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ABSTRACT OF THE DISSERTATION

Distributed Evaluation of Batches
of Iterative Graph Queries

by

Abbas Mazloumi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2023

Dr. Rajiv Gupta, Chairperson

Graph analytics has been widely used for analyzing large-scale networks using ever-growing graphs

to represent the relationships and entities. The real-world graphs are often large and constantly

evolving over time. Former requires parallel distributed processing across multiple multicore ma-

chines; latter requires repetitive processing over different snapshots of the graphs over time. The

combined memories of multiple machines are able to hold large graphs and the large number of

cores made available by multiple machines enhance the degree of parallelism delivering scalability.

A significant drawback of distributed platforms is that they impose long latency operations due to

their high communication latency between machines in the cluster; especially when the computation

load of a graph query is small (e.g., finding the shortest path in a graph).

This research first introduces the MultiLyra distributed batching system that amortizes the

communication and computation costs across multiple queries by simultaneously evaluating batches

of hundreds of iterative graph queries improving the throughput while at the same time maintaining

the scalability of distributed processing. Via use of a unified frontier for all queries in a batch, the

overhead of distributed evaluation is amortized across queries. MultiLyra yields maximum speedups

vii



over the single query baseline ranging from 3.08× to 5.55× across different batch sizes, algorithms

and input graphs which are then improved to speedups range from 7.35× to 11.86× by employing

a fine-grained query tracking technique and value reuse optimization.

Second, it introduces the ExpressWay technique for faster convergence based on differ-

ential treatment of important edges in the graph to further improve the efficiency of the batching

system. Each machine in the cluster loads a small portion of the edges from the graph, i.e., the im-

portant edges contributing the most in delivering the final results to the vertices, and run the graph

queries independently on these edges avoiding the inter-machine communication cost before start-

ing evaluation on the distributed full graph. ExpressWay benefits MultiLyra by giving additional

speedups of up to 4.08× over the MultiLyra baseline for a batch size of 10 queries.

Finally, we present the BEAD system that expands the applicability of batching to evolv-

ing analytics demands when both the graph and the batch of queries are allowed to grow over time.

To maintain the scalability in this case, an incremental evaluation technique will be used to take

advantage of the existing result of the evaluation of a batch of queries on the previous version of the

graph to accelerate the evaluation of the batch of queries on the current version of the graph. BEAD

outperforms MultiLyra’s batched evaluation by factors of up to 26.16× when the graph evolves and

5.66× when the batch of queries is updated.
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Chapter 1

Introduction

Graph analytics has been focused on in both academia and industry due to its ability to

extract valuable insights from high volumes of connected data by iteratively traversing large real-

world graphs. Various domains such as social networks [10], web graphs, etc., benefit from graph

analytics algorithms. These iterative graph analytics require repetitive traversals of the graph un-

til the algorithm converges to a stable solution demanding a significant amount of computational

resources. In addition to the size, another important feature of real-world graphs is that they are

constantly evolving over time, e.g., graphs representing the online shopping behavior of all cus-

tomers of an online shopping system grow as the number of customers grows.

Therefore, this has led to a great deal of interest in developing efficient graph analytics sys-

tems for shared memory (e.g., Galois [13], Ligra [14]), GPUs, and custom accelerators [44] [45] [47]

as well as platforms in the distributed environment (e.g., Pregel [12], GraphLab [11], GraphX [7],

PowerGraph [1], PowerLyra [2], ASPIRE [26]). Among these, systems that are aimed at distributed

computing platforms are the most scalable. The former assumes that the memory of a single ma-
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chine is large enough to hold the entire graph and lacks scalability while the latter utilizes the

combined memory of multiple machines across a cluster to be able to hold the very large real-world

graphs. Thus, systems that are aimed at distributed computing platforms are the most scalable.

Despite the above platforms that support fix graphs, there have been efforts to develop systems to

support evolving graphs [52, 53, 54].

While the performance of graph analytics has improved greatly due to advances in afore-

mentioned systems, much of this research has focused on developing highly parallel algorithms for

solving a single iterative graph analytic query (e.g., SSSP(s) query computes shortest paths from

a single source s to all other vertices in the graph). However, in practice users can be expected to

request solutions to multiple queries (e.g., multiple SSSP queries for different source vertices). For

example, the following two scenarios involve multiple queries: (a) Single-User scenario in which

a single user may conduct a complex analytics task requiring issuing of multiple queries; and (b)

Multi-User scenarios as in [22] and [23] where the same data set is queried by many users. In both

scenarios, machine resources can be fully utilized delivering higher throughput by simultaneously

evaluating multiple queries on a modern server with many cores and substantial memory resources.

None of the above works introduce a thorough optimization for evaluating multiple queries over

fixed or evolving graphs unless multiple queries simply can be evaluated one after another in their

system.

Therefore, this thesis first answers the need for a distributed batching system to improve

the throughput of the distributed graph processing platforms while maintaining their scalability.

After archiving throughput and scalability, it introduces various optimization techniques including

a simple reuse technique, fine-grained query status tracking techniques, and various scenarios that
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enables faster convergence of running algorithms to further improve their efficiency. Finally, it

explores the expansion of the batching system capabilities by enabling it to answer the needs when

the input graph and the running queries evolve over time.

The rest of this chapter is as follows. Fist in Section 1.1 introduces the thesis overview

follows by an introduction for each chapter of the thesis. Then, Section 1.2 presents the how this

thesis is organized.

1.1 Dissertation Overview

Graph Processing

Distributed Environment

Fixed Analytics Demands Evolving Analytics Demands

Scalable Batching System 
MultiLyra [BigData’19]

Batched Evaluation

Faster Convergence
ExpressWay

Optimize Single Query
BEAD [BigData’20]

Figure 1.1: Dissertation Overview

This thesis focuses on developing scalable high-performance solutions for graph process-

ing by employing resources available on a heterogeneous computing cluster. Figure 1.1 shows the

high level overview of this thesis. We first develop the distributed MultiLyra [BigData’19] sys-

tem whose scalability enables simultaneous evaluation of batches of hundreds of iterative graph

queries. then, introduce ExpressWay technique in which we prioritize the edges on the graph and

presents various policies to further enhance the distributed evaluation of MultiLyra. Finally, BEAD
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[BigData’20] extends MultiLyra to consider scenarios in which a batch of queries needs to be con-

tinuously reevaluated due to changes to the graph (for growing graphs) as well as the scenarios that

updates the running queries (for growing batches).

1.1.1 MultiLyra For Throughput

In this section, we address optimized evaluation of a batch of graph queries by amortizing

the communication and synchronization costs of distributed evaluation. To do this, we presents a

general graph analytics framework, MultiLyra, aimed at simultaneously evaluating a batch of hun-

dreds of vertex queries for different source vertices of a large graph by using a scalable distributed

batching technique. For example, for SSSP algorithm, we may be faced with the following batch

of queries:

{SSSP(s1), SSSP(s2), · · · · · · SSSP(sn)}.

MultiLyra achieves high performance via utilizing a unified frontier, aggregated communication

strategies and query status tracking policies, both of which amortize the communication and com-

putation overhead across queries. The idea of batching is motivated by the practical scenario [38],

where online shopping platforms frequently compute a set of interesting graph queries involving the

most important shoppers over a large input graph that represents the online shopping behaviors of

all the customers. To meet the needs, Yan and others proposed Quegel [38], which allows for over-

lapped execution of a small set of queries. By contrast, our proposed system MultiLyra, expands the

batching capability to simultaneously evaluating hundreds of iterative queries.
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1.1.2 ExpressWay For Efficiency

While most of the existing platforms are focused on making the platform itself efficient

and scalable, one can focus on the input graph and the running algorithm looking for opportunities to

enhance the computation load. We have observed that when running graph queries using a specific

algorithm, the contribution of certain edges is crucial for achieving convergence in their boundary

vertices. These edges play a vital role in delivering the converged results to their connected vertices.

Therefore, for further optimizing our system, we present Expressway, a technique to im-

prove the efficiency of distributed graph frameworks by prioritizing important edges of an input

graph for a specific type of the batch of the running queries. First, we begin by identifying the

most important edges in the graph, which we refer to as ”highways”. Highways contribute to the

accurate calculation of property values of a significant number of vertices. Therefore, by running

the algorithm on the graph using only these highways, we can obtain precise property values for

most of the vertices. After this initial run, we execute the algorithm on the graph using all the edges

to obtain precise values for all the vertices. This technique offers a significant speedup. As our

experiments show, the highways comprise only a small subset of the graph’s edges. Running the

graph initially with just these highways is much faster because it involves a smaller subset of edges.

The second step is also so fast because most of the vertices already have precise values, allowing

for rapid convergence

1.1.3 BEAD For Evolving Demands

Despite the promises of batched graph query processing, Quegel and MultiLyra target a

static scenario where the input graph is fixed and the queries of interests are pre-defined. However,
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in many real-world scenarios, both the graph and the batch of queries may evolve. For example,

in the scenario of online shopping center, as the system is being used, new customers may join

continuously and the graph representing the online shopping activities will also continue to grow.

Consequently, there is a need to regularly reevaluate the batch of interesting queries as the graph

grows in size and changes in its structure. In addition, as the set of customers increases, a need arises

to also grow the set of interesting queries to account for newly identified important customers. In

other words, in the real-world situation of continuous activity, the system is faced with Evolving

Analytics Demands. While using the batching systems such as MultiLyra [17] or Quegel [38] for

such evolving demands are possible by fully reevaluating the updated batch of queries on the up-

dated graph, they may incur significant latency that keeps growing as the graph expands and more

interesting queries are identified.

To meet these needs, we introduce BEAD, a system that greatly expands the MultiLyra

batching techniques to support batching in presence of the evolving both graphs and the sets of

queries. The key to the superior efficiency offered by BEAD lies in a series of incremental evaluation

techniques that leverage the results of prior request to “fast-foward” the evaluation of the current

request.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents MultiLyra, the

system for distributed batched evaluation of iterative graph queries. Chapter 3 introduces various

policies of faster convergence to further optimize MultiLyra. Chapter 4 presents BEAD that extends

MultiLyra applicability in the presence of evolving analytics demands where both the input graph
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and the running batch of queries can evolve over time. Chapter 5 discusses various related works in

the literature. Finally, Chapter 6 concludes the thesis and discusses directions for future work.
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Chapter 2

MultiLyra: Distributed Batching

Technique

For our proposed system, MultiLyra, we first introduce a Basic batching algorithm that

maintains a unified list (i.e., frontier) of active vertices and, when considering a single active vertex,

it performs integrated processing of all queries in each phase (e.g., Gather, Apply, Scatter) of the

GAS model of distributed computation. Thus, when an active vertex is processed, all of its actions

for all the queries in the batch are performed together. This approach leads to amortization of over-

head costs across a batch of queries. Further to improve Basic, We identify the least scalable phases

of Basic and, to overcome their performance limitation, we develop two additional algorithms –

Finished Query Tracking (FQT) and Inactive Query Tracking (IQT). These algorithms eliminate

unnecessary processing associated with completed and inactive queries. Finally, we incorporate a

Reuse optimization where results from earlier batches of queries are used to accelerate the execution

of later batches of queries.
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Experiments with power-law graphs and multiple graph algorithms show that MultiLyra

can accelerate the evaluation of queries significantly. The Basic batching technique for amortizing

communication and synchronization costs yields maximum speedups ranging from 3.08× to 5.55×

across different algorithms and input graphs. After further employing optimizations focused on

expensive and less scalable phases of the distributed implementation, the improved resulting max-

imum speedups range from 7.35× to 11.86×. The combination of IQT and Reuse yields the best

overall performance. Finally, we compare the performance of MultiLyra with Quegel [38], the only

other system that is capable of distributed batched processing of iterative queries. Our results show

that MultiLyra outperforms Quegel substantially due to its superior scalability.

The rest of this Chapter is organized as follows. In Section 2.1 we present the detailed

design of MultiLyra including Basic, FQT and IQT, and Reuse algorithms. Section 2.2 carries out a

detailed evaluation. Concluding remarks are given in Section 2.3.

2.1 Distributed Batched Processing

During distributed graph processing the input graph is partitioned among the multiple ma-

chines and each machine is responsible for carrying out the updates of vertices that reside locally.

The machines communicate to exchange needed vertex values and synchronize between iterations

before continuing to the next iteration. The vertices along the borders of graph partitions are repli-

cated creating masters and mirrors where the former reside where the partition containing them

resides and the latter reside on other machines to which subsets of edges have been distributed. The

combined memories of multiple machines are able to hold large graphs and the large number of

cores made available by multiple machines enhance the degree of parallelism delivering scalability.
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Since the PowerLyra [2] system has the most sophisticated graph partitioning strategy,

we build MultiLyra by generalizing PowerLyra to handle a batch of queries. While PowerLyra

is based upon bulk-synchronous parallel [24] model of computation, our approach also applies to

systems that employ the asynchronous computation model such as Grace [29, 42], Aspire [26], and

Coral [28]. The graph partitioning technique guarantees that all incoming edges for the low-in-

degree vertices are local to the same machine on which the vertex resides and hence computation

is performed locally. For balancing the computation across machines for high-in-degree vertices,

incoming edges are distributed across multiple machines.

Since PowerLyra, and consequently MultiLyra, is based upon PowerGraph [1], it employs

the GAS (Gather-Apply-Scatter) model to divide the distributed computation into phases. The three

conceptual phases, namely Gather, Apply, and Scatter, are executed during each iteration in the

GAS model. Algorithm 2.1 shows the GAS model in MultiLyra which is implemented by the five

steps in processing a batch of queries in each iteration. Next we present the details of the phases for

Basic batching algorithm of MultiLyra that maintains a single unified active list such that a vertex

is active if it is active for at least one of the queries in the batch being evaluated.

2.1.1 Unified Frontier: Basic Batching

Basic algorithm maintains a unified list of active vertices and, when considering a single

active vertex, it performs integrated processing of all queries in each phase (e.g., Gather, Apply,

Scatter) of the distributed computation. Thus, when an active vertex is processed, all of its actions

for all the queries in the batch are performed together. This approach leads to amortization of

overhead costs across the batch of queries. As illustrated by Algorithm 2.1, phases of GAS model
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Algorithm 2.1 The GAS model in MultiLyra

1: function START(k , query list)

2: while !query list.empty() do

3: batch qlist← get next k queries from query list

4: unified active list← all q ∈ batch qlist

5: while !unified avtive list.empty() do

6: Exch-Batch()

7: Recv-Batch()

8: Gather-Batch()

9: Apply-Batch()

10: Scatter-Batch()

11: end while

12: end while

13: end function

in Basic MultiLyra are as follows. We first describe the three main phases (Gather-Batch, Apply-

Batch and Scatter-Batch) and then explain the responsibility of the two other phases (Exch-Batch

and Recv-Batch).

Gather-Batch - In the gather phase, all active vertices on each machine collect the re-

quired data from their predecessors, in parallel. More specifically, each active vertex goes through

all incoming edges from its predecessors to collect vertex and/or edge data as required for all queries

in the running batch of the graph algorithm (see Algorithm 2.2). In this phase, mirrors participate

to carry out the task of collecting the remote data. Before data gathering starts, in the Recv-Batch

of Algorithm 2.1, the active masters send activation messages to their mirrors and inform them to

participate in the gather phase – we refer to this communication as G-Active. After both master and
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Algorithm 2.2 Gather-Batch in Basic MaltiLyra

1: function GATHER-BATCH

2: for all master or mirror vertices v ∈ unified active list do

3: for in edge ∈ v.incoming edges() do

4: B gathering data for all queries

5: for all qid ∈ batch qlist do

6: G-Data[]← G-Data[] + PredData(qid, in edge)

7: end for

8: end for

9: gathered data[v.id]← G-Data[]

10: B sending gathered data for all queries

11: if v is a mirror of a remote master then

12: Send G-Data to master(v, G-Data[])

13: end if

14: end for

15: end function

mirrors collect the data from their predecessors, mirrors send back their portion of collected data to

their master for all the concurrent queries as one message in order to accumulate all the data at the

host machine (i.e., the machine where the master resides) for each query in the running batch – we

refer to this communication as G-Data. So, two messages per replica are needed in this phase for

each active vertex.

Apply-Batch - The data collected by the gather phase is next used in the apply phase

to compute the new vertex data values for all queries in the executing batch using the Compute
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Algorithm 2.3 Apply-Batch in Basic MultiLyra

1: function APPLY-BATCH

2: for master vertex v ∈ unified active list do

3: changed← false

4: B computing data for all queries

5: for all qid ∈ batch qlist do

6: new value← Compute(gathered data[v.id], qid)

7: if Change(v.data[qid], new value) is ture then

8: v.data[qid]← new value

9: changed← true . at least by one query

10: end if

11: end for

12: B update the mirrors and activate them for scatter

13: if !v.mirrors.empty() && changed then

14: B sending data for all queries

15: for all qid ∈ batch qlist do

16: message← message ∪ v.data[qid]

17: end for

18: message← message ∪ active

19: Send A-Mix to mirrors(v, message)

20: end if

21: end for

22: end function

function for the graph algorithm (see Algorithm 2.3). To maintain consistency across the machines,

when a vertex value is updated by at least one of the queries, the vertex values of all queries in the
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batch are sent to their mirrors in one aggregated message to affect update. Note that all values must

be sent because the combined active list does not maintain the list of queries for which the vertex

value was updated. In addition, the updated vertices inform their mirrors to further participate in

the scatter phase. This is done by sending an active message along with the vertex data – we refer

to this communication as A-Mix. In this phase, each active master sends one message for each of

it’s mirrors including the vertex data for all queries and an activation alert.

After Apply-Batch, it is time to generate the active list of the next iteration. Generating

the next active list process begins by marking the vertices locally via Scatter-Batch in the cur-

rent iteration, then continues by exchanging active messages in Exch-Batch, and finally terminates

in Recv-Batch by adding the marked vertices into the active list for the next iteration (see Algo-

rithm 2.4).

