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Abstract

Strategic Mechanisms in Multi-Agent Coordination

by

Rahul Chandan

Strategic interactions in multi-agent systems can be conveniently modeled, manipulated

and characterized within the analytical framework provided by game theory and mechanism

design, and used to extract engineering insights regarding systems of interest. Accordingly, in

this dissertation, we adopt such a framework and pursue research directions aimed at under-

standing how information and externalities impact the strategic outcomes that can emerge in

systems with multiple, non-cooperative decision makers. We consider two types of mechanisms:

decision-based mechanisms and preference-based mechanisms which respectively manipulate

either the players’ action sets or the players’ utilities – the two major building blocks of a

game. We conduct our analysis of decision-based mechanisms on Colonel Blotto games which

are popular models for competitive resource allocation in adversarial environments. Within

this framework, we first consider settings where the information to a competitor is obfuscated,

and quantify the value of information relating to competitive objectives and the opponent’s

strength. We then consider the role of pre-emption under this framework, and show that –

perhaps surprisingly – revealing information to competitors can also offer strategic benefits

in competitive interactions. Our results on preference-based mechanisms focus on the design

of taxes in congestion games to optimize the system performance. In our study, we consider

three performance measures corresponding with the worst-case equilibrium efficiency (Price of

Anarchy), the best-case equilibrium efficiency (Price of Stability), and the transient system per-

formance (Price of Urgency). Within this context, our first set of results focus on optimizing

the Price of Anarchy; we derive tractable methodologies for computing the optimal taxes within

this setting. We then investigate the consequences of optimizing for the worst case on the other

vii



performance measures: we show that the taxes that optimize the Price of Anarchy necessarily

have Price of Stability equal to the Price of Anarchy, and that optimal Price of Anarchy guar-

antees can correspond with arbitrarily poor Price of Urgency. We supplement this last set of

results by proposing techniques for characterizing the respective trade-off curves. We conclude

with a discussion on future directions for both decision- and preference-based mechanisms.
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Chapter 1

Introduction and Overview

Over the past century, the classical discipline of control theory has evolved from its humble

beginnings in regulating oscillations in engines and the establishment of control stability cri-

teria for linear systems, to PID control and nonlinear control, and, more recently, to adaptive

control, hybrid control and optimal control. The classical approach is extremely successful in its

application to systems operated under the authority of a single decision maker (DM), including,

for example, power converters, refridgerators, automobiles, and HVAC systems. Though imple-

menting such a control approach is often the most straightforward and efficient, it is impracti-

cal when deploying large-scale systems that must satisfy imposing communication and security

constraints, and generally inadmissible when considering systems involving human DMs. It is

unsurprising, then, that as the engineered systems around us continue to grow larger, more

complex and more human-centric, we are seeing research in control theory trend away from

the classical discipline toward relatively new and unexplored fields. Consider, for example,

the increasing popularity of non-traditional disciplines such as machine learning, human-robot

interaction and game theory at control theory conferences such as the IEEE Conference on

Decision and Control (CDC) and American Control Conference (ACC).

In this dissertation, we pursue the study of control theory using models and analytical

tools borrowed from game theory. While the field of game theory originates from mathematics
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Introduction and Overview Chapter 1

and economics, it has received significant interest in engineering and beyond, for example, in

biology and medicine [1, 2], computer science [3, 4], and philosophy and political science [5, 6].

Game theory is well-suited to the study of large-scale systems as well as systems with human

DMs since it allows us to represent a system, its DMs and the DMs’ interactions under the

abstraction of a set of players (or agents) in a game, each with a set of actions describing her

decision space and a utility function describing her preferences. This abstraction allows us to

study the set of system outcomes that emerge from the DM’s strategic behaviour (in other

words, we assume that the DMs act rationally).

Under the abstraction provided by game theory, influencing the set of emergent system

outcomes amounts to altering the agents’ action sets and/or utility functions, which is the cen-

tral focus in the discipline of mechanism design [7]. In our application of mechanism design to

engineering, we treat established game models for systems of interest as the baseline/nominal

settings, and study how the emergent system outcomes change in response to designed perturba-

tions on the agents’ action sets and/or preferences. Accordingly, we refer to such perturbations

as mechanisms. By selecting the appropriate mechanisms and identifying the differences be-

tween the nominal and perturbed systems’ outcomes, we hope to develop engineering insights

that inform how one should – or, perhaps more importantly, should not – design such systems

in practice.

In this work, we propose the study of mechanisms under two classifications:

– Decision-based mechanisms: Mechanisms that modify the agents’ action sets.

– Preference-based mechanisms: Mechanisms that modify the agents’ utility functions.

Observe that applying either class of mechanism to a game model may lead to dramatically

different strategic outcomes. We study decision-based and preference-based mechanisms under

well-studied game theoretic models respectively known as Colonel Blotto games and congestion

games. Interestingly, the original versions of both these game models pre-date game theory

itself: though the foundation of game theory as a field is widely attributed to John von Neu-

mann’s On the Theory of Games of Strategy in 1928, while the original Colonel Blotto game was

2



Introduction and Overview Chapter 1

proposed by Émile Borel no later than 1921 and Arthur C. Pigou studied a form of congestion

game as far back as 1920.

The goal of this dissertation is to further the applications of game theory in engineering

(especially in control theory) by providing novel perspectives and methodologies for analyzing

multi-agent interactions and coordination. Although some of the forthcoming insights may

appear to be prescriptive – in other words, they may seemingly apply directly to practical

problem settings – it is important to note that our insights only hold under the multitude

of modeling assumptions that make up our analytical framework. If there is any truth to our

results, it is that the emergent behaviour in multi-agent systems – particularly in those involving

human DMs – is even more complex than it appears in our analysis, as even the simple models

studied within this dissertation are rich with performance trade-offs, mis-directions and counter-

measures, among other fascinating phenomena.

1.1 Why game theory?

On page 2 of their 1998 book Dynamic noncooperative game theory, Başar and Olsder [8]

attribute to game theory “the development of suitable concepts to describe and understand

conflict situations.” Indeed, game theory may be used as a catch-all term for any study of

systems with multiple DMs. Consider, for example, that any control theory problem can be

posed as a game where the controllers are the players, the output spaces are their action sets,

and the control objectives encode their utilities.

Nevertheless, a variety of well-established analytical techniques have already been proposed

and used within control theory for the study of systems with multiple DMs. This prompts

the question: “Why should we study game theory when other techniques already seek to ad-

dress multi-agent coordination?” The simple answer is that game theory offers an alternative

perspective on multi-agent coordination that these other perspectives cannot provide. A more

complete answer is that game theory uniquely studies the set of stable outcomes (i.e., equilibria)

that emerge under any form of decision making, and offers convenient models and analytical
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methodologies for studying the design of multi-agent systems around this set of outcomes.

To the authors’ best knowledge, the most popular alternatives to game theory for the control

of multi-agent systems are stochastic and robust control, dynamical systems, and distributed

optimization. In the following, we summarize these approaches, and discuss how game theory

offers complementary perspectives on multi-agent interactions and coordination:

Stochastic and robust control. In the disciplines of stochastic and robust control, we seek

to design controllers that guarantee that a given system operates within a desired performance

regime under noisy (stochastic) or worst-case (robust) disturbances. Often, these disturbances

can be said to model interactions between the system and an added DM (either nature or an

adversary) in the system. For example, a robust control approach assumes that the added DM

is purely adversarial toward the system. Though games can and sometimes do possess purely

adversarial DMs, with game theory we can also model systems with nuanced DM preferences

that are neither purely adversarial nor pure uncorrelated with the preferences of the other DMs.

Dynamical systems. Dynamical systems is the study of any system governed by a set of

dynamics [9]. As the name suggests, the study of systems from this perspective attributes

significant importance to the underlying system dynamics. In the case of multi-agent systems,

dynamical systems have been extremely successful in modelling phenomena such as the synchro-

nization of oscillators [10] and their applications to the electric power grid [11], social networks

and biological systems [12, 13]. Although dynamics, especially dynamics that converge to equi-

librium, are an important topic of study within game theory (see, for example, [14, 15]), the

focus in game theory is also on the outcomes of strategic decision making and, thus, the system

dynamics are not a necessary component of the system analysis. This is an especially desir-

able property when the system dynamics are too complex to be modelled (for example, human

decision making).
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Distributed optimization. Another approach is distributed optimization which captures

the objective and constraints of a given multi-agent system as an optimization problem and uses

structural properties and/or relaxations of this optimization problem to formulate distributed

control protocols [16]. Such approaches are often associated with (near-)optimal approximation

guarantees and are especially useful for designing distributed algorithms for systems with pro-

grammable DMs [17, 18]. The study of game theory differs with this approach in spirit in that

we are often interested in studying and contrasting the strategic outcomes in different systems

without ever posing the optimization question.

A final, additional benefit to studying game theory is that it is inherently a multi-disciplinary

field. Thus, when posed as a game theory problem, a seemingly new research direction within

control theory may already be extensively studied in computer science, economics, operations

research, etc.

1.2 Summary of contributions

This dissertation is divided into two parts corresponding to the two classifications of mech-

anisms proposed in the previous sections. Part I presents our work relating to agent-level

mechanisms and their applications in Colonel Blotto games and variations thereof. Part II

presents our work relating to system-level mechanisms and their applications in congestion

games. In this section, we outline the research agenda and summarize our contributions for

each of these two parts.

1.2.1 Part I: Decision-based mechanisms

In the first part of this dissertation, we focus on decision-based mechanisms and their

application to competitive resource allocation settings. Specifically, we adopt the framework of

Colonel Blotto games and variations thereof (especially General Lotto games) that model the

competitive interactions of budget-constrained players over valuable battlefields, and investigate

the role that information plays in the emergent strategic behaviour of such games. First, we
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aim to identify the value associated with knowing the opponents’ budgets and knowing the

battlefields’ values. Second, we wish to understand whether a competitor can strategically

reveal information to her opponents to improve her competitive position.

Outline. In Chapter 3, we introduce the Colonel Blotto and General Lotto game models

considered, and provide a discussion on possible applications and related works. In Chapter 4,

we introduce Bayesian formulations of the General Lotto game with asymmetric information on

either the values of the battlefields or players’ budgets, and identify the value of information on

these pieces of information to a competitor. In Chapter 5, we identify the strategic benefits of

pre-emption both in the form of battlefield and value concessions in three-player General Lotto

games (which we review in the chapter) as well as pre-allocated resources in General Lotto

games.

Contributions. The main contributions in Part I are discussed in Chapters 4 and 5, and are

summarized as follows:

1. In Section 4.1, we propose the General Lotto game with incomplete value information,

which permits us to study the value of battlefield information in the General Lotto game.

We provide a complete equilibrium characterization in the setting with completely asym-

metric information (i.e., one player can see the realized system state while the other

only has access to the prior distribution governing the system state), the various system

states are all the permutations of a given vector of battlefield values, and the prior dis-

tribution is uniform (Theorem 4.1.1). We also characterize how the players’ equilibrium

payoffs change as we transition from the completely asymmetric information to complete

information settings (Theorem 4.1.2).

2. In Section 4.2, we propose the General Lotto game with asymmetric budget information,

which permits us to study the value of budget information in the General Lotto game.

First, we provide a complete equilibrium characterization of the class of games where the

6
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informed player’s budget is governed by a Bernoulli prior distribution (Theorem 4.2.1).

We then compare the players’ equilibrium payoffs in the setting under Bernoulli prior

distribution against the complete information setting, and the setting where the informed

player selects the optimal prior distribution (Corollaries 4.2.1 and 4.2.2).

3. In Section 5.1, we propose the three-player General Lotto game with budget concessions

and the three-player General Lotto game with value concessions. First, we show that

budget concessions never offer strategic opportunities to any player (Theorem 5.1.1).

Then, we establish that value concessions can strictly improve a player’s equilibrium

payoff and fully characterize the set of pure strategy Nash equilibria for any given three-

player General Lotto game with value concessions (Theorem 5.1.2). Finally, we show that

neither concession format offers strategic opportunities in the (two-player) General Lotto

game.

4. In Section 5.2, we propose the General Lotto game with pre-allocations. First, we fully

characterize the players’ equilibrium payoffs to both players within such games (Theorem

5.2.1) which allows us to identify the level sets within the parameter space (Theorem

5.2.2). Based on these results, we establish that regular resources are at least twice as

effective as pre-allocated resources (Corollary 5.2.1), and solve the optimal investment

problem when these two types of resources have linear costs (Corollary 5.10).

1.2.2 Part II: Preference-based mechanisms

In the second part of this dissertation, we focus on preference-based mechanisms and their

application to non-cooperative multi-agent systems such as selfish routing in congestible net-

works and distributed resource allocation. Specifically, we adopt the framework of congestion

games that model the noncooperative interactions of self-interested decision makers whose lo-

cal utilities are distinct from an overarching system objective, and investigate how taxes can

be used to improve the system performance associated with the emergent strategic outcomes.

First, we consider a robust design approach in which we propose tractable methodologies for
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computing the taxes that optimize the worst-case equilibrium efficiency. We then consider

the consequences of the worst-case design approach on the best-case equilibrium efficiency and

transient system behaviour, identifying and characterizing the trade-offs between the worst-case

equilibrium efficiency and both these performance measures.

Outline. In Chapter 6, we introduce the congestion game model, taxation mechanisms and

relevant performance measures, and provide a discussion on possible applications and related

works. In Chapter 7, we review and draw connections between existing analytical techniques

for characterizing bounds on the equilibrium efficiency in games including smoothness and

primal-dual techniques, and propose game parameterizations that balance the tractability and

tightness of these bounds. In Chapter 8, we consider the design of taxes to optimize the worst-

case equilibrium efficiency, and provide tractable methodologies to accomplish this. In Chapter

9, we study the consequences of optimizing the worst-case equilibrium efficiency on the best-

case equilibrium efficiency and transient system performance, identifying and characterizing

performance trade-offs corresponding with both these directions.

Contributions. The main contributions in Part II are contained in Chapters 7, 8 and 9, and

are summarized as follows:

1. In Section 7.2, we introduce a novel smoothness notion – termed generalized smoothness

- that represents a slight modification of Roughgarden’s smoothness notion. Neverthe-

less, we show that generalized smoothness applies to a broader class of problems, and

offers improved bounds on the equilibrium efficiency when compared to Roughgarden’s

smoothness (Proposition 7.2.1).

2. In Section 8.1, we consider the problem of designing taxes that optimize the worst-case

equilibrium efficiency in congestion games. We derive a methodology based on tractable

linear programs for computing the optimal taxes and the corresponding equilibrium effi-

ciency guarantees (Theorem 8.1.1). We then show that, for nondecreasing, convex resource

8
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cost functions, these linear programs can be further simplified, and that the equilibrium

efficiency guarantees can be written in closed-form (Theorem 8.1.2).

3. In Section 8.2, we seek to identify universal performance guarantees on the equilibrium ef-

ficiency without relying on linear programming. For the class of resource allocation games

with nonnegative, concave nondecreasing welfare functions, we show that there exist util-

ity mechanisms that guarantee that the equilibrium efficiency is no lower than 1 − c/e

where c is the curvature of the welfare function and e is Euler’s constant (Theorem 8.2.1).

Perhaps surprisingly, this efficiency guarantee matches the best-achievable approximation

ratio among all polynomial-time centralized algorithm for this class of problems.

4. In Section 9.1, we seek to characterize the tension between the worst- and best-case

equilibrium efficiency in congestion games. In this context, we identify the existence of

two separate trade-offs between these two performance measures. First, we show that the

taxes that optimize the worst-case equilibrium efficiency have corresponding best-case

equilibrium efficiency guarantees equal to the worst-case equilibrium efficiency (Theorem

9.1.1). We then propose techniques for characterizing upper and lower bounds on the

trade-off curve in the joint optimization of the worst- and best-case equilibrium efficiency

(Theorems 9.1.2 and 9.1.3). Next, we consider the existence of an inner trade-off between

the worst- and best-case equilibrium efficiency pairs that are jointly achieved within the

same game. Though such an inner trade-off does not exist under the taxes that optimize

either the worst- or best-case equilibrium efficiency (Theorem 9.1.1), we show that it does

in general (i.e., in the setting without taxes) (Theorem 9.1.2).

5. In Section 9.2, we study the transient system performance in resource allocation games

with nondecreasing, concave resource welfare functions. We consider the setting where

agents perform κ ≥ 1 round-robin best response sequences before arriving at the solution

of interest. We first derive a linear program for computing the utility mechanism that

optimizes the system performance guarantees after a one-round walk (κ = 1) (Theorem

9
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9.2.1). Using this result, we show that the best-achievable system performance after a

one-round walk is 1 − c/2 where c is the curvature of the resource welfare function, and

that the best-achievable system perofrmance after κ > 1 is no better (Theorem 9.2.3).

Finally, we show that a trade-off exists between the system performance guarantees after a

one-round walk and at equilibrium (Theorems 9.2.4 and 9.2.5). Notably, the performance

guarantees after a one-round walk can be arbitrarily poor under the utility design that

optimizes the worst-case equilibrium efficiency.

10



Chapter 2

Mathematical preliminaries

2.1 Game theory and strategic decision making

In this section, we review several important concepts from game theory. However, this

section is not intended to provide a complete introduction to game theory. For more complete

introductions to this topic, we refer the interested reader to [3, 4].

2.1.1 Formal game definition

Formally, a game consists of a set of n players, which we denote as N = {1, . . . , n}. Each

player i ∈ N has a set of permissible actions, which we denote as Ai. During play, each player

selects an action ai ∈ Ai, resulting in an action profile a = (a1, . . . , an) at the end of play. We

use A = Πn
i=1 Ai to denote the set of all possible action profiles of the game.

Each player in a game associates a degree of satisfaction with each possible action profile of

the game, imposing a (possibly weak) preference ordering over the set A. In the definition of a

game, it is critical that each player i’s preference ordering be over the action profiles a ∈ A and

not simply over actions ai ∈ Ai to ensure that i’s satisfaction is dependent not solely on her

own action, but on the other players’ actions as well. In general, the preference ordering over A

is different for each player. In this dissertation, we will specify the preference ordering for each

player by assigning a value to each possible action profile. Depending on what is appropriate

11
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for the application we consider, this value will represent either the payoff or cost experienced

by the player under the corresponding action profile. We will use πi : A → R and ci : A → R

to denote player i’s payoff and cost functions, respectively. Note that payoffs and costs can be

used interchangeably, since πi(a) = −ci(a) preserves the preference ordering. Accordingly, we

can denote any game as a tuple G = (N, {Ai}i∈N , {πi}ni=1).

Before our discussion on strategic outcomes of games, it is important to explore the various

models of interaction in game theory. As we will see, the model of interaction will inform the

solution concepts that we consider. In this dissertation, we focus on simultaneous, sequential,

and incomplete information games, which we define below:

Definition 2.1.1 (Simultaneous game). A simultaneous game – also known as static or one-

shot game – are games where each player selects her action without access to information on

the other players’ actions. Therefore, these games are useful in modelling systems in which the

decision making takes place simultaneously. The classic example of a simultaneous game is

rock-paper-scissors, while other practical examples include the interaction between offense and

defense before each down in American football.

Definition 2.1.2 (Sequential game). A sequential game – also known as, Stackleberg or turn-

based game – is any game that is not simultaneous. In other words, at least one player has

access to information on at least one other player’s action. Naturally, such games model systems

in which the decision making has a strict temporal ordering. The classic example of a sequential

game is tic-tac-toe. Other practical examples include board games like chess and backgammon,

and card games like bridge and hearts.

Definition 2.1.3 (Incomplete information game). An incomplete information game is a game

in which at least one player does not possess all the information about the game parameters.

Thus, a player without complete information must select her action, for example, by reasoning

about her utility or cost in expectation if a prior distribution over the possible game parameters

is available. The classic example of an incomplete information game is an auction, as players

must select their bids without knowing the other players’ payoff functions.
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2.1.2 Nash equilibrium and other solution concepts

In any analytical framework, we would like to define solution concepts that we use to

represent the set of system outcomes within our model. In the case of game theory, the standard

assumption is that the players are self-interested in that each player i ∈ N will select from the

actions that she most prefers if we fix the actions of the other players, i.e., given any action

profile a ∈ A and payoff functions πiA → R for all i ∈ N , player i will select an action

a∗i ∈ arg max
a′i∈Ai

πi(a
′
i, a−i), (2.1)

where a′i, a−i denotes the action profile wherein player i selects the action a′i ∈ Ai, and every

other player selects her action in a. We will refer to any action a∗i ∈ Ai that satisfies (2.1) as

player i’s best-response strategy to action profile a. Since the preference ordering specified by

the payoff functions can be weak, a given player’s best-response strategy to a given action profile

need not be unique in general. If a given action a∗i ∈ Ai is player i’s best-response strategy

for any action profile a, it is additionally termed a dominant strategy. The definition of best-

response strategies immediately prompts our first equilibrium notion: A pure Nash equilibrium

of a given simultaneous game G is any action profile ane ∈ A under which each player i’s action

ane
i is a best-response strategy to ane.

In general, a simultaneous game can have one or many pure Nash equilibria, but can also

have no pure Nash equilibria as well. Consider, as a simple example, the rock-paper-scissors

game. If player 1 selects the action “Rock,” then player 2’s best-response strategy is the

action “Paper,” which then makes player 1’s best-response strategy “Scissors,” making player

2’s best-response strategy “Rock,” and so on. Of course, anyone who has played rock-paper-

scissors knows that it is best to mix between “Rock,” “Paper” and “Scissors,” or to randomize

one’s strategy. When players have mixed strategies, i.e., each player i ∈ N can choose a

probability distribution over her actions σi ∈ ∆(Ai), then we assume that they act to maximize

their expected payoffs under the joint probability distribution over action profiles σ = Πn
i=1 σi

13
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where σ ∈ ∆(A). Here we have implicitly assumed that the players’ mixed strategies are

independently distributed. If we augment a game G by endowing each player with the choice

of any mixed strategy over her action set, a mixed Nash equilibrium is a joint probability

distribution sigmane = Πn
i=1 σ

ne
i such that each player i’s choice σi is a best-response mixed

strategy to σ. One of the most important results – if not the most important result – in game

theory was John Nash’s proof that every game with a finite number of players, each with a

finite set of actions, has a mixed Nash equilibrium.

In certain scenarios, we may wish to drop the assumption that players’ mixed strategies are

independently distributed, for example, if the players share communication channels or there is

a game coordinator that chooses the players’ strategies on their behalf. Under such correlated

joint probability distributions σ ∈ ∆(A), we may consider the notion of correlated equilibrium

as the solution concept, which is any distribution σ ∈ ∆(A) such that the marginal distribution

σi is a best-response mixed strategy to σ for each player i ∈ N . For any given game, observe

that the set of pure Nash equilibria is a subset of the set of mixed Nash equilibria, which is

itself a subset of the set of correlated equilibria.

Observe that sequential and incomplete information games naturally give rise to their own

set of solution concepts akin to those defined above for simultaneous games. First, an action

profile in a sequential game is termed a subgame perfect Nash equilibrium if each player’s action

at each stage of the game is her best-response strategy given the actions played at earlier stages

as well as the current stage of the game. Finally, we will assume that players with incomplete

information use Bayes’ rule based on given priors distribution over the possible game parameters

to compute their expected payoffs. This leads to Bayes Nash equilibrium as the relevant solution

concept.

2.1.3 Mechanisms

Classically, a mechanism is defined as a mapping from the set of all possible action profiles

A to the set of players’ utility or cost values [19]. In this sense, a mechanism defines a game
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upon a given set of players N = {1, . . . , n} with action sets {Ai}ni=1. For this reason, the study

of mechanisms and mechanism design – which refers to the design of a mechanism to induce a

desired set of solutions – is also referred to as game design and reverse game theory.

In this dissertation, we propose a modified definition of mechanism which we believe re-

tains the original spirit of the study of mechanisms while broadening its applications within

engineering. In our definition, a mechanism is a mapping M : G × Θ → G′ from a nominal

family of games G and some parameter space Θ to a family of modified games G′. The idea

is to compare the players’ equilibrium payoffs in a given nominal game G ∈ G against their

equilibrium payoffs in the modified game G′ = M(G, θ) corresponding to parameter vector

θ ∈ Θ to characterize the impact of this modification. Thus, under this definition, a mechanism

can be used to modify a complete information game to study the effect of withholding some

information from a player, to modify a simultaneous game to study the strategic outcomes in

a sequential counterpart, among other interesting engineering perspectives.
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Chapter 3

Introduction

3.1 Model: Colonel Blotto games and variations

A Colonel Blotto game consists of two players A and B. Each possesses an amount Xi > 0,

i ∈ {A,B}, of resources to distribute among a set of B ≥ 2 battlefields. Each battlefield

b ∈ {1, . . . , B} has an associated value vb ≥ 0. Each player i ∈ {A,B} selects a vector

ai = (ai,1, . . . , ai,B) from the set of vectors Ai = ∆(Xi) := {a ∈ Rn s.t. a ≥ 0, 1TBa ≤ Xi}.

Given action profile (aA,aB), player i’s utility is given by

ui(ai,a−i) :=

B∑
b=1

vb · U(ai,b, a−i,b) (3.1)

where

U(x, y) :=



1, if x > y

1/2, if x = y

0, if x < y

. (3.2)

Observe that a mixed strategy for player i is any B-variate distribution Fi on ∆(Xi). Hence, any

pure strategy a drawn from the distribution Fi satisfies the budget constraint with probability
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one. Each player i’s expected utility under distributions Fi and F−i is evaluated as

Eai∼FiEa−i∼F−i ui(ai,a−i). (3.3)

We will refer to a particular instance of the Colonel Blotto game as CB(XA, XB,w).

3.1.1 General Lotto game

A General Lotto game is a popular variation of the Colonel Blotto game. The two models are

identical in their definitions except for the players’ action sets. In the General Lotto game, each

player i ∈ {A,B} selects a B-variate distribution Fi from the set of distributions Ai := L(Xi),

where we let L(Xi) denote the set of all distributions F on RB+ that satisfy the following budget

constraint:
B∑
b=1

Eab∼F [ab] ≤ Xi (3.4)

Note that this relaxes the budget constraint from the Colonel Blotto game that is satisfied

with probability one to a budget constraint that is satisfied in expectation. Players’ expected

utilities under distributions Fi and F−i are evaluated as in (3.3). It is important to note that the

players’ utility structures in the Colonel Blotto and General Lotto games define constant-sum

games, since the players’ utilities always sum to
∑B

b=1 vb. It is well known that the players’

equilibrium payoffs are unique in General Lotto games, as summarized in the following theorem:

Theorem 3.1.1 (General Lotto payoffs[20]). Consider the General Lotto game with player

budgets XA, XB ≥ 0 and battlefield values v ≥ 0 with cumulative worth Φ = 1Tv. Player

i ∈ {A,B} has unique equilibrium payoff1

u∗i (Xi, X−i,Φ) =


Φ · Xi

2X−i
if Xi ≤ X−i,

Φ ·
(

1− X−i
2Xi

)
if Xi > X−i.

(3.5)

1Candidate equilibrium strategies are characterized in [21, 20], and consist of non-trivial probability distri-
butions over Rn≥0. However, unlike the players’ equilibrium payoffs, the equilibrium strategies in General Lotto
games are not generally unique.
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Observe that the players’ equilibrium payoffs in the General Lotto game are independent of

the specific values in the vector of battlefield values v, and only depend on the cumulative value

Φ = 1Tv, and the players’ relative budgets. Thus, we will denote an instance of the General

Lotto game as GL(XA, XB,Φ). Figure 5.1a depicts the two-player General Lotto game.

3.2 Applications

Resource allocation decisions in adversarial environments are central to the design and oper-

ation of networked multi-agent systems. Adversarial models are especially prevalent in studies

of cyber-physical systems control (e.g., perimeter defense [22, 23], attack identification [24, 25],

data protection [26, 27]), and robust network control under disturbances (e.g., economic dis-

patch [28], leader-follower control [29]). The common objective in these settings is to ensure the

best performance under strategic interference by the adversary. In adversarial contexts, zero-

and constant-sum game models (like Colonel Blotto and General Lotto games) are particularly

popular, as the gains of a given player necessarily come at a cost to the others. Such mod-

els have been applied to pursuit-evasion [30, 31], threat detection [32, 33] and secure control

[34, 35], among other problems in cyber-physical systems.

3.3 Related work

The primary line of research in Colonel Blotto games focuses on characterizing the equilibria

for a given competitive environment. Since Borel’s initial study, many works have advanced this

thread (see, e.g., [36, 37, 20, 38, 39, 40, 41]). However, analytical solutions to the most general

settings remain as open problems. As such, there are several variations of Colonel Blotto games

that have been studied extensively. Of these variations, General Lotto games [42, 21, 20, 43] are

the most popular. Notably, the players’ equilibrium payoffs in General Lotto games have been

fully characterized [21, 20]. Due to its tractability, the General Lotto game is often adopted

in studies of more complex adversarial environments, including engineering domains such as
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network security [44, 45, 46] and the security of cyber-physical systems [47, 48, 49].

Our work on pre-emption relates to recent threads in the literature on two-stage General

Lotto game models, where players have the option to publicly announce their strategic intentions

ahead of play. Relevant to our study of concessions in Section 5.1 are [48, 49, 50], in which the

authors propose game models in which players facing a common adversary have the opportunity

to negotiate an alliance that takes the form of a pre-emptive, unilateral budget transfer between

the players. However, mechanisms requiring mutual coordination – including alliances – are

often not practical, as the necessary channels for coordination between the players may not be

available, or players’ budgets may not be directly transferable. This further motivates our study

of concessions, as they model decisions that do not require mutual coordination. Our study

of pre-allocation in Section 5.2 draws significant inspiration from the General Lotto game with

favoritism (GL-F) proposed in [51]. Favoritism refers to the fact that pre-allocated resources

provide an inherent advantage to one player’s competitive chances over the other’s. Their work

establishes existence of equilibria and develops computational methods to calculate them to

arbitrary precision. However, this prior work considers pre-allocated resources as exogenous

parameters of the game. In contrast, we model the deployment of pre-allocated resources as a

strategic element of the competitive interaction. Furthermore, we provide the first analytical

characterization of equilibria and the corresponding payoffs in GL-F games. Finally, our study

of strategic concessions and pre-allocations falls under a larger research thread on the potential

benefits associated with revealing information to an adversary (see, e.g., [52, 53, 54]).
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Chapter 4

Obfuscating mechanisms: The value

of concealing information

Beyond the results presented in this chapter, few contributions in the Colonel Blotto literature

characterize equilibrium solutions in incomplete information settings [55, 56, 57, 58]. Moreover,

the study of incomplete, asymmetric information in the literature is largely unavailable.

In this chapter, we investigate General Lotto games with incomplete and asymmetric in-

formation about battlefield values and about players’ budget endowments. There are many

motivations for considering problem settings with informational asymmetries. From an ana-

lytical perspective, characterizing equilibria and the corresponding equilibrium payoffs in such

scenarios directly identifies the “value of information” pertaining to these vital pieces of infor-

mation. That is, how does knowledge (or lack thereof) about the strategic objectives or about

an opponent’s strength impact the viable strategies and resulting performance? On the other

hand, this characterization can also be leveraged to inform how one should obfuscate informa-

tion in competitive scenarios. For instance, what is the return on investment for concealing

information related to the value of the various strategic objectives and one’s overall strength?
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4.1 The value of battlefield information

4.1.1 Model

We define the following Bayesian framework for General Lotto games with incomplete value

information: Before play, the vector of batttlefield values v ∈ Rn+ is drawn from a distribution

p that is common knowledge. The distribution is over a finite collection of vectors V, where

v ∈ V is drawn with probability pv ≥ 0, and
∑

v∈V pv = 1. We will call an element of V a state,

and V the state space.

The information available to each player i ∈ {A,B} about the realized state v can be

represented by a mapping from states to types, τi : V → Ti. Here, Ti is the set of types for

player i, where 1 ≤ |Ti| ≤ |V|. The mapping τi describes how well i can distinguish between

different realized states. For example, if τi is a bijection (i.e., player i has a unique type for

each state), then player i is informed about the state. Otherwise, if τi(v) = t (i.e., player i has

one type for all the states), then player i is uninformed, i.e., cannot refine its posterior from

the common prior p. As is standard in Bayesian games, the mappings are common knowledge.

Each player is tasked with allocating her resources over the n battlefields. An allocation

is a vector xi = (xi,b)
B
b=1 ∈ Rn+. Given type spaces Ti, an admissible strategy for player i is a

tuple of n-variate distributions Fi = {F ti }t∈Ti ∈ L(Xi)
|Ti|, where F ti ∈ L(Xi) means that

Exi∼F ti

[∑
b∈B

xi,b

]
≤ Xi. (4.1)

In words, player i in type t ∈ Ti can randomize over any allocation in Rn+ as long as its budget

is not violated in expectation. Given state v ∈ V is realized, the type of player i is ti = τi(v),

and the resulting payoff to both players is given by

Ui(F
ti
i , F

t−i
−i ; v) :=

∑
b∈B

vb

∫ ∞
0

F
t−i
−i,b(xi,b)dF

ti
i,b (4.2)

where F tii,b is the univariate marginal distribution on player i’s allocation to battlefield b. The
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↵1
<latexit sha1_base64="BpRVfjTElHjTIyjxBFxPPCh+N2A=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4CjMaXG5BLx4jmAWSIdR0epImPYvdPUIY8hNePCji1d/x5t/YkwyixgcFj/eqqKrnxYIrbdufVmFpeWV1rbhe2tjc2t4p7+61VJRIypo0EpHseKiY4CFraq4F68SSYeAJ1vbG15nffmBS8Si805OYuQEOQ+5zitpInR6KeIR9p1+u2FV7BrJInJxUIEejX/7oDSKaBCzUVKBSXceOtZui1JwKNi31EsVipGMcsq6hIQZMuens3ik5MsqA+JE0FWoyU39OpBgoNQk80xmgHqm/Xib+53UT7V+4KQ/jRLOQzhf5iSA6ItnzZMAlo1pMDEEqubmV0BFKpNpEVJqFcJnh7PvlRdI6qTqn1dptrVK/yuMowgEcwjE4cA51uIEGNIGCgEd4hhfr3nqyXq23eWvBymf24Res9y/N64/0</latexit>

↵2
<latexit sha1_base64="GYeSSpr8xGPJtfa/zg2U5cEYIDk=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkktftyKXjxWsB/QhjLZbtqlm03c3Qil9E948aCIV/+ON/+NSRpErQ8GHu/NMDPPiwTXxrY/raXlldW19cJGcXNre2e3tLff0mGsKGvSUISq46FmgkvWNNwI1okUw8ATrO2Nr1O//cCU5qG8M5OIuQEOJfc5RZNInR6KaIT9ar9Utit2BrJInJyUIUejX/roDUIaB0waKlDrrmNHxp2iMpwKNiv2Ys0ipGMcsm5CJQZMu9Ps3hk5TpQB8UOVlDQkU39OTDHQehJ4SWeAZqT/eqn4n9eNjX/hTrmMYsMknS/yY0FMSNLnyYArRo2YJASp4smthI5QITVJRMUshMsUZ98vL5JWteKcVmq3tXL9Ko+jAIdwBCfgwDnU4QYa0AQKAh7hGV6se+vJerXe5q1LVj5zAL9gvX8Bz2+P9Q==</latexit>

↵3
<latexit sha1_base64="lF1Xns93Ik8Eb18M6EWIYiWC0dA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0+HErevFYwX5AG8pku2mXbjZxdyOU0j/hxYMiXv073vw3JmkQtT4YeLw3w8w8LxJcG9v+tApLyyura8X10sbm1vZOeXevpcNYUdakoQhVx0PNBJesabgRrBMphoEnWNsbX6d++4EpzUN5ZyYRcwMcSu5ziiaROj0U0Qj7p/1yxa7aGcgicXJSgRyNfvmjNwhpHDBpqECtu44dGXeKynAq2KzUizWLkI5xyLoJlRgw7U6ze2fkKFEGxA9VUtKQTP05McVA60ngJZ0BmpH+66Xif143Nv6FO+Uyig2TdL7IjwUxIUmfJwOuGDVikhCkiie3EjpChdQkEZWyEC5TnH2/vEhaJ1XntFq7rVXqV3kcRTiAQzgGB86hDjfQgCZQEPAIz/Bi3VtP1qv1Nm8tWPnMPvyC9f4F0POP9g==</latexit>

↵4
<latexit sha1_base64="1fCTLdf4I6W/OmGQtEKay+FcAjY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0+HErevFYwX5AG8pku2mXbjZxdyOU0D/hxYMiXv073vw3Jm0QtT4YeLw3w8w8LxJcG9v+tApLyyura8X10sbm1vZOeXevpcNYUdakoQhVx0PNBJesabgRrBMphoEnWNsbX2d++4EpzUN5ZyYRcwMcSu5ziiaVOj0U0Qj7tX65YlftGcgicXJSgRyNfvmjNwhpHDBpqECtu44dGTdBZTgVbFrqxZpFSMc4ZN2USgyYdpPZvVNylCoD4ocqLWnITP05kWCg9STw0s4AzUj/9TLxP68bG//CTbiMYsMknS/yY0FMSLLnyYArRo2YpASp4umthI5QITVpRKVZCJcZzr5fXiStk6pzWq3d1ir1qzyOIhzAIRyDA+dQhxtoQBMoCHiEZ3ix7q0n69V6m7cWrHxmH37Bev8C0neP9w==</latexit>

posterior
<latexit sha1_base64="i+T136j+mVv9TNMYsM8awHfstDs="></latexit>

belief
<latexit sha1_base64="5z3Bd/Ok+r3JY/JdCeXsBnQQjnY="></latexit>

{ <latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

...
<latexit sha1_base64="ZxOlbs4PwCB3X546l2OUHgWxnjk=">AAAB7XicbVDLSsNAFL3xWeur6tJNsAiuSqLFx67oxmUF+4A2lMlk0o6dzISZSaGE/oMbF4q49X/c+TdO0iBqPXDhcM693HuPHzOqtON8WkvLK6tr66WN8ubW9s5uZW+/rUQiMWlhwYTs+kgRRjlpaaoZ6caSoMhnpOOPbzK/MyFSUcHv9TQmXoSGnIYUI22kdn8SCK0GlapTc3LYi8QtSBUKNAeVj34gcBIRrjFDSvVcJ9ZeiqSmmJFZuZ8oEiM8RkPSM5SjiCgvza+d2cdGCexQSFNc27n6cyJFkVLTyDedEdIj9dfLxP+8XqLDSy+lPE404Xi+KEyYrYWdvW4HVBKs2dQQhCU1t9p4hCTC2gRUzkO4ynD+/fIiaZ/W3LNa/a5ebVwXcZTgEI7gBFy4gAbcQhNagOEBHuEZXixhPVmv1tu8dckqZg7gF6z3L+SJj3o=</latexit>

...
<latexit sha1_base64="ZxOlbs4PwCB3X546l2OUHgWxnjk=">AAAB7XicbVDLSsNAFL3xWeur6tJNsAiuSqLFx67oxmUF+4A2lMlk0o6dzISZSaGE/oMbF4q49X/c+TdO0iBqPXDhcM693HuPHzOqtON8WkvLK6tr66WN8ubW9s5uZW+/rUQiMWlhwYTs+kgRRjlpaaoZ6caSoMhnpOOPbzK/MyFSUcHv9TQmXoSGnIYUI22kdn8SCK0GlapTc3LYi8QtSBUKNAeVj34gcBIRrjFDSvVcJ9ZeiqSmmJFZuZ8oEiM8RkPSM5SjiCgvza+d2cdGCexQSFNc27n6cyJFkVLTyDedEdIj9dfLxP+8XqLDSy+lPE404Xi+KEyYrYWdvW4HVBKs2dQQhCU1t9p4hCTC2gRUzkO4ynD+/fIiaZ/W3LNa/a5ebVwXcZTgEI7gBFy4gAbcQhNagOEBHuEZXixhPVmv1tu8dckqZg7gF6z3L+SJj3o=</latexit>

...
<latexit sha1_base64="ZxOlbs4PwCB3X546l2OUHgWxnjk=">AAAB7XicbVDLSsNAFL3xWeur6tJNsAiuSqLFx67oxmUF+4A2lMlk0o6dzISZSaGE/oMbF4q49X/c+TdO0iBqPXDhcM693HuPHzOqtON8WkvLK6tr66WN8ubW9s5uZW+/rUQiMWlhwYTs+kgRRjlpaaoZ6caSoMhnpOOPbzK/MyFSUcHv9TQmXoSGnIYUI22kdn8SCK0GlapTc3LYi8QtSBUKNAeVj34gcBIRrjFDSvVcJ9ZeiqSmmJFZuZ8oEiM8RkPSM5SjiCgvza+d2cdGCexQSFNc27n6cyJFkVLTyDedEdIj9dfLxP+8XqLDSy+lPE404Xi+KEyYrYWdvW4HVBKs2dQQhCU1t9p4hCTC2gRUzkO4ynD+/fIiaZ/W3LNa/a5ebVwXcZTgEI7gBFy4gAbcQhNagOEBHuEZXixhPVmv1tu8dckqZg7gF6z3L+SJj3o=</latexit>

...
<latexit sha1_base64="ZxOlbs4PwCB3X546l2OUHgWxnjk=">AAAB7XicbVDLSsNAFL3xWeur6tJNsAiuSqLFx67oxmUF+4A2lMlk0o6dzISZSaGE/oMbF4q49X/c+TdO0iBqPXDhcM693HuPHzOqtON8WkvLK6tr66WN8ubW9s5uZW+/rUQiMWlhwYTs+kgRRjlpaaoZ6caSoMhnpOOPbzK/MyFSUcHv9TQmXoSGnIYUI22kdn8SCK0GlapTc3LYi8QtSBUKNAeVj34gcBIRrjFDSvVcJ9ZeiqSmmJFZuZ8oEiM8RkPSM5SjiCgvza+d2cdGCexQSFNc27n6cyJFkVLTyDedEdIj9dfLxP+8XqLDSy+lPE404Xi+KEyYrYWdvW4HVBKs2dQQhCU1t9p4hCTC2gRUzkO4ynD+/fIiaZ/W3LNa/a5ebVwXcZTgEI7gBFy4gAbcQhNagOEBHuEZXixhPVmv1tu8dckqZg7gF6z3L+SJj3o=</latexit>

1/24
<latexit sha1_base64="mOE2TssBnTaRXOl18Xd93J4Jg+o=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiZt8bErunFZwT6gDWUynbRDZyZhZiKU0F9w40IRt/6QO//GJA2i1gMXDufcy733eCFn2tj2p1VYWV1b3yhulra2d3b3yvsHHR1EitA2CXigeh7WlDNJ24YZTnuholh4nHa96U3qdx+o0iyQ92YWUlfgsWQ+I9ikknNWawzLFbtqZ0DLxMlJBXK0huWPwSggkaDSEI617jt2aNwYK8MIp/PSINI0xGSKx7SfUIkF1W6c3TpHJ4kyQn6gkpIGZerPiRgLrWfCSzoFNhP910vF/7x+ZPxLN2YyjAyVZLHIjzgyAUofRyOmKDF8lhBMFEtuRWSCFSYmiaeUhXCV4vz75WXSqVWderVx16g0r/M4inAEx3AKDlxAE26hBW0gMIFHeIYXS1hP1qv1tmgtWPnMIfyC9f4F5W+NoA==</latexit>

1/24
<latexit sha1_base64="mOE2TssBnTaRXOl18Xd93J4Jg+o=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiZt8bErunFZwT6gDWUynbRDZyZhZiKU0F9w40IRt/6QO//GJA2i1gMXDufcy733eCFn2tj2p1VYWV1b3yhulra2d3b3yvsHHR1EitA2CXigeh7WlDNJ24YZTnuholh4nHa96U3qdx+o0iyQ92YWUlfgsWQ+I9ikknNWawzLFbtqZ0DLxMlJBXK0huWPwSggkaDSEI617jt2aNwYK8MIp/PSINI0xGSKx7SfUIkF1W6c3TpHJ4kyQn6gkpIGZerPiRgLrWfCSzoFNhP910vF/7x+ZPxLN2YyjAyVZLHIjzgyAUofRyOmKDF8lhBMFEtuRWSCFSYmiaeUhXCV4vz75WXSqVWderVx16g0r/M4inAEx3AKDlxAE26hBW0gMIFHeIYXS1hP1qv1tmgtWPnMIfyC9f4F5W+NoA==</latexit>

...
<latexit sha1_base64="ZxOlbs4PwCB3X546l2OUHgWxnjk=">AAAB7XicbVDLSsNAFL3xWeur6tJNsAiuSqLFx67oxmUF+4A2lMlk0o6dzISZSaGE/oMbF4q49X/c+TdO0iBqPXDhcM693HuPHzOqtON8WkvLK6tr66WN8ubW9s5uZW+/rUQiMWlhwYTs+kgRRjlpaaoZ6caSoMhnpOOPbzK/MyFSUcHv9TQmXoSGnIYUI22kdn8SCK0GlapTc3LYi8QtSBUKNAeVj34gcBIRrjFDSvVcJ9ZeiqSmmJFZuZ8oEiM8RkPSM5SjiCgvza+d2cdGCexQSFNc27n6cyJFkVLTyDedEdIj9dfLxP+8XqLDSy+lPE404Xi+KEyYrYWdvW4HVBKs2dQQhCU1t9p4hCTC2gRUzkO4ynD+/fIiaZ/W3LNa/a5ebVwXcZTgEI7gBFy4gAbcQhNagOEBHuEZXixhPVmv1tu8dckqZg7gF6z3L+SJj3o=</latexit>

1/24
<latexit sha1_base64="NZ27HUpj1E+9zwC4KW5oosr2oBc="></latexit>

...
<latexit sha1_base64="CpQ58hRc7JauWaxjPeeVRbtt3nQ="></latexit>

1/24
<latexit sha1_base64="NZ27HUpj1E+9zwC4KW5oosr2oBc="></latexit>

XA
<latexit sha1_base64="+MRibBhlKpiQlPI7xVsSn1dwWtE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0VL1VvXisaD+gDWWz3bRLN5uwuxFK6E/w4kERr/4ib/4bN2kQtT4YeLw3w8w8L+JMadv+tApLyyura8X10sbm1vZOeXevrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1vcp36nQcqFQvFvZ5G1A3wSDCfEayNdNcdXA7KFbtqZ0CLxMlJBXI0B+WP/jAkcUCFJhwr1XPsSLsJlpoRTmelfqxohMkEj2jPUIEDqtwkO3WGjowyRH4oTQmNMvXnRIIDpaaBZzoDrMfqr5eK/3m9WPvnbsJEFGsqyHyRH3OkQ5T+jYZMUqL51BBMJDO3IjLGEhNt0illIVykqH+/vEjaJ1XntFq7rVUaV3kcRTiAQzgGB86gATfQhBYQGMEjPMOLxa0n69V6m7cWrHxmH37Bev8CDEqNyA==</latexit>

XB
<latexit sha1_base64="NoOEn6XDFXGteP7b0e5K0Xep1LA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0VL2VevFY0X5AG8pmu2mXbjZhdyOU0J/gxYMiXv1F3vw3btIgan0w8Hhvhpl5XsSZ0rb9aRVWVtfWN4qbpa3tnd298v5BR4WxJLRNQh7KnocV5UzQtmaa014kKQ48Trve9Dr1uw9UKhaKez2LqBvgsWA+I1gb6a43bA7LFbtqZ0DLxMlJBXK0huWPwSgkcUCFJhwr1XfsSLsJlpoRTuelQaxohMkUj2nfUIEDqtwkO3WOTowyQn4oTQmNMvXnRIIDpWaBZzoDrCfqr5eK/3n9WPuXbsJEFGsqyGKRH3OkQ5T+jUZMUqL5zBBMJDO3IjLBEhNt0illIVylqH+/vEw6Z1XnvFq7rVUazTyOIhzBMZyCAxfQgBtoQRsIjOERnuHF4taT9Wq9LVoLVj5zCL9gvX8BDc6NyQ==</latexit>

informed
<latexit sha1_base64="YdN/lLSPC8XOzwnJl+0S/xcWlYQ=">AAAB+HicbVDJSgNBEO2JW4xLRj16GQyCpzCjweUW9OIxglkgGUJPp5I06VnorhHjkC/x4kERr36KN//GnskganxQ8Hiviqp6XiS4Qtv+NApLyyura8X10sbm1nbZ3NltqTCWDJosFKHseFSB4AE0kaOATiSB+p6Atje5Sv32HUjFw+AWpxG4Ph0FfMgZRS31zXIP4R4THgxD6cNg1jcrdtXOYC0SJycVkqPRNz96g5DFPgTIBFWq69gRugmVyJmAWakXK4gom9ARdDUNqA/KTbLDZ9ahVgaWXq0rQCtTf04k1Fdq6nu606c4Vn+9VPzP68Y4PHf1V1GMELD5omEsLAytNAVrwCUwFFNNKJNc32qxMZWUoc6qlIVwkeL0++VF0jquOifV2k2tUr/M4yiSfXJAjohDzkidXJMGaRJGYvJInsmL8WA8Ga/G27y1YOQze+QXjPcvsP+T5g==</latexit>

PB(XA, XB ,↵, r)
<latexit sha1_base64="rifvvDvYq5byx1yXfQcfcOhdGbw=">AAACBHicbVDLSsNAFJ34rPUVddlNsAgVSkm1+NjVunFZwbaBJoTJdNIOnTyYuRFL6MKNv+LGhSJu/Qh3/o1JGkStBy4czrmXe+9xQs4k6PqnsrC4tLyyWlgrrm9sbm2rO7tdGUSC0A4JeCAMB0vKmU87wIBTIxQUew6nPWd8mfq9WyokC/wbmITU8vDQZy4jGBLJVksm0DuI261pxbAvqobdqpqYhyNcFYe2WtZregZtntRzUkY52rb6YQ4CEnnUB8KxlP26HoIVYwGMcDotmpGkISZjPKT9hPrYo9KKsyem2kGiDDQ3EEn5oGXqz4kYe1JOPCfp9DCM5F8vFf/z+hG4Z1bM/DAC6pPZIjfiGgRamog2YIIS4JOEYCJYcqtGRlhgAkluxSyE8xQn3y/Pk+5RrX5ca1w3ys1WHkcBldA+qqA6OkVNdIXaqIMIukeP6Bm9KA/Kk/KqvM1aF5R8Zg/9gvL+BRCOlzY=</latexit>

r = 2
<latexit sha1_base64="Beg3jWL2UU0TGQDNpPx6uwMQBxM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkktfhyEohePFUxbaEPZbDft0s0m7G6EEvobvHhQxKs/yJv/xk0aRK0PBh7vzTAzz485U9q2P62l5ZXVtfXSRnlza3tnt7K331ZRIgl1ScQj2fWxopwJ6mqmOe3GkuLQ57TjT24yv/NApWKRuNfTmHohHgkWMIK1kVyJrlB9UKnaNTsHWiROQapQoDWofPSHEUlCKjThWKmeY8faS7HUjHA6K/cTRWNMJnhEe4YKHFLlpfmxM3RslCEKImlKaJSrPydSHCo1DX3TGWI9Vn+9TPzP6yU6uPBSJuJEU0Hmi4KEIx2h7HM0ZJISzaeGYCKZuRWRMZaYaJNPOQ/hMsPZ98uLpF2vOae1xl2j2rwu4ijBIRzBCThwDk24hRa4QIDBIzzDiyWsJ+vVepu3LlnFzAH8gvX+BZXzjgU=</latexit>

{ <latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

partially informed
<latexit sha1_base64="pf0/d1CGA0aJ1mINmvlsv735Lsc=">AAACAnicbVDLSgMxFM34rPVVdSVugkVwVaZafOyKblxWsA9oS8lkbtvQTGZI7ohlKG78FTcuFHHrV7jzb8y0RdR6IHA45z5yjxdJYdB1P525+YXFpeXMSnZ1bX1jM7e1XTNhrDlUeShD3fCYASkUVFGghEakgQWehLo3uEz9+i1oI0J1g8MI2gHrKdEVnKGVOrndFsIdJhHTKJiUQypUN9QB+KNOLu8W3DHoLClOSZ5MUenkPlp+yOMAFHLJjGkW3QjbSTqZSxhlW7GBiPEB60HTUsUCMO1kfMKIHljFp3a1fQrpWP3ZkbDAmGHg2cqAYd/89VLxP68ZY/esnQgVxQiKTxZ1Y0kxpGke1BcaONrDfcG4FvavlPeZZhxtatlxCOcpTr5PniW1o0LxuFC6LuXLF9M4MmSP7JNDUiSnpEyuSIVUCSf35JE8kxfnwXlyXp23SemcM+3ZIb/gvH8BcF2YPA==</latexit>

posterior
<latexit sha1_base64="i+T136j+mVv9TNMYsM8awHfstDs="></latexit>

belief
<latexit sha1_base64="5z3Bd/Ok+r3JY/JdCeXsBnQQjnY="></latexit>

{ <latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

1<latexit sha1_base64="lXb5b05RqyX7j4z6zyOX/QzX1h8="></latexit>

1<latexit sha1_base64="lXb5b05RqyX7j4z6zyOX/QzX1h8=">AAACE3icbVDLSgMxFM34tr6qLt0EiyAiQ9I6M52d6MZlBVuFdiiZNK3BzIMkI5Sh/+DGX3HjQhG3btz5N2baIr4OXDicc29y7wlTwZVG6MOamZ2bX1hcWi6trK6tb5Q3t1oqySRlTZqIRF6FRDHBY9bUXAt2lUpGolCwy/DmtPAvb5lUPIkv9DBlQUQGMe9zSrSRuuWDvDN+pC0HYZAj28c1r+ocIrtWxY7rFwRh38UjPOqWK8ave8jFENmu49U8xxCn7vuuD7GNxqiAKRrd8nunl9AsYrGmgijVxijVQU6k5lSwUamTKZYSekMGrG1oTCKmgny8zgjuGaUH+4k0FWs4Vr9P5CRSahiFpjMi+lr99grxP6+d6X49yHmcZprFdPJRPxNQJ7AICPa4ZFSLoSGESm52hfSaSEK1ibE0CaGA+3XyX9Kq2rhmH50fVY5PpnEsgR2wC/YBBh44BmegAZqAgjvwAJ7As3VvPVov1uukdcaazmyDH7DePgEOL5qf</latexit>

1/4
<latexit sha1_base64="uj/OC4QBpQroZ7xeszLBLQ5kIUo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqia2+NgV3bisaB/QhjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqdx6oVCwU93oaUTfAI8F8RrA20p1zUh+UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfYv3ISJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhMcfb98iJpn1adWrV+W680rvI4inAAh3AMDpxDA26gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4FdC2NZA==</latexit>

1/4
<latexit sha1_base64="uj/OC4QBpQroZ7xeszLBLQ5kIUo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqia2+NgV3bisaB/QhjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqdx6oVCwU93oaUTfAI8F8RrA20p1zUh+UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfYv3ISJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhMcfb98iJpn1adWrV+W680rvI4inAAh3AMDpxDA26gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4FdC2NZA==</latexit>

1/4
<latexit sha1_base64="uj/OC4QBpQroZ7xeszLBLQ5kIUo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqia2+NgV3bisaB/QhjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqdx6oVCwU93oaUTfAI8F8RrA20p1zUh+UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfYv3ISJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhMcfb98iJpn1adWrV+W680rvI4inAAh3AMDpxDA26gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4FdC2NZA==</latexit>

1/4
<latexit sha1_base64="uj/OC4QBpQroZ7xeszLBLQ5kIUo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqia2+NgV3bisaB/QhjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqdx6oVCwU93oaUTfAI8F8RrA20p1zUh+UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfYv3ISJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhMcfb98iJpn1adWrV+W680rvI4inAAh3AMDpxDA26gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4FdC2NZA==</latexit>

1/2
<latexit sha1_base64="yhpv4QKUYLxCBq+HmV5GpdeKAWk="></latexit>

1/2
<latexit sha1_base64="yhpv4QKUYLxCBq+HmV5GpdeKAWk=">AAACFXicbVBLSwMxGMz6tr6qHr0Ei+BB1uzDXXsrevFYwarQLiWbpjU0+yDJCmXpn/DiX/HiQRGvgjf/jdltEV8DgWFmvuTLhClnUiH0YczMzs0vLC4tV1ZW19Y3qptblzLJBKEtkvBEXIdYUs5i2lJMcXqdCoqjkNOrcHha+Fe3VEiWxBdqlNIgwoOY9RnBSkvd6kHeKS9pi0EY5MisW77n+gfIdLxjzy7JkWbO2Dq0x91qTSdc2/XrEJmuhyzfLoiD3LoDLROVqIEpmt3qe6eXkCyisSIcS9m2UKqCHAvFCKfjSieTNMVkiAe0rWmMIyqDvFxoDPe00oP9ROgTK1iq3ydyHEk5ikKdjLC6kb+9QvzPa2eqfxzkLE4zRWMyeaifcagSWFQEe0xQovhIE0wE07tCcoMFJkoXWZmUUMD7+vJfcmmblmO6526tcTKtYwnsgF2wDyzggwY4A03QAgTcgQfwBJ6Ne+PReDFeJ9EZYzqzDX7AePsE+yibDA==</latexit>

w.p
<latexit sha1_base64="5xHwr+MQ8GtQiaSsUoo96LETsE4=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwFRItPnZFNy4r2Ae2oUymk3boZBJmbtQS+hduXCji1r9x5984aYOo9cCFwzn3cu89fiy4Bsf5tAoLi0vLK8XV0tr6xuZWeXunqaNEUdagkYhU2yeaCS5ZAzgI1o4VI6EvWMsfXWZ+644pzSN5A+OYeSEZSB5wSsBIt11gD5De2/GkV644tjMFniduTiooR71X/uj2I5qETAIVROuO68TgpUQBp4JNSt1Es5jQERmwjqGShEx76fTiCT4wSh8HkTIlAU/VnxMpCbUeh77pDAkM9V8vE//zOgkEZ17KZZwAk3S2KEgEhghn7+M+V4yCGBtCqOLmVkyHRBEKJqTSNITzDCffL8+T5pHtHtvV62qldpHHUUR7aB8dIhedohq6QnXUQBRJ9Iie0YulrSfr1XqbtRasfGYX/YL1/gX+sJFE</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit>

1
<latexit sha1_base64="XqVPoidRYTXElumbXwY7402eQXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUSLH7eiF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GTRpErQ8GHu/NMDPPjzhT2nE+raXlldW19cJGcXNre2e3tLffUmEsKTZpyEPZ8YlCzgQ2NdMcO5FEEvgc2/7kJvXbDygVC8WdnkboBWQk2JBRoo3UcPulslNxMtiLxM1JGXLU+6WP3iCkcYBCU06U6rpOpL2ESM0ox1mxFyuMCJ2QEXYNFSRA5SXZoTP72CgDexhKU0LbmfpzIiGBUtPAN50B0WP110vF/7xurIeXXsJEFGsUdL5oGHNbh3b6tT1gEqnmU0MIlczcatMxkYRqk00xC+Eqxfn3y4ukdVpxzyrVRrVcu87jKMAhHMEJuHABNbiFOjSBAsIjPMOLdW89Wa/W27x1ycpnDuAXrPcvk7eM7Q==</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> ↵

<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> 1

<latexit sha1_base64="XqVPoidRYTXElumbXwY7402eQXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUSLH7eiF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GTRpErQ8GHu/NMDPPjzhT2nE+raXlldW19cJGcXNre2e3tLffUmEsKTZpyEPZ8YlCzgQ2NdMcO5FEEvgc2/7kJvXbDygVC8WdnkboBWQk2JBRoo3UcPulslNxMtiLxM1JGXLU+6WP3iCkcYBCU06U6rpOpL2ESM0ox1mxFyuMCJ2QEXYNFSRA5SXZoTP72CgDexhKU0LbmfpzIiGBUtPAN50B0WP110vF/7xurIeXXsJEFGsUdL5oGHNbh3b6tT1gEqnmU0MIlczcatMxkYRqk00xC+Eqxfn3y4ukdVpxzyrVRrVcu87jKMAhHMEJuHABNbiFOjSBAsIjPMOLdW89Wa/W27x1ycpnDuAXrPcvk7eM7Q==</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> ↵

<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> 1

<latexit sha1_base64="XqVPoidRYTXElumbXwY7402eQXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUSLH7eiF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GTRpErQ8GHu/NMDPPjzhT2nE+raXlldW19cJGcXNre2e3tLffUmEsKTZpyEPZ8YlCzgQ2NdMcO5FEEvgc2/7kJvXbDygVC8WdnkboBWQk2JBRoo3UcPulslNxMtiLxM1JGXLU+6WP3iCkcYBCU06U6rpOpL2ESM0ox1mxFyuMCJ2QEXYNFSRA5SXZoTP72CgDexhKU0LbmfpzIiGBUtPAN50B0WP110vF/7xurIeXXsJEFGsUdL5oGHNbh3b6tT1gEqnmU0MIlczcatMxkYRqk00xC+Eqxfn3y4ukdVpxzyrVRrVcu87jKMAhHMEJuHABNbiFOjSBAsIjPMOLdW89Wa/W27x1ycpnDuAXrPcvk7eM7Q==</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> ↵

<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit>

↵
<latexit sha1_base64="caDklkNRSWvqSyjOBfpHbU1SXOU=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexq8HELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVg94NIZ+ueJW3Qx4kXg5qaAcjX75ozeQJA6pMISD1l3PjYyfgDKMcDor9WJNIyATGNGupQJCqv0ku3aGj6wywEOpbAmDM/XnRAKh1tMwsJ0hmLH+66Xif143NsMLP2Eiig0VZL5oGHNsJE5fxwOmKDF8agkQxeytmIxBATE2oFIWwmWKs++XF0nrpOqdVmu3tUr9Ko+jiA7QITpGHjpHdXSDGqiJCLpHj+gZvTjSeXJenbd5a8HJZ/bRLzjvX6Sbj1A=</latexit> 1

<latexit sha1_base64="XqVPoidRYTXElumbXwY7402eQXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUSLH7eiF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GTRpErQ8GHu/NMDPPjzhT2nE+raXlldW19cJGcXNre2e3tLffUmEsKTZpyEPZ8YlCzgQ2NdMcO5FEEvgc2/7kJvXbDygVC8WdnkboBWQk2JBRoo3UcPulslNxMtiLxM1JGXLU+6WP3iCkcYBCU06U6rpOpL2ESM0ox1mxFyuMCJ2QEXYNFSRA5SXZoTP72CgDexhKU0LbmfpzIiGBUtPAN50B0WP110vF/7xurIeXXsJEFGsUdL5oGHNbh3b6tT1gEqnmU0MIlczcatMxkYRqk00xC+Eqxfn3y4ukdVpxzyrVRrVcu87jKMAhHMEJuHABNbiFOjSBAsIjPMOLdW89Wa/W27x1ycpnDuAXrPcvk7eM7Q==</latexit>

↵
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Figure 4.1: Left: The game BU(XA, XB , α). Each row is a state v ∈ V that represents one
equiprobable set of battlefield values. Each state is a permutation of n underlying values
(αi)

n
i=1. Player A observes the realization, whereas player B does not. In this example, there

are four underlying values, and there are 4! = 24 states. Middle: The game PB(XA, XB , α, r).
Given there are only two distinct underlying values, 1 and α, and hence there are only four
distinct permutations (states). In this depiction, player B can observe the first two battlefields
(of four) from the realized state. It thus refines its posterior belief on the state realization.

