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ABSTRACT OF THE DISSERTATION

Freeway Traffic Parameter and State Estimation with Eulerian and Lagrangian Data

By

Zhe Sun

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2016

Professor Wenlong Jin, Chair

The purpose of this study is to develop a traffic estimation framework which combines

different data sources to better reconstruct the traffic states on the freeways. The

framework combines both traffic parameter and state estimation in the same work

flow, which resolves the inconsistency issue of most existing traffic state estimation

methods.

To examine the quality of the traffic sensor data, the study starts with proposing the

network sensor health problem (NSHP). The optimal set of sensors is selected from all

sensors such that the violation of flow conservation is minimized. The health index

for individual detector is then calculated based on the solutions. We also developed

a tailored greedy search algorithm to find the solutions effectively. The proposed

method is tested using the loop detector data from PeMS on a stretch of the SR-91

freeway. We compared the results with PeMS health status and found considerable

level of consistency.

Two different traffic state estimation methods are proposed based on the data avail-

ability and traffic states. The LoopReid method is derived from the Newell’s simplified

kinematic wave model by assuming the whole road segment is fully congested. We

formulate a least square optimization problem to find the initial states and traffic

xi



parameters based on the first-in-first-out principle and the congested part of the

Newell’s model. While developing the LoopCT method, we derived a counterpart

of the Newell’s kinematic wave model in the Lagrangian coordinates under Eulerian

boundary conditions. This model also leads to a new method to estimate vehicle

trajectories within a road segment. We formulate a least square optimization problem

in initial states and traffic parameters which works for mixed traffic states. The two

estimation methods turned out to be highly related and the LoopCT method degener-

ates to the LoopReid method when the traffic is fully congested. The two methods

are validated using two datasets from the NGSIM project. Both methods achieved

considerable level of accuracy at reconstructing the traffic states and parameters.

xii



Chapter 1

Introduction

1.1 Research Background

The traffic state is an important indicator of a traffic system’s performance. However,

the observed traffic data can only cover a limited number of locations and times due

to limited deployment of sensing infrastructure. At the same time, the development

of different traffic sensor technologies is changing the form of the traffic data funda-

mentally. In general, we have too few data, yet too many types of data. It would be

ideal to combine different data sources to augment the data availability.

The traffic estimation with data fusion is becoming popular in recent years with big

data boom. However, most of the existing studies neglect the estimation of traffic

parameters and initial states, which may result in suboptimal results due to the use

of unsuitable parameters and initial states. This dissertation proposes an estimation

framework which attaches importance to both traffic parameter and state estimation

with data fusion.
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1.2 Research Objective

This study aims to propose a traffic estimation framework which simultaneously

estimate traffic parameters and states on a homogeneous freeway link based on data

fusion. To achieve this goal, the detailed objectives are described as follows:

• To design a network-based sensor health evaluation method.

The performance of a traffic estimation method depends on the quality of the

input data. Most existing sensor health evaluation methods are local methods

which focus on the data yielded by individual sensors. The network-level flow

conservation information should also be examined to ensure the consistency

among sensors.

• To develop a traffic estimation method based on both Lagrangian and

Eulerian sensor data

The Eulerian and Lagrangian data are fundamentally different. In this research,

we propose an estimation method based on Newell’s simplified kinematic wave

model to incorporate both types of data. The LoopReid model combines loop

detector data and vehicle reidentification data while the LoopCT model combines

loop detector data with complete vehicle trajectory data.

• To prove the single transition theorem within a homogeneous link

The single transition theorem states that the vehicle will experience at most one

transition from free-flow traffic to congested traffic while traveling through the

road segment. The vehicle travels with the free-flow speed before the transition

and reduces speed afterward. The proof of this theorem enables the estimation

method to work with mixed traffic by separating the whole trajectory into two

parts, each of which is either a free-flow or congested traffic state.

2



• To apply the proposed traffic estimation method to the NGSIM data.

The LoopReid method only works with congested traffic while the LoopCT

method works with mixed traffic state. To evaluate the performance of the

proposed methods, two NGSIM datasets are used. The LoopReid method is

validated using the I101 dataset collected during evening peak when traffic is

fully congested in the road segment. The LoopCT data is validated using the

I80 dataset collected in the afternoon time when traffic congestion started to

initiate.

3



1.3 Research Outline

The overall dissertation framework is described in Figure 1.1

 

Chapter 1 
Introduction 

Chapter 2 
Literature Review 

Chapter 3 
Network Sensor 
Health Problem 

Chapter 4 
Traffic Estimation with Vehicle 

Reidentification Data 

Chapter 5 
Traffic Estimation with Complete 

Vehicle Trajectory Data 

 
Chapter 6 
Conclusion 

Figure 1.1: Dissertation framework

Chapter 1 introduces the background and objectives of the dissertation. Chapter

2 reviews the literature regarding the three important components of the proposed

estimation framework: traffic sensor data, traffic flow model, and the traffic estimation

method.

Chapter 3 proposes the network sensor health problem (NSHP) and the corresponding

sensor health evaluation method which takes network flow conservation into con-

sideration to evaluate sensor health. From the network flow conservation principle,

flows on non-base links can be derived from those on the base links. However, in

reality, the network flow conservation principle can be violated due to the existence

of unhealthy sensors. Thus we propose to identify optimal sensor sets by solving an

optimization problem, in which we minimize the inconsistency between derived and

observed link flows. We then define the health index of an individual sensor as the

frequency that it appears in the optimal sets. The brute-force method can be used

to find all solutions. We also developed a greedy search algorithm to find optimal

sets effectively. The proposed method is applied to a road network with 30 links,

4



among which 18 links are monitored with loop detectors. Using traffic count data

from the Caltrans Performance Measurement System (PeMS) database, the method

yields health indices for all observed sensors and the results are quite consistent with

PeMS health statuses.

Chapter 4 proposes the LoopReid traffic estimation method to simultaneously estimate

model parameters and traffic states for a congested road segment based on Newell’s

simplified kinematic wave model (Newell, 1993). In many existing estimation methods,

the model parameters and initial states have to be given, which limits the accuracy of

the results as well as their transferability to different locations and times. Given both

Eulerian traffic count data and Lagrangian vehicle reidentification data, we formulate

a single optimization problem in terms of the initial number of vehicles and model

parameters. Then we decouple the optimization problem such that the initial number

of vehicles in the segment can be analytically solved in closed form, and the model

parameters, including the jam density and the shock wave speed in congested traffic,

can be computed with the Gauss-Newton method. Based on Newell’s model, we can

calculate individual vehicles’ trajectories as well as the average densities, speeds, and

flow-rates inside the road segment. We also theoretically show that the optimization

problem can have multiple solutions under absolute stationary traffic conditions. The

proposed method is applied to the I101 NGSIM dataset. We verify the validity of the

method and show that this method yields better results in the estimation of average

densities than the benchmark method.

Chapter 5 proposes the LoopCT traffic estimation method which can be considered

as an extension of the LoopReid method based on complete vehicle trajectories. In

order to derive the LoopCT method, we theoretically prove the single transition

theorem and the counter part of the Newell’s kinematic wave model in the Lagrangian

coordinate under Eulerian boundary conditions. This model also leads to a new

5



method to estimate vehicle trajectories within a link given upstream/downstream

flow counts and vehicle entrance/exit time. The estimation of the initial states and

model parameters is formulated as an optimization problem. Similar to the LoopReid

model, the initial states can be optimized analytically. By assuming the free-flow

speed is known in advance, the optimization problem of traffic parameters is greatly

simplified and can be estimated using the Gauss-Newton method. In theory, we show

that there will be multiple solutions for traffic parameters under absolute stationary

traffic conditions. We test the LoopCT method using the I80 NGSIM dataset with

different market penetration rates and predetermined free-flow speeds. The average

density, cumulative count contour, and the vehicle trajectories are estimated and

compared with the observation.

Chapter 6 summarize the results and findings of this dissertation along with recom-

mendations for future research.

6



Chapter 2

Literature Review

This chapter reviews the three elements of the traffic estimation framework: data,

theory, and the method. Section 1 of this chapter reviews available data sources for

traffic estimation with emphasis on existing methods to evaluate loop detector data

quality. Section 2 of this chapter reviews the kinematic wave model of traffic flow

with emphasis on Newell’s simplified kinematic wave model. Section 3 reviews the

existing traffic estimation models.

2.1 Traffic sensor data

Since the introduction of the first known vehicle sensor in 1928 at a signalized

intersection, researchers have devoted significant efforts to create and improve systems

that monitor vehicle presence and passage at critical locations on streets and freeways.

The collected data are used to monitor traffic congestion and incidents on freeways,

estimate travel times, and support decision making for transportation agencies. Many

different types of traffic sensors, including inductive loop detectors, magnetic sensors,

7



video image detectors, and microwave detectors, have been developed.

In the study of fluid dynamics, the observation of fluid flow can be made in two

ways: the Lagrangian measurements and the Eulerian measurements (Batchelor,

2000). In the context of traffic flow, we can collect corresponding traffic data using

these two measurements. The Eulerian data are collected at fixed locations and

provides information regarding vehicles as they pass over them. The inductive loop

detector system is the most commonly used sensing system to collect Eulerian data.

These detectors measure traffic counts and occupancy, and aggregate them at certain

sampling intervals (usually 30 seconds) for each lane. This type of data has been used

for many traffic applications and studies, including traffic management and control

and traffic state estimation.

The Lagrangian data are collected for individual vehicles. This type of data can be

generated by

• vehicle reidentification system, which matches vehicles passing different locations

(partial trajectory) (Sun et al., 1999). The vehicle reidentification system can be

implemented based upon different sensing technologies, such as video cameras,

AVI (automatic vehicle identification) tags, and loop detectors (Jeng, 2007).

This type of data has been used for travel time estimation (Coifman and Cassidy,

2002), performance evaluation (Jeng, 2007; Oh et al., 2005), and O/D trip

estimation (Oh et al., 2002).

• vehicle tracking system, which provides sequences of location and time stamp of

individual vehicles (complete trajectory). The vehicle tracking system commonly

uses GPS technologies to locate the vehicles, but other sensing technologies such

as RADAR (Aoude et al., 2011) and photos (Hoogendoorn et al., 2003) are also

used.

8



Because of their high reliability under different weather conditions, the loop detectors

have been widely deployed to provide uninterrupted traffic measurements, including

occupancy and flow counts. In California, loop detectors are embedded in many

freeway pavements, providing 30-second and 5-minute occupancies and traffic counts

data through the Caltrans Performance Measurement System (PeMS).

However, loop detector data can be corrupted by noises and errors, due to pavement/saw-

cut failures, intermittent communications, double counting of lane-changing vehicles,

and so on (Coifman, 2006). According to PeMS, only 67% of the detectors are working

properly in May, 2014 (Chen and Petty, 2001). Some districts (e.g. district 6 in

Los Angeles County) have even lower proportions of working detectors. Thus, to

accurately estimate congestion levels, incident locations, and travel times as well as

to decide detectors that need to be maintained, the state DOTs and other agencies

need to identify unhealthy detectors based on observed traffic data.

In the transportation literature, there are very few studies on the sensor health

problem. The study by Turochy and Smith (2000) assesses a detector’s health based

on the time series of flow and occupancy measurements. The proposed method places

thresholds on the maxima of occupancy and volume, the numbers of samples with

non-zero volume but zero speed, and the average effective vehicle lengths. A sensor’s

health is determined by the total number of its faulty records. The study by Chen

et al. (2003) developed a similar method for determining sensor health by using

four statistics: the number of samples with zero occupancy, the number of samples

with zero flow and non-zero occupancy, the number of samples with extremely high

occupancy, and the variance of flow and occupancy. The four statistics are calculated

every day per sensor. The algorithm makes decisions by comparing the statistics with

the predefined thresholds. Furthermore based on a classification algorithm, PeMS

categorizes a sensor’s health status into ten different diagnostic states, such as ‘‘line

9



Figure 2.1: Configuration of California loop detector network in District 7

Source: Rajagopal and Varaiya (2007)

down’’, ‘‘controller down’’ , and ‘‘high value’’ (Rajagopal and Varaiya, 2007).

The aforementioned methods are all designed to solve the sensor health problem for

individual sensors, by examining whether the data produced by an individual sensor

10



looks statistically correct. Thus we refer to these methods as local methods. Such

methods have two major limitations. First, the thresholds in the algorithms could

be challenging to determine. In practice, the thresholds may vary by locations and

are subject to exogenous factors such as traffic incidents, constructions, and weather

conditions. Second, all existing local methods focus on each sensor’s performance

individually and fail to take into account the correlations between neighboring sensors

in a road network. While admitting the effectiveness of local methods, there is still

a need to develop a global method which uses network flow conservation to provide

additional information from a new perspective.

2.2 Kinematic wave theory of traffic flow

The LWR model (Lighthill and Whitham, 1955; Richards, 1956) describes the spatial-

temporal evolution of flow-rate, q(t, x), and density, k(t, x), at time t and location x

by the following scalar conservation law,

∂k

∂t
+
∂Q(k)

∂x
= 0, (2.1)

where q = Q(k) is the traffic fundamental diagram. In the LWR model, the initiation,

propagation, and dissipation of traffic queues are described by the shock waves and

rarefaction waves.