Scatter-Batch - Any updated vertices which have changed at least for one of the queries

during the apply phase (Algorithm 2.3 – lines 7-10), mark their successors for processing in the next

iteration. This is done by the scatter phase in which all the updated vertices go through their out-

going edges in parallel and mark their local successors that can be local masters or local mirrors of

remote vertices (lines 1-6 of Algorithm 2.4). Actually, no communication happens in this phase. As

mentioned earlier in the previous phase, updated masters send activation messages to their mirrors

in order to inform them to participate in the scatter process (A-Mix in Apply-Batch contains such a

message). This ensures that remote successors will be activated in the next iteration.

Exch-Batch - This phase is for actually sending the active messages between machines

to build the current iteration’s active list. During the scatter phase in previous iteration, all updated

active vertices and their mirrors went through their outgoing edges and marked their local neighbors
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Algorithm 2.4 Building the unified active list for Basic MultiLyra

1: B done for any master/mirror by Scatter-Batch

2: for any vertex v which got changed do

3: while s ∈ v.succ() do

4: s.mark← true

5: end while

6: end for

7: B done for any marked mirror by Exch-Batch

8: for any mirror m which m.mark is true do

9: B mark the remote master

10: Send E-Active to master(m, active)

11: end for

12: B done for any marked master by Recv-Batch

13: for any master v which v.mark is true do

14: unified active list← unified active list ∪ v

15: if !v.mirrors.empty() then

16: Send G-Active to mirrors(v);

17: end if

18: end for

(which can be a master or a mirror) indicating that they must be active for the next iteration for at

least one of the queries. Now, in this step, all the local mirrors that were marked during the previous

scatter phase, send an activation message to their master which resides on a remote machine to mark

and inform it of its selection for the current iteration active list – we refer to this communication

as E-Active (see lines 7-11 of Algorithm 2.4). Thus, the active list in each machine for the current

iteration is ready to be constructed in the next phase.
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Recv-Batch - Now in this phase, all those masters which were informed as being marked

to be active, whether by local vertices or through an E-Active message, are added to the unified

active list (see lines 12-18 of Algorithm 2.4). Further in this phase, as mentioned in Gather-Batch,

those masters that need their mirrors to participate in the next gather phase will send an activation

message (G-Active) to their mirrors to activate them for the gather phase.

Above showed our algorithm for Basic MultiLyra. Our Basic algorithm maintains a uni-

fied list of active vertices and, when considering a single active vertex, it performs integrated pro-

cessing of all queries in each phase (e.g., Gather, Apply, Scatter) of the distributed computation.

Thus, when an active vertex is processed, all of its actions for all the queries in the batch are per-

formed together. This approach leads to amortization of overhead costs across the batch of queries.

In GAS model each iteration makes multiple passes over active vertices, one pass for each

phase. Each iteration includes multiple communications per each active vertex which is the major

source of overhead. At phase and iteration boundaries, the machines must also synchronize adding

to the overhead. Finally, multiple threads running in parallel on each machine must engage in lock-

ing and unlocking operations when updating shared data structures. These overheads coming from

the distribution and parallelism nature of the distributed frameworks are shared between multiple

queries simultaneously by MultiLyra instead of executing queries one at a time. Next we discuss the

amortization effects obtained by the above batching system. the two important amortizations are as

follows:

Iteration-Sharing - In each iteration, for each of the five phases, each machine loops over

all its active vertices. Going over all active vertices, and performing locking and unlocking shared

data structures for each active vertex, leads to unavoidable overhead. Moreover, after each phase the

16



machines need to be synchronized with barriers to guarantee that previous phase has completed on

all machines in the cluster before continuing to the next phase. Likewise, at the end of each iteration

machines need to communicate to synchronize before continuing to the next iteration. In MultiLyra,

a batch of queries which are running concurrently share iterations together and in each phase when

framework makes a pass over the vertices, the work for all concurrent queries is performed and by

the end of an iteration all queries advance one iteration toward their final convergence. Hence, the

number of passes over the vertices, the number of locking operations for shared data on a machine

for parallel updates of vertices, and the number of barriers between each phases are amortized across

the queries in the batch.

Communication - For each active vertex v there are five communications in an iteration

which are of two types. Three communications in Active Category (i.e. G-Active, one included in

A-Mix, and E-Active) and two in the Data Category (i.e. G-Data and one included in A-Mix). The

first active message (G-Active) is to enable mirrors of v to do gathering during the gather phase,

second active message (included in A-Mix) is to enable the mirrors of v to do scattering during the

scatter phase, and the third one (E-Active) is to activate the successors of v for the next iteration.

The first message in Data category (G-Data) is for sending the remote gathered data by the mirrors

of v to the master in order to use them in apply phase, and the second message in this category

(included in A-Mix) is for updating the mirrors of v after updating its value in the apply phase. By

running a batch of queries simultaneously in MultiLyra, communication cost in each category is

amortized across the concurrent queries.

Assume n queries are running concurrently on MultiLyra. Let us consider vertex v that

gets activated for the queries in iteration i. In Active Category, each active message mentioned
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Table 2.1: Communications for an active vertex v in a specific iteration i. n is the batch size. k is #
of queries in which v is active. and f is # of queries which has finished prior to the iteration i.

#Active Size #Data Size

Baseline k*3 size of(Active) k*2 size of(Data)

Basic 3 size of(Active) 2 n*size of(Data)

FQT 3 size of(Active) 2 (n-f)*size of(Data)

IQT 3 size of(Active) 2 k*size of(Data)

above is sent only once for all queries. No matter how many queries cause the vertex to be active,

one single message is enough to activate the vertex. Thus, not only the number of communications

but also the amount of communication is amortized across the queries. In Data Category, the data

messages for all queries are merged together and a single aggregated message is sent. Thus, the cost

of communication is amortized across the queries.

Table 2.1 shows the number of messages and their size in each category for an active

vertex v in a specific iteration i for the following scenario. Assume vertex v is active for k queries

when a batch of n queries (n ≥ k) is running on Basic MultiLyra, and let us compare it with the

baseline PowerLyra that runs queries one at a time. As shown in the first two rows of Table 2.1,

since the size of communication in Active category remains the same, there is reduction in number

of communications by a factor of k. Thus, Basic MultiLyra amortizes the amount of communication

in the Active Category. For communication in Data Category, Basic MultiLyra significantly reduces

the number of communications but can increase the sizes of messages by up to a factor of n.

2.1.2 Query Tracking: FQT & IQT

In Basic MultiLyra, each phase acts on behalf of all the queries in the batch for an ac-

tive vertex. This is because a unified active list is maintained that does not maintain the list of
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Table 2.2: Different versions of MultiLyra implementation.
(Q: number of simultaneous queries; V: number of vertices)

Version Description Active List Size Communication and Computation

Basic
No query related

V
Both performed for

tracking performed All Queries

FQT
Performs tracking of

V+Q
Both performed only for

Unfinished Queries Unfinished Queries

IQT
Performs tracking of

V*Q

Both performed only for

Active Queries Active Queries

for each Active Vertex of each Active Vertex

queries for which the vertex has been activated. It also does not know whether some queries have

already finished. To improve upon Basic, we develop two additional algorithms – Finished Query

Tracking (FQT) and Inactive Query Tracking (IQT). These algorithms eliminate unnecessary work,

both computation and communication, associated with completed queries and inactive vertices for

queries respectively. The last two rows of Table 2.1 show that the number of communications in

FQT and IQT remains the same when compared with Basic while the message size is reduced in

Data Category where f indicates the number of queries in the batch which has finished prior to

the iteration. Table 2.2 shows the work performed by FQT and IQT in terms of computation and

communication and compares it with Basic. Next we explain how the unnecessary work is avoided

by keeping track of status of each of the queries.

Assume a batch of three queries q1, q2, and q3 are running on MultiLyra for five iterations.

Figure 2.1 shows five running iterations of the three queries for an active vertex v indicating whether

a query does useful, wasteful, or no work during each iteration for the vertex. Queries q1 and q2

finish at the end of fourth and second iterations respectively, and q3 does not finish in these five

iterations. The status of each query is shown in the figure for each iteration. Status 1 or 0 indicates
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Figure 2.1: Amount of wasteful work in five iterations of running a batch of three queries (q1, q2,
q3) concurrently for a vertex v on MultiLyra versions. Query status 1 or 0 indicate whether vertex
v is active or inactive for that query in the current iteration and query status -1 indicates that query

is finished.

that query is active or inactive for vertex v and status -1 indicates that the query has finished. Next,

we present the detailed algorithms of Apply-Batch and how the active list is constructed for both

IQT and FQT.

Algorithms 2.5 and 2.6 show how FQT and IQT reduce the amount of wasteful work

both in computation and communication. Unlike Basic, FQT has a loop only over the unfinished

queries in the running batch to do the actions by using unfinished qlist in lines 5 and 17. FQT

keeps track of each unfinished query which has at least one changed vertex by depositing its id (qid

in line 11) to use later for building the next unfinished qlist for the next iteration. Note, FQT in

Gather-batch also uses unfinished qlist for collecting and sending data instead of all queries (using

unfinished qlist on line 5 of 2.2 instead of batch qlist). Algorithms 2.7 on line 15 shows when

unfinished qlist is constructed. The following line makes sure that all machines in the cluster are

aware of this list before continuing to the Gather phase. This requires exchange of only n bits as
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Algorithm 2.5 Modification in Apply-Batch algorithm for FQT

1: function APPLY-BATCH

2: for master vertex v ∈ unified active list do

3: changed← false

4: B computing data only for unfinished queries

5: for qid ∈ unfinished qlist do

6: new value← Compute(gathered data[v.id], qid)

7: if Change(v.data[qid], new value) is ture then

8: v.data[qid]← new value

9: changed← true . at least by an unfinished query

10: B deposit qid for building next unfinished qlist

11: Deposit Unfq(qid)

12: end if

13: end for

14: B update the mirrors and activate them for scatter

15: if !v.mirrors.empty() && changed then

16: B sending data only for unfinished queries

17: for all qid ∈ unfinished qlist do

18: message← message ∪ v.data[qid]

19: end for

20: message← message ∪ active

21: Send A-Mix to mirrors(v, message)

22: end if

23: end for

24: end function
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Algorithm 2.6 Modification in Apply-Batch algorithm for IQT

1: function APPLY-BATCH

2: for master vertex v ∈ unified active list do

3: changed← false

4: Bcomputing only for those queries in which v is active

5: for all qid ∈ active qlist[v.id] do

6: new value← Compute(gathered data[v.id], qid)

7: if Change(v.data[qid], new value) is ture then

8: v.data[qid]← new value

9: changed← true

10: B deposit qid for building next active qlist[v.id]

11: Deposit vidqid(v.id, qid)

12: end if

13: end for

14: B update the mirrors and activate them for scatter

15: if !v.mirrors.empty() && changed then

16: B sending only for those queries in which v is active

17: for all qid ∈ active qlist[v.id] do

18: message← message ∪ v.data[qid]

19: end for

20: message← message ∪ active

21: Send A-Mix to mirrors(v, message)

22: end if

23: end for

24: end function
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Algorithm 2.7 Modification in algorithm of building the active list for FQT

1: B done for any master/mirror by Scatter-Batch

2: for any vertex v which got changed do

3: while s ∈ v.succ() do

4: s.mark← true

5: end while

6: end for

7: B done for any marked mirror by Exch-Batch

8: for for any mirror m which m.mark is true do

9: B mark the remote master

10: Send E-Active to master(m, active)

11: end for

12: B done for any marked master by Recv-Batch

13: for for any master v which v.mark is true do

14: unified active list← unified active list ∪ v

15: unfinished qlist←Withdraw qid()

16: unfinished qlist.sync() . exchange one single bitset

17: if !v.mirrors.empty() then

18: Send G-Active to mirrors(v);

19: end if

20: end for

one single bit is set in each iteration while n is the number of queries in the batch. Each bit indicates

whether the corresponding query has finished or not. IQT in Algorithm 2.6 reduces the unnecessary

work similarly; however, by using a list of active queries for each single vertex (active qlist[v.id]

at lines 5 and 17), it ensures that computation and communication is performed only for queries
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Algorithm 2.8 Modification in algorithm of building the active list for IQT

1: B done for any master/mirror by Scatter-Batch

2: for any vertex v which got changed do

3: while s ∈ v.succ() do

4: s.mark← true

5: end while

6: end for

7: B done for any marked mirror by Exch-Batch

8: for for any mirror m which m.mark is true do

9: B mark the remote master

10: activeq bitset←Withdraw vidqid(v.id)

11: Send E-Active to master(m, active + activeq bitset)

12: end for

13: B done for any marked master by Recv-Batch

14: for for any master v which v.mark is true do

15: unified active list← unified active list ∪ v

16: active qlist[v.id]← activeq bitset;

17: if !v.mirrors.empty() then

18: Send G-Active to mirrors(v);

19: end if

20: end for

for which vertex v has been activated. Note, IQT uses active qlist[v.id] also for collecting and

sending data in Gather Batch to ensure no wasteful work is done. In line 11 of Algorithm 2.6, IQT

keeps track of active queries for each vertex by depositing a bit-set of active queries for each vertex.

Later in Exch-Batch, those local mirrors that need to send E-Active to their master to mark them
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for next iteration must also send the tracking information to the remote machine at which master

resides. It requires addition of n bits to the end of E-Active message (see Algorithm 2.8, line 11).

Finally, now all the machines have the tracking information, the active qlist is constructed (line 16

of Algorithm 2.8.

2.1.3 Optimization: Simple Distributed Reuse

This section describes the details of our online Reuse optimization on top of IQT. Reuse

includes three steps. First, it extracts top high-centrality vertices during the run of the first batch.

As the second step, it picks the top five to run a batch of five queries of the graph algorithm and

maintains the results distributed on each machine (each machine maintains the results for it’s local

vertices). Then in the third step, we Reuse results of these five queries during the run of remaining

batches to accelerate the convergence of each query. Hence, the remaining batches of queries will

take advantage of the superior speedup offered by Reuse. To do this, we added a new phase named

Reuse-Batch to the GAS model of MultyLira between Apply-Batch and Scatter-Batch phases to

perform reuse for the remaining batches.

Reuse-Batch - When one of the extracted high-centrality vertices, vhc, becomes active in

an iteration then after Apply-Batch computes the intermediate results for vhc on the host machine,

mh, the process of reuse in Reuse-Batch starts. In this phase, each machine iterates over all its local

vertices and updates their current values towards faster convergence for those queries for which vhc

has been activate, qid. To do this two pieces of data are required, the final result of vhc when it

was the source vertex of the query that was computed and is being maintained on all machines,

i.e. v.datahc[], and the current value of vhc, i.e. vhc.data[]. Since mh has the current value, it is

responsible for sending the value to other machines to ensure all the machines have required data
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SSSP

v.data[qid]=Min(v.data[qid], v.datahc[vhc.id]+vhc.data[qid])

SSWP

v.data[qid]=Max(v.data[qid], Min(v.datahc[vhc.id],vhc.data[qid]))

Viterbi

v.data[qid]=Max(v.data[qid], v.datahc[vhc.id]*vhc.data[qid])

Figure 2.2: Reuse equations to update vertices in Reuse-Batch.

for reuse process. Note, there is no need to send intermediate data to machines on which a mirror

of vhc exists since it has already been sent by Apply-Batch. Figure 2.2 shows the reuse equations

for SSSP, SSWP and Viterbi [9].

2.2 Evaluations

In this Section we evaluate the proposed different version of MultiLyra. We starts with

describing the experimental setup, then we evaluate the Basic MultiLyra before evaluating FQT,

IQT, and Reuse optimization. Finally we compare MultiLyra’s speedup with the one achieve by the

related work Quegel [38].

2.2.1 Experimental Setup

For this work we implemented our framework using PowerLyra [2] which improves upon

PowerGraph [1] via its hybrid partitioning method. In our evaluation we consider four algorithms

- Single Source Shortest Path (SSSP), Single Source Widest Path (SSWP), Number of Paths (NP),
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Table 2.3: Iterative Graph Algorithms.

Algorithm Message Data Type

Single Source Shortest Path (SSSP) Unsigned int

Single Source Widest Path (SSWP) Unsigned int

Number of Paths (NP) Unsigned int

Viterbi (VT) [9] Float

Table 2.4: Real world input graphs.

Input Graph #Edges #Vertices #Queries

Twitter (TT) [5, 8] 2.0B 52.6M 1K

LiveJournal (LJ) [6, 10] 69M 4.8M 1K

and Viterbi (VT) [9] (see Table 2.3). We use two input graphs listed in Table 2.4 - one is billion edge

graph (TT) and one has tens of millions of edges (LJ). For each input graph and for each algorithm,

we generated 1024 queries. The sources are unique and were selected randomly. All experiments

were performed on a cluster of four identical machines. Each machine has 32 Intel Broadwell cores,

256 GB memory, and runs CentOS Linux release 7.4.1708.

We evaluate all the versions of batching discussed, namely Basic, FQT, and IQT. We also

implemented our Reuse algorithm and performed its evaluation. Next we present our experimental

results.
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Figure 2.3: Speedup (a) and the percentage of reduction in number of communications (b) when
running 1K queries with different batch sizes for four algorithms(SSSP, SSWP, NP and VT) on two

input graphs, Twitter (TT) and LiveJournal (LJ)

2.2.2 Basic Batching

We ran 1024 queries for each input graph and algorithm on the Basic version of MultiLyra

for varying batch sizes and compared their execution times with those of the baseline PowerLyra

framework that evaluates queries one at a time. Table 2.5 shows the execution time, and the per-

centage spent in each phase, for the baseline by running all the 1024 queries. We use these times to

compute speedups obtained by our algorithms. In Basic, for each batch size k we ran 1024 queries

by dividing them into multiple batches of size k.

