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Routing is the most time consuming step of the process of synthesizing an electronic 

design on a Field Programmable Gate Array (FPGA). It involves the creation of a 

Routing Resource Graph (RRG); a large data structure representing the physical 

architecture of the FPGA. In this work, we first introduce two scalable routing heuristics 

for FPGAs with sparse intra-cluster routing crossbars: SElective RRG Expansion 

(SERRGE), which compresses the RRG, and dynamically decompresses it during 

routing, and Partial Pre-Routing (PPR), which locally routes all nets in each cluster, and 

routes global nets afterwards. Our experiments show that: (1) PPR and SERRGE 

converge faster than a traditional router using a fully-expanded RRG; (2) they both 

achieve better routability than the traditional router, given a limited runtime budget; and 
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(3) PPR uses far less memory and runs much faster than SERRGE, making it ideal for 

high capacity FPGAs. 

 

We then introduce a new dynamic-multiplexing based hybrid logic blocks that can 

be configured to operate as regular configurable logic blocks, or to implement shifting 

operations required for mantissa alignment and normalization in floating point 

operations.  We show that: (1) the number of CLBs required for shifting operations is 

reduced by 67%, and if shifting is not required, these hybrid logic blocks can be 

configured for normal operation, so no functionality is sacrificed; (2) the area overhead 

incurred by these modifications is small, and  (3) there is no negative impact in terms of 

clock frequency or routability for benchmarks that do not use floating point shifting. 

 

Finally, we investigate the parallelization of FPGA routing on Multicore, shared 

memory CPUs, using a speculation-based approach. The router is a parallel 

implementation of PathFinder, which is the basis for most commercial FPGA routers. 

Our results demonstrate scalability for large benchmarks and that the amount of available 

parallelism depends primarily on the circuit size, not the inter-dependence of signals. Our 

experimental results show an average speedup of approximately 5.5x in comparison to 

the single threaded router implemented in the publicly available Versatile Place and 

Route (VPR) framework [46]. 
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Chapter 1. INTRODUCTION 

1.1 MOTIVATION 

Since their inception in the mid-80s, Field Programmable Gate Arrays (FPGAs) have 

experienced an exponential growth at a rate faster than the rest of the semiconductor 

industry [14]. They evolved from as little as 64 LUTs (Xilinx XC2064)[11] to as much as 

over a million LUTs, and a large number of hard-wired macro blocks (embedded 

memories, DSP blocks, and embedded processors), and high speed IOs in the latest 

ALTERA and XILINX devices  (Stratix 10 and Virtex  7) [3] [76]; an increase of more 

than 10,000 times in their logic capacity. 

These FPGA devices are being used across many industries to implement highly 

complex system-on-chip (SoC) designs [14], and in many cases as accelerators for many 

computationally intensive applications. There is also considerable interest in using 

FPGAs to accelerate scientific applications that are dominated by floating-point 

computations. Commercial FPGAs currently use dedicated hard blocks such as DSPs and 

embedded processors for floating point operations. However, applications that are not 

floating-point intensive will be unable to use these blocks. In this thesis, we investigate 

an alternative strategy that leverages the abundant spatial parallelism in FPGAs, and 

provides an optimized floating-point datapath to minimize the size of each operator, as 

doing so maximizes the number of operators that can be synthesized onto a device of 

fixed size; which, in turn, maximizes throughput. 
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To support the design of these complex FPGA architectures, computer-aided design 

(CAD) tools play a decisive role in delivering high-performance, high-density, and low 

power design solutions using these high-end FPGAs. However, the process of 

synthesizing an industrial-scale circuit on a high-capacity commercial FPGA can easily 

take hours, days or even weeks, depending on the size of the circuit and the target device. 

This long runtime is one of the biggest concerns to FPGA architects and circuit designers, 

and a major impediment to the adoption of FPGAs as mainstream accelerators of many 

computationally intensive applications. Prior research in this area has identified Routing 

to be the most time consuming step of the CAD process[24].  Consequently, in this thesis 

we investigate two aspects of the routing problem; routing for FPGAs that employ sparse 

crossbars in their intra-cluster routing, and parallelizing the router on multicore, shared 

memory systems.  

The focus of this thesis is therefore on investigating logic block architecture to 

provide better support for floating-point shifters, and exploring different ways of 

parallelizing and reducing the run time and memory footprint of the routing model for 

FPGAs with intra-cluster routing crossbars. 

1.2 CHALLENGES 

We are interested in island style FPGAs, consisting of an array of configurable logic 

blocks, which implement the logic of the circuit, and the programmable routing which 

allows the logic blocks to be inter-connected. In this thesis we investigate two issues 
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related to the FPGA routing model, and one issue related to the logic block architecture. 

The first issue we investigate is routing in FPGAs that employ sparse crossbars in 

their intera-cluster routing. The process of routing a design on an FPGA is often lengthy 

and memory-intensive. In particular, the Routing Resource Graph (RRG) of a 

commercial-grade FPGA can be very large, due to the inordinate quantity of uniquely 

programmable routing resources that are present in the architecture. 

One of the significant contributors to overall RRG size is the presence of sparse 

intra-cluster routing crossbars within the FPGA routing network [20][42][43][73]. In 

early FPGA generations, intra-cluster routing crossbars were fully connected, which 

allowed the RRG to implicitly represent them. When the crossbars become sparse, the 

implicit representation is no longer accurate, so the need to explicitly enumerate their 

connectivity significantly enlarges the overall RRG size.  

Prior research in this area addressed the sparness of crossbars and attempted to 

provide a model for estimating the routability of sparse crossbars, using analytical and 

architectural approaches. It didn’t however, investigate how routing is performed in 

FPGAs with intra-cluster routing crossbars. 

The second issue we investigate is the enhancement of the configurable logic block 

to provide better support for floating-point shifting operations. This involves the 

introduction of dynamic multiplexing in the intra-cluster routing fabric of certain logic 

blocks. Dynamic multiplexing gives the FPGA programmer the ability to configure the 

SRAM bits of a multiplexer, after they have been set by the routing model. Even tough 

this technique can be beneficial for circuits that require a significant amount of 
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multiplexing, it comes at a non-negligible cost, and creates new challenges for physical 

design tools. The following issues must be addressed in order to justify the inclusion of 

dynamic multiplexers in an FPGA fabric: 

(1) Given that FPGA routing networks consume as much as 90% of on-chip area [7], 

is the area overhead of replacing static multiplexers justifiable? 

(2) When multiplexers are configured for dynamic control, how can the router 

overcome the lack of flexibility arising from the fact that input signals must be routed to 

multiplexer inputs in a pre-specified order? How is routability achieved in the general 

case? 

(3) How are the dynamic control bits generated, and how are they routed? 

Our work address these issues using a CAD-driven architectural approach that 

evaluates the tradeoffs in terms of area and delays associated with the introduction of 

dynamic multiplexing into the intra-cluster routing of the FPGA. 

The last issue addressed in this thesis is the reduction of CAD runtime through the 

parallelization of FPGA routing. Among the different stages in a typical CAD flow, 

routing is often the most significant in terms of runtime and performance, since it directly 

affects the achievable clock frequency. Practically, all commercial FPGA routers have 

their origins in the PathFinder algorithm, introduced in 1995 by McMurchie and Ebeling 

[50]. PathFinder employs an algorithmic approach called negotiated congestion, in which 

individual nets in the user circuit are allowed to share FPGA routing resources; as the 

algorithm proceeds, the negotiation process ensures that at most one net is routed along 

each resource.  
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The challenges associated with parallelizing PathFinder depend primarily on the 

strategy used, and the underlying hardware architecture. At a coarse-grained level, one 

can route the nets in parallel and use a shared congestion map to control the negotiation 

process. The biggest challenge of this approach is to introduce an efficient mechanism to 

handle contention and communication among concurrent threads. At the fine-grained 

level, nets can be routed serially, while parallelizing the maze expansion of individual 

nets. As the maze expansion is typically a directed breadth-first or A* search on the 

RRG, the main concern is finding a mechanism for implementing the priority queue such 

that it is optimized for multithreading operations. 

In this work we investigate parallelizing at both levels (coarse-grained & fine-

grained) on multicore, shared memory CPU architectures.  

1.3 THESIS APPROACH & ORGANIZATION 

The research approach used in this thesis is experimental; we have selected circuits 

from the 2005 IWLS benchmark suite [28]. We used ABC for logic optimization and 

technology mapping [6]. We then incorporated our enhancements and modifications into 

the academic Versatile Place and Route (VPR) physical design tool [46], and use it to 

pack, place and route our design circuits. We evaluate our approaches using FPGA 

architectures from the iFAR repository [33][34] made public by the University of 

Toronto, and report area models and delay estimates provided by VPR. 

The next chapter provides background information and details some of the previous 

work in both the relevant areas of CAD and FPGA architecture. Chapter 3 describes the 
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two approaches we introduced to perform routing in FPGAs that employ sparse crossbars 

in the intra-cluster of their logic blocks. In Chapter 4 we detail the enhancement we have 

made to dynamically reconfigure the logic blocks in order to reduce the cost of floating 

point mantissa alignment and normalization in FPGAs. Chapter 5 presents our 

speculation-based model for parallelizing an FPGA router on multicore, shared memory 

CPU architecture. The final chapter summarizes the thesis conclusions and provides 

suggestions for future work. 
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Chapter 2. BACKGROUND AND RELATED WORK 

This chapter provides background information about FPGA architecture, and the 

CAD flow used to automatically map circuits into FPGAs that employ sparse crossbars in 

their Configurable Logic Blocks (CLBs). It also presents the fundamental concepts and 

techniques of parallel computing essential to parallelizing an FPGA router on multi-core, 

shared memory CPU architectures, and briefly describes the prior work relevant to this 

thesis. 

2.1 FPGA ARCHITECTURE 

The architecture of a modern FPGA as depicted in Figure 2-1, consists of an array of 

inter-connected programmable logic blocks surrounded by programmable input/output 

(I/O) blocks. The main components of this architecture are the configurable logic blocks 

(CLBs), the memory and multiplier blocks, the I/O blocks, and the programmable routing 

fabric. Mapping a design on an FPGA involves configuring the programmable logic 

blocks to implement the logic required by the design and using the I/O blocks as input 

and output pads for interfacing with external devices. The programmable routing fabric 

allows the logic blocks and I/O blocks to be programmatically interconnected.  
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Figure 2-1: Generic Island-style FPGA[1]. 

 

FPGAs are programmed by configuring the switches of the CLBs and the 

programmable routing fabric, using one of three techniques; SRAM-based, Flash-based, 

or Anti-fuse [7]. Among these techniques, SRAM-based is the most popular, and it is the 

technology of choice of Xilinx and Altera; the two major commercial FPGA 

vendors[2][75]. Consequently, in this thesis we will only investigate the SRAM-based 

FPGAs. Basically, this technology makes FPGAs programmable by using SRAM cells to 

control pass transistors, multiplexers and tri-state buffers in order to configure the 

programmable routing and logic blocks as required. These SRAM cells are stored in 

static memory as an array of latches. Figure 2-2 shows these SRAM-based switches. The 

next section briefly describes how the logic blocks are configured using the SRAM cells. 

Sections 2.1.2 and 2.1.3 then describe some of the different architectures and prior 
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research into FPGA logic blocks and routing, respectively. 

 

 

 

Figure 2-2: SRAM bit cell. 

 

Figure 2-3: Types of Programmable switches used in SRAM-based FPGAs[7]. 

2.1.1. CONFIGURABLE LOGIC BLOCK (CLB) 

The purpose of a logic block in an FPGA is to provide the basic computation and 

storage elements used in digital logic systems. Even though many different logic blocks 

have been used to provide this functionality, most current commercial FPGAs are using 

configurable logic blocks based on look-up tables (LUTs)[3][4][76]. In this CLB 
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architecture, the atomic unit is a K-input LookUp Table (K-LUT); Figure 2-3 shows how 

a 2-input LUT can be implemented in an SRAM-based FPGA, a k-input LUT requires 2k 

SRAM cells and 2k-input multiplexers. A k-input LUT can be configured to implement 

any K-input, 1-output logic function; one simply programs the 2k SRAM cells to be the 

truth table of the desired function[7]. 

 

Figure 2-4: SRAM-based implementation of a 2-inpout lookup table (LUT) 

 

A Basic Logic Element (BLE) is a K-LUT coupled with a bypassable flip-flop, as 

shown in Figure 2-5. BLEs are clustered in groups called Configurable Logic Blocks 

(CLBs). Each CLB contains N BLEs, along with an intra-cluster routing crossbar. In 

early FPGAs, the intra-cluster routing crossbar was fully connected; in more recent 

devices, it has become sparse [43]. Section 2.1.3 provides detailed discussion about the 

architecture of the routing fabric; including the intra-cluster routing crossbars. The next 

section presents some modifications to the intra-cluster routing multiplexers, which can 

reduce the number of CLBs required to implement floating point adders by 67%. 
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Figure 2-5: The Basic Logic Element (BLE) of an FPGA. 

 

2.1.2. HYBRID CONFIGURABLE LOGIC BLOCKS 

We have introduced a new type of logic blocks that can be configured to operate as 

regular configurable logic blocks, or to implement shifting operations required for 

mantissa alignment and normalization in floating point operations. If the logic block is 

configured for shifting operations, the routing MUXes of the intra-cluster routing 

crossbar are used in conjunction with the LUTs of the logic block to implement shifting 

operations. This configuration is made possible by the use of dynamic multiplexing; a 

technique that gives the FPGA programmer a direct control over the intra-cluster routing 

MUXes. This is a deviation from traditional FPGA Multiplexing that place the 

Multiplexers under static control, i.e. once configured after routing, they cannot be 

reconfigured until the FPGA is reprogrammed. The next section describes this technique 

and give a motivating example showing the potential area savings resulting from using 

these hybrid blocks to implement floating point shifters. 

2.1.2.1. STATIC VS DYNAMIC MULTIPLEXING 

Statically controlled MUX (S-MUX) is a multiplexer controlled by the FPGA 

bitstream, and is not generally accessible to the programmer. In contrast, dynamically 
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controlled MUX (D-MUX) is a multiplexer that can be configured by the programmer. 

An SD-MUX is a multiplexer that can be configured by the programmer to be either S-

MUX or a D-MUX. One way to make S-MUX accessible to the FPGA programmer is to 

add dynamic configurability as shown in Figure 2-6 (b). Figure Figure 2-6(a) shows a 

traditional FPGA MUX that is statically controlled by the configuration bitstream; in 

Figure Figure 2-6 (b) the static MUX is extended so that it can be dynamically 

configured as an S-MUX or a D-MUX. In the next section we show that this hybrid 

configuration of the MUXes can convert the CLB to implement a shifter. So, converting 

the S-MUXes of the intra-cluster routing of a CLB into SD-MUXes results in a new, 

hybrid CLB architecture accessible by the programmer. The next section presents a 

motivating example showing how this hybrid CLB can be configured to implement a 

floating-point shifter significantly reducing the number of CLBs.  

 

 

Figure 2-6: A Multiplexer in a traditional FPGA routing network. 
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2.1.2.2. CONVERTING HYBRID BLOCKS TO IMPLEMENT SHIFTERS  

Shifters implemented as a Multiplexer-based logic maps inefficiently onto LUTs 

[52]. This inefficiency can however be reduced significantly by using the intra-CLB 

routing MUXes in conjunction with LUTs to implement the shifters required for mantissa 

alignment and normalization in floating-point addition.  As a motivating example, 

consider the 8:1 multiplexer shown in Figure 2-6(a), which drives one input of a LUT; 

the other LUT inputs are driven by similar multiplexers, which are not shown. Three 

FPGA configuration bits drive the multiplexer’s selection inputs. The purpose of this 

multiplexer is to provide some flexibility to the FPGA CAD tools—in particular, the 

router -when synthesizing a circuit onto the FPGA. In this case, there are 8 physical wires 

within the FPGA that can connect to this LUT input, via the multiplexer. One signal must 

route to that particular LUT input, and the router is given 8 possible wires to use. Once 

the route is complete, the configuration bits are set to select the chosen wire. This 

configuration is static, i.e., it does not change until the FPGA is reprogrammed. As there 

is no possibility to dynamically drive the selection inputs of this multiplexer, there is no 

possibility for the user to utilize it as an actual 8:1 multiplexer. As it is not architecturally 

visible, the typical user—who is not an FPGA architect—will be completely unaware of 

its existence. 

As illustrated in Figure 2-6 (b), a Static-Dynamic Multiplexer (SD-MUX) can be 

configured for either static or dynamic control. A 2:1 multiplexer now drives the 

configuration inputs of the 8:1 multiplexer. The 2:1 multiplexer can select either the 

control bits or a set of wires that are available to the user to provide dynamic control. An 
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extra configuration bit drives the selection input of the 2:1 multiplexer, thus allowing the 

user to configure the 8:1 multiplexer to provide either static or dynamic control. This 

basic idea easily generalizes to a multiplexer with any number of inputs, as long as a 

sufficient number of control bits are provided. When the SD-MUX is configured to 

provide static control, one signal can be routed to any of the 8 multiplexer inputs, and the 

configuration bits are set accordingly, as noted earlier, this provides flexibility to the 

router, as there is fierce competition for routing resources. When the SD-MUX is 

configured as a dynamic multiplexer, as shown in Figure 2-7(b), 8 signals are routed to 

the 8 multiplexer inputs in pre-specified order; e.g., if the user logic expects the 

multiplexer to select signal x when the selection bits are 010, then x must be routed to 

multiplexer input 010 in order to preserve this functionality; thus, the flexibility afforded 

to the router in the static case is sacrificed. 

If we assume that the multiplexers in the routing network are 27:1 or larger, then 24 

of them can implement mantissa alignment, and 27 can implement normalization. If we 

ignore the other LUT inputs, and configure the LUT to implement the identity function, 

then these two shifters can be implemented using 51 LUTs: a savings of 66.7% over the 

LUT-based implementation. Chapter 2 presents a solution that realizes this best-case 

savings. 
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Figure 2-7: Routing challenges of dynamic multiplexers. 

The goal of converting CLBs to implement shifters is to reduce the cost of mantissa 

alignment and normalization in floating-point operations. One alternative is to integrate 

floating-point units as hard blocks [5][30][36]; however, applications that are not 

floating-point intensive will be unable to use these blocks. To date, FPGA vendors do not 

sell device families with dedicated blocks for floating-point applications. 

Beauchamp et al. [5] advocate integrating hard shifters or 4:1 multiplexors in parallel 

with FPGA logic; however, when the shifters are not used, the nearby routing resource 

are wasted; and when the 4:1 multiplexors are used, significant routing resources are still 

required to form large shifters. 

Shifters and multiplexers can be synthesized onto multipliers in the DSP blocks 

[30][21], and Xilinx has added 17-bit barrel shifters to their DSP48E1 blocks [72]; 

however, a DSP block used for shifting, cannot perform other operations. Benchmarks 

that require multiplication and shifting can still benefit from FPGAs containing DSP 

blocks and macro-cells. Floating-point datapath compilers use arithmetic transformations 
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to synthesize floating-point operations efficiently on FPGAs [18][36][37]; reducing the 

cost of normalization is one of their goals. These compilers achieve better performance 

and logic density than using 2-input operators, but they sacrifice IEEE compliance. Our 

approach is amenable to IEEE-compliant operators. A patent by Kaviani (Xilinx) [32] 

exposes the selection bits of C block multiplexers to the programmer; the idea is similar 

to Xilinx Virtex FPGAs, which do not have intra-cluster routing. No CAD tools are 

described, so the affect on routability is unknown. The next section presents the FPGA 

routing architecture, and illustrates the approach employed to model the intra-cluster 

routing resources in order to realize the hybrid CLB architecture. 

