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ABSTRACT OF THE THESIS

Private Distributed Ledger over Named Data Networking

by

Vishrant Nitin Vasavada

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Lixia Zhang, Chair

In this thesis, we present a private distributed ledger system, DLedger, designed for wireless

meshed Named Data Networking (NDN) protocol network. DLedger utilizes lightweight

Proof-Of-Authentication as gating control mechanism combining data openness among the

system peers with verifiable identity within the system. The lightweight nature of Proof-Of-

Authentication makes it friendly for the ledger systems consisting of even the constrained

Internet of Things (IoT) devices unlike ”muscle show” approaches like Proof-Of-Work, Proof-

Of-Space, etc. which are storage or computation intensive and combines data openness with

anonymity (or pseudonymity). Moreover, different from the popular blockchain-based ledger

systems, DLedger utilizes a Directed Acyclic Graph as a fundamental data structure so that

its operations can tolerate network partitions. Built over NDN, DLedger truly leverages

from its data-centric nature to facilitate data dissemination in peer-to-peer heterogenous

IoT networks. We conclude the thesis by reasoning our design through simulation results

and discussing a real-world use case.
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CHAPTER 1

Introduction

This work is inspired by and formerly designed for an experimental solar mesh network devel-

oped by Operant Networks Incorporated. This solar network composes of rooftop Operant’s

solar gateway devices. Each device communicates using LoRa wireless channel over Named

Data Networking (NDN) [ZAB14] protocol with the Operant server. Each such device records

customer energy consumption and sends it to the Operant server for accounting.

The customers of such business service providers as well as the other financial parties

and partners involved have to blindly trust business service providers about the data record

integrity since cloud servers are fully in business service provider’s control. If a business

service provider makes any errors or data records that are centrally stored gets corrupted,

it may go unnoticed by the customers and other parties and sometimes even to the business

service providers themselves who may then mistakenly charge customers more. There is

little to no proof available regarding the existence of original data records. Also, such

centralized control may even allow a malicious business provider to alter the data records

for their personal gains. For example, solar network business operator can alter customer

energy consumption data to falsely charge them more. Moreover, server outages can also

make records temporarily unavailable to the customers and other parties involved. The

integrity, authenticity, and availability of data records is key to business reputation and

integrity. Hence, it is necessary for the business service provider to maintain consensus

backed replication of data records not just between their own servers but also customer nodes

(devices) and with servers of every other party involved. With data records replicated among

all the entities and consensus established, it is increasingly hard for the errors or corruption

to go unnoticed as well as leaves some form of surveillance on business service provider so that
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they cannot cheat and alter the data. Replication, on the other hand, provides availability

on demand. The customers and other financially involved parties, hence, would trust such a

system, ultimately attracting more of them and profiting businesses.

Cryptocurrencies like Bitcoin [Nak08] have shown that financial transaction records can

be stored securely using consensus backed replicated storage through a decentralized network

of peers using a distributed ledger. However, Bitcoin implements the Proof-Of-Work (PoW)

as a gating control mechanism which determines who can add new records into the ledger

(successful miners). This hashcash based approach is computation intensive and is infeasible

for constrained devices such as Operant’s solar gateway device. Other approaches such as

Proof-Of-Stake (PoS) and Proof-Of-Space (PSpace) are also “muscle show” by brute force

which is unfit for ledger system consisting of resource-constrained IoT devices. Moreover,

widely used Blockchain as a data structure for distributed ledger won’t be helpful here as

it doesn’t have support for network partitions. A partitioned and independent Blockchain

cannot be reintegrated into the main chain, thus discarding old records from consensus

backed replicated storage.

To address these problems, we designed DLedger, a private distributed ledger over NDN

protocol, that uses Proof of Authentication (PoA) as a gating control mechanism which

is lightweight and efficient even for the constrained Internet of Things (IoT) devices. The

Directed Acyclic Graph (DAG) is used as a fundamental data structure allowing for simpler

ledger integration after a network partition as the forked chains or graphs can simply be

attached to the main DAG. Moreover, NDN’s data-centric paradigm and built-in security in

protocol makes record distribution and ledger synchronization efficient as well as improves

security in DLedger. Since any data is fetched from the network as a whole rather than from

a specific location/node in data-centric networks, DLedger, coupled with its lightweight PoA

and smart storage solutions, removes the concept of a full node and light node present in

traditional distributed ledger systems today over TCP/IP architecture and treats all nodes

equally. This solves a major security loophole in existing distributed ledger systems where a

light node is fully dependent on a specific full node for retrieving and relaying data, exposing

it to malicious behavior of full nodes or DNS hijack attacks on the full nodes.
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We conclude this thesis by discussing in detail a real-world use case of this DLedger in

Operant’s solar network. In fact, DLedger design discussed in this thesis is improved from

proof-of-concept prototype [VK18] designed and developed for Operant Networks Incorpo-

ration.

The rest of this thesis is organized as follows. Chapter 2 gives an overview of the NDN

architecture and discusses how distributed ledger was realized as a distributed dataset syn-

chronization and gives a brief overview of the existing sync protocols in NDN that could be

potentially used for ledger synchronization or to leverage ideas. We also introduce IOTA’s

Tangle [Pop18], a distributed ledger technology built for IoT devices. In Chapter 3 we

describe the design of DLedger and present reasoning of our design choices. This chapter

explains the Proof of Authentication and the underlying sync protocol in DLedger. We also

discuss necessary verification procedures to be followed by each peer in the network whenever

they receive or add a new record into the system to ensure system security and integrity.

Chapter 4 discusses the motivation behind using distributed ledger in Operant Networks’

use case. In Chapter 5, we identify related works. Finally, Chapter 6 concludes this thesis.
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CHAPTER 2

Background

In this chapter, we give an overview of Named Data Networking (NDN) architecture and

discuss the realization of the distributed ledger as a distributed dataset synchronization

(sync) in NDN. We also introduce IOTA’s Tangle.

2.1 Named Data Networking (NDN)

Named Data Networking (NDN), a recently proposed Internet architecture, makes the named

data a first-class entity in the network architecture. It shifts the communication paradigm in

today’s TCP/IP architecture from being host-centric push model where data is pushed from

one end host to another to data-centric pull model where data is fetched from the network

via a request/response exchange. A request called an Interest packet in NDN, bears the

name of data piece consumers would like to fetch. On the other hand, a response, called a

Data packet, carries the actual data content (figure 2.1). It is important to note that none

of these packets contain any IP address.

Data Name

Nonce and other
parameters

Data Name

Content

Signature

Interest Packet Data Packet

Figure 2.1: Interest and Data packets
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As noted in figure 2.1, each NDN Data packet contains a signature field to ensure the

integrity and authenticity of the data. The sensitive content in Data packet can also be

encrypted if needed. NDN thus secures the data directly and places security building block

right at the narrow waist as shown in figure 2.2.

Figure 2.2: NDN Architecture Stack

Since NDN deals with application namespace directly at the network layer, the path of

an Interest packet being forwarded has to be recorded in the network for the corresponding

Data packet to reversely follow back as otherwise there is no way data can get back to the

consumer (client) unlike in TCP/IP where destination IP and source IP could simply be

swapped to send back a reply. NDN thus utilizes a stateful forwarding plane. Each Interest

packet has a lifetime after which it expires if there is no Data satisfying it and the record

is deleted from the network. Moreover, multiple Interest packets targeting the same piece

of data content can be aggregated in the network. Also, the fetched Data packets can be

cached along the path to satisfy future Interest packets asking for the same data.

2.2 Distributed Dataset Synchronization in NDN

A significant shift in the Internet world today has led us to an era where almost all applica-

tions are built around a massive scale distributed system requiring multi-party communica-

tion. Typically, many applications such as group chats, file sharing, and joint document edit-
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ing, require knowledge about shared dataset such as chat messages and their order, changes

to shared folders, and file revisions as well as edit actions. While top-notch applications

like Google Drive and Messenger has effectively addressed synchronization in multi-party

communication systems, they still are based on the centralized paradigm and introduce a

single point of failure and centralized control of the data. To achieve dataset synchronization

in a decentralized manner, a number of different peer-to-peer solutions [AS04, FSK14] have

emerged. However, they require complex peer-to-peer network overlay structure. This is

because TCP/IP naturally doesn’t support broadcast/multicast which is essential in peer-

to-peer systems.