Newell (1993) showed that the original LWR model can be greatly simplified with its

Hamilton-Jacobi form using a triangular fundamental diagram as shown in Figure 2.2:

Q(k) = min{V k,W (K − k)}, (2.2)
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where V is the free-flow speed, W is the shock wave speed in congested traffic, kc is

the critical density, C is the capacity, and K is the jam density. The traffic state

with density less than kc is usually defined as free-flow, density equals kc as critical

state, density larger than kc as congested state.

ck

V W

q

K
k

C

Figure 2.2: Triangular fundamental diagram

This research introduced the cumulative flow, N(t, x), as the new state variable which

is the number of vehicles passing x and t in a spatial-temporal domain. Since the

flow-rate is the time-derivative of the cumulative flow; i.e.,

q(t, x) =
∂N(t, x)

∂t
, (2.3)

and the density is the negative space-derivative; i.e.,

k(t, x) = −∂N(t, x)

∂x
, (2.4)

the LWR model is equivalent to the following Hamilton-Jacobi equation:

∂N(t, x)

∂t
= Q(−∂N(t, x)

∂x
). (2.5)
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For a homogeneous road segment from x = 0 to x = l, we denote the cumulative

traffic counts at time t at the upstream and downstream boundaries by F (t) and G(t),

respectively. If we consider the vehicle passing the downstream boundary at t = 0 as

the reference vehicle, then

G(t) = N(t, l), (2.6)

F (t) + n0 = N(t, 0), (2.7)

where F (0) = G(0) = 0, and n0 is the initial number of vehicles on the road segment.

If initially there exists no transonic rarefaction wave on the road segment; i.e., if the

initial traffic condition is one of the three types: (i) the whole road is uncongested,

(ii) the whole road is congested, or (iii) an upstream part of the road is uncongested

and the downstream part is congested, it is shown by Jin (2015) that the following

Newell’s simplified kinematic wave model can be derived from the Hopf-Lax formula

for the spatial-temporal domain x > max{V t, l −Wt},

N(t, x) = min

{
F (t− x

V
) + n0, G(t− l − x

W
) +K · (l − x)

}
. (2.8)

The Newell’s model for the U-shape spatial-temporal domain is illustrated in Figure

2.3 and the light blue area indicates the domain where Newell’s model applies.

Recent studies proposed several methods to solve the Hamilton-Jacobi equation (2.5)

with more general concave fundamental diagram given initial and boundary conditions

in the form of cumulative flow. Daganzo (2005a,b) provided analytical and numerical

solution to (2.5) using variational theory. In (Evans, 2010), the Hopf-Lax formula

is used to solve (2.5). A solution method based on viability theory is proposed by

Claudel and Bayen (2010a,b).
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Figure 2.3: Newell’s model in the U-shape spatial-temportal domain

2.3 Traffic parameter and state estimation

The traffic estimation process estimates various traffic state variables (e.g. speed,

density) from available data (e.g. loop detector data, GPS data) in a road network.

Ideally, an estimation method should provide a complete picture of the traffic states

based on limited available data (Wang and Papageorgiou, 2005).

A review of the literature identifies a number of efforts related to traffic state estimation.

One class of the models relies mainly on statistical tools to estimate the traffic states

based on historical data without using traffic flow models. The common techniques

used in these models include:

• time series analysis: analyze the time series of the target traffic states and model

them as functions of historical observations. The classic approach is regression

analysis (Moorthy and Ratcliffe, 1988; Van Der Voort et al., 1996; Williams and

Hoel, 2003; Cetin and Comert, 2006).
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• machine learning: most of them are supervised learning algorithms. They

can be trained to learn a relation between the input feature and target traffic

state. The most used approaches are, for example, artificial neural networks

(ANNs)(Dougherty and Cobbett, 1997; Jun and Ying, 2008) and support vector

machines (SVM)(Dougherty and Cobbett, 1997; Su et al., 2007).

Another class of models are developed based on traffic flow models. Many existing es-

timation models adopt the Kalman filter in their framework to incorporate Lagrangian

data and Eulerian data.

The Kalman filter (Kalman, 1960) is a recursive estimator which uses a system model

and multiple sequential observations to form state estimations. In the case of traffic

state estimation, the system model is usually the traffic flow models using Eulerian

data and the observations are provided by the Lagrangian sensors. The Kalman

filter can be conceptualized as two phases, ‘‘predict’’ and ‘‘correct’’. In the ‘‘predict’’

phase, the current prior estimate is calculated based on the system equation using the

previous posterior estimate. The ‘‘correct’’ phase combines the current prior estimate

with the current observation to generate the current posterior estimate. This process

repeats the two phases at each time step. An illustration of the Kalman filter for a

discrete linear system is shown in Figure 2.4 , where x̂−k is the current prior estimate,

x̂k−1 is the previous posterior estimate, zk is the current observation, uk is the current

input, and x̂k is the current posterior estimate. The error covariance at time step k,

Pk, is also updated in a similar fashion to represent the reliability of the observations.

The standard Kalman filter only works for linear system. A major modeling challenge

of the traffic state estimation using Kalman filter is how to adapter the filter to

nonlinear traffic flow models.

For the purpose of velocity field estimation, Work et al. (2008) developed an ensemble

15



Figure 2.4: A linear discrete Kalman filter

Source: Welch and Bishop (1995)

Kalman filter to incorporate both mobile sensor and loop detector data based on

the cell transmission model (CTM)(Daganzo, 1994), which is a numerical scheme

of the LWR model. This study uses the vehicle speed as the state variables with a

Greenshield’s fundamental diagram(Greenshields and Bibbins, 1935). The ensemble

Kalman filter can be considered as a Monte Carlo approximation of the Kalman filter,

which updates the estimate in time by integrating a collection of possible system state.

Compared with the standard Kalman filter, the ensemble integration can capture

highly nonlinearities relatively well at the cost of increased computation time.

The research by Herrera and Bayen (2008) developed a Kalman filter to combine both

Lagrangian and Eulerian data. To resolve the nonlinearity caused by the CTM model,

the method implemented a piece-wise linear version of the CTM, switching-mode

model (Muñoz et al., 2003). In this case, the standard Kalman filter techniques can be

used to describe the involution of the system in each condition with the corresponding

system model. In addition, the study also tested the nudging method (Newtonian
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relaxation) for data fusion, which relaxes the flow conservation of the LWR model by

adding source terms. While implementing the CTM based on Eulerian sensor data,

the source terms are inserted to ‘‘nudge’’ the cell density towards the Lagrangian

observations. The two methods were evaluated with real world traffic data, and it

was found that the Kalman filtering slightly outperformed the nudging method at the

cost of being more complicated to tune and implement.

The study by Deng et al. (2013) proposed an estimation method based on a stochastic

three-detector model (STD) to incorporate heterogeneous data sources. The method

can be viewed as the ”correct” step of the Kalman filter, where a number of linear

measurement equations are derived to map the traffic measurements as functions of

the state variables (cumulative flow at both ends of the road segment). The state esti-

mation is then formulated as an optimization problem to minimize difference between

the estimated cumulative counts with observed cumulative counts at the sensor’s

location. The Newell’s simplified kinematic wave models are used as constraints.

The second order traffic flow model, for example, Payne’s model(Payne, 1971), extends

the LWR model to consider the fact that the vehicles have finite acceleration and

deceleration rate. Nanthawichit et al. (2003) adopted Payne’s traffic flow model for

traffic state estimation. A Kalman filtering estimation framework was developed

to combine data from both fixed location sensors and probe sensors. However, the

weighting factor is fixed to be 0.5, which assigns equal weight to both Lagrangian

and Eulerian data sources at all time. The study by Wang and Papageorgiou (2005)

designed an extended Kalman-filtering method to estimate traffic state based on

Eulerian sensors. The second order model, MATE(Papageorgiou et al., 1990), is used

to describe the traffic dynamics. The extended Kalman filter applies Taylor expansion

at each time step to linearize the traffic flow model around the current system states

such that the standard linear Kalman filter equations can be used.
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The study by Claudel and Bayen (2010a,b) adopted the Hamilton-Jacobi form of

the LWR model and developed a traffic estimation using cumulative flows as state

variables. Different from previous reviewed studies, the estimation method consider

Lagrangian observations as ‘‘internal boundary condition’’. Using the viability theory,

the traffic state (cumulative count) at arbitrary point inside the study domain can be

found using a minimization principle. Compared with the numerical scheme of the

LWR model, e.g. CTM, this approach guarantees an exact solution with piece-wise

linear initial and boundary data.
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Chapter 3

Network Sensor Health Problem

3.1 Introduction

In this chapter, we propose to solve the sensor health problem on the network

level based on the traffic flow conservation. Thus we refer to this problem as the

Network Sensor Health Problem (NSHP). When all sensors work flawlessly, the traffic

conservation principle should be strictly followed. In practice, the cumulative flow1

over a sufficiently long period of time (e.g. daily flow) should roughly follow the

conservation law unless the existence of unhealthy sensors. Therefore, it is possible to

pick out unhealthy sensors based on the violation of flow conservation. In the study

by Waller et al. (2008), an index of network consistency was introduced to describe

the agreement in the conservation of cumulative vehicle counts between neighboring

sensors at a node. However, this problem is still local for individual nodes. In this

study, the proposed method evaluates the flow consistency among observed traffic

flows in the whole network and assign health index for each individual sensors. Thus

the NSHP is more versatile, as it applies even not all links at a node are monitored

1The cumulative flows are abbreviated as ‘‘flows’’ hereafter
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(equipped with flow sensors), and more powerful as it combines information from

multiple sensors.

The network flow conservation principle leads to a system of linear equations in

terms of link flows, from which one can separate links into base links and non-base

links, such that flows on non-base links can be derived from those on base links. The

way to separate base and non-base links is generally not unique. In this study, we

aim to select base and non-base links such that the difference between observed and

estimated non-base link flows is minimized. In this way, the link flows on the base

links are the most consistent with respect to network flow conservation. The sensors

on the corresponding non-base links are likely to be unhealthy. As a feature of this

optimization problem, we usually have multiple solutions. Thus we define the health

index for an individual sensor as the frequency that it appears in the solution. Unlike

the binary ‘‘health label’’ (healthy v.s. unhealthy) used in most existing methods,

the health index is a number in the range of zero to one. The health indices can

provide guidelines for researchers to filter unreliable traffic data and for transportation

agencies to prioritize tasks for repairing and replacing sensors.

The rest of the chapter is organized as follows. In Section 3.2, we briefly review

the node-based flow conservation formulation, which was proposed by Ng (2012) to

solve the network sensor location problem (NSLP), and formulate the NSHP as a

combinatorial optimization problem. In Section 3.3, we first examine the brute-force

method to find all solutions and then propose a greedy search algorithm to find a

subset of solutions more effectively. In Section 3.4, we solve the NSHP for a freeway

network on SR-91 and compare the results with the health statuses provided by PeMS.

In Section 3.5 we summarize the results of this research.
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3.2 Formulation

The NSHP formulation is developed based on a node-based formulation of network

flow conservation, which was also used by Ng (2012) to solve the Network Sensor

Location Problem (NSLP). We try to identify problematic sensors by comparing the

estimated link flows with the observations. The intuition behind this is, the flow

estimated from the healthy sensors measurements are expected to be more consistent

with observations. The NSLP is an observability problem to determine the optimal

allocation of counting sensors to estimate all link flows (i.e. to achieve full link

observability)(Hu et al., 2009). It is also referred to as the link observability problem

by Castillo et al. (2010). In most cases, the NSLP is identified as a sub-problem

of O-D estimation (Gan et al., 2005; Gentili and Mirchandani, 2011), rather than a

stand-alone problem. This may explain why the first proposed solution maintains the

requirements of path enumeration (Hu et al., 2009), which is a common requirement

for O-D estimation problems. In large-scale networks, this requirement becomes

impractical. The recent work of Ng (2012) proposed a node-based approach which

does not require an explicit enumeration of the routes. In this section, we first define

base and non-base links according to network flow conservation and then formulate

the NSHP as an optimization problem to minimize the inconsistency among observed

link flows. Then we define the health index for each sensor. We consider a traffic

network G = (N,L), where N is the set of non-centroid, and L is the set of links.

The centroids are the nodes where traffic originates/is destined to, and non-centroids

denotes all the other nodes where its in-flux equals out-flux. In general, we can acquire

G by removing all centroids in a general traffic network. The node-link incidence
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matrix of G is denoted by ∆, which has the following entries:

δij =


−1 if the jth link is the outgoing link of node i;

1 if the jth link is the incoming link of node i;

0 otherwise.

(3.1)

3.2.1 The Node-based Flow Conservation

The flow conservation at non-centroids nodes can be expressed as:

∆FL = 0, (3.2)

where ∆ is the node-link incidence matrix of network G formed by non-centroid nodes,

and FL is the vector of flows on all links. Note that the flow conservation is only

valid for non-centroid nodes. Suppose that the columns in ∆ can be grouped into two

sub-matrices ∆K′ and ∆K , whose columns correspond to two sets of links, K ′ and

K, respectively, such that ∆K′ is an invertible square matrix of dimension |N | × |N |.

Thus the dimension of ∆K is |N | × (|L| − |N |). Then the elements in FL can also be

grouped correspondingly and (3.2) can be rewritten as

(
∆K′ ∆K

) FK′

FK

 = 0. (3.3)

The existence of such invertible sub-matrix, ∆K′ , is proved as Proposition 1 in (Ng,

2012).

Since ∆K′ is invertible, it immediately follows that

FK′ = −∆−1
K′∆KFK . (3.4)
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That is, if one observes FK , then FK′ can be calculated as −∆−1
K′∆KFK . Thus we

refer to K as a base set of (|L| − |N |) links, and K ′ as a non-base set of |N | links;

correspondingly, the links are called base and non-base links. According to 3.4, K is

a base set if and only if ∆K′ is a full rank matrix. The NSLP is solved if one finds a

base set; i.e., all link flows become observable if sensors are installed on a base set of

links (Ng, 2012).

Note that, however, there can be multiple base sets, K. We denote the collection of

base sets by B. To obtain a base set, one can use the Gaussian elimination method as

in (Ng, 2012) to find the linearly independent columns which form a full rank matrix

∆K′ .

