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Abstract

Integrating Demand Flexibility in Power System Markets

by

Deepan Raj Prabakar Muthirayan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Retail Demand Response (DR) serves to reduce the demand for electricity especially during
times when supply is scarce or expensive. The program entails calling the recruited consumers
to reduce their energy consumption from an established baseline. Baseline is an estimate
of the counterfacutual against which load reductions are measured to determine payments
to consumers. This creates an incentive for consumers to inflate their baseline so that their
payments are inflated. This is not fictitious. There have been reported cases where consumers
have inflated their baseline to increase their payments. To address this, we propose a novel self-
reported baseline mechanism. That is the consumers report their baseline and their marginal
utility to an aggregator who manages the DR program. Based on the reports, the aggregator
selects a set of consumers for each DR event to meet the load reduction requirement. The
consumers are then paid based on the measured reductions from their baseline report. The
mechanism is specified by the design of rewards and penalties for consumption deviation from
the reported baseline. For a particular design choice, we show that reporting true baseline
consumption and marginal utility is incentive compatible and individually rational. Also,
the proposed mechanism meets the load reduction requirement and the allocation/selection
is nearly efficient. We then compare the self-reported baseline mechanism with the current
mechanisms used to estimate baseline like the CAISO’s (California Independent System
Operator) m/m method and show that the self-reported mechanism is either reliable or more
efficient.

We also show how to integrate retail DR in to electricity markets. Electricity scheduling
in US typically operates as a two settlement system, a day-ahead market (DAM) for bulk
power scheduling and a real-time market (RTM) for supply-demand balancing. Under the
two market system, demand response (DR) can be used as intermediate recourse, which has
several benefits from efficiency and operational perspective. We show that an intermediate
market for DR an be created. This enables the Load Serving Entity (LSE) to exploit the
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improved forecast available at the intermediate time (as compared with the day-ahead)
thus improving overall efficiency and gives the aggregator enough lead time for organizing
and delivering the load curtailment. We analyze this intermediate market, characterize the
equilibrium and study the efficiency properties.

In the thrid chapter, we provide an algorithm for Wholesale DR programs that maximizes
the benefit that the SO derives from deploying the DR resources. To emphasize the efficiency
of the proposed mechanism we compare it with current methods used for baseline calculation
like CAISO’s m/m method. We show that the proposed mechanism achieves better efficiency
when compared to m/m method especially when the variability in consumption is high. Here
we do not concern ourselves with the transient aspect of the wholesale DR algorithm.

In the final chapter, we provide a baseline algorithm for transient performance. For this, we
consider a repeated setting where the DR events repeat. In such a setting it is not sufficient
that the optimal price is attained at steady state, becuase the transient losses have to be
taken in to account. In the full information setting it is trivial to define the optimal pricing
policy. In the incomplete information setting, one has to consider the trade-off between
learning the consumer behavior and maximizing the savings based on the learnt information.
Here we propose a pricing policy that achieves sub-linear regret.
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Chapter 1

Introduction

The core problem in power systems operations is to maintain a fine balance of electricity
supply and demand. Achieving balance in electricity systems given its operational constraint
is a demanding proposition. Also this has to be done economically. For example, consider a
hot summer afternoon where the supply of additional electric power is scarce and expensive.
At these times, it is more cost-effective alternative to reduce demand than to increase supply
to maintain power balance. Because increasing supply would entail deploying very expensive
generators.

Demand Response (DR) programs [1] are widely used tools to reduce the demand for electricity
in such scenarios. It is widely believed that DR can improve system efficiency and reliability.
The 2005 Energy Policy Act provides the Congressional mandate to promote demand response
in organized wholesale electricity markets. With increased renewable integration, DR promises
to be a better alternative than other expensive and polluting reserves to address the variability
in renewable generation. The FERC order 745 [12] met this mandate by prescribing that
demand response resource owners should be allowed to offer their demand reduction as if
it were a supply resource rather than a bid to reduce demand so that the market operates
justly. Dynamic pricing [39] can ideally achieve the desired market efficient outcomes. But
state regulatory hurdles hinders its implementation [4]. Constant retail price is still widely
used and is believed to protect consumers from price volatility. Also, dynamic pricing has
limitations when it comes to implementation requiring Advanced Metering Infrastructure
(AMI) [33]. Alternatively the operator could use Incentive-based DR programs or Demand
Reduction programs.

Incentive-based DR schemes require an established baseline against which consumer’s load
reduction will be measured. The baseline is an estimate of the consumption of the consumer
had the consumer not been participating in the DR program. Hence it is a counter-factual
and requires estimation. The current methods for baseline estimation can be broadly classified
as: i) averaging methods, which use some linear combination of hourly load values from
previous days to predict the load on the event day, and ii) explicit weather models [14]. In its
current scheme, the California Independent System Operator (CAISO) uses the mean of the
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consumption on the ten most recent non-event days as the baseline estimate. The CAISO
method also uses a morning adjustment factor to account for any variability in consumption
pattern during the day of the DR event from the past. Authors in [14, 6, 9, 27] provide a
comparative study of different methods for estimating baseline. Baseline estimation schemes
have several concerns. One is that consumers have an incentive to artificially inflate their
baseline to increase their profits [5, 49, 7]. There are celebrated cases where the participants
artificially inflated their baseline for increasing payments [40]. Also, there is a problem of
under payment and over payment because of inaccurate baseline. This can lead to inadequate
demand response from the consumers.

Wolak et al. [49] provide a case study of critical peak pricing (CPP) experiment involving
residential customers of the City of Anaheim Public Utilities (APU) over the period June 1,
2005 to October 14, 2005. They conclude that vast majority of reductions that were paid
for, would have occurred anyway without the payments. They suggest that the incentives to
increase the consumption at similar times during non-CPP days could have been a possible
cause for the observed effect.

In chapter 2, we propose a baseline mechanism for the retail market. We approach baseline
reporting as a mechanism design problem from the perspective of the demand response
aggregator. Consumers self-report their estimated baseline consumption and marginal utility
to the aggregator. The objective of the aggregator is to design an incentive mechanism such
that (a) each consumer reports their true baseline and true marginal utility, (b) meet any
(random) load reduction requirement by effective scheduling, and (c) scheduling is efficient.

We propose a mechanism where reporting the true baseline consumption and marginal utility
is a dominant strategy for each consumer. We also show that each consumer sticks to
their baseline consumption when she is not called for DR and reduces maximum possible
load when she is called for DR. Also, the aggregator can ensure adequate response to
meet the load reduction requirement. The proposed mechanism is also nearly efficient
since it selects consumers with the smallest marginal utilities where each selected consumer
contributes the maximum possible load reduction. We also propose a second mechanism with
a uniform payment scheme. In this second mechanism, under some assumptions, we show
that truthful reporting of baseline consumption and marginal utility is a Nash equilibrium.
Using simulations, we argue that such a Nash equilibrium is an expected outcome when the
number of consumers is very large.

In the next chapter we show how retail DR programs can be integrated in to electricity
markets. Electricity scheduling in US typically operates as a two settlement system, a
day-ahead market (DAM) for bulk power scheduling and a real-time market (RTM) for
supply-demand balancing. Under the two market system, demand response (DR) can be used
as intermediate recourse, which has several benefits from both efficiency and operation point
of view. To elaborate on this, the Load Serving Entity (LSE) can signal the aggregator for
load reduction at one of the three possible time instants - (i) the Day Ahead Market (DAM),
(ii) the Real Time Market or (iii) at an intermediate time which is between the DAM or
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RTM. The LSE will have benefit less from requesting load curtailment one day in advance
because it will require more accurate forecasts about the random renewables and the prices to
determine the optimal amount of required load curtailment. So, from the LSE point of view
it is best to signal for load curtailment closer to the RTM. However, the aggregator typically
needs some lead time to organize the demand flexibility and to achieve a given load reduction
reliably. This is because the cost for achieving a given reduction reliably can be considerably
high especially when the consumers are informed in short notice. From reliability and cost
point of view, it is better to request load reduction at an intermediate time. So we consider
a setting where the LSE requests load curtailment from the aggregator at an intermediate
time, between the DAM and the RTM. Here, we show that an intermediate market for DR
can be created. As mentioned before, this has the twin advantages of a better forecast and
gives the aggregator enough lead time for delivering the load curtailment reliably. This DR
market is analyzed, its equilibrium and the efficiency properties are characterized.

In chapter 4, we propose a self-reported DR scheme for residential consumers that integrates
DR resources into the wholesale markets efficiently. In this scheme the consumers are required
to self-report their baseline and are paid at a pre-determined price level for every unit of
reduction they provide. The price is set such that the SO’s benefit is maximized when the
recruited DR resources are deployed. We then compare the self-reported DR mechanisms
with the CAISO’s averaging method for estimating baseline. We show that the self-reported
baseline DR mechanism establishes a better estimate of the mean baseline in scenarios where
there is high variability in consumption. And in scenarios where there is low variability, both
methods establish a similar baseline estimate. Because the payments are proportional to the
baseline estimae, overall the self-reported DR mechanism is cost-effective.

The wholesale market mechanism proposed in chapter 4 achieves optimality in steady state.
But in a repeated setting the transient losses also needs to be taken in to account. In the final
chapter 5, we provide a baseline algorithm for transient performance. For this, we consider a
repeated setting where the DR events repeat. In such a setting it is not sufficient that the
optimal price is attained at steady state, becuase the transient losses have to be taken in to
account. In the full information setting it is trivial to define the optimal pricing policy. In
the incomplete information setting, one has to consider the trade-off between learning the
consumer behavior and maximizing the savings based on the learnt information. Here we
propose a pricing policy that achieves sub-linear regret.
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Chapter 2

Baseline Mechanism for Retail Market

We motivated the design of retail DR programs in the previous chapter. In Retail Demand
Response (DR) programs, there is an aggregator who recruits and manages residential or
industrial customers who are willing to reduce their electricity consumption at times when
they are called to do so. These could be times of peak load where the load curtailment is
a better alternative to balance the grid. The aggregator role is to serve as an intermediary
by representing these flexible consumers to the system operator (SO). The SO pays the
aggregator a capacity payment for the resources it acquires to provide the necessary load
reduction at short notice. And when the consumer responds with the required load reduction
the aggregator pays the customers it represents for their flexibility.

Though most DR programs cater to peak shaving applications, it is recognized that demand
flexibility can offer more lucrative ancillary services such as frequency regulation or load-
following. Hence demand flexibility can be used to compensate the variability of renewable
generation thereby balancing supply and demand without polluting or consuming more
resources. This is recognized and encouraged by the Federal Energy Regulatory Commission
through its Order 745, which mandates that demand response be compensated on par with
the conventional generation that supplies grid power. In this work, however, we are concerned
only with peak shaving DR applications.

There are three key components of any DR program that need to be designed: (a) a baseline
against which load reduction is measured, (b) the payment scheme to recruited customers for
the load reduction they provide, and (c) various contractual clauses which specifies limits on
the frequency of DR events or penalties for nonconforming customers. Typically, historical
averages of consumption on similar days (by the consumer, or by a peer group of similar
consumers) are used as baseline estimate. However, there are several reported cases where
consumers artificially inflated their baseline for generating more payment [40]. Incorrect
baselines result in under or over-payment. Under payments affect consumer participation and
over payments affect the efficiency of these programs. Neither are desirable. Apart from this
adverse effect one needs to worry about the fairness aspect of the payments. A customer who
happens to be on vacation during a DR event receives a payment for load reduction without
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suffering any hardship faced by other customers who actually curtail their consumption.

Traditionally DR programs reward customers for load reduction during peak consumption
periods. It is widely agreed upon that consumers have an incentive to artificially inflate their
baseline to increase their profits [5], [7], [4], [49]. These incentives persist even when the
probability of occurrence of the DR event is low [7]. Alternative payment mechanisms that
avoid resulting inefficiencies are offered in [7], but these do not explicitly address baseline
inflation concerns. Adverse selection and double payment effects are two other issues that
arise as a result of rewarding consumers based on load reduction from estimated baselines [5].
Addressing these gaming issues while ensuring fairness to participating consumers is essential
to encourage and sustain wider use of DR programs.

Related Work: Chen et al. [10], consider penalties when the consumer deviates from the
baseline. The authors propose a two-stages game for DR. It is shown that the penalty (linear
in deviations) induces users to report their true baseline assuming knowledge of consumer’s
utility function. The aggregator realizes its DR objective by tuning the retail price. In [42],
assuming fixed costs for DR participation and linear costs for deviating from a known baseline,
a centralized DR scheduling algorithm is proposed guaranteeing incentive compatibility in the
case of two participants. A DR market assuming known baselines is proposed in [37, 36] where
the objective is to maximize a social benefit function in the DR market. The approaches in
[10], [42], [37] and [36] either assume knowledge of utility function or baselines.

The authors in [10] propose a two-stage game for DR. It is shown that the penalty (linear
in deviations) induces users to bid their true demand. If the SO knows the utility function
of customers it can choose a retail price to tune demand. In [42] assuming fixed costs for
DR participation and linear costs for deviating from baseline (known), a central dispatch
algorithm is proposed guaranteeing incentive compatibility in the case of two participants.
A DR market assuming known baselines is proposed in [37, 36] where the objective is to
maximize a social benefit function of the DR market. In all the above works either the
baseline or the utility of the consumer is assumed to be known. In our current work we do
not assume that the aggregator has knowledge of either of the variables

We approach retail DR problem as a mechanism design problem from the perspective of the
demand response aggregator. Consumers self-report their estimated baseline consumption and
marginal utility to the aggregator. The objective of the aggregator is to design an incentive
mechanism such that (a) each consumer reports their true baseline and true marginal utility,
(b) meet any (random) load reduction requirement by effective scheduling, and (c) scheduling
is efficient.

We propose a mechanism where reporting the true baseline consumption and marginal utility
is a dominant strategy for each consumer. We also show that each consumer sticks to
their baseline consumption when she is not called for DR and reduces maximum possible
load when she is called for DR. Also, the aggregator can ensure adequate response to
meet the load reduction requirement. The proposed mechanism is also nearly efficient
since it selects consumers with the smallest marginal utilities where each selected consumer
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contributes the maximum possible load reduction. We also propose a second mechanism with
a uniform payment scheme. In this second mechanism, under some assumptions, we show
that truthful reporting of baseline consumption and marginal utility is a Nash equilibrium.
Using simulations, we argue that such a Nash equilibrium is an expected outcome when the
number of consumers is very large.

2.1 Model and Problem Formulation

We consider a setting where the baseline-based DR program is managed by a single aggregator
with N participating consumers. The aggregator’s role is to manage the DR program for these
consumers - enrolling them for the DR program, sending signals whenever a load reduction is
required, and giving rewards for participating in the program.

Consumer Model: Let uk(qk) be the utility of consumer k derived by consuming qk units of
energy. We assume that u(·) has the following form.

uk(qk) =

{
πkqk if qk < bk
πkbk if qk ≥ bk

(2.1)

Here bk is the maximum energy requirement of consumer k. Any additional consumption
will not increase her utility. We call πk the true marginal utility of consumer k. We assume
that πk ≤ πmax,∀k. Let πe be the retail price for unit energy. Then the net utility Uk(·) of
consumer k is given by,

Uk(qk) =

{
πkqk − πeqk if qk < bk
πkbk − πeqk if qk ≥ bk

(2.2)

We assume that πk > πe,∀k. The optimal consumption for consumer k which maximizes
her net utility is clearly bk. We call this the true baseline consumption of consumer k. We
formulate baseline reporting and subsequent load reduction as a two stage mechanism.

Stage 1 (Reporting): At the beginning of stage 1, aggregator announces a selection procedure
and a reward function R(·, ·, ·) for consumers who are selected to reduce load. Aggregator
also announces a penalty function Φ(·, ·, ·) for consumers who deviate from their reported
baseline. Depending on the selection procedure, the reward R(·, ·, ·) and the penalty Φ(·, ·, ·),
each consumer k reports two parameters, the baseline consumption b̂k and marginal utility
π̂k. Consumers can potentially give incorrect reports, i.e., b̂k and π̂k need not be equal to bk
and πk respectively.

Stage 2 (Load reduction and Payment): A DR event occurs where the aggregator has to collate
a total load reduction of D units. We assume that D is random, and only the aggregator
knows the value of D. This is reasonable considering the fact that a DR event and the extent
of supply deficit is an exogenous event and is not observed by the consumer. Aggregator
selects a set of consumers, depending on their reports (b̂k, π̂k), to meet the total reduction
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Table 2.1: Notations - Retail Market

bk Baseline consumption of consumer k
qk Energy consumption of consumer k
πk Marginal utility of consumer k
uk Utility of consumer k
πe Retail price of energy
Uk Net utility of consumer k

R(·, ·, ·) Reward function for load reduction
Φ(·, ·, ·) Penalty function for deviation from baseline
πrk Reward/kWh awarded to consumer k
πpk Penalty/kWh imposed on consumer k

b̂k Baseline report of consumer k
π̂k Marginal utility report of consumer k
D Load reduction requirement

D and sends a load reduction signal to each of these selected consumers. If consumer k is
selected, it gets a reward R(qk, b̂k, π̂k) when consuming qk. Every consumer k gets a penalty
Φ(qk, b̂k, π̂k) if the consumption qk is different from the reported baseline b̂k.

We assume that the net load reduction requirement D is independent of the reports of
the consumers. Even though, only the aggregator observes the actual realization of D, we
assume that the distribution D is a common information, i.e., it is known to the aggregator
and all consumers. In particular, each consumer knows the probability of a DR event, i.e.,
α = P(D > 0).

Consumer’s problem: We assume that the consumers are non-cooperative. In particular, each
consumer faces a two stage decision problem. In the first stage, it has to decide the value of
the reports, i.e. b̂k and π̂k. In the second stage it has to decide on the energy consumption qk.
The value of qk will depend on the consumer k being called for DR or not. The objective of
each consumer is to maximize her expected benefit, Jk. Consumer k’s two-stage optimization
problem can be formulated as

(CP ) max
b̂k,π̂k

Jk(b̂k, π̂k), where,

Jk(b̂k, π̂k) = E
D,b̂−k,π̂−k

[
max
qk

(Uk(qk) +R(·, ·, ·)− Φ(·, ·, ·))
]

(2.3)

Here b̂−k = (b̂1, . . . , b̂k−1, b̂k+1, b̂N) and π̂−k = (π̂1, . . . , π̂k−1, π̂k+1, π̂N).
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2.2 Self-Reported Baseline Mechanism

Here we introduce the Self-Reported Baseline Mechanism (SRBM). In the first stage, (each)
consumer k reports her baseline consumption b̂k and marginal utility π̂k to the aggregator.
Aggregator reorders the consumers in increasing order of their marginal utility. Formally, the
aggregator forms the vectors B̂ and Π̂ such that

B̂ = (b̂1, . . . , b̂N), Π̂ = (π̂1, . . . , π̂N), π̂j ≤ π̂j+1, ∀j. (2.4)

In the second stage, aggregator observes the net load reduction requirement D. Then, the
aggregator selects the first k∗(D) consumers (in the increasing order of their marginal utility)
such that

k∗(D)−1∑
j=1

b̂j < D ≤
k∗(D)∑
j=1

b̂j (2.5)

If b̂j is the true baseline ∀j and consumers reduce their load by the maximum possible amount,
this selection process would meet the load reduction requirement.

From now on we shorten the notation to k∗ instead of k∗(D). Also, let S(D) = {1, . . . , k∗}
be the set of selected consumers. Aggregator then sends DR signal to every consumer in the
set S(D). Note that not all consumers are selected at each time. The number of selected
consumers depends on D. Aggregator then observes the consumption qk of all consumers.

Let S−k(D) be the set of consumers who would be selected by the aggregator according to
(2.5), if consumer k is not participating in the DR program. Let

πrk(D) = max{π̂j} − πe , j ∈ S−k(D). (2.6)

The reward function for consumer k is then defined as,

R(qk, b̂k, π̂k) =

{
πrk(D) (b̂k − qk)+ if k is selected

0 otherwise
(2.7)

Clearly, consumer k gets a reward for load reduction only if it is selected. The consumer
reward is proportional to the measured load reduction (b̂k − qk)+. In the following, we denote
πrk(D) simply as πrk making the dependence on D implicit.

The aggregator also imposes a penalty if the consumption qk of consumer k is different from
her reported baseline consumption b̂k. We define the penalty function as

Φ(qk, b̂k, π̂k) =

{
πrk (qk − b̂k)+ if k is selected

π̂k |(qk − b̂k)| otherwise
(2.8)

Clearly, no penalty for decreasing the load when the consumer is selected for DR. However,
we impose a penalty for positive and negative deviation from the reported baseline when
consumers are not selected for DR.
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Let Jk(qk; b̂k, π̂k) be the ex-post benefit of consumer k given the first stage reports b̂k and
π̂k and the second stage consumption qk. Then using (2.7) and (2.8) the ex-post benefit, a
consumer receives when selected for DR can be written as,

Jk(qk; b̂k, π̂k|k is selected) = πk min{qk, bk} − πeqk
+ πrk(b̂k − qk). (2.9)

The ex-post benefit when the consumer is not selected for DR can be written as,

Jk(qk; b̂k, π̂k|k is not selected) = πk min{qk, bk}
− πeqk − π̂k|qk − b̂k|. (2.10)

We now specify the SRB mechanism formally, from the perspective of the aggregator.

1. Receive reports b̂js and π̂js from all consumers

2. Observe the net load reduction requirement D

3. Select S(D) consumers as specified by (2.5)

4. Observe consumption qj of every consumer j

5. Award the payment and impose the penalty as specified by (2.7)-(2.8)

Algorithm 1: (Self-Reported Baseline Mechanism (SRBM)) - Retail Market

Before characterizing the equilibrium outcome under the SRB mechanism, we first formally
define the following notions.