NDN, on the other hand, through its name enabled inherent multicast support brings

new opportunities to solve this problem in completely distributed fashion. A number of sync

protocols in NDN [SYW17] were developed including ChronoSync [ZA13], PSync [ZLW17],

and VectorSync [SAZ17]. NDN sync provides an important abstraction for multi-party

communication where applications running on top of this sync protocol can directly publish

and consume messages in a local copy of shared dataset that is synchronized across a group

of distributed nodes. It is important to note that distributed ledger technology is exactly

the same as distributed dataset synchronization. Here a node attaches a new record to its

local ledger which is then propagated to all the other nodes in the system to be added to

their local ledgers. At any given time, the local view of ledgers at any two nodes may vary

because of network latency and partition and so they need to be constantly synchronized.

This leads us to consider building DLedger applications over one of the designed NDN sync

protocols mentioned above. However, each of these has shortcomings for our use case.

ChronoSync and PSync use “long-lived” Interest packets to pre-establish the return path

of the data produced which carries information about dataset state changes so that other

nodes can update. However, this causes the overhead of maintaining soft-state of Interests

in the network and requires periodic re-transmission of the Interests on their expiry. Also,

since each long-lived Interest can only bring one Data packet back as per NDN protocol

convention, both ChronoSync and PSync face issues with simultaneous data publishing from

different nodes and require additional Interests (with exclude filter selectors) to retrieve

6



simultaneous updates from multiple nodes. Since there could be multiple nodes producing

records simultaneously in a distributed ledger system, both ChronoSync and PSync prove

to be inefficient sync protocols for DLedger application.

VectorSync addresses these problems by multicasting Notification Interest in the system

to advertise the summary of state changes in a local dataset rather than using long-lived

Interests. However, synchronization in VectorSync is carried out using managed group mem-

berships. Moreover, it utilizes the leader-driven process to synchronize the view among all

the nodes in the system and leverage sequential dataset naming to synchronize dataset using

version vectors. While VectorSync can serve as an underlying sync protocol for DLedger, it

introduces the overhead of leader selection and group membership list maintenance which

is not required in DLedger application unlike in applications such as chat room. This moti-

vated us to create entirely new simple sync protocol for our DLedger application leveraging

ideas from VectorSync. We discuss DLedger sync protocol in section 3.3.

2.3 IOTA: Tangle

A Blockchain data structure isn’t network partition friendly; more specifically, since a con-

sensus has to be reached on a single chain, two chains formed locally in different partitions

can’t be merged together. As a result, all records appended within the smaller component

will be discarded (because the longest chain wins!). The businesses need to maintain a con-

sensus backed replicated storage of records and can’t lose this storage as a result of a network

partition. One obvious way to solve this problem would be to consider using the Directed

Acyclic Graph (DAG) as a fundamental data structure which allows the merge of multiple

chains after recovery from the network partition. This led us to explore and leverage ideas

from IOTA’s Tangle [Pop18].

IOTA is a cryptocurrency using a distributed ledger technology called Tangle at its

backbone. The underlying data structure is DAG unlike conventional cryptocurrency systems

like Bitcoin who use Blockchain. IOTA claims to work for IoT because of their feeless

transactions and low resource requirements as they use lighter weight PoW compared to
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Bitcoin. However, in fact, it takes several minutes even for a modern PC to compute this

PoW [IOT], thus proving itself not so ideal for resource-constrained IoT devices. Different

from the current practice where dedicated nodes called miners incorporate transactions into

blocks and append them to the ledger, nodes in IOTA behave as both creators and miners of

blocks. Whenever a node wants to add a new block to the ledger, it must verify two previous

blocks as well as perform lightweight PoW computation.

A

B

D

C

E

F

Fully
confirmed

Unconfirmed

Tip

Figure 2.3: IOTA Tangle

In IOTA’s Tangle, each vertex in the DAG represents a block and edges represent the

approval relation between the blocks. For instance, block F in Figure 2.3 approves blocks

C and D directly while blocks A and B indirectly. Each block in Tangle carries weight, in

addition to two pointers to previous blocks and payload (block contents), which is simply

the amount of work done towards PoW summed with the weights of blocks approving it.

When a block is approved by all the recent tips in the system, it is said to be fully confirmed

and accepted by the system. Otherwise, it is not yet accepted by the system and could

be abandoned forever from acceptance in the future if it stops getting approvals from new

incoming blocks. Note that blocks F and E in the figure 2.3 are called tips : they have not

been approved by any block (that is, there is no incoming edge to them).

The Tip Selection Algorithm is used to decide which two tips to approve when a new

block is appended into the ledger. IOTA takes a weighted random walk called Markov Chain

Monte Carlo (MCMC) to select tips. It uses the weight of the blocks to perform this walk.

The walk starts from some ancient blocks in the ledger (for example, genesis or root blocks)

and ends at a tip block.
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As we’ll see in Chapter 3, our DLedger design leveraged from IOTA’s Tangle is still quite

different from IOTA except for the basic data structure (DAG). We explain the reasons for

this in section 3.6.
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CHAPTER 3

DLedger: Private Distributed Ledger over NDN

3.1 Design Overview

In DLedger, we assume a private distributed system that is made of a wireless meshed peer-

to-peer network over NDN. Peers could involve business service provider nodes, customer

nodes and any other parties interested in the data records. Identity manager, appointed

by the business service provider, also belongs to this peer-to-peer network. Note that there

could be more than one identity manager, in which case, cross-certifications among them is

required. These identity managers provide each peer with a digital certificate to bind their

identity name with the public/private key pair. Each record generated by a peer bears a

peer’s signature. Using the certificates issued by the identity manager, other peers can then

verify the authenticity of records. Moreover, these identity certificates issued are appended

to the ledger system just like any other record.

In a nutshell, DLedger works in a way where each peer generates a new record, which

is either event-triggered or periodic depending upon system design and requirement and

appends it into the DLedger. At the same time, it also cryptographically signs this generated

record so that the other peers can verify its authenticity and integrity using the certificates

issued by the identity manager. This signature that is verified with the public key certified

by the identity manager is called Proof of Authentication (PoA). Also, each newly generated

record approves old records in the ledger by verifying them against the system security rules

and policies. When a record gains enough number of approvals from different peers, it is

fully accepted by the DLedger system, that is, the system is said to have reached consensus

on this piece of data.

10



Confirmed
Record

Unconfirmed
Record

Tailing
Record

Approval

(a) A DAG

Record Name

Approval 1

Approval 2

Record Body

...

Signature (PoA)

(b) Record Format

Figure 3.1: DLedger Data Structure

We describe the design of DLedger from five dimensions in the following subsections.

3.1.1 Data Structure and Record

Similar to IOTA, DLedger uses a Directed Acyclic Graph (DAG) as an underlying data

structure for storing all the records. As shown in figure 3.1a, each vertex in a graph is a

record carrying peer’s data while each edge represents an approval. Different from IOTA

where each block only has two approvals, each record in DLedger can have n (n ≥ 2) such

approvals adjacent, with at least two approvals being distinct out of n, to n previous records

(they could coincide) in the DAG (n = 2 in figure 3.1a).

Note that as in IOTA, these approvals can be direct or indirect, that is, when a record

approves n previous records in the DAG, it implies that it is indirectly approving all the

records beneath these approved record in the DAG (recursive approval). This means that

while approving n records with a newly generated record, a peer should verify all the records

being, directly and indirectly, approved as a result. The incentive to do this lies in the

fact that if a peer appends its newly generated record Rnew by approving n records without

verifying the old records beneath, there could be some invalid record(s) Rinvalid in the DAG

that may be indirectly approved by peer’s record Rnew. When in future some other good

peer (abiding by system rules and policies) will generate a new record Rother, it will verify

all old records beneath its chosen n approvals that include Rnew before appending Rother to
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the ledger. At this time, they will recognize Rinvalid to be violating system rules and policies

and further abandon approving all the records that directly or indirectly approved Rinvalid,

including Rnew, considering them to be malicious to ensure the system security. Thus, to

prevent its records from getting abandoned from being approved by other peers, a good

peer should always verify all the records in the DAG, directly and indirectly, being approved

before appending the new record into the system.