2.1.3. FPGA ROUTING ARCHITECTURE 

The routing fabric of an island-style FPGA can be viewed as a network of 

interconnected MUXes that is divided into two parts: the Intra-CLB routing, which is 

used to route signals from CLB input pins and feedbacks (i.e., BLE outputs in the same 

cluster) to LUT inputs; and the inter-CLB routing, which is used to route signals from 

BLE outputs to their destination clusters (or specifically, the routing tracks that drive the 

destination clusters). In this thesis we adhere to the inter-CLB routing architecture used in 

VPR [46], but present an intra-CLB routing model completely different from VPR, that 

share some similarities with the work of Guy and Lewis in [43], and Feng and 

Kaptanoglu [20]. The inter-CLB routing is a single connected structure for the whole 

device, while there is one intra-CLB routing for each cluster. Figure 2-8 depicts an island 

style FPGA in which the Configurable Logic Blocks (CLBs) are surrounded by routing 

channels of pre-fabricated wiring segments on all four sides. A Connection Block (C 
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Block) of programmable switches connects each CLB input or output pin to a subset of 

the wires in the adjacent routing channel. Figure 2-8 illustrates the FPGA floorplan. 

Switch Blocks (S Blocks) are programmable intersections between horizontal and vertical 

routing channels. They are simply a set of programmable switches that allow some of the 

wire segments incident to the switch block to be connected to other segments. By turning 

on the appropriate switches, short wire segments can be connected together to form 

longer connections.  

I/O Pads

CLB

Switch Block 
(S Block)

Connection Block 
(C Block)

 

Figure 2-8: Generic Island-style FPGA. 

 

The multiplexers, shown on the right-hand side of Figure 2-9, are implemented in the S 

Blocks, which are shown (without detail) in Figure 2-9. Figure 2-9 depicts inputs coming in 

from the left hand side of the CLB and outputs leaving to the right; in actuality, inputs 

and outputs may enter and exit from all four sides. 
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W routing segments

Isolation 
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W×Fcin:1 multiplexer
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N local feedbacks
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I = Number of  of CLB inputs

C Block
(inputs)

...

W routing segments
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segments in the routing channel

C Block (outputs)

...

 

Figure 2-9: CLB and its adjacent routing channels. 

 

Configurable Logic Block (CLB) contains several BLEs with fast local interconnect 

provided by the intra-cluster routing crossbar; the Connection Block (C Block) inputs and 

outputs interface the CLB with the global routing network Figure 2-9.  

 

We use the same notation employed in VPR [46], originally introduced by Brown and 

Rose [9], for describing some of the parameters of an FPGA's routing architecture. The 

number of LUT inputs (LUT size) is denoted K, and N is the number of LUTs per CLB 

(Cluster size). I is the number of CLB input pins, and W denotes the number of segments 

per routing channel. The number of wires in each channel to which a logic block pin can 

connect is called the connection block flexibility, or Fc. The number of wires to which 

each incoming wire can connect in a switch box is called the switch block flexibility, or 

Fs. Each C Block input multiplexer in Figure 2-9 selects one of W×Fcin wires, and each 
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BLE drives W×Fcout segments in the adjacent routing channels. Most FPGAs use single 

driver routing [7], so the C Block output is a conceptual description of the routing 

topology. 

Prior work conducted by Vaughn Betz and Jonathan Rose in [7] and implemented in 

VPR [46], has extensively investigated the inter-CLB routing architecture, including the 

tradeoffs between the different parameters of this architecture, but only considered fully 

connected intra-cluster routing crossbars. In this work, we use their inter-CLB model but 

investigate the use of sparse crossbars in the Intra-cluster routing of the FPGA. The next 

section presents our proposed sparse crossbar model and section 2.3 describes the routing 

approaches we introduce for FPGAs with sparse intra-cluster routing crossbars. 

2.1.4. INTRA-CLB ROUTING CROSSBARS 

Intra-cluster routing crossbar can be viewed as a network of MUXes connecting the 

CLB pins to the LUT pins. Fully connected crossbars guarantee that there is a path in the 

intra-cluster routing network from each CLB pin to each LUT pin. When the crossbars 

are sparse this full connectivity is no longer guaranteed. Figure 2-10 show the Intra-

cluster connectivity pattern; Figure 2-10(a) depicts a fully connected crossbar, while 

Figure 2-10(b) shows a sparse crossbar. 
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Figure 2-10: CLBs with sparsely connected intra cluster routing crossbars. 

 

We model this intra-cluster routing connectivity as a 2-dimensional binary matrixB , 

with  I + N  columns and KN  rows. Each column corresponds to an input (a CLB input 

pin or a local feedback from a BLE in the cluster), and each row corresponds to a BLE 

input. B(i, j) =1  if a signal can route from input i  to BLE input j , and 0 otherwise. It is 

important to note that B  simply models the CLB-input-to-BLE-input connectivity of the 

crossbar, but does not model its internal architecture. 

As an example, we model a CLB with N = 2, K = 2   (e.g., it contains two 2-LUTs); 

the four BLE inputs are denoted b00  , b01 , b10 , and b11 . The CLB has three input pins, I0 , 

I1 , and I2 , and two local feedbacks from the BLEs, O0  and O1 :  
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In this example, there is a connection from CLB input pin I0  to LUT input pins b00  

and b01 , but not b10  and b11 ; also, the local feedbacks are not used. 

We used a tool developed by Lemieux et al. [42] to generate routable sparse 

crossbars with a user-provided density function p. The tool generates matrix B  such that 

each row, column, and the entire matrix all have a population percentage of 

approximately p, i.e.: 

B(i, j) = p(I + N )!" #$
j∑ ±1 ……………………………………………………….( 2.1 ) 

B(i, j) = pkN!" #$
i∑ ±1  , and  ………………………..…………………………..( 2.2 ) 

B(i, j) = pk(I + N )!" #$
i, j∑ ±1  …………………………………………………….( 2.3 ) 

Now that we have a logical mapping between the CLB pins and LUT pins we can model 

crossbars of any density and extend the routing resource graph to include the routing 

resources of these crossbars. 
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In the past decade, there has been some interest in investigating FPGAs that employ 

sparse crossbars in their intra-cluster routing, Lemieux et Lewis presented an algorithm to 

generate and evaluate routable sparse crossbars [42], and later proposed their usage for 

FPGA with intra-cluster routing; to improve routability they added spare CLB input pins 

[43]. Later work by Feng and Kaptanoglu [20] used entropy counting to design intra-

cluster routing crossbars that offer greater routability; however, there is concern that CLB 

inputs and local feedbacks cannot reach fast inputs for LUTs with non-uniform delay 

[20].   

Ye [73] showed how the equivalence of LUT inputs can be leveraged to reduce the 

population density of the intra-cluster routing crossbar without compromising routability; 

however, it is unclear if this approach is compatible with more advanced logic block 

features such as fracturable LUTs and carry chains, where LUT inputs can no longer be 

treated as logically equivalent. Chin and Wilton [16] extended Ye’s work to investigate 

high-capacity hierarchical CLBs with multi-layer sparse crossbar interconnects, and 

showed that this approach reduced the placement and routing problem sizes significantly, 

thereby yielding faster and more robust CAD algorithms.  

In terms of commercial FPGAs, Xilinx employs a C-block (Figure 2-1) without an 

intra-cluster routing crossbar, while Altera and Microsemi (formerly Actel) employ an 

intra-cluster routing crossbar in conjunction with a C-block. We presume that Xilinx’s C-

block is much denser than Altera’s or Microsemi’s, although no formal comparative 

study has been published, to the best of our knowledge. 
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Altera has disclosed that their Stratix-series devices employ a sparse intra-cluster 

routing crossbar [43]; although no details regarding the topology were presented. 

Microsemi disclosed that their FPGAs employ a 3-layer Clos network, where the third 

layer is subsumed by LUTs [42].  

None of the previous work, however, investigated how routing is accomplished in the 

presence of sparse crossbars; section 2.3 briefly describes the proposed routing heuristics, 

and Chapter 3 presents the routing algorithms we employed to perform routing in FPGAs 

with intra-cluster routing crossbars. 

2.2 CAD FOR FPGAS 

2.2.1. OVERVIEW 

Computer-Aided Design (CAD) has played a key role in the advancement and 

adoption of FPGAs across many industries. Due to the complexity of FPGA devices, the 

use of CAD tools has become an integral part of the process of synthesizing circuit 

designs onto an FPGA. A typical CAD flow takes as input a user circuit specified using a 

hardware description language (HDL) or a schematic along with a description of the 

target FPGA device. The CAD software then converts the high-level description into a 

binary file specifying the state of every configuration bit in the FPGA. This process is too 

complex to be modeled as one monolithic problem; it is therefore broken into a series of 

interdependent sub-problems, which are solved in sequence, as shown in Figure 2-11. 
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  Figure 2-11: Typical CAD flow for an FPGA. 

The first stage of this flow is called front-end synthesis. This step typically involves 

HDL elaboration, logic optimizations, and technology-mapping which maps the logic of 

the circuit into the LUTs of the FPGA. Front-end synthesis produces a netlist of FPGA 

logic blocks optimized in terms of logic blocks count and/or circuit speed. 

The netlist then passes through the back-end flow, which involves packing, 

placement and routing. In the packing stage, the logic blocks of the technology-mapped 

netlist are clustered together, to determine which blocks are clustered together in the 

same CLBs; clustering logic blocks together creates opportunities for many types of 

efficiencies, such as CLB input sharing (if a net fans out to multiple logic blocks 

clustered in the same CLB), and the usage of the fast local feedbacks within the CLB, 
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rather than using the global FPGA routing network. The placement stage assigns each 

clustered logic block in the netlist to a physical CLB in the FPGA. Routing determines 

the paths in the routing fabric for individual signals in the netlist. The output of this flow 

is a configuration bitstream necessary to program the circuit on the FPGA. 

A substantial amount of work has been published on the different stages of this CAD 

flow. Despite this work, publicly available CAD tools cannot model the hybrid logic 

blocks described earlier and offer limited to no capability for modeling sparse crossbars.  

Furthermore, synthesizing an industrial-scale circuit on a high-capacity commercial 

FPGA can easily take hours, days or even weeks, depending on the size of the circuit and 

the target device. The major contributions of this thesis in terms of FPGA CAD tool 

enhancement are mostly related to physical design (placement and routing). Specifically, 

we investigate the placement and routing of macro-cells, routing for FPGA with sparse 

crossbars, and parallel FPGA routing on multi-core, shared memory CPU architectures. 

The following two sections describe the placement and routing problems in the context of 

sparse crossbar routing model, and hybrid CLB architecture.  Section 2.5 presents our 

parallel model targeting multi-core CPUs, and the final section summarizes this chapter.  

2.2.2. PLACEMENT 

Placement algorithms assign each clustered logic block to a physical CLB in the 

FPGA. This mapping has significant impact on the performance and routability of the 

circuit; as it determines the amount of interconnect in the FPGA, which is the major 

bottleneck of circuit performance. To minimize the impact of this bottleneck, the placer is 

often optimized for wire-length, routability, and timing.  The mostly widely recognized 
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approach for FPGA placement is iterative improvement, specifically via simulated 

annealing; this is the approach taken by VPR [7].  

 

S = RandomPlacement ( ); 
T = InitialTemperature ( ); 
RLimit = InitialRLimit ( ); 
while ( ExitCriterion ( ) == False) {    /*”Outer loop”*/ 
      while ( InnerLoopCriterion ( ) == False) {  /*”Inner loop”*/ 
 Snew = GenerateViaMove (S, RLimit); 
 ΔC =Cost(Snew )−Cost(S)  
 r = random (0, 1); 
 if ( r < e−ΔC/T ) { 
     S = Snew; 
 } 
      }  /* End ”Inner loop”*/ 
       T = UpdateTemperature ( ); 
       RLimit = UpdateRLimit ( );  
}  /* End ”Outer loop”*/ 
 

 Figure 2-12: Pseudo-code for the FPGA placement algorithm. 

Simulated annealing is a stochastic optimization method for finding the global 

minimum of a cost function; which may possess many local minima. It mimics the 

annealing process used to gradually cool molten metal to produce high-quality metal 

objects [71]. Pseudo-code for a generic simulated annealing-based placer is shown in 

Figure 2-12. The quality of any placement of logic blocks is evaluated by a cost function; 

which, for a wirelength-driven placement could be, the sum over al1 nets of the half-

perimeter of their bounding boxes [7]. VPR placer creates an initial placement by 

assigning logic blocks randomly to the available locations in the FPGA.  

The algorithm then performs a large number of moves to gradually improve the 

placement. The moves are evaluated based on the changes they instigate on the cost 
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function.  Moves that decrease the cost are always accepted, if the cost would increase, 

the move is not automatically rejected. Rather, the acceptance of the move is decided 

using a probability of acceptance given by r < e−ΔC/T , where  is the (positive) change 

in cost, and T  the temperature of the annealing [71] that controls the likelihood of 

accepting moves that make the placement worse. VPR’s placer sets T  very high initially, 

so almost all moves are accepted; it gradually decreases T as the placement is refined, 

reducing the probability of accepting a move that negatively impacts the current 

placement solution. The algorithm terminates when the annealing process cannot 

generate better moves. VPR uses an adaptive annealing schedule that control the rate at 

which temperature is decreased, the exit criterion for terminating the anneal, the number 

of moves attempted at each temperature, and the generation of potential moves [7].  

The work presented in this thesis uses the VPR 5.0 placement engine [46], with some 

modifications introduced in order to investigate the best approach for placing the macro-

cells. The macro-cells are placed offline, prior to the rest of the circuit, and we attempted 

to optimize for routability and delay. More details on this will be provided in Chapter 2.  

The next section covers the routing step, which constitutes the bulk of this work. We 

first present a general description of routing, then we show how routing is performed in a 

sparse crossbar, and macro-cells. Section 2.5 describes our parallelization of PathFinder 

on multi-core, shared memmory CPU architectures.  
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2.2.3. ROUTING 

2.2.3.1. OVERVIEW 

After the circuit placement has been chosen, routing is performed to configure the 

programmable switches of the routing fabric to connect the logic blocks and the I/O 

pads of the circuit. To establish a connection, the router must find a sequence of unused 

routing resources along a path from the source to the sink for each signal in the netlist.  

Routing usually involves the creation of a graph [7] representing the routing resources 

of the FPGA, commonly called the routing resource graph (RRG).  

 

Figure 2-13: A small FPGA fragment (a) and its corresponding RRG (b) [8, Fig. 4]. 

As shown in Figure 2-13, the nodes of the RRG represent wires and pins of the FPGA 

and the edges represent switches or feasible connections between two nodes. 

 Each signal of the input circuit is represented by one source along with a 

subset of nodes corresponding to its sinks. Routing a signal involves assigning 



 

29 

routing resources such that all the sinks are reachable from the source. To 

minimize routing resources usage, this path has to be as short as possible. When 

routing a set of signals sequentially, the order in which the signals are routed 

may be critical since some routing resources needed by a signal may be 

occupied by signals that are routed earlier. For this reason, FPGA routers must 

employ a congestion avoidance mechanism to resolve contention for routing resources. 

Since most of the delay in FPGAs is due to routing, the critical path delay for a circuit 

should be kept minimal by using fast routing resources and shortest paths to route nets 

on or near the critical path. Routers that optimize the critical path delay are called 

timing-driven; others are generally classified as being routability-driven.  

2.2.3.2. PROBLEM FORMULATION 

C. Problem Formulation 

FPGA routing is a technology-specific variation of the disjoint path problem from 

graph theory, which is one of Karp’s original NP-complete problems [31]. In a graph, 

two paths are disjoint if they share no vertices or edges. Figure 2-14 provides an example 

of disjoint and non-disjoint paths. 

 

 

(a)              (b) (c) 

Figure 2-14: A simple instance of the disjoint path problem. 
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Figure 2-14 shows an instance of the disjoint path problem; Figure 2-14(a) shows a graph 

G(V, E) with sources S = {s1, s2} and sinks T = {t1, t2}; an illegal solution, i.e., two non-

disjoint paths that share a common vertex is shown in Figure 2-14 (b); Figure 2-14 (c) shows 

a legal solution, i.e., two disjoint paths that share no common vertices.  

An instance of the disjoint path problem is a graph G(V, E), and two sets of vertices: 

a set of sources S = {s1, s2, …, sk} and a set of sinks T = {t1, t2, …, tk}. A legal solution is a 

set of paths P = {p1, p2, …, pk} where pi is a path from si to ti in G, such that the paths in 

P are disjoint. The NP-complete decision problem is whether or not a set P of disjoint 

paths exists, given G, S, and T; corresponding optimization problems may try to minimize 

the total lengths of the paths in P, the length of the longest path in P. In the routing 

problem for FPGAs, the graph G is the RRG, and the set of sources and corresponding 

sinks is derived from the placement solution. One important difference is that each path 

in the FPGA represents a net in a digital circuit, where a source may fan-out to drive 

multiple sinks. Each net has the form Ni = (si, Ti), where si is the source and 

Ti = {ti
1, ti

2, ..., ti
n}  is the set of n sinks driven by source si; thus, pi is actually a hyper-path 

(tree) that connects si to the sinks in Ti. 

A second important difference involves the equivalence of sinks. Because LUTs are 

programmable logic functions, their inputs are equivalent. Without loss of generality, if a 

2-input LUT is configured to perform a logic function f(s1, s2), then there is an equivalent 

logic function f’(s2, s1) = f(s1, s2), yielding a symmetric source/sink assignment, shown in 

Figure 2-15(a). Explicitly listing either pair as the one possible legal solution, as shown 

in Figure 2-15(b), is overly restrictive. Thus, it is necessary to introduce a single vertex t 
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to represent a common sink, as shown in Figure 2-15(c). Therefore, any legal routing 

solution must be node disjoint, except at the common sink. 

 

  (a)          (b)     (c) 

Figure 2-15: Logic equivalency of LUT inputs. Due to the equivalence of LUT inputs, different source-sink 

pairs may be legal solutions (a); however, enforcing specific source-sink pairs may be overly restrictive (b); 

the solution is to create a common sink (t) that represents all equivalent LUT inputs (c). 

The objective of an FPGA router is twofold: (1) find a legal route, supposing the one 

exists; and (2) minimize the delay of the critical path in the circuit, which may involve 

the concatenation of several disjoint paths in the RRG. Many aspects of this delay will be 

technology-specific, including the logic delay through the BLEs on the path, delays 

relating to fanout, delays through routing multiplexers, wire delays in the routing 

network, etc. 

Even though there have been several attempts at solving the routing problem in 

FPGAs [9] [40], mainly inspired by global routing for standard cells[63], by far the most 

successful approach is an algorithm called PathFinder [50], which is based on the 
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principle of negotiated congestion; both of VPR’s routers are based on PathFinder, with 

some non-trivial modifications [46]. The next section presents the key elements of VPR’s 

implementation of PathFinder, and highlights the limitations of the routing model in 

VPR, which motivated our work in modeling the intra-CLB routing resources as well as 

studying the routability issue in FPGAs that employ sparse intra-cluster routing crossbars. 

2.2.3.3. PATHFINDER  

This section summarizes the PathFinder FPGA routing algorithm [50]. PathFinder is 

based on the paradigm of Negotiated Congestion (NC), which computes illegal routing 

solutions in which several nets may share a single wire (RRG vertex). The negotiation 

process dynamically adjusts a cost function, which, over time, pushes nets away from 

congested wires, and yields a globally legal routing solution. 

Figure 2-16 presents pseudocode for PathFinder. The outer loop, called the Global 

Router, iterates until a legal routing solution is found (i.e., all nets are routed on unique 

RRG nodes). The pseudocode assumes that a legal routing solution can be found. In 

practice, the global router is often replaced with a fixed number of iterations; if a legal 

global route is not found, then routing is assumed to fail.  