Definition 1 (Dominant strategy). Let Jk((b̂k, π̂k); (b̂−k, π̂−k)) be the expected net benefit of
consumer k when she reports (b̂k, π̂k) and other consumers report (b̂−k, π̂−k). The pair (b̂∗k, π̂

∗
k)

is a dominant strategy report for consumer k if (b̂∗k, π̂
∗
k) = arg maxb̂k,π̂k Jk((b̂k, π̂k); (b̂−k, π̂−k)),

for any report (b̂−k, π̂−k) from other consumers.

We make the following assumption on the probability a DR event.

Assumption 1. Let α = P(D > 0) be the probability of a DR event. Then, απmax < (1−α)πe.

This is a mild assumption when the frequency of DR events is small, which is indeed the
case in the current DR programs. We now give the main result which establishes that the
proposed mechanism achieves the desired properties.
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Theorem 1. In the SRB mechanism, under Assumption 1,
(i) Reporting baseline and marginal utility truthfully is a dominant strategy i.e. (b̂∗k, π̂

∗
k) =

(bk, πk)
(ii) When consumer k is not selected for DR, her optimal consumption is the same as the
reported baseline consumption, i.e. qk = b̂k
(iii) When consumer k is selected for DR, her optimal consumption is zero, i.e. qk = 0

Proof is given in the appendix.

Remark 1. Note that under SRBM, each consumer reports its true baseline and sticks to its
baseline consumption when it is not selected for DR. Hence the reduction that is measured
from the reported baseline is indeed the true load reduction. Also, the selection process (2.5)
meets the load reduction requirement because the consumers reduce their consumption to
zero when selected. Note that, consumers reducing their consumption to zero is an artifact of
the piece-wise linear utility function model.

Remark 2. From a social welfare point, neglecting the payment/penalty transactions, the
selection process is also nearly efficient because it selects consumers with the smallest marginal
utilities, where each selected consumer contributes the maximum possible load reduction.
Hence the total disutility (−∑k uk(·)) is minimized. However it is not clear if it is the best
mechanism from the perceptive of the aggregator: i.e., minimize the total payment to the
consumers while (i) eliciting truthful reports from the consumers and (ii) achieving required
load reduction.

Remark 3. Here we assumed that the true baseline consumption bk is deterministic. However,
bk depends on (exogenous) random parameters like temperature. For example, a possible
model can be bk = bk + ak|θ − θ0| where θ is the temperature and θ0 is the nominal
temperature. Here the consumers can report two parameters, bk and the temperature
sensitivity ak. Historical consumption data can be used to estimate these parameters. SRB
mechanism can also be extended to such cases.

Remark 4. Clearly, the results depends on the form of the utility function; in particular, the
deterministic and the piece-wise linear assumption on utility function uk(·). This can be
considered as the first step approximation, where such a self-reported baseline mechanism
achieves desirable properties.

2.3 Uniform Payment Mechanisms

In the SRB mechanism the reward rate πrk is different for different consumers. In this section,
we introduce a uniform payment mechanism for the baselining problem. We show that under
certain conditions, this mechanism achieves the desired properties.

Mechanism: In the beginning of the first stage, consumer k submits her baseline consumption
b̂k and marginal utility report π̂k to the aggregator. As in the previous mechanism, the
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aggregator reorders the consumers in increasing order of their reported marginal utility.
Formally the aggregator forms the vectors B̂ and Π̂ where

B̂ = {b̂1, . . . , b̂N}, Π̂ = (π̂1, . . . , π̂N) such that π̂j ≤ π̂j+1, ∀j (2.11)

In the second stage the aggregator receives the load reduction requirement D. The aggregator
then selects the first k∗ = k∗(D) consumers such that

k∗(D)−1∑
k=1

b̂k < D ≤
k∗(D)∑
k=1

b̂k (2.12)

The consumers who are selected are paid according to,

πr(D) = π̂(k∗(D)+1) − πe, (2.13)

while others are paid zero. Then the reward function is given by,

R(qk, b̂k, π̂k) =

{
πr(D)(b̂k − qk)+ if k is selected

0 otherwise
(2.14)

The penalties are set as,

Φ(qk, b̂k, π̂k) =

{
πmax(qk − b̂k)+ if k is selected

πmax|(qk − b̂k)| otherwise
(2.15)

In the following theorem, we show that reporting marginal utility and baseline truthfully is a
Nash equilibrium strategy. Also we show that the consumer provides maximum possible load
reduction when signaled to reduce. We define the Nash equilibrium concept below.

Definition 2 (Nash equilibrium). Let Jk((π̂k, b̂k), (π̂−k, b̂−k)) be the expected benefit of con-
sumer k when she reports (π̂k, b̂k) and other consumers report (π̂−k, b̂−k). Then (π̂∗, b̂∗) =
((π̂∗1, b̂

∗
1), . . . , (π̂∗N , b̂

∗
N )) is a Nash equilibrium if Jk((π̂k, b̂k), (π̂

∗
−k, b̂

∗
−k)) ≤ Jk((π̂

∗
k, b̂
∗
k), (π̂

∗
−k, b̂

∗
−k))

We need the following assumption. In the next subsection, we also argue that this assumption
is not really necessary when the number of consumers is very large.

Assumption 2. Let {πk, bk} be the marginal utility and baseline consumption of consumers.
If πj ≤ πk, then bj ≤ bk, ∀j, k.

Theorem 2. Under Assumption 2, with the condition that πmax < (1 − α) min{πk −
πe, πe}/α ∀ k, reporting the baseline and marginal utility truthfully is a Nash equilibrium of
mechanism SRBM-UP. Under this Nash-Equilibrium strategy,
(i) When consumer k is not selected for DR, consumer k consumes the reported baseline i.e.
qk = b̂k
(ii) When consumer k is selected for DR, consumer reduces load consumption to zero i.e.
qk = 0

Proof and a detailed explanation is given in appendix.
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2.3.1 Simulations

In Section 2.3 we proved that reporting truthfully is a Nash equilibrium under Assumption
2. However this assumption may not be necessary when the number of consumers are very
large, which we argue by simulation. More specifically, simulation experiments suggest that
the fraction of consumers who give incorrect reports approaches zero as the total number of
consumers increases.

Given the number of consumers N , we generate each consumer’s baseline consumption bk
and marginal utility πk uniformly at random. We assume bk ∼ U [0, 1] and πk ∼ U [0, 1].
Let Q = (b1, . . . , bN) and Π = (π1, . . . , πN). Also, we assume that the net load reduction
requirement P(D|D > 0) ∼ U [0, 50]. Simulation procedure is as follows:
(i) For a given N generate Q and Π as specified above.
(ii) In [35] we show that reporting baseline truthfully is a dominant strategy. Hence, we set
b̂k = bk as the optimal baseline report of consumer k. Then we compute the optimal report
π̂k by numerically solving the consumer problem (4.4) assuming that other consumers report
truthfully. While solving, we assume that consumer k knows both Q and Π perfectly. So,
the deviation δk = π̂k − πk is in a way the worst case deviation because π̂k is computed with
perfect information, which is not available to consumer k in the original setting.
(iii) Compute the cdf of the vector of deviations ∆ = (δ1, . . . , δN).
(iv) Repeat this for different realizations of Q and Π. Plot the averaged cdf.

We repeat the above procedure for different values of N . Figure 2.1 shows that as N increases,
the cdf approaches a step function. So, the fraction of consumers who deviate from truthful
reporting decreases to zero as N increases. This extends the scope of uniform payment
mechanisms to more general conditions provided the number of consumers is large.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Deviation (δ)

C
D

F

 

 

10 Consumers

40 Consumers

80 Consumers

120 Consumers

Figure 2.1: CDF of deviations from the truthful reporting (δ)
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2.3.2 Illustrative Example

We give an example for SRBM and SRBM-UP based demand response.

Example 1 : Consider the setting: N = 3, π1 = 1, π2 = 2, π3 = 3, b1 = 3, b2 = 1 and b3 = 2. To
keep this simple, assume that πe = 0.
(i) SRBM: Reporting truthfully is a dominant strategy for all consumers. Let the realized load
reduction be D = 3 (and assume P(D ≤ 3) ≤ α). By the selection process (2.5) consumer
1 will be selected, that is k∗ = 1 and Ŝ−1 = {2, 3}. Then the reward for unit reduction
offered to consumer 1 is πr1 = max{π2, π3} − πe = 3. Because πr1 > π1 consumer 1 will reduce
consumption to zero i.e. q1 = 0 and is paid P = πr1b1 = 9.
(ii) SRBM-UP: We now solve for the payments under SRBM-UP if the consumers report
truthfully. Here too k∗ = 1 and hence πr = πk∗+1 = π2 = 2. Hence consumer 1 reduces on
being selected and is paid P = πrb1 = 6. Note that this is less than what the aggregator
pays using SRBM. However, we can construct other example where the total payment by
the aggregator is more in SRBM-UP as compared to SRBM. In this section we provide an
illustrative example. Using SRBM-UP, the aggregator cannot always expect the payment to
equal the payment that would result from consumers reporting truthfully. Such intractability
could be avoided by choosing a very large price for unit reduction, but that would result in a
large payment and the aggregator could instead use SRBM. On the other hand in scenarios
where the consumers report truthfully SRBM-UP is more effective in terms of the total
payment. We explain this using examples. Next we provide an example where SRBM-UP
performs better in terms of the total payment. In this example, we assume consumers report
truthfully under SRBM-UP.

In the following example we show that SRBM achieves the same level of load reduction with
a lesser payment in comparison to SRBM-UP.
Example 2 : For the same setting consider the scenario where the true marginal utility of
consumer 1 and consumer 3 is common knowledge. First we show that it is profitable for
consumer 2 to under report it’s marginal utility under SRBM-UP and then compare the
total payment with that of SRBM. Let the realized load reduction be D = 3 (and assume
P(D ≤ 3) ≤ α). If consumer 2 reports truthfully then by Mechanism SRBM-UP, k∗ = 1 and
πr(D) = πk∗+1 = π2 = 2. Since k∗ = 1, consumer 2 will not be selected and will consume
it’s baseline report which is the true baseline i.e. q2 = b2 ⇒ Φ2 = 0. Hence in this case,
J2(π̂2 = π2) = U2 + R − Φ = π2b2 = 2 and the total payment P (π̂2 = π2) = πr(D)b1 = 6.
On the other hand if consumer 2 deviates by reporting a π̂2 that is less than π1, then both
consumer 1 and consumer 2 will be selected i.e. k∗ = 2 and will be paid according to
πr(D) = πk∗+1 = π3 per unit of reduction. As a result both consumer 1 and consumer 2
will reduce their consumption to zero. Hence consumer 2 will be made the payment R2 =
πr(D)b2 = π3 = 3 for the observed reduction b2 and J2(π̂2 < π1) = R2 = 3. Total payment
P (π̂2 < π1) = R1 +R2 = πr(D)b1 + πr(D)b2 = 12. It is clear that J2(π̂2 < π1) > J2(π̂2 = π2),
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and so consumer 2 will under report it’s marginal utility. As a result the aggregator makes a
total payment P (π̂2 < π1) = 12 which is less than the payment made in mechanism SRMB-UP
(refer above example).

2.4 Comparison with SRBM for the Retail Market

Here we compare the proposed mechanism with that of CAISO’s method. In the CAISO
method of payment for the consumers, the SO or the Utility computes the mean of the
consumption of the most recent m similar but non-event days and then multplies this mean
estimate by an adjustment factor to estimate the baseline. The adjusment factor accounts for
any variation in the consumption pattern from the past. The adjustment factor is calculated
based on the consumption in the hours prior to the DR event on the DR event day [14]. In this
chapter we discuss CAISO’s mechanism and compare it’s mechanism with the self-reported
mechanism (SRBM) proposed in 2

Baseline Calculation: After the DR event the baseline is calculated in the following way.
Denote the consumption of the most recent m similar but non-event days collectively by bm
and the calculated adjustment factor by Cb. Then the estimated baseline is

b̄k = bckCb

Where bck = (sum{bm}/m). Denote the consumption in the hours prior to the DR event
by q−k and the consumption during the hours prior to the hour that corresponds to the DR
event hour on the DR event day, of the most recent m similar but non event days collectively
as, b−m. Let b−k = (sum{b−m}/m). Then the adjustment factor is given by Cb = q−k /b

−
k . This

completes baseline calculation. Let the price for unit reduction be π. So the payment for
reduction in the CAISO method is given by R(qk, b

c
k, π) = π(b̄k − qk). Below we provide the

theorem that characterizes CAISO mechanism

Theorem 3. The following holds for the CAISO mechanism, (i) When π < πmax−πe CAISO
mechanism cannot guarantee the required load reduction
(ii) When π ≥ πmax − πe, CAISO mechanism payment is larger than the payment in SRBM
(iii) When consumers are informed of the DR event several hours prior to the DR event then
b̄k →∞ when π > πe, i.e. the baseline estimate is inflated

Proof is given in appendix

Remark 5. Condition (i): In case π < πmax − πe, then there could be players who may not
have adequate incentive to reduce. In such a case, there is a possibility that the marginal
utility of consumer k, πuk > π and the consumer will not have the incentive to reduce. Note
that in SRBM the selected consumers will necessarily provide the required load reduction
(Theorem 1)
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Remark 6. Condition (ii): Note that the reward/kWh in SRBM is always πrk ≤ πmax − πe.
And in this case, CAISO’s reward/kWh is π > πmax − πe. So even if CAISO’s allocation is
as efficient as that of SRBM, the relation between π and πrk i.e. π > πrk would imply that
CAISO’s payment would exceed that of the payment made in SRBM.

Remark 7. Condition (iii): The adjustment factor in CAISO’s baseline estimate depends on
the consumption few hours before the DR event. So if the DR event is announced several
hours before the DR event then the incentive for the consumer to inflate is very high. So it is
intuitive that the consumer will inflate by a large amount.

2.5 Conclusion

The unanswered question is whether we can design a mechanism that performs better than
the mechanism proposed here. Characterizing this is difficult for the following reason. First,
it is difficult to estimate the payment of the optimal mechanism in this setting and secondly
it is difficult to estimate the upper bound on the factor by which the payment in SRBM will
differ from the optimal mechanism.

To summarize, we proposed a mechanism where the consumers self-report their baseline and
their marginal utility. In the proposed mechanism the consumers reveal their true baseline
and also provide the maximum load reduction when signaled for DR. Also they stick to
their baseline consumption when they are not signaled. So, the aggregator is able to meet
any random load reduction requirement reliably by selecting consumers whose measured
reductions adds up to the total reduction. Finally we show that in the current CAISO method
either (i) one cannot guarantee reliable load reduction (ii) Or the payments are larger (iii)
And in some scenarios the baseline estimate is inflated.
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Chapter 3

Market Mechanisms for Selling Retail
Demand Response

Electricity scheduling in US typically operates as a two settlement system, a day-ahead
market (DAM) for bulk power scheduling and a real-time market (RTM) for supply-demand
balancing. Under the two market system, demand response (DR) can be used as intermediate
recourse, which has several benefits from efficiency and operational perspective. We show
that an intermediate market for DR an be created. This enables the Load Serving Entity
(LSE) to exploit the improved forecast available at the intermediate time (as compared with
the day-ahead) thus improving overall efficiency and gives the aggregator enough lead time
for organizing and delivering the load curtailment. We analyze this intermediate market,
characterize the equilibrium and study the efficiency properties.

We formulate the energy scheduling problem from the perspective of LSE as a three stage
stochastic control problem. We characterize the optimal decisions in each of the three stages
- the optimal energy purchase from the DAM, the optimal load curtailment decision at the
intermediate market and finally the energy purchase from the RTM. Here we refer to the
LSE and the aggregator as a single entity.

First we consider the entity problem. Characterize the opimal purchase decisions for the
entity. We then consider the interaction of LSE and the aggregator as two different entitties.
The intermediate market is modelled as a a spot-market with contingent prices. We show the
existense of a competitive equilibrium in this market. Also all equilibria are socially optimal.
We characterize the equilibrium prices and purchase decisions in such a market. We also
comment on the efficiency of this mechanism. In the final section we consider the contract
setting assuming that the LSE has full market power.

3.0.1 Related Work

There are several benefits of coordinating demand side resources to balance the variability of
intermittent renewable generation [13]. Many market or pricing mechanisms and scheduling
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algorithms have been proposed for DR. Roscoe and Ault [43], Samadi et al. [44] and Chen et
al. [11] also studied various real-time pricing based algorithms for DR. Li et al. [31] showed
that time-varying prices can be used as signal to elicit demand response from consumers in
such a way that it will achieve social optimality. Alternatively game theoretic models were
proposed by Wu et al. [50] to understand the interactions among EVs and aggregators in a
V2G market. In this setup, EVs role were in providing frequency regulation service to the
grid. Different game theoretic fomulations for DR were also studided by Mohsenian-Rad et
al. [34] and Yang et al. [52].

Gabriel et al., [17] and Haring et al., [20] studied contract mechanisms from the perspective of
a retailer whose objective is to maximize its own profits and minimize settlement risks. Thus,
a retailer acts as a mediator between the supplier and the consumer. Authors in [16] also
considered a contract design method for load curtailment. Authors in [30] and [51] considered
a setting where each consumer submits a parameter which characterizes their supply function
and the utility company acts as the market maker who computes the market clearing price.

Varaiya et al. [47] formulated a multi-stage stochastic control problem where at each stage
a utility company can decide the amount of power purchase depending on the available
information. This idea was extended by Rajagopal et al. [41] to characterize threshold
based decision policies for power procurement. Huang et.al. [21] also considered a similar
problem of maximizing social welfare, where they jointly optimized demand response and
power procurement. They proposed time varying price algorithm which the Utility company
can announce to control the users’ consumption while guaranteeing quality-of-usage to the
consumer. There are also works that have extended ideas from financial engineering to
interruptible power markets [19] [38]. Our approach is different from these works.

3.1 Preliminaries

Flexible
Loads

Incentives Aggregator LSE
DAM & RTM

Markets

Entity

Inter-Mkt qda, qrt

(time t)

buy DAM power qda at πda

based on wind forecast f0

0

buys load reduction
ys at π

in
s

based on wind forecast f1

t1

renewables w revealed
buy RTM power qrt at πrt

to balance power at delivery

T
• • •

Figure 3.1: Players, interactions, and decision time-line.

The setting that we consider is shown in Figure 3.1. The LSE serves the loads who consumes
an energy of l units. The LSE has access to zero-marginal cost random renewables w which
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are revealed at T . The LSE purchases qda from the DAM at price πda and qrt from the
RTM at price πrt. The LSE can also extract a curtailment of y units from the loads at the
intermediate time which is between the real time market and the day ahead market. The load
suffers a disutility of φ(y) for the y units of load reduction they provide. The total energy
purchase and curtailment should be such that

l ≤ qda + qrt + w + y. (3.1)

We assume that an aggregator manages a collection of flexible consumers or loads for demand
response. It recruits the loads for DR participation, designs incentives for them and sends
load reduction signals to a set of selected consumers when a DR event occurs. In the previous
chapter 2 (refer [35] and [24]), we addressed the problem of mechanism design for reliably
accruing a given net load reduction. Given that such mechanisms are possible to design, we
assume that the aggregator can reliably deliver a net load reduction of y, if it commits. Here
we assume that the LSE interacts only with one aggregator for achieving the load reduction,
as shown in Figure 3.1.

The LSE decides curtailment decision y based on information state f1 at t1 which comprises
information about w and πrt (as denoted in the figure 3.1). We have already discussed
the benefits of deciding the curtailment decision y at the intermediate time. The purchase
decision qda is made based on the information state f0 which comprises information about w
and πrt at time t0.

Consider the state at t0, f0, to be single valued. This is a reasonable assumption. Let α(s)
be probability density function of the information state, i.e.,

α(s) = P (f1 = s|f0) .

We assume that the day-ahead price πda is known at time t0. We denote the expected RTM
price conditioned on the realized state f1 at t1 by,

πrts = E[πrt|f1 = s].

Let p(w|f1) be the conditional probability of the wind given the intermediate state f1 at time
t1. We assume that f1 ∈ S = [0, 1]. We call this an information state. Let

ps(w) = p(w|f1 = s), Ps(z) =

∫ z

w=0

ps(w)dw.

So, Ps(z) is the probability that the wind at time T is less than z given the information state
s. We use Es [·] and Ew [·] to denote the expectation w.r.t. to the information state s and
the wind respectively and E [·] denotes the joint expectation. The following assumptions are
made regarding the random variables

Assumption 3. (i) P(w ≥ z|f1 = s1) < P(w ≥ z|f1 = s2), ∀z, if s2 > s1

(ii) πrts2 < πrts1, if s2 > s1

(iii) πrt and w are conditionally independent given the information state s.
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Then intuitive interpretation of assumption (i) is that, higher s indicates (stochastically)
more wind. Also, this assumption guarantees that Ps2(z) < Ps1(z),∀z, if s2 > s1 so that the
cdfs Ps1(·) and Ps2(·) don’t cross each other. Assumption (ii) similarly imposes an order on
the expected value of the real-time price conditioned on the information state. We assume
that higher s indicates a lower expected real-time price (because of the higher wind). We
note that the above assumptions are not necessary for most of the results we show. However,
they considerably simplify the notations and give better insight to the problems.