In DLedger, a record is identified by a unique name as shown in figure 3.1b. This name

carries a hash digest of the record generated from record content. As contents, a record

carries n approvals, that is names of the previous records it approves, as well as the body

(actual payload). This is similar to a block in IOTA. However, each record in DLedger bears

a signature or PoA, computed using record name and contents.

There are three different status of a record in DLedger similar to IOTA.

• New Record: this is a record not known to any other peers in the system; it is a newly

generated record by some peer

• Unconfirmed Record: after a peer generates and advertises its record to the network,

other peers acknowledge it and validate it against system security rules and policies; after

validation, they add it to their local ledgers. Before this record gains enough approvals

from a pre-decided number of different peers, it is called an unconfirmed record.

• Confirmed Record: when a record gains approvals by the later appended records generated

by enough number of different peers (called entropy, denoted by E), the record is confirmed

and fully accepted by the system. Note that this is different from IOTA where each block

has a weight which directly affects Tip Selection algorithm, a weighted random walk to

select blocks for approval. Once a block is directly or indirectly approved by all the recent

tips, it’s status is changed to confirmed in IOTA. We reason this difference from IOTA in

the section 3.6.

Entropy in DLedger is explained by figure 3.2. Note that entropy of record A1 is 2 because

it has been approved by two different peers B and C. When record C2 is appended to

the system, it increases the entropy of record A2 but the entropy of C1 remains the same.
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This is because record A2 was approved by record from a different generator than itself,

thus adding to its entropy.

Gen: A 
E: 2 

Gen: B 
E: 1 

Gen: C 
E: 1 

Gen: A 
E: 0 

Gen: A 
E: 2 

Gen: B 
E: 1 

Gen: C 
E: 1 

Gen: A 
E: 1 

Gen: C 
E: 0 

C 1

C 1

A 2

A 2

C 2

A 1

A 1

Figure 3.2: Entropy in DLedger

The goal of a record is to become confirmed. This means that record has been accepted by

DLedger’s peer-to-peer system and consensus has been reached on its validity. The threshold

for entropy required for a record to become confirmed is denoted in this thesis by Econfirm.

Note that the records which are last in the chain in DAG, that is, they don’t have any

records chaining to them are called tailing records (figure 3.1a) which is synonymous to tips

in IOTA.

Note that when appending a newly generated record, since the system has already reached

consensus on confirmed records, it doesn’t need to validate those records being indirectly

approved while choosing and making n approvals. As shown in figure 3.3, a new record needs

to validate only the highlighted unconfirmed records while making two approvals.
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Unconfirmed

New
RecordUnconfirmed

Figure 3.3: Validating Records at the approval

R1
R2

R3

Figure 3.4: DLedger Revocation Records

Besides the usual records, DLedger system has special records called revocation records.

Just like designated identity managers append the issued certificates to the ledger system,

they also append notice of revocation to the ledger for any node that is suspected and found

to be malicious. Different from other records, these records have one extra pointer apart from

approvals that point to previous revocation record in the ledger. In figure 3.4, R1, R2 and R3

are revocation records and the dashed lines are the extra pointers. These pointers help nodes

to do a fast search for revocation notices for any node rather than walking through entire

ledger during PoA verification to figure out if the node’s certificate is still valid or revoked.

In the example provided, a node will only have to store the location of R3 since it is the latest

revocation record. Once it knows where to find R3 in the ledger, it can easily follow back

to previous revocation records in the ledger using these pointers. Note that to differentiate

a usual record from revocation record so as to store the location of most recent revocation

record, a node can simply look at the record content or signature field. Different from the

other records, revocation records will bear the signature of identity manager themselves.
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3.1.2 Network

In DLedger, a peer needs to multicast announcement regarding the new record it generates

with a hint to allow other nodes to fetch it using correct names. Moreover, the local ledger

(DAG) needs to be periodically synced between nodes to keep the system in consensus after

network partition or latency. The current network architecture, TCP/IP, achieves multicast

in mesh topology by having nodes relay (re-broadcast) packets for each other so that they

reach all nodes in the network eventually. This is unfit in the IoT environment because of

following reasons. Some of these have even been realized in [SYD16].

1. IoT devices are known to go into energy saving mode frequently and might miss mul-

ticast announcements. More important than that, whenever a certain node misses a

multicast packet and wants to retrieve data after waking up after realizing the missing

piece of data, it is quite possible that the node it puts in its target IP address to fetch

the data from is sleeping, thus making data unavailable on demand. This means it’ll

then have to flood the network with hope to retrieve missing data from some other

active node, thus making inefficient use of network bandwidth.

2. Because IP packet doesn’t hint to nodes in any way about the contents it carries,

packet suppression is hard or impossible to achieve at the network layer.

3. The most common model in TCP/IP for security is the channel-secure model where

data communication channels are protected and secured. However, this incurs the

overhead of setting up a secure channel (for example, TLS handshake), maintaining

connection states, etc. which isn’t friendly for constrained IoT devices.

NDN, on the other hand, provides inherent data resiliency and replication, thus making

it always available through intermediate node caching. This is also especially useful in poor

network conditions where re-transmissions are frequent as node doesn’t have to go all the

way to the producer of the record to fetch it (as in case of TCP/IP where target IP address

will be of the producer), but rather can fetch it from intermediate node cache. Moreover,

nodes may also benefit from Interest aggregation reducing network overhead. To be more
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specific, multiple Interests pulling the same record from the network will be aggregated at

intermediate nodes in NDN. Since packets in NDN carry names rather than meaningless IP

addresses, it helps with packet suppression. To be more specific, in case of single multicast

relayed over multiple nodes, even though collision avoidance will apply in TCP/IP, it still

won’t suppress duplicated multicast packet. In case of NDN, nodes can learn from the name

of multicast packet that their neighbor already sent out the packet and so void from sending

the same data out.

Record Name NDN Data Name

Approval 1

Approval 2

Record Body

...

PoA

Content

Signature

Figure 3.5: DLedger Record and NDN Data Packet

Note that in a distributed ledger system, peers ultimately care only about data and data

security. Instead of making communication secure, NDN secures data packets itself at the

network level, thus avoiding overhead incurred in channel-secure mechanism. Note that

constructing DLedger over NDN, a record is simply represented by an NDN Data packet

(figure 3.5). This is different from traditional distributed ledger systems over TCP/IP where

a record is an application-layer block which is then encapsulated in an IP packet at the

network layer for its transmission into peer-to-peer network. Being a Data packet, a record

in DLedger could utilize all NDN’s built-in security mechanisms.

3.1.3 Security

The DLedger system provides security through publishing and achieving consensus: all the

records are kept in a data structure that is shared and synchronized among all peers. This

consensus backed replication, along with PoA, provides data integrity, authenticity and avail-

16



ability. We also provide some security policies 3.2.2 to ensure the system’s robustness to

prevent potential threats like spam attack, collusion attack, and lazy peers.

3.1.4 Archiving ledger

Note that the size of the local ledger will keep increasing as new records are constantly

generated as well as peers in the system increase. Since DLedger is designed essentially for

constrained IoT devices, we need to take into account the restricted storage capacity.

When a peer device is about to run out of storage capacity, a peer could copy the

confirmed records from its device into a backup server controlled by them. Note that even

though this backup server is controlled by the peer, it cannot modify the backed up records

and fool any other peer in the network. Since these are confirmed records, it means the

system already reached consensus on these records (and hence, that part of a DAG) and

their validity. Not just this but altering a record would change its hash digest causing an

avalanche effect where all records directly or indirectly approving this record will require a

corresponding change in their approvals field which basically carries the names of approved

records. Moreover, this will also imply generating a new signature or PoA for all these

parent records which can never be forged by a malicious peer as it doesn’t have these record

generators’ private keys. We explain this further in section 3.2.2.2.

