims to develop intelligent systems that can learn from past experi-

ences, reason about their current state, and make informed decisions at runtime. By applying

self-awareness principles to memory management, it becomes possible to create an energy-

efficient memory subsystem that adapts to changing workloads and optimizes memory usage

across different architectures and technologies.

The objective of this thesis is to explore the application of computational self-awareness

in the context of memory management. Figure 1.1 illustrates the abstraction layers in

1

Figure 1.1: Abstraction layers in the application layer of the memory subsystem.

the application layer of the memory subsystem, providing a visual representation of the

components and interactions involved. By integrating self-awareness capabilities into the

memory subsystem, we aim to design an intelligent system that can dynamically adjust its

memory configuration, allocation, and access policies to optimize performance and energy

efficiency. This thesis investigates the different degrees of self-awareness that can be achieved

in the memory subsystem and examines their impact on memory performance and energy

consumption.

In this thesis, we will delve into the principles and techniques of self-aware memory man-

agement, focusing on the hardware layer, operating system layer, and application layer. We

will analyze the challenges faced in memory performance and energy efficiency and propose

innovative solutions that leverage computational self-awareness to address these challenges.

Through extensive experimental evaluation, we will validate the effectiveness of our self-aware

memory management techniques and demonstrate their benefits in terms of performance im-

provement and energy savings.

2

1.1 Background and Related Work

Efficient memory management plays a critical role in meeting the demands of data-intensive

applications and optimizing the utilization of memory resources. However, traditional ap-

proaches and static configurations are no longer sufficient to address the dynamic nature

of modern computing systems. In this section, we provide a background on the systems

and machine learning landscape, followed by an exploration of the concept of computational

self-awareness (CSA) and its application in memory management.

1.1.1 Systems and Machine Learning Landscape

Current efforts related to ”intelligent systems” typically deploy machine learning (ML) tech-

niques to solve a wide range of problems, both at the application and system levels. We

therefore begin with a brief overview of the research landscape addressing energy efficiency

at the intersection of systems and ML.

Systems for Machine Learning Machine learning applications have been widely adopted

in domains ranging from low-power Internet-of-Things (IoT) devices, edge networks, au-

tonomous vehicles, to large-scale data centers. Application researchers have looked into

various facets of machine learning: model accuracy, interpretability, security, bias, privacy,

model scalability, and opportunities for acceleration. Heterogeneous many-core systems are

continuously evolving to support the data-centric nature of ML applications [104]. We refer

to these systems as Systems for ML. Some of these applications (e.g., deep learning al-

gorithms such as convolutional neural networks) consist of a large number of floating-point

multiplications and additions which are well supported by graphics processing units (GPUs).

GPUs have evolved into highly parallel many-core processing elements allowing efficient ma-

nipulation of large blocks of data. GPUs with dedicated main-memory (server GPUs) can

3

perform extremely fast floating-point arithmetic compared to general-purpose processing

units (CPUs). However, the energy consumption of server GPUs often limits its applicabil-

ity in embedded domains. Alternatively, embedded GPUs in systems-on-chip (SoCs) share

main-memory with the general-purpose CPUs while offering more energy-efficiency [127]

than the server GPUs, an essential requirement for battery-driven mobile devices. Embed-

ded GPUs offer embedded designers an opportunity to use the streaming multiprocessors

for general-purpose parallel processing [159]. Machine learning software frameworks like

Tensorflow and Pytorch provide libraries for ML application researchers to efficiently uti-

lize heterogeneous resources without specialized knowledge about the underlying hardware.

However, due to the limited number of registers in the small cores, GPU kernels require

many memory accesses to the shared main-memory. Access to the main-memory remains

the significant performance and energy bottleneck in embedded systems [76]. To honor the

low-power constraints while increasing performance (i.e., accuracy, throughput, and scala-

bility), accelerators have gained traction for machine learning applications. Literature in

different domains ranging from healthcare applications [139] to deep learning [131] demon-

strates that application-specific accelerators can achieve higher performance throughput with

better energy-efficiency. Accelerating common building blocks with specialized hardware still

requires general-purpose processors to launch the kernels with the initial data and fetch the

results at the end of execution to continue the rest of the application. Sriraman et al. [120]

show that the orchestration spent around core-application logic, which includes copying, al-

locating, and freeing memory, can consume up to 37% of cycles for datacenter workloads.

In emerging systems for ML, data movement remains a critical bottleneck for performance

and energy-efficiency.

Machine Learning for Systems We now focus our attention on energy-efficiency chal-

lenges faced by designers during the design as well as runtime execution of embedded systems

[103]. While embedded systems (e.g., a battery-powered mobile phone) are purpose-built,

they are also expected to run various applications throughout their lifetime. Some of these

4

applications are data-centric (e.g., rendering a game), while others are less resource-intensive

(e.g., browsing emails). In some cases, users expect applications to deliver a minimum per-

formance (e.g., 30 frames-per-second (FPS) refresh rate in games), which we define as the

quality-of-service (QoS). It is the embedded system designer’s responsibility to configure the

system parameters before deployment and further deploy runtime policies that deliver the

required performance while still being energy-efficient at runtime. We refer to the intelligent

strategies used for design and management of systems as ML for Systems and review

some related efforts.

The plethora of on-chip and off-chip resources (e.g., compute, memory, network) available in

a system presents a challenging task for an embedded system designer: configuring the sys-

tem to meet the application’s QoS requirements while minimizing the energy consumption.

The operating parameters for CPUs, GPUs, memory, and interconnect creates a large design

space. Together with runtime decisions (e.g., scheduling, mapping), parameter configuration

puts the burden on system designers to identify operating points that meet the performance

requirements while being energy-efficient. In the face of dynamic workloads, performing

workload-specific optimizations for runtime resource allocation and dynamic power man-

agement for energy-efficiency is infeasible at design-time. Recent efforts have leveraged

machine-learning-based techniques to guide the design of specialized hardware, as well as

improve the computational efficiency of hardware design optimization [138]. Online learning

techniques (e.g., reinforcement learning) can also be leveraged to automatically learn policies

specific to workloads, reducing the burden on system designers [31].

While machine learning techniques have been instrumental in enhancing system efficiency,

they alone may not be sufficient to address the complexities and dynamic nature of modern

computing systems. To fully realize the potential of intelligent and adaptive systems, the con-

cept of computational self-awareness (CSA) becomes crucial. By incorporating self-awareness

principles inspired by human cognitive processes, CSA complements machine learning tech-

5

niques and enables systems to observe, reason, and adapt their behavior based on their

internal and external states.

1.1.2 Computational Self-Awareness (CSA)

Computational self-awareness (CSA) is an emerging research area that aims to develop in-

telligent systems capable of self-learning, self-reasoning, and self-adaptation. Inspired by

human cognitive processes, CSA combines techniques from psychology, neuroscience, auto-

nomic computing, machine learning, and artificial intelligence to create systems that can

observe, reflect upon, and adapt their behavior based on their internal and external states.

CSA enables systems to go beyond traditional rule-based approaches and exploit their knowl-

edge and understanding of their own behavior to optimize their performance, energy ef-

ficiency, reliability, and resource utilization. By building models of themselves and their

environments, self-aware systems can make informed decisions, predict future states, and

take proactive actions to achieve desired goals.

In the context of memory management, computational self-awareness offers promising op-

portunities to overcome the limitations of traditional approaches. By incorporating self-

awareness capabilities into the memory subsystem, it becomes possible to dynamically adapt

memory configurations, access patterns, and allocation policies to optimize performance and

energy efficiency. This can lead to significant improvements in overall system performance

and responsiveness.

Several research efforts have explored the application of computational self-awareness in

memory management. These studies have focused on various aspects, such as runtime opti-

mizations, approximation techniques, goal-oriented adaptation, and self-healing mechanisms.

By leveraging machine learning algorithms, control theory, and system identification tech-

6

niques, these approaches have demonstrated the potential to enhance memory performance,

reduce energy consumption, and improve system reliability.

In this thesis, we aim to contribute to the field of self-aware memory management by investi-

gating novel techniques and algorithms that leverage computational self-awareness principles.

We will explore the integration of self-awareness capabilities at different layers of the memory

subsystem, including the hardware layer, operating system layer, and application layer. By

developing intelligent memory management strategies, we strive to achieve optimal memory

performance and energy efficiency in dynamic computing environments.

1.2 Challenges and Contributions

The field of self-aware memory management poses several challenges that need to be ad-

dressed to harness the full potential of computational self-awareness. These challenges in-

clude the design of efficient self-awareness mechanisms, the development of accurate models

for memory behavior, the integration of self-awareness at different layers of the memory sub-

system, and the coordination of self-awareness across multiple layers and components of the

system. Additionally, there is a need to balance the trade-offs between performance, energy

efficiency, and reliability in self-aware memory management.

In this thesis, we aim to tackle these challenges and make the following contributions:

• Chapter 2: Self-Aware Memory Management

In Chapter 2, we provide a comprehensive overview of self-aware memory management

techniques. We discuss the motivations behind self-aware memory management, the

properties of computational self-awareness relevant to memory management, and the

implementation of self-awareness through the observe-decide-act (ODA) loop.

7

Figure 1.2: Representation of abstraction layers divided into chapters.

• Chapter 3: Hardware Layer

In Chapter 3 (red box in Fig. 1.2), we focus on the hardware layer of the memory

subsystem through a use case on approximate memories as an exemplar of self-aware

memory management. We investigate techniques for incorporating self-awareness into

memory controllers, cache hierarchies, and emerging memory technologies. We explore

how self-aware algorithms can be used to optimize memory access patterns, dynami-

cally adjust memory configurations, and adapt to changing workloads. We also discuss

the challenges and trade-offs involved in implementing self-awareness at the hardware

layer.

• Chapter 4: Operating System Layer

In Chapter 4 (orange box in Fig. 1.2), we shift our focus to the operating system layer of

the memory subsystem. We examine how self-awareness can be integrated into memory

allocation policies, working set size management, and algorithms to manage the main

memory controller. We explore the use of self-awareness techniques to predict memory

demands, optimize resource allocation, and improve overall system performance.

8

• Chapter 5: Application Layer

Chapter 5 (blue box in Fig. 1.2) explores the application layer of the memory sub-

system, with a focus on emerging data-centric applications and end-to-end software

pipelines. We discuss the motivation for benchmarking and optimizing data-centric

applications on embedded systems, emphasizing the significance of efficient memory

management in this context.

In the first case study, we present Chauffeur, a novel open-source end-to-end benchmark

suite for self-driving vehicles. Chauffeur provides a comprehensive set of self-driving

application categories, enabling the evaluation and benchmarking of different instanti-

ations of self-driving pipeline. We highlight the usefulness of Chauffeur in facilitating

the assessment of different self-driving scenarios and identify opportunities for future

system designer.

In the second case study, we focus on datacenter autoscalers that automatically allo-

cate machines to sustain the increasing demands of Machine Learning (ML) workloads.

Performance requirements and capacity constraints become challenging to resolve as

datacenter capacity gets crunched and workloads become increasingly dynamic. We

propose a new approach: Self-Optimizing Autoscaler for MLaaS Inference Serving Sys-

tems OASys using multi-agent reinforcement learning to dynamically alter the batch-

sizes as well as turbo configuration in realtime, responding to workload fluctuations

and power budgets in datacenter racks.

Overall, this thesis aims to contribute to the field of self-aware memory management by pro-

viding a comprehensive understanding of computational self-awareness principles, exploring

their application in different layers of the memory subsystem, and developing intelligent

techniques and algorithms to optimize memory performance and energy efficiency. By ad-

dressing the challenges and leveraging the benefits of self-awareness, we strive to pave the

way for more efficient and adaptive memory management in modern computing systems.

9

Chapter 2

Self-aware Memory Management

using CSA

Memory management is a critical aspect of computing systems, playing a vital role in achiev-

ing optimal performance, energy-efficiency, and reliability. Traditional memory management

techniques have been designed based on static configurations and assumptions about work-

load behavior. However, as computing systems become more complex and diverse, these

traditional approaches often fall short in meeting the dynamic requirements of modern ap-

plications.

To overcome the limitations of traditional memory management, researchers have turned

to self-awareness principles and techniques. Self-aware computing systems have the ability

to learn, adapt, and make decisions based on their own observations and reasoning. By

incorporating self-awareness into memory management, systems can dynamically adjust their

memory configurations and operations to optimize resource utilization and meet application

goals.

This chapter focuses on the application of self-awareness principles to memory management

10

Figure 2.1: Observe-Decide-Act (ODA) loop in an embedded system with reflection (R)
for self-aware management [129]. The layers shown are application (blue), vendor libraries
(green), kernel (orange), hardware (red), and device (black). Each layer has sense (S) and
act (A) capabilities.

using the concept of Computational Self-Awareness (CSA). CSA combines the principles

of introspection, approximation, goal orientation, adaptation, and self-healing to enable

intelligent memory management. These self-* properties empower memory management

systems to observe their own behavior, make informed decisions, and adapt to changing

workload requirements and system conditions.

The chapter begins by discussing the self-* properties and how they apply to memory man-

agement. We explore the role of introspection in observing the behavior of the memory

subsystem at runtime, the use of approximation techniques to optimize resource utilization,

the goal-oriented nature of memory management to align with user or application objec-

tives, the adaptive mechanisms for dynamically adjusting memory configurations, and the

self-healing capabilities to ensure reliability in the face of errors.

11

2.1 Self-* properties and how it applies to Memory

Management

Computational self-awareness involves the application of self-* properties to memory man-

agement. Self-* properties refer to the characteristic properties of self-aware systems, in-

cluding introspection, approximation, goal orientation, adaptation, and self-healing. In the

context of memory management, these properties play a crucial role in optimizing system

performance, energy-efficiency, and reliability.

Kounev et al. [140] defines self-aware computing systems as systems with the following

properties: (1)Modelling: the ability to learn models by capturing knowledge on an ongoing

basis about the system as well as the environment in which the system is running, and (2)

Reflection: ability to make decisions by reasoning using the models, and perform actions

based on the decision. The model here is a generic abstraction of the system and environment.

Examples are: (a) descriptive model that captures system performance-related parameters,

(b) prescriptive model that defines actions based on different system states, and (c) predictive

model to perform ‘what-if’ queries. The learning can include static information gathered

during design-time, along with dynamic information gathered during runtime. Figure 2.1

shows an instance of such a system with the different abstraction layers and corresponding

sensors. Examples of sensors in the memory subsystem: cache miss rate at various levels,

main-memory bandwidth, main-memory latency, working set of processes, numbers of errors

in data transmissions, or memory access, CUPTI [92] sensors for CUDA GPU kernels, and

application-level QoS (e.g., FPS).

The properties associated with a self-aware system (which we refer to as self-* properties)

are domain-specific and different, for example, in a collective system [135] versus in robotics

[142]. Agarwal et al. [126] examine the fundamental properties that pertain to self-aware

computation: introspection, approximation, goal orientation, adaptation, and self-healing.

12

Bellman et al. [136] review the challenges of applying self-awareness principles in resource-

constrained cyber-physical systems. Following the road-map laid out in prior literature, we

discuss some of the self-* properties and define them in the context of memory-management:

• Introspection: Introspection allows the memory management system to observe the

behavior of the memory subsystem at runtime. This observation is facilitated by

telemetry information collected from multiple abstraction layers, such as cache miss

rates, main-memory bandwidth, latency, working set size, and application-level quality

of service (QoS) metrics. Introspection enables the system to gain insights into the

memory behavior and make informed decisions based on the observed information.

• Approximation: Memory approximation involves selecting the level of precision re-

quired for memory operations to achieve system or application goals. By leveraging

the concept of approximation, the memory management system can optimize resource

utilization and improve energy-efficiency. The challenge lies in determining the opti-

mal trade-off between precision and performance, considering factors like data-centric

application requirements and constrained resources.

• Goal Orientation: Goal orientation focuses on meeting user or application goals while

optimizing memory management under given constraints. The goals can vary based

on specific requirements, such as maintaining a certain QoS level, maximizing energy-

efficiency, or minimizing power consumption per unit of work executed. The memory

management system aims to align its operations with the defined goals, considering

dynamic changes in workload and system states.

• Adaptation: Adaptation refers to the ability of the memory management system

to dynamically change its operating configuration based on observed information and

current goals. Through adaptive mechanisms, the system can adjust various param-

eters and knobs, such as memory-controller schedule, bandwidth reservation, voltage

13

and frequency scaling, and load/store accuracy. Adaptation ensures that the memory

management system continuously optimizes its performance and resource utilization.

• Self-healing: Self-healing mechanisms in memory management systems ensure correct

operation in the face of unexpected errors or emergent behavior. The system detects

errors at runtime, identifies their root causes, and takes appropriate actions to mitigate

the errors. Self-healing is particularly crucial for safety-critical applications running

on memory subsystems, as it helps maintain system reliability and prevents potential

failures.

Table 2.1 provides examples of self-awareness properties for realizing a runtime memory-

approximation manager. These properties showcase different degrees of self-awareness and

their corresponding characteristics.

Reflection uses observed knowledge to aid decision-making by reasoning, and performs actu-

ations based on these decisions. Continuous cross-layer observations together with reflection

allow the system to introspect, which is one of the key properties of computational self-

awareness.

Through reflection, intelligent systems can consider past observations as well as predictions

made from past observations [128] during the decision making process. Reflection and pre-

dictions involve ‘what-if’ queries to two types of models: models for the subsystem(s) under

control (e.g., memory subsystem, GPU subsystem), and models for other decision-making

policies. Some of these models can be obtained at design-time (e.g., through system identifi-

cation), while others can be generated at runtime (e.g., through linear regression, binning).

In Figure 2.1, a self-model of the system is being used to performed the reflection (shown in

white box).

The runtime manager (violet box in Figure 2.1) is responsible for closing the loop by making

decisions about the system under control. Runtime resource management through decision

14

Table 2.1: Examples of self-awareness properties for realizing a runtime memory-
approximation manager.

Degree of self-awareness
Property Degree 1: (low) Degree 2:

(medium)
Degree 3: (high)

Introspection Reactive: A closed-
loop system that
reacts to observed
behavior by tuning
approximation knobs
(e.g., if observed qual-
ity drops below the
threshold, increase
the precision).

Reflective: Use pre-
dictive models of
approximation knobs
(e.g., model the
bit-error-rate (BER)
relationship to voltage
and temperature for
SRAM).

Meta self-aware: The
system is aware that it
is self-aware.

Approximation Target a single layer in
the memory hierarchy
as candidates of ap-
proximation (e.g., L1
cache, DRAM).

Policies can automat-
ically tune different
layers of memory (e.g.,
on-chip cache and off-
chip main-memory).

Polices can determine
knobs for multi-layer
memory hierarchies,
as well as device
variations.

Goal-orientation Single-objective
goal (e.g., maximize
energy-efficiency).

Multi-objective goals
(e.g., maintain QoS
while minimizing en-
ergy), which are dy-
namic.

Goals specified in dif-
ferent abstraction lay-
ers that may conflict
with each other.

Adaptation Model-based closed
loop control.

Self-optimizing
model-free control.

Robust and self-
optimizing model-free
control.

Self-healing Detect failures and
terminate gracefully.

Detect failures and
take corrective actions
to continue execution.

Find the root cause of
failure and take action
to mitigate the error.

15

making is a well-researched area. Several efforts have been undertaken for energy-efficient

management of the memory subsystem and can broadly be categorized into: (1) heuristic-

based [83, 134], (2) control-theory-based [85, 137], and (3) machine-learning-based [132, 133].

Decisions enable adaptivity in systems by specifying a mechanism to update the system state

based on the difference between observed information and the current goals.

2.2 Overview of Memory Approximation and its Chal-

lenges

Memory approximation plays a significant role in self-aware memory management. Modern

data-centric applications often tolerate imprecision in certain data sections, enabling more

efficient utilization of resources. Approximation techniques aim to utilize the minimum

required precision for memory operations while achieving system or application goals.

However, memory approximation presents several challenges. One of the key challenges is

determining the optimal level of approximation for different layers of the memory hierarchy.

This decision requires considering factors such as the trade-off between precision and per-

formance, the impact on application behavior, and the characteristics of emerging memory

technologies.

Another challenge is the dynamic nature of workload requirements and system conditions.

Memory approximation techniques should be able to adapt to changing workloads, varying

resource constraints, and evolving system states. The ability to dynamically adjust the

approximation level based on real-time observations and goals is crucial for achieving efficient

memory management.

Additionally, memory approximation techniques need to ensure the correctness and relia-

16

bility of memory operations. They should be able to handle potential errors introduced by

approximation methods and mitigate their impact on system functionality and application

behavior. Self-aware memory management systems incorporate self-healing mechanisms to

address potential errors and ensure reliable operation.

By addressing these challenges, memory approximation techniques within the framework

of self-aware memory management can effectively optimize system performance, energy-

efficiency, and resource utilization.

2.3 Conclusion

In this chapter, we explore self-awareness principles, particularly in the context of mem-

ory management. By incorporating self-awareness into memory management, systems can

dynamically adjust their configurations and operations to optimize energy utilization. The

different degrees of self-awareness enable the system to achieve varying levels of efficiency

and effectiveness in managing energy consumption.

While machine learning-based black-box methods are commonly used today, they lack in-

terpretable reasoning and cannot fully leverage the available system resources. In contrast,

self-awareness principles, particularly through reflection, empower system managers to reason

using models when making decisions about system configuration. This reasoning capability

allows for more informed and effective energy-saving strategies.

Adopting computational self-awareness principles in memory management represents an ex-

citing direction for research and development. It holds great potential for improving the

performance, energy-efficiency, reliability, and fast adoption of emerging computer architec-

tures and newer memory substrates, as we see in more details in the next chapters.

17

Chapter 3

Hardware Abstraction Layer

3.1 Overview of memory approximation and its chal-

lenges

Memory approximation aims to reduce the bottleneck by trading off quality for performance

or energy gains. This technique applies to applications that can tolerate degradation in

the quality of service (QoS). However, in order to maintain the required QoS at runtime,

additional mechanisms are needed to monitor the QoS and tune the knobs to meet the

requirements. In this report, we describe a simulation infrastructure for runtime control of

such a system equipped with quality-configurable approximate memory.

As applications become increasingly resource-intensive, intelligent trade-offs between per-

formance and energy in battery-powered systems have become essential. Memory-accesses

have emerged as one of the most significant performance and energy bottlenecks [20]. In

light of this, the literature in approximate computing has been growing, showing that we

can achieve higher performance and energy efficiency by trading off an acceptable loss in pre-

18

cision. Approximate memory, which relaxes the need for high-precision storage for some data

structures, is an effective way to alleviate the energy bottleneck in memory for applications

that can tolerate output errors.

Current approximation techniques depend on design-time modeling of workloads to deter-

mine the optimal knob configurations for a specific system configuration. This approach

makes the techniques application- and platform-specific, and introduces significant overhead

to utilize approximate memory for each new memory technology. Prior work on memory

approximation required programmers to statically set approximation knobs to appropri-

ate values through trial and error in order to reach the desired quality of service (QoS)

[115, 69, 86].

In response to these challenges, we first introduce a new control-theory based approach where

developers only specify a target QoS metric and the system uses a formal control-theoretic

approach to tune the memory reliability knobs of a quality-configurable memory to guaran-

tee the desired QoS. We outline how to develop a system model using System Identification

theory for the memory components and how they react to different approximation settings

using a statistical black-box modelling technique. Using the developed system model, we

design a controller that observes the application’s behavior at fixed epochs and tunes knobs

automatically to deliver the desired QoS despite changing workloads and system variations.

Our proposed methodology is able to maintain the QoS when operating on parts of the mem-

ory subsystem and can reach the required behavior much faster than a manual calibration

scheme without any tuning by the programmer. This is the first work to introduce the idea

of using a formal control-theory based approach for memory approximation.

Building upon this control-theory based approach, we develop SEAMS, a model-free method

to tune memory knobs without prior observation of the system. SEAMS eases the design of

systems with approximate memory by enabling deployment without requiring design-time

exploration of configuration knobs. Once deployed, SEAMS can learn optimal knob configu-

19

rations for unknown applications, resulting in self-optimizing systems. Furthermore, SEAMS

enables coordination between multiple memory system knobs without explicit communica-

tion. We believe SEAMS will enable quick adoption of approximation using a variety of

memory nodes.

The rest of the chapter, is organized as follow:

1. Introduction to Formal Control Theory, Self-adaptivity, Self-optimizing properties:

This section provides an essential background in formal control theory and its rele-

vance to self-adaptive and self-optimizing systems. This foundational knowledge sets

the stage for the subsequent discussions and case studies.

2. Addressing the Challenge of Designing Memory Systems: A discussion of the challenge

at hand: designing memory systems that not only ease the burden on programmers

but also guarantee a desired quality of service (QoS).

3. Case Study 1 - Self-Adaptive Memory Approximation: This case study offers a compre-

hensive exploration of a formal control-theoretic approach for tuning memory approx-

imation knobs. The subsequent sections delve into the system identification technique

for capturing memory approximation effects and a discussion of the results when com-

pared with a manual calibration scheme.

4. Case Study 2 - Self-Optimizing Runtime Manager: This case study delves into the

limitations of existing approximation techniques for full memory hierarchies. It also

presents the proposed self-optimizing runtime manager, SEAMS, including a detailed

explanation of its methodology, coordination of runtime decisions for interdependent

knobs and subsystems, and a demonstration of its effectiveness in reducing energy

usage and QoS violations.

5. Summary: The chapter concludes with a summary, tying together the various discus-

sions and demonstrating how they contribute to the broader thesis. This summary also

20

EXE EXEApplication Layer

Middleware Layer

Hardware Layer

Knob
Values

Quality
Goal

Knob
Values

(a) Open-loop Knob
Setting

(b) Closed-loop
Quality Control

Figure 3.1: Open-loop knob settings vs. closed-loop quality control.

Approximate
Memory
Controller

L2Apprx

L1Apprx

Core

Main
Memory

Apprx

Application
Quality
Monitor

+−

GoalGoal

Figure 3.2: Runtime management of approximation knobs using output quality monitoring.

highlights the implications and potential future directions for the research presented

in the chapter.

21

3.2 Brief intro to Formal control theory, Self-adaptivity,

Self-optimizing properties

Control theory is a multifaceted discipline that finds its origins in mechanical and electrical

engineering but has since permeated various domains including computing systems. At its

core, control theory is concerned with influencing the behavior of systems to achieve a specific

outcome or maintain a particular state, often in the presence of disturbances. It involves the

use of feedback from the system state to adjust the control inputs dynamically.

Formal control theory, in particular, deals with rigorous mathematical techniques for the

analysis and design of control systems. It provides a structured framework to understand

the dynamics of complex systems, predict their behavior, and determine the appropriate

control mechanisms. This approach allows for the effective control of system behavior while

ensuring system stability, robustness, and performance.

On the other hand, self-adaptivity refers to the capability of a system to adjust its behav-

ior dynamically in response to changes in the system state or environment. This is often

achieved through a feedback loop, similar to control systems, where the system monitors its

performance or other critical parameters and modifies its behavior to maintain optimal or

desired operation. Self-adaptive systems are especially relevant in contexts where the sys-

tem operates in unpredictable or changing environments, or where manual tuning of system

parameters is infeasible or inefficient.

Self-optimizing properties take self-adaptivity a step further. A self-optimizing system not

only adapts to changes but also seeks to optimize its performance or other objectives. This

might involve balancing trade-offs between conflicting goals, such as maximizing performance

while minimizing energy usage.

In the context of computing systems, these principles can be applied to manage and optimize

22

various system resources. For instance, memory systems can be controlled and adapted

dynamically to meet the desired Quality of Service (QoS) while minimizing resource usage.

This approach can alleviate the burden on programmers by automating the tuning of system

parameters and enable the system to handle dynamic workloads or operating conditions

more effectively.

3.2.1 Related work - Bit Error Rate (BER) models

Previous works in the field of memory approximation have looked into the application of ap-

proximation in different memory technologies. Depending on the type of memory technology,

researchers have come up with one or more knobs that can tune the degree of approximation

in the memory subsystem to save energy by trading-off accuracy. The degree of approxima-

tion is represented by the probability of bit flips when accessing the memory and is called

bit error rate (BER). Although BER metric is common across technologies, the mapping of

BER to a physical technology knob depends on the type of memory used. In this section,

we summarize the models of BER for various memory technologies:

1. Static RAM (SRAM): In SRAM cells, the minimum operating voltage (Vmin) is the

control knob to trade accuracy for energy gains. Wang and Calhoun developed models

of cell failure probability for read, write, and hold operations in [145]. Ansari et. al.

modeled the failure rate of an SRAM cell based on the Vmin in a 90nm technology [4].

The model is shown in Figure 3.3.

2. Dynamic RAM (DRAM): Previous works have shown that BER in a DRAM can be

modelled as a function of temperature and refresh-rate [13, 69]. One such model from

[69] which relates the error rates under different refresh cycles (at 40◦C) is presented

in Table 3.1.

3. Spin-Transfer-Torque Magnetic RAM (STT-MRAM): Oboril et. al. proposed

23

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10−12

10−10

10−8

10−6

10−4

10−2

Power Supply Voltage (Vdd)

S
R
A
M

B
it
E
rr
or

R
at
e

read-current limit
write-margin limit

Figure 3.3: Bit error rate for an SRAM cell with varying Vdd values in 90nm. Figure from
[4].