LSE: As mentioned above it is the LSE that manages or serves the load. Its main objective
is to make sure there is load balance. Based on the description above, it is clear that the
LSE can buy qda units of energy at a price πda from the day ahead market (DAM). It can
also request a load reduction of ys units from the aggregator when the information state s is
revealed at time t1 by making a payment Rs(ys) to the aggregator. Based on the previous
decisions qda and ys, the LSE can make the right amount of purchase, qrt, such that it balances
the load requirement, i.e., qrt = (l − q − ys − w)+. The LSE will make these decisions such
that it is optimal from the view of the cost it incrus. The ex-post cost for the LSE given the
information state s is,

J lses = πdaqda +Rs(ys) + πrt(l − qda − ys − w)+ (3.2)

Aggregator: As mentioned above the aggregator can provide load reduction of ys reliably. On
doing so, it gets a payment Rs(ys) and suffers a disutility φ(ys). The aggregator’s objective
is to minimize it’s cost. The ex-post cost for the aggregator, given the information state s is,

Jaggs = φ(ys)−Rs(ys) (3.3)

We make the assumption that the disutility function is strictly convex i.e.

Assumption 4. φ′′(y) > 0 for all y.

3.2 Optimal Scheduling for the Entity

In this section we consider the optimal scheduling of energy from the perspective of the
entity. The entity is the combination of the LSE and the aggregator. This entity can buy qda

units of energy from the DA market, get a load curtailment of ys units at an intermediate
time t1 when the information state is s, get power w from wind at time T and purchase the
remaining energy (l − qda − ys − w)+ from the RTM for load balance (c.f. equation (3.1)).
The ex-post cost for the entity is then,

Jes = πdaqda + φ(ys) + πrt(l − qda − ys − w)+ (3.4)

So, the function of the entity is equivalent to that of a social planner. It considers only
the system cost, not the payment transfer between the agents. First, we consider optimal
scheduling without DR.
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3.2.1 Optimal Scheduling without DR

Without DR, the entity can buy energy only from the DA market and the RT market. Let

Jendr(q) = πdaq + E[πrt(l − q − w)+] (3.5)

qendr ∈ arg min
q
Jendr(q). (3.6)

Jendr(q) is the net expected cost for the entity as a function of the day-ahead purchase q when
there is no DR. qendr is the optimal day-ahead purchase.

Proposition 1. Jendr(·) is convex. The minimizer qendr is given by the solution of

πda − Es[π
rt
s Ps(l − qendr)] = 0.

Remark 8. In order to avoid trivial results, we can assume that πda < Es[π
rt
s Ps(l)]. This will

ensure that qendr > 0.

3.2.2 Optimal Scheduling with DR

Here we consider the energy scheduling with DR from the perspective of the entity. The net
expected cost for the entity as a function of the first-stage purchase q, Je(q), is

Je(q) = πdaq + Es

[
min
ys

Jes (ys)

]
, where, (3.7)

Jes (ys) = φ(ys) + Ew
[
πrts (l − q − ys − w)+|f1 = s

]
(3.8)

Here Jes (·) is the expected second-stage cost conditioned on information state s and the
first-stage decision q. Let

qe ∈ arg min
q
Je(q), J∗e = Je(qe), yes ∈ arg min

ys
Jes (ys) (3.9)

Proposition 2. Je(·) and Jes (·) are convex. For any given first stage decision q, the second-
stage decision yes is given by solution of

φ′(yes)− πrts Ps(l − q − yes) = 0 (3.10)

if φ′(0) < πrts Ps(l − q) and zero otherwise. The first-stage decision qe is given by solution of

πda − Es[π
rt
s Ps(l − qe − yes)] = 0. (3.11)

Remark 9. It is trivial to check that min Jendr ≥ min Je

Remark 10. The scheduling decisions qe and yes of the entity corresponds to the efficient
solution and we will use the corresponding cost J∗e as the benchmark
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3.2.3 Examples

A simple example is worked to illustrate the scheduling problem from the point of view of the
entity. We will later use the same example for comparing with the market based allocations
in Section 3.3.

1. Uniform forecast error: Let l = 3. Let’s assume that information set S has three
elements, sL, sM and sH indicating low, medium and high wind forecast states respectively.
Let p(w/sL) = U [0, 3], p(w/sM) = U [0.25, 3.25] and p(w/sH) = U [0.5, 3.5] where U [a, b]
is the uniform distribution of [a, b]. Also, let α(sL) = α(sM) = α(sH) = 1/3. Take
πda = 50, πrt = 1000 and φ(y) = 50y+ 50y2. Figure 3.5 shows the purchasing decision at each
stage. Figure 3.3 illustrate the way we compute the intermediate load curtailment decisions
yes as specified by equation (3.10). Note that, as intuition suggests, load curtailment is small
when the wind forecast is high.

2. Gaussian forecast error: Let l = 5. Here also, we assume that that information set S
has three elements, sL, sM and sH with equal (= 1/3) probability. Let p(w/sL) = Ñ (0, 0.5),
p(w/sM) = Ñ (0.25, 0.5) and p(w/sH) = Ñ (0.5, 0.5) where Ñ (µ, σ) is a truncated normal
distribution with mean µ and standard deviation σ. We truncated the distribution for negative
values and re-normalized the integral to 1. Take πda = 50, πrt = 1000 and φ(y) = 50y + 25y2.
We can compute qe = 4.49, (yesL , y

e
sM
, yesH ) = (0.464, 0.222, 0).

b

b b b

qe = 2.46

sL sM sH

yesL = 0.294 yesM = 0.1 yesH = 0

wL wM wH

Figure 3.2: Purchase Decisions - Uniform Forecast Error

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

Load Curtailment (y)

y
e

s
L

 = 0.294
y

e

s
M

 = 0.1

π
rt

 P
s

H

(.)

π
rt

 P
s

M

(.)
π

rt
 P

s
L

(.)

φ’(y)

Figure 3.3: Load Curtailment Decisions (equation (3.10))
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3.3 Spot Markets with Contingent Prices

Note that, entity is a fictitious system planner and the actual agents in the systems are the
LSE and the aggregator. Hence it is realistic to consider them as two different entities. The
best case scenario would be to design a market mechanism that achieves similar decision
outcomes as the entity (qe, yes)? Because that would ensure that the social optimum. We
show here that such a spot market for the intermediate DR market can achieve this market
efficiency provided the spot market prices are chosen appropriately.

Let πins be the price for unit load reduction in the intermediate DR market when the
information state is s. This corresponds to a spot market. And the price πins depends on the
realized information state s. We assume that the LSE and the aggregator are price takers.
Their obective would be to choose the decision variables such that it maximizes their net
benefit.

First we highlight the time line and the decision variables from the point of view of LSE.
The LSE buys q from the DA market at the day ahead market price πda. Then, at the
intermediate state, the LSE pays for a curtailment of ys units of energy from the aggregator
at the intermediate market price πins . At the final time T , the LSE gets w energy from wind
and purchases the remaining energy (l − q − ys − w)+ from the RTM at the RTM price πrt.
The net expected cost for the LSE as a function of the first-stage purchase q, J lse(q), is given
by

b

b b b

qe = 4.49

sL sM sH

yesL = 0.464 yesM = 0.222 yesH = 0

wL,1 wL,2 wH

Figure 3.4: Purchase Decisions - Gaussian Forecast Error
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Figure 3.5: Purchase Decisions - Uniform Forecast Error
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J lse(q) = πdaq + Es[min
ys

J lses (ys)], where, (3.12)

J lses (ys) = πins ys + Ew[πrts (l − q − ys − w)+]. (3.13)

Here, J lses (·) is the expected second stage cost for the LSE given the first stage purchase q.
Also, let

qlse ∈ arg min J lse(q), ylses ∈ arg min
ys

J lses (ys) (3.14)

Note that qlse and ylses are the optimal first and second stage purchase decisions for the LSE.
Similarly, the net expected cost and the optimal selling decision for the aggregator when the
information state is s are given by,

Jaggs (ys) = φ(ys)− πins ys and yaggs ∈ min
ys

Jagg(ys). (3.15)

The intermediate market decision of LSE and aggregator, yaggs and ylses , are functions of the
information state s and the spot market price {πins } in the information state s. Note that
the LSE procures load curtailment and the aggregator provides the load curtailment. Hence
market equilibrium is acheived if the market prices are such that the optimal buying and
selling decisions of the agents in the market balance each other. We formally define the
market equilibrium below.

Definition 3 (Competitive Equilibrium with Contingent Prices). The spot market prices
{π∗ins }, the optimal buying decisions of the LSE q∗lse, {y∗lses }, optimal selling decisions of
the aggregator {y∗aggs } constitute a competitive equilibrium with contingent prices, if (y∗lses −
y∗aggs ) = 0,∀s ∈ S.

Let J∗lse be the expected cost for the LSE and let J∗agg be the expected cost for the aggregator
at equilibrium. And so the total system cost is given by J∗cp

J∗cp = J∗lse + J∗agg (3.16)

Note that the competitive equilibrium is socially optimal if the total system cost J∗cp is equal
to J∗e which is the optimal system cost from the perspective of the entity (c.f. (3.9)). We
define this formally below.

Definition 4 (Socially Optimal Equilibrium with Contingent Prices). An equilibrium with
contingent prices is said to be socially optimal, if J∗cp = J∗e

We now give the main result of this section.
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Theorem 4. There exists a competitive equilibrium with contingent prices. All competitive
equilibria are socially optimal. At equilibrium, denoting q∗ = q∗lse, y∗s = y∗lses = y∗aggs ,

φ′(y∗s) = π∗ins = πrts Ps(l − q∗ − y∗s) (3.17)

if φ′(0) ≤ πrts Ps(l − q∗) and y∗s = 0 if φ′(0) > πrts Ps(l − q∗). Also,

πda − Es[π
rt
s Ps(l − q∗ − y∗s)] = 0 (3.18)

3.3.1 Examples

The equilibrium allocations are the same as the solution of the entity’s problem given in
Section 3.2. Equilibrium prices {π∗ins } can be found easily using the equation (3.17).

Remark 11. We have shown that it is possible to design an intermediate spot market that
will achieve the socially optimum cost

3.4 Monopsony Contracts

In Section 3.3, we showed that a spot market can be created such that the buying and selling
decision achieve the socially optimum outcome. However, this may not be a realistic scenario.
Note that our setting in the spot market considered a two agent system. This suggests that
in a real setting one agent might exercise market power and will be able to influence the
prices over the other agent. For example, the agent can be a monopoly where he is only seller
or a monopsony where he is the only buyer. In either cases, this agent will have more market
power

Here we consider a situation where the LSE has a monopsony position over the aggregator(s).
This can arise in a scenario where the LSE has the option of choosing from multiple aggregators.
So the LSE can use this market power over the aggregator and extract the maximum benefit
from trade. We analyze this scenario using a Principal-Agent Model. Below we analyse this
scenario.

3.4.1 Principal-Agent Problem: Formulation

Here we describe the principal agent formulation. Since the principal has market power it is
appropriate to choose LSE as the principal and the aggregator as the agent. In the principal
agent formulation the principal offers a menu of contracts to the agent. From the point of view
of the LSE it would want to design a menu of contracts such that its net utility is maximized.
The agent can either accept one of these contracts or not choose any of the contracts at all.
Clearly, the agent chooses a contract if the contract maximizes its net utility. Also it only
makes sense for the agent to buy the contract if it provides a benefit (i.e., accepting the best
contract) greater than the benefit derived from not participating (i.e., rejecting all contracts).
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Definition 5. reservation utility: The net utility of the agent when not participating in the
contract mechanism

Now we define the contract between LSE and Aggregator. A contract is specfied by the
conditional payment rs made by the LSE to the aggregator for the load curtailment it provides
and the load curtailment ys the aggregator should make if it accepts the contract from the
LSE. So we denote a contract by {rs, ys, s ∈ S}, which specifies two quantities for each
information state s: (i) the amount of load reduction ys that the LSE demands from the
aggregator when the information state is s, (ii) the payment rs that the aggregator will
receive from the LSE for reducing the load by ys units.

The variable θ ∈ Θ := [θmin, θmax] parametrizes the type of the aggregators. Lets denote
the true type of agent by θ. This is private information to the aggregator. Similar to the
general formulation outlined in the previous section, we denote the disutility function of
the aggregator by φ(·, θ). In this case, we incorporate the type of the agent by type θ in
the disutility function and so the disutility of an aggregator of type θ for y units of load
curtailment is φ(y, θ). Denote the partial derivatives of φ(·, ·) w.r.t. the first (y) and the
second (θ) arguments as φy and φθ. We make the following assumptions.

Assumption 5. (i) φ(y, θ) is strictly increasing in y and θ, i.e., φy(·, ·) > 0, φθ(·, ·) > 0
(ii) (Spence-Mirrlees condition) φθy(·, ·) > 0

(iii) φyyθ(·, ·) > 0, φyθθ(·, ·) > 0 and
d
F (θ)
f(θ)

dθ
> 0

From the LSE point of view the true type of the aggregator i.e. θ is randomly distributed
over the set Θ according to the probability density (distribution) function f(·) (F (·)). The
expected cost that the LSE incrurs in the RTM after receiving y units of load reduction in
the state s and buying q in the day-ahead market is denoted by Vs(y; q). From Section 3.2.2,
we define

Vs(y; q) = Ew
[
πrts (l − q − y − w)+

]
.

Clearly, Vs(y; q) is a decreasing function in y. Also, from Assumption 3, Vs(y; q) ≤ Vs′(y; q)
for s > s′.

As specifie above, the LSE procures q from the day-ahead market and offers a set of such
contracts to the aggregator in the first stage. The aggregator facing these choices will select
the contract that will maximize its net utility. So the optimization problem for the LSE given
the day-ahead procurement q is given by,

min
rs(·)

Eθ [rs(ys(θ)) + Vs(ys(θ); q)] ,where

s.t. ys(θ) = arg max
ys

(rs(ys)− φ(ys, θ)) , ∀θ ∈ Θ (3.19)

rs(ys(θ))− φ(ys(θ), θ) ≥ 0, ∀θ ∈ Θ (3.20)
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The first constraint is called incentive compatibility (IC) constraint and the second constraint
is called individual rationality (IR) constraint. The incentive compatibiliy constraint ensures
that the aggregator chooses the contract that corresponds to its true type. The IR constraint
ensures that the aggregator benefits by participating. This is a non-trivial optimization
problem to solve because the constraint itself is an optimization problem. However, thanks
to revelation principle. We can simplify this problem as below.

min
rs(θ), ys(θ)

Eθ [rs(θ) + Vs(ys(θ); q)] (Cont-Cont) (3.21)

s.t. I.R. rs(θ)− φ(ys(θ), θ) ≥ 0, ∀θ ∈ Θ, ∀s ∈ S (3.22)

I.C. rs(θ)− φ(ys(θ), θ) ≥ rs(θ
′)− φ(ys(θ

′), θ), (3.23)

∀θ, θ′ ∈ Θ,∀s ∈ S (3.24)

Where the contract payment and load curtailment is a function of the type of the aggregator.
That is rs(θ) is the payment to the aggregator of type θ for a load curtailment of ys(θ) at stage
s. Also, since the I.C. constraints guarantee that aggregator of type θ will only select the
contract of type θ, its net utility will be Us(θ) = rs(θ)−φ(ys(θ), θ). This is called information
rent. In the first stage, the LSE procures q from the day-ahead market and offers the set of
optimal contingent contracts {r∗s(θ; q), y∗s(θ; q)} (contracts that solve the LSE’s optimization
problem for the given day-ahead procurement q) to the aggregator. The net expected cost of
the LSE as a function of the first stage decision q is then given by,

J̃ lse(q) = πdaq + Es

[
min

rs(·),ys(·)
J̃ lses (rs(.), ys(.))

]
Where

J̃ lses (rs(.), ys(.)) = Eθ [rs(θ) + Vs(ys(θ); q)]

Where J̃ lses (rs(.)) is the expected second stage cost conditioned on information state s. Also,
let

q̃lse ∈ arg min
q
J̃ lse(q)

Which is the optimal first stage procurement from the day-ahead market.

3.4.2 Complete Information: First Best Contract

In the complete information case, the LSE knows the true type of the agent. Then the LSE
doesn’t have to worry about the I.C. constraint. The I.R. constraint will be binding at the
optimum. Then we have the following result.

Proposition 3. Under complete information, the optimal monopsony contracts, {r∗s(θ; q), y∗s(θ; q)
, θ ∈ Θ}, are given by,

φy(y
∗
s(θ; q), θ) + V ′s (y

∗
s(θ; q); q) = 0, (3.25)

if φy(0, θ) < −V ′s (0; q) = πrts Ps(l − q) and y∗s(θ; q) = 0 otherwise.

r∗s(θ; q) = φ(y∗s(θ; q), θ)
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Remark 12. The above optimization problem is the same as the optimal scheduling problem
that we considered in Section (3.2.2). Thus, the first best contract achieves social optimality.
Also, the information rent is zero, U = 0, and all the surplus is taken by the LSE.

We now characterize the optimal first stage decision q̃lse.

Proposition 4. J̃ lse(.) is strictly convex. The unique first-stage decision q̃lse is given by the
solution of

πda − EsEθπ
rt
s Ps(l − q − y∗s(θ; q)) = 0

3.4.3 Incomplete Information: Continuum of Types

In the incomplete information case, the LSE does not know the true type of the agent. The
naive way to solve the above problem is via applying Lagrangian techniques directly. However,
due to the underlying structure, there is an easier procedure to solve this problem. There are
many works [32]. We follow the procedure in [28].

One important difference is that, we address a contingency dependent contract design problem.
We make the assumption that the aggregator is completely risk-averse, i.e., it demands Us ≥ 0
for all contingency s ∈ S. Below we provide the optimal contract in this setting as a theorem.

Proposition 5. Under incomplete information, the optimal monopsony contracts, {r∗s(θ; q), y∗s(θ; q)
, θ ∈ Θ}, are given by,

V ′s (y
∗
s(θ; q); q) + φy(y

∗
s(θ; q), θ) = −F (θ)

f(θ)
φyθ(y

∗
s(θ), θ)

if −V ′s (0; q) > φy(0, θ) + F (θ)
f(θ)

φyθ(0, θ) and y∗s(θ) = 0 otherwise.

r∗s(θ) = φ(y∗s(θ), θ) +

∫ θmax

θ

φz(ys(z), z)dz

We now characterize the optimal first stage decision q.

Proposition 6. J̃ lse(.) is strictly convex. The unique first-stage decision q̃lse is given by the
solution of

πda − EsEθπ
rt
s Ps(l − q − y∗s(θ; q)) = 0

Proof is given in the appendix

Remark 13. Note that the relation between equilibrium social cost under incomplete infor-
mation and complete information is not clear. In propositions 5 and 6 we only give the
conditions satisfied by the contract payment and scheduling decisions.
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3.5 Concluding Remarks and Options Market

Till now we showed that the optimal scheduling of energy from the DR market can be imple-
mented using a market. More precisely, the competitive equilibrium with contingent prices
achieves a socially optimal outcome. However, there are many difficulties in implementing
such an intermediate spot market with contingent prices. Firstly, spot market price can vary
greatly and rapidly. Moreover this price fluctuation is very unpredictable. This is highly
unattractive to a risk-averse market player which can possibly go bankrupt during such an
extended extreme real-time price period. Forward contract enables hedging in such scenarios.
But forward contracts do not allow the flexibility of scheduling the load reduction based on
the improved forecast available in the intermediate market. This motivates selling demand
flexibility thorough options which can potentially combine the positive aspects of both the
forward market and the real time market.

In the options setting, the LSE will buy q units of energy from the DA market. Also, at the
same time, the LSE will buy x units of options from the aggregator at a price πo. So, the
LSE has the right, but not the obligation to get y units of load reduction, y ≤ x, from the
aggregator. The LSE can give the notification for a load reduction at any time t ≤ t1 before
the intermediate market closes, by paying a strike price πsp for unit reduction. However, to
exploit the better wind prediction available at a later time, the LSE will give load curtailment
notification only at time t1. Clearly, the amount of load reduction the LSE asks for, ys, will
depend on the information state s realized at time t1. However, note that the strike price πsp

doesn’t depend on the information state. Given the notification at time t1, the aggregator
will deliver the load reduction at time T . The LSE will observe the wind energy w at time T
and purchase the remaining amount of energy (l − q − ys − w)+ from the RT market.

Unlike the spot market with continent prices, here we have only two prices πo and πsp. Also,
in the spot market with contingent prices the trading takes place in the intermediate time.
Here, in options market, the trading of options takes place in the day ahead market. LSE
buys x units of options for a specified option price πo and strike price πsp. In the intermediate
market, only the exercise of the options takes place. In a spot market with contingent prices,
the equilibrium notion is that, the optimal trading decisions of the LSE and the aggregator
should balance each other for every possible contingency of the intermediate market. So,
at equilibrium ylses = yaggs for all s ∈ S. In an options market, the equilibrium notion is
that, the number of options that the LSE is willing to buy and the number of options that
the aggregator is willing to sell should balance each other. So, xlse = xagg. Not that the
contingent information state s doesn’t appear explicitly here.

Replacing the intermediate spot market with an options market is an attractive proposition
from the point of view of implementation, hedging risk and the flexibility of scheduling load
reduction in the intermediate market. But showing existence of equilibrium (though sufficient
conditions could be derived) and deriving upper bound on the ratio between optimal social
cost for the options market and the social optimum is a hard problem and an ongoing work.
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Chapter 4

Baseline Mechanism for Wholesale
Markets

In this section we propose a self-reported DR scheme for residential consumers that integrates
DR resources into the wholesale markets efficiently. Similar to the retail market, the consumers
are required to self-report their baseline and are paid at a pre-determined price level for every
unit of reduction they provide. The consumers are recruited such that the SO’s benefit is
maximized when the recruited DR resources are deployed. We then compare the self-reported
DR mechanisms with the CAISO’s averaging method for estimating baseline. We show that
the self-reported baseline DR mechanism establishes a better estimate of the mean baseline
in scenarios where there is high variability in consumption. And in scenarios where there is
low variability, both methods establish a similar baseline estimate. Because the payments are
proportional to the baseline estimae, overall the self-reported DR mechanism is cost-effective
in either of the markets.