Note that a snapshot mechanism may also be used locally at each node for the data

that can be summarized into a single or few records from multiple records. For example,

Operant Networks stores energy consumption data for every measuring cycle into the records.

When a peer device is about to run out of space, energy consumption data for each peer

in multiple records (for multiple measuring cycles) could be summarized as a balance (total

consumption till date) and stored in a single record, thus retaining the required information

but summarizing it into a single record, thus reducing the space formerly consumed by

multiple records.

17



3.2 Proof of Authentication and Security Policies

In this section, we discuss how DLedger achieves security through publishing and consensus

and robustness through well-defined security policies.

Note that the primary goal of DLedger is to ensure integrity and availability of the

records. As discussed earlier, it achieves integrity through Proof of Authentication (PoA)

and availability by replicating record across all the peers in the system. Through such

replication, every peer’s action is observed and recorded in the ledger system.

However, just PoA and replication doesn’t ensure robustness in the system. Some possible

vulnerabilities are:

• Lazy Peers Peers may be selfish and may not keep their ledger updated. This means

they approve very old (already confirmed or near to confirmation) records in the ledger

system at the time of new record generation and do not verify newer records by other

peers.

• Self approvals Some malicious peers can form an indefinitely long chain of records

by appending records with approval to their own existing records in the ledger. Such

behavior would increase the depth of ledger increasing the verification work of other

peers as well as exploiting their storage capacity.

In section 3.2.2, we define security policies to prevent such vulnerabilities in DLedger.

3.2.1 Proof of Authentication

As mentioned in section 3.1.2, a record in DLedger is an NDN Data packet. Hence, PoA is

realized as a Data packet’s digital signature. This means validating a record against PoA

adds no more application-layer complexity. The PoA process can be described as follows:

1. A peer signs a newly generated record Rnew using its private key.

2. When another peer receives this new record Rnew, it verifies this signature using the

public key certified by the shared designated identity manager. As mentioned in sec-
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tion 3.1, each identity manager appends the certificates issued to the system. Hence,

peer checks if the certificate is present in the system. It also needs to check if there

was any revocation record added to the system for this peer (generator of Rnew). Only

after these two checks, it accepts PoA attached with the record Rnew.

3.2.2 Security Policies

Every entity in DLedger system should follow the proposed security policies to protect the

system from abuse.

3.2.2.1 Contribution Policy

This policy prevents peers from behaving lazily, that is, approving already confirmed or near

confirmed record in the DLedger system. Lazy behavior brings three disadvantages to the

system:

1. By not approving unconfirmed records, the size of the unconfirmed record set will keep

increasing indefinitely. Soon they will outnumber the number of records non-lazy peers

can even approve in a finite time, thus expanding the width of the ledger indefinitely

and ultimately crashing the system.

2. When a system doesn’t enforce peers to only select from unconfirmed records, lazy

peers will not bother to synchronize their local ledgers to the latest state since they

can do away with approving confirmed records in the system and still get their records

verified and accepted by other peers. This means lazy peers won’t actively verify newly

generated records by other peers and contribute to the well-being of the system.

3. Not just this but lazily approving near confirmed (but still unconfirmed) records is

also not good for the system as these peers then won’t really actively verify other

peer’s records. This is because there won’t be many records beneath the record being

approved if its near confirmation, thus not needing to verify many other peers’ records.

Hence, to prevent DLedger system from such vulnerability, Contribution Policy enforces
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the peers to only approve tailing records (and hence, unconfirmed) from its local ledger

whenever it generates a new record. Note that this simply means that all n approved records

which are essentially tails have an entropy of 0.

∀i ∈ range(1, n), Ei = 0

However, note that because of network latency or delay, it is possible that a tailing record

in a local ledger is actually not a tail anymore in other peers’ local ledgers. To handle this

scenario, we propose another threshold of Econtribution.

0 < Econtribution < Econfirm

Whenever a peer fetches a new record, it should check whether Ei > Econtribution ∀i ∈

range(1, n) for all n approvals before accepting the record along with PoA and other rules.

Whenever peer generates a new record and approves n records, all the approved records

should have entropy E = 0 to be in safety region accounting for network latency and delays.

However, sometimes, when a peer appends a new record to the ledger, it is quite possible

that the number of tailing records available is less than n. In such a case, a peer can select

recent unconfirmed records, even though they are not tails, with E < Econtribution.

Moreover, as mentioned in section 3.1, to avoid a peer from making all n approvals to

the same tailing record, DLedger enforces peers to have at least two approvals to be distinct

out of the n. This will ensure that peers verify a reasonable number of old records when

appending a new record. A peer fetching a new record must also verify this along with

Econtribution threshold.

3.2.2.2 Interlock Policy

Based on Contribution Policy, a peer would be enforced to approve n tailing records whenever

it generates a new record. However, DLedger system needs the policy to reject self-approvals

by the peer, that is, a peer shouldn’t be allowed to approve their own records. We call this

an Interlock Policy. Using self-approvals, a peer can easily make the depth of ledger increase
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indefinitely causing more work for legit peers during verification of new records as well as

exploiting storage capacity. The Interlock Policy disallows any adjacent records to be from

the same peer.

∀Ri, Rj Ri and Rj are adjacent ⇒ Pi 6= Pj

where Pi and Pj are the generators of Ri and Rj, respectively.

Note that not allowing self-approvals through Interlock Policy also helps towards main-

taining immutability of the records in the ledger. As explained in section 3.1.4, changing a

record’s hash (and hence, record) is nontrivial because a malicious peer Pmalicious will then

have to update all the records directly or indirectly approving this record since this record’s

name changes. Interlock Policy guarantees that no two adjacent records are generated by

the same peer. Hence, to change a record, Pmalicious will have to change at least one other

record Rother directly approving it which is impossible as Pmalicious wouldn’t know other

peer’s private key to recompute signature after changing Rother.

As shown in figure 3.6, A is a malicious peer who wants to alter a record with hash

“0a12cd”. Because of Interlock Policy, A cannot create another record to directly ap-

prove this record. Records by peers B and C directly approve record “0a12cd” while record

“q4qedq” generated by peer A then approve these records. Making alterations marked in

blue is easy since they are controlled by peer A. However, altering record “0a12cd” changes

its hash to “12fh45” which breaks approvals made by the records “8dqdcd” and “1dd355”.

These records marked in red and their approvals are nontrivial to change. Since a record’s

PoA is computed from its name (and hence, record hash) and content, peer A will need peer

B and C’s private keys to alter their records. This restricts peer A to make any changes in

the record, thus making ledger immutable by interlocking records.

3.3 Ledger Synchronization

DLedger utilizes data-centric sync protocol leveraged over NDN’s inherent multicast support

through NDN Forwarding Strategies [YAM13]. We now discuss the communication protocols
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Figure 3.6: Immutability through Interlock

in DLedger.

3.3.1 New Record Notification Protocol

Whenever a peer generates a new record, it needs to relay it to other peers in the system so

that they can update their local ledgers and system can achieve consensus. However, since

NDN utilizes pull model instead of push model as in TCP/IP, a peer in DLedger cannot

simply push newly generated record into the network. There needs to be a mechanism

to notify other peers about this new record so that they can issue an Interest to fetch it.

As mentioned in section 2.2, DLedger leverages ideas from VectorSync protocol. DLedger

uses the New Record Notification Protocol to achieve this. Whenever a peer generates a

new record Rnew, it multicasts Notification Interest Inotif in the network. The structured

meaningful name of Inotif bears hint for other peers to successfully enumerate the name of

the newly generated record. Other peers then issue a unicast Interest to fetch the record
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from the network (generator of the record or intermediate router cache). Once this new

record is obtained, a peer will validate it against system security rules and policies.

3.3.2 DAG Sync Protocol

The network is unreliable and the parameters (latency, RTT, etc.) are constantly varying.