3.2.2 Sensor Health Index

Based on the network flow conservation formulation in Section 3.2, we formulate

the NSHP and calculate the sensor health indices for individual sensors. Consider

a trimmed traffic network G = (N,L) with flow sensors installed on link set M , i.e.

the link flows on M , FM , are observable. We further assume a base flow set, FK , is

observable. That is,  K ∈ B,

K ⊆M.
(3.5)

We call M and FM as monitored links and observed flow sets, respectively. Then

M \K is the set of monitored non-base links. In reality, the flow counting sensors

tend to cover a substantial number of links. Thus, it is highly likely that multiple

base link sets are observable. The relation between the link sets are shown in Figure

3.1.

In reality, (3.4) is not true due to the existence of random of systematic errors. The
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Figure 3.1: Illustration of relations between link sets

more realistic version is,

F̂K′ = −∆−1
K′∆KFK 6= FK′ . (3.6)

To measure the inconsistency among flows on the base links, we propose to compare

the calculated non-base flows with the observed non-base flows. However, only the

link flows on M are observable due to the allocation of the flow counting sensors.

To cope with this situation, we compare the difference in observed non-base link

flows FM\K , which is obtained by removing the unobserved link flows from FK′ . As a

general measurement of inconsistency for an arbitrary base set K, the sum of squared

errors for the observed non-base link flows is calculated as follows:

SSE(K|FM) = (F̂M\K − FM\K)T (F̂M\K − FM\K). (3.7)

After adding the constraints, the NSHP is formulated as (3.8).

min
K

SSE(K|FM) (3.8a)

s.t. K ⊆M, (3.8b)

K ∈ B. (3.8c)

The objective function (3.7) measures the inconsistency between calculated and

observed flows on monitored, non-base links so as to identify an optimal base set,
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K. Then, the flow counting sensors on the rest of the links, K ′, are considered to be

suboptimal. Constraint (3.8b) states that links in K must be monitored. Constraint

(3.8c) requires K to be a base set. From the formulation, we can see that the NSHP

cannot be solved when none of the base link sets are covered by the sensors.

The NSHP is a combinatorial optimization problem, and it usually has multiple

optimal solutions. Thus we can define B∗ as the collection of all optimal sets,

B∗ = {K∗ : arg minSSE(K∗|FM)}, (3.9)

where K∗ is an optimal set which satisfies both (3.8b) and (3.8b).

The health index for a sensor is then defined as the frequency that it appears in the

optimal sets, formally:

HIi =

∑|B∗|
j=1 θij

|B∗|
(3.10)

where HIi is the health index of sensor i, |B∗| is the total number of optimal sets.

The indicator θij is defined as:

θij =


1 sensor i is in optimal set K∗j

0 sensor i is not in optimal set K∗j

(3.11)

To demonstrate the calculation of the health index, let us consider a simple network in

Figure 3.2. The links and nodes are denoted by their IDs and the traffic directions are

marked by the arrows. The solid lines stand for the monitored links, M = {1, 2, 4, 5, 6}.
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Figure 3.2: Sample Network

The node-link incidence matrix of this network is

∆ =



Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Node 1 1 1 −1 −1 0 0

Node 2 0 0 1 0 −1 0

Node 3 0 0 0 1 1 −1

 . (3.12)

Assume observed link flow vector is

FM =



f1

f2

f4

f5

f6


=



300

200

200

100

600


.

A quick check shows that the observed link flows are not consistent. For example,

f̂6 = f4 + f5 = 300 6= f6 = 600.
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Note that the matrix after removing the corresponding columns of link 1,2, and 4,

∆K′ =



Link 3 Link 5 Link 6

Node 1 −1 0 0

Node 2 1 −1 0

Node 3 0 1 −1

, (3.13)

is full-rank. Thus {1, 2, 4} constitute a base set; i.e., K = {1, 2, 4}. Correspondingly,

K ′ = {3, 5, 6}, and the flow for link 3, 5, and 6 can be calculated as

F̂K′ =


f̂3

f̂5

f̂6

 = −


−1 0 0

1 −1 0

0 1 −1


−1 

1 1 −1

0 0 0

0 0 1




300

200

200

 =


300

300

500

 .

For the monitored, non-base link set, M \K, we have

F̂M\K =

 f̂5

f̂6

 =

 300

500

 .

Comparing with the calculated and observed flows,

FM\K =

 f5

f6

 =

 100

600

 ,

we can calculate the SSE as,

SSE(K|FM) = (F̂M\K−FM\K)T (F̂M\K−FM\K) = (300−100)2+(500−600)2 = 50000

In Table 3.1, we list the SSE’s for 8 possible base sets and their corresponding
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Table 3.1: SSE for all base sets

Number Monitored Base Set Monitored Non-base Set SSE (×104)
1 1, 2, 4 5, 6 5
2 2, 4, 5 1, 6 13
3 1, 4, 5 2, 6 13
4 2, 5, 6 1, 4 10
5 2, 4, 6 1, 5 10
6 1, 5, 6 2, 4 10
7 1, 2, 5 4, 6 5
8 1, 4, 6 2, 5 10

monitored non-base sets using brute-force enumeration. From the table, we can see

that base sets 1 and 7 lead to the lowest flow inconsistency levels. We have found two

optimal sensor sets, {1,2,4} and {1,2,5} , where sensor 1 and 2 appeared twice, sensor

4 and sensor 5 appeared once. The optimal sets are summarized in Figure 3.3 and

the health index for each sensor are calculated accordingly. We can thus conclude

that sensor 1 and 2 are working fine, sensor 4 and sensor 5 might be problematic, and

sensor 6 is most likely to be broken.

1 2

1 100%

2 100%

4 50%

5 50%

6 0%

In optimal set

Not in optimal set

NSHP
ID Health Index

Figure 3.3: Calculation of sensor health index

As in this example, we can solve the NSHP and calculated the health index in a

relatively simple network with a brute-force method. However, the solution space

would increase exponentially as the network size grows. Therefore, there is a need

to develop more efficient methods to find the optimal sets and calculate the health
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indices for sensors in a large road network.

3.3 Solution Algorithm

The NSHP is a combinatorial optimization problem to determine which sensors to be

included in the ‘‘optimal base set’’.

3.3.1 The brute-force enumeration

Let us start with the brute-force enumeration algorithm. For a road network with

|M | monitored links, |L| − |M | unmonitored links, and |N | nodes, there would be( |M |
|L|−|N |

)
candidates to check.

Enumeration

The candidates are any combinations of choosing |L| − |N | sensors from M .

Evaluation

The evaluation step uses the SSE function in (3.7) to determine the score of the

current candidate. The evaluation function takes the base link set K and the observed

link flow FM as the inputs. For a given set of links K, we first check the rank of the

matrix consisted of columns from ∆ corresponding to K ′, denoted as ∆K′ . If ∆K′

is a full-rank matrix, K is a set of base links and the non-base link flows, FK′ can

be estimated using (3.6). By comparing the estimated and observed non-base flows,

FM\K , we calculate the SSE and use it as the score of the current candidate. If ∆K′ is
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not a full-rank matrix, the SSE is not calculable and we set its score to be infinity. We

denote the evaluation function as evl(K|FM ,∆). Based on the previous discussion,

s = evl(K|FM ,∆) =

 SSE(K|FM) if rank(∆K′) = |N |

∞ if rank(∆K′) < |N |
, (3.14)

where s is the score of candidate K.

Algorithm

We first generate all candidates in the ‘‘enumeration’’ step, and then calculate the

score for each candidate in the ‘‘evaluation’’ step. The optimal sets are the ones with

the lowest score. It is a straightforward approach to find all optimal sets when the

number of links and nodes are small.

3.3.2 The greedy search algorithm

The brute-force enumeration is not viable when we have a relatively large network.

In this case, a heuristic algorithm would be helpful. In this subsection, we present a

tailored greedy search algorithm for this problem. A general heuristic search algorithm

in its most basic form consists of the following steps (Russell and Norvig, 1995):

1. Initialization: Generate an initial candidate to the problem.

2. Evaluation: Apply an evaluation function to the current candidate to generate

a score. If the current candidate has the ‘‘best’’ score (the definition of ‘‘best’’

is usually tricky in many cases), return this candidate and quit.

3. Update: We expand the search from the current candidate by identifying the
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successor candidate and return to step two.

We detail each step of the proposed algorithm in the following subsections.

Initialization

We start the search with an arbitrary monitored base link set. This is equivalent

to finding |N | linearly independent columns in ∆ such that the remaining |L| − |N |

dependent columns correspond to monitored links.

Theorem 3.3.1. If the columns in ∆ corresponding to M ′, ∆M ′, are linearly depen-

dent, then not all unobserved link flows can be inferred from the observed link flows

.

Proof. We can group the columns in ∆ by the observability of link flows and rewrite

3.2 as:

∆M ′FM ′ = −∆MFM , (3.15)

where ∆′M is a matrix formed by columns corresponding to unmonitored links and

F ′M is the vector of unobserved link flows. ∆M is a matrix formed by columns

corresponding to monitored links and F ′M is the vector of observed link flows. Assume

the columns in ∆M ′ are linearly dependent. Let fi be the flow of link i corresponding

to a dependent column in ∆M ′ . We can apply the standard row operations to put ∆M ′

in its reduced row echelon form. By the definition of the reduced row echelon form

(Lay, 1997), the column corresponding to link i does not contain a leading coefficient,

so fi cannot be expressed as a linear combination of observed flows alone and thus

cannot be inferred from observed link flows.

To find an initial solution, we reorganize ∆ by placing columns corresponding to M ′
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to the left and the ones corresponding to M to the right to form ∆∗ = [∆M ′ |∆M ].

We can then use Gaussian elimination to put ∆∗ into its reduced row echelon form.

According to Theorem 3.3.1, all the column in ∆M ′ should be independent otherwise

the unobserved flows cannot be calculated and the NSHP is not well-defined. Then

all the dependent columns should correspond to the monitored links. We can use the

links corresponding to independent columns as the initial solution.

The Gaussian elimination has a computational complexity of O(|L||N |2)2. The

computational cost is prohibitive for large network with abundant links, however,

faster algorithms are available (Gohberg et al., 1995). We denote the initialization

operation as K = Ini(∆, FM), where K is the initial base link set.

Evaluation

This step is exactly the same as the ‘‘Evaluation’’ step in Subsection 3.3.1.

Update

Recall that a necessary condition for K to be a base link set is |K| = |L| − |N |. For

example, given a network with 16 links, 12 nodes and 10 monitored links, the base set

is to choose 16− 12 = 4 links from 10 monitored links. The update process generates

a new candidate from the current candidate while keeping the size of the base link

set unchanged. We introduce a ‘‘swap’’ operation, which switches one observed link

in the base set with another observed link in the non-base set at a time as shown in

Figure 3.4.

2From an algorithm analysis perspective, to eliminate elements in the first column is (|N | − 1)L
operations: |N |− 1 entries need to be multiplied and subtracted, and this needs to be done |L| times).
The second would require (|N | − 2)(|L| − 1) operations. This process has to be repeated |N | − 1
times.

32



We denote the swap operation as Knew = swap(K, i, j), where Knew is the new base

set generated by swapping the i-th link in K with the j-th link in M \K (the total

number of possible swaps at each step is (|L| − |N |) · (|M | − |L|+ |N |)).

Monitored Non-base Link Set (M\K)

Monitored Base Link Set (K)

|L|-|N|

|M|-|L|+|N|

|L|-|N|

|M|-|L|+|N|

Figure 3.4: Swap operation

Algorithm

Starting from a initial guess, we check all possible swaps , calculate the corresponding

score using the evaluation function, and use the one with the smallest score as the

‘‘seed’’ for the next step. Once all possible swaps in the current step yield no smaller

score than that of the current ‘‘seed’’, the algorithm stops. The current ‘‘seed’’ is the

solution to NSHP. The pseudo code of the algorithm is provided in Algorithm 1. Due

to the property of the greedy search, the objective function is guaranteed to decrease

monotonically. However, this algorithm does not guarantee that the final candidate is

the real solution. In addition, it can find at most one of many solutions.

We apply the algorithm to solve the NSHP in the sample network shown in Figure

3.2. The node-link incident matrix in (3.12) is reorganized to get
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Algorithm 1: A Greedy Search Algorithm

Input:
∆−Node-link incidence matrix
FM−Observed link flow
Initialize:
K = Ini(∆, FM)
repeat
Kseed ← K
sseed ← evl(K|FM ,∆)
s∗ ← sseed
for i = 1 to |L| − |N | do

for j = 1 to |M | − |L|+ |N | do
Knew ← swap(K, i, j)
snew ← evl(Knew|FM ,∆)
if snew < s∗ then

s∗ = snew

until sseed ≤ s∗;
Output: Kseed, sseed

∆′ =



Link 3 Link 2 Link 6 Link 1 Link 4 Link 5

Node 1 −1 1 0 1 −1 0

Node 2 1 0 0 0 0 −1

Node 3 0 0 −1 0 1 1

 .

(3.16)

We use boxes to indicate non-base links and a vertical line to separate columns

corresponding to unmonitored links and monitored links, respectively.

It is apparent that the first three columns in ∆ have full-rank. Thus the initial base

set is {1, 4, 5}. The initial monitored non-base set is {2, 6} and the corresponding

score calculated from (3.7) is 130000. The searching process is illustrated in Figure

3.5, where the monitored non-base links are listed since their links flows are considered

to be problematic, the candidates with the lowest score in each step are indicated by
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a box. The calculated score is shown after each candidate. Starting from an initial

candidate of {2, 6}, {4, 6} has a lower score, and is thus used as the seed for the next

step. In step two, no candidate yields smaller score than {4, 6} after exhausting the

swaps, so {4, 6} is the optimal set. This means that the flows on link 4 and 6 are

problematic. Note that {5, 6} is also optimal since it has the same score as {4, 6}.