Here we do not restate the importance of baseline estimation and the issues that accompanies
it. Also note that we restrict ourselves to peak shaving DR applications. In this setting,
the consumer or a group of consumers (through an aggregator) interact directly with the
operator. We refer the reader to sections 1 and 2 for a discussion on this aspect. A natural
question to ask is ‘why do we need to redesign the mechanism for the wholesale market ’?
Can’t we use the mechanism described in 2. Recall the setting in section 2. The aggregator
is sent an external load reduction requirement D that the aggregator has to provide. The
aggregator schedules sufficient number of consumers so that the load reduction provided
meets the load reduction requirement D. The System Operator on the other hand has direct
access to the market outcomes and can determine the extent of load reduction, that the
consumers have provided, by measuring the market price. The required load reduction is met
when the market price falls to the threshold market clearing price after deploying the DR
resources (Refer section 4.5 for a detailed discussion on how this price is estimated). Hence
the setting for the wholesale market is simpler. And we do not need to consider the load
reduction requirement explicitly.
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Table 4.1: Notations - Wholesale Market

q Energy consumption of consumer
u Utility of consumer
πe Retail price of energy

R(·, ·, ·) Reward function for load reduction
Φ(·, ·) Penalty function for deviation from baseline
πr Reward/kWh awarded to consumer k

b̂ Baseline report of consumer
π∗ Threshold Market Clearing Price (TMC)
θ Exogenous random variable

4.1 Consumer Model

Consider a residential consumer. Denote her consumption as q. Let θ be the random variable
on which her consumption depends. We assume that the distribution of θ includes every
possible source of uncertainty. For example, θ could represent the consumer’s state where
the consumer could either be at home or outside home. It could also model the randomness
induced due to external weather conditions like temperature. Let the private utility function
be u(q, θ) which is concave monotone increasing in q and is dependent on θ. We assume
that the random variable θ is realized at the time when consumption is decided. Define the
marginal utility,

µ(q, θ) =
∂u(q, θ)

∂q
. (4.1)

Note that since u(q, θ) is monotone increasing in q, we have ∀q : µ(q, θ) > 0. Also since
u(q, θ) is concave in q, we have

∀q :
∂µ(q, θ)

∂q
< 0.

4.1.1 Mechanism

We prescribe a self-reported baseline mechanism which utility and/or SO can use to acquire
DR resources for wholesale energy market operation. DR events are called when the market
price exceeds a threshold market clearing price (TMC price). The ‘threshold market clearing
price’ (TMC Price) is defined as the market price (after deploying the DR resources) that
maximizes SO’s benefit. In a later section we show how this price is estimated. The TMC
Price is announced every month based on past supply function data that excludes DR
resources, the peak load estimate L and the retail price of electricity (πe).

Assumption 6. Probability of DR event is small



CHAPTER 4. BASELINE MECHANISM FOR WHOLESALE MARKETS 31

From the consumer point of view the mechanism has two stages. In the first stage the
consumers report their baseline. In the second stage, the participating consumers are signaled
to reduce when there is a DR event. The SO can appoint a DR program manager (DRM) to
manage the program. The two stages of the mechanism are the following,

Stage 1 (Reporting) In this stage, the DRM announces the ‘threshold market clearing
price’ π∗ as the reward per unit reduction (πr), the probability α of a DR event (α� 1) and
the reward function R(πr, b̂, q) where b̂ is the report of baseline consumption. The DRM also
announces a penalty function Φ(b̂, q) for consumers who deviate from their reported baseline
when they are not signaled to reduce. This penalty is critical to ensure that the consumers
do not inflate their baseline report. At the same time the penalty should not over penalize in
a way that will be not profitable for the consumers to participate. Depending on price or
reward per unit reduction πr, and the penalty Φ(b̂, q), each consumer submits the baseline
report b̂. As noted above the consumers can inflate their baseline report.

Stage 2 (DR Event) In the second stage a DR event occurs. DR events are triggered
when the SO expects the market price to shoot above the threshold market clearing price.
The DRM signals the participating consumers to reduce. The DRM then observes the final
consumption q of these consumers. If the resulting market price is greater than the TMC
price, then the SO recruits more consumers till the market operates at the TMC price in
the future DR events. At steady state we expect the market to operate at the TMC price
and so the conventional suppliers will be paid the TMC price during DR events. And by
the mechanism, the recruited consumers are paid the TMC price for the load reduction they
provide. By the definition of TMC price, this should maximize the benefit of SO.

Remark 14. After deploying the DR capacity of the recruited consumers, even though the
market operates at the TMC price, there is an incurred loss because of inflation in the baseline
report of the consumers.

Remark 15. The operator does require some time to learn or decide which consumers to
call. As specified in the mechanism above, it decides to recruit more or remove consumers
depending on the realized market price during the current DR event. If the market price (after
calling the DR resource) is more than the TMC price then the SO will call more consumers
in the next round. This repeats till the market price falls to the TMC price. Hence there is a
learning curve for the Operator till the market operates at the TMC price during DR events.

Remark 16. Provided that the number of participating consumers are large enough, the
SO’s strategy to deploy more consumers every round till the market price drops to TMC
price should, ensure that the market price drops to the TMC price in finite time (no of
rounds/iterations). In the next chapter we shall address the transient aspects of scheduling
DR resources.
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Given the ‘threshold market clearing price’ πr the reward function in the mechanism is set as,

R(πr, b̂, q) =

{
πr(b̂− q), if consumer is signaled.
0, otherwise.

(4.2)

Note that the SO pays the consumers according to the measured reduction b̂− q, where b̂ is
the consumer’s report of baseline and q is the consumption. The following penalty is applied
to the consumer,

Φ(b̂, q) =

{
0, if consumer is signaled.

φ(b̂− q), otherwise.
(4.3)

The penalty function φ in (4.3) is chosen such that it has the following properties,

i) φ(0) = φ′(0) = 0.

ii) ∀r : φ′′(r) ≥ 0 (Convexity).

From the mechanism it follows that the consumer’s optimization problem is given by,

CP: min
b̂

H(b̂) (4.4)

where

J(b̂) = E

[
min
q

{
πeq − u(q, θ) + Φ(b̂, q)−R(πr, b̂, q)

}]
is the cost that is incurred by the consumer. Hence the consumer problem (4.4) is a two
stage decision problem. In the first stage the consumer decides the report b̂ and in the second
stage decides the optimal consumption q. First we solve for the second stage decision and
then use the second stage decision to characterize the optimal forecast.

4.1.2 Second Stage - Optimal Consumption

The optimal consumption in the second stage depends on the following cases: i) Consumer is
not participating in the DR program. ii) Consumer is participating but is not signaled to
reduce. iii) Consumer is participating and is signaled to reduce. First, we solve the optimal
consumption for the three cases. The consumption when the consumer is not participating
corresponds to the true baseline. Hence we can use this to derive the true mean baseline.
The cases (ii) and (iii) will determine the optimal first stage report b̂∗. From here we can
characterize the inflation in baseline as the difference between the optimal forecast and the
true mean baseline. Since θ is realized by the second stage, we assume θ is fixed in the
calculations to follow.
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1. Set πr = π∗ (TMC Prize)

2. Announce the Reward function R and the Penalty function Φ(.)

3. Receive forecast report b̂ from the consumer

4. DR Event: Signal consumer to reduce

5. Observe consumption q

6. Reward the consumer according to (4.2)

7. No DR Event: Impose penalty as given by (4.3)

Algorithm 2: (Self-Reported Baseline Mechanism (SRBM)) - Wholesale Market

Consumer is not participating In this case, R = 0 and Φ = 0. The realized cost function
is then given by,

Ja(q, θ) = πeq − u(q, θ),

and the optimal consumption is given by

qa(θ) = arg min
q
Ja(q, θ).

The optimal consumption is a function of θ because the value of θ is realized when the
consumption decision is made. Note that qa(θ) solves the optimality condition,

πe − ∂u(q, θ)

∂q
= 0. (4.5)

Hence qa(θ) is given by qa(θ) = µ−1(πe) where µ−1 is the inverse function of the marginal
utility (4.1) that always exists for each θ. Having characterized the consumption when the
consumer is not participating we can define baseline inflation δb̂ as,

Definition 6. Baseline inflation: δb̂ = b̂∗ − Eθq
a(θ)

Where Eθq
a(θ) is the true mean baseline because it corresponds to the mean consumption

when the consumer is not participating.

Participating but not signaled to reduce The reward and penalty functions are given
by (4.2) and (4.3). Then the realized function cost function is given by

J b(b̂, q, θ) = πeq − u(q, θ) + φ(b̂− q).
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As before, the value of θ is realized when the consumption decision is made. Note that in
this scenario the realized cost J b is also a function of b̂ apart from the consumption decision
and the value of θ. The optimal consumption is given by

qb(b̂, θ) = arg min
q
J b(b̂, q, θ).

So qb(b̂, θ) solves

πe − ∂u(q, θ)

∂q
− φ′(b̂− q) = 0. (4.6)

Hence the optimal consumption qb(b̂, θ) satisfies the implicit equation qb(b̂, θ) = µ−1(πe −
φ′(f−qb(b̂, θ)). And qb(b̂, θ) is also a function of b̂ because the deviation from b̂ incurs a penalty.

Participating and signaled to reduce Again the reward and penalty functions are given
by (4.2) and (4.3). Then the realized cost function is given by

J c(b̂, q, θ) = πeq − u(q, θ)− πr(b̂− q),

and the optimal consumption is given by

qc(b̂, θ) = arg min
q
J c(b̂, q, θ).

So qc(b̂, θ) solves

πe − ∂u(q, θ)

∂q
+ πr = 0. (4.7)

Hence the optimal consumption qc is independent of b̂ and is given by,

qc(θ) = µ−1(πe + πr). (4.8)

Below we state the general relation between qa(θ), qb(θ, b̂) and b̂.

Lemma 1. The optimal consumption qb(b̂, θ) is convex combination of qa(θ) and b̂.

Proof J b(b̂, q, θ) is composed of two convex functions U1(q) = πeq − u(q, θ) and U2(b̂, q) =
φ(b̂− q). The minimizer of U1 is qa(θ) and the minimizer of U2 is q = b̂. Then the minimizer
of J b = U1 + U2 has to necessarily lie between the minimizers of U1 and U2 which implies
that qb(b̂, θ) is a convex combination of qa(θ) and b̂.

Also from (4.8) it follows that
qc(θ) < qa(θ).

Hence a rational consumer necessarily provides load reduction.
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4.2 Optimal Forecast

Let α denote the probability of a DR event. Then α also equals the probability of being
signaled to reduce. The optimal forecast b̂∗ minimizes the expected cost, which is given by

J(b̂) = αEθJ
c(b̂, qc, θ) + (1− α)EθJ

b(b̂, qb, θ). (4.9)

Define M(b̂) as the expected marginal utility under the proposed DR mechanism. Then,
M(b̂) is given by

M(b̂) = αEθ
∂u(qc, θ)

∂q
+ (1− α)Eθ

∂u(qb, θ)

∂q
. (4.10)

We now present the main lemma which specifies the condition that the optimal forecast b̂∗

satisfies.

Lemma 2. The optimal forecast b̂∗ satisfies πe = M(b̂∗).

Proof The optimal forecast b̂∗ satisfies the first order condition:

J
′
(b̂) = (1− b̂)Eθ

dJ b(b̂, qb, θ)

db̂
+ αEθ

dJ c(b̂, qc, θ)

db̂
= 0.

Using (A.70) and (A.71) we get,

Eθφ
′(b̂∗ − qb(b̂∗, θ)) =

απr

1− α. (4.11)

Then using (4.6) and (4.7)

πe = (1− α)Eθ
∂u(qb, θ)

∂q
+ pEθ

∂u(qc, θ)

∂q
. (4.12)

The right hand side by definition is the expected marginal utility which implies that πe =
M(b̂∗).

Next we show that the function J(b̂) is convex in its argument b̂.

Lemma 3. J(b̂) is (strictly) convex if and only if φ is (strictly) convex.

From Lemma 2 and Lemma 3, we derive the following corollary.

Corollary 1. The global minimizer of the cost function is given by the condition πe = M(b̂∗).
The minimizer is unique when φ is strictly convex.
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4.2.1 Optimal Forecast Without Penalty

We now solve for the optimal forecast b̂∗ when there is no penalty i.e. when φ = 0. This
implies,

dJ

db̂
= αEθ

dJ c(b̂, qc, θ)

db̂
= −pπr.

This means that the consumer will forecast a very high baseline, which is clearly undesirable.
This clearly suggests the importance of imposing a penalty on the consumers. Next, we
derive the optimal forecast when a penalty is imposed on the consumer.

4.2.2 Optimal Forecast With Penalty

Above we emphasized the importance of imposing a penalty. Analysis becomes difficult with
a general utility function. So we consider only quadratic utility function for illustration
purposes. First we illustrate the most simple case that is when there is no randomness in θ.

4.2.2.1 No Variability in Consumption

Here we illustrate the case where there is no variability in consumption. So this case
corresponds to the scenario where there is no dependency on the random variable θ. Then
from (4.5) and (4.8)

qa = µ−1(πe), (4.13)

qc = µ−1(πe + πr). (4.14)

Also from (4.12) we get

πe = (1− α)
∂u(qb)

∂q
+ α

∂u(q)

∂qc

= (1− α)
∂u(qb)

∂q
+ α(πe + πr). (4.15)

This implies,

qb = µ−1

(
πe − α

1− απ
r

)
. (4.16)

Using (4.11) we get

b̂∗ = qb + φ′−1

(
α

1− απ
r

)
. (4.17)
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Substituting for qb we get

b̂∗ = µ−1

(
πe − α

1− απ
r

)
+ φ′−1

(
α

1− απ
r

)
. (4.18)

Note that these expressions also imply that, qc < qa < qb < f . For this example, actual load
reduction is given by

qa − qc = µ−1 (πe)− µ−1 (πe + πr) , (4.19)

and the corresponding measured reduction is

b̂∗ − qc = µ−1

(
πe − α

1− απ
r

)
+ φ′−1

(
α

1− απ
r

)
− µ−1 (πe + πr) . (4.20)

So Baseline Inflation is given by,

f ∗ − qa = µ−1

(
πe − α

1− απ
r

)
+ φ′−1

(
α

1− απ
r

)
− µ−1(πe). (4.21)

Let qa − qc be the load reduction required for the market to operate at the TMC price π∗.
Then by the recruitment process it would suffice to recruit this consumer only. The price per
unit of kWh paid for the DR services provided by the consumer is,

Price/kWh =
π∗(b̂− qc)
qa − qc

= π∗

(
1 +

b̂− qa
qa − qc

)

= π∗ + π∗
δb̂

qa − qc (4.22)

where the first term is the threshold market clearing price and the second one characterizes
the loss or the excess payment made to the consumer for a unit of kWh reduction provided
by the consumer. It follows that the incurred loss is directly proportional to baseline inflation.
Later we argue that this is in general the case. We also observe that for very small α, b̂
approaches qa and Price/kWh approaches π∗.

4.2.2.2 Variable Consumption

Here we consider the case where the consumption is dependent on the exogenous random
variable. Also we assume that consumer’s utility is quadratic. The following theorem gives
the expression for baseline inflation δb̂,
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Lemma 4. δb̂ = απ∗(1+d/λ)
(1−α)d

where

i) α > 0.
ii) ∀q : −µ′(q) = d
iii) ∀r : φ′′(r) = λ ≥ d.

Proof See Appendix.

From Lemma 4, it is clear that the excess payment per unit of kWh reduction is proportional
to the inflation in baseline δb̂. Also it follows that as d → ∞, δb̂ → 0. This is expected,
since the consumer looses by a large margin for any positive inflation in baseline when d→∞.

The above results on baseline inflation gives us a way to characterize mechanism’s efficiency in
terms of baseline inflation. Below we comment on how we characterize a baseline mechanism’s
efficiency.

4.3 Mechanism Efficiency

Because of inflation in baseline the DR program manager pays in effect a price that is more
than the price that is set for unit reduction that the consumer provides.This is evident from
the discussion in section 4.2. As a result the SO incurs losses. Let the number of recruited
consumers be N and the net load reduction offered by the consumers be ∆L, which is different
from the measured reduction. From previous section it follows that the excess payment is
directly proportional to the inflation in baseline. Given that δb̂ is the amount by which

consumers inflate their baseline the loss to the SO can be characterized by πNδb̂
∆L

where π is
the price/kWh. Later we show that the proposed mechanism achieves better control over
baseline inflation when compared to the m/m baseline method used by system operators like
CAISO.

4.4 Comparison with SRBM for Wholesale Market

Here we compare the mechanism with the CAISO scheme as in chapter 2. Restating the
CAISO mechanism, the CAISO computes the mean of the consumption on the most recent
m similar but non-event days and then multplies this mean estimate by an adjustment factor
to estimate the baseline. The adjusment factor accounts for any variation in the consumption
pattern from the past. The adjustment factor is calculated based on the consumption in the
hours prior to the DR event on the DR event day. In the next section we discuss how this
scheme influences the behavior of consumers and compare the baseline estimate with the
self-reported scheme.

During the DR event day the optimal consumption decision depends on whether the consumer
is signaled for DR or whether the consumer is not signaled for DR. As discussed above
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the baseline estimate used for the payments depend on the consumption in the days prior
to the DR event day. So the payments made during the DR event day can influence the
consumer to inflate their consumption before the DR event day. We consider a simple model
to characterize the baseline inflation for the CAISO scheme. Then using this we show that
the self-reported scheme achieves better control over baseline inflation thereby improving the
efficiency of the DR program.

4.4.0.1 DR Event Day

During the DR event day the consumer can be either signaled to reduce or not signaled to
reduce. We consider these two cases below.

Consumer is signaled for DR Let qm denote the m-dimensional vector consisting of the
consumption on the most recent m similar but non-event days. Define b̂c as,

b̂c = sum{qm}/m

Denote the consumption in the hours prior to the DR event by q−. Also denote the
consumption during the hour, prior to the hour that corresponds to the DR event hour on
the DR event day, on the days corresponding to the consumption vector qm, as q−m and let
b− = (sum{q−m}/m). Then the adjustment factor is Cb = q−/b−. So the CAISO baseline
with adjustment factor is given by,

b̄c = b̂cCb (4.23)

The payment for reduction is R(πr, q, b̄c) = πr(b̄c − q) and the total cost is given by J c =
πeq − u(q, θ)−R(πr, b̄c, q).

Consumer is not signaled for DR No penalty is imposed on the consumers in the
current CAISO DR scheme and so the total cost is given by J b(q) = πeq − u(q, θ).

4.4.0.2 Baseline Estimate

The timing of DR signal alters the behavior of the consumer and so modifies the baseline
estimate. Hence we consider the following two scenarios: (i) Consumer is informed just
before the DR event (ii) Consumer is informed day ahead. For each scenario we calculate
the baseline estimate for the CAISO scheme and compare with the baseline estimate of the
self-reported scheme.

Consumer is informed just before the DR event Let J− represent the cost for
consuming q− prior to the DR event. Then the average cost on the DR event day is the
average of J− and the cost during the hour when the DR event is supposed to occur. At the
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beginning of the day the consumer only knows the probability of occurence of a DR event,
which is α. So the average cost during the DR event hour is αJ c + (1− α)J b. The payments
made during the DR event day can influence the consumer to inflate the consumption q−. To
model this effect we include the cost J− in the total cost for the DR event day. So the total
average cost for the DR event day is given by,

J(b̄c) =
1

2

(
J− + αJ c + (1− α)J b

)
J− = πe(q−)− u(q−, θ)

Note that the average cost depends on the baseline estimate b̄c. From (4.23) it follows that
the baseline estimate depends on b̂c which is the average of consumption on the similar
non-event days in the past. Denote the consumption on the k th similar non-event day of
the past by q−k. Then the consumer’s decision q−k will be influenced by the payments to be
made in the future DR event. To model this effect we consider the average total cost over
the m recent non-event days and the event day,

J =
1

m+ 1

(
m∑
k=1

EθJ
b(q−k) + EθJ(b̄c)

)
(4.24)

Remark 17. Let θ−k be the realized value of θ on the kth similar non-event day. For illustration
purposes, we shall assume that θ−k = θ′ for all k where θ′ is such that qa(θ′) = Eθq

a(θ).

Optimal consumption decision q−: Optimal q− satisfies ∂J
∂q−

= 0. W.r.t q−, b̂c and b− are

constants, so differentiating J w.r.t q− and equating to zero we get,

∂J

∂q−
= πe − µ(q−)− απr b̂

c

b−
= 0 (4.25)

The lemma below specifies the relation between b̂c and b−

Lemma 5. b̂c > b−

Considering space limitations we do not provide the details of the proof. From lemma 5 and
(4.25) it follows that,

πe − µ(q−)− απr > 0 (4.26)

From the concavity of u it follows that,

q−(θ) > µ−1(πe − απr) (4.27)

When µ′ = −d, this implies that,

q−(θ) > qa(θ) +
απr

d
(4.28)
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Optimal consumption decision q−1: q−1 is the consumption on the 1st similar non-event day
before the DR event day. Let θ−1 be the realized value of the random variable θ on this day.