Because of factors like network partition, delays, latency, etc., the local ledger at a node

could go out-of-sync from local ledger at other nodes. This is also true when the node comes

back online after a brief sleep (being offline). Hence, a node has to regularly check for the

latest state of the ledger and keep updating the local copy to the most recent known state.

The DAG Sync Protocol to synchronize ledger states is as follows.

Compare tailing
records

Node 1-hop
neighbors

2-hop
neighbors

n-hop
neighbors

Missing record 1
Interest

Missing record 2
Interest

Record 1

Missing record 2

Missing record 2
Interest

....

Record 2Record 2

Sync Interest

Figure 3.7: DLedger Synchronization

A Sync Interest Isync is multicasted in the network to trigger sync process. This Isync

carries a list of tailing records in current local view of the ledger as Interest parameter.

When a node receives Isync, they compare the tailing record list with the tailing records

in their own current local view. Once it figures out the tailing records that are missing

in its local ledger, it issues one-hop multicast Interests to fetch them from its neighbors
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(figure 3.7). Tracing the approvals in tailing records and thereby in each fetched record, a

node can recursively fetch all the missing records on its ledger and update it to the latest

known state. When a neighboring node receives such one-hop record fetching Interest, it first

checks whether it has the desired record in its local ledger. If it does, it replies back (record

1 in figure 3.7). Note that there could be multiple neighboring nodes having this desired

record. To avoid the collision as a result of simultaneous replies, a network would need some

Channel Activity Detection. If none of the neighbors have desired record, a node will retry

sending one-hop record fetching multicast Interest after waiting for some time. Meanwhile,

the neighboring nodes that miss the desired record multicast one-hop record fetching Interest

to their neighbors (record 2 in figure 3.7). Eventually, the original requester of the record as

well as its n hop neighbors, all will receive this missing record updating their local ledgers.

This Isync is sent periodically as well as triggered by two events: when a node comes back

online after sleep, network partition, or any such conditions and when node realizes that

it has a more recent state of ledger for some part of the DAG, that is, some of the tailing

records in Isync are not tails in its local ledger anymore.

3.3.3 Naming Convention

In this section, we introduce the naming structure for Interests in DLedger and record name.

Using a predefined naming structure automates the DLedger processing. Using such a

predefined naming structure would help peer know (i) how to construct a Notification Interest

so that other peers can successfully enumerate the name of a newly generated record, and

(ii) how to construct a Sync Interest so that a peer can extract the tailing records list

and assemble individual tailing record names to construct a record fetching Interest for the

missing record.

Each record in DLedger is named as:

“/<multicast prefix>/<creator prefix>/<record hash digest>”

For example, the record name in the solar system network prototype would look like
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“/operant-dledger/solar-gw-device1/axb12...yxz3”. The “/<multicast prefix>” compo-

nent in the name (“/operant-dledger”) is a network-level predefined multicast prefix in NDN

that each peer in the system will register to receive multicast Interests. The “/<creator

prefix>” component (“/solar-gw-device1”) denotes the generator of this record. The

“/<record hash digest>” component (“/axb12...yxz3”) is a unique identifier for each record.

Besides the multicast prefix, each peer also registers “/<multicast prefix>/<cretor prefix>”.

Note that in DLedger, a record is essentially a Data packet. Hence, the record name

mentioned above will be used as record fetching Interest to retrieve newly generated or

missing (during sync) records. Since record fetching Interest starts with multicast prefix, it

can be received by all the nodes in the system to satisfy it. Moreover, a network can use the

longest prefix match to forward Interest to the generator of the record if Interest cannot be

satisfied by neighboring peers.

A Notification Interest follows this structure.

“/<multicast prefix>/NOTIF/<creator prefix>/<record hash digest>”

On receiving Notification Interest, peers can simply rip off the “NOTIF” component to

compose the name of the record and fetch it using unicast Interest. As a simple exam-

ple, the Notification Interest for the solar system network record example above would be

“/operant-dledger/NOTIF/solar-gw-device1/axb12...yxz3”.

A Sync Interest carries a list of tailing records in peer’s local ledger and has a format as

follows.

“/<multicast prefix>/SYNC/<digest of tailing records”

3.3.4 Merging of DLedgers

Whenever there is a network partition, nodes in different partitions will have significantly

different copies of ledgers. This is because nodes in different partitions won’t be able to fetch

each other’s records. This also means that a peer in one partition can approve an unconfirmed

record which in fact has already reached confirmed status in another partition. Hence, after
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the partition is resolved, and peers recursively fetch each others missing record, they can’t

really verify the Contribution Policy. We, therefore, only enforce Contribution Policy on the

newly generated advertised records and not on the fetched records while syncing.

Note that one may argue that nodes can then deliberately form network partition and

show lazy behavior by intentionally approving confirmed records and still get their records

confirmed as Contribution Policy doesn’t apply to fetched records while syncing. Not just

that but these lazy peers don’t even need to fully synchronize their ledgers since they can

do with old confirmed records. However, note that DLedger’s certificate revocation design

would prevent such lazy behavior as explained in section 3.4.7.

3.4 Security Assessmnet

In this section, we propose a threat model (identify potential attacks) and do security as-

sessment to indicate how our policies and security mechanisms protect DLedger from these

threats.

3.4.1 Records Spam Attack

Given that PoA is lightweight and efficient even for the constrained IoT devices, spamming

the peer-to-peer network of DLedger system is easy. Spamming the network and ledger

system using fake records with a valid PoA will incur significant network overhead increasing

latency and lowering throughput, keep legit peers busy with verifying all these spammed

records as well as let the size of ledger grow indefinitely huge, eventually crashing the system.

We think that this problem could be solved at the application level by having well-defined

application semantics. For example, abnormality in the number of records produced in unit

time could be detected if historic averages are known and further actions towards malicious

spamming node could be taken. The rate of incoming Notification Interests from a single

peer could be measured to detect such abnormality. Note that without legit peers fetching

the spam records and appending to the system after verification, just generating new records
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in bulk locally doesn’t abuse the system much except Notification Interest flooding. Having

such abnormality detection based on the rate of Notification Interests would thus save ledger

from getting indefinitely huge because of such spam attack as well as save peers’ resources

from useless verification of spam records.

3.4.2 Denial-of-Service and Reflection Attack

A malicious peer may carry out reflection attack in DLedger by generating false Notification

Interest to non-existent new record carrying the name of some other peer, that is, forging

“/<creator prefix>” component in Notification Interest. In this case, all other peers will

send new record fetching Interests to this other peer. Such an attack could be diminished

by making peers attach PoA also to the Notification Interest. Note that PoA is calculated

using a record’s name and content. Since record’s name consists of record hash and record

producer’s prefix, carrying out reflection attack means forging other (victim) peer’s PoA

which is impossible as the attacker wouldn’t have victim’s private key.

3.4.3 Collusion Attack

In a distributed ledger system, two or more peers may collude to approve and verify each

other’s malicious record given that Interlock Policy rejects peers from making self-approvals.

DLedger protects itself from this abuse by having record statuses, that is, a record is only

confirmed and the consensus is said to reach in the system after it gains entropy Econfirm.

Hence, unless more than k (= Econfirm) malicious peers out of total N peers collude to surpass

this entropy threshold, DLedger avoids any rational attack as a result of such collusion. We

say that DLedger follows (k,N) k < N threshold scheme.

3.4.4 Malicious Identity Manager Bot Attack

A designated trust manager could go rogue and create virtual nodes in the peer-to-peer

system and issue valid identity certificates to them. Such an attack would go unnoticed with

simply PoA verification. However, in DLedger system, as noted earlier all the certificates
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issued by designated trust managers are appended to the system. Besides PoA, a peer also

checks if the certificate is in the system, otherwise rejects PoA. This doesn’t prevent virtual

nodes in the system but at least malicious designated trust manager will leave behind the

traces (certificates) in the ledger for further examination whenever intrusion or misbehavior

is detected.

