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Summary

The use of high-throughput data to study the changing behavior of biological pathways has 

focused mainly on examining the changes in the means of pathway genes. In this paper, we 

propose instead to test for changes in the co-regulated and unregulated variability of pathway 

genes. We assume that the eigenvalues of previously defined pathways capture biologically 

relevant quantities, and we develop a test for biologically meaningful changes in the eigenvalues 

between classes. This test reflects important and often ignored aspects of pathway behavior and 

provides a useful complement to traditional pathway analyses.
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1. Introduction

A pathway refers to a set of genes or proteins jointly participating in a biological process. It 

is of great interest to study the behavior of pathways using high-throughput-omics data. By 

treating a pre-defined set of genes with shared biological function as an analytical unit, 

pathway-level analyses efficiently exploit prior biological knowledge, improve 

interpretability, and enjoy greater power by combining the signals of individual genes. 

Existing pathway analysis methods have focused almost exclusively on the marginal 

behavior of pathway genes. For example, Tomfohr et al. (2005), Lee et al. (2008) and Drier 

et al. (2013) suggested synthesizing the information in pathway genes into measures of 

pathway activity, while there is a large body of work, including Subramanian et al. (2005) 
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and Efron & Tibshirani (2007), aimed at identifying pathways that are enriched with 

differentially expressed genes. These marginal analyses, while shedding light on important 

questions, fail to capture the full complexity of pathway behavior.

In this paper, we propose a test to examine the joint behavior of pathway genes. This test 

complements the marginal analyses mentioned above and helps to provide a more 

comprehensive understanding of biological pathways. Specifically, we consider the problem 

of detecting differences in covariance among a pre-defined set of pathway genes between 

two classes of samples, for example between two different cancer subtypes. Tests of equality 

of two covariance matrices are well studied. However, the number of genes in a pathway 

ranges from tens to hundreds, and quite often exceeds the sample size. Under such regimes, 

classical tests for equality of covariance matrices no longer apply. A number of authors 

(Schott, 2007; Srivastava & Yanagihara, 2010; Li & Chen, 2012) have developed tests for 

equality of covariance matrices in the high dimension, low sample size setting. However, by 

testing the null hypothesis that two covariance matrices are exactly equal, without 

accounting for the structure induced by pathway activity, these tests provide inadequate 

biological insight: their rejection of the null hypothesis allows no conclusions about how 

pathway gene behavior differs between classes. In contrast, the proposed test is motivated 

from a biological model of the expression of pathway genes and focused on quantities with 

natural biological interpretations. The novelty of this test lies in its focus on the joint rather 

than the marginal behavior of pathway genes and in its consideration of disordered 

variability orthogonal to the effects of pathway activity.

Our biological model assumes that genes’ associations with pathway activity drive the 

leading eigenvector of their covariance matrix. This model suggests that the first eigenvector 

is invariant to changes in biological conditions, while the leading and remaining eigenvalues 

will vary across data sets in response to within-population variability of pathway activity 

and variability due to other, unregulated causes, respectively. Under this model, the 

covariance matrix of the expression levels of pathway genes has a spiked eigen-structure 

(Johnstone, 2001; Baik & Silverstein, 2006; Paul, 2007), and the leading eigenvalue and the 

trace of the covariance matrix provide a parsimonious and biologically relevant summary of 

pathway genes’ joint behavior. Baik & Silverstein (2006) showed that if the dimension-to-

sample size ratio converges to a nonzero finite constant, and if the true spiked eigenvalues 

exceed a threshold, the corresponding sample eigenvalues converge with probability one to 

limits that depend on the true eigenvalues and the dimension-to-sample size ratio. Paul 

(2007) proved asymptotic normality of the leading sample eigenvalues under the same 

framework. We extend the latter asymptotic results to design a χ2 test statistic based on the 

joint behavior of the leading eigenvalue and the trace of the sample covariance matrices of 

the two classes. When the proposed test rejects the null, it indicates that specific, 

biologically-relevant quantities differ between classes. Simulations suggest that if the spiked 

covariance structure holds even approximately, the proposed test has better power to detect 

differences in biologically important functions of the eigenvalues than existing tests.