Refresh Cycle [s] Error Rate per DRAM cell Bit Flips per Byte

1 4.0× 10−8 3.2× 10−7

2 2.6× 10−7 2.1× 10−6

5 3.8× 10−6 3.0× 10−5

10 2.0× 10−5 1.6× 10−4

20 1.3× 10−4 1.0× 10−3

Table 3.1: DRAM error rate under different refresh cycle (at 40◦C). Table from [69] based
on results from [13].

relaxing thermal stability factor of STT-MRAM to enable fast and energy-efficient

cache memories[95]. Ranjan et. al. developed a model for error probabilities as the

read/write energy is varied for Spintronic Memories [105] and is shown in Figure 3.4.

In the experiments concerned with the simulation of quality-configurable memory, the under-

lying technology is abstracted by choosing BER as the control knob. Since there are models

for each technology which maps the technology-dependent control knob to BER, the models

can be incorporated in the infrastructure by adding another lookup-table or an equation

which translates between BER and the technology-dependent control knob. As an example,

the equation for STT-MRAM writes, as obtained from the model in Figure 3.4 (b), is:

WriteEnergy(pJ) = min
{
−4.836× log10(BER)− 1.022, 36

}
(3.1)

24

300 400 500 600
0.1

1

2

3

4

5

6

·10−5

(a) Read energy (fJ)

R
ea
d
E
rr
or

P
ro
b
ab

il
it
y

1 6 11 16 21 26 31
10−7

10−5

10−3

10−1

(b) Write energy (pJ)

W
ri
te

E
rr
or

P
ro
b
ab

il
it
y

Figure 3.4: Energy vs. error probability trade-off for an STT-MRAM bit-cell from [105].

The minimum function is used to limit the energy to the value when write operation is

performed without any approximation (i.e., BER = 0).

3.2.2 Simulation infrastructure

To simulate the behavior of a system with approximate memory, we developed a Sniper-based

[19] memory fault injector (FI). The simulation infrastructure is described in this section.

Host system

To carry out the experiments a host system with an eight-core Intel Xeon(R) CPU E3-1230

V2 processor with 16 GB of RAM running Ubuntu 16.04 Operating System is used. Sniper

6.1 is compiled with gcc-4.7.4 and uses PIN front end.

25

Simulated system

The simulated system in Sniper has a single-core processor with x86 instruction set archi-

tecture (ISA) based Gainestown micro-architecture and two levels of on-chip cache (L1 and

L2). A fault injector (FI) is added which can inject faults into read / write operations of the

memory hierarchy (e.g., cache, TLB, DDR) 1. We make the following changes to implement

the FI:

1. The application source code is first analyzed to detect the non-critical parts of the

data. Although future work could explore automatically detecting the non-critical

data elements, currently programmer expertise is needed to detect these addresses. In

our target applications, we used a combination of both static analysis and Valgrind to

select the non-critical data elements. Typically, large data structures which hold signal

buffers (e.g., images, video) are good candidates for non-critical data.

2. To inject faults only into the non-critical data objects of the program, the source code

of the program is annotated with add approx() and remove approx() methods to

declare the address of the non-critical data objects in the program. The annotations

use SimAPI commands in Sniper which are magic-instructions to communicate from

the user application to the simulator at runtime. The annotated user-program is then

compiled with Sniper API libraries.

When developing a real platform, we expect to have a quality configurable memory

subsystem with separate instances of: (1) Regions which do not have any quality

configuration, and do not allow any errors; (2) Regions with configurable knobs (e.g.,

voltage in SRAM, refresh rate in DRAM, read/write current amplitude in NVM). The

critical data elements can only be mapped to the non-configurable regions, whereas

the non-critical can be mapped to either region.

1Code repository at https://github.com/duttresearchgroup /memapprox-control.

26

3. Whenever add approx() or remove approx() methods are invoked, the methods are

captured by the FI. FI records these addresses into a table (dedicated memory) in the

simulator. At runtime, all the memory accesses are instrumented. Sniper is used with

Pin as frontend and runs as a Pintool which is used for dynamic instrumentation. For

each memory access, if the virtual address of the access falls into the any of the given

address boundaries in the table, FI attempts to inject a fault into the part of data

referenced by that memory access. The probability of a bit-flip is determined by the

value of BER in the simulation framework.

4. A separate controller, which is implemented in the middleware, is capable of receiving

the results from quality monitors at runtime from user-applications. The controller

continually monitors the application’s output quality. The controller can communi-

cate with the simulator and dynamically change the degree of approximation through

SimAPI commands. The controller changes the degree of approximation by setting the

read/write BER knobs in the simulation framework.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2
From: In(1) To: y1

Step Response

Time (seconds)

A
m

pl
itu

de

Figure 3.5: Root locus and step response for system identification of L1 data Writes.

27

3.2.3 System Model

The goal of the System Identification process is to identify a model of the system using black-

box techniques. We use the System Identification toolbox in Matlab to model the system

and understand the system dynamics of the generated model. The modeling and analysis

are performed for each memory component for reads and writes. This section outlines the

steps in detail.

Generating the data

In the simulation framework described in Section 3.2.2, the target application is executed

with different bit error rates (BER) to observe the loss in accuracy. The execution starts

with BER set to 0, and then it is varied in steps of 2.5e−7 after every 10 frames are processed.

This creates a waveform with step-like input function. The data collection is terminated after

120 steps (BER = 3e−5). This captures the degradation in output quality with variation of

BER knobs. Depending on the application’s tolerance to errors, the number of steps can be

changed to capture most of expected quality values during runtime.

Discrete-time identified transfer function

A system can be modelled using Z-transforms which describe systems using transfer func-

tions. This transfer function of a system describes how an input U(z) is transformed into

the output Y (z) and is defined as G(z) = Y (z)
U(z)

. We use the System Identification toolbox in

Matlab to model the system using data generated in previous step.

28

Stability

A closed-loop system is considered stable, if all the closed-loop poles have a magnitude of

less than 1. To determine the magnitude of the closed-loop poles, once the transfer function

is obtained, the root locus of the system is plotted in Matlab. The root locus is the locations

of all possible roots of the transfer function. The root locus and the step response obtained

after modeling L1 write errors are presented in Fig 3.5. It can be seen that all the poles are

within the unit circle, hence the system can be considered stable.

Maximum overshoot

The maximum overshoot is the absolute value of the largest difference between the output

signal and its steady-state value, divided by steady state value and is denoted by: MP =

|ymax − yss|
|yss|

.

Summary of system dynamics

We present the summary of the system dynamics for memory writes in the table below:

Component Transfer function Stable Max-overshoot Mode

L1D − - 137% Static BER=1e−3

L1D
379.8z−1

1− 0.823z−1 + 0.0276z−2
Yes 21.6% PI

L1D − - 25% Manual

L2D
39.89z−1

1− 1.817z−1 + 0.8378z−2
Yes 26% PI

L2D - Yes 7.5% Manual

DRAM
1.796z−1

1− 0.3254z−1 − 0.1103z−2
Yes 38.3% PI

29

Algorithm 2 Pseudo-code for manual recalibration algorithm used in tuning of memory
approximation knob.

1: upper bound← 1.1 ▷ Upper bound for settling
2: lower bound← 0.9 ▷ Lower bound for settling
3: resolution← 3E − 6 ▷ Minimum change of manual knob
4: procedure manual calibrations(current knob, current error, target error) ▷ The

manual recalibration scheme which returns the next knob.
5: next knob← knob
6: if current error > upper bound× target error then
7: if target error > 0 then
8: multiplier ← log(current error/target error) + 1
9: else
10: multiplier ← 1
11: end if
12: step← resolution×multiplier
13: next knob← next knob− step
14: else if current error < upper bound× target error then
15: if current error > 0 then
16: multiplier ← log(target error/current error) + 1
17: else
18: multiplier ← 1
19: end if
20: step← resolution×multiplier
21: next knob← next knob+ step
22: end if
23: return next knob ▷ The new value is next knob
24: end procedure

30

3.2.4 Runtime control algorithms

After the system identification process, the next step is to configure the memory subsystem

knobs correctly. If the BER is too low, then the relaxed-accuracy is under exploited, whereas

if the BER is too high, then the QoS requirement is not met. This calls for a runtime

management of the BER knobs to meet the dynamic QoS requirement. A good algorithm

should be able to adapt to changes in QoS quickly and maintain the target without overshoots

and undershoots.

0 10 20 30 40 50
Time (in seconds)

0

2

4

6

8

10

S
co

re

10 -2

Observed Score
Target Score

(a) PI Controller

0 10 20 30 40 50
Time (in seconds)

0

2

4

6

8

10

S
co

re

10 -2

Observed Score
Target Score

(b) PID Controller

Figure 3.6: Quality tracking of a streaming video using different controllers. The L1 data
cache writes are exposed to errors based on the value of the BER knob.

Manual control

A manual algorithm to set the knob by observing the deviation from the QoS target is

presented in Algorithm 1. The minimum change of the BER knob defines the granularity of

the control. The algorithm proceeds in steps towards the target QoS with a scaling factor

to respond quickly to large changes. The results of tracking using the manual algorithm are

presented in [77]. Although the algorithm can reach the target quality, the settling time is

very large. Moreover, the manual algorithm does not take into account the history of errors

which occurred before.

31

PI and PID control

Manual control cannot look into the history of errors and does not have any understanding

of system dynamics. Moreover, it lacks any formal analysis to guarantees of stability. We

have developed a formal control theory based approach in [77]. As a related work, we discuss

the performance of a PI and PID controller here. Figure 3.6 (a) shows the quality tracking

using a PI controller and 3.6 (b) shows the quality tracking for a PID controller.

In order to assess the reaction to stochastic inputs, we first calculate a trailing moving average

of the score at each frame based on the last six frames. Then, we evaluate the Error Sum

of Squares (SSE), which is the sum of the squared differences between each observation and

the moving mean corresponding to the frame. This metric gives us insight into the reaction

of the controller to stochastic variations in the system’s input. A low value of this metric

would imply that the controller is stable, and is better capable of tracking the score. For

the experiment shown in Figure 3.6, with a PI controller this value is 0.0141, and with a

PID controller this value is 0.0187. Thus, we can see that PI is more effective in reacting

to the stochastic nature of the changing inputs. Moreover, from the figure, we can see that

PID tracking has a lot more ups and downs compared to the PI tracking, which affirms our

analysis.

3.3 Challenge: Design memory systems that eases the

programmer’s burden and guarantees a desired qual-

ity of service (QoS)

The QoS delivered via approximations is affected by multiple parameters including config-

uration of the memory hierarchy, the application input and temporal relationship between

32

0 5 10 15
Time (in seconds)

0

3

6

9

12
S

co
re

10 -2

Observed Score
Target Score

(a) BER = 1E-3, Expected Score = 0.05 (b) Score = 0.05

0 5 10 15
Time (in seconds)

0

2

4

6

8

S
co

re

10 -3

Observed Score
Target Score

(c) BER = 1E-5, Expected Score = 0.001 (d) Score = 0.001

Figure 3.7: (a) and (c) shows variation of the quality of the edge detection in a video scene
when the BER is constant. (b) and (d) shows a frame in the video with the expected score
for the given setting of BER.

inputs, making manual tuning extremely challenging.

As an example we illustrate the challenge raised by varying application load that affects

the delivered QoS. Traditionally, developers profile an application and determine the best

possible knob for a given target and expect the same QoS for a given setting of the knob

throughout the application’s lifetime. However, fixed knob settings result in varying QoS in

the face of changing workloads, as shown in Figure 3.7. It shows the quality of edge detection

in a video composed of multiple scenes when the write bit error rate is kept constant. Figures

3.7 (a) and (c) show significant variations in quality across different inputs, demonstrating

the drawback of an open-loop set-once-and-execute approach. This traditional open-loop

approach suffers several drawbacks:

33

1. It is difficult to model an under-designed memory in order to measure the output accu-

racy at different settings. Temporal faults that are variability-induced, temperature-

induced, etc. cannot be modeled easily. Unlike software approximation strategies that

are easier to evaluate, hardware approximation requires rigorous runtime tuning. Ap-

plication profiling to generate fixed parameter knobs cannot yield a consistent quality

metric.

2. They make approximation decisions based on average or worst-case input behavior.

These techniques rely on training with inputs that attempt to represent real-world

inputs, which are difficult to achieve in practice. Laurenzano et. al. [63] have shown

that accuracy of approximate programs depends heavily on program input.

3. Different components in the memory subsystem react differently to each workload due

to differences in memory access patterns. Although techniques like memory profiling

can help estimate the knobs for a given system, once the application is ported to a

different system, the programmer needs to manually recalibrate the knobs in order to

achieve desired quality.

The QoS achieved by a configuration of approximation knobs varies widely based on the

application and current input. Even for a fixed workload (application and input), the config-

uration space grows exponentially with each additional knob (e.g., one knob = 4 states, two

knobs = 16 states, three knobs = 64 states). Knobs are at least partially interdependent in a

memory hierarchy: changing one knob affects multiple subsystems in ways that are complex

to predict. (e.g., changing L1 VDD introduces errors in L1, that propagate to L2.) This

makes the configuration problem extremely challenging.

Consider the system equipped with an approximate memory subsystem in Figure 3.12. The

application’s source code is annotated with a quality monitor and is running on a system that

supports reconfigurable approximate memory. The approximate memory subsystem consists

34

0.7 0.8 0.9 1.0

0.7

0.8

0.9

1.0

L1 Data VDD

L
2
V
D
D
(V

)

(a) Application A

0.7 0.8 0.9 1.0

0.7

0.8

0.9

1.0

L1 Data VDD

L
2
V
D
D
(V

)
acceptable quality no error high error

unacceptable quality low error optimal

(b) Application B, input B1

0.7 0.8 0.9 1.0

0.7

0.8

0.9

1.0

L1 Data VDD

L
2
V
D
D
(V

)
0.75

0.8

0.85

0.9

0.95

N
or
m
al
iz
ed

en
er
gy

(c) Application B, input B2

Figure 3.8: Effect of configuration knobs on cache layers (L1 data cache and L2 shared
cache) for two different applications (A and B), and different inputs within an application
(B1 and B2 within B). The dot diameter indicates the number of errors (smaller is better:
no dot means no errors), and the color indicates normalized total energy usage (normalized
to 1V:1V case). The outer circle represents the quality-constraint which the system must
meet. For knob configurations where there is no outer circle, the system fails to meet the
quality constraint. Feasible operating regions that can achieve the target QoS are outlined
in dashed rectangles, and the optimal setting is indicated by a star.

35

of three layers of hierarchy: SRAM L1 cache; SRAM L2 cache; and DRAM main memory.

These memories have an ‘exact’ and ‘approximate’ region in which application data can be

mapped. Approximation can be controlled at each layer of the memory hierarchy, and the

approximation knob varies based on the memory technology: in the context of this work, we

use the voltage level for SRAM cache and refresh rate for DRAM main memory. Each knob

setting impacts the application QoS measured by the quality monitor. malloc calls from the

application to the Linux kernel are modified by the developer to indicate which data can be

mapped to approximate regions.

Figure 3.8 shows QoS observed for the system in Figure 3.12 for different applications and

configurations of L1 and L2 approximation knobs.2 The dots’ size represents the QoS (i.e.,

number of errors, smaller is better). We observe the effect of configuration knobs on two

applications:

• Application A: A memory write-read kernel that writes 512 64-bit numbers in the

main memory and then reads the numbers from main memory. The QoS metric for

this kernel is defined as the total number of bit flips that occur during the write-read

cycle. The QoS and average energy for each knob configuration is shown in Figure

3.8a.

• Application B: The Canny-edge detection application as described in Section 3.5.4.

The QoS metric for this application is the rmse (Root Mean Square Error) between

the pixels of the approximate runs and the exact runs of the application. The QoS

and average energy for knob configurations corresponding to two different inputs (i.e.,

scenes), B1 and B2, is shown in Figures 3.8b and 3.8c respectively.

We make three key observations: First, we observe that configurations achieving a target QoS

vary both within and between applications. In Figure 3.8, we define a feasible region (dashed

2The DRAM knob is fixed for the sake of simplicity. The experimental setup for generating the illustrative
example is the same setup as described in Section 3.5.4.

36

rectangle) by identifying the set of configurations that achieve acceptable QoS. Depending

on the workload, the feasible regions of operation are different. The difference is seen in

the varying bounding boxes of Figure 3.8a (Application A), and Figure 3.8b (Application

B). Even within the same application, the acceptable regions of operation vary based on the

dynamic inputs to the application at runtime as seen in Figure 3.8b (input B1) and Figure

3.8c (input B2).

Second, we observe that within the feasible regions, the achieved QoS varies across applica-

tions and inputs. In some cases, the outer circle and inner circle are well separated, implying

that there is still room for approximation. However, in some cases, the inner circle is very

close to the outer circle, implying that the QoS is reaching its threshold.

Third, we observe that the same configuration of knobs (e.g., L1:0.7V, L2:0.9V) yield dif-

ferent energy consumption with respect to different applications, and different inputs within

an application. This results in varying optimal design points (marked with a star).

This simple example demonstrates that even for the same memory technology, it is hard

to predict QoS and energy consumption when knobs are changed in only two layers of

the memory hierarchy; i.e., the dynamics between the system and application vary both

within and between applications. We expect that finding the optimal configuration for

additional layers of a memory hierarchy or new memory technologies will only exacerbate

these challenges, with current state-of-the-art techniques insufficient for determining the

complex interactions of knob configurations for multi-level approximate memories.

37

3.3.1 Approximation: State-of-the-art

Open-loop Control

A common approximation strategy is to use design-time techniques to find optimal knob

configurations [84, 59, 121, 88]. Based on the application profile, approximation knobs are

determined before deployment and are expected to meet the QoS requirements throughout

the application’s lifetime. Designers must account for the worst-case scenario in an open-loop

system, and therefore are unable to exploit the full potential of the approximation knobs

at runtime. Additionally, application programmers are burdened with the task of setting

memory approximation knobs through intensive profiling of the target workloads at design

time [59, 156, 125]. Thus, open-loop control techniques are application-specific and not

portable to new systems.

Model-based Closed-loop Control

State-of-the-art alternatives reconfigure approximation knobs using closed-loop controllers

in order to address the lack of reconfiguration in open-loop systems [161, 109, 40, 85]. The

controllers are generated based on a system model identified at design-time. Closed-loop con-

trol aims to alleviate the programmer’s burden at design-time by using feedback at runtime.

Design-time models consider the difficulty of specifying an under-designed memory’s param-

eters by measuring the output accuracy in different settings. However, with the number of

system parameters on the rise, system identification is becoming impractical for capturing

the effects of one knob on another. Coordination in control theory requires a formal Multiple-

input-multiple-output (MIMO) method, but designing a MIMO controller requires nontrivial

design-time effort. Additionally, such models are rigid: models must be generated for each

memory technology, with an underlying assumption that the system is available for observa-

38

tion ahead of deployment. Thus, closed-loop control techniques are also application-specific

and suffer from significant design-time overhead.

3.3.2 Benefits of Model-independence

A static model identified during development does not take into account complex system

dynamics (e.g., variability between applications). Self-learning intelligent agents without

apriori knowledge are attractive candidates to find optimal solutions through runtime obser-

vation. Reinforcement learning [123] is prevalent in the field of self-learning agents, demon-

strating success in decision-making for services such as recommendation engines and games.

In this work, we utilize a model-free reinforcement learning approach to develop an approx-

imate memory controller that can learn the behavior of knobs through runtime experience.

Model-free control techniques can provide a general-purpose solution, independent of the

application and system dynamics.

3.4 Case study 1: Self-Adaptive Memory Approxima-

tion

3.4.1 Detailed explanation of the formal control-theoretic approach

for tuning memory approximation knobs

In this section, we show that despite the randomness of errors introduced into the execution

of programs due to memory approximation, a formal control-theoretic technique can capture

the system dynamics effectively. The effectiveness is demonstrated by quality control of the

program even in the presence of stochastic (non-deterministic) behaviors.

39

In our case, the target system is composed of both hardware (with quality-configurable

memory) and software (the application running on the hardware) as shown in Figure 3.9.

Depending on the memory technology, there can be one or more knobs that can tune the

degree of approximation in the memory subsystem. Some examples of control knobs are (1)

Voltage in SRAM memory, (2) Refresh rate in DRAM, (3) Read/Write current amplitude in

non-volatile memories like STT-MRAM. To make our experiments technology-independent,

we use Bit Error Rate (BER) as our knob which is the probability with which each bit flips

during a memory read/write operation. With a pre-determined frequency, the quality mon-

itor routine measures the current quality of the output and compares it against the quality

goal. A positive difference means there is still room to relax the reliability requirements of

the memory and the controller accordingly sets a more aggressive knob setting. A nega-

tive difference indicates that the quality has degraded more than what was intended. The

controller accordingly sets a more conservative knob setting.

System Identification Technique for Memory Approximation

The use of statistical or black-box methods to construct models of a system is known as

system identification. A common practice to design a feedback system using a controller

�
�

������
�	

�	���	��
���	�

��������	�

�	��

������
�	���	�

��������	��

��

��

�����
�	��

Figure 3.9: Closed loop approach for tuning memory approximation knob(s).

40

is to extract the dynamic model of complex systems through System Identification Theory

[71, 64, 47]. By varying BER experimentally, data is collected to see the effects of BER on

the measured output (score) for each memory component. A waveform with a step-pattern

is applied at the inputs, and the output is continuously monitored. The monitoring process

is repeated for several video streams and average output quality at each BER knob to used

to model the relationship.

The relationship between control inputs and measured outputs can be specified using linear

difference equations. A simple first order linear difference equation can be approximated as:

y(k+1) = ay(k)+bu(k), where a and b are parameters that can be identified using parameter

estimation methods such as least square regression. This equation represents a first-order

model where the next output depends only on the inputs and outputs from one time-unit in

the past. The control inputs and measured outputs are used to estimate a linear-parametric

model through a transfer function. If we are given a system with transfer function G(z) and

input U(z), then the output of the system can be described as Y (z) = G(z)×U(z). Transfer

functions have properties such as stability, steady-state gain, settling time, and maximum

overshoot. We use the System Identification toolbox in MATLAB to estimate the transfer

functions when BER control knob is applied on L1 data cache, L2 cache, and DRAM. The

estimated models can be found in [78]. For all the components, we used a second order

model with 2 poles (np = 1) and 1 zero (nz = 1).

Application and Quality Metric

In this work, we target streaming applications which have temporal dependencies between

consecutive inputs. The application is given a sequence of inputs, and the results from

processing previous inputs can be used to adjust the knobs for successive inputs. The

adjustment is possible due to the correlation of the inputs as well as the temporal behavior of

the memory errors. We use canny video edge detection [18] as our case study. Edge detection

41

is the process of identifying sharp changes in image brightness. For video processing, edge

detection is often conducted on a frame-by-frame basis independently. Adjacent frames of a

scene in a video have temporal similarity, and it allows the controller to adjust the quality

based on the history of the system.

The quality measurement method is application dependent, and normally the programmer

provides a software routine for measuring it at runtime. In many cases, this quality mea-

surement would require computing the precise and approximate versions of the output for

comparison [10, 9]. We use miss-classification error (ME) as our QoS metric, that is the ratio

of the total number of pixels mistakenly classified as edge/non-edge to the total number of

pixels in the frame. To evaluate the performance of the method, the settling time is com-

puted. Settling time is the time for the output to reach the target value after a change in

one of the inputs. We consider the output to have settled when it is within 2% of its target

value.

Controller Design

Our system is a simple single-input-single-output (SISO) control system with bit error rate

(BER) as a control input and edge detection miss-classification rate as measured output.

We use a proportional-integral (PI) controller to control this system. The proportional term

refers to the fact that the controller output is proportional to the amplitude of error signal,

while Integral indicates that the controller output is proportional to the integral of all past

errors [47]. The PI control law has the form:

u(k) = u(k − 1) + (KP +KI)e(k)−KP e(k − 1) (3.2)

Where KP and KI denote the coefficients for the proportional and integral terms, respec-

tively. Controller design is a mature field which utilizes many tools that provide off-the-shelf

42

controllers. We use MATLAB PID tuner toolbox to design our controllers. It is important

to note that although derivative control law is helpful to add predictability to the controller,

stochastic variations in the system output may cause inaccuracy in the controller. This issue

becomes more severe in computer systems as they commonly have a significant stochastic

component. Therefore, for computer systems PI controllers are preferred over proportional-

integral-derivative (PID) controller [47]. PI control benefits from both integral control (zero

steady-state error) and proportional control (fast transient response).

3.4.2 Comparison of self-adaptive with a manual calibration scheme

We evaluate the performance of the self-adaptive system by comparing it with a manual

recalibration scheme. In the self-adaptive system, we define a target QoS accuracy while the

middleware controls the knobs automatically. We expect (1) the system to adapt to changes

in application input automatically, and (2) the settling time to be significantly less than

the manual recalibration scheme. More details about the experimental setup and system

dynamics can be found in [78].

To simulate the behavior of a system with approximate memory, we developed a Sniper-

based [19] memory fault injector (FI)3. This FI can inject faults into read / write operations

of the memory hierarchy (e.g., cache, TLB, DDR). To inject faults only into the non-critical

data objects of the program, the source code of the program is annotated with add approx()

and remove approx() methods to declare the address of those data objects in the program.

These methods are called in the program at appropriate places and are captured by the FI.

The FI records these addresses into a table. During the execution, it instruments all the

memory accesses. If the virtual address of the access falls into the any of the given address

boundaries, it attempts to inject a fault into the part of data referenced by that memory

access. The controller, which is implemented in the middleware, is capable of receiving the

3Code repository at https://github.com/duttresearchgroup/memapprox-control.

43

Figure 3.10: Runtime quality tracking for L1 Data cache write errors. Self-evaluation done
every 5 frames.

results from quality monitors at runtime and set the read/write BER knobs in the simulation

framework.

Control Experiment - Manual Recalibration

The manual scheme measures the difference between desired quality and current quality. If

this difference is within -+10% it does not change the knobs. Otherwise, it changes the knob

in one direction with fine-grained steps until the quality returns to the acceptable quality

region. To recalibrate dynamically, it multiplies the steps with the logarithm of difference in

quality.

Candidate Experiment - Self-adaptive System

Quality tracking is simulated using different control mechanisms in Figures 3.10 and 3.11 and

the system’s performance is evaluated. The figures show how the feedback loop operates in

practice for video inputs. The red dashed curve shows the quality goal (or expected behavior).

The blue curve shows achieved quality (or observed behavior) for PI control. The orange

curve shows the achieved quality for manual control.

The blue curve in Figure 3.10 shows the performance of a self-aware system equipped with

44

Figure 3.11: Runtime quality tracking for L2 cache write errors.
Average settling time for PI control = 2.04s, and average settling time for Manual control
= 6.25s.

a PI controller in tracking target quality for L1 data (L1D) cache write errors. The tracking

can be performed with an average settling time of 1.96secs. The orange curve shows the

performance of a system with a manual recalibration scheme. In the manual scheme, the

average settling time is 6.13 seconds, making the settling time 3× faster for the L1D writes

when using the self-adaptive system. Figure 3.11 show a similar evaluation where we ap-

proximate the memory writes of L2 cache instead of L1D. For L2 write errors, the average

speedup of settling time is also about 3×. In the best case, both L1D and L2 write errors

have a speedup in settling time of 5×.

Our controller is capable of effectively tracking the quality when we approximate on-chip

memory. However, there remain challenges when performing this approximation on DRAM.

Our initial investigation suggests that DRAM is more tolerant to errors because, for the

same score, the expected BER knob value of DRAM is almost 5× more than on-chip BER

knob values. We note that our attempt to track the quality using our self-adaptive approach

was unsuccessful; we hypothesize that our controller cannot take advantage of the temporal

similarity across frames since DRAM access patterns are non-uniform, therefore, the quality

monitor, being the only feedback is insufficient in controlling the target effectively. This

highlights the need to investigate further opportunities for using proposed method in the

context of off-chip memory accesses.

45

Approximate
Memory
Controller

L2Apprx

L1Apprx

Core

Main
Memory

Apprx

Application
Quality
Monitor

+−

GoalGoal

Figure 3.12: Runtime management of approximation knobs using output quality monitoring.

3.5 Case study 2: Self-Optimizing Runtime Manager

3.5.1 Overview of limitations in existing approximation techniques

for full memory hierarchies

Consider the system shown in Figure 3.12. The memory hierarchy (L1 cache, L2 cache, and

main memory) exposes tunable knobs (e.g., operating voltage for L1 and L2, data refresh

period for main memory) that control the degree of approximation. Each knob introduces

a new degree of freedom and increases the configuration space exponentially. Runtime op-

timization of multiple objectives is required to determine the desired system configuration,

and is non-trivial. Researchers have proposed frameworks for exploring the configuration

space at design-time and determining static optimal knob settings for an approximate mem-

ory hierarchy before deployment [156, 51]. More flexible solutions have been proposed to

provide dynamic configuration of knobs at runtime, but require identifying workload-specific

system dynamics at design-time [125, 77]. Requiring apriori knowledge assumes that the

system and workload are observable ahead of deployment, and inherently limits the runtime

adaptability. Determining the optimal knob configuration for unknown applications and new

inputs at runtime is an extremely challenging decision process.

46

Table 3.2: Examples of approximate memory technology knobs. (*) used to evaluate SEAMS’
performance in Section 3.5.5.