3.4.5 Data Confidentiality

Note that since DLedger is built over NDN, data confidentiality can be achieved in a way

where only the peers of the P2P network can read record contents and no outsider can learn

about it. This can be done by encrypting records and distributing keys only to the system

peers so that only they can read record contents. Ideas about automated key distribution

could be leveraged from the Named Based Access Control [YAZ15] technique used in NDN

to achieve encryption keys in multi-party communication.

3.4.6 Full Node vulnerability

The traditional distributed systems over TCP/IP such as Bitcoin which usually use hashcash

(for example, PoW) based consensus and gating control mechanisms are infeasible for all

the peers in the network. Not all participating peers possess resources to mine (append)

a new record, neither they have enough storage capacity to store entire ledger for record

verification. These reasons lead to a differentiation between nodes based on their resource

and storage capacity into the full node and light nodes. A light node would simply use an API

to communicate with the full node to invoke record retrieval, dispatching and verification

functions. It doesn’t directly communicate with the peer-to-peer network. As a result of this

full dependence on a full node for the system participation and block validity, they might

be fooled by malicious full node or become a victim of DNS hijack attacks on full node thus

resulting in communication with the malicious node.

Our DLedger system is protected from such vulnerability for the following reasons.

1. The PoA mechanism used by DLedger is lightweight even for constrained IoT devices.
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Hence, a node doesn’t have to lease out record validation to any other node.

2. The archiving mechanism described in section 3.1.4 allows for the efficient use of space.

3. Nodes in DLedger built over NDN’s data-centric paradigm retrieve data from the net-

work as a whole rather than a specific location. Hence, a node doesn’t need to be

dependent on a single specific node for data.

3.4.7 Laziness vulnerability

The Contribution Policy already prevents lazy behavior to some extent by enforcing peers to

approve unconfirmed records and thus save system ledger from expanding indefinitely and

ultimately crashing. Moreover, since identity managers also add revocation notices to the

ledger, it works as a motivation to a node to actively sync their local ledgers to keep them

updated to the most recent known state. If they don’t, they might approve records of a peer

whose certificate was revoked, thus approving an invalid record which in turn will result in

abandonment of their own records by other peers. Moreover, by syncing ledger, a node will

also be able to figure out whether its previous records got any approvals from other peers

and, if not, debug the reason for abandonment. Hence, DLedger system design and security

policies enforce peers to actively contribute to the system by verifying other peers’ records

as well as always trying to keep their local ledgers up-to-date by actively syncing.

3.5 Implementation

We started developing initial prototype [VK18] for Operant Networks in NodeJs. This was

just a proof-of-concept implementation to test Ledger Synchronization protocol (section 3.3)

and PoA (section 3.2.1). We decided to keep other things same as in IOTA’s Tangle; to

be more specific, even we used Tip Selection Algorithm (weighted random walk) and record

weights instead of entropy as in new design.

The figure 3.8 describes pseudocode for the DLedger synchronization procedure for n = 2

(n is required approvals). The OnReceivingSyncReq function describes the tailing records
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list comparison and sending out record fetching Interests for the missing tails. If the local

ledger is found to be more updated, it calls sendSyncRequests function to trigger a sync

with a list of its own tailing records. The function OnReceivingMissingRecord describes the

recursive fetching of all the records (traced through approvals as described earlier). When

a node receives missing tail Tmiss from its neighbors, it checks whether the two (n = 2)

approved records by Tmiss are in its local ledger. If not, it needs to fetch them through

multicast one-hop Interests as discussed. It adds the records it receives to pendingAppends

stack. When it is done receiving all the missing records recursively, it will pop each record

from this stack and append to its local ledger.

Figure 3.8: DLedger Synchronization Pseudocode

To simulate network partitions and achieve scalability in our tests, we decided to migrate

to C++ and use ndnSIM [MAZ17], an open-source NS-3 based network simulator. This is

because NDN doesn’t have a network simulator written in NodeJS making it increasingly

hard for us to test our initial prototype with multiple peers as well as simulate link failure

scenarios. Another reason to migrate to C++ was that DLedger is meant to be used by IoT

devices in future and C++ implementation would be more efficient. Moreover, the migration

also helped us to pick out loopholes in our initial prototype design and account for them
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with a better newer version [VMZ18]. We discuss why our initial prototype needed changes

in the next section.

3.6 Reasoning the design

In this section, we reason why DLedger design, except for the core data structure, is different

from IOTA’s Tangle. Next, we also provide simulation results to show that the number of

unconfirmed records in the DAG converges. Moreover, we also simulate the network partition

to show two DLedgers merging.

3.6.1 Why change from IOTA’s Tangle?

It is important to note that besides underlying network architecture, on an application level,

IOTA and DLedger differs in the following manner.

1. IOTA uses a weighted random walk (MCMC) from confirmed blocks to the tips. It does

so to avoid lazy behavior by the peers who might only approve very old blocks, thus not

contributing to the system. A weighted random walk would increase the probability

of tips approving more recent blocks to be selected over the lazy tips. DLedger on

the other hand uniformly randomly selects the tailing records for approval at the time

of new record generation. We decide to not use MCMC because of its inefficiency.

Note that to perform MCMC, since the weighted random walk is performed from old

records towards new records while the DAG edges point from new records towards the

old records, entire DAG will have to be fetched first to start the walk. To avoid this,

one can make DAG bi-directional. More specifically, one can store not only approvals

made by each record but also store a list of directly approving records for each record.

This will then allow a walk from old records to new records easily. However, as ledger

becomes huge, this will prove to be space inefficient. One might argue that MCMC isn’t

enforced upon all the peers directly in IOTA. However, by game theoretic principles

discussed in [PSF17], all nodes theoretically should converge to using the same tip
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selection algorithm which will be MCMC since it’ll be followed by a majority of the

peers. DLedger completely avoids this by just maintaining a list of tailing records and

selecting tails in uniformly random fashion to make approvals.

2. In IOTA, the gating control mechanism slows down appending of new blocks by the peer

into the system. However, a spam attack as the one discussed in section 3.4.1 is quite

possible in DLedger because of the lightweight PoA. This means a node can constantly

keep approving its own records and increase the depth of ledger. Hence, for this reason,

DLedger introduced Interlock Policy to disallow such self-approval spam by the nodes

in the system. IOTA wouldn’t need such policy as the rate of such self-approvals is low

because of the PoW. Not just that but it is impossible for IOTA to have such policy

given that nodes use one time signatures making transactions completely anonymous

from one another. Hence, other peers in the system can’t verify self-approvals even if

they are present.

3. Moreover, again because of lightweight PoA, we cannot use weight as a threshold for

consensus since gaining enough weight to change the status of the record to confirmed

is easy through collusion between peers. To avoid this, DLedger records thus have

an entropy instead of weight, different from IOTA. Also, since we don’t perform a

weighted random walk, there’s further no need for weights in DLedger.

4. While IOTA avoids lazy behavior by doing a weighted random walk, DLedger enforces

Contribution Policy to achieve the same.

3.6.2 Simulation

One obvious question about the design of DLedger would be to ask if, given the security

mechanisms and policies, it ever converges. To prove this, we carried out a simulation using

30 nodes in a peer-to-peer network with Econfirm set to 10. Each peer in the simulation

generates a new record every 5 seconds. Figure 3.9a shows the plot which indicates that

the number of unconfirmed records doesn’t grow as the size of the ledger (the DAG) grows.
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(a) Unconfirmed Records As DAG grows
(b) Average Time taken for Confirmation as

nodes increase

Figure 3.9: Simulating DLedger

Specifically, after a certain point, the number of unconfirmed records will be around a con-

stant number.

Figure 3.9b shows that as the number of nodes increases, with Econfirm (set to 5 for this

simulation) being same, the average time taken for nodes to be confirmed decreases. This

is because more nodes generate more records overall and thus increase number and rate of

approvals. This, in turn, increases the entropy of a record at a faster rate.