Thus we can get the same optimal sets and same health indices for all sensors.

 

{1,6}: 13 

{1,2}: ∞ 

{4,6}: 5* 

{2,4}: 10 
{5,6}: 5 

{2,5}: 10 

{1,6}: 13 

{1,4}: 10 

{2,6}: 13 

{2,4}: 10 

{5,6}: 5 

{4,5}: ∞ 

 

{2,6}: 13 

Score (× 104) 

Figure 3.5: Solution procedure for the sample network

Although we are fortunate to find all optimal sets in this case study, the heuristic

algorithm is not guaranteed to find all optimal sets in general. This poses potential

issues when calculating the sensor health index based on limited number of optimal

sets. However, if the optimal sets identified by the heuristic method is totally random,

the health index should still be meaningful as the healthy sensors would appear in the

majority of the optimal sets.

By using a heuristic algorithm rather than the brute-force enumeration, we trade

completeness for efficiency. In this algorithm, some candidates could be re-visited at

a later step. For example, {1, 6} is re-visited in the second step. To avoid inducing

redundant calculations, we can cache the score of visited candidates in implementation.
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3.4 A Real World Example

In this section, we calculate the health index for sensors on a real world network with

flow counts provided by PeMS. Both brute-force enumeration and the greedy search

algorithm are investigated and their results compared with PeMS health statuses

respectively. The network shown in Figure 3.6 represents the network of interest,

which is a stretch of eastbound State Route 91 (SR-91) in southern California. The

monitored links are labeled by their IDs. We use the total daily flow reported by the

PeMS system on Thursday, Feb 14th, 2013.
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Figure 3.6: The SR-91 east network

The selected network contains 30 links and 16 non-centroid nodes. Among them,

18 links are monitored as shown as solid lines in Figure 3.6. Here the HOV lanes

are considered separate links, except link 26 where the HOV lane is continuously

accessible at this location.

So the base link set contains (30− 16) = 14 links out of 18 monitored links, which

results in
(

18
14

)
= 3060 candidates to check with the enumerations. If we apply the

greedy search algorithm in the preceding section, there will be totally (18−14)×14 = 56

candidates to search within each step.

The greedy search process is illustrated in Figure 3.7. The candidates with infinite

scores are not shown for simplicity. Similar to Figure 3.5, the IDs of the monitored
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{7, 14, 21, 26}: 7.20 {1, 7, 14, 21}: 4.82 {1, 7, 14, 21}: 4.82

{7, 14, 17, 26}: 8.63 {7, 14, 21, 26}: 7.20 {3, 7, 14, 24}: 3.81

{7, 14, 17, 21}: 6.4 {7, 14, 21, 24}: 7.20 {3, 14, 21, 26}: 4.12 {3, 7, 14, 22}: 3.81

{7, 14, 17, 24}: 8.63 {3, 7, 21, 26}: 3.94 {7, 14, 21, 26}: 7.20

{7, 14, 21, 22}: 7.20 * {3, 7, 14, 26}: 3.81 {3, 14, 21, 26}: 4.12

{7, 14, 17, 22}: 8.63 {7, 14, 21, 24}: 7.20 {3, 7, 21, 26}: 3.94

{7, 14, 17, 20}: 6.42 {3, 14, 21, 24}: 4.12 {3, 7, 14, 21}: 4.82

{7, 14, 15, 21}: 6.42 {3, 7, 21, 24}: 3.94 {7, 14, 20, 26}: 7.20

{7, 13, 17, 21}: 6.42 {3, 7, 14, 24}: 3.81 {3, 14, 20, 26}: 4.12

{7, 10, 17, 21}: 7.91 {7, 14, 21, 22}: 7.20 {3, 7, 20, 26}: 3.94

{7, 10, 14, 21}: 5.63 {3, 14, 21, 22}: 4.12 {3, 7, 14, 20}: 4.82

{7, 8, 17, 21}: 7.91 {3, 7, 21, 22}: 3.94 {7, 14, 17, 26}: 8.63

{7, 8, 14, 21}: 5.63 {3, 7, 14, 22}: 3.81 {3, 14, 17, 26}: 3.98

{3, 14, 17, 21}: 5.63 {3, 7, 14, 20}: 4.82 {3, 7, 17, 26}: 3.88

{3, 7, 17, 21}: 5.45 {7, 14, 17, 21}: 6.42 {7, 14, 15, 26}: 8.63

{3, 7, 14, 21}: 4.82 {3, 14, 17, 21}: 5.63 {3, 14, 15, 26}: 3.98

{2, 14, 17, 21}: 5.63 {3, 7, 17, 21}: 5.45 {3, 7, 15, 26}: 3.88

{2, 7, 17, 21}: 5.45 {7, 14, 15, 21}: 6.42 {3, 7, 13, 26}: 3.81

{2, 7, 14, 21}: 4.82 {3, 14, 15, 21}: 5.63 {7, 10, 14, 26}: 6.27

{1, 14, 17, 21}: 5.63 {3, 7, 15, 21}: 5.45 {3, 10, 14, 26}: 3.98

{1, 7, 17, 21}: 5.45 {3, 7, 13, 21}: 4.82 {7, 8, 14, 26}: 6.27

{7, 10, 14, 21}: 5.63 {3, 8, 14, 26}: 3.98

{3, 10, 14, 21}: 7.21 {3, 6, 14, 26}: 3.81

{7, 8, 14, 21}: 5.63 {2, 7, 14, 26}: 3.81

{3, 8, 14, 21}: 7.21 {1, 7, 14, 26}: 3.81

{3, 6, 14, 21}: 4.82

{2, 7, 14, 21}: 4.82 Score ( 10 )

Figure 3.7: Lattice of solutions

non-base links are listed. The corresponding score is provided after the ID’s. Using

the method in Subsection 3.3.2, we find {7, 14, 17, 21} as an initial candidate to start

with.

In the first step, {3, 7, 14, 21} yields the lowest score. It is then used as the seed for

next step. In step two, {3, 7, 14, 26} is found to have the lowest score. In step three,

since all the variations have greater or equal score than {3, 7, 14, 26} (marked by a star

sign), the algorithm stops. The optimal base set corresponding to {3, 7, 14, 26} leads

to the minimum flow inconsistency, and the sensors on {3, 7, 14, 26} are considered to

be problematic. The flow on the problematic links can be inferred from the base links.

It is important to notice that {3, 7, 14, 26} is not the unique solution to the problem.

In step three, we have identified another six link sets (boxed in Figure 3.7) having

the same score. We can then calculate the health indices for the sensors as in Figure

3.8. Based on the health index, sensor 1 (29%), 7 (14%), 14(14%), 22 (71%), and 26

(43%) have the lowest health index among the sensors. In this case, we are able to

match all of the problematic sensors in PeMS dataset.
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1 2 3 4 5 6 7
1 GILBERT Mainline 86%
2 GILBERT HOV 86%
3 BROOKHURST Off Ramp 29%
6 BROOKHURST HOV 86%
7 BROOKHURST Mainline 14%
8 BROOKHURST On Ramp 100%
10 EUCLID Off Ramp 100%
13 EUCLID HOV 86%
14 EUCLID Mainline 14%
15 EUCLID On Ramp 100%
17 HARBOR 1 Off Ramp 100%
20 LEMON HOV 100%
21 LEMON Mainline 100% Healthy
22 LEMON On Ramp 71% High Value
24 EAST Off Ramp 86% Unstable
26 EAST Mainline 43%
27 ACACIA HOV 100% In optimal set
29 EAST On Ramp 100% Not in optimal set

Health IndexID PemsLocation Lane Type
NSHP (Greedy Search)

Pems Health Status 
	
	
	

Optimal Set 
	
	

Figure 3.8: Health Index (Greedy Search) v.s. PeMS

To confirm the effectiveness of the proposed method on this test network, we used

brute-force enumeration and found all 12 optimal sets from the 3060 possible candidates.

The results are listed in Figure 3.9. The first seven solutions are discovered by the

proposed heuristic search algorithm. The health indices are calculated based on the

frequency that the corresponding sensor appeared in the optimal set. The solutions of

the NSHP is compared with PeMS health indices in the last column.

If we rank the sensors by their corresponding health indices, we can clearly see that all

of the ‘‘high value’’ sensors have the lowest health indices. By using the network flow

conservation information, we are able to match all ‘‘high value’’ sensors successfully.

Although the proposed method assigned the same health index (67%) for three other

healthy sensors, the ‘‘unstable’’ sensor still has the fifth lowest health index among all

sensors. The detection error regarding the ‘‘unstable’’ sensor might be caused by the

duration of the aggregation time. Since we use accumulated daily flow in this case,

the short-period fluctuations in flow counts could cancel out with each other when

summed up.

38



1 2 3 4 5 6 7 8 9 10 11 12
1 GILBERT Mainline 67%
2 GILBERT HOV 83%
3 BROOKHURST Off Ramp 50%
6 BROOKHURST HOV 67%
7 BROOKHURST Mainline 33%
8 BROOKHURST On Ramp 100%
10 EUCLID Off Ramp 100%
13 EUCLID HOV 67%
14 EUCLID Mainline 33%
15 EUCLID On Ramp 100%
17 HARBOR 1 Off Ramp 100% Healthy
20 LEMON HOV 100% High Value
21 LEMON Mainline 100% Unstable
22 LEMON On Ramp 67%
24 EAST Off Ramp 92%
26 EAST Mainline 42%
27 ACACIA HOV 100% Healthy
29 EAST On Ramp 100% Unhealthy

Health IndexID PemsLocation Lane Type
NSHP (Brute‐force)

Pems Health status
	
	
	

NSHP Health Index
	
	

Figure 3.9: Health Index (Brute-force) v.s. PeMS

3.5 Summary

In this chapter, we formulated the network sensor health problem (NSHP) to find the

optimal base set of sensors whose measurements are the most consistent with respect

to the network flow conservation. We proposed the health index as a measurement to

indicate individual sensor’s health condition based on identified optimal sets. While

the brute-force enumeration can be used to find all optimal sets, we developed a

tailored greedy search algorithm to find some of the optimal sets effectively. The

formulation is further tested on a real world network to compare with the sensor

health status from PeMS. We found a perfect match between the health indices and

the results provided by PeMS. This indicates that the network flow conservation

information is extremely useful to evaluate sensor health and equally important as

any local information.
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Chapter 4

Traffic Estimation with Vehicle

Reidentification Data

4.1 Introduction

Despite the substantial progress made in traffic estimation, existing estimation methods

are limited since model parameters and initial states have to be predetermined. First,

most of the traffic flow models used by existing methods involve a number of model

parameters, especially those in the fundamental diagram, including the free-flow speed,

jam density, and shock wave speed. In most existing studies, the fundamental diagram

is assumed to be given, or calibrated before traffic estimation. Second, in some of the

existing studies, the initial states are assumed to be either empty (Deng et al., 2013)

or known (Sun et al., 2003). Such assumptions can limit the accuracy of the results

as well as their transferability to different locations and times.

In this chapter, we attempt to fill the gap by proposing a new method to simultaneously

estimate model parameters and traffic states on a homogeneous link with loop detector
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data and vehicle reidentification data. We refer to it as the LoopReid method

thereafter. Note that, by simultaneous estimation, we mean that model parameters in

the fundamental diagram, the initial states, and later traffic state can all be estimated

within the same framework, but calculations can still be sequentially ordered. This is

substantially different from existing methods where model parameters and initial states

have to be observed or estimated with other methods. The simultaneous estimation of

both parameters and states is achieved by formulating a single optimization problem

in terms of the initial number of vehicles and model parameters. Here we assume

that both Eulerian traffic count data and a portion of Lagrangian vehicle trajectory

data are available through loop detectors, and vehicle reidentification systems or

GPS devices, respectively. We then decouple the optimization problem such that the

initial number of vehicles can be calculated with a closed-form formula, and the model

parameters, including the jam density and shock wave speed in congested traffic, can

be computed with the Gauss-Newton method. Further, based on Newell’s model, we

can calculate the average densities of the segment as well as speeds, and flow-rates

inside the road segment.

The proposed framework has some similarities with the stochastic three detector

(STD) method proposed in (Deng et al., 2013): both are based on Newell’s simplified

kinematic wave model and use the same types of data, including Eulerian traffic counts

and Lagrangian vehicle trajectories. However, the two methods are fundamentally

different. Deng et al. (2013) assumes predetermined model parameters and initial

states, and the resulting optimization problems are substantially different.

The rest of the chapter is organized as follows. In Section 4.2, we present the new

estimation framework based on Newell’s model for a congested road segment and

formulate an optimization problem in the initial traffic state and model parameters.

In Section 4.3, we present the solution method and discuss some properties of the
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optimization problem. In Section 4.4, we use the NGSIM data (USDOT, 2008) to test

the validity of our method with different correct matching rates. As a benchmark,

we compare our method with the STD method which uses the same dataset. We

conclude the this chapter in Section 4.5.

4.2 The LoopReid estimation method

 

 

 

 

 

 

Vehicle Trajectory 

Information Propagation 

0 

 

 

 

 

Figure 4.1: Illustration of a vehicle trajectory and kinematic waves on a road segment

The proposed traffic estimation method is developed based on Newell’s simplified

kinematic wave model (2.8) using Loop detector data and vehicle reidentificaiton data.

The Eulerian traffic count data, F (t) and G(t), are available through loop detectors

at the two ends of a road segment; in addition, Lagrangian vehicle data, the entry

and exit times of vehicles, are available through vehicle reidentification technologies.