Technology Memory Type Technology Knobs Knob objective Reference

Cache
SRAM Volatile (*) Operating Voltage (VDD) Energy savings ASPLOS’12[34], ESL’15[116]

STT-RAM Non-Volatile
Read Voltage (Vread)

Write Pulse Duration (twrite)
Energy savings

HPCA’11[117], CASES’15[110]
ISLPED’17[87]

Main
Memory

DRAM Volatile
(*) Data Refresh Period (tREF)

Operating Voltage (VDD)
Row Activation Delay (tRCD)

Energy savings
Reduce Latency

ASPLOS’11[70],
ISLPED’14[24]
MICRO’19[59]

PCM Non-Volatile Data Comparison Write (Th)
Energy savings
Increase lifetime

MICRO’09[101], MICRO’13[111]

Approximate Memory Technologies

Table 3.2 summarizes some standard memory technologies and specifies associated approxi-

mation knobs and objectives. Each memory type exposes different technology knobs and al-

lows room for optimization based on the technology knob. SEAMSmethodology is technology-

agnostic and can potentially leverage all of the technology knobs described in Table 1. How-

ever, for evaluation purposes, we focus on the most commonly used memory types: SRAM

cache and DRAM main memory, marked with (*) in Table 3.2.

SRAM Voltage-scaling and power-gating lead to leakage energy savings in SRAM. When

scaling the supply voltage (VDD) in SRAM cells, read and write errors are dominant; hence

hold failures are not considered. For experimentation in Section 3.5.5, we require a model

that relates SRAM cell supply voltage (VDD) to read/write error probability. Several power

models exist in literature for different SRAM nodes (e.g., 90 nm [3], 70 nm [25], 28 nm

[162, 7]). We use a model for a 6T SRAM at 65 nm node from [156] for comparison with

related memory approximation work. Figure 3.13a shows the bit error rate for reads/writes

corresponding to relative power supply voltage for the model under consideration.

DRAM Off-chip main memory in commodity systems uses DRAMs to store large amounts of

data at high density, but comes with power and performance overhead compared to SRAM.

Unlike SRAMs, DRAM cells need periodic refreshing (one row at a time) to retain stored

data. During standard DRAM operation, the external memory controller is responsible

47

40 50 60 70 80 90 100
10−6
10−5
10−4
10−3
10−2
10−1
100

Relative Power Supply Voltage (%)

S
R
A
M

b
it
er
ro
r
ra
te

(B
E
R
)

Read Error
Write Errors

(a) Bit error rate for a 6T SRAM cell with
varying VDD values in 65nm. Data from
[156].

0.10.20.5 1 2 5 1020
0
5
10
15
20
25
30

Refresh Cycle (s)

S
el
f-
re
fr
es
h

P
ow

er
S
av
in
g
(%

)

Power saving

10−11

10−9

10−7

10−5

10−3

10−1

E
rr
or

R
at
e

Error Rate

(b) Error rate and power savings in self-
refresh mode for different refresh cycles in
DRAM array under 48◦C. High refresh part
is 1/4 of DRAM array. Data from Flikker
[70].

Figure 3.13: Error and Power models used for (a) L1/L2 cache and (b) DRAM

for issuing refresh commands regularly to the DRAM. The frequent refresh operations (e.g.,

sending an AUTO-REFRESH command every 7.81 µs for refreshing the entire array in 64 ms)

leads to power and performance overheads. Researchers have explored several knobs (e.g.,

operating voltage VDD, row activation delay tRCD) with different objectives (e.g., energy,

latency) to reduce DRAM overhead. In this work we focus on optimizing energy, and use

refresh-rate as the knob for experimentation.

Well-known work [102, 70] demonstrates significant power savings through memory approx-

imation by using a feature available in mobile DRAMs known as self-refresh mode. In

self-refresh mode, the DRAM array is periodically refreshed without any commands from

the memory controller, even if the processor is in sleep mode. Low-power DRAM mod-

ules have a feature for further enhancing the self-refresh mode: Partial Array Self Refresh

(PASR). PASR partitions the DRAM array in two separate regions, refresh and no-refresh.

The partitioning allows refresh to be limited to the portion of the memory that is being used

to store data. DRAM cells that are not refreshed will lose data in PASR. Liu et al. in Flikker

[70] propose an approximation method by extending PASR to support multiple DRAM re-

gions with different refresh rates, providing reduced reliability of data in part of memory

48

instead of complete data loss. We use the Flikker DRAM model as our approximate DRAM

memory technology with configurable refresh rate for the non-critical section of the mem-

ory array. Flikker is also used by a state-of-the-art memory approximation manager [156],

allowing for comparison. Although the exact refresh rate required for reliable operation at

runtime is effected by temperature, device capacity, and cell layout [53], these variations are

not considered in this work.

Configuring Approximate Memory

Several methods have been proposed to tune memory approximation knobs. Table 3.3 iden-

tifies the most recent and relevant research, and positions SEAMS with respect to these prior

works. We define self-adaptivity as the ability to adapt to user-specified application goals or

system constraints (e.g., increased target QoS). We define self-optimization as the ability to

find desirable system configurations given a fixed goal in the face of external disturbances

(e.g., a scene change). Manual methods rely on designer expertise to optimize approximation

knobs (e.g., tREF in DRAM). In EDEN [59], Koppula et al. show the effectiveness of manual

tuning for neural networks, which have an intrinsic capacity of tolerating errors in memory

accesses. EDEN uses approximate DRAM to reduce energy consumption and increase the

performance of DNN inference. EDEN is limited to machine learning workloads and does

not apply to a multi-level memory hierarchy. The absence of a runtime quality monitor in

EDEN prevents dynamic reconfiguration of the approximation knobs (e.g., row activation

delay tRCD, operating voltage VDD).

Maity et al. [77] propose a solution to maintain a quality target at runtime using classi-

cal control theory. Quality configuration tracking is modelled as a formal quality-control

problem, and black-box modelling is used to capture memory approximation effects with

variations in application input and system architecture. However, this scheme assumes only

one level of the memory hierarchy is tuned at runtime and fails to address the problem of

49

coordination between multiple knobs.

In AdAM [125], Teimoori et al. investigate memory approximation by managing approxi-

mation knobs across the memory hierarchy. AdAM solves a design-time ILP optimization

problem and uses a runtime algorithm to adapt to new tasks by re-estimating the execution

time. Although optimization techniques are a natural choice for simple architectural tuning,

the lack of a feedback mechanism makes them too rigid for any sort of adaptivity (e.g.,

unknown inputs, disturbance from other applications). Their use-case only addresses a two-

layer memory hierarchy, with an on-chip STT-RAM and an off-chip PCM Main Memory,

and the design-time algorithm is technology-dependent.

In DART [156], Yarmand et al. propose a framework for a three-layer memory hierarchy

(SRAM L1, SRAM L2, and an off-chip DRAM) without any technology-specific assumptions.

DART uses a branch and bound algorithm to consider all possibilities at design time, and

creates a search tree to perform error probability analysis. Although DART considers the

full memory hierarchy, it requires the programmer to: (1) analyze the program during design

time, (2) generate a memory profile for each application that would run on the system, and

(3) estimate the worst-case probability of errors that would occur due to under-designed

memory. Therefore DART requires apriori knowledge of the application and assumes that

the system is available for full observation before deployment.

In the broader scope of runtime resource management, machine learning approaches have

been explored. Researchers have investigated the feasibility of machine learning methods for

quality configuration in the approximation domain [81, 82]. However, conventional machine

learning methods require extensive training to learn the correlation between the system’s

inputs and outputs. Static models that are defined ahead of deployment fail to handle new

situations outside of expected behavior. Online learning methods aim to address this issue

and have shown promising results for resource management [31, 74].

50

Table 3.3: Memory approximation approaches and the key challenges addressed (∗ =
uniquely addressed by SEAMS).

Features EDEN Control
Theory

AdAM DART SEAMS

[59] [77] [125] [156]

Technology Independent ✓ ✓ ✓
Memory Hierarchy ✓ ✓ ✓
Application Agnostic ∗
Coordination ∗
Self-Adaptivity ✓ ✓
Self-Optimization ∗
Model-Independence ✓ ✓ ✓
Real System Evaluation ✓ ✓

SEAMS incorporates the features highlighted in Table 3.3 using online learning methods.

The SEAMS approach improves upon prior work by eliminating design-time modeling, being

memory technology-agnostic, and coordinating multiple knobs at runtime to exploit approx-

imation for multi-level memory hierarchies; enabling quick adoption of approximation for

diverse platforms.

3.5.2 Explanation of the proposed self-optimizing runtime man-

ager, SEAMS

Figure 3.14 from [75] presents the SEAMS realization of the logical architecture described

in Figure 3.12, consisting of the following components: 1○ a hardware platform with a pro-

cessing unit, cache subsystem, and main memory. This hardware controls the degree of

approximation at each memory layer by configuring the specific technology knobs available

on the platform. Examples of technology knobs are in Table 3.2. The processor core contains

special registers to set knobs (e.g., L1 VDD updated from 0.7V to 0.8V) through special in-

structions. In our current RISC-V realization of the processor, we deploy unused control and

status registers (CSRs) for this purpose. 2○ Custom ISA extensions. Custom instructions

51

Environment

actiont

Agent

Core

L1

L2

Main Mem

Application

Rt+1Rt

St+1St

QoS Monitor

L1: x, L2: y, DRAM: z, Error: k

State Action Q-Value

L1: [+/-/·] L2: [+/-/·] DRAM: [+/-/·]

ISA HardwareSoftware

Cache Subsystem

Main Memory
Controller

Cache
Controller L1D

L2

L1I

Core
To approximation

specific-registers

AX_ENABLE

AX_DISABLE

AX_L1_LEVEL

AX_L2_LEVEL

AX_DRAM_LEVEL

Native ISA

QoS constraints

A
p
pr

ox
im

at
e

E
xa

ct

SEAMS
config

Main Memory
(MM)

Loadable Kernel Module

O
p
er

at
in

g
S
ys

te
m

Device

Models

Application

malloc_approx()

High
Level
Knobs

Device
Specific
Values

Quality Monitor

SEAMS
Controller

Quality of Service (QoS)

L2

L1 MM

Power Sensor

1
2

3

4

5

6

7

8

Figure 3.14: Overview of SEAMS system architecture.

write to CSRs to form an extension of the processor’s ISA (RISC-V in our implementation),

and are used to manage approximate elements at runtime. Truffle [34] is another example of

a microarchitecture design that efficiently supports ISA extensions for disciplined approxi-

mate programming. Instructions supported through our CSRs include AX ENABLE to enable

approximation, AX DISABLE to disable approximation, AX L1 LEVEL to set the technology-

specific knob for Level 1 cache, AX L2 LEVEL to set the knob for Level 2 cache, AX DRAM LEVEL

to set the technology-specific knob for DRAM. 3○ A loadable kernel module. The module

maps the high-level knob values (e.g., low approximation) to technology-specific knob values

(e.g., VDD). For new technologies, the module must be updated to reflect the available actu-

ation knobs (e.g., available write pulse duration (twrite) for STT-RAM). The kernel module

also allows applications to indicate which parts of the application’s virtual memory can be

placed physically in the approximate regions (explained further in Section 3.5.4). 4○ The

user application, specifying the non-critical sections of the data using a malloc approx()

call. 5○ A quality monitor that computes the QoS periodically at runtime and reports it

to SEAMS. 6○ Power sensors that measure the current system power. 7○ Expected QoS

specified by the user. Expected QoS can be updated at runtime to adapt to different sys-

tem objectives (e.g., a strict quality constraint provides more accurate execution, whereas

a relaxed quality constraint provides energy savings). 8○ The SEAMS controller. The con-

troller is the final component of the architecture and is responsible for runtime control of

the memory approximation knobs.

52

The SEAMS controller is a model-free decision-making mechanism for tuning configurable

approximation knobs throughout the memory hierarchy. SEAMS follows the observe-decide-

act (ODA) paradigm: the environment is observed through sensors during normal execution,

and the controller is periodically invoked in order to (re)configure the system using knobs.

We design our decision-making logic by first defining our problem as a Markov Decision

Process [152]: (S,A, Pa, Ra), where S refers to state space, A refers to action space, Pa refers

to the transition probabilities from S → S ′ given action A, and Ra refers to the expected

reward for selecting action a in state s. As is common in real systems, we assume system

dynamics are unknown and can change continuously. To address this well-known problem,

we apply an appropriate established reinforcement learning solution: temporal difference

(TD) learning [122].

Design Methodology

Our goal is to design a controller that coordinates each layer of a unified 3-layer memory

hierarchy to achieve acceptable application QoS while minimizing energy consumption. First,

we must define the structure of our environment.

State Space (S) The state is a representation of the current system under control. In

SEAMS, we define a state vector that consists of high-level approximation settings (e.g.,

no/low/medium/high approximation) of each memory layer, as well as the current QoS

error. The quantitative definitions of the different approximation settings are in Table 3.4.

The state vector can be summarized as:

1. L1D: current level 1 data cache configuration

2. L2: current level 2 shared cache configuration

3. Main memory: current main memory configuration

53

4. Discretized QoS error (Qthreshold −Q), where Q is the measured QoS, and Qthreshold is

the provided constraint

The state includes the current knob settings, as well as how effectively they are achieving the

QoS requirement set by the application. This allows us to translate the dynamics between

application behavior and hardware configuration. The QoS error is normalized to the worst-

case QoS value (maxQ) to make SEAMS portable across applications, and high-level knobs

allow SEAMS to be independent of memory technologies.

Action Space (A) The action space contains all possible operations the controller may

take to configure the system each time the controller is invoked. The SEAMS action vector

consists of the relative changes to the high-level knobs for layers in the memory hierarchy:

1. L1D: Increase/Decrease/No change

2. L2: Increase/Decrease/No change

3. Main memory: Increase/Decrease/No change

Initially, the SEAMS controller policy does not have any information regarding what actions

are desirable, and must discover which actions yield the maximum reward in each state via

exploration (e.g., when there is no QoS constraint, actions which decrease power yield the

maximum reward).

Reward (R) The reward provides immediate feedback to the controller on how the previous

state-action pair helped achieve the system goal. In our case, the goal is to find the optimal

configuration corresponding to minimum energy with acceptable QoS. Power is used as a

direct proxy for the higher-level optimization goal (energy), and instantaneous power is

integrated over time to compute the total energy. We define the reward in an unconstrained

system as

54

rewardP = 1− Power

maxPower

rewardP ∈ {x|0 ⩽ x ⩽ 1}
(3.3)

where Power is measured power, maxPower is the power consumed when the approximation

is disabled at all layers of the memory hierarchy, and rewardP is the reward obtained in terms

of optimizing power consumption. This function represents a power optimization objective

with a target power of zero. In an unconstrained system, operating at the highest power

yields no reward, while operating at zero power yields the maximum reward. However, we

must constrain the total reward in order to account for the quality threshold.

The controller should take actions that minimize the number of violations of the quality

constraint specified by the application developer. The reward with respect to quality is

calculated as

rewardQ = −Q−Qthreshold

maxQ

rewardQ ∈ {x| − 1 ⩽ x ⩽ 1}
(3.4)

where rewardQ is the reward obtained by staying within the quality constraint. In case of

violations, rewardQ is negative, indicating an action that led to a QoS violation.

Finally, the reward R is calculated from the rewardP and rewardQ and measured by the

controller as

R =

rewardP , if Q ⩽ Qthreshold

rewardQ, otherwise

(3.5)

This reward function effectively minimizes power (by maximizing rewardP) while the QoS

requirement is being achieved (Q ⩽ Qthreshold), otherwise it minimizes error (by maximizing

55

rewardQ). Note that quality metric in case of approximation is quantified by the number of

errors (lower Q is better).

Environment

At

Agent

Core

L1

L2

Main Memory

Application

Rt

St

QoS Monitor

L1: 0, L2: 4, DRAM: 2, Error: 0.06

State Action Q-Value

L1: [+/-/·] L2: [+/-/·] DRAM: [+/-/·]

Figure 3.15: SEAMS taking actions against the en-
vironment, and the environment returns observa-
tions (updated state) and reward.

Approx.

degree

L1

(SRAM)

L2

(SRAM)

Main

mem-

ory

(DRAM)

No 1V 1V 0.1s

Low 0.9V 0.9V 1.0s

Medium 0.8V 0.8V 5.0s

High 0.7V 0.7V 20s

Table 3.4: Example instance of
memory hierarchy knob used to
evaluate SEAMS

SEAMS Controller: Model-free Control

Given the definition of the environment and goals, we simply need to implement a decision-

making mechanism (SEAMS) to find the optimal policy. The policy is defined as a state-

action value function, and captured in a table that stores all the state variables and possible

actions. Initially, the SEAMS controller does not have any information regarding the environ-

ment and explores the state-space by taking purely arbitrary decisions (actions). SEAMS

uses temporal-difference (TD) learning [123] to learn directly from experience without a

model of the environment’s dynamics. Figure 3.15 shows the logical structure of the SEAMS

controller and its relation to the environment, i.e., system under control. The controller

interacts with the environment through actions, and the environment provides rewards and

updated state information to the controller. Actions that lead the system to optimize power

without violating quality constraints are rewarded well.

Q-learning [150] is a popular TD control algorithm. Q-learning aims to learn a state-action

56

value function, Q, which directly approximates q∗, the optimal state-action value function.

A variation of Q-learning combines eligibility traces to obtain a more general method that

may learn more efficiently. Eligibility traces look backward to recently visited states and

act as short-term memory. This algorithm, where Q-learning is combined with a backward

short-term memory using eligibility traces, is known as TD(λ) [122]. SEAMS uses the

TD(λ) algorithm to update and optimize the approximation management policy continuously

throughout runtime. A Q-table is populated with the Q-value of each state-action pair

(Figure 3.15). The controller is invoked periodically and performs the following steps during

each invocation:

1. Measure the power and QoS to evaluate the reward R

2. Update the table (Q values) based on reward R

3. Sense the current approximation levels and QoS to determine the current state S

4. Given the current state S and updated Q values, select next action A

The detailed algorithm is outlined in Algorithm 3.

line 1: The dilemma presented during any controller design is determining control parameters,

whether the implementation uses classical control theory or reinforcement learning. In

the TD(λ) algorithm, learning parameters are interpretable, and can be selected several

ways, e.g., using designer intuition or empirical observation. In our case we determine

learning parameters (α=0.6, γ=0.1, and λ=0.95) empirically by simulating our control

logic on system traces for canny. No matter the controller deployed, these parameters

must be determined. However, we define our control logic in such a way that the values

apply to the type of control (i.e., memory approximation knobs), as opposed to the

application under control (i.e., edge detection). Thus, the parameter values remain

relevant across new applications.

57

Algorithm 3 TD(λ) algorithm [123] for determining SEAMS policy.

1: Algorithm parameters: step size, discount factor, trace decay α, γ, λ ∈ (0, 1] ▷
Empirically determined parameters

2: Initialize Q(s, a) arbitrarily, for all s ∈ S, a ∈ A(s) ▷ Initialize action-value function (Q)
3: for each episode do
4: E(s, a) = 0,∀s ∈ S, a ∈ A(s) ▷ Eligibility trace (E) is initialized to 0
5: Initialize S,A
6: for each step of episode do
7: Take action A, observe R, S ′ ▷ Take selected action, observe reward (R) and

next state (S ′)
8: Choose A′ from S ′ using policy derived from Q ▷ Choose next action using the

policy
9: δ ← R + γQ(S ′, A′)−Q(S,A) ▷ TD error = Expected value - Current value
10: E(S,A)← E(S,A) + 1 ▷ Increase eligibility trace by 1 for visited state-action

pair
11: for each s ∈ S, a ∈ A(s) do
12: Q(s, a)← Q(s, a) + αδE(s, a) ▷ Update Q in the direction of TD target
13: E(s, a)← γλE(s, a) ▷ Decay the eligibility of previously visited state-action

pairs
14: end for
15: S ← S ′; A← A′ ▷ Update the state (S) and action (A)
16: end for
17: end for

58

line 2: The value function Q(s, a) considers transitions from state–action pair to state–action

pair, and indicates how desirable it is to perform a given action in a given state. The

value function is initialized arbitrarily as the state-space is yet to be explored.

line 3: During the policy initialization phase, the same sequence of inputs are repeatedly used

to explore the state-action pairs and populate the value function Q(s, a). This set

of inputs form an episode which group the controller-environment interactions into

smaller sequences. After the policy is initialized and SEAMS is exposed to new inputs,

then inputs are not grouped anymore, and this outer for loop will be skipped. During

the policy initialization phase, the processing of 100 steps are grouped into an episode,

where each step corresponds to the actuation frequency. If the actuation frequency

is 1, then each input is considered as a step. A detailed analysis of the best size of

each step is presented in Section 3.5.5. At the end of each episode, some information

is updated, which is explained in lines [4-5].

line 4: For all the state-action pairs, the eligibility values are initialized to zero. The eligibility

matrix estimates the degree that previously-visited state-action pairs contribute to the

latest reward. Staler state-action pairs have a low eligibility value, and recent state-

action pairs have a high eligibility value.

line 5: Initially we start with the state of no approximation and the best action for the current

state is selected based on the value function Q(s, a).

line 6: This loop is executed for each step corresponding to a new input.

line 7: Set the appropriate knob values based on the selected action A. The controller yields

to normal execution for a set period of time, and is invoked again after the invocation

period expires. Upon invocation, the new state S ′ and the reward R are determined

based on measured behavior.

line 8: The next action A′ is selected based on the new state S ′ and value function Q(S ′, A∗).

59

0.7 0.8 0.9 1
0
20
40
60
80
100

L1 Knob Setting (V)

R
M
S
E

0.7 0.8 0.9 1
0
20
40
60
80
100

L2 Knob Setting (V)

R
M
S
E

0.11.05.020.0
0
20
40
60
80
100

DRAM Refresh Period (s)

R
M
S
E

(a) RMSE Sensitivity analysis.

0.7 0.8 0.9 1
70

80

90

100

L1 Knob Setting (V)

M
em

or
y
P
ow

er
(%

)

0.7 0.8 0.9 1
70

80

90

100

L2 Knob Setting (V)

M
em

or
y
P
ow

er
(%

)

20.05.0 1.0 0.1
70

80

90

100

DRAM Refresh Period (s)

M
em

or
y
P
ow

er
(%

)
(b) Memory Power Sensitivity analysis.

Figure 3.16: Sensitivity analysis of memory configuration knobs on QoS (RMSE, top) and
memory power (normalized to L1:1V, L2:1V, DRAM:0.064 s) for canny.

line 9: The TD error is calculated to determine how well the value function predicted the

actual reward.

line 10: The eligibility value of the visited state-action pair is updated.

line 11: This loop visits the entire state-action space to update the value function Q.

line 12: The Q-value for all state-action pairs is updated based on the latest reward, TD error,

and eligibility value.

line 13: All eligibility values are decayed.

line 15: The current state and action S,A are updated based on the observed state S ′ and

selected action A′.

60

3.5.3 Discussion of SEAMS’ key features

Figure 3.14 outlines the SEAMS system architecture, with the SEAMS controller (8○) re-

sponsible for runtime control of the hardware memory approximation knobs. Our imple-

mented environment consists of a unicore RISC-V processor with a three-layer memory hi-

erarchy: L1 SRAM data cache, L2 SRAM shared cache, and DRAM main memory. SEAMS

is implemented in software and runs in userspace. A loadable kernel module translates

the device-specific translations from high-level configurations (e.g., low approximation) to

technology-specific values (e.g., 0.9V for SRAM caches).

The state vector S is made up of discrete integer values that represent (1) high-level configu-

rations corresponding to memory layers, and (2) the QoS error. The L1 and L2 voltage levels

(VDD) are between 0.7-1.0V in increments of 0.1V [156]. The main memory refresh periods

are 0.1 s, 1 s, 5 s, 20 s [70]. The QoS error is normalized and discretized into 16 buckets of

step size log216. The inclusion of the QoS error in the state differentiates desirable actions

for the same voltage level, depending on the QoS error explicitly.

The action vector A contains a field for adjusting each of the L1, L2, and main memory

knobs. The knob values are voltage levels for L1 and L2 cache, and refresh periods for

DRAM main memory. Knob actions only consist of increment, decrement, or remain the

same. Figure 3.16 shows the sensitivity analysis of the approximation knobs on the QoS

and power outputs. The analysis is performed using the experimental setup described in

Section 3.5.4 and the Canny edge detection application (described in Section 3.5.4). We

make three key observations. (1) As we move up the memory hierarchy (i.e., from L1 to

L2 to main memory), the quality is less affected by higher degrees of approximation. (2)

The contribution to power from individual levels of the hierarchy varies. Although main

memory techniques can save around 23% DRAM power, when the full memory hierarchy is

considered, DRAM power savings saturate at 12%. (3) Four knob values capture the range

61

of power/quality tradeoff while keeping the state-space manageable. We conclude that four

knob values for each level provides sufficient control to achieve our goal.

Reward R is calculated based on Equation 3.5. SEAMS uses software sensors to determine

the application’s output quality and calculate the reward. Although the quality metric is

domain-specific and generated by a quality monitor, normalizing the value keeps SEAMS

domain-agnostic. We update Q values using the reward as specified in Algorithm 3.

We deploy a hardware platform that emulates the effects of approximation in order to demon-

strate the efficacy of SEAMS to coordinate approximation knobs in the memory hierarchy.

The effect of approximation knobs in each layer in the memory hierarchy is determined using

known models [156, 70].

3.5.4 Coordinate runtime decisions for interdependent knobs and

subsystems

Figure 3.17 shows an overview of our evaluation platform. Prior work on configurable mem-

ory approximation uses simulation to evaluate methods [78]. Our desire is to practically

evaluate a full system that captures dynamic workload and operating system behavior, which

leads us to a hybrid setup with hardware in the loop. We implement SEAMS in software run-

ning on Openpiton [11], an open-source framework designed to enable scalable architecture

research prototypes. We use Openpiton with a single Ariane [160] core, a 64-Bit RISC-V

core capable of running Linux. Ariane implements the 39-bit page-based virtual memory

scheme SV39 and boots Linux on a single core on an FPGA. The platform is synthesized on

a DIGILENT NexysVideo board with a Xilinx Artix-7 FPGA(XC7A200T-1SBG484C). The

parameters used to synthesize the system are summarized in Table 3.5.

62

In
st

ru
ct

io
n
 F

et
ch

E
xe

cu
te

 s
ta

g
e

C
o
m

m
it
 s

ta
g
e

In
st

ru
ct

io
n
 D

ec
o
d
e

Is
su

e
st

ag
e

P
C
 G

en
er

at
io

n
Load Store Unit

MMU

CSR Regfile Execution Stage Cache Subsystem

Dcache Miss
Unit

Write
Buffer

L2
Cache

Cache
Controller

New CSR
registers

Address
Comparison

L2
WL1

W

L2
R

L1
R

S
co

re
b
o
ar

d

Branch Unit

Multiplier

ALU

Load Store Unit

Cache Subsystem

MMU

DTLB

PTW

CSR Buffer
1

2

Miss Unit

D-Cache

W
ri
te

 B
u
ff
er

C
o
n
tr

o
lle

r

L2R

L1R L1W

To L2

Cache

L2W

FI Fault
Injector3

Figure 3.17: Modification of Ariane RISC-V core to emulate on-chip approximate memory.
1○ Addition of new CSRs to communicate with SEAMS kernel module. 2○ Modification of
address translation logic in Memory Management Unit (MMU) to generate approx signal.
3○ Fault injectors that introduce errors in the memory bus.

63

Modifications to RISC-V Core

We further modify the Ariane core to support fault injection throughout the memory hierar-

chy. The synthesized core, running on the NexysVideo board, does not support real knobs for

approximation. Instead, we rely on existing works that map device-specific approximation

knobs to observable bit error rates [156, 70], and introduce bit errors through fault injection

to emulate the effect of approximation knobs.

SRAM Fault Injection The RISC-V specification defines separate addresses for Control

and Status Registers (CSRs) associated with each hardware thread [149]. Unused CSRs

are utilized by the kernel to communicate information required for the configuration of the

approximation knobs. Additional CSRs are denoted with 1○ in Figure 3.17. In particular,

the following information is stored in CSRs:

1. L1 data cache Read and Write bit error rate

2. L2 shared cache Read and Write bit error rate

3. Starting and ending physical address of the non-critical memory segment

The bit error rates correspond to specific memory nodes and are translated from technology-

Table 3.5: System configuration used for SEAMS evaluation.

Component Configuration

Cores 1
TLBs Number of entries (16)

L1 D-Cache Number of sets, ways (16kB, 4-way)
L2 Cache Number of sets, ways (64kB, 4-way)

Floating-Point Unit Present
Main Memory Onboard (512MB DDR3, 800 Mbps data rate)
Clock frequency 30 MHz

Cache Replacement L1: Pseudo Random (using LFSR)
Policy L2/TLB: Pseudo Least Recently Used (LRU)

64

specific values described in Section 3.5.1. The knob settings from the CSRs are propagated

to the 2○ Memory Management Unit (MMU), where address translation takes place. The

MMU uses this information to generate an additional approx bit along with the index and

tag bits to indicate if an address is in the valid range of approximation. The approx bit

generation is repeated whenever a virtual address is converted to a physical address. The

cache controller uitilizes the approx bit in conjunction with the CSRs to determine bit error

rate, control the degree of approximation, and contain it to the non-critical parts of the

application data. A Fault Injector (FI) module emulates the effects of approximation by

introducing bit flips on the memory bus. Four FI modules are instantiated in the cache

subsystem as shown in Figure 3.17 3○. The FI modules generate a bit-flip mask for each

memory access using a Linear-Feedback Shift register (LFSR) that introduces randomness

in the injected errors.

The FIs are located in (1) Data Cache Memory emulating the bit flips corresponding to L1

data reads and L2 reads, (2) Write Buffer emulating the bit flips corresponding to L1 data

writes, and (3) Miss Unit emulating the bit flips corresponding to L2 writes.