The speedups obtained by Basic MultiLyra are shown in Figure 2.3(a) as the batch size

is varied from 2 to 1024. The Basic version delivers maximum speedups ranging from 1.82× for

SSWP to 4.61× for Viterbi on Twitter and from 3.08× for NP to 5.55× for Viterbi on LiveJournal.

The most dominant performance obstacle in distributed graph processing is the number

of communications needed by nodes in the cluster to exchange remote data for an iterative algo-

rithm. Figure 2.3(b) shows the percentage of reduction in the number of communications when the
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Table 2.7: Percentage of Total Execution Time Spent in Each Step for SSSP on the input graphs
when the batch size varies.

G #Batch Exch-msg Recv-msg Gather Apply Scatter Sync Speedup

TT

2 3.18% 2.76% 27.50% 19.82% 45.97% 0.76% 0.51×

4 3.72% 2.99% 30.87% 21.50% 39.96% 0.96% 0.95×

8 2.75% 2.30% 27.69% 20.72% 45.56% 0.97% 1.26×

16 2.63% 1.98% 28.32% 27.00% 38.68% 1.38% 2.06×

32 2.18% 1.56% 25.87% 35.06% 33.50% 1.84% 2.94×

64 1.30% 1.08% 24.65% 42.01% 28.58% 2.36% 3.66×

128 1.25% 0.71% 24.27% 50.34% 20.50% 2.93% 4.37×

256 1.50% 0.41% 21.83% 53.75% 19.33% 3.17% 4.44×

512 1.39% 0.33% 20.66% 56.77% 17.84% 3.01% 4.36×

LJ

2 5.64% 7.19% 18.37% 37.56% 23.10% 8.14% 1.12×

4 4.95% 6.27% 20.46% 37.81% 22.30% 8.20% 1.74×

8 3.95% 4.75% 17.48% 40.88% 24.17% 8.77% 2.41×

16 3.25% 3.62% 15.07% 48.32% 19.19% 10.55% 3.42×

32 2.56% 2.43% 12.02% 54.89% 15.75% 12.34% 4.41×

64 1.86% 1.37% 10.42% 59.67% 12.52% 14.16% 4.91×

128 1.52% 0.82% 9.92% 66.79% 5.58% 15.37% 5.32×

256 1.24% 0.50% 9.72% 65.82% 5.06% 17.66% 5.35×

512 0.70% 0.36% 9.64% 66.79% 4.47% 18.04% 5.34×

1024 0.61% 0.45% 9.35% 68.63% 4.29% 16.66% 5.08×

batch size is varied for Basic MultiLyra. In this figure, the line in red shows the hypothetical ideal

reduction achievable when the number of communications is reduced by a factor equal to the batch

size. As we can see, reductions in number of communications achieved by Basic are not far from

the ideal with most reduction observed in NP and the least reduction in SSWP.

From the data shown in Figure 2.3(a) we observe that initially the speedup increases with

batch size because the number of communications between the machines in the cluster reduces.
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Then, at some point the speedup reaches its peak and then begins to slightly fall. To study this

behavior, we collected the times spent in each of the five phases described earlier with the batch

size that delivered the most speedup on average for each algorithm. Table 2.6 shows the percentage

of total execution time spent in each phase. Moreover, we collected the time spent in each step

for every algorithm on every input graph when the number of simultaneous queries varies from 2

to 1024. A representative set of data is shown in Table 2.7 for the SSSP algorithm on both input

graphs. From this data we observe that the Apply phase takes more than half of the execution time,

54% on average and it increases as the batch size grows from 2 to 1024. Thus, Apply phase does

not scale well with batch size. Moreover, although Gather and Scatter phases scale, they together

still account for substantial part of the execution cost.

This limited scalability of these phases can be understood as follows. In Basic version

of MultiLyra framework, all queries in the batch (say n queries) use only one active list. Hence,

when a vertex becomes active, no matter due to which query, the gather function in Gather phase

will collect the data needed for computation of all n queries and the update function in Apply phase

will do the computation for all of these queries. The communications in Data Category also need to

send the data for all the queries both in Gather and Apply phases.

Furthermore, let us consider Table 2.8 that shows the percentage of the total number of

communications in Data category in each Gather and Apply phases. It shows that, on average, more

than 82% of the total communications in Data category are communicated in Apply phase and also

the last column shows that on average more than 75.9% of all communications are in Data category.

Thus, only by improving communications in Data category can we help to improve the scalability

of the Apply phase.
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Table 2.8: Percentage of the number of communication in
Data Category needed in Gather and Apply phases.

G Algorithm #Batch Gather Apply #Data Comm. (% of Total)

TT

SSSP 256 19.70% 80.30% 2.34 ×109 (73.26%)

SSWP 128 31.55% 68.45% 12.04 ×109 (66.08%)

NP 32 22.10% 77.90% 11.71 ×109 (70.25%)

VT 128 19.16% 80.84% 4.02 ×109 (73.52%)

LJ

SSSP 256 9.97% 90.03% 0.69 ×109 (85.03%)

SSWP 128 16.45% 83.55% 1.39 ×109 (71.61%)

NP 32 10.96% 89.04% 2.29 ×109 (82.52%)

VT 128 9.53% 90.47% 1.41 ×109 (85.49%)

In summary, based upon the above experiments with Basic, we make two key observa-

tions. First, among all the phases the Apply phase is the least scalable phase and it is responsible

for 82% of Data communications on average; hence, it consumes more than half of the execution

time. Second, Apply phase does not scale due to extra communications and computations that can

be removed by keeping track of status of the queries that are running concurrently. This leads us to

implementions of the two versions of MultiLyra framework named FQT and IQT described next.

2.2.3 FQT And IQT

To improve the Basic version, we studied the status of the queries. To do this, we ran

1024 queries for each input graph for all four algorithms and collected the finish time for each

query. Table 2.9 shows the percentage of the total execution time during which some queries have

finished and they are waiting for other queries to finish. The waiting time ranges from around 36%
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Table 2.9: The percentage of time on average for which a
completed query performs wasteful processing.

G Algorithm #Batch Waiting Time (%)

TT

SSSP 256 0.66%

SSWP 128 39.79%

NP 32 0.89%

VT 128 0.76%

LJ

SSSP 256 4.00%

SSWP 128 32.10%

NP 32 17.61%

VT 128 5.99%

for SSWP to 2.3% for SSSP on average for the two input graphs. Finished Query Tracking (FQT)

version of MultiLyra framework utilizes this opportunity.

We repeated our experiment, running 1024 queries with the selected batch sizes, to study

the speedup of FQT and compared it with Basic version, shown in the related rows of Table 2.10.

As we expected from Table 2.9, SSWP takes advantage of this version since it has 36% waiting

time on average for each finished query. But all other algorithms could not utilize FQT due to their

very small waiting times. Note, in case of NP, removing less than 10% waiting time on average was

not enough to overcome the overhead of FQT. As described in the previous section, FQT improves

Basic by not performing the required actions (i.e. computation and communication) for already-

finished queries. Since only SSWP among the four algorithms had the long waiting time to offer, it

only could gain speedup from FQT.

FQT just knows whether a query is already finished or not. To further improve over FQT,

we implemented Inactive Query Tracking (IQT) which kept track of the current active queries for
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each vertex in an iteration. We repeated the same experiment for IQT. Table 2.10 compares the

speedup of IQT over the baseline with speedups of other versions, i.e. FQT and Basic. As we can

see, IQT improves the speedup of the algorithms substantially since IQT, as described earlier, can

remove the extra computations and communications not only for finished queries but also for the

inactive unfinished queries per each active vertex in an iteration.

Among the four algorithms, NP is the only algorithm where FQT and IQT do not deliver

speedups. This is due to the nature of NP where the vertex values always increase till they hit a set

upper limit and converge. Consequently, most of the queries are active in each iteration for active

vertices and few opportunities exist for FQT and IQT to exploit.

2.2.4 IQT + Reuse

This subsection presents experimental results of our Online Reuse technique on top of IQT

evaluated in the previous subsection. To enable reuse, when the first batch of queries, are executed

using IQT, the top five high-centrality vertices are identified based upon the number of updates and

scatters they experience. Prior to running the remaining batches of queries, we generated an extra

small batch of queries using the five extracted vertices and ran it on IQT to store their result in order

to reuse them during the run of remaining queries. Hence, the remaining batches of queries took

advantage of the superior performance offered by Reuse.

Figure 2.4 compares Reuse speedup with FQT and IQT. Using Reuse optimization on

top of IQT gives 8.04× and 11.06× speedups on average across the different graph algorithms on

the input graphs Twitter (TT) and LiveJournal (LJ) respectively for running 1024+5 queries – more

detailed data is given in Table 2.11.
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Figure 2.4: Reuse vs. FQT and IQT.
The NP algorithm is omitted because application of Reuse to NP is unsafe.

2.2.5 IQT Batching Vs. Quegel Batching

Quegel [38] is the only other graph processing system that has been designed to simulta-

neously evaluate a batch of iterative graph queries. By sharing computing and memory resources

across multiple queries whose evaluation is overlapped via pipelining, Quegel optimizes the evalua-

tion of a batch of queries. Since it does not integrate the data messages, the number of communica-

tions remain the same. While its focus is on evaluating point-to-point queries [43] (e.g., shortest path

from vertex v to vertex w), it can be easily adapted to evaluate point-to-all queries (e.g., SSSP).

We carried out this adaptation and then compared the performance of Quegel batching with IQT.

The speedups obtained by IQT batching over Quegel batching are given in Table 2.12

for different batch sizes. As we can see, the speedups of IQT over Quegel increase as batch size

is increased. This is expected, as Quegel’s performance remains steady with batch size while IQT

has been designed so phases of MultiLyra scale in performance with batch size giving improved

performance.
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Table 2.12: Speedups of IQT batching over Quegel batching on a four machine cluster.

G Algorithm #Batch IQT Speedup

LJ

SSSP

16 1.97×

32 2.83×

64 3.89×

SSWP

16 1.61×

32 2.75×

64 4.34×

NP

16 3.38×

32 4.23×

64 4.61×

VT

16 2.29×

32 3.86×

64 5.33×

2.3 Summary

In this chapter, we presented the MultiLyra system, a generalization of the PowerLyra

system to enable efficiently evaluation of a batch of iterative graph queries. MultiLyra’s query eval-

uation methodology (Basic) and added optimizations (IQT and Reuse) yield significant speedups.

By amortizing the communication, synchronization and computation costs across multiple queries,

MultiLyra delivers maximum speedups ranging from 7.35× to 11.86× across four iterative graph

algorithms and multiple input graphs on a cluster of four 32-core machines. Finally, scalability of

batching supported by MultiLyra is far superior to that of the related-work Quegel.
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Chapter 3

ExpressWay: Faster Convergence

Technique

Distributed Graph analytics is being widely used in various domains for analyzing large

real-world graphs. There have been numerous efforts to build distributed frameworks for graph

analytics aimed at improving scalability. These frameworks enable the processing of huge graphs

that do not fit in the memory of a single machine by imposing message-passing overhead among a

cluster of multiple machines, underutilizing the available computing resources. While most of the

existing works are focused on making the platform itself efficient and scalable, one can focus on the

input graph and the running algorithm looking for opportunities to enhance the computation load.

We have observed that when running graph queries using a specific algorithm, the contribution of

certain edges is crucial for achieving convergence in their boundary vertices. These edges play a

vital role in delivering the converged results to their connected vertices.

39



In this chapter, we present ExpressWay, a technique to further improve the efficiency of

distributed graph frameworks by prioritizing important edges of an input graph. First, we begin by

identifying the most important edges in the graph, which we refer to as ”highways”. Highways con-

tribute to the accurate calculation of property values of a significant number of vertices. Therefore,

by running the algorithm on the graph using only these highways, we can obtain precise property

values for most of the vertices. After this initial run, we execute the algorithm on the graph using all

the edges to obtain precise values for all the vertices. This technique offers a significant speedup.

As our experiments show, the highways comprise only a small subset of the graph’s edges. Running

the graph initially with just these highways is much faster because it involves a smaller subset of

edges. The second step is also so fast because most of the vertices already have precise values,

allowing for rapid convergence. By employing the ExpressWay technique, we can achieve up to

4.08× speedup compared to a single-query framework and up to a 4.04× speedup compared to a

framework designed for a batch of concurrent queries.

3.1 Background Review

Now that real-world graphs are huge (e.g., Friendster [15] has 2 billion edges and 65.6

million vertices), they can not fit into the memory of a single machine. Also, out-of-core pro-

cessing is not efficient enough. Hence, the input graph is partitioned among a cluster of multiple

machines. Each machine is responsible for carrying out the updates of vertices that reside locally.

The machines communicate through message-passing to exchange needed vertex values and syn-

chronize between iterations before continuing to the next iteration. This whole system is known

as distributed graph processing in which the combined memories of multiple machines are able to
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hold large graphs and the large number of cores made available by multiple machines enhances the

degree of parallelism delivering scalability.

Distributed graph frameworks have been using different techniques to improve efficiency

whether by accelerating the execution of a single query or maximizing the throughput by executing

a batch of multiple queries at once. Next, we will discuss the state-of-the-art for each framework

that later we use to implement and evaluate Expressway.

We select Gemini for the former, as it is the most efficient distributed platform to run

a single graph query, thanks to its NUMA-aware design and its technique to overlap the commu-

nication and computation loads. On the other hand, for the latter, we choose MultiLyra, which

achieves massive scalability and efficiency by amortizing the high communication and computa-

tion costs across multiple queries. Additionally, its ability to compress data messages by adopting

fine-grained tracking methods to track the status of each query stands out.

3.1.1 Single Query: Gemini

𝑴𝟏: Data Unicast Msg

v

u

𝑩𝟏: Data Broadcast Msg

v

u

v

u v

u

MirrorMaster Process edges Communication

Push Pull

Machine A Machine BMachine A Machine B

Figure 3.1: Communication Pattern in Gemini for Push and Pull Modes. In Push, the Updated
Value of Vertex v is Sent to All Machines No Matter Whether They Need It Or Not. Gemini

Overlaps Communications with Computations Hiding Message-Passing Overhead.
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Table 3.1: Running 10 queries on the single-query Baseline framework (Gemini) using different
modes (i.e., push-pull, push-only, and pull-only).

Gemini: Time (seconds)

G Algorithm Push Pull Push Only Pull Only

TTW

SSSP 28.71 22.42 83.96

SSWP 21.21 14.39 74.97

SSNP 22.68 14.50 67.16

VT 30.34 20.49 73.68

Many frameworks have been developed to run a single graph query efficiently in dif-

ferent platforms. These systems mostly focus on minimizing inter-machine communication and

computation load balancing without paying attention to intra-machine computation load balancing

and locality. In contrast, Gemini tries to achieve scalability while maintaining the intra-machine

efficiency, inspired by the shared-memory systems.

Gemini leverages its NUMA-aware design, keeping the required data (i.e., vertex values,

graph edges) close to the corresponding compute cores in each machine of the cluster. Therefore, it

not only delivers the scalability that any other distributed framework aims for but also cares about

the intra-machine load balancing and improves the locality within each single machine. In addition,

Gemini utilizes an overlapping technique to overlap inter-machine communications within the clus-

ter with intra-machine computations. This makes Gemini the most efficient distributed framework,

delivering up to 39× speedups over other single query systems [3]. Gemini employs the famil-

iar push-pull modes seen in shared memory platforms and automatically switches between modes

based on the computation load (i.e., number of active edges). Next, we discuss how Gemini operates

in terms of computation and communication for each of these modes (see Figure 3.1).
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– Push: In this mode, each master (i.e., a vertex that resides locally) added to the frontier

list after being updated in the previous iteration will push its value along with its outgoing edges to

their outgoing neighbors. The dashed arrow in Figure 3.1 shows the direction of vertex value prop-

agation. When there are replicas requiring remote value propagation, a single broadcast message is

sent to all other machines in the cluster. Machines with a vertex replica then push the value to their

respective outgoing remote neighbors, as depicted in Figure 3.1, left. Ultimately, destination ver-

tices are updated with the aggregated result of all data values pushed toward them. The aggregating

equation for each graph query can be found in Table 3.3.

– Pull: In this mode, all vertices collect data from their incoming neighbors through their

incoming edges. When a vertex serves as a mirror (i.e., it’s a replica of a remote vertex residing

on another machine), it sends the aggregated result of the collected data to the machine hosting

the master vertex, as shown in Figure 3.1, right. Finally, destination vertices are updated with

aggregated results from both locally and remotely collected data.

We add a switch in Gemini to control these modes to create the three modes of Push only

which always use the Push mode, Pull only uses Pull mode all the time, and Push Pull which is

the default version and switches between Pull and Push automatically in each iteration based on the

computation load. Table 3.1 shows the total execution time of running 10 random queries one by one

on Gemini for different graph algorithms on a large graph, i.e., TTW (see Table 3.4 for information

about input graphs). Push only delivers the best execution time among all modes. Therefore, for

the rest of the experiments in this work, we use mode Push only.
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3.1.2 Multiple Queries: MultiLyra

G_Batch

A_Batch

S_Batch

G_Batch

S_Batch

𝑴𝟏: Single Active Msg

𝑴𝟓: Single Active Msg

𝑴𝟑: Aggregated Data Msg

𝑴𝟐: Aggregated Data Msg

𝑴𝟒 : Single Active Msg

v

u

u

Machine A

v

u

u

Machine B

MirrorMaster Process edges Communication

Figure 3.2: Communication Pattern in MultiLyra GAS Model: Five Messages are Needed for Each
Vertex Processing; Two of Them Carry Vertex Values and Three are Active Messages. MultiLyra

Does Not Overlap Communications with Computations

MultiLyra follows the GAS model of computing which divides the distributed computa-

tion of batches of concurrent graph queries into three main phases, i.e., Gather, Apply, and Scatter

(G batch, A batch, and S batch in Figure 3.2, respectively). These phases will be done in parallel

for all active vertices in each machine and the message passing occurs in between phases without

any overlapping between communication and computation loads. First, before G batch begins, each

active vertex sends a signal (i.e., active message) to their mirrors on other machines to inform them

of being activated at least for one of the queries in the current iteration of the batch (M1 in Fig-

ure 3.2), asking them to participate in the Gather phase. Then, in G batch, each vertex whether

master or mirror, goes through its incoming edges and collects data from its source neighbors. This

process is executed for all the active queries associated with that vertex. Subsequently, the mirrors

transmit their partially gathered data to the machine where their master is located. This allows the

data to be aggregated and utilized in the Apply phase. This is being done by sending a compressed
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Table 3.2: Running 10 queries concurrently on the batching Baseline framework (MultiLyra) using
different modes (i.e., Basic, FQT, and IQT).