DANAHER et al. Page 2

Biometrika. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. A model of co-expression in biological pathways

First, consider data from only one class. Denote the gene expression data for a previously 

defined pathway with p genes from n observations by the n × p matrix Y, and denote the data 

vector of the ith observation by yi = (yi1,…, yip). We assume that pathway activity is the 

primary driver of pathway gene expression. For example, for a set of genes regulated by a 

common transcription factor, the primary source of variance in the expression levels of the 

entire gene set would be changes in the activity level of the transcription factor, and it would 

be reasonable to specify these relationships through a linear dependence model. We write

(1)

where μk is an intercept specific to gene k that can be ignored for our purposes, ai is a 

random variable with mean 0 and variance , h = (h1,…, hp) are gene specific scaling 

coefficients, εi = (εi,1,…, εi,p) are independent random variables with mean 0 and variance 

, and ε1,…, εn, a1,…, an are mutually independent. We add the constraint  to make 

h and  identifiable. In this model, ai reflects the level of pathway activity, e.g. the 

transcription factor level, in the ith sample,  drives the well-ordered, co-regulated 

component of total gene variance, and  measures the unordered, noisy component of 

pathway gene variance. It follows that

(2)

The first eigenvalue of cov(yi) is , and the remaining eigenvalues equal . This 

observation allows biological interpretations to be assigned to the eigenvalues of the 

pathway’s covariance matrix: the first eigenvalue measures the variability in pathway genes 

due to changing levels of pathway activity, i.e., the well-ordered, co-regulated component of 

pathway gene variability, while the sum of the remaining eigenvalues captures the 

unordered, chaotic component of variability. This interpretation echoes Tomfohr et al. 

(2005), Bild et al. (2005), Bair et al. (2006) and Chen et al. (2008) in implying that an 

observation’s projection onto the first eigenvector of the pathway’s covariance matrix 

measures the observation’s pathway activity level. Moreover, the covariance structure in (2) 

matches the spiked eigenvalue model of Baik & Silverstein (2006), Paul (2007), Nadler 

(2008), Onatski (2012) and others. This implication of the model holds nearly universally in 

pathway data. Thus, one can take advantage of the asymptotic theories under the spiked 

eigenvalue model to perform inference on  and .

In data sets with two classes of samples, we may wish to compare these biologically 

meaningful quantities between classes. We therefore propose to test the null hypothesis

(3)
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where αj,k denotes the kth population eigenvalue of class j and Tj denotes the trace of the 

covariance matrix of class j. The interpretation of the pair (αj,1, Tj) gives the alternatives to 

H0 specific and useful biological meaning. For example, when α1,1 > α2,1 and T1 − α1,1 ≈ 

T2 − α2,1, we might conclude that the pathway activity level is stronger in the first class, or, 

when T1 − α1,1 > T2 − α2,1, we might conclude that the pathway is dysregulated and subject 

to greater nloise in the first class. By directly testing H0 rather than the stronger null 

hypothesis of equality of the entire covariance matrices, we maximize power to detect 

changes in the modes of variability attributable to pathway activity and to noisy, non-co-

regulated causes, while detecting other changes in the covariance matrix only insofar as they 

change our eigenvalue statistics. In particular, we ignore the eigenvectors and redistribution 

of weights among smaller eigenvalues. The biological model specified in (1) and (2) can 

also be seen as a factor analysis model with one factor and a specialized covariance structure 

for the idiosyncratic term εik, even though our hypotheses and test procedure differ from the 

commonly used tests for factorial invariance (Meade & Bauer, 2007).

Model (1) suggests two general features of pathway data: (a) the eigenvalues of the 

covariance matrix resemble the spiked model; (b) the leading eigenvectors capture the 

effects of pathway activities on gene expression, or equivalently, the leading spiked 

eigenvalues capture variability in the data due to changes in pathway activity. Both features 

apply for a large set of pathways even when model (1) does not hold. The statistical theory 

behind our test relies on (a), and the biological interpretation of our test is based on (b). The 

Supplementary Material contains extensive empirical investigations supporting (a) and (b).