DRAM Fault Injection DRAM cells store data in capacitors that lose charge over time.

In order to keep the data consistent, the DRAM cells are periodically refreshed. DRAM

cell strength is non-uniform due to manufacturing variability, i.e., some DRAM cells lose

charge faster than others. The number of bit-flips in DRAM increases as the refresh period

increases due to a higher number of DRAM cells losing charge before they are refreshed. The

number of bit-flips is also affected by DRAM data reads and writes. Therefore, implementing

a FI module for DRAM requires tracking faulty DRAM cells for each refresh-rate knob and

the hold times of the data in each DRAM cell. Given the DRAM size, maintaining this

information requires a lookup table of impractical size on an FPGA. The lookup table would

also introduce considerable latency to DRAM accesses. There are multiple ways to emulate

a variable refresh knob in DRAM hardware, e.g., using precharge-powerdown and ACT-

65

Table 3.6: Applications used for SEAMS’ evaluation along with their inputs and QoS.

Application Domain Input Size Quality Metric

canny [18] Image-Processing 352x288 (Grayscale) Image Diff (RMSE)
k-means [157] Machine Learning 426x240 (RGB) Image Diff (RMSE)
blackscholes [157] Finance 4K entries Avg. Relative Error

PRE for short wakeups, or row-granular refresh. However, we believe software emulation is

sufficient to demonstrate the efficacy of SEAMS. To emulate DRAM errors, we implement

a software-based FI for DRAM. Initially, a map DRAM MAP of faulty DRAM cells4 for the

maximum refresh period (20 s) knob is generated randomly using a uniform distribution.

The faulty DRAM cells for higher refresh rates are a subset of DRAM MAP. The data being

loaded into the DRAM is modified using the DRAM MAP and the current refresh rate knob.

The exact read and write accesses to the DRAM are not impacted.

User application and QoS metric

The SEAMS methodology is well suited for a large class of memory-intensive workloads (e.g.,

video processing, machine learning). Table 3.6 summarizes the applications used for SEAMS’

case study. (1) Canny edge detection [18] algorithm operates on a video stream and marks

the edges in each frame. (2) k-means is a machine-learning application [157] that partitions

3-dimensional input points (RGB pixels) into six different clusters. (3) blackscholes [157]

is a financial analysis application that solves partial differential equations to perform price

estimations.

Each application’s source code is modified to indicate non-critical data elements. Several

techniques have been have been proposed [144, 39] to systematically analyze and report how

different parts of applications are affected by errors. Depending on the application, there

are one or more candidate data segments (e.g., image data, video data, signal data) for

4The bit error rates are sourced from [70] for temperatures under 48◦C.

66

accuracy/energy tradeoffs. We identify these segments in the source code, and replace their

malloc() calls to the kernel with malloc approx() calls. For canny, the image buffer is

marked as non-critical. For k-means, the data structure for the image buffer is modified

to separate the non-critical pixel data, and raw pixel information is converted from float

representation to unsigned char representation since each pixel value lies between 0 and 255.

For blackscholes, the buffer data structure is left unmodified: the non-critical approximate

memory consists of a buffer of floats. Errors can impact the bits differently, and in case of

extreme approximation may produce relative errors of 100%. The malloc approx() calls

are intercepted by a custom Linux kernel module, described in next section.

In addition to specifying the non-critical data elements, a quality-monitor specific to the ap-

plication domain is required. The quality monitor is a lightweight software routine invoked to

evaluate the application QoS and calculate the reward. The QoS metric indicates the qual-

ity degradation caused by the configuration of approximation knobs. Typically, application

developers generate a software routine that is capable of measuring the quality at runtime.

In canny, the QoS is determined by evaluating the Root Mean Square Error (RMSE), which

is the mean of pixel differences squared between an exact result and an approximate result.

For k-means and blackscholes the quality monitors are RMSE and Average Relative Er-

ror, used directly from AxBench [157]. The quality monitor software routine is invoked at

runtime, and the result of an exact run of the application is compared with an approximate

version [10, 33]. The quality evaluation is not repeated for every input so that the benefits of

approximation can justify the overhead. Depending on the status of learning, the frequency

of quality evaluation should be adapted. A detailed overhead analysis is presented in Sec-

tion 3.5.5. If additional cores are available, ground truth comparison can be performed in

parallel. In our unicore setup, ground truth comparison incurs unavoidable overhead during

the initial exploration phase.

67

Application

Sniper + McPATSEAMS

Agent

Offline Power Modelling

riscv x86

Quality (QoS) Power

RISC-V Fault Injector

L1 L2 MM

Simulation

(Host)

Software

(Host)

Hardware

(FPGA)

Figure 3.18: Tools flow for experimental setup. The RISC-V Fault injector (shown in dashed
lines) allows us to emulate faults using different models while considering a full system run-
ning an operating system. The Sniper+McPat simulations determine power consumption
without approximation, which is scaled based on technology-specific models for approxima-
tion.

Kernel Support for Approximation Knobs

We develop a loadable kernel module (LKM) as middleware between the user application

and CSRs. malloc approx() calls from the applications are intercepted by the LKM, and

use mmap to allocate a contiguous physical segment. The starting and ending addresses of

the segment are written to additional CSRs. Whenever the user application loads/stores

data, the MMU compares the memory address in hardware using CSRs to check if the data

is in the non-critical segment.

68

Power Models

The evaluation platform does not come equipped with on-board power sensors for measuring

active power consumption. Since the actual power consumption (and savings) depend on

the executed application as well as the actual input, we use Sniper [19] simulations with

McPAT [65], along with existing power models from literature [156, 70], to compute the

power consumption at different knob settings. Figure 3.18 shows an overview of the complete

tools-flow. Each new input to the application is simulated in Sniper, and McPAT is invoked

to estimate the power and energy consumption of different system components without

approximation. Power and energy consumption is then scaled according to the technology

models to estimate different knob power values. For SRAM, we use the 65 nm node model

proposed in [156]. For DRAM, we use the low-power DDR model proposed in Flikker [70].

DRAM is assumed to be partitioned into two sections: (1) 1/4 exact DRAM having a high

refresh rate, and (2) 3/4 DRAM having a lower refresh rate based on the approximation

knob. In order to calculate total DRAM power savings, we assume the usage profile for a

typical low-power embedded scenario: 5% busy versus 95% in standby mode (self-refresh

state) as assumed in Flikker. Although DRAM power consumption may vary based on

factors like memory array partitioning, data access patterns, and current DRAM utilization,

we do not consider these variations in this work. The power models do not consider ECCs,

which could provide additional power savings.

3.5.5 Demonstrating SEAMS’ energy savings and reduction of

QoS violations

In this section, we demonstrate SEAMS’ ability to learn directly from experience, without

requiring any model of the environment’s dynamics. These experiments are evaluated using

canny.

69

0 20 40 60 80 100
55
60
65
70
75
80
85

Frame # (divided by 100)

M
em

or
y
P
ow

er
(%

)

Q-Learning
TD(λ)
Optimal

(a) Configuration space = 64 states

0 20 40 60 80 100
55
60
65
70
75
80
85

Frame # (divided by 100)

M
em

or
y
P
ow

er
(%

)

Q-Learning
TD(λ)
Optimal

(b) Configuration space = 704 states

Figure 3.19: Power (normalized to exact execution) consumption achieved by different learn-
ing algorithms provided a goal to minimize power. Ideally, the policy should learn to reduce
power consumption as quickly as possible toward the minimum (black dashed line).

Policy Initialization

First, we evaluate SEAMS ability to learn an optimal policy to minimize energy from scratch.

We compare two TD reinforcement learning algorithms: TD(λ) and Q-Learning. The pri-

mary difference between the methods is that TD(λ) uses bootstrapping. For both algorithms,

we determine the learning parameters empirically using a simulated workload. Without any

QoS constraints, approximation knobs should be set to the configuration corresponding to

the lowest power. The goal of a policy should be to reach the optimal configuration as

quickly as possible. Figure 3.19 compares the TD methods with the optimal configuration

corresponding to the the lowest power (yielding maximum energy savings). The plots are

averaged over 16 runs to remove the effect of any outliers.

The x-axis in Figure 3.19 represents frames processed, and the y-axis represents average

70

0 10 20 30 40 50 60 70
0
10
20
30
40
50

Frame #

R
M
S
E

QoS Constraint SEAMS DART

(a) Quality of Service

0 10 20 30 40 50 60 70

70
80
90
100

Frame #

M
em

or
y

P
ow

er
(%

)

SEAMS
DART

(b) Normalized Memory Power over exact computation

0 10 20 30 40 50 60 70
0.7
0.8
0.9
1.0

Frame #

V
D
D
(V

)

L1D L2

(c) L1 and L2 cache VDD knobs

0 10 20 30 40 50 60 70
20
5
1

0.1

Frame #

R
ef
re
sh

P
er
io
d
(s
)

DRAM

(d) DRAM refresh period knob

Figure 3.20: SEAMS self-optimizing power within quality constraint

memory power (normalized to the exact execution) for each episode for canny edge detection

application [18]. We make two major observations. First, both algorithms can eventually

converge to the optimal policy. Second, in Figure 3.19a, when the configuration space is

small (i.e., we restrict the allowable knob settings), both Q-learning and TD(λ) converge at

an equal rate. However, when the configuration space is increased (Figure 3.19b), TD(λ)

can improve its policy faster than Q-learning because it uses short-term memory in the form

of eligibility traces. The traces are used to update multiple state-action pairs based on the

reward obtained, instead of just one state-action pair at every step. We conclude that with

71

growing complexity in configuration knobs, TD(λ) is the better algorithm. Thus, for the

rest of the experiments, we only use the TD(λ) algorithm in SEAMS.

Self-optimization

We study SEAMS’ behavior for unexperienced inputs to show that SEAMS is capable of

self-optimizing the approximation knobs in the memory hierarchy within the QoS budget

specified by the application. We expose a controller with an established policy to varying

inputs and compare it to state-of-the-art approximation management policy DART [156].

DART is a design-time technique that uses a branch and bound algorithm to consider the

worst-case effects of all possible approximation knob configurations for a memory hierarchy.

We train DART on a set of scenes used during the policy initialization phase. The goal is to

honor the QoS constraint specified by the application while maximizing energy-efficiency. In

our case, this means keeping the RMSE below a specified value. For a QoS constraint of 10

RMSE, DART statically sets the knobs as follows: L1 VDD:0.8V, L2 VDD:0.8V and DRAM

TREF :0.5 s. The energy/frame reported in all results is normalized with respect to the the

knob configuration of L1 VDD:1V, L2 VDD:1V and DRAM TREF :0.1 s.

In Figure 3.20a, a QoS constraint of 28 (RMSE) has been specified by the user, which is

marked with a black dashed line. The three key observations are as follows: (1) Frame 32

is a key-frame where a scene change occurs. Neither of the tested policies have experienced

this scene previously, and the scene requires a new configuration of knobs to continue to

meet the QoS requirement. In frame 32, DART immediately violates the QoS constraint

and continues to do so. SEAMS can take actions and reach a new configuration while

remaining within the quality constraint. Initially, when SEAMS detects there is an overshoot,

it penalizes the current action and takes action to reduce the QoS error. This leads to a

conservative state, with more room for QoS relaxation. Subsequently, SEAMS increases the

degree of approximation. In the subsequent control cycles SEAMS self-optimizes until it

72

reaches a stable state. (2) Figure 3.20b shows the average power for each frame. There is no

significant change in power with DART because it uses a fixed knob configuration at runtime.

The normalized energy/frame required by SEAMS is 72.3%, and normalized energy/frame

required by DART is 70.8%. (3) We define QoS overshoot as the area under curve for the

regions of QoS violations during execution. For DART, QoS overshoot is 200 versus 50 for

SEAMS. Thus, DART violates the QoS requirement 4× more than SEAMS (Figure 3.20a).

This means that SEAMS can reduce QoS violations by 75% with <5% additional energy.

These experiments demonstrate that SEAMS is self-optimizing, i.e., can continuously learn

configurations that meet the QoS constraint when exposed to unknown inputs.

Coordination

We study SEAMS’ behavior when exposed to varying quality constraints to show that

SEAMS is capable of coordinating interdependent memory knobs. The goal is to adapt

to new targets specified by the user and reconfigure the knobs to save more energy while

processing the frames. Figure 3.21 shows how SEAMS behaves in the scenario described.

The two key observations are as follows: (1) Figure 3.21a shows measured QoS compared to

the dynamic QoS constraint. Initially, the QoS constraint is 10. At frame 30, it is relaxed

and updated to 85, exposing an opportunity to conserve energy. Again, at frame 60, the

constraint is changed to 30. SEAMS can self-adapt to find new configuration knobs that

meet the constraints each time they are changed. (2) Figure 3.21b shows the normalized

power for each frame. Initially, when the QoS constraint is 10, the memory power is around

80%. When the QoS constraint is relaxed to 85 at frame 30, SEAMS can lower the memory

power consumption by finding a new configuration and operating in that region until the

constraint changes. Overall, the normalized energy/frame required by SEAMS is 75.9%.

We conclude that SEAMS is capable of (1) self-adapting to new quality constraints specified

by applications through coordination, and (2) continuously converging on optimal configu-

73

rations.

Additional workloads

Figures 3.22a and 3.22c show SEAMS’ result for kmeans with a normalized energy/frame

of 76.4%. Figures 3.22b and 3.22d show SEAMS’ result for blackscholes with a normal-

ized energy/frame of 70.9%. We observe that even though the interdependent dynamics

0 10 20 30 40 50 60 70 80 90 100
0
20
40
60
80
100

Frame #

R
M
S
E

QoS Constraint SEAMS

(a) Quality of Service

0 10 20 30 40 50 60 70 80 90 100

70
80
90
100

Frame #

M
em

or
y

P
ow

er
(%

)

SEAMS

(b) Normalized Memory Power over exact computation

0 10 20 30 40 50 60 70 80 90 100
0.7
0.8
0.9
1.0

Frame #

V
D
D
(V

) L1D L2

(c) L1 and L2 cache VDD knobs

0 10 20 30 40 50 60 70 80 90 100
20
5
1

0.1

Frame #

R
ef
re
sh

P
er
io
d
(s
)

DRAM

(d) DRAM refresh period knob

Figure 3.21: SEAMS self-adapting to user-specified quality constraints by coordination across
the memory hierarchy.

74

between all three layers of memory hierarchy and the achievable QoS and power are com-

plex and application-dependent, SEAMS is able to meet the dynamic quality constraints by

continuously finding new configurations corresponding to the new system goals.

SEAMS Overhead

All runtime approximation strategies suffer from two primary sources of overhead: (1) calcu-

lating the QoS value, and (2) runtime management. To reap the benefits of approximation,

SEAMS is not invoked for every input once the Q-values have been populated. In most

cases, the quality monitor (e.g., the errors between pixels in canny edge detection) is em-

barrassingly parallel. If an additional core is available, the ground truth comparison can be

performed in parallel. If SEAMS is invoked too frequently, the compute and energy overhead

of the ground-truth comparison would not be justified. In Figure 3.23, we compare the QoS

of k-means with different intervals of SEAMS invocation (marked with a tick). Any time

the system goals change, SEAMS is invoked for all of the subsequent five frames to adapt to

the new setting. We observe that SEAMS can adjust to new goals with reduced invocation

0 20 40 60

0

15

30

45

Frame #

R
M
S
E

QoS Constraint

SEAMS

(a) kmeans:QoS

0 20 40 60 80 100

0

15

30

45

Input #

A
v
g
.
R
el
.
E
rr
o
r QoS Constraint

SEAMS

(b) blackscholes: QoS

0 20 40 60

70

80

90

100

Frame #

M
em

o
ry

P
o
w
er

(%
)

(c) kmeans: Memory Power

0 20 40 60 80 100

70

80

90

100

Input #

M
em

o
ry

P
o
w
er

(%
)

(d) blackscholes: Memory Power

Figure 3.22: Additional workloads.

75

0 10 20 30 40 50 60 70
0
15
30
45

R
M
S
E

QoS Constraint SEAMS 1

0 10 20 30 40 50 60 70
0
15
30
45

R
M
S
E

QoS Constraint SEAMS 2

0 10 20 30 40 50 60 70
0
15
30
45

R
M
S
E

QoS Constraint SEAMS 5

0 10 20 30 40 50 60 70
0
15
30
45

Frame #

R
M
S
E

QoS Constraint SEAMS 10

Figure 3.23: SEAMS QoS at different invocation intervals for k-means. Blue ticks indicate
evaluation instances.

periods, at the risk of potentially missing self-optimization opportunities between invoca-

tions. Even ignoring regular invocation completely, SEAMS can be used in an event-driven

manner (e.g., updated at design time when a new system is developed, at runtime when a

new application is available for approximation, or when the goals (QoS constraints) change).

State-of-the-art alternatives do not self-optimize for these situations for a full memory hier-

archy.

In Figure 3.24, we compare the compute overhead and the power savings of SEAMS for

various invocation periods. Based on these observations, we invoke SEAMS every five frames

in all of our evaluations.

The overheads of the current version of SEAMS are not preventative for the presented

architecture and execution scenario. However, the investigated architecture is unicore – in

a many-core system, the proposed control structure will not scale well due to configuration

76

1 2 5 10
0
5
10
15
20
25
30

Invocation Period (# frames)

%
of

B
as
el
in
e compute overhead power reduction

Figure 3.24: SEAMS overhead for different intervals

complexity if a single controller is responsible for configuring the entire memory system.

Similarly, the current reward calculation is based on the quality reports of a single ap-

plication utilizing the approximate memory segments – multiple QoS applications running

concurrently sharing approximate segments will complicate the controller. We believe a hier-

archical or multi-agent architecture would effectively tackle the challenges of more complex

systems and are topics for future investigation.

3.6 Discussion

In this chapter, we explored the concept of memory approximation and its challenges in the

context of performance and energy optimization. Memory approximation offers a trade-off

between quality of service (QoS) and performance or energy gains by relaxing the need for

high-precision storage for certain data structures. However, maintaining the desired QoS at

runtime requires additional mechanisms to monitor and control the memory approximation

process.

To address these challenges, we introduced a formal control-theory based approach for mem-

ory approximation. This approach allows developers to specify a target QoS metric, and the

system dynamically tunes the memory reliability knobs to guarantee the desired QoS. We de-

77

scribed the development of a system model using System Identification theory and statistical

black-box modeling to capture the effects of different approximation settings. Based on this

model, we designed a controller that observes the application’s behavior and automatically

adjusts the knobs to maintain the QoS, even in the face of changing workloads and system

variations.

Building upon this control-theory based approach, we presented SEAMS, a model-free method

for tuning memory knobs without prior observation of the system. SEAMS enables the

deployment of approximate memory systems without requiring design-time exploration of

configuration knobs. It leverages self-adaptive and self-optimizing properties to learn op-

timal knob configurations for unknown applications, resulting in self-optimizing systems.

SEAMS also enables coordination between multiple memory system knobs without explicit

communication.

The chapter presented two case studies to illustrate the effectiveness of the proposed ap-

proaches. Case Study 1 focused on self-adaptive memory approximation, providing a de-

tailed explanation of the formal control-theoretic approach, the system identification tech-

nique, and a comparison with a manual calibration scheme. Case Study 2 delved into the

limitations of existing approximation techniques for full memory hierarchies and introduced

SEAMS as a self-optimizing runtime manager. It explained the methodology of SEAMS,

including the coordination of runtime decisions for interdependent knobs and subsystems,

and demonstrated its effectiveness in reducing energy usage and QoS violations.

In summary, this chapter showcased the potential of formal control theory and self-adaptive/self-

optimizing techniques in designing memory systems that balance the programmer’s burden

and guarantee the desired QoS. The presented approaches provide efficient and automated

methods for memory approximation, enabling performance and energy optimizations in a

variety of computing systems. In the next chapter we will study how memory management

techniques can apply to operating systems layer.

78

Chapter 4

Operating System Abstraction Layer

Contemporary embedded systems rely on heterogeneous compute units with shared main

memory to meet the diverse memory capacity and bandwidth requirements of modern ap-

plications, such as Nvidia Tegra, Nvidia Xavier, and AMD Accelerated Processing Unit.

This shared memory architecture poses challenges for memory performance and energy effi-

ciency, making memory a performance and energy bottleneck in emerging embedded system

platforms.

To address this bottleneck, application developers often employ memory profilers to gain in-

sights into the runtime requirements of their applications and attempt to reduce the memory

footprint through code optimization. However, relying solely on static optimizations is not

sufficient to fully exploit the dynamic nature of modern computing systems.

In the operating system abstraction layer, runtime resource management plays a crucial role

in monitoring the system state and implementing policies to dynamically update the system

configuration in order to achieve the system’s goals, such as maximizing performance-per-

unit-power. Traditionally, memory-related policies focus on exploiting memory bandwidth

under-utilization at runtime by dynamically scaling the memory controller frequency to

79

reduce power consumption without compromising performance.

However, embedded systems typically support numerous hardware and software knobs that

impact system behavior. These knobs include scheduling applications across compute units,

setting the frequency of heterogeneous compute units, and adjusting the degree of parallelism

by varying the number of threads. Each of these knobs can influence the time required to

process application data, and subsequently, affect energy consumption.

While memory profilers provide information such as the number of memory accesses (load/stores)

and generate heatmaps indicating memory access density for the profiled application, the

overhead of parsing and analyzing this detailed information at runtime can be impractical

for high-frequency decision making by resource managers. Therefore, it becomes essential

to monitor coarse-grained metrics that can assist runtime resource managers in efficiently

determining the ideal system configuration.

In this chapter, we will focus on the operating system abstraction layer and explore the tools

and techniques available to optimize memory performance.

Specifically, we will investigate reflective runtime manager called MARS to leverage compu-

tational self-awareness principles and efficiently utilize memory resources, enhance system

performance, and minimize energy consumption.

4.1 Memory Management Techniques at the Operat-

ing System Layer

The operating system layer employs various memory management techniques to address the

memory bottleneck and optimize memory performance and energy efficiency. This section

explores several key techniques:

80

• Runtime policies using Memory Bandwidth Utilization: Dynamic Voltage and

Frequency Scaling (DVFS) of the memory controller is a primary technique used to

address the memory bottleneck [29]. By dynamically adjusting the frequency of the

memory controller based on the observed memory bandwidth utilization, DVFS aims

to strike a balance between performance and power consumption. Research studies

have shown that DVFS can significantly reduce memory power consumption without

compromising system performance [27]. Additionally, techniques such as MAR-CSE

utilize an approximation equation based on the correlation of memory access rate and

critical frequency to predict the voltage and frequency at runtime [66].

• Runtime policies using reflection or prediction: Reflection or prediction-based

techniques are employed to make runtime policy decisions. CPU Dynamic Voltage and

Frequency Scaling (CPU DVFS) has been extensively explored in the literature [151].

Operating systems provide various governors, such as ”ondemand,” ”performance,”

and ”powersave,” to manage CPU frequency at runtime. Recent work utilizes reflective

system models to predict system behavior when different frequencies are selected [32,

119], enabling informed decision-making to optimize system performance and energy

consumption.

• Runtime policies using Task Mapping: Task mapping involves scheduling running

applications and determining which threads run on which cores within the operating

system scheduler. By strategically mapping tasks to appropriate compute resources,

such as smaller power-efficient cores or larger cores with higher computational capacity,

significant energy savings can be achieved. Combining task mapping with DVFS has

been shown to yield substantial energy savings [153].

• Runtime policies using Workload Information: Recent work [107] focuses on

considering the combined effect of application compute/memory intensity, thread syn-

chronization contention, and non-uniform memory access patterns to develop a runtime

81

energy management technique. This technique performs DVFS on CPU cores based

on workload characteristics. However, it does not directly consider memory bandwidth

utilization or dynamically change the memory controller frequency.

These memory management techniques at the operating system layer demonstrate the efforts

to optimize memory performance and energy efficiency. In the following section, we will look

at the potential for integration with computational self-awareness principles to achieve more

intelligent memory management.

4.2 MARS Middleware

Real-time systems traditionally employ an Observe, Decide, and Act (ODA) feedback loop

to manage goals and configure the system. In an ODA loop, observed behavior is compared

to the desired behavior, and the discrepancy is fed to a policy for decision-making. The

policy then invokes actions based on the results of the Decide stage.

MARS (Middleware for Adaptive and Reflective Systems) [91] is a cross-layer and multi-

platform framework that supports the creation of resource managers for real-time systems.

It enables the composition of system models and resource management policies in a flexible

and coordinated manner.

The MARS framework incorporates a Reflection loop, which extends the traditional ODA

logic by including past history and predictions to make intelligent decisions and enhance

adaptivity.

MARS interacts with all layers of the system stack to orchestrate the management of re-

sources effectively. It comprises four main components:

82

1. Sensors and actuators: These components collect sensed data, including perfor-

mance counters (e.g., instructions executed, cache misses) and other sensory informa-

tion (e.g., power, temperature), to assess the current system state and characterize

workloads. Configurable knobs are also provided to enable the platform to adjust its

configuration and optimize operating points or control tradeoffs.

2. Resource management policies: MARS allows users to define and implement

decision-making engines known as resource management policies. These policies are

created using generic interfaces, making them portable across different hardware plat-

forms.

3. Reflective system model: The policies in MARS utilize reflective system models

to make informed decisions. These models can represent either models of policies or

(sub)system models. Policy models are used for coordinating decisions made within

MARS or other components like the operating system. On the other hand, system

models take policy decisions from the policy models and generate predicted system

behavior.

4. Policy manager: The policy manager in MARS is responsible for reconfiguring the

system by adding, removing, or swapping policies to better achieve the current system

goal. It ensures that the appropriate policies are activated or deactivated based on the

system’s changing requirements and objectives.

The modular composition and flexible nature of MARS enable it to support new platforms,

sensors, and actuators easily. By integrating the MARS middleware into the operating

system layer, real-time systems can benefit from its adaptive and reflective capabilities,

allowing for more efficient resource management and improved overall system performance.

83

4.3 Case Study 1: Workload Characterization for Run-

time Memory Management

In 1965, Gordon E. Moore predicted that manufacturers would continue doubling the number

of transistors on a chip approximately every two years [112]. The semiconductor industry

has since developed by leaps and bounds, introducing billions of transistors on tiny dies.

This growth in embedded compute resources has led to applications becoming increasingly

demanding, generating data at rates that test the extremes of main memory latency and

bandwidth. As a result, the performance and energy bottleneck in today’s embedded system

platforms is no longer the computation of data, but rather the transportation of that data

to and from computation.

One of the current challenges for computing systems is that the computation is often per-

formed far away from the data [90, 54]. While caching has traditionally been applied to

address this challenge, the working set size of applications may exceed the cache capacity,

leading to cache misses and the need for main memory accesses to fetch data for the proces-

sor. The movement of data from DRAM to the processor consumes a significant portion of

the total system power [27], and cache misses can consume more than 50% of cycles [54].

Previous works have utilized memory bandwidth utilization to determine memory require-

ments and develop runtime policies to address memory-related energy consumption. For

example, [27] proposes setting the memory controller frequency at the lowest frequency (e.g.,

800MHz) when the memory is lightly loaded (memory bandwidth is under 2000 MB/s).

To further investigate the impact of memory controller frequency on energy consumption,

Figure 4.1 illustrates the effect of memory controller frequency on total energy consumption

for a variety of benchmarks executed on the Nvidia Jetson TX2 embedded platform [94]. The

figure shows that the lowest frequency does not consistently lead to the minimum energy

84

consumption across different workloads, as the extended execution time at lower frequencies

can result in increased energy consumption.

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
id

an
im

at
e

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

Benchmark

0

500

1000

1500

2000

2500

To
ta

l E
ne

rg
y

(in
 Jo

ul
es

) 1866 MHz
1600 MHz
1333 MHz
1066 MHz
800 MHz

Figure 4.1: Total energy consumed as memory controller frequency is varied statically from
800MHz to 1866MHz for PARSEC workloads on the Jetson TX2. The frequency that results
in the minimum energy spent varies.

To address these challenges, we propose a memory-driven application classification based

on multiple dimensions to assist in developing policies for resource allocation strategies,

specifically for DRAM. This classification combines the size of memory required (in MBs) for

the working set of an application and the runtime DRAM bandwidth requirement (last-level

cache miss rate) to determine an application’s memory requirement. Both measurements can

be made with minimal overhead and used at runtime to evaluate the dynamic requirements

of applications.

In this section, we utilize this classification to determine a static memory controller frequency

that minimizes the Energy-Delay Product (EDP). However, this classification can be used

more generally to develop policies that dynamically configure the system based on the classes

of applications currently running, considering their memory requirements. By incorporat-

ing this memory-driven application classification into memory management policies, we can

enhance memory performance and energy efficiency for real-time systems.

85

4.3.1 Memory access pattern and working set size

Our approach combines the working set size and memory bandwidth by calculating their

product (WBP). The objective is to find the operating frequency, which leads to the lowest

energy-delay product (EDP).

Based on the EDP at different values of WBP, applications are categorized into one of three

classes.

The WBP metric and the classification ranges are described next.