Right: Percent increase in payoff, 100 × (πB(XA,XB ,α,r)
πB(XA,XB ,α,0) − 1), for player B from observing

r = {0, 1, 2, 3} battlefields when n = 4. Here we fix XA = 1 and α = 0.1. The percent
increase is explicitly given in Corollary 4.1.2 for smaller budgets XB < XA.

integral term is the probability that player i allocates more resources to b. The ex-ante expected

payoff to player i is thus given by

Πi(Fi, F−i) :=
∑
v∈V

pv · Ui(F τi(v)
i , F

τ−i(v)
−i ; v). (4.3)

An equilibrium is a strategy profile (F ∗i , F
∗
−i) such that

Πi(F
∗
i , F

∗
−i) ≥ Πi(Fi, F

∗
−i) (4.4)

for each i ∈ {A,B} and any Fi ∈ L(Xi)
|Ti|.

4.1.2 Completely asymmetric information

While an analytical characterization of equilibrium is desirable for arbitrary state spaces V,

prior p, and information structures τA, τB, such a task proves difficult to accomplish. Nonethe-

less, we provide complete analytical equilibrium characterizations given that the following as-
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sumptions hold.

Assumption 4.1.1. Player A is informed and player B is uninformed.

Thus, we consider the completely asymmetric information setting. We will also consider

state spaces with the following structure.

Assumption 4.1.2. Given n underlying values α = (α1, . . . , αn) with α1 ≥ α2 ≥ · · · ≥ αn,

the state space V is comprised of all possible permutations of the elements in α. Moreover, the

prior p is uniform.

Assumption 4.1.2 asserts that the players always compete over the same set of n values,

but their orientation is different in each state of the world.1 Such scenarios can arise when a

defender (player A) attempts to obfuscate the location of its valuable assets, which are targeted

by an attacker (player B). An illustration of our setup is depicted in Figure 4.1 (left).

We refer to this class of games as General Lotto games with asymmetric value informa-

tion (GL-V), and denote an instance with GL-V(XA, XB, α). We will denote the equilibrium

payoff to player i as πi(XA, XB, α), where it holds that πB =
∑n

i=1 αi − πA. A complete char-

acterization of the players’ equilibrium payoffs in the GL-V game is given in the main result

below.

Theorem 4.1.1. The unique equilibrium payoff πB(XA, XB, α) to player B (uninformed) in

the game GL-V(XA, XB, α) is given as follows. If XB ∈ [0, XA), it is

XB

2XA

n∑
i=1

αi
n

(2i− 1) . (4.5)

1Assumption 4.1.2 is also equivalent to considering the state space with n states, where the elements of α are
simply shifted one position to the right (modulo n) in each subsequent state. This equivalence holds because
each battlefield b is still equally likely to hold the value αk. Setups where the type mappings are arbitrary, the
values do not have the permutation structure of Assumption 4.1.2, or the distribution on states is not uniform,
prove difficult to analyze with the methods developed in this paper. Such generalizations are left for future work.
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If XB ∈
[
nXA
k , nXAk−1

)
(k ∈ [n]), then it is

n∑
i=k

αi +
XB

2XA

k−1∑
i=1

αi
n

1 + 2
k−1∑
j=i+1

αj
αi


− nαkXA

2XB

(
1− k − 1

n

XB

XA

)2

.

(4.6)

The unique equilibrium payoff to player A is πA =
∑

i∈[n] αi − πB.

Comparison with complete information. We compare the players’ equilibrium payoffs

πA(G), πB(G) in the GL-V game with their payoffs in the nominal, complete information game,

where players A and B play the General Lotto game GL(XA, XB, α). Player A’s equilibrium

payoff in the nominal game is provided in Fact 3.1.1, where Φ =
∑

k αk. We show in the next

result that the uninformed player can receive n times more payoff in the complete information

game.

Corollary 4.1.1. Player B can experience an n-fold performance improvement by acquiring

complete information about the battlefield values. Specifically, for XB < XA,

max
α∈Rn++

πCI
B (XA, XB)

πB(XA, XB, α)
= n.

Proof. Player B’s complete information payoff is πCI
B = XB

2XA

∑n
i=1 αi (see Fact 3.1.1). When it

has incomplete information, the payoff is given by (4.5). The ratio
πCI
B
πB

takes its highest value

of n when all value is concentrated at α1 > 0, i.e. α2 = · · · = αn = 0.

4.1.3 Partial battlefield uncertainty

We next consider scenarios where player B is partially informed about the state – it can

observe r ∈ {0, 1, . . . , n− 1} of the realized battlefield valuations, while player A remains fully

informed. Note that Assumption 4.1.1 does not hold if r 6= 0. To formulate such a scenario,
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we consider a simplified setting with two underlying values: one priority type2 of value α1 = 1,

and n − 1 non-priority types each with value α ≡ α2 = · · · = αn ∈ [0, 1]. Considering all

permutations of the values, there are thus n distinct and equiprobable states of the world.

Each state of the world, i ∈ [n], takes the form vi = (α, . . . , 1, . . . , α) where the 1 is in the i-th

component (see Figure 4.1)b.

Formally, player B has r + 1 types TB = {t1, . . . , tr, tr+1}. The type mapping τB is given

by

τB(vi) =


ti, if i ∈ [r]

tr+1, if i ∈ {r + 1, . . . , n}
. (4.7)

In words, if the priority valuation belongs to one of the first r battlefields (w.p. r
n), player

B is fully informed about the state (it is one of {v1, . . . ,vr}), and the General Lotto game

becomes one of complete information. In the event that the r valuations player B observes

are non-priority (w.p. 1 − r
n), player B holds a uniform posterior belief on the n − r states

{vr+1, . . . ,vn}. A strategy for player A belongs to L(XA)n−r, and a strategy for player B

belongs to L(XB). Their payoffs are thus evaluated according to (4.3) with {vr+1, . . . ,vn} as

the state space with a uniform prior.

We refer to this class of games as General Lotto games with partial value information, and

denote an instance as GL-PV(XA, XB, α, r). A diagram of this setup is given in Figure 4.1

(middle). Note the class of BU games from the previous section covers the case r = 0 for a

wider range of possible battlefield values. We completely characterize the equilibrium payoffs

πi(XA, XB, α, r) in the main result below.

Theorem 4.1.2. The unique equilibrium payoff πB(XA, XB, α, r) to player B in the game

GL-PV(XA, XB, α, r) is given as follows. If XB ∈ [0, XA], then it is

r

n
πCI
B +

n− r
2γn

(
φ− rα
n− r + (n− 1)α

)
. (4.8)

2The value of 1 is without loss of generality. If there are only two distinct values, e.g. β ≥ α, then one can
always normalize by β.
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where γ := XA/XB. If XB ∈ (XA, (n− r)XA], then it is

r

n
πCI
B +

n− r
n

[
γ−1

2(n− r) +α

(
n−1− γ

2
(n−r)(1− γ−1

n− 1
)2

)]
. (4.9)

If XB > (n− r)XA, then it is

r

n
πCI
B +

n− r
n

(
φ− (n− (1− α)r)

γ

2

)
. (4.10)

Here, we denote φ := 1 + (n− 1)α. The unique equilibrium payoff to player A is πA = φ− πB.

For low budgets, we can analytically characterize player B’s payoff improvement compared to

when it observes no battlefields (also see Figure 4.1 (right) for a numerical plot).

Corollary 4.1.2. For XB < XA, the performance improvement factor for player B as a result

of acquiring information about r ≤ n− 1 battlefield valuations is

πB(XA, XB, α, r)

πB(XA, XB, α, 0)
= 1 + r · 1− α

(1− α) + αn2
. (4.11)

For each additional battlefield observed, the improvement increases by a constant linear factor.

Figure 4.1 (right) also suggests that the improvement factor decreases to 1 as XB grows large.

In other words, it appears that battlefield information is less valuable to stronger players.

4.2 The value of budgetary information

4.2.1 Model

In our formulation of the General Lotto game with asymmetric budget information (GL-B),

player A’s true budget is drawn from a common (Bernoulli) prior probability distribution, where

player B has knowledge of the prior distribution but does not observe the realization of player

A’s budget. Specifically, player A’s budget is of the high type (XA = XH) with probability

p, and of the low type (XA = XL) with probability 1 − p, where XH ≥ XL ≥ 0. Player B’s
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budget XB is fixed and is common knowledge. Additionally, the games we consider have a

single battlefield of value 1.3 A formal definition is given below.

Definition 4.2.1. An instance of the GL-B game is specified by four parameters: XH ≥ 0, XL ≥

0, XB ≥ 0, and p ∈ [0, 1], such that XH ≥ XL. Here, tH indicates the “high” budget type,

occurring with probability p, and tL is the “low” budget type, occurring with probability 1 − p.

A strategy for player A is a pair of distributions FA := (FA(tH) ∈ L(XH), FA(tL) ∈ L(XL)). A

strategy for player B is a single distribution FB ∈ L(XB). The expected payoff to each player

is given by

ΠA(FA, FB) := p · UA(FA(tH), FB) + (1− p) · UA(FA(tL), FB)

ΠB(FB, FA) := p · UB(FB, FA(tH)) + (1− p) · UB(FB, FA(tL))

(4.12)

where it holds that ΠB(FB, FA) = 1 − ΠA(FA, FB). We will often refer to player A as the

informed player, and to player B as the uninformed player. Let the tuple G = (XH , XL, XB, p)

represent one instance of this game, which we will sometimes refer to as GL-B(XH , XL, XB, p)

(or as GL-B when the context is clear).

4.2.2 Complete characterization of equilibrium payoffs.

Our goal is to evaluate the equilibrium payoffs for any given GL-B game. Throughout the

paper, we will denote the budget ratios as γi := Xi
XB

, i ∈ {H,L}, and define γ̄ := pγH+(1−p)γL,

when convenient.

Our complete characterization of the players’ equilibrium payoffs in the GL-B game is given

as follows.

Theorem 4.2.1. Consider a GL-B game G = (XH , XL, XB, p) with a single battlefield with

3Recall that a General Lotto game over a single battlefield with value 1 is mathematically equivalent to any
General Lotto game with n battlefields that have cumulative value of 1.

28



Obfuscating mechanisms: The value of concealing information Chapter 4

value 1. Player A’s equilibrium payoff is

πA(G) =



γ̄
2 , if (γH , γL) ∈ R1

1− 1
2γ̄ , if (γH , γL) ∈ R2

p+ (1− p)
(

1− 1
2γL

)
, if (γH , γL) ∈ R3

p+ (1− p)γL2 , if (γH , γL) ∈ R4

p+ (1− p) γLγH +

√
γ̄(γ̄−pγH)

γH
−

(√
(1−p)γL+

√
γ̄
)2

2γ2
H

, if (γH , γL) ∈ R5

(4.13)

where Rk, k = 1, . . . , 5, are disjoint subsets of R := {(γH , γL) ∈ R2
+ : γH ≥ γL}, given by

R1 = {(γH , γL) ∈ R : γ̄ ≤ 1} \ R5

R2 =

{
(γH , γL) ∈ R : γ̄ ≥ 1 and γL ≥

1− p
2− p

}
R3 =

{
(γH , γL) ∈ R : γH ≥ 2 +

p

1− p and 1 ≤ γL ≤
1− p
2− pγH

}
R4 =

{
(γH , γL) ∈ R : γH ≥ 2 +

p

1− p and
p

(1− p)(γH − 2)
≤ γL ≤ 1

}
R5 = {(γH , γL) ∈ R : γL ≤ G(γH)}

(4.14)

with G(γH) defined as

G(γH) :=



0, if γH ∈ [0, 1)

p(γH−1)2

(1−p)(2−γH) , if γH ∈ [1, 2− p]

1−p
2−pγH , if γH ∈

(
2− p, 2 + p

1−p

]
p

(1−p)(γH−2) , if γH > 2 + p
1−p

(4.15)

In the proof of Theorem 4.2.1, we establish a connection to two-player all-pay auctions with

asymmetric information, and leverage solutions to such auctions to derive a system of non-

linear equations associated with the Lotto budget constraints (3.4). Note that such solutions

can only be applied to the sub-region R5. The equilibrium characterization for the remaining
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four regions is then done ad hoc.

Comparison with complete information. We identify the effect of asymmetric budget

information by comparing the players’ equilibrium payoffs πA(G), πB(G) in the GL-B game

with their payoffs in the nominal, complete information game, where players A and B play the

(complete information) General Lotto game GL(XH , XB,v) with probability p and the game

GL(XL, XB,v) with probability 1 − p. Player A’s equilibrium payoff in the nominal game is

provided in [21]:

πCI
A (G) := Φ · [pL(XH , XB) + (1− p)L(XL, XB)] (4.16)

where Φ =
∑B

b=1[vb] = 1 and

L(X,Y ) =

{
X/(2Y ) if X ≤ Y, 1− Y/(2X) if X > Y. (4.17)

Corollary 4.2.1. Given any GL-B game G, we have that πA(G) = πCI
A (G) when (γH , γL) ∈

R1 ∩ {(γH , γL) ∈ R2
+ s.t. γL ≤ γH ≤ 1}, or when (γH , γL) ∈ R2 ∩ {(γH , γL) ∈ R2

+ s.t. γH ≥

γL ≥ 1}. Otherwise, we have that πA(G) > πCI
A (G).

Comparison with other prior distributions. Previously, we identified the value of budget

information when player A’s budget is governed by a Bernoulli prior distribution. We may also

consider the setting where player A is endowed with some budget XA, and may choose any

prior distribution fA ∈ ∆(R+) such that Ex∼fA [x] ≤ XA. It is straightforward to show that an

optimal prior distribution is simply player A’s equilibrium strategy from the General Lotto game

GL(XA, XB,v). Therefore, player A’s equilibrium payoff under her optimal prior distribution

is πopt
A (G) = Φ · L(XA, XB), where XA = pXH + (1− p)XL.

From the characterization of the equilibrium payoffs in Theorem 4.2.1, we observe that

player A does not benefit from further obfuscating her budget (i.e., πA(G) = πopt
A (G)) if

(γH , γL) ∈ R1 ∪R2. Otherwise, player A’s equilibrium payoff under the optimal prior distribu-

tion is strictly greater than under the Bernoulli distribution. We formally state this observation
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in the following:

Corollary 4.2.2. Given any GL-B game G, we have that πA(G) = πopt
A (G) when (γH , γL) ∈

R1 ∪R2. Otherwise, we have that πA(G) < πopt
A (G).

4.3 Chapter proofs

This section contains the proofs of the main results in this chapter.

4.3.1 Proofs from Section 4.1

Proof of Theorem 4.1.1. Let s ∈ [n!] be an indexing of the state space V, which is all

permutations of the vector α (Assumption 4.1.2). Also, denote vsb as the value of battlefield

b in state s and F sA,b as A’s marginal distribution on allocations to battlefield b in state s.

We will consider strategies for player A that satisfy F sA,b = F s
′
A,b′ whenever vsb = vs

′
b′ = αi

(for some i ∈ [n]). That is, it applies the same marginal distribution for the battlefields

identified with the underlying value αi. We will henceforth refer to such strategies as symmetric,

denoting FA ∈ SA(XA). Such a strategy is thus represented as a tuple of n univariate marginals

{F iA}i∈[n] ∈ L(XA)n, where player A employs F iA on the battlefield identified with αi in any

state s.

Similarly, we will consider symmetric strategies FB ∈ SB(XB) for player B that satisfy

FB,b = FB,b′ for every b, b′ ∈ [n], i.e. it uses the same distribution for every battlefield. It

is represented with a single univariate distribution FB (i.e. without explicitly referring to

marginals FB,b). The following result provides a method to find an equilibrium of BU games.

Lemma 4.3.1. Consider the game BU(XA, XB, α). Suppose λ = (λA, λB) ∈ R2
+ solves the

following system of equations

XA =

k̄(λ)∑
i=1

∫ Ti

Ti+1

nλB
αi

x dx and XB =

k̄(λ)∑
i=1

∫ Ti

Ti+1

nλA
αi

x dx (4.18)
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where

k̄(λ) :=


k, if n

k ≤
λA
λB

< n
k−1 , k ∈ [n]

n+ 1, if λA
λB

< 1

(4.19)

and Ti are defined as follows. If k̄ ∈ [n],

Ti :=


∑k̄−1

j=i
αj
nλB

+
αk̄
λA

(
1− λA(k̄−1)

nλB

)
, if i ∈ [k̄]

0, if i > k̄

(4.20)

If k̄ = n + 1, Ti :=
∑n

j=i
αj
nλB

. Then an equilibrium (FA, FB) ∈ SA(XA) × SB(XB) of

BU(XA, XB, α) is given as follows. For player A, F iA (i ∈ [n]) is given by



Unif(Ti+1, Ti), if i ∈ [k̄ − 1](
1− nλBTk̄

αk̄

)
δ0 +

nλBTk̄
αk̄

Unif(0, Tk̄), if i = k̄

δ0, if i > k̄

(4.21)

and FB is given by


∑k̄

i=1
λA(Ti−Ti+1)

αi
Unif(Ti+1, Ti), if k̄ ∈ [n](

1− λA
λB

)
δ0+

∑n
i=1

λA(Ti−Ti+1)
αi

Unif(Ti+1, Ti), if k̄=n+1

(4.22)

The equilibrium payoff to player A is

λAXA +
∑

i∈[k̄−1]

(
αi
αk̄
− 1)λATk̄ +

k̄−1∑
k=i+1

σ(αi − αk)
n

 (4.23)

where σ := λA
λB

. The equilibrium payoff to player B is

λBXB + αk̄ − nλBTk̄ +
n∑

i=k̄+1

αi. (4.24)

32



Obfuscating mechanisms: The value of concealing information Chapter 4

Before proceeding with the proof, a few remarks are in order. The system of equations (4.18)

corresponds to the expected budget constraints for both players (4.1), where each term in the

sum is the expected allocation to the battlefield identified with αi under the strategies FA, FB

(4.21), (4.22). For a solution λ, player A competes on the most valuable k̄(λ) battlefields.

The marginals of FA, FB are precisely the equilibrium bidding strategies of a two-player

all-pay auction with asymmetric information [59]. It can be shown that the necessary condition

for equilibrium in the BU game coincides with that of n independent all-pay auctions – each

corresponding to one of the n battlefields [60]. The connection between all-pay auctions and

the equilibria of General Lotto games is often utilized in the literature [39, 20, 60, 51]. Lastly,

the sum of the equilibrium payoffs (4.23), (4.24) is
∑n

i=1 αi (constant-sum game).

Proof. We show that the marginals (4.21) and (4.22) constitute an equilibrium profile for

BU(XA, XB, α). For space concerns, we provide the proof for the case that a solution λ exists

when k̄ ∈ [n] (the case k̄ = n+ 1 follows similar arguments). The approach is to show that FA

is a best-response to FB, and then vice versa. Suppose F̄A ∈ SA(XA) is another symmetric4

strategy for A. Player A’s expected payoff against FB then becomes identical regardless of the

state. We can thus write ΠA(F̄A, FB) (4.3) as

∑
i∈[n]

Ci :=
∑
i∈[n]

αi

∫ ∞
0

FB(x) dF̄ iA. (4.25)

The approach is to derive a universal upper bound of the above expression for any F̄A ∈ SA(XA),

and then show that FA (4.21) meets the upper bound with equality. Using (4.22), and denoting

σ := λA
λB

for compactness, we can write Cj as

Ci =
λAαi
αk̄

∫ Tk̄

0
x dF̄ iA + αi

∫ ∞
T1

dF̄ iA

+ αi

k̄−1∑
j=1

∫ Tj

Tj+1

(1− j

n
σ +

λA
αj

(x− Tj+1)) dF̄ iA

(4.26)

4Here, deviations can be restricted to SA(XA) in place of the more general space L(XA)n, without loss of
generality. Intuitively, this is due to the symmetry in the arrangement of the battlefields in our setup, and
because FB itself is a symmetric strategy for B.
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We can write Ci as

λA

∫ T1

0
x dF̄ iA + αi

∫ ∞
T1

dF̄ iA

+
k̄∑

j=i+1

(
αi
αj
− 1)λA

∫ Tj

Tj+1

x dF̄ iA −
min(i,k̄)∑
j=1

(1− αi
αj

)λA

∫ Tj

Tj+1

x dF̄ iA

+

k̄−1∑
j=1

(αi(1−
j

n
σ)− αi

αj
λATj+1)

∫ Tj

Tj+1

dF̄ iA

(4.27)

It will be instructive to collect the terms above with respect to each interval [Tj+1, Tj ]. For

j ∈ {1, . . . , i}, the term is αi((1− j
nσ)− λATj+1

αj
)
∫ Tj
Tj+1
dF̄ iA− (1− αi

αj
)λA
∫ Tj
Tj+1
x dF̄ iA. It can be upper

bounded by (αi
αk̄
− 1)λATk̄ +

σ

n

k̄−1∑
k=j+1

(αi − αk)

∫ Tj

Tj+1

dF̄ iA (4.28)

The upper bound is due to an application of Markov’s inequality, i.e. −
∫ b
a x dF ≤ −a

∫ b
a dF for

any interval [a, b] and distribution F . Let us denote the upper bound above as Bi. A similar

bound can be derived for the [Tj+1, Tj ] terms when j ∈ {i+ 1, . . . , k̄}:

(αi
αk̄
− 1)λATk̄ +

σ

n

k̄−1∑
k=j

(αi − αk)

∫ Tj

Tj+1

dF̄ iA (4.29)

Let us denote bij , j ∈ [k̄], as the coefficient in the upper bounds (4.28),(4.29). Additionally, we

can write the first two terms of (4.27), λA
∫ T1

0 dF̄ iA + αi
∫∞
T1
dF̄ iA, as

λAX
i
A + αi

∫ ∞
T1

dF̄ iA − λA
∫ ∞
T1

x dF̄ iA

≤ λAXi
A + (αi − λAT1)

∫ ∞
T1

dF̄ iA

(4.30)
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where Xi
A :=

∫∞
0 x dF̄

i
A. The expression di := αi − λT1, i ∈ [n], can be written as


( αiαk̄
− 1)λATk̄ + σ

n

∑k̄−1
k 6=i (αi − αk), if j ∈ [k̄]

αi − αk̄ + σ
n

∑k̄−1
k=1(αk̄ − αk), if j > k̄

(4.31)

Player A’s expected payoff ΠA(F̄A, FB) can then be upper bounded by

λAXA +
∑
i∈[n]

di ∫ ∞
T1

dF̄ iA +
k̄∑
j=1

bij

∫ Tj

Tj+1

dF̄ iA

 (4.32)

where we used
∑k̄

j=1

∫ T1

0 x dF̄
i
A = XA −

∑k̄
j=1

∫∞
T1
x dF̄ iA. For any i > k̄, we have bij < 0 and

di < 0, ∀ j ∈ [k̄]. For i ∈ [k̄], we observe that bii = maxj∈[k̄] b
i
j , and that di ≤ bii with equality if

and only if i = 1. Therefore, the expression (4.32) is maximized to λAXA+
∑

i∈[k̄] b
i
i if the mass

of F̄ iA, i ∈ [k̄], is contained in the interval [Ti+1, Ti], and each F̄ iA represents a point mass at

zero for i > k̄. Note that FA satisfies all of these properties. One can then show after algebraic

steps, that (4.32) with F̄A = FA coincides with (4.23). Lastly, FA satisfies the budget constraint

because (λA, λB) satisfies the first equation of (4.18).

The proof is completed by showing that (4.24) serves as an upper bound for ΠB(FA, F̄B) for

any F̄B ∈ S(XB), and that F̄B = FB achieves the upper bound. The arguments are similar to

the procedure when deriving the upper bound for ΠA(F̄A, FB), and hence we omit the details

due to space concerns.

Proof of Theorem 4.1.1. From the system of equations (4.18), we can immediately deduce

that σ = λA
λB

= XB
XA

. Also, note that k̄(λ) depends only on σ. Thus, k̄ ∈ [n] is equiva-

lent to the budget conditions XB
XA
∈ [nk ,

n
k−1). When k̄ = k ∈ [n], the unique solution of

(4.18) is λA = 1
XA

[
Dk̄ +

nαk̄γ
2

(
1− k̄−1

nγ

)(
1 + k̄−1

nγ

)]
and λB = γλA, where γ := XA

XB
and

Dk̄ :=
∑k̄−1

i=1
1
nγ

(
αi
2 +

∑k̄−1
j=i+1 αj

)
. The expressions for equilibrium payoff in the statement of

Theorem 4.1.1 can be recovered from these solutions and Lemma 4.3.1 ((4.23) and (4.24)).
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Proof of Theorem 4.1.2. In the game PB(XA, XB, α, r), player B is informed about the

state of the world with probability r
n . In this event, its equilibrium payoff is πCI

B . With

probability n−r
n , player B holds a uniform posterior distribution on the last n− r states, while

player A remains completely informed. In this event, we say player B has partial uncertainty.

The first r battlefields of the state are common knowledge (non-priority α), while player B

does not know the location of the priority value 1 among the last n − r battlefields. We thus

observe that the first r battlefields are contested with “complete information”, and the last

n−r battlefields are contested with asymmetric information precisely described by a BU game.

Our approach to deriving an equilibrium to the PB game is to generalize the system of

equations (4.18) to the scenario when player B has partial uncertainty. Let us define

G`(λ;α) :=

k̄(λ)∑
i=1

∫ Ti

Ti+1

nλ−`
αi

x dx, ` ∈ {A,B} (4.33)

where n is the number of elements in α. Recall in BU games (Lemma 4.3.1), an equilibrium

corresponds to the solution λ ∈ R2
+ of the system XA = GA(λ;α) and XB = GB(λ;α). For

any λ, α, let us also denote F
(λ,α)
A := {F i,(λ,α)

A }i∈[n] as the set of player A’s marginals given in

(4.21) and F
(λ,α)
B as player B’s marginal given in (4.22).

Lemma 4.3.2. Consider PB(XA, XB, α, r). Suppose λ ∈ R2
+ is a solution to the system of

equations

XA = GA(λ;α1r) +GA(λ; vn−r)

XB = GB(λ;α1r) +GB(λ; vn−r)

(4.34)

where 1r is a vector of r ones, and vn−r = (1, α1n−r−1). Then given player B has partial

uncertainty, an equilibrium strategy for A is to deploy the marginals {F i,(λ,α1r)A }i∈[r] on the first

r battlefields, and marginals {F i,(λ,vn−r)A }i∈[n−r] corresponding to the last n− r battlefields. An

equilibrium strategy for B is to deploy the marginal F
(λ,α1r)
B on each of the first r battlefields,

and the marginal F
(λ,vn−r)
B on each of the last n− r battlefields.

Proof. We note the expression GA(λ, α1r) depends on whether σ > 1 or σ ≤ 1, and the
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expression GA(λ; vn−r) depends on whether σ ≤ 1, 1 < σ ≤ n − r, or σ > n − r. Hence,

a solution falls into one of the three latter cases. Moreover, we can deduce from (4.34) that

σ = λA
λB

= XB
XA

. We can also calculate player A and B’s equilibrium payoffs from the equilibrium

marginals generated in the statement of the lemma. We omit the details of the proof because

the structure follows similar arguments and calculations from the proof of Lemma 4.3.1.

4.3.2 Proofs from Section 4.2

This section is devoted to the proof of Theorem 4.2.1 – the characterization of equilibrium

payoffs in the Bayesian Lotto game (Definition 4.2.1). To do so, we derive the equilibrium

strategies for player A and B in any game instance G ∈ G. First, we establish a connection

between the necessary conditions for equilibrium in two-player all-pay auctions with asymmet-

ric information and the BL game. Second, we leverage equilibrium solutions to such all-pay

auctions, provided by [59], to formulate a system of non-linear equations in the Lagrange multi-

pliers λ associated with the players’ Lotto expected budget constraints (3.4). Finally, we solve

this system of equations, and show that a solution can take one of three different forms, which

correspond to disjoint regions in the multiplier space. Hence, solutions to this system are not

only algebraic, but also case-dependent.

We completely characterize solutions to these equations in Proposition 4.3.1, finding they

exist only for a subset of BL games we are interested in (region R5). Indeed, the algorithm in

[59] constructs equilibrium strategies to the auctions when certain monotonicity conditions are

met – players’ types are required to be somewhat correlated to their valuations. While these

informational requirements hold in the BL games we are interested in, we find the structure

of the auction strategies cannot accommodate all possible combinations of budget parameters

X1, X2, XB, limiting the applicability of [59] to the sub-region R5 ⊂ G. Nonetheless, we prove

that solutions to the system of equations, when they exist, correspond to equilibria of the BL

game (Proposition 4.3.1).

We then identify the remaining regions Ri, i = 1, . . . , 4 to have distinct equilibrium struc-
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tures that cannot be calculated from the aforementioned system of equations. For these equilib-

ria, we combine features of the equilibrium strategies from complete information Lotto games

with those that were computed through the system of equations. These details and proofs are

given in the Appendix, thus completing the proof of Theorem 4.2.1.

We first review all-pay auctions with asymmetric information, as studied by Siegel in [59].

All-pay auctions with asymmetric information and valuations. In an all-pay auction,

two bidders (A and B) compete over a single item. Before bids are submitted, player A privately

observes one of two possible types: t1 (type 1) with a probability p and t2 (type 2) with 1− p.

Here, it is assumed p is common knowledge and p > 0. Player B always observes the same type

tB. Hence, there are two possible type profiles5, corresponding to whether A observes t1 or t2.

In type i ∈ {1, 2}, the players’ valuations for the item are vA,i and vB,i for player A and B,

respectively.

A (pure) strategy for player A is a pair xA = (x1, x2) ∈ R2
+, where xi is its bid for the

item contingent on receiving type i. A strategy for player B is a non-negative bid xB ≥ 0. The

resulting payoffs are given by

p (vA,1 ·WA(x1, xB)− x1) + (1− p) (vA,2 ·WA(x2, xB)− x2) (Player A)

p (vB,1 ·WB(xB, x1)− xB) + (1− p) (vB,2 ·WB(xB, x2)− xB) (Player B)

(4.35)

where W`, ` ∈ {A,B} is defined in (3.2). A mixed strategy for player A is a pair {FA(ti)}i=1,2,

where FA(ti) is a univariate probability distribution on R+. A mixed strategy for B is a single

univariate distribution FB on R+. The payoffs are calculated as the expected payoffs with re-

spect to the distribution p and the mixed strategies. We refer to this auction as APA(vA, vB, p).

Note that we have adapted this model to the information structure of our BL game. In

general, Siegel’s model allows for arbitrary, finite type spaces TA and TB with a joint probability

5Siegel’s model is general, allowing an arbitrary, finite number of types for each player. We review the model
here with two types, since it pertains to our BL game, and for simpler exposition. Indeed, some of our forthcoming
results can be generalized to situations where player A has any number of types, while player B still only has
one. In particular, systems of equations (?) can be derived with this generality. We can prove their solutions,
when they exist, correspond to Bayes-Nash equilibria of BL.
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distribution p on the type profiles. Siegel shows equilibria can be computed algorithmically,

provided the following monotonicity condition is met for some ordering of the players’ type

spaces.

For any t−` ∈ T−`, v`(t`, t−`) · p(t−`|t`) is non-decreasing in t` ∈ T`, ` ∈ {A,B} (WM)

where p(t−`|t`) denotes conditional probabilities associated with the joint distribution p, and

v`(t`, t−`) is player `’s item valuation in type profile (t`, t−`). When (WM) holds, a monotonic6

equilibrium in mixed strategies to APA can explicitly be computed through an iterative pro-

cedure [59] (we refer to as “Siegel’s algorithm”), where the number of iterations is at most

|TA| + |TB|. When a strict version of (WM) holds, the constructed monotonic equilibrium is

the unique equilibrium of APA. Observe that (WM) is always satisfied if player B only has

a single type tB, and the types of A are ordered according to the valuations vA(ti, tB). The

informational structure of our BL game belongs to such “informed-uninformed” settings.

Equilibria of APA have been characterized when (WM) is not met. In fact, [61] provides an

algorithm that generalizes Siegel’s algorithm to calculate such non-monotonic equilibria. When

(WM) is not met, this algorithm can become quite complex. In the “informed-uninformed”

scenarios, this algorithm reduces to Siegel’s algorithm.

Connection between APA and Bayesian General Lotto games. We now present some

informal intuition that suggests a connection between the equilibria of APA and BL. These

insights are analogous to those drawn between two-player all-pay auctions with complete infor-

mation and the Colonel Blotto and General Lotto games [62, 39, 20].

Consider a game instance G = (X1, X2, p,XB) ∈ G. The Lotto budget constraint (3.4) must

hold for the strategies associated in each type. Player A’s ex-interim constrained optimization,

6An equilibrium is monotonic if any best-response bid for player ` in type t` against the equilibrium strategy of
player −` is not lower than any best-response bid in a lower type t �` t`. When (WM) is not met, non-monotonic
equilibria to APA have been characterized in [61]. However, for the central case of interest in this paper for which
one player is informed and the other uninformed, (WM) is always met. We leave the characterization of Lotto
equilibria when (WM) is not met as an open problem, e.g. players have partial and different information.

39



Obfuscating mechanisms: The value of concealing information Chapter 4

given type i is realized, can be written as

max
{FA,j(ti)}j∈[n]

∑
j∈[n]

∫ ∞
0

[vjFB,j(xA,j)− λixA,j ] dFA,j(ti) + λiXi (4.36)

where λi is the multiplier on player A’s expected budget constraint for type i, and we denote

p1 = p and p2 = 1− p. Player B’s constrained optimization is written as

max
{FB,j}j∈[n]

∑
j∈[n]

∑
i=1,2

pi

∫ ∞
0

[vjFA,j(ti, xB,j)− λBxB,j ] dFB,j + λBXB. (4.37)

where λB is the multiplier on player B’s budget. The necessary first-order conditions for equi-

librium are

d

dxB,j

∑
i=1,2

pi (vjFA,j(ti, xB,j)− λBxB,j)

 = 0

d

dxA,j
[vjFB(xA,j)− λixA,j ] = 0, i = 1, 2

(4.38)

Dividing by the associated (positive) multiplier in each condition, this coincides with the nec-

essary first-order conditions for (Bayesian) equilibrium of n independent two-player all-pay

auctions with incomplete information for which the item valuation in auction j for player A in

type i is vA,i =
vj
λi

, and the valuation for player B when player A’s type is i is vB,i =
vj
λB

.

The equilibria to each of the n APA games can be computed using Siegel’s algorithm,

as long as (WM) is satisfied7. However, since we do not know the actual ranking of player

A’s types, i.e. whether λ1 ≤ λ2 or vice versa, we must proceed by first imposing such a

ranking. For the sake of demonstration, let us suppose λ1 ≤ λ2, so that type 1 is “higher”

than type 2, for instance. This allows us to proceed with Siegel’s algorithm, which generates

bidding distributions {F λA,j(ti)}i=1,2 and F λB,j for each j ∈ [n]. Here, the superscript indicates

the expressions are in terms of the (still) unknown multipliers. These distributions must be

consistent with the Lotto expected budget constraints (3.4), yielding a system of three equations

7As discussed earlier, the algorithm of [61] can handle APA when (WM) is not met. We do not detail this
algorithm here, however, because of its complexity and because Siegel’s algorithm suffices for the problems of
interest in this paper.
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in λ = (λ1, λ2, λB). ∑
j∈[n]

ExA,j∼FλA,j(ti)[xA,j ] = Xi, i = 1, 2

∑
j∈[n]

ExB,j∼FλB [xB,j ] = XB

such that 0 < λ1 ≤ λ2

(4.39)

Hence, we seek to find a solution to (4.39). In the next sections, we detail the distributions

{F λA(ti)}i=1,2 and F λB constructed from Siegel’s algorithm and apply them to (4.39) to explicitly

derive the system of equations.

Equilibrium strategies of APA. In the following, we summarize the resulting equilibria

from applying Siegel’s algorithm to the APA setup of the previous part.

Define

k̄ :=



1, if p
vB,1
vA,1
≥ 1

2, if p
vB,1
vA,1

+ (1− p)vB,2vA,2
≥ 1 and p

vB,1
vA,1

< 1

3, if p
vB,1
vA,1

+ (1− p)vB,2vA,2
< 1

(4.40)

In brief, k̄ is the iteration at which Siegel’s algorithm terminates. Denoting p1 = p and

p2 = 1− p, define

L1 =


vA,1, if k̄ = 1

pvB,1, if k̄ ∈ {2, 3}
, L2 =



0, if k̄ = 1

vA,2

(
1− pvB,1vA,1

)
, if k̄ = 2

(1− p)vB,2, if k̄ = 3

(4.41)

The Lk are lengths of intervals for which the equilibrium marginals have support. Below, we

provide expressions for the equilibrium strategies that result from applying Algorithm 1.
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Lemma 4.3.3. The equilibrium mixed strategies for APA are given as follows8:

If k̄ = 1 : FA(t1) =

(
1− L1

pvB,1

)
δ0 +

L1

pvB,1
Unif(0, L1), FA(t2) = δ0

FB = Unif(0, L1)

If k̄ = 2 : FA(t1) = Unif(L2, L2 + L1)

FA(t2) =

(
1− L2

(1− p)vB,2

)
δ0 +

L2

(1− p)vB,2
Unif(0, L2)

FB =
L2

vA,2
Unif(0, L2) +

L1

vA,1
Unif(L2, L2 + L1)

If k̄ = 3 : FA(t1) = Unif(L2, L2 + L1), FA(t2) = Unif(0, L2)

FB =

(
1−

2∑
i=1

Li
vA,i

)
δ0 +

L2

vA,2
Unif(0, L2) +

L1

vA,1
Unif(L2, L2 + L1)

(4.42)

In summary, the marginals for player A are uniform distributions with shifted supports,

and player B’s marginal is a piece-wise uniform distribution.

Equilibria in the R5 region. We are now ready to apply the methods outlined above to

explicitly state the system of equations (4.39). We then completely characterize the solutions

to these equations in Proposition 4.3.1. In doing so, we identify the subset of game instances

of G for which solutions to (4.39) exist. Recall this subset was identified as the R5 region in

Theorem 4.2.1 (Figure 4.2). We also prove that such solutions and their associated strategies

(constructed from Siegel’s algorithm) constitute Bayes-Nash equilibria of the BL game. This

serves as the proof of Theorem 4.2.1 in the R5 region.

The item valuations in one of the n APA games are given by vA,i = vj/λi > 0 for player A

and vB,i = vj/λB > 0 for player B, in type i ∈ {1, 2}. Since the high budget X1 is associated

with type t1, we naturally impose the ranking λ1 ≤ λ2. Indeed, the distribution FA(t1) (4.42)

will have a higher expected budget expenditure under this ranking of types.

The value of k̄ is not known a priori, as it now depends on the multipliers. The values it

8To simplify exposition and notation where convenient, we sometimes explicitly write CDFs as a mixture of
uniform and point mass distributions. Here, we denote Unif(a, b) := 1(x ≥ a) min{ x

b−a , 1} as the CDF of the
uniform distribution on (a, b) and δ0 := 1(x ≥ 0) the CDF of a point mass centered at zero.
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Figure 4.2: Left: Distinct parameter regions that encompass the entire class of Bayesian Lotto
games (Definition 4.2.1), which are specified by the quadruple (X1, X2, p,XB). Shown here is
the space X1 ≥ X2 for a fixed p = 0.5. We fix XB = 1 here, though these regions are defined
in general by the ratios X1/XB and X2/XB . The dashed black line segment indicates all
instances of the game corresponding to randomized assignments of a fixed expected endowment
X̄ = pX1 + (1− p)X2 = 2. Right: Player A’s equilibrium payoff in the instances with fixed
expected endowment X̄ = 2 (indicated by the dashed black line in the left panel). Here, the

low endowment is parameterized by X2 = X̄−pX1

1−p with X1 ∈ [X̄, X̄p ]. For instance, when

X1 = 3.5, the randomization (X1, X2, p) is given by (3.5, 0.5, 0.5). Randomized assignments
do not improve player A’s payoff over deterministically assigning the expected endowment 2.

can take, k̄ ∈ {1, 2, 3}, correspond to transformed multipliers σ = (σ1, σ2), with σi := λi
λB

> 0

for i ∈ {1, 2}, lying in three disjoint regions of R2
+. These regions result directly from (4.40),

and are given below.

k̄ = 1, if pσ1 ≥ 1

k̄ = 2, if pσ1 < 1 and pσ1 + (1− p)σ2 ≥ 1

k̄ = 3, if pσ1 + (1− p)σ2 < 1

(4.43)

Let us denote these regions as E1, E2, E3, whose union is R2
+. The constructed strategies take

three different forms described in Lemma 4.3.3, contingent on the value of k̄. Thus, there

are three cases the system of equations (4.39) can take. They are given below, where we

seek to find multipliers (σ1, σ2, λB) that satisfies one of the three cases for a given instance
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(X1, X2, p,XB) ∈ G – note that we can uniquely recover (λ1, λ2, λB) from a tuple (σ1, σ2, λB).

Case 1 Case 2 Case 3

(i)
1

2pσ2
1

= λBX1
p

2
+

1− pσ1

σ2
= λBX1

p

2
+ 1− p = λBX1

(ii) 0 = X2
(1− pσ1)2

2(1− p)σ2
2

= λBX2
1− p

2
= λBX2

(iii) pσ1X1 = XB pσ1X1 + (1− p)σ2X2 = XB pσ1X1 + (1− p)σ2X2 = XB

such that such that such that

(iv) σ ∈ E1 σ ∈ E2 σ ∈ E3

(v) σ1 ≤ σ2 σ1 ≤ σ2 σ1 ≤ σ2

(?)

A solution (σ1, σ2, λB) to (?) cannot satisfy two cases simultaneously, due to the Ei being

disjoint. Observe that the individual battlefield values vj (whose sum total is one) do not

appear in these equations. In fact, one would arrive to the system (?) when considering Lotto

games with any number n ≥ 1 of battlefields whose total value is normalized to one – the

individual battlefield values do not play a role in the analysis. For simplified exposition, we will

henceforth consider players’ strategies as allocations to a single battlefield of value one (FA and

FB with no j dependence), noting this is mathematically equivalent to any arbitrary set of n

battlefield valuations v that sum to one.

Also, note the multiplier σ2 does not appear in the system of Case 1, but does appear in

the condition (v). Here, σ2 can be set to ∞ to satisfy (v), without affecting other variables.

We detail the complete solutions to (?), and prove their associated strategies (from (4.42))

constitute Bayes-Nash equilibria in the result below.

Proposition 4.3.1. The set of game instances in G for which a solution to (?) exists and their

corresponding equilibrium strategies and payoffs are given as follows.

Case 1: Suppose X1
XB
≤ 1 and X2 = 0. The solution to (?) is given by λ1 = 1

2XB
, λB = pX1

2X2
B

,
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and λ2 ≥ 1
2XB

. The equilibrium strategies are

FA(t1) = (1− γ1)δ0 + γ1Unif(0, 2XB), FA(t2) = δ0, FB = Unif(0, 2XB) (4.44)

and the (ex-ante) equilibrium payoffs are

πA =
pX1

2XB
, πB = p(1− X1

2XB
) + (1− p) (4.45)

Case 2: Suppose X2
XB
≤ H

(
X1
XB

)
, where H is defined in (4.15). The unique solution to (?) is

σ2 = (1− XB
X1

)
√

X1/((1−p)X2)
p+(1−p)X2/X1

, σ1 = XB−(1−p)σ2X2

pX1
, and λB =

(√
(1−p)X2+

√
pX1+(1−p)X2

)2

2X2
1

. The

equilibrium strategies are

FA(t1) = Unif (L2, L2 + L1) , FA(t2) =

(
1− 1− pσ1

(1− p)σ2

)
δ0 +

1− pσ1

(1− p)σ2
Unif (0, L2)

FB = (1− pσ1)Unif (0, L2) + pσ1Unif (L2, L2 + L1)

(4.46)

where L1 = p
λB

and L2 = 1−pσ1

λ2
. The equilibrium payoffs are

πA = p(1− pσ1)

(
1− σ1

σ2

)
+ λBXB, πB = λBXB −

1− pσ1

σ2
+ (1− p) (4.47)

Case 3: Suppose X2
X1

= 1−p
2−p and 2 − p < X1

XB
< 2 + p

1−p . A solution to (?) is of the form

λB = 2−p
2X1

, σ1 ∈
(

XB
X1

(
2+ p

1−p−
X1
XB

)
p
(

1+ p
1−p

) ,
XB
X1

(
2+ p

1−p

)
p
(

2+ p
1−p+ 1−p

p

)
)

, and σ2 = XB−pσ1X1

(1−p)X2
. The equilibrium

strategies are

FA(t1) = Unif (L2, L2 + L1) , FA(t2) = Unif (0, L2)

FB(x) = (1− pσ1 + (1− p)σ2)δ0 + (1− p)σ2Unif (0, L2) + pσ1Unif (L2, L2 + L1)

(4.48)

where L1 = p
λB

and L2 = 1−p
λB

= 2X2. The equilibrium payoffs are given by

πA = 1− λBXB, πB = λBXB. (4.49)
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Proof. We divide this proof into two parts. In the first part, we detail the steps used in each

Case to calculate the algebraic solution to (?) and the set of game instances for which it is

valid. In the second part, we provide a proof that the corresponding strategies recovered from

(4.42) do in fact constitute an equilibrium to the BL game. We will rely on shorthand notations

γi = Xi/XB when convenient.

Case 1: The solution to (?) can directly be found to be λ1 = 1
2XB

, λB = pX1

2X2
B

, and any

λ2 ≥ 1
2XB

(to satisfy (v)). Such a solution must also satisfy (iv), pσ1 = 1/X1 ≥ 1. Combined

with (ii), the set of valid game parameters is X1
XB
≤ 1 and X2 = 0: player A’s budget in type 1

is smaller than player B’s budget, and has a budget of zero in type 2. Since λ2 does not appear

in the algebraic equations of (?) (only in the constraints), this is essentially unique. Plugging

these values into (4.42), we obtain the resulting strategies.

Case 2: To solve for λB, we have 1 − p1σ1 =
√

2(1− p)λ2σ2X2 from (ii). Substituting into

(i), we obtain a quadratic equation in
√
λB > 0. Its (positive) solution yields the expression for

λB.

Multiplying (ii) by X1
X2

, the RHS of equations (i) and (ii) become equivalent. From (iv) of (?),

we use the substitution 1− pσ1 = 1− γ−1
1 + (1− p)σ2

γ2

γ1
to obtain σ2 = |1− γ−1

1 |
√

γ1/((1−p)γ2)
p+(1−p)γ2/γ1

.

The condition (iv) requires pσ1 < 1. Using the substitution σ1 = 1−(1−p)σ2γ2

pγ1
from (iii), we

deduce that γ1 > 1:

pσ1 = γ−1
1

(
1− (1− p)γ2|1− γ−1

1 |
√

γ1/((1− p)γ2)

p+ (1− p)γ2/γ1

)

= γ−1
1 − |1− γ−1

1 |
√

(1− p)γ2/γ1

p+ (1− p)γ2/γ1
< 1

⇒ 1− γ−1
1 > −|1− γ−1

1 | ⇒ γ1 > 1

(4.50)

We can also deduce from (iii) and X1 ≥ X2 that X2
XB
≤ 1. The condition (iv) also requires

pσ1 + (1− p)σ2 ≥ 1. From this, we obtain

X2 ≤
1− p
2− pX1. (4.51)
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Furthermore, the positivity of σ2 is trivially satisfied. However, positivity of σ1 requires that

1 − (1 − p)σ2γ2 > 0. Plugging in the expression for σ2, we obtain γ2(1 − p) (2− γ1) > −p.

Hence, the positivity constraint σ1 > 0 is equivalent to

γ1 ≤ 2, or γ1 > 2 and γ2 <
p

(1− p) (γ1 − 2)
. (4.52)

Lastly, the constraint (v) requires σ1 ≤ σ2. Plugging in the expression for σ2, we deduce

that γ2

(
1− (γ1 − 1)2

)
≤ (γ1− 1)2γ1

p
1−p . The term in parentheses on the LHS is positive when

γ1 < 2, and negative otherwise. Hence, we obtain

γ2


≤

p
1−p (γ1−1)2

2−γ1
, if 1 < γ1 ≤ 2

≥ 0, if γ1 > 2

(4.53)

The intersection of conditions (4.53),(4.51), and (4.52) on the budget parameters X1 and X2,

derived directly from (iv) and (v), yields γ2 ≤ H (γ1), where H was defined in (4.15). This

establishes the set of games for which the system (?) has a solution in Case 2.

Case 3: We can directly obtain λB = 2−p
2X1

. Note that λB = 1−p
2X2

as well, from which we

obtain X2 = 1−p
2−pX1. From (iii), we have σ2 = XB−pX1γ1

(1−p)X2
. Substituting this in the condition

(iv), pσ1 + (1 − p)σ2 < 1, we obtain σ1 >
γ−1

1

(
2+ p

1−p−γ1

)
p
(

1+ p
1−p

) . Similarly, constraint (v), σ1 ≤ σ2,

yields σ1 ≤
γ−1

1

(
2+ p

1−p

)
p
(

2+ p
1−p+ 1−p

p

) . A feasible σ1 exists within these constraints if and only if γ1 >

1 +
1+ 1−p

p

2+ p
1−p+ 1−p

p

= 2 − p (upper bound must be larger than lower bound), and γ1 < 2 + p
1−p

(lower bound must be positive). Subsequently, (4.42) recovers the strategies (4.48). The union

of characterized parameter sets in all three cases constitutes the R5 region in Theorem 4.2.1.

Part 2: We prove the strategy profile (FA, FB) recovered from (4.42) is an equilibrium9. We

can immediately deduce the strategies in Case 1 are equilibria to the BL game by observing

9This proof can be extended to scenarios where player A has an arbitrary number m endowment types. That
is, if one can derive a solution to the system of m+ 1 equations (instead of just 3 in (4.39)), the profile (FA, FB)
one constructs using Siegel’s algorithm (in analogous manner to that used above) is an equilibrium to the BL
game. Characterizing solutions to a system of m+ 1 equations, however, is a non-trivial extension that we leave
for future study.
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that player A has zero budget in type 2, and (FA(t1), FB) forms the unique equilibrium to the

complete information General Lotto game [21] with a single battlefield of value p. We will focus

on the strategies produced from Case 2, as the proof for Case 3 follows analogous arguments.

We first calculate the (ex-interim) payoffs from the strategies (4.46).

UA(FA(t1), FB) =

∫ ∞
0

FB(x) dFA(t1) =

∫ L2+L1

L2

[L2λ2 + λ1(x− L2)]
λB
p
dx

= (1− pσ1)

(
1− σ1

σ2

)
+ λ1X1

UA(FA(t2), FB) =

∫ ∞
0

FB(x) dFA(t2) =

∫ L2

0
λ2x ·

λB
1− pdx = λ2X2

(4.54)

The expected payoff (4.12) to player A is then πA = p(1− pσ1)
(

1− σ1
σ2

)
+ λBXB (using (iii)).

The payoff to B is πB = 1− πA. We need to show FA is a best-response to FB, and vice versa.

For any F ′A(t1) ∈ L(X1), the payoff in type 1 is

UA(F ′A(t1), FB) =

∫ L2

0
λ2x dF

′
A(t1) +

∫ L2+L1

L2

[L2λ2 + λ1(x− L2)] dF ′A(t1) +

∫ ∞
L2+L1

dF ′A(t1)

= (λ2 − λ1)

(∫ L2

0
x dF ′A(t1)− L2

∫ L2

0
dF ′A(t1)

)
+ λ1

(
(L2 + L1)

∫ L2+L1

L2

dF ′A(t1)−
∫ L2+L1

L2

x dF ′A(t1)

)
+ λ1X1 + L2(λ2 − λ1)

≤ λ1X1 + L2(λ2 − λ1) = λ1X1 + (1− λ1

λ2
)(1− pσ1).

(4.55)

In the second equality, we used the identities

∫ L2+L1

L2

x dF ′A(t1) = X1 −
∫ L2

0
x dF ′A(t1)−

∫ ∞
L2+L1

x dF ′A(t1),

and ∫ L2+L1

L2

dF ′A(t1) = 1−
∫ L2

0
dF ′A(t1)−

∫ ∞
L2+L1

dF ′A(t1).
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The inequality follows from two applications of Markov’s inequality:

∫ L2

0
x dF ′A(t1) ≤ L2

∫ L2

0
dF ′A(t1),

and

−
∫ L2+L1

L2

x dF ′A(t1) ≤ −(L2 + L1)

∫ L2+L1

L2

dF ′A(t1).

Hence, the payoff in type 1 is upper-bounded by λ1X1 +(1− λ1
λ2

)(1−pσ1), which can be attained

whenever supp(F ′A(t1)) ⊆ [L2, L2 + L1] (for which the Markov inequalities hold with equality).

We provide analogous calculations for any F ′A(t2) ∈ L(X2):

UA(F ′A(t2), FB) =

∫ L2

0
λ2x dF

′
A(t2) +

∫ L2+L1

L2

[L2λ2 + λ1(x− L2)] dF ′A(t2) +

∫ ∞
L2+L1

dF ′A(t2)

= (λ2 − λ1)

(
L2

∫ L2+L1

L2

dF ′A(t2)−
∫ L2+L1

L2

x dF ′A(t2)

)
+

(∫ ∞
L2+L1

dF ′A(t2)− λ2

∫ ∞
L2+L1

dF ′A(t2)

)
+ λ2X2

≤ −p(σ2 − σ1)

∫ ∞
L2+L1

dF ′A(t2) + λ2X2

≤ λ2X2

(4.56)

The first inequality is similarly obtained from two applications of Markov’s inequality. The

second inequality follows from the condition (v), σ2 ≥ σ1. Hence, the payoff in type 2 is upper-

bounded by λ2X2, which can be attained whenever supp(F ′A(t2)) ⊆ [0, L2]. The strategy FA

satisfies these properties, and hence is a best-response to FB.

49



Obfuscating mechanisms: The value of concealing information Chapter 4

For any F ′B ∈ L(XB), player B’s expected payoff (4.12) is

ΠB(F ′B, FA) = p

[∫ L2+L1

L2

λB
p

(x− L2) dF ′B +

∫ ∞
L2+L1

dF ′B

]
+ (1− p)

[∫ L2

0

(
1− λBL2

1− p +
λB

1− px
)
dF ′B +

∫ ∞
L2

dF ′B

]
= λB

(∫ L2+L1

0
x dF ′B − L2

∫ L2+L1

0
dF ′B

)
+ p

∫ ∞
L2+L1

dF ′B + (1− p)

= λBXB − λBL2 + (1− p) + λB

(
(L1 + L2)

∫ ∞
L2+L1

dF ′B −
∫ ∞
L2+L1

x dF ′B

)
≤ λBXB − λBL2 + (1− p) = πB

(4.57)

Player B’s expected payoff is upper-bounded by πB, which can be attained for any strategy

with supp(F ′B) ⊆ [0, L2 +L1]. Because FB is one such strategy, it is a best-response to FA.

Equilibria in regions R1 - R4. Here, we provide all derivations of Bayes-Nash equilibria

corresponding to the payoffs in regions Ri, i = 1, . . . , 4 (Theorem 4.2.1). As shown in Propo-

sition 4.3.1, such equilibria cannot be generated through the standard method using Siegel’s

algorithm.

To first give some informal intuition, we provide some descriptions of the equilibria in

these regions. The equilibrium strategies in R1 and R2 are convex combinations between an

equilibrium strategy on the border10 of R5 and equilibrium in its corresponding benchmark

complete information game GL(X̄,XB,v). As a result, the equilibrium payoff for any G in R1

or R2 coincides with the equilibrium payoff of its corresponding benchmark game. In regions

R3 and R4, the “high” budget X1 is disproportionately higher than the “low” budget X2. We

find an equilibrium strategy for the uninformed player is to not compete against the high budget

at all, thus giving up a payoff p to the obfuscating player. In the forthcoming proofs, we make

extensive use of Markov’s inequality:
∫ b
a x dF ≤ b

∫ b
a dF for any distribution F .

Region R3: Suppose G ∈ R3 =
{

(γ1, γ2) ∈ R : γ1 ≥ 2 + p
1−p and 1 ≤ γ2 ≤ 1−p

2−pγ1

}
. The fol-

10Since equilibria on the border are not necessarily unique, i.e. Case 3 parameters of Proposition 4.3.1, the
equilibria in the regions R1 and R2 are not unique. However, all equilibria in one game instance yield identical
payoffs, since it is a constant sum game (in ex-ante payoffs).
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lowing is an equilibrium.

FA(t1) = Unif (2X2, 2(X1 −X2)) , FA(t2) = Unif (0, 2X2) ,

FB = (1− γ−1
2 )δ0 + γ−1

2 Unif (0, 2X2)

(4.58)

The equilibrium payoff is given by πA(G) = p+ (1− p)
(

1− 1
2γ2

)
.

Proof. First, we show FA is a best-response to FB. For any {F ′A(ti) ∈ L(Xi)}i=1,2, player A’s

expected payoff is

p

[∫ 2X2

0

(
1− γ−1

2 +
γ−1

2

2X2
x

)
dF ′A(t1) +

∫ ∞
2X2

dF ′A(t1)

]
+ (1− p)

[∫ 2X2

0

(
1− γ−1

2 +
γ−1

2

2X2
x

)
dF ′A(t2) +

∫ ∞
2X2

dF ′A(t2)

]
≤ p+ (1− p)

[∫ 2X2

0

(
1− γ−1

2 +
γ−1

2

2X2
x

)
dF ′A(t2) +

∫ ∞
2X2

dF ′A(t2)

] (4.59)

The inequality follows by selecting any F ′A(t1) such that supp(F ′A(t1)) ⊂ [2X2,∞), which awards

player A the payoff p from state 1 outright. This is possible because γ1 ≥ 2 + p
1−p > 2, from

the assumption. The expression above can be re-written and upper-bounded as follows:

p+ (1− p)
[(

1− γ−1
2

) ∫ 2X2

0
dF ′A(t2) +

γ−1
2

2
+

∫ ∞
2X2

dF ′A(t2)− γ−1
2

2X2

∫ ∞
2X2

x dF ′A(t2)

]
≤ p+ (1− p)

(
1− γ−1

2

2

) (4.60)

The inequality holds with equality if and only if supp(F ′A(t2)) ⊆ [0, 2X2]. We have thus estab-

lished an upper bound on A’s payoff to FB that is achieved by FA.

Now we show FB is a best-response to FA. Let K := (1 − p) − pγ2

γ1−2γ2
≥ 0, which is
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non-negative due to the assumption γ2 ≤ 1−p
2−pγ1. For any F ′B ∈ L(XB), player B’s payoff is

p

[∫ 2(X1−X2)

2X2

x− 2X2

2(X1 − 2X2)
dF ′B +

∫ ∞
2(X1−X2)

dF ′B

]
+ (1− p)

[∫ 2X2

0

x

2X2
dF ′B +

∫ ∞
2X2

dF ′B

]
=

1− p
2X2

∫ 2X2

0
x dF ′B +

p

2(X1 − 2X2)

∫ 2(X1−X2)

2X2

x dF ′B

−
(

pX2

X1 − 2X2
− (1− p)

)∫ 2(X1−X2)

2X2

dF ′B +

∫ ∞
2(X1−X2)

dF ′B

(4.61)

Applying the identity
∫ 2X2

0 x dF ′B = XB −
∫ 2(X1−X2)

2X2
x dF ′B −

∫∞
2(X1−X2) x dF

′
B, we then obtain

= K

(
− 1

2X2

∫ 2(X1−X2)

2X2

x dF ′B +

∫ 2(X1−X2)

2X2

dF ′B

)
+ (1− p)γ

−1
2

2

+

∫ ∞
2(X1−X2)

dF ′B −
1− p
2X2

∫ ∞
2(X1−X2)

x dF ′B

≤ (1− p)γ
−1
2

2
+

(
p+ (1− p)

(
2− γ1

γ2

))∫ ∞
2(X1−X2)

dF ′B

≤ (1− p)γ
−1
2

2

(4.62)

The first inequality results from applying Markov’s inequality to the expressions
∫ 2(X1−X2)

2X2
x dF ′B

and
∫∞

2(X1−X2) x dF
′
B. The second inequality follows from non-positivity of term in paren-

theses (from assumption of the Lemma). This inequality holds with equality if and only if

supp(F ′B) ⊆ [0, 2X2]. We have thus established an upper bound on B’s payoff to FA that is

achieved by FB.

Region R4: Suppose G ∈ R4 :=
{

(γ1, γ2) ∈ R : γ1 ≥ 2 + p
1−p and p

(1−p)(γ1−2) ≤ γ2 ≤ 1
}

.

The following is an equilibrium: FA(t1) = Unif (2XB, 2(X1 −XB)), FA(t2) = (1 − γ2)δ0 +

γ2Unif (0, 2XB), FB = Unif (0, 2XB), and the equilibrium payoff is given by πA(G) = p+ (1−

p)γ2

2 .

Proof. First, show FA is a best-response to FB. Player A’s payoff for any {F ′A(ti) ∈ L(Xi)}i=1,2
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is

p

[∫ 2XB

0

x

2XB
dF ′A(t1) +

∫ ∞
2XB

dF ′A(t1)

]
+ (1− p)

[∫ 2X2

0

x

2XB
dF ′A(t2) +

∫ ∞
2XB

dF ′A(t2)

]
≤ p+ (1− p)

[∫ 2X2

0

x

2XB
dF ′A(t2) +

∫ ∞
2XB

dF ′A(t2)

]
= p+ (1− p)

[
γ2

2
+

∫ ∞
2XB

dF ′A(t2)− 1

2XB

∫ ∞
2XB

x dF ′A(t2)

]
≤ p+ (1− p)γ2

2
.

(4.63)

The first inequality follows by selecting any F ′A(t1) such that supp(F ′A(t1)) ⊂ [2XB,∞), which

awards player A p outright. This is possible because γ1 ≥ 2, from the assumption. The second

inequality follows by applying Markov’s inequality to
∫∞

2XB
x dF ′A(t2). This inequality holds if

and only if supp(F ′A(t2)) ⊆ [0, 2XB].

Now we show FB is a best-response to FA. For any FB ∈ L(XB), player B’s payoff is

(1− p)γ2

2XB

∫ 2XB

0
x dF ′B + (1− p) (1− γ2)

∫ 2XB

0
dF ′B

+
p

2(X1 − 2XB)

∫ 2(X1−XB)

2XB

x dF ′B +

(
(1− p)γ2 −

p

γ1 − 2

)∫ 2(X1−XB)

2XB

dF ′B +

∫ ∞
2(X1−XB)

dF ′B

= K

(∫ 2(X1−XB)

2XB

dF ′B −
1

2XB

∫ 2(X1−XB)

2XB

x dF ′B

)

+ (p+ (1− p)γ2)

∫ ∞
2(X1−XB)

dF ′B −
(1− p)γ2

2XB

∫ ∞
2(X1−XB)

x dF ′B + (1− p)
(

1− γ2

2

)
≤ (1− p)

(
1− γ2

2

)
(4.64)

where K := (1 − p)γ2 − p
γ1−2 > 0, from the assumption. In the equality, we substituted∫ 2XB

0 x dF ′B = XB −
∫ 2(X1−XB)

2XB
x dF ′B −

∫∞
2(X1−XB) x dF

′
B. The inequality is due to applying

Markov’s inequality and noting the expression p + (1 − p)γ2 − (1 − p)γ2 (γ1 − 1) = p + (1 −

p)γ2 (2− γ1) ≤ 0 holds from the assumptions. This holds with equality if and only if supp(F ′B) ⊆

[0, 2XB].