In the next sections, we introduce a test for H0 in (3), assuming (a) and (b) hold. Moreover, 

in many cases, pathway genes are subject to multiple biological processes. When this occurs 

the covariance matrix has additional spikes, i.e., more eigenvalues become significantly 

larger than the noise eigenvalues. The proposed test also accommodates these scenarios.

3. A test for differences in the eigenstructure of Σ1 and Σ2

3·1. The single spiked eigenvalue setting

Denote the eigenvalues and trace of the sample covariance matrices by α̂j,i and T̂
j (j = 1, 2; i 

=1,…,p). To test H0 in (3), a natural choice is to form a test statistic using α̂
1,1 − α̂

2,1 and T̂
1 

− T̂
2. We use a quadratic form to combine the information in these quantities.

Under H0 in (3), without loss of generality, we assume that σε,1 = σε,2 =1, or equivalently, 

the unspiked eigenvalues of the common covariance matrix are all equal to 1, αj,2 =···= αj,p 

= 1, (j = 1, 2). To adhere to this assumption, we normalize the data as follows. We calculate 

a scale factor equal to the square root of the median eigenvalue of the pooled sample 

covariance matrix from both classes and divide all the observations by this factor; see the 

Supplementary Material.

For notational convenience, in the rest of this subsection we use αj and α̂
j to mean αj,1 and 

α̂j,1, respectively. According to Baik & Silverstein (2006), the first sample eigenvalue is a 

biased estimate of its population counterpart: α̂j → αj + γjαj/(αj − 1), where p, n → ∞, p/nj 

→ γj ∈ (0, ∞) and , (j = 1, 2). Define bα = (γ1 − γ2)α0/(α0 − 1), where α0 is the 
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first eigenvalue shared by both classes under H0 and satisfies . Then 

under H0, (α̂
1 − α̂2) → bα almost surely. This limiting value bα ≠ 0 when γ1 ≠ γ2. To test H0, 

we focus on the bias-corrected quantity (α̂
1,1 − α̂2,1 − b̂

α) and propose the test statistic 

, where

(4)

and b̂
α and ΣQ̂ are appropriate consistent estimates for bα and ΣQ = cov(Q), respectively.

We now describe the construction of b̂
α. We first propose the following estimator for α0,

(5)

where ᾱj is the asymptotic method of moments estimator for αj, namely, ᾱj = [1+ α̂
j − γ̂

j + 

{(1+ α̂j − γ̂
j)2 − 4α̂j}1/2]/2, which is obtained by solving the equation α̂

j = αj{1+γ̂
j/(αj − 1)}. 

Here and henceforth, γ̂
j = p/nj for j = 1, 2. Substituting α0 with ᾱ0 in the expression for bα 

yields the estimate

(6)

If , then ᾱj is complex-valued, which indicates that the population covariance 

is either unspiked or has small, undetectable, spikes.

Define the 2 × 2 symmetric matrix ΣQ with diagonal elements τQαα and τQTT, respectively, 

and off-diagonal element τQαT. Theorem 2 yields the consistent estimates

(7)

(8)

We estimate τ̂
QTT using equation (10).

After we obtain Σ̂
Q, we propose to reject H0 for large values of . According to 

Theorem 2, under H0, the asymptotic joint normality of α̂
1 − α̂2 − b̂

α and T̂
1 − T̂

2 suggests 

that  in distribution. Then to the extent that  is estimated accurately, 

our test statistic  may be compared to the quantiles of a  distribution to obtain a 
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p-value. A permutation test may also be employed. Simulations in Section 5 show the 

proposed test to have accurate Type-1 error at all sample sizes when our assumptions hold, 

suggesting that accurate estimation of  is not a hurdle for the test’s performance.

3·2. Test robust to the number of spiked eigenvalues

We generally expect that genes in a pathway are jointly associated with not just one but a 

number of biological processes, which implies the existence of multiple spiked eigenvalues. 

To accommodate an unspecified number of spiked eigenvalues in the proposed test, we first 

estimate the number of spiked eigenvalues and then apply a modified expression for var(T̂
j).