The Signal Router (lines 2-27) is oblivious to the notion of congestion (i.e., several 

nets sharing the same RRG vertex); a cost function (described below) is computed for 

each RRG vertex and is dynamically updated to dissuade the usage of congested vertices 

during routing. The objective of the signal router is to find a route that minimizes the 

aggregate cost of the RRG vertices that comprise the route.  
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// Global Router 
1.  While at least two nets share a common routing resource 
  // Signal Router 
2.  For each net Ni   
3.   Rip up routing tree RTi for net Ni = (si, Ti) 
4.   Reinitialize RTi to contain only the source si  
5.   For each sink ti

j  Ti  
6.    Initialize priority queue PQ to RTi with cost 0 
7.    While ti

j  RTi 
8.     Remove min. cost vertex u from PQ 
9.     Insert u into RTi 
10.     If u ≠ ti

j 
11.      For each RRG edge (u, v) 
12.       If v RTi and v PQ 
13.        Insert v into PQ with cost fv = gu,v + dv 

j  
         and predecessor edge (u, v) 
14.       Else If v RTi and v PQ and fv > gu,v + dv 

j 
15.        Change the cost of v in PQ to  
         fv = gu,v + dv 

j 
16.        Change the pred. edge of v in PQ to (u, v) 
17.       EndIf 
       EndFor 
18.     EndIf 
19.    EndWhile 
20.   EndFor 
21.   For each sink ti

j  Ti 
22.    For each node v in reverse path from ti

j to si 
23.     Update cost cv 
24.     Add v to RTi 
25.    EndFor 
26.   EndFor 
27.  EndFor 
28. EndWhile 

Figure 2-16: Pseudocode for the PathFinder FPGA routing algorithm.   

The Signal Router routes one net a time; the routing tree RTi for net Ni is expanded 

in search of each sink ti
jTi, one sink at a time, and in-order. The routing tree RTi for net 

Ni, computed during the previous iteration, is discarded, and a new route is computed.  

The new route may be computed using a priority-driven breadth-first search [50], 

similar to the maze expansion step of Lee’s Maze Router [38]; more efficient routes can 
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be computed using an A* cost function, which includes an additional term that directs the 

search toward the target sink ti
j [7][50][69].  

The first search starts from source si of the current net Ni to the first sink, ti
1, resulting 

in a routing path. Subsequent searches expand the routing path into a routing tree, RTi. 

Inductively, suppose that RTi connects si to the first j-1 sinks, {ti
1, ti

2, …, ti
j-1}. The search 

will find a path that connects one vertex in RTi to the jth sink, ti
j.  

Each search initializes a priority queue PQ to contain the vertices in RTi at zero cost. 

After processing these vertices, PQ will contain each vertex that (1) has at least one 

neighbor in RTi, and (2) does not belong to RTi itself. The search works as follows: the 

lowest cost vertex v is removed from PQ and added to RTi. The vertices adjacent to v are 

then examined and inserted into PQ accordingly. This process repeats until the current 

sink ti
j is found. PQ includes an adjacent neighbor u of v that belongs to RTi; thus, v and 

adjacent edge (u, v) are added together to RTi.  

Cost Function: An important implementation detail is the cost computed for each 

vertex when it is inserted into PQ. Different PathFinder implementations use different 

cost functions [7][50] [69], with different objectives and strategies. Let v be the vertex, 

and u be a vertex adjacent to v that has already been added to RTi; in other words, if the 

search selects v for inclusion in RTi, it will include edge (u, v) as well. Let fu denote the 

cost of the path from source i to node u, and cv denote the cost of adding node v to the 

route. Then the cost of routing from the source to v is: 

gu,v = fu + cv  ………………………………………………………………...……( 2.4 ) 

To accommodate an A* cost function, let dv 
j be an estimate of the cost of completing 
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the route from node v to sink ti
j. Then the cost of the path from source i to sink ti

j along 

RRG edge (u, v) is 

fv = gu,v + dv 
j.  ………………………………………………………...…………( 2.5 ) 

A breath-first search, i.e., a Lee-style maze expansion [38], then corresponds to the 

case where dv 
j = 0. Several modifications have been proposed to assign relative weights 

to the the breadth-first and A* components of the cost function 

fv = gu,v + αdv 
j, α ≥ 0; and [13] ……………………………..…………( 2.6 ) 

fv = (1 - β)gu,v + βdv 
j, 0 ≤ β ≤ 1 [14]      ………………………….……( 2.7 ) 

When adding a new vertex u into RTi, each neighbor v of u is processed and added to 

PQ, unless v already belongs to RTi. If is possible that a different neighbor w of v is also 

part of RTi, so v may already be in the priority queue with some cost function 

 fv = gw,v + cv.  

In principle, it is now possible to add v to RTi either via edge (u, v) or (w, v). The best 

choice is the one that minimizes fv. Therefore, the cost and predecessor of v in PQ are 

changed from w to u if gu,v < gw,v, or, equivalently, if gu,v + cv is less than the current 

value of fv.   

Several different variants of the node cost function cv have also been proposed: 

cv = (bv + hv)pv, and [1]  ……………………………………….……..……( 2.8 ) 

cv = bvhvpv,  [7, Eq. (4.3)1]   …………………………………….…( 2.9 ) 

where bv is the base cost of v (typically its intrinsic delay), hv is the history cost of v, 

which depends on the number of nets that are routed through v during previous iterations, 

                                                
1 We ignore the BendCost(…) term from Eq. (4.3) in Ref. [7] because we are performing combined global-detailed 
routing.  
2 In combined global-detailed routing, which is the approach taken by VPR, the capacity of each routing resource is 
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and pv is a penalty function associated with the number of nets routed through v in the 

current solution. PathFinder dynamically updates hv and pv accordingly as routing 

proceeds. According to Ref. [7], the advantage of Eq. (2.9) over Eq. (2.8) is that 

multiplying the bv and hv terms, rather than adding them, eliminates the need to normalize 

them; one possible drawback, not mentioned by [7], is that bvhv > bv + hv for bv, hv > 2, 

so there is a greater chance of arithmetic overflow if both terms grow significantly as the 

algorithm iterates.  

The difference between hv and pv is that hv permanently increases the cost of using v to 

ensure that routes through other vertices are attempted, while pv is based primarily on the 

current routing solution. Recall that PathFinder routes nets one-at-a-time. Suppose that 

nets N1 and N2 are being routed in subscript order. The history cost could potentially 

dissuade PathFinder from routing both N1 and N2 through v during the current iteration, 

especially if v has a history of congestion. Now, supposing that PathFinder routes N1 

through v despite the value hv, then increasing pv in response would dissuade PathFinder 

from routing N2 through v, to increase the likelihood of converging to a legal solution. 

A generalized form of the cv terms that favors delay-minimization for source-sink pairs 

whose delay is expected to near-critical is 

cv = Criti,jdelayv + (1 - Criti,j)(bv + hv)pv, or   …………………………….……( 2.10 ) 

cv = Criti,jdelayv + (1 - Criti,j)bvhvpv, such that   ………………………..………( 2.11 ) 

Criti,j = 1 – Slacki,j/Dmax,   …………………………………………….……( 2.12 )  

where delayv is the intrinsic delay of RRG node v, Slacki,j is the estimated amount of 

delay that could be added to the source-sink path from i to j before it becomes critical, 
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and Dmax is the estimated critical path delay of the placed-and-routed circuits. In VPR’s 

timing-driven router [[7], Section 4.4], the delayv term is based on the Elmore delay 

model, which is derived from the existing routing tree RTi, including the prospective path 

from i to v; additionally, the Criti,j term is more complex; details are omitted to conserve 

space. 

The original PathFinder paper did not describe precisely which functions are used for 

hv and pv [50]. In VPR, pv is reset and recomputed every time a routing tree is ripped up 

and rerouted, while hv is defined as a recurrence relation which varies from iteration to 

iteration of the global router.  

Let hv
k denote the history cost of vertex v during the kth iteration of the global router; 

for the first iteration, hv
1 = 1. The pv and hv

k terms are then defined as follows: 

pv = 1 + occupancyvpfac, and   [7, Eq. (4.4)2]   ….…………………( 2.13 ) 

hv
k
 = hv

k-1 + occupancyvhfac, k > 1,  [7, Eq. (4.5)2]   ……………………( 2.14 ) 

where occupancyv is the number of nets that are current routed through RRG node v, and 

pfac and hfac are scaling factors. Ref. [[7], Section 4.3.1] suggests that pfac should be at 

most 0.5 for the first iteration, and then increased by a factor of 1.5x to 2x for subsequent 

iterations, and that hfac should remain constant and that any value between 0.2 and 1 

should suffice.  

 

 

 

                                                
2 In combined global-detailed routing, which is the approach taken by VPR, the capacity of each routing resource is 
1, which allows us to eliminate the capacity(…) term from Eqs. (4.4) and (4.5) in Ref. [7].  
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The enhancements to PathFinder introduced in this thesis, PPR and SERRGE, are 

compatible with any cost function (breadth-first or A* search) described in previous 

literature. We have implemented PPR and SERRGE in VPR 5.0, and all of our 

experimental results reported in Section 3.6 use VPR’s timing-driven router [[7], Section 

4.4].   

 

2.3 ROUTING IN SPARSE CROSSBARS 

A full intra-cluster routing crossbar is a configuration of the routing fabric inside the 

CLB in which a programmable routing connection exists between every CLB input and 

every BLE input within the CLB. This means that the router only needs to algorithmically 

compute routes from sources to CLB inputs, not BLE inputs; with a full crossbar 

connecting CLB inputs to BLE inputs, it is trivial to complete the route. A sparse intra-

cluster routing crossbar on the other hand is a crossbar configuration in which each CLB 

pin is only connected to a subset of the BLE inputs. In this configuration, the router must 

find a full path from the sources to the BLE inputs; as CLB inputs are no longer 

connected to every BLE input. This means that the RRG has to include the routing 

resources inside the CLB. 

In full crossbar architecture, the intra-cluster routing can be omitted from the RRG; this 

has been standard in VPR since its inception, although the assumption has since been 

lifted since the release of VPR 6.0. This also makes the CLB inputs logically equivalent; 

as each CLB input can connect to any BLE input. For sparse crossbars the CLB inputs 
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are no longer logically equivalent but for a given BLE the inputs are logically equivalent. 

As shown in Figure 2-17, due to the equivalence of LUT inputs, different source-sink pairs 

may be legal solutions; however, enforcing specific source-sink pairs may be overly 

restrictive; the solution is to create a common sink (t) that represents all equivalent LUT 

inputs.  

 

  Figure 2-17: Logic equivalency for LUT pins. 

Now that the crossbar is sparsely connected, in order for the router to complete a legal 

disjoint path routing solution, it is necessary to explicitly represent the intra-cluster 

routing crossbar in the RRG. This enlarges the size of the RRG: the set of vertices must 

include each CLB input and each BLE input (before, the CLB inputs could be 

represented as a single sink, akin to Figure 2-18, while BLE inputs were omitted 

altogether); and the number of edges that are added to the RRG depends on the 

population density of the crossbar. Taken in aggregation across the entire FPGA, the 

RRG size can increase significantly. 
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Figure 2-18: CLBs with fully connected (a) and sparsely connected (b) intra cluster routing crossbars. 

This potential growth in the RRG size translates into significant increase in 

PathFinder’s runtime and memory footprint. We present two heuristics for routing in 

FPGA with intra-cluster routing crossbars that reduces the runtime and memory footprint 

of the PathFinder FPGA routing algorithm for FPGAs with sparse intra-cluster routing 

crossbar. The two approaches are introduced with different characteristics in terms of 

runtime, memory usage, and quality of solution. SElective RRG Expansion (SERRGE) 

employs a memory manager that compresses the RRG and decompresses relevant 
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portions of it as the router executes, thereby eliminating the need to fully expand it prior 

to routing. A second, heuristic, Partial Pre-Routing (PPR) computes routes for each 

intra-cluster routing crossbar a-priori, and then routes the rest of the circuit using the 

global routing resources of the FPGA. Between the two, PPR achieves shorter runtimes 

and consumes less memory, while SERGGE tends to find legal routing solutions with 

lower critical path delays, equating to higher clock frequencies. Our results demonstrate 

that SERRGE and PPR address the routing challenge imposed by FPGAs with sparse 

intra-cluster routing crossbars, as they offer a clear and unequivocal improvement over 

the state-of-the-art in FPGA routing algorithms. 

Prior work in this area has mostly investigated the routability of sparse crossbars. 

VPR’s routability-driven and timing-driven routers, both based on PathFinder [50], have 

introduced sparse intra-cluster routing crossbars since the release of VPR6.0 [47]; using 

an approach similar to PPR to perform routing. The main difference with our work is that 

VPR integrates the partial pre-routing phase into the packer [47], as a legality check. In 

other words, any packing solution that cannot be routed locally within a CLB is 

disallowed. The router (which follows packing and placement) is similar to PPR’s global 

router, described in Chapter 3 of this thesis.  

In its original description, PathFinder computes a route from each source to each sink. 

For a multi-terminal net, the wavefront expansion obtained when routing to the ith
 sink is 

discarded before routing to the (i+1)st. VPR’s implementation does not discard the 

wavefront, and continues expansion until all sinks are discovered.  
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If a global iteration of PathFinder fails to find a legal solution, all nets are ripped up 

and rerouted, which partially eliminates the dependence on net ordering when routing. 

Mulpuri and Hauck [54] modified PathFinder to exclusively rip up nets routed through 

oversubscribed resources. Although this modification speeds up PathFinder’s 

convergence time significantly, a non-negligible increase in critical path delay was 

observed for all benchmarks; for this reason, we do not consider this implementation 

choice in our experiments.  

Gort and Anderson [22] reduce contention for CLB output pins by forcing a multi-sink 

net to use the same output pin for all sinks during wavefront expansion while exclusively 

ripping up and re-routing nets that route through oversubscribed resources, similar to 

Mulpuri and Hauck; they reported a 3x speedup in router runtime coupled with a 2% 

increase in critical path delay and wirelength. Subsequently, Gort and Anderson [24] 

observed that PathFinder spends up to 40% of its runtime resolving congestion among 

nets that have been routed legally. They allow PathFinder to converge when the routing 

solution is almost legal on a coarsened RRG, and then legalize the result using a SAT 

solver. In principle, this approach is also compatible with either PPR or SERRGE.  

Chin and Wilton [15] developed an RRG compression scheme that takes advantage of 

the regular tiled nature of an FPGA. An RRG is instantiated for each tile, and inter-tile 

connections are represented using “wrap-around” edges. Different tile types are 

instantiated for programmable logic, embedded blocks, and I/Os. Extensions are 

presented to handle long wires and sparse intra-cluster routing crossbars, including the 

heterogeneous depopulation schemes that vary from tile-to-tile. Separate storage is 
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maintained for the costs associated with each edge in the fully expanded RRG; this 

information is not compressed. The additional steps added to the router to enable the 

compressed RRG representation increase the router’s runtime by a factor of 2.16x, on 

average. In contrast, PPR and SERRGE reduce the runtime of the router, although the 

reductions in RRG size reported here are far more modest in comparison to Chin and 

Wilton’s scheme. 

So [67] introduced a delay budgeting scheme to reduce the critical path delay of a 

circuit synthesized on an FPGA; since this is a post-processing step, it could improve the 

quality of results; however, it significantly increases the router runtime by a factor of at 

least 7x and also increases the memory footprint.  

Rubin and DeHon [66] observed that small perturbations in initial conditions (e.g., the 

order in which nets are routed; variations in intrinsic delays associated with routing 

resources) yield significant variations in the critical path delays reported by VPR’s 

implementation of PathFinder. They introduced noise mitigation strategies that repeatedly 

re-route each circuit with variations in parameters that express a timing constraint. In 

principle, this approach could be used in conjunction with either PPR or SERRGE, as 

long as the runtime overhead of repeatedly routing the circuit is tolerable. 

We present a detailed description of our algorithms (PPR and SERRGE) in Chapter 

3. The next section presents our approach to placement and routing of hybrid logic blocks 

capable of implementing floating point shifters. 
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2.4 ROUTING FOR HYBRID CLBS 

In section 2.1.2 we have described dynamic configuration of multiplexers, and 

showed how this technique can be used to configure a regular Configurable Logic Block 

to implement shifting operations required by floating point mantissa alignment and 

normalization. We have also shown that by combining 8 hybrid blocks we can efficiently 

implement a 27-bit shifter. This section briefly describes how these hybrid CLBs can be 

placed and routed as part of a modern FPGA CAD flow. 

2.4.1. FUNDAMENTAL CHALLENGES 

The benefit of the SD-MUX is evident for circuits that require a significant amount 

of multiplexing; however, the introduction of dynamic multiplexers into an FPGA fabric 

creates new challenges for physical design tools. The following issues must be addressed 

in order to justify the inclusion of dynamic multiplexers in an FPGA fabric: 

(1) Given that FPGA routing networks consume as much as 90% of on-chip area 

[20], is the area overhead of replacing static multiplexers with SD-MUXes justifiable? 

(2) When the SD-MUX is configured for dynamic control, how can the router 

overcome the lack of flexibility arising from the fact that 8 input signals must be routed 

to 8 multiplexer inputs in a pre-specified order, as shown in Figure 2(b)? How is 

routability achieved in the general case? 

(3) How are the dynamic control bits generated, and how are they routed into SD-

MUX, as noted in Figure 2(b)? 

The next section briefly presents our proposed solution to these challenges. 
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2.4.2. CAD SUPPORT FOR HYBRID CLBS 

To address the area overhead of SD-MUXes, only a small number of these SD-

MUXes is introduced. Realistic user circuits may contain a significant amount of 

multiplexer-based logic that benefits from the presence of dynamic multiplexers; 

however, they also contain other logic that maps better onto existing FPGA logic and 

arithmetic resources, such as LUTs, carry chains, and DSP blocks. As an example, 

floating-point operators require a large number of LUTs for shifters, but also include 

components that would not benefit from dynamic multiplexers, such as fixed-point adders 

and multipliers and leading zero counters. Thus, there is no need to replace more than a 

handful of static multiplexers with SD-muxes.  

The remaining challenges are solved through the CAD algorithms. As previously 

noted, SD-MUXes configured as dynamic multiplexers impose significantly more 

constraints on the router than static multiplexers. To handle these constraints, the CAD 

tools extract macro-cells, which are sub-circuits comprised of the user logic that will use 

the dynamic multiplexers, plus the immediately preceding logic layer as well. The macro-

cells are placed-and-routed separately from the remainder of the circuit. 

This ensures that the router can satisfy all of the constraints imposed by the dynamic 

multiplexers without having the macro-cells compete with the remainder of the circuit for 

limited routing resources in congested areas. Placement then proceeds as normal, with 

some additional provisions to handle the macro-cells: the placer can move the entire 

macro-cell around within the FPGA, but cannot change the placement within the macro-

cell. Once placement completes, routing resources within each macro-cell are reserved; 
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unused routing resources within the perimeter of the macro-cell are not reserved, as their 

usage does not affect the macro-cell’s functionality. The remainder of the circuit is then 

routed as normal, with the restriction that the reserved routing resources within each 

macro-cell are not perturbed, thereby ensuring its correct functionality. 

Chapter 3 of this thesis provides more details on the architecture and CAD support 

for hybrid logic blocks. Next section presents our model for parallelizing FPGA routing 

on multi-core, shared memory CPU architectures. 

2.5 PARALLEL ROUTING FOR FPGAS 

This section presents the background and related work to our parallel implementation 

of an FPGA router. We first give an overview of the proposed method, then, in section 

2.5.2 we briefly present our implementation of the router on multi-core shared memory 

CPUs using the Galois [61] framework.  

2.5.1. OVERVIEW 

As FPGAs are constantly increasing in size and complexity, the need for parallel 

CAD tools is becoming particularly critical. Routing is possibly the most time consuming 

and resource demanding step of the CAD process. Parallelizing an FPGA router could 

yield tremendous productivity benefits, as the process of synthesizing an industrial-scale 

circuit on a high-capacity commercial FPGA can easily take hours, days or even weeks, 

depending on the size of the circuit and the target device. Meanwhile, the evolution of 

computer architectures (multi-core and many-core) towards a higher number of cores can 

only confirm that parallelism is the most popular method for speeding up CAD 
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algorithms.  

Commercial FPGA CAD tools use a variant of the PathFinder negotiation congestion 

algorithm for routing [50]. As stated in section 2.2.3.3, the routing procedure of 

PathFinder has two level of operation; at the highest level the algorithm invokes a signal 

router to control the negotiation procedure between signals. The lowest level of operation 

consists of a maze expansion step to explore the nodes of the routing resource graph 

(RRG) to route individual signals. Prior work in this area[22] has stated that this maze 

expansion consumes over 66% of run time of the router, making it a potential target of 

our parallelization scheme. 