Regions R1 and R2:
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Consider the set of (γ1, γ2) ∈ R1 ∪R2 that have a fixed average budget γ̄. Define

γbd :=



(γ̄/p, 0) ∈ R, if γ̄ ≤ p

(2− p/γ̄,H(2− p/γ̄)) ∈ R, if p < γ̄ ≤ 1

((2− p)γ̄, (1− p)γ̄) ∈ R, if 1 < γ̄

(4.65)

where H is defined in (4.15). The points γbd specified above for γ̄ ≤ 1 are on the border of R5,

whose equilibria are given in Proposition 4.3.1. The points for 1 < γ̄ are on the upper border

of R3, where a equilibrium is given in (4.58). Define

F bd
A :=



given by (4.44) at γbd, if γ̄ ≤ p

given by (4.46) at γbd, if p < γ̄ ≤ 1

given by (4.48) at γbd, if 1 < γ̄

(4.66)

Here, F bd
A is an equilibrium strategy for player A at the boundary point γbd. Let us also

define (F̄A, F̄B) as the Nash equilibrium at (γ̄, γ̄) ∈ R, which is simply the equilibrium in the

corresponding complete information game. That is,

F̄A =


(1− γ̄)δ0 + γ̄Unif([0, 2XB]), if γ̄ ≤ 1

Unif([0, 2X̄), if γ̄ > 1

,

F̄B =


Unif([0, 2XB]), if γ̄ ≤ 1

(1− γ̄−1)δ0 + γ̄−1Unif([0, 2X̄), if γ̄ > 1

(4.67)

Let α ∈ [0, 1] be the appropriate scaling that gives αγbd + (1 − α) · (γ̄, γ̄) = (γ1, γ2). We

claim the strategy profile (αF bd
A + (1− α)F̄A, F̄B) is an equilibrium for (γ1, γ2) ∈ R1 ∪R2.

Proof. Since we know that (F̄A, F̄B) is an equilibrium, it will suffice to show that (F bd
A , F̄B) is

also an equilibrium for all γ̄. After lengthy calculations, we see that the payoffs from (F bd
A , F̄B)
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coincide with the payoffs from (F̄A, F̄B).

For γ̄ ≤ p, the equilibrium at γbd is given by Case 1 (4.44), where player B’s strategy is

precisely F̄B. For p < γ̄ ≤ 1, the equilibrium at γbd is given by Case 2 (4.46), where it is

also true that B’s strategy is F̄B (on these border points, σ1 = σ2). For 1 < γ̄ ≤ 1
1−p , the

equilibrium at γbd is given by Case 3 (4.48). We note that although player B’s equilibrium

strategy here is not unique, F̄B is one such strategy.

Lastly, for 1
1−p < γ̄, (F bd

A , F̄B) is an equilibrium at γbd, where F bd
A is player A’s equilibrium

strategy at the border of R3 (4.58). This strategy is also identical to the monotonic equilibrium

strategy from Case 3 (4.48). Hence, the proof that (F bd
A , F̄B) is an equilibrium follows from the

analysis in Proposition 4.3.1. Note that player B’s R3 equilibrium strategy written in (4.58)

is not F̄B. Indeed, F̄B in general is not an equilibrium strategy in the interior of R3. At the

border however, we know of at least two equilibria (giving the same payoffs), one of them being

(F bd
A , F̄B).
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Chapter 5

Pre-emptive mechanisms: The value

of revealing information

As we explored in the previous chapter, the conventional wisdom suggests that an agent im-

proves her competitive position by increasing her resource budget and investing in more accurate

information in adversarial resource allocation scenarios. By extension, an agent would prefer to

face an adversary with fewer resources and less information, as this should sway the strategic

outcomes in her favour. Note that these insights have been applied across a spectrum of prob-

lem settings in cyber-physical systems security [63, 64, 65] and beyond in, e.g., airport security

[66, 67], wildlife protection [68], market economics [69], and political campaigning [70].

In this chapter, we challenge the conventional wisdom by explicitly considering pre-emption

as a viable, alternative component in an agent’s strategic decision making: In Section 5.1, we

study General Lotto games with concessions. Here, we consider concessions under two formats:

budget concessions, in which the agent willingly reduces her own budget; and, value conces-

sions, which involve voluntary non-participation on a specified subset of the battlefields. As

such, concessions contradict the conventional wisdom, as the conceding agent weakens herself

while providing the adversary with more information. Our goal in this work is to understand

whether these concession formats represent valid strategic options in adversarial resource allo-
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cation. Then, in Section 5.2, we study General Lotto games with pre-allocations. Under this

model, one of the players can strategically decide how to deploy resources before the actual

engagement takes place. The placement of the pre-allocated resources thus has an effect on

how the allocation decisions are made at the time of competition.

Our goal is to understand the effect of including such pre-emptive mechanisms into an

agent’s decision space on the emergent strategic outcomes of the game. In other words, we

wish to understand if and when a strategic agent will leverage these additional opportunities,

or whether these never offer strategic advantages as the intuition suggests.

5.1 General Lotto games with concessions

5.1.1 Model

In the Colonel Blotto literature, researchers have proposed generalized game models in-

volving more than two players [50, 71, 48, 49]. One such class of models, termed Coalitional

Lotto games [50], examines a scenario where two self-interested entities compete against a com-

mon opponent. More formally, consider a three-player, constant-sum Stackleberg game where

players 0, A and B, have respective budgets X0 > 0 and XA, XB ≥ 0. Players A and B are

simultaneously engaged in independent General Lotto games against player 0 over the disjoint

sets of battlefields BA and BB, respectively. For each i ∈ {A,B}, let Φi ≥ 0 denote the cu-

mulative value of battlefields in the set Bi. The game is played over two stages, defined as

follows:

• Stage 1 : Player 0 allocates its budget as X0,A, X0,B ≥ 0 such that X0,A + X0,B ≤ X0.

Then, player 0’s selection becomes common knowledge and binding;

• Stage 2 : The games GL(X0,i, Xi,Φi), i = A,B, are played.

Players’ final payoffs are their equilibrium payoffs from the General Lotto games in Stage 2.

We assume that player 0’s Stage 1 allocation is made to maximize her final payoff, i.e., given a
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Φ𝐴 Φ𝐵

XA XB

X0

X0,A X0,B

(a) Two-player. (b) Three-player.

XB

XA

v1 … vn

Φ = ∑𝑣𝑏
v2

Figure 5.1: Illustration of the two- and three-player General Lotto game models. (a) In the
two-player General Lotto game, players A and B with respective budgets XA, XB ≥ 0 si-
multaneously compete over n battlefields with cumulative value Φ ≥ 0. (b) In Stage 1 of the
three-player General Lotto game, player 0 allocates her budget X0 between the two (two-player)
General Lotto games against players A and B. Subsequently, in Stage 2, the two General Lotto
games are played simultaneously.

three-player General Lotto game, player 0’s Stage 1 allocation (X∗0,A, X
∗
0,B) ∈ R2

≥0 satisfies

(X∗0,A, X
∗
0,B) ∈ arg max

X0,A,X0,B≥0,
X0,A+X0,B≤X0

∑
i∈{A,B}

u∗0(X0,i, Xi,Φi).

Furthermore, for each player i ∈ {A,B}, we let

Πi(X0, XA, XB,ΦA,ΦB) = u∗i (Xi, X
∗
0,i,Φi)

denote her final payoff under player 0’s optimal Stage 1 allocation. For ease of notation, we use

the shorthand Πi = Πi(X0, XA, XB,ΦA,ΦB), i ∈ {A,B}, when the dependence on the game

parameters is clear. Figure 5.1b depicts the three-player General Lotto game.1

The authors of [50] investigate when players A and B can cooperate to change the outcome

of the three-player General Lotto game in their favour. Specifically, they focus on unilateral

budget transfers, where the following preliminary stage is played prior to Stages 1 and 2 of the

nominal game:2

1One can easily verify that any two-player General Lotto game can be recast as a three-player General Lotto
game.

2Though we model player 0’s selection of her budget allocation, and of players A and B’s alliances or conces-
sions (defined in the forthcoming section) as sequential under our proposed framework, we note that the players’
strategic interactions still occur simultaneously in Stages 0 and 2.
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• Stage 0: Players A and B select a unilateral budget transfer δ ∈ [−XB, XA], to be made

from A to B. Then, the transfer δ becomes common knowledge and binding, and the

players’ resulting budgets are X ′A = XA − δ and X ′B = XB + δ, respectively.

Accordingly, under a unilateral budget transfer δ ∈ [−XB, XA] selected in Stage 0, each player

i ∈ {A,B} receives as her final payoff:

Πal
i (δ) := Πi(X0, XA − δ,XB + δ,ΦA,ΦB).

We will refer to these unilateral budget transfers between players A and B as alliances. Observe

that players’ payoffs under no alliance (i.e., δ = 0) are the same as their payoffs in the nominal

game.

Interestingly, [50] shows that there exist scenarios under which alliances are mutually ben-

eficial to A and B, i.e., there exists δ ∈ [−XB, XA] such that

Πal
i (δ) > Πal

i (δ), for each i ∈ {A,B}.

This implies that a player i ∈ {A,B} can improve her payoff by making herself weaker, and

making her competitor, player −i, stronger. Figure 5.2a depicts the three-player General Lotto

game with alliances.

5.1.2 Budget concessions

Recall that an alliance (as defined in [50]) consists of a unilateral budget transfer between

players A and B, meaning one of the players i ∈ {A,B} becomes weaker, while player −i

becomes stronger. For an alliance to be mutually beneficial, note that even the weaker player’s

payoff must improve. The existence of mutually-beneficial alliances [50] suggests that player i

may improve her payoff simply by weakening herself without making player −i stronger, i.e.,

by making a budget concession.

To study the strategic role that budget concessions play in three-player General Lotto games,
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we introduce a modified three-player General Lotto game model, where we add the following

preliminary stage that is played prior to Stages 1 and 2 of the nominal three-player General

Lotto game:

• Stage 0: Each player i ∈ {A,B} selects a portion of her budget xi ∈ [0, Xi] to concede.

Then, the concession profile (xA, xB) ∈ [0, XA]× [0, XB] becomes common knowledge and

binding, and the players’ resulting budgets are X ′A = XA − xA and X ′B = XB − xB,

respectively.

For ease of exposition, we define the three-player General Lotto game with budget concessions

as the one-shot game played between players A and B in Stage 0, where each player i ∈ {A,B}

selects an action xi ∈ [0, Xi] and the players’ payoffs coincide with their Stage 2 payoffs assuming

that all players 0, A and B play according to a subgame perfect equilibrium (SPE) in Stages

1 and 2,3 i.e., under a concession profile (xA, xB) ∈ [0, XA] × [0, XB] selected in Stage 0, each

player i ∈ {A,B} receives a final payoff

Πbc
i (xi, x−i) := Πi(X0, XA − xA, XB − xB,ΦA,ΦB).

In the event that there is more than one SPE in Stages 1 and 2, we may choose an SPE

selection rule to ensure the functions Πbc
i , i ∈ {A,B}, are well-defined, e.g., the SPE with

lowest resulting payoff to player A. Nevertheless, our results for the three-player General Lotto

game with budget concessions in the forthcoming Theorem 5.1.1 (i.e., the weak dominance of

the action xi = 0 for both players i ∈ {A,B}, and the payoff equivalence of all pure strategy

Nash equilibria) hold regardless of the chosen SPE selection rule.

Note that the players’ payoffs under no budget concession (i.e., (xA, xB) = (0, 0)) are

equivalent to their payoffs in the nominal three-player General Lotto game. For a given nominal

three-player General Lotto game, we can represent the corresponding three-player General Lotto

game with budget concessions as the tuple G = ({Xi,Π
bc
i })i∈{A,B}. Figure 5.2b depicts the

3The notion of subgame perfect equilibrium extends the notion of Nash equilibrium to multi-stage games,
and represents a sequence of player strategies that satisfy the Nash equilibrium condition in within each stage.
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Figure 5.2: Illustration of the three-player General Lotto game model with alliances proposed in
[50], and our proposed variants for studying budget and value concessions. (a) In the alliances
model, player A makes a unilateral budget transfer of δ ∈ [−XB , XA] forces to player B. (b)
In our budget concession model, each player i ∈ {A,B} concedes some budget xi ∈ [0, Xi]. (c)
In our value concession model, each player i ∈ {A,B} concedes some value yi ∈ [0,Φi]. Any
alliances and concessions are selected, and become binding and common knowledge before the
subsequent three-player General Lotto game is played.

three-player General Lotto game with budget concessions.

Our first result demonstrates that budget concessions are never advantageous under our

three-player General Lotto games with budget concessions game model.

Theorem 5.1.1. Given any three-player General Lotto game with budget concessions and any

SPE selection rule, the choice xi = 0 is a weakly-dominant strategy for each player i ∈ {A,B}.

That is, for any (xA, xB) ∈ [0, XA]× [0, XB], it holds that

Πbc
i (0, x−i) ≥ Πbc

i (xi, x−i), i = A,B.

Futhermore, all pure strategy Nash equilibria are payoff equivalent, i.e., each player i ∈ {A,B}

receives payoff equal to Πbc
i (0, 0).

Observe that the above result establishes that each player i ∈ {A,B} prefers not to concede any

budget, regardless of player −i’s selection in Stage 0. This implies that the payoff improvement

in mutually-beneficial alliances stem from the transfer of budget between players A and B, and
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that one of the players i ∈ {A,B} cannot simply weaken herself to achieve similar benefits. In

other words – and perhaps surprisingly – the benefits that the weakened player reaps from an

alliance rely on making the other player stronger.

5.1.3 Value concessions

As with budget concessions, we propose a variation on the three-player General Lotto game

model to study the strategic role of value concessions, which we term three-player General Lotto

game with value concessions. This variant has the following preliminary stage:

• Stage 0: Each player i ∈ {A,B} selects a portion of the value yi ∈ [0,Φi] to concede.

Then, the values yA and yB are awarded to player 0, and the concession profile (yA, yB) ∈

[0,ΦA]× [0,ΦB] becomes common knowledge and binding.

Once again, we define the three-player General Lotto game with value concessions as the one-

shot game played between A and B in Stage 0, where each player i ∈ {A,B} selects an action

yi ∈ [0,Φi] and the players’ payoffs coincide with their Stage 2 payoffs assuming that all players

0, A and B play according to a subgame perfect equilibrium (SPE) in Stages 1 and 2, i.e., under a

concession profile (yA, yB) ∈ [0,ΦA]× [0,ΦB] selected in Stage 0, each player i ∈ {A,B} receives

a final payoff

Πvc
i (yi, y−i) := Πi(X0, XA, XB,ΦA − yA,ΦB − yB).

As with budget concessions, in the event that the players’ SPE payoffs in Stages 1 and 2 are non-

unique, we can choose one of many SPE selection rules to ensure the functions Πvc
i , i ∈ {A,B},

are well-defined. Nonetheless, we show that our main results for the three-player General Lotto

game with value concessions in the forthcoming Theorem 5.1.2 (i.e., the existence of beneficial

value concessions, the uniqueness (or non-existence) and special structure of the pure strategy

Nash equilibrium) hold regardless of the chosen SPE selection rule.

Observe that the players’ payoffs under no value concessions (i.e., (yA, yB) = (0, 0)) are

equivalent to their payoffs in the nominal three-player General Lotto game. For a given nominal
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three-player General Lotto game, we represent the corresponding three-player General Lotto

game with value concessions as the tuple G = ({Φi,Π
vc
i })i∈{A,B}. Figure 5.2c depicts the

three-player General Lotto game with value concessions.

In the previous section, we showed that a player cannot improve her payoff by making a

budget concession in three-player General Lotto games as the choice xi = 0 is a weakly-dominant

strategy for each player i ∈ {A,B}. This supports the conventional intuition that concessions

cannot represent a valid strategic option in adversarial interactions. In contrast, our next result

shows that this intuition is false, as in certain instances there do exist concession profiles of

the form (yA, yB) 6= (0, 0) that correspond with pure strategy Nash equilibria of the game. We

restrict our attention to pure strategy value concessions due to the information structure of

the interaction, i.e., the players’ Stage 0 choices become common knowledge and binding in the

subsequent stages.

Theorem 5.1.2. Consider the family of all three-player General Lotto games with value con-

cessions G under any SPE selection rule. The following statements hold:

1. For either player i ∈ {A,B}, there exist games G ∈ G in which Πvc
i (yi, 0) > Πvc

i (0, 0) for

yi ∈ (0,Φi], i.e., a non-zero value concession strictly improves player i’s payoff; and,

2. In every game G ∈ G, either there is a unique pure strategy Nash equilibrium either of the

form (0, 0), (yA, 0) or (0, yB) with yi ∈ (0,Φi], i ∈ {A,B}, or there are no pure strategy

Nash equilibria.

Given any two-player General Lotto game with value concessions, the choice yi = 0 is a

weakly-dominant strategy for each player i ∈ {A,B}.

Observe that the SPE payoffs of players A, B and 0 always sum to ΦA+ ΦB in the three-player

General Lotto game with value concessions, and the SPE payoffs of players 0 and i both increase

after i makes a beneficial value concession from the nominal game (i.e., in Stage 0, i ∈ {A,B}

selects yi ∈ [0,Φi] such that Πvc
i (yi, 0) > Πvc

i (0, 0)).4 It follows that if a player i ∈ {A,B}
4For any value concession (yA, yB) 6= (0, 0), it is straightforward to verify that player 0 can secure strictly
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Figure 5.3: Comparing the existence of mutually-beneficial alliances and beneficial concessions
for player A. We identify the parameters for which player B has a mutually-beneficial alliance
(in red), a beneficial value concession (in blue) or both (in green) under normalized player
budgets (i.e., X0 = 1), for XA, XB ∈ [0, 1.2], ΦA = 1 and (a) ΦB = 3/8, (b) ΦB = 3/4, and
(c) ΦB = 3/2. The white area indicates where player A has no mutually-beneficial alliance
or beneficial value concession. Observe that mutually-beneficial alliances exist in regimes
where the ratio ΦA/XA is much greater than ΦB/XB , whereas beneficial concessions occur
in regimes where the two ratios are sufficiently close. Furthermore, our plots suggest that
beneficial alliances and concessions co-exist when ΦA is less than, equal to or only slightly
greater than ΦB , but cease to co-exist when ΦA is much greater than ΦB .

makes a beneficial value concession from the nominal game, then player −i’s payoff suffers a

loss (i.e., Πvc
−i(yi, 0) < Πvc

−i(0, 0)). Thus, the existence of pure strategy Nash equilibria of the

form (yA, 0) and (0, yB) with yA, yB > 0 is interesting, since the non-conceding player’s best

response strategy is simply to do nothing and suffer the loss in her payoff.

5.1.4 Comparison with alliances

In the previous sections, we analyze the strategic viability of budget and value concessions

in the three-player General Lotto game model examined in this work. Next, we position our

results against the results in [50] on mutually-beneficial alliances. This permits a comparison

between the settings where mechanisms based on coordinated decision making (e.g., alliances)

are strategically advantageous, and those where unilateral mechanisms (e.g., concessions) are.

Recall that the authors of [50] identify cases in which alliances (i.e., pre-emptive, unilateral

budget transfers) are mutually beneficial to players A and B in the three-player General Lotto

game. The intuition provided in [50] is that mutually-beneficial alliances occur in instances

more payoff than in the corresponding nominal game even if she continues to use her optimal allocation from
Stage 1 of the nominal game.
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where the difference between the ratios ΦA/XA and ΦB/XB is sufficiently large. In contrast,

our findings show that beneficial concessions only exist when the ratios ΦA/XA and ΦB/XB

are close (see Lemma 5.3.1 in Section 5.3.1). This comparison suggests that, if there are sig-

nificant asymmetries in the players’ strengths relative to the values of their respective contests,

then mechanisms based on centralized decision making, such as alliances, provide strategic

advantages; meanwhile, if differences in players’ relative strengths are small, then unilateral

mechanisms such as concessions prevail.

We confirm this intuition by plotting the parametric regions corresponding to the existence

of mutually-beneficial alliances (in red), beneficial concessions (in blue) or both (in green) in

Figure 5.3. The player budgets are normalized (i.e., X0 = 1), XA, XB ∈ [0, 1.2], ΦA = 1 and

(a) ΦB = 1/3, (b) ΦB = 1, and (c) ΦB = 3. We immediately observe that it is possible for

the two regions to overlap, i.e., there are parameters under which player A has both mutually-

beneficial alliances and beneficial pre-commitment. We further observe that this overlap exists

only when ΦA is lower than, equal to or only slightly larger than ΦB, e.g., as in Figure 5.3b,c.

When ΦA is much greater than ΦB, e.g,, as in Figure 5.3a, then the two regions are disjoint.

5.2 General Lotto games with pre-allocations

Another possible perspective on strategic pre-emption is that of a heterogeneous allocation

of resources, where the agent has access to either pre-allocated and real-time resources. Observe

that such a setting can also be viewed as revealing strategic information about the minimum

amount of resources that a player will allocate to a given battlefield.

5.2.1 Model

The General Lotto game with pre-allocations (GL-P) is a two-stage game with players A and

B, who compete over a set of n battlefields, denoted as B. Each battlefield b ∈ B is associated

with a known valuation wb > 0, which is common (symmetric) to both players. Player A is

endowed with a pre-allocated resource budget P > 0 and a real-time resource budget RA > 0.
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Figure 5.4: (a) The two-stage General Lotto game under consideration. Players A and B
compete over n battlefields, whose valuations are given by {wb}nb=1. In Stage 1, player A
decides how to deploy P pre-allocated resources to the battlefields. Player B observes the
deployment. In Stage 2, the players simultaneously decide how to deploy their real-time
resources RA and RB , thus engaging in a General Lotto game with favoritism. (b) A contour
map of player A’s equilibrium payoff in the Stage 2 game under the optimal deployment of
her pre-allocated resources S in Stage 1. The dashed lines indicate level curves, i.e. the
set of resource pairs (P,RA) ∈ R2

+ that achieve a given desired performance level Π > 0
(Theorem 5.2.2). Here, we have normalized the battlefield values and player B’s budget such
that

∑n
b=1 wb = 1 and qRB = 1. (c) This table shows the relative effectiveness of pre-allocated

to real-time resources, P eq/RA. Here, P eq is defined as the endowment (P eq, 0) (i.e. without
real-time resources) that achieves the same performance Π as the endowment (0, RA) (i.e.
without pre-allocated resources) for a given RA. We find that real-time resources are at least
twice as effective as pre-allocated resources, and can be arbitrarily more effective in certain
settings (Corollary 5.2.1).

Player B is endowed with a real-time resource budget RB > 0, but no pre-allocated resources.5

The two stages are played as follows:

– Stage 1: Player A decides how to allocate her P pre-allocated resources to the battlefields,

i.e., it selects a vector p = (p1, . . . , pn) ∈ ∆n(P ) := {p′ ∈ Rn+ : ‖p′‖1 = P}. We term the

vector p as player A’s pre-allocation profile. No payoffs are derived in Stage 1, and A’s choice

p becomes binding and common knowledge.

– Stage 2: Players A and B compete in a simultaneous-move sub-game G over B with their

real-time resource budgets RA, RB. Here, both players can randomly allocate these resources as

long as their expenditure does not exceed their budgets in expectation. Specifically, a strategy

for player i ∈ {A,B} is an n-variate (cumulative) distribution Fi over allocations xi ∈ Rn+ that

5Recent computational advances (see, e.g., [51]) permit the study of the scenario where both players are
endowed with pre-allocated resources. In this work, we seek to provide analytical characterizations of equilibrium
payoffs, and, thus, consider the simpler, unilateral pre-allocation setting.
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satisfies

Exi∼Fi

[∑
b∈B

xi,b

]
≤ Ri. (5.1)

We use L(Ri) to denote the set of all strategies Fi that satisfy (5.1). Given that player A chose

p in Stage 1, the expected payoff to player A is given by

uA(p, FA, FB) := ExA∼FA,
xB∼FB

[∑
b∈B

wb · I(xA,b + pb, qxB,b)

]
(5.2)

where I(a, b) = 1 if a > b, and I(a, b) = 0 otherwise for any two numbers a, b ∈ R+.6 In words,

player B must overcome player A’s pre-allocated resources pb as well as player A’s allocation

of real-time resources xA,b in order to win battlefield b. The parameter q > 0 is the relative

quality of player B’s real-time resources against player A’s resources. When q < 1 (resp.

q > 1), they are less (resp. more) effective than player A’s resources. The payoff to player B is

uB(p, FA, FB) = W − uA(p, FA, FB), where we denote W =
∑

b∈B wb.

Stages 1 and 2 of GL-P are illustrated in Figure 5.4a. We denote an instance of GL-P

as GL-P(P,RA, RB,w), and note that the Stage 2 sub-game (i.e., the game with fixed pre-

allocation profile) is an instance of the General Lotto game with favoritism [51]. For a given

GL-P instance G, we define an equilibrium as any joint strategy profile (p∗, F ∗A, F
∗
B) ∈ ∆n(P )×

L(RA)× L(RB) that satisfies

uA(p∗, F ∗A, F
∗
B) ≥ uA(p, FA, F

∗
B) and

uB(p∗, F ∗A, F
∗
B) ≥ uB(p∗, F ∗A, FB)

(5.3)

for any p ∈ ∆n(P ), FA ∈ L(RA) and FB ∈ L(RB). Notably, player A’s strategy consists of

her deterministic pre-allocation profile p in Stage 1, as well as her randomized allocation of

real-time resources FA in Stage 2. It follows from the results in [51] that an equilibrium exists

in any GL-P instance G, and that the equilibrium payoffs π∗i (G) = ui(p
∗, F ∗A, F

∗
B), i ∈ {A,B},

6The tie-breaking rule (i.e., deciding who wins if xA,b + pb = xB,b) can be assumed to be arbitrary, without
affecting any of our results. This property is common in the General Lotto literature, see, e.g., [20, 51].
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are unique. For ease of notation, we will use π∗i (P,RA, RB), i ∈ {A,B}, to denote players’

equilibrium payoffs in G when the dependence on the vector w is clear.

5.2.2 Main results

Theorem 5.2.1. Consider a GL-P game instance with P,RA, RB > 0, and w ∈ Rn++. The

following conditions characterize player A’s equilibrium payoff π∗A(P,RA, RB):

1. If qRB < P , or qRB ≥ P and RA ≥ 2(qRB−P )2

P+2(qRB−P ) , then π∗A(P,RA, RB) is

W ·

1− qRB
2RA

(
RA +

√
RA(RA + 2P )

P +RA +
√
RA(RA + 2P )

)2
 . (5.4)

2. Otherwise, π∗A(P,RA, RB) is

W · RA
2(qRB − P )

. (5.5)

As a consequence of the above result, we are able to characterize expressions for the level

curves of the function π∗A(P,RA, RB). That is, for a desired performance level Π ≥ 0 and fixed

RB, we provide the set of all pairs (P,RA) such that π∗A(P,RA, RB) = Π.

Theorem 5.2.2. Given any RB > 0 and w ∈ Rn++, fix a desired performance level Π ∈ [0,W ].

The set of all pairs (P,RA) ∈ R2
+ that satisfy π∗A(P,RA, RB) = Π is given by the following

conditions:

If 0 ≤ Π < W
2 , then

RA =


2Π
W (qRB − P ) if P ∈

[
0, (W−2Π)qRB

W−Π

)
(qRBW−(W−Π)P )2

2qRB(W−Π)W if P ∈
[

(W−2Π)qRB
W−Π , WqRB

W−Π

] (5.6)

If W
2 ≤ Π ≤W , then

RA =
(qRBW − (W −Π)P )2

2qRB(W −Π)W
, if P ∈

[
0,
WqRB
W −Π

]
(5.7)
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If P > WqRB
W−Π , then π∗A(P,RA, RB) > Π for any RA ≥ 0.

We can use the result in Theorem 5.2.2 to obtain an expression for the relative effectiveness

of pre-allocated and real-time resources when these are deployed in isolation. In the following

corollary, we provide this expression, and observe that real-time resources are at least twice as

valuable as pre-allocated resources, and can be arbitrarily more valuable in specific settings:

Corollary 5.2.1. For given RA, RB > 0, the unique value P eq > 0 such that π∗A(P eq, 0, RB) =

π∗A(0, RA, RB) is characterized by the following expression:

P eq =


2RA if RA > qRB,

2(qRB)2

2qRB−RA if RA ≤ qRB.
(5.8)

Notably, the ratio P eq/RA is lower-bounded by 2, and P eq/RA →∞ as RA → 0+.

5.2.3 Optimal investment decisions

In this section, we consider a scenario where player A has an opportunity to make an

investment decision regarding its resource endowments. That is, the pair (P,RA) ∈ R2
+ is a

strategic choice made by A before the game GL-P(P,RA, RB,w) is played. Given a monetary

budget XA > 0 for player A, any pair (P,RA) must belong to the following set of feasible

investments:

I(XA) := {(P,RA) : RA + cP ≤ XA} (5.9)

where c ≥ 0 is the per-unit cost for purchasing pre-allocated resources, and we assume the per-

unit cost for purchasing real-time resources is 1 without loss of generality. We are interested

in characterizing player A’s optimal investment subject to the above cost constraint, and given

player B’s resource endowment RB > 0. This is formulated as the following optimization

problem:

πopt
A := max

(P,RA)∈I(XA)
π∗A(P,RA, RB). (5.10)
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In the result below, we derive the complete solution to the optimal investment problem

(5.10).

Corollary 5.2.2. Fix a monetary budget XA > 0, relative per-unit cost c > 0, and RB > 0

real-time resources for player B. Then, player A’s optimal investment in pre-allocated resources

for the optimization problem in (5.10) under the linear cost constraint in (5.9) is

P ∗ =



(1− c
2−c)

XA
c , if c < t

∈ [0, (1− c
2−c)

XA
c ], if c = t

0, if c > t

. (5.11)

where t := min{1, XAqRB
}. The optimal investment in real-time resources is R∗A = XA−cP ∗. The

resulting payoff πopt
A to player A is given by

W ·



1− qRB
2XA

c(2− c), if c < t

1− qRB
2XA

, if c ≥ t and XA
qRB
≥ 1

XA
2qRB

, if c ≥ t and XA
qRB

< 1

. (5.12)

The above solution is obtained by leveraging the level set characterization from Theorem

5.2.2, and the fact that the level sets are strictly decreasing and convex for Π ∈ (0,W ). The

budget constraint I(XA) is a line segment in R2
+, and we thus seek the level curve that lies

tangent to the segment. In cases where the cost c is sufficiently high, no level curve lies tangent

to I(XA), and, thus, player A invests all of her budget in real-time resources.

5.3 Chapter proofs

5.3.1 Proofs from Section 5.1

Many of the proofs depend on player 0’s optimal allocation (X∗0,A, X
∗
0,B) ∈ R2

≥0 in Stage 1

of the three-player General Lotto game, which was derived in [50]. Observe that this represents
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c = 0.423
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Figure 5.5: The optimal investment (P ∗, R∗A) ∈ R2
+ subject to the linear cost constraint in

(5.9). Here, we consider the optimal investment problem when XA = 4/3, qRB = W = 1,
and c ∈ {0.423, 1.333}. Observe that the set of feasible investments I(XA) is the line segment
connecting (0, XA) and (XA/c, 0). The optimal investment lies on the level curve tangent
to this line segment. For example, when c = 0.423, the optimal investment is (2.309, 0.357)
(unfilled circle), as I(XA) (dotted, black line) is tangent to the level curve with Π = 0.750
(solid, orange line). For sufficiently high cost c, I(XA) will not be tangent to any level curve,
and the optimal investment is (0, XA). For example, when c = 1.333, observe that I(XA)
(dashed, black line) is not tangent even to the level curve with Π = 0.625 (solid, blue line),
and the optimal investment is (0, 4/3) (filled square).

a sub-game perfect equilibrium decision of player 0 in Stage 1 given the budgets and values

arising from the Stage 0 choices of players A and B. We detail their result in the following fact

for the reader’s convenience:

Fact 5.3.1 (Optimal Stage 1 Allocation [50]). Consider the three-player General Lotto game G

with normalized player budgets (i.e., X0 = 1). Let R1i(G), R2i(G), R3i(G) and R4, i ∈ {A,B},

denote the following regions:

R1i(G) :=

{(Xi, X−i) s.t. Φi/Φ−i > max{(Xi)
2, 1}/(XiX−i)}

∪ {(Xi, X−i) s.t. Xi < 1 and Φi/Φ−i = 1/(XiX−i)}

71



Pre-emptive mechanisms: The value of revealing information Chapter 5

R2i(G) := {(Xi, X−i) s.t. Φi/Φ−i > Xi/X−i

and 0 < 1−
√

ΦiXiX−i/Φ−i ≤ X−i}

R3i(G) := {(Xi, X−i) s.t. Φi/Φ−i ≥ Xi/X−i

and 1−
√

ΦiXiX−i/Φ−i > X−i}

R4(G) := {(Xi, X−i) s.t. Φi/Φ−i = Xi/X−i

and Xi +X−i ≥ 1}.

Player 0’s optimal allocation (X∗0,A, X
∗
0,B) in Stage 1 is determined in closed-form as follows:

• If (Xi, X−i) ∈ R1i(G), then X∗0,i = 1;

• If (Xi, X−i) ∈ R2i(G), then

X∗0,i =

√
ΦiXiX−i

Φ−i
;

• If (Xi, X−i) ∈ R3i(G), then

X∗0,i =

√
ΦiXi√

ΦiXi +
√

Φ−iX−i
;

• If (Xi, X−i) ∈ R4(G), then select any X∗0,i ∈ [max{0, 1−X−i},min{1, Xi}];

where X∗0,−i = 1−X∗0,i in all the above cases.

Though the indices of players A and B are permuted in the region definitions, observe that

the expressions for player 0’s optimal allocation – as well as the players’ payoffs – are identical

in R3B(G) and R3C(G). Thus, we simplify the notation with R3(G) := R3B(G) ∪R3C(G).

Recall from the previous section that our proposed models for budget and value concessions

are normal-form games under the assumption that players 0, A and B play according to an

SPE in Stages 1 and 2. In particular, observe that the players’ payoffs at the end of Stage

2 are uniquely determined by player 0’s allocation decision in Stage 1, since the equilibrium

payoffs in the General Lotto games are unique (Theorem 3.1.1). Crucially, as we summarize in
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Fact 5.3.1, player 0’s optimal allocation in Stage 1 – and, thus, the players’ corresponding SPE

payoffs in Stages 1 and 2 – is unique except for when (XA, XB) ∈ R4(G). Accordingly, in the

forthcoming proofs, we treat the setting when (XA, XB) ∈ R4(G) (i.e., the setting when 0 has

multiple optimal allocations) explicitly, and show that the results in Theorem 5.1.1 and 5.1.2

hold irrespective of the imposed SPE selection rule.

Proof of Theorem 5.1.1 For any three-player General Lotto game with budget concessions

G, the proof amounts to showing that player A’s payoff is nonincreasing in xA for any con-

cession profile (xA, xB) ∈ [0, XA] × [0, XB] when (XA, XB) is in any of the regions Rj(G),

j ∈ {1A, 1B, 2A, 2B, 3, 4}, identified in Fact 5.3.1. This is sufficient as the same reasoning

applies symmetrically to player B. Throughout, we denote the nominal three-player General

Lotto game (i.e., the game without any budget concessions) as G, and the three-player General

Lotto game with budget concessions corresponding to G under a given budget concession profile

(xA, xB) as G′(xA, xB).

We begin with our treatment of settings where players 0, A and B have non-unique SPE

payoffs in Stages 1 and 2, corresponding with settings where player 0 has more than one possible

optimal allocation in Stage 1.

– Non-unique SPE payoffs: Recall from Fact 5.3.1 that players’ SPE payoffs in Stages 1

and 2 are non-unique only when (XA−xA, XB−xB) ∈ R4(G′(xA, xB)). For any of these SPEs,

we show that – regardless of the SPE selection rule – A prefers to concede x < xA if xA > 0

and prefers to concede xA if xA = 0. According to Fact 5.3.1, when (XA − xA, XB − xB) ∈

R4(G′(xA, xB)), any allocation satisfying X∗0,A ∈ [max{0, 1 − (XB − xB)},min{1, XA − xA}]

and X∗0,B = 1 − X∗0,A is an optimal allocation for player 0. We show that (i) if A concedes x

with 0 < x < xA, then 0 allocates at most max{0, 1 − (XB − xB)} to the battlefields in front

BA, and (ii) if A concedes x > xA, then 0 allocates at least min{1, XA − x} to front BA. It

follows that A prefers to concede x < xA since A’s Stage 2 payoff is nonincreasing in the ratio

X∗0,A/(XA − x) (Theorem 3.1.1).

In scenario (i), observe that any budget concession x with 0 ≤ x < xA would satisfy
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either (XA − x,XB − xB) ∈ R1B(G′(x, xB)) or (XA − x,XB − xB) ∈ R2B(G′(x, xB)), since

XA−xA+XB−xB ≥ 1 must hold if (XA−xA, XB−xB) ∈ R4(G′(x, xB)). If (XA−x,XB−xB) ∈

R1B(G′(x, xB)), then X∗0,B = 1 and X∗0,A = 1 −X∗0,B = 0. Moreover, if (XA − x,XB − xB) ∈

R2B(G′(x, xB)), then X∗0,B ≥ XB − xB and, thus, X∗0,A ≤ 1− (XB − xB).

Likewise, in scenario (ii), x > xA satisfies either (XA − x,XB − xB) ∈ R1A(G′(x, xB)),

(XA−x,XB−xB) ∈ R2A(G′(x, xB)), or (XA−x,XB−xB) ∈ R3(G′(x, xB)). If (XA−x,XB−

xB) ∈ R1A(G′(x, xB)), then X∗0,A = 1. Furthermore, if (XA − x,XB − xB) ∈ R2A(G′(x, xB) ∪

R3(G′(x, xB)) then X∗0,A > XA − x.

Next, we consider the setting when player 0’s optimal allocation in Stage 1 is unique, and,

thus, the players’ corresponding SPE payoffs in Stages 1 and 2 are unique.

– Unique SPE payoffs: We begin with the scenario (XA−xA, XB−xB) ∈ R1B(G′(xA, xB)).

Recall that, in this scenario, player 0 commits no budget to the battlefields in front BA. Thus,

player A’s payoff before the concession is ΦA, the highest possible payoff. Furthermore, if

(XA−xA, XB−xB) ∈ R1B(G′(xA, xA)), then (XA, XB−xB) ∈ R1B(G′(0, xB)) must also hold,

since the expression 1−
√

ΦB(XA − x)(XB − xB)/ΦA is increasing in x.

In all other regions, we show that player A’s payoff Πbc
A (x, xB) is strictly decreasing in x by

checking the first partial derivative with respect to x ≥ 0:

If (XA − x,XB − xB) ∈ R1A(G′(x, xB)) and XA − x > 1, then

∂

∂x
ΦA

[
1− 1

2(XA − x)

]
= − ΦA

2(XA − x)2
< 0.

If (XA − x,XB − xB) ∈ R1A(G′(x, xB)) and – conversely – XA − x ≤ 1, then

∂

∂x

ΦA(XA − x)

2
= −ΦA

2
< 0.

If (XA − x,XB − xB) ∈ R2A(G′(x, xB)), then

∂

∂x

ΦA(XA − x)

2
√

ΦA(XA−x)(XB−xB)
ΦB

= − ΦA

4
√

ΦA(XA−x)(XB−xB)
ΦB

< 0.
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If (XA − x,XB − xB) ∈ R2B(G′(x, xB)), then

∂

∂x
ΦA

1−
1−

√
ΦB(XA−x)(XB−xB)

ΦA

2(XA − x)



= −
ΦA

[
2−

√
ΦB(XA−x)(XB−xB)

ΦA

]
4(XA − x)2

,

which is strictly negative as the condition

1−
√

ΦB(XA − x)(XB − xB)/ΦA ≥ 0

must hold if (XA − x,XB − xB) ∈ R2B(G′). Finally, if (XA − x,XB − xB) ∈ R3(G′(x, xB)),

then

∂

∂x

ΦA(XA − x)

2

√
ΦA(XA−x)√

ΦA(XA−x)+
√

ΦB(XB−xB)

= −ΦA

2
− ΦA

√
ΦB(XB − xB)

4
√

ΦA(XA − x)
,

which is strictly negative. Since there is no payoff improvement associated with making a budget

concession in any of the regions (including R4), it follows that making no budget concession

maximizes player A’s payoff. This concludes the proof.

Proof of Theorem 5.1.2 The proof is presented as two lemmas, which we summarize below:

1. In Lemma 5.3.1, we provide necessary (under mild assumptions on the SPE selection rule)

and sufficient conditions on the three-player General Lotto games in which either player

i ∈ {A,B} can improve her payoff by making a value concession; and,

2. In Lemma 5.3.2, we use the result in Lemma 5.3.1 to show that there is at most one pure

strategy Nash equilibrium that coincides with a pure strategy concession profile of the

form (0, 0), (yA, 0) or (0, yB) in the General Lotto game with value concessions.

Observe that the claim in Theorem 5.1.2 follows after combining these two lemmas, as there

exist instances in which value concessions can improve a player’s payoff (Lemma 5.3.1), and –
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if there exist any pure strategy Nash equilibria – the unique pure strategy Nash equilibrium in

the game with value concessions is of the form (0, 0), (yA, 0) or (0, yB) (Lemma 5.3.2).

The claims of the forthcoming lemmas, and several arguments within the proofs, are depen-

dent on a parameter ε→ 0+ that we use to place the point (XA, XB) strictly in the interior of a

particular region Rj to take derivatives and make payoff comparisons. Note that, typically, the

use of such an argument would require a definition of approximate best-response strategies, and

approximate equilibrium to formally establish convergence and the solution concept. However,

we only use these arguments to rule out the existence of certain equilibrium structures. In fact,

from the proof of Lemma 5.3.2, we find that the only emergent pure strategy Nash equilibria

do not require such arguments at all. For this reason, and for conciseness, we omit any further

discussion on this topic.

Lemma 5.3.1. Consider any three-player General Lotto game G with normalized player bud-

gets (i.e., X0 = 1), and (XA, XB) ∈ Rj(G) such that j ∈ {1A, 1B, 2A, 2B, 3}. Let y∗1 =

ΦA − ΦBXA/XB, y∗2 = ΦA − ΦBXAXB/(2 − 4XA)2, y∗3 = ΦA − ΦBXAXB and y∗4 = ΦA −

ΦBXAXB/(1 − XA)2. Further, let ε → 0+. It holds that player A can improve her payoff by

unilaterally deviating from the value concession profile (0, 0) if and only if

Πvc
A (yopt

A , 0) > Πvc
A (0, 0),

where the value yopt
A ∈ [0,ΦA] is defined according to the following conditions:

(i) If (XA, XB) ∈ R1A(G) ∪R2A(G) and XB ≥ 1, then yopt
A = y∗1 + ε;

(ii) If (XA, XB) ∈ R1A(G) ∪R2A(G), XB < 1, XA +XB ≥ 1 and

∂

∂y
Πvc
A (y, 0)

∣∣∣∣
y=y∗1+ε

≤ 0,

then yopt
A = y∗1 + ε;
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(iii) If (XA, XB) ∈ R1A(G) ∪R2A(G), XB < 1, XA +XB ≥ 1 and

∂

∂y
Πvc
A (y, 0)

∣∣∣∣
y=y∗1+ε

> 0,

then yopt
A = min{y∗2, y∗3};

(iv) If (XA, XB) ∈ R1A(G) ∪R2A(G) ∪R3(G), XB +XC < 1 and

∂

∂y
Πvc
A (y, 0)

∣∣∣∣
y=y∗4+ε

> 0,

then yopt
A = min{y∗2, y∗3};

(v) If (XA, XB) ∈ R2B(G) and

∂

∂y
Πvc
A (y, 0)

∣∣∣∣
y=0

> 0,

then yopt
A = min{y∗2, y∗3};

(vi) Otherwise, yopt
A = 0.

The same conditions hold symmetrically for player B.

Proof. Throughout the proof, we will use G to denote the nominal three-player General Lotto

game (with no concessions), and use G′(y) to denote the three-player General Lotto game with

value concessions under the concession profile (y, 0). We divide the proof in two parts. In Part

1, we demonstrate if and when player A can use a value concession to improve her payoff when

the point (XA, XB) falls in each of the regions Rj(G), j ∈ {1A, 1B, 2A, 2B, 3, 4}. Then, in Part

2, we identify the optimal value concession value yopt 6= 0, and thus the maximum payoff that

player A can achieve under a value concession. Thus, the necessary and sufficient conditions

in the claim amount to verifying that player A’s maximum achievable payoff using the value

concession yopt 6= 0 is strictly greater than player A’s payoff under no concession (i.e., in the

nominal game).
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Part 1. Observe that, for sufficiently large value concession y ∈ [0,ΦA], the point (XA, XB)

can “transition” fromRj(G) toRk(G′(y)), for j 6= k ∈ {1A, 1B, 2A, 2B, 3, 4}, as the median line

XB = ΦBXA/(ΦA−y) which divides regionsR1B(G′(y))∪R2B(G′(y)) and regionsR1C(G′(y))∪

R2C(G′(y)) rotates counter-clockwise about the origin as y is increased, and the value 1 −√
(ΦA − y)XAXB/ΦB (resp., 1−

√
ΦBXAXB/(ΦA − y)) is increasing (resp., decreasing) in y.

For example, a point (XA, XB) ∈ R1A(G) ∪ R2A(G) will transition to R4(G′(y)) and then to

R1B(G′(y)) ∪R2B(G′(y)) as y is increased. However, note that a point (XA, XB) ∈ R3(G′(y))

will never transition to or from R4(G′(y)) as y is increased since XA + XB < 1 in R3, and

XA +XB ≥ 1 in R4.

As in the proof of Theorem 5.1.1, we first resolve the setting where players’ SPE payoffs

in Stages 1 and 2 are non-unique, i.e., (XA, XB) ∈ R4(G′(y)) for some y ≥ 0. We show that

we need not explicitly consider the transition of the point (XA, XB) through the region R4 in

our study of unilateral best response strategies, since player A either has a different concession

strategy y′ 6= y such that (XA, XB) /∈ R4(G′(y′)) and her payoff is improved, or the A’s payoff

Πvc(y, 0) is continuous in the transition from R4(G′(y)) to R1B(G′(y)) ∪R2B(G′(y)).

– Non-unique SPE payoffs: We begin by showing that player A achieves at least the same

payoff by conceding y′ = y + ε, ε → 0+, when (XA, XB) ∈ R4(G′(y)), y ≥ 0. Recall that

the players’ payoffs are only ever non-unique when (XA, XB) is in the region R4, because any

allocation that satisfies max{0, 1−XB} ≤ X∗0,A ≤ min{XA, 1} and X∗0,B = 1−X∗0,A is optimal

for player 0. When XB ≥ 1, observe that max{0, 1−XB} = 0 and thus X∗0,A ≥ 0. Additionally,

if (XA, XB) ∈ R4(G′(y)) and XB ≥ 1, then it follows that (XA, XB) ∈ R1B(G′(y′)). Recall

from Fact 5.3.1 that X∗0,A = 0 when (XA, XB) is in the region R1B. Since the allocation

X∗0,A when (XA, XB) is in R4(G′(y)) is at least the same as in R1B(G(y)), it immediately

follows that Πvc
A (y′, 0) ≥ Πvc

A (y, 0). Similarly, if (XA, XB) ∈ R4(G′(y)) and XB < 1, then

X∗0,A ≥ max{0, 1 − XB} = 1 − XB and (XA, XB) ∈ R2B(G′(y′)). Since X∗0,B > XB – and,

thus, X∗0,A < 1−XB – in R2B, it immediately follows that Πvc
A (y′, 0) > Πvc

A (y, 0). Thus, when

(XA, XB) ∈ R4(G′(y)), the function Πvc
A (y, 0) is either continuous in y as the point (XA, XB)
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transitions from R4(G′(y)) to R1B(G′(y′))∪R2B(G′(y′)), or it is discontinuous in this transition

and Πvc
A (y, 0) strictly increases.

From the above, it follows that we need not consider (XA, XB) ∈ R4(G′(y)) for the remain-

der of the proof (i.e., we need not consider the setting where players’ SPE payoffs in Stages

1 and 2 are non-unique), since – depending on the SPE selection rule – either player A can

strictly improve her payoff by conceding y′ = y+ε, ε→ 0+, such that (XA, XB) ∈ R1B(G′(y′))∪

R2B(G′(y′)), or the transition is continuous in A’s payoff, i.e., Πvc
A (y, 0) = Πvc

A (y′, 0). Addition-

ally, we have shown that Conditions (i)–(iii) in the claim hold for when (XA, XB) ∈ R4(G).

– Unique SPE payoffs: We continue by making some important observations about the

first and second partial derivatives in the regions Rj , j ∈ {1A, 1B, 2A, 2B, 3}. The first partial

derivative of player A’s payoff with respect to y > 0 is always strictly negative when (XA, XB)

is in the regions R1A(G′(y)), R1B(G′(y)), R2A(G′(y)) or R3(G′(y)):

If (XA, XB) ∈ R1A(G′(y)) and XA > 1, then

∂

∂y
Πvc
A (y, 0) = − 1

2XA
,

else, if (XA, XB) ∈ R1A(G′(y)) and XA ≤ 1, then

∂

∂y
Πvc
A (y, 0) = −XA

2
.

If (XA, XB) ∈ R1B(G′(y)), then

∂

∂y
Πvc
A (y, 0) = −1.

If (XA, XB) ∈ R2A(G′(y)), then

∂

∂y
Πvc
A (y, 0) = − XA

4
√

(ΦA−y)XAXB
ΦB

.
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If (XA, XB) ∈ R3(G′(y)), then

∂

∂y
Πvc
A (y, 0) = −XA

2

[
1 +

1

2

√
(ΦA−y)XA√

ΦBXB

]
.

Furthermore, the second partial derivative of player A’s payoff with respect to y > 0 is always

negative when (XA, XB) ∈ R2B(G′(y)):

∂2

∂y2
Πvc
A (y, 0) = −

√
ΦBXAXB

ΦA−y

8(ΦA − y)XA
< 0.

Now we are ready to examine the possible transitions between the regions following a value

concession, and the corresponding impact on player A’s payoff.

Consider the scenario when (XA, XB) ∈ R3(G). Observe that from region R3(G), the only

possible transitions as we increase y are to regions R1B(G′(y)) and R2B(G′(y)) since the values

1 −
√

(ΦA − y)XAXB/ΦB and 1 −
√

ΦBXAXB/(ΦA − y) are increasing and decreasing in y,

respectively. Furthermore, the players’ payoffs in the transition from region R3(G) to region

R2B(G′(y)) are continuous but not necessarily smooth, i.e., the first partial derivatives with

respect to y need not be continuous. Since the first partial derivative of player A’s payoff

with respect to y is always negative for (XA, XB) ∈ R3(G′(y)), it follows that all beneficial

value concessions in this setting must involve a transition of (XA, XB) to either R1B(G′(y)) or

R2B(G′(y)).

Next, consider the scenario when either (XA, XB) ∈ R1A(G) or (XA, XB) ∈ R2A(G). As

we increase y in this setting, note that if XA > 1 then (XA, XB) must be in R1A(G) and will

transition to eitherR1B(G′(y)) orR2B(G′(y)) without first transitting throughR2A(G′(y)), and

that if XB > 1 then (XA, XB) will transit to R1B(G′(y)) without passing through R2B(G′(y)).

Further note that, in the scenarios where either (XA, XB) ∈ R1A(G) or (XA, XB) ∈ R2A(G) and

the point (XA, XB) transitions through R3(G′(y)) as we increase y (i.e., when XA +XB ≤ 1),

the partial derivative of player A’s payoff with respect to y must remain negative at least until

it reaches the boundary between R3(G′(y)) and R2B(G′(y)). Thus, there can be no beneficial
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value concession such that (XA, XB) transitions from either R1A(G) or R2A(G) to R3(G′(y)).

Likewise, there is no beneficial value concession such that (XA, XB) transits from R1A(G) to

R2A(G′(y)). Thus, for a value concession y to improve A’s payoff when (XA, XB) is in either

R1A(G) or R2A(G), if XB > 1, then (XA, XB) must transition to R1B(G′(y)), and, if XB ≤ 1,

then (XA, XB) must transition to either R1B(G′(y)) or R2B(G′(y)). Furthermore, for a value

concession y to improve A’s payoff when (XA, XB) ∈ R3(G), (XA, XB) must transition to either

R1B(G′(y)) or R2B(G′(y)).

Finally, consider the scenarios when either (XA, XB) ∈ R1B(G) or (XA, XB) ∈ R2B(G).

Note that if (XA, XB) ∈ R1B(G), then (XA, XB) remains in R1B(G′(y)) as y is increased

since 1 −
√

ΦBXAXB/(ΦA − y) is decreasing in y. Similarly, (XA, XB) ∈ R2B(G) will either

remain in R2B(G′(y)) or transition to R1B(G′(y)) as y is increased. We showed above that the

first partial derivative of player A’s payoff with respect to y when (XA, XB) ∈ R1B(G′(y)) is

negative, and so there can be no beneficial value concession if (XA, XB) ∈ R1B(G).

Part 2. In the previous part of the proof, we observed that transitions between regions

can occur following value concessions. In particular, we demonstrate that a value concession

y cannot improve A’s payoff if (XA, XB) is in either R1A(G′(y)), R2A(G′(y)), or R3(G′(y)),

or (XA, XB) ∈ R1B(G). We will use further insights garnered from the previous part in the

remainder of the proof.

Consider the scenario where XB ≥ 1 and (XA, XB) is in either R1A(G) or R2A(G). Observe

that in this setting, the value concession y∗1 +ε satisfies (XA, XB) ∈ R1C(G′(y∗1 +ε)). For y < y∗1,

(XA, XB) remains in either R1A(G′(y)) or R2A(G′(y)) and, thus, player A cannot derive any

benefit by the previous part of the lemma. Further, player A receives strictly lower payoff for

the concession of y > y∗1 + ε than the concession of y∗1 + ε because the partial derivative of

her payoff with respect to y is strictly negative in R1B(G′(y)). Since XB ≥ 1, it must be that

XA+XB > 1 and so (XA, XB) cannot transit to R3 for any y. It follows that the optimal value

concession value is yopt
A = y∗1 + ε in this setting, as in Condition (i) and (iv) of the claim.

Next, consider the scenario where (XA, XB) is in either R1A(G) or R2A(G), XB < 1 and
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XA +XB ≥ 1 (i.e., (XA, XB) still cannot transit to R3 for any y). Here, the value concession

y∗1 + ε satisfies (XA, XB) ∈ R2B(G′(y∗1 + ε)). Once again, (XA, XB) remains in R1A(G′(y)) or

R2A(G′(y)) after a concession of any value y < y∗1, which cannot provide payoff improvements

to player A. Next, recall from the proof of the previous part that the second partial derivative

of player A’s payoff with respect to y is strictly negative in R2B(G′(y)) (i.e., player A’s payoff

is concave down in y). This means that if the first partial derivative of player A’s payoff

with respect to y is strictly negative or zero at y = y∗1 + ε, then the optimal value concession

value is yopt = y∗1 + ε as the derivative will remain nonpositive in R2B(G′(y)) as well as in

R1B(G′(y)). Observe that this outcome corresponds with Condition (ii) of the claim. However,

if the first partial derivative of player A’s payoff with respect to y is strictly positive when

y = y∗1 + ε, then there are two possibilities: (1) that there is a value y for which player A’s

payoff is maximized (i.e., partial derivative with respect to y is zero) in the interior of region

R2B(G′(y)), or (2) that the first partial derivative remains positive at the boundary between

R1B(G′(y)) and R2B(G′(y)). The first partial derivative of player A’s payoff with respect to y

is zero after conceding the value y ≥ 0 that satisfies 4XA = 2 −
√

ΦBXAXB/(ΦA − y) which

is y = ΦA − ΦBXAXB/(2 − 4XA)2, precisely the definition of y∗2. Furthermore, (XB, XC) is

at the boundary between R1B(G′(y)) and R2B(G′(y)) after conceding the value y ≥ 0 that

satisfies 1 −
√

ΦBXAXB/(ΦA − y) = 0 which is y = ΦA − ΦBXAXB, precisely the definition

of y∗3. Thus, if the first partial derivative of player A’s payoff with respect to y is strictly

positive when y = y∗1 + ε, then the optimal value concession value is yopt = y∗2 if y∗2 < y∗3

(Possibility 1), or yopt = y∗3 if y∗2 ≥ y∗3 (Possibility 2). Observe that this is equivalent to writing

yopt
A = min{y∗2, y∗3} as in Condition (iii) of the claim.

Next, consider the scenario where XA+XB < 1 and (XA, XB) is in either R1A(G), R2A(G)

or R3(G). Observe that the point (XA, XB) is at the boundary between R2B(G′(y)) and

R3(G′(y)) after conceding the value y ≥ 0 that satisfies 1−
√

ΦBXAXB/(ΦA − y) = XA which

is y = ΦA−ΦBXAXB/(1−XA)2, precisely the definition of y∗4. Since the point (XA, XB) transits

through R3(G′(y)), the partial derivative of player A’s payoff with respect to y remains strictly
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negative for all y < y∗4. Furthermore, since the players’ payoffs are continuous as we transit

from R3(G′(y)) to R2C(G′(y)), there can be no benefit to transitting only to the boundary

between R3(G′(y)) and R2C(G′(y)). Recall that the second partial derivative with respect to

y of player A’s payoff in R2B(G′(y)) is strictly negative. Thus, if the first partial derivative of

player A’s payoff with respect to y is nonpositive after conceding y = y∗4 + ε, then the partial

derivative will remain nonpositive in R2B(G′(y)) as well as in R1B(G′(y)). However, if the

derivative is strictly positive after conceding y = y∗4 + ε, then we consider Possibilities 1 and 2

as in the above paragraph, and obtain an optimal value concession value of yopt
A = min{y∗2, y∗3}

as in Condition (iv) of the claim.

Finally, consider the scenario where (XA, XB) is in R2B(G). Here, if the first partial

derivative of player B’s payoff with respect to y is strictly negative or zero when y = 0,

then there is no beneficial value concession as the partial derivative will remain nonpositive

in R2B(G′(y)) as well as in R1B(G′(y)). However, if the first partial derivative of player A’s

payoff with respect to y is strictly positive when v = 0, then we consider Possibilities 1 and 2

once again, an optimal value concession value of yopt
A = min{y∗2, y∗3} as in Condition (v) of the

claim.

Lemma 5.3.2. The three-player General Lotto game with value concessions has at most one

pure strategy Nash equilibrium that coincides with a pure strategy concession profile. If such an

equilibrium exists, then it must be of the form (0, 0), (yA, 0) or (0, yB).

Proof. This result draws heavily from the necessary and sufficient conditions for the existence

of beneficial value concessions identified in Lemma 5.3.1.

We begin by considering scenarios where the players’ SPE payoffs in Stages 1 and 2 are

non-unique, and show that – regardless of the SPE selection rule – no pure strategy Nash

equilibrium can exist in these scenarios.

– Non-unique SPE payoffs: Recall from the analogous discussion on “Non-unique SPE

payoffs” in Part 1 of the proof of Lemma 5.3.1 that one of the players i ∈ {A,B} can strictly

improve her payoff when (XA, XB) ∈ R4 under a given concession profile (yA, yB) ∈ [0,ΦA)×
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[0,ΦB) by conceding y′i = yi + ε, ε → 0+, if either X−i < 1, or X−i ≥ 1 and the player 0’s

allocation in the selected SPE for Stages 1 and 2 satisfies X∗0,i > 0. This leaves only the setting

where X−i ≥ 1 and X∗0,i = 0 as a possible scenario for candidate equilibria when (XA, XB) ∈ R4.

However, applying the same reasoning symmetrically, it follows that the concession y′−i = y−i+ε

is a strictly better response for the player −i in this case, since X∗0,−i = 1 > 0 must hold. Finally,

note that neither player i ∈ {A,B} can improve her payoff by conceding yi = Φi, and so an

appropriate ε → 0+ must exist. Thus, there can be no pure strategy Nash equilibrium where

(XA, XB) ∈ R4 under any concession profile (yA, yB) ∈ [0,ΦA]× [0,ΦB].

As we have resolved the scenario where the players’ SPE payoffs in Stages 1 and 2 are

non-unique, we only consider scenarios where the players’ SPE payoffs in Stages 1 and 2 are

unique for the remainder of the proof.

Before continuing, we make two observations that will aid in proving the claim:

O1) If (XA, XB) falls in any of the regions Rj , j ∈ {1A, 2A, 3}, (resp., j ∈ {1B, 2B, 3}) under

a pure strategy Nash equilibrium (y∗A, y
∗
B), then it must be that y∗A = 0 (resp., y∗B = 0),

since we showed that ∂/(∂yA)Πvc
A (yA, yB) (resp., ∂/(∂yB)Πvc

B (yA, yB)) is strictly negative

in Rj . This implies that at most one player i ∈ {A,B} will make a non-zero concession

in any pure strategy Nash equilibrium, i.e., any pure strategy Nash equilibrium is of the

form (0, 0), (y∗A, 0) or (0, y∗B) where y∗A and y∗B are the optimal concessions identified in

Lemma 5.3.1 when (XA, XB) is in each region Rj , j ∈ {1A, 1B, 2A, 2B, 3}.

O2) By Lemma 5.3.1, if player A (resp., B) has a beneficial unilateral deviation from the

profile (0, 0), then her optimal such deviation places the point (XA, XB) in one of the

regions Rj , j ∈ {1B, 2B} (resp., {1A, 2A}). Since at most one player i ∈ {A,B} can

make a non-zero concession in a given pure strategy Nash equilibrium (Observation O1),

if y∗i > 0 in a given pure strategy Nash equilibrium, then the player −i’s best response

must be not to concede. By contrapositive, if player −i has a concession y−i > 0 such

that Πvc
−i(y

∗
i , y−i) > Πvc

−i(y
∗
i , 0), then there is no pure strategy Nash equilibrium associated

with player i’s optimal unilateral deviation.
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Following Observations O1 and O2, the remainder of the proof amounts to showing that

any given instance of the normal form game has at most one pure strategy Nash equilibrium.

To do so we demonstrate that when the point (XA, XB) falls within any of the regions Rj ,

j ∈ {1A, 1B, 2A, 2B, 3}, identified in Fact 5.3.1, it must either be that at most one of the

players i ∈ {A,B} has a beneficial unilateral deviation from the nominal concession profile

(yA, yB) = (0, 0), or that if both players have a beneficial unilateral deviation, then for at least

one of the players i ∈ {A,B}, the player −i has a concession y−i > 0 such that Πvc
−i(y

∗
i , y−i) >

Πvc
−i(y

∗
i , 0).

– Unique SPE payoffs: We consider the remaining regions in Parts (i) and (ii), below.

Though we may focus on the proof from player A’s perspective, we stress that completeness of

the proof is contingent on applying the same reasoning symmetrically to player B.