To estimate Mj, the number of spiked eigenvalues in class j, we choose a threshold of 

, and with I denoting the indicator function, define

(9)

This estimator may have difficulty classifying the eigenvalues near . However, the 

treatment of such small spiked eigenvalues will not appreciably affect our estimates of 

var(T̂
j). We then use independence of T̂

1 and T̂
2 to estimate τQTT with

(10)

Some alternative methods for estimating the number of spikes, e.g. the proposal by 

Kritchman & Nadler (2008), have good power of detection and could be used instead of the 

estimator (9), but the approach detailed above does not depend on the Gaussian assumption.

We outline below the proposed procedure for testing H0 in (3), which is robust to the 

number of spiked eigenvalues.

1. Calculate the eigenvalues {α̂
j,k} and trace T̂

j of the sample covariance matrix Σ̂j (j 

= 1, 2).

2. Calculate b̂
α = (γ1̂ − γ̂

2)ᾱ0/(ᾱ0 − 1), where ᾱ0 is defined in equation (5).

3. Calculate Q according to (4).

4. Estimate ΣQ:

a. Estimate the number of spiked eigenvalues in each class according to (9); 

and then calculate τ̂
QTT according to (10).

b. Calculate θj and ρj, j = 1, 2, as defined by Theorem 2. Compute τ̂
Qαα; and 

τ̂QαT according to equation (7) and (8) respectively.
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5.
Compute the test statistic . To attain a p-value, compare its value to the 

quantiles of a  distribution. Alternatively, permute the class labels and recompute 

the test statistic many times, and compare the quantiles of the resulting statistics to 

the true .

Sometimes the first eigenvalue might be inadequate to capture variability due to pathway 

coregulation. For such occasions we could use the top M eigenvalues and test an extended 

null hypothesis H0M : (α1,1,…,α1,M,T1) = (α2,1,…,α2,M,T2); see the Supplementary Material.

4. Theoretical results

In this section, we outline theoretical results for the asymptotic behavior of (α̂1 − α̂ 2 − b̂
α) 

and (T1̂ − T̂
2) under the spiked eigenvalue setting implied by our biological model under the 

null hypothesis and assuming Gaussian data.

We first consider a single class. Denote the population eigenvalues by  and their 

sample equivalents by . We assume α1 >α2 = ··· = αp = 1. Write α1 ≡ α, α̂ 1 ≡ α̂, 

and let . In Theorem 1, we lay the groundwork for our method by 

specifying the joint asymptotic distribution of (α̂, T̂). This result is of interest beyond its 

application to the proposed test, and to our knowledge it gives the first published expression 

for the joint asymptotic distribution of α̂ and T̂.

Theorem 1

Suppose that p, n → ∞ such that n1/2|p/n − γ| → 0 where γ ∈ (0, 1). Assume α > 1+ γ1/2. Let 

ρ = α {1+ γ/(α − 1)}. Then

(11)

(12)

Here kγ(x, y) is a bounded, nonnegative function with support {(1 − γ1/2)2, (1 + γ1/2)2}× {(1 

− γ1/2)2, (1 + γ1/2)2}.

Corollary 1

Under the assumptions of Theorem 1, in distribution,
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Remark 1—The conclusions in Theorem 1 and Corollary 1 remain unchanged even if we 

replace γ by γ̂ = p/n, and α by ᾱ = (1/2) 1 + α̂ − γ̂ + {(1+ α̂ − γ̂)2 − 4α̂}1/2, which is obtained 

by solving the equation α̂ = ᾱ{1+ γ̂/(ᾱ − 1)}.

Remark 2—If α ≫ 1+ γ1/2, the contribution of the term K(ρ, γ) in the expression for σαT,n 

is asymptotically negligible. In this case, σαT,n can be replaced by

We then apply the results of Theorem 1 to the two-class case to calculate the null 

distribution of our test statistic. Specifically, under H0 in (3), without loss of generality, we 

assume that the common covariance matrix has eigenvalues α0, 1,…, 1, where 

, and γj = limnj→∞ p/nj∈ (0, 1). Under the alternative, the non-

spiked eigenvalues could take values other than 1.