MultiLyra: Time (seconds)

G Algorithm Basic FQT IQT

TTW

SSSP 350.70 411.93 430.56

SSWP 266.25 296.90 313.97

SSNP 229.38 259.10 299.6

VT 390.21. 446.48 476.70

data message, based on one of the modes Basic batch, FQT, and IQT (explained in the next para-

graph), including the data for all the active queries (M2 in Figure 3.2). In A batch phase, all the

masters are being updated with the aggregate result of the received partially collected remote data

combined with their own locally collected one. Then, another compressed data message which in-

cludes the current values of each active query for the same vertex will be sent back to the mirrors

for the purpose of coherency as well as a signal message to ask the mirrors to participate in the final

Scatter phase (M3 and M4 in Figure 3.2). Finally, in the S batch phase, all the vertices, whether

masters or mirrors are going through their outgoing edges, and add their destination neighbor to the

frontier list if at least for one of the queries in the batch it needs to be activated. Then, mirrors that

get added to the frontier will send a signal to their master to assure that the master is aware of being

activated for the next iteration (M5 in Figure 3.2).

MultiLyra has three different modes (i.e., versions) regarding its level of query status

tracking. Basic batch does not have any knowledge of whether a query is finished or activated for

a vertex in the current iteration. Therefore, it computes all the phases for all the queries regardless

of their status (no computation reduction). The data messages are not compressed in Basic batch,
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and it sends all queries’ data between mirrors and the master, even if the vertex value is not changed

for some of the queries in the batch. The Basic batch is better for small batch sizes with multiple

queries, where the reduced computation and communication load cannot hide the overhead of the

query status tracking systems. On the other hand, FQT tracks the already finished queries and re-

duces the computation by not doing each phase for the finished queries. It compresses data messages

by excluding data for the finished queries when communicating between the master and its mirrors,

thereby improving communications. FQT fits better for the midsize batches. Finally, IQT leverages

a fine-grained tracking system that, in addition to tracking the already finished queries, tracks the

active queries in each current iteration for each vertex dynamically. This reduces both computations

by only doing each phase for the active queries, and communication by omitting vertex values for

the queries that are not active for that current iteration. Hence, it is suitable for large batch sizes,

such as hundreds of queries. Table 3.2 shows that Basic batch offers a better execution time when

running a small batch of 10 random queries, as it avoids the overhead associated with the query

tracking system for small batches. Thus, we use Basic batch in our experiments.

3.2 Distributed ExpressWay

In this section, we present ExpressWay by introducing how to identify Highways and de-

velop an algorithm for it. Then, we analyze different ExpressWay policies led to different distributed

scenarios that are proposed aiming at utilizing the most benefit that Highways can offer. Finally we

explain the ExpressWay setup in various frameworks with an example and algorithm. The method

to identify the highways is similar to Core Graph proposed in [55] and [56] with one key difference.

Highways in ExpressWay are marked by reordering the edges of the same graph unlike the Core

Graph idea in which two versions of the input graph are loaded to the system.

46



3.2.1 Building Highways

Highways are the edges in the graph that most significantly contribute to the final value of

many vertices. We have developed a heuristic algorithm to identify these crucial edges. Through our

observations, we found that we can determine the most important edges for nearly all vertices when

focusing on solving the problem for high-degree vertices. The Algorithm for Building Highways

consists of four steps:

Identifying High-Degree Vertices - The initial step involves identifying the high-degree

vertices in the graph. High-degree vertices are those which have the most incoming and outgoing

edges. The author in [55] shows that we only need a few number of high-degree vertices and hav-

ing more than 20 high-degree vertices doesn’t significantly improve the effectiveness of highways

in making more vertices to converged to their final value. Instead, it unnecessarily increases the

number of highways in the graph. Therefore, We picked 20 high-degree vertices for building the

highways. To determine these 20 high-degree vertices, we sorted all vertices based on their degrees

and select the top 20.

Forward Query Evaluation - After identifying the 20 high-degree vertices, we apply

our algorithm to these vertices on the graph in a forward direction. We then select the edges that con-

tribute to the results for these 20 high-degree vertices. These selected edges become our highways.

Backward Query Evaluation - This step mirrors the previous one but with a twist. Here,

we perform a backward query evaluation for the 20 high-degree vertices and select the contributing

edges, marking them as our highways.

Connectivity of the highways - Once the highways are identified in the second and third

steps, we must ensure the connectivity of the graph in regards to only highways. We examine all the
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Algorithm 3.1 Identifying Highways on a Given Graph: Finding High-Degree vertices
1: D[V ]: array for collecting degree of each vertex

2: H: high-degree vertex set

3: for each v ∈ V do

4: D[v] = OutDegree(v) + InDegree(v)

5: end for

6: H = Index of 20 high values on array D[V ]

Algorithm 3.2 Identifying Highways on a Given Graph: Forward/Backward Evaluations
1: B Forward Query Evaluation

2: for each h ∈ H do

3: Eforward(h) = SOLVE ( G(V,E), DIRECTION f )

4: Ehighways = Ehighways ∪ Eforward(h)

5: end for

6:

7: B Backward Query Evaluation

8: for each h ∈ H do

9: Ebackward(h) = SOLVE ( G(V,E), DIRECTION b )

10: Ehighways = Ehighways ∪ Ebackward(h)

11: end for

vertices, and if any vertex lacks an outgoing edge, we select one outgoing edge for that vertex and

include it in our set of highways.

Upon completing the above four steps, we obtain the edges of the input graph reordered.

Considering the input graph with only highways creates a hypothetical graph that retains the same
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Algorithm 3.3 Identifying Highways on a Given Graph: Solve Function to create the hypothetical
smaller graph.

1: Input: Graph G(V,E)

2: Output: G(V,Ehighways); Ehighways contains highways

3:

4: function SOLVE ( G(V,E), DIRECTION d )

5: Evaluate Query Q(s) on G(V,E)

6: for all e(u, v) ∈ E do

7: if Q(s) updates Q(s).V al(u) then

8: if (Q(s).V al(u)
⊕
w(u, v) = Q(s).V al(v)) then

9: if (d == f ) then

10: Ehighways(h) = Ehighways(h) ∪ { e(u, v) }

11: else B ( d == b )

12: Ehighways(h) = Ehighways(h) ∪ { e(v, u) }

13: end if

14: end if

15: end if

16: end for

17: end function

Algorithm 3.4 Identifying Highways on a Given Graph: Connectivity of the Highways.
1: for all v ∈ V do

2: if (OutDegree(v)6= 0) ∧ (OutEdges(v) ∩ Ehighways) = φ then

3: Add an out edge of v to Ehighways

4: end if

5: end for

49



vertices as the original but has a significantly reduced number of edges, now termed highways.

In Algorithms 3.1 to 3.4, the procedure for building highways is detailed. As illustrated in the

algorithm, its input is a graph in the form of G(V,E), where V represents the number of vertices

and E denotes the number of edges in the graph. The output is G(V,Ehighways), a graph with

the same vertex count but a reduced edge count (Ehighways). Thus, the output graph only contains

highways. Initially, the algorithm identifies the twenty highest degree vertices in the graph. To

achieve this, we loop over the vertices, calculating the sum of in and out edges for each vertex.

These degrees are stored in an array named D[V ]. Subsequently, the twenty highest values in

the D[V ] array are identified, and their indexes are stored in H (see Algorithm 3.1). According

to algorithm 3.2, after pinpointing the twenty high-degree vertices, a forward query evaluation is

performed (see Algorithm 3.2 lines 1-5). For each vertex in our high-degree vertex setH , the Solve

function from Algorithm 3.3 is invoked. This function identifies the edges contributing to the results

for each high-degree vertex. The identified edges are then added to the Ehighways set. Following

this, a backward query evaluation is conducted (see Algorithm 3.2 lines 7-11). Again, the Solve

function from Algorithm 3.3 is called to identify edges in the backward direction, which are then

added to Ehighways. The final step ensures the connectivity of the vertices through the highways.

We iterate over the graph’s vertices. If there is a vertex to which no highways in the Ehighways

set is connected, an outgoing edge of that vertex will be added to Ehighways to ensure connectivity

of highways (see Algorithm 3.4). The resulting graph contains all the highways reordered in the

beginning of the edge list for each vertex, enabling accelerated distributed graph processing. The

Solve function in Algorithm 3.3 identifies edges contributing to our query results in both forward

and backward directions. It accepts the graph and direction as inputs, evaluates the query on the
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graph, and finds all answers. For each edge in the graph, if it contributes to a vertex’s value, that

edge will be added to Ehighways, considering both forward and backward directions.

3.2.2 An Example To Demonstrate ExpressWay Construction

Let us demonstrate Algorithms 3.1 to 3.4 using an example. As you can see in Fig-

ure 3.3(a), we have a full graph, and our goal is to find the highways on this graph for the single

source shortest path (SSSP) algorithm. For this example, we only want to do that for one high-

degree vertex, which is our highest degree node, a. As demonstrated in Figure 3.3(b), first, we

should perform a forward query evaluation. We start from the high-degree node a, run the SSSP

algorithm, and find the shortest path from vertex a to all other vertices in the forward direction. We

identified the edges selected in this step using a blue color. Then, as depicted in Figure 3.3(c), we

should evaluate in the backward direction. Therefore, we will find the shortest paths from every

other vertex to our highest degree vertex, which is vertex a. We identified the edges selected in this

step with a red color. The final step is to check connectivity. As shown in Figure 3.3(d), we should

check each vertex, and if the vertex has at least one outgoing edge on the full graph, it should also

have at least one outgoing edge on the reduced graph. Therefore, we will examine all the vertices

and add two outgoing edges for the h and j vertices. Finally, in Figure 1(e), you can see the final

graph with only highways.

After identifying highways on a graph, as you can see in the Figure 3.4, we should first

run the query using only the highways, and then run the query using all the edges in the graph.

Since the highways contribute to the final results for most of the vertices, running the query with

just the highways yields correct results for the majority of the vertices. Given that the number of
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(b) Forward Query Evaluation for Vertex a.
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(c) Backward Query Evaluation for Vertex a.

2

3

5

3

3

43

2

5

5

6

6

6

1

1
78

9
9

9
1

1

1
5

8

2
9

1

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖

𝑗

𝑘

𝑙

𝑚

(d) Check the Connectivity of the Graph.
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(e) Output Graph with only Highways.

Figure 3.3: Example to Show the Steps for Identifying the Highways on a Graph for the Single
Source Shortest Path Algorithm and High-degree Vertex a.
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ℎ𝑖𝑔ℎ𝑤𝑎𝑦

𝑎 	𝐹𝑢𝑙𝑙	𝑔𝑟𝑎𝑝ℎ 𝑏 	𝑅𝑢𝑛𝑛𝑖𝑛𝑔	𝑡ℎ𝑒	𝑞𝑢𝑒𝑟𝑦	
𝑢𝑠𝑖𝑛𝑔	𝑜𝑛𝑙𝑦	ℎ𝑖𝑔ℎ𝑤𝑎𝑦𝑠

𝑐 	𝑅𝑢𝑛𝑛𝑖𝑛𝑔	𝑡ℎ𝑒	𝑞𝑢𝑒𝑟𝑦	
𝑢𝑠𝑖𝑛𝑔	𝑎𝑙𝑙	𝑡ℎ𝑒	𝑒𝑑𝑔𝑒𝑠

𝑝𝑟𝑒𝑐𝑖𝑠𝑒 𝑖𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑒

𝑚𝑜𝑠𝑡𝑙𝑦	𝑝𝑟𝑒𝑐𝑖𝑠𝑒	𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑢𝑙𝑙𝑦	𝑝𝑟𝑒𝑐𝑖𝑠𝑒	𝑟𝑒𝑠𝑢𝑙𝑡𝑠

Figure 3.4: Query Evaluation Using the Highways in a Graph.

edges identified as highways is quite small, this step is executed quickly. By utilizing this swift

step, we obtain accurate results for most of the vertices. To ensure correct results for all vertices,

we should run the query using all the edges in the graph after the initial step. This subsequent step

is also efficient, as most of the results are already stable, leading to rapid convergence.

3.2.3 ExpressWay Plocies & Scenarios

We proposed four types of policies for using the expressway in the graph.

ExWaySin - ExWaySin stands for single expressway. In this technique, we run the

graph with highways on a single machine instead of a distributed machine. If our input graph is

small, the edges identified as highways will also be few. Therefore, we can run the highways on

a single machine (i.e., on each machine in the cluster separately at the same time), eliminating the

communication and barriers between machines.
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ExWayDis - ExWayDis stands for distributed expressway. In this approach, if the number

of edges identified as highways is high, they should be run on a distributed machine. This approach

is suitable for large graphs because as the size of the graph increases, the number of edges identified

as highways also increases. If the graph with the highways becomes too large, it cannot be run on a

single machine, necessitating the use of a distributed machine.

ExWayHalf - In this technique, we don’t execute the entire graph using the identified

highways. Instead, if we can achieve predominantly accurate results with just half the execution

of the highways, we adopt this approach and don’t wait for all nodes to stabilize. We opt for this

method because, in most graphs, the last iterations exhibit a long tail before all nodes stabilize.

Notably, the first few iterations of the graph evaluation show a substantial update, but this update

diminishes significantly in the final iteration. As a result, there’s limited advantage in executing the

concluding iterations of the graph evaluation. Moreover, as we’ll discuss in the evaluation section,

for all our algorithms and input graphs, we can secure highly accurate results (exceeding 97 percent)

by solely utilizing the highways in the graph.

ExWayFull - In this technique, we run the graph entirely with highways and skip the

second step, which involves running the graph with all the edges. We can employ this method when

our graph doesn’t have a long tail and all the vertices stabilize quickly.

We create three Scenarios by combining the above policies. ExFDis combines ExWayDis

with ExWayFull and runs the input graph entirely using highways in a distributed manner while

ExHDis combines it with ExWayHalf and stops the execution of highways midway to avoid the

communication cost for the iterations that converge fewer vertices. Similarly, ExFSin combines

ExWaySin and ExWayFull. Please note that running graphs fully on highways in a single ma-
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Algorithm 3.5 Expressway employed in the Gather phase of the MultiLyra GAS model. Similarly,
it applies to the Pull mode for the single query platform assuming batch size is 1.

1: B Expressway for gather/pull

2: Input: active vertex v, Expressway Enable

3: Output: the aggregated collected data

4:

5: function G BATCH ( v, Expressway Enable)

6: edge list = in edges of(v)

7: if Expressway Enable then

8: edge list = highways of(v, out edge=false)

9: end if

10: agg results[0:batch size] = INITIAL VALUE

11: for q ∈ active queries for(v) do

12: for e ∈ edge list do

13: agg result[q] = agg(e.src().value[q], e.data())

14: end for

15: end for

16: RETURN agg result

17: end function

chine is fast enough not imposing any communication cost. Therefore, combining ExWaySin with

ExWayHalf is not feasible.
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Algorithm 3.6 Expressway employed in the Scatter phase of the MultiLyra GAS model. Similarly,
it applies to Push mode for the single query platform assuming batch size is 1.

1: B Expressway for scatter/push

2: Input: active vertex v, Expressway Enable

3: Output: makes the next frontier

4:

5: function S BATCH ( v, Expressway Enable)

6: edge list = out edges of(vi)

7: if Expressway Enable then

8: edge list = highways of(vi, out edge=true)

9: end if

10: for q ∈ active queries for(vi) do

11: for e ∈ edge list do

12: if (e.dst().value[q]
⊕

agg(v.value[q], e.data())) then

13: active list← e.dst().id

14: end if

15: end for

16: end for

17: end function

3.2.4 ExpressWay Setup

Algorithms 3.5 and 3.6 show the ExpressWay setup for a batching system by being applied

to the Gather and Scatter phases in the GAS model. To avoid repetition, we only discuss these

algorithms in the MultiLyra batching GAS model while one can similarly apply ExpressWay to the

Pull/Push modes of single query systems since the gather function is similar to pull function, and

the scatter function is similar to push function (i.e., when batch size is equal to 1).
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Algorithm 3.7 Expressway employed in Main loop of the MultiLyra GAS model. Similarly, it
applies to Main loop for the single query platform assuming batch size is 1.