Part (i). In this part, we consider the instances with XA + XB ≥ 1. By Lemma 5.3.1, when

(XA, XB) ∈ R1A(G)∪R2A(G) and XB ≥ 1, if player A’s optimal unilateral deviation from the

nominal profile is non-zero, then it must be yopt
A = y∗1 + ε, ε→ 0+, such that (XA, XB) ∈ R1B

under the concession profile (yopt
A , 0). Similarly, when (XA, XB) ∈ R1A(G) ∪R2A(G), XB < 1,

XA +XB ≥ 1 and ∂/(∂yA)Πvc
A (yA, 0) ≤ 0 at yA = y∗1 + ε, if player A’s optimal value unilateral

deviation is non-zero, then it must be yopt
A = y∗1 + ε, ε→ 0+, such that (XA, XB) ∈ ∪R2B under

the concession profile (yopt
A , 0). In either case, player B can best respond to such a concession

by conceding yB = ε′ – for sufficiently small ε′ > ε – such that (XA, XB) ∈ R1A∪R2A under the

concession profile (yopt
A , ε′) and Πvc

B (yopt
A , ε′) > Πvc

B (yopt
A , 0). Thus, by Observation O2, it follows

that when (XA, XB) ∈ R1A(G) ∪ R2A(G) and either XB ≥ 1, or XB < 1 and XA + XB ≥ 1,

if player A has a beneficial unilateral deviation, then there can be no pure strategy Nash

equilibrium corresponding to A’s optimal unilateral deviation from the nominal profile. Hence,

only one pure strategy Nash equilibrium – corresponding with B’s optimal unilateral deviation

from the nominal profile – can exist in this setting.

Next, consider the region (XA, XB) ∈ R1A(G)∪R2A(G), XB < 1 and XA +XB ≥ 1, when

∂/(∂yA)Πvc
A (yA, 0) > 0 at yA = y∗1 + ε, ε → 0+. We show that if both players A and B have a
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beneficial unilateral deviation from the profile (0, 0), then player A’s optimal value concession

is yopt
A = y∗1 +ε (i.e., ∂/(∂yA)Πvc

A (yA, 0) ≤ 0 at yA = y∗1 +ε) and, thus, results in a contradiction.

First, observe that ∂/(∂yA)Πvc
A (yA, 0) > 0 at yA = y∗1 + ε if and only if XB < 2−4XA. Further,

when (XA, XB) ∈ R2A(G), player B has a beneficial unilateral deviation from (0, 0) if and only

if ∂/(∂yB)Πvc
B (0, yC) > 0 at yC = 0, from which it follows that:

0 < − 1− 1

4

√
ΦAXA

ΦBXB
+

1

2XB

=
1

2XB

[
− 2XB −

1

2

√
ΦAXAXB

ΦB
+ 1
]

≤ 1

2XB

[−3

2
XB +

1

2

]
,

where the first inequality follows from ∂/(∂yB)Πvc
B (0, yC) > 0 at yC = 0, and the last inequality

holds by the necessary conditions for (XA, XB) ∈ R2A(G). This means that when player B has a

beneficial unilateral deviation from (0, 0) and (XA, XB) ∈ R2A(G) it must hold that XB < 1/3.

Note that the set of (XA, XB) ∈ R2
≥0 with XA +XB ≥ 1 and XB < 2− 4XA is strictly disjoint

from the set of (XA, XB) ∈ R2
≥0 withXA+XB ≥ 1 andXB < 1/3. Thus, if (XA, XB) ∈ R2A(G),

XA + XB ≥ 1 and both players A and B have beneficial unilateral deviation from (0, 0), then

∂/(∂yA)Πvc
A (yA, 0) ≤ 0 which is a contradiction. Thus, B cannot have a beneficial unilateral

deviation from the nominal concession profile when (XA, XB) ∈ R1A(G) ∪ R2A(G), XB < 1,

XA +XB ≥ 1, and ∂/(∂yA)Πvc
A (yA, 0) > 0 at yA = y∗1 + ε, ε→ 0+.

Part (ii). In the final part of the proof, we consider (XA, XB) ∈ R2A(G)∪R2B(G)∪R3(G) with

0 ≤ XA + XB < 1. For any pair XA, XB ≥ 0 in this regime, we show that at most one player

i ∈ {A,B} has a beneficial unilateral deviation from (0, 0). For (XA, XB) ∈ R2A(G) ∪ R3(G)

with 0 ≤ XA + XB < 1, a necessary condition for player A to have a beneficial unilateral
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deviation from (0, 0) is ∂/(∂yA)Πvc
A (yA, 0) > 0 at yA = y∗4 + ε, from which it follows that:

0 <
1

2XA
−
√

(1−XA)2

2XA
+

√
(1−XA)2

4XA
− 1

=
1

2XA
− 1−XA

2XA
+

1−XA

4XA
− 1

=
1

4XA
− 3

4
,

where the first inequality follows from ∂/(∂yA)Πvc
A (yA, 0) > 0 at yA = y∗4 + ε, and the equality

in the second line follows from 0 ≤ XA + XB < 1 and XA, XB > 0. Thus, when player A

has a beneficial value concession and (XA, XB) ∈ R2A(G) ∪ R3(G) with 0 ≤ XA + XB < 1,

it must hold that XA < 1/3. We showed in Part (i) that XA < 1/3 must also hold whenever

player A has a beneficial unilateral deviation from (0, 0) and (XA, XB) ∈ R2B(G).7 Thus, when

0 ≤ XA+XB < 1, we have shown that if both players A and B have beneficial value concessions

simultaneously, then XA, XB ∈ [0, 1/3] must hold.

Player A’s optimal value concession when 0 ≤ XA + XB < 1 is yopt
A = min{y∗2, y∗3}. It

immediately follows from the definitions of y∗2 and y∗3 that yopt
A = y∗2 for XA ∈ [1/4, 3/4] and

yopt
A = y∗3, otherwise. We divide (XA, XB) ∈ [0, 1/3]× [0, 1/3] into three subregions as follows:

–XA, XB ∈ [1/4, 1/3]: For each i ∈ {A,B}, it is straightforward to verify that after her optimal

value concession vopt
i = Φi−Φ−iXAXB/(2−4Xi)

2, it holds that (XA, XB) ∈ R2(−i) and player

i receives payoff Φ−iX−i/(4− 8Xi). If (XA, XB) ∈ R3(G), then player i ∈ {A,B} has nominal

payoff:

Πi = ΦiXi +
√

ΦAΦBXAXB.

If both players’ optimal value concessions are beneficial unilateral deviations from (0, 0) in this

case then it must hold that:

2
√

ΦAΦBXAXB < (ΦAXA + ΦBXB)
[ 1

4− 8XB
− 1
]
.

7We actually showed that XB < 1/3 whenever player B has a beneficial value concession and (XA, XB) ∈
R2A(G), but this statement follows by symmetry.
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However, for x ∈ [1/4, 1/3], it holds that 4− 8x > 4− 8/3 > 1 and, thus, the right-hand side is

strictly less than zero, which is a contradiction. This implies that both players A and B cannot

simultaneously have beneficial value concessions in this case. If (XA, XB) ∈ R2B(G), player

A’s nominal payoff is

ΠA = ΦA −
ΦA

2XA
+

1

2

√
ΦAΦBXB

XA
,

and player B’s nominal payoff is

ΠB =
1

2

√
ΦAΦBXB

XA
.

If ΦA ≤ ΦB, then player B’s optimal value concession is a beneficial unilateral deviation only if

√
ΦAΦBXB

XA
<

ΦAXA

2− 4XB

=⇒ ΦA

√
XB

XA
< ΦA

XA

2− 4XB

=⇒ 3

4
<

1

2
,

where the second line holds because ΦA ≤ ΦB, and the third line holds because XA, XB ∈

[1/4, 3/4]. This is a contradiction, which means player B’s optimal value concession is not a

beneficial unilateral deviation from (0, 0) in this case. If ΦA > ΦB, then player A’s optimal

value concession is a beneficial unilateral deviation only if

ΦA −
ΦA

2XA
+

1

2

√
ΦAΦBXB

XA
<

ΦBXB

4− 8XA

=⇒ ΦA

2
<

ΦAXB

4− 8XA

=⇒ 1

2
<

1

2
,

where the second line holds because 0 < 1 −
√

ΦBXAXB/ΦA ≤ XA holds when (XA, XB) ∈

R2B(G) and ΦA > ΦB, and the third line holds because XA, XB ∈ [1/4, 3/4]. This is a

contradiction, which means player A cannot have a beneficial value concession in this case.
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This reasoning holds symmetrically for (XA, XB) ∈ R2A(G).

–XA, XB ∈ [0, 1/4]: For each i ∈ {A,B}, it is straightforward to verify that after her optimal

value concession yopt
i = Φi − Φ−iXAXB, it holds that (XA, XB) ∈ R2(−i)(G

′(yopt
i )) and player

i receives payoff Φ−iXAXB. If (XA, XB) ∈ R3(G) and both players A and B have beneficial

unilateral deviations from (0, 0), it must hold that

2
√

ΦAΦBXAXB < ΦAXA(XB − 1) + ΦBXB(XA − 1).

However, the right-hand side must be negative since 0 < XA, XB < 1 which means there is a

contradiction and both players cannot have unilateral deviations simultaneously. If (XA, XB) ∈

R2B(G), then player A has a beneficial unilateral deviation only if

ΦA −
ΦA

2XA
+

1

2

√
ΦAΦBXB

XA
< ΦBXAXB

=⇒ ΦA

2
< ΦAXAXB,

where the second line holds because

0 ≤ 1−
√

ΦBXAXB/ΦA < XA

in R2B(G). This is a contradiction since XAXB ≤ 1/16 < 1/2 for XA, XB ∈ [0, 1/4] which

means A has no beneficial unilateral deviations in this case. This reasoning holds symmetrically

for (XA, XB) ∈ R2A(G).

–XA ∈ [1/4, 1/3], XB ∈ [0, 1/4] OR XA ∈ [0, 1/4], XB ∈ [1/4, 1/3]: We only consider the former,

as the proof follows symmetrically for the latter. Observe that yopt
A = ΦA−ΦBXAXB/(2−4XA)2

while yopt
B = ΦB − ΦAXAXB, and that players A and B’s payoffs after their optimal value

concessions are ΦBXB/(4− 8XA) and ΦAXAXB, respectively. If (XA, XB) ∈ R3(G) and both
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players A and B have beneficial unilateral deviations from (0, 0), it must hold that

2
√

ΦAΦBXAXB < ΦAXA(XB − 1) +
ΦBXB

4− 8XA
− ΦBXB.

As in the above, this leads to a contradiction since XB < 1 and 4− 8XA ≥ 4− 8/3 > 1 imply

that the right-hand side is negative. Thus, both players cannot simultaneously have beneficial

unilateral deviations in this case. If (XA, XB) ∈ R2A(G), then B has a beneficial unilateral

deviation from (0, 0) only if

ΦB −
ΦB

2XB
+

1

2

√
ΦBΦAXA

XB
< ΦAXAXB,

which we know leads to a contradiction from the above. If (XA, XB) ∈ R2B(G) and ΦA ≤ ΦB,

then B has a beneficial value concession only if

1

2

√
ΦAΦBXB

XA
< ΦAXAXB

=⇒
√
XB < XAXB,

where the second line holds because ΦA ≤ ΦB and XA ∈ [0, 1/4]. This is a contradiction as

0 < XA, XB < 1/3. If (XA, XB) ∈ R2B(G) and ΦA > ΦB, then A has a benificial unilateral

deviation from (0, 0) only if

ΦA −
ΦA

2XA
+

1

2

√
ΦAΦBXB

XA
<

ΦBXB

4− 8XA

=⇒ ΦA

2
<

ΦAXB

4− 8XA
,

where the second line follows because 0 ≤ 1 −
√

ΦBXAXB/ΦA < XA holds when (XA, XB) ∈

R2B(G) and because ΦA > ΦB. This leads to a contradiction since XB/(2− 4XA) < 3/8 < 1.

Observing that we have exhausted all possible points (XA, XB) ∈ R2
≥0 concludes the proof.
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5.3.2 Proof of Theorem 5.2.1

Method to derive equilibria of second-stage subgame The recent work of Vu and

Loiseau [51] provides a general method to derive an equilibrium of the second stage subgame

from the GL-P game, which is termed a General Lotto game with favoritism (GL-F). In a

GL-F game, the pre-allocation vector p is an exogenous parameter. We denote an instance

of as GL-F(p, RA, RB). The method to calculate an equilibrium involves solving the following

system8 of two equations for two unknowns (κA, κB) ∈ R2
++:

RA=

n∑
b=1

[hb(κA, κB)− pb]2
2qwbκB

, RB=

n∑
b=1

h2
b(κA, κB)− p2

b

2qwbκA
(5.13)

where hb(κA, κB) := min{qwbκB, wbκA + pb} for b ∈ B. The above equations correspond to the

budget constraint (5.1) for both players. There always exists a solution (κ∗A, κ
∗
B) ∈ R2

++ to this

system [51], and corresponds to the following equilibrium payoffs.

Lemma 5.3.3 (Adapted from [51]). Suppose (κ∗A, κ
∗
B) ∈ R2

++ solves (5.13). Let B1 := {b ∈ B :

hb(κ
∗
A, κ

∗
B) = qwbκB} and B2 = B\B1. Then there is a corresponding equilibrium (F ∗A, F

∗
B) of

the game GL-F(p, RA, RB) where player A’s equilibrium payoff is given by

πA(p, RA, RB) :=
∑
b∈B1

wb

[
1− qκ∗B

2κ∗A

(
1− p2

i

(qwbκB)2

)]
+
∑
b∈B2

wb
κ∗A

2qκ∗B

(5.14)

and the equilibrium payoff to player B is πB(p, RA, RB) = W − πA(p, RA, RB).

The equilibrium strategies are characterized by marginal distributions detailed in [51].

Proof of Theorem 5.2.1 The proof follows two parts: In Part 1, we establish that, for given

P,RA, RB > 0 and w ∈ Rn++, p∗ = P
W w is player A’s optimal pre-allocation profile in Stage

8The problem setting considered in their method is more general, admitting possibly negative pre-allocations
pb < 0 (i.e. favoring player B), asymmetries in players’ battlefield valuations wb > 0, and different resource
effectiveness parameters qb for each battlefield. However, exact closed-form solutions under heterogeneous values
w, arbitrary pre-allocations p, and effectiveness parameters qb are generally unattainable.
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1 of GL-P. Then, in Part 2, we derive an explicit expression for player A’s payoff in Stage 2

under the optimal pre-allocation profile p∗ derived in Part 1. Throughout the proof, we use

πi(p, RA, RB), i ∈ {A,B}, to denote the players’ payoffs in the Stage 2 sub-game for fixed pre-

allocation profile p ∈ ∆n(P ). Recall that the Stage 2 sub-game amounts to a General Lotto

game with favoritism GL-F(p, RA, RB).

– Part 1: The proof amounts to showing that p∗ = P
W w is a global maximizer of player

A’s equilibrium payoff π∗A(p, RA, RB) for p ∈ ∆n(P ). For the following analysis, we define

Tn := {z ∈ Rn :
∑n

b=1 zb = 0 as the tangent space of ∆n(P ). The lemma below first establishes

that p∗ is a local maximizer when either B1 = B or B2 = B.

Lemma 5.3.4. The pre-allocation p∗ = P
W w is a local maximizer of πA(p, RA, RB) over p ∈

∆n(P ), for any P,RA, RB > 0.

Proof. From Lemma 5.3.3 and the definition of hb(κA, κB) in (5.13), we observe that the solution

to (5.13) under the pre-allocation s∗ is always in one of two completely symmetric cases: 1)

B1 = B; or 2) B2 = B. Thus, we need to show s∗ is a local maximizer in both cases.

Case 1 (B1 = B): For p ∈ ∆n(P ), the system (5.13) is written

RA =

n∑
b=1

(qwbκB − pb)2

2qwbκB
and RB =

n∑
b=1

(qwbκB)2 − p2
b

2qwbκA

where 0 < qwbκB − pb ≤ κA holds ∀b ∈ B.
(5.15)

It yields an algebraic solution

qκ∗B =
1

W

[
P +RA +

√
(P +RA)2 −W‖p‖2w

]
κ∗A =

(P +RA)qκ∗B − ‖p‖2w
qRB

.

(5.16)

where ‖p‖2w =
∑n

b=1
p2
b
wb

. This solution needs to satisfy the set of conditions 0 < qwbκB − pb ≤

κA ∀b ∈ B, but the explicit characterization of these conditions is not needed to show that s∗ is

a local maximum. Indeed, first observe that the expression for qκ∗B is required to be real-valued,
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which we can write as the condition

p ∈ R(1n) :=

{
p ∈ ∆n(P ) : ‖p‖2w <

(P +RA)2

W

}
. (5.17)

We thus have a region R(1n) for which the expression of player A’s equilibrium payoff (derived

using Lemma 5.3.3) is well-defined:

π
(1n)
A (p) := W

(
1− qRB

f(‖p‖w)

(
1− W‖p‖2w

(P+RA+f(‖p‖w))2

))
(5.18)

where f(‖p‖w) :=
√

(P +RA)2 −W‖p‖2w. The partial derivatives are calculated to be

∂π
(1n)
A

∂pb
(p) =

pb
wb
· 2W 2qRB
f(‖p‖w)(P +RA + f(‖p‖w))2

(5.19)

A critical point of π
(1n)
A must satisfy z>∇π(1n)

A (p) = 0 for any z ∈ Tn. Indeed for any p ∈ R(1n),

we calculate

(p− P

W
w)>∇π(1n)

A (p) = g(‖p‖w) ·
(
‖p‖2w −

P 2

W

)
≥ 0

(5.20)

where g(‖p‖w) := 2W 2qRB
f(‖p‖w)(P+RA+f(‖p‖w))2 > 0 for any p ∈ R(1n). The inequality above is met

with equality if and only if p = p∗. This is due to the fact that minp∈∆n(P ) ‖p‖2w = ‖p∗‖2w = P 2

W .

Thus, p∗ is the unique maximizer of π
(1n)
A (p) on R(1n).

Case 2 (B2 = B): For p ∈ ∆n(P ), the system is written as

RA =
n∑
b=1

(wbκA)2

2qwbκB
and RB =

n∑
b=1

(wbκA − pb)2 − (pb)
2

2qwbκA
,

where qwbκB − pb > wbκA holds for all b ∈ B. This readily yields the algebraic solution:

qκ∗B =
2

W

(qRB − P )2

RA
and κ∗A =

2

W
(qRB − P ). (5.21)

For this solution to be valid, the following conditions are required:
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• κ∗A, qκ∗B ∈ R++: This requires that qRB − P > 0.

• qwbκ∗B − pb > wbκ
∗
A for all b ∈ B: This requires that

2

W

(qRB − P )2

RA
− 2

W
(qRB − P )−max

b
{ pb
wb
} > 0.

The left-hand side is quadratic in qRB − P , and, thus, requires either

qRB − P <
2/W −

√
4
W 2 + 4 maxb{ pbwb }

2
WRA

4/(WRA)
, or

qRB − P >
2/W +

√
4
W 2 + 4 maxb{ pbwb }

2
WRA

4/(WRA)
.

The former cannot hold since the numerator on the right-hand side is strictly negative, but

κ∗A, qκ
∗
B ∈ R++ requires qRB − P > 0. Thus, the latter must hold, which simplifies to the

condition

qRB − P >
RA
2

[
1 +

√
1 +

2W

RA
max
b
{ pb
wb
}
]
. (5.22)

Clearly, (5.22) is more restrictive than qRB − P > 0, and, thus, dictates the boundary of Case

2.

For any p ∈ ∆n(P ) such that all battlefields are in Case 2, the expression for player A’s

payoff in (5.14) simplifies to

πA(p, RA, RB) =
n∑
b=1

wb
κ∗A

2qκ∗B
=
W

2

RA
qRB − P

,

where we use the expression for qκ∗B and κ∗A in (5.21). Observe that player A’s payoff is constant

in the quantity p. Thus, for any p that satisfies (5.22), it holds that all battlefields are in Case 2,

and that player A’s payoff is the above. We conclude the proof noting that, for given quantities

RA and P , if there exists any p ∈ ∆n(P ) such that (5.22) is satisfied, then p∗ = w · (P/W )

must also satisfy (5.22), since ||p||∞ ≥ ||p∗||∞ and the right-hand side in (5.22) is increasing in

||p||∞.
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Next, we prove that the function πA(p, RA, RB) is maximized by p∗ = P
W w. We showed in

Lemma 5.3.4 that p∗ is a local maximizer over p ∈ ∆n(P ) when either B1 = B or B2 = B. It

remains to be shown that player A cannot achieve a higher payoff for p ∈ ∆n(P ) that results

in both sets B1 and B2 being nonempty. Throughout the proof, we will use the short-hand

notation Wj =
∑

b∈Bj wb, Pj =
∑

b∈Bj pb and pj = (pb)b∈Bj , j = 1, 2, for conciseness.

For p ∈ ∆n(P ), we have that

XA =
∑
b∈B1

(qwbκB − pb)2

2qwbκB
+
∑
b∈B2

(wbκA)2

2qwbκB
,

XB =
∑
b∈B1

(qwbκB)2 − (pb)
2

2qwbκA
+
∑
b∈B2

(wbκA + pb)
2 − (pb)

2

2qwbκA
,

where 0 < qwbκB − pb ≤ wbκA holds for all b ∈ B1, and qwbκB − pb > wbκA holds for all b ∈ B2.

The system of equations readily gives the expression:

W1(qκB)2 +W2(κA)2 = 2qκB(XA + P2)− ||p1||2w

= 2κA(qXB − P2) + ||p1||2w,
(5.23)

where recall that ||p1||2w =
∑

b∈B2
[(pb)

2/wb]. The solution to the above system of equations is

qκ∗B =
C1H2 ±

√
(C2)2H1H2

W1(C2)2 +W2(C1)2
,

κ∗A =
C2H1 ±

√
(C1)2H1H2

W1(C2)2 +W2(C1)2
,

(5.24)

where we introduce the short-hand notation C1 = RA + P1, C2 = qRB − P2, H1 = (C1)2 −

W1||p1||2w and H2 = (C2)2 + W2||p1||2w, for conciseness. We consider only the scenario where

± = + in (5.24), since the expression for κ∗A is strictly negative when ± = −. Simply observe

that C1 > 0, (C1)2 > H1, 0 < (C2)2 < H2 and, thus, that either (i) H1 > 0, C2 > 0 and

0 < C2H1 < C1

√
H1H2, (ii) H1 < 0, C2 < 0 and 0 < C2H1 = |C2||H1| < C1

√
|H1||H2|, or (iii)

only one of H1 or C2 is negative, in which case C2H1 < 0.
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Substituting (5.24) into (5.14) and simplifying, we obtain

πA(p, RA, RB) = W1 +

√
H1H2 − C1C2

||p1||2w
, (5.25)

and the partial derivatives of πA(p, RA, RB) with respect to pb for b ∈ B1 and b ∈ B2, respec-

tively, are:
∂

∂pb
πA

∣∣∣∣
b∈B1

=
−pb/wb

(||p1||2w)2
√
H1H2

(C1

√
H2 − C2

√
H1)2

+
1

||p1||2w
√
H1

(C1

√
H2 − C2

√
H1)

∂

∂pb
πA

∣∣∣∣
b∈B2

=
1

||p1||2w
√
H2

(C1

√
H2 − C2

√
H1).

(5.26)

We first consider critical points p strictly in the interior of ∆n(P ), and resolve the points on

the boundary later. One necessary condition for a critical point is that ∂πA/(∂pb)−∂πA/(∂pc) =

0 for all b ∈ B1 and c ∈ B2. Firstly, observe that C1 >
√
H1 and

√
H2 > C2, and, thus, it must

be that C1

√
H2 − C2

√
H1 > 0. We can thus divide the expression ∂πA/(∂pb) = ∂πA/(∂pc) on

both sides by C1

√
H2 − C2

√
H1 and rearrange to obtain

(pb/wb)(C1

√
H2 − C2

√
H1) = ||p1||2w(

√
H2 −

√
H1) > 0.

Observe that the left-hand side is strictly greater than zero, and, thus, the right-hand side must

be as well. This immediately requires
√
H2 −

√
H1 > 0, since ||p1||2w > 0. Re-arranging the

above expression, note that we also require

√
H1[C2(pb/wb)− ||p1||2w] =

√
H2[C1(pb/wb)− ||p1||2w].

Since we have just shown that
√
H2 >

√
H1 must hold, it follows that each b ∈ B1 satisfies either

(i) C2(pb/wb) − ||p1||2w < C1(pb/wb) − ||p1||2w < 0; or (ii) C2(pb/wb) − ||p1||2w > C1(pb/wb) −

||p1||2w > 0. Observe that C1(pb/wb) > ||p1||21 must hold for b′ ∈ arg maxb∈B1 pb/wb, and thus b′

must satisfy scenario (ii) and C2 > C1 (or, equivalently, qRB − P > RA). This last inequality

96



Pre-emptive mechanisms: The value of revealing information Chapter 5

then implies that scenario (ii) must be satisfied for all b ∈ B1.

We have shown that, in order for ∂πA/(∂pb) − ∂πA/(∂pc) = 0 to hold for all b ∈ B1 and

c ∈ B2, a critical point p must satisfy

pb
wb

= p̄ :=

√
H2 −

√
H1

C1

√
H2 − C2

√
H1
||p1||2w,

for each b ∈ B1. Expanding this expression, and solving for p̄ explicitly, we obtain the following

two possible (real) solutions for p̄:

p̄ = 0 or p̄ =
2(qRB − P )(qRB −RA − P )

WRA
,

where we use P1 = W1p̄, P2 = P − P1, and ||p1||2w = W1(p̄)2. As p̄ = 0 is inadmissible, we

consider the latter expression for p̄. After inserting this expression for p̄ into the right-hand

side of (5.22), where maxb{pb/wb} = p̄, we obtain

RA
2

[
1 +

√
1 +

2W

RA
p̄

]

=
RA
2

+ qRB − P −
RA
2

= qRB − P,

which follows since we showed above that qRB − P > RA must hold. Thus, the only critical

point sits at the boundary of the region where all battlefields are in Case 2, since decreasing p̄

even slightly will satisfy the condition in (5.22). We can further verify that the payoff at this

critical point is equal to the constant payoff in the region where all battlefields are in Case 2,

but omit this for conciseness.

We conclude the proof by resolving the scenario where p lies on the boundaries of ∆n(P ).

Observe that the conditions on qκ∗B and κ∗A immediately imply that pb/wb > pc/wc for any

b ∈ B1 and c ∈ B2. Thus, on the boundaries of ∆n(P ), it must either be that all battlefields

with pb = 0 (and possibly more) are in Case 2, or that all battlefields in B are in Case 1 (which

is covered by Lemma 5.3.4). In the scenario where all battlefields with pb = 0 are in Case 2,
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note that the necessary condition (∂/(∂pi) − ∂/(∂pj))πA ≥ 0 for i ∈ arg minb∈B1{pb/wb} and

j ∈ arg maxb∈B1{pb/wb} only holds with equality if pb/wb = P1/W1 for all b ∈ B1. If P1/W1 < p̄,

then the inequality in (5.22) is satisfied implying that all battlefields are in Case 2, and Lemma

5.3.4 shows that p∗ = w(P/W ) must correspond with the same payoff to player A. Otherwise,

if P1/W1 = p̄, then we showed above that the global maximum sits at the boundary where all

battlefields are in Case 2 and p∗ = w(P/W ) achieves the same payoff. Finally, if P1/W1 > p̄,

then, from (5.26), we know that ∂πA/(∂pb)−∂πA/(∂pc) < 0 must hold for all b ∈ B1 and c ∈ B2,

since the choice pb/wb = p̄ satisfies ∂πA/(∂pb) − ∂πA/(∂pc) = 0, and ∂πA/(∂pb) is decreasing

with respect to pb/wb while ∂πA/(∂pc) is constant. This violates a necessary condition for a

critical point, and implies that A’s payoff is increasing in the direction of decreasing pb and

increasing pc, as expected.

– Part 2: In the proof of Lemma 5.3.4, we provide the closed-form solutions to the system

of equations (5.13) for the symmetric case B1 = B (resp. B2 = B) in (5.16) (resp. (5.21)).

In the following analysis, we derive conditions on the underlying parameters for which these

closed-form solutions of (5.13) exist and satisfy the corresponding constraints on κ∗A, qκ
∗
B > 0,

and find that these two cases encompass all possible game instances GL-P(P,RA, RB,w).

Case 1 (B1 = B): Substituting p = (P/W ) ·w into (5.16) and simplifying, we obtain

qκ∗B =
1

W

[
P +RA +

√
RA(RA + 2P )

]
κ∗A =

(P +RA)qκ∗B − P 2/W

qRB
.

(5.27)

Next, we verify that this solution satisfies the conditions 0 < qκ∗B − P/W ≤ κ∗A.

• qκ∗B − P/W > 0: This holds by inspection.

• qκ∗B − P/W ≤ κA: We can write this condition as

qRB − P ≤ RA +
PRA

RA +
√
RA(RA + 2P )

(5.28)

We note that whenever qRB − P < 0, this condition is always satisfied. When qRB − P ≥ 0,
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this condition does not automatically hold, and an equivalent expression of (5.28) is given by

RA ≥
2(qRB − P )2

P + 2(qRB − P )
. (5.29)

Observe that RA = 2(qRB−P )2

P+(qRB−P ) satisfies (5.28) with equality, and is in fact the only real solution

(one can reduce it to a cubic polynomial in RA).

When these conditions hold, the equilibrium payoff πA(P,RA, RB) (computed from Lemma

5.3.3) is given by the expression (5.4).

Case 2 (B2 = B): Substituting p = (P/W ) ·w into (5.21) and simplifying, we obtain

κ∗A =
2(qRB − P )

W
and qκ∗B =

2(qRB − P )2

WRA
. (5.30)

The solution satisfies the condition 0 < κ∗A < qκ∗B−P/W if and only if qRB−P > 0 and RA >

2(qRB−P )2

P+(qRB−P ) . When this holds, the equilibrium payoff (from Lemma 5.3.3) is πA(P,RA, RB) =

W · RA
2(qRB−P ) .
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Chapter 6

Introduction

6.1 Model: Congestion games with taxes

A congestion game (also known as, atomic congestion game) consists of a set of players

N = {1, . . . , n} and a set of resources R. Each player i ∈ N selects an action ai from a

corresponding set of feasible actions Ai ⊆ 2R. The cost that a player experiences for selecting a

given resource r ∈ R depends only on the total number of players selecting r, and is denoted as

Cr : {1, . . . , n} → R. Given an assignment a = (a1, . . . , an) ∈ A, whereA = ΠN
i=1Ai, each player

i ∈ N experiences a cost equal to the sum over costs on resources r ∈ ai. Correspondingly, the

system cost is measured by the sum of the players costs, i.e.,

SC(a) =
∑
i∈N

∑
r∈ai

Cr(|a|r) (6.1)

where |a|r denotes the number of players selecting resource r in assignment a. Observe that a

congestion game can be represented as a tuple G = (N,R, {Ai}i∈N , {Cr}r∈R).

We denote by Gn,L the family of all congestion game instances with a maximum number

of players n, where all resource cost functions {`r}r∈R belong to a common family of resource

cost functions L. To ease the notation, we will use Gn to refer to the family Gn,L when the

dependence on L is clear.
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6.1.1 Taxes

In the study of taxes, each resource r ∈ R is associated with a tax function τr : {1, . . . , n} →

R (positive or negative). In this case, each player i ∈ N incurs a cost involving both the resource

costs it experiences and the imposed taxes:

Ci(a) =
∑
r∈ai

[
`r(|a|r) + τr(|a|r)

]
. (6.2)

We consider taxes that only influence the players’ costs and do not factor into the social cost.

Scenarios where taxes are incorporated into the social cost have also been studied in, e.g.,

[72, 73].

When players selfishly choose their actions to minimize their incurred costs, an emergent

outcome is often described by a pure Nash equilibrium. A pure Nash equilibrium is an assign-

ment ane ∈ A such that Ci(a
ne) ≤ Ci(ai, ane

−i) for all ai ∈ Ai and all i ∈ N , where a′i, a−i denotes

the assignment obtained when player i plays action a′i and the remaining players continue to play

their actions in a. Observe that a system designer can influence the set of pure Nash equilibria

through the choice of tax functions τr, r ∈ R. Accordingly, with abuse of notation, we augment

the tuple representation of a congestion game as G = (N,R, {Ai}i∈N , {`r}r∈R, {τr}r∈R) which

incorporates the imposed taxes on the resources.

We consider the use of local taxes to improve the equilibrium performance. Local taxes

only use information about the resource cost function `r to compute the tax function τr on

any given resource r ∈ R. The restriction to local taxes is a natural requirement, especially in

settings where scalable and computationally simple rules are desirable. This structure is also

commonly utilized in the existing literature, e.g., Pigouvian taxes [74]. Accordingly, we define

a local taxation rule as a map from the set of admissible resource costs L to taxes, i.e., under

a given local taxation rule T , the tax function associated with each resource r ∈ R is given by

τr = T (`r). For any given family of congestion games G without taxes, we denote by GT the

corresponding modified family of congestion games with taxes τr = T (`r) on each edge r ∈ R.
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When convenient, we will use the notation of agent cost generating functions Fr(k) =

`r(k) + τr(k), k = 1, . . . , n, to denote the cost experienced by an agent on a given resource

r ∈ R. Under this modified notation, we may also refer to the family of games GP which

contains all congestion games induced by a (possibly infinite) set P of admissible system-cost,

agent-cost function pairs, i.e., GP is the set of all games G that satisfy {Cr, Fr} ∈ P for all

r ∈ R.

6.1.2 Performance measures

For any given family of congestion game instances G, we may choose to measure the equi-

librium performance using two commonly-studied metrics that we term Price of Anarchy and

Price of Stability, respectively defined as

PoA(G) = sup
G∈G

max
a∈NE(G)

SC(a)

MinCost(G)
, (6.3)

PoS(G) = sup
G∈G

min
a∈NE(G)

SC(a)

MinCost(G)
, (6.4)

where MinCost(G) denotes the minimum achievable social cost for instance G as defined in (6.1)

and NE(G) denotes the set of all pure Nash equilibria in G. It is important to note that the set

NE(G) must be non-empty for any congestion game G, and, thus, that the Price of Anarchy and

Price of Stability are well-defined. This holds since all congestion games are potential games

[75]. A potential game is any game G for which there exists a function Φ : A → R such that

Φ(a)− Φ(ai, a−i) = Ci(a)− Ci(a′i, a−i), ∀ai ∈ Ai,∀i ∈ N, ∀a ∈ A. (6.5)

In particular, congestion games admit the following potential function [75]:

Φ(a) =
∑
r∈∪ai

|a|r∑
k=1

[`r(k) + τr(k)]. (6.6)
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Observe that the Price of Anarchy provides guarantees on the performance of any equilibrium

in the set of games while the Price of Stability offers performance guarantees for the best

equilibrium of any instance in the set. By definition, the metrics must satisfy PoA(G) ≥

PoS(G) ≥ 1 for any family G.

6.1.3 Welfare maximization games

We may also consider distributed welfare games [76], which are the welfare maximization

analogue to generalized congestion games. In these games, there is a set of agentsN = {1, . . . , n}

and a finite set of resources R, where each agent i ∈ N has an associated set of admissible

actions Ai ⊆ 2R and each resource r ∈ R is associated with a resource welfare function Wr :

{1, . . . , n} → R≥0 and a utility generating function Fr : {1, . . . , n} → R. The system welfare

and agent utility functions under a given collective action a ∈ A are defined as

W (a) =
∑
r∈∪ai

Wr(|a|r), Ui(a) =
∑
r∈ai

Ur(|a|r).

As with congestion games, we will consider families of distributed welfare games GW,U which

contain all distributed welfare games that satisfy Wr ∈ W and Ur = U(Wr) for all r ∈ R, where

U :W → Rn is referred to as the utility rule.

Definition 6.1.1 (Basis). The set of welfare rules W is spanned from a set of basis welfare

rules {w1, . . . , wm} 1 if W can be characterized by any non-negative combination of the basis

welfare rules {w1, . . . , wm}, i.e.,

W = {w : w =

m∑
j=1

αjwj , ∀α1, . . . , αm ≥ 0}. (6.7)

We remark that the performance guarantees are identical regardless of if we consider the

welfare setW = {w1, . . . , wm} or considerW to be the set spanned from the basis {w1, . . . , wm}.
1We assume, without loss of generality, that wj(1) = 1.
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Furthermore, we will restrict attention to welfare rules that are submodular, or informally,

welfare rules that admit a notion of decreasing marginal-returns that are commonplace in many

objectives relevant to engineered systems.

Definition 6.1.2 (Submodularity). A welfare rule w is submodular if w(j + 1) ≥ w(j) for all

j ∈ N and w(j + 1)− w(j) is non-increasing in j.

Note that in distributed welfare games, the Price of Anarchy and Price of Stability are

respectively defined as the minimum and maximum ratio between the social welfare W (·) at

a pure Nash equilibrium, and the maximum achievable social welfare in the game. Thus, in

contrast with congestion games, the Price of Anarchy and Price of Stability of any distributed

welfare game satisfies PoA(G) ≤ PoS(G) ≤ 1.

6.2 Applications

Congestion games suitably model systems that involve the interactions of strategic users

and an underlying shared infrastructure. The typical example is that of drivers sharing a

road network. A major difficulty in designing such systems is that one must account for each

user’s decision making process in order to guarantee good overall system performance. The

detrimental effects of selfish user behaviour on the performance of these systems have been

observed in a variety of contexts, including unfair allocation of essential goods and services

[77, 78], overexploitation of natural resources [79, 80] and congestion in internet and road-

traffic networks [81, 82]. A widely studied approach for influencing the system performance is

the use of taxes, which can come in the form of rewards or penalties. Examples of taxes include

taxes levied on users whose decisions have a negative impact on the system performance, and

rebates given to users for making decisions aligned with the greater good.
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6.3 Related work

The Price of Anarchy was first introduced by [83] as a performance metric to characterize

the equilibrium efficiency in games. The first exact characterization of the Price of Anarchy

in congestion games was derived independently by [84] and [85] for affine congestion games

without taxes. These results were later generalized to all polynomial congestion games without

taxes by [86].

Characterizations of the Price of Anarchy without taxes naturally led to the study of taxes to

improve worst-case efficiency guarantees. The design of taxes to optimize equilibrium efficiency

guarantees falls under the broader literature on coordination rules introduced by [87]. Within

the context of congestion games, [88] derive local and global congestion-independent rules that

minimize the Price of Anarchy for linear resource costs. For polynomial congestion games, [72]

consider the class of rules that use only information about a social optimum of each instance.

Among taxation rules of this specialized class, they derive the best achievable Price of Anarchy

guarantees in polynomial congestion games, as well as a methodology for computing the optimal

taxes. [89] generalize these results beyond polynomial congestion games and show that the

efficiency of optimal, polynomially-computable taxes (using global information) matches the

corresponding bound on the hardness of approximation. [90] derive local taxes that minimize

the Price of Anarchy in any class of congestion games, which are shown to have similar efficiency

guarantees as the rules using global information from [72, 88, 89]. [91] derive upper bounds on

the Price of Anarchy associated with the marginal cost rule in polynomial congestion games,

which were later refined and generalized in [90].

Aside from the Price of Anarchy, another interesting metric that has been the subject of

extensive analysis is the Price of Stability. The Price of Stability was defined by [92] (though

its study dates back even earlier to, for example, [93]), who provide an exact characterization

of this metric for a specialized class of congestion games. The exact Price of Stability for linear

congestion games without taxes was derived by [94] and [95], followed by an exact characteriza-

tion for all polynomial congestion games without taxes by [96]. [97] study the Price of Anarchy
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and Price of Stability in affine congestion games under various taxation rules (for example,

altruism, congestion independent taxes).
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Chapter 7

Smoothness and primal-dual

methods

7.1 Roughgarden’s smoothness

Though it is a powerful performance metric, direct computation of the PoA is extremely

difficult. In fact, even the problems of computing the minimum achievable system cost and

of computing a pure Nash equilibrium for a given congestion game are both associated with

pessimistic hardness results even in restricted settings [98, 99, 89]. For this reason, researchers

have developed analytical techniques aimed at tractably characterizing the PoA over various

classes of games. One such technique that is widely used in the existing literature is Rough-

garden’s (λ, µ)-smoothness argument, formally defined in [100]. A cost minimization game G

is termed (λ, µ)-smooth if the following two conditions are met:

(i) For all a ∈ A, we have
∑n

i=1 Ji(a) ≥ C(a);

(ii) For all a, a′ ∈ A, there exist λ > 0 and µ < 1 such that

∑
i∈N

Ji(a
′
i, a−i) ≤ λC(a′) + µC(a). (7.1)
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If a game G is (λ, µ)-smooth, then the PoA of game G is upper bounded by

PoA(G) ≤ λ

1− µ.

Observe that if all the games in a class G are shown to be (λ, µ)-smooth, then the PoA of the

class PoA(G) is also upper bounded by λ/(1−µ). We refer to the best upper bound obtainable

using a smoothness argument on a given class of games G as the Robust Price of Anarchy

(RPoA), i.e.,

RPoA(G) := inf
λ≥0,µ≤1

λ

1− µ subject to:

(7.1) holds ∀G ∈ G.
(7.2)

Observe that, given a family of games G, the RPoA is the optimal value of a fractional program

(which can be reformulated, in this case, to a linear program). It is important to note that the

RPoA represents only an upper bound on the PoA. More specifically, for any class of (λ, µ)-

smooth cost minimization games G, it holds that PoA(G) ≤ RPoA(G), where it could be that

PoA(G) < RPoA(G) as we show in the examples below:

Example 7.1.1 (Congestion games without taxes). For the family of all congestion games G

with affine resource cost functions (i.e., in each game G ∈ G, each r ∈ R has `r(x) = ar ·x+ br

with ar, br ≥ 0), the optimal smoothness parameters are λ = 5/3 and µ = 1/3, such that

RPoA(G) = 5/2, which is equal to PoA(G) [84, 85].

Example 7.1.2 (Congestion games under Pigouvian taxes). For the family of all congestion

games G with affine resource cost functions under Pigouvian (marginal cost) taxes (i.e., τr(x) =

`r(x) ·x− `r(x−1) · (x−1) for all r ∈ R), the optimal smoothness parameters are λ = 17/5 and

µ = 2/5, such that RPoA(G) = 17/3. However, using the techniques provided in the forthcoming

Theorem 7.4.1, we compute the true PoA to be PoA(G) = 3 which is nearly 50% smaller. Thus,

(λ, µ)-smoothness does not give a tight characterization of the PoA in this case.

The above examples establish that the RPoA and PoA do not always match. Crucially, it
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immediately follows that any analytical approach for quantifying and/or optimizing the PoA

that is based on smoothness (see, e.g., [86, 101, 102]) is inadequate for settings where the

corresponding smoothness bounds are loose. Based on this observation, in the forthcoming

section, we introduce a novel notion of smoothness that improves upon the PoA bound provided

by the RPoA.

7.2 Generalized smoothness

In this section, we provide a generalization of the smoothness framework, termed generalized

smoothness. We will then proceed to show how this new framework provides tighter efficiency

bounds and covers a broader spectrum of problem settings than the original smoothness frame-

work.

Definition 7.2.1 (Generalized smoothness). The cost minimization game G is (λ, µ)-generalized

smooth if, for any two allocations a, a′ ∈ A, there exist λ > 0 and µ < 1 satisfying,

n∑
i=1

[
Ji(a

′
i, a−i)− Ji(a)

]
+ C(a) ≤ λC(a′) + µC(a). (7.3)

Note that we maintain the notation of (λ, µ) as in the original notion of smoothness for ease

of comparison. In the specific case when
∑n

i=1 Ji(a) = C(a) for all a ∈ A, observe that the

smoothness conditions in (7.3) are equivalent to the original smoothness conditions in (7.1). As

with (7.2), we define the Generalized Price of Anarchy (GPoA) of a class of cost minimization

games G as the best upper bound obtainable using a generalized smoothness argument, i.e.,

GPoA(G) := inf
λ>0,µ<1

{
λ

1−µ s.t. (7.3) holds ∀G ∈ G
}
. (7.4)

With our first result we show that (i) PoA bounds under the generalized smoothness frame-

work follow in the same way as the original smoothness framework without the restriction

that
∑n

i=1 Ji(a) ≥ C(a) for all a ∈ A, and (ii) the generalized smoothness framework provides

stronger bounds on the PoA than the original smoothness framework whenever both are de-
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fined. For clarity, the proof of (i) follows trivially from [100]. The novelty of the result is in

(ii), which establishes an ordering between RPoA, GPoA and PoA.

Proposition 7.2.1. For any (λ, µ)-generalized smooth game G, the following statements hold:

(i) The PoA of G is upper bounded as PoA(G) ≤ λ/(1− µ).

(ii) If the game G is (λ, µ)-smooth, then RPoA(G) ≥ GPoA(G) ≥ PoA(G). Furthermore, if∑n
i=1 Ji(a) > C(a) holds for all a ∈ A, then RPoA(G) > GPoA(G) ≥ PoA(G).

Further comparisons between the RPoA and GPoA can be made, as summarized by the

following observations:

– Observation #1 : The PoA and GPoA are shift-, and scale-invariant, i.e., for any given γ > 0

and (δ1, . . . , δn) ∈ Rn,

PoA((N,A, C, {Ji})) = PoA((N,A, C, {γJi + δi})),

GPoA((N,A, C, {Ji})) = GPoA((N,A, C, {γJi + δi})).

Neither of these properties hold in general for the RPoA, i.e., for any given γ > 0 and

(δ1, . . . , δn) ∈ Rn,

RPoA((N,A, C, {Ji})) 6= RPoA((N,A, C, {γJi + δi})),

except when γ = 1 and (δ1, . . . , δn) = 0.

– Observation #2 : The RPoA is optimized by budget-balanced agent cost functions, i.e.,∑
i∈N Ji(a) = C(a) for all a ∈ A. In general, this does not hold for the PoA and GPoA.

– Observation #3 : For a given cost minimization gameG, we define an average coarse-correlated

equilibrium as a probability distribution σ ∈ ∆(A) satisfying, for all a′ ∈ A,

Ea∼σ

[
N∑
i=1

Ji(a)

]
≤ Ea∼σ

[
N∑
i=1

Ji(a
′
i, a−i)

]
. (7.5)
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Note that the set of average coarse correlated equilibria contains all of the game’s pure Nash

equilibria, mixed Nash equilibria, correlated equilibria and coarse correlated equilibria [100].

The GPoA tightly characterizes the average coarse correlated equilibrium performance of any

cost minimization game G, and, thus, of any class of cost minimization games G. The proof

follows identically to the result by [103] that proves this claim for the RPoA under an alternative

definition of average coarse correlated equilibrium. Unsurprisingly, these two definitions of

average coarse correlated equilibrium match for games with
∑n

i=1 Ji(a) = C(a), for all a ∈ A.

The above observations are stated without proof for brevity, but can easily be verified by the

reader.

So far, we have presented two different smoothness bounds aimed at quantifying the PoA:

(i) RPoA, and (ii) GPoA. The result in Theorem 7.2.1 shows that, though the generalized

smoothness conditions amount to a minor variation on the original smoothness conditions, the

GPoA always provides better (i.e., tighter) bounds on the PoA than the RPoA. Recall that our

primary reasoning for considering smoothness bounds like RPoA and GPoA is that computing

the PoA directly is a difficult problem, so we wish to consider a surrogate metric that is both

simpler to characterize and sufficiently representative of the PoA instead. Though we show

that the GPoA is more representative of the PoA than the RPoA, it remains to be shown that

either one of these bounds is actually simpler to compute than the PoA. To resolve these two

concerns, we wish to address the following questions:

1. Does optimizing the GPoA ever coincide with optimizing the PoA? ; and, if so, then

2. Are there tractable techniques for optimizing the GPoA?

In the next chapter, we will identify a broad class of games for which we can answer both these

questions in the affirmative.
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7.3 Smoothness from a primal-dual perspective

A recent and interesting perspective on smoothness examines such arguments from a primal-

dual perspective [104, 103]. More specifically, if we formulate the computation of the Price

of Anarchy (or any other performance measure of interest) as an optimization problem, the

relevant smoothness conditions correspond with the constraints of the dual problem. Adapting

an example from [103], observe that the worst-case coarse-correlated equilibrium efficiency

of a cost-minimization game can be exactly computed as the optimal value of the following

optimization problem:

maximize
σ

∑
a∈A

[
σ(a) · SC(a)

MinCost(G)

]
subject to:

∑
a∈A

σ(a) · [Ci(a)− Ci(a′i, a−i)] ≤ 0, ∀a′i ∈ Ai, ∀i ∈ N,

∑
a∈A

σ(a) = 1, σ(a) ≥ 0, ∀a ∈ A.

(7.6)

Observe that the objective in the above optimization problem is the ratio between the expected

social cost under the probability distribution σ and the minimum-achievable cost in the game

G and that the constraints in the second and third lines ensure that σ is a coarse-correlated

equilibrium and a valid probability distribution, respectively. Note that we can equivalently

write the above optimization problem as the following linear program:

maximize
σ

∑
a∈A

[σ(a) · SC(a)] subject to:

∑
a∈A

σ(a) · [Ci(a)− Ci(a′i, a−i)] ≤ 0, ∀a′i ∈ Ai, ∀i ∈ N,

∑
a∈A

σ(a) = 1/MinCost(G), σ(a) ≥ 0, ∀a ∈ A.

(7.7)
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where we normalize the distribution σ with MinCost(G) to simplify the objective. The dual of

the above linear program is

minimize
z1,...,zn≥0,p

p subject to:

SC(a)− p ·MinCost(G) +
n∑
i=1

[
zi · [Ci(a′i, a−i)− Ci(a)]

]
≤ 0, ∀a′i ∈ Ai, ∀i ∈ N, ∀a ∈ A.

(7.8)

Note that the optimal value of the above dual program exactly characterizes the worst-case

coarse-correlated equilibrium efficiency of the game G. This follows from the equivalence of the

original optimization problem and the primal linear program and from strong duality in linear

programming. Note that the optimal value of the above dual program is already an upper

bound on the Price of Anarchy, since any pure strategy Nash equilibrium of the game G is also

a coarse-correlated equilibrium of G. After applying several restrictions to the above dual prob-

lem – namely, setting z1 = · · · = zn = z, considering only those games with
∑n

i=1Ci(a) ≥ SC(a)

for all a ∈ A and replacing MinCost(G) with SC(a′) – and after the change of variables ..., the

objective of the resulting program is to minimize λ/(1−µ), and the constraints are identical to

Roughgarden’s (λ, µ)-smoothness conditions in (7.1). Similarly, after applying the restrictions

z1 = · · · = zn = z and replacing MinCost(G) with SC(a′), and after the change of variables ...,

the constraints in the above dual program are identical to the generalized smoothness condition

in (7.3). From this perspective, it is unsurprising that generalized smoothness offers improved

bounds on the Price of Anarchy than Roughgarden’s smoothness since it relies on only a subset

of the restrictions to the dual program for computing the worst-case coarse-correlated equilib-

rium efficiency.

From the above line of reasoning, several important observations can be made:

1. Under the appropriate restriction to cost minimization games that satisfy
∑n

i=1Ci(a) ≥

SC(a) for all a ∈ A, Roughgarden’s (λ, µ)-smoothness conditions in (7.1) character-

ize a strict upper bound on the Price of Anarchy for cost minimization games with∑n
i=1Ci(a) > SC(a) for all a ∈ A. This is because all the constraints in the dual program
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above will be loose, and the optimal value of the dual program is itself an upper bound

on the Price of Anarchy.

2. Following a similar line of reasoning to the one above, we can leverage primal-dual argu-

ments to obtain smoothness conditions for various other performance measures, including

the Price of Stability. The general recipe is simple: First, formulate a primal program

that characterizes an upper bound on the performance measure of interest; then, take the

constraints of the dual program as your smoothness conditions.

3. For a given family of games G, an upper-bound on the equilibrium efficiency can be charac-

terized by applying the same smoothness condition to every game G ∈ G simultaneously,

as in (7.2) or (7.4). In other words, the constraints in the dual program must now be

satisfied for every game G ∈ G.

The final observation above on computing equilibrium efficiency guarantees for a family of games

is only helpful if the family of games in question has a modest number of games. For example,

in the extreme case, a family of games may have infinitely many games, such as the family of

affine congestion games in Example 7.1.1. In such a case, we cannot solve a linear program

with infinitely many constraints. In the next section, we show how game parameterizations can

be used to tractably obtain equilibrium efficiency guarantees, even for arbitrarily large families

of games.

7.4 Balancing tightness and tractability

In the previous sections, we saw that applying a smoothness condition to a family of games

G, especially families containing infinitely many games, can be difficult, and that introduc-

ing game parameterizations can help reduce the computational burden of characterizing the

corresponding efficiency guarantees. In this section, we present several popular game param-

eterizations that will be used in the proofs. The best game parameterization for a particular
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application will balance the tightness of the provided bounds with the tractability of the cor-

responding optimization problem.

For the purposes of this section, we restrict our attention to the family of congestion games

G with a maximum number of players n, each with up to k actions. Each resource has resource-

cost function equal to a non-negative linear combination over m basis cost functions; formally,

every resource r ∈ R has m coefficients α1
r , . . . , α

m
r ≥ 0 such that Cr(x) =

∑m
j=1[αjr · cj(x)] for

every game G ∈ G, where c1, . . . , cm are basis cost functions.

7.4.1 Tightest but not tractable

Given the maximum number of users n, consider a game parameterization corresponding

with a (2kn) × (kn) table R whose rows are all the unique permutations of kn-long binary

vectors r ∈ {0, 1}kn. Under this parameterization, each row r ∈ R corresponds with a different

resource in the parameterized congestion game, and, collectively, the rows encode the users’

actions aw-ne
i , ab-ne

i , aopt
i as follows:

Consider the resource e corresponding with the row r ∈ R, and let a
(K)
i denote player i’s

K-th action. For any i ∈ {1, . . . , n}, if rKn+i = 1, then e ∈ a(K)
i , else e /∈ a(K)

i . The coefficients

in the basis representation of the 2kn resource cost functions will be the decision variables of

our final linear program (i.e., there are (2kn)×m decision variables). This means that we can

represent any game with (2kn)×m parameters where n is the maximum number of users, and

m is the number of basis cost functions m. Thus, any linear program formulated under this

parameterization is not tractable for large n. Nonetheless, lower bounds for small n can be

computed within a reasonable amount of time, as provided in Figure 9.3.

Under this parameterization, observe that we retain the granularity required to indepen-

dently identify each player, and each of that player’s actions. With that granularity, we can

encode elaborate linear programs. However, this granularity comes at the cost of tractability; a

primal program based on this parameterization has 2kn×m decision variables, which generally

coincides with the number of smoothness conditions.
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7.4.2 Looser but tractable

For a given congestion game G ∈ G∆(P), our game parameterization is defined as follows for

allocations a, a′ ∈ A: For every resource r ∈ R, we define integers xr, yr, zr ≥ 0 where xr = |a|r
is the number of agents that select r in a, yr = |a′|r is the number of agents that select r in

a′ and zr = |{i ∈ N s.t. r ∈ ai} ∩ {i ∈ N s.t. r ∈ a′i}| is the number of agents that select r in

both a and a′. Note that 1 ≤ xr + yr − zr ≤ n and zr ≤ min{xr, yr} must hold for all r ∈ R.

For all x, y, z ≥ 0 such that 1 ≤ x + y − z ≤ n and z ≤ min{x, y}, and all j = 1, . . . ,m, we

define the parameters

θ(x, y, z, j) =
∑

r∈R(x,y,z)

αjr, (7.9)

where R(x, y, z) = {r ∈ R s.t. (xr, yr, zr) = (x, y, z)}, and αjr ≥ 0, j = 1, . . . ,m, are the coef-

ficients in the representation of the resource-cost, agent-cost function pair {Cr, Fr}. Although

the parameterization into values θ(x, y, z, j) ≥ 0 is of size O(mn3), we show in Step 2 of the

forthcoming proof of Theorem 7.4.1 that only O(mn2) parameters are needed in the compu-

tation of the PoA. Furtheremore, in Step 3 of the proof of Theorem 7.4.1, we show that this

parameterization is still sufficiently tight to be used for characterizing the Price of Anarchy of

any family of games GP under any set of function pairs P

7.4.3 Tight, tractable PoA in generalized congestion games

The broader literature on congestion games is often interested in characterizing the PoA

associated with the family of all congestion games, GP , under a specified set (possibly infinite)

of admissible resource-cost, agent-cost function pairs P. Recall that for each game G ∈ GP , it

must be that each r ∈ R satisfies {Cr, Fr} ∈ P. For ease of notation, we may choose to denote

the family GP simply as G when the dependence on the set P is clear. Our next result shows

that the GPoA provides a tight bound on the PoA associated with any family of generalized

congestion games GP .

Theorem 7.4.1. For any set of resource-cost, agent-cost function pairs P and positive integer
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n, let G denote the family of all generalized congestion games with a maximum of n agents in

which each resource r ∈ R satisfies {Cr, Fr} ∈ P. It holds that PoA(G) = GPoA(G).

Theorem 7.4.1 highlights that the GPoA represents a tight bound on the PoA for the family GP
under any set of resource-cost, agent-cost function pairs P. Therefore, for this broad class of

problems, there is no loss in characterizing the PoA using the generalized smoothness bound.

However, it remains to be shown whether GPoA(GP) can be quantified efficiently.

In many commonly studied settings, we can leverage the structure of the set P to efficiently

quantify the GPoA of the family of all generalized congestion games under P. For instance, in

the forthcoming proof of Theorem 7.4.1, we show that the GPoA(GP) in (7.4) can be computed

efficiently when the number of resource-cost, agent-cost function pairs in P and the maximum

number of agents are finite. Moreover, the GPoA may be computable even when the size

of P is not finite. Specifically, let P = {{C1, F 1}, . . . , {Cm, Fm}} denote any (finite) set of

m resource-cost, agent-cost function pairs, and let ∆(P) denote the set of all resource-cost,

agent-cost function pairs {C,F} that can be represented as

C(k) =

m∑
j=1

αj · Cj(k), k = 1, . . . , n,

F (k) =
m∑
j=1

αj · F j(k), k = 1, . . . , n,

with α1, . . . , αm ≥ 0.1 In the proof of Theorem 7.4.1, we establish that the GPoA of the family

G∆(P) is equal to the GPoA of GP , and, thus, can also be computed as the solution of a tractable

linear program. We formally state this observation in the following corollary, where we define

Cj(0) = F j(0) = F j(n+ 1) = 0, for j = 1, . . . ,m, for ease of notation:

Corollary 7.4.1. For any set of resource-cost, agent-cost function pairs P and positive integer

n, let GP and G∆(P) denote the families of all generalized congestion games with a maximum of n

agents under their specified sets of function pairs. Then, it holds that PoA(GP) = PoA(G∆(P)).

1For example, the family of affine congestion games (studied in, e.g., [84, 85]) is equivalent to the family G∆(P)

with m = 2, where {C1(k), F 1(k)} = {k, 1} and {C2(k), F 2(k)} = {k2, k}, k = 1, . . . , n.
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Further, let ρopt be the optimal value of the following (tractable) linear program:

ρopt =maximize
ν∈R≥0,ρ∈R

ρ subject to:

C(y)− ρC(x) + ν[(x− z)F (x)− (y − z)F (x+ 1)] ≥ 0,

∀{C,F} ∈ P, ∀(x, y, z) ∈ IR(n),

(7.10)

where IR(n) is defined in the forthcoming (7.14). Then, it holds that PoA(GP) = GPoA(GP) =

1/ρopt.

The linear program in (7.10) has two decision variables and O(mn2) constraints. Thus, for

m and n finite, there are computationally efficient approaches for characterizing the PoA of

generalized congestion games.

7.5 Chapter proofs

7.5.1 Proofs from Section 7.2

Proof of Proposition 7.2.1. For the proof of statement (i), observe that, for all ane ∈ NE(G)

and aopt ∈ A,

C(ane) ≤
n∑
i=1

[
Ji(a

opt
i , ane

−i)− Ji(ane)
]

+ C(ane)

≤ λC(aopt) + µC(ane).

(7.11)

The inequalities hold by the Nash equilibrium condition and (7.3), respectively. Rearranging

gives the result.

The remainder of the proof focuses on statement (ii). Since the condition
∑n

i=1 Ji(a) ≥ C(a)

for all a ∈ A implies that any pair of (λ, µ) satisfying (7.1) necessarily satisfies (7.3), we note

that the GPoA is less than or equal to the RPoA, i.e., RPoA(G) ≥ GPoA(G) ≥ PoA(G).

Note that for any game G = (N,A, C, {Ji}) with
∑n

i=1 Ji(a) > C(a) for all a ∈ A there

must exist a uniform scaling factor 0 < γ < 1 such that
∑n

i=1 γJi(a) ≥ C(a), but for which the

PoA remains the same, i.e., for G′ = (N,A, C, {J ′i}) where J ′i = γJi, it holds that PoA(G′) =
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PoA(G). The PoA remains the same despite the rescaling, because the Nash equilibrium

condition for each player is unaffected by a positive scaling factor (i.e., NE(G) = NE(G′)),

and because the optimal cost remains unchanged since the scaling does not impact the system

cost. Further, one can verify from (7.1) that RPoA(G) > RPoA(G′), and thus RPoA(G) >

RPoA(G′) ≥ PoA(G′) = PoA(G). Finally, we know that GPoA(G′) is less than or equal

to RPoA(G′) and can verify from (7.3) that GPoA(G) = GPoA(G′). Thus, RPoA(G) >

RPoA(G′) ≥ GPoA(G′) = GPoA(G) ≥ PoA(G).

7.5.2 Proof of Theorem 7.4.1

The following informal outline of the proof is directly followed by the formal proof, which

follows a similar structure:

– Step 1 : We define our game parameterization, which represents any generalized congestion

game G ∈ G withO(mn3) parameters θ(x, y, z, j) ≥ 0 corresponding with basis pairs {(Cj , F j)},

j = 1, . . . ,m, and triplets x, y, z ∈ {0, . . . , n} such that 1 ≤ x+ y − z ≤ n and z ≤ min{x, y}.

– Step 2 : For any family of generalized congestion games G, we observe that an upper bound

on the GPoA can be computed as a fractional program with O(mn2) constraints under the

game parameterization presented in Step 1.

– Step 3 : Following a change of variables, we observe that the linear program in (7.10)

is equivalent to the fractional program from Step 2. We then provide a game G ∈ G with

PoA equal to the upper bound on the GPoA, implying that PoA(G) ≥ GPoA(G). Since

PoA(G) ≤ PoA(G) ≤ GPoA(G), it must then be that PoA(G) = PoA(G) = GPoA(G) for the

family of generalized congestion games G, concluding the proof.

Proof. It is straightforward to show that any game in the family G∆(P) is (strategically) equiv-

alent to a game in GP (with potentially a much larger resource set), and, thus, that PoA(GP) =

PoA(G∆(P)). For example, consider a game G ∈ G∆(P) with rational coefficients α1
r , . . . , α

m
r ≥ 0,

r ∈ R. Let LCD denote the lowest common denominator across all coefficients α1
r , . . . , α

m
r ≥ 0,

r ∈ R, and observe that LCD · αjr is an integer for each j ∈ {1, . . . ,m} and r ∈ R. Thus, G
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is equivalent to the game G′ ∈ GP where we replace each resource r in game G with LCD · αjr
resources with function pair {Cj , F j}, for each type j ∈ {1, . . . ,m}. As this amounts to a uni-

form rescaling of the resource-cost and agent-cost functions, the PoA remains unchanged. In

the case of irrational coefficients, we can approximate these from above or below (as required)

to arbitrary precision using rational numbers, and then use the above approach to obtain an

equivalent game in GP . The above reasoning is further elaborated in [90, 100].

For any given set P, the remainder of the proof shows that PoA(G∆(P)) = GPoA(G∆(P)).

The proof is shown in three steps, as summarized in the informal outline.