Parallelizing PathFinder can be done in one of two ways; parallelizing the signal 

router (coarse-grained), which involves routing the nets in parallel and using a shared 

congestion map to control the negotiation process. The biggest challenge of this approach 

is to find an efficient mechanism to handle contention and communication among 

concurrent threads. Parallelizing the maze expansion (fine-grained level) on the other 

hand involves routing nets serially, while parallelizing the maze expansion of individual 

nets. As the maze expansion is typically a directed breadth-first or A* search on the 

RRG, the main concern is finding a mechanism for implementing the priority queue such 

that it is optimized for multithreading operations. 

In this work we investigated parallelizing both operations individually, on a multi-

core, shared memory CPU system. The next section illustrates the proposed parallel 

routing model. 
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2.5.2. PARALLEL ROUTING ON MULTICORE SHARED 

MEMORY SYSTEMS 

This section describes a parallel PathFinder implementation using the open source 

Galois framework [51][61]. We first present an overview of the parallel model used in 

Galois, next we describe our implementation of PathFinder in Galois, and illustrates 

previous work related to parallel routing in FPGAs.  

2.5.2.1. THE GALOIS FRAMEWORK 

Galois’ programming model, compiler, and runtime synergistically accelerate 

irregular algorithms that dynamically modify linked-based data structures.  

Irregular algorithms generally operate on a sparse graph, typically implemented 

using a linked data structure. They do exhibit significant parallelism, but are difficult to 

parallelize statically [61] because the amount of parallelism depends on the content of the 

data structure (e.g., graph topology) as well as the operations performed on the elements 

of the data structure at runtime. 

a) Philosophy and Implementation: Galois employs a data-centric approach to 

irregular algorithm development called the operator formulation. In a graph, active 

elements are the vertices and/or edges where computation could be performed through the 

application of an operator. The neighborhood of an activity is the set of vertices and 

edges that the activity reads or writes.   
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In Figure 2-19, the active vertices are those in PQ; each neighborhood is the set of 

adjacent vertices to each active vertex, and the operator applied is the neighborhood 

expansion in which newly discovered adjacent vertices are inserted into PQ (Figure 

2-19(b)) and sinks may be discovered (Figure 2-19(c)). When a sink is discovered, the 

backtrace process involves a different set of active elements, neighborhood definition, 

and operator to update the routing tree RT(Ni).  

The operator formulation naturally lends itself to amorphous data parallelism, which 

permits parallel processing of active vertices, limited by algorithm-dependent 

neighborhood and ordering constraints. Executing one activity may create others 

dynamically; e.g., applying the neighborhood operation to a vertex may create new active 

vertices to insert into PQ. Activities are allowed to modify the graph; the itself RRG is 

not modified, but the routing tree RT(Ni) is constructed incrementally, one path at a time. 

Conflicting activities cannot execute concurrently. For example, consider two 

vertices u and v that share a common neighbor, w. If both u and v expand their 

neighborhoods concurrently, then each expansion will discover and add w to PQ with 

different path costs. This type of conflict must be avoided. Activities that do not modify 

their neighborhoods can always execute in parallel.   

Galois uses locks to ensure that only activities with disjoint neighborhoods execute 

in parallel. Each graph element has an exclusive lock that must be acquired by a thread 

before it can access that element. Locks are held until the activity terminates.  

If a lock cannot be acquired because it is owned by another thread, the Galois 

runtime detects the conflict and rolls back one of the conflicting activities. Lock 
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manipulation is performed entirely by the methods in the graph class. To enable rollback, 

each graph API method that modifies the graph makes a copy of the data before 

modification, similar to transactional memory systems. This copy, called an undo log, 

supports rollback in the case of misspeculation, and is discarded whenever an activity 

successfully commits. When an activity aborts, all computation performed up to that 

point is lost; the Galois runtime system takes corrective action to roll back the activity 

and re-execute it after all other conflicting activities complete. 

a) Scheduling in Galois : Galois schedules parallel tasks either deterministically[58] 

or non-deterministically. 

For programming models with non-deterministic scheduling, conflict detection and 

correction can be done using much lighter weight mechanisms than for models that 

employ deterministic scheduling. Abstract locations can be acquired by an owner and the 

execution of a task can be divided into two phases: in the first phase, a task reads 

locations but does not write to any of them, acquiring ownership of these locations, and 

in the second phase, the task writes to some locations, but it does not write to any 

location that it did not read in the first phase. The point between the first and second 

phase is called the failsafe point. For cautious tasks, conflicts are detected in the first 

phase, and rollback is implemented simply by releasing ownership of all locations. Once 

the failsafe point has been crossed, global data structures can be updated in place without 

the need for backup copies of modified data. 

 The deterministic scheduler[58] on the other involves the creation of in interferance 

graph for the set of tasks and find the independent sets in that graph. The interference 
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graph can is defined as an undirected graph Gp = (Vp, Ep) in which there is a distinct 

node in Vp representing each task in P, and there is an undirected edge (v1,v2) in Ep if the 

tasks represented by v1 and v2 have a conflict. 

The interference graph for a set of tasks can be built by executing each task up to its 

failsafe point while tracking its neighborhood and putting a conflict edge between two 

tasks if their neighborhoods overlap. This graph can be used for scheduling as follow: 

The tasks in the task pool P are executed in rounds. In each round, the scheduler performs 

the following activities: 

1 - Build an interference graph Gp for the tasks in P,  

2 - Find an independent set I in Gp and remove corresponding tasks from P, 

 3 - Execute the tasks in I in parallel, adding any newly created tasks to P. 

Scheduling is completed when all tasks have been executed. 

This procedure guarantees deterministic scheduling of the tasks in P. 

In the next sections we present how we leveraged the Galois optimization techniques 

to parallelize both the maze expansion and the signal router. 

2.5.2.2. PARALLELIZING THE MAZE ROUTER 

Maze expansion computes a path from the source to each sink in the RRG for each net. 

All of the RRG vertices that have been uncovered are stored in a priority queue (PQ) 

based on their cost. Maze expansion extracts the minimum cost vertex vmin from PQ. If 

vmin is a sink, then a backtrace procedure is invoked to construct a path from u to RT(Ni), 

which is the routing tree for Ni; otherwise, each neighbor v of vmin, which has not 



 

52 

previously been discovered, is inserted into PQ and the maze expansion continues. Figure 

2-19 shows an example of the maze expansion of a given net: 

 (a) PQ contains vertices that have been discovered, but have not yet had their 

neighborhoods expanded; RT(Ni) contains the portions of Ni’s routing tree that have been 

found thus far.  

 

 

                (a)      (b) 

 

                 (c)      (d) 

Figure 2-19: the maze expansion of a net in the routing resource graph (RRG  

(b) A vertex is selected for neighborhood expansion; its neighbors that have not yet been 

discovered are inserted into PQ, expanding the “wavefront” of the search.  
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(c) Expanding the neighborhood of the next vertex discovers a sink.  

(d) A backtrace adds the vertices and edges along the backtrace to RT(Ni), creating a new 

path to the sink.   

The path cost of vertex v is the sum of the vertex costs on the path from source si to v 

as uncovered by maze expansion: 

PathCost(v) = c(v) + PathCost(vmin). ………………………………………..( 2.15 ) 

When v is inserted into PQ, PathCost(v) is used as its priority.  

Maze expansion is therefore a perfect example of a highly parallel irregular 

algorithm; it can explore many RRG vertices independently, albeit, with restrictions: 

namely, parallel operations cannot be applied to two adjacent vertices at the same time. 

Thus, the amount of parallelism that maze expansion can exploit depends on the RRG’s 

sparseness; fortunately, RRGs are sparse in practice. 

One of the most challenging aspects of parallelizing the maze expansion in Galois is 

to introduce a mechanism for threads to share a priority queue. We have extended the 

Galois framework with this capability by implementing a non-blocking priority queue 

based on the software transactional memory (STM) models. 

The details of this implementation are provided in Chapter 5. Next section gives an 

overview of the signal router implementation. 

2.5.2.3. PARALLELIZING THE SIGNAL ROUTER 

Parallelizing the signal router involves partitioning the signals (netlist) into sets, with 

each set routed by a separate instance of the signal router running as a separate thread on 
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a separate processor. Each signal router instance maintains a local priority queue while 

the RRG and the associated congestion maps are shared among all threads. The Galois 

model maps each thread to a different processor. Threads update intermediate routing 

results through lock based data structures in shared memory, and synchronize their 

respective views of the overall routing state. Threads are synchronized at the end of each 

iteration of PathFinder to ensure that all instances are working simultaneously on the 

same iteration.  

2.5.2.4. RELATED WORK 

In 1997, Chan and Schlag [12] parallelized PathFinder’s signal router on a 

distributed network of workstations. Using three processors, they achieved a 2.5x 

speedup. The drawback of their approach is that the results are highly sensitive to the 

order in which signals are routed. Consider two nets N1 and N2, and assume that N1 would 

route before N2 in a serial implementation. If so, N2 would read congestion costs of any 

routing resource used by N1, and may choose a different routing resource as a result; in 

the parallel implementation, N2 may not read those congestion costs and could therefore 

make an ill-advised routing decision.  

A deterministic scheduler [58] could rectify the issue by imposing a deterministic 

order on the nets; however, determining the best ordering a-priori appears to be an open 

problem [66]. Moreover, the overhead of speculatively parallelizing this particular 

scheme would be quite high. Galois would need to acquire locks for each routing tree 

RT(Ni) before any signal route could commit; thus, threads would acquire and hold on to 
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locks for a long time, inhibiting parallel execution. This would create large undo lists, 

and the cost of conflict resolution would be exorbitant, as very large partially-computed 

routing trees would need to be discarded. Zhu et al. [74] addressed this concern, but in a 

limited way. They partition high-fanout nets into sets of low-fanout nets, which are 

routed individually; low-fanout nets with non-overlapping bounding boxes are routed in 

parallel because they are unlikely to conflict. Zhu et al. achieved a speedup of 1.9x on a 

quad-core machine with 2.3% degradation in critical path delay. Our approach using 

Galois yielded comparable speedups for two cores and higher speedups for four and eight 

cores, without requiring specialized handling of high-fanout nets; however, our approach 

parallelized the maze router, rather than the signal router. 

Gort and Anderson [24] parallelized the signal router by partitioning the netlist into 

groups of disjoint subnets, and routed each subnet using independent instances of VPR 

running on different processors, communicating via MPI; blocking receive calls ensure 

deterministic results. Each VPR instance routes one signal at a time and then 

synchronizes with the other instances to update the relevant costs functions before routing 

the next net. To limit the synchronization overhead, nets to be routed are load-balanced 

among VPR instances based on fanout and bounding box size. They achieve a speedup of 

1.5x on two cores 2.1x on four cores. The synchronization overhead suggests that parallel 

signal routing may not scale as well as maze expansion. 

Our signal router is very similar to their approach except that we relied on Galois for 

load balancing and resource sharing. Our deterministic signal router achieved up to 1.84x 

speedup for 8 threads, we attribute this relatively low speedup to the amount of overhead 
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associated with the deterministic scheduling, as well as the lack of any non-blocking 

mechanism for the shared routing resources. Further optimizations, of the deterministic 

scheduler may yield better results. 

Gort and Anderson [24] also parallelized the maze router using pthreads. Each 

pthread has an LPQ, similar to Galois’ iteration coalescing, along with a GPQ in shared 

memory. The PQs are lock-based, similar to the PQ provided by Galois. Greater speedups 

can be obtained by using a non-blocking PQ. Unlike our work, their threads update the 

GPQ after each expansion; ours only access the GPQ when a sink is found or if a thread’s 

LPQ is empty. Gort and Anderson achieved a speedup of 1.2x with two threads on a 

quad-core PC; increasing the number of threads yielded slowdowns. In contrast, our 

results achieve far greater speedups for up to 8 threads using Galois. 

2.6 SUMMARY 

In this chapter we first reviewed the basics of FPGA architecture. We then presented 

the logic blocks architecture investigated in this work, and introduced the hybrid logic 

block architecture used to reduce the cost of floating point shifters. Next, we presented a 

model for intra-cluster routing crossbars, and presented the CAD flow used with FPGAs. 

We focused specifically on algorithms for routing, and described two heuristics for 

routing in FPGAs that employ sparse crossbars. Finally, we described our parallel model 

to parallelize the router both on GPUs and multi-core CPUs 

The next chapter describes routing in FPGAs with sparse crossbars, and details the 

routing approaches we have developed. Since we have described most of the concepts 
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related to routing in sparse crossbars in this chapter, we will focus on the enhancements 

we have made. Chapter 4 elaborate on the hybrid logic block model, and show the 

feasibility of this framework for reducing the cost of floating point shifters. In Chapter 5, 

we present our speculation-based model for parallelizing the router on a shared memory 

multi-core CPU system. Chapter 6 concludes the thesis. 
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Chapter 3. ROUTING WITH SPARSE CROSSBARS 

This chapter extends the FPGA routing model implemented in VPR to encompass 

sparse intra-cluster routing crossbars, and introduces two scalable heuristics that reduce 

the runtime and memory footprint of FPGA routing: (1) SElective RRG Expansion 

(SERRGE), which employs an application-specific memory manager that stores the RRG 

in a compressed form, and dynamically decompresses it as the router proceeds; and (2) 

Partial Pre-Routing (PPR) locally routes all nets within each logic cluster, followed by a 

global routing stage to complete the routes. PPR and SERRGE converge faster than a 

traditional router using a fully expanded RRG. PPR runs faster and uses less memory 

than SERRGE, while SERRGE yields the highest clock frequencies among the three. 

3.1 OVERVIEW 

The long running times of commercial CAD software is one impediment to the 

widespread adoption of FPGA technology. Practically, all commercial FPGA routers 

have their origins in the PathFinder algorithm[50].  PathFinder employs an algorithmic 

approach called negotiated congestion, in which individual nets in the user circuit are 

allowed to share FPGA routing resources; as the algorithm proceeds, the negotiation 

process ensures that at most one net is routed along each resource. This process is often 

lengthy and memory-intensive. In particular, the Routing Resource Graph (RRG) of a 

commercial-grade FPGA can be very large, due to the inordinate quantity of uniquely 

programmable routing resources that are present in the architecture. 



 

59 

One of the significant contributors to overall RRG size is the presence of sparse 

intra-cluster routing crossbars within the FPGA routing network [20][42] [43]. In early 

FPGA generations, intra-cluster routing crossbars were fully connected, which allowed 

the RRG to implicitly represent them. When the crossbars become sparse, the implicit 

representation is no longer accurate, so the need to explicitly enumerate their connectivity 

significantly enlarges the overall RRG size.  

 In this work we reduce the runtime and memory footprint of the PathFinder FPGA 

routing algorithm for FPGAs with sparse intra-cluster routing crossbar. Two heuristics 

are introduced with different characteristics in terms of runtime, memory usage, and 

quality of solution. SElective RRG Expansion (SERRGE) employs a memory manager 

that compresses the RRG and decompresses relevant portions of it as the router executes, 

thereby eliminating the need to fully expand it prior to routing. A second, heuristic, 

Partial Pre-Routing (PPR) computes routes for each intra-cluster routing crossbar a-

priori, and then routes the rest of the circuit using the global routing resources of the 

FPGA. Between the two, PPR achieves shorter runtimes and consumes less memory, 

while SERGGE tends to find legal routing solutions with lower critical path delays, 

equating to higher clock frequencies. Our results demonstrate that SERRGE and PPR 

address the routing challenge imposed by FPGAs with sparse intra-cluster routing 

crossbars, as they offer a clear and unequivocal improvement over the state-of-the-art in 

FPGA routing algorithms. 

The user describes an FPGA using VPR’s architecture configuration file. VPR reads in 

the architecture configuration file and algorithmically generates the logic and routing 
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architecture of the FPGA [46]. This alleviates the need for the user to specify every 

connection within the device.  

VPR (versions 5.0 and before) model FPGAs with full intra-cluster routing 

crossbars, as described in the last chapter. Specifically, a full intra-cluster routing 

crossbar means that a programming routing connection exists between every CLB input 

and every BLE input within the CLB. This means that the router only needs to 

algorithmically compute routes from sources to CLB inputs, not BLE inputs; with a full 

crossbar connecting CLB inputs to BLE inputs, it is trivial to complete the route. Thus, 

the intra-cluster routing crossbar can be omitted from the RRG; this has been standard in 

VPR since its inception, although the assumption has since been lifted since the release of 

VPR 6.0[47]. Now, the intra-cluster routing crossbar topology is part of the architecture 

configuration file. 

When the intra-cluster routing crossbar becomes sparse, as, CLB inputs are no 

longer equivalent (in the general case). In order for the route to complete a legal disjoint 

path routing solution, it is necessary to explicitly represent the intra-cluster routing 

crossbar in the RRG. This enlarges the size of the RRG: the set of vertices must include 

each CLB input and each BLE input (before, the CLB inputs could be represented as a 

single sink, while BLE inputs were omitted altogether); and the number of edges that are 

added to the RRG depends on the population density of the crossbar. Taken in 

aggregation across the entire FPGA, the RRG size can increase significantly. 
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3.2 BASELINE ROUTER 

The Baseline router, described in this section, contains a minimalist set of algorithmic 

modifications to extend the PathFinder algorithm to support FPGAs with sparse intra-

cluster routing crossbars. The Baseline router suffers from an enlarged memory footprint, 

which both SERRGE and PPR, described in the subsequent sections, overcome.   

3.2.1. RRG TERMINOLOGY 

We use the term global RRG to refer to the representation of the FPGA’s global (inter-

cluster) routing resources. The VPR 5.0 (and earlier) PathFinder implementation 

performs routing on a global RRG, which does not explicitly represent any local (intra-

cluster crossbar) routing resources.  

We use the term local RRG to refer to the representation of the intra-cluster routing 

resources for one CLB; if the intra-cluster routing crossbar contains just one layer of 

internal multiplexers, the local RRG is bipartite: each vertex is either a CLB input pin 

(including local feedback arcs) or a BLE input pin; each edge connects a CLB input pin 

to a BLE input pin.  

We use the term complete RRG to refer to the representation of all FPGA routing 

resources (inter- and intra-cluster) in a single graph: a complete RRG combines the 

global RRG with a local RRG for each CLB in the FPGA. 
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3.2.2. EXPANDED RRG AND CLB INPUT PIN EQUIVALENCE 

The Baseline router performs routing on a complete RRG, which explicitly 

represents both inter- and intra-cluster routing resources.  PathFinder now routes nets to 

BLE input pins, rather than CLB input pins, as shown in Figure 3-1, and delineates which 

BLE is the sink of each net. The input pins of each BLE are logically equivalent.  

If the intra-cluster routing crossbar is fully populated, then all CLB input pins are 

logically equivalent and do not require explicit representation in the CLB. A legal route is 

obtained by routing all nets from their respective sources to any input pin of a CLB that 

contains the sink; a full crossbar guarantees a direct connection from each CLB input pin 

to the sink. 

When the intra-cluster routing becomes sparse, CLB input pins are not logically 

equivalent; whatever equivalency exists depends on the crossbar topology. Let Sj contain 

the CLB input pins that can be routed to at least one input of BLE j. In general, each CLB 

input pin may belong to several such sets.  

For example, consider Figure 3-1: all CLB inputs, except for the feedback emanating 

from the top BLE, connect to at least one input of both LUTs; all of them belong to 

subsets S1 and S2; the feedback output belongs to subset S1, but not S2.  
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Figure 3-1: RRG expansion for the Baseline router.  

As shown in Figure 3-1 the Baseline router, the RRG is extended to include LUT inputs 

(each of which forms a unique equivalence class) and the sparse intra-cluster routing 

crossbar; this expansion is performed for every CLB in the FPGA. 

3.2.3. WIRE-TO-PIN LOOKUP MAP 

An important data structure that complements the RRG in VPR is a wire-to-pin 

lookup map that identifies connections between the channel wires and CLB input pins. In 

VPR 5.0 and earlier, the lookup map is a 4-dimensional array, as shown in Figure 3-2(a). 