1: B Main loop

2: Input: G, Expressway Enable=true, ExHalf=false, i threshold

3: Output: The final result for the running algorithm

4:

5: function RUN( G, Expressway Enable, ExHalf)

6: i← 0

7: while !active list.empty() do

8: if Highway.isDone() or (ExHalf and i=i threshold) then

9: Expressway Enable = false

10: active list← all v.ids visited

11: end if

12: B run in parallel for each active v

13: collected data = G batch(v, Expressway Enable)

14: A batch(v, collected data[v])

15: S batch(v, Expressway Enable)

16: i++;

17: end while

18: end function

Throughout the run time of a batch of graph queries, Expressway Enable flag deter-

mines, in the current iteration i, for each active query q and for an active vertex v, whether the query

runs on highways only or all connected edges (see Algorithms 3.5 and 3.6, lines 7-9 for Gather and

Scatter, respectively). Particularly, when Expressway Enable is set to true during the Gather

phase, the active vertex v for each query q that is active for v in the current iteration, will select the
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edges from highways, line 8, to loop over, lines 12-14 in Algorithms 2.2. It calculates the aggre-

gated result by using data from the source vertex of the incoming edge e, as well as the edge data

itself, based on the aggregating equation presented in Table 3.3. Later, this collected data from the

Gather phase will be used to update the vertex v value in the following Apply phase as seen in line

14 of Algorithm 3.7. Scatter will also loop over the highways only when the Expressway Enable

flag is set to true, as shown in Algorithm 3.6, lines 7-9. For each vertex v that has been updated in

the Apply phase and for each active query q, scatter will only propagate the data through highways

by adding the destination of the outgoing edge e to the next active list, as indicated in line 13 of

Algorithm 3.6.

Finally in Algorithm 3.7 line 8 - 11, it carries out the transition from running only using

highways to the full graph. It manages the ExWayFull and ExWayHalf policies which is used to

create ExFDis and ExHDis scenarios explained above. If no threshold to stop early for the highways

is specified, (i.e., XHalf is false), then the highways will be used until all the vertices converge

to their pre-final values. This will be determined by Highway.isDone(). On the other hand, the

highway run can be interrupted early in iteration equal to i threshold when XHalf is true. The

transition will be complete by adding all the vertices that have been visited during the highway run

time to the active list before proceeding to the final run. This is necessary to ensure the correctness

of the vertex values, making sure that the pre-final values of all vertices propagate via all edges.

3.3 Evaluations

To Evaluate the proposed faster convergence technique, we first analyze ExpressWay us-

ing, Gemini, the most efficient single query framework thoroughly. Then, we pick the least and the
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Table 3.3: Equations used to aggregate the data to update vertex v for any query which propagated
through incoming edge e coming from the incoming neighbor u (i.e., its source). Algorithms:

SSSP-single source shortest path; SSWP-single source widest path; SSNP - single source
narrowest path; and VT - Viterbi.

Algorithm Aggregating Equation

SSSP v.vlaue = Min (v.value, u.value + e.data)

SSWP v.vlaue = Max (v.value, Min (u.value , e.data))

SSNP v.vlaue = Min (v.value, Max (u.value , e.data))

VT v.vlaue = Max (v.value, u.value / e.data)

Table 3.4: Real-world input graphs along with their number of vertices and the number of edges.

Input Graph #Edges #Vertices

Twitter WWW (TTW) [8] 1.5 B 41.6 M

Twitter MPI (TT) [5] 2.0 B 52.6 M

Friendster (FS) [15] 2.6 B 68.3 M

most speedup delivery scenarios to apply it on MultiLyra to evaluate it in the context of batching.

We picked the basic batching version of MulitLyra since we consider small batches of 10 queries.

3.3.1 Experimental Setup

We implemented ExpressWay using Gemini [3] which advances the distributed graph pro-

cessing via its NUMA-Aware design for a single query, and MultiLyra [17] which enables scalable

and efficient evaluation of multiple concurrent queries. In our evaluation, we consider four algo-

rithms - Single Source Shortest Path (SSSP), Single Source Widest Path (SSWP), Single Source

Narrowest Path (SSNP), and Viterbi (VT) [9] (see Table 3.3). We use three large input graphs listed

in Table 3.4, with a billion edges named TTW, TT, and FS. For each input graph and for each al-
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Table 3.5: Speedup of running 10 random SSSP queries on highway only vs. full edges.

Execution Time (seconds)

G All-edges Highways-only Speedup

TTW 21.68 8.57 2.53×

TT 27.43 12.36 2.22×

FS 44.02 19.03 2.31×

gorithm, we ran 10 queries. The sources are unique and were selected randomly. All experiments

were performed on a cluster of four identical machines. Each machine has 2 NUMA nodes of 32

Intel Xeon cores (i.e., a total of 64 threads), 256 GB memory, and runs Rocky Linux release 8.5.

3.3.2 Policies Analysis

In this section, we analyze our decision towards the policies that we propose. We applied

ExpressWay on the baseline Gemini and ran 10 random SSSP queries on input graph TTW using a

cluster of four machines specified above. Table 3.5 shows the reduction in execution time when we

run the queries on the input graph using only Highways without transition to the full graph, versus

when we ran the queries using all edges, which is our baseline. It is important to note that the vertex

values obtained from running on highways are not yet finalized. However, we do obtain mostly

precise values for the vertex when using only highways. The column ”ExWayFull” on Table 3.6

shows the ratio of vertex values that converges to their final results only by executing the highways.

It shows that we can achieve the final results for more than 97% of the vertices by only running

an average of 9.11% of the total number of edges for different algorithms on different graphs, see

Table 3.6, column ”Highway/Edge”.
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Figure 3.5: The Frontier Size Over the Iterations of a SSSP Query on TTW.

Therefore, the speedups displayed in Table 3.5 represent the ideal performance gains that

ExpressWay policies aim to converge toward. Table 3.7 shows the number of edges needed to be

processed, i.e., the amount of computation, the number of updates to vertex values and finally the

number of communication that took place for the above experiment. Table 3.7 indicates that using

only the highways significantly reduces the computation load by 28.35× reduction rate on TTW

and reduces the number of vertex updates by 3.93× while the number of communications among

the machines is reduced the least by 2.87×. Comparing these numbers with the ideal speedups from

Table 3.5 shows that the communication load is the bottleneck to get closer to the ultimate speedups

in a distributed environment.

This leads us to propose the ExHDis scenario in which we interrupt the ExpressWay while

running on highways when it reaches the iteration at which the number of active vertices, i.e., the

frontier size, starts to decrease. Column ”ExWayHalf” in Table 3.6 shows he ratio of vertices that

have converged to their final value after interrupting the ExpressWay process midway. On average,

more than 50% of vertices have already finalized. For example, Figure 3.5 shows the number of

active vertices throughout the run time of a random SSSP query on TTW. This indicates that in the
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initial iterations (e.g., before iteration 9), the majority of vertices are processed, and the remaining

vertices are addressed in the subsequent iterations from 9 to 24. By stopping early, we eliminate the

need to incur the synchronization overhead associated with the distributed platform for those final

iterations. These would otherwise involve processing the smaller remaining set of vertices over a

greater number of iterations.

Finally, as mentioned above, since the highway edges are only 9.11% of the total number

of edges on average (see Table 3.6 for detailed numbers for each graph and algorithm), they are

small enough to be loaded on each machine in the cluster leading us to our next scenario ExFSin.

Then, each machine can run the highways independently, avoiding the communication load before

transitioning to using the full set of edges in a distributed manner. When the evaluation on highways

is finished in each machine before transferring to the the full edges, master and mirror vertices need

to exchange their value in favor of consistency to make sure all the veritces have their most updated

value.
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Table 3.6: The ratio of vertices that get converged to the final result by only running on Highways.
The average results of running 10 random queries.

G Algorithm highway/edge ExWayHalf ExWayFull

TTW

SSSP 7.55% 0.64 0.99

SSWP 10.16% 0.55 0.99

SSNP 10.30% 0.46 0.99

VT 6.24% 0.42 0.99

TT

SSSP 9.36% 0.52 0.99

SSWP 7.71% 0.64 0.99

SSNP 7.71% 0.58 0.99

VT 7.73% 0.43 0.99

FS

SSSP 13.77% 0.35 0.97

SSWP 9.57% 0.44 0.99

SSNP 9.57% 0.58 0.99

VT 9.65% 0.75 0.99

Table 3.7: Reduction in Number of updates, communications, and the edges processed in Gemini
when running 10 random SSSP queries on the input graphs using all the edges vs. highways only.

×109

G # of All-edges Hways-only Reduction

TTW

edge comp. 56.99 2.01 28.35×

updates 2.28 0.58 3.93×

comm. 1.52 0.53 2.87×

TT

edge comp. 69.71 2.85 24.46×

updates 3.02 0.86 3.51×

comm. 1.97 0.81 2.43×

FS

edge comp. 127.20 5.52 23.04×

updates 4.88 1.49 3.27×

comm. 3.18 1.31 2.43×
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3.3.3 Single Query: Gemini

Table 3.8: ExpressWay speedup over Gemini when running 10 random queries one by one.

Time (s) ExpressWay: Speedup

G Algorithm Gemini ExFDis ExHDis ExFSin

TTW

SSSP 21.98 1.57× 2.01× 2.17×

SSWP 16.72 1.35× 1.67× 1.88×

SSNP 17.38 1.39× 1.74× 1.93×

VT 25.86 1.86× 2.10× 3.03×

TT

SSSP 27.86 1.42× 1.90× 2.44×

SSWP 22.40 1.44× 1.77× 2.22×

SSNP 21.25 1.42× 1.71× 2.11×

VT 32.94 2.01× 2.46× 3.26×

FS

SSSP 44.96 1.48× 1.85× 2.36×

SSWP 30.51 1.52× 1.84× 2.23×

SSNP 30.60 1.56× 1.94× 2.26×

VT 60.75 2.46× 2.73× 4.08×

We applied the three scenarios discussed above, i.e., ExFDis, ExHDis, and ExFSin, and

implemented ExpressWay as discussed in Section 3.2.4 on Gemini, which is the state-of-the-sate

and the current most efficient distributed framework to run a single graph query. We ran 10 queries

for each input graphs and for each algorithm, following the above scenarios. We compared their

execution times with the baseline Gemini that does not utilize the highways. Table 3.8 shows the

execution time in seconds for the baseline (Gemini) as well as the speedups achieved by the Express-

Way policies over the baseline. ExFDis delivers speedups ranging from 1.35× for SSNP on TTW to

2.46× for VT on the input graph FS while ExHDis, leveraging its early transition to the full graph,

improves the speedups from 1.57× in SSSP for TTW to 2.01×. This behavior repeats for all algo-
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rithms on all input graphs. It even improves VT on FS, which already showed up 2.46× speedup,

further to 2.73×. As a further step to avoid the bottlenecks and overheads of distributed computa-

tion of highways, since there is a limited number of highways, we applied ExFSin scenario and runs

the highways in a shared-memory manner on each machine before transitioning to distributed com-

putation for final convergence. ExFSin obtains speedups ranging from 1.88× for SSWP on TTW

up to 4.08× for VT on FS boosting the performance for all algorithms on all three input graphs.

Note that among the four algorithms, VT is the most expensive one in terms of computation load

due to its floating point operation. On the other hand, the larger the graph, the more computations

need to be performed. Hence, any reduction ratio in amount of computation can be significant for

expensive algorithms and larger graphs. Therefore, ExpressWay as shown in Table 3.8, delivers

better speedups for VT on FS.

3.3.4 Multiple Queries: MultiLyra

We integrated the ExpressWay approach into the MultiLyra system to assess its perfor-

mance when executing a batch of simultaneous graph queries. For this evaluation, we selected

the ExFDis and ExFSin scenarios. These choices allowed us to juxtapose both the minimum and

maximum speedup delivery scenarios against a baseline, which involved running a batch of 10 con-

current graph queries. We applied various algorithms, as outlined in Table 3.3, to the TTW and TT

graphs. Table 3.9 illustrates our results for concurrent run of 10 graph queries. ExpressWay delivers

speedups ranging from 1.72× for SSWP to 4.04× for VT on TTW and ranging from 1.55× for

SSSP to 3.49× for VT on TT over MultiLyra and follows the same direction as seen over the single

query framework.
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Table 3.9: ExpressWay speedup over MultiLyra when running a batch of 10 random queries
concurrently.

Time (s) ExpressWay: Speedup

G Algorithm MultiLyra ExFDis ExFSin

TTW

SSSP 377.66 2.32× 3.65×

SSWP 274.75 1.72× 2.10×

SSNP 251.70 1.89× 2.53×

VT 391.84 2.53× 4.04×

TT

SSSP 214.69 1.55× 2.23×

SSWP 219.00 1.84× 2.61×

SSNP 218.82 1.93× 3.02×

VT 280.09 2.15× 3.49×

3.4 Summary

In this chapter, we presented ExpressWay, a technique to determine the important edges

called Highways in a large graph, aiming at accelerating the distributed evaluation of iterative graph

queries. Highways are selected from those edges that deliver the aggregated final value between

their endpoints. We evaluated our technique using state-of-the-art distributed graph processing

frameworks. The experiments for evaluating a single graph query as well as a batch of simultane-

ous graph queries show that our technique can be successfully applied to any framework and speed

up their execution times. ExpressWay achieves up to 4.08× speedup over Gemini, a single-query

framework, and obtains up to 4.04× speedup over MultiLyra, a scalable framework to evaluate a

batch of concurrent graph queries.
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Chapter 4

BEAD: Incremental Evaluation

Technique

Simultaneous evaluating a batch of iterative graph queries on a distributed system enables

amortization of high communication and computation costs across multiple queries. As demon-

strated in Chapter 2, MultiLyra, batched graph query processing can deliver significant speedups

and scale up to batch sizes of hundreds of queries.

In this chapter, we greatly expand the applicable scenarios for batching by developing

BEAD, a system that supports Batching in the presence of Evolving Analytics Demands. First,

BEAD allows the graph data set to evolve (grow) over time, more vertices (e.g., users) and edges

(e.g., interactions) are added. In addition, as the graph data set evolves, BEAD also allows the user

to add more queries of interests to the query batch to accommodate new user demands. The key to

the superior efficiency offered by BEAD lies in a series of incremental evaluation techniques that

leverage the results of prior request to “fast-foward” the evaluation of the current request.
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(a) BEAD: Efficient Incremental Evaluations.
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(b) MultiLyra: Independent Full Evaluations.

Figure 4.1: BEAD vs. MultiLyra: evaluating the sequence of requests (G0, Q0), (G0 + ∆1, Q0),
(G0 + ∆1 + ∆2, Q0 + δ1), (G0 + ∆1 + ∆2 + ∆3, Q0 + δ1), producing results R0, R1, R2, and R3.

Let Eval(G,Q)→ R denote the evaluation of a batch of queries Q on graph G with re-

sults R, a basic functionality of MultiLyra. Next, we explain how BEAD generalizes the capabilities

of MultiLyra by efficiently handling the following evolving analytics demands:

(i) Growing Graph. Assume the initial graph is G0, the initial query batch is Q0, and

their evaluation Eval(G0, Q0) yields results R0. Then, the graph grows with a set of additions ∆,

which may include new edges and/or vertices. Instead of fully reevaluating Q0 on the new graph

G0 + ∆ as in MultiLyra, BEAD exploits prior results R0 to incrementally evaluate G0 + ∆, denoted

as Inc(G0 + ∆, Q0, R0).

(ii) Growing Graph and Query Batch. In addition to the growing graph G0 + ∆, new

queries of interests δ are also added to the query batch occasionally, that is, Q0 + δ. Even in

this scenario, BEAD can still manage to leverage prior results R0 to streamline the full evaluation
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Eval(G0+∆, Q0+δ) to an incremental evaluation Inc(G0+∆, Q0+δ,R0), without compromising

the correctness of the results.

Figure 4.1 illustrates how a sequence of requests are handled by BEAD and how they can

be evaluated, though inefficiently, using MultiLyra. In this example, after the initial evaluation of

queries on the original graph, first reevaluation is required due to changes in graph (∆1), then due

to changes in both graph and query batch (∆2 and δ1), and finally due to changes in the graph (∆3).

In Figure 4.1(a), BEAD efficiently evaluates the queries by taking advantage of the query results

from the prior evaluation, while in Figure 4.1(b) MultiLyra evaluates queries on the corresponding

graphs independently from scratch.

Furthermore, in the presence of new user request while the old is still being processed

(i.e., user interruption), instead of waiting for the previous request to finish, BEAD permits anytime

evaluation of the new requestEval(G0+∆, Q0+δ) using the unconverged results fromEval(G0, Q0),

denoted as ≈R0. That is, before the convergence of Q0 on G0, user may interrupt the evaluation,

make additions to the graph and the query batch, and carry out new evaluation incrementally.

We have developed a prototype of BEAD that builds upon the MultiLyra prototype and

compared their performance on multiple input graphs and multiple kinds of graph queries. Exper-

iments demonstrate that BEAD’s batched evaluation of 256 queries, following graph changes that

add up to 100K edges to a billion edge Twitter graph and also query changes of up to 32 new queries,

outperforms MultiLyra’s batched evaluation by factors of up to 26.16× and 5.66×, respectively.
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4.1 MultiLyra Review

Distributed platforms offer a promising way for processing large real-world graphs by

partitioning the input graph across a cluster of machines. MultiLyra [17] adopts the hybrid-cut

graph partitioning strategy first introduced by PowerLyra [2]. For low-degree vertices, it distributes

the vertices along with their edges evenly among machines (i.e., edge-cut), such that these vertices

can be processed locally. In comparison, for high-degree vertices, it distributes their edges evenly

among machines (i.e., vertex-cut) to better balance the workload. When a high-degree vertex is

partitioned and replicated across multiple machines, one of the replicas is selected as the master and

the rest become the mirrors.

4.1.1 Basic GAS Model

MultiLyra follows the GAS (Gather-Apply-Scatter) model first introduced in PowerGraph [1]

to perform BSP-style [24] iterative graph computations. For simultaneously processing a batch of

queries, like the SSSP queries as shown below:

{SSSP(v1), SSSP(v2), · · ·, SSSP(vn)}

MultiLyra maintains a unified active list such that a vertex is active if it is active for at least one of

the queries in the batch. For a single active vertex, it integrates the processing of all queries in the

batch to amortize the overhead across queries.

Algorithm 4.1 summarizes the iterative algorithm. First, it initializes the unified activeList

based on the given batch of queries (Line 3). Line 4-10 initialize the status of each query. After

initializing the vertex values at line 12-14, the main loop of iterative graph processing is shown at
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Algorithm 4.1 Batching in MultiLyra – The GAS model.