1. Working Set Size: Linux kernel 4.3 introduced idle page flags to track memory

utilization. Once a process starts, the idle bits corresponding to all the virtual pages

in that process are set to 1 to indicate that they have not been referenced. Whenever

the process issues memory read/write requests, the idle bit corresponding to the virtual

page is set to 0 by Linux kernel. A 0 implies that the page is not idle. We selected

the window size as 200ms, however exploring more window durations and feasibility

of adaptive windows remain as future work. Every 200ms, the number of 0 bits in the

idle page flags are read and used to calculate the working set size as 0 as follows:

WorkingSetSize = Number of active pages × Size of each page

2. Memory Bandwidth: ARM cores include logic to gather various statistics on the

operation of the processor and memory system during runtime based on a Performance

Monitoring Unit (PMU). The PMU provides hardware counters for different events,

which are used to profile application behavior. The counter values of L2 CACHE REFILL

and MEM ACCESS on each core are monitored to understand the memory traffic at run-

time every 200ms (Sensing Window Length = 0.2s). Since the L2 is the last-level shared

cache on the Jetson, the memory bandwidth can be calculated using these values as:

86

MemoryBandwidth =

∑activeCores
i=1 L2 CACHE REFILLCore i ×DataBusSize

SensingWindowLength

3. Memory Power and System Power: Nvidia drivers read the power measurements

from onboard sensors connected by I2C. The separate domains for system power and

memory power help isolate the energy consumed by the memory separate from the rest

of the system.

4. Latency/Delay: The amount of time that the workload takes to complete is indicative

of the compute and memory latency. The CPU governor is set to ‘userspace’ and the

frequency of all CPU cores is set to maximum for all the experiments. Thus, changes

in memory latency due to the change in memory controller frequency is reflected in

the total execution time.

By considering these metrics, including working set size, memory bandwidth, memory power,

system power, and latency, we can accurately characterize the memory access patterns and

assess the dynamic requirements of applications. These metrics form the basis for our

memory-driven application classification and enable the development of effective resource

allocation policies at runtime.

Characterization of PARSEC benchmark suite

The PARSEC benchmark suite [130] is a popular suite for evaluating multiprocessor-based

embedded platforms.

It consists of twelve workloads (nine applications and three kernels) from the recognition,

mining, and synthesis (RMS) domain, as well as representative embedded system applica-

tions.

87

The workloads compose a diverse representative of working set size, degree of parallelism,

off-chip traffic, and data-sharing that can be representative of the workloads executed on

emerging embedded platforms.

Based on the working set, two broad classes of workloads are distinguished:

1. Working set smaller than 16MB: These applications do not generate much mem-

ory pressure because the working set can fit in the last-level shared cache. Example

applications are bodytrack and swaptions.

2. Working set larger than 16MB: These applications have a very large working

set generating more off-chip memory accesses to the DRAM. Example applications are

canneal, ferret, facesim, fluidanimate. When the input size grows, the working set

can even reach gigabytes due to algorithms that operate on large amounts of collected

data.

Note that as the number of cores increases with the degree of parallelism, so does the

bandwidth requirement.

bodytrack makes off-chip memory accesses in short, but bandwidth-intensive bursts.

When several instances of the same application execute concurrently, these short bursts limit

the scalability.

The sampling of benchmarks from PARSEC demonstrates highly variable memory require-

ments that depend on multiple factors. The number of load/store operations, size of the

last-level cache, and the number of parallel threads are some of the factors that affect the

bandwidth requirement.

These various sources of memory pressure provide opportunities for resource managers to

address the bottleneck at runtime for unpredictable workloads. Working set can effectively

88

represent some of these dynamics, and we show that combining the working set size infor-

mation with memory bandwidth at runtime can lead to efficient system configurations.

Our objective is to find the operating frequency that results in the lowest energy-delay

product. To that effect, we are interested in finding changes in EDP across frequencies at

different values of WBP.

This is done by experimentally observing the average EDP (over 10 applications) of PARSEC

workloads on a target embedded system described in Section 4.3.3.

The average EDP at different values of WBP for PARSEC workloads obtained experimentally

are presented in Figure 4.2.

0 20000 40000 60000 80000 100000 120000 140000
Working Set Size - Bandwidth Product (WBP) in MB*MB/s

200000

400000

600000

800000

1000000

Av
er

ag
e

ED
P

in
 J*

s

1066 MHz
1333 MHz
1600 MHz

Figure 4.2: Change in average EDP (energy-delay product) of PARSEC workloads across
frequencies at different values of WBP (working set size - bandwidth product).

The different colors represent different frequencies. The PARSEC applications operate in

different regions of WBP throughout execution.

At low values of WBP, the EDP does not change with frequency. This is because the working

set size of the application is small, and the memory requests are served from cache.

89

Thus, operating at lower frequency does not have any effect on the EDP.

As the WBP increases, memory requirement increases, and higher frequencies perform bet-

ter. Frequencies lower than 1066 MHz (e.g., 800 MHz) have a very high latency whereas

frequencies higher than 1333 MHz (e.g., 1866 MHz) consume too much power during the

execution.

Thus, they never obtain optimal EDP for any of the workloads.

Hence, frequencies 800 MHz and 1866 MHz are not included in Figure 4.2.

Table 4.1: Classification of PARSEC workloads based on average WBP (working set size -
memory bandwidth product) during runtime.

Workload WBP (in MB2/s) Class EMC Frequency

dedup 2100 C1 1066 MHz

swaptions 3000 C1 1066 MHz

bodytrack 3600 C2 1333 MHz

ferret 3700 C2 1333 MHz

blackscholes 5100 C2 1333 MHz

vips 9700 C2 1333 MHz

fluidanimate 16000 C2 1333 MHz

canneal 22000 C3 1600 MHz

facesim 62222 C3 1600 MHz

streamcluster 119000 C3 1600 MHz

4.3.2 Methodology for estimating the WBP metric

We classify applications based on their WBP profile.

For each class, the goal is to select a memory controller frequency that leads to the minimum

EDP.

90

Two thresholds for WBP are selected based on the average application EDP profile at dif-

ferent frequencies.

In this work, the operating frequency is determined statically based on the average WBP

profile of workloads.

However, we acknowledge the possibility of a runtime policy which checks the WBP at

regular intervals to change the frequency during application execution.

The classification and thresholds are proposed as follows:

1. C1 (Small memory footprint): 0MB2/s ≤ WBP < 3500MB2/s These applications

have a small working set size and a low memory bandwidth. The L2 cache is large

enough to accommodate most of the requests to memory for this class of application.

When running C1 applications, the system is configured at 1066 MHz.

2. C2 (Medium memory footprint): 3500MB2/s ≤ WBP < 22000MB2/s These appli-

cations have a moderate memory requirement. The L2 cache cannot accommodate all

the requests to the memory. The working set size is also considerable and generates re-

quests which need to go to main memory. When running C2 applications, the system

is configured at 1333 MHz.

3. C3 (Large memory footprint): WBP > 22000MB2/s These applications have a high

memory requirement. Operating the system at 1600 MHz clearly gives the lowest EDP.

The working set size for this class of application is large and spread out in different

regions of memory. This incurs excessive cache misses and generates requests to the

main memory. When running C3 applications, the system is configured at 1600

MHz.

91

4.3.3 Evaluation of the proposed WBP-based memory manage-

ment approach

Experimental Setup

We use Jetson TX2 [94] from Nvidia, an embedded System-On-Chip (SOC) platform, to

evaluate our proposed technique.

The Jetson has heterogeneous compute cores (quad-core ARM Cortex A57 and dual-core

Nvidia Denver2) distributed in two clusters along with an onboard 256-core Pascal GPU.

Each of the clusters resides in a separate frequency domain.

Jetson has a shared memory architecture, and all resources (CPU clusters, GPU) share the

main memory.

Jetson TX2 has an 8GB 128-bit LPDDR4 memory and a 32GB eMMC 5.1 for onboard

storage.

The Cortex cores come with: 48KB L1 instruction cache (I-cache) per core; 32KB L1 data

cache (D-cache) per core. The Denver cores have 128KB L1 I-cache per core; 64KB L1

D-cache per core. All the cores share an L2 Unified Cache of 2MB.

Jetson uses an External Memory Controller (EMC) to manage the off-chip memory traffic.

The EMC has different operating frequencies ranging from 4800KHz to 1866MHz. The on-

board ARM Cortex Real-time (R5) Boot and Power Management Processor (BPMP) changes

the memory controller frequency through kernel drivers.

During all the experiments, the Denver cores are switched off, and the Cortex A57 cores are

configured at the highest frequency.

92

Disabling CPU DVFA helps isolate the effect of EMC operating frequency.

Results
bl

ac
ks

ch
ol

es

bo
dy

tra
ck

(*
)

ca
nn

ea
l(*

)

de
du

p

fa
ce

sim
(*

)

fe
rre

t(*
)

flu
id

an
im

at
e(

*)

st
re

am
clu

st
er

(*
)

sw
ap

tio
ns

(*
)

vi
ps

(*
)

Benchmark

0

10

20

30

40

ED
P

sa
vi

ng
s (

%
)

1600 MHz
1333 MHz
1066 Mhz
Proposed-static

Figure 4.3: EDP reduction with proposed classification using WBP compared to static-
frequency baselines. Applications marked with a * have an optimal static configuration with
the proposed scheme.

In Section 4.3.1, PARSEC benchmarks are classified into three classes, and an ideal memory

controller frequency for each class is proposed.

applications are executed with a fixed memory controller frequency based on class.

The results are presented in Figure 4.3.

We expect to see lower EDP with the proposed approach when compared to techniques which

do not utilize any memory information when deciding the EMC Frequency.

93

The average WBPs for PARSEC benchmarks are presented in Table 4.1.

The working set size and memory bandwidth are measured using the Linux idle page tracker

and L2 CACHE REFILL PMU event counter every 200ms.

The proposed static configuration uses the EDP values obtained with this method.

The EDP value is compared with other static configurations (1600MHz, 1333MHz and 1066

MHz) which serve as baselines in Figure 4.3.

From the figure, we see that the proposed scheme can find the optimal configuration for

eight out of ten PARSEC workloads.

The proposed scheme can achieve on average 16.7% (max: 37.3%) reduction in EDP when

compared to the most aggressive memory controller frequency (1866 MHz).

The results are compared with an optimal scheme obtained by executing all workloads at all

possible EMC frequencies and choosing the frequency that yields minimum EDP.

The optimal scheme can achieve an average reduction of 17.1% (max: 39.3%) EDP when

compared to the most aggressive memory controller frequency (1866 MHz).

The static method of setting the memory controller frequency is not capable of setting

the optimal knob for all the applications. Benchmarks like blackscholes exhibit dynamic

memory accesses patterns, as shown in Figure 4.4. A static configuration is not sufficient

to address these bursts of memory accesses. Therefore, it is necessary to perform DVFS

adaptively during application execution. Additionally, if we consider a platform running

multiple applications concurrently, the each application must be monitored and classified

individually.

In the case study, we have introduced the WBP (Working Set Size - Memory Bandwidth

Product) profiling metric, which combines two critical factors: (1) memory bandwidth uti-

94

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (in seconds)

0

100

200

300

400

500
W

or
ki

ng
 S

et
 in

 M
B

Working Set
Bandwidth

10

20

30

40

50

Ba
nd

wi
dt

h
in

 M
B/

s

Figure 4.4: Runtime memory profile of blackscholes. Dynamic memory access pattern
calls for the exploration of a runtime policy.

lization and (2) working set size of running workloads. By analyzing the changes in the

energy-delay product (EDP) with frequency at different WBP values, we classify applica-

tions into three categories based on their memory requirements.

Our initial results demonstrate the promise of our approach, as the static configuration of

the memory controller frequency correctly estimates the optimal frequency for 8 out of 10

PARSEC workloads. This classification technique offers a practical solution for managing

memory-related energy consumption in embedded systems. The static scheme of setting the

memory controller frequency for each class results in an average EDP savings of 16.7% and

a maximum of 37.3%. These energy savings indicate the potential benefits of our approach

in improving both performance and energy efficiency. While our current work utilizes fixed

sensing windows of 200ms, it is worth noting that the optimal window size may vary for

different workloads and scenarios. Future exploration of adaptive sensing window sizes,

along with the integration of runtime policies using the proposed classification technique,

can further enhance the effectiveness of our memory management approach.

95

Figure 4.5: Overview of MARS 2.0 architecture [30].

4.4 MARS 2.0: Scalability and ML-based DVFS Boost-

ing

To meet the growing demands of modern real-time workloads across a wide range of comput-

ing systems, MARS has undergone enhancements to extend its capabilities beyond embedded

HMP. Figure 4.5 shows an instance of how MARS can be deployed in a cluster with teleme-

try monitors on each host, a distributed time-series database, and high-level policies. These

advancements have enabled the framework to scale and adapt to larger-scale deployments,

such as datacenters. We dive into the architecture components and present a case study

next.

Telemetry Integration:

One significant enhancement is the integration of a telemetry daemon that continually gath-

ers relevant performance metrics from multiple hosts. This telemetry daemon efficiently

collects data from distributed systems, providing valuable insights into system behavior and

resource utilization.

Prometheus Time-Series Database:

96

To efficiently store and manage this telemetry data, MARS leverages Prometheus [100], a

powerful time-series database. Prometheus is designed to handle the high volume of time-

stamped data points and provides efficient querying capabilities. It supports the Prom Query

Language, allowing users to retrieve specific metrics or compose complex queries to extract

meaningful insights from the collected data.

Grafana Visualization:

Additionally, MARS integrates with Grafana [21], a visualization tool that enables system

designers and operators to gain valuable insights into the behavior and performance of the

distributed system. Grafana facilitates the visualization and analysis of telemetry data,

making it easier to monitor system performance over time and identify potential areas for

optimization.

Offline Analysis and Insightful Models:

These new features are incorporated into a new version of MARS that enables simpler

telemetry across networked systems and offline analysis of real-time telemetry data. This

offline analysis capability allows system designers to generate insightful models based on

historical performance data, aiding in proactive system optimization.

The evolution of MARS to version 2.0 signifies its adaptability to diverse computing envi-

ronments, including datacenters, and its commitment to providing comprehensive insights

into system behavior. This scalability and enhanced telemetry capabilities make MARS a

valuable tool for optimizing memory performance and energy efficiency not only in embedded

systems but also in larger-scale computing deployments.

97

4.4.1 Case Study 2: Expanding Datacenter Capacity with DVFS

Boosting

The COVID-19 pandemic brought about unprecedented challenges to Meta’s datacenter

infrastructure [99]. A sudden surge in user demand, coupled with disruptions in server supply

chains, created a capacity crisis that required innovative solutions. In this case study, we

explore how Meta successfully expanded its datacenter capacity by leveraging CPU dynamic

voltage and frequency scaling (DVFS) boosting.

4.4.2 Challenges for Scalable Deployment

Modern datacenters are often already operating at the limits of their power infrastructure.

Enabling DVFS boosting to increase capacity posed the risk of exceeding these power con-

straints, leading to power capping and potential service disruptions.

To address this challenge, Meta’s engineering team developed a comprehensive strategy to

manage power consumption effectively while enabling boosting. While the MARS artifact

was not directly used for this deployment, a similar software was used for the experiments.

The experiments involved carefully monitoring power usage, optimizing power allocation,

and implementing safeguards to prevent power overload. Meta’s datacenter services exhibit

a wide range of performance characteristics and resource requirements. Further, enabling

DVFS boosting across this heterogeneous environment required a solution that could adapt

to diverse service workloads.

98

Model-based Workload Prediction for DVFS Boosting

It is crucial to selectively apply DVFS boosting to services that benefit most from it. The

decision to enable boosting should consider factors like CPU core performance, IO and

memory capacity, and network-bound characteristics. Generally, services fall under one of

the following three categories:

1. Direct capacity improvements: CPU-bound services directly benefit for DVFS

boosting as additional frequency from boosting helps them to deliver higher through-

put. 65% of services at Meta are bottlenecked by CPU utilization (i.e., CPU-bound)

and are easy candidates for running at higher CPU frequencies.

2. Indirect capacity improvements: IO- (6%) and Memory-bound (27%) services

experience indirect benefits from DVFS boosting during high loads, leading to reduced

tail latencies.

3. No improvements: These services (e.g., Network-bound services) do not benefit from

DVFS boosting for capacity needs.

The first step in leveraging DVFS boosting was to identify the candidates that can genuinely

benefit from DVFS boosting and classify them in the correct categories. With thousands of

services running at the CPU sustainable frequency profile, the goal was to pinpoint those that

could benefit from boosting to create additional capacity. To achieve this at scale without

costly experimentation, a machine-learning-based heuristic was developed.

First, we collect a dataset using a telemetry service [26] that runs on each host to collect

performance counters (details in Figure 4.6) and store them in a common data repository

with a granularity of one minute. The useful mips counter is used a proxy for application

agnostic throughput metric. Classes were created to categorize services into low, medium,

99

Figure 4.6: Feature Selection and Model used in [99].

and high PPW classes, simplifying the prioritization of boosting based on total capacity

impact in regions with tight power headroom.

Next, we develop a machine-learning-based heuristic that utilizes the micro-architectural

counters and power as input vectors (X) and classifies each service among the three classes

as the target variable (y). Production data from services with A/B test infrastructure

was used for training, collecting features (X) during the baseline configuration with DVFS

boosting disabled. The open-source version of the multivariate adaptive regression splines

technique [37] was chosen for modeling. This technique is well-suited for its ability to derive

models in the presence of non-linearity, feature selection, and ease of interpretability and

portability. Feature selection was crucial, with only 8 features selected from the 28 counters

provided to the model. These features included power, memory bandwidth utilization, IPC,

MIPS, L2 and L3 cache misses per kilo instructions, L3 pending stalls per cycle, and stalls

due to no uops issued per cycle. Classes (y) were assigned based on performance-per-watt

ratios for A and B tests.

During validation and deployment, only samples with the CPU sustainable frequency config-

uration were used to predict low, medium, or high performance-per-watt. Cross-validation

100

and accuracy requirements resulted in a model with 95% accuracy for the dataset used. The

goal was not to identify all services benefiting from boosting but rather to enable boosting

as much as possible to alleviate capacity constraints.

4.4.3 Memory Counters used and Insights

The 28 features used in MARS provided valuable insights beyond service optimizations.

These features were collected when running with DVFS boosting disabled because candidate

services were not initially using boosting. When analyzing the selected counters, several

insights into performance-per-watt emerged:

• IPC and MIPS: High values of Instructions Per Cycle (IPC) and Millions of In-

structions Per Second (MIPS) are positive indicators. They suggest that the CPU

experiences minimal memory waiting time, implying that higher CPU frequency could

enhance performance.

• L2 and L3 Cache Misses: Elevated values of L2 and L3 cache misses indicate a

higher likelihood of CPU pipeline stalls. This serves as an indicator that the CPU is

waiting for memory access, suggesting that boosting could be beneficial.

• Memory Bandwidth Utilization: Workloads with high memory bandwidth utiliza-

tion tend to experience longer memory wait times. In such cases, boosting the CPU

frequency might alleviate performance bottlenecks caused by memory access delays.

• No uOps Issued Stalls: Instances where no uops are issued due to stalls, possi-

bly stemming from icache misses, result in wasted cycles. Importantly, faster CPU

frequency does not appear to mitigate these wasted cycles.

• Power: Monitoring host power serves as a proxy for CPU activity. Higher CPU

101

activity levels may indicate busier CPU components, suggesting that increasing CPU

frequencies could enhance overall performance.

These insights from the selected counters provide valuable guidance for optimizing system

performance and power efficiency in datacenter operations. The implementation of DVFS

boosting in Meta’s datacenters during the pandemic yielded significant capacity improve-

ments. By carefully managing power consumption and adapting boosting to service het-

erogeneity, Meta was able to create an additional 12 MW of capacity [99]. This boost in

capacity was equivalent to building and populating half a datacenter’s worth of rack supply.

Despite the increased power consumption, the deployment remained power-neutral, as it

helped avoid the need for building new datacenters and purchasing additional servers. More-

over, the marginal cost of power usage was lower than the marginal cost of server hardware

and datacenter construction. In conclusion, the case study demonstrates the effectiveness of

DVFS boosting as a scalable and adaptable solution for expanding datacenter capacity.

4.5 Discussion

In this chapter, we have explored memory management techniques at the operating system

layer in the context of modern data-centric systems. The growing demands of these sys-

tems, coupled with evolving architectures, have underscored the critical importance of mem-

ory performance and energy efficiency. Traditional static approaches and workload-specific

optimizations have proven inadequate in addressing the dynamic nature of contemporary

computing systems.

To address this challenge, we develop a software artifact called MARS to deploy self-aware

memory management techniques discussed in Chapters 1 and 2 on linux based systems. Using

MARS, we develop intelligent policies capable of dynamically adapting memory configura-

102

tions, allocations, and access policies to optimize both performance and energy efficiency.

To illustrate the practical application of these principles, we presented two case studies.

In Case Study 1, we explored memory-driven application classification, a technique that

combines memory size requirements and runtime DRAM bandwidth needs to dynamically

optimize memory controller frequencies. This approach not only demonstrated the potential

of computational self-awareness but also highlighted its pertinence in addressing real-world

challenges.

In Case Study 2, we delved into the realm of datacenter capacity expansion during the

COVID-19 pandemic. Here, we witnessed how Meta effectively leveraged CPU DVFS boost-

ing to overcome unprecedented challenges. This case study underscored the adaptability

and scalability of DVFS boosting, emphasizing the significance of model-based proactive

techniques in addressing the complex demands of modern datacenter environments.

We envision a future where these systems not only meet the demands of data-intensive appli-

cations but also maintain the application level quality constraints. In the upcoming chapters,

we will continue our exploration of intelligent memory systems that adapt dynamically, op-

timize resource utilization efficiently in the application layer.

103

Chapter 5

Application Abstraction Layer

In this final chapter, we delve into the Application Abstraction Layer, where most of the

application logic written and maintained by developers, for confronting memory management

challenges in data-centric applications. With the growing demand for real-time, data-centric

applications, effective management of memory resources is an area that warrants considerable

attention. It is also in this layer we can consider service level quality constraints (such as

latency, throughput) that are critical for a successful application.

5.1 Emerging data-centric architectures and end-to-

end applications

In contemporary computational systems, a noticeable shift has occurred towards data-centric

architectures, driven by the escalating complexity and volume of data that these systems are

tasked with handling. Whether it’s self-driving vehicles or large-scale language models, the

trend is evident: these systems demand high-volume data processing, real-time analytics,

and seamless integration across diverse components.

104

Data-centric architectures are meticulously designed to manage substantial data loads while

accommodating complex algorithms, ranging from machine learning models to specialized

processing routines. Coupled with an end-to-end approach, these architectures facilitate the

seamless interaction of various system components, ensuring optimal system functionality

and efficiency.

However, managing memory resources in these systems presents formidable challenges due

to the concurrent execution of diverse tasks. Each task may generate and consume data at

varying rates and volumes, potentially leading to system bottlenecks and inefficiencies.

5.2 Motivation for benchmarking and optimization of

data-centric applications on embedded systems

Embedded systems are at the core of many data-centric applications, necessitating effective

strategies for memory management, benchmarking, and optimization. Due to the real-time

and diverse requirements of these systems, traditional benchmarking methods often fail to

capture their unique complexities.

Embedded systems, like those in autonomous vehicles, rely on a mix of computational plat-

forms, including CPUs, GPUs, and dedicated accelerators. Each component presents its own

workload characteristics and memory requirements. Therefore, a comprehensive approach

to benchmarking and optimization must accommodate this diversity.

Furthermore, these systems typically operate under strict power constraints, particularly in

battery-powered devices. As such, optimization strategies must balance performance with

power consumption. Efficient memory management plays a significant role in achieving this

balance. This emphasizes the need for application level techniques for capturing the intricate

105

Camera

Grabber

LIDAR/
RADAR

CANbus

Polling

Structure
From Motion

Lane
Detection

Object
Detection

Localization
Extended
Kalman
Filter

Planner

DASM

Lane boundaries

Depth estimation

Bounding
box

pose(x,y, yaw)

target

steer, speed

Mission Planner

Behavioral Planner

Motion Planner

Sensing Perception Planning Actuation

corrected
pose

Object
Tracking

FusionObject

Movement

Figure 5.1: Software components and flow of information in a self-driving vehicle. Interfaces
with sensors and actuators are marked with a circle.

complexities of data-centric applications on heterogeneous computing platforms. The Appli-

cation Abstraction Layer, discussed in the subsequent sections, presents an understanding

of application needs and behaviors, and provides policies for managing memory resources

effectively. Thus, this layer can capture the holistic view of application requirements.

5.3 Case study 1: Chauffeur The First Open-Source

End-to-End Benchmark Suite for Self-Driving Ve-

hicles

Designing self-driving vehicles requires the orchestration of an ensemble of different self-

driving workloads working in an end-to-end manner, guaranteeing functional and perfor-

mance constraints. Figure 5.1 shows the task graph of a generic end-to-end self-driving

software pipeline. Based on this representative task graph, we investigate and formalize the

requirements of a benchmark suite for self-driving vehicles geared toward system designers

and researchers.

106

A self-driving system must plan and follow a trajectory to reach a given destination us-

ing real-time sensor information[16, 118, 155]. Consider Figure 5.1 where we present a

generic software pipeline for operating a self-driving vehicle. The pipeline shown here is

implementation-independent and captures the logical computation blocks (tasks) and data

flow pipeline (relation between tasks). We can divide the pipeline into four stages: Sensing,

Perception, Planning, and Actuation. (1) Sensing is composed of three tasks associated with

collecting real-time data from hardware sensors: Camera grabber, LIDAR/RADAR sensing,

and CANbus polling. These tasks are responsible for reading raw sensor data connected

using either (a) Automotive Ethernet [43], or (b) Controller Area Network (CAN bus). (2)

The Perception stage uses the real-time raw information to extract relevant environmental

knowledge for decision-making. The tasks involved are (a) depth estimation (Structure From

Motion), (b) detection of lane boundaries (Lane Detection), (c) bounding and identification

of surrounding objects (Object Detection), (d) tracking of detected objects, and (e) posi-

tion estimation (Localization). (4) In the Planning stage, the planner uses the perception

information to determine the future trajectory by setting the target steer and speed. (5) Fi-

nally, the Drivers Assistance System Module (DASM) uses CANbus to perform the hardware

actuation and control the vehicle.

The generic self-driving software pipeline in Figure 5.1 can be instantiated in different ways.

Vendor implementations vary in (a) the number and types of sensors, (b) the number of

instances of software tasks, and (c) the underlying hardware on which the stack is running.

For instance, Tesla’s Full Self-Driving (FSD) computer [143], is equipped with eight cameras

and uses a radar distance sensor along with multiple ultrasound sensors surrounding the

car (Figure 5.2a) for autonomous transportation. On the other hand, self-driving warehouse

robots have different requirements: 8 cameras surrounding the vehicle are excessive, and

vendors often deploy a LIDAR sensor instead of cameras [146]; and Lane-Detection is no

longer required. An example pipeline representing such a scenario is shown in Figure 5.2b.

Although the task graph has a different instantiation, the end-to-end pipeline will still need

107

to be designed effectively for the hardware on which it is running.

5.3.1 Requirements of a benchmark suite for self-driving vehicles

Designing self-driving vehicles requires cross-layer collaboration from researchers in diverse

domains, including hardware designers, system software architects, and application devel-

opers. Running a full-stack end-to-end simulation is often time-consuming and infeasible

on resource-constrained embedded boards. Instead, we focus on flexibly composing a com-

putational pipeline of critical software components representing real autonomous driving

workloads. To support the flexible exploration of end-to-end configurations, we identify the

following requirements for a benchmark suite for self-driving vehicles:

Self-driving workloads

Self-driving workloads consist of sensor-driven, resource-intensive applications with real-

time safety-critical requirements[96]. In Section 5.3.3, we describe the applications which

constitute a typical self-driving scenario. Future systems require a redesign of the hardware

Camera

Grabber

CANbus

Polling

DASM

Ultrasound

IMU

Camera x8

SFM

Lane

det.

Object

det.

Radar
Radar

Grabber

Loc EKF Planner

ECU

Battery status

Mission goals

(a) Example instance for urban driving scenario.

Camera

Grabber

CANbus

Polling

DASM

IMU

Camera x1
Object

det.

Lidar
Lidar

Grabber

Loc EKF Planner

ECU

Battery status

Mission goals

(b) Example instance for warehouse robotics sce-
nario.

Figure 5.2: Implementation-specific instances of the generic self-driving pipeline with differ-
ent tasks.

108

and heterogeneous resources to meet these applications’ real-time performance requirements.

Configurable end-to-end pipeline

The performance and efficiency of autonomous driving systems require researchers to analyze

the end-to-end pipeline: sensing, perception, planning, and actuation. This requires studying

different end-to-end pipelines. Very few works [50] [23] [154] [57] [158] have been able to

study the system performance of end-to-end pipelines as the monolithic software stacks are

too complex to deploy on an embedded platform. To the best of our knowledge, there is no

configurable end-to-end pipeline that can be used to study self-driving workloads.

Embedded Runtime

A key challenge in designing self-driving vehicles is that resource-hungry applications con-

sume a lot of power. This is critical for battery-powered vehicles where users need high

mileage operation from a single charge. Several optimizations have been made for such

platforms (e.g., using shared physical memory between the CPU and GPU). However, real-

time performance requirements, energy constraints, and safety are extremely hard to satisfy

simultaneously. While trading off performance for energy can cause problems in the vehi-

cle’s safe operation, having energy optimizations as an afterthought leads to a poor design.

For practical deployment, it is essential to evaluate these workloads on resource-constrained

platforms.

Heterogeneity

Integrated GPUs are already ubiquitous. Future systems trend is to meet the real-time per-

formance requirements by accelerating the bottlenecks in applications either through GPUs

109

or dedicated on-device hardware accelerators for specific kernels. Consequently, applications

must support multiple, heterogeneous resources (e.g., CPU version, GPU version) and uti-

lize any available resource at runtime. Fickenscher et al. in [35] have analyzed automated

code generation for self-driving algorithms on these heterogeneous platforms with the help

of Domain-Specific Language (DSL).