We assume that I vehicles are reidentified. If vehicle i (i = 1, · · · , I) is reidentified

at the downstream boundary, we denote its entry and exit times in a road segment

by r(i) and s(i), respectively. If we denote X(t, i) as the location of vehicle i at t,
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then X(r(i), i) = 0 and X(s(i), i) = l. Here we assume only a portion of vehicles are

reidentified. In Figure 4.1, we illustrate the trajectory of vehicle i (the solid curve),

whose entry and exit times are known, and the kinematic waves in uncongested and

congested traffic respectively (the dashed lines).

4.2.1 An optimization problem in initial states and parame-

ters

Assume that vehicles follow the First-In-First-Out (FIFO) principle on the whole road

segment, then the contour lines of N(t, x) are vehicle trajectories. In particular, the

cumulative numbers of vehicles should be equal when a reidentified vehicle passes the

upstream and downstream boundaries; i.e.,

F (r(i)) + n0 = G(s(i)). (4.1)

From (2.7) and (2.8), we have

F (r(i)) + n0 =N(r(i), 0) = min

{
F (r(i)) + n0, G(r(i)− l

W
) +Kl

}
, (4.2)

G(s(i)) = min

{
F (s(i)− l

V
) + n0, G(s(i))

}
. (4.3)

Combining the above equations with (4.1) we further have

G(s(i)) = min

{
F (r(i)) + n0, G(r(i)− l

W
) +Kl

}
, (4.4)

F (r(i)) + n0 = min

{
F (s(i)− l

V
) + n0, G(s(i))

}
. (4.5)
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In particular, when traffic is congested, traffic information propagates upstream with

a speed of −W , and we have

G(s(i)) = G(r(i)− l

W
) +Kl, (4.6)

when traffic is uncongested, traffic information propagates downstream with a speed

of V , and we have

F (r(i)) + n0 = F (s(i)− l

V
) + n0. (4.7)

In this study, we focus on congested traffic conditions, as the uncongested traffic

condition is less of a concern in practice. Therefore, we will use (4.6) for further

discussion, but the results for (4.7) will be similar.

Note that the equalities in (4.1) and (4.6) can be altered by the following four types

of errors:

1. Errors caused by the measurement of cumulative traffic counts. Cumulative

traffic counts are usually collected with loop detectors and can be corrupted

by noise and errors, due to a variety of problems including pavement/saw-cut

failures, intermittent communications, double counting of lane-changing vehicles,

and so on (Coifman, 2006; Lee and Coifman, 2011). According to PeMS, which is

a widely used data source for the freeway sensor system in California, only 67%

of the detectors were working properly in May, 2014. Some districts (e.g. district

7 in Los Angeles County) have even lower proportions of working detectors.

2. Errors caused by the vehicle reidentification technology. The entry and exit times

of reidentified vehicles can be corrupted by time shifts and vehicle mismatching

in the vehicle reidentification technology. The time shift is mainly caused by

the spatial and temporal inaccuracy of the underlying detection technology,

including the Bluetooth technology or the GPS technology (Wang et al., 2011).
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Mismatch errors can be caused by a variety of algorithmic and technology

limitations. Jeng (2007) defined the correct matching rate (CMR) as the ratio

between total number of correct matched vehicles and total number of vehicles,

and obtained CMR of 69.76% to 73.59% in off-peak conditions and 50.68% to

54.20% in peak conditions.

3. Errors caused by the violation of the FIFO principle. The FIFO principle is a

fundamental assumption to derive both (4.1) and (4.6). In reality, however, the

principle is only approximately followed on a multi-lane road, as travel speeds

of different types of vehicles on different lanes are usually different in the same

longitudinal location at the same time. In the research by Jin and Li (2007),

it was confirmed that the FIFO principle is generally violated, and the level of

FIFO violation was empirically studied with an NGSIM I80 database.

4. Errors associated with Newell’s simplified kinematic wave theory. Newell’s

simplified kinematic wave theory, (2.8), is valid only under a number of assump-

tions: (i) there exists an equilibrium relation between flow-rate and density; (ii)

the fundamental diagram is triangular; and (iii) initially there exists no tran-

sonic rarefaction wave. In reality, however, (i) the existence of an equilibrium

flow-density relation is only approximately true, as the observed data are be

quite scattered (Hall et al., 1986); (ii) the shape of the fundamental diagram is

also debatable, due to impacts of lane changes, multi-class vehicles, and so on

(Jin, 2013); and (iii) incidents could create some transonic rarefaction waves on

a road.

To carefully study the properties of the aforementioned errors can be fundamentally

important, but is beyond the scope of this study. Here we introduce error terms into
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both (4.1) and (4.6), such that

n0 = G(s(i))− F (r(i)) + εi, (4.8)

G(s(i)) = G(r(i)− l

W
) +Kl + ξi. (4.9)

In particular, εi is related to the first three types of errors, and ξi all four types of

errors. We propose to estimate n0, W , and K by minimizing the sum of squared

errors in (4.8) and (4.9) with a least square estimation framework (Charnes et al.,

1976):

min
n̂0,Ŵ ,K̂

I∑
i=1

ε2i + ξ2
i =

I∑
i=1

[G(s(i))− F (r(i))− n̂0]2 + [G(s(i))−G(r(i)− l

Ŵ
)− K̂l]2,

(4.10)

where n̂0 is the estimated number of vehicles initially on the road segment, and Ŵ

and K̂ are respectively estimated shock wave speed and jam density.

4.2.2 Estimation of traffic state

Once the initial number of vehicles and the three model parameters are estimated

by solving the optimization problem, (4.10), we can estimate the traffic state in the

spatio-temporal domain where the Newell’s model applies (x > max{V t, l −Wt}):

• The cumulative flows can be calculated using Newell’s simplified kinematic wave

model, (2.8), as follows:

N̂(t, x) = min{F (t− x

V̂
) + n̂0, G(t− l − x

Ŵ
) + K̂ · (l − x)}, (4.11)

where V̂ is the estimated free-flow speed which can be estimated in uncongested
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traffic by solving a similar optimization problem as in (4.10).

• From the estimated cumulative flows, we can also estimate the average density

inside a subsegment from x1 to x2 at time t, denoted by k̂(t;x1, x2):

k̂(t;x1, x2) =
1

x2 − x1

[G(t− l − x1

Ŵ
)−G(t− l − x2

Ŵ
) + K̂(x2 − x1)]. (4.12)

In particular, for the whole road segment from 0 to l, the average density can

be estimated by

k̂(t; 0, l) =
1

l
[F (t)−G(t) + n̂0]. (4.13)

Note that the estimated average density for the whole road segment only involves

the estimated initial number of vehicles, and does not directly depend on K̂ or

Ŵ .

• We can also estimate the flow-rate at any location x ∈ [0, l] and time t. Since

we only consider congested traffic, the flow-rate at location x is determined by

the cumulative flow at the downstream:

q̂(t, x) =
N(t+ ∆t, x)−N(t)

∆t
=
G(t+ ∆t− l−x

Ŵ
)−G(t− l−x

Ŵ
)

∆t
, (4.14)

where ∆t is the time-step size. In particular, the upstream flow-rate, f(t) =

q(t, 0), can be estimated as

f̂(t) =
G(t+ ∆t− l

Ŵ
)−G(t− l

Ŵ
)

∆t
. (4.15)

Alternatively, f(t) can be calculated from observed cumulative traffic counts at

the upstream boundary

f(t) =
F (t+ ∆t)− F (t)

∆t
. (4.16)
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By comparing f̂(t) and f(t) we can measure the accuracy of the new estimation

method.

In addition to the aforementioned variables, we can also estimate travel speeds, travel

times, and other traffic information from the estimated cumulative flows, N̂(t, x).

4.3 Solution of the optimization problem

In this section, we present a solution method to (4.10) and discuss some of its

properties.

4.3.1 A decoupling method

The optimization problem, (4.10), can be decoupled as follows.

Theorem 4.3.1. The optimization problem, (4.10), can be decoupled into the following

two optimization problems:

min
n̂0

I∑
i=1

[G(s(i))− F (r(i))− n̂0]2, (4.17a)

min
Ŵ ,K̂

I∑
i=1

[G(s(i))−G(r(i)− l

Ŵ
)− K̂l]2. (4.17b)

Proof. This is straightforward, since, in the objective function of (4.10), n̂0 appears

only in the first term, and Ŵ and K̂ appear only in the second term. Thus the

objective function of (4.10) is minimized if and only if both terms are minimized.

Therefore we can solve (4.17a) and (4.17b) separately. In particular, since the

objective function in (4.17a) is quadratic in n̂0, it has the following closed-form
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analytical solution.

Corollary 4.3.2. The initial number of vehicles on the road segment can be estimated

by

n̂0 =

∑I
i=1[G(s(i))− F (r(i))]

I
. (4.18)

That is, the initial number of vehicles equals the mean value of the differences in the

cumulative counts at the entry and exit times of reidentified vehicles.

Proof. Taking the derivative of the objective function in (4.17a) with respect to n̂0

and setting it to zero, we can easily obtain (4.18). Furthermore we can verify that the

objective function attains its minimum, since the second-order derivative is positive

at the optimal point.

Although the objective function in (4.17b) is quadratic in K̂, its relation with Ŵ is

not in a simple functional form. Thus (4.17b) cannot be analytically solved. Since the

objective function in (4.17b) is quadratic in K̂, with known Ŵ the optimal value of

K̂ can be analytically solved as

K̂ =
I∑
i=1

G(s(i))−G(r(i)− l

Ŵ
)

Il
. (4.19)

In addition, if the flow-rate is relatively constant over time; i.e., when traffic is in a

steady state (Cassidy, 1998) with an average flow-rate of q̄, we have

G(s(i))−G(r(i)− l

Ŵ
) ≈ (s(i)− r(i) +

l

Ŵ
)q̄. (4.20)

In this case, the objective function in (4.17b) is also convex in Ŵ . This property

justifies the usage of a gradient-based Gauss-Newton method (Milliken, 1990).

We denote θ as the column vector of (Ŵ , K̂)T . Starting from an initial guess θ(0) =
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(Ŵ (0), K̂(0))T , the Gauss-Newton method updates the results by iterating

θ(j+1) = θ(j) − [J(θ(j))TJ(θ(j))]−1J(θ(j))Tξ(θ(j)),

is the Jacobian matrix of ξ(θ) = (ξ1(θ), ξ2(θ), . . . , ξI(θ))T and is defined as

J(θ) =


∂ξ1(θ)

∂Ŵ

∂ξ1(θ)

∂K̂

...
...

∂ξI(θ)

∂Ŵ

∂ξI(θ)

∂K̂

 . (4.21)

The essential idea is to approximate the Hessian matrix of the objective function,

ξT (θ(j))ξ(θ(j)), with its first order approximation J(θ(j))TJ(θ(j)) at time-step j. The

iteration stops when the solution converges. We consider that the algorithm has

converged when the second norm of the error ||θ(j+1)−θ(j)|| is smaller than a predefined

error bound (we used 10−4 as it is a typical setting for engineering practice).

In this problem, the elements in J(θ) are (i = 1, · · · , I)

∂ξi(θ)

∂Ŵ
= − l

Ŵ 2

dG(t)

dt
|t=r(i)− l

Ŵ

= − l

Ŵ 2
g(r(i)− l

Ŵ
),
∂ξi(θ)

∂K̂
= −l. (4.22)

The downstream flow-rate in (4.22), g(r(i)− l

Ŵ
), is approximated by the the forward

finite difference,

g(r(i)− l

Ŵ
) ≈

G(r(i)− l

Ŵ
+ ∆t)−G(r(i)− l

Ŵ
)

∆t
, (4.23)

where ∆t is the time-step size. For simplicity, we fix the time-step size to be 30

seconds.
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4.3.2 Potential issue with near-stationary traffic

When traffic is absolutely stationary such that the trajectories of vehicles are parallel

lines, we denote the density, speed, and flow-rate by k, v, and q, respectively. Here

q = kv. Assuming that there are no measurement errors in the cumulative traffic

counts, then

G(s(i))−G(r(i)− l

Ŵ
) = (s(i)− r(i) +

l

Ŵ
)q,

Further, assuming that there are no errors caused by reidentification technologies, the

travel time for reindentified vehicle i is constant

s(i)− r(i) =
l

v
. (4.24)

Thus the optimization problem, (4.17b), can be simplified as

min
Ŵ ,K̂

l2 ·
I∑
i=1

(k +
q

Ŵ
− K̂)2, (4.25)

which is analytically solved by

K̂ = k +
q

Ŵ
. (4.26)

In this case, Ŵ and K̂ follow a hyperbolic relationship, and cannot be determined

uniquely. That is, if vehicles have parallel trajectories in stationary traffic, there are

multiple (infinite) solutions for Ŵ and K̂.

In reality, it is impossible for traffic to be absolutely stationary. However, it is possible

that the traffic is in near-stationary state. In this case, the objective function in

(4.17b) becomes relatively flat and its value is almost constant for a large range of

values in Ŵ and K̂. Thus, the parameters are hardly identifiable. This insight was

also used in calibrating car-following models (Yang et al., 2011). Therefore, such

limitations are actually caused by a lack of variation in the observed data, not the
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estimation framework itself.