1: function EVAL(G,Q,mode)

2: B Initialize the unified list & query status of active vertices

3: unified activeList← 〈q1, q2, ..., qn〉 ∈ Q

4: if mode == IQT then

5: B Si is a bitset indicating active queries for vertex i

6: q status← 〈S1, S2, ..., SN 〉 where Sqi .set bit(i)

7: else . mode = FQT

8: B si is a bit indicating if query i is still unfinished

9: q status← 〈s1, s2, ..., sn〉 where si = 1

10: end if

11: B Initialize the vertex values

12: for each vertex v ∈ G do

13: R[v][]← INIT VAL

14: end for

15: while !unified activeList.empty() do

16: Exch Batch(q status) . S1

17: unified activeList, q status← Recv Batch() . S2

18: Gather Batch(q status, mode) . S3

19: Apply Batch(q status, mode) . S4

20: Scatter Batch(q status) . S5

21: end while

22: return R

23: end function
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Figure 4.2: Communication needed in steps S1 through S5 for an active vertex in one iteration of
MultiLyra. Please note since Scatter Batch (i.e., S5) marks the successors locally, it does not

perform any communication.

line 15-21. At high level, there are five steps during each iteration of the processing, referred to

as S1 to S5. Figure 4.2 shows the communications needed by the vertex in each step. Next we

summarize the work performed by each step:

S1: Exch-Batch - In this step, all the local mirrors that were scheduled to be active for

the current iteration send an activation message to their masters that reside on the remote machines,

so that the master would be informed to become active. Note that one single activation message is

sufficient per local mirror to cover all the queries.

S2: Recv-Batch - All the masters that are either informed by their local neighbors or

through an activation message are added to the unified activeList. After that, each of them

sends one single activation message to their mirrors to inform them participating the gather phase.

So far, the first two steps have made an consensus on which vertices are active in the

current iteration. Based on this, the next three steps perform the GAS operations.

S3: Gather-Batch - All the active vertices, including both mirrors and masters, on each

machine collect data along their incoming edges for all the queries in the batch. In addition, the
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mirrors send their portion of the locally gathered data to their masters, via a data message, so that

the masters are aware of all the data they need globally for the Apply-Batch.

S4: Apply-Batch - Based on the collected data from the last step, values of all vertices

(except mirrors) are first updated (depending on the graph applications) for all the queries. Then,

to maintain the consistency across machines, when a vertex value is updated by at least one of the

queries, the vertex values of all queries are sent to their mirrors in one aggregated data message

to reflect the updates. Along with this message, one single activation message is also sent to the

mirrors for the following-up scattering step.

S5: Scatter-Batch - All active vertices (including mirrors and masters) whose values

have changed at least for one of the queries during S4 inform (schedule) their out-neighbors for

processing in the next iteration, which may include both local masters and local mirrors of remote

vertices.

The above five steps form the basic version of MultiLyra. Given an active vertex, it per-

forms integrated processing of all queries in each GAS phase, thus amortizing the overhead.

4.1.2 FQT & IQT

Note that, in the basic version, a unified active list is maintained, which does not dis-

tinguish the active vertices among queries and is unaware the completion of queries. This leads

to wasteful computations and communications. To improve the efficiency, MultiLyra provides two

optimized ways of tracking the status of queries and vertices:

• FQT tracks if any of the queries in the batch has been finished.

• IQT tracks which queries need to be evaluated in one iteration for each vertex.
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V.data[] = [dq1 ,dq2 ,dq3 ,dq4 ,dq5 ,dq6 ,dq7 ,dq8 ]

(a) FQT


Q Status : 〈U,F, U, U, U, F, U, U〉

Data Msg : [dq1 ,dq3 ,dq4 ,dq5 ,dq7 ,dq8 ]

(b) IQT


Q Status[v] :〈Iv, F, Iv, U, Iv, F, Iv, U〉

Data Msg : [dq4 ,dq8 ] + 00010001

Figure 4.3: Data Message Compression. F indicates the query has finished, U indicates the query
has not finished and is still running, and Iv indicates that query is inactive for active vertex v in the

current iteration.

These two fine-grained tracking methods enable MultiLyra to support compressed data messages, as

shown in Figure 4.3. These strategies use one bitset or array of bitsets, for FQT or IQT respectively,

to hold the statuses of queries in the running batch (Algorithm 4.1 lines 4-10) and keeping it updated

along with the active list in Recv Batch. Moreover, FQT and IQT can skip the vertex evaluation for

inactive or finished queries.

In general, IQT works better for large batches of queries in the scenario where high num-

ber of queries have not finished but are inactive for a vertex. So the performance benefits of IQT

can easily eclipse its tracking overhead. FQT, on the other hand, works more efficiently for the rel-

atively smaller batch sizes where the opportunity to take advantage of inactive queries is relatively

low; thus, it only tracks finished queries.
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4.2 BEAD: Distributed Support Of Batching For Evolving Analytics

Demands

Despite the promise of MultiLyra [17] in amortizing the communication and synchro-

nization overheads across a batch of simultaneously-running queries, it is designed for only static

scenarios, where the graph and queries are fixed. In this section, we introduce BEAD which gen-

eralizes MultiLyra and adapts its batching strategies to scenarios of evolving analytics demands –

growing graphs and batch of queries.

4.2.1 Batching With Graph Updates

Given the full evaluation of query batch Q0 on graph G0: Eval(G0, Q0) → R0, this

subsection describes how BEAD computes the results of Q0 on the updated graph G0 + ∆, which

are denoted as R1. Instead of making another round of full evaluation, BEAD updates the existing

results R0 to obtain R1, by performing lightweight incremental computation Inc(G0 + ∆, Q0, R0)

→ R1, as described in Algorithms 4.2 and 4.3.

Basically, BEAD takes over the evaluation process from the most recent completed eval-

uation on graph G0. First, it inserts the new edges and vertices in ∆ to the graph (Algorithm 4.2

at Line 2) which yields a new graph G1. Based on the insertions, it carefully initializes the vertex

values, and updates the active vertex list and query status to reflect the addition of new edges and

vertices (Algorithm 4.3). In specific, it first grows the vertex value array by the number of new

vertices (Algorithm 4.3 at Line 3). Then, the two key initializing steps are performed.

First, the Vertex Data Values for all the existing vertices are initialized to their data value

in R0, which is passed on by the previous step in BEAD system as was shown in Figure 4.1(a).
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Algorithm 4.2 BEAD: Reevaluating for Graph Update (G0 + ∆) - Inc().

1: function INC(G0, Q0, R0,∆,mode)

2: G1← G0.update(∆) . Add new edges and vertices

3: R1 ← Initialize(G1, Q0, R0,∆,mode)

4: while !unified activeList.empty() do

5: B ComputeIteration() performs steps S1 through S4 from Algorithm 4.1

6: ComputeIteration(q status, mode)

7: Scatter Batch(q status)

8: end while

9: return R1

10: end function

This allows them to achieve faster convergence to the final result. For all the new vertices from

∆, the vertex data values initialize to the INIT VAL, defined by the graph algorithm (Line 4-10,

Algorithm 4.3). Note that havingR0 as the initial data values for the existing vertices not only helps

these vertices converge efficiently on the new graph but can also help the new vertices converge

faster.

Second, the List of Active Vertices that are affected by ∆ need to be added to the initial

list of active vertices. Vertex v, either existing or new, is an affected vertex with respect to ∆ if

there is at least one new edge in ∆ that points to v (Line 12-14, Algorithm 4.3). This guarantees

that the evaluation continues towards re-convergence by scattering through the new edges. Note

that all queries for these vertices need to be active as well which is accomplished by setting their

corresponding bit to 1 in the query tracking bitset. In Algorithm 4.3 at line 16, the query tracking

bitset array is updated for each affected vertex in case of IQT, and for FQT, at line 20, we only need
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Algorithm 4.3 BEAD: Reevaluating for Graph Update (G0 + ∆) - Initialize().

1: function INITIALIZE(G1, Q0, R0,∆,mode)

2: B Initialize R1

3: R1.set size(G1.num vertices())

4: for each vertex v ∈ G1 do

5: if v ∈ ∆ then . v is a new vertex

6: R1[v][]← INIT VAL

7: else . Otherwise initialize R1 using R0

8: R1[v][]← R0[v][]

9: end if

10: end for

11: B Initialize unified activeList with all the affected vertices

12: for each edge e ∈ ∆ do . scatter through new edges

13: v ← e.dest()

14: unified activeList← unified activeList ∪ v

15: if mode == IQT then

16: q status← q status ∪ Sv.set all()

17: end if

18: end for

19: if mode == FQT then . Make all queries active

20: q status← 〈s1, s2, ..., sn〉 where si = 1

21: end if

22: return R1

23: end function
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to set all the query statuses to unfinished (i.e., 1) in the single bitset with the size of the number of

queries (n).

After the above preparation, BEAD enters the evaluation loop, just like the full evaluation

(Line 4-8 of Algorithm 4.2). To save space, the first four steps are combined into one function in

Algorithm 4.2 (Line 6). We leave Step 5 out as some other code needs to be inserted later between

Step 4 and Step 5 (see Section 4.2.2).

Mode selection - As mentioned earlier in Section 4.1.2, IQT works better for large batches

of queries in the scenario where high number of queries have not finished but are inactive for a ver-

tex, while FQT works more efficiently for the small batch sizes leveraging its negligible overhead,

where the opportunity to take advantage of inactive queries is low. However, it is not quite the same

case for the incremental evaluation when the graph evolves. In this scenario, another factor, the

amount of changes to the graph ∆, in addition of the batch size is also important for proper mode

selection. When ∆ is small, even for large batches, fewer queries are made active for more itera-

tions. This causes the fraction of finished queries in the batch of running queries to be large for most

of the iterations. In this scenario, FQT works better since the scenario behaves in a manner similar

to having the smaller batch of queries. In the scenario of the large ∆, more queries are unfinished

during most of the iterations, thus IQT performs better.

4.2.2 Batching With Simultaneous Graph And Query Updates

As the graph grows, it becomes natural that the user wants to expand the query batch with

new interesting queries, denoted as δ. In this section, we describe how BEAD enables the expansion

of query batch as the graph grows, that is,
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Table 4.1: Equations used in UpdateUsingR0() (Algorithm 4.7 - line 7) to update vertices for any
new query q ∈ δ which reaches the source vertex vold of a query qold in Q0.

Algo. Update Equation

SSSP R1[v][q]=Min(R1[v][q], R1[vold][q]+R0[v][qold])

SSWP R1[v][q]=Max(R1[v][q], Min(R1[vold][q], R0[v][qold]))

Viterbi R1[v][q]=Max(R1[v][q], R1[vold][q]×Ro[v][qold])

BFS R1[v][q]=Min(R1[v][q], R1[vold][q]+R0[v][qold])

Inc(G0 + ∆, Q0 + δ,R0)→ R1.

BEAD carries out the incremental evaluation for the new query batch Q0 + δ on the

evolved graph G0 + ∆, by using the existing result R0. The key lies in the suitable initialization of

the vertex values, query tracking bitsets, and the list of active vertices. The incremental evaluation

can be either simultaneous or ordered. Each policy has its own advantages and opportunities. Next,

we discuss the policies supported by BEAD in detail, then present an integrated algorithm that can

be run under different modes and employ different policies.

Policy I: Simultaneous Evaluation – In this scenario, both changes in graph and queries

(i.e., ∆ and δ) are considered simultaneously by BEAD. That is, BEAD evaluates the new queries δ

alongside the old queries Q0 in one evaluation as a larger batch Q0 + δ on the larger graph G0 + ∆,

in a way that the existing R0 can be leveraged. The rationale for simultaneous evaluation is that

considering all changes together may cause total number of iterations required to be less than the

ordered evaluations described next.

Policy II: Ordered Evaluation – In comparison, this option considers ∆ and δ in an

order: either ∆-first or δ-first. In the case of ∆-first, BEAD first computes the results of Q0 on

G0 + ∆ till convergence, then evaluates Q0 + δ on G0 + ∆ till convergence. By contrast, δ-first
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Algorithm 4.4 BEAD: Reevaluating for Both Graph and Query Updates (G0 + ∆, Q0 + δ) - Inc().

1: function INC(G0, Q0, R0,∆, δ,mode)

2: G1← G0.update(∆) . Add new edges and vertices

3: Q1← Q0.update(δ) . Add new queries

4: R1 ← InitializeVArray(G1, Q1, R0,∆, δ,mode)

5: InitializeLists(∆, δ,mode)

6: Vold ← Source vertices of the top three high out-degree ∈ Q0

7: while !unified activeList.empty() do

8: B ComputeIteration() performs steps S1 through S4 from Algorithm 4.1

9: ComputeIteration(q status, mode)

10: if δ 6= φ then

11: Update(Vold, R1, δ, R0)

12: end if

13: Scatter Batch(q status)

14: end while

15: return R1

16: end function

ordering first computes the results ofQ0+δ onG0 till convergence, then evaluatesQ0+δ onG0+∆

till convergence. The rationale for using ordered approaches is that, in the case where the size of ∆

is much larger than δ, computing them separately allows IQT and FQT to be used for handling ∆

and δ, respectively.

Algorithms 4.4 to 4.7 describes the incremental evaluation of BEAD that directly supports

Policy I, but it can be used to emulate and thus support Policy II as well (which will be shown later).
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Algorithm 4.5 BEAD: Reevaluating for Both Graph and Query Updates (G0+∆,Q0+δ) - Initialize Vertex
Array.

1: function INITIALIZEVARRAY(R1, G1, Q1, R0,∆, δ)

2: R1.set size(G1.num vertices())

3: for each vertex v ∈ G1 and each q ∈ Q1 do

4: R1[v].set size(Q1.size())

5: if v ∈ ∆ or q ∈ δ then . v or q are new

6: R1[v][q]← INIT VAL

7: else . Otherwise initialize R1 using R0

8: R1[v][q]← R0[v][q]

9: end if

10: end for

11: return R1

12: end function

The high-level structure of Algorithms 4.4 to 4.7 is similar to that of Algorithms 4.2 to 4.3, except

several key differences.

Expanding Data Structures – After updating both the graph and the batch of queries,

Algorithm 4.4 in lines 4-5 expands the vertex array and query bitset by calling Algorithms 4.5

and 4.6, respectively. Particularly, the number of values stored at each vertex is grown by the

number of new queries (Line 4 in Algorithm 4.5), the same happens to the q status array (Line 3 in

Algorithm 4.6).
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Algorithm 4.6 BEAD: Reevaluating for Both Graph and Query Updates (G0 + ∆, Q0 + δ) - Initialize
Queries and Unified Active List.

1: function INITIALIZELISTS(∆, δ,mode)

2: B Initialize unified activeList with all the affected vertices

3: q status.add bitset size by(δ.size())

4: unified activeList← source vertices vq of all q ∈ δ

5: if mode == IQT then

6: for each q ∈ δ do q status[vq].set bit(q)

7: end if

8: for each e ∈ ∆ do

9: v ← e.dest()

10: unified activeList← unified activeList ∪ v

11: if mode == IQT then

12: q status[v].set all()

13: end if

14: end for

15: if mode == FQT then

16: q status.set all();

17: end if

18: return R1

19: end function

Initialization for the New Queries – All the vertex values corresponding to the new

queries are set to the initial value INIT VAL (Line 5-6 in Algorithm 4.5). After that, the source
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Algorithm 4.7 BEAD: Reevaluating for Both Graph and Query Updates (G0 + ∆, Q0 + δ) - Update().

1: function UPDATE(Vold, R1, δ, R0)

2: if any vold ∈ Vold has been activated by any q ∈ δ then

3: B Send the current data of vh to other machines

4: ClusterSynced(R1[vold][])

5: B Update current value of all vertices for queries in δ

6: B Using equations in Figure 4.1

7: R1 ← UpdateUsingR0(R1, δ, R0, vold)

8: end if

9: end function

vertices of all the new queries are also added to the unified activList to start the evaluation of new

queries (Line 4 in Algorithm 4.6). In addition, if IQT is selected, it sets the corresponding bit for

each new query – initializing the statuses of new queries to be active.

Enabling Indirect Incremental Computations – In addition, BEAD manages to take

advantage of old results R0 to achieve faster convergence for the new queries in δ. As shown in

Algorithm 4.4 (Line 10-12), a new step, called Update, is inserted to the main loop right before

Scatter-Batch, which updates all vertex data of new queries using the equations from Figure 4.1 for

faster convergence. In specific, one old query qold ∈ Q0 is selected and its results are used by the

update equations to improve all the vertex values of a new query q. However, to apply the update

equations, the source vertex of qold should be reachable from the source vertex of q – the source

vertex of qold should be activated by the new query in the current iteration (Line 2 in Algorithm 4.7).

One intuitive heuristic for selecting the old query qold is selecting the one with the highest out-degree

source vertex who is more likely to be reached by a new query. In our case, BEAD selects three

queries whose source vertices have the top three out-degrees (Line 6 in Algorithm 4.4). Finally,
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before apply the update equations (Line 7 in Algorithm 4.7), the results of the selected old query

need to be synchronized across machines (Line 4 in Algorithm 4.7).

Now we present how Algorithms 4.4 - 4.7 can be used to emulate different policies: si-

multaneous evaluation (i.e., ∆||δ); ∆-first evaluation (i.e., ∆ → δ); and δ-first evaluation (i.e.,

δ → ∆).