– Step 1 : For a given game G ∈ G∆(P), our game parameterization is defined as follows for

allocations a, a′ ∈ A: For every resource r ∈ R, we define integers xr, yr, zr ≥ 0 where xr = |a|r
is the number of agents that select r in a, yr = |a′|r is the number of agents that select r in a′

and zr = |{i ∈ N s.t. r ∈ ai}∩{i ∈ N s.t. r ∈ a′i}| is the number of agents that select r in both

a and a′. Note that 1 ≤ xr + yr − zr ≤ n and zr ≤ min{xr, yr} must hold for all r ∈ R. For

all x, y, z ≥ 0 such that 1 ≤ x+ y − z ≤ n and z ≤ min{x, y}, and all j = 1, . . . ,m, we use the

parameterization in (7.9) to represent the coefficiencts of the resource-cost, agent-cost function

pair {Cr, Fr}. Although the parameterization into values θ(x, y, z, j) ≥ 0 is of size O(mn3), we

show in Step 2 that only O(mn2) parameters are needed in the computation of the PoA.

– Step 2 : For any generalized congestion game G ∈ G∆(P), we denote an optimal allocation

as aopt, and a Nash equilibrium as ane, i.e. ane ∈ NE(G) such that PoA(G) ≥ C(ane)/C(aopt).

We observe that using the above definitions of (xr, yr, zr) for a = ane and a′ = aopt, it follows

that

n∑
i=1

Ji(a
opt
i , ane

−i) =
∑
r∈R

[
(yr − zr)Fr(xr + 1) + zrFr(xr)

]
.

Informally, if an agent i ∈ N selects a given resource r ∈ R in both ane
i and aopt

i , then by

deviating from ane
i to aopt

i , the agent does not add to the load on r, i.e., |aopt
i , ane

−i|r = |ane|r = xr.

However, if r ∈ aopt
i and r /∈ ane

i , then |aopt
i , ane

−i|r = |ane|r + 1 = xr + 1.

Recall that for all r ∈ R, it must hold that zr ≤ min{xr, yr}, and 1 ≤ xr + yr − zr ≤ n. We
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(νopt, ρopt)

ρ

νν̄

Scenario (1)

(νopt, ρopt)

ρ

νν̄

Scenario (2)

ρ

νν̄

(νopt, ρopt)

Scenario (3)

Figure 7.1: The three different scenarios in which optimal solutions (νopt, ρopt) to (7.15) can
exist. We illustrate the reasoning behind each of the three scenarios for optimal solutions
(νopt, ρopt) to the linear program in (7.15). Since the objective of (7.15) is to maximize ρ,
the optimal values will be at the (upper) boundary of the feasible set, illustrated with a solid,
bolded line in each of the examples above. Additionally, the optimal solution (νopt, ρopt) is
marked by a solid, black dot in the illustrations above. In Scenario (1), on the left, (νopt, ρopt)
lie on the intersection of a boundary line with positive slope and a boundary line with non-
positive slope. In Scenario (2), centre, (νopt, ρopt) lie on the intersection of a boundary line
with positive slope at ν = ν̄, which is defined in (7.16). In Scenario (3), on the right, there
exists a halfplane boundary line with nonpositive slope and ρ-intercept equal to zero, and
so (νopt, ρopt) = (0, 0). Using the parameters corresponding to the halfplanes on which the
pair (νopt, ρopt) lays, we can construct games G ∈ G with PoA(G) = 1/ρopt in each of these
scenarios.

define the set of triplets I(n) ⊆ {0, 1, . . . , n}3 as

I(n) := {(x, y, z) ∈ N3 | 1≤x+ y − z≤n and z≤min{x, y}}, (7.12)

and γ(G∆(P)) as the value of the following fractional program:

γ(G∆(P)) := inf
λ>0,µ<1

λ

1− µ subject to:

(z−x)F j(x)+(y−z)F j(x+1)+Cj(x) ≤ λCj(y)+µCj(x),

∀j = 1, . . . ,m, ∀(x, y, z) ∈ I(n).

(7.13)

Observe that, by (7.9), the generalized smoothness condition in (7.3) can be rewritten for a

given generalized congestion game as∑
I(n)

m∑
j=1

[
(x−z)F j(x)−(y−z)F j(x+1)+Cj(x)

]
θ(x, y, z, j)

≤
∑
I(n)

m∑
j=1

[
λCj(y) + µCj(x)

]
θ(x, y, z, j)
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It must then hold that for any pair (λ, µ) in the feasible set of the fractional program in (7.13), all

games G ∈ G∆(P) are (λ, µ)-generalized smooth, i.e., γ(G∆(P)) ≥ GPoA(G∆(P)). This is because

the generalized smoothness condition for generalized congestion games can be expressed as a

weighted sum with positive coefficients over a subset of the constraints in (7.13).

To conclude Step 2 of the proof, we show that it is sufficient to define γ(G∆(P)) in (7.13) over

the reduced set of constraints corresponding to j ∈ {1, . . . ,m} and triplets in IR(n) ⊆ I(n),

where I(n) is defined as in (7.12) and

IR(n) :={(x, y, z) ∈ I(n) s.t. x+ y − z = n}

∪ {(x, y, z) ∈ I(n) s.t. (x− z)(y − z)z = 0}.
(7.14)

For each j ∈ {1, . . . ,m} and any (x, y, z) ∈ I(n), observe that the constraint in (7.13) is

equivalent to yF j(x+ 1)− xF j(x) + z[F j(x)− F j(x+ 1)] ≤ λCj(y) + (µ− 1)Cj(x). If F j(x+

1) ≥ F j(x), the strictest condition on λ and µ corresponds to the lowest value of z. Thus,

z = max{0, x + y − n}, and either (x − z)(y − z)z = 0 or x + y − z = n. Otherwise, if

F j(x + 1) < F j(x), then the largest value of z is strictest, i.e., z = min{x, y} which satisfies

(x− z)(y − z)z = 0.

– Step 3 : In order to derive the game instances with PoA matching γ(G∆(P)), it is convenient

to perform the following change of variables: ν(λ, µ) := 1/λ and ρ(λ, µ) := (1− µ)/λ. For ease

of notation, we will refer to the new variables simply as ν and ρ, respectively, i.e., ν = ν(λ, µ)

and ρ = ρ(λ, µ). For each j ∈ {1, . . . ,m} and each (x, y, z) ∈ IR(n), it is straightforward to

verify that the constraints in (7.13) can be rewritten in terms of ν and ρ as

Cj(y)− ρCj(x) + ν[(x− z)F j(x)− (y − z)F j(x+ 1)] ≥ 0.

Thus, the value γ(G∆(P)) must be equal to 1/ρopt, where ρopt is the value of the following linear
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program:

ρopt = maximize
ν∈R≥0,ρ∈R

ρ subject to:

Cj(y)−ρCj(x)+ν[(x−z)F j(x)−(y−z)F j(x+1)] ≥ 0,

∀j = 1, . . . ,m, ∀(x, y, z) ∈ IR(n).

(7.15)

It is important to note here that while γ(G∆(P)) is the infimum of a fractional program (see,

e.g., (7.13)), the value ρopt can be computed as a maximum because the feasible set is bounded

and closed. Firstly, since γ(G∆(P)) is an upper bound on the PoA, its inverse (i.e., ρ) must be in

the bounded and closed interval [0, 1]. Additionally, one can verify that ν is not only bounded

from below by 0, but also from above by the quantity

ν̄ := min
j∈{1,...,m}

minimize
(x,y,z)∈IR(n)

Cj(y)

(y−z)F j(x+1)−(x−z)F j(x)

s.t. (x− z)F j(x)− (y − z)F j(x+ 1) < 0, Cj(x) = 0,

(7.16)

which comes from the constraints in (7.15) corresponding to triplets (x, y, z) ∈ IR(n) such that

Cj(x) = 0 and (x − z)F j(x) − (y − z)F j(x + 1) < 0. Such a value must exist, as we define

Cj(0) = 0. One can verify that any j ∈ {1, . . . ,m} and (x, y, z) ∈ IR(n) such that Cj(x) = 0

and (x − z)F j(x) − (y − z)F j(x + 1) ≥ 0 correspond to constraints that are satisfied trivially

in (7.15) since ν ≥ 0, by definition, and Cj(y) ≥ 0 for all y = 0, 1, . . . , n, by assumption.

We denote with Hj(x, y, z) the halfplane of (ν, ρ) values that satisfy the constraint corre-

sponding to j ∈ {1, . . . ,m} and (x, y, z) ∈ IR(n), i.e.,

Hj(x, y, z) :=
{

(ν, ρ) ∈ R≥0 × R s.t.

ρ ≤ Cj(y)

Cj(x)
+

1

Cj(x)
ν
[
(x−z)F j(x)− (y−z)F j(x+1)

] }
.

The set of feasible (ν, ρ) is the intersection of these m×|IR(n)| halfplanes. Since the objective is

to maximize ρ, any solution (νopt, ρopt) to the linear program in (7.15) must be on the (upper)

boundary of the feasible set. We argue below that a solution (νopt, ρopt) can only exist in one

of the three following scenarios: (1) at the intersection of two halfplanes’ boundaries, where
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R1

Cr(k) = ηC(k),

Fr(k) = ηF (k),

for all r ∈ R1

r1
r2

r3

r4

r5rn−3

rn−2

rn−1

rn

R2

Cr(k) = (1− η)C′(k),

Fr(x) = (1− η)F ′(k),

for all r ∈ R2

rn+1
rn+2

rn+3

rn+4

rn+5r2n−3

r2n−2

r2n−1

r2n

i

1

2

...

n

ane
i

R1 R2

...

aopt
i

R1 R2

...

Figure 7.2: The game instance construction G consisting of n agents, and two disjoint cycles
R1 and R2, as described in the proof of Theorem 7.4.1, Step 2 for Scenarios (1) and (2).
Consider the family of games G∆(P), where n is the maximum number of agents and P is
the set of basis functions pairs, and suppose that (νopt, ρopt) satisfy the conditions of Sce-
narios (1) or (2). Further, suppose that the parameters for which (7.17) and (7.18) hold are
C,F ,C ′, F ′ ∈ P, (x, y, z) = (4, 2, 0), (x′, y′, z′) = (3, 4, 2) ∈ IR(n) and η ∈ [0, 1]. In the above
figure, we illustrate the game G ∈ G∆(P) such that PoA(G) = PoA(G′) = 1/ρopt according
to the reasoning for constructing game instances in Scenarios (1) and (2). Observe that each
resource r ∈ R1 has Cr(k) = ηC(k), and Fr(k) = ηF (k), whereas each resource r ∈ R2

has Cr(k) = (1 − η)C ′(k), and Fr(x) = (1 − η)F ′(k), for all k ∈ {1, . . . , n}. Each agent
i ∈ N has two actions ane

i and aopt
i , as defined in the table on the right. Observe that every

resource in R1 is selected by 4 agents in the allocation ane = (ane
1 , . . . , a

ne
n ), and 3 agents in

aopt = (aopt
1 , . . . , aopt

n ), where no agent i ∈ N has a common resource between its actions ane
i

and aopt
i , i.e., xr = 4 = x, yr = 3 = y, and zr = 0 = z for all r ∈ R1. Similarly, xr = 3 = x′,

yr = 4 = y′, and zr = 2 = z′, for each resource r ∈ R2.

one halfplane has boundary line with positive slope, and the other has boundary line with

nonpositive slope; (2) on a halfplane boundary line with positive slope at νopt = ν̄; or (3) at

(νopt, ρopt) = (0, 0).

We denote with ∂Hj(x, y, z) the boundary line of the halfplane Hj(x, y, z), i.e., the set of

(ν, ρ) ∈ R≥0 × R such that the inequality in the definition of Hj(x, y, z) holds with equality.

Observe that the boundary lines of halfplanes corresponding to the choice y = z = 0 have

ρ-intercept equal to zero and slope xF j(x)/Cj(x). If F j(x) ≤ 0 for any j ∈ {1, . . . ,m} and

x ∈ {1, . . . , n}, then an optimal pair (ν, ρ) is trivially at the origin, i.e., (νopt, ρopt) = (0, 0) (i.e.,

Scenario (3) above). Note that the ρ-intercept of any halfplane boundary cannot be below 0, as

we only consider cost functions such that Cj(k) ≥ 0 for all k and all j. Otherwise, the maximum

value of ρ occurs at the intersection of a boundary line with positive slope and a boundary line

with nonpositive slope (i.e., Scenario (1) above) or on a boundary line with positive slope at

ν = ν̄ (i.e., Scenario (2) above). We illustrate this reasoning in Figure 7.1.
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Observe that for Scenarios (1) and (2), the pair (νopt, ρopt) is at the intersection of two

boundary lines, which we denote as ∂Hj(x, y, z) and ∂Hj′(x′, y′, z′). The parameters j, j′ ∈

{1, . . . ,m} and (x, y, z), (x′, y′, z′) ∈ IR(n) satisfy the following:

ρoptCj(x)− Cj(y) = νopt[(x−z)F j(x)− (y−z)F j(x+1)],

ρoptCj
′
(x′)−Cj′(y′) = νopt[(x′−z′)F j′(x′)−(y′−z′)F j′(x′+1)],

(7.17)

because (νopt, ρopt) is on both boundary lines. Further, there must exist η ∈ [0, 1] such that

0 =η
[
(x−z)F j(x)− (y−z)F j(x+1)

]
+ (1−η)

[
(x′−z′)F j′(x′)− (y′−z′)F j′(x′+1)

]
.

(7.18)

(7.18) holds in Scenario (1) because one of the boundary lines has positive slope, i.e., (x −

z)F j(x) − (y − z)F j(x + 1) > 0, while the other has nonpositive slope, and in Scenario (3)

because one boundary line has positive slope while the other is the vertical line ν = ν̄ which

corresponds to a particular choice of j ∈ {1, . . . ,m} and (x, y, z) ∈ IR(n) such that (x −

z)F j(x)− (y − z)F j(x+ 1) < 0 by (7.16).

Next, for the parameters j, j′ ∈ {1, . . . ,m}, (x, y, z), (x′, y′, z′) ∈ IR(n), and η ∈ [0, 1]

obtained above, we construct a game instance G ∈ G∆(P) such that PoA(G) = 1/ρopt. Let

R1 = {r1, . . . , rn} and R2 = {rn+1, . . . , r2n} denote two disjoint cycles of resources. Every

resource r ∈ R1 has cost function Cr(k) = ηCj(k), and agent-cost function Fr(k) = ηF j(k) for

all k. Meanwhile, every r ∈ R2 has cost function Cr(k) = (1 − η)Cj
′
(k), and cost generating

function Fr(k) = (1 − η)F j
′
(k) for all k. We define the agent set N = {1, . . . , n}, where each

agent i ∈ N has action set Ai = {ane
i , a

opt
i }. In action ane

i , the agent i selects x consecutive

resources in R1 starting with ri, i.e. {ri, r(i mod n)+1, . . . , r((i+x−2) mod n)+1}, and x′ consecutive

resources in R2 starting with resource rn+i. In aopt
i , agent i selects y consecutive resources

in R1 ending with resource r((i+z−2) mod n)+1, i.e. {r((i+z−y−1) mod n)+1, . . . , r((i+z−2) mod n)+1},

and y′ consecutive resources in R2 ending with resource rn+((i+z′−2) mod n)+1. We provide an

illustration of this game construction in Figure 7.2. Observe that ane = (ane
1 , . . . , a

ne
n ) satisfies

the conditions for a Nash equilibrium,
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Ji(a
ne) = ηxF j(x) + (1− η)x′F j

′
(x′)

= η[zF j(x) + (y − z)F j(x+ 1)]

+ (1− η)[z′F j
′
(x′) + (y′ − z′)F j′(x′ + 1)]

= Ji(a
opt
i , ane

−i),

which holds by (7.18). Then, by the above equality and (7.17),

0 =

n∑
i=1

Ji(a
opt
i , ane

−i)−
n∑
i=1

Ji(a
ne)

=
1

νopt

[
n · η

[
ρoptCj(x)− Cj(y)

]
+ n · (1− η)

[
ρoptCj

′
(x′) + Cj

′
(y′)
] ]

=
1

νopt

[
ρoptC(ane)− C(aopt)

]
,

where aopt = (aopt)ni=1. Thus, PoA(G) = 1/ρopt. For Scenario (3), observe that ρopt = 0,

and so 1/ρopt is unbounded. Recall that, in this scenario, there exist j ∈ {1, . . . ,m} and

x ∈ {1, . . . , n} such that F j(x) ≤ 0. We use the basis function pair {Cj , F j} to construct

a game G with unbounded PoA. Consider a game instance with x agents and resource set

R = {r1, r2}, where x ∈ {1, . . . , n} is the value that minimizes the function F (x), i.e., F j(x) =

mink∈{1,...,n} F
j(k) ≤ 0. Every agent i ∈ {1, . . . , x} has action set Ai = {{r1}, {r2}}. The

resource r1 has cost function Cr(k) = ηCj(k) and agent-cost function Fr(k) = ηF j(k) for all

k. Similarly, the resource r2 has cost function Cr(k) = (1 − η)Cj(k) and agent-cost function

Fr(k) = (1 − η)F (k). It is straightforward to verify that, for η approaching 0 from above, the

allocation in which all agents select r1 is an equilibrium and the PoA is unbounded.
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Optimizing under the worst-case

perspective

Considering system performance from the worst-case perspective is natural, as we would like

to take a robust perspective on efficiency guarantees.

8.1 Optimizing the Price of Anarchy

8.1.1 Optimal taxation rule

First, we develop a methodology to compute optimal local tolling mechanisms through the

solution of tractable linear programs. To ease the notation, we introduce the set of integer

triplets I = {(x, y, z) ∈ Z3
≥0 s.t. 1 ≤ x + y + z ≤ n and either xyz = 0 or x + y + z = n}, for

given n ∈ N.

Theorem 8.1.1. A local mechanism minimizing the price of anarchy over congestion games

with n agents, resource costs `(x) =
∑m

j=1 αjbj(x), αj ≥ 0, and basis functions {b1, . . . , bm} is

given by

T opt(`) =
m∑
j=1

αj · τopt
j , where τopt

j : {1, . . . , n} → R, τopt
j (x) = fopt

j (x)− bj(x) (8.1)
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and ρopt
j ∈ R, fopt

j : {1, . . . , n} → R solve the following linear programs (one per each bj)

maximize
f∈Rn, ρ∈R

ρ subject to:

bj(x+ z)(x+ z)− ρbj(x+ y)(x+ y) + f(x+ y)y − f(x+ y + 1)z≥ 0 ∀ (x, y, z) ∈ I,
(8.2)

where we define bj(0) = f(0) = f(n + 1) = 0. Correspondingly, PoA(T opt) = maxj{1/ρopt
j }.1

These results are tight for pure Nash equilibria, and extend to coarse correlated equilibria.

The above statement contains two fundamental results. The first part of the statement

shows that an optimal tolling mechanism applied to the function `(x) =
∑m

j=1 αjbj(x) can

be obtained as the linear combination of τopt
j (x), with the same coefficients αj used to define

`. Complementary to this, the second part of the statement provides a practical technique

to compute τopt
j (x) for each of the basis bj(x) as the solution of a tractable linear program.

Python/Matlab code to design optimal tolls can be found in [105].

We solved the latter linear programs for n = 100 and polynomials of maximum degree

1 ≤ d ≤ 6. The corresponding results are displayed in Table 8.1 (one can show that these

results hold identically for arbitrarily large n using similar techniques as in Section 9.3). In

the case of d = 1, the optimal price of anarchy is approximately 2.012, matching that of un-

tolled load balancing games on identical machines [94, 106]. We observe that, in this restricted

setting, the price of anarchy cannot be improved at all through local tolling mechanisms. In

fact, no matter what non-negative tolling mechanism we are given, we can always construct a

load balancing game on identical machines with a price of anarchy no lower than 2.012.2

We conclude observing that the decomposition of resource costs as linear combination of

basis functions is, strictly speaking, not required for Theorem 8.1.1 to hold. Nevertheless,

pursuing this approach would require to solve a linear program for each function in L, a task

that becomes daunting when L contains infinitely many functions, e.g., in the case of polynomial

1If we require tolls to be non-negative, an optimal mechanism is as in (8.1), where we set τopt
j (x) = fopt

j (x) ·
PoAopt − bj(x).

2To do so, it is sufficient to utilize the instance in [106, Thm 3.4], where the the resource cost x used therein
is replaced with x+ τ(x). The Nash equilibrium and the optimal allocation will remain unchanged, yielding the
same price of anarchy value.
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d No toll Global toll Optimal local Optimal constant Marginal cost
[86] from [88, 72] toll (this work) local toll (this work) toll (this work)

1 2.50 2 2.012 2.15 3.00
2 9.58 5 5.101 5.33 13.00
3 41.54 15 15.551 18.36 57.36
4 267.64 52 55.452 89.41 391.00
5 1513.57 203 220.401 469.74 2124.21
6 12 345.20 877 967.533 3325.58 21 337.00

Table 8.1: Price of anarchy values for congestion games with resource costs of degree at most d.
All results are tight for pure Nash and also hold for coarse correlated equilibria. The columns
feature the price of anarchy with no tolls, with global tolls from [88, 72], with optimal local
tolls, with optimal constant (i.e. congestion-independent) local tolls, and with marginal cost
tolls, respectively. Columns four, five, and six, are composed of entirely novel results, except
for the case of constant tolls with d = 1, which recovers [88]. Note that i) optimal tolls relying
only on local information perform closely to optimal tolls designed using global information,
with a difference in performance below 1% for d = 1; ii) congestion-independent tolls result in
a price of anarchy that is comparable to that obtained using congestion-aware local tolls for
polynomials of low degree. The code used to generate this table can be downloaded from [105].

congestion games. In this case, Theorem 8.1.1 allows to compute optimal tolls by solving

finitely many linear programs.

8.1.2 Explicit solution and simplified linear program.

Next, we derive a simplified linear program as well as an analytical solution to the problem

of designing optimal taxation rules. We do so under the assumption that all basis functions are

positive, increasing, and convex in the discrete sense.3

Theorem 8.1.2. Consider congestion games with n agents, where resource costs take the form

`(x) =
∑m

j=1 αjbj(x), αj ≥ 0, and the basis functions bj : {1, . . . , n} → R are positive, convex,

strictly increasing.4

i) A tolling mechanism minimizing the price of anarchy is as in (8.1), where each fopt
j :

3We say that a function f : {1, . . . , n} → R is convex if f(x+ 1)− f(x) is non-decreasing in its domain.
4The result also holds if convexity and strict increasingness of bj(x) are weakened to strict convexity of bj(x)x

and bj(n) > bj(n− 1). One such example is that of bj(x) =
√
x.
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{1, . . . , n} → R solves the following simplified linear program

(fopt
j , ρopt

j ) ∈maximize
f∈Rn, ρ∈R

ρ subject to:

bj(v)v − ρbj(u)u+ f(u)u− f(u+ 1)v ≥ 0,

∀u, v ∈ {0, . . . , n} s.t. u+ v ≤ n,

bj(v)v − ρbj(u)u+ f(u)(n− u)− f(u+ 1)(n− u) ≥ 0,

∀u, v ∈ {0, . . . , n} s.t. u+ v > n,

(8.3)

with f(0) = f(n+ 1) = 0. The corresponding optimal price of anarchy is maxj{1/ρopt
j }.

ii) An explicit expression for each fopt
j is given by the following recursion, where fopt

j (1) = bj(1),

fopt
j (u+ 1) = min

v∈{1,...,n}
β(u, v)fopt

j (u) + γ(u, v)− δ(u, v)ρopt
j ,

β(u, v) =
min{u, n− v}
min{v, n− u} , γ(u, v) =

b(v)v

min{v, n− u} , δ(u, v) =
b(u)u

min{v, n− u} ,
(8.4)

ρopt
j = min

v1,...,vn−1∈{1,...,n},
vn∈{0,...,n}

(n− vn)
(∏n−1

u=1 βubj(1) +
∑n−2

u=1

(∏n−1
i=u+1 βi

)
γu + γn−1

)
+ b(vn)vn

(n− vn)
(∑n−2

u=1

(∏n−1
i=u+1 βi

)
δu + δn−1

)
+ b(n)n

,

(8.5)

where we use the short-hand notation βu instead of β(u, vu), and similarly for γu and δu.

Before delving into the proof, we observe that the key difficulty in designing optimal tolls

resides in the expressions of ρopt
j arising from (8.5). Nevertheless, for any possible choice of

ρ̄j that approximates ρopt
j from below, i.e., ρ̄j ≤ ρopt

j , one can directly utilize the recursion in

(8.4) to design a valid tolling mechanism. The resulting price of anarchy would then amount

to maxj{1/ρ̄j} > maxj{1/ρopt
j }. This follows from the ensuing proof.
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8.2 Universal guarantees on the optimal Price of Anarchy

Recall that a guarantee on the Price of Anarchy for a taxation/utility rule translates directly

to an approximation ratio of the underlying set of equilibria. Though several works provide

tight bounds on the approximation ratio of polynomial-time centralized algorithms for the class

of problems we consider (see, e.g., [107, 108, 109]), there is currently no result in the literature

that establishes comparable bounds on the best achievable Price of Anarchy, aside from the

general bound put forward in [110] that is provably inexact. Our main result in this section

is an efficient technique for computing a utility mechanism that guarantees a Price of Anarchy

of 1 − c/e in all resource allocation games with nonnegative, nondecreasing concave welfare

functions with maximum curvature c.

Definition 8.2.1 (Curvature [111]). The curvature of a nondecreasing concave function W :

N→ R is

c = 1− W (n)−W (n− 1)

W (1)
. (8.6)

In the literature on submodular maximization, the curvature is commonly used to compactly

parameterize broad classes of functions. The notion of curvature we consider was originally de-

fined by Conforti et al. [111] in the context of general nondecreasing submodular set functions.

In our specific setup, this reduces to the expression in Definition 8.2.1. Observe that all nonde-

creasing concave functions have curvature c ∈ [0, 1]. Thus, c = 1 can be considered in scenarios

where the maximum curvature among functions in the set W is not known.

Theorem 8.2.1. Let G denote the set of all resource allocation games with nonnegative, non-

decreasing concave welfare functions with maximum curvature c. An optimal utility mechanism

achieves PoA(G) = 1− c/e and can be computed efficiently.

A significant consequence of this result is a universal guarantee that the best achievable

Price of Anarchy is always greater than 1 − 1/e ≈ 63.2% for resource allocation games with

nonnegative, nondecreasing concave welfare functions. Note that since 1 − 1/e is the optimal

Price of Anarchy in general covering games [112], it cannot be further improved without more
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information about the underlying set of welfare functions. Our guarantee improves to 1 − c/e

if the curvature c of the underlying set of welfare functions is known.

Observe that the result in Theorem 8.2.1 also implies that one can efficiently compute a

“universal” utility mechanism, in that it would guarantee a Price of Anarchy greater than or

equal to 1 − 1/e with respect to any game with nonnegative, nondecreasing concave welfare

functions. This follows from the observation that c ≤ 1 always holds for nondecreasing concave

welfare functions. Of course, if more information is available about the underlying set of welfare

functions (e.g., the maximum curvature), then this lower bound can be improved. In the case

where the entire set of welfare functions W is known a priori and |W| is “small enough”, then

the optimal utility mechanism can be computed using existing methodologies (see, e.g., [113]).5

Consider the sets represented in Figure 8.1. From our reasoning, it holds that as the size

of the set of welfare functions considered is reduced, the prices of anarchy of the corresponding

optimal utility mechanisms increase. The set of games induced by welfares in the green ellipse,

for example, coincides with the vehicle-target assignment problem, as described in [114], where

pt = p ∈ [0, 1] for all t ∈ T . Note that the welfare function Wt of each target t ∈ T in this

problem is nonnegative, nondecreasing concave (i.e., the green ellipse is a subset of the dotted

red box). Thus, we can immediately observe that the best achievable Price of Anarchy in the

corresponding resource allocation game G satisfies

PoA(G) ≥ 1− 1

e
,

which is achieved by the universal utility mechanism from Theorem 8.2.1. Since there is only a

single welfare function in this setting (ignoring uniform scalings) the optimal utility mechanism

can be computed for a modest number of agents, as aforementioned.

In Figure 8.2, we plot the price of anarchy corresponding to the optimal utility mechanism

within this setting (labelled “Optimal”), the price of anarchy achieved by the universal utility

5In this case, the optimal utility mechanism can be found as the solution of |W| linear programs with number
of constraints that is quadratic in the maximum number of agents n, and n + 1 decision variables. For this
reason, we say that the optimal utility mechanism can only be computed for modest values of |W| and n.
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All nonnegative, nondecreasing concave functions
All nonnegative, nondecreasing con-
cave functions with maximum curva-
ture c

Vehicle-target assign-
ment welfares with
pt = p, ∀t ∈ T

Figure 8.1: The set of games induced by the set of all nonnegative, nondecreasing concave
functions contains the set of all nonnegative, nondecreasing concave functions with maximum
curvature c, which in turn contains the set of all vehicle-target assignment problems with
pt = p.
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Figure 8.2: The price of anarchy of the universal utility mechanism obtained in this work
and the optimal utility mechanism in the vehicle-target assignment problems with pt ∈ [0, p]
for all t ∈ T . Note that this utility mechanism is designed for the set of all nonnegative,
nondecreasing concave welfare functions but its price of anarchy is close to the best achievable
within this particular setting.

mechanism (labelled “Universal”) and the 1 − 1/e lower bound from Theorem 8.2.1 (labelled

“Lower bound”). As expected, the optimal utility mechanism corresponds with the best price of

anarchy as it was designed specifically for the underlying welfare function. However, knowledge

of the set of welfare functions corresponds with only a small increase in the price of anarchy;

the price of anarchy achieved by the universal utility mechanism is surpisingly close to the

best achievable by any mechanism for all values of p ∈ [0, 1]. Note that the universal utility

mechanism is only guaranteed to achieve a price of anarchy of 1− 1/e.
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8.3 Chapter proofs

8.3.1 Proofs from Section 8.1

Proof of Theorem 8.1.1

Proof. We divide the proof in two parts for ease of exposition.

Part 1. We show that any local mechanism minimizing the price of anarchy over all linear

local mechanisms, does so also over all linear and non-linear local mechanisms. We let T opt be

a mechanism that minimizes the price of anarchy over all linear local mechanisms, i.e., over all

T satisfying

T

 m∑
j=1

αjbj

 =

m∑
j=1

αjT (bj),

for all αj ≥ 0. We intend to show that PoA(T opt) ≤ PoA(T ) for any possible T (linear or non-

linear). Towards this goal, assume, for a contradiction, that there exists a tolling mechanism T̂

such that

PoA(T opt) > PoA(T̂ ). (8.7)

Let Gb be the class of games in which any resource e can only utilize a resource cost `e ∈

{b1, . . . , bm}. Since Gb ⊂ G, we have

PoA(T̂ ) ≥ sup
G∈Gb

sup
a∈NE(G)

SC(a)

MinCost(G)
. (8.8)

Additionally, let G(Z≥0) ⊂ G be the class of games with αj ∈ Z≥0 for all j ∈ {1, . . . ,m}, for all

resources in R. Construct the mechanism T̄ by “linearizing” the mechanism T̂ , i.e., as

T̄ (`) = T̄

 m∑
j=1

αjbj

 =

m∑
j=1

αj T̂ (bj).

We observe that the efficiency of any instance G ∈ Gb to which the tolling mechanism T̂ is

applied, coincides with that of an instance G ∈ G(Z≥0) to which T̄ is applied, and vice-versa.
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Thus,

sup
G∈Gb

sup
a∈NE(G)

SC(a)

MinCost(G)
= sup

G∈G(Z≥0)
sup

a∈NE(G)

SC(a)

MinCost(G)
= PoA(T̄ ), (8.9)

where the last equality holds due to Lemma 8.3.1. Putting together (8.7), (8.8), and (8.9) gives

PoA(T opt) > PoA(T̄ ). (8.10)

Since T opt minimizes the price of anarchy over all linear mechanisms, and since T̄ is linear by

construction, it must be PoA(T opt) ≤ PoA(T̄ ), a contradiction of (8.10). Thus, T opt minimizes

the price of anarchy over any mechanism.

Part 2. We will derive a linear program to design optimal linear mechanisms. Putting this

together with the claim in Part 1 will conclude the proof. Towards this goal, we will prove that

any mechanism of the form

T (`) =
m∑
j=1

αjτ
opt
j with τopt

j (x) = λ · fopt
j (x)− bj(x) (8.11)

is optimal, regardless of the value of λ ∈ R>0. While this is slightly more general than needed,

setting λ = 1 will give the first claim. Additionally, setting λ = PoAopt will give the second

claim as this choice will ensure non-negativity of the tolls.

Before turning to the proof, we recall a result from Chapter 7 that allows us to compute

the price of anarchy for given linear tolling mechanism T (`) =
∑m

j=1 αjτj . Upon defining

fj(x) = bj(x) + τj(x) for all 1 ≤ x ≤ n and j ∈ {1, . . . ,m}, the authors show that the price of

anarchy of T computed over congestion games G is identical for pure Nash and coarse correlated

equilibria and is given by PoA(T ) = 1/ρopt, where ρopt is the value of the following program

maximize
ρ∈R,ν∈R≥0

ρ subject to:

bj(x+ z)(x+ z)− ρbj(x+ y)(x+ y) + ν[fj(x+ y)y − fj(x+ y + 1)z] ≥ 0,

∀ (x, y, z) ∈ I,∀j ∈ {1, . . . ,m}.

(8.12)
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We also remark that, when all functions {fj}mj=1 are non-decreasing, it is sufficient to only

consider a reduced set of constraints, following a similar argument to that in [115, Cor. 1]. In

this case, the linear program simplifies to

maximize
ρ∈R,ν∈R≥0

ρ subject to:

bj(v)v − ρbj(u)u+ ν[fj(u)u− fj(u+ 1)v] ≥ 0,

∀u, v ∈ {0, . . . , n} s.t. u+ v ≤ n, ∀j ∈ {1, . . . ,m},

bj(v)v − ρbj(u)u+ ν[fj(u)(n− v)− fj(u+ 1)(n− u)] ≥ 0,

∀u, v ∈ {0, . . . , n} s.t. u+ v > n, ∀j ∈ {1, . . . ,m}.

(8.13)

We now leverage (8.12) to prove that any mechanism in (8.11) is optimal, as required. Towards

this goal, we begin by observing that the optimal price of anarchy obtained when the resource

costs are generated using all the basis functions {b1, . . . , bm} is no smaller than the optimal price

of anarchy obtained when the resource costs are generated using a single basis function {bj} at

a time (and therefore is no smaller than the highest of these optimal price of anarchy values).

This follows readily since the former class of games is a superset of the latter. Additionally,

observe that a set of tolls minimizing the price of anarchy over the games generated using a

single basis function {bj} is precisely that in (8.11). This is because minimizing the price of

anarchy amounts to designing fj to maximize ρ in (8.12), i.e., to solving the following program

maximize
f∈Rn

max
ρ∈R,ν∈R≥0

ρ subject to:

bj(x+ z)(x+ z)− ρbj(x+ y)(x+ y) + ν[f(x+ y)y − f(x+ y + 1)z] ≥ 0, ∀ (x, y, z) ∈ I,
(8.14)
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which can be equivalently written as

maximize
f̃∈Rn

max
ρ∈R

ρ subject to:

bj(x+ z)(x+ z)− ρbj(x+ y)(x+ y) + f̃(x+ y)y − f̃(x+ y + 1)z ≥ 0, ∀ (x, y, z) ∈ I,
(8.15)

where we defined f̃ = ν · f . While fopt
j is defined in (8.2) precisely as the solution of this

last program, resulting in a price of anarchy of 1/ρopt
j , note that λ · fopt

j is also a solution

since its price of anarchy matches 1/ρopt
j (in fact, it can be computed using (8.12) for which

(ρ, ν) = (ρopt
j , 1/λ) are feasible).

The above reasoning shows that the optimal price of anarchy for a game with resource costs

generated by {b1, . . . , bm} must be no smaller than maxj{1/ρopt
j }. We now show that this holds

with equality. Towards this goal, we note, thanks to (8.12), that utilizing tolls as in (8.7) for

a game generated by {b1, . . . , bm} results in a price of anarchy of precisely maxj{1/ρopt
j }. This

follows as (minj{ρopt
j }, 1/λ) is feasible for this program for any choice of λ > 0. This proves, as

requested, that any tolling mechanism defined in (8.11) is optimal.

We now verify that the choice λ = PoAopt = maxj{1/ρopt
j } ensures positivity of the tolls,

which is equivalent to fopt
j (x) − bj(x)/λ ≥ 0 for all x ∈ {1, . . . , n}. This follows readily, as

setting x = z = 0 in (8.2) results in the constraint f(y) − ρbj(y) ≥ 0 for all y ∈ {1, . . . , n}.

Since fopt
j and ρopt

j must be feasible for this constraint, we have fopt
j (y) − ρopt

j bj(y) ≥ 0. One

concludes observing that fopt
j (y) − bj(y)/λ ≥ fopt

j (y) − ρopt
j bj(y) ≥ 0, since λ ≥ 1/ρopt

j . We

conclude remarking that all results hold for both Nash and coarse correlated equilibria, as they

were derived from (8.12).

Lemma 8.3.1. Consider the class of congestion games G. For any linear tolling mechanism

T , it is

PoA(T ) = sup
G∈G(Z≥0)

sup
a∈NE(G)

SC(a)

MinCost(G)
,

where G(Z≥0) ⊂ G is the subclass of games with αj ∈ Z≥0 for all j ∈ {1, . . . ,m}, for all resources

in R.
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Proof. We divide the proof in two steps. First, we show that

PoA(T ) = sup
G∈G(Q≥0)

sup
a∈NE(G)

SC(a)

MinCost(G)
, (8.16)

where G(Q≥0) ⊂ G is the subclass of games with αj ∈ Q≥0 for all j ∈ {1, . . . ,m}, for all

resources in R. Towards this goal, observe that (8.16) holds trivially with ≥ in place of the

equality sign, as R≥0 ⊃ Q≥0. To show that the converse inequality also holds, observe that

the price of anarchy of a given linear mechanisms T (computed over all meaningful instances

where SC(ane) > 0) can be computed utilizing the linear program reported in (8.12). By strong

duality, we have PoA(T ) = 1/C?, where C? is the value of the dual program of (8.12), i.e.,

C? =minimize
θ(x,y,z,j)

∑
x,y,z,j

bj(x+ z)(x+ z)θ(x, y, z, j) (8.17)

∑
x,y,z,j

[fj(x+ y)y − fj(x+ y + 1)z] θ(x, y, z, j) ≤ 0, (8.18)

∑
x,y,z,j

bj(x+ y)(x+ y)θ(x, y, z, j) = 1, (8.19)

θ(x, y, z, j) ≥ 0, ∀(x, y, z, j) ∈ I, (8.20)

where we define bj(0) = fj(0) = fj(n+1) = 0 for convenience, I = {(x, y, z, j) ∈ Z4
≥0 s.t. 1 ≤ x+

y+z ≤ n, 1 ≤ j ≤ m}, and the minimum is intended over the entire tuple {θ(x, y, z, j)}(x,y,z,j)∈I .

Let {θ?(x, y, z, j)}(x,y,z,j)∈I denote an optimal solution (which exists, due to the non-emptiness

and boundedness of the constraint set, which can be proven using the same argument in [115,

Thm. 2]). If all θ?(x, y, z, j) are rational, then consider the game G defined as follows. For every

i ∈ {1, . . . , n} and for every (x, y, z, j) ∈ I, we create a resource identified with e(x, y, z, j, i),

and assign to it the resource cost αjbj , where αj = θ?(x, y, z, j)/n. The game G features n

players, where player p ∈ {1, . . . , n} can either select the resources in the allocation aopt
p or in
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ane
p , defined by

aopt
p = ∪ni=1 ∪mj=1 {e(x, y, z, j, i) : x+ y ≥ 1 + ((i− p) modn)},

ane
p = ∪ni=1 ∪mj=1 {e(x, y, z, j, i) : x+ z ≥ 1 + ((i− p+ z) modn)}.

Note that the above construction is an extension of that appearing in [115] to the case of

multiple basis functions. Since G has

sup
a∈NE(G)

SC(a) =
∑
x,y,z,j

bj(x+ y)(x+ y)θ?(x, y, z, j) = 1,

MinCost(G) ≤
∑
x,y,z,j

bj(x+ z)(x+ z)θ?(x, y, z, j) = C?,

(see [115, Thm. 2] for this), its price of anarchy is no smaller than 1/C?. Observe that G

features only non-negative rational resource costs’ coefficients (i.e., G ∈ G(Q≥0)), therefore

(8.16) follows readily.

If at least one entry in the tuple {θ?(x, y, z, j)}(x,y,z,j)∈I is not rational, we will prove the

existence of a sequence of games Gk ∈ G(Q≥0) whose worst-case efficiency converges to PoA(T )

as k →∞. This would imply that (8.16) holds with ≤ in place of the equality sign, concluding

the proof. To do so, let us consider the set

S = {{θ(x, y, z, j)}(x,y,z,j)∈I s.t. (8.18), and (8.20) hold}.

Observe that S is non-empty, and that for any tuple belonging to S, we can find a sequence

of non-negative rational tuples {{θk(x, y, z, j)}(x,y,z,j)∈I}∞k=1 (i.e., θk(x, y, z, j) ∈ Q≥0 for all

x, y, z, j and k), that converges to it.

Let {{θk(x, y, z, j)}(x,y,z,j)∈I}∞k=1 be a sequence of tuples converging to θ?(x, y, z, j) such

that (x, y, z, j) ∈ I, which belongs to S. For each tuple {θk(x, y, z, j)}(x,y,z,j)∈I in the sequence,

define the game Gk following the same construction introduced above with θk(x, y, z, j) in place

of θ?(x, y, z, j). Following the same reasoning as above, it is supa∈NE(Gk) SC(a) =
∑

x,y,z,j bj(x+
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y)(x+ y)θk(x, y, z, j), and MinCost(Gk) ≤∑x,y,z,j bj(x+ z)(x+ z)θk(x, y, z, j). Therefore

PoAk = sup
a∈NE(Gk)

SC(a)

MinCost(Gk)
≥
∑

x,y,z,j bj(x+ y)(x+ y)θk(x, y, z, j)∑
x,y,z,j bj(x+ z)(x+ z)θk(x, y, z, j)

,

from which we conclude that

lim
k→∞

PoAk ≥ lim
k→∞

∑
x,y,z,j bj(x+ y)(x+ y)θk(x, y, z, j)∑
x,y,z,j bj(x+ z)(x+ z)θk(x, y, z, j)

=

∑
x,y,z,j bj(x+ y)(x+ y)θ?(x, y, z, j)∑
x,y,z,j bj(x+ z)(x+ z)θ?(x, y, z, j)

=
1

C?
,

as θk(x, y, z, j)→ θ?(x, y, z, j) for k →∞. This completes the first step.

The second and final step consist in showing that

sup
G∈G(Q≥0)

sup
a∈NE(G)

SC(a)

MinCost(G)
= sup

G∈G(Z≥0)
sup

a∈NE(G)

SC(a)

MinCost(G)
.

Towards this goal, for any given game from the above-defined sequence Gk ∈ G(Q≥0), let dGk

denote the lowest common denominator among the resource cost coefficients αj , across all the

resources of the game. Define α̂j = αj · dGk ∈ Z≥0 for all j ∈ {1, . . . ,m}, for all resources

in R. Since the tolling mechanisms T is linear by assumption, the equilibrium conditions are

independent to uniform scaling of the resource costs and tolls by the coefficient dGk . Therefore

any game in the sequence Gk with tolling mechanism T and resource cost coefficients {αj}mj=1

has the same worst-case equilibrium efficiency as a game Ĝk which is identical to Gk except

that it has resource cost coefficients {α̂j}mj=1. Observing that Ĝk belongs to G(Z≥0) concludes

the proof.

Proof of Theorem 8.1.2. Before delving into the proof, we observe that the key difficulty

in designing optimal tolls resides in the expressions of ρopt
j arising from (8.5). Nevertheless, for

any possible choice of ρ̄j that approximates ρopt
j from below, i.e., ρ̄j ≤ ρopt

j , one can directly

utilize the recursion in (8.4) to design a valid tolling mechanism. The resulting price of anarchy
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would then amount to maxj{1/ρ̄j} > maxj{1/ρopt
j }. This follows from the ensuing proof.

Proof. As shown in Theorem 8.1.1, computing an optimal tolling mechanism amounts to uti-

lizing (8.1), where each τopt
j has been designed through the solution of the program in (8.2).

In light of this, we prove the theorem as follows: first, we consider a simplified linear program,

where only a subset of the constraints enforced in (8.2) are considered. Second, we show that

a solution of this simplified program is given by (ρopt
j , fopt

j ) as defined above. Third, we show

that fopt
j is non-decreasing, thus ensuring that (ρopt

j , fopt
j ) is also feasible for the original over

constrained program in (8.2). From this we conclude that (ρopt
j , fopt

j ) must also be a solution of

(8.2), i.e., the second claim in the Theorem. We conclude with some cosmetics, and transform

the simplified linear program whose solution is given by (ρopt
j , fopt

j ) in (8.3), thus obtaining the

first claim. Throughout the proof, we drop the index j from bj as the proof can be repeated

for each basis separately.

Simplified linear program. We begin by rewriting the program in (8.2), where instead

of the indices (x, y, z), we use the corresponding indices (u, v, x) defined as u = x+y, v = x+z.

The constraint indexed by (u, v, x) reads as b(v)v−ρb(u)u+f(u)(u−x)−f(u+1)(v−x) ≥ 0. We

now consider only the constraints where x is set to x = min{0, u+v−n}, and u, v ∈ {0, . . . , n},

Such constraints read as b(v)v − ρb(u)u + min{u, n − v}f(u) − min{v, n − u}f(u + 1) ≥ 0.6

Finally, we exclude the constraints with v = 0, u ∈ {1, . . . , n − 1} and obtain the following

simplified linear program

maximize
f∈Rn, ρ∈R

ρ subject to:

b(v)v − ρb(u)u+ min{u, n− v}f(u)−min{v, n− u}f(u+ 1) ≥ 0,

∀(u, v) ∈ {0, . . . , n} × {1, . . . , n} ∪ (n, 0).

(8.21)

Proof that (ρopt, fopt) solve (8.21). Towards the stated goal, we begin by observing

that (ρopt, fopt) is feasible by construction. For u = 0 this follows as the tightest constraints

6Note that considering all these constraints with u, v ∈ {0, . . . , n} results precisely in (8.3). To see this, simply
distinguish the cases based on whether u+ v ≤ n or u+ v > n.
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in (8.21) read as fopt(1) ≥ b(1) and we selected fopt(1) = b(1). Feasibility is immediate to

verify for u ∈ {1, . . . , n − 1}, v ∈ {1, . . . , n} as applying its definition gives fopt(u + 1) ≤

β(u, v)fopt(u) + γ(u, v) − δ(u, v)ρopt. Using the expressions of β, γ, δ, and rearranging gives

exactly the constraint (u, v) in (8.21). The only element of difficulty consists in showing that

also the constraints with u = n, v ∈ {0, . . . , n} are satisfied. Towards this goal, we observe

that utilizing the recursive definition of fopt we obtain an expression for fopt(n) as a function

of ρopt with a nested succession of minimizations, which can be jointly extracted as follows

fopt(n) = min
vn−1

{
· · ·+ min

vn−2

{
· · ·+ min

v1

{. . . }
}}

= min
vn−1

min
vn−2

. . .min
v1

{. . . } .

This holds as fopt(u+1) = minvu [βu minvu−1(βu−1f
opt(u−1)−δu−1ρ

opt+γu−1)−δuρopt+γu], and

since βu ≥ 0, the latter simplifies to fopt(u+ 1) = minvu minvu−1 βuβu−1f
opt(u−1)− (βuδu−1 +

δu)ρopt +βuγu−1 +γu. Repeating the argument recursively gives the desired expression. Hence,

fopt(n) = min
(v1,...,vn−1)∈{1,...,n}n−1

n−1∏
u=1

βubj(1) +

n−2∑
u=1

(
n−1∏
i=u+1

βi

)
(γu − δuρopt) + (γn−1 − δn−1ρ

opt)

.
= min

(v1,...,vn−1)∈{1,...,n}n−1
q(v1, . . . , vn−1; ρopt),

where we implicitly defined q(v1, . . . , vn−1; ρopt). The constraints we intend to verify read as

b(v)v − ρb(n)n + (n − v)fopt(n) ≥ 0 for all v ∈ {0, . . . , n}, and can be equivalently written

as minvn∈{0,...,n}[b(vn)vn − ρb(n)n + (n − vn)fopt(n)] ≥ 0. We substitute the resulting expres-

sion of fopt(n), extract the minimization over vn as in the above, and are therefore left with

min(v1,...,vn−1,vn)∈{1,...,n}n−1×{0,...,n}[b(vn)vn − ρb(n)n + (n − v)q(v1, . . . , vn−1; ρopt)] ≥ 0, which

holds if and only if b(vn)vn − ρb(n)n + (n − vn)q(v1, . . . , vn−1; ρopt) ≥ 0 for all possible tuples

(v1, . . . , vn). Rearranging these constraints and solving for ρopt will result in a set of inequali-

ties on ρopt (one inequality for each tuple). Our choice of ρopt in (8.5) is precisely obtained by

turning the most binding of these into an equality. This ensures that (ρopt, fopt) are feasible

also when u = n.

We now prove, by contradiction, that (ρopt, fopt) is optimal. To do so, we assume that there
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exists f̂ , that is feasible and achieves a higher value ρ̂ > ρopt. Since (f̂ , ρ̂) is feasible, using the

constraint with u = 0, v = 1, we have f̂(1) ≤ b(1) = fopt(1). Observing that min{v, n− u} > 0

due to v > 0, u < n and leveraging the constraints with u = 1 as well as the corresponding

specific choice of v = v∗1 (for given u ∈ {1, . . . , n − 1}, we let v∗u be an index v ∈ {1, . . . , n}

where the minimum in (8.4) is attained), it must be that f̂(2) satisfies

f̂(2) ≤ b(v∗1)v∗1 − ρ̂b(1) + min{1, n− v∗1}f̂(1)

min{v∗1, n− 1} <
b(v∗1)v∗1−ρoptb(1) + min{1, n− v∗1}fopt(1)

min{v∗1, n− 1}

which is equal to fopt(2). Here the first inequality follows by feasibility of f̂ , the second is

due to ρ̂ > ρopt and f̂(1) ≤ fopt(1). The final equality follows due to the definition of fopt(2).

Hence we have shown that f̂(2) < fopt(2). Noting that the only information we used to move

from level u to u + 1 is that ρ̂ > ρopt and f̂(u) ≤ fopt(u), one can apply this argument

recursively up until u = n − 1, and thus obtain f̂(n) < fopt(n). Nevertheless, leveraging the

constraints with u = n and v = v∗n gives b(v∗n)v∗n − ρ̂b(n)n + (n − v∗n)f̂(n) ≥ 0, or equivalently

ρ̂ ≤ (b(v∗n)v∗n + (n− v∗n)f̂(n))/(b(n)n). Thus

ρ̂ ≤ b(v∗n)v∗n + (n− v∗n)f̂(n)

b(n)n
≤ b(v∗n)v∗n + (n− v∗n)fopt(n)

b(n)n
= ρopt,

where we used the fact that n− v∗n ≥ 0 and f̂(n) < fopt(n). Note that ρ̂ ≤ ρopt contradicts the

assumption ρ̂ > ρopt, thus concluding this part of the proof.

Proof that fopt is non-decreasing. By contradiction, let us assume fopt is decreasing at

some index. Lemma 8.3.2 in the Appendix shows that, if this is the case, then fopt continues

to decrease, so that fopt(n) ≤ fopt(n − 1). Note that it must be fopt(n) > 0, as if it were

fopt(n) ≤ 0, then by definition of ρopt we would have

ρopt = min
v∈{0,...,n}

b(v)v + (n− v)fopt(n)

nb(n)
=

0 + fopt(n)

b(n)
≤ 0,

since the minimum is attained at the lowest feasible v due to b(v)v and−vfopt(n) non-decreasing

144



Optimizing under the worst-case perspective Chapter 8

and increasing, respectively. This is a contradiction as the price of anarchy is bounded already

in the un-tolled setup.7 It must therefore be that the price of anarchy is bounded also when

optimal tolls are used. Additionally, as we have removed a number of constraints from the

linear program, the corresponding price of anarchy will be even lower. Therefore it must be

that 1/ρopt is non-negative and bounded, so that ρopt > 0 contradicting the last equation.

Thus, in the following we proceed with the case of fopt(n) > 0. It must be that

ρopt = min
v∈{0,...,n}

b(v)v + (n− v)fopt(n)

nb(n)
≤ min

v∈{1,...,n}

b(v)v + (n− v)fopt(n)

nb(n)

≤ min
v∈{1,...,n}

b(v)v + (n− v)fopt(n− 1)

nb(n)
,

where the first inequality holds as we are restricting the domain of minimization, the second

because fopt(n) ≤ fopt(n− 1) and n− v ≥ 0. Let us observe that fopt(n) is defined as f(n) =

minv∈{1,...,n}[b(v)v+ (n− v)fopt(n− 1)]− ρopt(n− 1)b(n− 1). Substituting minv∈{1,...,n}[b(v)v+

(n− v)fopt(n− 1)] = fopt(n) + ρopt(n− 1)b(n− 1) in the former bound on ρopt, we get

ρopt ≤ fopt(n) + ρopt(n− 1)b(n− 1)

nb(n)
=⇒ ρopt ≤ fopt(n)

nb(n)− (n− 1)b(n− 1)
.

We want to prove that this gives rise to a contradiction. To do so, we will show that

fopt(n)

nb(n)− (n− 1)b(n− 1)
< min

v∈{0,...,n}

b(v)v + (n− v)fopt(n)

nb(n)
. (8.22)

As a matter of fact, if the latter inequality holds true, the proof is immediately concluded as

ρopt ≤ fopt(n)

nb(n)− (n− 1)b(n− 1)
< min

v∈{0,...,n}

b(v)v + (n− v)fopt(n)

nb(n)
= ρopt

=⇒ ρopt < ρopt,

where the first inequality has been shown above, the second is what remains to be proved, and

7To see this, consider the linear program used to determine the price of anarchy in the un-tolled case, i.e.,
(8.13) where we set fj(x) = bj(x). When ν = 1, it is always possible to find ρ > 0, so that the corresponding
price of anarchy is bounded.
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the latter equality is by definition. Therefore, we are left to show (8.22), which holds if we can

show that ∀v ∈ {0, . . . , n} it is

g(v)
.
=
h(v) + (n− v)fopt(n)

h(n)
− fopt(n)

h(n)− h(n− 1)
> 0,

where h : R → R≥0 is a function such that h(v) = b(v)v for v ∈ {0, . . . , n}. We choose h to

be continuously differentiable, strictly increasing, and strictly convex; one such function always

exists.8 We first consider the point v = 0. Observe that g(0) > 0 when n > 1 as

g(0) =
fopt(n)

b(n)
− fopt(n)

nb(n)− (n− 1)b(n− 1)
> 0 ⇐⇒ fopt(n)[(n−1)b(n)−(n−1)b(n−1)] > 0,

which holds as fopt(n) > 0, n > 1, and b(n) > b(n− 1) strictly.

If g′(v) ≥ 0 at v = 0, the proof is complete as g is convex and due to g′(0) ≥ 0 it is

non-decreasing for any v ≥ 0 so that the constraint will be satisfied for all v ≥ 0.

If this is not the case, then g′(0) < 0, which we consider now. Note that, at the point

v = n− 1, the derivative g′(n− 1) = [h′(n− 1)− fopt(n)]/h(n) satisfies

h(n)g′(n− 1) = h′(n− 1)− fopt(n) ≥ h′(n− 1)− (h(n− 1)− h(n− 2)) ≥ 0

where the last inequality is due to convexity, while the first inequality holds as fopt(n) ≤

h(n− 1)−h(n− 2) thanks to Lemma 8.3.2 and n ≥ 2.9 Therefore since g′(0) < 0, g′(n− 1) ≥ 0

and g convex, there must exist an unconstrained minimizer v? ∈ (0, n− 1]. We will guarantee

that g(v?) > 0 so that for any (real and thus integer) v ∈ [0, n] it is g(v) > 0. The unconstrained

minimizer satisfies fopt(n) = h′(v?), which we substitute, and are thus left with proving the

8Observe that the function b(v)v is positive, strictly increasing, and strictly convex in the discrete sense in its
domain due to the assumptions.

9In fact, either n is the first index starting from which fopt decreases (i.e. fopt(n) < fopt(n − 1)) in which
case fopt(n) ≤ ρopt[b(n− 1)(n− 1)− b(n− 2)(n− 2)] ≤ b(n− 1)(n− 1)− b(n− 2)(n− 2) due to ρopt ≤ 1, or the
function starts decreasing at a u+ 1 < n in which case Lemma 8.3.2 also shows that

fopt(n) ≤ · · · ≤ fopt(u+1) ≤ ρopt[b(u)u−b(u−1)(u−1)] ≤ b(u)u−b(u−1)(u−1) ≤ b(n−1)(n−1)−b(n−2)(n−2),

where the inequalities hold due to ρopt ≤ 1 and the convexity of b(u)u.
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final inequality

h(v?) + (n− v)h′(v?)

h(n)
− h′(v?)

h(n)− h(n− 1)
> 0,

which is equivalent to

[h(n)− h(n− 1)]h(v?) > h′(v?)[(n− v?)(h(n− 1)− h(n)) + h(n)],

where we recall 0 < v? ≤ n − 1. As the left hand side is positive due to h increasing and

v? > 0, the inequality holds trivially if the right hand side is less or equal to zero, i.e., if

h(n) ≤ (n−v?)(h(n)−h(n−1)). In the other case, when (n−v?)(h(n−1)−h(n))+h(n) > 0, we

leverage the fact that h′(v?) < (h(n)−h(v?))/(n−v?) by strict convexity of h(x) in x = v? > 0,

so that

h′(v?)[(n− v?)(h(n− 1)− h(n)) + h(n)] <
h(n)− h(v?)

n− v? [(n− v?)(h(n− 1)− h(n)) + h(n)]

=
h(n)

n− v? [h(n)− h(v?)]+[h(n)− h(n− 1)][h(v?)− h(n)] ≤ [h(n)− h(n− 1)]h(v?),

where the last inequality follows since [h(n)−h(n−1)][h(v?)−h(n)] ≤ 0 and from h(n)−h(v?)
n−v? ≤

h(n) − h(n − 1), which holds for 0 < v? ≤ n − 1 by convexity. This concludes this part of the

proof.

Proof that (ρopt, fopt) is feasible also for (8.2) and final cosmetics. Recall from the

first part of the proof that the constraints in (8.2) can be equivalently written as b(v)v−ρb(u)u+

f(u)(u−x)− f(u+ 1)(v−x) ≥ 0. Since fopt is non-decreasing, following the argument in [115,

Cor. 1] one verifies that the tightest constraints are obtained when x = min{0, u + v − n}.

These constraints are already included in our simplified program of (8.21), with the exception

of those with v = 0 and u ∈ {0, . . . , n − 1} which we have removed. To show that also these

hold, we note that the constraint with v = 0 reads as ufopt(u) ≥ ρoptub(u), and is trivially

satisfied for u = 0. We now show that also the constraints with v = 0, u > 0 hold. To do so,
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we consider the constraint corresponding to v = 1

b(1)1− ρb(u)u+ ufopt(u)− fopt(u+ 1) ≥ 0.

Since fopt is non-decreasing as shown in previous point then fopt(u + 1) ≥ fopt(1) = b(1).

Hence,

0 ≤ b(1)1− ρb(u)u+ ufopt(u)− fopt(u+ 1) ≤ b(1)1− ρoptb(u)u+ ufopt(u)− b(1).

Thus, from the left and right hand sides we obtain the desired result ufopt(u) ≥ ρoptub(u).

We conclude with some cosmetics: the simplified linear program in (8.21) is almost identical

to that in (8.3), except for the constraints with v = 0 and u ∈ {0, . . . , n − 1}, which we have

removed in (8.21). Nevertheless, we have just verified that an optimal solution does satisfy

these constraints too. Hence, we simply add them back to obtain (8.3).

Lemma 8.3.2. Let b : N → R≥0 be a nondecreasing, convex function, and let 0 < ρ ≤ 1 be a

given parameter. Further, define the function f : {1, . . . , n} → R such that f(1) = b(1) and

f(u+ 1)
.
= min

vu∈{1,...,n}

min{u, n− vu} · f(u)− b(u)u · ρ+ b(vu)vu
min{vu, n− u}

, (8.23)

for all u ∈ {1, . . . , n− 1}. Then, for the lowest value 1 ≤ û ≤ n− 1 such that f(û+ 1) < f(û),

it must hold that f(u+ 1) < f(u) for all u ∈ {û, . . . , n− 1}.

Proof. The proof is presented in two parts as follows: in Part 1, we identify inequalities given

that f(û + 1) < f(û), for 1 ≤ û ≤ n − 1 as defined in the claim; and, in Part 2, we use a

recursive argument to prove that f(u + 1) < f(u) holds for all û + 1 ≤ u ≤ n − 1, using the

inequalities derived in Part 1.
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Part 1. We define v∗u as one of the arguments that minimize the right-hand side of (8.23) for

each u ∈ {1, . . . , n− 1}. By assumption, it must hold that f(û+ 1) < f(û), which implies that

f(û) > min
v∈{1,...,n}

min{û, n− v}
min{v, n− û}f(û)− b(û)û

min{v, n− û}ρ+
b(v)v

min{v, n− û}

= min
v∈{1,...,n}

min{û− 1, n− v}
min{v, n− û+ 1}f(û− 1)− b(û− 1)(û− 1)

min{v, n− û+ 1}ρ+
b(v)v

min{v, n− û+ 1}

+
min{û, n− v}
min{v, n− û}f(û)− min{û− 1, n− v}

min{v, n− û+ 1}f(û− 1)− b(û)û

min{v, n− û}ρ

+
b(û− 1)(û− 1)

min{v, n− û+ 1}ρ+
b(v)v

min{v, n− û} −
b(v)v

min{v, n− û+ 1} ,

where the strict inequality holds by the definition of f(û+ 1). Recall that

f(û)
.
= min

v∈{1,...,n}

min{û− 1, n− v}
min{v, n− û+ 1}f(û− 1)− b(û− 1)(û− 1)

min{v, n− û+ 1}ρ+
b(v)v

min{v, n− û+ 1} .

Thus, if v∗û ≤ n− û, the above strict inequality with f(û) can only be satisfied if

f(û+ 1) < f(û) ≤ ûf(û)− (û− 1)f(û− 1) < [b(û)û− b(û− 1)(û− 1)] · ρ.

Similarly, if v∗û ≥ n− û+ 1, then it must hold that

(n− v∗û)

[
f(û)

n− û −
f(û− 1)

n− û+ 1

]
+

[
1

n− û −
1

n− û+ 1

]
b(v∗û)v∗û

<

[
b(û)û

n− û −
b(û− 1)(û− 1)

n− û+ 1

]
· ρ

=⇒
[

1

n− û −
1

n− û+ 1

]
[(n− v∗û)f(û) + b(v∗û)v∗û] <

[
b(û)û

n− û −
b(û− 1)(û− 1)

n− û+ 1

]
· ρ

⇐⇒ f(û+ 1) < [b(û)û− b(û− 1)(û− 1)]ρ,

where the first line implies the second line because f(û) ≥ f(û − 1), by the definition of û in

the claim, and the second line is equivalent to the third by the definitions of f(û + 1) and v∗û.