4.4 Applications to NGSIM I101 dataset

In this section, the performance of the proposed method is evaluated in terms of its

ability to estimate the initial traffic state (n0), the average density for the whole

road segment, and the upstream flow-rate. Here the data are chosen from the Next

Generation Simulation (NGSIM) database (USDOT, 2008) for the US 101 freeway

in Los Angeles, CA, from 7:50 AM to 8:35 AM on June 15, 2005. The study site

is a segment between the Ventura Blvd and the Cahuenga Blvd off-ramps on the

southbound US 101 freeway as shown in Figure 4.2. The segment is about 0.13 miles

long with five lanes and one auxiliary lane. Using the the interval 7:50 AM to 8:05

AM as an example, the first three minutes are used as the warm-up period. After 7:53

AM, all the vehicle trajectories are used in estimation

The 45-min period is split into three 15-minute intervals. In this study, we only

consider the through traffic which passed both upstream and downstream of the road

segment. There are 1894 vehicle trajectories in the first time period, 1842 in the

second time period, and 1698 in the third period. We deploy virtual detectors at both

ends of the road segment and generated volume counts and vehicle entry/exit times

based on vehicles’ longitudinal coordinates (‘‘LocalY’’ field in the NGSIM trajectory

dataset). While there has been some discussion about the NGSIM data accuracy in

recent years (Choi, 2014; Punzo et al., 2011; Thiemann et al., 2008), most of the

discovered issues are related to speed and acceleration. The longitudinal coordinates

are unbiased and it is acceptable to use it as the actual vehicle path(Punzo et al.,

2011).

52



Ventura Blvd On Ramp

Cahuenga Blvd Off Ramp

70
0 
ft

T=7:50 AM T=7:52 AM

Flow Counting Sensor

Reidentification Sensor

Tracked Vehicle Trajectory

Untracked Vehicle Trajectory 

Lane Used in the study

Time T=8:05 AM

Warm‐up Estimation Horizon

Figure 4.2: Illustration of the Study Site

4.4.1 Data Preparation

On average, it took around 25 seconds for vehicles to go through this segment under

congested conditions. Only the left five lanes of data were used since the auxiliary

lane had much lower flow-rates and was significantly under-utilized, which violates

the congested traffic state assumption. To study the impact from sample size of

vehicle reidentification, we used four different CMRs (100%, 50% , 20%, 5%) for each

time interval; i.e., we assume respectively 100%, 50%, 20%, and 5% of all vehicles

are correctly reidentified at both upstream and downstream boundaries and their

entry/exit times are used in the estimation. We use a 3-minute warm-up period such

that all vehicle trajectories are captured in the spatial-temporal domain (see Figure

4.2).
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The sampling frequency of NGSIM is 10Hz. For vehicle i, its location at time step j

is X(j∆t, i), where ∆t = 0.1s. We prepared two datasets for the estimation method,

namely, the vehicle reidentification measurements and the flow measurements.
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Figure 4.3: Piecewise linear interpolation of cumulative flows

• The vehicle reidentification data contain the entry/exit times of individual

vehicles at the study site. Let x0 and xl denote the entry and exit point of the

segment respectively. We used a linear interpolation function to find the entry

time s(i), formally,

s(i) = j∆t+
x0 −X(j∆t, i)

X(j∆t+ ∆t, i)−X(j∆t, i)
∆t,

where j satisfies X(j∆t, i) ≤ x0 ≤ X(j∆t+ ∆t, i). Similarly, the exit time is

r(i) = j′∆t+
xl −X(j′∆t, i)

X(j′∆t+ ∆t, i)−X(j′∆t, i)
∆t,

where j′ is chosen such that X(j′∆t, i) ≤ xl ≤ X(j′∆t+ ∆t, i).

• We can interpolate the cumulative flow based on the entry and exit times,

s(i) and r(i), for vehicle i. The cumulative flow functions F (t) and G(t) are
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practically step functions. However, it is preferable to approximate them

with continuous functions which are easier to evaluate. In particular, we

can find the instantaneous upstream flow-rate at time t by evaluating f(t) =

lim∆t→0
F (t+∆t)−F (t)

∆t
at almost all points, and the same for downstream flow-rate

g(t). Here, we use the approximation method in (Daganzo, 1997). The method

approximates the step function with a piecewise linear curve passing through

the crests as illustrated in Figure 4.3. In the plot, the cumulative flow function

at the upstream, F (t), is approximated by F̃ (t). The resulting function is

differentiable almost everywhere except at the transition points.

4.4.2 Estimation of initial states and model parameters

We first estimate the initial number of vehicles on the road segment, n̂0, and the model

parameters, Ŵ and K̂, with methods presented in Section 4.3.1. In the Gauss-Newton

method, the initial guess of Ŵ is 20 miles per hour and that of K̂ is 200 vehicles per

mile per lane.

The results in Table 4.1 provides mean values of n̂0, Ŵ and K̂ followed by their

standard deviation for 100 runs each. The true values of n0 are shown in the

parentheses in the header line. First, there is no clear correlation between the mean

values of the estimation and the CMRs. The mean values are relatively constant

with different CMRs. Second, the variance of the estimation increases as the CMR

decreases. This trend indicates that the estimation precision is lower with fewer

reidentification observations. Compared with the true values, the estimation of the

initial states is very accurate; the differences in mean are less than 2% with different

CMRs. The estimated shock wave speed is around 22 mph for all time periods, which

is higher than that calibrated from loop detector data in the PeMS (around 15 mph).
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Table 4.1: Verification results

7:50 AM - 8:05 AM

Case No. CMR(%) n̂0 (True: 39) Ŵ (mph) K̂(vpm)
1 100.00 38.31(0.00) 20.00(0.00) 156.51(0.00)
2 50.00 38.33(0.23) 23.51(2.37) 144.67(7.10)
3 20.00 38.25(0.49) 23.19(3.29) 145.99(9.08)
4 5.00 38.32(1.02) 23.39(5.11) 146.78(12.98)

8:05 AM - 8:20 AM

Case No. CMR(%) n̂0 (True: 39) Ŵ (mph) K̂(vpm)
5 100.00 38.92(0.00) 25.67(0.00) 141.46(0.00)
6 50.00 38.91(0.25) 21.81(1.71) 152.85(5.65)
7 20.00 39.05(0.53) 21.71(2.01) 153.52(6.41)
8 5.00 38.98(1.18) 22.46(3.05) 151.60(9.21)

8:20 AM - 8:35 AM

Case No. CMR(%) n̂0 (True: 51) Ŵ (mph) K̂(vpm)
9 100.00 51.32(0.00) 21.15(0.00) 157.98(0.00)
10 50.00 51.34(0.33) 20.90(0.69) 158.97(2.36)
11 20.00 51.36(0.62) 20.98(1.14) 158.80(3.80)
12 5.00 51.32(1.34) 21.45(2.15) 157.52(6.97)

At the same time, the estimated jam density is lower than that from the PeMS (around

150 vpm vs 200 vpm). This discrepancy may be due to the fact that the parameters

estimated here are for a road segment, while PeMS results are for individual detectors.

We also notice that the variances of the estimated parameters are smaller for the later

time periods, indicating higher precisions. One explanation is: the estimation method

is derived under the assumption of congested traffic state, so the modeling error should

be relatively low for congested traffic data. Since the traffic in this dataset is getting

increasingly congested, the estimation of the later time periods are more accurate.

In Figure 4.4, we show the heat map of the objective function in (4.17b) in case

5. We pick 900 points from the parameter space of Ŵ ∈ [10, 40] and K̂ ∈ [50, 300]

with 30 grids along each axis. Starting from the initial value (Ŵ (0), K̂(0)) = (20, 200),

the solution is found to be (25.67, 141.46) after 20 iterations with the Gauss-Newton

method. From the figure we can see that the contour lines are roughly hyperbolic as

in (4.26). This suggests that traffic is close to stationary, but still features enough
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Figure 4.4: Plot of the objective function

oscillations so that the optimal point is identifiable.

4.4.3 Validation with respect to the average density and up-

stream flow-rate

To examine the performance of the LoopReid method and determine the reliability of

the estimated values, the average density within the whole segment and the estimated

upstream flow-rate are compared with their true values respectively in this subsection.

The average density within the segment is estimated as in (4.13). The estimation

equation for upstream flow-rate during time interval ∆t is shown in equation (4.15).

To ensure a sufficient number of counts during the aggregation interval, ∆t is set to

be 30 seconds.

We use the mean absolute percentage error (MAPE) as the measure of accuracy. The

MAPE for the average density, k, is calculated as:

MAPEk =
J∑
j=1

|k(j∆t)− k̂(j∆t)

k(j∆t)
|, (4.27)
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where J is the number of time-steps. The MAPE for the upstream flow-rate is

calculated as:

MAPEf =
J∑
t=1

|f(j∆t)− f̂(j∆t)

f(j∆t)
|,

In Figure 4.5 we demonstrate the estimated and observed upstream flow-rates with

different CMRs (100%, 50%, 20%, 5%) for the three time intervals compared with the

true values. From the plots we can see that the proposed estimation method is able

to capture the general trends in the upstream flow-rates. Therefore, the estimated

model parameters are reliable. Note that, for the case with CMR lower than 100%,

the line is just the result of one run. To better study the estimation accuracy, we

conducted repeated sampling for all cases and the results are shown in Table 4.2.

Table 4.2 summarizes the MAPEs of estimated average density and upstream flow-rate

over three time periods under different CMRs (100%, 50%, 20%, 5%). The means

followed by the standard deviations of the MAPEs are calculated based on the results

of 100 runs each. From the results, we can see that the mean MAPE of the estimated

average density is much smaller than that of the upstream flow-rate. This is due

to the fact that the estimated average density only involves the estimated initial

number of vehicles, which is affected by the measurement error and FIFO error. While

the estimated upstream flow-rate relies on the estimated shock wave speed, which

is subject to not only measurement error and FIFO error, but also modeling errors

associated with Newell’s simplified kinematic wave theory. As expected, the variance

of MAPE is higher with smaller CMR in all cases, indicating lower precision with fewer

reidentification samples. The mean MAPE of the estimated average density is higher

with smaller CMR. This indicates that the bias of the average density estimation

increases with lower CMR. However, the bias of the estimated upstream flow-rate

is relatively constant since the mean MAPE is almost the same for all CMRs. Both

estimated traffic state have smaller mean MAPEs in the second time period (8:05
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Figure 4.5: Estimated upstream flow-rate v.s. observation

AM-8:20 AM). This is probably because the second dataset contains fewer errors from

the sources mentioned in Section 4.2.1.
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Table 4.2: MAPE of estimated average density and upstream flow-rate

Traffic State CMR
MAPE (%): Mean (Std dev)

7:50 - 8:05 8:05 - 8:20 8:20 - 8:35

Average Density

100% 1.47 (0.00) 0.15 (0.00) 0.57 (0.00)
50% 1.47 (0.43) 0.38 (0.29) 0.71 (0.43)
20% 1.43 (0.86) 0.81 (0.57) 0.95 (0.64)
5% 1.90 (1.48) 1.72 (1.23) 1.80 (1.51)

Upstream Flow-rate

100% 13.99 (0.00) 10.87 (0.00) 14.50 (0.00)
50% 14.72 (0.41) 12.11 (0.95) 14.49 (0.12)
20% 14.54 (0.49) 11.76 (0.96) 14.52 (0.14)
5% 14.39 (0.79) 11.84 (1.22) 14.47 (0.31)

4.4.4 A comparison with the STD method

In this subsection, we compare the proposed estimation method with the STD method

in Deng et al. (2013) using the same NGSIM I-80 dataset from 5:15 PM to 5:30 PM

as a benchmark. The warm-up period is set to be 5 minutes to match the setting in

Deng et al. (2013). Three different CMRs1, 1%, 2%, and 5% were used in Deng et al.

(2013), which is essentially the proportion of reidentification pairs used in the study.

We estimate the average density according to (4.13) given different combinations of

CMRs and flow counting intervals. Each combination is repeated 100 times, and

the means and standard deviations of the MAPEs for different CMRs of reidentified

vehicles and sampling intervals (the time-step size ∆t) are shown in Figure 4.6.

1In Deng et al. (2013), the entry/exit time of vehicles are assumed to be measured by AVI
technology. Then the CMR is equivalent to the market penetration rate of AVI vehicles.
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Figure 4.6: Impact of Flow Counting Interval and CMR on Average Density Estimation

From Figure 4.6 we can see that the CMR of the reidentified vehicles has significant

impacts on the estimation results: the mean and variance of the MAPE are both

higher with smaller CMR. But the effect of the time counting interval is insignificant:

in the case when the CMR is 1%, the mean increases slightly while the variance stays

almost the same with larger counting interval.

Comparing the results of Figure 4.6 with those of Deng et al. (2013)2, our method

2Note that is Deng et al. (2013) only provided the result of one run.
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outperforms the STD method for all scenarios. For example, when the CMR is 1%,

and the sampling interval is 1 min, the MAPE of the average density is about 24%

by the STD method, but 8.5% by our method. Note that in Deng et al. (2013), the

initial number of vehicles was assumed given and accurate, and W was predefined.

In contrast, we estimate n0, W , and K simultaneously. Thus, the simultaneous

estimation framework presented here yields better results, yet without determining

the initial number of vehicles and the shock wave speed separately.

4.5 Summary

This chapter proposed the LoopReid method to simultaneously estimate states and

parameters with Eulerian traffic count data from loop detectors and Lagrangian

vehicle trajectory data from reidentification technologies. The method was developed

based on Newell’s simplified kinematic wave theory, which uses cumulative flow to

describe the traffic state. We first formulated an optimization problem in terms of the

initial number of vehicles and model parameters for a road segment, from which other

traffic state can be calculated accordingly. We showed that the optimization problem

can be decoupled and can be solved either analytically or with the Gauss-Newton

method. We also pointed out a potential issue under stationary traffic conditions.

Finally we applied the method to the NGSIM data and demonstrated its validity

based on the mean absolute percentage errors of both the average density and the

upstream flow-rate. A comparison with the STD method in Deng et al. (2013) further

highlighted the advantage of the simultaneous estimation framework.
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Chapter 5

Traffic Estimation with Complete

Trajectory Data

5.1 Introduction

A major limitation of the LoopReid method proposed in Chapter 4 is that it only

works for fully congested road segments and cannot handle mixed traffic state. This

is not much of a problem in urban freeways network during peak hours where the

congestion pattern is relatively stable. However, this limits the application of the

LoopReid model to general road network at any time. In this chapter, we propose

and formulate the LoopCT estimation method, which can be viewed as an extension

of the LoopReid method. The LoopCT method extends the LoopReid method to

accommodate mixed traffic conditions, at the cost of using more information. While

the LoopReid method requires loop detector data and vehicle reidentification data

(partial vehicle trajectories), the LoopCT method required loop detector data and

complete trajectory (CT) data. A detailed comparison of LoopReid method and
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LoopCT method is provided later in this chapter.