∆||δ

USING Eval(G0, Q0)→ R0

EVALUATE Inc(G0 + ∆, Q0 + δ,R0)→ R

By Calling Algorithm 4.4::Inc(G0, Q0, R0,∆, δ, IQT )

∆→ δ

USING Eval(G0, Q0)→ R0

EVALUATE Inc(G0 + ∆, Q0, R0)→ R1

By Calling Algorithm 4.4::Inc(G0, Q0, R0,∆, φ, IQT )

EVALUATE Inc(G0 + ∆, Q0 + δ,R1)→ R

By Calling Algorithm 4.4::Inc(G1, Q0, R1, φ, δ, FQT )

δ → ∆

USING Eval(G0, Q0)→ R0

EVALUATE Inc(G0, Q0 + δ,R0)→ R1

By Calling Algorithm 4.4::Inc(G0, Q0, R0, φ, δ, FQT )

EVALUATE Inc(G0 + ∆, Q0 + δ,R1)→ R

By Calling Algorithm 4.4::Inc(G0, Q1, R1,∆, φ, IQT )

As shown above, by feeding an empty set φ alternatively to Algorithm 4.4, both ordered

evaluations can be realized. Note that we do not list FQT for ∆||δ, as it does not perform as well as

IQT, for the reasons we mentioned earlier.
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4.2.3 Interruption Handling

Finally, we consider the situation in which the user presents a new request while the prior

is still being processed. One way to handle this interruption is waiting for the old request (say

∆1 and δ1) to converge then starting the processing of the new request (say ∆2 and δ2), which

we referred to as following convergence. Instead of waiting for the old request to complete, BEAD

chooses to merge the processing of both the old and new requests, such that the total processing time

could be reduced. We refer to this more proactive option as anytime interruption. Algorithms 4.8

and 4.9 describe how anytime interruption works in the presence of a new user request while the

old request is being processed. Right after the new request interruption is received (Line 12 in

Algorithm 4.8), BEAD combines the new request with the old meanwhile leverages the current in-

termediate results of the old request (i.e.,≈R1), to enable the incremental evaluation (Algorithm 4.8

- Line 14 by calling InterruptHandling from Algorithm4.9).
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Algorithm 4.8 BEAD: Reevaluating for Anytime Simultaneous Update (G0 + ∆,Q0 + δ) - Inc().

1: function INC(G0, Q0, R0,∆, δ,mode)

2: G1← G0.update(∆) . Add new edges and vertices

3: Q1← Q0.update(δ) . Add new queries

4: Vold ← Source vertices of the top three high out-degree ∈ Q0

5: R1 ← InitializeVArray(G1, Q1, R0,∆, δ,mode) . see Algorithm 4.5

6: while !unified activeList.empty() do

7: ComputeIteration(q status, mode) . Steps S1 to S4 from Algorithm 4.1

8: if δ 6= φ then

9: Update(Vold, R1, δ, R0) . see Algorithm 4.7

10: end if

11: Scatter Batch(q status)

12: if UserInterruptReceived() then

13: B Accommodate the new request

14: R1 ← InterruptHandling(G1, Q1, R1,mode)

15: end if

16: end while

17: return R1

18: end function

4.3 Evaluations

We compare BEAD against the MultiLyra baseline under the following scenarios. A part

of the graph (50%, 70% and 90%) is randomly selected from the full graph and chosen as G0, the
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Algorithm 4.9 BEAD: Reevaluating for Anytime Simultaneous Update (G0 + ∆,Q0 + δ) - Inter-
ruptHandling().

1: function INTERRUPTHANDLING(G1, Q1,≈R1,mode)

2: ∆′, δ′← UserInterrupt.get new request()

3: G1← G1.update(∆′) . Add new edges and vertices

4: Q1← Q1.update(δ′) . Add new queries

5: B Reinitialize R1 based on prior unfinished results ≈R1

6: R1 ← Initialize(G1, Q1,≈R1,∆
′, δ′, mode)

7: return R1

8: end function

first version of the graph. Then, additional portions of the graph are added to G0 in batches of ∆

to emulate a growing graph. All the ∆ batches were randomly chosen of different sizes – 1k, 10k,

100k for LJ and 10k, 100k, and 1000k edges for TT; Since TT has roughly ten times the number of

vertices as LJ, ∆ sizes chosen for TT are ten times that of LJ. Additional δ queries are added to Q0

to reflect the growing batch of queries. These additional randomly chosen δ queries are added toQ0

in increments of 8, 16 and 32 queries.

As BEAD is built on top of MultiLyra, to be self-contained and to demonstrate the promises

of batching evaluation, we briefly report the baseline performance (more details in Chapter 2).

Table 4.2: Real world input graphs.

Input Graph #Edges #Vertices

Twitter (TT) [5, 8] 2.0B 52.6M

LiveJournal (LJ) [6, 10] 69M 4.8M
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4.3.1 Experimental Setup

We developed BEAD by integrating the implementations of incremental evaluation algo-

rithms into the MultiLyra from Chapter 2. Our evaluation covers four common graph applications

- Single Source Shortest Path (SSSP), Single Source Widest Path (SSWP), Breadth First Search

(BFS), and Viterbi (VT) [9]. Two input graphs are listed in Table 4.2, including the Twitter graph

(TT) with 2 billion edges and the LiveJournal graph (LJ) with 69 millions of edges. For each input

graph and for each algorithm, we generated the queries by randomly selecting the source vertices.

All experiments were run on a cluster of four homogeneous machines. Each machine has

32 Intel Broadwell cores and 256GB memory, and runs CentOS Linux release 7.4.1708.

4.3.2 MultiLyra – Scalability With Batch Sizes

We first show the benefits of batching achieved by MultiLyra for G0 (50%, 70%, 90%)

during the evaluation of a total of 256 SSWP queries. For eachG0 (of LJ), we ran the SSWP queries

first one by one (i.e., non-batching which is equivalent to PowerLyra [2]) and then in batches of 64,

128, and 256 queries (in IQT mode). Table 4.3 shows execution time in seconds and the speedups

of batching over non-batching. The results show that batching in MultiLyra brings more speedups

as the batch size increases, meanwhile the gains decreases as the batch size approaches 256 queries

(more details in Chapter 2). Also note that the total number of iterations is reduced dramatically, as

the number of iterations for a batch of queries is determined by the “slowest” query, rather than the

sum of those for all the queries as in the non-batching case.
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Table 4.3: Total Execution Time of running 256 SSWP queries using MultiLyra on LJ to compute
Eval(G0, Q0)→ R0 with varying batch sizes.

G0 Batch Size #Iter. Time (s)

50%

1(non-batching) 9286 2759.42 Speedup

64 400 538.48 5.13×

128 200 432.81 6.38×

256 100 431.58 6.39×

70%

1(non-batching) 9420 2462.62 Speedup

64 400 592.93 4.15×

128 200 495.03 4.98×

256 100 457.38 5.38×

90%

1(non-batching) 10060 2713.6 Speedup

64 400 642.39 4.22×

128 200 527.05 5.15×

256 100 483.57 5.61×

4.3.3 Graph Updates: BEAD Vs. MultiLyra

In this section, we compare the handling of graph updates ∆ by BEAD that incrementally

reevaluates batch of queries Q0, with MultiLyra that must evaluate queries Q0 on graph G0 + ∆

from scratch. Table 4.4 presents the speedups obtained by BEAD over MultiLyra for evaluating 256

queries in a single batch on the updated graphG0 +∆, whereG0 is 50% and ∆ is set to 100K edges

and 10K edges for TT and LJ, respectively. Both BEAD and MultiLyra ran in IQT mode. The last

column of Table 4.4 reports the execution time for MultiLyra.

Speedups delivered by BEAD range from 6.21× for SSWP to 26.16× for SSSP on TT

and from 3.99× for Viterbi to 5.34× for SSSP on LJ. Note that generally higher speedups are

achieved for the larger TT graph than for the smaller LJ graph. This indicates that the savings in
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Table 4.4: Speedups of BEAD over MultiLyra when computing Inc(G0 + ∆, Q0, R0) given
Eval(G0, Q0)→ R0, where G0 = 50%.

G0

Graph Batch
∆

BEAD MultiLyra

Algo. Size Speedup #Iter Exe. Time

SSSP 256 100K 26.16× 11 1141.5s

TT SSWP 256 100K 6.21× 100 2753.6s

(50%) BFS 256 100K 15.00× 7 510.2s

VT 256 100K 18.61× 21 1506.9s

SSSP 256 10K 5.34× 26 337.7s

LJ SSWP 256 10K 4.15× 45 431.6s

(50%) BFS 256 10K 4.00× 11 111.0s

VT 256 10K 3.99× 19 195.0s

work achieved by BEAD’s incremental algorithm are greater for the larger TT graph. The overall

speedup for SSWP on TT is lower than those of the other three graph algorithms. This is because

a few queries in Q0 take much longer to converge than the rest of the queries for SSWP – note the

very high number of iterations for SSWP shown in #Iter column in Table 4.4. Consequently, for

most iterations, only a few queries are actually active (25 active queries after iteration 15), limiting

the benefits of batching.

Next, we perform more detailed experiments, for SSSP on TT and SSWP on LJ, to study

the sensitivity of performance benefits (BEAD over MultiLyra) with respect to a number of factors,

including: (a) Varying ∆ – for TT, this was varied across 10k, 100k, and 1000k while for LJ it was

varied across 1k, 10k, and 100k; (b) Varying the size of G0 – for both TT and LJ this was varied

across 50%, 70%, and 90%; (c) Varying batch size – the 256 queries were run in one batch of 256,

2 batches of 128, and 4 batches of 64; and (d) using IQT vs FQT. Table 4.5 and Table 4.6 present

the results for SSSP on TT, and Table 4.7 and Table 4.8 present the results for SSWP on LJ. The

90



speedups are calculated by comparing the execution time of each configuration with the execution

time of the corresponding MultiLyra configuration.

Following are our observations from the above experiments.

(a) Sensitivity to Varying ∆ – When the size of the changes to graph increases, the

speedup of the incremental evaluation of BEAD decreases since more computation is needed to

attain convergence to the final result. Table 4.5 shows that BEAD on SSSP, for G0 = 50%, achieves

a maximum speedup of 33.37× when ∆ = 10K and a minimum speedup of 7.86× when ∆ =

1000K. Similar trend is also observed in the case of SSWP on LJ (see Table 4.7).

(b) Sensitivity to Varying G0 – Table 4.5 and Table 4.7 show that BEAD’s speedups

decrease when larger portions of the graph are loaded as G0. Since larger parts of the graph are

more connected for larger G0, it starts longer evaluation waves through the graph as the graph

grows. These tables show the maximum speedups of: 33.37× for G0 = 50% vs. 25.91× for

G0 = 70% for SSSP on TT; and 4.53× for G0 = 50% vs. 4.34× for G0 = 70% for SSWP on LJ.

(c) Sensitivity to Varying Q0 – We ran 256 queries divided into varying batch sizes to

study impact of varying Q0 size. Our results from Table 4.5 and Table 4.7 show that although

BEAD’s speedups for different sizes of Q0 vary, the variation across different ∆ sizes is mostly

small and no specific size of Q0 gives the best speedups across different ∆ sizes.

(d) Sensitivity to IQT / FQT – As mentioned earlier, IQT and FQT are two modes of

evaluation that enable the opportunities to shrink not only the amount of computations but also the

amount of data communicated between master and mirror vertices hosted on different machines. To

examine if these two modes are still relevant during BEAD’s incremental evaluation as the graph
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Table 4.5: Sensitivity study of running SSSP on TT using BEAD when graph changes:
Inc(G0 + ∆, Q0, R0) given Eval(G0, Q0)→ R0.

Mode
IQT FQT

G0 ∆ #×Q0 #Iter. Time (s) Speedup Speedup

50%

10K
4 × 64 37 69.46 27.79× 27.77×
2 × 128 19 47.59 33.37× 31.59×
1 × 256 10 41.36 27.60× 27.09×

100K
4 × 64 44 65.11 29.65× 22.58×
2 × 128 22 50.44 31.49× 26.12×
1 × 256 11 43.63 26.16× 25.45×

1000K
4 × 64 72 126.32 15.28× 13.75×
2 × 128 40 121.26 13.10× 10.04×
1 × 256 23 145.30 7.86× 5.26×

70%

10K
4 × 64 40 81.24 24.15× 20.63×
2 × 128 22 60.09 25.91× 21.78×
1 × 256 12 52.08 25.07× 24.47×

100K
4 × 64 52 88.78 22.10× 14.32×
2 × 128 29 68.92 22.59× 17.43×
1 × 256 16 63.52 20.56× 20.27×

1000K
4 × 64 66 122.00 16.08× 14.39×
2 × 128 34 90.33 17.24× 13.24×
1 × 256 17 83.59 15.62× 12.93×

90%

10K
4 × 64 32 84.88 25.64× 20.26×
2 × 128 18 59.22 27.25× 26.68×
1 × 256 9 50.01 27.85× 27.72×

100K
4 × 64 41 89.27 24.38× 15.80×
2 × 128 22 67.45 23.92× 21.21×
1 × 256 12 54.53 25.54× 24.29×

1000K
4 × 64 50 102.26 21.28× 17.56×
2 × 128 26 68.95 23.40× 23.07×
1 × 256 14 61.96 22.48× 20.48×
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Table 4.6: Extra number of communications needed for running SSSP on TT using BEAD when
graph changes to compute: Inc(G0 + ∆, Q0, R0) given Eval(G0, Q0)→ R0.

Message Type

G0 ∆ #×Q0 Active Data Total (×106)

50%

10K
4 × 64 20.54% 79.46% 0.04

2 × 128 20.82% 79.18% 0.03

1 × 256 21.08% 78.92% 0.03

100K
4 × 64 20.09% 79.91% 0.57

2 × 128 20.79% 79.21% 0.44

1 × 256 21.22% 78.78% 0.36

1000K
4 × 64 21.54% 78.46% 69.02

2 × 128 21.67% 78.33% 67.06

1 × 256 21.74% 78.26% 65.74

70%

10K
4 × 64 18.72% 81.28% 0.05

2 × 128 19.37% 80.63% 0.03

1 × 256 19.91% 80.09% 0.02

100K
4 × 64 21.16% 78.84% 1.16

2 × 128 21.49% 78.51% 1.08

1 × 256 21.73% 78.27% 1.01

1000K
4 × 64 20.04% 79.96% 32.47

2 × 128 20.01% 79.99% 24.02

1 × 256 19.94% 80.06% 14.80

90%

10K
4 × 64 17.28% 82.72% 0.03

2 × 128 17.47% 82.53% 0.02

1 × 256 17.94% 82.06% 0.01

100K
4 × 64 18.66% 81.34% 0.27

2 × 128 19.03% 80.97% 0.19

1 × 256 19.35% 80.65% 0.14

1000K
4 × 64 18.12% 81.88% 3.44

2 × 128 18.64% 81.36% 2.67

1 × 256 19.02% 80.98% 2.09
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Table 4.7: Sensitivity study of running SSWP on LJ using BEAD when graph changes:
Inc(G0 + ∆, Q0, R0) given Eval(G0, Q0)→ R0.

Mode
IQT FQT

G0 ∆ #×Q0 #Iter. Time (s) Speedup Speedup

50%

1k
4 × 64 155 118.96 4.53× 4.57×
2 × 128 81 103.98 4.16× 4.15×
1 × 256 45 107.77 4.00× 4.03×

10k
4 × 64 155 119.92 4.49× 4.56×
2 × 128 81 102.14 4.24× 4.36×
1 × 256 45 103.75 4.15× 4.21×

100k
4 × 64 155 126.93 4.24× 4.09×
2 × 128 81 109.28 3.96× 3.31×
1 × 256 45 126.77 3.40× 2.81×

70%

1k
4 × 64 178 136.75 4.34× 4.24×
2 × 128 130 168.99 2.86× 2.89×
1 × 256 73 171.02 2.67× 2.55×

10k
4 × 64 178 142.20 4.17× 4.14×
2 × 128 130 167.32 2.89× 2.90×
1 × 256 73 178.26 2.57× 2.53×

100k
4 × 64 178 137.46 4.31× 4.26×
2 × 128 130 168.05 2.88× 2.87×
1 × 256 73 175.88 2.60× 2.33×

90%

1k
4 × 64 265 233.74 2.75× 2.93×
2 × 128 140 218.56 2.41× 2.16×
1 × 256 87 201.21 2.40× 2.10×

10K
4 × 64 265 233.71 2.75× 2.87×
2 × 128 140 226.76 2.32× 2.04×
1 × 256 87 203.87 2.37× 2.03×

100K
4 × 64 265 255.06 2.52× 2.47×
2 × 128 140 229.02 2.30× 2.06×
1 × 256 87 227.71 2.12× 1.76×
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Table 4.8: Extra number of communications needed for running SSWP on LJ using BEAD when
graph changes to compute: Inc(G0 + ∆, Q0, R0) given Eval(G0, Q0)→ R0.

Message Type

G0 ∆ #×Q0 Active Data Total (×106)

50%

1K
4 × 64 39.78% 60.22% 0.36

2 × 128 39.76% 60.24% 0.34

1 × 256 39.68% 60.32% 0.31

10K
4 × 64 37.98% 62.02% 0.38

2 × 128 38.77% 61.23% 0.35

1 × 256 39.14% 60.86% 0.32

100K
4 × 64 15.85% 84.15% 24.31

2 × 128 15.82% 84.18% 24.18

1 × 256 15.78% 84.22% 24.09

70%

1K
4 × 64 35.91% 64.09% 0.26

2 × 128 35.96% 64.04% 0.26

1 × 256 35.77% 64.23% 0.25

10K
4 × 64 34.66% 65.34% 0.27

2 × 128 35.32% 64.68% 0.27

1 × 256 35.43% 64.57% 0.25

100K
4 × 64 26.93% 73.07% 0.43

2 × 128 30.34% 69.66% 0.35

1 × 256 32.49% 67.51% 0.29

90%

1K
4 × 64 34.93% 65.07% 0.45

2 × 128 35.02% 64.98% 0.45

1 × 256 35.01% 64.99% 0.45

10K
4 × 64 34.30% 65.70% 0.47

2 × 128 34.70% 65.30% 0.46

1 × 256 34.84% 65.16% 0.45

100K
4 × 64 15.34% 84.66% 16.08

2 × 128 15.33% 84.67% 15.99

1 × 256 15.32% 84.68% 15.94
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grows, we collected the number of messages communicated, as shown in Table 4.6 and Table 4.8.