Optimal q−1 satisfies ∂J
∂q−1

= 0. With respect to q−1, b− is a constant because b− depends on

consumption prior to the hour that corresponds to the consumption q−1. So differentiating J
w.r.t q−1 and equating to zero we get that optimal q−1 satisfies,

∂u(q−1)

∂q−1

+ απr
∂b̂c

∂q−1

EθCb − πe = 0 (4.29)

Note that ∂b̂c

∂q−1
= 1/m. So we get,

∂u(q−1)

∂q−1

+ απrEθCb/m− πe = 0

q−1 = µ−1(πe − απrEθCb/m)

Now EθCb = (Eθq
−) /b− because b− is a constant here. In this analysis we will assume that

µ′ = −d. This is just for illustration purposes. Then EθCb =
(
Eθq

a(θ) + απr

d
b̂c

b−

)
/b−.

q−1 = µ−1

πe − απr
(
Eθq

a(θ) + απr

d
b̂c

b−

)
(mb−)

 (4.30)

That is to say,

q−1 = qa(θ′) +
απr

md
(Eθq

a(θ)/b−) +
α2πr2

md2b−
b̂c

b−

q−1 = Eθq
a(θ) +

απr

md
(Eθq

a(θ)/b−) +
α2πr2

md2b−
b̂c

b−
(4.31)

In the lemma below we establish the relation between b− and Eθq
a(θ)

Lemma 6. b− < Eθq
a(θ)

The proof of this lemma is part of the proof of lemma 5. From lemma 6 and lemma 5 it
follows that,

q−1 > Eθq
a(θ) +

απr

md
+O(α2) (4.32)

Similarly, we can show that,

q−k > Eθq
a(θ) +

απr

md
+O(α2) (4.33)
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Baseline Inflation: If δb̂ denotes the inflation in baseline estimate for the CAISO scheme.
Then δb̂ is given by,

δb̂ = Eθb̄
c − Eqa(θ) = Eθ(q−)

b̂c

b−
− Eqa(θ) (4.34)

From (4.28) it follows that Eθ(q
−) > Eθq

a(θ) + απr

d
. So,

δb̂ > Eθq
a(θ)

b̂c

b−
+
απr

d

b̂c

b−
− Eqa(θ) (4.35)

From (4.33) it follows that b̂c = 1/m×∑m
k=1 q−k > Eθq

a(θ) + απr

md
+O(α2). This implies,

δb̂ >

(
Eθq

a(θ) +
απr

d

)(
Eθq

a(θ) + απr

md
+O(α2)

b−

)
− Eqa(θ) (4.36)

Then from lemma 6 it follows that,

δb̂ >
απr

d
+
απr

md
+O(α2) (4.37)

Since α is small ( i.e. α � 1 ), δb < δb̂, that is the self-reported scheme achieves better
control of inflation in baseline.

Consumer is informed day ahead Here we assume that consumers are signaled a day
ahead of the DR event. The consumer cost for the DR event day is the average of the cost
during the DR event and the cost during the hours prior to the DR event. Let J− represent
the cost for consuming q− prior to the DR event. Here the consumer knows that there is
going to be a DR event. So the average cost for the DR event day is,

J =
1

2

(
J− + J c

)
(4.38)

=
1

2

(
πe(q−)− u(q−, θ)− u(q, θ)− πr(b̄c − q)

)
.

Now, we use the optimal consumption decision q− to derive a lower bound on the customer
baseline. Note that on the DR event day b̂c and b− are constants. So, differentiating J in
(4.38) w.r.t q− gives,

∂J

∂q−
=

1

2

(
πe − µ(q−, θ)− πr b̂

c

b−

)
. (4.39)

Optimal q− satisfies ∂J(q−)
∂q−

= 0 and is given by

q−(θ) = µ−1

(
πe − πr b̂

c

b−

)
. (4.40)
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From lemma 5 we know that b̂c > b−. This implies that

q−(θ) ≥ µ−1(πe − πr). (4.41)

Then, the baseline estimate is given by,

b̄c = b̂cCb = q−
b̂c

b−
≥ µ−1(πe − πr). (4.42)

Then the inflation in baseline in this scenario is atleast,

δb̂ ≥ Eθµ
−1(πe − πr, θ)− Eθµ(πe, θ) =

πr

d
. (4.43)

From previous section we know that the baseline inflation in the self-reported scheme is

δb = b̂∗ − Eθq
a(θ) =

απr

d
. (4.44)

Clearly δb� δb̂.

Remark 18. From the above analysis, it is clear that the CAISO scheme is prone to greater
baseline inflation than the self reported mechanism, especially in scenarios where there is
high variability in consumption. So the self-reported scheme improves the efficiency of DR
programs

4.5 Threshold Market Clearing Price

The threshold market clearing price is integral to the DR mechanism. As mentioned in
section 4.1.1, DR events are called by the SO when the load forecast corresponds to the
peak load scenario to a high degree of confidence. In our formulation peak load scenario
is realized when the market price corresponding to the load forecast crosses the threshold
market clearing price. In this section we demonstrate how the SO calculates this threshold
market clearing price.

TMC Price Let Π(l) denote the inverse supply function, i.e. the price at which conventional
suppliers are willing to provide l units of electricity, that is assumed to be monotone increasing
and continuously differentiable. Denote L as the peak load. In our notation retail price of
electricity is πe. Total cost to the SO/DRM when the net DR resource ∆L is deployed and
all resources are paid at the market price is given by,

C(∆L) = Π(L−∆L)Lp − πe(L−∆L) (4.45)

Hence the optimal DR capacity ∆L∗ that maximizes the SO/DRM’s savings satisfies

0 =
dC(∆L∗)

d∆L
= −Π′(L−∆L∗)L+ πe, (4.46)
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It follows that,

∆L∗ = L− Π′−1

(
πe

L

)
. (4.47)

Let π∗ be the market price corresponding to the optimal DR deployment, i.e. Π(L−∆L∗) = π∗.
Then the SO sets π∗ as the threshold market clearing price. In the proposed mechanism the
SO announces the reward as πr = π∗ and then it recruits consumers such that when their
DR resources are deployed the market operates at the same price π∗. This means that the
combined load reduction of the recruited consumers adds up to ∆L∗ and that all resources
are paid at the market price which is π∗. By the above derivation this maximizes the savings
for SO/DRM.

4.6 General Non-Linear Utility

Here we highlight the extent of baseline inflation for a general non-linear utility funciton. The
following theorem gives the expression for baseline inflation δb̂ for a general utility function.
Note that we only provide an upper-bound here.

Lemma 7. δb̂ ≤ απ∗(1+d/λ)
(1−α)d

where

(i) α > 0.
(ii) ∀q : −µ′(q) ≥ d
(iii) ∀r : φ′′(r) = λ ≥ d.

The proof steps follow from the proof of Lemma 4. Note that what the lemma provides is
only an upperbound and not the exact inflation in baseline. The exact expression might be
difficult to derive.

4.7 Further Remarks

The discussion in this chapter signifies two important aspects of self reported baseline
mechanism. First, self-reporting offers a better baseline estimate than averaging methods
especially when variability in consumption is high. Secondly the mechanism required to
integrate DR resources in to wholesale markets is a simpler when compared to the retail
baseline mechanism described above 4.1.1. It is counter-intuitive that integration in wholesale
markets is easier compared to retail market. In the case of wholesale market the Operator
can measure the extent of aggregate load reduction offered by the DR providers using realized
market price (after deploying DR) and the load forecast (assuming load forecast is accurate).
The aggregator has no such external reference to rely up on. It is also this simplifying aspect
of the wholesale market that allows us to characterize the baseline report of the mechanism for
general non-linear utility functions. Also, this enables the operator to decide independently
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whether to call more consumers during the next DR event. So the operator does require
some time to learn or decide which consumers to call so that its savings are maximized. If
this external reference such as the market price was not available then the setting inevitably
reduces to the retail DR setting considered in section 2.
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Chapter 5

Learning and Pricing Demand
Response

The wholesale market mechanism proposed in section 4 achieves optimality in steady state.
But in a repeated setting the transient losses also needs to be taken in to account. Here, we
consider a repeated setting where the DR events repeat. In such a setting its not sufficient
that the optimal price is attained at steady state, becuase the transient losses have to be
taken in to account. In the full information setting it is trivial to define the optimal pricing
policy. In the incomplete information setting, one has to consider the trade-off between
learning the consumer behavior and maximizing the savings based on the learnt information.
Here we propose a sub-linear regret pricing policy mechanism.

Framework Outline: We consider the following setting where the electric power Utility
maximizes its cumulative risk-sensitive payoff over a sequence of T days. Here the Utility’s
payoff on a given day is the largest return the utility is guaranteed to receive with a probability
of atleast 1− α. We assume that the consumer is myopic in its behavior and the consumer’s
response to price incentive is affected by additive random shocks. In order to maximize the
payoff, the Utility is best served if it tries to learn the consumer behavior by dynamically
adjusting the prices offered for load reduction. So we consider a strategy where the Utility
strategically adjusts the price such that it learns the consumer behavior and at the same
time maximizes its savings.

Related Work Jia et al. [23] consider the problem of pricing demand response when the
underlying demand function is unknown, affine, and subject to ‘normally distributed random
shocks’. They propose a stochastic approximation-based pricing policy, and establish an
upper bound on the T-period regret that is of the order O(log T ). Authors in [46, 25, 22, 48]
use the mulit-armed bandit setting to study the problem of eliciting demand response under
uncertainty. Kalathil and Rajagopal [25] consider a similar multi-armed bandit setting in
which a customer’s load curtailment is subject to an exogenous shock, and there is attenuation
due to fatigue resulting from repeated requests for reduction in demand over time. They
propose a policy that guarantees that the T-period regret is bounded by O(

√
T log T ).
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In this work we do not make any assumption on the distribution nor do we assume explicit
knowledge of the baseline. Also we consider a risk-sensitive setting. Baseline is very critical to
estimate the payments for the load reduction that the consumer provides. Hence incorporating
baseline in to the setting that we consider here is very critical.

5.1 Formulation

We consider the setting where Utility serves a set of N consumers, indexed by i. On any
given day (ex: the tth day), DR event occurs with probability β i.e.

Probability of DR Event = β

When the DR event occurs, the Utility elicits demand response from this group of N consumers
indexed by i = 1, 2, ...N . And this repeats. The Utility has to set the reward or price/kWh
of reduction so that its savings are maximized for the entire sequence of days. But in order
to set the optimal price the Utility should have knowledge of the optimal behavior of the
consumers. This leads to a trade-off between learning and the opportunity to maximize
the savings based on the information learnt till the current day. The time-line of the DR
mechanism is given below (refer figure 5.1)

1. After the tth day Reward/kWh pt is announced (based on prior information)

2. Consumer i reports f̂ it

3. DR event occurs with probability β. If there is a DR event then the consumers are
called.

4. Measure reduction of the called consumer w.r.t to the ‘assigned baseline’ b̂it.

5. Pay pt for every unit of measured reduction

We explain the time line in more detail. Before day t, all consumers are informed the
reward/kWh for load reduction pt. Following which consumer i reports value of it’s baseline
f̂ it , corresponding to day t. The consumer is assigned a baseline b̂it based on the reported value
f̂ it . The baseline is the counterfactual against which consumer’s load reduction is measured.
When the consumer is called, Utility measures the load reduction of all the consumers w.r.t
the assigned baseline. Pays them pt for every unit of measured load reduction. The objective
of the Utility is to maximize it’s risk-sensitive savings for its life time. The time line is shown
in Figure 5.1.
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tpt f̂ i
tt− 1

P{DR Event} = β

Figure 5.1: Learning and Pricing:Time-line

5.1.1 Consumer Model

We assume that consumer i’s demand function qit(p), where pt is the reward per kWh of load
reduction, is linear i.e.,

qit(pt) = ai − dipt − εit (5.1)

Where ai and di are model parameters of consumer i and are unknown to the Utility. Note
that a linear demand funciton is implied and implied by quadratic utility. So the linear deand
function model assumed here directly corresponds to the quadratic utility model of theorem
4. εi models the uncertainty in consumer i’s demand function. The distribution of εi is also
unknown to the Utility. The true baseline is given by the consumption of the consumer when
pt = 0. If we denote the true baseline on day t by bit then from (5.1)

bit = qi(0) = ai − εit (5.2)

We make the following assumption on the consumers

Assumption 7. Consumers are myopic

This implies that consumer i will report f̂ it only based on pt and its utility for the tth day.

5.1.2 Demand Response Mechanism

Similar to sections 2 and 4, the consumer is called to reduce when the DR event occurs and
is paid for the load reduction it provides. If there is no DR event, the consumer is not called
and a penalty is imposed for any deviation from its report.

5.1.2.1 When the Consumer is called for DR

When consumer i is called for DR it is paid by pt for every unit of measured reduction. Let

the consumer’s assigned baseline be b̂it. Then the consumer is paid pt

(
b̂it − qit

)
.
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5.1.2.2 When the Consumer is not called for DR

When consumer i is not called for DR the following penalty φ is imposed on the consumer,

φ(.) =

{
λ
(
f̂ it − qit

)2

Γ = 1

0 Γ = 0

Where λ� 1 and P{Γ = 1} = γt = gγ(t) = γ (5.3)

So when the consumers is not called, a large penalty is imposed for any deviation from the
consumer report f̂ it . And so it consumes the assigned baseline b̂it.

5.1.3 Baseline Assignment b̂it

Here we discuss how the Utility assigns the baseline to consumer i. A baseline b̂it is assigned
to consumer i based on past information, in particular {f̂ i1, f̂ i2, f̂ i3, ..., f̂ it−1}, and the current

report f̂ it . Define f̄ it ,

f̄ it =

∑t
j=1 f̂

i
j

t
(5.4)

Then the baseline of consumer i is equated to f̄ it ,

b̂it = f̄ it (5.5)

5.1.4 Measured Reduction and Payment

When the consumers are called, the total consumption Qt(pt) of all the N consumers is given
by,

Qt(pt) =
N∑
i=1

qit(pt) = a− dpt − εt

Where a =
N∑
i=1

ai , d =
N∑
i=1

di , εt =
N∑
i=1

εit (5.6)

The true aggregate baseline is given by Bt =
∑N

i a
i − εit = a − εt. This implies the true

aggregate reduction ∆Qt is given by,

∆Qt = Bt −Qt(pt) = dpt (5.7)

The corresponding measured aggregate reduction ∆Q̂t is given by,

∆Q̂t = B̂t −Qt(pt)

Where B̂t =
N∑
i=1

b̂it (5.8)
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Define the inflation in baseline as δBt = B̂t − Bt. Then it follows that ∆Q̂t −∆Qt = δBt.
From 5.1.3 and lemma 4 from section 4 we can write δBt explicitly as,

δBt =
β
∑t

j=1
pj
j

(1− β)γt
d+ εt <

β(log t+ 1)

(1− β)γt
dp̄+ εt

Where p̄ = max pi (5.9)

Remark 19. Property 1: As T →∞,E{δBt} = 0.

Remark 20. Property 1 is necessary for a consistency. Because any amount of inflation in the
baseline only results in excess payments.

Remark 21. Property 1 also avoids the under-payment concerns that we highlighted in 2.
Because asymptotically the baseline estimate is not biased on either side of the true baseline
it avoids the possibility of under-payment and over-payment.

The consumer is paid pt for every unit of load reduction it provides. Then the total payment
made to the consumer for the load reduction they provide is given by pt times the aggregate
measured reduction i.e. pt(∆Qt + δBt). Note that the payments made to the consumer is
inflated by ptδBt.

5.1.5 Utility’s Objective

We number the days as t = 1, 2, 3, ..., T . On any given day let ct($/kWh) denote the wholesale
price of electricity. If a DR event occurs on day t the consumers are called up on to provide
load reduction. The consumers respond based on the price pt that was announced before
day t. Then the aggregate demand reduction ∆Qt is realized. The Utility saves the market
price times the load reduction that was provided i.e. ct∆Qt. But there is a payment that the
Utility makes to the consumers for the load reduction they provide. From 5.1.1 the payment
made to the consumer is given by pt(∆Qt + δBt).

So the net savings the Utility makes is given by (ct − pt)∆Qt − pt∆Bt. Henceforth, we will
refer to the net savings (ct − pt)∆Qt − pt∆Bt in period t as revenue. Below we introduce the
risk-sensitive measure that the Utility maximizes,

rα(pt) = sup{x ∈ R : P{(ct − pt)∆Qt − pt∆Bt ≥ x} ≥ 1− α} (5.10)

So the optimal price in this risk-sensitive model maximizes the revenue that the Utility is
guaranteed to receive with probability no less than 1 − α where the parameter α ∈ (0, 1)
encodes the degree to which the Utility is sensitive to risk. We can simplify this further as,

rα(pt) = (ct − pt)dpt − pt
β
∑t

j=1
pj
j

(1− β)γt
d− ptF−1(α)
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Finally,

rα(pt) =

(
ctd−

β
∑t−1

j=1
pj
j
d

(1− β)γt
− F−1(α)

)
pt − p2

t

(
d+

βd

(1− β)γt2

)
(5.11)

Let p∗t denote the optimal price, which maximizes the risk-sensitive revenue during a DR
event in period t. Namely,

p∗t = arg max{rα(pt) : pt ∈ [0, ct]}

Then it follows by explicit maximization that p∗t satisfies,

(ct − 2p∗t )d−
β
∑t−1

j=1
pj
j

(1− β)γt
d− 2p∗t

βd

(1− β)γt2
− F−1(α) = 0 (5.12)

This implies p∗t is given by,

p∗t =
ct

2
(

1 + β
(1−β)γt2

) − β
∑t−1

j=1
pj
j
d+ (1− β)γtF−1(α)

2d
(
(1− β)γt+ β

t

)
p∗t =

ct

2
(

1 + β
(1−β)γt2

) − βd
(1−β)γt

∑t−1
j=1

pj
j

+ F−1(α)

2d
(

1 + β
(1−β)γt2

) (5.13)

Substituting for p∗t in (5.11) we get,

rα(p∗t ) = d

(
1 +

β

(1− β)γt2

)
(p∗t )

2 (5.14)

Risk-sensitive optimal revenue: Define,

R∗(T ) =
T∑
t=1

rα(p∗t ) (5.15)

We call this the oracle risk sensitive optimal revenue because the p∗t which by definition
maximizes the (5.11) requires explicit knowledge of consumer behavior parameters. Note
that when there is no DR event the Utility does not elicit demand response and its savings
are zero. So we can simplify the cumulating oracle risk sensitive revenue as,

R∗(T ) =
T∑
t=1

rα(p∗t )I{DR Event} (5.16)
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Risk-sensitive optimal revenue - Baseline: Also denote the optimal risk-sensitive revenue
when the baseline is explicitly known by rbα. It follows that the risk-sensitive savings is given
by,

rbα = (ct − pt)∆Qt − ptF−1(α) (5.17)

Note that the term that depends on ∆Bt is absent. If we denote the corresponding optimal
price by p∗b then it follows that,

p∗b =
ct
2
− F−1(α)

2d
(5.18)

And from here it follows that,
rα(p∗b) = d(p∗b)2 (5.19)

Define the corresponding cumulative savings as,

R∗b(T ) =
T∑
t=1

rbα(p∗b)I{DR Event} (5.20)

A general feasible pricing policy is an infinite sequence of pricing functions Π = (p1, p2, ...),
where each function in the sequence depends on the past history. More precisely, the function
pt is a measure of the σ - algebra generated by the history of past decisions, measured demand
reductions during DR events and measured consumption during normal event for all t ≥ 2,
and that p1 be a constant function. Then the expected risk-sensitive revenue generated by a
feasible pricing policy Π over the DR events during the T time periods is defined as

RΠ(T ) = EΠ

T∑
t=1

rα(pt)I{DR Event} (5.21)

RΠ(T ) is the risk-sensitive revenue corresponding to policy Π. So the difference between
RΠ(T ) and R∗b(T ) will give us the extent of loss incurred with respect to the optimal pricing
policy. As highlighted before, in the absence of oracle, the estimation of optimal pricing policy
is nearly impossible without learning the demand function parameters. Hence to measure the
performance of any pricing policy with respect to the optimal pricing policy, we use regret as
the metric.

5.1.5.1 Performance Metric

The performance metric for a feasible pricing policy is the difference between the cumulative
savings for the feasible pricing policy and the optimal savings defined by R∗b(T )

∆Π(T ) = R∗b(T )−RΠ(T ) (5.22)

Note that the oracle risk-sensitive revenue R∗b(T ) which requires explicit knowledge of the
baseline is the maximum savings one can achieve. It might be impossible to build a zero
regret pricing policy, so we rather seek a pricing policy whose T -period regret is sub-linear in
the horizon T .
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Definition 7. A feasible pricing policy Π is said to exhibit no-regret if

lim
T→∞

∆Π(T )(∑T
i=1 I{DR Event}

) = 0

5.2 DEMAND MODEL LEARNING

It is very clear that the T − period regret is going to grow linearly if the prices are chosen
randomly. Hence it is important that the parameters that determine the behavior of the
consumers is learnt. Clearly, the ability to price with no-regret will rely centrally on the rate
at which the unknown parameters, θ = (a, d), and quantile function, F−1(α), are leart from
past data. In what follows, we describe a learning approach based on the method of least
squares estimation. Let t̄ correspond to the count of number of DR events till time t. Then,

Definition 8. t̄ = n when
∑t

k=1 I{DR Event} = n

Remark 22. Let xT denotes the value of variable x when t = T . Then the value of variable x
in the t̄ time scale when t̄ = T̄ is xT = xT where T = min{t|∑t

k=1 I{DR Event} = T}.
Remark 23. We use r as the index in summations over t̄ time scale.