The rest of the chapter is organized as follows: in Section 5.2, we derive a counterpart

of the Newell’s simplified kinematic wave model in the Lagrangian coordinates under

Eulerian boundary conditions. Then we prove the single transition theorem in the

Lagrangian coordinate, which states that vehicles moving through the road segment

can encounter at most one transition from free-flow traffic condition to congested

traffic condition. This splits a vehicle trajectory into two parts: the vehicle moves

in free-flow (or critical) traffic before the transition and in congested (or critical)

traffic after the transition. Based on this property, we formulate the LoopCT traffic

estimation method as a least square estimation problem in Section 5.3. The LoopCT

method is compared with the LoopReid method in details. A vehicle trajectory

estimation method based on the single transition theorem is also proposed in this

section. Section 5.4 discussed the solution method along with some analyses of the

problem. In Section 5.5, the LoopCT method is applied to the NGSIM I80 dataset

with mixed traffic state. We evaluate the performance of the estimation method by

comparing the estimated average density, cumulative count contour, vehicle trajectory

with the observations respectively.

5.2 A hybrid kinematic wave model in Lagrangian

coordinates under Eulerian boundary conditions

Recall the Newell’s simplified kinematic wave model reviewed in Section 2.2:

N(t, x) = min{F (t− x

V
) + n0, G(t− l − x

W
) +K(l − x))}, (5.1)
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where N(t, x) is the cumulative flow at time t location x. F (t) and G(t) are cumulative

counts at upstream and downstream of the road segment respectively. The initial

number of vehicles within the road segment is denoted by n0; l is the length of the

road segment. In the triangular fundamental diagram (Figure 2.2), V is the free-flow

speed, W is the shock wave speed in congested traffic, and K is the jam density.

We denote

N1(x, t) = F (t− x

V
) + n0, (5.2)

and

N2(x, t) = G(t− l − x
W

) +K(l − x). (5.3)

Then we can restate Newell’s model in (5.1) as:

N(t, x) = min{N1(t, x), N2(t, x)}. (5.4)

Without loss of generality, we assume both F (t) and G(t) are monotonically increasing

in t. Then it is straightforward to show that both N1(t, x) and N2(t, x) are increasing

functions in t. We can show that N1(t, x) and N2(t, x) are decreasing functions in x

in the following Lemma.

Lemma 5.2.1. At a time instant, both N1(x, t) and N2(x, t) are decreasing in x, and

their partial derivative satisfies the following relation:

−K <
N2(t, x2)−N2(t, x1)

x2 − x1

≤ −kc ≤
N1(t, x′2)−N1(t, x′1)

x′2 − x′1
< 0, (5.5)

for any 0 ≤ x1 < x2 ≤ l and 0 ≤ x′1 < x′2 ≤ l.
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Proof. In the triangular fundamental diagram, we have

C = V kc = W (K − kc). (5.6)

Consider the capacity constraint at upstream/downstream locations, for any t1 < t2,

0 < F (t2)− F (t1) ≤ C(t2 − t1), (5.7a)

0 < G(t2)−G(t1) ≤ C(t2 − t1). (5.7b)

For any 0 ≤ x1 < x2 ≤ l, we have:

F (t− x2

V
) < F (t− x1

V
), (5.8a)

G(t− l − x1

W
) < G(t− l − x2

W
). (5.8b)

Regarding N1(x, t), we have

N1(t, x2)−N1(t, x1)

x2 − x1

=
F (t− x2

V
)− F (t− x1

V
)

x2 − x1

, (5.9)

where,

(F (t− x2

V
)− F (t− x1

V
)) ∈ [−C · (x1 − x2)

V
, 0), (5.10)

according to (5.7a). So

N1(t, x2)−N1(t, x1)

x2 − x1

∈ [−kc, 0). (5.11)

Regarding N2(x, t), we have

N2(t, x2)−N2(t, x1)

x2 − x1

=
G(t− l−x2

W
)−G(t− l−x1

W
)

x2 − x1

−K, (5.12)
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where,

(G(t− l − x2

W
)−G(t− l − x1

W
)) ∈ (0, C · (x2 − x1

W
)], (5.13)

according to (5.7b). So

N2(t, x2)−N2(t, x1)

x2 − x1

∈ (−K,−kc]. (5.14)

Based on (5.11) and (5.14), we can conclude the results stated in Lemma 5.2.1.

Lemma 5.2.1 is first proved by Rey et al. (2015) in the study of vehicle trajectory esti-

mation. However, their proof is not rigorous since F (·) and G(·) are not differentiable

everywhere. Furthermore, they derived the relation between N1(t, x) and N2(t, x)

within a road segment, which can be illustrated as in Figure 5.1. Their results showed

T

0

),(),( 21 xtNxtN =

l

N

t

x

),(2 xtN

),(1 xtN

Figure 5.1: Illustration of relation of N1(t, x) and N2(t, x)

that the whole road segment can be divided into three subsegments based on the rela-

tion between N1(t, x) and N2(t, x). Upstream of the intersection (overlapping) of the

two surfaces, we have N1(t, x) < N2(t, x), the intersection part has N1(t, x) = N2(t, x),
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and downstream of intersection has N1(t, x) > N2(t, x). Based on Newell’s kinematic

wave model, the cumulative count surface N(t, x) is then determined by the lower

envelop of the two surfaces.

In the first-in-first-out scenario, the vehicles are labeled according to their cumulative

flow order. For the vehicle with cumulative flow label i, we denote the location of

vehicle i at time t as X(t, i). We denote r(i) as the time when vehicle i enters this

road segment and s(i) as the time when the vehicle leaves this road segment. Then

we have

X(r(i), i) = 0, (5.15a)

X(s(i), i) = l, (5.15b)

N(t,X(t, i)) = i. (5.15c)

By definition, X(t, i) is the trajectory of vehicle i with bounded speed:

X(t1, i)−X(t2, i)

t1 − t2
∈ [0, V ], (5.16)

for any r(i) ≤ t1 < t2 ≤ s(i).

Define X1(t, i) and X2(t, i) as the respective inverse function of N1(t, x) and N2(t, x),

i.e., X1(t, i) satisfies

N1(t,X1(t, i)) = F (t− X1(t, i)

V
) + n0 = i, (5.17)

and X2(t, i) satisfies

N2(t,X2(t, i)) = G(t− l −X2(t, i)

W
) +K(l −X2(t, i)) = i (5.18)
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Since both N1(t, x) and N2(t, x) are decreasing functions in x and increasing functions

in t, X1(t, i) and X2(t, i) are both well-defined and monotonically increasing in t.

Then, we have the following theorem.

Theorem 5.2.2. For given t, the location of the i-th vehicle on the road segment,

X(t, i), is given by

X(t, i) = min{X1(t, i), X2(t, i)}. (5.19)

Proof. By Newell’s kinematic wave theory, we have

N(t,X(t, i)) = min{N1(t,X(t, i)), N2(t,X(t, i))}. (5.20)

1. When N(t,X(t, i)) = N1(t,X(t, i)) = N2(t,X(t, i)):

This leads to:

N1(t,X(t, i)) = N2(t,X(t, i)) = i. (5.21)

By definition, we have

X(t, i) = X1(t, i) = X2(t, i). (5.22)

2. When N(t,X(t, i)) = N1(t,X(t, i)) < N2(t,X(t, i)):

This leads to:

N1(t,X(t, i)) = i = N1(t,X1(t, i)), (5.23a)

N2(t,X(t, i)) > i = N2(t,X2(t, i)). (5.23b)

By the monotonicity of N1(t, x) and N2(t, x) in x, we have

X(t, i) = X1(t, i) < X2(t, i). (5.24)
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3. When N(t, i) = N2(t,X(t, i)) < X1(t,X(t, i)):

Similar to case 2, we can show that

X(t, i) = X2(t, i) < N1(t, i). (5.25)

In summary, we have

X(t, i) = min{X1(t, x), X2(t, i)}. (5.26)

Rey et al. (2015) also provide a proof for Theorem 5.2.2, but the proof is not rigorous

since F (·) and G(·) are not differentiable everywhere. This theorem is the counterpart

of Newell’s model (5.4) in the Lagrangian coordinate. Now we state and prove the

counter part of Lemma 5.2.1 in the Lagrangian coordinate.

Lemma 5.2.3. For given vehicle i, both X1(t, x) and X2(t, x) are non-decreasing,

and their partial derivative satisfies the following relation:

0 ≤ X2(t2, i)−X2(t1, i)

t2 − t1
≤ X1(t′2, i)−X1(t′1, i)

t′2 − t′1
= V, (5.27)

for any r(i) ≤ t1 < t2 ≤ s(i) and r(i) ≤ t′1 < t′2 ≤ s(i).

Proof. Let r(i) ≤ t1 < t2 ≤ s(i). For X1(t, x), by definition,

N1(t1, X1(t1, i)) = N1(t2, X1(t2, i)) = i. (5.28)

This leads to

F (t1 −
X1(t1, i)

V
) = F (t2 −

X1(t2, i)

V
). (5.29)
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Since F (t) is a monotonically increasing function, we have

t1 −
X1(t1, i)

V
= t2 −

X1(t2, i)

V
, (5.30)

which leads to

X1(t2, i)−X1(t1, i)

t2 − t1
= V. (5.31)

For X2(t, x), by definition,

N2(t1, X2(t1, i)) = N2(t2, X2(t2, i)) = i. (5.32)

This leads to

X2(t2, i)−X2(t1, i)

t2 − t1
=
G(t2 − l−X2(t2,i)

W
)−G(t1 − l−X2(t1,i)

W
)

K(t2 − t1)
. (5.33)

By (5.7b), we have

0 ≤ (G(t2−
l −X2(t2, i)

W
)−G(t1−

l −X2(t1, i)

W
)) ≤ C(t2− t1 +

X2(t1, i)−X2(t2, i)

W
)],

which leads to

0 ≤ X2(t2, i)−X2(t1, i)

t2 − t1
≤ C

K − C
W

= V. (5.34)

Based on (5.31) and (5.33), we can conclude the results stated in Lemma 5.2.3.

A direct consequence of Lemma 5.2.3 is the following single transition theorem in the

Lagrangian coordinate.

Theorem 5.2.4 (Single Transition theorem). The trajectory of vehicle i, X(t, i) can

be divided into three sub-segments, as shown in Figure 5.2.

1. For t ∈ [r(i), d(i)), X(t, i) = X1(t, i) < X2(t, i),
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2. For t ∈ [d(i), e(i)], X(t, i) = X1(t, i) = X2(t, i),

3. For t ∈ (e(i), s(i)], X(t, i) = X2(t, i) < X1(t, i).
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Figure 5.2: Representation of X1(t, i) and X2(t, i)

Proof. By definition and Newell’s model (5.4), N1(r(i), 0) = i ≤ N2(r(i), 0). So

X1(r(i), i) = 0 ≤ X2(r(i), i). Similarly, we have X2(s(i), i) = l ≤ X1(s(i), i).

Consider the fact that X1(t, i) and X2(t, i) are increasing functions in t and the

relationship between their subderivatives in Lemma 5.2.3 , we can state that

∃[d(i), e(i)] ⊆ [r(i), s(i)] : {∀x ∈ [d(i), e(i)], X1(t, i) = X2(t, i)}. (5.35)

In general, we would have d(i) = e(i). In the case when d(i) 6= e(i), X1(t, i) and
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X2(t, i) share the same increasing rate:

X2(t2, i)−X2(t1, i)

t2 − t1
=
X1(t2, i)−X1(t1, i)

t2 − t1
= V. (5.36)

In summary, we can separate the trajectory into three sub-segments as stated in

Theorem 5.2.4.

According to the single transition theorem, the vehicle travels at free-flow speed during

time [r(i), e(i)] and reduces speed during time (e(i), s(i)]. However, it is still possible

for vehicle i to resume free-flow speed after the transition time e(i) as illustrated in

Figure 5.2 around t = t′. The following corollary shows the corresponding traffic

condition in the three subsegments.

Corollary 5.2.5. The trajectory of vehicle i, X(t, i) can be divided into three sub-

segments, as shown in Figure 5.2:

1. For t ∈ [r(i), d(i)), N(t,X(t, i)) = N1(t,X(t, i)) < N2(t,X(t, i)),

2. For t ∈ [d(i), e(i)], N(t,X(t, i)) = N1(t,X(t, i)) = N2(t,X(t, i)),

3. For t ∈ (e(i), r(i)], N(t,X(t, i)) = N2(t,X(t, i)) < N1(t,X(t, i)).

Proof. Recall that N1(t, x) and N2(t, x) are both decreasing functions with respect to

x.

1. For t ∈ [r(i), d(i)), according to Theorem 5.2.4, we have X(t, i) = X1(t, i) <

X2(t, i), so

i = N2(t,X2(t, i)) < N2(t,X(t, i)),

i = N1(t,X1(t, i)) = N1(t,X(t, i)).
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So we have N(t, x) = N1(t, x) < N2(t, x).

2. For t ∈ [d(i), e(i)], we have X(t, i) = X1(t, i) = X2(t, i), so

i = N2(t,X2(t, i)) = N2(t,X(t, i)),

i = N1(t,X1(t, i)) = N1(t,X(t, i)).

So we have N(t, x) = N1(t, x) = N2(t, x).