Theorem 2

Suppose that p, n1,n2 → ∞ such that  where γj ∈ (0, 1), for j = 1, 2. Let 

α̂jk denote the k-th largest eigenvalue of the sample covariance matrix of class j, and 

. Let b̂
α be defined by (6). Introduce

with ;

where wj = nj/(n1 + n2), ρj = α0{1+ γj/(α0 − 1)},
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and ,

where K(ρ, γ) is as in (12). Then, in distribution,

(13)

Remark 3—In Theorem 2, we can replace γj by γ̂
j = p/nj, and α by ᾱ0 defined through (5) 

without altering the conclusions.

Remark 4—The statements of both theorems remain valid even if γj ∈ [1, ∞) for j = 1, 2, 

though the proofs change slightly. Moreover, the conclusions of Theorem 2 continue to hold 

even when γj = 0, j = 1, 2, with ρj = 0 and the terms K(ρj,γj) are absent from the expressions.

Remark 5—If αj1 → ∞, but αj1 = o(p), for j = 1, 2, both theorems hold.

Remark 6—If , the contribution of the terms K(ρj,γj)(j = 1, 2), in 

the expression for σQαT,n is asymptotically negligible. In this case, we replace σQαT,nby

This is the expression used in defining the test statistic .

Remark 7—Both the theorems can be easily extended to cases with multiple spiked 

eigenvalues. See the Supplementary Material for details.

The proof of Theorem 1 uses the asymptotic expansions of the leading sample eigenvalues 

in Paul (2007) and the behavior of linear spectral statistics of sample covariance matrices 

described in Bai & Silverstein (2010). Theorem 2 follows from this and an application of the 

delta method.

5. Simulations

In this section, we describe simulations investigating the Type-1 error and power of the 

prposed test and the tests of Schott (2007) and Srivastava & Yanagihara (2010).

We consider three different sets of covariance structures. For each set, we use the same 

baseline covariance matrix Σ1 and introduce different perturbations to generate Σ2. We 

define Σ1 according to the biological model in Section 2. To simulate data with p genes, we 

set , with  and hp×1 = {− 0.5, 1/(p − 1) − 0.5, …, (p − 2)(p − 1) − 
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0.5, 0.5}. In Σ1,  represents the variability due to pathway activities, and I represents 

the unordered, noisy component of pathway gene variance. In the first perturbation, which 

we call the added noise setting, we let Σ2 = Σ1 +0.2I, so gene expression is subject to 

broader disorder in the second class. In the second perturbation, the lost co-regulation 

setting, we simulate pathway dysregulation by letting Σ2 = 0.7Σ1 +0.3diag(Σ1) so that 

overall variability is unchanged but less well-ordered. This perturbation substantially 

decreases the first eigenvalue while leaving the trace unchanged. In real data, a change like 

this could arise from deactivation of pathway regulatory elements like transcription factors. 

In the third perturbation, the additional biological process setting, we let Σ2 = Σ1 + ggT, 

where g = {gi} is defined as gi = 0.75 for i ∈ 1,… 0.4p and gi = 0 otherwise. In this setting, 

40% of the genes in the pathway participate in a secondary biological process represented by 

the ggT component.

We consider p = 20, 50 and 100. The corresponding first eigenvalues of Σ1 under three 

different dimensions are 15.4, 22.5 and 30.8 respectively. For each p, we consider sample 

sizes n1 ∈ {20, 30, 50, 75, 100, 130} and n2 = 0.66n1. For each (p, n) and (Σ1, Σ2), we 

simulate 10,000 pairs of multivariate normal datasets and apply the proposed test as well as 

the methods of Schott (2007) and Srivastava & Yanagihara (2010) to test the differences 

between the two covariance matrices. We apply the robust version of the test described in in 

Section 3·2 for the added noise and the lost co-regulation settings, and we apply the 

multiple-spike version described in the Supplementary Material with M = 2 for the 

additional biological process setting. Under all three settings, we preprocess the data using 

the normalization scheme described in the supplementary material and derive the p-values 

according to the theoretical χ2 distributions. Additionally, we examine the tests’ Type-1 

error rates in these settings by defining Σ0 = n1/(n1 + n2)Σ1 + n2/(n1 + n2)Σ2, generating 

datasets of size n1 and n2 from Σ0, and running the tests on these null datasets.