Since the intra-cluster routing crossbar is fully populated, there is no need to extend the 

map into the CLB. When the intra-cluster routing crossbar becomes sparse, the router 

needs to know whether a wire in the routing channel has a connection to each LUT input, 

which goes through both the C-Block (as before) as well the intra-cluster routing 

crossbar. To accommodate this information, two extra dimensions must be added to the 

wire-to-pin lookup map, as shown in Figure 3-2(b). 
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Although needed for correctness, the memory overhead of these two extra 

dimensions is significant. For example, consider an FPGA with parameters K = 10, N=6, 

I = 33, W=100, Fcin = 15%, and Fcout = 10%. In VPR 5.0, the intra-cluster routing 

crossbar implicitly has population density p = 100%, and a matrix of dimensions 

33x4x15 = 1980 is allocated (assuming height=1). For a sparse crossbar with population 

density of p = 50%, the matrix size expands to 1980x50x60 = 5,940,000. The increase in 

cost is significant, since the wire-to-pin map is relatively sparse. 

int **** tracks_connected_to_ipin; 
tracks_connected_to_ipin = alloc(num_pins, height, 4, Fc); 
/* tracks_connected_to_ipin[num_pins][height][4][Fc] */ 
 
for(int i = 0; i < num_pins; i++) 
 for(int j = 0; j < height; j++)  
  for(int k = 0; k < 4; k++) 
   for(int l = 0; l < Fc; l++) 
    tracks_connected_to_ipin[i][j][k][l] = OPEN;    
(a) 
int ****** tracks_to_LUT_ipin; 
tracks_to_LUT_ipin = alloc(K*N, density, num_pins, height, 4, Fc); 
/* tracks_to_LUT_pin[K*N][density][num_pins][height][4][Fc] */  

/* K*N is the number of BLE inputs pins (N K-LUTs per CLB) 
    density is the number of CLB input pins that connect to each BLE  
    input. If p is the population density of the crossbar, then 
      density = p*I. (e.g., if I=40, p=75%, then density = 30).  
*/ 

for (int i = 0; i < K*N)  
 for (int j = 0; j < density; j++)  
  for(int k = 0; k < num_pins; k++)  
   for(int l = 0; l < height; l++) 
    for(int m = 0; m < 4; m++) 
     for(int n = 0; n < Fc; n++) 
      tracks_to_LUT_pin[i][j][k][l][m][n] = OPEN; 
 (b) 
 

Figure 3-2: (a) Pseudocode to allocate and initialize the 4-dimensional wire-to-pin lookup map array in 
VPR 5.0 (and earlier). 
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3.2.4. MEMORY FOOTPRINT 

Empirically, we observed that the Baseline router has an excessively large memory 

footprint. The two main causes are the expanded wire-to-pin lookup map, as described in 

the preceding subsection, and the Elmore delay trees computed by VPR’s timing-driven 

router [7, Section 4.4], which are used to accurately estimate the delay term used in the 

cost function cv shown in Eqs. (2.14) and (2.15); VPR’s routability-driven router [[7] 

Section 4.3] does not use Elmore delay modeling and sidesteps this overhead. Other 

relevant data structures (e.g., the expanded RRG, priority queue, traceback list, etc.) 

become larger, but do not significantly impact the memory footprint. 

VPR’s timing-driven router builds an Elmore delay tree for each vertex as it is 

discovered during maze expansion. If the signal router is presently routing net Ni, a tree is 

computed for each vertex that is discovered during the search. The tree is then saved 

when the vertex is inserted into the priority queue; many of these vertices are never 

removed from the priority queue during the search, and even fewer are added to the 

routing tree. The contribution of Elmore delay trees to the memory footprint varies from 

iteration to iteration.  

The lookup map in Figure 3-2(a) is allocated under the assumption that the intra-

cluster routing crossbar was fully populated. Figure 3-2(b) presents the pseudocode to 

allocate and initialize a 6-dimensional wire-to-pin lookup map array, which has been 

extended to support sparse intra-cluster routing crossbars, which do not guarantee a 

connection between each CLB input pin and each LUT input. The map entries that are 
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set to USED (rather than OPEN), i.e., connections that actually exist, are derived from 

the FPGA routing architecture.  

The impact of the memory footprint on performance depends on the target FPGA 

size, the placement solution, and the amount of memory available on the system that 

computes the route. The operating system’s memory management policies and 

background applications and services also affect the amount of memory made available 

to the router. To manage this overhead, we set a limit on the memory size of all of the 

routing resources; in practice, the choice of limit depends on the system configuration 

and memory demands of the operating system and other persistent applications. When a 

PathFinder iteration exceeds the memory limit, the Baseline Router treats that iteration as 

a failure: it deallocates all data structures and propagates any history cost updates from 

the failed iteration to the next iteration. The Baseline Router does not otherwise modify 

PathFinder’s core algorithmic behavior.  

3.3 ROUTING WITH SERRGE 

SElective RRG Expansion (SERRGE) refers to a collection of modifications to the 

Baseline router, which further reduce the memory footprint, yielding significantly faster 

runtimes. SERRGE features a custom memory manager and garbage collector that are 

specific to the RRG and other associated data structures used by VPR’s implementation 

of PathFinder. 
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3.3.1. DYNAMIC RRG  

SERRGE begins with a global RRG G = (V, E) and one copy of a local RRG GL = 

(VL, EL) as a representative of each CLB. When routing each net Ni, PathFinder’s maze 

expansion first finds a path in the global RRG from the source si to an input pin j of a 

CLB that contains one of Ni’s sinks. SERRGE then refers to the local RRG and identifies 

the CLB input pin j’ corresponding to j in GL.  Let vL(j’) and eL(j’) denote the sets of 

neighboring vertices and incident edges in the fanout of j’ in GL. SERRGE expands the 

global RRG according to the following two rules: (1) for each vertex v’vL(j’), add a new 

vertex v to V; (2) for each edge e’ = (j’, v’)eL(j’), allocate a new edge e = (j, v) to E.  

With the newly expanded vertices and edges, PathFinder can now complete the route 

to the sink in the BLE, which will be one of the newly added vertices to V. The costs 

associated with each newly allocated vertex and edge are initialized and updated 

appropriately; nets routed during the current, and subsequent, PathFinder iterations, may 

negotiate to use these newly allocated routing resources.  

This dynamic RRG is a super-graph of the global RRG and a sub-graph of the 

complete RRG, by construction. In the worst case, the dynamic RRG will grow until it 

becomes the complete RRG, but this is impractical. The intuition behind this approach is 

that the Baseline Router preemptively allocations portions of the RRG that are never 

expanded; SERRGE, in contrast, dynamically allocate the portions of the local RRGs that 

PathFinder explores, on-demand.  



 

68 

3.3.2. GARBAGE COLLECTION 

To limit the memory footprint of the dynamic RRG (and other data structures that 

are proportional in size), SERRGE includes a dynamic garbage collector. If the dynamic 

RRG grows more than 30% larger than the global RRG, then the garbage collector 

deletes all presently unused vertices and edges that were dynamically allocated; this 

includes all auxiliary data structures associated with each vertex and edge, including 

Elmore delay trees (see Subsection 3.3.5), traceback information, etc. In other words, 

RRG growth is used as a proxy for the growth of a much larger set of data structures 

whose collective memory requirements greatly exceed that of the RRG (i.e., just the 

vertices and edges) in isolation.   

The garbage collector never deallocates vertices and edges that belong to the global 

RRG. Within each CLB, the garbage collector identifies candidates for deletion by 

comparing the number of LUT input pins that have been reached thus far with the 

number of nets that have sinks in each LUT. If the number is equal, then all RRG 

resources that are incident on the LUT inputs are deallocated; this ensures that routes 

computed previously during this iteration can be recovered if PathFinder successfully 

converges. Otherwise, the routing resources are left in-place under the assumption that at 

least one future net may use them when searching for its sink.  

The garbage collector does not consider history costs when deleting RRG vertices; 

all costs associated with a deleted vertex are lost, and are reset to zero if the vertex is later 

re-allocated. This may alter the way that PathFinder negotiates under SERRGE, and 

could yield a different routing results compared to the Baseline router (presuming that the 
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latter does not incur failed iterations due to exceeding the memory limit).  The lost 

history costs are restricted to vertices and edges that represent the final link connecting a 

routed net to its sink.  Even if the history cost is deleted, a net that routes through a re-

allocated resource will increase the penalty cost, which would serve to dissuade 

subsequent nets from using those resources during the current PathFinder iteration.  

3.3.3. EXAMPLE 

Figure 3-3 illustrates the preceding discussion. PathFinder first searches the global 

RRG (not shown) from source s to a CLB that contains sink t. Upon reaching the CLB 

input pin, Figure 3-3(a) shows that the portion of the RRG corresponding to the CLB has 

not yet been allocated (gray). SERRGE consults the local RRG to expand the dynamic 

RRG to fan out from the CLB input pin, as shown in Figure 3-3(b). In Figure 3-3(c), the 

local route completes using a subset of the newly allocated routing resources. In Figure 

3-3(d), the garbage collector claims unused routing resources that SERRGE expanded, but 

did not use. As shown in Figure 3-3, PathFinder maintains an RRG corresponding to global 

FPGA routing resources, while selectively expanding the RRG to include a subset of nets 

that may be used inside of an intra-cluster routing crossbar. When routing a net, the first 

step is to compute a route from the source s to an input of the CLB that contains the sink 

t. The portion of the RRG corresponding to the CLB’s intra-cluster routing crossbar is 

initially not allocated Figure 3-3(a). The fanout of the CLB input found by the global router 

is allocated and added to the RRG Figure 3-3(b). In this example, the route is completed to 

the target LUT Figure 3-3(c). Later on, the garbage collector may reclaim CLB routing 

resources that have been allocated, but were not used Figure 3-3 (d).  
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Figure 3-3: Illustration of the basic behavior of SERRGE.  

3.3.4. COMPRESSED WIRE-TO-PIN LOOKUP MAP 

To further reduce the memory footprint of SERRGE, the extended wire-to-pin 

lookup map (Section III.B) is converted to a one-dimensional array that exclusively 

represents routing resources that could possibly be used by the netlist being routed. For 

example, connections to BLEs within a CLB that are not used (as determined by the 

placer/packer) are omitted; likewise, CLB I/O pins that interface exclusively with unused 

BLEs, and CLB sides where all pins connect to unused BLEs, are omitted from the 

lookup map as well. Figure 3-4 provides pseudocode for the map initialization process. 
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#define USED 1 
#define OPEN 0 
 
/* Values vary from CLB to CLB, based on BLE utilization */ 
int used_CLB_pins = …; 
int used_sides = …; 
int used_MUXes = …; 
int used_LUT_ipins = …; 
int N = used_CLB_pins * used_sides * used_MUXes *used_LUT_ipins; 
 
/* Initialize all map entries to OPEN */ 
int *tracks_to_LUT_pin = calloc(N, sizeof(int));  
 
/* Mark the array entries that are used */ 
for (int i = 0; i < used_LUT_ipins; i++) { 
 int I = (i * used_IIB_MUXes * used_sides * used_CLB_pins); 

for (int j = 0; j < used_IIB_MUXes; j++)  { 
  int J = (j * used_sides * used_CLB_pins); 

for (int k = 0; k < used_sides; k++) { 
   int K = (k * used_CLB_pins); 

for (int L = 0; L < used_CLB_pins; L++) 
tracks_to_LUT_pin[I + J + K + L] = USED; 

} 
} 

} 
Figure 3-4: Pseudocode to initialize 1-dimensional wire-to-pin map. 

3.3.5. ELMORE DELAY TREES 

VPR’s timing-driven router builds an Elmore delay tree for each vertex discovered 

during maze expansion, which is saved throughout the search. This increases the router’s 

memory footprint and severely impacts performance.  

Unlike the maps in Figure 3-2, the map entries that are marked as being USED (rather 

than OPEN) depend both on the FPGA architecture and the packing/placement result, and 

vary from CLB to CLB.  
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 VPR’s timing-driven router computes the Elmore delay tree for each vertex v 

when v is discovered during the search. It uses the tree to compute the term delayv that 

contributes to the vertex’s cost term cv, as per Eqs. (2.10) and (2.11), which, in turn, 

contributes to the cost function fv, in Eqs. (2.4)-(2.7), i.e., the priority of v when it is 

inserted into the priority queue. The Baseline Router saves the Elmore delay tree for v, so 

that delayv can be updated quickly when necessary (Figure 2-16, Lines 14-17), and for 

quick access when and if the search removes v from the priority queue during the search 

(i.e., v has the highest priority among all enqueued vertices).  

In contrast, SERRGE discards the Elmore delay tree after delayv is computed, and 

re-computes the tree on-demand, when necessary. The performance benefits accrued by 

the reduced memory footprint outweigh the overhead of re-computing the Elmore delay 

trees on-the-fly. When and if the router completes successfully, all of the Elmore delay 

trees are re-computed at the very end, in order to facilitate post-route timing analysis 

based on the Elmore delay model.  

3.3.6. MEMORY LIMIT 

Similar to the Baseline router, SERRGE sets a limit on the memory consumption per 

iteration, for all of the routing resources. If this memory limit is exceeded, then the 

iteration fails, and any adjusted history costs are propagated to the next iteration. Due to 

the compressed wire-to-pin lookup map and memory-efficient approach to computing the 

Elmore delays, SERRGE exceeds the memory less frequently than the Baseline router; 

despite these efficiencies, SERRGE cannot guarantee that it will always stay within the 

memory limit, especially when routing large netlists on large FPGAs.  
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3.4 ROUTING WITH PARTIAL PRE-ROUTING (PPR) 

Partial Pre-Routing (PPR) starts by locally routing each CLB (having at least one 

used BLE) by executing PathFinder on the local RRG, as shown in Figure 3-5(a). Figure 

3-5(b) illustrates one of many possible local routing solutions. PPR is then followed by a 

global routing step that completes each route (i.e., from each source to an appropriate 

CLB input) using the global RRG. By using one global and one local RRG, PPR avoids 

the large memory footprint of the Baseline router, and the complications associated with 

a dynamic RRG and garbage collection required by SERRGE.  

The local RRG for each CLB is a bipartite graph. The local routing problem only 

involves a subset of the nets in the complete routing problem for the entire FPGA, and 

involves computation of a partial path for each net in the general case. To model the 

routing problem, a super-source s* is allocated and connected to each CLB input.  

 

                           (a)         (b) 

Figure 3-5: PPR Intra-CLB routing operation 

Let N* be the set of nets having at least one sink in the CLB. For net Ni = (si, Ti)N*, 

let Ti’ Ti, be the subset of sinks in the CLB. If si is a source in the CLB, then net Ni’ = (si, 

Ti’) is added to the local routing problem instance; otherwise, net Ni’ = (s*, Ti’) is added 
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to the local routing problem instance. PathFinder then computes the local routes.  If |Ti’| 

= 1 for every net Ni’ in the local routing problem instance, then it can be simplified to 

bipartite matching, which can be solved optimally in polynomial-time using a network 

flow algorithm. We did not implement this option because PathFinder converged quickly 

enough in practice.  

Solving the local routing problem for each CLB computes all of the intra-cluster 

routes required for each net. A global routing problem instance using the global RRG is 

required to compute the inter-cluster routes, subject to the constraints imposed by the 

local routing results computed by PPR. The constraints can be expressed as CLB input 

equivalence classes, as shown in Figure 3-5(b). Without loss of generality, the local routing 

solution computed two CLB inputs that route to BLE t1. As a consequence, these two 

CLB inputs become logically equivalent sinks in the global routing problem. Specifically, 

they become the targets for the two respective nets for which BLE t1 was the original 

target. In our experiments, PPR consumed far less memory than either the Baseline router 

or SERRGE, and did not suffer from memory-related performance issues. Consequently, 

we did not include SERRGE’s memory optimizations for the wire-to-pin lookup maps or 

Elmore delay trees in PPR; however, they remain nonetheless fully compatible, in 

principle, with PPR.  

PPR starts by routing each intra-cluster routing crossbar individually, finding a set of 

disjoint paths from the source to the inputs of all BLEs that are used Figure 3-5(a); CLB 

inputs that are connected to inputs of the same BLEs form equivalence classes that act as 

new sinks for the global router Figure 3-5(b).  



 

75 

3.5 EXPERIMENTAL SETUP AND METHODOLOGY 

3.5.1. EXPERIMENTAL PLATFORM 

We implemented the routing algorithms in VPR 5.0 [7], which was the most up-to-

date version of VPR when we started this project. VPR 5.0 did not support sparse-intra-

cluster routing crossbars. The Beta release of VPR 6.0 [47] featured sparse intra-cluster 

routing, but did not include a timing-driven router; that feature was added to the official 

release of VPR 6.0 early in 2012, when the implementation work outlined here was 

mostly complete. VPR 6.0’s router shares many principle similarities with PPR (Section 

3.3). 

We used a tool described by Lemieux and Lewis [43] to generate routable sparse 

crossbars with a user-specified population density. We used ABC [6] for logic synthesis 

and technology mapping, T-VPack for packing, and VPR 5.0 for placement and (timing-

driven) routing. All experiments reported here were performed on an Apple iMac 

featuring a 2.66 GHz Intel Core i5 with 4GB of DDR3 memory, running OS X 10.9.2. 

3.5.2. EXPERIMENTAL PARAMETERS 

We modeled an FPGA using an architecture configuration file from the iFAR 

repository [33][34] based on 65nm BPTM technology. Table I lists the architectural 

parameters that we used. We considered intra-cluster routing crossbars with population 

densities p = 40%, 50%, and 75%.   
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K N I Fcin Fcout p 

6 10 33 0.15 0.10 40%,	
  	
  	
  50%,	
  	
  75% 

 
Table 3-1: FPGA architectural parameters 

 

VPR repeatedly routes each benchmark using a binary search to identify the smallest 

channel width, Wmin, for which a legal route can be found. VPR also allows the user to 

specify a chosen channel width (W), and then tries to find a legal route, but may fail. 

Different routing algorithms may yield different Wmin values for a given FPGA 

architecture, benchmark, and placement/packing result; for each, we ran Baseline, PPR, 

and SERRGE and computed their respective Wmin values, the largest of which we denote 

as Max(Wmin). We generate an FPGA with channel with W = 1.4Max(Wmin). We then re-

route each benchmark using all three algorithms on this FPGA and present those results. 

This prevents architectural differences due to varying Wmin values from skewing the 

experiments. 

 PathFinder terminates after a user-specified number of iterations. We set the 

maximum number of iterations allowed to 300; if PathFinder cannot find a successful 

route after 300 iterations, then it fails. Since FPGA routing is NP-complete, PathFinder is 

not guaranteed to find a legal routing solution, even if one exists. 

We report the size of the RRG, wire-to-pin lookup maps, and Elmore delay trees for 

each routing algorithm. The wire-to-pin lookup maps are allocated once remain static 

throughout routing; the Elmore delay trees grow and shrink dynamically. The RRG is 
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static under PPR and the Baseline Router, and dynamic under SERRGE. We measure the 

memory requirement of the static data structures once and profile the size of the dynamic 

data structures after each dynamic allocation that increases their size. We report the peak 

memory consumption of these data structures for each benchmark and architecture during 

the runtime of the routers. 

3.5.3. TIMING AND AREA MODELS 

Our timing model was similar to VPR 5.0. We added models to account for delays 

inside of the CLBs. The timing graph is generated such that every CLB or LUT input pin 

becomes a timing node. Timing edges represent connectivity between pins, and delays 

are marked on edges, not nodes. 

The area model sums the aggregate areas of the number of minimum-width 

transistors required to place and route a circuit on in VPR; we did not modify VPR’s 

counting method. We added extensions to account for the intra-cluster routing crossbar 

area, which depends on its population density.  

We employed the basic techniques that were used in VPR to estimate the silicon area 

occupied by each multiplexer and wire in the CLB. We assume that a minimum width 

transistor takes 1 unit of area. A double-width transistor takes twice the diffusion width, 

but the same spacing, so we assume it takes 1.5x the area of a minimum-width transistor. 