Diverse platforms

As applications embrace heterogeneity, vendors have developed various platforms to sup-

port their runtime. Notably, heterogeneous multi-cores augmented with graphics processing

units (GPUs) as accelerators show promise to meet real-time self-driving workloads’ perfor-

mance requirements. NVIDIA strongly advocates such an approach through their series of

embedded platforms like Jetson TX2 (integrated GPU with shared physical memory, not

aimed for safety-critical applications) and Drive PX2 (discrete GPU, provides dual-modular

redundancy features for safety-critical applications). A benchmark suite should not only be

representative of the real-time workloads but also support these types of diverse embedded

platforms.

Research support

Open-source benchmarks that are easy to download and run are critical to engage and sup-

port research in this area. Chauffeur would enable hardware designers and system researchers

to go beyond full stack driving simulators that are difficult to run on low-resource boards.

We provide the infrastructure to instrument and derive the performance implications on

state-of-the-art systems efficiently.

110

5.3.2 Limitations of existing benchmark suites

Table 5.1 summarizes the status of existing benchmark suites, showing how they fail to

meet all of the requirements discussed above, while showing the capabilities of Chauffeur;

we expand on Table 5.1 below.

Traditional embedded benchmark suites such as PARSEC [14], MiBench [41], SPEC [48]

include programs from different domains like computer vision, media processing, enterprise

servers, animation physics. These benchmarking suites mainly focus on computer architec-

ture and system/hardware design. However, they fail to capture the implications of highly

data-intensive applications having stringent performance requirements that constitute a typi-

cal self-driving scenario. These benchmarks either focus solely either on CPU workloads (e.g.,

PARSEC) or on GPU workloads (e.g., Rodinia [22]). The narrow scope fails to capture the

correct ratio of heterogeneous resource utilization in self-driving vehicles.

CAVBench is a benchmark suite targeted towards evaluating autonomous driving comput-

ing system performance [147] in a connected vehicle setting. It focuses on six workloads:

SLAM, object detection, object tracking, battery diagnostics, speech recognition, and edge

video analysis. CAVBench analyzes the execution time breakdown for each application and

the Quality of Service (QoS) – Resource Utilization (RU) curve (QoS-RU curve). The QoS-

RU curve is used to calculate the matching factor (MF) between the application and the

computing platform on autonomous vehicles. CAVBench serves as an initial artifact to study

edge computing systems for autonomous driving but fails to present a holistic view of the

end-to-end self-driving scenario.

Autoware [55] is a popular open-source full-stack driving simulator that is expected to be

deployed on autonomous vehicles. Autoware is based on Robot Operating System (ROS)

and other well-established open-source software libraries. However, full-stack simulators

typically require powerful platforms (e.g., recommended system for evaluating Autoware is

111

Table 5.1: Popular benchmark suites and the key challenges addressed. (∗ = uniquely
addressed by Chauffeur).

Features Traditional
benchmarks

CAVBench Autoware Apollo Chauffeur

[14, 41, 48] [147] [55, 56] [1]

Self-driving workloads ✓ ✓ ✓ ✓
Configurable end-to-end pipeline ∗
Embedded Runtime ✓ ✓ ✓
Heterogeneity ✓ ✓ ✓ ✓
Diverse Platforms ✓ ✓
Supports research ✓ ✓ ✓ ✓ ✓

an 8-core X866 CPU with 32GB of main memory, which is infeasible for embedded plat-

forms). Researchers have redesigned Autoware to customize the software stack to run on

NVIDIA DRIVE PX2 computing platform to study self-driving workloads [56]. However,

such customizations restrict hardware designers to studying a single workload (one specific

implementation) rather than different algorithms for the same task. Significant customiza-

tion is required to port such a complex stack to emerging embedded platforms.

This problem is further exacerbated in industry-standard autonomous driving software

frameworks like Apollo[5]. These frameworks are developed with the application (self-

driving vehicle) in mind. However, operating such stacks on low-resource embedded hardware

requires careful system design by researchers to account for architectural implications [67].

Hardware designers and system researchers find it cumbersome and time-consuming to set

up an end-to-end driving stack to study hardware/architectural implications.

Chauffeur incorporates the features highlighted in Table 5.1 using a set of benchmarks

aimed at hardware designers and system researchers. It comprises state-of-the-art represen-

tative applications from the domain of self-driving vehicles and targets low-resource embed-

ded systems. Chauffeur is open-source and easy to download and run, enabling quick analysis

of system implications of a configurable end-to-end self-driving pipeline. Chauffeur [80] is

a benchmark suite comprising some essential applications for designing self-driving vehicles,

112

with the ability to expand with additional applications. We categorize the (initial ten) ap-

plications in Chauffeur into four stages: (1) Sensing, (2) Perception, (3) Planning, and (4)

Actuation. Sensing applications receive sensory information from different communication

buses and share it with the rest of the pipeline. Perception applications collect the raw

information shared by sensing applications and extract relevant knowledge used for decision

making [98]. Perception provides a contextual understanding of the vehicle’s environment

(e.g., what the different objects are, location of the objects, road signs, traffic cones), and the

vehicle’s position with respect to the environment. The planning application develops and

continuously updates the vehicle’s trajectory to achieve the higher-level goals of the user (e.g.,

driving from Redmond to Seattle) while following the rules of the road. Finally, actuation

applications control the vehicle and execute the planned actions generated by the previous

stage. The applications defined in Chauffeur are not vendor/implementation-specific and

apply to different self-driving use cases (e.g., autonomous driving versus warehouse robots).

5.3.3 Description of self-driving application categories

Camera Grabber

Visual sensors (e.g., CMOS camera) are a vital component to enable perception about the

environment in self-driving vehicles. Typically, visual sensors generate a lot of data and

require a high-bandwidth communication bus. This requirement is incredibly stringent when

interfacing multiple cameras simultaneously, as shown in Figure 5.2a. Car manufacturers use

automotive ethernet to transfer such high volume data with very low latency and meet real-

time performance requirements. The sensing application camera grabber is a representative

workload for such processes. The camera grabber is responsible for receiving the packets

from the network and then placing them on the main memory for the following stages.

113

LIDAR/RADAR

Although cameras are reliable and relatively cheap to produce, perception solely using camera

data is non-trivial as it relies on black-box neural networks. Traditionally, car manufacturers

use detection and ranging sensors (e.g., LIDAR, RADAR) to detect surrounding objects and

calculate distances. Distance sensors assist in hazard detection and range-finding in features

like adaptive cruise control (ACC) and automatic emergency braking (AEB). These sensors

are imperative during adverse weather and lighting conditions and are still prevalent in

modern vehicles.

CAN bus Polling

The Controller Area Network (CAN bus) is another integral interface found in automobiles

that automobile engineers use to interface with the vehicle’s hardware. CAN bus is typically

used for low-volume data transfers with high reliability. It serves the following purposes: (1)

reading the current status of the vehicle (e.g., Odometer value), (2) interfacing with CAN

bus sensors (e.g., Inertial Measurement Unit (IMU)), and (3) controlling the steer and speed

of the vehicle.

Structure From Motion (SFM)

SFM is a perception application that aims to reconstruct three-dimensional structures from

a sequence of two-dimensional moving images [44]. SFM uses the subsequent images to

triangulate the 3D position of objects in the environment.

114

Lane Detection

Lane detection is a perception application that aims to detect road boundaries (lane line

markings) and estimate the vehicle pose with respect to the detected lines using visual sensors

on the vehicle. The application includes the localization of the road, the determination of the

relative position between vehicle and road, and the analysis of the vehicle’s heading direction

[8].

Object Detection

Vision-based object detection is a perception application that is one of the primary prereq-

uisites for self-driving vehicles. Distance and ranging sensors (e.g., LIDAR, RADAR) alone

are not sufficient to meet the requirements of self-driving. For example, RADAR sensors,

albeit working in adverse environmental conditions, do not produce a high precision output.

On the other hand, information from LIDAR sensors, albeit extremely precise, are too com-

plicated to process and prohibitively expensive. Modern object detection applications use

neural networks along with visual sensor data to identify objects in the area surrounding the

vehicle by drawing bounding boxes and classifying the object inside each bounding box.

Object Tracking

Given some objects of interest marked in a frame, the object tracking application locates the

objects in subsequent frames in the video [46]. Object tracking is a part of the perception

stage, and it tracks objects as they move in the environment. It also allows the self-driving

vehicle to estimate the motion of objects and predict how they will move in the subsequent

frames.

115

Table 5.2: Applications in a typical self-driving vehicle; highlighting inputs and outputs and
how different applications are related.

Applications Stage Input Output

Camera Grabber Sensing Packets over Automotive
Ethernet

S1 Image frames in the
shared memory

LIDAR/RADAR Sensing Packets over Automotive
Ethernet

S2 Point cloud in the shared
memory

CAN bus pooling Sensing Messages (Frames) over
CAN bus

S3 Sensed information in
shared memory

Structure From Motion Perception S1 P1 Depth estimation

Lane Detection Perception S1 P2 Lane Boundaries

Object Detection Perception S1 , S2 I1 Bounding Box

Object Tracking Perception I1 I2 Object movement

Localization Perception S2 I3 position and orientation
pose(x, y, yaw)

Extended Kalman Filter Perception I3 , S3 I4 Corrected pose

Fusion Perception I2 , I4 P3 Fused object and vehicle
location

Path planner Planning P1 , P2 , P3 A1 Spatio-temporal trajec-
tory

DASM Actuation A1 Steer, Brake

116

Localization

Localization is a perception application that works closely with the environmental perception

using visual sensors to identify the vehicle’s position within the perceived environment.

Global Positioning System (GPS) is the most commonly used localization system used in

the vehicle industry. Although cheap and easily accessible, GPS suffers from poor reliability

and accuracy and is not a good candidate for localization applications in self-driving vehicles

[62]. Researchers have developed advanced sensors (e.g., RADAR, LIDAR, Visual sensors)

that can further be fused to provide more robust, accurate, and reliable localization used in

modern vehicles.

Extended Kalman Filter (EKF)

The result of localization (using distance sensor like RADAR) is prone to drift over time and

can be noisy. A Kalman filter is an excellent candidate for combining the distance informa-

tion with other vehicle-status information (e.g., IMU, Odometer, GPS) and handling such

disturbances. Kalman filter fuses multiple data sources and performs continuous prediction

(for missing data) and correction (for drifting data) on the localization results. The EKF

application is the non-linear implementation of the Kalman filter [108].

Fusion

The fusion task helps combine object information with the car’s location on the fly. The

information is sourced by pre-processing raw data from different sensors (e.g., cameras, dif-

ferent types of RADAR, LIDAR) and fused synchronously. The fusion process involves

transformation of different coordinate systems and updating the environment maps peri-

odically in real-time. These tasks have inherent data parallelism and are good targets for

117

hardware acceleration [36].

Path Planner

The planning stage is responsible for understanding higher-level goals from the user (e.g.,

Navigate from Seattle to Redmond) and convert them to purposeful decisions to achieve the

higher-level goals while avoiding obstacles [98]. The complexity of this stage compels a hier-

archical design by partitioning the software into layers: (1) Mission planning, (2) Behavioral

planning, and (3) Motion planning. Mission planning computes the global trajectory based

on the current location and the target destination along with stops and which roads can be

taken to achieve this application (e.g., avoid freeways). Behavioral planning generates local

objectives (e.g., Change lanes, overtake) to interact with other agents on the path and follow

the rules of the road. Motion planning takes the local objectives and generates the control

plan to actuate the steering and speed. Although most recent works [113, 124, 6] follow

some implementation of the planner hierarchy, the exact partitioning within the planner

often varies between implementation.

Drivers Assistance System Module (DASM)

The DASM application performs the final actuation stage in the pipeline. The local objec-

tives of the path planner (through motion planner) are realized through a PID controller.

The PID controller actuates the speed and steering based on the velocity and angle com-

mands and can automatically use the odometer and IMU feedback to maintain the targets

set by the path planning stage.

One of the goals that we pursue with the Chauffeur benchmark suite is to identify the system

implications of the representative applications on emerging embedded platforms. We offer

insights obtained by profiling the applications under different configurations (e.g., integrated

118

Table 5.3: Implementations used in Chauffeur.

Implementation Application Dataset Data Size and
Type

ROS Camera Grabber application-specific variable
ROS LIDAR/RADAR application-specific variable
OpenMVG [89] Structure From Motion provided 360◦ 5376x2688

color images
Jetson Inference [93] Object Detection cuda-lane-detection 30FPS h.264

1280x720
darknet-ros [15] Object Detection KITTI Odometry Dataset [38] 1392x512 color im-

ages
lidar-tracking [97] Object Detection & Tracking KITTI Odometry Dataset 3D Velodyne point

cloud 100k points
per frame

LaneNet [73, 148] Lane Detection tusimple-benchmark 1280x720 color im-
ages

cuda-lane-detection[52] Lane Detection provided 1280x720 30FPS
h.264 video

FLOAM [42] Localization KITTI Odometry Dataset 3D Velodyne point
cloud 100k points
per frame

orb-slam-3 [17] Localization KITTI Odometry Dataset 1392x512 greyscale
images

EKF [114] Extended Kalman Filter provided radar and lidar
pose estimates

Hybrid A* [61] Path planner provided 2D obstacle map

119

Evaluation platform

Profiling Tools

Host Target

Host plaform

Source

Code

of tasks

Dockerized build environment

Cross

compiler

toolchain

Kernel

source

perf

source

Compiled

binaries

Chauffer

App

perf

tool
nvprof

Plotting

scripts App

Logs

Figure 5.3: Tool flow for using Chauffeur suite.

vs shared main memory, different degrees of parallelism). We believe this will serve as a good

starting point for researchers to design computing platforms for future self-driving vehicles.

5.3.4 Characteristics of Chauffeur: representative workloads, and

performance evaluation

A significant challenge faced by system designers when using existing software stacks to ana-

lyze end-to-end performance bottlenecks and exploration of different platform configurations

is the complexity of configuring and running them on embedded platforms. Chauffeur over-

comes these barriers through a tool flow that enables researchers to analyze and evaluate

different platforms quickly. We describe the Chauffeur tool flow and present an example of

this tool flow for evaluating end-to-end performance evaluation.

Tool Flow

Figure 5.3 illustrates the Chauffeur tool flow across the host and target platforms. Users have

two options to compile applications for the target platform: (1) directly compile the source

on the board, or (2) use cross-compilation. We provide a dockerized build environment that

builds the source code of applications and includes necessary dependencies. The application

120

binaries are then deployed on the target platform and profiled using different tools. We use

perf for IPC and CPU performance counters, nvprof and NSight Systems for GPU profiling.

The tools are used to understand the implications of the end-to-end pipeline on the system.

We include the scripts used for compiling, executing, and profiling as part of the repository.

The compilation, deployment, and profiling steps are currently not completely automated

and must be performed in a step-by-step fashion, manually, as explained in the repository.

Sample Experimental Evaluation platforms

We illustrate the use of Chauffeur to comparatively evaluate application execution on two

exemplar embedded hardware platforms from NVIDIA: (a) NVIDIA Jetson TX2 platform,

and (b) NVIDIA Drive PX2 platform. These emerging embedded platforms are widely

adopted in many self-driving use cases (e.g., warehouse robotics, Tesla’s Autopilot Hardware

2.0). Due to the widespread adoption of these platforms, prototype design and product

performance evaluation are effortless as researchers can compare different policies against

the same hardware.

LPDDR4 8GB

Pascal iGPUDenver

Core

A57

Core

A57

Core

A57

Core

A57

Core

Memory Controller w/ECC

Denver shared L2 cache

A57 shared L2 cache
GPU L2 cache

SM 0 SM 1

Denver

Core

Copy engine

(a) Jetson TX2 Architecture (figure adapted
from [2]). Parker SoC includes integrated GPU
(iGPU) with shared main memory.

LPDDR4 8GB

Pascal iGPUDenver

Core

A57

Core

A57

Core

A57

Core

A57

Core

Memory Controller w/ECC

Denver shared L2 cache

A57 shared L2 cache
GPU L2 cache

SM 0 SM 1

Denver

Core

Copy engine

GDDR5

4GB

PCIe

SM SMSMSM SM SM SMSM SM

Pascal dGPU

(b) Drive PX2 Architecture: Parker SoC with
discrete Pascal GPU connected with PCIe.
iGPU is not used for experiments.

Figure 5.4: Architecture of exemplar NVIDIA evaluated platforms.

121

Figure 5.4a shows the architecture of the Jetson TX2. The TX2 consists of a Parker system

on a chip (SoC) with two super Denver (NVidia proprietary) cores and four big A57 (ARM)

cores. The Parker SoC includes an integrated Pascal GPU (iGPU) with two Streaming

Multiprocessors (128 cores each). The CPU and GPU share 8GB LPDDR4 main memory.

The Linux version used is 4.9.140-tegra, and the CUDA runtime library version is 10.0.

Figure 5.4b shows the architecture of the Drive PX2. Like the TX2, the PX2 has a Parker

SoC with two super Denver cores and four big A57 cores. We do not use the on-chip Pascal

iGPU (grayed-out in the figure) in our experiments, as the Drive PX2 has a more powerful

discrete GPU (dGPU). As a result, the entire 8GB LPDDR4 main memory is dedicated

to the CPU. The dGPU consists of nine Streaming Multiprocessors (128 cores each), and

is connected to the Tegra SoC using a PCIe bus. The dGPU also has a dedicated 4GB of

GDDR5 memory. The Linux version used is 4.9.80-rt61-tegra, and the CUDA runtime library

version is 9.2. Although the Drive PX2 supports dual modular redundancy by providing two

instances of the described hardware architecture, we do not use the second Parker SoC/dGPU

for our experiments. We run all experiments in maximum performance mode by disabling

the dynamic frequency scaling of CPU cores and GPU.

The experimental platforms encompass diverse memory layout, and GPU compute capability.

The shared main memory of Jetson TX2 creates two challenges at runtime: (1) memory space

is a limiter for parallel applications when the end-to-end pipeline is considered, (2) memory

contention between CPU and GPU workloads creates a memory bandwidth bottleneck. The

discrete GPU on the Drive PX2 can alleviate challenges (1) and (2) in some cases. Still, the

cost of memory copies before launching and after finishing kernel execution may outweigh

the benefits. We explore some of these challenges by analyzing the Chauffeur applications

that form the end-to-end self-driving pipeline.

To demonstrate the utility and flexibility of Chauffeur, we characterize Chauffeur applica-

tions and observe the performance implications of these Chauffeur applications on the two

122

cu
d
a-
la
n
e-

d
et
ec
ti
on

d
ar
k
n
et
-r
os

fl
oa
m

h
y
b
ri
d
-a
st
ar

je
ts
on

-
in
fe
re
n
ce

ka
lm

an
-fi
lt
er

op
en
M
V
G

li
d
ar
-t
ra
ck
er

or
b
-s
la
m
-3

0
0.5
1

1.5
2

2.5

IP
C

1 Core (1×A57) 6 Cores (4×A57, 2×Denver)

(a) Jetson TX2.

cu
d
a-
la
n
e-

d
et
ec
ti
on

d
ar
k
n
et
-r
os

fl
oa
m

h
y
b
ri
d
-a
st
ar

je
ts
on

-
in
fe
re
n
ce

ka
lm

an
-fi
lt
er

op
en
M
V
G

li
d
ar
-t
ra
ck
er

or
b
-s
la
m
-3

0
0.5
1

1.5
2

2.5

IP
C

1 Core (1×A57) 6 Cores (4×A57, 2×Denver)

(b) Drive PX2.

Figure 5.5: Comparison of instructions per cycle (IPC) (averaged across all cores) across
different NVIDIA embedded platforms.

exemplar NVIDIA embedded platforms, to generate takeaways that can guide the explo-

ration of different end-to-end self-driving pipelines. First, we report the utilization of the

compute micro-architecture. Then, we identify the resource bottleneck for each application.

Finally, we present the power breakdown among the different resources. Identification of

performance and power bottlenecks of Chauffeur applications serve as guidance for future

optimizations.

IPC of Chauffeur applications

Our first goal is to observe how well applications can utilize platform CPU’s micro-architecture.

We use instructions per cycle (IPC) to show on average how many instructions the CPU can

retire in each clock cycle. Improving IPC directly translates to lowering execution time for

the application, critical for performance in self-driving applications. The Cortex A57 cores in

our exemplar NVIDIA platforms (Figure 4) contain a 3-wide decoder front-end for fetching

instructions. Meanwhile, the Denver (”super”) cores are implemented by NVIDIA and have

a 7-wide decoder width. The maximum theoretical IPC for A57 cores is 3, and Denver cores

are 7. Applications can exhibit a low IPC for various reasons: (a) the processor pipeline is

123

not able to fetch enough instructions for the execution stage, (b) incorrect speculations, or

(c) not enough resources to retire instructions (e.g., not enough cores, high cache misses).

Typically IPC > 1 indicates that the application is instruction-bound (bottle-necked by code

execution on CPU cores). IPC < 1 shows some resource (e.g., Memory, GPU) is stalling

code execution, and further investigation is required to identify the bottle-necked resource.

Figure 5.5 shows the observed IPC of Chauffeur applications. The periodic applications

are operated in a data-ready mode to discount any idle periods. Figure 5.5a is the result

of execution on Jetson TX2 and Figure 5.5b is the result of execution on Drive PX2. We

make the following observations: (1) average IPC for six cores (1.4) > average IPC for one

core (0.8). While this confirms the intuition that applications, in general, perform better

with more cores, we explore effective speedup from parallelization in more detail in Section

5.3.4. (2) Some applications (e.g., openMVG, kalman-filter, orb-slam-3) have much better

IPC when the super cores are enabled. Therefore, it is better to map them to super cores

instead of big cores. (3) Object detection applications suffer from the lowest average IPC

across all core configurations (average jetson-inference IPC is 0.42, average darknet-ros IPC

is 0.61).

Takeaways:(1) We need to investigate the degree of parallelism of high IPC applications

(cuda-lane-detection, openMVG) (2) For the applications with a low IPC but running on a

GPU, we need a full system analysis for identifying if GPU is the actual bottleneck. (3) For

the remaining applications, we need to look into the memory access behavior.

Effective speedup from parallelism

Applications with large inputs and working sets are typically good candidates for exploiting

parallelism. We explore Chauffeur applications’ ability to exploit CPU parallelism by in-

creasing the number of online CPU cores. Figure 5.6 shows the results in terms of speedup.

124

We make the following observations: (1) All applications gain speedup when increasing from

1 to 2 cores. For applications that are not explicitly parallelized (e.g., hybrid-star, jetson-

inference, kalman-filter), this benefit comes from multicore execution thanks to reduced

contention even in single-threaded implementations. (2) Certain applications (e.g., kalman

filter, lidar-tracker) perform better when supercores are enabled (increasing from 4 to 5

cores). They can benefit from supercores’ powerful floating-point units or larger L1 cache;

(3) Some applications (e.g., OpenMVG, lidar-tracker) show linear speedup by increasing

from 1 to 6 cores. This results from parallelization (OpenCV multi-threaded APIs for lidar-

tracker and OpenMP for OpenMVG). (4) openMVG (SFM) experiences up to 3.3× speedup

on Jetson TX2 and up to 3.9× speedup on Drive PX2 when compared to a single-core execu-

tion. The application operates on large images, is multi-threaded, and data-parallel. Hence

it benefits a lot from multiple cores. However, the current implementation does not leverage

the GPU. (5) jetson-inference (Object detection) experiences no speedup on the Jetson TX2

and up to 1.3× speedup on the Drive PX2. Although it spends 52% time executing the de-

coder thread on CPU, a large number of memcpy operations limits the degree of parallelism.

(6) darknet-ros (Object detection) does not show any speedup with an increasing number

of cores. We conclude it is not core bound. Candidate backend bottlenecks for darknet-ros

include memory and GPU. (7) floam (Localization) is a compute-intensive application with

the current implementation running only on CPU. The execution time to process one input

on Drive PX2 is around ≈150ms and is not affected much by increasing cores. However,

on Jetson TX2, we see it starts poorly (≈250ms for one core), improves with more cores

(≈106ms for four cores), but performs worse with super cores. We performed a finer-grained

analysis and found the source: a high number of branch mispredictions in super cores (≈16

Million/s) as opposed to big cores (≈13 Million/s).

Takeaways: (1) floam (Localization) and openMVG (Structure from Motion) implementa-

tions are CPU (core) bound in the micro-architecture pipeline. (2) Further study is required

for the remaining perception applications to identify their bottleneck. (3) Bigger cores with

125

1 2 3 4 5 6

1
1.5
2

2.5
3

3.5
4

Jetson TX2

1 2 3 4 5 6

1
1.5
2

2.5
3

3.5
4

Drive PX2

E
x
ec
u
ti
on

T
im

e
S
p
ee
d
U
p

cuda-lane-detection darknet-ros floam

hybrid-astar jetson-inference kalman-filter

openMVG lidar-tracker orb-slam-3

Figure 5.6: Speed-up of application execution time with increasing number of online cores.

wider instruction decode paths are not always a better choice for running applications, as bad

speculations in modern CPUs can cause severe degradation in performance.

Main memory access by CPU

Table 5.4 shows the memory access characteristics of Chauffeur applications. We conduct

these experiments on Jetson TX2 will all six cores active using MARS framework [91]. We

make the following observations: (1) Although applications issue many memory requests,

most accesses are served by the cache hierarchy (L1 and L2 cache). Thus, memory access

rates are much higher than main memory bandwidth rates. (2) openMVG has the highest

Table 5.4: Comparison of memory access and main memory (DRAM) bandwidth (B/W) of
Chauffeur applications on the Jetson TX2. Measured numbers are only from CPU perfor-
mance counters and do not consider memory traffic from GPU. Unit is million-transfers/sec
(MT/s)

Transfer (MT/s) idle
cuda-lane-
detection

darknet-
ros

floam
hybrid-
astar

jetson-
inference

kalman-
filter

lanenet-
lane-

detection

lidar-
tracking

OpenMVG
orb-

slam-3

Avg Access 9 717 120 534 499 199 1348 537 934 1852 1346
Peak Access 55 2703 944 1703 1318 1110 2820 2353 1512 7225 2088
Avg B/W 0 1 1 4 1 3 0 1 10 15 18
Peak B/W 0 19 14 25 16 17 13 17 21 89 67

126

0 10 20 30 40

0

4

8

12

16

20

Time (s)

B
/W

(i
n
M
T
/s
)

(a) cuda-lane-detection

0 2 4 6 8

0

4

8

12

16

20

Time (s)

(b) darknet-ros

0 10 20 30 40 50

0

4

8

12

16

20

Time (s)

(c) lanenet-lane-detection

Figure 5.7: Main-memory access pattern of selected Chauffeur applications from CPU cores.
Applications demonstrate memory accesses phases.

memory access rate and main memory peak bandwidth utilization. The high number of

memory requests is a result of data-parallelism (as shown in Section 5.3.4) as openMVG

exploits all cores. The CPU cores’ fast and parallel computation on large inputs leads to

numerous memory accesses, which increases the main memory bandwidth. (3) Several ap-

plications report extremely low average main memory bandwidth. This can be explained

by looking at the memory access patterns over time (Figure 5.7). These applications have

phases of memory accesses, causing a surge of memory bandwidth requirement followed by

a computation phase (in CPU/GPU). Takeaways: Memory access patterns are highly dy-

namic and very hard to model at design time. Runtime policies need to observe the memory

access patterns and avoid overlapping memory phases between applications to reduce con-

tention when running the end-to-end pipeline.

Power profile of applications

The average instantaneous power is a direct representation of utilization of the onboard

resources and demonstrates opportunities for future optimizations. Figure 5.8 shows the

instantaneous power breakdown of Chauffeur applications on the Jetson TX2. We could not

provide a comparative study due to the lack of power sensors in the Drive PX2 platform. We

127

id
le
-

p
ow

er
cu
d
a-

la
n
e-

d
et
ec
ti
on

d
ar
kn

et
-

ro
s

fl
oa
m

hy
b
ri
d
-

as
ta
r

je
ts
on
-

in
fe
re
n
ce

ka
lm

an
-

fi
lt
er

la
n
e-

d
et
ec
ti
on

la
n
en
et
-

la
n
e-

d
et
ec
ti
on

li
d
ar
-

tr
ac
ki
n
g

op
en
M
V
G

or
b
-

sl
am

-3

0
2
4
6
8
10
12

A
ve
ra
ge

P
ow

er
(W

) CPU Main Memory GPU

Figure 5.8: Power breakdown for Jetson TX2 using onboard I2C power sensors

make the following observations: (1) darknet-ros reports the highest GPU power consump-

tion of 7.6W on the iGPU. (2) openMVG reports the highest CPU power of consumption

of 4.4W on the iGPU. This is expected, as we observed in Section 5.3.4 that openMVG

exhibits a high degree of parallelism (up to 3.7× speedup) with the increase in cores, and

the reported results are for six cores. (3) Memory requires a more profound investigation for

optimizing power. Chauffeur applications are a good target for accuracy/power tradeoffs, as

some sensors might be more relevant than others depending on the scenario.

Takeaways: (1) darknet-ros justifies hardware acceleration. (2) openMVG justifies GPU

acceleration. (3) Approximate memory techniques [79], and efficient memory management

techniques [74, 12] should be explored to reduce memory power.