This concludes Part 1 of the proof.
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Part 2. In this part of the proof, we show by recursion that if f(û+1) < f(û), then f(u+1) <

f(u) for all u ∈ {û+1, ..., n−1}. We do so by showing that, if f(u) < f(u−1) < · · · < f(û+1)

for any u ∈ {û+ 1, . . . , n− 1}, then it must hold that f(u+ 1) < f(u). Thus, in the following

reasoning, we assume that u ∈ {û+ 1, . . . , n− 1}, and that f(u) < f(u− 1) < · · · < f(û+ 1).

We begin with the case of v∗u−1 < n− u+ 1, which gives us that v∗u−1 ≤ n− u. Observe that

f(u+ 1)
.
= min

vu∈{1,...,n}

min{u, n− vu}
min{vu, n− u}

f(u+ 1)− b(u)u

min{vu, n− u}
ρ+

b(vu)vu
min{vu, n− u}

= min
vu∈{1,...,n}

min{u− 1, n− vu}
min{vu, n− u+ 1}f(u− 1)− b(u− 1)(u− 1)

min{vu, n− u+ 1}ρ+
b(vu)vu

min{vu, n− u+ 1}

+
min{u, n− vu}
min{vu, n− u}

f(u+ 1)− min{u− 1, n− vu}
min{vu, n− u+ 1}f(u− 1)− b(u)u

min{vu, n− u}
ρ

+
b(u− 1)(u− 1)

min{vu, n− u+ 1}ρ+
b(vu)vu

min{vu, n− u}
− b(vu)vu

min{vu, n− u+ 1}

≤ f(u) +
u

v∗u−1

f(u)− u− 1

v∗u−1

f(u− 1)− b(u)u− b(u− 1)(u− 1)

v∗u−1

ρ

< f(u) +
1

v∗u−1

f(û+ 1)− 1

v∗u−1

[b(u)u− b(u− 1)(u− 1)]ρ < f(u),

where the first inequality holds by evaluating the minimization at vu = v∗u−1, the second in-

equality holds because f(u) < f(u − 1) and f(u) ≤ f(û + 1), by assumption, and the final

inequality holds by the result showed in Part 1 and because b(·) is nondecreasing and convex.
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Next, we consider the scenario in which v∗u−1 > n− u+ 1. Observe that

f(u+ 1) ≤ f(u) + (n− v∗u−1)

[
f(u)

n− u −
f(u− 1)

n− u+ 1

]
+

[
1

n− u −
1

n− u+ 1

]
b(v∗u−1)v∗u−1

− b(u)u

n− uρ+
b(u− 1)(u− 1)

n− u+ 1
ρ

< f(u) +

[
1

n− u −
1

n− u+ 1

]
[(n− v∗u−1)f(u− 1) + b(v∗u−1)v∗u−1]

− b(u)u

n− uρ+
b(u− 1)(u− 1)

n− u+ 1
ρ

= f(u) +

[
1

n− u −
1

n− u+ 1

]
[(n− u+ 1)f(u) + b(u− 1)(u− 1)ρ]

− b(u)u

n− uρ+
b(u− 1)(u− 1)

n− u+ 1
ρ

≤ f(u) +
1

n− uf(û+ 1)− 1

n− u [b(u)u− b(u− 1)(u− 1)]ρ

< f(u),

where the first inequality holds by evaluating the minimization at vu = v∗u−1, the second in-

equality holds because f(u) < f(u − 1), by assumption, the equality holds by the definitions

of f(u) and v∗u−1, the third inequality holds because f(u) ≤ f(û+ 1), by assumption, and the

final inequality holds by the identity we showed in Part 1 and because b is nondecreasing and

convex.

Finally, we consider the scenario in which v∗u−1 = n− u+ 1. Observe that

f(u+ 1) ≤ f(u) +
u− 1

n− uf(u)− u− 1

n− u+ 1
f(u− 1)− b(u)u

n− uρ+
b(u− 1)(u− 1)

n− u+ 1
ρ

+

[
1

n− u −
1

n− u+ 1

]
b(n− u+ 1)(n− u+ 1)

< f(u) +

[
1

n− u −
1

n− u+ 1

]
[(n− v∗u−1)f(u− 1) + b(v∗u−1)v∗u−1]

− b(u)u

n− uρ+
b(u− 1)(u− 1)

n− u+ 1
ρ

< f(u),
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where the first inequality holds by evaluating the minimization at vu = v∗u−1, the second in-

equality holds because f(u) < f(u − 1), by assumption, and the final inequality holds by the

same reasoning as for v∗u−1 > n− u+ 1.

8.3.2 Proofs from Section 8.2

In this section, we prove the claim in Theorem 8.2.1 by constructing a utility mechanism that

achieves the best achievable price of anarchy of 1−c/e with respect to the set of all nonnegative,

nondecreasing concave welfare functions with maximum curvature c ∈ [0, 1]. In scenarios where

a more specific set of welfare functions is considered, we outline how the techniques used to

prove Theorem 8.2.1 can be generalized to derive tighter a priori bounds on the best achievable

price of anarchy.

Before presenting the proof of Theorem 8.2.1, we provide an informal outline of the three

steps underpinning the result. These steps correspond with the three parts of the formal proof,

but are listed in a different order for sake of clarity. For the reader’s convenience, we include

the part of the proof that corresponds with each of the steps in our informal outline. The proof

is summarized as follows:

–Step #1: We demonstrate that any concave welfare function can be decomposed as a linear

combination with nonnegative coefficients of a specialized set of basis functions. [Section 8.3.3,

Part ii)]

–Step #2: We derive optimal basis utility functions for each of the basis functions in the

specialized set. [Section 8.3.3, Part i)]

–Step #3: We construct local utility functions as linear combinations over the optimal basis

utility functions from Step 2 with the nonnegative coefficients derived in Step 1. Finally, we

demonstrate that this tractable approach for constructing resource utility functions provides

near optimal efficiency guarantees. [Section 8.3.3, Part iii)]

152



Optimizing under the worst-case perspective Chapter 8

8.3.3 Proof of Theorem 8.2.1

Here we consider the class of games induced by the set of all concave welfare functions with

maximum curvature c ∈ [0, 1]. The proof of Theorem 8.2.1 proceeds in the following three

parts:

i) Given a value c ∈ [0, 1], we derive explicit expressions for the local utility functions that

maximize the price of anarchy relative to a restricted class of nonnegative, nondecreasing

concave welfare functions with curvature c. Among the optimal price of anarchy values

obtained for the functions in this restricted class, the lowest is equal to 1− c/e;

ii) We show that any nonnegative, nondecreasing concave welfare function W with curvature

less than or equal to c can be represented as a linear combination with explicitly defined

nonnegative coefficients over this restricted class; and,

iii) We demonstrate that using the local utility functions computed as a linear combination

over the optimal local utility functions from i) with the nonnegative coefficients from ii)

guarantees that PoA(G) = 1− c/e within the set of resource allocation games G induced by

all nonnegative, nondecreasing concave welfare functions with maximum curvature c.

The above parts successfully prove Theorem 8.2.1 as we argue here. Note that, by part i),

the lowest optimal price of anarchy among welfare functions in the restricted class considered

is equal to 1 − c/e, for given curvature c ∈ [0, 1]. By part iii), this implies that all resource

allocation games induced by nonnegative, nondecreasing concave welfare functions with max-

imum curvature c have optimal price of anarchy equal to 1 − c/e. This is because, by part

ii), any such welfare function can be represented as a nonnegative linear combination over the

restricted class of welfare functions we consider. Since the best achievable price of anarchy for

at least one of the functions in the restricted class is also 1−c/e, one cannot further improve the

price of anarchy within the set of games considered. In addition, parts i)–iii) combine to prove

that a corresponding utility mechanism that maximizes the price of anarchy entails computing
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nonnegative linear combinations over a class of functions with explicit expressions. Thus, the

computation of optimal local utility functions is polynomial in the number of players.

Part i). In this part of the proof, we provide explicit expressions for local utility functions

that maximize the price of anarchy with respect to a restricted set of welfare functions, as well

as the corresponding optimal price of anarchy. To that end, given parameters α ∈ [0, 1] and

β ∈ N≥1, we define the (α, β)-coverage function as

V α
β (x) := (1− α) · x+ α ·min{x, β}. (8.24)

It is straightforward to verify that every (α, β)-coverage function is nonnegative, nondecreasing

concave. In the lemma below, we derive a local utility function that maximizes the price of

anarchy of the set of resource allocation games induced by any given (α, β)-coverage function.

We use this result to derive the optimal utility functions for a broad range of local welfare

functions in Part iii).

Lemma 8.3.3. Consider the set of resource allocation games G induced by the (α, β)-coverage

function

V α
β (x) = (1− α) · x+ α ·min{x, β},

where α ∈ [0, 1] and β ∈ N≥1. Let ρ = (1−α ·ββe−β/(β!))−1, and define Fαβ as in the following

recursion: Fαβ (1) := W (1),

Fαβ (x+ 1) := max
{ 1

β
[xFαβ (x)− V α

β (x)ρ] + 1, 1− α
}
, ∀x = 1, . . . , n− 1. (8.25)

Then, the local utility function Fαβ maximizes the price of anarchy and the corresponding price

of anarchy is PoA(G) = 1/ρ.

According to the result in Lemma 8.3.3, the maximum achievable price of anarchy in

resource allocation games induced by a (α, β)-coverage function with α = 1 and β ≥ 1 is

1 − ββe−β/(β!). Surprisingly, Barman et al. [109] show that that the optimal approximation
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ratio of any polynomial-time algorithm for the same class of resource allocation problems is also

1 − ββe−β/(β!). Similarly, the optimal price of anarchy for the (α, β)-coverage function with

α ∈ [0, 1] and β = 1 is 1− α/e, which matches the best achievable approximation ratio of any

polynomial-time algorithm for this problem setting [107].

Part ii). In the next result, we show that any nonnegative, nondecreasing concave welfare func-

tion with maximum curvature c ∈ [0, 1] can be represented as a nonnegative linear combination

over the set of (c, k)-coverage functions with k = 1, . . . , n.

Lemma 8.3.4. Let W : N → R denote a nonnegative, nondecreasing concave function with

curvature less than or equal to c ∈ [0, 1]. Then, the nonnegative coefficients η1, . . . , ηn satisfy

W (x) =

n∑
k=1

ηk · V c
k (x), ∀x = 0, 1, . . . , n, (8.26)

where η1 := [2W (1)−W (2)]/c, ηk := [2W (k)−W (k − 1)−W (k + 1)]/c, for k = 2, . . . , n− 1,

and ηn := W (1)−∑n−1
k=1 ηk.

Proof. The proof is by construction. Define coefficients η1 := [2W (1)−W (2)]/c, ηj := [2W (j)−

W (j− 1)−W (j+ 1)]/c, j = 2, . . . , n− 1, and ηn := W (1)−∑n−1
j=1 ηj = W (1)− [W (1) +W (n−

1) − W (n)]/c. It is straightforward to verify that ηj ≥ 0 for all k = 1, . . . , n recalling that

W (0) = 0 and W (x) is nonnegative, nondecreasing concave for x ≥ 0. We defer the proof that

W (x) =
∑n

k=1 ηk · V c
k (x) for all x = 1, . . . , n to the proof of Corollary 8.4.1, where one need

only substitute W ub(x) = x and W lb(x) = V c
1 (x), for x ≥ 0.

8.3.4 Proof of Lemma 8.3.3

Proof. We first dispense with the situation where n ≤ β. In this case, the local welfare function

is identical to W (x) = x, and thus the price of anarchy is 1 for choice of F (x) = W (x)/x. For

the remainder of the proof, we only consider n > β.

The remainder of the proof is structured as follows: (i) we introduce a relaxation of the

linear program in Equation (8.2); (ii) in this relaxed linear program, we determine what are the
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most restrictive constraints for each x ∈ {1, . . . , n− 1}; (iii) we show that a feasible solution to

the relaxed linear program is nonincreasing, i.e., F (x+ 1) ≤ F (x), for every x ∈ {1, . . . , n− 1}

such that F (x) > 1−α, and F (x+ 1) = 1−α otherwise; (iv) we show that (F, ρ) as defined in

the claim is a solution to the relaxed linear program for n→∞; and (v) we observe that (F, ρ)

as defined in the claim is feasible in the linear program in Equation (8.2) and thus a solution

to this linear program as well.

Relaxed linear program. First we consider a relaxation of the linear program in Equation (8.2).

In this relaxed linear program, only the constraints where z = min{0, x + y − n} and x, y ∈

{0, . . . , n} are retained. Finally, we exclude the constraint with y = 0, for all x ∈ {1, . . . , n−1},

resulting in the following relaxed linear program:

max
F∈Rn,ρ∈R

ρ subject to:

W (y)− ρW (x) + min{x, n− y}F (x)−min{y, n− x}F (x+ 1) ≤ 0,

∀(x, y) ∈ {0, . . . , n} × {1, . . . , n} ∪ (n, 0).

(8.27)

Tightest constraints on ρ. We characterize what value y ∈ {1, . . . , n} parameterizes the tightest

constraint for each x ∈ {1, . . . , n− 1}. For any x = 1, . . . , n− 1, if 1 ≥ F (x), F (x+ 1) ≥ 1− α,

we observe that the constraint with y = β is strictest. For y < β, it holds that

ρW (x) ≥ β + min{x, n− β}F (x)−min{β, n− x}F (x+ 1)

≥ y + min{x, n− y}F (x)−min{y, n− x}F (x+ 1),

where the final inequality holds when x ≤ n − β because β − y ≥ (β − y)F (x + 1); when

n− β < x ≤ n− y because β − y − (x+ β − n)F (x) ≥ n− x− y ≥ (n− x− y)F (x+ 1) since
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x+ β − n > 0; and when n− y < x because β − y ≥ (β − y)F (x). For constraints with y > β,

ρW (x)

≥ αβ + (1− α)β + min{x, n− β}F (x)−min{β, n− x}F (x+ 1)

≥ αβ + (1− α)y + min{x, n− y}F (x)−min{y, n− x}F (x+ 1),

where the final inequality holds when x ≤ n−y because (y−β)F (x+1) ≥ (y−β)(1−α), when

n−y < x ≤ n−β because (1−α)(β−y)+(x+y−n)F (x) ≥ (1−α)(β+x−n) ≥ (β+x−n)F (x+1)

since x+ y − n > 0 ≥ β + x− n, and when n− β < x because (1− α)(β − y) ≥ (β − y)F (x).

For any x = 1, . . . , n − 1, if F (x) ≥ 1 − α ≥ F (x + 1) and n − x ≥ β, then the constraint

with y = n− x is strictest among all constraints as, for any y 6= n− x, it holds that

ρW (x)

≥ αβ + (1− α)(n− x) + xF (x)− (n− x)F (x+ 1)

≥ αβ + (1− α)y + min{x, n− y}F (x)−min{y, n− x}F (x+ 1)

≥W (y) + min{x, n− y}F (x)−min{y, n− x}F (x+ 1),

where the inequality holds because (1− α)(n− x− y) ≥ (n− x− y)F (x+ 1) when x ≤ n− y

and (1 − α)(n − x − y) ≥ (n − x − y)F (x) when x > n − y. For any x = 1, . . . , n − 1, if

F (x) ≥ 1− α ≥ F (x+ 1) and n− x < β, then y = β is strictest as for any y 6= β, it holds that

ρW (x) ≥ β + min{x, n− β}F (x)−min{β, n− x}F (x+ 1)

≥W (y) + min{x, n− y}F (x)−min{y, n− x}F (x+ 1),

where β − y + (n− β − x)F (x) ≥ (β − y)[1− F (x)] + (n− x− y)F (x) ≥ (n− x− y)F (x + 1)

when x ≤ n− y since y ≤ n− x < β, (β − y)[1−F (x)] ≥ 0 when x > n− y and n− x < y ≤ β,

and (1− α)(β − y) + (y − β)F (x) ≥ 0 when y > β since F (x) ≥ 1− α.

For any x = 1, . . . , n − 1, if F (x + 1), F (x) ≤ 1 − α, then the constraint with y = n is
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strictest among all constraints as, for any y < n, it holds that

ρW (x)

≥ αβ + (1− α)n+ min{x, 0}F (x)−min{n, n− x}F (x+ 1)

≥ αβ + (1− α)y + min{x, n− y}F (x)−min{y, n− x}F (x+ 1)

≥W (y) + min{x, n− y}F (x)−min{y, n− x}F (x+ 1),

where the second last inequality holds because (n− y)[1− α− F (x+ 1)] ≥ x[F (x)− F (x+ 1)]

when x ≤ n− y and (n− y)(1− α) ≥ (n− y)F (x) when x > n− y.

Thus, if F (x) ≥ F (x+ 1) ≥ 1−α, it is sufficient to consider only the constraint with y = β

and z = max{0, x + β − n}. If F (x) ≥ 1 − α ≥ F (x + 1) and n − x > β, it is sufficient to

consider only the constraint with y = n− x and z = 0. Otherwise, if F (x) ≥ 1− α ≥ F (x+ 1)

and n− x < β, then we consider only the constraint y = β and z = max{0, x+ y− n}. Finally,

if 1− α ≥ F (x) ≥ F (x+ 1), then the constraint with y = n and z = x is the strictest.

Proof that a solution to Equation (8.27) has F ‘nonincreasing’. For this portion of the proof,

consider a function F defined for any given ρ > 1 as follows: F (1) = W (1) and, for all

x ∈ {1, . . . , n− 1},

F (x+ 1) = max
y∈{1,...,n}

min{x, n− y}F (x)−W (x)ρ+W (y)

min{y, n− x} .

For conciseness, we will use the shorthand κx = min{x,n−y∗}
min{y∗,n−x} , λx = W (x)

min{y∗,n−x} and µx =

W (y∗)
min{y∗,n−x} where y∗ ∈ {1, . . . , n} maximizes the above expression for each x ∈ {1, . . . , n}.

Thus, F (x+ 1) = κxF (x)− λxρ+ µx for each x ∈ {1, . . . , n}.

We assume, by contradiction, that we are given ρ such that F is increasing at some index,

i.e., F (x + 1) > F (x) for x ∈ {1, . . . , n}. The forthcoming Lemma 8.3.5 shows that, if this is

the case, then F must continue to increase, so that F (n) > F (n − 1). We wish to show the

following: (i) if F first increases at a point x ∈ {1, . . . , n− 1} where F (x) > 1−α, this leads to
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a contradiction for the value of ρ; and, (ii) if F first increases at a point x where F (x) ≤ 1−α,

then either F (j) ≤ 1− α for all j ≥ x is feasible or (F, ρ) is infeasible. It is important to note

that the value nF (n)/W (n) must be bounded, otherwise

ρ ≥ max
y∈{0,...,n}

W (y) + (n− y)F (n)

W (n)
≥ nF (n)

W (n)
→∞.

This is a contradiction as the price of anarchy will be at least 0.5, even if we use the marginal

contribution utility [110]. Since we are optimizing for the price of anarchy (i.e., 1/ρ), we need

only consider values of ρ no greater than 2.

Observe that if F first increases at some point x ∈ {1, . . . , n} such that F (x) > 1−α, then

F (n) > F (n− 1) > 1− α and

ρ = max
y∈{0,...,n}

W (y) + (n− y)F (n)

W (n)

≥ max
y∈{1,...,n}

W (y) + (n− y)F (n)

W (n)

= max
y∈{1,...,n−1}

W (y) + (n− y)F (n)

W (n)

> max
y∈{1,...,n−1}

W (y) + (n− y)F (n− 1)

W (n)
,

where the first inequality holds because we reduce the domain of maximization, the second

equality holds because W (n− 1) + F (n) > W (n) since n > β and F (n) > 1− α, and the final

inequality holds because F (n) > F (n− 1). Since y ≤ β ≤ n− 1 corresponds with the strictest

constraints when F (n), F (n− 1) ≥ 1− α, we can substitute

max
y∈{1,...,n−1}

[W (y) + (n− y)F (n− 1)] = F (n) + ρW (n− 1)
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in the former bound on ρ to get ρ > [F (n) + ρW (n− 1)]/W (n). Since n > β, this implies that


F (n) < 0 if α = 1,

ρ > F (n)
W (n)−W (n−1) = F (n)

1−α if α ∈ [0, 1)

For α = 1 this is a contradiction, since we have that F (n) > 1 − α = 0. For the remaining

α ∈ [0, 1), we want to prove that this also gives rise to a contradiction. To do so, we show that

F (n)

1− α ≥ max
y∈{0,...,n}

W (y) + (n− y)F (n)

W (n)
= ρ.

Observe that y = β maximizes the right-hand side if 1 − α < F (n) ≤ 1, and y = 0 maximizes

the right-hand side if F (n) > 1. For F (n) ∈ (1− α, 1] and y = β, it holds that

F (n)

1− α −
W (β) + (n− β)F (n)

W (n)
≥ 0

⇐⇒ F (n)W (n)− (1− α)[W (β) + (n− β)F (n)] ≥ 0

⇐= F (n)
W (n)−W (β)

n− β = (1− α)F (n)

where the first and second line are equivalent because α ∈ [0, 1) and the third line implies the

second because F (n) > 1−α. The final inequality holds because [W (n)−W (β)] = (n−β)(1−α)

and n > β. For F (n) > 1 and y = 0, it holds that

F (n)

1− α −
nF (n)

W (n)
≥ 0

since W (n)/n ≥ 1 − α by definition. Thus, in the above reasoning, we have shown that, if

F first increases at a point x ∈ {1, . . . , n} and F (x) > 1 − α, then, if α = 1, it holds that
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1− α < F (x) < · · · < F (n) < 1− α; and, if α ∈ [0, 1), it holds that

ρ >
F (n)

1− α ≥ max
y∈{0,...,n}

W (y) + (n− y)F (n)

W (n)
= ρ,

which is a contradiction.

Now we consider the scenario where we are at a point x such that F (x) ≤ 1 − α and F is

monotonically nonincreasing before x. We show that either selecting F (x) = · · · = F (n) = 1−α

is feasible for ρ or that the value ρ is infeasible. We first consider the case where the strictest

constraint on the value of F (x+1) has y ≤ n−x and show that F (x+1) cannot be greater than

F (x) ≤ 1−α. In the proof of Lemma 8.3.5, we showed that if y ≤ n− x, F (x+ 1) > F (x) and

F (x) ≤ F (x−1), then it must hold that F (x) > [W (x)−W (x−1)]ρ ≥ 1−α. As we have assumed

F (x) ≤ 1−α, it must be that F (x+1) ≤ F (x) ≤ 1−α if y ≤ n−x. We complete our reasoning

for the case when y > n−x corresponds to the strictest constraint on the value of F (x+1). We

showed above that if F (x) ≤ 1−α and x > n−y, then the strictest constraint is parameterized

by y = n. For any x ≥ β, it must hold that F (x+ 1) ≥ −W (x)ρ/(n−x) +W (n)/(n−x). Since

−W (x)ρ/(n−x)+W (n)/(n−x) ≤ 1−α the constraint is satisfied for choice of F (x+1) ≤ 1−α.

Else, if x < β, since β < n, F (x + 1) > 1 − α implies that F (n) > F (n − 1) > 1 − α, since

n− 1 ≥ β. We already proved above that this scenario leads to a contradiction on the value of

ρ. Repeating this reasoning for all j > x such that F (x) ≤ 1− α, we argue that F (j) = 1− α

is feasible. Since the strictest constraint for each F (j), F (j + 1) ≤ 1− α has y = n, there is no

recursion and the optimal value ρ has no dependence on the values of F (x), . . . , F (n), even if

it begins increasing. We have also shown that the lower bound on F is lower than or equal to

1− α for any feasible ρ, and so, F with F (j) = 1− α, for all j ∈ {x, . . . , n}, must be feasible.

For any feasible ρ, we have successfully shown that F (x) must be nonincreasing when it is

greater than 1 − α, and that F (x) = · · · = F (n) = 1 − α is feasible otherwise. This concludes

this part of the proof.

Proof that (F, ρ) solves Equation (8.27). We begin by showing that (F, ρ) as defined in the claim
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are feasible. For x = 0, the constraints in Equation (8.27) read as F (1) ≥W (y)/min{y, n−x},

for all y = 1, . . . , n, which is satisfied for F (1) = W (1). Now consider (x, y) ∈ {1, . . . , n− 1} ×

{1, . . . , n}. In the above reasoning, we showed that a feasible (F, ρ) within Equation (8.27)

will have F nonincreasing while F (x) > 1 − α and F (x) = 1 − α otherwise. Furthermore, we

showed that when F (x) ≥ F (x+ 1) > 1− α or when F (x) ≥ 1− α ≥ F (x+ 1) and n− x < β,

then the strictest constraint has y = β. Observe that κx = min{x, n − β}/min{β, n − x},

λx = W (x)/min{β, n− x} and µx = β/min{β, n− x} correspond with the recursive definition

of F (x+ 1).

We showed above that F (x + 1) = 1 − α when κxF (x) − λxρ + µx ≤ 1 − α, is feasible as

long as ρ is feasible, since the values of F less than or equal to 1 − c have no impact on the

optimal value of the relaxed linear program. Consider the expression for ρ that can be obtained

by completing the recursion as follows,

1− α = F (x̂+ 1) ≥ Πx̂
u=1κuF (1) +

x̂−1∑
u=1

(Πx̂
v=u+1κv)(µu − λuρ) + µx̂ − λx̂ρ.

Rearranging this expression, we obtain,

ρ ≥ Πx̂
u=1κuF (1) +

∑x̂−1
u=1(Πx̂

v=u+1κv)µu + µx̂ + α− 1∑x̂−1
u=1(Πx̂

v=u+1κv)λu + λx̂
.

Observe that for n → ∞, min{x, n − β} = x and min{β, n − x} = β. Thus, the above

expression for ρ simplifies to

ρ ≥
x̂!
βx̂

+
∑x̂−1

u=1
x̂!
j!

1
βx̂−j

+ 1 + α− 1∑β
j=1

x̂!
j!βx̂−j

j
β +

∑x̂−1
j=β+1

x̂!
j!βx̂−j

αβ+(1−α)j
β

=
1 +

∑x̂−1
j=1

βj

j! + αβ
x̂

x̂!∑β−1
j=0

βj

j! +
∑x̂−1

j=β+1
βj

j!
αβ+(1−α)j

β

=
eβ

eβ − αβββ!

.

Noting that PoA = 1/ρ concludes this part of the proof.

Feasibility of (F, ρ) in Equation (8.2). To conclude the proof, we simply observe that since
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F (x) is nonincreasing for all x, the strictest constraints in the linear program in Equation (8.2)

correspond with the choice of z = min{0, x + y − n}. Thus, since (F, ρ) is a solution to the

relaxed linear program and feasible in the original linear program, it must also be a solution to

the original.

Lemma 8.3.5. Let W be a nonnegative, nondecreasing concave function, and let ρ ≥ 1 be a

given parameter. Further, define the function F such that F (1) = W (1) and

F (j + 1) := max
`∈{1,...,n}

min{j, n− `}F (j)−W (j)ρ+W (`)

min{`, n− j} , (8.28)

for all j = 1, . . . , n− 1. Then, for the lowest value ĵ = 1, . . . , n− 1 such that F (ĵ + 1) > F (ĵ),

it must hold that F (j + 1) > F (j) for all j = ĵ, . . . , n− 1.

Proof. The proof is presented in two parts as follows: in part (i), we identify an inequality that

must hold given that F (ĵ+1) > F (ĵ) for 1 ≤ ĵ ≤ n−1 as defined in the claim; and, in part (ii),

we use a recursive argument to prove that F (j + 1) > F (j) holds for all ĵ + 1 ≤ j ≤ n − 1,

using the inequality we derived in part (i).

Part (i). We define `∗j as one of the arguments that minimizes the right-hand side of Equa-

tion (8.28) for each x = 1, . . . , n− 1. By assumption, it must hold that F (ĵ + 1) > F (ĵ), which
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implies that

F (ĵ) < max
1≤`≤n

min{ĵ, n− `}
min{`, n− ĵ}

F (ĵ)− W (ĵ)

min{`, n− ĵ}
ρ+

W (`)

min{`, n− ĵ}

= max
1≤`≤n

min{ĵ − 1, n− `}
min{`, n− ĵ + 1}

F (ĵ − 1)− W (ĵ − 1)

min{`, n− ĵ + 1}
ρ

+
W (`)

min{`, n− ĵ + 1}
+

min{ĵ, n− `}
min{`, n− ĵ}

F (ĵ)

− min{ĵ − 1, n− `}
min{`, n− ĵ + 1}

F (ĵ − 1)− W (ĵ)

min{`, n− ĵ}
ρ

+
W (ĵ − 1)

min{`, n− ĵ + 1}
ρ+

W (`)

min{`, n− ĵ}

− W (`)

min{`, n− ĵ + 1}
,

where the strict inequality holds by definition of F (ĵ + 1). Recall that

F (ĵ) := max
1≤`≤n

min{ĵ − 1, n− `}
min{`, n− ĵ + 1}

F (ĵ − 1)− W (ĵ − 1)

min{`, n− ĵ + 1}
ρ

+
W (`)

min{`, n− ĵ + 1}
.

Thus, if `∗
ĵ
≤ n− ĵ, the above strict inequality with F (ĵ) can only be satisfied if

F (ĵ + 1) > F (ĵ) ≥ ĵF (ĵ)− (ĵ − 1)F (ĵ − 1) > [W (ĵ)−W (ĵ − 1)] · ρ.
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Similarly, if `∗
ĵ
≥ n− ĵ + 1, then it must hold that

(n− `∗
ĵ
)

[
F (ĵ)

n− ĵ
− F (ĵ − 1)

n− ĵ + 1

]
+

[
1

n− ĵ
− 1

n− ĵ + 1

]
W (`ĵ)

>

[
W (ĵ)

n− ĵ
− W (ĵ − 1)

n− ĵ + 1

]
· ρ

=⇒
[

1

n− ĵ
− 1

n− ĵ + 1

]
[(n− `∗

ĵ
)F (ĵ) +W (`ĵ)]

>

[
W (ĵ)

n− ĵ
− W (ĵ − 1)

n− ĵ + 1

]
· ρ

⇐⇒ F (ĵ + 1) > [W (ĵ)−W (ĵ − 1)]ρ,

where the first line implies the second line because F (ĵ) ≤ F (ĵ − 1), by the definition of ĵ in

the claim, and the second line is equivalent to the third by the definitions of F (ĵ + 1) and `∗
ĵ
.

This concludes part (i) of the proof.

Part (ii). In this part of the proof, we show by recursion that if F (ĵ + 1) > F (ĵ), then

F (j+1) > F (j) for all j = ĵ+1, ..., n−1. We do so by showing that, if F (j) > F (j−1) > · · · >

F (ĵ+1) for any ĵ+1 ≤ j ≤ n−1, then it must hold that F (j+1) > F (j). Thus, in the following

reasoning, we assume that ĵ + 1 ≤ j ≤ n− 1, and that F (j) > F (j − 1) > · · · > F (ĵ + 1).

We begin with the scenario in which `∗j−1 < n − j + 1, which gives us that `∗j−1 ≤ n − j.

Recall that

F (j + 1) := max
1≤`j≤n

min{j, n− `j}
min{`j , n− j}

F (j + 1)− W (j)

min{`j , n− j}
ρ

+
W (`j)

min{`j , n− j}
.
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Thus, it must hold that

F (j + 1)

= max
1≤`j≤n

min{j − 1, n− `j}
min{`j , n− j + 1}F (j − 1)− W (j − 1)

min{`j , n− j + 1}ρ

+
W (`j)

min{`j , n− j + 1} +
min{j, n− `j}
min{`j , n− j}

F (j + 1)

− min{j − 1, n− `j}
min{`j , n− j + 1}F (j − 1)− W (j)

min{`j , n− j}
ρ

+
W (j − 1)

min{`j , n− j + 1}ρ+
W (`j)

min{`j , n− j}

− W (`j)

min{`j , n− j + 1}

≥ F (j) +
j

`∗j−1

F (j)− j − 1

`∗j−1

F (j − 1)− W (j)−W (j − 1)

`∗j−1

ρ

> F (j) +
1

`∗j−1

F (ĵ + 1)− 1

`∗j−1

[W (j)−W (j − 1)]ρ

> F (j),

where the first inequality holds by evaluating the maximization at `j = `∗j−1, the second in-

equality holds because F (j) > F (j − 1) and F (j) ≥ F (ĵ + 1), by assumption, and the final

inequality holds by the identity we showed in part (i) and because W (·) is concave.
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Next, consider the scenario in which `∗j−1 > n− j + 1. Observe that

F (j + 1)

≥ F (j) + (n− `∗j−1)

[
F (j)

n− j −
F (j − 1)

n− j + 1

]
+

[
1

n− j −
1

n− j + 1

]
W (`∗j−1)− W (j)

n− j ρ+
W (j − 1)

n− j + 1
ρ

> F (j) +

[
1

n− j −
1

n− j + 1

]
[(n− `∗j−1)F (j − 1) +W (`∗j−1)]

− W (j)

n− j ρ+
W (j − 1)

n− j + 1
ρ

= F (j) +

[
1

n− j −
1

n− j + 1

]
[(n− j + 1)F (j) +W (j − 1)ρ]

− W (j)

n− j ρ+
W (j − 1)

n− j + 1
ρ

≥ F (j) +
1

n− j F (ĵ + 1)− 1

n− j [W (j)−W (j − 1)]ρ

> F (j),

where the first inequality holds by evaluating the maximization at `j = `∗j−1, the second in-

equality holds because F (j) > F (j − 1), by assumption, the equality holds by the definitions

of F (j) and `∗j−1, the third inequality holds because F (j) ≥ F (ĵ + 1), by assumption, and the

final inequality holds by the identity we showed in part (i) and because W (·) is concave.

Finally, we consider the scenario in which `∗j−1 = n− j + 1. Observe that

F (j + 1)

≥ F (j) +
j − 1

n− j F (j)− j − 1

n− j + 1
F (j − 1)− W (j)

n− j ρ+
W (j − 1)

n− j + 1
ρ

+

[
1

n− j −
1

n− j + 1

]
W (n− j + 1)

> F (j) +

[
1

n− j −
1

n− j + 1

]
[(n− `∗j−1)F (j − 1) +W (`∗j−1)]

− W (j)

n− j ρ+
W (j − 1)

n− j + 1
ρ

> F (j),
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where the first inequality holds by evaluating the maximization at `j = `∗j−1, the second in-

equality holds because F (j) > F (j − 1), by assumption, and the final inequality holds by the

same reasoning as for `∗j−1 > n− j + 1.

Part iii). We begin by describing a utility mechanism parameterized by the maximum curva-

ture and maximum number of players. Let G denote the set of resource allocation games induced

by all nonnegative, nondecreasing concave functions with maximum curvature c ∈ [0, 1] with a

maximum of n players . Consider any resource allocation game G ∈ G and assign the following

local utility function to each r ∈ R:

Fr(x) =
n∑
k=1

ηk · F ck(x), ∀x = 1, . . . , n,

where η1 := [2Wr(1)−Wr(2)]/c, ηk := [2Wr(k)−Wr(k−1)−Wr(k+1)]/c, for k = 2, . . . , n−1,

and ηn := Wr(1) −∑n−1
k=1 ηk, Wr : N → R is the welfare function on the resource r and each

function F ck : N → R, k = 1, . . . , n, is the optimal local utility function for V c
k (x) defined

recursively in Lemma 8.3.3. In this part, we show that PoA(G) ≥ 1− c/e holds for this utility

mechanism.

Given maximum curvature c ∈ [0, 1], Lemma 8.3.3 proves that among the (c, k)-coverage

functions with k = 1, . . . , n, the (c, 1)-coverage function has best achievable price of anarchy

1− c/e which is strictly lower than the best achievable price of anarchy for any (c, k)-coverage

function with k > 1. This implies that the best achievable price of anarchy must satisfy

PoA(G) ≤ 1 − c/e, since any game G in the set of resource allocation games induced by the

(c, 1)-coverage function must also be in the set G, i.e., G ∈ G, and there is at least one such

game with PoA(G) = 1 − c/e. We now show that PoA(G) ≥ 1 − c/e also holds. Recall from

Lemma 8.3.4 that the nonnegative coefficients η1, . . . , ηn defined above satisfy

Wr(x) =

n∑
k=1

ηk · V c
k (x) ∀x = 0, 1, . . . , n.
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It must then hold that, for any r ∈ R, (Fr, (1− c/e)−1) is a feasible point in the linear program

in Equation (8.2) for any n and the corresponding Wr. Observe that each constraint in the

linear program must be satisfied since, by Lemma 8.3.4, it can be represented as a nonnegative

linear combination of the constraints in the n linear programs for V c
k and (F ck , (1 − c/e)−1),

k = 1, . . . , n, i.e., for all r ∈ R and all (x, y, z) ∈ I(n) it must hold that

(1− c/e)−1Wr(x) ≥
n∑
k=1

ηk ·
[
1− c · k

ke−k

k!

]
V c
k (x)

≥
n∑
k=1

ηk · [V c
k (y) + (x− z)F ck(x)− (y − z)F ck (x+ 1)]

=Wr(y) + (x− z)Fr(x)− (y − z)Fr(x+ 1),

where the first inequality holds because 1− c/e ≤ 1− c · kke−k/(k!) for all k ≥ 1 and since Wr,

V c
k (x), k = 1, . . . , n, and the coefficients η1, . . . , ηn are nonnegative, and the second inequality

holds because (F j , ρj) = (F ck , 1 − c · kke−k/(k!)) is a feasible point in the linear program in

Equation (8.2) for W j = V c
k , by the result in Lemma 8.3.3.

8.4 Proof of Corollary 8.4.1.

Corollary 8.4.1. Let W denote a set of nonnegative, nondecreasing concave welfare functions

and n be the maximum number of agents. Let W ub and W lb be two nonnegative, nondecreasing

concave functions that satisfy the following for all W ∈ W: (i) W lb(x+ 1)−W lb(x) ≤ [W (x+

1)−W (x)]/W (1) ≤W ub(x+1)−W ub(x), for all x = 1, . . . , n−1; and, (ii) [W (x+1)−2W (x)+

W (x− 1)]/W (1) ≤W ub(x+ 1)− 2W ub(x) +W ub(x− 1) ≤W lb(x+ 1)− 2W lb(x) +W lb(x− 1),

for all x = 2, . . . , n− 1. Finally, define the candidate functions W (k), k = 1, . . . , n, as follows:

W (k)(x) =


W ub(x) if 1 ≤ x ≤ k,

W ub(k) +W lb(x)−W lb(k) if x > k.

(8.29)

Then, for any welfare function W ∈ W, there exist nonnegative coefficients η1, . . . , ηn that
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satisfy

W (x) =

n∑
k=1

ηk ·W (k)(x), ∀x = 0, 1, . . . , n.

Proof. First, observe that there must exist functions W ub and W lb. Simply observe that

W ub(x) = x and W lb(x) = V 1
1 (x) = min{x, 1} are valid for any set of nonnegative, nonde-

creasing concave functions.

The rest of the proof follows by construction. Define the coefficients ηj , j = 0, . . . , n, as

follows:

η1 =
W ub(2)−W ub(1)−W (2) +W (1)

W ub(2)−W ub(1)−W lb(2) +W lb(1)
,

ηj =
W ub(j + 1)−W ub(j)−W (j + 1) +W (j)

W ub(j + 1)−W ub(j)−W lb(j + 1) +W lb(j)
−

j−1∑
k=1

ηk,

for j = 2, . . . , n− 1 and ηn = 1−∑n−1
k=1 ηk.

First, we prove that the coefficients η1, . . . , ηn are nonnegative. It is simple to see that

η1 ≥ 0 since W ub(2) −W ub(1) ≥ W (2) −W (1) ≥ W lb(2) −W lb(1). Similarly, ηn ≥ 0 since

ηn = 1−[W ub(n)−W ub(n−1)−W (n)+W (n−1)]/[W ub(n)−W ub(n−1)−W lb(n)+W lb(n−1)].

Finally, for any j ∈ {2, . . . , n− 1},

ηj =
W ub(j + 1)−W ub(j)−W (j + 1) +W (j)

W ub(j + 1)−W ub(j)−W lb(j + 1) +W lb(j)

− W ub(j)−W ub(j − 1)−W (j) +W (j − 1)

W ub(j)−W ub(j − 1)−W lb(j) +W lb(j − 1)

≥ W ub(j + 1)− 2W ub(j) +W ub(j − 1)

W ub(j)−W ub(j − 1)−W lb(j) +W lb(j − 1)

− W (j + 1)− 2W (j)W (j) +W (j − 1)

W ub(j)−W ub(j − 1)−W lb(j) +W lb(j − 1)
≥ 0,

where the equality holds by definition, the first inequality holds because W lb(j+1)−2W lb(j)+

W lb(j − 1) ≥ W ub(j + 1) − 2W ub(j) + W ub(j − 1) and the final inequality holds because

W ub(j + 1)− 2W ub(j) +W ub(j − 1) ≥W (j + 1)− 2W (j) +W (j − 1).
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We conclude the proof by observing that, for all x = 1, . . . , n,

x−1∑
k=1

ηkW
lb(x) +

x−1∑
k=1

ηk[W
ub(k)−W lb(k)] +

n∑
k=x

ηkW
ub(x)

=
W ub(x)−W ub(x− 1)−W (x) +W (x− 1)

W ub(x)−W ub(x− 1)−W lb(x) +W lb(x− 1)
W lb(x)

+
x−1∑
k=1

ηk[W
ub(k)−W lb(k)]

+

[
1− W ub(x)−W ub(x−1)−W (x) +W (x−1)

W ub(x)−W ub(x−1)−W lb(x) +W lb(x−1)

]
W ub(x)

= W ub(x)−W ub(x)−W ub(x− 1)−W (x) +W (x− 1)

+

x−2∑
k=1

ηk[W
ub(k)−W lb(k)−W ub(x− 1) +W lb(x− 1)]

= W (x) +
x−2∑
k=1

ηk[W
ub(k)−W lb(k)−W ub(x− 1) +W lb(x− 1)]

+W ub(x− 1)−W (x− 1)

= W (x),

where the final equality holds once the expression is simplified for the remaining ηk values.
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Unintended consequences of the

worst-case perspective

A number of recent results – including those in the previous chapter – focus on deriving taxes

that optimize the Price of Anarchy as a surrogate for optimizing the system performance [72,

88, 90]. Naturally, this raises concerns about the consequences of optimizing for the worst-case

equilibrium efficiency on other performance metrics. In this chapter, we seek to understand

the impact of optimizing the Price of Anarchy on other performance metrics. In particular,

we consider its consequences on the Price of Stability, and on the system performance within

transient states which we term Price of Urgency.

9.1 Trade-offs with the Price of Stability

In this section, we demonstrate that there exists an inherent trade-off between the Price

of Anarchy and the Price of Stability in congestion games, and put forward techniques to

study this trade-off. We study this trade-off from two distinct perspectives: an outer trade-off

corresponding with the joint optimization of the Price of Anarchy and Price of Stability of a

family of congestion games using taxes; and, an inner trade-off corresponding with the jointly

achievable Price of Anarchy and Price of Stability pairs for a family of congestion games under
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a given taxation rule.

Figure 9.1: The Pareto frontier between the Price of Anarchy and Price of Stability in con-
gestion games with affine and quadratic resource costs. The Pareto frontier lies within the
region below the upper bound curves (solid black) and above the lower bound curves (dotted
black), which were derived with the techniques put forward in Theorems 9.1.2 and 9.1.3. The
joint Price of Anarchy and Price of Stability values for the mechanism that minimizes the
Price of Anarchy (in red), no taxes (in green), and the mechanism that minimizes the Price
of Stability (in blue) are reported in the table on the right. Note that all joint performance
guarantees in the region above the upper bound curves are suboptimal, in the pink region
below the lower bound curves are unachievable by any local mechanism and in the grey region
are inadmissible as PoA(GT ) ≥ PoS(GT ) must hold. Although the upper and lower bound
curves do not always match, we show that they are tight at the endpoints for any family of
convex, nondecreasing resource costs. Similar bounds on the Pareto frontier can be derived
for any family of resource cost functions using the techniques outlined in Theorems 9.1.2 and
9.1.3.
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9.1.1 The existence of a trade-off

We first seek to investigate how the efficiency of the best-case equilibria is affected when we

optimize for the worst-case equilibrium efficiency. In the next result, we prove that any local

taxation rule T that minimizes the Price of Anarchy has corresponding Price of Stability equal

to the Price of Anarchy in congestion games with convex, nondecreasing resource cost functions.

Additionally, we show that linear taxation rules (i.e., local rules T that satisfy T (
∑m

j=1 αjbj) =∑m
j=1 αjT (bj)) are Pareto optimal over all possible local taxation rules, i.e., for any (possibly

nonlinear) local rule T , there exists a linear rule T lin such that PoA(Gn
T lin) ≤ PoA(GnT ) and

PoS(Gn
T lin) ≤ PoS(GnT ).

Theorem 9.1.1. Consider the family of resource cost functions L = span(b1, . . . , bm) corre-

sponding to convex, nondecreasing basis functions b1, . . . , bm, and maximum number of users n.

The following statements hold:

i) Let T lin denote a Pareto optimal rule in the set of all linear taxation rules. Then, T lin is

Pareto optimal over all (possibly nonlinear) local taxation rules.

ii) Let TPoA denote the rule that minimizes the Price of Anarchy as defined in Theorem 8.1.1

where (FPoA
j , ρPoA

j ), j = 1, . . . ,m, are solutions to the m linear programs in (8.3) (one for each

bj). It holds that PoS(Gn
TPoA) = PoA(Gn

TPoA). Furthermore, the functions FPoA
j , j = 1, . . . ,m,

are nondecreasing and unique up to rescaling.

The proof is presented in Section 9.3. We highlight that the performance guarantee PoS(Gn
TPoA) =

PoA(Gn
TPoA) in Theorem 9.1.1ii) is achieved by the same game instance G ∈ Gn

TPoA . Moreover,

the instance G is a simple, n-user game in which each user has 2 single-selection actions and

there is a unique pure Nash equilibrium. We depict the structure of the worst-case game in-

stance as a graph in Figure 9.2 where the users are represented by the edges, and the resources

are the nodes.

Alternatively, one might wish to understand how unilaterally minimizing the Price of Sta-

bility impacts the Price of Anarchy. Here, we show that the marginal cost rule is the unique
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1

Fj(n)

Fj(n)

Fj(n)

⋮

1

2

n – y*

×y*

𝑎𝑖
ne

𝑎𝑖
opt

⋮

Figure 9.2: The worst-case game structure satisfying
PoA(G) = PoS(G) = PoA(GnTPoA) = PoS(GnTPoA) in Theorem 9.1.1. Consider the lo-
cal taxation rule TPoA that minimizes the Price of Anarchy as described in Proposition 8.1.1.
As shown in Theorem 9.1.1, the resulting Price of Stability is equal to the minimum Price of
Anarchy, i.e., PoS(GnTPoA) = PoA(GnTPoA). We depict the worst-case game structure with the
graph above where the n edges are the users and the 1 ≤ n − y∗ + 1 ≤ n + 1 nodes are the
resources. Each resource e ∈ E has resource cost function `e(x) = αe · bj(x), where αe ≥ 0 is
the value of the node (either 1 or Fj(n)) and bj is one of the basis functions. Each user i ∈ N
has two single-selection actions, i.e., Ai = {ane

i , a
opt
i }. In the above depiction, the arrow (resp.

round) tip of each edge i ∈ N indicates the resource i selects in ane
i (resp. aopt

i ). Observe
that all n users select the left resource in the joint action ane = (ane

1 , . . . , a
ne
n ) which is the

unique equilibrium action since the functions F opt
j ’s are nondecreasing (by Theorem 9.1.1ii)).

In contrast, y∗ users select the left resource and the remaining n− y∗ users select individual
resources in the joint action aopt = (aopt

1 , . . . , aopt
n ) which is the optimal action. To obtain the

result, we select y∗ ∈ {0, 1, . . . , n} and bj ∈ {b1, . . . , bm} that maximize SC(ane)/MinCost(G).

local rule that achieves the minimum Price of Stability of 1 in congestion games.

Proposition 9.1.1. Consider the family of resource cost functions L = span(b1, . . . , bm) corre-

sponding to positive, nondecreasing basis functions b1, . . . , bm, and maximum number of users

n. Then, the marginal cost rule

Tmc(`) =

m∑
j=1

αjτ
mc
j , where τmc

j : {1, . . . , n} → R, τmc
j (x) = (x− 1)[bj(x)− bj(x− 1)]

is the unique local taxation rule (up to rescaling) with PoS(GnTmc) = 1.

Proof. We prove the claim in two parts: (i) show that any local taxation rule T 6= Tmc has

PoS(GnT ) > 1; and (ii) prove that an optimal assignment is an equilibrium under Tmc.

Part (i): Assume, by contradiction, that there exists a local taxation rule T with PoS(GnT ) =
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1 with T (`)(k) > Tmc(`)(k) for some integer 1 ≤ k ≤ n and resource cost function ` ∈ L.

Consider the game G with user set N = {1, . . . , k} and two resources E = {e0, e1}. The resource

e0 has resource cost `(x) and resource e1 has resource cost [`(k)k − `(k − 1)(k − 1) + ε] · `(x)

for x = 1, . . . , k where 0 < ε < T (`)(k)− Tmc(`)(k). Every user i ∈ {1, . . . , k − 1} has only one

action, ai = {e0}, while user k has action set Ak = {ak, a′k}, where ak = {e0} and a′k = {e1}.

Observe that if T (`)(k) > Tmc(`)(k), then the unique pure Nash equilibrium corresponds with

when user k selects a′k resulting in social cost `(k−1)(k−1) + `(k)k− `(k−1)(k−1) + ε. Thus,

the Price of Stability in this game is [`(k)k + ε]/[`(k)k] > 1, which contradicts PoS(GnT ) = 1.

We conclude this part by observing that a similar argument holds for T (`)(k) < Tmc(`)(k),

when the resource cost of e1 is [`(k)k − `(k − 1)(k − 1) − ε] · `(x) for x = 1, . . . , k and 0 <

ε < Tmc(`)(k) − T (`)(k). In this case, user k’s Nash action is ak and the Price of Stability is

`(k)k/[`(k)k − ε] > 1.

Part (ii): Consider an optimal assignment aopt in a given game G. It is straightforward to

show that this assignment must be an equilibrium under Tmc:

Ci(a
opt)− Ci(ai, aopt

−i ) =
∑
e∈aopt

i

[
`e(|aopt|e)|aopt|e − `e(|aopt|e − 1)(|aopt|e − 1)

]
−
∑
e∈ai

[
`e(|ai, aopt

−i |e)|ai, a
opt
−i |e − `e(|ai, a

opt
−i |e − 1)(|ai, aopt

−i |e − 1)
]

=
∑

e∈aopt
i \ai

`e(|aopt|e)|aopt|e +
∑

e∈ai\aopt
i

`e(|ai, aopt
−i |e − 1)(|ai, aopt

−i |e − 1)

−
∑

e∈aopt
i \ai

`e(|aopt|e − 1)(|aopt|e − 1)−
∑

e∈ai\aopt
i

`e(|ai, aopt
−i |e)|ai, a

opt
−i |e]

=
∑
e∈E

`e(|aopt|e)|aopt|e −
∑
e∈E

`e(|ai, aopt
−i |e)|ai, a

opt
−i |e

= MinCost(G)− SC(ai, a
opt
−i ),

where the third equality holds because we add and subtract `e(|aopt|e)|aopt|e for all e ∈ E \

(aopt
i ∪ ai) and all e ∈ aopt

i ∩ ai. The final line must be nonpositive for all actions ai ∈ Ai and
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all users i ∈ N by the definition of MinCost(G), concluding the proof.

In Corollary 7.4.1, we provide a tractable linear program that can be used to compute

the Price of Anarchy in congestion games under the marginal cost rule. To do so, one simply

computes the agent-cost function corresponding to each basis resource-cost function and the

marginal cost taxation rule. Thus, we have established that the local taxation rules that unilat-

erally minimize the Price of Anarchy and Price of Stability are linear and unique (Proposition

9.1.1 and Theorem 9.1.1), and have provided characterizations of the corresponding Price of

Stability and Price of Anarchy, respectively.

9.1.2 The outer trade-off between anarchy and stability

In the previous sections, we showed that the unique local taxation rule that minimizes the

Price of Anarchy has corresponding Price of Stability equal to the Price of Anarchy (Theorem

9.1.1). Furthermore, the well-known marginal cost rule is the unique local taxation rule that

minimizes the Price of Stability, always achieving a Price of Stability of 1 (Proposition 9.1.1).

Since the minimum achievable Price of Anarchy is strictly greater than 1 for all nondecreasing,

convex resource costs (except constant) [89], it immediately follows that the taxation rule that

minimizes the Price of Anarchy is distinct from the taxation rule that minimizes the Price of

Stability and, thus, there must exist a trade-off between these two metrics. In this section,

we develop analytical techniques for deriving upper and lower bounds on the Pareto frontier

between the Price of Anarchy and Price of Stability in congestion games, which permit us to

better understand the trade-off between these two metrics. Though the results in this section

depend on an upper-bound, n, on the number of users, we discuss how these techniques can be

extended to remove the dependence on n in Section 9.3.

An upper bound. Before presenting our upper bound, we introduce a modified version of the

smoothness argument in [96] that provides upper bounds on the Price of Stability of congestion

games. Recall that all congestion games are potential games and admit the potential function
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Φ : A → R in (6.6).

Proposition 9.1.2. Let G denote any family of congestion games, and suppose that there exist

ζ > 0, λ > 0 and µ < 1 such that, for every game G ∈ G and any two assignments a, a′ ∈ A, it

holds that

SC(a) +
∑
i∈N

[Ci(a
′
i, a−i)− Ci(a)] + ζ[Φ(a′)− Φ(a)] ≤ λSC(a′) + µSC(a). (9.1)

Then, the Price of Stability satisfies PoS(G) ≤ λ/(1− µ).

Proof. Consider any game G ∈ G and let aopt ∈ A denote an optimal assignment, i.e.,

SC(aopt) = MinCost(G). Thus, let ane ∈ NE(G) denote a pure Nash equilibrium that sat-

isfies Φ(ane) ≤ Φ(aopt).1 Since Ci(a
ne) ≤ Ci(a

opt
i , ane

−i) for all i ∈ N and Φ(ane) ≤ Φ(aopt), it

follows from (9.1) that

SC(ane) ≤ λSC(aopt) + µSC(ane).

Rearranging the above inequality gives us that SC(ane)/SC(aopt) ≤ λ/(1 − µ). Since ane is

not necessarily the pure Nash equilibrium in NE(G) with minimum social cost, it holds that

PoS(G) ≤ λ/(1− µ), and it could hold that PoS(G) < λ/(1− µ) in general.

The smoothness argument in Proposition 9.1.2 provides an upper bound on the Price of

Stability by bounding the efficiency of all pure Nash equilibria with potential lower than the po-

tential at the optimal assignment. Our next result shows how one can leverage this smoothness

argument to optimize an upper bound on the Price of Stability under a maximum allowable

Price of Anarchy constraint.

Theorem 9.1.2. Consider the family of resource cost functions L = span(b1, . . . , bm) corre-

sponding to basis functions b1, . . . , bm, and maximum number of users n. Further, consider

a maximum allowable Price of Anarchy Π̄ ≥ MinPoA(n,L). Let {F opt
1 , . . . , F opt

m }, νopt, ρopt,

1Observe that such a pure Nash equilibrium must always exist since any potential minimizer is a pure Nash
equilibrium.
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γopt, κopt be solutions to the following:2

maximize
{Fj},ν−1ρ,γ,ν−1,κ

γ subject to:

ν−1ρ ≥ Π̄−1ν−1, ν−1 ≥ 0, κ ≥ 0

ν−1bj(y)y − ν−1ρbj(x)x+ (x− z)Fj(x)− (y − z)Fj(x+ 1) ≥ 0,

∀(x, y, z) ∈ I(n),∀j ∈ {1, . . . ,m},

bj(y)y − γbj(x)x+ (x− z)Fj(x)− (y − z)Fj(x+ 1) + κ

[
x∑
k=1

Fj(k)−
y∑
k=1

Fj(k)

]
≥ 0,

∀(x, y, z) ∈ I(n),∀j ∈ {1, . . . ,m},

(9.2)

where we define bj(0) = Fj(0) = Fj(n + 1) = 0. Then, the local taxation rule T opt defined as

T opt(bj)(x) = F opt
j (x)− bj(x), j = 1, . . . ,m, achieves Price of Anarchy PoA(GnT opt) = 1/ρopt ≤

Π̄ and Price of Stability PoS(GnT opt) ≤ 1/γopt.

The proof is presented in Section 9.3, and amounts to reformulating the problem of com-

puting the local taxation rule that optimizes the smoothness bound in Proposition 9.1.2 as a

tractable optimization problem. The optimization problem in (9.2) is a bilinear program with

a single bilinearity, since κ is multiplied with F in the final set of constraints. Such programs

can be solved efficiently using, e.g., the method of bisections, which involves solving a finite

number of linear programs for appropriate guesses of the value κopt.

A possible interpretation of the above result is that the local rule T opt guarantees that every

game G ∈ GnT opt has at least one pure Nash equilibrium with social cost at most 1/γopt times

greater than MinCost(G). Recall from the proof of Proposition 9.1.2 that this equilibrium may

not represent the best performing equilibrium of G, so this represents an upper bound on the

Price of Stability, in general.

2In (9.2) and forthcoming optimization problems, we reformulate the decision variables and constraints to
ensure they follow a (bi)linear program structure for the reader’s convenience. For example, ν−1ρ is a decision
variable in (9.2). Note that the corresponding optimal values {F opt

1 , . . . , F opt
m }, νopt, ρopt, etc. are uniquely

determined by solutions to these problems.
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A lower bound The following theorem states our corresponding lower bound on the best

achievable Price of Stability for a maximum allowable Price of Anarchy Π̄:

Theorem 9.1.3. Consider the family of resource cost functions L = span(b1, . . . , bm) corre-

sponding to basis functions b1, . . . , bm, and maximum number of users n. Further, consider a

maximum allowable Price of Anarchy Π̄ ≥ MinPoA(n,L). Let F opt
j , νj , ρj be optimal values

that solve the following m linear programs (one for each j):

maximize
F,ν−1,ρν−1

n∑
x=1

F (x) subject to:

ρν−1 ≥ Π̄−1ν−1, ν−1 ≥ 0, F (1) = 1,

ν−1bj(y)y − ρν−1bj(x)x+ (x− z)F (x)− (y − z)F (x+ 1) ≥ 0,∀(x, y, z) ∈ I(n),

(9.3)

where we define bj(0) = Fj(0) = Fj(n+1) = 0. Then, the Price of Stability of any local taxation

rule T with PoA(GnT ) ≤ Π̄ must satisfy PoS(GnT ) ≥ maxj{1/γopt
j }, where

γopt
j = min

0≤v<u≤n

b(v)v +
∑u−v

k=1 F
(u,v)
j (k)

b(u)u
,

where F
(u,v)
j (k) = maxv+k≤x≤u F

opt
j (x) for k = 1, . . . , u− v.

We highlight some important observations regarding the above result in the discussion

below:

Note that the linear program in (9.3) must be feasible for all values Π̄ ≥ MinPoA(n,L)

as there exists at least one set of feasible values F, ν, ρ by Theorem 8.1.1 and Theorem 9.1.1.

Furthermore, the linear program must provide a (tight) lower bound of PoS(GnT ) ≥ 1 for any Π̄

greater than the Price of Anarchy of the marginal cost rule, PoA(GnTmc), since the Price of Sta-

bility of the marginal cost rule is 1. When the basis functions are convex and nondecreasing, the

linear program must also provide a (tight) lower bound PoS(T ) ≥ Π̄ when Π̄ = MinPoA(n,L),

since we showed in Part (ii) of the proof of Theorem 9.1.1 that a worst case game in this setting
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has the same structure as the construction we use to obtain this lower bound.3 Additionally,

the game construction from which we obtain this lower bound on the Price of Stability has a

unique pure Nash equilibrium ane where each user i ∈ N strictly prefers to play ane
i when users

1, . . . , i − 1 play their respective actions in ane. It is straightforward to verify that ane is also

the unique coarse-correlated equilibrium of the game and, thus, our lower bound extends to the

best case coarse correlated equilibrium efficiency.

9.1.3 The inner trade-off between anarchy and stability

In the previous sections, we study the Price of Anarchy and Price of Stability of a given

family of instances GT as independent, worst-case measures of the equilibrium efficiency, i.e., we

summarize the equilibrium efficiency of all game instances under a given taxation rule T with

only two numbers, PoA(GT ) and PoS(GT ). Note, however, that the values PoA(GT ),PoS(GT )

may not be achieved within the same game instance. Specifically, there need not exist a game

instance G ∈ GT such that PoA(G) = PoA(GT ) and PoS(G) = PoS(GT ). Rather, it could

be that there exist two distinct games G,G′ ∈ GT satisfying PoA(G) = PoA(GT ) > PoA(G′)

and PoS(G′) = PoS(GT ) > PoS(G). This motivates our investigation – in this section – of

those Price of Anarchy and Price of Stability pairs that can be achieved within the same game

instance, where we wish to understand if considering such attainable joint performance measure

offers more refined insights on the joint optimization of the worst and best equilibrium efficiency.

More specifically, for a given family G, we aim to capture the dependence of the Price of

Stability of an invidual instance on its Price of Anarchy. To that end, for given τ ∈ [1,PoA(G)],

we define Gτ as

Gτ := {G ∈ G s.t. PoA(G) = τ}. (9.4)

Our goal is to characterize how the value PoS(Gτ ) evolves with τ ∈ [1,PoA(G)].

Our next result establishes that the tension between the Price of Anarchy and Price of Sta-

3Though the game construction we consider to obtain the result in Theorem 9.1.3 is of the same structure as
in Figure 9.2, the selection of the resources’ coefficients is more nuanced in general since we have no guarantee
on the monotonicity of the resource cost function F in this setting. See Section 9.3 for more details.
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bility persists under the attainable joint performance measure. This is based on the observation

that the independently measured Price of Anarchy and Price of Stability corresponding with

taxes that minimize either the Price of Anarchy or the Price of Stability are in fact attained

within the same game instance.

Corollary 9.1.1. For any family of nondecreasing, convex latency functions L, and maximum

number of users n, the following statements hold:

• Let TPoA denote a taxation rule that minimizes the Price of Anarchy of the corresponding

family of instances, i.e.,

TPoA ∈ arg min
T

PoA(GnT ). (9.5)

There exists an instance G ∈ Gn
TPoA such that PoA(G) = PoS(G) = PoA(Gn

TPoA).

• Let TPoS denote a taxation rule that minimizes the Price of Stability of the corresponding

family of instances, i.e.,

TPoS ∈ arg min
T

PoS(GnT ). (9.6)

There exists an instance G ∈ Gn
TPoS such that PoA(G) = PoA(Gn

TPoS) and PoS(G) =

PoS(Gn
TPoS) = 1.

Corollary 9.1.1 establishes that the extreme points of the Price of Anarchy, Price of Stability

trade-off curve coincide whether we consider the independent, worst-case performance measure,

or the attainable joint performance measure. It remains to be seen whether these two coincide

in general, i.e., that the independent, worst-case performance guarantee is always attainable by

the same game instance for any family of instances under any taxation rule. To that end, we put

forward a modified smoothness condition and game construction to characterize the relation

between the Price of Anarchy and Price of Stability under the attainable joint performance

measure. We show that there can be a significant separation between the independent, worst-

case performance guarantee and the attainable joint performance guarantees.