Buffer sizes are calculated based on the drive strength requirements and depend on the 

fan-out of the buffer. VPR uses 4x the minimum size, which we have adopted for general 

buffers. We sized the CLB input buffers using the approach used by Lemieux et al. [3], 

where the drive strength is at least 7x and at most 25x the minimum size. 
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We model an FPGA with single-driver wires; each wire segment begins with a 

multiplexer followed by a driver. We attempt to judiciously select the multiplexer size 

depending on the number of inputs. One-level multiplexers are used when there are 4 or 

fewer inputs, and more levels are used when the number of multiplexer inputs increases. 

3.5.4. BENCHMARKS 

We selected 10 of the largest IWLS benchmarks [17] for use in our experiments; 

their summary is given in Table 3-2.  

 

 

 

 

 

 

Table 3-2: 10 of the largest IWLS Benchmarks 

 

VPR generates a custom FPGA that is sized for each benchmark. The second 

column of Table II lists the dimensions of the FPGA generated for each benchmark (e.g., 

an MxN array of CLBs). The third and fourth columns list the number of nets and CLBs 

used in each benchmark for an FPGA architecture with parameters N=8, K=6, and I=27, 

i.e., each CLB contains eight 6-LUTs and has 27 input pins. 

 

Benchmark Array size Nets CLBs 

ac_ctrl 
aes_core 
des_area 
mem_ctrl 
pci_bridge32 
spi 
systemcaes 
systemcdes 
usb_funct 
wb_conmax 

48x48 
33x33 
16x16 
27x27 
74x74 
13x13 
21x21 
12x12 
40x40 
47x47 

5097 
5800 
1569 
4464 
8016 
923 
2509 
1068 
5154 
1043

0 

5008 
2518 
695 
3158 
7815 
712 
2173 
706 
4429 
6297 
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Some of the IWLS benchmarks are I/O bound, rather than logic bound. In these 

cases, the number of I/Os per physical pin on the perimeter of the FPGA dictates the 

dimensions. When this occurs, VPR generates an FPGA with far more LUTs/CLBs than 

are necessary to realize each benchmark, and LUT/CLB utilization is relatively low as a 

result. 

For each benchmark and FPGA, we generate 10 placements by varying the random 

number seed used in VPR’s simulated annealing-based placer. For each placement, we 

then route the benchmark using PPR, SERRGE, and the Baseline router. For each data 

point (benchmark/FPGA/router), the results reported are the averages over the ten 

placements. 

3.6 EXPERIMENTAL RESULTS 

3.6.1. WMIN AND ROUTABILITY 

Figure 3-6 reports the Wmin values obtained by routing each benchmark/FPGA 

combination using PPR, SERRGE, and the Baseline Router. 

Surprisingly, PPR yields the lowest overall Wmin values across all 

benchmark/architectures, with the exception of des_area for the FPGA with intra-cluster 

routing crossbar population density p = 75%.  
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Figure 3-6: Wmin for the ten largest IWLS benchmarks 

These results indicate that PPR is more likely than SERRGE or the Baseline Router 

to find a legal routing result. When considering Wmin as a proxy for routability, it is 

important to note that our experiments use VPR’s timing-driven router; experiments have 

been published which demonstrate that VPR’s routability-driven router, which does not 

employ the Elmore delay model, tends to yield lower Wmin values than the timing-driven 

router [7, Table 4.8].  
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3.6.2. CRITICAL PATH DELAY 

Figure 3-7 reports the critical path delays obtained by routing each benchmark/FPGA 

combination using PPR, SERRGE, and the Baseline Router. PPR is competitive with 

SERRGE and the Baseline Router in many cases; the biggest disparity in critical path 

delay is 3.43 MHz (143.88 MHz to 140.45 MHz) for the pci_bridge32 benchmark for the 

FPGA with intra-cluster routing crossbar population density p = 40%.  

 

Figure 3-7: The critical path delay for the ten largest IWLS benchmarks 
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PPR’s pre-routing phase does constrain the search space for negotiation, which 

accounts for the cases where SERRGE and the Baseline Router achieve lower critical 

path delays. SERRGE and the Baseline Router permit PathFinder to negotiate for routes 

at the CLB inputs and within the intra-cluster routing crossbar, facilitating discovery of 

faster routes. 

3.6.3. RUNTIME AND NUMBER OF PATHFINDER ITERATIONS 

Figure 3-8 reports the runtimes of PPR, SERRGE, and the Baseline Router for all 

benchmark/FPGA combinations. The runtime in measured on the ten largest IWLS 

benchmarks  (Table 3-1) placed-and-routed on an FPGA with parameters specified in 

Table 3-2. Results are reported for devices with intra-cluster routing crossbar population 

densities of p = 75% (top) 50% (middle) 40% (bottom). 

PPR is uniformly the fastest, followed by SERRGE, and Baseline. All three routing 

algorithms tend toward faster convergence at lower intra-cluster routing crossbar 

population densities. 

Figure 3-9 reports the number of PathFinder iterations required for PPR, SERRGE, 

and the Baseline Router to converge for each benchmark/FPGA combination. With one 

exception (wb_conmax for an FPGA with intra-cluster routing crossbar population 

density p = 50%), PPR requires the fewest iterations, followed by SERRGE, and then the 

Baseline Router. Reducing the intra-cluster routing crossbar population density 

marginally reduces the number of iterations.  
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Figure 3-8: Runtime (seconds) for the ten largest IWLS benchmarks 
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Figure 3-9: The number of PathFinder iterations for the ten largest IWLS benchmarks 

PPR requires far fewer iterations to converge than SERRGE or the Baseline Router. 

This is due primarily to two factors: (1) PPR’s restricted search space; and (2) PPR’s 

more efficient usage of memory, which limits the number of iterations that fail due to 

exceeding the memory limit. These factors, correlate directly to the reduced runtimes 

reported in Figure 3-10.  
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3.6.4. MEMORY CONSUMPTION 

Figure 3-10 reports the peak memory consumption of PPR, SERRGE, and the Baseline 

Router for each benchmark/FPGA combination. The Elmore delay trees, which are 

specific to VPR’s timing-driven router [7, Section 4.4], consume more than twice as 

much memory than the wire-to-pin lookup maps and RRG combined, and the wire-to-pin 

lookup maps consume significantly more memory than the RRG.  

SERRGE offers a marginal improvement in peak memory consumption compared to 

the Baseline Router, due primarily to its compressed wire-to-pin lookup map and re-

computation, rather than storage, of the Elmore delay trees. PPR consumes far less 

memory than either SERRGE or the Baseline Router, because the global RRG, which is 

smaller than SERRGE’s dynamic RRG at peak memory consumption and the Baseline 

Router’s complete RRG, has fewer vertices and edges, and thus stores fewer Elmore 

delay trees. Also, PPR’s wire-to-pin lookup maps stop at the CLB inputs, while SERRGE 

and the Baseline Router must route all the way to BLE input pins. 

The peak memory consumption requires hundreds of MBs, as reported in Figure 3-10. 

Intel’s i5 processors have 3-6 MB of L3 cache, and the i7 family has 4-8 MB. Although 

the routers may exhibit some temporal and/or spatial locality, the working set exceeds L3 

cache capacity, degrading performance. 
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Figure 3-10: Memory overhead for PPR, SERRGE, and the Baseline routers 

3.7 SUMMARY 

This chapter introduced PPR and SERRGE to reduce the runtime and memory footprint 

of FPGA based on the PathFinder negotiated congestion algorithm [50], as implemented 

in VPR [46]. We first implemented a Baseline Router, which is an extension of VPR’s 

timing-driven router with larger data structures that are required to represent intra-cluster 

routing crossbars and expose this new information to the router. We then implemented 

SERRGE as a more memory efficient variation of the Baseline Router, which employs 

compressed data structures and online garbage collection. Lastly, we implemented PPR, 

which divides routing into local and global phases, yielding a smaller memory and rapid 
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convergence, but at the cost of a drastically reduced search space. PPR offers the best 

overall routability (e.g., Wmin values), fastest running times, and smallest memory 

footprint, while SERRGE tends to find routing solutions with the lowest overall critical 

path delays. If router runtime is a premium, then PPR should be used; if critical path 

delay is more important, then SERRGE is preferable; in the vast majority of our 

experiments, PPR and/or SERRGE outperformed the Baseline router for all metrics of 

interest, as reported in Figs. 3.8-3.11. 

The next chapter investigates the use of dynamic multiplexing to configure the logic 

block to efficiently implement floating point shifters. It also describes the CAD tool 

support for realizing the hybrid logic blocks. 
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Chapter 4. A NEW HYBRID LOGIC BLOCKS 

 

This chapter introduces a new type of logic blocks that can be configured to 

efficiently implement shifting operations for floating points mantissa alignment and 

normalization; or as a regular logic block, if shifting operations are not required. We first 

describe the architectural modifications required in the intra-cluster routing fabric to 

realize this type of logic blocks. We then show the efficiency of this logic block 

architecture for implementing shifters for floating-point mantissa alignment and 

normalization. Finally, we investigate the CAD support for realizing this logic block 

architecture and illustrate the necessary modifications to the physical design tools 

(placement and routing) in order to support this architecture. 

 

4.1 INTEGRATING SD-MUXES INTO FPGAS 

In Chapter 2 we have described the operation of SD-MUXes and the benefits of 

using them. This section describes the necessary architectural enhancements to FPGAs to 

integrate SD-MUXes into the routing fabric. Starting with an overview a typical FPGA 

architecture (Section 2.1), we consider two locations in the FPGA to introduce the SD-

MUXes (Sections 2.2 and 2.3). Lastly, we introduce the macro-cell and describe how a 

standard FPGA CAD flow can be modified to achieve routability (Section 4.4). 

This work targets an FPGA architecture based on the Versatile Place and Route 
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(VPR) tool, which is publicly available from the University of Toronto [46]. The user 

specifies several architectural parameters in a configuration file. VPR generates an FPGA 

architecture based on these parameters.  

The intra-cluster routing is a crossbar that connects I inputs and N local feedbacks to 

the KxN LUT inputs in the CLB. VPR 5.0 implements intra-cluster routing as a full 

crossbar, which provides a connection between every CLB input and LUT input. Full 

crossbars are costly in terms of area and power, but guarantee routability: i.e., any 

combination of signals routed to CLB inputs can be routed to any desired combination of 

LUT inputs. Highly routable sparse crossbar topologies for intra-cluster routing have also 

been investigated in recent years [20][43]. 

Ahmed and Rose determined that the ideal number of CLB inputs is I = Kx(N+1)/2, 

which is less than the total number of LUT inputs, KxN. This suffices because many 

signals fan-out to multiple LUT inputs within a CLB after the FPGA has been 

configured. As each CLB input (other than LUT feedbacks) is driven by a WxFcin:1 

multiplexer, reducing the number of CLB inputs reduces the overall cost of the C Block, 

at the expense of some flexibility. In other words, N independent K-input logic functions 

cannot be packed into a CLB due to I/O limitations, despite the fact that the CLB has 

sufficient LUT capacity. 

Recall that our goal is to replace static multiplexers in the routing network with SD-

MUXes. There are two locations where this is possible: the C Block (input), and intra-

cluster routing, as discussed in the next two subsections. 
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4.1.1. INTEGRATING SD-MUXES INTO THE C BLOCK 

Example 1. To illustrate the integration of an SD-MUX into a C Block, let us 

consider a conditional swap, which has three inputs, I0, I1 and c, and two outputs, J0 and 

J1. The operation is: 

J0 = c ? I1 : I0 , J1 = c ? I0 : I1 (1) Figure 4 depicts a portion of the C Block that has 

been modified with two SD-MUXes to implement the conditional swap.  static 

multiplexer provides the control bit, while two SD-MUXES compute J0 and J1. In this 

particular example, W =8 segments per channel and Fcin = 0.5, i.e., each C Block 

multiplexer connects to 4 wires in the channel. Each of the three 4:1 multiplexers in the C 

Block are implemented using three 2:1 multiplexers; two of the 2:1 multiplexers have 

been replaced with SD-MUXes in Figure 4-1. 

 

Figure 4-1: A C Block modified to implement a conditional swap by introducing two SD-MUXes. 

The C Block in Figure 4-1 imposes routing constraints that must be satisfied in order 
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to deliver input signals I0 and I1 in the correct order to the SD-MUX inputs. In particular, 

I0 and I1 must be routed on routing segments w6 and w7; the order is irrelevant, i.e., either 

I0 can be routed on w6 and I1 on w7, or vice-versa; similarly, I0 and I1 must be routed on 

w4 and w5 as well. The condition bit, c, has greater flexibility: it can be routed on w0, w1, 

w2, or w3. 

The placer and router must satisfy these constraints. Let F0 and F1 be K-input logic 

functions that compute conditional swap inputs I0 and I1. F0 and F1 must be synthesized 

on LUTs whose outputs collectively drive a subset of the wires that satisfy the 

aforementioned constraints. Moreover, this assumes that such a combination of LUTs 

actually exists. Although it may be possible to satisfy this constraint for a 3-input 

conditional swap operation, it will be much more difficult to satisfy for a 24- or 27-bit 

shifter. Example 2. Consider a 4-bit left shift with rotation. The inputs are 

I0…I3 and the outputs are J0…J3; two control bits c0 and c1 specify the shift amount 

(0-3 bit positions). Once again, we assume that W = 8 and Fcin = 0.5, and the C Block 

contains 4:1 multiplexers. 

As the shifter has four data inputs rather than two, each of the four data inputs, I0 … 

I3 must connect to exactly one input of each C Block multiplexer in a pre-determined 

pattern. Figure 4-2(a) depicts a portion of the C Block that produces the lower-order data 

outputs, J0 and J1; however, the interconnection topology does not allow the design to be 

satisfied due to conflicts on the routing segments. For example, the multiplexer that 

produces J0 requires I0 to be routed on segment w4, while the multiplexer that produces J1 

requires I1 to be routed on the same segment concurrently. Similar conflicts occur on 
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segments w5, w6, and w7. In contrast, Figure 4-2(b) depicts an interconnect topology that 

eliminates the routing conflicts; of course, this topology only satisfies a 4-bit left shift 

with rotation, and would not necessarily be helpful for some other type of multiplexer-

based circuit. As mentioned earlier, dynamic multiplexers impose strict ordering 

constraints on the signals that are connected to their inputs. The examples shown in 

Figures 4 and 5 demonstrate that these constraints are propagated into the global routing 

network when SD-MUXes are integrated into the C Block. The ability to implement very 

simple multiplexing circuits, as shown in Figures 4-1 and 4-2, is dependent on the 

interconnect topology between the CLBs and the routing network; this interconnect 

topology depends on parameters W, Fcin and Fcout, and the algorithm that generates the 

routing network from these parameters. Although it may be possible to modify the 

routing network generation algorithm to favor certain interconnect topologies, it is 

difficult to determine whether the basic idea will generalize to larger structures. For 

example, in a 27-bit shifter, input bit I0 will fan out to 27 outputs, J0 … J26. This means 

that a single routing segment or a subset of segments driven by the same BLE must 

individually or collectively fan-out to 27 pre-specified C Block SD-MUX inputs, all in 

close quarters. Similarly I1 will need to fan-out to 26 pre-specified C Block SD-MUX 

inputs, etc. Moreover, this must be done with parameters that are representative of 

commercial FPGAs, e.g., N = 10, W = 300, Fcin = 0.15, and Fcout = 1/N = 0.1. The 

likelihood of success in this case is too low to be considered realistic; consequently, we 

conclude that the C Block is not a particularly promising location to integrate SD-MUXes 

into the routing fabric. 
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Figure 4-2: A conflict in the interconnect topology. 

Figure 4-2 shows how a conflict in the interconnect topology makes it impossible to 

implement a 4-bit rotator using SD-MUXes in the C Block (a); changing the interconnect 

topology can eliminate the conflict (b). 
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4.1.2. INTEGRATING SD-MUXES INTO INTRA-CLUSTER 

ROUTING 

Alternatively, we can introduce SD-MUXes into the intra-cluster routing instead of 

the C Block. The primary advantage of this approach is that it eliminates the routing 

constraints that arise due to the interconnection topology between the routing segments 

and the C Block. Instead, the interconnection topology constraints are internal within the 

intra-cluster routing. Signals that drive a specific SD-MUX input for dynamic 

multiplexing, as shown in Figure 4-3, are routed to pre-selected CLB inputs. Each pre-

selected CLB input connects to one of the SD-MUX inputs: some to the data inputs, and 

others to the selection inputs.  Figure 4-3 shows an example of a 4:1 SD-MUX integrated 

into the intra-cluster routing; a significant portion of the intra-cluster routing is omitted 

from Figure 6 to conserve space. Two CLB inputs provide dynamic control (they may 

also drive other multiplexers, which are not depicted in the figure); control signals c0 and 

c1 must be routed to these two inputs. The other four CLB inputs drive the data inputs of 

the SD-MUX. The input signals are routed to these four CLB inputs in a specific order, 

e.g., the SDMUX selects input I0 if c1c0 = 00. Thus, the connection topology between 

CLB inputs and SD-MUX inputs determines which signals must be routed to each pre-

selected CLB input. In Figure 4-3, any 4-input multiplexer can be realized by permuting 

either the control or the data bits; however, additional restrictions are imposed when we 

consider multiple-output functions because each CLB input may connect to multiple SD-

MUX inputs. 
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Figure 4-3: Integrating an SD-MUX into intra-cluster routing imposes a strict ordering on the signals that are 
routed to the CLB inputs. 

 

Example 3. Let us reconsider the conditional swap operation from Example 1; this 

time, we want to implement it using SD-MUXes in the intra-cluster routing rather than 

the C Block. Figure Figure 4-4(a) shows an initial attempt. Due to the interconnection 

topology within the intra-cluster routing, both SD-MUXes conditionally select the same 

input bit, i.e., they both compute logic function J0. 

Figure 4-4 shows how SD-MUXes can be integrated into the intra-cluster routing; 

the interconnect topology may force both SDMUXes to implement the same logic 

function when configured to implement dynamic control (a); rearranging the topology 

enables the SD-MUXes to implement different functions (b). By swapping the order of I0 

and I1 at the CLB inputs, then this intra-cluster routing topology would compute J1, rather 

than J0; however, by changing the topology, as shown in Figure 4-4(b), the two SD-

MUXes compute logic functions J0 and J1, respectively. In this case, swapping the order 

of I0 and I1 at the inputs would likewise swap the order of J0 and J1 at the outputs. 
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Figure 4-4: Integrating SD-MUXes into intra-cluster routing.  

Example 4: Figure 4-5 illustrates intra-cluster routing with SDMUXes that can 

implement a 4-bit left shifter (bits shifted in are set to zero). The basic interconnection 

pattern shown here easily generalizes to a larger shifter sizes. In this case, the SD-MUXes 

implement all of the shifting functionality; the LUTs are configured to pass the SD-MUX 

outputs through unmodified. 
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Figure 4-5: Intra-cluster routing with SD-MUXes modified to support a 4-bit left shift. 

In Figure 4-5, many of the SD-MUX inputs in are ‘0’ bits. It is not immediately clear 

how these bits should be handled. It would be unrealistic to extend some of the SD-

MUXes to account for a large number of ‘0’ bits, e.g., in a K-bit shifter, the SD-MUX 

that computes least significant output bit J0 requires K-1 ‘0’ bits, the SD-MUX that 

computes J1 requires K-2 ‘0’ bits, etc.; the area overhead required to support larger 

shifters would be prohibitive. 

Another issue is that the routing network may invert signals en route. The LUT sink 

is usually reprogrammed to compensate if some of its inputs arrive with the wrong 

polarity. SD-MUXes, however, are not programmable in this respect. One possibility is to 

add programmable inversion at the shifter inputs; however, this incurs significant area 

overhead. Another option is to reprogram the previous layer of LUTs that generate the 

shifter inputs to compute the complement of its logic function; however, this logic layer 

may have a large fan-out, where some fan-out bits are inverted and others are not, 

rendering this approach ineffective. 
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We can solve both the ‘0’ SD-MUX input bit problem and the inversion problem by 

using LUTs in conjunction with the SDMUXes. 