Chauffeur serves as a self-driving benchmark suite, focusing on end-to-end application perfor-

mance. It provides a comprehensive evaluation of system behavior, identifying bottlenecks in

performance, power, and memory across a wide range of data-centric applications. By exam-

ining the intricacies of system behavior and considering different types of data with varying

criticality, Chauffeur demonstrates the universal relevance of an adaptable Application Ab-

straction Layer. The insights gained from Chauffeur enable the development of strategies

for efficient memory management, ensuring optimal system performance in resource-limited

embedded platforms.

128

5.4 Case study 2: OAsys : Self-Optimizing Autoscaler

for ML Inference Serving Systems: A Holistic Ap-

proach

Datacenter operators must continuously ensure adequate compute capacity exists for increas-

ing machine learning (ML) demands. The physical infrastructure that forms the backbone

of datacenters requires a tremendous amount of energy to operate, and construction of new

datacenters often extends over multiple years. Thus, datacenter operators employ forecast-

based autoscaling strategies to sustain the rapid growth of ML workloads.

Pe
rf

Pe
rf

Pe
rf

Power

Power

Power

Inference
Model A

Inference
Model B

Inference
Model M

Design Time Runtime

Rack

Node 0

Node 1

Node 2

Node 3

Node N

Figure 5.9: Datacenter operators rely on autoscaling of compute resources based on ML
inferencing demands.

Autoscaling exploits the unique latency demands of concurrent workloads. While some

workloads are latency-critical at specific times of the day, others can tolerate higher latency

and may be scheduled during off-peak hours. To manage this complex landscape operators

rely on autoscalers to adjust the number of nodes allocated to each workload based on elastic

compute demands, optimizing both performance and resource allocation (Figure 5.9).

129

Traditional autoscaling approaches, however, focus solely on dynamically adjusting the num-

ber of hosts based on load patterns, and use a static system configuration for each host.

Without dynamic runtime adaptation, the system configuration leads to suboptimal resource

allocation and low throughput. For instance, a fixed batch size or resource configuration

(e.g., CPU Turbo Mode) may result in underutilized resources and reduced throughput, as

the system fails to fully exploit the available processing power. On the other hand, phys-

ical infrastructure poses additional constraints on the available power budgets: operating

the system at full capacity might exceed allocated power budget, leading to performance

degradation or even tripping circuit breakers.

We propose a novel approach to autoscaling called OASys using off-policy model-free rein-

forcement learning. Our main contributions are: (1) A multi-agent distributed reinforcement

learning algorithm that considers both the application performance and infrastructure ef-

ficiency. We collect traces from a state-of-the-art datacenter infrastructure to train the

off-policy algorithm. (2) Demonstration that by dynamically adapting system configura-

tions based on workload characteristics and power budgets, we achieve higher throughput

while meeting stringent performance requirements and minimizing energy costs.

OASys is thus demonstrated as a promising solution for efficient resource management in

modern MLaaS inference serving systems.

5.4.1 Challenges of ML Inferencing with Traditional Autoscaler

In this section we demonstrate the intricate interplay between batch size, Quality of Service

(QoS), and power control mechanisms that datacenter operators must carefully navigate in

the context of ML inference as a service (IaaS).

130

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

50

100

150

200

Batch Size

Q
u
al
it
y
of

S
er
v
ic
e

Turbo: Off

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

50

100

150

Batch Size

Turbo: On

Figure 5.10: Effect of Batch size on Quality of Service. Enabling Turbo increases throughput
and decreases latency.

Application-level Constraints

In ML workloads, the batch size refers to the number of input data points processed simul-

taneously during inference tasks. The selection of an appropriate batch size has implications

on various aspects of workload performance, resource utilization, and QoS [141]. Applica-

tion QoS encompasses the level of service quality and performance that the datacenter must

deliver to meet user expectations and application requirements. Modern ML Frameworks

(e.g., Torchserve) support dynamic batch sizes that operators use to meet QoS objectives

based on demand and nature of workload. In Figure 5.10, we examine the impact of varying

batch sizes on the QoS of an ML inference model (AlexNet [60]). The x-axis represents an

incremental increase in batch size, with each step denoting an increase of 1. The y-axis

quantifies QoS, measured in terms of both latency (red) in ms and throughput (blue) in

inferences per second. We used the experimental setup detailed in Section 5.4.3 to collected

the data. We make two key observations: (1) as batch size increases, throughput experiences

a noticeable improvement, indicating enhanced system efficiency for parallel processing; (2)

however, this increase in batch size also results in a corresponding rise in latency, which

may impact realtime or low-latency applications negatively. Thus, operators must carefully

131

select the appropriate batch size to strike a balance between optimizing throughput and

minimizing latency in ML inference systems. It is worth noting that when latency is not

a constraint, GPUs prove to be exceptionally well-suited for achieving massively parallel

throughput [58], particularly valuable in the context of ML training. However, our focus in

this work is on CPU-based ML inferencing for latency-critical tasks that cannot be deferred

to off-peak hours.

CPU Turbo and Associated Risks

Host-level mechanisms (such as CPU Turbo [72], DVFS boosting [106]) can improve per-

formance of CPU-bound applications. Figure 5.10 shows the effect of Turbo on QoS. By

harnessing the extra power headroom, applications can simultaneously improve throughput

(creating additional capacity for datacenters) and minimize latency. However, the effective-

ness of turbo mode depends on the specific characteristics of the workload. Memory-bound

workloads may experience only marginal improvements and could potentially waste the extra

power, while CPU-bound workloads are more likely to benefit from enhanced QoS. Nonethe-

less, uncontrolled use of turbo without considering the rack-level dynamics of the datacenter

power hierarchy [49] can cause service degradation, power capping, and even tripping of

breakers in the worst case.

Achieving a delicate balance between power control mechanisms, QoS requirements, and

dynamic batch size adjustments is a complex challenge that remains an open issue. As

standard practice, many datacenter operators deploy autoscalers without altering system

configurations in an attempt to address these challenges. We propose a model-free policy

for configuring systems. This allows us to provide runtime adaptivity using real system

traces without the necessity of observing actual power failures in datacenters, which would

be required for generating data-driven models of datacenter power dynamics.

132

5.4.2 Partially Observable Markov Decision Process

In this section, we formally define the problem as a partially observable Markov Decision

Process [45]. We consider a single rack denoted which comprises of N nodes. On these nodes,

there exist M inference models running concurrently. Objective: Maximize the inferences

per second served by all nodes within the rack while adhering to two crucial constraints:

1. Latency Constraint: The maximum latency for each inference model m should not be

exceeded. This constraint remains fixed as determined by the application developer.

2. Power Budget Constraint: The total power consumption of the rack must not exceed

the specified power budget.

Partially Observable MDP (POMDP)

To tackle this problem, we model each node as a POMDP [68] agent. Each agent has:

(1) Observation, Oi, representing the current characteristics of workload on the rack. (2)

Action, Ai, denoting the decision taken by the agent in response to the current observation.

To choose actions, each agent i uses a parameterized policy πθi : Oi × Ai → [0, 1]. The

problem is not fully observable as, although each agent can observe other agents’ workloads

at runtime, they cannot know the performance achieved by other nodes, or the actions (i.e.,

turbo mode, batch size) taken by other agents. We use the following notations throughout

the problem formulation:

• N : The number of nodes in the rack, where each node is an agent.

• M : The set of inference models executing on rack, with 1 ≤ |M | ≤ N . Specifically,

M = m1,m2, . . . ,m|M |.

133

Observation (Oi) for each agent

The observation at each node includes the following:

1. Index i: The index of the node within the rack.

2. X: A mapping of inference models to nodes is represented by a vector of size N where

each element is an integer representing the model assigned to that node. Specifically,

X = [x1, x2, . . . , xn], and each element xi ∈ M , and represents which inference model

is running on node i. This information is generated by the autoscaler.

3. Latency (li): Denotes the (99th percentile) tail latency of the inference process on node

i.

Action (Ai) for each agent

The action vector for each node (i) includes the following:

1. Turbo Mode (Ti): A binary action for each node (i) indicating whether to enable

(Ti = 1) or disable (Ti = 0) turbo mode.

2. Batch Size (Bi): An action for each node (i) that sets the batch size for the inference

model running on that node. This action involves selecting a value from a predefined

set of discrete options.

Reward design (R)

The reward function of each agent aims to balance the optimization of throughput, and

adhere to latency constraints of the model served on the node.

134

1. Throughput Reward without Latency Constraints:

To maximize throughput, we simply minimize each node’s 99th percentile latency li

without considering any constraints:

min
∑
i∈N

li

This may seem counter intuitive, however, Figure 5.10 shows that throughput increases

along with tail latency as batch size increases. This is because parallelism improves to-

tal inference requests served at the cost of potentially underserved individual requests.

We verified the effectiveness of our reward minimizing tail latency by comparing it to

a reward maximizing speedup based on throughput of each node, and found that the

latency reward had the desired effect on throughput without the burden of additional

observation.

2. Throughput Reward with Latency Constraints

To guarantee that latency constraints are satisfied on each node i, we impose the

following constraint:

li ≤ Lm, where m is the model on node i

If the latency constraint is met for an inference model on a node (li ≤ Lm), the reward

is equal to the latency measured for that model and node (Ri = li). If the latency

constraint is not met (li > Lm), the reward is determined as the difference between the

maximum allowable latency (Lm) and the actual latency (li):

Ri = Lm − li

135

The objective that maximizes throughput while enforcing latency constraints:

max
∑
i∈N

Ri

where the reward of each node is:

Ri =

li, if li ≤ Lm

Lm − li, if li > Lm

3. Power Constraints

Rack-level power constraint can be enforced by:

∑
n∈N

pn ≤ Pr, ∀n ∈ N

This constraint ensures that the sum of the power of all nodes pn in the rack does not

exceed the rack’s power budget Pr. However this requires power monitoring from all

the nodes.

To simplify the constraint, we limit the power by indirectly enforcing a limit on the

number of nodes with turbo mode enabled:

∑
n∈N

Tn ≤ MaxTurboNodes

In the simplified constraint,
∑

n∈N Tn represents the total count of nodes in the rack

where turbo mode is enabled (indicated by Tn = 1). Thus, we limit the number of nodes

with turbo mode enabled at any given time. MaxTurboNodes is determined during the

design of datacenter power distribution. This simplification allows for a more direct

136

Actions

Actor

Critic

Execution
Agent

Training

Rack

Node 0

Node 1

Node 2

Observation

Actor

Critic

Agent
Actor

Critic

Agent

Figure 5.11: Overview of how OASys agents interact with the datacenter rack for both
training and deployment.

and manageable way to control power consumption by limiting the number of nodes

in high-power turbo mode.

Instead of requiring power monitoring from all nodes, this constraint requires moni-

toring turbo from all nodes. However, we have established that this information is not

observable. To address this, we use actor-critic multi-agent reinforcement learning to

train policies that indirectly learn to honor the global power constraint.

Actor-Critic based OASys Algorithm

To address the optimization problem with node-level latency and rack-level power con-

straints, we deploy OASys: an approach based on a multi-agent actor-critic algorithm (shown

in Figure 5.11). OASys enables distributed decision-making among the POMDP agents while

considering both latency and power budget constraints, and consists of two key components:

the Actor and the Critic.

Actor

In the multi-agent environment, each agent is a decentralized Actor responsible for select-

137

ing actions for each node to maximize the expected cumulative reward. In our case, an

Actor network outputs action probabilities for each agent based on their individual states.

Specifically, the Actor’s action selection process involves two main actions for each agent:

• Turbo Mode Action (Ti): The Actor decides whether to enable or disable turbo mode

for each node, represented as a binary action (Ti = 1 for enable, Ti = 0 for disable).

• Batch Size Action (Bi): The Actor selects an appropriate batch size for the inference

model running on each node from a predefined set of discrete options.

The Actor network is trained using policy gradients to maximize the expected cumulative

reward. The expectation of the policy gradient of each agent i is J(θi) = E[Ri], which can

be written as follows:

∇θiJ(θi) = Es∼pπ ,a∼πθ
[∇θi log πi(ai|si)Qπ(x, a1, . . . , aN)] (5.1)

Critic

The centralized Critic evaluates the quality of the actions selected by each Actor according

to the state and action, and feeds back to the actor network, so that the actor can adjust

its strategy according to the quality, and strive for better performance next time. The

critic network can receive the information of all agents and make better evaluations for all

agents. In addition to the traditional role of evaluating the actions’ impact on maximizing

throughput and meeting latency constraints, the Critic also considers the power budget of

the rack. The Critic network takes as input the global states and actions, and estimates

the expected cumulative reward. It provides feedback to each Actor by assigning a value

(Q-value) to the selected actions, based on the state and actions of all actors. The Critic is

trained to minimize the mean squared error between predicted Q-values and actual rewards.

138

Algorithm 4 OASys Algorithm

1: Input: Decentralized parameterized policy π(ai|si, θi) for each agent i
2: Input (training only): Centralized parameterized critic Q(s, a1, a2, . . . , aN , ϕ)
3: Input (training only): Step sizes αθi > 0, αϕ > 0 for each agent i
4: if training then
5: Initialize decentralized policy parameters θi ∈ Rdθi for each agent i (e.g., set to 0)
6: Initialize centralized Q-function parameters ϕ ∈ Rdϕ (e.g., set to 0)
7: end if
8: while true do ▷ Agents run continuously
9: if runtime then ▷ Agent is deployed
10: while !autoscaler do ▷ only invoke the agents when the autoscaler changes

workload or constraints
11: wait
12: end while
13: for each agent i do
14: ai = maxπ(ai|si, θi) ▷ Select action with max reward
15: end for
16: else ▷ Training
17: Initialize state s = (s1, s2, . . . , sN) ▷ Joint state of all agents
18: I ← 1
19: while s is not terminal do ▷ Iterate until s violates no constraints
20: for each agent i do
21: ai ∼ π(ai|si, θi) ▷ Sample action ai for agent i
22: end for
23: a = (a1, a2, . . . , aN) ▷ Joint action of all agents
24: Execute joint actions a, observe joint state s′

25: ri is the reward received by agent i

26: Q(s, a, ϕ)← Q(s, a, ϕ)+αϕ

(∑N
i=1 ri + γQ(s′, π(s′, θ1), π(s

′, θ2), . . . , π(s
′, θN), ϕ)−Q(s, a, ϕ)

)
▷ Update global critic based on all agents

27: for each agent i do
28: θi ← θi + αθiI∇θi lnπ(ai|si, θi)∇aQ(s, a, ϕ)|a=ai ▷ Update each agent’s

policy (actor) based on critic
29: end for
30: I ← γI
31: s← s′

32: end while
33: end if
34: end while

139

Algorithm

Algorithm 4 shows the OASys logic for both training and deploying the agents. Using

profiling data collected on the target datacenter system for each target inference model (See

Section 5.4.3), the policy is first generated offline. Each training episode contains consistent

system state, i.e., fixed workload and latency constraints (lines 16-17). Episodes do not

terminate until all constraints, power and latency, are met across all nodes (line 19). For

each step within an episode, first each agent’s actor selects an action according to its policy

(lines 20-21). Those actions are carried out, and based on the subsequent system behavior

and reward, the critic is updated (lines 23-26). Then each agent’s policy is updated using

the critic (lines 27-28). In summary, the critic uses the global system state and reward to

tune each agent’s individual actor. After sufficient training, the actor will provide expected

reward for each action given current state. We use these actors at runtime to select the best

action each time the autoscaler changes either the workload or latency constraints (lines

9-14).

By jointly optimizing actions for throughput, latency, and power, OASys aims to strike a

balance between maximizing inference speedup, adhering to latency and power constraints,

ultimately distributing power most effectively within the rack.

5.4.3 OASys as a Self-Optimizing Autoscaler

We demonstrate that OASys can (1) Dynamically adapt to varying latency constraints by

configuring the batch size and only using turbo mode when needed. (2) Given a group of ma-

chines running ML workloads, improve throughput by 55% when compared to a traditional

autoscaler.

We first generate a profile for 4 representative ML models: alexnet, densenet, vgg16, and

140

Figure 5.12: 12 nodes (3 sleds × 4 nodes) of Yosemite V3 Open Compute Project (OCP)
used for experiments. These servers are representative of datacenter racks.

resnet-18 based on a real representative server cluster from Open Compute Project (OCP).

The server cluster (shown in Fig. 5.12) is based on Intel Xeon Platinum 8321HC CPUs with

26 physical (52 logical) cores, and 96GB DDR4, running CentOS Stream 8. The base single

core frequency is 1.4 GHz and the turbo boost frequency is 3 GHz. We run TorchServe to

provide a mechanism for scalable model serving using http requests. Based on the collected

traces we simulate the behavior of mixing different workloads using the OASys approach.

Finally, we use the learned policy to evaluate the benefits of using OASys compared to

traditional autoscaler policies. The inferences are performed on randomly selected images

from ImageNet dataset [28].

Dynamic Latency Constraints

To show OASys can meet dynamic latency constraints while freeing compute resources for

other nodes when constraints are relaxed, we do a case study of 4 different ML models

(alexnet, densenet, vgg16 and resnet-18). Each model runs on a separate node and uses

separate policies that were learned using OASys as described in Section 5.4.2. Figure 5.13

141

0 50 100 150 200 250 300 350 400 450 500

100

150

200

100

150

200

alexnet Steps

L
at
en
cy

0 50 100 150 200 250 300 350 400 450 500

300

400

500

600

300

400

500

600

densenet161 Steps

L
at
en
cy

0 50 100 150 200 250 300 350 400 450 500

200

400

600

200

300

400

500

600

vgg16 Steps

L
at
en
cy

0 50 100 150 200 250 300 350 400 450 500

150

200

250

150

200

250

resnet-18 Steps

L
at
en
cy

Figure 5.13: Four nodes running different ML inference models with OASys and can meet
dynamic latency constraints.

142

shows the achieved per-inference latency and constraint of different ML models. The X

axis is steps, where each step corresponds to polling the current QoS metrics (latency and

throughput) from Torchserve. We currently poll the metrics every minute for the purpose

of fine-grained observability, but only invoke the OASys policy whenever autoscaler changes

the allocation of machines to determine the updated batch size and turbo settings that is

currently set to every 100 steps. The Y axis is observed latency (in colored data points) and

the latency constraint (in black dashed line) as determined the autoscaler. In practice the

latency constraint can be determined by looking at the diurnal load patterns and relaxing

the constraint during peak demands if the workloads are not latency-critical. Note that

we randomly change the constraint every 100 steps to highlight the efficacy of OASys to

adapt to any constraint. We make 2 major observations. First, OASys can dynami-

cally adapt to different latency constraints set by the autoscaler. When latency

constraint is relaxed, OASys approach automatically selects configurations that are near the

constraint limit. This is done using larger batch size to increase throughput and reserving

the turbo for other workloads that need it more. Second, we observe that there are

few observations that exceed the budget. This happens because the performance of

neural network inferencing inherently comes with variance. Moreover, we randomly select

images from the ImageNet dataset and the performance of the ML workloads also varies

based on the input. Thus, in some cases due to the variance, the observed latency exceeds,

however we can account for the variance when designing the reward function. Increasing the

negative reward corresponding to missed latencies (in Section 5.4.2) will learn policies that

are more strict. We conclude that OASys can learn to meet dynamic latency constraints as

determined by autoscaler by self-optimizing both system level (turbo) as well as application

level (batch size) configurations.

In the next section, we will investigate into the additional throughput we get from OASys.

143

Throughput Improvements under Turbo Constraint

To show the benefits of using OASys to boost throughput (and hence create additional dat-

acenter capacity), we examine mixes of workloads working together in the rack and measure

the achieved throughput using OASys as compared to autoscalers with static configurations.

We summarize the workloads along with their constraints in Table 5.5. The table has six

different workload mixes, labeled as Mix 1 through Mix 6. Each workload mix consists of

four different deep learning workloads, namely alexnet, densenet161, vgg16, and resnet-18.

The parentheses indicate the latency (execution time) for each workload in milliseconds

(ms). We evaluate OASys by running each mix 10 times under 3 policies: (1) Baseline:

Autoscaler that runs all hosts with Turbo off. (2) Baseline Turbo: Autoscaler that runs all

hosts with Turbo on. Note that we can never deploy this in practice because it will violate

the power constraints and cause infrastructure failure. (3) OASys: Self-Optimizing that

can holistically configure both application level (batch-size) as well as system level (turbo)

knobs. Figure 5.14 shows the observed throughput when running different mixes with the

policies mentioned above. The X axis is the workload mix (from Table 5.5). The Y axis

is the average throughput (measured in inferences per seconds) as reported by Torchserve.

We make the following observations. First, average throughput for Baseline policy is 412

inferences/second, average throughput for Baseline Turbo policy is 515 and average through-

put for OASys is 797. Thus, compared to Baseline Turbo, OASys can provide on

average OASys 55% more throughput. This creates additional capacity for running

more workloads. Second, OASys can always provide more throughput compared to

Baseline. The highest throughput is 1257 corresponding to Mix 1. This exploits the

fact that Baseline autoscalers cannot dynamically change the batch sizes, but OASys can.

Third, there are some cases (e.g., Mix 4) where Baseline Turbo (enabled turbo for all nodes)

can outperform OASys. This happens due to the fact that Baseline Turbo does not consider

turbo limits so can switches on Turbo for all the workloads at once: this can cause tripping

144

Table 5.5: Workload mixes used to evaluate OASys

Mix Workload (Latency)

0 alexnet (213ms), densenet161 (523ms), vgg16 (488ms), resnet-18
(219ms)

1 alexnet (193ms), densenet161 (422ms), vgg16 (181ms), resnet-18
(142ms)

2 alexnet (95ms), densenet161 (210ms), vgg16 (489ms), resnet-18
(259ms)

3 alexnet (197ms), densenet161 (255ms), vgg16 (437ms), resnet-18
(165ms)

4 alexnet (152ms), densenet161 (511ms), vgg16 (309ms), resnet-18
(267ms)

5 alexnet (186ms), densenet161 (354ms), vgg16 (242ms), resnet-18
(188ms)

0 1 2 3 4 5

0

500

1,000

500

1,000

Mixed Workload : 0-5

T
h
ro
u
gh

p
u
t

Baseline
Baseline Turbo
Oasys

Figure 5.14: Throughput improvements compared to traditional autoscaler

of circuit breakers. However, OASys in all the scenarios learns to limit turbo based

on the power constraint. We restrict the turbo to only 70% nodes during the training

process in Section 5.4.2 for safe operation. Thus, we conclude that OASys can increase

throughput while enforcing rack-level power limits, enabling operators to efficiently utilize

datacenter resources.

5.5 Discussion

Throughout this chapter, we have emphasized the pivotal role of the Application Abstraction

Layer in the context of self-aware memory management. It serves as the critical interface be-

145

tween developers and memory management systems, allowing for the fine-tuning of memory

resources based on application-specific constraints. Whether it’s the demanding workloads of

self-driving vehicles or the relentless growth of machine learning applications, data-centricity

is the driving force behind modern computing. As such, effective memory management is

not a one-size-fits-all endeavor but requires an intimate understanding of each application’s

unique requirements.

Our exploration has revealed that memory demands within data-centric applications are

dynamic and diverse. Tasks within these applications may exhibit varying memory footprints

and execution patterns, making static memory configurations obsolete. Computational self-

awareness offers a dynamic solution to this challenge, enabling developers to extract the

maximum potential from emerging architectures. The chapter delved into two distinct case

studies, Chauffeur and OASys, to illustrate the practical application of these principles.

Case Study 1: Chauffeur - The First Open-Source End-to-End Benchmark Suite for Self-

Driving Vehicles The generic end-to-end self-driving software pipeline, as illustrated in Figure

5.1, encompasses a series of tasks, each crucial to the vehicle’s operation. From real-time

data sensing to perception, planning, and actuation, these tasks demand efficient memory

management to guarantee seamless and safe operation. Our findings underscore the need for

adaptive memory management within the Chauffeur benchmark suite, as the diverse tasks

involved exhibit varying memory requirements and execution patterns. Through the integra-

tion of computational self-awareness principles, we propose dynamic memory configurations

as a way to optimize performance while ensuring energy efficiency for enhancing self-driving

vehicle technology.

Case Study 2: OASys - Efficient Resource Management for MLaaS Inference Serving Sys-

tems Within the realm of datacenter operations, we investigated the pressing challenge of

sustaining compute capacity for machine learning (ML) workloads. Datacenter operators

are confronted with the daunting task of ensuring efficient resource allocation to meet the

146

burgeoning demands of ML applications while adhering to strict power constraints. Our

novel approach, OASys, leverages off-policy model-free reinforcement learning to dynam-

ically adapt system configurations based on workload characteristics and power budgets.

This innovative solution addresses the shortcomings of traditional autoscaling approaches

by optimizing both performance and resource allocation.

The learnings from Chauffeur and OASys demonstrates the potential of self-aware memory

management revolutionize resource management in modern MLaaS inference serving sys-

tems, offering a promising avenue for enhancing efficiency and reducing energy costs. In

summary, through our case studies, we’ve showcased the practical application of computa-

tional self-awareness in addressing the complex memory management challenges inherent in

emerging data-centric applications. As we look ahead, the integration of self-aware memory

management within the Application Abstraction Layer holds the promise of driving per-

formance improvements and energy savings across diverse computing domains, ultimately

shaping the future of memory management in a data-centric world.

147

Chapter 6

Conclusions

This thesis presents the exploration of computational self-awareness (CSA) principles within

memory management to overcome the limitations of traditional approaches and optimize

system performance, reliability, power efficiency, and application constraints.

Memory management is a critical aspect of computing systems, and the rapid evolution of

computing architectures and the demands of data-intensive applications have posed signifi-

cant challenges in achieving efficient memory performance and energy efficiency. Traditional

approaches based on static configurations and workload-specific optimizations are no longer

Introspection

Approximation

Goal-oriented

Adaptation

Self-healing

0
1

2
3

(a) Traditional

Introspection

Approximation

Goal-oriented

Adaptation

Self-healing

0
1

2
3

(b) My Thesis

Introspection

Approximation

Goal-oriented

Adaptation

Self-healing

0 1 2 3

(c) Comprehensive self-
awareness

Figure 6.1: Self-aware Memory Subsystem: (a) past, (b) present and (c) future.

148

sufficient to address the dynamic nature of modern computing systems. Figure 6.1 shows

the gradual progress from traditional to state-of-art, as well as future directions in self-aware

memory systems as decsribed in Chapter 2. By incorporating self-awareness into memory

management, I have developed systems that can adapt to changing workloads, optimize

resource utilization, and align their operations with user or application goals.

Through the exploration of computational self-awareness in memory management, I made

several important contributions. First, I identified the self-* properties relevant to memory

management and demonstrated how they can be applied to address the challenges of efficient

memory performance and energy efficiency. Second, I integrated self-awareness principles at

different layers of the memory subsystem, enabling comprehensive optimization and coor-

dination of memory management operations. This comprehensive approach facilitates the

optimization and coordination of memory management operations across different memory

layers, including on-chip caches, off-chip main memory, and device variations. By extend-

ing self-awareness to different layers, the system can dynamically allocate resources, balance

trade-offs between different memory types, and ensure optimal performance even in the face

of hardware variations. Third, I investigated the concept of memory approximation and its

challenges, emphasizing the need for dynamic adaptation and error mitigation techniques.

Finally, I demonstrated the effectiveness and versatility of self-aware memory management

in different scenarios, as showcased by the end-to-end driving (e.g., in Chauffeur) and data-

centers (e.g., in OASys) case studies.

By leveraging self-awareness principles and techniques, the thesis demonstrates the poten-

tial for significant improvements in memory performance, energy efficiency, and reliability.

Our research has shown that self-aware memory management systems can dynamically ad-

just memory configurations, allocation policies, and access patterns to optimize resource

utilization and meet application goals. Through extensive experimental evaluation, we have

validated the effectiveness of our self-aware memory management techniques and demon-

149

strated their benefits in terms of performance improvement and energy savings. Further

exploration can focus on the development of intelligent self-aware memory management

strategies that leverage advanced machine learning algorithms, control theory, and scalable

techniques. Additionally, the integration of self-awareness techniques with emerging deep

learning accelerators, such as Google TPU, holds promise for further enhancing memory

performance and energy efficiency. The insights gained from this thesis contribute to the

advancement of self-aware memory management and pave the way for future research and

development in this field.

150

Bibliography

[1] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla. Timing
of autonomous driving software: Problem analysis and prospects for future solutions.
In Proc. IEEE RTAS, pages 267–280, 2020.

[2] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. Gpu scheduling
on the nvidia tx2: Hidden details revealed. In Proc. IEEE RTSS, pages 104–115, 2017.

[3] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Enabling ultra low voltage system
operation by tolerating on-chip cache failures. In Proceedings of the ACM/IEEE inter-
national symposium on Low power electronics and design, pages 307–310, New York,
NY, USA, 2009. Association for Computing Machinery.

[4] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Enabling ultra low voltage system
operation by tolerating on-chip cache failures. In Proceedings of the 2009 International
Symposium on Low Power Electronics and Design, 2009, San Fancisco, CA, USA,
August 19-21, 2009, pages 307–310, 2009.

[5] Apollo. An open autonomous driving platform, source-code and manuals. https:

//github.com/ApolloAuto/apollo, 2019.

[6] S. Aradi. Survey of deep reinforcement learning for motion planning of autonomous
vehicles. IEEE TITS, pages 1–20, 2020.

[7] F. Arnaud, A. Thean, M. Eller, M. Lipinski, Y. Teh, M. Ostermayr, K. Kang, N. Kim,
K. Ohuchi, J. Han, et al. Competitive and cost effective high-k based 28nm cmos
technology for low power applications. In IEEE International Electron Devices Meeting
(IEDM), pages 1–4. IEEE, 2009.