182



Unintended consequences of the worst-case perspective Chapter 9

An upper bound. We obtain an upper bound on the attainable joint performance guarantees

using the following smoothness condition, which applies to any family of potential games, where

each game has corresponding potential function Φ : A → R:

Proposition 9.1.3. Given any family of congestion games G and parameter τ ∈ [1,PoA(G)],

suppose that there exist parameters κ, λ1, λ2 ≥ 0, and µ, ν ∈ R such that, for every game G ∈ Gτ

and actions a, a′, a′′ ∈ A, it holds that

n∑
i=1

[
λ1[Ci(a

′
i, a−i)− Ci(a)] + λ2[Ci(a

′′
i , a−i)− Ci(a)]

]
+ κ[Φ(a′′)− Φ(a′)]

≤ ν · SC(a)− SC(a′) + µ · SC(a′′).

(9.7)

Then, the Price of Stability satisfies PoS(Gτ ) ≤ µ+ τν.

Proof. Consider any game G ∈ Gτ and let aopt ∈ A denote an optimal assignment, i.e.,

SC(aopt) = MinCost(G). Let each ane,1, ane,2 ∈ NE(G) denote a pure Nash equilibrium of

G, not necessarily distinct. We let ane,2 be a pure Nash equilibrium that satisfies Φ(ane,2) ≤

Φ(aopt). Since Ci(a
ne,1) ≤ Ci(a

opt
i , ane,1

−i ) and Ci(a
ne,1) ≤ Ci(a

ne,2
i , ane,1

−i ) for all i ∈ N , and

Φ(ane,2) ≤ Φ(aopt), it follows from (9.7) that

SC(ane,2) ≤ ν · SC(ane,1) + µ · SC(aopt).

Dividing both sides of the above inequality by SC(aopt), we obtain

SC(ane,2)

SC(aopt)
≤ ν · SC(ane,1)

SC(aopt)
+ µ ≤ µ+ τν,

where the final inequality holds since SC(ane,1)/SC(aopt) ≤ PoA(G) = τ by the definition of Gτ

from (9.4). Following the same reasoning as in the proof of Proposition 9.1.2, it follows that

PoS(G) ≤ µ+ τν.

Observe that by using this smoothness condition, an upper bound on the attainable joint

performance guarantees can be obtained for the family of instances corresponding to any class
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of latency functions and any taxation rule. In our next result, we use this smoothness argument

to derive an upper bound on the attainable joint performance guarantees in affine and quadratic

congestion games without taxes:

Corollary 9.1.2. Consider the family of affine resource cost functions, i.e., L = span(b1, b2)

where b1(x) = 1 and b2(x) = x, and let G0 represent the family of affine congestion games

without taxes. It holds that

PoS(Gτ0 ) ≤ min

{
τ,PoS(G0),

−4

3
τ +

13

3

}
, (9.8)

for all τ ∈ [1, 5/2], where PoS(G0) == 1+
√

3/3 ≈ 1.577. Next, consider the family of quadratic

resource cost functions, i.e., L = span(b1, b2, b3) where b1(x) = 1, b2(x) = x and b3(x) = x2,

and let G0 represent the family of quadratic congestion games without taxes. It holds that

PoS(Gτ0 ) ≤ min

{
τ,PoS(G0),

−1

3
τ +

151

36

}
, (9.9)

for all τ ∈ [1, 115/12], where PoS(G0) ≈ 2.361.

Proof. The proof follows from the smoothness condition in (9.7) by showing that the smoothness

parameters λ1 = λ2 = 1, κ = 3, µ = 13/3 and ν = −4/3 are feasible for all affine congestion

games without taxes, and that the smoothness parameters λ1 = 1/8, λ2 = 29/72, κ = 35/9,

µ = 151/36 and ν = −1/3 are feasible for all quadratic congestion games without taxes.

In Figure 9.3, we plot the upper bound on the attainable joint performance guarantees

for affine congestion games without taxes provided in (9.8) (solid black line). Observe that the

upper bound demonstrates that the independent, worst-case performance guarantee, (PoA(GT ),

PoS(GT )) – which is (2.500, 1.577) for the family of affine congestion games without taxes –

cannot be achieved by any instance. Additionally, and perhaps surprisingly, the upper bound

guarantees that any affine congestion game without taxes with worst case Price of Anarchy has

Price of Stability equal to 1. Note that these two observations do not necessarily hold for every
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rule T , as we show in Corollary 9.1.1.

A lower bound. Next, we wish to characterize a lower bound that complements the upper

bound that we obtained using the smoothness condition in (9.7). We provide such a lower bound

by means of a game construction: Let aw−ne, ab−ne, aopt ∈ A respectively denote the worst-case

pure Nash equilibrium, best-case pure Nash equilibrium, and optimal joint allocation of a game.

Observe that, for aw−ne to be a pure Nash equilibrium, the following constraints must hold:

Ci(a
w−ne) ≤ Ci(ai, aw−ne

−i ), ∀ai ∈ Ai, ∀i ∈ N

Furthermore, to ensure that ab−ne is a pure Nash equilibrium, it is sufficient to impose the

constraints:

Ci(a
b−ne
1:i , ai+1:n) < Ci(a

b−ne
1:i−i , ai:n),∀a 6= aw−ne ∈ A, i ∈ N,

Note that aw−ne and ab−ne are the only pure Nash equilibria of the game under the imposed

user cost structure.

The game construction belongs to a subset of the family of instances GT that only contains

instances with at most two pure Nash equilibria (aw−ne and ab−ne), of which ab−ne is the game’s

potential minimizer. Observe that by maximizing SC(ab−ne) while requiring that SC(aw−ne) =

τ ·SC(aopt), we can obtain a lower bound on PoS(GτT ). Since the constraints we consider impose

a particular user cost structure on the games we consider, this lower bound may not necessarily

be a tight characterization. Nonetheless, the advantage of this lower bound is that – under

an appropriate parameterization – it can be computed via linear programming methods for a

given maximum number of users n. We provide the details on such a parameterization and

corresponding linear program in Section 9.3 for ease of presentation. In Figure 9.3, we plot the

lower bound on PoS(GτT ) for affine congestion games without taxes computed for a maximum

of n = 4 users (solid orange line).
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Simulation results We provide a simulation example to compare the independent, worst-case

performance guarantee and the attainable joint performance guarantees for the Price of Anarchy

and Price of Stability. In our simulation example, we consider the family of affine congestion

games without taxes, for which the independent, worst-case guarantee is (2.500, 1.577).

Consider an affine congestion game with n = 4 users and |E| = 10 resources. To each of the

edges e ∈ E , assign the resource cost function `e(x) = αe ·x, where αe is sampled independently

from the uniform distribution between 0 and 1. Further assign to each user i ∈ N three actions,

each action consisting of the unique resources among two resources drawn (with replacement)

uniformly from the set of resources.

We generate 105 such random instances of affine congestion games without taxes. For each

of these instances, we compute the system cost at all the pure Nash equilibria, as well as the

minimum achievable system cost. From these values, we obtain the Price of Anarchy and Price

of Stability of each instance. In Figure 9.3, we plot the Price of Anarchy, Price of Stability

pair for each of the 105 random instances as navy blue ‘+’ marks. Observe that the joint

performance of each of the generated instances falls within our bounds on the attainable joint

performance guarantees. Furthermore, though the attainable joint performance guarantees of

the instances are well below the theoretical worst-case, the distribution of the instances mimicks

the shape of our bounds, i.e., games with high Price of Anarchy have low Price of Stability, and

vice versa.

9.2 Trade-offs with the Price of Urgency

So far in our discussion of congestion and resource-allocation games, we have considered the

efficiency of equilibria either from the worst-case or the best-case perspective as measured by

the Price of Anarchy and Price of Stability, respectively. Note, however, that these efficiency

guarantees correspond with asymptotic solutions in the sense that convergence guarantees to

Nash equilibrium are fairly pessimistic. In fact, in the class of games that we consider, arriving

at equilibrium can take an exponential amount of time [99], rendering the resulting approxima-
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Figure 9.3: The attainable joint performance guarantees in affine congestion games without
taxes. We plot our upper bound (solid, black line) and lower bound (solid, orange line) on the
set of feasible (PoA, PoS) pairs in the family of affine congestion games without taxes. We also
plot the (PoA, PoS) of 105 randomly generated instances from this family (navy ‘+’ marks),
which all fall within the bounds (details on how these instances were generated are provided in
the main text). Observe that the upper bound rules out any instances with joint performance
equal to, or close to, the independent, worst-case performance guarantee (2.500, 1.577) (red
star). Furthermore, our upper and lower bounds coincide at the point (2.50, 1.00), which
implies that any worst-case affine congestion game without taxes G from a PoA perspective
must satisfy PoS(G) = 1. Finally, although examples of worst-case instances do not arise in
the randomly generated instances, their distribution mimicks the shape of our bounds, i.e.,
high PoA corresponds with low PoS, and vice versa.

tion guarantees irrelevant in many realistic multi-agent scenarios. For example, there may be an

extremely large number of agents in the multi-agent system or the relevant situational parame-

ters may be time-varying and volatile or there may be computational and run-time restrictions

on the agents. In these instances, it is important to consider the system performance in the

transient (i.e., within the time before a Nash equilibrium is reached), which is a perspective

that is especially relevant in control theory.

To study the transient performance, we must fix the model of the agents’ transient be-

haviour. One classic distributed algorithm for computing pure Nash equilibria is the best-

response algorithm, where the agents are ordered sequentially, and at each step of the execu-

tion, a single agent best responds (i.e., optimizes her local utility unilaterally given the previous

agents’ decisions in the sequence). In general, the best-response algorithm is not guaranteed

to find the globally optimal solution, but is guaranteed (under mild conditions) to converge
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to a pure Nash equilibrium in any congestion or resource allocation game if the sequence is

repeated a sufficient number of times. Interestingly, in certain well-structured domains, re-

searchers have derived guarantees on the approximation ratio of such algorithms; including

set covering problems [116], extendible problems [117] and submodular maximization problems

[118].

In this section, we study the transient behavior of the best-response algorithm in resource

allocation games by imposing limitations on the time complexity of the sequential process.

Specifically, we consider the agents’ learning process to follow the κ round-robin best-response

algorithm and study the approximation guarantees that result from various designs of utility

functions in the context of the well-studied class of resource allocation games. We also compare

the approximation guarantees achieved against the corresponding Price of Anarchy guarantees.

This comparison is warranted because the set of pure Nash equilibria contains all globally at-

tractive, reachable states of the κ round-robin best-response algorithm in any resource allocation

game.

9.2.1 Model

We consider the class of resource-allocation games, and wish to measure the transient per-

formance under the class of (round-robin) best response processes, where a certain agent (out

of n agents) performs a best response in a round-robin fashion. For a given joint action ā ∈ A,

we say the action âi is a best response for agent i if

âi ∈ BR(ā−i) = arg max
ai∈Ai

U(ai, ā−i), (9.10)

where BR may be non-singleton. We also assume that the best response process begins with

none of the resources being utilized by any of the agents, denoted by the agents selecting the

null joint action ∅ at time 0. The underlying algorithm is formalized in Algorithm 1.

To arrive at non-trivial efficiency guarantees, we define a κ-round walk as a best response

process in which Algorithm 1 is run for T = κ · n steps. Here, the set of agents perform best
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Algorithm 1 Best Response Process

Require: a(0)← ∅, τ ← 0, T
while τ ≤ T do

i← (τ + 1) mod n . Next agent is selected.
ai(τ + 1)← âi ∈ BR(a−i(τ)) . i best responds.
a−i(τ + 1)← a−i(τ) . No other agent moves.
τ ← τ + 1

end while

responses in succession κ times. We assume that during a κ-round walk, agent i selects its

best response ai(τ + 1) arbitrarily from BR(a−i(τ)) if it is not unique. This induces a set of

possible action trajectories of the form (a(0) = ∅, a(1) . . . , a(κn − 1), a(κn)) selected by the

agents throughout the best response process. The potential solution set that occurs after the

agents run a κ-round walk is denoted by sol(κ) ⊂ A with

sol(κ) = {a(κn) for each trajectory starting at a(0) = ∅}.

The worst achievable efficiency at the end of the κ-round walk with respect to the best achievable

system welfare is defined by the following competitive ratio, which we term Price of Urgency :

PoU(G;κ) =
mina∈sol(κ)W (a)

maxa∈AW (a)
∈ [0, 1]. (9.11)

Note that Price of Urgency closer to 1 implies the worst case efficiency after κ rounds is closer

to optimal. We additionally extend the efficiency measure to a set of games G as

PoU(G;κ) = inf
G∈G

PoU(G;κ). (9.12)

We wish to derive agent utility rules that optimize the Price of Urgency. More specifically,

for a given class of welfare rulesW and number of rounds κ ≥ 1, the main goal is to characterize
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optimal performance guarantees of the form

PoU∗(W;κ) = sup
U :W→RN

≥0

PoU(G;κ). (9.13)

We will explicitly address how these optimal efficiency guarantees change as a function of the

set of possible welfare rules W as well as the number of rounds κ.

9.2.2 Optimal transient performance

Our first set of results characterizes the attainable performance guarantees for a single round

of best response process. We focus on the performance of such “one-round walks” to describe

the quickest non-trivial guarantees that can occur under the round-robin best response process,

as each agent is required to perform only one best response to arrive at the resulting joint action

a ∈ sol(1). Thus, we derive the one-round guarantees through a linear program construction

that is a function of both the set of allowable welfare rulesW and the utility rules U . Moreover,

we will restrict attention to welfare rules that are generated by the span of a given set of basis

welfare rules.

Our characterization of the best achievable efficiency guarantees for a one-round walk

through a utility design U is as follows:

Theorem 9.2.1. Suppose that W is spanned from a set of welfare rules {w1, . . . , wm} where

each wj is submodular. Then the optimal efficiency guarantees achievable with a one-round best

response process is given by

PoU∗(W; 1) = min
1≤j≤m

1

βj
(9.14)

where βj ∈ R≥0 is the solution to the following program.

(uj , βj) ∈ arg min
β,u∈RN

≥0

β subject to: (9.15)

βwj(y) ≥
y∑
i=1

u(i)− zu(y + 1) + wj(z) ∀y, z ≥ 1,
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where we take uj(1) = 1 and y, z ∈ N. Furthermore, a utility design U that achieves this optimal

efficiency guarantee is linear and of the form

U

w =

m∑
j=1

αjwj

 =

m∑
j=1

αjuj , (9.16)

where uj is the corresponding solution in (9.15).

The above theorem sets forth a prescriptive process by which to characterize the optimal

efficiency guarantees achievable within a one-round best response process. 4 Acquiring βj

through the program in (9.15) may be computationally infeasible in general; however, by con-

sidering certain structured classes of welfare rules, we can derive closed form expressions for the

one round performance guarantees. We therefore consider a natural restriction of submodular

welfare rules centered around the idea of curvature, which is defined below.

Definition 9.2.1 (Curvature). A submodular welfare rule w has a curvature of c ∈ [0, 1] if

c = 1− limn→∞(w(n+ 1)− w(n))/w(1).

In this sense, curvature characterizes the rate of diminishing returns associated with a welfare

rule w.With this, we can arrive at a tight, closed-form characterization of the optimal one-round

performance guarantees, as shown below.

Theorem 9.2.2. Let the set W comprise of all welfare rules w such that w ∈ RN
>0 has a

curvature of at most c. Then the optimal efficiency guarantees achievable with a one-round best

response process satisfies

PoU∗(W; 1) = 1− c

2

(
≥ 1

2

)
. (9.17)

The optimal utility design that achieves the above efficiency guarantee also has a closed form

expression, which can be found in the proof. The results in Theorem 9.2.2 suggests that, under

the optimal utility design, running best response processes for these classes of games can result

4While we mostly focus on the class of submodular welfare rules in this paper, the linear program in (9.15)
can be extended to consider other classes.
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in the agents coordinating to a high quality joint action very quickly. If the curvature c is close

to 0, we can even arrive at an approximation guarantee of nearly 1 after only a one-round walk.

Figure 9.4: In the top figure, we visually depict the efficiency guarantees of Theorem 9.2.2 with
respect to the optimal asymptotic guarantees. Additionally, the fractional gains in the perfor-
mance when moving from the greedy solution to the optimal one-round and the asymptotic
solutions are depicted in the bottom figure.

9.2.3 Muliple round walks

We now extend to κ-round walks, and study the resulting efficiency guarantees. Allowing

the best response process to continue for more than κ = 1 rounds may appear to be a natural

avenue to increase the performance guarantees. However, in the next theorem, we show that

further rounds do not increase the relative efficiency guarantees. Specifically, with regards to

the set of welfare rules of a certain curvature, we derive an upper bound for the efficiency of

κ-round walk that exactly matches the efficiency guarantee of the one-round walk.

Theorem 9.2.3. Let the set W comprise of all welfare rules w such that w ∈ RN
>0 has a

curvature of at most c. Then the efficiency guarantees of the optimal utility design with a
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κ-round best response process, for any κ ≥ 1, is respectively upper bounded by

PoU∗(W;κ) ≤ 1− c

2
. (9.18)

Notably, for any curvature c ∈ [0, 1], the above efficiency guarantees suggest that running

the best response process for more than one round does not necessarily increase the performance.

We also remark that the results in Theorem 9.2.3 is not endemic to the specific dynamics we

consider in this paper. Allowing for different order of play apart from round-robin does not

affect the resulting upper bounds. This is further elaborated on in Section 9.3. Therefore, in

general, this suggests stark diminishing returns for running the best response process for further

rounds.

9.2.4 The tradeoff between anarchy and urgency

In the next resut, we characterize the Price of Anarchy and Price of Urgency of the utility

designs that maximize the Price of Anarchy and Price of Urgency.

Theorem 9.2.4. Let W denote the set of all possible submodular welfare rules, UPoA denote

the utility design that maximizes the Price of Anarchy, and U∗1 denote the utility design that

maximizes the efficiency guarantees of the one-round walk. Then the efficiency guarantees with

a one-round best response process for both utility designs are

PoU(GW,UPoA
; 1) = 0 PoU(GW,U∗1

; 1) =
1

2
. (9.19)

Furthermore, the Price of Anarchy guarantees of both utility designs are respectively

PoA(GW,UPoA
) = 1− 1

e
PoA(GW,U∗1

) =
1

2
. (9.20)

We observe that while the asymptotic guarantees of U∗1 are equivalent to the corresponding

transient guarantees, the transient guarantees of UPoA unexpectedly degrade to 0. Interestingly,
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optimizing for asymptotic performance does not necessarily translate to good transient perfor-

mance in our setting. To clarify the interplay between the transient and asymptotic guarantees,

we would like to characterize the exact Pareto optimal frontier for these guarantees. While cal-

culating this trade-off frontier is difficult to do in general, we restrict our analysis to the specific

subset of resource allocation games known as set covering games [112] to arrive at an exact

trade-off curve. Set covering games are characterized by the following welfare rule.

W sc(j) =

 1, for j ≥ 1

0, for j = 0

 . (9.21)

With this, we arrive at the following Pareto frontier characterization, depicted in Figure 9.5.

Note that the end points of the trade-off curve matches (9.19) and (9.20) exactly.

Theorem 9.2.5. Let W = {W sc}, where W sc, defined in (9.21), is the set covering welfare

rule and U = {U} is the corresponding utility rule. Under the constraint that PoA(GW sc,U ) =

Q ∈ [1
2 , 1− 1

e ], the optimal maxU PoU(GW sc,U ; 1) is

 ∞∑
j=0

max

{
j!(1− 1−Q

Q

j∑
τ=1

1

τ !
), 0

}
+ 1

−1

. (9.22)

Notably in Figure 9.5, we see a stark drop-off in transient guarantees when the Price of

Anarchy is close to 1 − 1/e. This extreme trade-off prompts a more careful interpretation of

asymptotic results, especially in the setting of resource allocation games.

9.3 Chapter proofs

9.3.1 Proofs from Section 9.1

Proof of Theorem 9.1.1 We prove Statements i) and ii) of the claim separately, below:

Proof of Statement i). Given any rule T (not necessarily linear), we show that there exists some

linear rule T lin satisfying PoA(Gn
T lin) ≤ PoA(GnT ). The linear rule we consider is generated from
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Figure 9.5: We depict the Pareto-optimal frontier of the one-round efficiency (PoU(GW sc,U ; 1))
versus the asymptotic efficiency guarantees (PoA(GW sc,U )) that are possible with regards to
the class of set-covering games. We note that the severe drop off in transient efficiency that
results from optimizing the asymptotic efficiency.

the taxes T (bj), j = 1, . . . ,m, as follows: T lin(
∑m

j=1 αjbj) =
∑m

j=1 αjT (bj). As the same set of

arguments also hold for the Price of Stability, the statement follows.

Let ḠnT and Ḡn
T lin be the restricted families of congestion games with a maximum of n users

in which every resource e has resource cost `e ∈ {b1, . . . , bm}. Within this restricted class of

games, the Price of Anarchy of the local rule T must be equal to that of T lin since the resulting

taxes are equivalent. For linear rules such as T lin, one can show that for any congestion game

G ∈ Gn
T lin there is another game G′ ∈ Ḡn

T lin (possibly with many more resources) that has

arbitrarily close Price of Anarchy following the proof of Theorem 5.6 in [100]. In other words,

the Price of Anarchy of Gn
T lin is equal to the Price of Anarchy of Ḡn

T lin . Meanwhile, for general

local rules such as T , we observe that the Price of Anarchy achieved within the restricted class

of games ḠnT can only be less than or equal to the Price of Anarchy achieved within GnT . It

immediately follows that PoA(Gn
T lin) ≤ PoA(GnT ).
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Proof of Statement ii). Consider the following m linear programs:

maximize
F,ρ

ρ

subject to: bj(y)y − ρb(x)x+ min{x, n− y}F (x)−min{y, n− x}F (x+ 1) ≥ 0

∀(x, y) ∈ {0, . . . , n} × {1, . . . , n} ∪ (n, 0).

(9.23)

Observe that the above linear program is a relaxation of the linear program in (8.3) where we

only consider the constraints (x, y, z) ∈ I(n) such that (x, y) ∈ {0, . . . , n} × {1, . . . , n} ∪ (n, 0)

and z = max{0, x+ y− n}. Reference [90] provides an expression for a set of optimal solutions

(F opt
j , ρopt

j ), j = 1, . . . ,m, to the m linear programs above and show that these are also optimal

solutions of the m linear programs in (8.3). As part of their proof, they show that the functions

F opt
j must be nondecreasing.

The rest of the proof is shown in two steps: a) we show that for the solutions (F opt
j , ρopt

j ),

j = 1, . . . ,m, to the m linear programs in (8.3), the functions F opt
1 , . . . , F opt

m are unique (up

to rescaling); b) leveraging the fact that the functions F opt
1 , . . . , F opt

m are nondecreasing, we

construct a congestion game G that has PoS(G) = maxj{1/ρopt
j }.

Part iia) – Proof that F opt
j is the unique optimal solution. We must show that there is no other

function F that yields a value of ρ = ρopt. By contradiction, let us assume that there exists

a function F̂ different from F opt
j that also achieves ρopt. Let k + 1 be the first index at which

F̂ (k + 1) 6= F opt
j (k + 1). If k = 0, due to the constraint corresponding to (x = 0, y = 1) in the

linear program in (9.23), it holds that F̂ (1) ≤ b(1) = F opt
j (1). Since F̂ (1) 6= F opt

j (1), it must

hold that F̂ (1) < F opt
j (1). A similar argument holds for k > 0, since

F̂ (k + 1) ≤ max
y∈{1,...,n}

b(y)y − ρoptb(k)k + min{k, n− y}F̂ (k)

min{y, n− k} = F opt
j (k + 1),

where the equality holds since F̂ (k) = F opt
j (k), by assumption. In short, at the first k+1 where

F̂ does not equal F opt
j , the former is always strictly lower than the latter or else a constraint

in the linear program would be violated. The contradiction follows from the constraints with
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(x = n, y = y∗n):

ρopt ≤ b(y∗n)y∗n + (n− y∗n)F̂ (n)

b(n)n
<
b(y∗n)y∗n + (n− y∗n)F opt

j (n)

b(n)n
= ρopt

j ,

where the strict inequality holds since n − y∗n > 0. Observe that if n − y∗n = 0, it holds that

ρopt
j = 1, which violates the stated conditions for uniqueness in the theorem statement.

Part iib) – Game construction. Here we show that for each function in {F opt
j }, we can construct

a congestion game that has Price of Stability equal to 1/ρopt
j . Without loss of generality, we

assume that that all basis functions b1, . . . , bm are scaled such that Fj(1) = 1. Consider the

active constraint correponding to x = n for each F opt
j , which – after some rearrangement –

appears as follows:

1

ρopt
j

= max
y∈{0,1,...,n}

bj(n)n

(n− y)F opt
j (n) + bj(y)y

. (9.24)

Define y∗n ∈ {0, 1, . . . , n} as an argument that maximizes the right-hand side in the above

expression. Consider a congestion game G with a set of n users N = {1, . . . , n} and n −

y∗n + 1 resources E = {e0, e1, . . . , en−y∗n}. The users’ action sets are defined as follows: Each

user i ∈ {1, . . . , n − y∗n} has action set Ai = {ane
i , a

opt
i } where ane

i = {e0} and aopt
i = {ei};

and, each user i ∈ {n − y∗n + 1, . . . , n} has Ai = {ai = {e0}}. The cost on resource e0

is bj , whereas each e ∈ {e1, . . . , en−y∗n} has cost [F opt
j (n) + ε] · bj for some ε > 0. Since

F opt
j (1) = 1 and F opt

j is nondecreasing, it is straightforward to verify that the assignment

(ane
1 , . . . , a

ne
n−y∗n , an−y

∗
n+1, . . . , an) is the unique pure Nash equilibrium of the game. Simply

observe that for any assignment a ∈ ΠiAi, any user i ∈ {1, . . . , n − y∗n} selecting its action

aopt
i can decrease its cost by selecting its action ane

i instead, since F opt
j (|a|e0) < F opt

j (n) + ε.

Thus, the constructed game has a unique pure Nash equilibrium, with system cost bj(n)n. The

assignment (aopt
1 , . . . , aopt

n−y∗n , an−y
∗
n+1, . . . , an) has system cost (n− y∗n)[F opt

j (n) + ε] + bj(y
∗
n)y∗n.

Thus, taking the limit as ε → 0+, the Price of Stability of the constructed game satisfies

PoS(G) ≥ bj(n)n/[(n−y∗n)F (n)+bj(y
∗
n)y∗n] = 1/ρopt

j . Since the function F opt
j has corresponding

Price of Anarchy guarantee of 1/ρopt
j , the Price of Stability must also be upper-bounded by
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1/ρopt
j . Thus, PoS(GnT ) = maxj{1/ρopt

j } = PoA(GnT ), concluding the proof.

Proof of Theorem 9.1.2 Observe that the optimal upper bound achievable from the smooth-

ness argument in Proposition 9.1.2 can be computed as the solution to the following fractional

program:

inf
ζ>0,λ>0,µ

{
λ

1− µ s.t. (ζ, λ, µ) satisfy (9.1) ∀a, a′ ∈ A, ∀G ∈ GnT
}
.

To reduce the number of constraints, we introduce the following parameterization of any

pair of assignments a, a′ ∈ A in a game G ∈ GnT : Consider each resource e ∈ E and recall that

`e(x) =
∑m

j=1 αe,j · bj(x) with αe,j ≥ 0 for all j. Let xe = |a|e, ye = |a′|e and ze = |{i ∈

N : e ∈ ai} ∩ {i ∈ N : e ∈ a′i}|. It follows that (xe, ye, ze) belongs to the set I(n) of all

triplets (x, y, z) ∈ N3 that satisfy 1 ≤ x+ y − z ≤ n and z ≤ min{x, y}. We define parameters

θ(x, y, z, j) =
∑

e∈Ex,y,z αe,j where Ex,y,z = {e ∈ E s.t. (xe, ye, ze) = (x, y, z)}. Under this

parameterization, observe that the inequality in (9.1) can be rewritten as

m∑
j=1

∑
x,y,z

[
bj(x)x+ (y − z)Fj(x+ 1)− (x− z)Fj(x) + ζ

[
x∑
k=1

Fj(j)−
y∑
k=1

Fj(k)

]]
θ(x, y, z, j)

≤
m∑
j=1

∑
x,y,z

[λbj(y)y + µbj(x)x] θ(x, y, z, j).

We note that any (ζ, λ, µ) that satisfies the above constraint for each individual summand

corresponding with the triplets (x, y, z) ∈ I(n) and j = 1, . . . , n must satisfy the smooth-

ness definition in Propositon 9.1.2 since we have shown that the inequalities governing the

smoothness definition are a linear combination over the |I(n)|×m summands with nonnegative

coefficients θ(x, y, z, j). Based on this observation, we obtain the following linear program for

computing an upper bound on the Price of Stability after the change of variables γ = (1−µ)/λ,
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ν = 1/λ and κ = ζ/λ:

maximize
γ,ν≥0,κ≥0

γ subject to:

bj(y)y − γbj(x)x+ ν[(x− z)Fj(x)− (y − z)Fj(x+ 1)] + κ

[
x∑
k=1

Fj(k)−
y∑
k=1

Fj(k)

]
≥ 0,

∀(x, y, z) ∈ I(n), ∀j ∈ {1, . . . ,m}.

Under this change of variables, it holds that PoS(GnT ) ≤ 1/γopt for optimal solutions (γopt, νopt,

κopt). We note that the ‘inf’ objective can now be written as a ‘maximize’ since γ ∈ [0, 1] must

hold.

We are interested in obtaining an upper bound on the best Price of Stability that can be

achieved by introducing taxation rules. By including the functions Fj , j = 1, . . . ,m, as decision

variables in the dual program, we obtain the following bilinear program for computing a local

taxation rule that minimizes the upper bound on the Price of Stability:

maximize
{Fj},γ,κ≥0

γ subject to:

bj(y)y − γbj(x)x+ (x− z)Fj(x)− (y − z)Fj(x+ 1) + κ

[
x∑
k=1

Fj(k)−
y∑
k=1

Fj(k)

]
≥ 0,

∀(x, y, z) ∈ I(n), ∀j ∈ {1, . . . ,m}.

Then, for optimal solution ({F opt
j }, γopt, κopt), the taxation rule T opt defined as T opt(bj)(x) =

F opt
j (x) − bj(x) for all j and x satisfies PoS(T opt) ≤ 1/γopt. In the above bilinear program,

we have imposed ν = 1, which removes one bilinearity in the constraints. The only remaining

bilinearity involves the decision variable κ and the functions F1, . . . , Fm.

To obtain the local taxation rule T opt that guarantees a particular Price of Anarchy Π̄ while

minimizing the upper bound on the Price of Stability, we add the constraints for the Price of

Anarchy from (8.3) to the bilinear program. We require that Π̄ be greater than or equal to

MinPoA(n,L) for feasibility. We can then simultaneously minimize the upper bound on the
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Price of Stability while guaranteeing the desired Price of Anarchy. After some rearrangement

of decision variables, we obtain the bilinear program in the claim.

Proof of Theorem 9.1.3 Consider the set of games GnT with at most n users, family of

latency functions L = span(b1, . . . , bm) under basis functions b1, . . . , bm and local taxation rule

T . Define Fj(x) = bj(x) + T (bj)(x) for x = 1, . . . , n, j = 1, . . . ,m. Without loss of generality,

we normalize such that Fj(1) = 1 for j = 1, . . . ,m. Define a game G ∈ G with u users and

u − v + 1 resources for v such that 0 ≤ v < u ≤ n. We denote the user set as N = {1, . . . , u}

and the resource set as E = {e0, e1, . . . , eu−v}. The users’ action sets are defined as follows:

Each user i ∈ {1, . . . , u − v}, has action set Ai = {ane
i , a

opt
i } with ane

i = {e0} and aopt
i = {ei},

while each user i ∈ {u − v + 1, u} has action set Ai = {ai} with ai = {e0}. Resource e0 has

resource cost function `0(x) = bj(x), while each resource ek, k = 1, . . . , u− v, has resource cost

function `k(x) = αkbj(x) where αk = maxv+k≤x≤u Fj(x) + ε for ε > 0.

Next, we prove that the game G as defined above has a unique pure Nash equilibrium which

corresponds with the assignment ane = (ane
1 , . . . , a

ne
u−v, au−v+1, . . . , au). Consider the choices of

user k ∈ {1, . . . , u − v} with respect to any assignment in which all users i ∈ {1, . . . , k − 1}

play the action ane
i . The remaining users i ∈ {k + 1, . . . , u − v} play either of their actions in

Ai. Observe that user k must select either the resource e0 which is currently selected by at

least k + l − 1 users, or the resource ek which is currently not selected by any other user. It

follows that user k selects ane
i = {e0} in this scenario, since Fj(y) < maxv+k≤x≤u Fj(x) + ε with

ε > 0, for y = v + k, . . . , u. Note that, starting from any assignment a ∈ A, one can repeat

this argument from user k = 1 to user k = u − v to show that any sequence of best responses

will settle on the assignment ane and, thus, that this is the unique pure Nash equilibrium.

Note that the system cost associated with this assignment is SC(ane) = bj(u)u. Meanwhile,

the system cost of the assignment aopt = (aopt
1 , . . . , aopt

u−v, au−v+1, . . . , au) is SC(aopt) = bj(v)v+∑u−v
k=1 [maxv+k≤x≤u F (x) + ε]. Furthermore, it holds that MinCost(G) ≤ SC(aopt). Thus, for
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ε→ 0+, the Price of Stability satisfies

PoS() ≥ bj(u)u

MinCost(G)
≥ bj(u)u

bj(v)v +
∑u−v

k=1 [maxv+k≤x≤u Fj(x)]
.

We have shown that within the family of games GnT , there exists a singleton game with a

unique pure Nash equilibrium for any bj , j = 1, . . . ,m, and any pair (u, v) such that 0 ≤ v < u ≤

n. We also derived the lower bound on the Price of Stability for each of these games. Observe

that the maximum value of this lower bound over all bj and all valid pairs (u, v) represents a

lower bound on the Price of Stability, i.e.,

PoS(GnT ) ≥ max
j

max
0≤v<u≤n

bj(u)u

bj(v)v +
∑u−v

k=1 [maxv+k≤x≤u Fj(x)]

= max
j

max
0≤v<u≤n

bj(u)u

bj(v)v +
∑u−v

k=1 F
(u,v)
j (k)

,

where we define F
(u,v)
j (k) := maxv+k≤x≤u Fj(x), for k = 1, . . . , u− v, for conciseness. It follows

that, given a family of congestion games GnT corresponding to maximum number of users n,

basis functions b1, . . . , bm and local taxation rule T , a lower bound on the Price of Stability can

be computed as PoS(GnT ) ≥ maxj{1/γopt
j }, where γopt

j , j = 1, . . . ,m, is the optimal value of the

following linear program:

maximize
γ

γ subject to:

γbj(u)u ≤ bj(v)v +
u−v∑
k=1

F (u,v)(k), ∀(u, v) ∈ {(u, v) ∈ N2 s.t. 0 ≤ v < u ≤ n},

F (u,v)(k) = max
v+k≤x≤u

Fj(x), ∀k ∈ {1, . . . , u− v}, ∀(u, v) ∈ {(u, v) ∈ N2 s.t. 0 ≤ v < u ≤ n}.

It is critical to note that we assumed Fj(1) = 1, for j = 1, . . . ,m in the derivation of this

program.

By including the functions Fj , j = 1, . . . ,m, as decision variables in the above linear pro-

gram, we obtain a (not necessarily convex) program for minimizing the lower bound on PoS(GnT ).
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We can then write the following m programs (one for each bj) for computing the minimum lower

bound on the Price of Stability achievable for a maximum allowable Price of Anarchy Π̄ greater

than or equal to the minimum achievable Price of Anarchy in GnT , where we include the Price

of Anarchy constraints from the linear program in (8.3):

maximize
F,ν−1,ρν−1,γ

γ subject to:

ρν−1 ≥ Π̄−1ν−1, F (1) = 1,

ν−1bj(y)y − ρν−1bj(x)x+ (x− z)F (x)− (y − z)F (x+ 1) ≥ 0, ∀(x, y, z) ∈ I(n),

γbj(u)u ≤ bj(v)v +

u−v∑
k=1

F (u,v)(k), ∀(u, v) ∈ {(u, v) ∈ N2 s.t. 0 ≤ v < u ≤ n},

F (u,v)(k) = max
v+k≤x≤u

F (x), ∀k ∈ {1, . . . , u− v},∀(u, v) ∈ {(u, v) ∈ N2 s.t. 0 ≤ v < u ≤ n}.
(9.25)

Let F opt
j , νopt

j , ρopt
j , γopt

j be the optimal values that solve the above program. The Price of

Anarchy achieved by the corresponding local taxation rule is PoA(GnT opt) = maxj{1/ρopt
j } and

the resulting optimal lower bound on the Price of Stability is PoS(GnT opt) ≥ maxj{1/γopt
j }.

Note that the above program is not a convex program because of the equality constraints

for the values F (u,v)(k). Next, we show that solving the above program is equivalent to the

problem of maximizing
∑n

x=1 F (x) subject to the Price of Anarchy constraints. First, for each

basis function bj , observe that maximizing the value of γ is equivalent to maximizing the sum

over values F (u,v)(k), for k = 1, . . . , u−v, for all (u, v) such that 0 ≤ v < u ≤ n. Second, observe

that the upper bound on F (x+ 1) imposed by F (x) and ρ in the constraints corresponding to

the Price of Anarchy is increasing in the value of F (x), i.e.,

(y − z)F (x+ 1) ≤ (x− z)F (x)− ρν−1bj(x)x+ ν−1bj(y)y,

∀(y, z) ∈ {(y, z) ∈ N2 s.t. (x, y, z) ∈ I(n)},

since it always holds that x − z ≥ 0 since z ≤ min{x, y} in the definition of I(n). Thus,

maximizing the value of F (x + 1) corresponds with maximizing the value of F (x). Finally,
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maximizing the sum over values F (u,v)(k), for k = 1, . . . , u− v, for all (u, v) such that 0 ≤ v <

u ≤ n, is equivalent to maximizing the sum over values maxv+k≤x≤u F (x), by definition. We

showed above that maximizing the feasible value of any given decision variable F (x̂), 1 ≤ x̂ ≤ n,

corresponds with maximizing the values of F (x), for x = 1, . . . , x̂ − 1. Thus, maximizing

maxv+k≤x≤u F (x), for k = 1, . . . , u − v, for all (u, v) such that 0 ≤ v < u ≤ n, is equivalent

to maximizing F (k), k = 1, . . . , n, which is equivalent to maximizing
∑n

k=1 F (k). It follows

that the nonconvex program above yields the same solution as the linear program in (9.3),

concluding the proof.

Arbitrary number of users. Here, we seek to investigate the system performance that can

be obtained using a local taxation rule in settings with an arbitrary number of users. We first

observe that a lower bound on the Pareto curve follows immediately from the linear program

in Section 9.1.2, as the Price of Anarchy and Price of Stability metrics are both nondecreasing

in the maximum number of users n. As the same argument does not apply to upper bounds

on the two metrics, we develop a method for computing an upper bound on the Pareto curve

between the Price of Anarchy and Price of Stability in polynomial congestion games with any

number of users.

Before presenting our next result, we define several parameters that are necessary for ex-

tending the solution of the upcoming finite dimensional bilinear program to an arbitrary number

of users. Given integer d ∈ N≥1, even integer n̄ ∈ N≥2, optimal values νopt, ρopt, γopt, κopt and

function F opt : {1, . . . , n} → R, we define:

F∞(x) :=


F opt(x) if 0 ≤ x ≤ n̄/2,

β[xd+1 − (x− 1)d+1] if x > n̄/2

ρ∞ := min
{
ρopt, βνopt n̄

2

[
1−

(
1− 2

n̄

)d+1]
− d
[βνopt

d+ 1

n̄

2

(( 2

n̄
+ 1
)d+1

− 1
)]1+1/d}

γ∞ := min{γopt, γ1, γ2 + βκopt, γ3}

(9.26)
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where β := F opt(n̄/2)/[(n̄/2)d+1 − (n̄/2− 1)d+1],

γ1 := min
x∈{1,...,n̄/2−1}

1

xd+1

[
ŷd+1

1 (x) + F opt(x)x− F opt(x+ 1)ŷ1(x)− κopt

n̄/2∑
k=x+1

F opt(k)− βκopt
[
ŷd+1(x)−

( n̄
2

)d+1]]
(9.27)

where ŷ1(x) = max{n̄/2 + 1, [F opt(x+ 1)/(d+ 1)/(1− βκopt)]1/d},

γ2 := min
y∈{0,...,n̄/2−1}

min
r≥n̄/2

βy +
1

rd+1

[
yd+1 + β[rd+1 − (r−1)d+1]r − β(r+1)d+1y + κopt

n̄/2−1∑
k=y+1

F opt(k)− βκopt
( n̄

2
−1
)d+1]

(9.28)

and,

γ3 := min
x≥n̄/2

βκopt +
1

xd+1

[
(1−βκopt)ŷd+1

3 (x)+β[xd+1−(x−1)d+1]x−β[(x+1)d+1−xd+1]ŷ3(x)
]

(9.29)

where ŷ3(x) = max{n̄/2, [β((x+ 1)d+1 − xd+1)/(d+ 1)/(1− βκopt)]1/d}.

The following theorem presents our upper bound on the Pareto frontier between the Price

of Anarchy and Price of Stability metrics in polynomial congestion games for any number of

users:

Theorem 9.3.1. Consider the family of resource cost functions L = span(b1) corresponding

to basis function b1(x) = xd, of order d ∈ N≥1. Further, consider a maximum allowable Price

of Anarchy Π̄−1 ≥ supn≥1 MinPoA(n,L). Let F opt, νopt, ρopt, γopt, κopt be optimal values that
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solve the following bilinear program for some even integer n̄ ∈ N≥2 and ε > 0:

maximize
F≥0,ν−1≥0,ν−1ρ,γ,κ≥0

γ subject to:

ν−1ρ ≥ (PoA∗)−1ν−1 (9.30)

F (x+ 1) ≥ F (x), ∀x ∈ {1, . . . , n̄− 1}

(9.31)

F
( n̄

2

)
≤ ν−1

[( n̄
2

+ 1
)d+1

−
( n̄

2

)d+1]
(9.32)

F (1) +
(d+ 1)(n̄/2 + 1)dκ

(n̄/2)d+1 − (n̄/2− 1)d+1
F
( n̄

2

)
≤ (d+ 1)

( n̄
2

+ 1
)d

(9.33)

1− κ

(n̄/2)d+1 − (n̄/2− 1)d+1
F
( n̄

2

)
≥ ε (9.34)

ν−1yd+1 − ν−1ρxd+1 + xF (x)− yF (x+ 1) ≥ 0, ∀(x, y) ∈ I≤n̄(n̄) (9.35)

yd+1 − γxd+1 + xF (x)− yF (x+ 1) + κ
[ x∑
k=1

F (k)−
y∑
k=1

F (k)
]
≥ 0, ∀(x, y) ∈ I≤n̄(n̄) (9.36)

where I≤n(n) is the set of all pairs x, y ∈ {0, . . . , n} such that 1 ≤ x + y ≤ n. Then, for

F∞ : N → R, ρ∞ and γ∞ defined as in (9.26), the local taxation rule T∞ with T∞(xd)(x) =

F∞(x)− xd satisfies PoA(GT∞) ≤ 1/ρ∞ and PoS(GT∞) ≤ 1/γ∞.

In the study of polynomial congestion games, we are often interested in the setting where

resource cost functions have the form `(x) =
∑d

j=0 αjx
j for αj ≥ 0 for given order d ≥ 1. As

it is stated, the result in Theorem 9.3.1 can only accommodate resource cost functions corre-

sponding to a single monomial basis function. However, consider the scenario where we solve

the bilinear program program in Theorem 9.3.1 for each monomial basis functions b1, . . . , bm,

under the same values κ = κ∗, ν = ν∗ and Π̄−1 greater than or equal to supn≥1 MinPoA(n,L =

span(b1, . . . , bm)). Then, the values PoA(GT ) ≤ maxj{1/ρ∞j } and PoS(GT ) ≤ maxj{1/γ∞j }

must be valid upper bounds on the Pareto frontier between the Price of Anarchy and Price of

Stability in G, where ρ∞j and γ∞j are derived as in (9.26) for all j = 1, . . . ,m. We state this

consequence of Theorem 9.3.1 in the following corollary:
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Corollary 9.3.1. Consider the family of resource cost functions L = span(b1, . . . , bm) cor-

responding to basis function bj(x) = xdj of order dj ∈ N≥1. Further, consider a maximum

allowable Price of Anarchy Π̄ ≥ supn≥1 MinPoA(n,L). Given even integer n̄ ∈ N≥2, κ̂ ≥ 0,

ν̂ ≥ 0 and ε > 0, for each basis functions bj, j = 1, . . . ,m, let F opt
j , ρopt

j , γopt
j denote opti-

mal values corresponding to a solution of the corresponding bilinear program in Theorem 9.3.1

under additional equality constraints κj = κ̂ and νj = ν̂. Then, for F∞j : N → R, ρ∞j and

γ∞j defined as in (9.26), the local taxation rule T∞ with T∞(bj)(x) = F∞j (x) − xdj satisfies

PoA(GT∞) ≤ maxj{1/ρ∞j } and PoS(GT∞) ≤ maxj{1/γ∞j }.

Proof of Theorem 9.3.1. We first provide an informal outline for the reader’s convenience.

A similar approach can be used to compute upper bounds for any class of congestion games.

For congestion games with resource costs in L = span(xd), d ∈ N≥1, and any number of users

n, the proof amounts to showing that the values γ∞, ρ∞, νopt, κopt from the bilinear program

in Theorem 9.3.1 satisfy the constraints of two linear programs governing upper bounds on the

Price of Anarchy and the Price of Stability, respectively. The constraints of these two linear

programs are parameterized by each pair x, y ∈ {0, . . . , n}. We divide the proof as follows:

– Upper bound on the Price of Anarchy: In the first part, we show that the values ρ∞, νopt are

feasible points of the linear program in (8.3) for the function F∞ and n users. We first focus

on the values x, y such that 1 ≤ x + y ≤ n. We show that the constraints parameterized by

0 ≤ x < n̄/2 and y ≥ 0 are equivalent to constraints from the bilinear program in Theorem 9.3.1,

leveraging the fact that F∞(x) = F opt(x) and F∞(x+1) = F opt(x+1). Then, for x ≥ n̄/2 and

y ≥ 0, we prove that all the constraints are satisfied if ρ∞ is less than or equal to the second

expression in the minimum that governs the definition of ρ∞ in (9.26). Finally, we show that the

constraints with x+ y > n are redundant, as they are less strict than those with 1 ≤ x+ y ≤ n.

– Upper bound on the Price of Stability: Next, we show that the values γ∞, κopt are feasible

points of the linear program in Section 9.1.2 for ν = 1, the function F∞ and n users. We

first focus on the values x, y such that 1 ≤ x + y ≤ n. We show that the constraints with
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0 ≤ x < n̄/2 and 0 ≤ y ≤ n̄/2, and the constraints with x = 0 and y > n̄/2, are equivalent to

constraints from the bilinear program in Theorem 9.3.1. Then, we prove that γ∞, κopt satisfy

the constraints with 1 ≤ x < n̄/2 and y > n̄/2 because γ∞ ≤ γ1, the constraints with x ≥ n̄/2

and 0 ≤ y < n̄/2 because γ∞ ≤ γ2, and the constraints with x, y ≥ n̄/2 because γ∞ ≤ γ3, for

γ1, γ2, γ3 defined as in (9.27)–(9.29). Finally, we show that the constraints with x+ y > n are

less strict than those with 1 ≤ x+ y ≤ n.

It is important to note that F∞ is a nondecreasing function by the constraints in (9.31) and

by its definition in (9.26). Furthermore, there is always a feasible point in the bilinear program

since Π̄ is greater than or equal to the minimum achievable Price of Anarchy and because

monomials of order d ≥ 1 are all convex and nondecreasing. One feasible point corresponds

with κ = 0, ν = 1, and F and ρ solving the linear program in Theorem 8.1.1 for n̄ users.

Observe that all the constraints in the bilinear program are satisfied because the function F

is unique and nondecreasing by Theorem 9.1.1, ρ ≥ Π̄−1 since 1/ρ is the minimum achievable

Price of Anarchy (which is strictly greater than 1 for polynomials [72]) and because the tax

T (xd) must be lower (pointwise) than the marginal contribution. The last statement can be

shown by virtue of our result on the best achievable lower bound on the Price of Stability in

Theorem 9.1.3 which showed that the lower bound decreases for larger F . Since the Price of

Stability of T according to the lower bound will be 1/ρ > 1 for n̄ ≥ 2 and the Price of Stability

of marginal contribution is 1, our statement must hold.

The following inequalities are useful for the proof:

Observe that, for any x ≥ n̄/2, it holds that

(x+ 1)d =
d∑

k=0

(
d

k

)
xd−k ≤ xd + xd−1

d∑
k=1

(
d

k

)( n̄
2

)k−1
= xd + xd−1 n̄

2

[( 2

n̄
+ 1
)d
− 1
]
. (9.37)

We will also use the following two inequalities for sums of polynomials with d ≥ 1 and

207



Unintended consequences of the worst-case perspective Chapter 9

x ≥ y > 0:

x∑
k=y+1

kd ≥ 1

d+ 1
(xd+1 − yd+1) +

1

2
(xd − yd) (9.38)

x∑
k=y+1

kd ≤ (x− y)xd ≤ xd+1 − yd+1. (9.39)

The remainder of the proof is divided into two parts as in the informal outline above:

– Upper bound on the Price of Anarchy: Consider the following linear program for computing

the Price of Anarchy for any arbitrary number of users n given a nondecreasing function F :

maximize
ρ,ν≥0

ρ subject to:

yd+1 − ρxd+1 + ν[xF (x)− yF (x+ 1)] ≥ 0, ∀x, y ∈ {0, . . . , n} s.t. 1 ≤ x+ y ≤ n,

yd+1 − ρxd+1 + ν[(n− y)F (x)− (n− x)F (x+ 1)] ≥ 0, ∀x, y ∈ {0, . . . , n} s.t. x+ y > n.

(9.40)

First, we show that the above linear program is identical to the linear program in (8.3) for F

nondecreasing. Observe that the constraints from the linear program in Section 9.1.2 are

yd+1 − γxd+1 + (x− z)F (x)− (y − z)F (x+ 1)

= yd+1 − γxd+1 + xF (x)− yF (x+ 1) + z[F (x+ 1)− F (x)].

Since F (x + 1) − F (x) ≥ 0, the above expression is minimized for the smallest value of z. If

follows that z = 0 when x + y ≤ n and z = x + y − n when x + y > n, since the triplets

(x, y, z) ∈ I(n) satisfy 1 ≤ x + y − z ≤ n and z ≤ min{x, y}. Thus, for x, y ∈ {0, . . . , n},

x− z = x and y− z = y when x+ y ≤ n, while x− z = n− y and y− z = n−x when x+ y > n.

We show that the values (ρ, ν) = (ρ∞, νopt) are feasible in the above linear program for

F = F∞ as defined in the claim and arbitrary n. We dispense with the case where x = 0 as,

in this case, the strictest constraint on F∞(1) = F opt(1) is at (x, y) = (0, 1), which is already

included by the constraints in (9.35). We first consider the constraints with 1 ≤ x+ y ≤ n.
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– In the region where 1 ≤ x < n̄/2 and 0 ≤ y ≤ n̄/2, observe that x+ y < n̄, F∞(x) = F opt(x)

and F∞(x+ 1) = F opt(x+ 1). Then, the values (ρ∞, νopt) are feasible in the linear program in

(9.40) for F = F∞ because (F opt, ρopt, νopt) satisfy the constraints in (9.35), F∞(x) = F opt(x)

for x ≤ n̄/2 and ρ∞ ≤ ρopt.

– Observe that, in the region where 1 ≤ x < n̄/2 and y > n̄/2, the constraint are less strict

than when y = n̄/2 if it holds that

( n̄
2

)d+1
− n̄

2
νoptF opt(x+ 1) ≤ yd+1 − yνoptF opt(x+ 1)

⇐⇒ yd+1 − (n̄/2)d+1

y − n̄/2 ≥ νoptF opt(x+ 1).

The left-hand side of the last line is minimized for y = n̄/2 + 1 by convexity and is most

constraining for x = n̄/2 − 1 since F opt is nondecreasing. Observe that this condition on

F opt(n̄/2) holds by the constraint in (9.32).

– Consider the region where x ≥ n̄/2 and y ≥ 0. In this scenario, the constraints read as

yd+1 − ρ∞xd+1 + βνopt[xd+1 − (x− 1)d+1]x− βνopt[(x+ 1)d+1 − xd+1]y ≥ 0.

Observe that the left-hand side in the above is convex in y and that it is minimized over the

nonnegative reals y ≥ 0 at ŷ = [βνopt[(x + 1)d+1 − xd+1]/(d + 1)]1/d. Thus, it is sufficient to

show that the following holds:

ρ∞ ≤ βνopt
[
x− (x− 1)d+1

xd

]
− d 1

(d+ 1)1+ 1
d

[βνopt[(x+ 1)d+1 − xd+1]]1+ 1
d

1

xd+1

⇐= ρ∞ ≤ βνoptx
[
1−

(
1− 1

x

)d+1]
− d
[βνopt

d+ 1

n̄

2

(( 2

n̄
+ 1
)d+1

− 1
)]1+ 1

d
,

where the implication holds by the identity in (9.37). The above inequality is strictest for

x = n̄/2 and is satisfied by the definition of ρ∞ in (9.26).

Note that, in the above, we have shown that for any x, y ≥ 0, the linear program constraints

corresponding with 1 ≤ x + y ≤ n are satisfied, without ever explicitly using the fact that
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1 ≤ x+ y ≤ n. Here, we show that (ρ∞, νopt) is feasible for the constraints with x+ y > n by

observing that these are less strict than the constraints we have already shown to be satisfied.

Observe that this amounts to showing that

νxF∞(x)− νyF∞(x+ 1) ≤ ν(n− y)F∞(x)− ν(n− x)F∞(x+ 1)

⇐⇒ ν(x+ y − n)[F (x)− F (x+ 1)] ≤ 0.

This must hold, since ν ≥ 0, x+ y − n > 0 and F∞ is nondecreasing.

– Upper bound on the Price of Stability: We continue by proving that (γ, ν, κ) = (γ∞, 1, κopt)

are feasible in the following linear program for F = F∞ as defined in the claim and arbitrary

n:

maximize
γ,ν≥0,κ≥0

γ subject to:

yd+1 − γxd+1 + ν[xF (x)− yF (x+ 1)] + κ

[
x∑
k=1

F (k)−
y∑
k=1

F (k)

]
≥ 0,

∀(x, y) ∈ I≤n(n),

yd+1 − γxd+1 + ν[(n− y)F (x)− (n− x)F (x+ 1)] + κ

[
x∑
k=1

F (k)−
y∑
k=1

F (k)

]
≥ 0,

∀(x, y) ∈ I>n(n).

(9.41)

where I≤n(n) and I>n(n) are the sets of pairs x, y ∈ {0, . . . , n} such that x + y ≤ n and

x+y > n, respectively. Following an identical set of arguments as the ones we used to show the

equivalence of the linear programs in (8.3) and (9.40) for F nondecreasing, one can verify that

the linear program in Section 9.1.2 is identical to the above linear program for F nondecreasing.

We first show that that (γ, ν, κ) = (γ∞, 1, κopt) is feasible for constraints with 1 ≤ x+y ≤ n.

– In the region where 0 ≤ x < n̄/2 and 0 ≤ y ≤ n̄/2, observe that x+ y < n̄, F∞(x) = F opt(x)

and F∞(x+ 1) = F opt(x+ 1). Then, the values (γ∞, 1, κopt) are feasible in the linear program

in (9.41) because (F opt, γopt, 1, κopt) satisfy the constraints in (9.36) and γ∞ ≤ γopt.
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–In the setting where x = 0 and y ≥ n̄/2, the following must hold:

(1− βκopt)yd+1 − F opt(1)y − κopt

n̄/2∑
k=1

F opt(k) + βκopt
( n̄

2

)d+1
≥ 0.

Since 1−βκopt > 0, it follows that the left-hand side is convex and is minimized over nonnegative

real values y ≥ n̄/2 by

ŷ = max
{ n̄

2
,
[ F opt(1)

(d+ 1)(1− βκopt)

]1/d}
.

By Constraint 9.33, it holds that ŷ = n̄/2, and the corresponding linear program condition is

covered in Constraint 9.36.

–Consider the scenario where 1 ≤ x ≤ n̄/2− 1 and y ≥ n̄/2 + 1, where we require that

(1− βκopt)yd+1 − γ∞xd+1 + F opt(x)x− F opt(x+ 1)y − κopt

n̄/2∑
k=x+1

F opt(k) + βκopt
( n̄

2

)d+1
≥ 0.

Observe that the left-hand side is convex since 1− βκopt > 0 by the condition in (9.34) and is

minimized for nonnegative real values y ≥ n̄/2 + 1 at

ŷ = max
{ n̄

2
+ 1,

[ F opt(x+ 1)

(d+ 1)(1− βκopt)

]1/d}
.

Observe that the resulting linear program conditions are satisfied for y = ŷ and for all 1 ≤ x ≤

n̄/2 since γ∞ ≤ γ1, for γ1 as defined in (9.27).

–We now consider the setting where x ≥ n̄/2 and 0 ≤ y < n̄/2. Here we require:

γ∞xd+1 ≤ yd+1 + β[xd+1 − (x− 1)d+1]x− β[(x+ 1)d+1 − xd+1]y

+ κopt

n̄/2−1∑
k=y+1

F opt(k) + βκopt
(
xd+1 −

( n̄
2
− 1
)d+1)

.

Observe that the resulting linear program constraints are satisfied for all 0 ≤ y < n̄/2 since

γ∞ ≤ γ2 as defined in (9.28).

211



Unintended consequences of the worst-case perspective Chapter 9

–For x, y ≥ n̄/2, we require

γ∞xd+1 ≤ yd+1 + β[xd+1 − (x− 1)d+1]x− β[(x+ 1)d+1 − xd+1]y + βκopt(xd+1 − yd+1).

The left-hand side is convex in y as 1− βκopt > 0 and is minimized over the nonnegative reals

y ≥ n̄/2 by

ŷ = max
{ n̄

2
,
[β[(x+ 1)d+1 − xd+1]

(d+ 1)(1− βκopt)

] 1
d
}
.

The resulting linear program constraints are satisfied as γ∞ ≤ γ3 as defined in (9.29).

Observe that in the above, we have not explicitly used the fact that 1 ≤ x+ y ≤ n. Thus,

as we did for the upper bound on the Price of Anarchy, here we prove that the constraints with

x + y > n are less strict that the constraints with 1 ≤ x + y ≤ n for (gammaopt, 1, κopt). In

fact, this amounts to showing once more that

νxF∞(x)− νyF∞(x+ 1) ≤ ν(n− y)F∞(x)− ν(n− x)F∞(x+ 1)

⇐⇒ ν(x+ y − n)[F (x)− F (x+ 1)] ≤ 0.

This must hold, since, ν = 1 > 0, x+ y − n > 0 and F∞ is nondecreasing.

Computing a lower bound on the attainable joint performance guarantees. Given

the maximum number of users n, consider a game parameterization corresponding with a

(8n) × (3n) table R whose rows are all the unique permutations of 3n-long binary vectors

r ∈ {0, 1}3n. Under this parameterization, each row r ∈ R corresponds with a different re-

source, and, collectively, the rows encode the users’ actions aw-ne
i , ab-ne

i , aopt
i as follows:

Consider the resource e corresponding with the row r ∈ R. For any i ∈ {1, . . . , n}, if ri = 1,

then e ∈ aw-ne
i , else e /∈ aw-ne

i ; if rn+i = 1, then e ∈ ab-ne
i , else e /∈ ab-ne

i ; and, if r2n+i = 1,

, then e ∈ aopt
i , else e /∈ aopt

i . The coefficients in the basis representation of the 8n resource

cost functions will be the decision variables of our final linear program (i.e., there are 8n ×m

decision variables).
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Recall that a lower bound on the Price of Stability of GτT can be computed as

maximize
G∈GτT

SC(ab-ne) subject to:

SC(aopt) = 1, SC(aw-ne) = τ,

Ci(a
w-ne)− Ci(a′i, aw-ne

−i ) ≤ 0, ∀a′i ∈ {ab-ne
i , aopt

i }, ∀i ∈ {1, . . . , n},

Ci(a
b-ne
1:i , a

′
i+1:n)− Ci(ab-ne

1:i−1, a
′
i:n) < 0, ∀a′ ∈ A \ {aw-ne}, ∀i ∈ {1, . . . , n}.

(9.42)

Recast under the above parameterization, we observe that the problem of computing the lower

bound in (9.42) can be formulated as the following linear program:

maximize
αe,j≥0

∑
e∈E

m∑
j=1

αe,j · |ab-ne|ebj(|ab-ne|e) subject to:

∑
e∈E

m∑
j=1

αe,j · |aopt|ebj(|aopt|e) = 1,
∑
e∈E

m∑
j=1

αe,j · |aw-ne|ebj(|aw-ne|e) = τ,

∑
e∈aw-ne

i \a′i

m∑
j=1

[
αe,j · Fj(|aw-ne|e)

]
−

∑
e∈a′i\aw-ne

i

m∑
j=1

[
αe,j · Fj(|aw-ne|e + 1)

]
≤ 0,

∀a′i ∈ {ab-ne
i , aopt

i }, ∀i ∈ {1, . . . , n},∑
e∈ab-ne

i \a′i

m∑
j=1

[
αe,j · Fj(|ab-ne

1:i , a
′
i+1:n|e)

]
−

∑
e∈a′i\ab-ne

i

m∑
j=1

[
αe,j · Fj(|ab-ne

1:i−1, a
′
i:n|e)

]
< 0,

∀a′ ∈ A \ {aw-ne}, ∀i ∈ {1, . . . , n},
(9.43)

where we use E to denote the set of resources corresponding with the rows of R, and a′i \ ai =

a′i \ (a′i∩ai) denotes the resources that user i selects in a′i and not in ai, e.g., if e ∈ aw-ne
i \ab-ne

i ,

then the corresponding binary vector r must have ri = 1 and rn+i = 0. For given joint action

a, observe that the quantity |a|e is simply the number of 1’s in the appropriate columns of the

binary vector r corresponding with e, i.e., |a|e =
∑n

i=1 rnji+i where ji = 0 if ai = aw-ne
i , ji = 1

if ai = ab-ne
i and ji = 2 if ai = aopt

i . Note that the objective and constraints in (9.42) and (9.43)

coincide for games with a maximum number of users n.

As mentioned, the number of decision variables in (9.43) grows as 8n ×m in the maximum
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number of users n and number of basis functions m, and, thus, the linear program is not

tractable for large n. Nonetheless, lower bounds for small n can be computed within a reasonable

amount of time, as provided in Figure 9.3.

9.3.2 Proofs from Section 9.2

Notation. Given a set S, |S| represents its cardinality and 1S describes the corresponding

indicator function. (1S(e) = 1 if e ∈ S, 0 otherwise). We denote the index of the j’th

component of a vector v with vj or v(j) interchangeably. We use 1 to denote a vector of all

ones and 0 to denote a vector of all zeros. We sometimes use the denotation w(0) = u(0) = 0

for any welfare or utility rule.