Each SD-MUX output drives a LUT input; we can then route the control bits to the 

remaining LUT inputs. The LUT is then programmed to invert the SD-MUX output if the 

selected input arrives in inverted form. The LUT is also programmed to output a ‘0’ for 

the appropriate control bit combinations (e.g., c1c0 = {01, 10, 11} for J0 in Figure 4-5), 

which eliminates the need to route ‘0’ bits to the SD-MUX inputs. 

 

Figure 4-6: LUT used in conjunction with an SD-MUX 

The CLBs in modern high performance FPGAs contain 6-LUTs; this limits the 

number of control bits that can be supported using this approach to 5 or less, which, in 

turn, limits the maximize SDMUX size to 32:1. This suffices for the 24- and 27-bit 
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shifters used for single-precision floating-point mantissa alignment and normalization. 

Figure 4-6 illustrates the preceding discussion for the second least significant bit, J1 of a 

27-bit shifter. 

As can be seen from Figure 4-6, a LUT used in conjunction with an SD-MUX solves 

the problems of inverted input bits and generates ‘0’ outputs when appropriate. This 

example is the second least significant output bit, J1, of a 27-bit left shifter. Four truth 

tables are possible, depending on whether I0 and I1 are inverted. Programmable inversion 

is necessary for the five control bits. 

CLB parameters also limit the size of the SD-MUXes that can be introduced. The 

intra cluster routing has a total of I+N inputs and NK outputs. The inputs are the I CLB 

inputs provided by the C Block plus N LUT feedbacks from within the CLB. The cluster 

contains N K-LUTs; each LUT input is an output of the intra-cluster routing. A typical 

modern high-performance FPGA has N = 8, K = 6, and I = K(N+1)/2 = 27, using the 

formula provided by Ahmed and Rose [1]. To support a 27-bit shifter, we need to 

increase I to 32, to account for the control signals. 

In VPR 5.0, the intra-cluster routing is a full crossbar. Given these parameter values, 

the intra-cluster routing would be composed of 48 40:1 multiplexers. Modern FPGAs, 

however, use sparsely populated crossbars [20] [43]. Depending on the population 

density of the sparse crossbar, the multiplexers may be smaller than 27:1. In this case, we 

would either need to limit the shift amount in accordance with the multiplexer size, or 

introduce SD-MUXes that are larger than the pre-existing static multiplexers; this latter 

option is unfavorable, because it introduces asymmetry in terms of delays: i.e., the delay 
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through a statically configured SD-MUX is greater than the delay through a standard 

static multiplexer, which could affect performance and complicate routing. 

The interconnection topology (i.e., which CLB inputs connect to exactly which SD-

MUX inputs) has a significant impact on our ability to implement shifters in the intra-

cluster routing; this was illustrated quite clearly by Figure 4-4. Figure 4-5 illustrates the 

general interconnect topology pattern required for a left shifter (which easily generalizes 

to more than 4 inputs), and a left shifter can implement a right shifter by reversing the 

order of the inputs. 

Shifters that perform rotation (e.g., Figure 4-2) require a different topology as they 

do not shift-in zeroes. To summarize, the topology must account for ordering constraints 

on SD-MUX inputs in order to ensure correctness. Lastly, we do not advocate the 

introduction of SD-MUXes into every CLB, as the vast majority of CLBs in a given 

FPGA will not be configured to implement dynamic multiplexing circuits in most 

realistic designs. CLBs containing SD-MUXes are a new form of heterogeneity, similar 

in principle to the introduction of DSP blocks and block RAMs in past FPGAs. As a 

rough estimate, we suggest at most 10% of the CLBs in an FPGA should be enhanced 

with SD-MUXes, and that those that are enhanced should be laid out in columns within 

the FPGA; the column-based layout echoes the way that DSP blocks and block RAMs are 

currently laid out in FPGAs, and therefore makes intuitive sense. 
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4.2 ENSURING ROUTABILITY WITH MACRO-CELLS 

Consider a 27-bit shifter implemented with SD-MUXes integrated into the intra-

cluster routing. In accordance with prior notation, let I0 … I26 and J0 … J26 denote the 

shifter inputs and outputs, and let c0 … c4 denote the control bits. This is a total of 32 

inputs (including control bits) and 27 outputs. Eight CLBs, CLB0 … CLB7 realize the 

shifter. LUT Li computes shifter input Ii, LUT Si computes shifter output Ji, and LUT Ci 

computes control bit ci. 

Figure 4-7 depicts the interconnection pattern for the 27-bit shifter. The structure 

depicted in Figure 4-7 is called a macro-cell, because the LUTs and CLBs are pre-placed 

and routed. Without loss of generality, if the placer (generally an iterative improvement 

algorithm) randomly moves L5 to a new CLB, the likelihood is quite small that a legal 

route will be found that delivers shifter input I5 to the pre-specified CLB inputs in CLB5, 

CLB6, and CLB7. By fixing the locations of the LUTs relative to one another in the 

macro-cell, routability is achieved. 

4.3 CAD SUPPORT FOR MACRO-CELLS 

We used VPR 5.0 [46] for architectural simulation, placement, and routing, T-VPack 

for packing [22], and ABC for logic synthesis and technology mapping [6]. 
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Figure 4-7: A macro-cell for a 27-bit shifter. 

4.3.1. PROGRAMMING MODEL, ASSUMPTIONS, AND 

TECHNOLOGY MAPPING 

We assume that the programmer will add annotations to the HDL code to specify 

when to configure the programmable macro-cell as a shifter, similar to how DSP blocks 

and carry chains are used. The technology mapper explicitly binds the annotated shifters 

to macro-cells rather than mapping them to LUTs. Large shifters are decomposed into 

smaller ones if macro-cell capacity is exceeded. 

Next, we extract the layer of LUTs that precedes each shifter, e.g., LUTs L0 … L23 in 

Figure 4-7. The structure of the macro-cell effectively pre-packs, pre-places, and pre-

routes these subcircuits. 
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4.3.2. MACRO-CELL PLACEMENT AND ROUTING 

VPR’s router, which is based on PathFinder [23], assumes that CLB intra-cluster 

routing is a full crossbar. Any path from the source to a CLB input can route a net: the 

crossbar connects all CLB inputs to all LUT inputs. We modified VPR to allow the user 

to specify specific CLB inputs pins as targets for certain sinks. VPR can find a legal route 

for a macro-cell, establishing a path from the LUT source that computes each net to all of 

its pre-specified inputs in the second macro-cell layer. VPR successfully routed 24- and 

27-bit shifters in macro-cells using this approach. 

Macro-cells are placed-and-routed offline, prior to the rest of the circuit. Placement 

of the shifter onto SD-MUXes within the macro-cell is deterministic. Placement of the 

LUT layer preceding the shifter is more flexible: any placement that successfully routes 

all nets within the macro-cell suffices. We try to pack the LUTs tightly into a small 

number of CLBs in the vicinity of the shifter. 

4.3.3. GLOBAL PLACEMENT AND ROUTING 

Extensive modifications were made to VPR’s placer [16] in order to handle macro-

cells. The input is a netlist, which may or may not contain macro-cells, and an 

architectural description of the FPGA in which certain columns have been annotated to 

indicate CLBs that have been enhanced with SD-MUXes. Each shifter in the netlist, 

along with the layer of preceding LUTs, is placed onto a macro-cell. Each macro-cell is 

routed up-front. SD-MUXes in the remaining (unused) macro-cells are configured as 

normal CLBs, similar to how shadow clusters are used [45]. 
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The placer considers all other CLBs to be functionally equivalent. VPR’s placer uses 

simulated annealing. We implemented two placement strategies. In the first, we place 

shifters onto macro-cells and fix their placement; the placer moves normal soft logic 

clusters around, but does not perturb the placement of the shifters onto macro-cells. The 

second option relaxes this constraint, and moves both soft logic clusters around the FPGA 

and may also move any shifter onto an unused macro-cell. Macro-cells, configured as 

shifters, are similar to DSP blocks from the perspective of the CAD tools. The difference 

is that unused logic and routing resources within each macro-cell, after it has been 

placed-and-routed, remain available to the global placer and router and can be used by 

the rest of the circuit. 

4.4 EXPERIMENTAL RESULTS 

Our experimental goals are twofold. Firstly, we wish to quantify reduction in LUT 

count that can be achieved by synthesizing shifters onto SD-MUX enabled macro-cells. 

Secondly, we wish to ensure that the inclusion of macro-cells does not adversely affect 

routability for industrial-scale benchmarks. 

4.4.1. FLOATING-POINT OPERATORS 

We consider a set of single-precision multi-operand floating-point adders that have 

already been optimized for area. These operators are similar to those produced by 

Altera’s floating-point datapath compiler [36][37], which removes redundant 

normalizations. We used designs published by Verma et al. [71], which were slightly 

smaller than those produced by Altera’s compiler. We used the smallest design approach, 
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which implemented the internal fixed-point multi-operand addition using a tree of 3-input 

adders. 

For a K-input adder, we de-normalize K-1 mantissas using shifters; the mantissa 

corresponding the largest exponent is not shifted. 

Normalization is only applied once, at the output of the operator. For 2, 4, 8, and 16-

input adders, Figure 11 reports that the area savings (in terms of Altera’s ALMs) obtained 

by the macro-cell range from 25% to 32%. Assuming that the number of LUTs and CLBs 

in an FPGA are fixed, this means that 33-40% more operators can be packed into an area 

of fixed size when macrocells are used to implement shifters. 

We did not measure the effect of the macro-cells on critical path delay or pipeline 

depth of the adders. The throughput of floating point data paths is driven mostly by 

spatial parallelism; reducing the area of an operator increases the number of operators 

that can be synthesized on a fixed area device. The area savings reported in Figure 11, 

thus, translate indirectly into increased throughput for parallel floating-point data paths 

that use these operators. 

4.4.2. EXPERIMENTAL SETUP: VPR 

We modeled an FPGA enhanced with macro-cells using VPR 5.0 [46]. We did not 

use VPR 6.0, which is now part of the Verilog-To-Routing (VTR) flow, for these studies 

because it did not have timing models in-place at the time this work was performed. As 

our baseline, we took one of the VPR architecture files from the iFAR repository 

[33][34]. Table 4-1 lists the baseline parameters for our architecture. CLB inputs and 

outputs are evenly distributed around all four sides of the CLB. VPR explicitly models a 
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C Block, but does not model the intra-cluster routing; as it is a full crossbar, only its 

delay is modeled. 

We do not model SD-MUXes explicitly. Our experiments strive to show that macro-

cells, which reserve a non-trivial quantity of routing resources in localized areas, do not 

adversely affect the ability to route large-scale circuits that contain shifters. Macro-cells 

are organized as vertical columns when they are introduced into the FPGA. The 

motivation is to mimic the layout of modern FPGAs. For example, logic clusters are 

generally laid out as columns; so are DSP blocks, block RAMs, etc. Only a small 

proportion of CLBs in the FPGA contain SD-MUXes. 

For each experiment, we placed each benchmark once and routed it three times using 

different random number seeds. The delay for each benchmark is the average delay of the 

three runs. This reduces the noise in our delay results as different random number seeds 

can yield significantly different routing results. 
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Figure 4-8: Area savings obtained by macro-cells for 24- and 27-bit shifters. 

4.4.3. BENCHMARKS 

We selected the ten largest IWLS 2005 benchmarks [28], which are described in 
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Table 4-2, to evaluate the impact of the macro-cell on large-scale applications. 

Using VPR, we synthetically added macro-cells (shifters) to these benchmarks; our goal 

is to ascertain whether these shifters, when pre-placed and routed onto macrocells, 

adversely affect area, delay, and routability. 

Parameter   Value Parameter  Value 

LUT Size 6 Fc input 0.15 

Cluster size 8 Fc output 0.1 

Channel Width 96 Technology* 65nm CMOS 

Cluster Inputs 36 Tile Area** 18940 

*Berkeley predictive models  ** Min-width transistors 

Table 4-1: FPGA architectural parameters 

 

Benchmark Description 

ac97_ctrl  Interface to external AC 97 audio codec 

aes_core  Advanced Encryption Standard (AES) 

des_perf  16-cycle pipelined DES/3-DES Core 

Ethernet 10/100 Mbps IEEE 802.3/802.3u MAC 

mem_ctrl  Embedded memory controller 

pci_bridge32  Bridge interface to PCI local bus 

Systemcaes Area-optimized AES implementation 

usb_func  USB 2.0 compliant core 

vga_lcd Embedded VGA/LCD controller 

wb_conmax Wishbone Interconnect Matrix IP Core 

 
Table 4-2: Ten Largest IWLS Benchmarks 

 

We modified each benchmark’s netlist to include 20, 40, 60, 80, and 100 shifters, 

which are connected at arbitrarily chosen points to ensure that they are not completely 
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disjoint from the remaining logic. In VPR, we pre-allocated macro-cell columns and 

preplaced the shifters and preceding layers of logic onto them. We pre-routed the macro-

cells, and marked the routing resources used as unavailable. Our primary concern was 

that locking down these resources up-front would adversely affect the quality of the 

routes obtained for the remainder of the circuit; fortunately, practically no degradation 

was observed. 
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Figure 4-9: Area of the 10 circuits synthesized using VPR 5.0. 
 

VPR generates a custom FPGA for each benchmark, based on its demand for logic 

and routing resources. Each benchmark is repeatedly placed and routed, varying the 

channel width each time; VPR converges onto the minimum channel width (Wmin) for 

which a legal route can be found. The average Wmin obtained by VPR across all 

benchmarks (with no macro-cells) here is 84.4. Figure 12 reports the area of each 
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benchmark with a varying number of shifters. The area is reported in terms of minimum-

width transistors; this accounts for the fact that CLBs that have been augmented with SD-

MUXes are larger than regular CLBs. 

4.4.4. ROUTABILITY 

Figure 4-10 reports the critical path delay of the IWLS benchmarks with a varying 

number of macro-cells; we observe practically no impact on critical path delay from the 

inclusion of as many as 100 shifters per benchmark. As noted in Section 4.4.2, we 

considered two different placement strategies: a constrained strategy in which the logic 

placed onto macro-cells is fixed a-priori, and an unconstrained strategy in which the 

placer can move the macrocell logic (the shifter, and logic layer preceding it) onto any 

macro-cell. The results reported in Figure 4-9 are for the constrained strategy; we observed 

that the unconstrained strategy produced essentially identical results, where the 

differences in delays for each data point are in the range of tens of pico-seconds. 

Figure 4-10 shows that introducing macro-cells may adversely affect Wmin, as each 

macro-cell requires some routing resources. For many benchmarks, Wmin steadily 

increases when the number of macro-cells ranges from 20 to 80, but decreases rapidly 

from 80 to 100. The reason for this observation is that VPR automatically generates an 

FPGA that is sized to a specific application; based on the number of CLBs used and I/O 

pads required, VPR generates the smallest square FPGA that can provide sufficient 

resources. VPR then repeatedly places and routes the circuit to determine Wmin. 
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Figure 4-10: Effects of macro-cells on the critical path delay. 
 

Many of the IWLS benchmarks are I/O bound, so CLB utilization is relatively 

sparse, and there is relatively little congestion in the routing network. Each macro-cell 

that is added increases CLB utilization, and introduces congestion, which increases 

Wmin. If we assume a fixed-size FPGA, eventually, the inclusion of more macro-cells 

will cause utilization to exceed 100%. VPR then generates a larger FPGA, with much 

lower utilization; consequently, the benchmark circuit routes much easier, and Wmin is 

reduced. This is precisely what occurred, for example, for benchmarks aes_core and 

des_perf (and a few others) between 80 and 100 macro-cells in Figure 4-11. It is important 

to recall that these benchmarks are synthetic. A floating-point operator, in contrast, would 

contain shifters and use the available macro-cells. 
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Moreover, Wmin as reported in Figure 4-11 is much smaller than the routing channel 

width of commercially available FPGAs. These experiments demonstrate that macro-cells 

are quite useful for benchmarks that contain shifters, while their presence will not 

adversely affect other benchmarks that do not contain shifters. 

 

 

Figure 4-11: Effects of macro-cells on minimum channel width. 

 

4.5 SUMMARY 

This chapter has investigated the use of hybrid logic blocks to implement a macro-

cell that can implement 27-bit shifters for single-precision floating-point mantissa 

alignment and normalization. The macro-cells reduce the area of floating-point addition 

clusters by up to 67%, which increases the number of operators that can be synthesized 
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into a fixed-area device. This aligns well with the strategy employed by Altera’s floating-

point datapath compiler [36][37]. We have extensively modified the VPR placement and 

routing modules to show the feasibility of macro-cells. In particular we investigated two 

approaches to placing the macro-cells; we first constrained the placement of the logic 

blocks of a given macro-cell so that they are as close to each other as possible, which in 

turn minimize the overall delay, we then relaxed this constraint and let the placer decides 

the location of the logic blocks of the macro-cells. Both approaches yield interesting 

results; with the constrained approach slightly better in terms of the achievable clock 

frequency, while the relaxed approach achieved better area savings. 

 Finally our experiments show that macro-cells do not adversely affect routability for 

benchmarks that do not contain shifters.  

Next chapter investigates parallelizing FPGA routers using a speculation-based 

approach, on multi-core, shared memory CPU architectures. 
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Chapter 5. PARALLEL ROUTING FOR FPGAS 

This chapter describes an implementation of an FPGA routing algorithm on a shared 

memory multi-processor using the Galois API, which offers speculative parallelism in 

software. The router is a parallel implementation of PathFinder, which is the basis for 

most commercial FPGA routers. We first present our parallel model for the maze router, 

which parallelize the maze expansion step for each net, while routing nets sequentially to 

limit the amount of rollback that would likely occur due to mis-speculation. We then 

present our parallel model for the signal router, which control the congestion negotiation 

among signals, and evaluate both approaches on large benchmarks. 

5.1 PATHFINDER IN GALOIS 

This section summarizes the aspects of VPR’s routability-driven PathFinder 

implementation that are relevant to our parallelization scheme [69].  

5.1.1. PATHFINDER COMPONENTS 

Recall from Chapter 2 that PathFinder is a triple-nested loop [50]: the outer loop is 

called the global router; the middle loop is called the signal router; and the inner loop is 

maze expansion. Our parallelization effort focuses on maze expansion. 

Global Router: The global router set the negotiation criteria, and repeatedly 

invokes the signal router to route all of the nets. It terminates when a legal routing 

solution is found, or after a fixed number of iterations fail.  
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Signal Router: Control the negotiation among signals and at each signal router 

iteration rips up each net and re-routes it by invoking maze expansion.  

Maze Expansion: For net Ni, maze expansion computes a path from the source to 

each sink in the RRG. All of the RRG vertices that have been uncovered are stored in a 

priority queue (PQ) based on their cost. Maze expansion extracts the minimum cost 

vertex vmin from PQ. If vmin is a sink, then a backtrace procedure is invoked to construct a 

path from u to RT(Ni), which is the routing tree for Ni; otherwise, each neighbor v of vmin, 

which has not previously been discovered, is inserted into PQ and the maze expansion 

continues.  

5.1.2. THE GALOIS FRAMEWORK 

We introduced the Galois programming model[51][61] in Chapter 2. Here, we just 

summarize the key features and issues relevant to parallelizing the router. 

Galois implements speculative parallelism in a manner that hides the complex 

underlying details from the programmer. Galois introduces new syntactic constructs that 

enable the programmer to clearly express algorithms in terms of the operator formulation 

applied to elements in ordered or unordered sets. Galois provides an API of concurrent 

data structures, which are challenging to implement; this simplifies application 

development for the programmer. The Galois runtime automatically detects and rectifies 

conflicts that cannot be discovered statically. In principle, using Galois is much simpler 

than requiring the programmer to implement these mechanisms every time he or she 

parallelizes a new irregular application. 
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5.1.3. BOTTLENECKS 

The major sources of runtime overhead in Galois are as follows: 

Dynamic assignment of work: Threads obtain work from a centralized workset. 