Figure 3.10 shows two DLedgers merging after a network partition created in the peer-

to-peer network of 15 nodes. Network partition happens at t = 20s and rejoins at t = 120s

with 9 nodes in one partition and 6 nodes in other. This simulation validates our Ledger

Sync Protocol showing that recursive fetching of missing records does work.
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Figure 3.10: Merging of DLedgers after partition
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CHAPTER 4

Use Case: Initial Prototype for Real World Solar

Network

In this chapter, we talk about the motivation behind designing and developing a distributed

ledger system for Operant Network’s solar network. We also discuss DLedger’s initial pro-

totype developed specifically to Operant’s use case.

4.1 Motivation: Security Concerns in Utility Scale Solar

Utility-scale solar is deeply integrated with the national electric grid today and is a critical

infrastructure to provide utility to the sectors. Cyber-attacks on such utility-scale solar are

becoming major threats today [SBL14, SK17]. Historically, these utility-scale solar were set

up on their private independent network, not connected to the public Internet. However, as

power generation has shifted from centralized power plants to massively scaled Distributed

Energy Resources (DER), communication now takes places via the Internet. It is now impos-

sible to physically separate solar networks to establish a secure private network and defend

against cyber-attacks. Hence, utility control signals and site alarms could be hijacked and

tampered damaging the equipment and personnel. Moreover, energy consumption and pro-

duction records could go missing and tampered as well. Today, there is no record of such

missing values or control signals and little evidence if they were corrupted. This would

damage business integrity and authenticity of records provided by business such as Operant

Networks since it is hard for financial parties involved to trust the data. It is thus necessary

to log communication of records, control signals, and site alarms right at the point of gen-

eration. Not just that but they should be replicated across several nodes for fault-tolerance
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and integrity as well as immutability through consensus. This is where distributed ledger

comes into the picture. Each inverter node will maintain a local ledger storing all energy

production and consumption records it generates as well as the ones generated by other

nodes making an entire system a decentralized shared dataset.

4.2 Security Enabled by NDN and Distributed Ledger

Operant Networks has developed a rooftop solar network of Operant’s solar gateway devices

which communicate with Operant’s server using LoRa wireless channel utilizing NDN proto-

col. Each of these devices records customer’s energy production and consumption data and

send back to the Operant server for accounting.

This existing communication over the NDN protocol already achieves most of the security

attributes. Some of them are further enhanced by distributed ledger. We list them in

Table 4.1.

Security Attribute Existing NDN Commu-

nication

Enhanced by distributed

ledger

Confidentiality Encryption and Distribution

of keys

Integrity Data Packet Signatures dur-

ing transmission

Post transmission, PoA and

consensus makes accepted

ledger records immutable

Availability Decentralized Replication

Authorization Certificates

Table 4.1: Security Attributes achieved together by NDN and Distributed Ledger

4.3 Prototype

We now discuss the initial prototype designed and developed for Operant’s use case.
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It is assumed that in Operant’s solar network, the system operator sets up a trust an-

chor, and each rooftop solar gateway device trust this operator’s digital certificates, and

has obtained them. Therefore all the devices can authenticate each other, while an outsider

without a valid private key cannot pass this verification.

In Operant’s DLedger system, there are two main types of entities.

NDN Network

Solar Gateway
Device

Operant
Server

Figure 4.1: An Overview of Operant’s DLedger Prototype

• Customer Nodes: these customer nodes consist of peer-to-peer network formed by

rooftop solar gateway devices as shown in figure 4.1. Every node can append a new

record into the ledger system as well as verify other peer’s record.

• Operant Network Operator: this serves as a trust anchor of the system and also

issues certificates. As shown in figure 4.1, the operator can also deploy some servers

in the peer-to-peer ledger system network to improve data redundancy of the system

by keeping the latest copies of the ledger. Note that, however, these servers just act as

”listeners” and do not intervene in operations of DLedger. The operator also bootstraps

the distributed ledger by generating a few initial genesis blocks.
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The basic structure of DLedger and the design of DLedger Sync Protocol and PoA has

remained the same since its initial stage and as described in Chapter 3. However, record

appending, verification and acceptance rules were different in this initial prototype developed

for Operant compared to DLedger’s current implementation. These were similar to IOTA’s

Tangle, that is, Operant’s prototype used the MCMC algorithm for tip selection and accepted

a block into the system based on weight threshold and PoA verification. As discussed in

section 3.6, this prototype had many security flaws which led to the newer version of DLedger

discussed in Chapter 3.
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CHAPTER 5

Related Works

5.1 Works over TCP/IP

Besides IOTA described in section 2.3 designed for IoT, there are other works done to

achieve distributed ledger technology in IoT network consisting of constrained devices as

well as address issues of security and privacy.

Enigma [ZNP15], developed by researchers at MIT, uses Blockchain to create an access-

control system to allow users to own and have complete control and privacy over the data.

Smart contracts are placed in blocks in Enigma which contain access policies to user’s per-

sonal data. The data itself is stored and secret-shared among the off-the-blockchain powerful

nodes thus allowing scalability and taking off storage load from the Blockchain network par-

ticipants. To achieve consensus, it uses a Proof-Of-Stake (PoS) [Eni] instead of the popular

PoW. Proof-Of-Space (PSpace) [DFK15] is also gaining popularity in IoT distributed ledger

systems which uses memory-hard functions instead of computation intensive CPU bound

PoW. For example, [YLT18] proposes a new IoT blockchain framework using Ethereum’s

smart contracts and using PSpace. [PKF15] also leverages PSpace. [DKJ16] uses Beta Rep-

utation System [JI02] to establish decentralized trust model and use trust score to achieve

consensus rather than using Proof-Of-X (X = work, space, stake, etc.), thus making less

expensive choices for their ledger technology smart home device network. A cryptocur-

rency IOTW [ANA] built over blockchain claims to be IoT-friendly by using a lightweight

Proof-Of-Assignment as the gating control mechanism, getting rid of PoW. A miner, in

Proof-Of-Assignment, is selected in two ways. Either a centralized server can randomly pick

a miner or each peer use their own keys and predefined seed to calculate randomness. The
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randomness with a specific format (for example, based on characteristics of n least significant

bits) is then selected.

Moreover, many other works [Van14, ZW15, HCK17, WB14] use the free bytes avail-

able in Bitcoin transactions reserved from arbitrary data and build their system over crude

Blockchain without any tweaks to required to support IoT (for example, network partition

friendly, less expensive gating control mechanism, efficient storage/archiving).

Nano [Nan] and Byteball [Byt] are similar works to IOTA building ledgers over the

Directed Acyclic Graph. Nano uses PoW as anti-spam protection while Byteball achieves

consensus by forming a single chain called “main chain” within the DAG. The main chain

is selected by trusted third-party users called “witnesses”.

5.2 Works over NDN

To our best knowledge, not much work has been done in NDN to develop distributed ledgers,

especially for the IoT network. Among a few, [JZL17] is one such work which utilizes

ChronoSync discussed in Chapter 2 to develop a Bitcoin-like ledger system. As argued

in the same chapter, utilizing ChronoSync is a bad choice for a distributed ledger system

given its inefficiency (long-lived interest and poor result with simultaneous data generation).

[LZQ18] describes public key management infrastructure in NDN over Blockchain.

5.3 Observations

As observed, most of the mentioned related works rely on “”muscle show” consensus and

gating control mechanisms such as Proof-Of-Work, Proof-Of-Stake, Proof-Of-Space, etc.

Proof-Of-Assignments seems to be IoT-friendly apparently; however, it relies on a central

server introducing a single point of failure. The other technique of selecting miner can easily

be compromised by leasing out randomness calculation to a modern PC to win the selection.