Fig. 1 displays the results of these simulations. The first row of plots displays type-I error 

rates of the three methods. The method of Schott (2007) is conservative, the method of 

Srivastava & Yanagihara (2010) is liberal, and the proposed test has the most accurate levels 

under all settings. The second row of plots displays powers of the three tests based on 

theoretical null distributions. The proposed test outperforms the others in the added noise 

and lost co-regulation settings and is competitive in the additional biological process setting. 

In the third row of plots, instead of using theoretical approximations to determine each test 

statistic’s threshold for significance, we compute adjusted power as the percentage of test 

statistics under the alternative hypothesis exceeding the 0.05 quantile of the empirical null 

distribution of the test statistics. In this way, the type-I errors of all tests are perfectly 

controlled at 0.05, so the power comparison is more fair and direct. The proposed test easily 

outperforms the other two in term of adjusted power under all settings and all n, p 

combinations.

The proposed test nearly dominates the methods of Schott (2007) and Srivastava & 

Yanagihara (2010) in these simulations. In other simulations, we found that the methods of 

Schott (2007) and Srivastava & Yanagihara (2010) perform well in cases where single 

elements of the covariance matrix differ substantially between classes. However, changes in 

the biological quantities we are interested in will most often manifest as widespread, small 
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differences in the covariance matrix, a setting which these earlier methods are not optimized 

to detect.

We also evaluate the effects of various departures from model (1) on the performance of the 

proposed test through simulations. Specifically, we consider the effects of variability in the 

unspiked eigenvalues, unequal error variances, non-normality of the data and multiple 

spiked eigenvalues. We find that the proposed test is robust to all these departures except for 

non-normality of the data. Thus we recommend the permutation test in highly kurtotic data.

6. Application to a breast cancer dataset

We apply the proposed test to a breast cancer gene expression dataset (Loi et al., 2007), 

which has microarray measurements on breast tumor samples from 277 patients treated with 

tamoxifen and 137 untreated patients. The interest is to identify different regulation patterns 

between patients with or without tamoxifen treatment. We normalized all observations to 

have equal median and median absolute deviance. Outliers can drive the first eigenvalue of a 

dataset, destroying its interpretation under our biological model. We therefore truncated 

each gene’s data in each class at four standard deviations from its mean. This rule truncated 

6.4% of the data.

Curated databases of gene relationships like KEGG (Kanehisa & Goto, 2000), Reactome 

(Matthews et al., 2009), and Biocarta (Nishimura, 2001) often build pathways from genes 

involved in distantly related biological processes. Consequently, these curated pathways 

tend to be subject to complex co-regulation better described with network estimation tools 

(Peng et al., 2009; Danaher et al., 2014) than with this paper’s biological model. In lieu of 

KEGG pathways, we sought sets of genes that could be expected to exhibit the tight co-

regulation implied by our model. Cheng et al. (2013a) identified attractor metagenes, sets of 

genes that tended to cluster together across multiple breast cancer gene expression datasets. 

We expected that genes clustered together across datasets would often share a biological 

function, and examination of Cheng et al. (2013a)’s metagenes confirmed this hypothesis. 

For example, the ID55 metagene contains exclusively histone genes; and the ID88 metagene 

contains several genes from the cytochrome P450 family, and, intriguingly, ESR1, one of 

the most-studied genes in breast cancer. The biological relevance of these attractor 

metagenes was further demonstrated by Cheng et al. (2013b), who used attractor metagenes 

to inform a successful breast cancer prognostic algorithm. Given their biological meaning 

and apparent consistency with our biological model, we took these metagenes as the basic 

units of our analysis, and we ran our method and a traditional gene set analysis (Efron & 

Tibshirani, 2007) on every metagene with more than 5 genes.