This requires synchronization and leads to challenges in terms of load balancing. If each 

activity requires minimal computation, then the overhead of synchronization and 

contention becomes a bottleneck. 

Neighborhood constraints: Acquiring and releasing abstract locks on neighborhood 

elements is a major source of overhead. 

Undo log: When an activity modifies an element of a graph (or other data structure), 

a copy of the element is stored in an “undo” log, which enables rollbacks in the case of 

misspeculation. The time spent creating and maintaining these copies is non-trivial. 

Aborted activities: When an activity aborts (e.g., due to misspeculation), the 

computational work performed up to that point is wasted; the Galois runtime system 

takes corrective action to roll back the activity.  

To reduce overhead, Galois provides three optimization techniques that we leverage 

in our PathFinder implementation. 

5.1.4. OPTIMIZATIONS USING GALOIS 

Cautious operators: A cautious operator reads all elements of its neighborhood 

before modifying any of them; the reading phase acquires all of the locks. If lock 

acquisition is successful, then the operator is guaranteed to compete without conflicting 

with other transactions. In this case, the undo list can be safely discarded. Additionally, 
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Galois’ internal conflict management for the cautious operator can be suppressed since it 

only accesses elements for which it has already obtained a lock. 

One-shot operator implementations: It is often possible to predict the 

neighborhood of an activity without performing any computation, or to compute fairly 

tight over-approximations. In a one-shot implementation, the neighborhood elements are 

never read, so the locks can be released once successful completion is guaranteed; in 

contrast, a cautious operator must hold onto the locks while its activity commences, even 

after guaranteeing completion. Releasing locks early enables greater concurrency.  

Iteration Coalescing: Iteration coalescing allows one thread to process multiple 

iterations at once, breaking the one-to-one correspondence between iterations and 

activities. Galois provides each thread with a local workset. Any activity that generates 

new active elements places them in the thread’s local workset, as opposed to the global 

workset, which is accessed by all threads. When an activity completes, the iteration grabs 

work from its local workset if possible without releasing any abstract locks. This 

continues until the local workset is empty, a conflict is detected, or the maximum 

coalescing factor is reached. Each iteration releases all of its abstract locks when it 

finishes. If a conflict occurs, the currently executing activity aborts, but all prior 

completed activities that were coalesced into the same iteration commit; the activities in 

the local workset are then moved to the global workset, where other threads may execute 

them.  
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5.2 PARALLEL PATHFINDER IN GALOIS 

In this section we describe our implementation of PathFinder in the Galois 

framework. We describe both parallel approaches: Maze expansion and signal router. 

5.2.1. PARALLEL MAZE ROUTER 

Figure 5-1 illustrates our parallel implementation of maze expansion in Galois. Prior 

work has shown that maze expansion accounts for approximately 68% of the total 

runtime [5]. Our expectation was that Galois could identify a large number of non-

conflicting operations, enabling parallel execution of a large number of active vertices. 

Fig. 3 illustrates iteration coalescing: each thread has its own local priority queue (LPQ) 

while a global priority queue (GPQ) is stored in shared memory, along with the RRG, a 

set of routing trees for each net, and an array, VCost, which contains information relating 

to the cost c(v) of each RRG vertex; c(v) depends on several other cost terms that 

contribute to PathCost(v) per Eq.(1) [50][69]. Each VCost entry is a struct that holds 

these cost values, which are stored separately from the RRG in shared memory to reduce 

contention for locks. Each thread repeatedly accesses its LPQ to obtain another vertex to 

expand. If the LPQ is empty, then the access is forwarded to the GPQ. The maze 

expansion process stops when all sinks are found. 
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Figure 5-1: Multi-threaded parallelization strategy. 

 Figure 5-1 depicts our multi-threaded parallel strategy for the Galois implementation of 

PathFinder. Solid lines indicate control flow within each thread; dashed lines indicate the 

data structures accessed by each operation.  

5.2.2. MAZE EXPANSION OPERATORS 

The neighborhood expansion operator is cautious. Each thread picks an active vertex 

vmin from its LPQ.  The operator identifies a set S of vertices adjacent to vmin that have not 

yet been discovered. Galois acquires locks for each vertex vS. The operator inserts v into 

LPQ with PathCost(v) as its priority. The Backtrace operator, which is called if v is a 
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sink, is one-shot, creates a path from v to the routing tree for the current net, and sets 

PathCost(u) to zero for each vertex u on the path. If any neighbor of u is locked, then the 

corresponding activity may access u. If so, then it is better to keep u locked while 

updating PathCost(u). If none of u’s neighbors are locked, then it is safe to release the 

lock and update PathCost(u). 

5.2.2.1. PRIORITY QUEUE IMPLEMENTATION 

Although Galois provides a concurrent PQ, we discovered that its functionality was 

limited and its performance was a bottleneck. Galois’s PQ is integer-based and can only 

store the ID number of a vertex; any additional information needs to be mapped to 

another data structure. Additionally, each thread that tries to insert or remove a vertex 

from the priority queue must acquire a lock; with a large number of concurrently 

executing threads, the lock acquisition process becomes a performance bottleneck.  

To improve performance, we implemented a non-blocking priority queue based on 

software transactional memory (STM) [19][62] which deviates from the Galois model. 

The STM-based PQ declares the access functions as atomic. The underlying 

implementation is a binary heap, similar to VPR’s non-concurrent PQ. Insertion and 

extract operations are executed as transactions. 

5.2.3. PARALLEL SIGNAL ROUTER 

Parallelizing the signal router involves partitioning the signals (netlist) into sets, with 
each set routed by a separate instance of the signal router running as a separate thread on 
a separate processor. Each signal router instance maintains a local priority queue while 
the RRG and the associated congestion maps are shared among all threads. The Galois 
runtime maps each thread to a different processor. Threads update intermediate routing 
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results through lock-based data structures in shared memory, and synchronize their 
respective views of the overall routing state. Threads are synchronized at the end of each 
iteration of PathFinder to ensure that all instances are working simultaneously on the 
same iteration. The pseudo-code for our parallel PathFinder implementation is given in 
Figure 5-2 

While shared resources exists 
      partition signals into N sets ; 
      ripup any old routing; 
      assign nets to threads 
      each_thread  
       for (net = 1 .. N) 
               PathFinder_route (net); 
                update congestion costs; 
                update routing trees;  

     end for 
end each_thread 
update congestion costs; 
check if routing is legal (No shared resources exist); 

end while 
Figure 5-2: Pseudo-code for the the Signal router 

 

The signal router can suffer from high misspeculation and rollback costs as it routes 

multiple signals in parallel. Likewise, tearing down partially routed paths can cause high 

overhead. The next section presents the experimental results from both the signal and 

maze expansion routers. 

5.3 EXPERIMENTAL SETUP 

5.3.1. VPR IMPLEMENTATION IN GALOIS 

We ported VPR 5.0 into the Galois system. We modified all of the data structures 

used by the router to be thread-safe and compatible with Galois. We rewrote the router to 

be compliant with the operator formalism [61], which is a central requirement of Galois. 



 

121 

We implemented the RRG using Galois’ graph model, and the STM-based non-blocking 

PQ as discussed in Section 4.2. 

5.3.2. VPR ARCHITECTURAL PARAMETERS 

VPR generates an FPGA architecture from a set of parameters [7], whose dimensions 

are approximately equal to the per-benchmark resource requirements. Table 5-1 lists the 

parameters we used. 

K N W I Fcin Fcout  CLB Area 
6 10 1.4Wmin 33 0.15 0.1 8069.46 

 
Table 5-1: FPGA architectural parameters, taken from the publicly available iFAR repository[33][34]; 

we assume 65nm CMOS (BPTM). 

 

5.3.3. BENCHMARKS 

We selected 10 of the largest IWLS benchmarks [28] for use in our experiments. 

Table 4-2 summarizes them, including the size of the FPGA generated by VPR, the 

number of nets, and the number of configurable logic blocks (CLBs) used.   

VPR repeatedly routes each benchmark using a binary search to identify the smallest 

channel width, Wmin, for which a legal route can be found. VPR also allows the user to 

specify a chosen channel width (W), and VPR will try its best to find a legal route, but 

may fail. We took that latter approach in our experiments: first, we compute Wmin (using 

VPR’s serial implementation of PathFinder) and set W = 1.4Wmin for each benchmark. 
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Benchmark Dimensions Nets CLBs 
ac_ctrl 
aes_core 
des_area 
mem_ctrl 
pci_bridge32 
spi 
systemcaes 
systemcdes 
usb_funct 
wb_conmax 

48 x 48 
33 x 33 
16 x 16 
27 x 27 
74 x 74 
13 x 13 
21 x 21 
12 x 12 
40 x 40 
47 x 47 

5097 
5800 
1569 
4464 
8016 
923 
2509 
1068 
5154 
10430 

5008 
2518 
695 
3158 
7815 
712 
2173 
706 
4429 
6297 

 

Table 5-2: Benchmark summary 

 

5.3.4. SYNTHESIS FLOW 

The IWLS benchmarks are provided in .blif format. To target VPR, we used ABC [6] 

for logic synthesis and technology mapping, T-VPack3 for placement, and our Galois-

compatible VPR implementation for placement and routing; we did not parallelize VPR’s 

placer, which is based on simulated annealing.  

VPR’s routability-driven router [69] is based on PathFinder [50], which terminates if it 

cannot find a legal route after a user-specified number of iterations. We set the maximum 

number of iterations allowed to 50. If routing is successful, VPR reports the estimated 

critical path delay of the circuit.  

                                                
3 T-VPack has been deprecated as part of the Verilog-to-Routing (VTR) flow, which expands VPR 6.0 [47]; packing is now integrated 

into VPR 6.0. The router has not changed significantly from VPR 5.0 to 6.0.  
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5.3.5. EXPERIMENTAL PLATFORM 

Our primary experimental objective is to assess the performance and scalability of 

our parallel implementation of PathFinder on a modern multi-processor. Our experiments 

were performed on a server featuring 8 Intel Xeon E5540 processors running at 2.53 

GHz, with 4 cores per processor and 40 GB shared memory. We ran our router using 1, 2, 

4, and 8 threads. Our baseline is the single-threaded VPR 5.0 router, which was 

implemented in C and does not incur any overhead due to the Galois runtime. 

Galois, as presently implemented, imposes several constraints. It supports a 

maximum of 8 concurrent threads; ideally, we would have liked to run at least 32 threads 

on our system. Additionally, the Galois runtime allocates threads to cores automatically; 

in all cases, it allocated one thread per processor, leaving three cores unused. We were 

unable to override this decision to experiment with alternative thread allocation policies. 

In particular, with one thread per processor, we cannot explore the implications of shared 

cache hierarchies on the router’s performance.    

5.4 EXPERIMENTAL RESULTS  

This section illustrates the results for both the signal router and the maze expansion 

router using both deterministic and non-deterministic Galois schedulers. 
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5.4.1. ROUTABILITY 

Our first concern is routability, i.e., what percentage of nets routed successfully in 

each experiment? Anything less than 100% would indicate a routing failure. Both routers 

successfully routed all of the nets for all benchmarks in all of our experiments.  

5.4.2. SPEEDUP 

Figure 5-3 reports the speedup for the Maze Router attained by increasing the 

number of threads, normalized to VPR 5.0’s single-threaded execution. For non-

deterministic scheduling, Galois achieved an average speedup of 1.47x with two threads, 

2.99x with four threads, and 5.46x with eight threads.  

Maze Router - Normalized Speedup as a function of the number of threads 

 

Figure 5-3: Speedup (normalized to VPR 5.0) of our Galois implementation of the Maze Route with 

1, 2, 4, and 8 threads. 
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The deterministic scheduling achieved lower speeups of  1.21x  for 2 threads, 2.14x 

for 4 threads, and 3.67x for 8 threads. This is expected due to the high overhead 

associated with the deterministic scheduler as the interference graph in general is rebuilt 

from scratch each round. In general, these results indicate favorable scalability up to at 

least eight threads. 

Perfectly linear speedups are not expected, due to the overhead of lock acquisition, 

aborted activities, and the cost of accessing data structures in shared memory. That being 

said, these experiments show that maze expansion exhibits ample amorphous parallelism 

and that a runtime system like Galois can readily extract it.  

Signal Router Speedup 

 

Figure 5-4: Speedup (normalized to VPR 5.0) of our Galois implementation of the Signal Router with 
1, 2, 4, and 8 threads. 

 

Figure 5-4 reports the speedup for the Signal Router by increasing the number of 

threads, normalized to VPR 5.0’s single-threaded execution. For non-deterministic 

scheduling, the Signal Router achieved an average speedup of 1.13x with two threads, 
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1.54x for 4 Threads, and 2.67 for 8 threads. The deterministic Signal Router on the other 

hand achieved an average speedup of 0.91x  for 2 threads, 1.11x for 4 threads, and 1.84x 

for 8 threads. This clearly indicates that the Signal router incurs a huge amount of 

overhead due to high misspeculation and rollback costs. As well, we observed the same 

differences between the deterministic and non-deterministic schedulers. 

5.4.3. CRITICAL PATH DELAY VARIATION 

We have used both deterministic and non-deterministic schedulers currently 

implemented in Galois to perform our experiments. We were concerned that varying the 

number of threads could cause alter the routing results, which could impact the critical 

path delay. 

Maze Router - Variation in Critical Path Dely 

 

Figure 5-5: Effect of the number of threads on critical path delay for the Maze Router.  

Figure	
   5-­‐5 and Figure	
   5-­‐6 report the critical path delays obtained by the maze 

router and the Signal Router respectively for each benchmark routed by VPR 5.0 and 

Galois with 1, 2, 4, and 8 threads. A significant difference between the VPR 5.0 results 
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and Galois is observed for several benchmarks; however, differences between Galois 

using different numbers of threads, per-benchmark, are negligible. This does not imply 

that Galois obtained identical routing solutions for all benchmarks; it only suggests that 

all benchmarks achieved similar critical path delays.  

Signal Router Critical Parh delay 

 

Figure 5-6: Effect of the number of threads on critical path delay for the Signal Router.  

5.4.4. IMPLEMENTATION CHOICES 

The two most important implementation decisions were iteration coalescing and 

replacing the Galois PQs with STM-based PQs, as described in Section 5.2.2.1. Using 8 

threads, we ran our parallel implementation of PathFinder with four configurations: (1) 

no iteration coalescing with Galois’ PQ; (2) no iteration coalescing and STM PQ; (3) 

iteration coalescing with Galois’ PQ; and (4) iteration coalescing with the STM PQ. 

When iteration coalescing is enabled, we use the same PQ implementation (Galois or 
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STM) for both the GPQ and each thread’s LPQ. Figure	
   5-­‐7 reports the speedup of each 

implementation decision, normalized to Galois running one thread.  

Maze Router - Impact of Iteration Coalescing and PQ 
Implementation on Speedup (8 Threads) 

 

 

Figure 5-7: Normalized speedups obtained by introducing iteration coalescing and STM-based PQs into our 
Galois implementation of the Maze Router. 

 

Figure	
   5-­‐7 clearly shows that performing both optimizations (iteration coalescing 

using an STM-based PQ) offers significantly greater speedup compared to enabling one 

optimization, but not the other (4.38x, on average, compared to 1.38x for using STM-

based PQs without iteration coalescing, and 1.87x for enabling iteration coalescing while 

using Galois’ PQs). These results indicate that we made the correct implementation 

decisions; one possibility for future work is to consider concurrent PQs other than STM 

[62].  
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5.5 SUMMARY 

This chapter has demonstrated that speculative parallelization and the operator 

formalism, central to Galois’ programming model and philosophy, is an effective choice 

to implement an FPGA router; moreover, we suspect that it will be equally effective for 

other irregular CAD algorithms that operate on graph-based data structures. These 

algorithms exhibit significant parallelism, but require a runtime system like Galois to 

detect and exploit it. The speedups obtained depend on implementation choices, as we 

have shown that non-blocking priority queues and iteration coalescing aided us 

significantly. Our work has shown that this general approach scales well and that the 

amount of parallelism exploited is a function of the circuit size not the inter-dependence 

of the signals. Lastly, it is important to note that Galois permits the user to trade raw 

performance for deterministic results, if desired.  
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Chapter 6. CONCLUSIONS 

6.1 CONTRIBUTION 

This thesis addressed three major issues related to logic block architecture, the 

routing fabric, and CAD for FPGAs. On these issues this work first presented two 

modifications to the PathFinder negotiated congestion router to handle FPGAs that 

employ sparse intra-cluster routing crossbars, PPR and SERRGE, both of which reduce 

PathFinder’s runtime and memory footprint. Between the two, SERRGE offers a small 

improvement in critical path delay compared to our Baseline router; in contrast, PPR 

offers comparable results, while being much simpler to implement than SERRGE, 

running much faster, and offering a modest reduction in memory footprint. SERRGE is 

particularly complex because it is essentially an application-specific dynamic memory 

management and garbage collection framework that has been specialized to the the 

PathFinder algorithm running on the RRGs generated by VPR.Although we did not 

discuss details, significant modifications were made to several of VPR 5.0’s internal data 

structures in order to accommodate SERRGE’s requirement. To summarize: if router 

runtime is a premium, then PPR should be used; if critical path delay is more important, 

then SERRGE is preferable; in the vast majority of our experiments, PPR and/or 

SERRGE outperformed the Baseline router for all metrics of interest. 

The second major contribution of this work is the introduction of SD-MUXes, which 

enable CLBs to be configured as 27-bit shifters, which can reduce the cost of 
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implementing mantissa alignment and normalization for single-precision floating-point 

operators on FPGAs.  When configured dynamically, a signal that routes to an SD-MUX 

must target one specific pin as a sink; this is a far more constrained routing problem than 

for traditional FPGAs, where all LUT inputs are treated as being logically equivalent. To 

ensure reasonable place-and-route solutions, we introduced the notion of pre-placed-and-

routed macro-cells, which establish the feasibility of CAD support for CLBs enhanced 

with SD-MUXes. This leads to a 67% reduction in the number of floating-point addition 

clusters that can be synthesized onto a fixed-area device. This architectural innovation 

aligns well with the strategy employed by Altera’s floating-point datapath compiler 

[36][37].  

The final contribution of the thesis is the introduction of a speculative approach for 

parallelizing the FPGA router, using the Galois framework; our experiments using this 

approach demonstrated a near linear-time speedup (when deterministic results were not 

required), and showed that the amount of parallelism in an irregular routing CAD tool 

depends on the size of the circuit not the inter-dependence of the individual signals, and 

that the quality of results did not suffer as a result of the parallel implementation. 

 

6.2 FUTURE WORK 

We believe that the problem of routing for FPGAs with sparse intra-cluster routing 

crossbars has effectively been solved; we do believe that future work on this topic is 

warranted. That being said, the combined integration of FPGA logic clusters with sparse-
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intra-cluster routing crossbars and SD-MUXes remains an open problem, and may entail 

additional work on FPGA routing algorithms for support.  

We see envision several opportunities to advance the state-of-the-art in parallel 

routing for FPGAs using Galois. We believe that better results could be obtained for our 

by replacing the concurrent priority queue based on software transactional memory [62] 

with a non-blocking one based on skipped lists [68]. We expect to obtain further 

improvements by parallelizing an A* search, rather than a priority-driven breadth-first 

search, the latter of which characterizes our current implementation. Similarly, there has 

not yet been any attempt to parallelize VPR’s timing-driven router using Galois; the 

timing-driven router employs a quadratic, rather than linear, delay model based on 

Elmore delay; computing these delays entails significant performance overhead, and the 

cost of storing the Elmore delay trees once they have been computed is also high. We 

also anticipate that future enhancements to Galois’ internals may lead to higher 

performance, for both deterministic and non-deterministic parallel routers. We also hop 

Lastly, we believe that Galois’ approach to speculative parallelization readily 

extends to other problems in CAD, for both standard cell VLSI technologies and FPGA. 

Limiting the discussion here to FPGAs, there are clearly additional opportunities to 

parallelize other relevant CAD algorithms including placement, packing, technology 

mapping, and various FPGA-oriented logic optimizations and decompositions; future 

work can and should look into these issues.  
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