Parameter Estimation: Given the history of past decisions and demand observations in the t̄
time scale (p1, ..., pt̄, Q1, ..., Qt̃), define the least squares estimator (LSE) of θ as

θt̄ := arg min (qr − λ(pr, θ))
2 : θ ∈ R2

where λ(pr, θ) = a− dpr (5.23)

Note that r is an index that runs over the t̄ time scale. If k denotes the index that runs over
t time scale then qr and pr are given by,

qr = qk where k = min

{
t;

t∑
j=1

I{DR Event} = r

}

pr = pk where k = min

{
t;

t∑
j=1

I{DR Event} = r

}
(5.24)

For time periods t̄ = 1, 2, ..... The LSE at period t̄ admits an explicit expression of the form

θt̄ =

(
t̄∑

r=1

[
pr
1

] [
pr
1

]T)−1(
t̄∑

r=1

[
pr
1

]
Qt̄

)
(5.25)
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provided the indicated inverse exists. It will be convenient to define the 2× 2 matrix

Ψt̄ :=
t̄∑

r=1

[
pr
1

] [
pr
1

]T
(5.26)

Utilizing the definition of the aggregate demand model (5.6), in combination with the
expression in (5.25), one can obtain the following expression for the parameter estimation
error:

θt̄ − θ = Ψ−1
t̄

(
t̄∑

r=1

[
pr
1

]
εt̄

)
(5.27)

The Role of Price Dispersion: From the expression for the parameter estimation error in (5.27)
it is clear that the asymptotic spectrum of the matrix Ψt̄ determines the consistencey of LSE
estimation. The parameter estimation error will converge to zero provided the asymptotic
eigenvalues grow unbounded. It is sufficient that the minimum eigenvalue of Ψt̄ is bounded
from below (up to a multiplicative constant) by the sum of squared price deviations defined
as

Jt̄ :=
t̄∑

r=1

(pr − p̄t̄)2, (5.28)

where p̄t̄ := (1/t̄)
∑t̄

r=1 pr. The result is reliant on the assumption that the underlying pricing
policy Π yields a bounded sequence of prices {pt̄}.
Finally, given the underlying assumption that the unknown model parameters θ belong to a
compact set defined Θ := [d, d̄]× [0, ā], one can improve upon the LSE at time t̄ by projecting
it onto the set Θ. Accordingly, we define the truncated least squares estimator as

θ̂t̄ := arg min{||v − θ||2|v ∈ Θ} (5.29)

Quantile Estimation: Building on the parameter estimator specified in (5.29), we construct
an estimator of the unknown quantile function F−1(α) according to the empirical quantile
function associated with the demand estimation residuals. Namely, in each period t, define
the sequence of residuals up to the current time by

ε̂r,t̄ = Qr − λ(θ̂t̄, pr) (5.30)

for all r = 1, 2, 3, ...t̄. Define their empirical distribution as

F̂t̄(x) :=
1

t̄

t̄∑
r=1

I{ε̂r,t̄ ≤ x} (5.31)

The order statistics ε̂(1),t̃, ε̂(2),t̄, ε̂(3),t̄, ..., ε̂(t̄),t̄ of ε̂1,t̄, ε̂2,t̄, ε̂3,t̄, ..., ε̂t̄,t̄ is a permutation such that
ε̂(1),t̄ ≤ ε̂(2),t̄ ≤ ε̂(3),t̄ ≤ ... ≤ ε̂(t̄),t̄. Define,

F̂−1
t̄ (α) = ε̂(i),t̄ (5.32)
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where the index i is chosen such that i−1
t̄
< α ≤ i

t̄
. Then one can relate the quantile estimation

error to the parameter estimation error according to the following inequality,

|F̂−1
t̄ (α)− F−1(α)| ≤ |F−1

t̄ (α)− F−1(α)|+ (1 + p(i))||θ̂t̄ − θ||1 (5.33)

where F−1(.) is defined as the empirical quantile function associated with the sequence of
demand shocks ε1, ..., εt. Their empirical distribution is defined as

Ft̄(x) =
1

t̄

t̄∑
r=1

I{εt ≤ x} (5.34)

We state the following proposition which bounds the probability of deviation of the empirical
estimate of the distribution from the true CDF F . This theorem will be used later in the
proof for bouding the regret.

Proposition 7. There exists a finite positive constant µ1 such that P{|F−1
t̄ (α)− F−1(α)| >

γ} ≤ 2exp(−µ1γ
2t̄)

This completes parameter estimation. In the next section we use the determined parameters
to define our pricing policy.

5.3 Pricing Policy

At each stage t+ 1, the utility estimates the demand model parameters and quantile function
according to 5.27 and 5.31. Based on the learnt parameters and distribution we define a
myopic price according to,

p̂t+1 =
c̃t+1

2
− ĥt̄ + F̂−1

t̄ (α)

2êt̄
(5.35)

Where,

c̃t+1 =
ct+1(

1 + β
(1−β)γt2

) ≤ ct+1 ĥt̄ =
βd̂t̄

(1− β)γt

t∑
j=1

pj
j

êt̄ = d̂t̄

(
1 +

β

(1− β)γt2

)
(5.36)

Here we remark on the rationale behind the definition of the myopic price p̂t+1. One could say,
the Utility is treating its model parameter estimate in each period as correct, and disregarding
the subsequent need to learn the model parameters. Hence the danger inherent to a myopic
approach is that the resulting price sequence may fail to elicit information from demand at
a rate that is fast enough to enable consistent model estimation. As a result, the model
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estimates may converge to incorrect values and so will have undesirable consequences on the
regret. Such behavior is well documented in the literature [15], [26] and [29]. We propose
a pricing policy that is different from the myopic approach. In the new pricing policy, we
add a perturbation to the myopic pricing policy but not on all the days. In particular we
alternate between turning on the pertubration and turning it off as given below,

pt+1 =


p̂t+1 t̄ even And I{DR Event} = 1

p̂t̄ + 1
2

(
c̃t+1 − ĥt̄

êt̄
−
(
c̃t̄ − ĥt̄−1

êt̄−1

))
+ δt+1 t̄ odd And I{DR Event} = 1

0 Otherwise

Where δt+1 = sgn

(
c̃t+1 −

ĥt̄
êt̄
−
(
c̃t̄ −

ĥt̄−1

êt̄−1

))
t̄−1/4 (5.37)

Here we describe couple of aspects of the proposed pricing policy 5.37. First, the model
parameter estimate, θt, and quantile estimate, F−1(α), are updated only at every other DR
event. Second, to enforce sufficient price exploration, an offset is added to the myopic price
at every other DR event. In the next section 5.4, we show that the combination of these two
features is enough to ensure consistent parameter estimation and a sublinear growth rate for
the T -period regret, which is bounded from above by

√
T .

5.4 Bound on Regret

We can show that for any pricing policy Π,

∆Π(T ) ∝
T∑
t=1

EΠ (pt − p∗t )2 I{DR Event}+ o(
√
T̄ ) (5.38)

Under any pricing policy Π, It becomes apparent that (5.38), that is the rate at which regret
grows is directly proportional to the rate at which pricing errors accumulate. We, therefore,
proceed in deriving a bound on the rate at which the absolute pricing error |p− p∗| converges
to zero in probability, under the pricing policy (5.37).

We can show that the absolute pricing error incurred in period t+ 1 is upper bounded by,

|pt+1 − p∗t+1| ≤ k1|θ − θ̂t̄|+ k2|F−1
t̄ (α)− F−1(α)|+ |δt+1| (5.39)

The following Lemma establishes a bound on the rate at which the parameter estimates
converges to the true model parameters in probability

Lemma 8. There exists finite positive constants µ2 and µ3 such that, under the pricing policy
(5.37)

P{|θ̂t̄ − θ|1 > γ} ≤ 2exp
(
−µ2γ

2(
√
t̄− 1)

)
+ 2exp

(
−µ3γ

2t̄
)

(5.40)
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Proof of lemma is ignored. The above lemma is needed in the proof of the theorem we
state below, which follows from the fact that the regret is direclty proportional to error in
parameter estimation. Next we present the theorem that shows that the proposed policy is a
no-regret policy,

Theorem 5. There exists finite constants C0, C1, C2 and C3 such that,

∆Π(T ) ≤ C0 + C1

√
T̄ + C2T̄

1/4 + C3log(T̄ ) (5.41)

Proof refer in appendix.

Remark 24. Note that T̄ →∞ as T →∞ a.s. So from Theorem 5 it follows that ∆Π(T ) ∝
√
T̄

as T →∞.

Remark 25. Then limT→∞
∆Π(T )

(
∑T
i=1 I{DR Event})

= limT→∞
∆Π(T )

T̄
= limT→∞

√
T̄
T̄

= 0a.s.

5.5 Conclusion

Here we propose a sub-linear regret policy and in particular show that the regret grows
as O(

√
T ). Also we showed that the proposed method of baseline assignment avoids any

under-payment or over payment concerns that we highlighted in 2. Asymptotically the
baseline estimate is not biased on either side of the true baseline and hence it avoids the
possibility of under-payment and over-payment. However it is not clear if the proposed pricing
policy is the optimal policy. For the risk-neutral cost setting it is established that O(

√
T ) is

the optimal regret. But an equivalent result for the risk-sensitive setting is not known. The
similarity of the regret of the proposed policy to the optimal regret in the risk-neutral setting
is encouraging but further research is required to establish the optimality in the risk-sensitive
setting.
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Appendix A

Appendix

A.1 Proof of Theorem 1

We first prove the following two propositions. Let

b̂∗k(π̂k) = arg max
b̂k

Jk(b̂k, π̂k).

Proposition 8. In SRB mechanism, under Assumption 1, b̂∗k(π̂k) = bk and is unique.

Proof. Each consumer’s decision can be formulated as a two stage optimization problem.
In the first stage, consumer k reports b̂k and π̂k. In the second stage, the consumption
qk depends on whether consumer k is selected or not. We first consider the second stage
optimization problem.
Second Stage optimization: Let,

Jk(qk; b̂k, π̂k) = Uk(qk) +R(qk, b̂k, π̂k)− Φ(qk, b̂k, π̂k) (A.1)

which is the net benefit of consumer k in the second stage as a function of qk, given the first
stage reports (b̂k, π̂k). Note that the exact form of Jk depends on whether consumer k is
selected for DR or not. So, we separately consider these two cases.
Case: Consumer k is selected for DR.
Let qdrk be the optimal consumption of consumer k when she is selected for DR. Formally,

qdrk = arg max
qk

Jk(qk; b̂k, π̂k|k is selected), where,

Jk(qk; b̂k, π̂k|k is selected) = πk min{qk, bk} − πeqk
+ πrk(b̂k − qk). (A.2)

Of course, qdrk will depend on the first stage reports (b̂k, π̂k). In particular, there are two
possible values for qdrk .
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Sub-Case πrk ≥ πk − πe: It is straightforward to show that qdrk = 0. Then, substituting for qdrk
back in (A.2) we get,

Jk(q
dr
k ; b̂k, π̂k|k is selected) = πrkb̂k (A.3)

Sub-Case: πrk < πk − πe
It is again straightforward to show that qdrk = bk. Then we get,

Jk(q
dr
k ; b̂k, π̂k|k is selected) = (πk − πe) bk + πrk(b̂k − bk) (A.4)

Case Consumer k is not selected for DR: Let qndrk be the optimal consumption of consumer k
when she is not selected for DR. Formally,

qndrk = arg max
qk

Jk(qk; b̂k, π̂k|k is not selected), where,

Jk(qk; b̂k, π̂k|k is not selected) = πk min{qk, bk}
− πeqk − π̂k|qk − b̂k|. (A.5)

We make the following observation: From the assumption πk − πe > 0 it follows that π̂k > πe.
Similar to Case 1, we consider different sub-cases on the first stage reports (b̂k, π̂k).
Sub-case π̂k ≥ πk − πe: Using π̂k > πe, we get qndrk = b̂k and

Jk(q
ndr
k ; b̂k, π̂k|k is selected) = πk min{b̂k, bk} − πeb̂k (A.6)

Sub-case π̂k < πk − πe and b̂k ≤ bk: we get qndrk = bk and

Jk(q
ndr
k ; b̂k, π̂k|k is selected) = (πk − πe) bk + π̂k(b̂k − bk) (A.7)

Sub-case π̂k < πk − πe and b̂k > bk: Using π̂k > πe, we get qndrk = b̂k and

Jk(q
ndr
k ; b̂k, π̂k|k is selected) = πkbk − πeb̂k (A.8)

This completes the characterization of the second-stage decisions qdrk and qndrk of consumer k.
First stage optimization: Let Ik(D) denote the indicator function of selection of consumer k.
Then,

Ik(D) =

{
0 if k is not selected
1 if k is selected

(A.9)

By the selection process (2.5), consumer k will not be selected up to aDk whereDk =
∑k−1

m=1 b̂m
and will always be selected for D > Dk i.e.,

Ik(D) =

{
0 if D ≤ Dk

1 if D > Dk
(A.10)
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And it follows that,
∂Dk

∂b̂k
= 0 (A.11)

The expected benefit consumer k receives in the first stage is given by,

Jk(b̂k, π̂k) = E[I{k is selected}Jk(.|k is selected)]

+ E[I{k is not selected})Jk(.|k is not selected)] (A.12)

Recall that P(D > 0) is the probability that a DR event occurs. From (A.10) we get

E[I{k is selected})Jk(.|k is not selected)]

= E[Ik(D)Jk(.|k is selected)]

= P(D > 0)E[Ik(D)Jk(.|k is selected)|D > 0] (A.13)

And similarly,

E[I{k is not selected})Jk(.|k is not selected)]

= P(D > 0)E[(1− Ik(D))Jk(.|k is not selected)|D > 0]

+ (1− P(D > 0))Jk(.|k is not selected) (A.14)

Using (A.14) and (A.13) we can express Jk(b̂k, π̂k) as,

Jk(b̂k, π̂k) = P(D > 0)E[Ik(D)Jk(.|k is selected)|D > 0]

+ P(D > 0)E[(1− Ik(D))Jk(.|k is not selected)|D > 0]

+ (1− P(D > 0))Jk(.|k is not selected) (A.15)

Also let, P(D ≤ D′|D > 0) =
∫ D′

0+
f(D). Then using (A.10) and α = P(D > 0) we get,

Jk(b̂k, π̂k) = α

∫ D

Dk

Jk(q
dr
k ; b̂k, π̂k|k is selected)f(D)

+ α

∫ Dk

0+

Jk(q
ndr
k ; b̂k, π̂k|k is not selected)f(D)

+ (1− α)Jk(q
ndr
k ; b̂k, π̂k|k is not selected) (A.16)

Define,
b̂∗k(π̂k) = arg max

b̂k

Jk(b̂k, π̂k) (A.17)

Where, b̂∗k(π̂k) is the optimal report of baseline consumption that maximizes the expected net
utility of consumer k. Next we solve this optimization problem to derive consumer’s optimal
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report b̂∗k(π̂k) corresponding to the marginal utility report π̂k. Differentiating Jk(b̂k, π̂k) w.r.t

b̂k and using (A.11) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

∂Jk(.|k is selected)

∂b̂k
f(D)

+ α

∫ Dk

0+

dJk(.|k is not selected)

∂b̂k
f(D)

+ (1− α)
∂Jk(.|k is not selected)

∂b̂k
(A.18)

Using the fact that πrk is independent of consumer k’s reports, it follows from (A.3) and (A.4)

that ∂Jk(.|k is selected)

∂b̂k
= πrk. Substituting for ∂Jk(.|k is selected)

∂b̂k
in (A.18) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

πrkf(D)

+ α

∫ Dk

0+

∂Jk(.|k is not selected)

∂b̂k
f(D)

+ (1− α)
∂Jk(.|k is not selected)

∂b̂k
(A.19)

To complete the analysis we consider the following two cases, (i) when π̂k ≥ πk − πe (ii) when

π̂k < πk − πe. In each case we show that ∂Jk
∂b̂k

> 0 when b̂k ≤ bk and ∂Jk
∂b̂k

< 0 when b̂k > bk

which establishes that b̂∗k(π̂k) = bk is the unique maximizer.

Case π̂k ≥ πk − πe: We consider the following two sub-cases (i) b̂k ≤ bk and (ii) b̂k > bk.
Sub-case Consumer reports a baseline that is less than her true baseline i.e. b̂k ≤ bk: Using
(A.6) in (A.19) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

πrkf(D) + α

∫ Dk

0+

(πk − πe)f(D)

+ (1− α)(πk − πe) (A.20)

From (2.6) we get πrk ≥ π̂k − πe. Since π̂k > πe it follows that πrk ≥ π̂k − πe > 0. This implies
∂Jk(b̂k,π̂k)

∂b̂k
> 0 when b̂k ≤ bk. Sub-case The consumer reports a baseline that is greater than

her true baseline i.e. b̂k > bk: Using (A.6) in (A.19) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

πrkf(D) + α

∫ Dk

0+

−πef(D)− (1− α)πe

=

∫ D

Dk

(απrk − (1− α)πe)f(D)−
∫ Dk

0+

πef(D) (A.21)
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Note that consumers cannot report a value more than πmax which implies πrk ≤ πmax − πe.
Then from assumption 1 it follows that απrk − (1−α)πe < 0. And from (A.21) it follows that
∂Jk(b̂k,π̂k)

∂b̂k
< 0 when b̂k > bk.

Case π̂k < πk − πe: As before we have two sub-cases.
Sub-case Consumer reports a baseline that is less than her true baseline i.e. b̂k ≤ bk: Using
(A.7) in (A.19) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

πrkf(D) + α

∫ Dk

0+

π̂kf(D) + (1− α)π̂k (A.22)

Since π̂k > πe > 0 and πrk ≥ π̂k − πe > 0 it follows that ∂Jk(b̂k,π̂k)

∂b̂k
> 0 when b̂k ≤ bk.

Sub-case The consumer reports a baseline that is greater than her true baseline i.e. b̂k > bk:
Using (A.8) in (A.19) we get,

∂Jk(b̂k, π̂k)

∂b̂k
= α

∫ D

Dk

πrkf(D) + α

∫ Dk

0+

−πef(D)

− (1− α)πe

=

∫ D

Dk

(απrk − (1− α)πe)f(D)−
∫ Dk

0+

πef(D) (A.23)

This expression is exactly the same as (A.21) and it follows that ∂Jk(b̂k,π̂k)

∂b̂k
< 0.

The two cases together imply b̂∗k(π̂k) = bk is the unique maximizer for any given π̂k.

Let
π̂∗k(b̂k) = arg max

π̂k
Jk(b̂k, π̂k)

Proposition 9. In the SRB mechanism, under Assumption 1, π̂k ∈ {π|Jk(b̂k = bk, π) =
Jk(b̂k = bk, π̂

∗
k(b̂k = bk)}.

Proof. Here we show that reporting marginal utility truthfully maximizes consumer’s utility
when b̂k = bk. Let Jk(qk; π̂k, b̂k = bk|D) be the ex-post benefit of consumer k when it reports
(π̂k, b̂k) and when the realized value of load reduction requirement is D. Define, Ŝ(D; π̂k)
to be the set of consumers who would be selected (according to (2.5)) when consumer k
reports π̂k and Ŝ−k(D) to be the set of consumers who would be selected when consumer k is
excluded. From (2.6) the payment for unit reduction when consumer k gets selected is then
given by,

πrk(D; π̂k) = max{π̂j} − πe , j ∈ Ŝ−k(D) (A.24)
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To show that reporting marginal utility truthfully maximizes consumer’s utility when b̂k = bk,
we consider the following two cases; (i) consumer k gets selected on reporting truthfully (ii)
consumer k does not get selected on reporting truthfully. And show that in either of the
scenarios consumer k does not gain in terms of the net benefit by deviating from reporting
her marginal utility truthfully.
Case 1: consumer k /∈ Ŝ(D; πk):
Here, on reporting truthfully consumer k will not be selected. Hence by (A.6) consumer k
consumes qk = bk and her ex-post benefit is given by Jk(qk = bk; πk, b̂k = bk|D) = (πk − πe)bk.
We then compare the net benefit of consumer k on over-reporting and under-reporting her
marginal utility from that of reporting truthfully.
Over Reporting, π̂k > πk:
By the selection process (2.5) consumer k will not be selected on over reporting her marginal
utility. Hence by (A.6) Jk(qk = bk; π̂k, b̂k = bk|D) = (πk − πe)bk and consumer k is indifferent
to over reporting in this case.
Under Reporting, π̂k < πk:
Let consumer k under report such that consumer k gets selected. Because k /∈ Ŝ(D; πk),
Ŝ(D;πk) = Ŝ−k(D; πk). Note that Ŝ−k is not dependent on the report π̂k. Hence Ŝ(D;πk) =
Ŝ−k(D; π̂k). And because k /∈ Ŝ(D; πk), πk > max{π̂j|j ∈ Ŝ(D; πk)} i.e. πk > max{π̂j|j ∈
Ŝ−k(D; π̂k)}. Then from (A.24) it follows that, πrk(D; π̂k) < πk − πe. By (A.4) consumer k

consumes qk = bk and her ex-post benefit is given by Jk(qk = bk; π̂k, b̂k = bk|D) = (πk − πe)bk.
Hence consumer k is indifferent to under reporting in this case.
For this case we have established that consumer k is indifferent to deviating from reporting
her marginal utility truthfully.
Case 2: consumer k ∈ Ŝ(D; πk):
Similarly for this case we show that consumer k does not gain by over-reporting or under-
reporting her marginal utility. Since k ∈ Ŝ(D; πk), π

r
k(D; πk) ≥ πk − πe. By (A.3), consumer

k consumes qk = 0. Her ex-post benefit is given by, Jk(qk = 0;πk, b̂k = bk|D) = πrk(D; πk)bk
Over Reporting, π̂k > πk:
On over reporting if the consumer gets selected then πrk(D; π̂k) = πrk(D; πk) ≥ πk − πe. By

(A.3) consumption qk = 0 and Jk(qk = 0; π̂k, b̂k = bk|D) = πrk(D; π̂k)bk = πrk(D; πk)bk =

Jk(qk = 0; πk, b̂k = bk|D). Hence consumer k’s ex-post benefit remains same if it gets selected
on over reporting. On the other hand if the consumer does not get selected, then by (A.6)
Jk(qk; π̂k, b̂k = bk|D) = (πk − πe)bk ≤ πrk(D; πk)bk = Jk(qk = 0;πk, b̂k = bk|D). And the
consumer can strictly loose but never gain in terms of ex-post benefit. Hence over-reporting
is a loss to the consumer in this case.
Under Reporting, π̂k < πk:
Here, on under reporting consumer k will always be selected and so πrk(D; π̂k) = πrk(D; πk) ≥
πk−πe. By (A.3) consumption qk = 0 and Jk(qk; π̂k, b̂k = bk|D) = πrk(D; π̂k)bk = πrk(D; πk)bk =

Jk(qk; πk, b̂k = bk|D) and so it does not gain by under-reporting.
Both cases together imply that reporting marginal utility maximizes consumer’s utility when
b̂k = bk. And it follows from the proof that this maximizer may not be unique. Hence



APPENDIX A. APPENDIX 69

π̂k ∈ {π|Jk(b̂k = bk, π) = Jk(b̂k = bk, π̂
∗
k(b̂k)}

We now complete the proof of Theorem 1

Proof. For any given b̂k and π̂k, Jk(b̂k, π̂k) ≤ Jk(b̂k, π̂
∗
k(b̂k)). From proposition 8 it follows

that, Jk(b̂k, π̂
∗
k(b̂k)) ≤ Jk(bk, π̂

∗
k(b̂k)). And from proposition 9 it follows that Jk(bk, π̂

∗
k(b̂k)) ≤

Jk(bk, πk). Hence Jk(b̂k, π̂k) ≤ Jk(bk, πk). This implies that reporting the baseline and
marginal utility truthfully is a dominant strategy, i.e. (b̂∗k, π̂

∗
k) = (bk, πk). When consumer is

not selected, it follows from π̂k = πk, b̂k = bk and (A.5) that qndrk = bk, which gives assertion
(ii). When consumer k is selected, π̂k = πk implies that πrk > πk − πe. Then from (A.2) it
follows that qdrk = 0, which gives assertion (iii)

A.2 Proof of Theorem 2

We first prove the following two propositions. Let

b̂∗k(π̂k) = arg max
b̂k

Jk(b̂k, π̂k).