After dividing these messages according to their type, Active vs. Data, it can be seen that 60-

84% of the communications are in form of Data messages which is similar to our observations for

non-incremental MultiLyra communication in Chapter 2. Thus, as in case of MultiLyra, during

incremental evaluation IQT typically outperforms FQT. The only exception is Table 4.7 where for

small query batch size and/or small ∆s, FQT performs slightly better leveraging its low overhead

of tracking only the finished queries while IQT performs better in larger batch sizes and ∆s.

4.3.4 Graph And Query Updates: BEAD Vs. MultiLyra

In this section, we evaluate BEAD when both the graph and the batch of queries simulta-

neously grow. We evaluate all three policies discussed earlier in Section 4.2.2: (i) applying graph

change then the query change (∆→ δ), (ii) applying the query change then graph change (δ → ∆),

and (iii) simultaneously applying both changes (∆‖δ). The initial setup is running an original batch

of 256 queries (Q0) for different algorithms on 50% of TT and LJ (G0). The new batch of queries δ

can be of size varying among 8, 16, and 32, while the graph updates ∆ are set to 100K for TT and

10K for LJ. Table 4.9 shows the speedups of BEAD under the three policies. The baseline execution

times were collected by running the same batch of Q0 + δ queries on the updated graph G0 + ∆

using MultiLyra.

As shown in Table 4.9 where the best speedups are marked in red, the ordered evaluation

(∆→ δ and δ → ∆) obtains better performance comparing to simultaneous evaluation (∆‖δ). The

reason can be understood as follows. During the simultaneous evaluation, the new queries (δ) and

old queries (Q0) are merged into a larger batch (Q0 + δ). As the old queries were started earlier
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Table 4.9: Speedups of BEAD over MultiLyra on Simultaneous Graph and Query Updates:
computing Inc(G0 + ∆, Q0 + δ,R0) given Eval(G0, Q0)→ R0, where G0 = 50% and

Q0 = 256.

BEAD

∆→δ δ→∆ ∆‖δ
G Algorithm ∆ δ Speedup Speedup Speedup MultiLyra

TT

SSSP 100K
8 5.39× 5.28× 2.67× 1241.6s

16 4.94× 5.02× 2.50× 1303.0s

32 3.88× 4.02× 2.25× 1429.1s

SSWP 100K
8 5.57× 5.66× 5.01× 2891.6s

16 5.42× 5.39× 4.84× 2887.0s

32 5.33× 4.98× 4.30× 3131.8s

BFS 100K
8 5.10× 5.39× 2.89× 543.7s

16 4.02× 4.21× 2.28× 562.7s

32 3.24× 3.46× 2.08× 571.4s

VT 100K
8 4.13× 4.25× 2.33× 1571.4s

16 3.39× 3.55× 1.99× 1576.7s

32 2.67× 2.79× 1.80× 1725.8s

LJ

SSSP 10K
8 3.19× 3.28× 2.18× 343.3s

16 2.92× 2.74× 1.86× 363.5s

32 2.65× 2.60× 1.85× 399.9s

SSWP 10K
8 3.23× 3.25× 2.66× 456.6s

16 3.20× 3.09× 2.43× 471.5s

16 2.96× 2.76× 2.28× 469.4s

BFS 10K
8 2.73× 2.65× 1.80× 112.6s

16 2.69× 2.53× 1.65× 121.3s

32 2.40× 2.38× 1.51× 125.4s

VT 10K
8 2.88× 2.73× 2.15× 211.4s

16 2.52× 2.50× 1.82× 214.0s

32 2.16× 2.03× 1.74× 221.0s

than the new queries, their vertex values tend to converge earlier. Once their values are converged,

they become the overhead of the following iterative evaluation, slowing down the progress of the
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new queries. Next, we examine how the ordering between the graph updates and query updates

affect the performance, that is, ∆→ δ vs. δ → ∆.

∆-First vs. δ-First Evaluation – As indicated in Table 4.9 under columns ∆ → δ and

δ → ∆, in general, whether applying the graph change ∆ at the first place for Q0 or at second place

forQ0+δ with the availability of stable results from the previous step only makes limited differences

in performance. However, since the evaluation of sub-batch δ starts from scratch (despite the use

of indirect incremental computations), it could take more iterations to traverse the changed graph

G0 + ∆ than the original graph G0. This effect is more significant when the original graph G0 is

relatively small or the graph change ∆ is relatively large. In our setup, graph TT is about 29X larger

than LJ in terms of the number of edges, but its update batch size is only 10X larger than that of

LJ. Consequently, as shown in Table 4.9, when comparing the speedups on TT, with the those on

LJ, δ-First evaluation works better on TT, whereas ∆-First evaluation shows superiority on LJ, the

smaller graph. For example, ∆-first evaluation obtains a maximum speedup of 5.39× for SSSP on

TT whereas δ-first evaluation achieves a maximum speedup of 3.28× for SSSP on LJ. Note that the

speedups after including new queries δ, in addition to graph updates ∆, are lower than those with

only graph updates (comparing to Table 4.4) because although queries in Q0 terminate rapidly, the

queries in δ being new take much longer time.

4.3.5 Interruption Handling

Finally, we evaluate BEAD in the scenario of interruption – a new request (say ∆2 and δ2)

arrives in the middle of the incremental evaluation for the prior request (say evaluating Q0 + δ1 on

graph G0 + ∆1). For this evaluation, we first ran 256 queries (Q0) for each algorithm on the 50%

input graphs (G0) using BEAD. Then, we let BEAD incrementally evaluate the first request – the
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Table 4.10: Performance of BEAD under User Interruptions computing
Inc(G0 + ∆1 + ∆2, Q0 + δ1 + δ2, R0) in two requests given Eval(G0, Q0)→ R0, where

G0 = 50%.

Latency (Seconds)

Interruption Points

G Algo. Q0 ∆1:δ1 ∆2:δ2 50% 75% 100%

TT

SSSP 256 100K:16 10K:8 469.94 465.49 489.41

SSWP 256 100K:16 10K:8 667.24 719.30 795.71

BFS 256 100K:16 10K:8 215.06 208.57 231.69

VT 256 100K:16 10K:8 747.49 770.42 787.78

LJ

SSSP 256 10K:16 1K:8 200.12 230.57 236.12

SSWP 256 10K:16 1K:8 144.53 161.26 169.83

BFS 256 10K:16 1K:8 68.63 82.92 85.14

VT 256 10K:16 1K:8 115.24 136.44 138.18

updated query batch Q0 + δ1 on the updated graph G0 + ∆1, where δ1 = 16 and ∆1 is 100K for TT

and 10K for LJ. After that, in the middle of this evaluation, at the points when 50%, 75%, and 100%

of the evaluation has been done (in terms of elapsed time), the second request (∆2 and δ2) from the

user interrupts BEAD and asks for updated evaluation, that is, Q0 + δ1 + δ2 on G0 + ∆1 + ∆2. The

50% and 75% scenarios correspond to the anytime interruption strategy used by BEAD whereas

the 100% scenario mimics the following convergence strategy that can be used alternatively (see

Section 4.2.3).

Table 4.10 reports the results of the above experiments. The 100% scenario (i.e., following

convergence) ensures that the precise results R1 are available to the incremental computation of

the second request, while in 50% and 75% scenarios only the approximate results ≈R1 are avail-

able. We observe that the immediately starting of the second request using ≈R1 (i.e., anytime
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interruption) leads to lower response latency for the second request. Although using precise results

R1 can reduce the work performed in evaluating the second request, waiting to compute the second

request outweighs this benefit for the interruption points of 50% and 75%.

4.4 Summary

In this Chapter, we generalized MultiLyra from Chapter 2 to consider scenarios in which

analytics demands of the user evolve. While MultiLyra delivers high performance by solving

batches of queries simultaneously, BEAD achieves the same in the presence of changes to the graph

and/or query set. Thanks to its incremental query evaluation, BEAD delivers significant speedups

over MultiLyra in handling the evolving demands. Experiments demonstrate that BEAD’s batched

evaluation of 256 queries, after graph changes that add up to 100K edges to a billion edge Twitter

graph and also query changes that add up to 32 new queries, outperforms batched evaluation by

MultiLyra by factors of up to 26.16× and 5.66× respectively.
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Chapter 5

Related Work

This chapter discusses the various research works in literature that are related to this the-

sis. Graph analytics has been focused on in both academia and industry due to its ability to extract

valuable insights from high volumes of connected data by iteratively traversing large real-world

graphs. Various domains such as social networks [10], web graphs, etc., benefit from graph an-

alytics algorithms. These iterative graph analytics require repetitive traversals of the graph until

the algorithm converges to a stable solution demanding a significant amount of computational re-

sources. In addition, the size and irregularity of real-world graphs, such as those seen in social

networks and web graphs, provide difficulties for graph analytics workloads.

Therefore, this has led to a great deal of interest in developing efficient graph analytics

systems for shared memory [4, 14, 13, 30, 29] (e.g., Galois [13], Ligra [14], and GRACE [29]),

GPUs, and custom accelerators [44] [45] [47] as well as platforms in the distributed environment

(e.g., Pregel [12], GraphLab [11], GraphX [7], PowerGraph [1], PowerLyra [2], ASPIRE [26], and

CoRAL [28]). Among these, systems that are aimed at distributed computing platforms are the most
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scalable. In addition, there have been also some recent works focusing on improving the throughput

of these systems by evaluating multiple simultaneous queries at once and amortizing the existing

overheads across multiple queries both in shared and distributed environments (e.g. Quegel [38],

Congra [22], The More the Merrier [23], SimGQ [20], and SimGQ+ [21]).

5.1 Single Query Graph Processing

Shared-memory systems on a single machine lack scalability while the distributed ones

are able to load large graphs into the combined memory of multiple machines delivering scalabil-

ity. Nguyen et al. in [13] present a lightweight shared-memory infrastructure called Galois for

Domain-Specific Languages (DSLs) that automatically schedules fine-grain tasks with application-

specific priorities. Kusum et al. in [30] used input reduction techniques and built a system on

top of Galois to prcoess larger graphs. Ligra [14] traverses the input graph efficiently leverag-

ing its shared-memory abstraction for vertex algorithms based on the Bulk Synchronous Paral-

lel (BSP) [24] model. On the other hand, there are frameworks such as GRACE [29] that en-

able asynchronous execution using message passing model. To Process extremely large graphs

on a single multicore machine many out-of-core processing systems have been proposed such as

(GraphChi [31], X-Stream [33], GridGraph [37], DynamicShards [36], Turbograph [35], Flash-

graph [34], and Bishard [32]).

Alternately distributed systems that combine memories of multiple machines to handle

large graphs can be used. The most relevant ones include PowerGraph [1], PowerLyra [2] and

Gemini [3]. PowerGraph introduced the GAS model (i.e., Gather, Apply, and Scatter) and benefits

the load balancing by dividing the edges evenly among multiple machines (vertex-cut). However,
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PowerLyra [2] improves PowerGraph by adopting a hybrid-cut graph partitioning that differentiates

the partitioning as well as the computation of the low-degree versus high-degree vertices aiming

at reducing both computation and communication loads [19]. It uses edge-cut for low-degree ver-

tices making the computation of low-degree vertices local to each machine while using vertex-cut

to evenly distribute the incoming edges of the high-degree vertices among the machine to achieve

the computation load balance. These systems mostly focus on minimizing inter-machine commu-

nication and computation load balancing without paying attention to intra-machine computation

load balancing and locality. In contrast, Gemini [3] tries to achieve scalability while maintaining

the intra-machine efficiency. Gemini leverages its NUMA-aware design, keeping the required data

(i.e., vertex values, graph edges) close to the corresponding compute cores in each machine of the

cluster. Gemini utilizes an overlapping technique to overlap inter-machine communications within

the cluster with intra-machine computations. This makes Gemini the most efficient distributed

framework.

5.2 Batched Query Graph Processing

Although distributed Quegel [38] was designed to solve a batch of concurrent queries by

efficiently sharing memory and computing resources among the queries, but its performance relies

on an expensive hub indexing pre-computation. In addition, Quegel’s applicability is limited to

point-to-point queries [43] as opposed to the more general point-to-all queries evaluated by Mul-

tiLyra and BEAD. Finally, Quegel can overlap the evaluation of only a few queries as it employs

pipelined parallelism. By contrast, MultiLyra expanded the batching capability to simultaneously

evaluating hundreds of iterative queries.
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For the shared-memory setting, Chengshuo et al. developed SimGQ [20], an online sys-

tem that efficiently evaluate a batch of concurrent queries by reusing results of common subcompu-

tations of different queries in the batch. Later they extend it by developing SimGQ+ [21] to evaluate

point-to-point queries [43]. In the most recent work, Glign[50] improves evaluation of a batch of

concurrent queries by aligning their associated graph traversals.

5.3 Evolving Graph Processing

Most of the above systems focus on evaluating graph queries on fixed input graphs that

do not change over time. However, real-wolds graphs are changing all the time, e.g. social me-

dia networks update when a new user joins (i.e., new vertex) or new friendship occurs (i.e., new

edge). Many frameworks have been proposed to solve graph analytics problems in the changing

graph scenarios. Kickstarter [27] and Graphbolt [40] track the dependencies to enable fast query

processing on streaming graphs while Naiad [25] employs incremental algorithms. A distributed

streaming graph processing framework has been proposed in Kineograph [41] that enables push and

pull modes focusing on incremental computation. In another work, a snapshot of the current version

of the graph is taken by Tornado [39] to evaluate the graph queries. Note that batched evaluation

of queries by BEAD is different from the above mentioned query evaluation over streaming graphs.

First, BEAD performs continuous evaluation of a batch of queries, that is, following updates, the

queries must be reevaluated. In contrast, in streaming graphs, individual queries are evaluated (not

batches) and they are evaluated only upon request (not continuously). Finally, [23] evaluates a batch

of queries but it is specialized for BFS and [22] executes different queries in different processes

making it inefficient in comparison to BEAD.
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5.4 Graph Processing Accelerators

Jetstream [44] is distinguished as the pioneering accelerator designed for streaming graphs

with support for incremental algorithms. It adeptly manages both accumulative and monotonic

graph algorithms using an event-driven computational framework. This framework limits access to a

select subset of graph vertices, skillfully reutilizes previous query outcomes to minimize repetition,

and refines the memory access sequence to maximize memory bandwidth use. MEGA [48] emerges

as the first accelerator for evolving graphs (i.e., graphs that change over time). It is equipped to han-

dle incremental event-driven streaming of edge additions and can simultaneously process multiple

snapshots. MEGA employs CommonGraph [45, 47, 49], a new technique aimed at the incremental

handling of evolving graphs, which enhances efficiency by sidestepping costly deletions.
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Chapter 6

Contributions and Future Work

6.1 Contributions

In this thesis we proposed comprehensive distributed batching techniques that amortize

the communication, synchronization, and computation costs of iterative graph queries over the real-

world large-scale graphs in both fixed and evolving analytics demands.

We first introduced MultiLyra (Section 2), a distributed batching system whose scalabil-

ity enables simultaneous evaluation of hundreds of iterative graph queries over a fix graph which

is published in BigData’19 [17]. MultiLyra achieves outstanding throughput and higher scalabil-

ity utilizing various optimization techniques such as unified active list across queries, fine-grained

query status methods and a distributed reuse technique.

Next, we introduced ExpressWay (Chapter 3) to further improve the efficiency and through-

put of MultiLyra by enabling distributed faster convergence for various iterative graph algorithms

by taking different policies. ExpressWay currently is under submission. ExpressWay prioritize the

important edges in the input graph and runs the query only using the selected edges reducing the
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amount of computation and communication. After this initialization step, majority of vertices has

their final or pre-final values leading faster convergence when ExpressWay runs the graph query

using all edges.

Finally in Chapter 4, we present BEAD whose incremental evaluation techniques greatly

expand MultiLyra to support evolving both the graph and the batch of running queries which is

published in BigData’20 [18]. BEAD proposes various incremental scenarios, i.e., only the graph

evolves, only the batch of query evolves. or both graph and batch of running queries evolve simulta-

neously. In addition, Bead’s anytime interruption technique enables the user to interrupt the running

experiment early in case of receiving new updates for the graph or batch of running queries and still

utilizing the benefits of the incremental computation.

6.2 Future Work

6.2.1 Non-Monotonic Queries

This thesis mainly focused on the monotonic graph algorithms in which vertex values

starts from an initial value and monotonically decrease or increase throughout the evaluating iter-

ations until it can not change anymore (i.e., converged). Although, non-monotonic algorithms can

benefit from unified active list but most of the optimization technique we proposed do not apply to

such queries. Therefore, one can explore batching system for non-monotonic queries to study on

either new optimization techniques that works for these queries or how to customize the existing

ones such as status query tracking to better fit the problem.
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6.2.2 Heterogeneous Queries

Our observations from Sections 2 and Section 4 lead us to an important missing extension

to our proposed distributed batching system that is a support for the heterogeneous queries in the

running batch. Lets get back to the example of online shopping center which aims analyzing the

behavior of the most important customers. In previous studies (i.e., Quegel, MultiLyra and BEAD),

it is assumed that the same behavior of different customers are being analysed. Therefore, all queries

in the running batch are the same while analyzing different customers (starting from different source

vertices).

However, in practice users can be interested in different aspects of each important cus-

tomers’ behavior. This leads to have different kinds of queries with different dynamic behavior in

the same running batch (e.g., SSSP along with PageRank queries). In other words, in the real-world

situation we are dealing with a batch of heterogeneous graph queries. Having such queries with

different behavior in the same running batch dramatically affect the efficiency of the unified active

list since the majority of the active vertices in each iteration are active only for a multiple number

of queries.
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