Table 1 displays selected results; the Supplementary Material has complete results. A 

2.67GHz laptop took 11 minutes to compute p-values for the 24 metagenes analyzed using 

10000 permutations. The proposed biological model and test revealed a rich picture of 

changes in co-expression far beyond what traditional Gene Set Analysis provided. The ID88 

metagene has higher total variance but a lower first eigenvalue under tamoxifen. This 

pattern of increased noise and decreased variability due to pathway activity strongly 

suggests pathway dysregulation. The histone metagene, ID55, saw increases in both overall 
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variability and its first eigenvalue under tamoxifen, suggesting more dynamic histone 

activity levels in the tamoxifen group. Histones are central to cancer proliferation; this result 

could be explained by patients heterogeneously responding to the drug. The mesenchymal 

transition attractor metagene followed a similar pattern, with increased variability under 

tamoxifen almost entirely due to an increased first eigenvalue.

The p-values returned by the χ2 approximation and the permutation test generally tracked 

each other, with a Spearman correlation between them of 0.88. However, the permutation 

test returned uniformly higher p-values than the purely theoretical test, and one metagene, 

ID79, showed a markedly increased p-value under the permutation test. The liberal χ2 p-

values appear to be driven by excessively kurtotic data, and they suggest the use of the 

permutation test over the χ2 approximation in highly kurtotic data.

7. Discussion

The proposed test is a powerful complement to traditional, marginal effects-based analyses 

like gene set analysis or tests comparing overall pathway activity levels. Given the high 

dimensionality and complex behavior of biological pathways, it seems appropriate to apply 

analyses focused on varied aspects of pathway behavior. A complete analysis of a pathway 

would include a summary of single-gene behavior, a comparison of overall pathway activity 

levels between disease states (Lee et al., 2008), a test for changes in covariance structure 

like the method proposed here, and ideally several other analyses yet to be discovered.

While the proposed test is motivated from the biological model (1), it can be applied to the 

broad class of pathways for which the first eigenvalue is spiked and reflects variability due 

to heterogeneous pathway activity levels. Nevertheless, not every gene set adheres to these 

assumptions. For example, many of the larger KEGG pathways contain genes too distally 

related to show discernible co-regulation. Our test is better applied to gene sets very likely to 

experience co-regulation, for example more narrowly-defined KEGG pathways and data-

derived gene sets like the attractor metagenes of Cheng et al. (2013a) and the cancer 

signatures of Wolf et al. (2014). These data-derived gene sets are often highly biologically 

interpretable, and they have been shown to predict patient outcomes (Cheng et al., 2013b; 

Clarke et al., 2013; Wolf et al., 2014). It is possible to check a gene set’s suitability for 

analysis with the proposed test by comparing the prominence of its first eigenvalue (α̂/T̂) to 

the α̂/T̂ of random gene sets. Various biological and technical variables will induce 

eigenstructure in sets of unrelated genes. If a gene set’s first eigenvalue is more prominent 

than seen in random gene sets, the gene set is likely experiencing co-regulation. When the 

values of these technical, e.g. regent lot, or biological, e.g. cancer subtype, variables are 

known, it is possible to scrub their influence from the data by regressing each gene on these 

variables and performing the proposed test on the residuals.

A useful extension of this work would be the development of tests for differences in more 

targeted quantities than the somewhat broad (α̂, T̂). For example, a test for changes in (T̂ − 

α̂) could be considered to directly look for increased dysregulation, or non-co-regulated 

variability, between classes. The asymptotic normality of T̂ and α̂ would make these tests 

simple to derive.
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An approach to this problem rooted in factor analysis could also be productive, although the 

factor analysis literature lacks the results for high-dimensional data that enabled our 

approach.

SETPath, an R package implementing the test, is on CRAN (R Core Team, 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Performance of the proposed test (black lines), the method of Schott (2007) (dark grey lines) 

and the method of Srivastava & Yanagihara (2010) (light grey lines). Solid, dashed and 

dashed/dotted lines display results under p = 20, 50 and 100, respectively.
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