Definition 9. D = Maximum possible load reduction requirement

Definition 10. F (D) = Cumulative distribution function of load reduction requirement D

Assumption 8. bm = maxk bk � 1

Assumption 9. F ′′ ≥ − 1
Dbm

Proposition 10. Under Assumption 2, with the condition that πmax < (1 − α) min{πk −
πe, πe}/α ∀ k, b̂∗k(π̂k) = bk.

Proof : The consumer’s problem is a two-stage optimization problem as specified by (4.4). Here
we compute the optimal solution for an arbitrary consumer k using dynamic programming
approach. First we solve the second stage decision variable qk followed by the first stage
decision variable b̂k assuming π̂k is fixed.

Second stage optimization: Let

Jk(qk; π̂k, b̂k) = Uk(qk) +R(qk, b̂k, π̂k)− Φ(qk, fk, π̂k) (A.25)

which is the net benefit of consumer k in the second stage as a function of qk. The second
stage decision qk depends on whether consumer k is selected or not. Hence we consider the
following cases.
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Case 1: Consumer k is selected for DR.
Let qdrk be the optimal consumption of consumer k when she is selected for DR. Formally,

qdrk = arg max
qk

Jk(qk; π̂k, b̂k|k is selected), where,

Jk(qk; π̂k, b̂k|k is selected) = πuk min{qk, qm,k} − πeqk + πr(D; b̂k)(b̂k − qk)+ − πmax(qk − b̂k)+

Note the dependency of πr(D; b̂k) on b̂k. This is because the reward for unit reduction, which
is πr(.) decreases with b̂k for a particular realization of D. Hence the reward for unit reduction
depends on b̂k as well
When, πr(D; b̂k) ≥ πuk − πe, it is easy to show that qdrk = 0. Also we get,

Jk(q
dr
k ; π̂k, b̂k|k is selected) = πr(D; b̂k)b̂k (A.26)

When πr(D; b̂k) < πuk − πe, qdrk = b̂k and we get,

Jk(q
dr
k ; π̂k, b̂k|k is selected) = (πuk−πe) min{b̂k, qm,k}+πr(D; b̂k)(max{b̂k, qm,k}−qm,k) (A.27)

Case 2: When consumer k is not selected for DR:
Let qndrk be the optimal consumption of consumer k when she is not selected for DR. Formally,

qndrk = arg max
qk

Jk(qk; π̂k, b̂k|k is not selected), where,

Jk(qk; π̂k, b̂k|k is not selected) = πuk min{qk, qm,k} − πeqk − πmax|qk − b̂k|.
It then follows that,

Jk(q
ndr
k ; π̂k, b̂k| k is not selected) = πuk min{b̂k, qm,k} − πeb̂k (A.28)

First stage optimization: The baseline report of consumer k is the solution of the first stage
optimization problem,

b̂∗k ∈ arg max
b̂k

Jk(b̂k)

Where Jk(b̂k) is the expected net benefit of consumer k and is given by,

Jk(b̂k) = E[I{k is selected}Jk(qdrk ; π̂k, b̂k| k is selected)]

+ E[I{k is not selected}Jk(qndrk ; π̂k, b̂k|k is not selected)] (A.29)

Also, let Dk be the smallest realization of D for which consumer k gets selected. Then from
the selection rule (2.5) it is clear that consumer k will get selected for all realizations of
D ≥ Dk up to the maximum, D. We consider the following cases to complete the analysis.
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Case π̂k ≥ πuk − πe:

In this case when consumer k is selected πr(D; b̂k) ≥ πuk − πe. Hence from (A.26) and (A.28)
we get,

Jk(b̂k) = α

∫ D

0

1{k is selected}πr(D; b̂k)b̂kf(D)+

α

∫ D

0

1{k is not selected}(πukmin{qm,k, b̂k} − πeb̂k)f(D) + (1− α)(πukmin{qm,k, b̂k} − πeb̂k)
(A.30)

Using the observation that consumer k will get selected for all realizations of D ≥ Dk and
will not be selected for any realization of D < Dk.

Jk(b̂k) = α

∫ D

Dk

πr(D; b̂k)b̂kf(D) + α

∫ Dk

0

(πukmin{qm,k, b̂k} − πeb̂k)f(D)

+ (1− α)(πukmin{qm,k, b̂k} − πeb̂k) (A.31)

When b̂k < qm,k: Differentiating Jk(b̂k) w.r.t b̂k we get,

dJk(b̂k)

db̂k
= α

d

db̂k

∫ D

Dk

πr(D; b̂k)b̂kf(D) + α

∫ Dk

0

(πuk − πe)f(D) + (1− α)(πuk − πe) (A.32)

Ignoring the second term in A.32 we get,

dJk(b̂k)

db̂k
= α

d

db̂k

∫ D

Dk

πr(D; b̂k)b̂kf(D) + (1− ᾱ)(πuk − πe) (A.33)

Using product rule for differentiation,

dJk(b̂k)

db̂k
= α

∫ D

Dk

πr(D; b̂k)f(D) + αb̂k
∂

∂b̂k

m∑
j=k

π̂j+1

(
F (Dk + ..+ b̂j)− F (Dk + ...+ b̂j−1)

)
+ (1− ᾱ)(πuk − πe) (A.34)

This implies

dJk(b̂k)

db̂k
= α

∫ D

Dk

πr(D; b̂k)f(D) + αb̂k

m∑
j=k

π̂j+1

(
f(Dk + ..+ b̂j)− f(Dk + ..+ b̂j−1)

)
+ (1− ᾱ)(πuk − πe) (A.35)
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Lets assume for the time being, f ′′ ≤ 0 ∀ D ≥ Dk. Then the following holds,

f(Dk + ..+ b̂j) ≤ f(Dk + .....+ b̂j−1)

From π̂k ≤ πmax it follows that,

m∑
j=k

π̂j+1

(
f(Dk + ..+ b̂j)− f(Dk + ...+ b̂j−1)

)
≥ πmax

m∑
j=k

(
f(Dk + ..+ b̂j)− f(Dk + ...+ b̂j−1)

)
(A.36)

Substituting the above inequality in (A.35) gives,

dJk(b̂k)

db̂k
≥ α

∫ D

Dk

πr(D; b̂k)f(D) + απmaxb̂k

m∑
j=k

(
f(Dk + ..+ b̂j)− f(Dk + ...+ b̂j−1)

)
+ (1− ᾱ)(πuk − πe) (A.37)

Hence,

dJk(b̂k)

db̂k
≥ α

∫ D

Dk

πr(D; b̂k)f(D) + απmaxb̂kf(D) + (1− ᾱ)(πuk − πe) (A.38)

From assumption 9 it follows that f(D) ≥ − D
Dbm

. This implies,

dJk(b̂k)

db̂k
≥ (1− ᾱ)(πuk − πe) + απmaxb̂kf(D) (A.39)

And in this case b̂k ≤ bk ≤ bm. So it follows that,

dJk(b̂k)

db̂k
≥ (1− ᾱ)(πuk − πe)− απmax ≥ (1− α)(πuk − πe)− απmax (A.40)

Then from the condition πmax < (1− α) min{πuk − πe, πe}/α it follows that,

dJk(b̂k)

db̂k
≥ (1− α)(πuk − πe)− απmax > 0 (A.41)

This implies b̂∗k ≥ bk = qm,k.

When b̂k ≥ qm,k:

Jk(b̂k) =
α

D

∫ D

Dk

πr(D; b̂k)b̂k + (1− ᾱ)(πukqm,k − πeb̂k) (A.42)
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Differentiating Jk(b̂k) w.r.t b̂k and using the observation that πr(D; b̂k) is decreasing in b̂k for
a given D gives us

∂Jk(b̂k)

∂b̂k
≤ απ(b̂k)− (1− α)πe Where π(b̂k) =

1

D

∫ D

Dk

π(D; b̂k) < πmax (A.43)

Then using the condition πmax < (1− α) min{πuk − πe, πe}/α in (A.43) we get,

∂Jk(b̂k)

∂b̂k
< 0⇒ b̂∗k ≤ qm,k (A.44)

Before we showed that b̂∗k ≥ qm,k and so b̂∗k = qm,k when π̃k ≥ πuk − πe.

Case π̂k ≥ πuk − πe is similar.

Both cases together imply b̂∗k = qm,k. �

Denote the set of other consumers’ marginal utility report by π̂−k. Let

π̂∗k(b̂k; π̂−k) = arg max
π̂k

Jk(b̂k, π̂k)

Proposition 11. In SRBM-UP, under Assumption 2, π̂k ∈ {π|Jk(b̂k = bk, π) = Jk(b̂k =
bk, π̂

∗
k(b̂k = bk; π̂−k = π−k)}.

Let Jk(D; π̂k, b̂k) be the net benefit of consumer k when it reports (π̂k, b̂k) as the marginal
utility and baseline consumption respectively and when the realized value of load reduction
requirement is D. So,

Jk(D; π̂k, b̂k) = I{k is selected|D}Jk(qdrk ; b̂k, π̂k|k is selected)

+ I{k is not selected|D}Jk(qndrk ; b̂k, π̂k|k is not selected)

Now, using the results of Proposition 10 i.e. b̂k = qm,k, we get

Jk(D; π̂k,b̂k = qm,k) = I{k is selected|D}(πk − πe)qdrk + I{k is selected|D}πr(D)(b̂k − qdrk )

+ I{k is not selected|D}(πk − πe)b̂k

Consider consumer k who reports π̂k. Suppose that all other consumers report their true
marginal utility, i.e., π̂j = πj,∀j, j 6= k. Let πr(D; π̂k) be value of πr(D) as a function of π̂k.
From our mechanism and under Assumption 2, it is clear that π(D; π̂k) is a non-decreasing
function of π̂k for a given D. Below we consider the only two possible cases for π(D; π̂k)
and show that for either of the cases consumer k does not gain by deviating from reporting
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truthfully.
Case 1: (πk − πe) ≥ πr(D; π̂k = πk): In this case, consumer k will not be selected if it reports
truthfully and its net benefit on reporting truthfully is (πk−πe)b̂k. If consumer k over-reports,
i.e., π̂k > πk, it will not be selected. And it’s net benefit will remain the same as the truthful
reporting case.
The only way to change the net benefit is to get selected, which is possible only by under-
reporting. If consumer k under-reports and gets selected, it’s net benefit will be either
πr(D; π̂k)b̂k or (πk − πe)b̂k. However,

πr(D; π̂k) ≤ πr(D; πk) ≤ (πk − πe)

The first inequality is by the non-decreasing property of πr(D; ·). The second inequality
follows from this case. Hence the consumer is at most indifferent to any deviation from
reporting truthfully.

Case 2: (πk − πe) < πr(D; π̂k = πk):
By the assumption of this case consumer k will be selected on reporting truthfully and its net
benefit on reporting truthfully is π(D; π̂k = πk)b̂k. If consumer k deviates by under-reporting
i.e. π̂k ≤ πk, she will still be selected. Also, k∗(D) will be the same. So, πr(D; πk) = πr(D; π̂k)
and the consumer’s net benefit will not change.
The only way to increase the net benefit is to over-report such that πr(D; π̂k) > π(D; πk).
However, consumer k∗(D) + 1 will be selected before consumer k. Excluding consumer k and
including consumer k∗ + 1 will still satisfy D since qm,k∗+1 − qm,k > 0 by Assumption 2. So,
in effect, consumer k will not be selected if it over-reports to make πr(D; π̂k) > πr(D; πk).
This will lead to a decrease in its net benefit.
Combining Case 1 and Case 2, we can conclude that truthful reporting of marginal utility is
a best response for consumer k, if all others are reporting their marginal utility truthfully.
Since k is arbitrary, truthful reporting is a Nash equilibrium for our mechanism. Rest of the
theorem follows from here. �

We now complete the proof of Theorem 2. This step is similar to the proof of Theorem 1 �

A.2.1 Proof of Theorem 3

We give a rough outline of the proof here.
(i) For all π < πmax − πe, we can construct a set of consumers such that when a particular
consumer j is selected π < πj − πe. So when the reward per unit reduction π is such that
π < πmax − πe one cannot guarantee that all selected consumers would reduce
(ii) For a particular load reduction requirement D, even if CAISO’s selection is as efficient as in
SRBM, each selected consumer is paid π per unit of reduction where π ≥ πmax−πe ≥ πk−πe
for all k. Hence the total payment made by CAISO would be greater than that made in
SRBM.
(iii) When the consumers are informed of the DR event several hours prior to the DR event :
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This is done in scenarios where the participating consumers need sufficient time to prepare
for the DR event. We model the average benefit of consumer k on the DR event day as the
mean of the utility during the DR event Jdrk and the utility during the hours prior to the DR
event J−1

k . Then,

Jk(.| k is selected) =
(
J−1
k + Jdrk

) /
2

=
(
uk(q

−
k )− πeq−k + uk(qk)− πeqk +R(qk, b

c
k, π)

) /
2

=
(
uk(q

−
k )− πeq−k + uk(qk)− πeqk + π(bck − qk)

) /
2 (A.45)

Here we compute the consumption decisions of the consumer q− prior to the DR event hour
on the DR event day and use it to derive a lower bound on the customer baseline. On the
DR event day, bm and b−m are constants so differentiating the average utility Jk(.) in (A.45)
w.r.t q−k gives,

∂Jk(.)

∂q−k
=

(
∂uk(q

−
k )

∂q−k
− πe + π

∂bck
∂q−k

)/
2

=

{
πk − πe + π b̄k

b̄−k
If q−k ≤ bk

−πe + π b̄k
b̄−k

q−k > bk

≥ ∂Jk(.)

∂q−k
≥
{
πk − πe + π If q−k ≤ bk
−πe + π q−k > bk

since b̄k > b̄−k (A.46)

Note that ∂Jk(.)

∂q−k
> 0 for all values of q−k when π > πe. This implies q−k → ∞ when π > πe.

This implies that
bck = b̄kCb = b̄kq

−
k

/
b̄−k > q−k →∞ when π > πe (A.47)

�

A.2.2 Proof of proposition 1

Proof. We have

Jendr(q) = πdaq +

∫ 1

s=0

∫ (l−q)

w=0

πrts (l − q − w)ps(w)dw α(s)ds (A.48)

By taking partial derivative we get

dJendr
dq

= πda −
∫ 1

s=0

πrts Ps(l − q)α(s)ds

d2Jendr
dq2

=

∫ 1

s=0

πrts ps(l − q)α(s)ds

Jendr is convex since the second derivative is positive. Hence Jendr is strictly convex. Solution
is obtained by equating the first derivative to zero and uniqueness follows from strict
convexity.
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A.2.3 Proof of proposition 2

Proof. We have

Jes (ys) = φ(ys) +

∫ (l−q−ys)

w=0

πrts (l − q − w − ys)ps(w)dw.

Taking partial derivatives

∂Jes
∂ys

= φ′(ys)− πrts Ps(l − q − ys)

∂2Jes
∂y2

s

= φ′′(y) + πrts ps(l − q − ys)

Second derivative is positive. This implies Jes (ys) is strictly convex. Using first derivative the
optimal load curtailment yes is given by,

yes = 0 if φ′(0) > πrts Ps(l − q)
else the optimal load curtailment yes is given by equating the first order condition to zero i.e.,

∂Jes
∂ys

= φ′(ys)− πrts Ps(l − q − ys)
∣∣
ys=yes

= 0

By strict convexity it follows that the optimal load curtailment decision is unique. Also,
when φ′(0) > πrts Ps(l − q), ∂yes

∂q
= 0. Otherwise from (3.10), by taking partial derivative w.r.t.

q we get,

φ′′(yes)
∂yes
∂q

= −πrts ps(l − q − yes)
(

1 +
∂yes
∂q

)
From this it can be deduced that −1 < ∂ys

∂q
≤ 0. Taking partial derivatives of Je w.r.t q and

using the optimality condition for yes gives

dJe

dq
= πda −

∫ 1

s=0

πrts Ps(l − q − yes)α(s)ds

d2Je

dq2
=

∫ 1

s=0

πrts ps(l − q − yes)
(

1 +
∂yes
∂q

)
Second derivative is positive since ∂ys

∂q
< −1. Hence we get the optimality condition (3.11),

by equating the first derivative to zero.

A.2.4 Proof of Theorem 4

Proof. The unique solution of (3.15) is given by,

yaggs (πins ) =

{
0 if φ′(0) > πins

(φ′)−1(πins ) otherwise



APPENDIX A. APPENDIX 77

Now, for a given q, ylses is unique and is given by,

ylses (πins ) =

{
0 if Ps(l − q) < (πins /π

rt
s )

l − q − P−1
s (πins /π

rt
s ) otherwise

Proof for the above is similar to that of Proposition 2 and hence we skip the details. yaggs (πins )
is a continuous and increasing function of πins . ylses (πins ; q) is a continuous and decreasing
function of πins . So, for any given q, there exists a πins (q) such that yaggs (πins (q)) = ylses (πins (q); q).
Similar to proposition 2 the minimizer qlse satisfies the first order condition,

πda −
∫ 1

s=0

πrts Ps(l − qlse − ylses )α(s)ds = 0

Note that J lse is not strictly convex (which was not the case in 2). Choose π∗ins = πins (qe) as
contingent prices. Then uniqueness of second-stage purchase implies y∗lses = y∗aggs = yes. As
a result, q = qe satisfies the optimality condition and is one of the minimizers. So we can
set, q∗lse = qe. From Proposition 2 we know that this decision is socially optimal. Hence by
convexity equilibria are socially optimal.

A.3 Proof of Proposition 5

Step 1: Replace the set of I.R. constraints (3.22) by a single constraint (A.49) :

For any arbitrary θ,

rs(θ)− φ(ys(θ), θ) ≥ rs(θmax)− φ(ys(θmax), θ)

≥ rs(θmax)− φ(ys(θmax), θmax) ≥ 0

The first inequality is from the I.C. constraint (3.23). The second inequality is from Assump-
tion 5 and the fact that θmax ≥ θ. Third inequality is from the I.R. constraint (3.22). So, we
can replace the I.R. constraints (3.22) by

rs(θmax)− φ(ys(θmax), θmax) ≥ 0, ∀s ∈ S (A.49)

Step 2: Replace the set of I.C. constraints by a monotonicity constraint and a first order
constraint:

First note that the net utility of the aggregator of type θ by accepting a contract of type θ is

R(θ; θ) = rs(θ)− φ(ys(θ), θ)

Considering R(θ; θ) as a function of θ, I.C. constraints (3.23) imply that θ = θ is a global
optimum for R(θ; θ). Below we show that it is sufficient to consider two simple first order
conditions for verifying these global optimality.
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The first and second order conditions on R(θ; θ) are,

r′s(θ)− φy(ys(θ), θ) y′s(θ) = 0,

r′′s (θ)− φyy(ys(θ), θ)(y′s(θ))2 − φy(ys(θ), θ)y′′s (θ) ≤ 0

Due to the global maximum at θ = θ, from the above conditions we get,

r′s(θ)− φy(ys(θ), θ) y′s(θ) = 0

r′′s (θ)− φyy(ys(θ), θ)(y′s(θ))2 − φy(ys(θ), θ)y′′s (θ) ≤ 0

But, since the LSE doesn’t know the true parameter θ, the above conditions should be true
for all θ ∈ Θ, i.e.,

r′s(θ)− φy(ys(θ), θ) y′s(θ) = 0 (A.50)

r′′s (θ)− φyy(ys(θ), θ)(y′s(θ))2 − φy(ys(θ), θ)y′′s (θ) ≤ 0 (A.51)

Differentiating the first order condition above (A.50), we get

r′′s (θ)− φyy(ys(θ), θ)(y′s(θ))2 − φy(ys(θ), θ)y′′s (θ)

− φθy(ys(θ), θ)y′s(θ) = 0 (A.52)

Now, from (A.51) and (A.52) and using the assumption that φθy > 0, we get the following
monotonicity condition.

y′s(θ) ≤ 0 (A.53)

Note that the above monotonicity condition is quite intuitive that is less load curtailment
from costly type. Now, we show that the (local) conditions (A.50) and (A.53) are sufficient
to guarantee the global optimality of R(θ : θ) at θ = θ.