9.3.3 Linear Program Formulation of One Round Walk

We first give a linear program that computes the efficiency PoU(GW,Un; 1) that is based on

a search for a worst case game construction G ∈ GW,Un that achieves the worst efficiency ratio

for one-round. Here, GW,Un denotes the set of games with a fixed n number of agents, set of

welfare rules W and utility design U . A comparable primal-dual approach was also explored in

[115] and [104] for different settings. We note that it is possible to extend the linear program

for PoU(GW,Un, κ) for κ > 1 rounds, but the program becomes intractable in general.

First, we apply a key observation that for a game G, truncating the action set of each agent

i to Ai = {a∅i , abr
i , a

opt
i } does not affect the efficiency metric PoU(G; 1). Here, a∅i is the null

action that does not select any resources, abr
i is the action that agent i plays after the one-round

walk is completed with abr ∈ sol(1), and aopt
i is the action that agent i plays in a joint action

that optimizes the welfare aopt = arg maxa∈AW (a).5 Therefore, we can restrict attention to

the class of games Gn,3W,U where agents only have these three actions available without loss of

generality. Furthermore, scaling W uniformly does not affect the ratio PoU(G; 1) = W (abr)
W (aopt) ,

and we can assume that W (abr) = 1 without loss of generality. So we aim to find a game that

5Note that abr
i and aopt

i may be the same action, but using separate denotations does not affect the game
structure. Additionally, if abr is not unique, then the one that performs the worst with respect to W is selected.
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maximizes the optimal welfare W (aopt) to provide the lowest ratio. Consolidating the previous

observations results in the following optimization problem

PoU(GW,Un; 1)−1 = (9.44)

max
G∈Gn,3W,U

W (aopt) subject to: (9.45)

W (abr) = 1, (9.46)

Ui(a
br
j≤i, a

∅
j>i) ≥ Ui(abr

j<i, a
opt
i , a∅j>i) ∀i ∈ I, (9.47)

The constraint inequality in (9.47) maintains that the joint action abr is indeed the joint

action that results after a one-round walk, where each agent i’s best response is abr
i (over aopt

i )

given that the previous j ≤ i agents have also played abr
j . To formulate the linear program from

the optimization problem in (9.44), some necessary definitions are introduced. The possible

resource allocations is enumerated by the following product set

P =
∏
i∈I
{∅, {abr

i }, {aopt
i }, {abr

i , a
opt
i }},

where each resource is classified with the set of actions that select it by each agent. Then some

corresponding vectors in {0, 1}n can be defined.

bpi =
{

1 if abr
i ∈ pi, 0 otherwise

}
,

opi =
{

1 if aopt
i ∈ pi, 0 otherwise

}
,

where p ∈ P describes a resource type. We define the norm of bp to be |bp| =
∑

i∈I b
p
i and

denote the number of nonzero elements before index i as |bp|<i =
∑

1≤j<i b
p
j (similarly for

|op| = ∑i∈I o
p
i ). With this, we describe the linear program in the following lemma.

Lemma 9.3.1. Consider the welfare set W = {w1, . . . , wm} with w`(1) = 1, and the corre-

sponding utility design U(w`) = u` with u`(1) = 1 for all `. For n agents, the one-round walk
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efficiency is PoU(GW,Un; 1) = min1≤`≤m
1
β`

6, where β` ∈ R is the solution to

β` = min
{λi}i∈I ,β

β subject to:

βw`(|bp|) ≥ w`(|op|) + (9.48)∑
i∈I

λi

[(
bpi − o

p
i

)
u`(|bp|<i + 1)

]
∀p ∈ P

λi ≥ 0 ∀i ∈ I.

Proof. First we show the equivalence of the optimization program proposed in (9.44) and the

primal linear program described below. We later show that the dual of the program below

is exactly the linear program described in the lemma. Here, we use β = PoU(GW,Un; 1)−1 to

denote the efficiency guarantee.

β = max
{η`p}`,p∈P

∑
1≤`≤m,
p∈P

w`(|op|) · η`p subject to: (9.49)

∑
1≤`≤m,
p∈P

w`(|bp|) · η`p = 1 (9.50)

∑
1≤`≤m,
p∈P

[(
bpi − o

p
i

)
u`(|bp|<i + 1)

]
· η`p ≥ 0 ∀i ∈ I (9.51)

η`p ≥ 0 ∀p ∈ P, 1 ≤ ` ≤ m. (9.52)

Here, each decision variable η`p ∈ R≥0 is a real non-negative number. We define a vector label

for each resource r as `r(i) = {ai ∈ Ai : if r ∈ ai}. This function describes in what actions is

the resource selected by each agent i, with `r ∈ P. Furthermore, we denote the specific partition

of the resource set with Rsub = {r ∈ R : `r = p, wr = w`}. Now we show that W (aopt) in

6Here, we assume thatW is a finite set for ease of exposition, but it is straightforward to extend the efficiency
result to an uncountable set.
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(9.45) matches (9.49).

W (aopt) =
∑
r∈R

wr(|aopt|r)

=
∑

1≤`≤m,
p∈P

∑
r∈Rsub

w`(|aopt|r)

=
∑

1≤`≤m,
p∈P

w`(|op|) · η`p,

where η`p = |Rsub| ∈ N. The first equality is from the definition of the welfare function. The

second equality results from partitioning the resource set. The third equality occurs by the fact

that |aopt|r =
∑

j∈I 1aopt
j

(r) = |op| if r ∈ Rsub; additionally, the value w`(|op|) is constant for

any r ∈ Rsub. A similar argument can be made about the welfare of the best response action

W (abr), so (9.46) matches (9.50) as well.

Now we show the utility constraint in (9.47) matches the constraint in (9.51). For concise-

ness, let a1 = (abr
j<i, a

br
i , a

∅
j>i) and a2 = (abr

j<i, a
opt
i , a∅j>i). The utility difference can be written

as

Ui(a
1)− Ui(a2) =

∑
r∈abr

i

ur(|a1|r)−
∑
r∈aopt

i

ur(|a2|r)

=
∑
r∈R

(
1abr

i
(r)ur(|a1|r)− 1aopt

i
(r)ur(|a2|r)

)
=

∑
1≤`≤m,
p∈P

∑
r∈Rsub

(
1abr

i
(r)ur(|a1|r)− 1aopt

i
(r)ur(|a2|r)

)

=
∑

1≤`≤m,
p∈P

∑
r∈Rsub

[(
bpi − o

p
i

)
u`(|bp|<i + 1)

]

=
∑

1≤`≤m,
p∈P

[(
bpi − o

p
i

)
u`(|bp|<i + 1)

]
η`p.

The first equality is from the definitions of the utility functions. The second and third

equalities comes from rewriting the sum using indicator functions and partitioning the resource
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set along P. The fourth equality is a result of three facts: that 1abr
i

(r) = bpi ; that 1aopt
i

(r) = opi ;

that |a1|r =
∑

j<i 1abr
j

(r) + 1 = |bp|<i + 1 if r ∈ abr
i (similarly for |a2|r). The fifth equality

comes from sliding out the relevant terms of the first sum.

The constraint in (9.52) ensures a well-defined non-degenerate game parametrization. Ob-

serve that in the primal program in (9.49), we have relaxed η`p ∈ N to η`p ∈ R, where we have

normalized the number of resources in each partition so that W (abr) = 1. This is done without

loss of generality, since we can scale up the optimal arguments {η`p}`,p∈P uniformly and round

to derive a corresponding valid game construction that achieves an efficiency ratio PoU(G; 1)

that is arbitrarily close to the solution of the primal program.

We now verify that the dual of the program in (9.49) is the one in (9.48). Note that primal

program in (9.49) can be concisely written as

max
η

cT η subject to:

Aη = 1 H

Im·4n

 η � 0,

where η is the vector of {η`p}`,p∈P , Im·4n corresponds to the identity matrix of dimension m ·

4n × m · 4n, and c, A, H are the compactly written vectors in equations (9.49), (9.50), and

(9.51) respectively. Writing the dual linear program gives

max
λ�0, ξ�0, β

−β subject to:

AT` β −
[
HT
` , I4n

]λ
ξ

− c` = 0 ∀1 ≤ ` ≤ m,

where 0 is a vector of zeros, and c = (cT1 , . . . , c
T
m)T associated with each 1 ≤ ` ≤ m (likewise

for A and H). Observing that AT` β −
[
HT
` , I4n

]λ
ξ

 − c` = 0 is equivalently written as
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AT` β −HT
` λ − c` = ξ and as AT` β + HT

` λ + c` � 0 and substituting back c`, A`, H` gives the

result.

While we have an exact characterization of the one-round walk efficiency, we cannot use

this program directly to derive efficiency bounds tractably. However, by reasoning about the

tight constraints in dual program, we can arrive at a more tractable program when the number

of agents is not fixed.

Lemma 9.3.2. Consider the welfare set W = {w1, . . . , wm} with w`(1) = 1, and the corre-

sponding utility design U(w`) = u` with u`(1) = 1 for all `. The one round walk efficiency is

PoU(GW,U ; 1) = min1≤`≤m
1
β`

, where β` ∈ R ∪ {∞} is the solution to

β` = min β subject to: (9.53)

βw`(y) ≥ H`

(
y∑

i=1

u`(i)− z min
1≤i≤y+1

u`(i)

)
+ w`(z)

for all z, y ∈ N s.t. z ≥ 0 and y ≥ 1,

and H` = supi w`(i)/i.

Proof. The dual program in (9.48) provides a solution for β` for fixed n agents. We first show

the solution is upper bounded by β` ≤ β̃` for any n, where β̃` is the solution to the program in

(9.53).

Let n be the number of agents. For a given p ∈ P, we denote yp = |bp| and zp = |op| for ease

of notation. Additionally, to convey which indices the resource type p are non-zero in and in

what order, we define vectors Bp for abr and Op for aopt. Formally, Bp : {1, . . . , yp} → {1, . . . , n}

and Op : {1, . . . , zp} → {1, . . . , n} with

Bp(j) = i if bpi = 1 and |bp|≤i = j,

Op(j) = i if opi = 1 and |op|≤i = j.
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Considering the dual program in (9.48), we add the constraint λi = H` = max1≤j≤n w`(j)/j

explicitly. Since we shrink the feasible region, the optimal solution to (9.48) potentially in-

creases. We verify that the resulting feasible region is nonempty. Consider the constraints

according to p such that bp = 0. The corresponding dual constraint takes the form

0 ≥ w`(zp)−
zp∑
j=1

λOp(j)u
`(1).

Simplifying the expression gives
∑zp

j=1 λOp(j) ≥ w`(zp), which is always satisfied if λi = H` for

all i. If the constraints according p are such that bp 6= 0, then βw`(y) is present and strictly

positive in the inequality (9.48) and β can be taken as high as needed to satisfy the constraint.

Therefore the feasible region is nonempty.

For any p ∈ P such that bp 6= 0, we can simplify the dual constraint in (9.48) to

βw`(yp) ≥ w`(zp) +

yp∑
i=1

H`u`(i)−
∑
i∈I

H`op
i u`(|bp|<i + 1).

Furthermore, for any p ∈ P, we observe that
∑

i∈I o
p
i u
`(|bp|<i + 1) ≥ zp min1≤i≤yp+1 u

`(i).

Thus, for any p ∈ P, we can replace the corresponding dual constraint with a more binding

constraint

βw`(y) ≥ w`(z) +

y∑
i=1

H`u`(i)−
∑
i∈I

H`z min
1≤i≤y+1

u`(i),

for some 0 ≤ z ≡ zp ≤ n and 1 ≤ y ≡ yp ≤ n. Therefore, replacing the dual constraints gives

an upper bound for β` ≤ β̃`. Limiting the number of agents n→∞ results in the program in

(9.53).

Now we show that the solution is lower bounded by β` ≥ β̃`, where β̃` is the solution to the

program in (9.53). We show that when we remove dual constraints, we arrive at the program in

(9.53). Since the feasible region expands, the optimal solution potentially decreases. Let the set

of agents be I = N and jp = arg min1≤j≤yp+1 u
`(j). We remove all the dual constraints barring

the constraints that correspond to p ∈ P with either (a) yp = 0 and zp = z∗ = arg maxw`(j)/j

or (b) yp > 0 and Bp(jp − 1) < Op(1) and Op(zp) < Bp(jp). The first property refers to all
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resource types where abr is never selected but aopt is by z∗ agents. The second property refers

to all resource types where the indices of the agents selecting aopt are between the agents with

index Bp(jp − 1) and Bp(jp).

Assume property (a). Then the corresponding dual constraint in (9.48) can be written as

0 ≥ w`(z∗)−
z∗∑
j=1

λOp(j)u
`(1),

for any resource type p ∈ P that satisfies property (a). Therefore, for any j ∈ N, except for at

most z∗ − 1 values, observe that λj ≥ H` must hold.

Now assume property (b). With respect to a resource type p ∈ P that satisfies property

(b), we observe that u`(|bp|<i + 1) = u`(jp) for any agent with index i = Op(j) for some j.

Therefore, under the two previous observations, we can rewrite the relaxed dual program as

min
λ�0

β subject to: (9.54)

βw`(yp) ≥
yp∑
j=1

λBp(j)u
`(j)−

zp∑
j=1

λOp(j)u
`(jp) + w`(zp)

for all p ∈ P ′,

λi ≥ H` for all i ∈ N but at most z∗ − 1 values,

where P ′ = {p ∈ P : p satisfies property (b)}. Assuming that the optimal dual variable is

λi = H` for all i ∈ N, observe that we recover the proposed program given in (9.53). To show

this claim, we confirm that the binding constraint for β in (9.54) is larger when considering a

different sequence of lambdas λ 6= H`1. In other words for a given y ≥ 1 and z ≥ 0, we show

that for the resulting dual variables,

βλ = max
p∈P ′

{ 1

w`(yp)

( yp∑
j=1

λBp(j)u
`(j)−

zp∑
j=1

λOp(j)u
`(jp)

)}

≥ H`

w`(y)

 y∑
j=1

u`(j)−
z∑
j=1

u`(jp)

 = βy,z (9.55)
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For any λ 6= H`1, consider two cases where either λ is a divergent sequence, or it is bounded

above. In the first case, since λ must satisfy λj ≥ 0 for all j ∈ N, the limit limj→∞ λj = ∞.

If u`(j) = 0 for all j, note that βy,z = 0 for any y ≥ 1 and z ≥ 0. Since βλ must also be

greater than 0, the inequality in (9.55) holds in this case. If u`(J) > 0 for some J ∈ N, consider

a constraint with p such that yp > J and zp = 0. For any M > 0, we can choose Bp, such

that λBp(j) > M for all 1 ≤ j ≤ yp. Thus βλ ≥ 1
w(yp)

∑yp
j=1Mu(j). Since M is arbitrary,

βλ =∞ ≥ βy,z for any y ≥ 1 and z ≥ 0 as well.

In the second case, since λ is also bounded below by H`, for all but a finite set of values,

there exists a convergent sub-sequence λss that converges to a value V ≥ H` by the Bolzano-

Weierstrauss theorem. Let My
u = max1≤j≤y+1 u

`(i), x = max(y, z), and ε > 0. Since λss

converges, there exists a J ∈ N such that for any j ≥ J , |λss(j)− V | ≤ ε
2My

ux
.

For a given y and z, consider any constraint with p ∈ P ′ such that yp = y and zp = z.

Additionally, Bp and Op can be chosen to ensure that |λBp(j)−V | ≤ ε
2My

ux
and|λOp(j)−V | ≤ ε

2My
ux

for all j. Therefore

βλ ≥
1

w`(yp)

( yp∑
j=1

λBp(j)u
`(i)−

zp∑
j=1

λOp(j)u
`(jp)

)
≥ V

w`(y)

( y∑
j=1

u`(i)−
z∑
j=1

u`(jp)
)
− ε

2
− ε

2

≥ βy,z − ε.

Since ε is arbitrary, we have that βλ ≥ βy,z for any y and z and we show the claim. Therefore

the proposed program is an upper bound and we have shown the equality β` = β̃`.

9.3.4 Proof of Theorem 9.2.1

Given a set of welfare rules and utility rules, Lemma 9.3.2 provides an exact characterization

of the one-round walk efficiency through a linear program. We modify the linear program in

(9.53) to compute the utility rules that optimize the one-round walk efficiency. If a given
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welfare rule w is submodular, note that supiw(i)/i = 1 and so H` = 1. Furthermore, if the

utility rule u is assumed to be non-increasing, then min1≤i≤y+1 u(i) = u(y + 1). Additionally,

w(1)− 1 · u(y + 1) ≥ w(0)− 0 · u(y + 1) = 0 for any y ≥ 1, so z = 0 is a nonbinding constraint.

We lastly note that the values {u(i)}i∈I can be established as decision variables for the program

in (9.53) to produce the linear program in (9.15), rewritten below.

(β∗, u∗) ∈ arg min
β,{u(i)}i∈I

β subject to: (9.56)

βw(y) ≥
y∑
i=1

u(i)− zu(y + 1) + w(z) ∀y, z ≥ 1

u(1) = 1,

where β∗ is a tight characterization of the efficiency guarantee only if the resulting optimal

utility rule u∗ is non-increasing and a lower bound if not. We now verify that the optimal

utility rule u∗ is indeed non-increasing. First, rearranging the terms in the constraint in (9.56)

gives that for any y ≥ 1,

u∗(y + 1) ≥ sup
z≥1

(1

z

( y∑
i=1

u∗(i) + w(z)− β∗w(y)
))
. (9.57)

We verify u∗(y + 1) is well-defined. Note that since u∗ is optimal, the efficiency bound

β∗ < ∞ is nontrivial (as umc guarantees an efficiency guarantee greater than 1/2). Then, by

recursion and the fact that w(z)
z ≤ 1 for all z, there exists a solution for u∗(y + 1) such that

(9.57) holds with equality and the resulting value is finite for all y ≥ 1. Additionally u∗(y)

must be non-negative for all y ≥ 1, since limiting z →∞ in (9.57) gives that u(y + 1) ≥ 0.

Now we show that the solution u∗ is non-increasing. Suppose for contradiction that for

some y ≥ 1, that u∗(y) < u∗(y + 1). Let zy+1 ∈ arg maxz≥1w(z) − zu(y + 1) be the number

that achieves the maximum.

We verify that zy+1 is well-defined. Suppose for contradiction that w(z)−zu∗(y+1) is always

increasing in z, so zy+1 is not well defined. Since β∗ <∞, the limit limz→∞w(z)− zu∗(y + 1)

must converge and therefore u∗(y + 1) must be equal to Q = limz→∞∆w(z), where we denote
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∆w(z) = w(z) − w(z − 1) for conciseness. From the original contradiction assumption then

u∗(y) < u∗(y + 1) = Q. Then taking the constraint in (9.56), with y − 1 and z → ∞ gives

βw(y − 1) ≥ limz→∞w(z)− zu∗(y) ≥ ∞, which is a contradiction.

Now, substituting zy+1 into (9.57) for y and y + 1 produces the following expressions

u∗(y + 1) =
1

zy+1

( y∑
i=1

u∗(i) + w(zy+1)− β∗w(y)
)

u∗(y) ≥ 1

zy+1

( y−1∑
i=1

u∗(i) + w(zy+1)− β∗w(y − 1)
)
.

Inputting these expressions into the assumption u∗(y) < u∗(y + 1) reduces to the inequality

u(y) > β∗∆w(y). Similarly, for some j ≥ 1, substituting zy+j into (9.56) for y+ j and y+ j+ 1

gives

u∗(y + j + 1) ≥ 1

zy+j

( y+j∑
i=1

u∗(i) + w(zy+j)− β∗w(y + j)
)

u∗(y + j) =
1

zy+j

( y+j−1∑
i=1

u∗(i) + w(zy+j)− β∗w(y + j − 1)
)
.

Thus by substituting the second expression into first, the following inequality holds

u∗(y + j + 1) ≥ u∗(y + j) +
u∗(y + j)− β∗∆w(y + j)

zy+j
. (9.58)

We show, by induction, that the following expression holds for any j ≥ 1,

u∗(y + j)− β∗∆w(y + j)

zy+j
≥ u∗(y + 1)− β∗∆w(y + 1)

zy+1
> 0. (9.59)

The base case holds for j = 1, since

u∗(y + 1)− β∗∆w(y + 1) > u∗(y)− β∗∆w(y) > 0.

This comes from the assumption that u∗(y+ 1) > u∗(y), ∆w(y+ 1) ≤ ∆w(y) by submodularity

of w, and that u∗(y) − β∗∆w(y) > 0 from the previous argument. For the inductive case
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for J ≥ 2, assume that the inequality holds for all j < J . Then, by applying the induction

assumption to (9.58) and subsequently to the definition of zy+J , we have that

u∗(y + J) > u∗(y + J − 1) > · · · > u∗(y + 1)

zy+J ≤ zy+J−1 ≤ · · · ≤ zy+1.

Therefore the statement in (9.59) holds due to the aforementioned inequalities and the fact

that ∆w(y + J) ≤ ∆w(y + 1) due to submodularity of w. Therefore (9.59) holds and we

have that u∗(y + j + 1) ≥ u∗(y + j) + D, where D = u∗(y+1)−β∗∆w(y+1)
zy+1

> 0. Following this,

u∗(y + j) ≥ u∗(y + 1) +D(j − 1).

Now consider the constraint in (9.56) where y →∞ and z = 0. Since w(y) ≤ y,

β∗ ≥ lim
y→∞

1

y

y∑
i=1

u∗(i) ≥ ∞, (9.60)

where the last inequality results from the fact that u∗(y) ∼ y is of linear order by the previous

argument. Since β∗ must be finite, contradiction ensues and the solution u∗ must be non-

increasing and the efficiency guarantees are tight for each linear program.

Thus, so far, we have shown the statement in (9.14) with regards to the welfare set W =

{w1, . . . , wm}. We lastly show that the results extend linearly to a span of welfare rules as

claimed in (9.16). Note that for the welfare set wwspan spanned from {w1, . . . , wm}, the resulting

optimal guarantees PoU∗(W; 1) ≥ PoU∗(wwspan; 1), since wwspan is a larger set of welfare

rules. We show that the utility design as in (9.16) achieves PoU∗(wwspan; 1) = PoU∗(W; 1) and

therefore is optimal with respect to wwspan. Consider w =
∑m

`=1 α
`w` for any non-negative

{α`}1≤`≤m. Let the corresponding utility design be Ulin(w) =
∑m

`=1 α
`u`, where u` is the

corresponding solution to (9.15) for w` and β∗ = min1≤`≤m
1
β`

= PoU∗(W; 1). From the

characterization program in (9.53) with respect to wwspan and Ulin, the dual constraint for any
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y ≥ 1, z ≥ 0, 1 ≤ ` ≤ m, and {α`}1≤`≤m can be rewritten as

m∑
`=1

α` ·
[
β∗w`(y)−

y∑
j=1

u`(j) + zu`(y + 1)− w`(z)
]
≥ 0.

This constraint will always be satisfied for any non-negative {α`}1≤`≤m, as the inner terms is

non-negative by definition of β∗ and u`. Therefore, we have that under the linear utility design

Ulin, we have that PoU(Gwwspan,Ulin
) ≥ PoU∗(W; 1) and is optimal.

9.3.5 Proof of Theorem 9.2.2

Given a curvature C, let W be the set of welfare rules that have curvature of at most C.

From Lemma 8.3.4, we know there exists a basis set of welfare rules, such that for any w ∈ W,

we can come up with a decomposition w =
∑

b∈N α
bwb, with αb = (2w(b)−w(b−1)−w(b+1))/C

and

wb(j) =


j, if 0 ≤ j ≤ b

b+ (1− C) · (j − b) if j > b.

(9.61)

We refer to these welfare rules as b-covering welfare rules. We note that for any b ∈ N, the

welfare rule wb has a curvature of C. For each welfare rule wb, we claim that the corresponding

optimal utility rule from running the program in (9.15) is

ub(j) =


(1− βb)( b+1

b )j−1 + βb if j ≤ b+ 1

(1− C)βb if j ≥ b+ 1,

(9.62)

where and βb =
( b+1
b

)b

( b+1
b

)b−C is the resulting optimal efficiency. Taking the minimum across b, we

have that minb∈N
1
βb

= 1−C/2 for b = 1. Therefore, using Theorem 9.2.1, the optimal efficiency

guarantee is PoU∗(W; 1) = 1− C/2.

Now we verify that ub and βb are indeed the optimal solutions. We first remove all con-

straints in (9.15) apart from the ones that satisfy z = b for any y ≥ 1. This results in a lower
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bound for βb that we claim later to be tight.

Rearranging the terms in the constraint in (9.56) gives that for any y ≥ 1, the optimal

solution satisfies

u∗(y + 1) = sup
z≥1

(1

z

( y∑
i=1

u∗(i) + w(z)− β∗w(y)
))
. (9.63)

Substituting in for w and the binding constraint z = b, the recursive equation for ub is then

ub(1) = 1

ub(j + 1) =
1

b

j∑
i=1

ub(i) + 1− 1

b
β∗wb(j),

for some optimal β∗ ≥ 1. To solve for the closed form expression for ub, a corresponding linear,

time-invariant, discrete time system is constructed as follows.

x1(t+ 1) = x1(t) + x2(t)

x2(t+ 1) =
1

b
(x1(t) + x2(t)) + s(t)

s(t) = 1− 1

b
β∗wb(t).

For the initial condition (x1(1), x2(1)) = (0, 1), the corresponding solution x2(t) ≡ ub(j). Then

using the state transition matrix, we can solve for the explicit solution for x2(t) as

x2(1) =1 (9.64)

x2(t) =
1

b
Bt−2 +

t−2∑
τ=1

1

b
Bt−2−τ (1− β∗wb(τ))

+ (1− β∗wb(t− 1)) t > 1,

where B = b+1
b . Simplifying the expression for x2(t) for t − 1 > b and substituting wb(t) =
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(1− C)t+ Cmin(t, b) results in the following

x2(t) =
1

b
Bt−2

(
1 +

b∑
τ=1

B−τ (1− β∗τ)

+
t−2∑

τ=b+1

B−τ (1− β∗((1− C)τ + Cb))
)

+ (1− β∗(t− 1− C(t− 1) + Cb)).

Now we can use the series identities
∑d

j=1 p
j = p−pd−1

1−p and
∑d

j=1 jp
j = p−(d+1)pd+1+dpd+2

(1−p)2 and

simplify the terms to

x2(t) = Bt−2(β∗(CB1−b −B) +B) + (1− C)β∗.

Thus, the above expression is the closed form solution for ub when j − 1 > b. We have already

shown that the optimal utility rule ub must be non-increasing in the proof of Theorem 9.2.1.

This is only possible when β∗ ≥ Bb

Bb−C . Therefore the optimal solution must be β∗ = βb =

Bb

Bb−C . Substituting for β∗ in the expression in (9.64) and simplifying results in the closed form

expression in (9.62) for ub. It can be seen that ub defined in (9.62) is indeed non-increasing.

We lastly verify that the binding constraint for ub is indeed when z = b for any y ≥ 1 and

so βb is tight. In (9.15), we examine the terms wb(z) − zub(y + 1) for any y ≥ 1. Note that

1 = wb(z) − wb(z − 1) ≥ ub(y + 1) when z ≤ b and (1 − C) = wb(z) − wb(z − 1) ≤ ub(y + 1)

when z ≥ b for any y. Thus the maximum maxz w
b(z)− zub(y + 1) occurs when z = b, and we

have shown the claim.

9.3.6 Proof of Theorem 9.2.3

In this section, we first provide upper bounds on the efficiency metric PoU∗(W;κ). To do

this, we construct a game G such that for any utility design U , rounds κ ≥ 1, and curvature C,

we have that PoU(GW,U ;κ) ≤ PoU(G;κ) ≤ 1 − C/2. Let C be the curvature and consider the

b-covering rule wb with b = 1 as in (9.61) with wb(2) = 2 − C. Additionally, let u = U(wb) be
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the corresponding utility rule for a given utility design. A two-agent game G is constructed as

follows. Let the resource set be R = R1 ∪R2 ∪R3, where Rj is a set of resources such that the

ratio of resources satisfies |R1| = |R2| = u(2) · |R3|. If u(2) is not a whole number, we can scale

up |Rj | uniformly and round u(2) · |R3| to get arbitrarily close to the given ratio. Let x = |R1|.

The action sets for the game construction the agents will be determined by u according to the

following three cases: (a) 0 ≤ u(2) ≤ (1− C), (b) (1− C) ≤ u(2) ≤ 1, and (c) u(2) ≥ 1.

For case (a), Agent 1’s actions are A1 = {a∅1 , a1
1 = R1, a

2
1 = R2}. Agent 2’s actions are

A2 = {a∅2 , a1
2 = R3, a

2
2 = R1}. The optimal allocation is aopt = {a2

1, a
2
2} resulting in a welfare

of 2x. An allocation that can occur after a one round walk is abr = {a1
1, a

1
2} resulting in a

welfare of (1 + u(2))x. Therefore, PoU(G; 1) ≤ (1+u(2))x
2x ≤ 1 − C2 by assumption of u ≤ 1 − C.

Additionally, observe that abr is a Nash equilibrium and therefore is still the resulting allocation

after any number of additional rounds κ ≥ 1. Therefore PoU(GW,U ;κ) ≤ PoU(G;κ) ≤ 1 − C2
for this case of utility design.

For case (b), Agent 1’s actions are A1 = {a∅1 , a1
1 = R1, a

2
1 = R2}. Agent 2’s actions are

A2 = {a∅2 , a1
2 = R3, a

2
2 = R1}. The optimal allocation is aopt = {a2

1, a
2
2} resulting in a welfare of

2x. An allocation that can occur after a one-round walk is abr = {a1
1, a

2
2} resulting in a welfare

of wb(2) · x. Therefore, PoU(G; 1) ≤ wb(2)·x
2x = 1 − C2 . For κ ≥ 2, there is a best response path

that leads to the end state abr. This is achieved by reaching a′ = {a1
1, a

1
2} in the first round.

As a′ is a Nash action, the best response process can remains at a′ for κ− 1 rounds and in the

last round, switch to abr. Therefore PoU(GW,U ;κ) ≤ PoU(G;κ) ≤ 1− C2 for this case.

For case (c), Agent 1’s actions are A1 = {a∅1 , a1
1 = R1, a

2
1 = R2}. Agent 2’s actions are

A2 = {a∅2 , a1
2 = R1, a

2
2 = R3}. The optimal allocation is aopt = {a2

1, a
2
2} resulting in a welfare

of (1 + u(2))x. An allocation that can occur after a one round walk is abr = {a1
1, a

1
2} resulting

in a welfare of wb(2) · x. Therefore, PoU(G; 1) = wb(2)·x
(1+u(2))x ≤ 1− C2 by assumption of u(2) > 1.

Additionally, observe that abr is a Nash equilibrium and therefore is still the resulting allocation

after any number of additional rounds. Therefore PoU(GW,U ;κ) ≤ PoU(G;κ) ≤ 1− C2 for this

case.
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Since u = U(wb) was chosen arbitrarily, we have that the upper bound holds for any

utility design and we have shown that PoU∗(W;κ) ≤ 1−C/2. Furthermore, based on our game

construction, the efficiency bounds hold even when we relax the class of best response dynamics

that we consider. Since the game construction comprises of only two agents, allowing agents to

best respond multiple times during a round or best respond out of order of round-robin does

not improve the efficiency guarantees that result from the given game G.

Now we show that the upper bound PoU(GW,CI;κ) ≤ (1 + C)−1. As before, a game G

is constructed such that under the common interest design CI, κ ≥ 1, and curvature C, we

have that PoU(GW,CI;κ) ≤ PoU(G;κ) ≤ (1 + C)−1. Let G have n players with a resource set

R = Ropt ∪ Rboth ∪ {rn} with |Ropt| = n and |Rboth| = n− 1. Each agent i has three actions

in its action set Ai = {a∅i , abr
i , a

opt
i }. The resources are selected by the agents in the following

manner: each resource ropt
j ∈ Ropt is selected by agent j in action aopt

j 3 ropt
j for all 1 ≤ j ≤ n;

each resource rboth
j ∈ Rboth is selected by agent j + 1 in action aopt

j+1 3 rboth
j and by agent j in

action abr
j 3 rboth

j for all 1 ≤ j ≤ n− 1; agent n selects the resource in action abr
n ∈ rn. Given

a curvature C, consider two b-covering welfare rules wb, wb2 ∈ W with curvature C such that

wb(1) = 1 and wb(2) = 1− C, and wb2(1) = C and wb2(2) = C(1− C). For any r ∈ Rboth ∪ {rn},

let the corresponding welfare rule be wr = wb and for any r ∈ Ropt, let the corresponding

welfare rule be wr = wb2. Under this game construction it can be seen that under abr, each

resource r ∈ Rboth∪{rn} is selected by exactly one agent, resulting in a welfare of W (abr) = n;

also, under aopt, each resource r ∈ Rboth ∪Ropt is selected by exactly one agent, resulting in a

welfare of W (abr) = (n− 1)(1 + C) + C. Assuming that abr is the joint action that results after

κ rounds, we have that PoU(G, κ) ≤ n
(n−1)(1+C)+C . Limiting the number of agents n → ∞ to

infinity gives the result. To verify that abr can result after κ rounds, observe that for agent 1

selecting abr
1 over aopt

1 results in a higher system welfare. After that, agents 2 through n − 1

are indifferent between abr
j and aopt

j given that the previous i < j players have selected abr
i .

Therefore, abr is the resulting allocation after one round. Additionally, abr can be seen to be

Nash equilibrium for the common interest utility, so after any number of rounds κ, abr is still
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a possible joint allocation that can result.

9.3.7 Proof of Theorem 9.2.4

We show the trade-offs in Theorem 9.2.4 that result from considering utility designs that

maximize the one-round walk efficiency versus the price of anarchy. That PoA(GW,UPoA
) = 1− 1

e

comes from Theorem 8.2.1 and PoU(GW,U∗1 ; 1) = 1
2 comes from setting C = 1 in Theorem

9.2.2. We show that PoU(GW,UPoA
; 1) = 0 in Lemma 9.3.3. From Lemma 9.3.4, we have that

PoA(GW,U∗1 ) ≥ PoU(GW,U∗1 ; 1) = 1
2 , since U∗1 must be a non-increasing utility design, as shown

in Section 9.3.4. To show that this lower bound is tight, consider the set covering welfare

wsc. As seen in Theorem 9.2.5, the price of anarchy guarantee is 1
2 , and so PoA(GW,U∗1 ) ≤

PoA(Gwsc,U∗1 (wsc)) = 1
2 as well. Now we outline Lemma 9.3.3 and Lemma 9.3.4 below.

Lemma 9.3.3. Suppose that W is the set of all possible submodular welfare rules and consider

the utility design UPoA. Then PoU(GW,UPoA
; 1) = 0.

Proof. We construct a game G ∈ GW,UPoA
to upper bound the one-round walk efficiency such

that PoU(G; 1) = 0. Since PoU(GW,UPoA
; 1) is defined to be greater than 0, we have equality.

Consider a game with n players as follows. We partition the resource set as R =
⋃

1≤j≤n+1Rj .

Every resource r ∈ R is endowed the local welfare rule wr = wb as the b-covering welfare rule

with curvature of C = 1 for some fixed b ≥ 1, as defined in (9.61). The corresponding utility

rule is uPoA = UPoA(wb) is the following recursive expression from Lemma 8.3.3,

uPoA(1) = 1

uPoA(j + 1) =
1

b
[juPoA(j)− ρb min{j, b}] + 1,

with ρb = (1− bbe−b

b! )−1. The number of resources in each set is |R1| = v and |Rj+1| ∼ v ·uPoA(j)

for 1 ≤ j ≤ n and for some v ≥ 0. If uPoA(j) is not a whole number, we can scale v up and

round to get arbitrarily close to the correct ratio of resources. Agent i selects R1 = abr
i and

Ri+1 = aopt
i in each of its actions. It can be verified that abr is a joint action that can result
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after a one round walk. Therefore, the efficiency is upper bounded by

PoU(G; 1) ≤ W (abr)

W (aopt)
=

vb

v
∑

1≤i≤n uPoA(i)
.

Now we show that as we increase n, the series
∑

1≤i≤n uPoA(i) diverges, and the efficiency

can get arbitrarily bad as the number of agents increase. To construct the closed form expression

of uPoA(j), we construct the following LTV state space system with uPoA(j) := x(t)

x(t+ 1) = A(t)x(t) + s(t) A(t) =
t

b

s(t) = 1− ρb

b
min(t, b)

Solving for the solution x(t) using the state transition matrix with the initial condition x(1) = 1

results in the following expression

x(t) =
t∏

τ=1

τ

b
+

t−1∑
T=1

[(
1− ρb

b
min(t, b)

) t−1∏
τ=T+1

τ

b

]
=
t!

bt

(
1 +

t∑
T=1

bT

T !

(
1− ρb

b
min(t, b)

))

If t ≥ b, then

x(t) =
t!

bt

(
1− (eb − 1)(ρ− 1) +

∞∑
T=t+1

bT

T !

(
ρb − 1

)
+

b∑
T=1

bT

T !

ρb(b− T )

b

)

=
t!

bt

∞∑
T=t+1

bT

T !

(
ρb − 1

)
≥ (ρb − 1)

b

t+ 1

∼ O(
1

t
)

The first equality results from splitting the summation and the second equality will be shown
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later. Since x(t) is on the order of 1
t , the series

∑N
i=1 uPoA(i) diverges and the claim is shown.

Now we verify the equality

b∑
T=1

bT

T !

ρb(b− T )

b
= (eb − 1)(ρb − 1)− 1

b∑
T=1

bT (b− T )

bT !
=

1

ρb
(
ebρb − eb − ρb

)
b∑

T=1

bT

T !
−

b∑
T=1

bT−1

(T − 1)!
=
(
eb − 1− eb(1− bbe−b

b!
)
)

bb

b!
− 1 =

bb

b!
− 1

The last equality results from recognizing the terms on the left hand side as a telescoping

sum.

Lemma 9.3.4. Let W = {w1, . . . , wm} be a set of welfare rules and U be a utility design such

that u` = U(w`) is non-increasing for any 1 ≤ ` ≤ m. Then PoU(GW,U ;κ) ≤ PoA(GW,U ) for

any κ ≥ 1.

Proof. We show this claim by a game construction, where a Nash equilibrium with the effi-

ciency arbitrarily close to PoA(GW,U ) is reachable by a one-round walk. Let ε1 > 0. Note that

PoA(GW,Un) is non-increasing in n and lower bounded by 0. Therefore PoA(GW,Un) is a conver-

gent sequence in n and for any ε1, there exists an N1 ∈ N such that PoA(GN1
W,U )−PoA(GW,U ) ≤

ε1.

Generalizing [115, Theorem 2] to a set of welfare rules provides a characterization of the
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price of anarchy as PoA(GN1
W,U ) = min1≤`≤m

1
Q`

with

Q` = max
θ(y,x,z)

∑
y,x,z

w`(z + x)θ(y, x, z) (9.65)

s.t.
∑
y,x,z

[yu`(y + x)− zu`(y + x+ 1)]θ(y, x, z) ≥ 0

∑
y,x,z

w`(y + x)θ(y, x, z) = 1

θ(y, x, z) ≥ 0,

where y, x, z,∈ N with 1 ≤ y + x + z ≤ N1. For the `∗ = arg min1≤`≤m
1
Q`

that achieves

the minimum, we refer to w ≡ w`
∗
, u ≡ u`

∗
for ease of notation and refer to Θ(y, x, z) to

denote the corresponding optimal variables for θ(y, x, z) of the linear program. We construct

a matching game G as follows. Let N2 > N1 be the number of agents in the game and

D = N2 + y+ x− 1. For each y, x, z pair and 1 ≤ k ≤ D, we construct a set of resources Raxb

with |Raxb| = Θ(y, x, z)/D. Each agent i has three actions in its action set Ai = {a∅i , ane
i , a

opt
i }.

Each agent i selects {Raxb}i≤k≤y+x+i−1 in ane
i for each pair y, z, x. If y+z+x ≤ i ≤ N2, agent

i selects {Raxb}i−z≤k≤x+i−1 in aopt
i for each pair y, z, x. Otherwise for 1 ≤ i ≤ y + z + x − 1,

aopt
i = a∅i and agent i doesn’t select any resources in aopt

i .

We first confirm that the action ane is indeed a Nash equilibrium. Showing this for the first

y+ x+ z− 1 agents is trivial, since no resources are selected in aopt
i . For the rest of the agents,
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the utility difference of a unilateral deviation to aopt
i from ane

i is

Ui(a
ne)− Ui(aopt

i , ane
−i)

≥
∑
r∈ane

i

ur(|ane|r)−
∑
r∈aopt

i

ur(|(aopt
i , ane

−i)|r)

≥
∑
y,x,z

[(y + x)u(|ane|r)−

xur(y + x)− zu(y + x+ 1)] · |Raxb|

≥ 1

D

∑
y,x,z

[yu(y + x)− zu(y + x+ 1)]Θ(y, x, z)

≥ 0.

The first inequality comes from the definitions of the utility function. The second inequality

comes from counting the resources that are selected in the either ane
i or aopt

i by the agent in

each set of resources in Raxb. The third inequality arises from the fact that |ane|r ≤ y+x, and

since u is assumed to be non-increasing, u(|ane|r) ≥ u(y+x). The fourth inequality comes from

the fact that since Θ(y, x, z) has to satisfy the inequality constraint in (9.65) to be feasible.

Similarly, in a one-round walk, the best response for the first y + x + z − 1 is ane
i . The best

response for the other agents during the one-round walk is also ane
i , since

Ui(a
ne
j<i, a

ne
i , a

∅
j>i)− Ui(ane

j<i, a
opt
i , a∅j>i)

=
∑
y,x,z

[

y+x∑
j=1

u(i)− xu(y + x)− zu(y + x+ 1)]|Raxb|

≥ 1

D

∑
y,x,z

[yu(y + x)− zu(y + x+ 1)]Θ(y, x, z)

≥ 0.

Therefore, the Nash equilibrium ane is reached from an empty configuration in one-round.

Additionally, since ane is a Nash equilibrium, the resulting action state after κ rounds can also

be ane. Therefore in this game, PoU(G;κ) ≤ PoA(G). Now we calculate the efficiency of the
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Nash equilibrium W (ane) with respect to W (aopt). We have that

W (ane) =
∑
y,x,z

w(y + x) ·Θ(y, x, z)
N2 − 2(y + x− 1)

N2
+

2

y+x−1∑
i=1

w(i)
Θ(y, x, z)

N2
= 1 + O(

1

N2
),

where, since Θ(y, x, z) is feasible, then it satisfies the equality constraint that
∑

y,x,z w(y +

x)Θ(y, x, z) = 1. O( 1
N2

) reflects that the rest of the terms are on order of 1/N2. Similarly,

W (aopt) =
∑
y,x,z

w(z + x) ·Θ(y, x, z)
N2 − 3(z + x− 1)

N2
+

2

z+x−1∑
i=1

w(i)
Θ(y, x, z)

N2
= PoA(GN1

W,U )−1 + O(
1

N2
),

where, since Θ(y, x, z) is optimal, then
∑

y,x,z w(z + x)Θ(y, x, z) = PoA(GN1
W,U )−1. For any ε2,

we can choose N2, such that O( 1
N2

) ≤ ε2, so PoA(G) ≤ PoA(GN1
W,U )−1 + ε2. To put everything

together, we have that

PoU(GW,U ;κ) ≤ PoU(G;κ) ≤ PoA(G)

≤ PoA(GN1
W,U )−1 + ε2 ≤ PoA(GW,U ) + ε1 + ε2,

and since ε1 and ε2 are arbitrary, we have the result for any rounds κ ≥ 1.

9.3.8 Proof of Theorem 9.2.5

To characterize the Pareto optimal frontier in (9.22), we first simplify the linear program

in (9.53) with respect to the set covering welfare rule.

Lemma 9.3.5. Let W = {wsc}, where wsc is the set covering welfare rule defined in (9.21),

and U = {u} be the corresponding utility rule. Then the one-round walk efficiency guarantee is
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PoU(Gwsc,u; 1)−1 =
∑
i∈N

u(i)−min
i∈N

u(i) + 1. (9.66)

Proof. Examine the dual program in (9.53) with substituting the set covering welfare defined

in (9.21). Under the substitution, the dual constraint for a given z, y simplifies to

β ≥
y∑
i=1

u(i)− z min
1≤i≤y+1

u(i) + min(1, z).

We have applied the fact wsc(j) = min(1, j) = 1 when j ≥ 1 and H = maxj∈N wsc(j)/j = 1

to the dual constraint. Observe that the binding constraint occurs when we limit y → ∞ and

set z = 1 (and not z = 0 since u(1) = 1, the term 1 − minj u(j) ≥ 0). Under those binding

constraints, PoU(Gwsc,u; 1)−1 = β, where β matches the given expression in (9.66).

Figure 9.6: The worst case game construction achieving the one-round walk guarantee dictated
by Lemma 9.3.5. In this game, all the agents can either stack on the first resource set or spread
out.

To characterize the trade-off, we now provide an explicit expression of Pareto optimal

utility rules, i.e., the utility rules u that satisfy either PoU(Gwsc,u; 1) ≥ PoU(Gwsc,u′ ; 1) or

PoA(Gwsc,u) ≥ PoA(Gwsc,u′) for all u′ 6= u.

Lemma 9.3.6. For a given X ≥ 0, a utility rule uX that satisfies PoA(Gwsc,u) ≥ 1/(1 + X )

while maximizing PoU(Gwsc,u; 1) is defined as in the following recursive formula:

uX (1) = 1 (9.67)

uX (j + 1) = max{juX (j)−X , 0}.
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Proof. According to [115, Theorem 2], the price of anarchy can be written as

1

PoA(Gwsc,u)
= 1 + max

1≤j≤n−1
{(j + 1)u(j + 1)− 1,

ju(j)− u(j + 1), ju(j + 1)}. (9.68)

We first show that if u is Pareto optimal, then it must also be non-increasing. Otherwise,

we show that another u′ exists that achieves at least the same one round efficiency, but a

higher price of anarchy, contradicting our assumption that u is Pareto optimal. Assume, by

contradiction, that there exists u that is Pareto optimal and not non-increasing, i.e., there exists

a J ≥ 1, in which u(J) < u(J + 1). Notice that switching the value u(J) with u(J + 1) results

in an unchanged one round efficiency according to (9.66) in Lemma 9.3.5 if J > 1. We show

that u′ with the values at J and J + 1 switched has a higher price of anarchy than u.

For any 1 ≤ J ≤ n− 1, the expressions from (9.68) that include u(J) or u(J + 1) are

Ju(J), (J + 1)u(J + 1), (J − 1)u(J − 1)− u(J) + 1,

Ju(J)− u(J + 1) + 1, (J + 1)u(J + 1)− u(J + 2) + 1,

(J − 1)u(J) + 1, Ju(J + 1) + 1.

After switching, the relevant expressions for u′ are

Ju(J + 1), (J + 1)u(J), (J − 1)u(J − 1)− u(J + 1) + 1,

Ju(J + 1)− u(J) + 1, (J + 1)u(J)− u(J + 2) + 1,

(J − 1)u(J + 1) + 1, Ju(J) + 1.

Since u(J) < u(J+1), switching the values results in a strictly looser set of constraints, and the

value of the binding constraint in (9.68) for u′ is at most the value of the binding constraint for

u. Therefore PoA(u) ≤ PoA(u′). Note that if J = 1, switching J and J + 1 and scaling down

appropriately so u′(1) = 1, then PoU(u′) > PoU(u) as well. This contradicts our assumption
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that u is Pareto optimal.

Now we restrict our focus u that are non-increasing. Under this assumption, the price of

anarchy is

1

PoA(wsc, u)
= 1 + max

1≤j≤n−1
{ju(j)− u(j + 1), (n− 1)u(n)},

as detailed in Corollary 2 in [115]. Let

Xu = max
1≤j≤n−1

{ju(j)− u(j + 1), (n− 1)u(n)}. (9.69)

For u to be Pareto optimal, we claim that ju(j)− u(j + 1) = Xu must hold for all j. Consider

any other u′ with Xu = Xu′ . It follows that PoA(u) = PoA(u′) = 1/(1 +Xu). By induction, we

show that u(j) ≤ u′(j) for all j. The base case is satisfied, as 1 = f(1) ≤ f ′(1) = 1. Under the

assumption u(j) ≤ u′(j), we also have that

ju(j)−Xu = u(j + 1) ≤ u′(j + 1) = ju′(j)−X ju , (9.70)

where X ju′ = ju′(j) − u′(j + 1) ≤ Xu′ by definition in (9.69), and so u(j) ≤ u′(j) for all j.

Therefore the summation
∑

i∈N u(i)−mini∈N u(i) in (9.66) is diminished and PoU(u) ≥ PoU(u′),

proving our claim. As u must satisfy u(j) ≥ 0 for all j to be a valid utility rule, u(j + 1) is set

to be max{ju(j)−X , 0}. Then we get the recursive definition for the maximal uX . Finally, we

note that for infinite n, X ≤ 1
e−1 is not achievable, as shown in [112].

With the two previous lemmas, we can move to proving Theorem 9.2.5 We first characterize a

closed form expression of the maximal utility rule uX , which is given in Lemma 9.3.6. We fix X

so that PoA(uX ) = 1
X+1 = Q. To calculate the expression for uX for a given X , a corresponding
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time varying, discrete time system to (9.67) is constructed as follows.

x(t+ 1) = tx(t)−X ,

y(t) = max{x(t), 0},

x(1) = 1,

where y(t) ≡ uX (j) corresponds to the utility rule. Solving for the explicit solution for y(t)

using the state-transition matrix gives

y(1) = 1

y(t) = max
[ t−1∏
`=1

`−X
( t−2∑
τ=1

t−1∏
`=τ+1

`
)
−X , 0

]
t > 1.

Simplifying the expression and substituting for uX (j) gives

uX (j) = max
[
(j − 1)!(1−X

j−1∑
τ=1

1

τ !

)
, 0
]

j ≥ 1.

Substituting the expression for the maximal uX into (9.66) gives the one round efficiency.

Notice that for X ≥ 1
e−1 , limj→∞ u

X (j) = 0, and therefore minj u
X (j) = 0. Shifting the

variables j′ = j + 1, we get the statement in (9.22).

9.3.9 Supermodular welfare rules

In this section, efficiency of one-round walks are examined for classes of supermodular games.

Supermodular games are an important sub-class of resource allocation games, in which there is a

surplus of added system welfare when a resource is covered by more than one agent. Applications

of supermodular games include clustering and power allocation in networks [119]. A welfare rule

w is deemed to be supermodular if w(j)−w(j− 1) is increasing and non-negative for all j ≥ 1.

Interestingly, for supermodular games, the utility designs that both maximize the one-round

efficiency and price of anarchy include the constant utility design U(w) = u1 in which u1(j) = 1
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for all j ∈ N, and the Shapley utility design U(w) = ushap in which ushap(j) = w(j)/j for all

j ∈ N. Furthermore, the optimal one-round and price of anarchy guarantees are equivalent, as

seen below.

Proposition 9.3.1. Consider a set of supermodular welfare rules W = {w1, . . . , wm} with

w`(1) = 1. If the number of agents is fixed to n, then the optimal one-round and price of

anarchy guarantees are as follows

sup
U

PoU(GW,Un; 1) = sup
U

PoA(GW,Un) = min
1≤`≤m

n

w`(n)
. (9.71)

Furthermore any utility design in which u` = U(w`) is non-decreasing and satisfies u`(1) = 1

and
∑j

i=1 u
`(i)/w(j) ≤ 1 for all 1 ≤ j ≤ n achieves the optimal one round efficiency guarantee.

Proof. The fact that supU PoA(GW,Un) = min1≤`≤m
n

w`(n)
comes from applying the result in

[119, Theorem 4] to a class of welfare rules. Thus, we first show that supU PoU(GW,Un; 1) ≤

min1≤`≤m
n

w`(n)
through a game construction that is valid for any utility design U . Let w∗ =

arg min1≤`≤m
n

w`(n)
be the welfare rule that attains the minimum. Let the game G have n

agents with agent i having the action set Ai = {a∅i , abr
i , a

opt
i }. There are n+ 1 resources which

are all endowed with the welfare rule wr = w∗ for all r ∈ R, with agent i either selecting

abr
i = {ri+1} or aopt

i = {r1}. Under any utility rule u, each agent i is indifferent to choosing

abr
i or aopt

i if no other agents j 6= i have selected r1 through aopt
j . Thus abr can result after

a κ-round walk with a welfare of W (abr) = n. The welfare of the optimal allocation aopt is

W (aopt) = w(n). Therefore, for any utility design u = U(w∗), the efficiency is bounded by

PoU(GW,Un; 1) ≤ PoU(G; 1) = n
w∗(n) . We remark that PoU(GW,Un;κ) ≤ PoU(G;κ) = n

w∗(n) as

well, since abr is a Nash equilibrium.

Now we show that for a utility design U , such that the utility rule u` = U(w`) is non-

decreasing and satisfies
∑j

i=1 u
`(i)/w(j) ≤ 1 and u`(1) = 1 for every j and `, the one-round

efficiency is lower bounded by PoU(GW,Un; 1) ≥ min1≤`≤m
n

w`(n)
. To do this, we can use a

modified version of the linear program in (9.53) in which PoU(GW,Un; 1) ≥ min1≤`≤m
1
β`

, where
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β` ∈ R is the solution to

β` = min β subject to:

βw`(y) ≥ H`

(
y∑

i=1

u`(i)− z min
1≤i≤y+1

u`(i)

)
+ w`(z)

for all 0 ≤ z ≤ n and 1 ≤ y ≤ n,

where the linear program is a lower bound since we consider tighter constraints that allow y

and z to to range from 1 to n. Since w` is supermodular, H` = w`(n)/n and assuming u` is

non-decreasing, min1≤i≤y+1 u
`(i) = u`(1) = 1. Thus, we can simplify the constraint as

βw`(y) ≥ w`(n)

n

y∑
i=1

u`(i)− w`(n)

n
z + w`(z) (9.72)

With this, we observe that w`(z) − z · w`(n)/n is convex in z. So the binding constraint

for z occurs at either the end point z = 0 or z = n and the terms can be cancelled out.

Additionally, maxy
∑y

i=1 u
`(i)/w`(y) = 1 occurs at the binding constraint y = 1, by assumption

that
∑j

i=1 u
`(i)/w(j) ≤ 1 for all 1 ≤ j ≤ n. Therefore, β` = H` = w`(n)/n under the

binding constraint of y = 1 and z = 0 (or n) and we indeed have that PoU(GW,Un; 1) ≥

min1≤`≤m
n

w`(n)
.

We remark that the utility rules u1 and ushap both satisfy the assumptions in Proposition

9.3.1. Furthermore, we remark that the optimal one-round guarantees match the optimal κ-

round and price of anarchy guarantees, and so running the best-response process for further

rounds does not increase the resulting efficiency guarantees.
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Conclusion
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Chapter 10

Conclusions and future outlook

10.1 Decision-based mechanisms

In the first part of this dissertation, we considered mechanisms that modify the decision

space in multi-agent systems. Our main focus was on understanding the role that information

plays in competitive interactions, particularly its impact on the strategic behaviour of the

competitors. We based our analysis on variations of the Colonel Blotto game [120], a popular

framework for studying competitive resource allocation in adversarial settings. The majority of

our results treat a player’s equilibrium payoff in the nominal game model as the benchmark and

compare against the player’s equilibrium payoff in a perturbed model to analyze the impact of

such perturbations on the strategic outcomes of the system.

In our first set of results within this context, we sought to identify the intrinsic value that

competitors should associate with information on different parameters of the game, namely

the battlefield values and the opponent’s budget. We did so under the framework of General

Lotto games by comparing a player’s equilibrium payoff in the complete information game,

and in an incomplete information game where the player only knows the prior distribution

of either the battlefield values or the opponent’s budget. Our analysis offers the following

intuitive observations: first, that information on battlefield values is more valuable to the

weaker competitor than the stronger one; and, second, that in several parameter regimes we
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characterize information on the opponent’s budget offers no benefit to a competitor.

Our second set of results consider whether a competitor can strategically use information

to shift the strategic outcome in her favour. We do so by studying two-stage formulations

of two- and three-player General Lotto games where players have the opportunity to pre-

emptively announce strategic information to their opponents. Such opportunities contrast with

previously studies of pre-emption in the literature on General Lotto games in that they are

viable even in the absence of mechanisms for coordination between players like alliances. We

first studied concessions, and showed that a player can improve her equilibrium payoff by

conceding battlefields to her opponent in three-player General Lotto games. We then considered

pre-allocations, and observed that pre-allocated resources are never more than half as effective

as real-time resources in two-player General Lotto games.

10.1.1 Future directions

Networks of conflict. Our analysis of three-player General Lotto games in which two com-

petitors face a common adversary prompts the study of more general networks of conflict. A

possible representation of such a conflict could be a graph where the nodes are the competitors

and edges represent conflicts between competitors. Already, preliminary studies of networks

of conflicts have been considered, e.g., in []. An interesting study of such problem settings

should analyze the importance of coordination between allies in such networks, by comparing

the strategic outcomes and resulting cumulative payoff across members of an alliance under

coordinated and uncoordinated decision making. Such a study would be at the intersection of

Colonel Blotto games and network games [].

Another important direction related to networks of conflict examines the effect of overlap-

ping responsibilities in the coordination of teams against a common adversary. Existing results

in Colonel Blotto games [] show that the decision space is complex, as – contrary to the intuition

– the team’s equilibrium payoff is non-monotonic in the team members’ endowment, and the

probability distribution of the team’s overall allocation is a convolution over the probability
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distributions selected by its members. Future studies of tractable game models may allow for

a more nuanced study of this problem setting.

Heterogeneous resources and conflicts. As previously discussed, another interpretation

of our results on General Lotto games with pre-allocations compares the effectiveness of fixed

and mobile resources, i.e., those resources that cannot move freely at the time of engagement,

and those that can. Future work should explore other models of resource heterogeneity (e.g.,

rock-paper-scissors forces that vary in effectiveness against one another, decoy or “paper tiger”

forces that are only revealed during the time of engagement), and heterogeneous battlefields

(e.g., simultaneous conflicts with different contest success functions).

Beyond Bayesian formulations. Any study based on Bayesian formulations and Bayesian

outcomes must consider the complexity of the emergent solution concepts. Indeed, it is strongly

debated whether human reasoning and Bayesian reasoning is consistent. Furthermore, Bayesian

formulations rely on known prior distributions over the system state, which may be unrealistic

in many relevant problem settings. Future work should seek to relax the Bayesian assumption,

perhaps exploring prior-free, Stackleberg formulations as in [], or examining more tractable

equilibrium notions as in [].

10.2 Preference-based mechanisms

In the second part of this dissertation, we considered mechanisms that modify the prefer-

ence structure in multi-agent systems. Our main focus was on studying how the system-level

performance can be optimized through structured interventions that influence the agents’ util-

ity functions. Our analytical framework for this research direction was based on the congestion

game model [75] (as well as the analogous resource allocation game model). We considered taxes

implemented at the resource level that are anonymous and depend only on locally available in-

formation (i.e., the resource cost function and the number of agents selecting the resource).
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Our first research direction within this context was to optimize the worst-case equilibrium

efficiency (Price of Anarchy) across families of games. Inspired by established smoothness

arguments and primal-dual techniques, we derived a methodology based on tractable linear

programs to compute the optimal taxation mechanism and its associated Price of Anarchy

guarantees. We also provided techniques to move beyond linear programming to more tractable

methodologies while retaining near-optimal Price of Anarchy guarantees. This last set of results

also provides universal guarantees on the optimal Price of Anarchy, which – for the problems we

consider – are competitive with even the best achievable approximation ratios among polynomial

time, centralized algorithms.

The second research direction in this part explored the potential consequences of optimizing

for the worst-case equilibrium efficiency. We considered the impact of such a design approach

on the best-case equilibrium efficiency (Price of Stability) and the transient efficiency (Price

of Urgency). In the respective settings considered, our results show that the taxes that opti-

mize the Price of Anarchy have corresponding Price of Stability guarantees equal to the Price

of Anarchy, as well as arbitrarily poor Price of Urgency. We then proposed techniques for

characterizing the Anarchy-Stability and Anarchy-Urgency trade-off curves.

10.2.1 Future directions

Global, local and other levels of information. Parallel research efforts have investigated

the design of global taxation rules where the design of tax functions is conditioned on all

parameters of a game instance. Interestingly, our results suggest that transitioning from local to

global taxation rules may not provide significant reductions of the achievable Price of Anarchy.

Future work should seek to establish whether local taxation rules remain competitive under

other performance metrics including the Price of Stability and Price of Urgency. Furthermore,

analyzing whether a tension between the Price of Anarchy and other performance metrics

persists under global taxation rules is an open and interesting problem. Finally, global and

local information represent only two extreme perspectives on the design of taxes. A fruitful
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direction for future study is in understanding the value of different pieces of information under

this paradigm.

Persistence of trade-offs beyond congestion games. [121] and [122] also investigate

trade-offs between the Price of Anarchy and Price of Stability, albeit in distinct classes of

problems. However, they all report findings analagous to ours: When the Price of Anarchy is

optimized, the Price of Anarchy and Price of Stability are equal. While it is immediate that the

Price of Stability can never exceed the Price of Anarchy, it is unclear whether these two metrics

must always be in tension with one another. A relevant research direction is to understand

the broader class of problems for which the Price of Anarchy can only be optimized to the

detriment of the Price of Stability, and likewise for the Price of Urgency.

Beyond worst-case analysis. Many of the results in this part represent analyses that ven-

ture beyond the worst-case perspective, and ask whether designing systems under such a pes-

simistic approach is advisable. A recent and significant thrust in computer science advocates

for more analyses beyond the worst case, as worst-case examples can often be esoteric and non-

representative of the underlying problems of interest. To date, numerous positive results exist in

this direction, including the canonical result on the run-time of the simplex method for solving

linear programs. Further thrusts beyond the worst case in our context might include restrict-

ing the family of games to measure equilibrium efficiency guarantees under “realistic” network

structures, measure-theoretic analyses of equilibrium efficiency (e.g., smoothed analysis) and

introducing data-driven techniques into the analysis (e.g., Monte Carlo methods).
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[97] P. Kleer and G. Schäfer, Tight inefficiency bounds for perception-parameterized affine
congestion games, Theoretical Computer Science 754 (2019) 65–87.

[98] V. Conitzer and T. Sandholm, New complexity results about nash equilibria, Games and
Economic Behavior 63 (2008), no. 2 621–641.

[99] A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure nash equilibria,
in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pp. 604–612, ACM, 2004.

[100] T. Roughgarden, Intrinsic robustness of the price of anarchy, Journal of the ACM
(JACM) 62 (2015), no. 5 32.

[101] V. Gkatzelis, K. Kollias, and T. Roughgarden, Optimal cost-sharing in general resource
selection games, Operations Research 64 (2016), no. 6 1230–1238.

[102] J. Kleinberg and S. Oren, Mechanisms for (mis) allocating scientific credit, in
Proceedings of the forty-third annual ACM symposium on Theory of computing,
pp. 529–538, ACM, 2011.

[103] U. Nadav and T. Roughgarden, The limits of smoothness: A primal-dual framework for
price of anarchy bounds, in International Workshop on Internet and Network
Economics, pp. 319–326, Springer, 2010.

255
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