Moreover, the works relying on the Blockchain at its backbone are not network partition

friendly. The DAG based works such as IOTA, Nano and Byteball are not IoT-environment
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friendly. For example, IOTA and Nano use lightweight PoW for anti-spam protection. How-

ever, malicious IoT device can simply lease out mining operation to a modern PC, thus

able to achieve transaction flooding. Note that leasing out mining to modern PC is possible

because of anonymity in these systems; peers cannot know who exactly mined the block

into the system. Byteball, on the other hand, still ultimately relies on a single chain and

claims that network partitions are very unlikely in public network. However, in private IoT

network, partitions are very common and the assumption doesn’t hold anymore.
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CHAPTER 6

Conclusion

In this thesis, we presented an IoT-friendly distributed ledger system, DLedger, developed

over Named Data Networking (NDN). DLedger utilizes lightweight Proof-Of-Authentication

(PoA) to achieve an IoT-friendly gating control mechanism. Moreover, even with such a

lightweight gating control mechanism, it is still bullet-proof against spam attacks. Together

with security policies and PoA, DLedger is robust against many security threats and chal-

lenges over the current existing distributed ledger systems. Furthermore, NDN’s data-centric

model allows DLedger to achieve data distribution in a truly efficient and distributed manner.

We try to show a different approach to distributed ledger where we combine data openness

among the system peers with verifiable identity within the system instead of combining

openness with anonymity.

Note that the DLedger system we proposed is designed to be deployed over wireless NDN

mesh network which is feasible today in local private area network. Moreover, it can also be

deployed in a wide area network with NDN as an overlay over TCP/IP routers. In this case,

DLedger won’t be able to utilize NDN’s network support but is expected to work in similar

way as how Bitcoin system works by utilizing Internet Relay Chat (IRC) where each node

needs to maintain a list of IP addresses as first-hop neighbors and follow “gossip” protocol

for achieving communication with all other peers in the system.

42



REFERENCES

[ANA] ANAPP BLOCKCHAIN TECHNOLOGIES LIMITED. “A Scalable Blockchain
Proof of Assignment Protocol.” Online; Available at https://iotw.io/docs/IOTW-
Whitepaper.pdf.

[AS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. “A survey of peer-
to-peer content distribution technologies.” ACM computing surveys (CSUR),
36(4):335–371, 2004.

[Byt] Byteball Team. “An open cryptocurrency platform ready for real world adoption.”
Online; Available at https://obyte.org/.

[DFK15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. “Proofs of space.” In Annual Cryptology Conference, pp. 585–605.
Springer, 2015.

[DKJ16] Ali Dorri, Salil S Kanhere, and Raja Jurdak. “Blockchain in internet of things:
challenges and solutions.” arXiv preprint arXiv:1608.05187, 2016.

[Eni] Enigma Project. “Secret Nodes: Exploring Staking, Stakeholders, and
ENG.” Online; Available at https://blog.enigma.co/secret-nodes-exploring-
staking-stakeholders-and-eng-d69a68e3d0fd.

[FSK14] Jason Farina, Mark Scanlon, and M-Tahar Kechadi. “Bittorrent sync: First im-
pressions and digital forensic implications.” Digital Investigation, 11:S77–S86,
2014.

[HCK17] S. Huh, S. Cho, and S. Kim. “Managing IoT devices using blockchain platform.”
In 2017 19th International Conference on Advanced Communication Technology
(ICACT), pp. 464–467, Feb 2017.

[IOT] IOTA Team. “Making a Transaction.” Online; Available at
https://iota.readme.io/docs/making-a-transaction.

[JI02] Audun Josang and Roslan Ismail. “The beta reputation system.” In Proceedings
of the 15th bled electronic commerce conference, volume 5, pp. 2502–2511, 2002.

[JZL17] Tong Jin, Xiang Zhang, Yirui Liu, and Kai Lei. “Blockndn: A bitcoin blockchain
decentralized system over named data networking.” In Ubiquitous and Future
Networks (ICUFN), 2017 Ninth International Conference on, pp. 75–80. IEEE,
2017.

[LZQ18] Junjun Lou, Qichao Zhang, Zhuyun Qi, and Kai Lei. “A Blockchain-based key
Management Scheme for Named Data Networking.” In 2018 1st IEEE Interna-
tional Conference on Hot Information-Centric Networking (HotICN), pp. 141–146.
IEEE, 2018.

43



[MAZ17] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. “On the Evolution
of ndnSIM: an Open-Source Simulator for NDN Experimentation.” ACM Com-
puter Communication Review, July 2017.

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system.” 2008.

[Nan] Nano Team. “Digital currency for the real world the fast and free way to pay for
everything in life.” Online; Available at https://nano.org/en.

[PKF15] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gai, Jol Alwen, and Krzysztof
Pietrzak. “SpaceMint: A Cryptocurrency Based on Proofs of Space.” Cryptology
ePrint Archive, Report 2015/528, 2015. https://eprint.iacr.org/2015/528.

[Pop18] S Popov. “The Tangle, IOTA Whitepaper.”, 2018.

[PSF17] Serguei Popov, Olivia Saa, and Paulo Finardi. “Equilibria in the Tangle.” arXiv
preprint arXiv:1712.05385, 2017.

[SAZ17] Wentao Shang, Alexander Afanasyev, and Lixia Zhang. “VectorSync: distributed
dataset synchronization over named data networking.” In Proceedings of the 4th
ACM Conference on Information-Centric Networking, pp. 192–193. ACM, 2017.

[SBL14] Kallisthenis I Sgouras, Athina D Birda, and Dimitris P Labridis. “Cyber attack
impact on critical smart grid infrastructures.” In Innovative smart grid technolo-
gies conference (ISGT), 2014 IEEE PES, pp. 1–5. IEEE, 2014.

[SK17] Julia E Sullivan and Dmitriy Kamensky. “How cyber-attacks in Ukraine show the
vulnerability of the US power grid.” The Electricity Journal, 30(3):30–35, 2017.

[SYD16] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. “Challenges in IoT
networking via TCP/IP architecture.” Technical Report NDN-0038. NDN Project,
2016.

[SYW17] Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and Lixia Zhang.
“A Survey of Distributed Dataset Synchronization in Named Data Networking.”
Technical report, Technical Report NDN-0053, NDN, 2017.

[Van14] David Vandervort. “Challenges and opportunities associated with a bitcoin-based
transaction rating system.” In International Conference on Financial Cryptogra-
phy and Data Security, pp. 33–42. Springer, 2014.

[VK18] Vishrant Vasavada and Randy King. “ndn-ledger.”
https://github.com/vvasavada/ndn-ledger, 2018.

[VMZ18] Vishrant Vasavada, Xinyu Ma, and Zhiyi Zhang. “ndnSIM-DLedger.”
https://github.com/Zhiyi-Zhang/ndnSIM-DLedger, 2018.

44



[WB14] Dominic Wörner and Thomas von Bomhard. “When your sensor earns money:
exchanging data for cash with Bitcoin.” In Proceedings of the 2014 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, pp. 295–298. ACM, 2014.

[YAM13] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang, and
Lixia Zhang. “A case for stateful forwarding plane.” Computer Communications,
36(7):779–791, 2013.

[YAZ15] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. “Name-based access control.”
Named Data Networking Project, Technical Report NDN-0034, 2015.

[YLT18] Yong Yu, Yannan Li, Junfeng Tian, and Jianwei Liu. “Blockchain-Based Solu-
tions to Security and Privacy Issues in the Internet of Things.” IEEE Wireless
Communications, 25(6):12–18, 2018.

[ZA13] Zhenkai Zhu and Alexander Afanasyev. “Let.” In 2013 21st IEEE International
Conference on Network Protocols (ICNP), pp. 1–10. IEEE, 2013.

[ZAB14] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crow-
ley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. “Named data
networking.” ACM SIGCOMM Computer Communication Review, 44(3):66–73,
2014.

[ZLW17] Minsheng Zhang, Vince Lehman, and Lan Wang. “Scalable name-based data syn-
chronization for named data networking.” In INFOCOM 2017-IEEE Conference
on Computer Communications, IEEE, pp. 1–9. IEEE, 2017.

[ZNP15] Guy Zyskind, Oz Nathan, and Alex Pentland. “Enigma: Decentralized computa-
tion platform with guaranteed privacy.” arXiv preprint arXiv:1506.03471, 2015.

[ZW15] Yu Zhang and Jiangtao Wen. “An IoT electric business model based on the pro-
tocol of bitcoin.” In Intelligence in Next Generation Networks (ICIN), 2015 18th
International Conference on, pp. 184–191. IEEE, 2015.

45