Let θ > θ. Then, from Assumption 5, φy(ys(θ), θ) < φy(ys(θ), θ). Using the monotonicity
condition (A.53) and then using the first-order condition (A.50),

φy(ys(θ), θ)y
′
s(θ) ≥ φy(ys(θ), θ)y

′
s(θ) = r′s(θ)

Integrating on both sides from θ to θ̃

φ(ys(θ̃), θ)− φ(ys(θ), θ) ≥ rs(θ̃)− rs(θ)
which is the same as the I.C. constraints.

Step 3: Modified Optimization Problem:

Using Step 1 and Step 2, we can rewrite the original optimization problem as, for every s ∈ S,

min
rs(θ), ys(θ)

Eθ [r(θ) + Vs(ys(θ); q)] (A.54)

s.t. I.R. rs(θmax)− φ(ys(θmax), θmax) ≥ 0 (A.55)

I.C.1 y′s(θ) ≤ 0 (A.56)

I.C.2 r′s(θ)− φ′(ys(θ), θ) y′s(θ) = 0 (A.57)



APPENDIX A. APPENDIX 79

Step 4: Simplify the Optimization Problem:

It is easy to see that the I.R. constraint will be binding. If not, the LSE can decrease rs(θmax)
until it is binding and thus minimize its cost. Recall that we defined Us(θ) = rs(θ)−φ(ys(θ), θ).
Also, since I.R. constraint is binding, Us(θmax) = 0. By differentiating Us(θ), we get,

U ′s(θ) = r′s(θ)− φy(ys(θ), θ)y′s(θ)− φθ(ys(θ), θ)
= −φθ(ys(θ), θ)

So, we can replace I.C.2 by the above condition. Then the optimization problem will be

min
ys(θ)

Eθ [Us(θ) + φ(ys(θ), θ) + Vs(ys(θ); q)] (A.58)

I.C.1 y′s(θ) ≤ 0 (A.59)

I.C.2 U ′s(θ) = −φθ(ys(θ), θ) (A.60)

From I.C. 2, by integrating,

Us(θ) =

∫ θmax

θ

φz(ys(z), z)dz

where we used the fact that Us(θmax) = 0. Now,

Eθ [Us(θ)] =

∫
θ∈Θ

Us(θ)f(θ)dθ

= (Us(θmax)F (θmax)− Us(θmin)F (θmin))

−
∫
θ∈Θ

U ′s(θ)F (θ)dθ

Since Us(θmax) = 0, F (θmin) = 0, we get,

Eθ [Us(θ)] = −
∫
θ∈Θ

U ′s(θ)F (θ)dθ

=

∫
θ∈Θ

φθ(ys(θ), θ)F (θ)dθ

So, optimization problem is

min
ys(θ)

∫
θ∈Θ

φθ(ys(θ), θ)F (θ)dθ

+

∫
θ∈Θ

(φ(ys(θ), θ) + Vs(ys(θ); q)) f(θ)dθ

s.t. y′s(θ) ≤ 0
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Taking derivative of the objective w.r.t., ys(θ) and equating to zero we get the condition that
y∗s(θ) should satisfy,

V ′s (y
∗
s(θ); q) = −φy(y∗s(θ), θ)−

F (θ)

f(θ)
φyθ(y

∗
s(θ), θ) (A.61)

Next we check whether y∗s (θ)
dθ

< 0. Consider the expression

ψ(y, θ) = −φy(y, θ)−
F (θ)

f(θ)
φyθ(y, θ)

From assumption (5) ∂ψ(y,θ)
∂θ

> 0. Which implies that for a fixed y, ψ(y, θ) increases with θ.

On the other hand, V ′s (y) does not vary with θ. Hence from (A.61) y∗s (θ)
dθ
≤ 0 �

A.4 Proof of Proposition 6

The expected cost J̃ lse() is given by,

J̃ lse(q) = πdaq +

∫ 1

s=0

∫ θmax

θ=θmin

r∗s(θ)

+

∫ 1

s=0

∫ θmax

θ=θmin

πrts

∫ l−q−y∗s (θ)

w=0

(l − q − y∗s(θ)− w)ps(w)dw (A.62)

From proposition (5), we can rewrite J̃ lse() by,

J̃ lse(q) = πdaq +

∫ 1

s=0

∫ θmax

θ=θmin

Us(θ)

+

∫ 1

s=0

∫ θmax

θ=θmin

φ(y∗s(θ), θ) + Vs(ys(θ); q) (A.63)

Differentiating J̃ lse(q) w.r.t q we get,

dJ̃ lse(q)

dq
= πda −

∫ 1

s=0

∫ θmax

θ=θmin

∂Vs(ys(θ); q)

∂q

= πda −
∫ 1

s=0

∫ θmax

θ=θmin

πrts Ps(l − q − y∗s(θ)) (A.64)

Which can be rewritten as,

dJ̃ lse(q)

dq
= πda − EsEθπ

rt
s Ps(l − q − y∗s(θ)) (A.65)
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From proposition (5), we know that y∗s(θ) satisfies,

V ′s (y
∗
s(θ); q) + φy(y

∗
s(θ), θ) = −F (θ)

f(θ)
φyθ(y

∗
s(θ), θ)

Differentiating w.r.t q we get,(
φyy(y

∗
s(θ), θ) +

F (θ)

f(θ)
φyyθ(y

∗
s(θ), θ)

)
∂y∗s(θ)

∂q

= −πrts ps(l − q − y∗s(θ))
(

1 +
∂y∗s(θ)

∂q

)
(A.66)

Then the condition φyyθ(y
∗
s(θ), θ) > 0 implies that −1 < ∂y∗s (θ)

∂q
< 0. Now differentiating

dJ̃ lse(q)
dq

w.r.t q we get,

d2J̃ lse(q)

dq2
= EsEθπ

rt
s ps(l − q − y∗s(θ))

(
1 +

∂y∗s(θ)

∂q

)
> 0 (A.67)

This implies that J̃ lse(q) is strictly convex. And the unique minimizer is given by equating
the first derivative (A.65) to zero i.e. q̃lse satisfies,

πda − EsEθπ
rt
s Ps(l − q − y∗s(θ)) = 0

�

A.5 Consumption and Cost Sensitivities

Note that the optimal consumption decision qb(b̂, θ) depends on b̂. Of course qa(θ) and qc(θ)
do not depend on b̂. Here we calculate the sensitivity of the realized cost J b and J c with
respect to b̂. Again, we hold θ fixed. Define

ζ(b̂, θ) =
dqb(b̂, θ)

db̂
. (A.68)

The sensitivity of optimal cost J b(b̂, qb, θ) with respect to b̂ is given by,

dJ b(b̂, qb, θ)

db̂
= πeζ(b̂, θ)− ∂u(qb, θ)

∂q
ζ(b̂, θ)

− φ′(b̂− qb)(ζ(b̂, θ)− 1). (A.69)

Then, taking into account that qb(b̂, θ) satisfies (4.6), we get

dJ b(b̂, qb, θ)

db̂
= φ′(b̂− qb). (A.70)
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Define β(θ) = dqc(θ)

db̂
. The optimal cost J c(b̂, qc, θ) depends on f b̂ and its sensitivity with

respect to b̂ is given by

dJ c(b̂, qc, θ)

db̂
= π0β(θ)− ∂u(qc, θ)

∂q
β(θ)− πr(1− β(θ)).

As before, qc(θ) satisfies (4.7) and we get

dJ c(b̂, qc, θ)

db̂
= −π2 = π0 −

∂u(qc, θ)

∂q
. (A.71)

In the next section we derive the condition that the optimal forecast b̂∗ has to satisfy and
use it to derive an expression for b̂∗. We then use the inflation in baseline to characterize
efficiency of the proposed mechanism. �

A.6 Proof of Lemma 3

First we show that 0 ≤ α(b̂, θ) < 1, where α is the cost sensitivity defined in (A.68). The
optimal consumption qb(b̂, θ) satisfies (4.6). Holding θ fixed and differentiating (4.6) further
we get, (

φ′′(b̂− q)− ∂2u(q, θ)

∂q2

)
dqb(b̂, θ)

db̂
− φ′′(b̂− q) = 0. (A.72)

Convexity of φ and strict convexity of −u implies the existence of dqb

db̂
and is given by:

α(f, θ) =

(
φ′′(b̂− qb)− ∂2u(qb, θ)

∂q2

)−1

φ′′(b̂− qb).

and satisfies 0 ≤ α < 1.

Next we differentiate H(f) twice to show that H ′′(f) > 0. Differentiating H(f) we get

J
′
(b̂) = (1− α)Eθ

dJ b(b̂, qb, θ)

db̂
+ αEθ

dJ c(b̂, qc, θ)

db̂

= (1− α)Eθφ
′(b̂− qb)− απr. (A.73)

Differentiating once again we get

J
′′
(b̂) = (1− α)Eθ

(
1− α(b̂, θ)

)
φ′′(b̂− qb). (A.74)

Before we showed that
(

1− α(b̂, θ)
)
> 0. Then, it follows that J(b̂) is (strictly) convex if

and only if φ is (strictly) convex.
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A.7 Proof of Lemma 4

Due to space limitations, we only provide a rough outline of the proof here. The optimal
forecast f ∗ satisfies the first order condition πe = M(b̂∗) and is unique. Then from (4.6) and
(4.7) it follows that,

Eθ

{
φ′(b̂∗ − qb(b̂∗, θ)

}
=

απr

(1− α)
(A.75)

Also the second stage decision variable qb(b̂, θ) for a given b̂ has to satisfy the second stage
first-order optimality condition (4.6) which is

φ′(b̂− qb(b̂, θ)) = π0 − µ(qb(b̂, θ), θ)

= µ(qa(θ), θ)− µ(qb(b̂, θ), θ) (A.76)

We consider the two possible scenarios, b̂ < qa(θ), b̂ ≥ qa(θ). For each of the scenarios we
obtain a lower bound on φ′(b̂−qb(b̂, θ). Then using the first order optimality condition (A.75),
we derive the upper bound on f ∗. We consider each scenario separately.
Case f ≥ qa(θ): It follows that b̂ ≥ qb(b̂, θ) and qb(b̂, θ) ≥ qa(θ). From (A.76), and taking
into account that −µ = d,

φ′(b̂− qb(b̂, θ)) = µ(qa(θ), θ)− µ(qb(b̂, θ), θ)

= d(qb(b̂, θ)− qa(θ)) (A.77)

Since φ′(|.|) = λ|.|, φ′(b̂− qb(b̂, θ)) = λ(b̂− qb(b̂, θ)), and from (A.77) it follows that,

λ(b̂− qb(b̂, θ)) = d(qb(b̂, θ)− qa(θ))

⇒ qb(b̂, θ) =
f + d/λqa(θ)

1 + d/λ

⇒ b̂− qb(f, θ) =
d(b̂− qa(θ))
λ(1 + d/λ)

(A.78)

From here it follows that,

⇒ φ′(b̂− qb(f, θ)) =
λd(b̂− qa(θ))
λ(1 + d/λ)

(A.79)

Case b̂ < qa(θ): Here too it follows that b̂ < qb(f, θ) < qa(θ). Then (A.76) implies,

φ′(b̂− qb(b̂, θ)) = µ(qa(θ), θ)− µ(qb(f, θ), θ)

= d(qb(f, θ)− qa(θ)) (A.80)
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Since φ′(|.|) = λ|.| it follows that,

λl(b̂− qb(b̂, θ)) = du(q
b(b̂, θ)− qa(θ))

⇒ qb(b̂, θ) =
b̂+ d/λqa(θ)

1 + d/λ

⇒ b̂− qb(b̂, θ) =
d(b̂− qa(θ))
λl(1 + d/λ)

(A.81)

From here it follows that,

φ′(b̂− qb(b̂, θ)) =
λd(b̂− qa(θ))
λ(1 + d/λ)

(A.82)

We now solve for the upper bound of the optimal forecast f ∗. The first order condition for
the optimal forecast f ∗ (A.75) can be written as,

Eθ

[
φ′(b̂∗ − qb(b̂, θ))

∣∣∣∣b̂∗ ≥ qa(θ)

]
+ Eθ

[
φ′(b̂∗ − qb(b̂, θ))

∣∣∣∣b̂∗ < qa(θ)

]
=

απr

(1− α)
(A.83)

Using (A.79), (A.82) gives,

Eθ

[
λd(b̂∗ − qa(θ))
λ(1 + d/λ)

∣∣∣∣b̂∗ ≥ qa(θ)

]

+ Eθ

[
λd(b̂∗ − qa(θ))
λ(1 + d/λ)

∣∣∣∣b̂∗ < qa(θ)

]
=

απr

(1− α)
(A.84)

Multiplying on either side by (1 + d/λ) and rearranging terms we get,

λdb̂∗

λ
− λdEθq

a(θ)

λ
=

απr

(1− α)
(1 + d/λ)

From here it follows that,

b̂∗ = Eθq
a(θ) +

απr(1 + d/λ)

(1− α)d
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A.8 Proof of Theorem 5

First we prove the following lemma

Lemma 9. ∆Π(T ) ∝∑T
t=1 EΠ (pt − p∗t )2 I{DR Event}+ o(

√
T̄ )

Proof. The saving at time t is given by rα(p) = ŝ1p− ŝ2p
2 where

ŝ1 =

(
ctd−

β
∑t−1

j=1
pj
j
d

(1− β)γt
− F−1(α)

)

ŝ2 =

(
d+

βd

(1− β)γt2

)
(A.85)

Define,

s1 =
(
ctd− F−1(α)

)
s2 = d (A.86)

Then rbα = s1p− s2p
2. Note that rbα is the risk-sensitive savings if the baseline is known before

hand. Note that the cumulative regret for the pricing policy Π = {pt} is given by,

∆Π(T ) =
T∑
t=1

δΠ(t)

Where δΠ(t) = rbα(p∗b)− rα(pt) (A.87)

Where δΠ(t) is the loss that is incurred at a particular time step t. Expanding on δΠ(t) we
get,

δΠ(t) = rbα(p∗b)− rα(pt) = rbα(p∗b)− rbα(pt) + rbα(pt)− rα(pt) (A.88)

Call δ1
Π(t) = rbα(p∗b) − rbα(pt) and δ2

Π(t) = rbα(pt) − rα(pt). Then it follows that δ1
Π(t) =

2s2(pt − p∗b)2. And,
δ2

Π(t) = (s1 − ŝ1)pt − (s2 − ŝ2)(pt)
2 (A.89)

From the fact that pt = 0 when I{DR Event} = 0, it follows that,

δ2
Π(t) ≈

(
O(log(t)/t)pt +O(1/t2)(pt)

2
)

I{DR Event}
≤
(
O(1/t̄2) +O(log t̄/t̄)

)
p̄, When t is large (A.90)

This implies ∑
δ2

Π(t) = o(
√
T̄ ) (A.91)

Note that δ1
Π(t) = 2s2(pt − p∗b)2. This can be rewritten as,

δ1
Π(t) = 2s2(pt − p∗b)2 = 2s2(pt − p∗t + p∗t − p∗b)2 (A.92)
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This can be rewritten as,

δ1
Π(t) ≤ 2s2(pt − p∗t )2 + 2s2(p∗t − p∗b)2 (A.93)

Recall that,

p∗t =
ct

2
(

1 + β
(1−β)γt2

) − β
∑t−1

j=1
pj
j
d+ (1− β)γtF−1(α)

2d
(
(1− β)γt+ β

t

) (A.94)

And p∗b is given by,

p∗b =
ct
2
− F−1(α)

2d
(A.95)

Then p∗b − p∗t is given by,

p∗b − p∗t =
ct
2

β

(1− β)γt2
+

β
∑t−1

j=1
pj
j
d

2d
(
(1− β)γt+ β

t

) − F−1(α)

2d

β

(1− β)γt2
(A.96)

From the fact that p∗t = p∗bt = 0 when I{DR Event} = 0, it follows that,

p∗b − p∗t ≤
(
O(1/t2) +O(log t/t)

)
I{DR Event} ≤ O(1/t̄2) +O(log t̄/t̄), When t is large

(A.97)
Then ∑

δ1
Π(t) ≤

∑
2s2(pt − p∗t )2 +

∑
2s2(p∗t − p∗b)2∑

δ1
Π(t) ≤

∑
2s2(pt − p∗t )2 + o(

√
T̄ ) (A.98)

Now (A.91) and (A.98) implies that,

∆Π(T ) ∝
∑

2s2(pt − p∗t )2 + o(
√
T̄ ) (A.99)

In particular, when there is no DR event p∗t = p∗b = pt = 0. This implies we can further
simplify the above regret as,

∆Π(T ) ∝
∑

2s2(pt − p∗t )2I{DR Event}+ o(
√
T̄ ) (A.100)

This completes the proof

Next we prove the Theorem 5. Lemma 9 suggests that it is enough to focus on the first term
i.e.

∑
2s2(pt − p∗t )2I{DR Event}. Call ∆̄(T ) = E

∑
(pt − p∗t )2I{DR Event}. Then,

∆̄(T ) = E

(T̄+1)/2∑
t̄=1

(
(p̂2t̄−1 − p∗2t̄−1)2 + (p̂2t̄−1 − p∗2t̄−1 + δ2t̄)

2
)

+ o
(√

T̄
)

(A.101)
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Remark 26. We ignore some of the details. Only main steps of the proof re given.

Now this implies that,

∆̄(T ) ≤ 1

2

(T̄+1)/2∑
t̄=1

(δ2t̄)
2 + 2E

(T̄+1)/2∑
t̄=1

(
p̂2t̄−1 − p∗2t̄−1 +

δ2t̄

2

)2

+ o
(√

T̄
)

(A.102)

For a continuous random variable X which is positive, E{X} =
∫∞

0
P{X > x}dx. So the

following holds

E

(T̄+1)/2∑
t̄=1

(
p̂2t̄−1 − p∗2t̄−1 +

δ2t̄

2

)2

≤
(T̄+1)/2∑
t̄=1

∫ ∞
0

P

{
|p̂2t̄−1 − p∗2t̄−1| >

√
γ − δ2t̄

2

}
dγ

=

(T̄+1)/2∑
t̄=1

∫ ∞
δ2
2t̄
4

P

{
|p̂2t̄−1 − p∗2t̄−1| >

√
γ − δ2t̄

2

}
dγ +

(T̄+1)/2∑
t̄=1

∫ δ2
2t̄
4

0

dγ (A.103)

When t̄ is even, it is straight forward to show that

|p̂t̄+1 − p∗t̄+1| ≤ k3|θ − θ̂t̄|+ k4|F−1
t̄ (α)− F−1(α)| (A.104)

This implies that,

|p̂2t̄−1 − p∗2t̄−1| ≤ k3|θ − θ̂2t̄−2|+ k4|F−1
2t̄−2(α)− F−1(α)| (A.105)

Then using Lemma 8 and Theorem 7 it follows that,

P

{
|p̂2t̄−1 − p∗2t̄−1| ≥

√
γ − δ2t̄

2

}
≤ 2exp

(
− µ2

4k2
3

(√
γ − δ2t̄

2

)2 (√
2
√
t̄− 1− 1

))

+ 2 exp

(
− µ3

2k2
3

(√
γ − δ2t̄

2

)2

(t̄− 1)

)
+ 2 exp

(
− µ1

2k2
4

(√
γ − δ2t̄

2

)2

(t̄− 1)

)
(A.106)

Using the following integrals,
∫∞

0
x exp−cx2 = − 1

2c
exp−cx2 and

∫∞
0

exp−ax2 = 1
2

√
π
a

E

(T̄+1)/2∑
t̄=1

(
p̂2t̄−1 − p∗2t̄−1 +

δ2t̄

2

)2

≤
(T̄+1)/2∑
t̄=1

δ2
2t̄

4
+

(T̄+1)/2∑
t̄=1

k2

√
2π

µ1

+

(T̄+1)/2∑
t̄=1

k3

√
2π

µ3

 δ2t̄√
t̄− 1

+

(T̄+1)/2∑
t̄=1

(
2k2

2

µ1

+
2k2

3

µ3

)
1

t̄− 1
+

(T̄+1)/2∑
t̄=1

4k2
3

µ2

1√
t̄− 1− 1

+

(T̄+1)/2∑
t̄=1

k3
π

µ2

δ2t̄√
t̄− 1− 1

(A.107)

Using this expression and (A.102) the statement of the theorem follows �
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