[8] A. A. Assidiq, O. O. Khalifa, M. R. Islam, and S. Khan. Real time lane detection for
autonomous vehicles. In Proc. CCCE, pages 82–88, 2008.

[9] Aurangzeb and Eigenmann. Harnessing Parallelism in Multicore Systems to Expedite
and Improve Function Approximation. In LCPC, 2016.

[10] W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-conscious pro-
gramming using controlled approximation. In Proceedings of Programming Language
Design and Implementation, pages 198–209, New York, NY, USA, 2010. Association
for Computing Machinery.

151

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo

[11] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba, and L. Benini.
Openpiton+ ariane: The first open-source, smp linux-booting risc-v system scaling
from one to many cores. In Third Workshop on Computer Architecture Research with
RISC-V, CARRV, volume 19. CARRV, 2019.

[12] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu. Co-optimizing performance and
memory footprint via integrated cpu/gpu memory management, an implementation
on autonomous driving platform. In Proc. IEEE RTAS, pages 310–323, 2020.

[13] V. Bhalodia. SCALE DRAM subsystem power analysis. Master’s thesis, Massachusetts
Institute of Technology, 2005.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite. In Proc.
of PACT. ACM Press, 2008.

[15] M. Bjelonic. YOLO ROS: Real-time object detection for ROS. https://github.com/
leggedrobotics/darknet_ros, 2016–2018.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proc. IEEE/CVF CVPR, pages 11621–11631, 2020.

[17] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D. Tardos. Orb-
slam3: An accurate open-source library for visual, visual–inertial, and multimap slam.
IEEE T-RO, page 1–17, 2021.

[18] J. Canny. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, PAMI-8:679–698, 1986.

[19] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An evaluation
of high-level mechanistic core models. ACM Transactions on Architecture and Code
Optimization (TACO), 11:1–25, 2014.

[20] A. Carroll, G. Heiser, et al. An analysis of power consumption in a smartphone. In
Proceedings of Annual Technical Conference, volume 14, page 21, USA, 2010. USENIX
Association.

[21] M. Chakraborty and A. P. Kundan. Grafana: Monitoring Cloud-Native Applications,
pages 187–240. Apress, Berkeley, CA, 2021.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Rodinia:
A benchmark suite for heterogeneous computing. In Proc. IEEE IISWC, pages 44–54,
2009.

[23] Z. Chen and X. Huang. End-to-end learning for lane keeping of self-driving cars. In
Proc. IEEE IV, pages 1856–1860, 2017.

152

https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros

[24] K. Cho, Y. Lee, Y. H. Oh, G.-c. Hwang, and J. W. Lee. edram-based tiered-reliability
memory with applications to low-power frame buffers. In Proceedings of International
Symposium on Low Power Electronics and Design, pages 333–338, New York, NY,
USA, 2014. Association for Computing Machinery.

[25] M. Cho, J. Schlessman, W. Wolf, and S. Mukhopadhyay. Accuracy-aware sram: a
reconfigurable low power sram architecture for mobile multimedia applications. In
Asia and South Pacific Design Automation Conference, 2009.

[26] B. Coutinho. Dynolog: Open source system observability. Facebook Developers Blog,
2022. Accessed on 2023-12-02.

[27] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power
management via dynamic voltage/frequency scaling. In Proceedings of the 8th Interna-
tional Conference on Autonomic Computing, ICAC 2011, Karlsruhe, Germany, June
14-18, 2011, pages 31–40, 2011.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE CVPR, pages 248–255, 2009.

[29] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale: Active
low-power modes for main memory. SIGARCH Comput. Archit. News, 39(1):225–238,
Mar. 2011.

[30] B. Donyanavard, N. Dutt, B. Maity, P. Malani, and T. Mück. MARS: A frame-
work for runtime monitoring, modeling, and management of realtime systems. In
2023 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2023.

[31] B. Donyanavard, T. Mück, A. M. Rahmani, N. Dutt, A. Sadighi, F. Maurer, and
A. Herkersdorf. Sosa: Self-optimizing learning with self-adaptive control for hierar-
chical system-on-chip management. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 685–698, New York, NY, USA,
2019. Association for Computing Machinery.

[32] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. Sparta: Runtime task alloca-
tion for energy efficient heterogeneous many-cores. In Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, CODES ’16, pages 27:1–27:10, New York, NY, USA, 2016. ACM.

[33] R. Eigenmann et al. Harnessing parallelism in multicore systems to expedite and
improve function approximation. In Languages and Compilers for Parallel Computing,
pages 88–92, Cham, 2017. Springer International Publishing.

[34] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support for disci-
plined approximate programming. In Proceedings of the 17th international conference
on Architectural Support for Programming Languages and Operating Systems, pages
301–312, New York, NY, USA, 2012. Association for Computing Machinery.

153

[35] J. Fickenscher, F. Hannig, and J. Teich. Dsl-based acceleration of automotive envi-
ronment perception and mapping algorithms for embedded cpus, gpus, and fpgas. In
Proc. of ARCS, pages 71–86, 2019.

[36] J. Fickenscher, J. Schlumberger, F. Hannig, J. Teich, and M. E. Bouzouraa. Cell-based
update algorithm for occupancy grid maps and hybrid map for adas on embedded gpus.
In Proc. of DATE, pages 443–448, 2018.

[37] J. H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,
19(1):1 – 67, 1991.

[38] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[39] T. Goldbrunner, T. Wild, and A. Herkersdorf. Memory access pattern profiling for
streaming applications based on matlab models. In 28th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 32–38.
IEEE, 2018.

[40] B. Grigorian, N. Farahpour, and G. Reinman. Brainiac: Bringing reliable accuracy into
neurally-implemented approximate computing. In IEEE 21st International Symposium
on High Performance Computer Architecture, pages 615–626. IEEE, 2015.

[41] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Proc.
IEEE IISWC, pages 3–14, 2001.

[42] W. Han and Y. Zhang. Fast loam (lidar odometry and mapping). https://github.

com/wh200720041/floam, 2019.

[43] P. Hank, S. Müller, O. Vermesan, and J. Van Den Keybus. Automotive ethernet:
in-vehicle networking and smart mobility. In Proc. DATE, page 1735–1739. EDA
Consortium, 2013.

[44] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[45] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps,
2017.

[46] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression
networks. In Proc. ECCV, pages 749–765, 2016.

[47] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing
Systems. John Wiley & Sons, 2004.

[48] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, 2006.

154

https://github.com/wh200720041/floam
https://github.com/wh200720041/floam

[49] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang. Smoothoperator: Reducing power frag-
mentation and improving power utilization in large-scale datacenters. SIGPLAN Not.,
53(2):535–548, mar 2018.

[50] W. Jang, H. Jeong, K. Kang, N. Dutt, and J. C. Kim. R-tod: Real-time object detector
with minimized end-to-end delay for autonomous driving. In Proc. IEEE RTSS, pages
191–204, 2020.

[51] J. Jiao. Heap: A holistic error assessment framework for multiple approximations using
probabilistic graphical models. Electronics, 9:373, 2020.

[52] Jonaspfab and Danielebp. Cuda implementation of a hough transform based lane
detection algorithm. https://github.com/jonaspfab/cuda-lane-detection, 2019.

[53] M. Jung, E. Zulian, D. M. Mathew, M. Herrmann, C. Brugger, C. Weis, and N. Wehn.
Omitting refresh: A case study for commodity and wide i/o drams. In Proceedings of
the 2015 International Symposium on Memory Systems, page 85–91, New York, NY,
USA, 2015. Association for Computing Machinery.

[54] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks. Profiling a warehouse-scale computer. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages 158–169, New
York, NY, USA, 2015. ACM.

[55] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada. An open
approach to autonomous vehicles. IEEE Micro, 35(6):60–68, 2015.

[56] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware on board: Enabling au-
tonomous vehicles with embedded systems. In Proc. ACM/IEEE ICCPS, pages 287–
296, 2018.

[57] J. Kim, A. Rohrbach, T. Darrell, J. Canny, and Z. Akata. Textual explanations for
self-driving vehicles. In Proc. ECCV, pages 563–578, 2018.

[58] Y. Kim, Y. Choi, and M. Rhu. Paris and elsa: An elastic scheduling algorithm for
reconfigurable multi-gpu inference servers. In Proceedings of DAC, New York, NY,
USA, 2022. Association for Computing Machinery.

[59] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanellopoulos, and
O. Mutlu. Eden: Enabling energy-efficient, high-performance deep neural network
inference using approximate dram. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 166–181, New York, NY, USA,
2019. Association for Computing Machinery.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6), may 2017.

155

https://github.com/jonaspfab/cuda-lane-detection

[61] K. Kurzer. Path planning in unstructured environments : A real-time hybrid a*
implementation for fast and deterministic path generation for the kth research concept
vehicle. Master’s thesis, KTH, Integrated Transport Research Lab, ITRL, 2016.

[62] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis. A sur-
vey of the state-of-the-art localization techniques and their potentials for autonomous
vehicle applications. IEEE TOTJ, 5(2):829–846, 2018.

[63] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang. Input
Responsiveness: Using Canary Inputs to Dynamically Steer Approximation. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2016.

[64] L. Lennart. Black-box Models from Input-output Measurements. In Proceedings of the
IEEE Instrumentation and Measurement Technology Conference, 2001.

[65] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
Mcpat: an integrated power, area, and timing modeling framework for multicore and
manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 469–480, New York, NY, USA, 2009. Associ-
ation for Computing Machinery.

[66] W. Liang, S. Chen, Y. Chang, and J. Fang. Memory-aware dynamic voltage and
frequency prediction for portable devices. In The Fourteenth IEEE Internationl Con-
ference on Embedded and Real-Time Computing Systems and Applications, RTCSA
2008, Kaohisung, Taiwan, 25-27 August 2008, Proceedings, pages 229–236, 2008.

[67] S. C. Lin, Y. Zhang, C. H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars. The
architectural implications of autonomous driving: Constraints and acceleration. ACM
SIGPLAN Notices, 53(2):751–766, 2018.

[68] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on International Conference
on Machine Learning, ICML’94, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[69] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving DRAM
Refresh-power Through Critical Data Partitioning. In International Conference on
Architectural Support for Programming Languages and Operating Systems, 2011.

[70] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: saving dram
refresh-power through critical data partitioning. In Proceedings of the 16th interna-
tional conference on Architectural support for programming languages and operating
systems, pages 213–224, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

[71] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc., 1999.

156

[72] D. Lo and C. Kozyrakis. Dynamic management of turbomode in modern multi-core
chips. In 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 603–613, 2014.

[73] Y. Luo. Lanenet-lane-detection. https://github.com/MaybeShewill-CV/

lanenet-lane-detection, 2020.

[74] B. Maity, B. Donyanavard, and N. Dutt. Self-aware Memory Management for Emerg-
ing Energy-efficient Architectures. In 2020 11th International Green and Sustainable
Computing Workshops (IGSC), pages 1–8, 2020.

[75] B. Maity, B. Donyanavard, A. Surhonne, A. Rahmani, A. Herkersdorf, and N. Dutt.
Seams: Self-optimizing runtime manager for approximate memory hierarchies. ACM
Trans. Embed. Comput. Syst., 20(5), jul 2021.

[76] B. Maity, B. Donyanavard, N. Venkatasubramanian, and N. Dutt. Workload charac-
terization for memory management in emerging embedded platforms. In Analysis, Es-
timations, and Applications of Embedded Systems, pages 65–76, Cham, 2023. Springer
Nature Switzerland.

[77] B. Maity, M. Shoushtari, A. M. Rahmani, and N. Dutt. Self-adaptive memory approxi-
mation: A formal control theory approach. IEEE Embedded Systems Letters, 12:33–36,
2019.

[78] B. Maity, M. Shoushtari, A. M. Rahmani, and N. Dutt. Simulation Infrastructure and
System Dynamics of Quality Configurable Memory. CECS Tech. Rep. 19-03, 2019.

[79] B. Maity, M. Shoushtari, A. M. Rahmani, and N. Dutt. Self-adaptive memory ap-
proximation: A formal control theory approach. IEEE Embedded Systems Letters,
12(2):33–36, 2020.

[80] B. Maity, S. Yi, D. Seo, L. Cheng, S.-S. Lim, J.-C. Kim, B. Donyanavard, and N. Dutt.
Chauffeur: Benchmark suite for design and end-to-end analysis of self-driving vehicles
on embedded systems. ACM Trans. Embed. Comput. Syst., 20(5s), 2021.

[81] M. Masadeh, O. Hasan, and S. Tahar. Using machine learning for quality config-
urable approximate computing. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1575–1578. IEEE, 2019.

[82] M. Masadeh, O. Hasan, and S. Tahar. Machine Learning-Based Self-Compensating
Approximate Computing. arXiv e-prints, page arXiv:2001.03783, 2020.

[83] A. Merkel and F. Bellosa. Memory-Aware Scheduling for Energy Efficiency on Multi-
core Processors. In Proc. HotPower, 2008.

[84] J. S. Miguel, M. Badr, and N. E. Jerger. Load value approximation. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages
127–139, USA, 2014. IEEE Computer Society.

157

https://github.com/MaybeShewill-CV/lanenet-lane-detection
https://github.com/MaybeShewill-CV/lanenet-lane-detection

[85] K. Moazzemi, B. Maity, S. Yi, A. M. Rahmani, and N. Dutt. Hessle-free: Heteroge-
neous systems leveraging fuzzy control for runtime resource management. ACM Trans.
Embed. Comput. Syst., 18(5s), 2019.

[86] A.-M. Monazzah, M. Shoushtari, A. Rahmani, and N. Dutt. QuARK: Quality-
configurable Approximate STT-MRAM Cache by Fine-grained Tuning of Reliability-
Energy Knobs. In IEEE/ACM International Symposium on Low Power Electronics
and Design, 2017.

[87] A. M. H. Monazzah, M. Shoushtari, S. G. Miremadi, A. M. Rahmani, and N. Dutt.
Quark: Quality-configurable approximate stt-mram cache by fine-grained tuning of
reliability-energy knobs. In IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED), pages 1–6. IEEE, 2017.

[88] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Os-
kin. SNNAP: Approximate computing on programmable SoCs via neural acceleration.
In IEEE 21st International Symposium on High Performance Computer Architecture,
pages 603–614. IEEE, 2015.

[89] P. Moulon, P. Monasse, R. Perrot, and R. Marlet. Openmvg: Open multiple view
geometry. In Proc. Springer RRPR, pages 60–74, 2016.

[90] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative
to very large instruction windows for out-of-order processors. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, HPCA ’03,
pages 129–, Washington, DC, USA, 2003. IEEE Computer Society.

[91] T. Mück, B. Donyanavard, B. Maity, K. Moazzemi, and N. Dutt. Mars: Middleware
for adaptive reflective computer systems, 2021.

[92] NVIDIA. CUPTI :: CUDA Toolkit Documentation, 2014.
https://docs.nvidia.com/cuda/cupti/index.html.

[93] NVIDIA. Hello ai world nvidia jetson. https://github.com/dusty-nv/

jetson-inference, 2021.

[94] Nvidia Jetson TX2 Architecture. Available at https://devblogs.nvidia.com/

jetson-tx2-delivers-twice-intelligence-edge/.

[95] F. Oboril, A. Shirvanian, and M. B. Tahoori. Fault tolerant approximate computing
using emerging non-volatile spintronic memories. In 34th IEEE VLSI Test Symposium,
VTS 2016, Las Vegas, NV, USA, April 25-27, 2016, page 1, 2016.

[96] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. Berg, and
S. Wang. An evaluation of the nvidia tx1 for supporting real-time computer-vision
workloads. In Proc. IEEE RTAS, pages 353–364, 2017.

[97] P. Palanisamy. Multiple-Object-Tracking-from-Point-Clouds. https://doi.org/10.

5281/zenodo.3559186, 2019.

158

https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://doi.org/10.5281/zenodo.3559186
https://doi.org/10.5281/zenodo.3559186

[98] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, and
M. H. Ang. Perception, planning, control, and coordination for autonomous vehicles.
Machines, 5(1), 2017.

[99] L. Piga, I. Narayanan, A. Sundarrajan, M. Skach, Q. Deng, B. Maity, M. Chakkar-
avarthy, A. Huang, A. Dhanotia, and P. Malani. Expanding Datacenter Capacity with
DVFS Boosting: A Safe and Scalable Deployment Experience. In 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS ’24), 2024.

[100] Prometheus. Monitoring system & time series database. https://prometheus.io/.
Last accessed 2023-01-02.

[101] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. En-
hancing lifetime and security of pcm-based main memory with start-gap wear leveling.
In 42nd Annual IEEE/ACM international symposium on microarchitecture (MICRO),
pages 14–23, New York, NY, USA, 2009. Association for Computing Machinery.

[102] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan. Quality configurable approx-
imate dram. IEEE Transactions on Computers, 66(7):1172–1187, 2017.

[103] E. A. Rambo, B. Donyanavard, M. Seo, F. Maurer, T. Kadeed, C. B. de Melo, B. Maity,
A. Surhonne, A. Herkersdorf, F. Kurdahi, N. Dutt, and R. Ernst. The self-aware infor-
mation processing factory paradigm for mixed-critical multiprocessing. IEEE Trans-
actions on Emerging Topics in Computing, 10(1):250–266, 2022.

[104] E. A. Rambo, T. Kadeed, R. Ernst, M. Seo, F. Kurdahi, B. Donyanavard, C. B.
de Melo, B. Maity, K. Moazzemi, K. Stewart, S. Yi, A. M. Rahmani, N. Dutt, F. Mau-
rer, N. A. V. Doan, A. Surhonne, T. Wild, and A. Herkersdorf. The information
processing factory: A paradigm for life cycle management of dependable systems. In
Proceedings of the International Conference on Hardware/Software Codesign and Sys-
tem Synthesis Companion, CODES/ISSS ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[105] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan. Approximate
storage for energy efficient spintronic memories. In Proceedings of DAC. ACM, 2015.

[106] M. Rapp, M. B. Sikal, H. Khdr, and J. Henkel. Smartboost: Lightweight ml-driven
boosting for thermally-constrained many-core processors. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 265–270, 2021.

[107] B. K. Reddy, E. W. Wächter, B. M. Al-Hashimi, and G. V. Merrett. Workload-aware
runtime energy management for HPC systems. In 2018 International Conference on
High Performance Computing & Simulation, HPCS 2018, Orleans, France, July 16-20,
2018, pages 292–299, 2018.

[108] M. I. Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties.
Institute for Systems and Robotics, 43:46, 2004.

159

https://prometheus.io/

[109] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman. Monitoring
and debugging the quality of results in approximate programs. In Proceedings of the
20th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 399–411, New York, NY, USA, 2015. Association for
Computing Machinery.

[110] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel. Approximation-aware
Multi-Level Cells STT-RAM cache architecture. In International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems (CASES), pages 79–88. IEEE,
2015.

[111] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-state
memories. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, page 25–36, New York, NY, USA, 2013. Association for Computing
Machinery.

[112] R. R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59,
June 1997.

[113] W. Schwarting, J. Alonso-Mora, and D. Rus. Planning and decision-making for au-
tonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems,
1(1):187–210, 2018.

[114] J. Shannon. Extended kalman filter. https://github.com/jeremy-shannon/

CarND-Extended-Kalman-Filter-Project, 2019.

[115] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt. Exploiting Partially-Forgetful Mem-
ories for Approximate Computing. IEEE Embedded Systems Letters, 2015.

[116] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt. Exploiting partially-forgetful mem-
ories for approximate computing. IEEE Embedded Systems Letters, 7:19–22, 2015.

[117] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan. Relaxing
non-volatility for fast and energy-efficient stt-ram caches. In IEEE 17th International
Symposium on High Performance Computer Architecture, pages 50–61. IEEE, 2011.

[118] X. Song, P. Wang, D. Zhou, R. Zhu, C. Guan, Y. Dai, H. Su, H. Li, and R. Yang. Apol-
locar3d: A large 3d car instance understanding benchmark for autonomous driving. In
Proc. IEEE/CVF CVPR, pages 5452–5462, 2019.

[119] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A framework for
continuously adaptive dvfs. In Proceedings of the 2011 International Green Computing
Conference and Workshops, IGCC ’11, pages 1–8, Washington, DC, USA, 2011. IEEE
Computer Society.

[120] A. Sriraman and A. Dhanotia. Accelerometer: Understanding Acceleration Opportu-
nities for Data Center Overheads at Hyperscale. In Proc. ASPLOS, 2020.

160

https://github.com/jeremy-shannon/CarND-Extended-Kalman-Filter-Project
https://github.com/jeremy-shannon/CarND-Extended-Kalman-Filter-Project

[121] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi,
L. Ceze, and D. Burger. General-purpose code acceleration with limited-precision
analog computation. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, pages 505–516. IEEE, 2014.

[122] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

[123] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT press,
Cambridge, MA, USA, 2018.

[124] A. Taha and N. AbuAli. Route planning considerations for autonomous vehicles. IEEE
ComMag, 56(10):78–84, 2018.

[125] M. T. Teimoori, M. A. Hanif, A. Ejlali, and M. Shafique. AdAM: Adaptive approxi-
mation management for the non-volatile memory hierarchies. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 785–790. IEEE, 2018.

[126] A. A. et al. Self-aware computing. MIT Tech. Rep., 2009.

[127] A. M. et al. General purpose computing on low-power embedded GPUs: Has it come
of age? In Proc. SAMOS, 2013.

[128] B. D. et al. Intelligent Management of Mobile Systems through Computational Self-
Awareness. arXiv:2008.00095 [cs.AR], 2020.

[129] B. D. et al. Reflecting on Self-Aware Systems-on-Chip, pages 79–95. Springer Interna-
tional Publishing, Cham, 2021.

[130] C. B. et al. The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proc. of PACT, 2008.

[131] C. W. et al. DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. IEEE
TCAD, 2017.

[132] E. I. et al. Self-Optimizing Memory Controllers: A Reinforcement Learning Approach.
In Proc. ISCA, 2008.

[133] F. F. et al. Energy-Efficient Virtual Machines Consolidation in Cloud Data Centers
Using Reinforcement Learning. In Proc. PDP, 2014.

[134] F. P. et al. Memory-Aware Green Scheduling on Multi-core Processors. In Proc.
ICPPW, 2010.

[135] F. Z. et al. On Self-Adaptation, Self-Expression, and Self-Awareness in Autonomic
Service Component Ensembles. In Proc. SASO, 2011.

[136] K. B. et al. Self-Aware Cyber-Physical Systems. ACM TCPS, 2020.

161

[137] M. E. T. et al. Memory MISER: Improving Main Memory Energy Efficiency in Servers.
IEEE TC, 2009.

[138] R. G. K. et al. Machine Learning for Design Space Exploration and Optimization of
Manycore Systems. In Proc. ICCAD, 2018.

[139] S. H. et al. A flexible low-power machine learning accelerator for healthcare applica-
tions. In Proc. ICSICT, 2016.

[140] S. K. et al. Self-Aware Computing Systems. Springer, 2017.

[141] U. G. et al. Deeprecsys: A system for optimizing end-to-end at-scale neural recom-
mendation inference. In Proceedings of ISCA, ISCA ’20, page 982–995. IEEE Press,
2020.

[142] Y. et al. A multi-agent hybrid cognitive architecture with self-awareness for homecare
robot. In Proc. ICCSE, 2014.

[143] The Verge. Tesla fsd chip. https://www.theverge.com/2019/4/22/18511594/

tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet,
2019.

[144] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov, C. W. Fletcher,
and S. V. Adve. gem5-approxilyzer: An open-source tool for application-level soft error
analysis. In 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 214–221. IEEE, 2019.

[145] J. Wang and B. H. Calhoun. Minimum supply voltage and yield estimation for large
srams under parametric variations. IEEE Trans. VLSI Syst. 2011, 19(11), 2011.

[146] Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger.
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for
autonomous driving. In Proc. IEEE/CVF CVPR, pages 8445–8453, 2019.

[147] Y. Wang, S. Liu, X. Wu, and W. Shi. Cavbench: A benchmark suite for connected
and autonomous vehicles. In Proc. IEEE/ACM SEC, pages 30–42, 2018.

[148] Z. Wang, W. Ren, and Q. Qiu. Lanenet: Real-time lane detection networks for au-
tonomous driving, 2018.

[149] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, and V. I. U. level Isa. The risc-v
instruction set manual. Volume I: User-Level ISA’, version, 2, 2014.

[150] C. J. C. H. Watkins and P. Dayan. Q-learning. In Machine Learning, volume 8, pages
279–292. Springer Science and Business Media LLC, 1992.

[151] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu en-
ergy. In Proceedings of the 1st USENIX Conference on Operating Systems Design and
Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX Association.

162

https://www.theverge.com/2019/4/22/18511594/tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet
https://www.theverge.com/2019/4/22/18511594/tesla-new-self-driving-chip-is-here-and-this-is-your-best-look-yet

[152] C. C. White III and D. J. White. Markov decision processes. European Journal of
Operational Research, 39:1–16, 1989.

[153] D. Wu, B. M. Al-Hashimi, and P. Eles. Scheduling and mapping of conditional task
graph for the synthesis of low power embedded systems. IEE Proceedings - Computers
and Digital Techniques, 150(5):262–, Sep. 2003.

[154] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from
large-scale video datasets. In Proc. IEEE/CVF CVPR, pages 2174–2182, 2017.

[155] J. Xue, J. Fang, T. Li, B. Zhang, P. Zhang, Z. Ye, and J. Dou. Blvd: Building a
large-scale 5d semantics benchmark for autonomous driving. In Proc. IEEE ICRA,
pages 6685–6691, 2019.

[156] R. Yarmand, M. Kamal, A. Afzali-Kusha, and M. Pedram. Dart: A framework for
determining approximation levels in an approximable memory hierarchy. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 28:273–286, 2019.

[157] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran. Axbench:
A multiplatform benchmark suite for approximate computing. IEEE Design & Test,
34:60–68, 2017.

[158] S. Yi, T. Kim, J. Kim, and N. Dutt. Energy-efficient adaptive system reconfiguration
for dynamic deadlines in autonomous driving. In IEEE ISORC, pages 96–104, 2021.

[159] D. You and K. S. Chung. Dynamic voltage and frequency scaling framework for low-
power embedded GPUs. IET Electronics Letters, 2012.

[160] F. Zaruba and L. Benini. The cost of application-class processing: Energy and perfor-
mance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27, 2019.

[161] H. Zhang, S. Zhao, A. Pattnaik, M. T. Kandemir, A. Sivasubramaniam, and C. R.
Das. Distilling the essence of raw video to reduce memory usage and energy at edge
devices. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 657–669, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[162] B. Zimmer, S. O. Toh, H. Vo, Y. Lee, O. Thomas, K. Asanovic, and B. Nikolic. SRAM
Assist Techniques for Operation in a Wide Voltage Range in 28-nm CMOS. IEEE
Transactions on Circuits and Systems II: Express Briefs, 59:853–857, 2012.

163

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background and Related Work
	Systems and Machine Learning Landscape
	Computational Self-Awareness (CSA)

	Challenges and Contributions

	Self-aware Memory Management using CSA
	Self-* properties and how it applies to Memory Management
	Overview of Memory Approximation and its Challenges
	Conclusion

	Hardware Abstraction Layer
	Overview of memory approximation and its challenges
	Brief intro to Formal control theory, Self-adaptivity, Self-optimizing properties
	Related work - Bit Error Rate (BER) models
	Simulation infrastructure
	System Model
	Runtime control algorithms

	Challenge: Design memory systems that eases the programmer's burden and guarantees a desired quality of service (QoS)
	 Approximation: State-of-the-art
	Benefits of Model-independence

	Case study 1: Self-Adaptive Memory Approximation
	Detailed explanation of the formal control-theoretic approach for tuning memory approximation knobs
	Comparison of self-adaptive with a manual calibration scheme

	Case study 2: Self-Optimizing Runtime Manager
	Overview of limitations in existing approximation techniques for full memory hierarchies
	Explanation of the proposed self-optimizing runtime manager, SEAMS
	Discussion of SEAMS’ key features
	Coordinate runtime decisions for interdependent knobs and subsystems
	Demonstrating SEAMS' energy savings and reduction of QoS violations

	Discussion

	Operating System Abstraction Layer
	Memory Management Techniques at the Operating System Layer
	MARS Middleware
	Case Study 1: Workload Characterization for Runtime Memory Management
	Memory access pattern and working set size
	Methodology for estimating the WBP metric
	Evaluation of the proposed WBP-based memory management approach

	MARS 2.0: Scalability and ML-based DVFS Boosting
	Case Study 2: Expanding Datacenter Capacity with DVFS Boosting
	Challenges for Scalable Deployment
	Memory Counters used and Insights

	Discussion

	Application Abstraction Layer
	Emerging data-centric architectures and end-to-end applications
	Motivation for benchmarking and optimization of data-centric applications on embedded systems
	Case study 1: Chauffeur The First Open-Source End-to-End Benchmark Suite for Self-Driving Vehicles
	Requirements of a benchmark suite for self-driving vehicles
	Limitations of existing benchmark suites
	Description of self-driving application categories
	Characteristics of Chauffeur: representative workloads, and performance evaluation

	Case study 2: OAsys : Self-Optimizing Autoscaler for ML Inference Serving Systems: A Holistic Approach
	Challenges of ML Inferencing with Traditional Autoscaler
	Partially Observable Markov Decision Process
	OASys as a Self-Optimizing Autoscaler

	Discussion

	Conclusions
	Bibliography