3. For t ∈ (e(i), l], we have X(t, i) = X2(t, i) < X1(t, i), so

i = N2(t,X2(t, i)) = N2(t,X(t, i)),

i = N1(t,X1(t, i)) < N1(t,X(t, i)).

So we have N(t, x) = N2(t, x) < N1(t, x).

Corollary 5.2.5 states that vehicle i experiences free-flow traffic condition during

[r(i), d(i)), critical traffic condition during [d(i), e(i)], and congested traffic state

during (e(i), s(i)]. It is important to notice that the critical traffic condition is a

special case of both the free-flow and congested traffic condition, since a vehicle travels

at the free-flow speed V during critical traffic state, it is still possible for vehicles to

resume free-flow speed in the third subsegment t ∈ (e(i), s(i)].

5.3 The LoopCT estimation method

The major goal of the study is to estimate the traffic state in terms of cumulative

flow within a homogeneous road segment given cumulative flow counts at both ends
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and trajectory data of vehicles which traveled through the segment. Formally, the

following data are given:

• cumulative flows function:F (t) and G(t) for t > 0,

• and trajectory functions of I vehicles: X(t, i), where i = 1, 2, . . . I.

According to Corollary 5.2.5, the trajectory of an individual vehicle can be divided into

three sub-segments, with d(i) and e(i) being the watersheds. The second subsegment,

t ∈ [d(i), e(i)], is very special since it is in critical traffic condition, which can be

described using both the free-flow and congested part of the Newell’s model.

5.3.1 An optimization problem in initial states and parame-

ters

Assume all vehicles follow first-in-first-out principle. For vehicle i, its label at the

upstream should match its label at the downstream:

F (r(i)) + n0 = G(s(i)).

As illustrated in Figure 5.3, the vehicle’s label at t = e(i) can be expressed using both

free-flow and congested part of the Newell’s model as:

i = F (r(i)) + n0 = N1(e(i), X(e(i), i)) = F (e(i)− X(e(i), i)

V
) + n0,

i = G(s(i)) = N2(e(i), X(e(i), i)) = G(e(i)− l −X(e(i), i)

W
) +K · (l −X(e(i), i)),

The reason we choose t = e(i) instead of any other t ∈ [d(i), e(i)] will be explained

later in this section.
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Figure 5.3: Illustration of the LoopCT estimation method

In summary, we have the following estimation equations for vehicle i:

F (r(i)) + n0 = G(s(i)), (5.38a)

i = F (r(i)) + n0 = N1(e(i), X(e(i), i)) = F (e(i)− X(e(i), i)

V
) + n0, (5.38b)

i = G(s(i)) = N2(e(i), X(e(i), i)) = G(e(i)− l −X(e(i), i)

W
) +K · (l −X(e(i), i)),

(5.38c)

where (5.38b) corresponds to the free-flow and critical traffic condition during time

[r(i), e(i)], (5.38c) corresponds to the congested traffic condition during time (e(i), s(i)].

Recall that the F (t) and G(t) are monotonically increasing, (5.38b) simplifies to:

r(i)− e(i) +
X(e(i), i)

V
= 0. (5.39)

The equations in (5.38) are subject to different types of errors, including measurement
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errors, first-in-first-out violation errors, and modeling errors. In the following, we

formulate an optimization problem to minimize the sum of squared errors and fit the

traffic parameters and states.

Assuming we have observed complete trajectories of totally I vehicles, We can

formulate an optimization problem with the following objective function to estimate

n̂0, V̂ , Ŵ , K̂, ê(1), . . . , ê(I):

minZ(n̂0, V̂ , Ŵ , K̂, ê(1), . . . , ê(I))

=
I∑
i

ξ2
i +

I∑
i

ε2i +
I∑
i

σ2
i

=[F (r(i)) + n̂0 −G(s(i))]2

+ [ê(i)− X(ê(i), i)

V̂
− r(i)]2

+ [G(ê(i)− l −X(ê(i), i)

Ŵ
) + K̂(l −X(ê(i), i))−G(s(i))]2,

(5.40)

where

ξi = F (r(i)) + n̂0 −G(s(i)), (5.41a)

εi = ê(i)− X(ê(i), i)

V̂
− r(i), (5.41b)

σi = G(ê(i)− l −X(ê(i), i)

Ŵ
) + K̂(l −X(ê(i), i))−G(s(i)). (5.41c)

The unknowns variables are (V̂ , Ŵ , K̂, n̂0, ê(1), . . . , ê(I)), where (V,W,K) are param-

eters in the fundamental diagram, n̂0 is the initial condition of the road segment. Note

that, according to Theorem 5.2.4, when d(i) 6= e(i), any t(i) ∈ [d(i), e(i)] satisfies

(5.38). Thus, (5.38) have multiple solution of e(i) in theory. However, this is a rare

case in reality when traffic stays at critical states for a long period of time. Even

when multiple solution exists for e(i), it does not impact the estimation accuracy of
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(V̂ , Ŵ , K̂, n̂0), so the parameter estimation is still accurate. Another reason we choose

e(i) is because its physical meaning. e(i) is the latest time instance that vehicle i

travels at the free-flow speed, thus it can be detected easily from vehicle trajectory.

5.3.2 Estimation of vehicle trajectories

The Newell’s model still applies to this scenario, so the estimating equations in

Subsection 4.2.2 can be used to derive traffic state variables. The study by Rey et al.

(2015) proposed a trajectory estimation method based on Theorem 5.2.2. However,

the method uses bisection method to solve the trajectory at each time step, which is

computationally intensive. Here, we derive a different trajectory estimation method

based on Lemma 5.2.3. The new method calculates the vehicle trajectories iteratively

in a closed form at each time step, given:

• boundary cumulative flow F (t) and G(t),

• vehicle i’s entrance and exit time r(i) and s(i),

• and parameters in the fundamental diagram, V , W and K.

Theorem 5.2.2 states that the trajectory of vehicle i, X(t, i) is the minimum of two

virtual trajectories X1(t, i) and X2(t, i). By (5.31), the forward trajectory X1(t, i) is a

straight line from (r(i), 0) with slope V , so we have:

X1(t, i) = r(i) + V · (t− r(i)). (5.42)

The way to derive the backward trajectory X2(t, i) is illustrated in Figure 5.4:
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Figure 5.4: Vehicle trajectory estimation

We first construct a grid from the downstream at each time instant with slope −W .

Inside each grid, by (5.33) and the geometry relationship, we have:

X2(t2, i)−X2(t1, i) =
G(τ2)−G(τ1)

K
, (5.43a)

X2(t1, i)− l
t1 − τ1

= −W, (5.43b)

where τ1 and τ2 are time stamps of the grids constructed from the downstream. This

leads to:

X2(t1, i) = X2(t2, i)−
G(τ2)−G(τ1)

K
, (5.44a)

t1 =
l −X2(t1, i)

W
+ τ1. (5.44b)
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This result provides a way to solve the trajectory on the grid line, (t1, X2(t1, i)), given

the previous trajectory point (t2, X2(t2, i)). The backward trajectory X2(t, i) can be

constructed according to the following steps:

1. Set (t2, X2(t2, i))
(1) = (s(i), l).

2. Calculate (t1, X2(t1, i))
(i) based on (5.44) given (t2, X2(t2, i))

(i).

3. Update (t2, X2(t2, i))
(i+1) = (t1, X2(t1, i))

(i). If X2(t2, i)
(i+1) ≤ 0, stop; otherwise

go back to step 2.

The backward trajectory X2(t, i) is then constructed as a piece-wise linear function

from the points (t2, X2(t2, i))
(1), (t2, X2(t2, i))

(2), and so on. The estimated trajectory

of vehicle i at time t is thus X(t, i) = min{X1(t, i), X2(t, i)} as shown in Figure 5.4.

5.3.3 A comparison between LoopReid method and LoopCT

method

The LoopCT method proposed in this chapter can be viewed as an extension of the

LoopReid method proposed in Chapter 4. Recall the estimation equations in LoopReid

method,

F (r(i)) + n0 = G(s(i)), (5.45a)

G(s(i)) = G(r(i)− l

W
) +Kl; (5.45b)
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and in LoopCT method,

F (r(i)) + n0 = G(s(i)), (5.46a)

F (r(i)) + n0 = F (e(i)− X(e(i), i)

V
) + n0, (5.46b)

G(s(i)) = G(e(i)− l −X(e(i), i)

W
) +K · (l −X(e(i), i)). (5.46c)

(5.45a) is identical to (5.46a). When the road segment is fully congested, we have

e(i) = r(i), where the transition time aligns with the entrance time for all vehicle.

(5.46c) degenerates to (5.45b), and (5.46b) degenerates to 0 = 0. In this case, the two

methods have the same set of estimation equations. As a side note, this phenomenon

is also verifies using the NGSIM dataset. The LoopCT method is implemented on

I101 dataset used in Section 4.4. We found e(i) equals r(i) for all vehicles when the

free-flow speed is predetermine to be 60 mph1. Thus we get identical result as the

LoopReid method for the same dataset.

In addition, the degenerated formulations are free from the term, X(e(i), i), so only

the vehicle entrance and exit time are relevant. In this sense, the LoopCT method

extends the LoopReid method to mixed traffic state, at the cost of using more complete

vehicle trajectory data (reidentification data v.s. complete trajectory).

5.4 Solution and Optimization Method

5.4.1 A decoupling method with predetermined free-flow speed

Following a similar fashion of Theorem 4.3.1 , the objective function (5.40) can also

be decoupled, where we minimize
∑I

i ξ
2
i and

∑I
i εi +

∑I
i σ

2
i in parallel.

1The reason to predetermine the free-flow speed is explained in Subsection 5.4.1.
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∑I
i ξ

2
i only involves n̂0 and the optimal can be found by taking the average according

Corollary 4.3.2. Theoretically, n̂0 can be solved using only one trajectory. The

minimization of
∑I

i εi +
∑I

i σ
2
i involves (V̂ , Ŵ , K̂, ê(1), . . . , ê(I). With I trajectories,

the number of unknown is I + 3, the number of equations is 2I. So it is solvable with

more than three vehicle trajectories.

A challenge with minimizing of
∑I

i εi +
∑I

i σ
2
i is that the number of variables increase

linearly with the number of vehicle trajectories in consideration, which can be cum-

bersome to solve with large data size. According to the physical insights revealed in

Theorem 5.2.4, e(i) is the last time instant when vehicle i moves with free-flow speed.

By examining typical vehicle trajectory data in the NGSIM dataset, we found three

types of trajectories as illustrated in Figure 5.5, where the dash line has the slope of

free-flow speed.

In Figure 5.5, trajectory 1 represents vehicles which entered the segment at r(i)

and left at s1(i) with free-flow speed throughout the whole segment. Trajectory 2

represents a vehicle entered the segment with free-flow speed at r(i) and then left with

reduced speed at s2(i) due to congestion. Trajectory 3 stands for a vehicle traveled

in congestion throughout the whole segment from r(i) to s3(i). We assume V is

predetermined, which should not be a problem in practice as V is usually the speed

limit at the road segment. To find e(i) for vehicle i given V , we first find

e′(i) = {t : X(t, i) = V (t− r(i)), t ∈ (r(i), s(i)]}, (5.47)

using the bisection method. Then, e(i) can be determined according to the following
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Figure 5.5: Typical vehicle trajectories

conditions, which corresponds to the three types of trajectories in Figure 5.5.

e(i) =


s(i), e′(i) does not exist, s(i)− r(i) ≤ l

V
; (Type 1)

e′(i), e′(i) exists; (Type 2)

r(i), e′(i) does not exist, s(i)− r(i) > l
V

; (Type 3)

. (5.48)

By predetermining e(i) given V , the problem is greatly simplified because the number

of variables becomes irrelevant to the data size. The simplified optimization problem

83



is:

minZ(n̂0, Ŵ , K̂, )

=
I∑
i

ξ2
i +

I∑
i

σ2
i

=[F (r(i)) + n̂0 −G(s(i))]2+

[G(e(i)− l −X(e(i), i)

Ŵ
) + K̂(l −X(e(i), i))−G(s(i))]2.

(5.49)

The decoupling method can be used to minimize ξ2
i and σ2

i respectively.

To solve min
∑I

i ξ
2
i , the optimal is shown in Corollary 4.3.2:

n̂0 =
I∑
i

[F (r(i))−G(s(i))]

I
. (5.50)

To solve min
∑I

i ξ
2
i , we can use a similar Gaussian Newton method as described in

Section 4.3. We denote θ as the column vector of (Ŵ , K̂)T . Starting from an initial

guess θ(0) = (Ŵ (0), K̂(0))T , the Gauss-Newton method updates the results by iterating

θ(j+1) = θ(j) − [J(θ(j))TJ(θ(j))]−1J(θ(j))Tξ(θ(j)),

where J(θ) is the Jacobian matrix of ξ(θ) = (ξ1(θ), ξ2(θ), . . . , ξI(θ))T and is defined

as

J(θ) =


∂ξ1(σ)

∂Ŵ

∂ξ1(σ)

∂K̂

...
...

∂ξI(σ)

∂Ŵ

∂ξI(σ)

∂K̂

 . (5.51)
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where,

∂σ

∂Ŵ
= G′(e(i)− l −X(e(i), i)

Ŵ
)[
l −X(e(i), i)

Ŵ 2
], (5.52)

∂σ

∂K̂
= l −X(e(i), i)−G(s(i)). (5.53)

The downstream flow-rate in (5.52), G′(e(i)− l−X(e(i),i)
W

), is approximated by the the

forward finite difference,

G′(e(i)− l −X(e(i), i)

Ŵ
) ≈

G(e(i)− l−X(e(i),i)

Ŵ
+ ∆t)−G(e(i)− l−X(e(i),i)

Ŵ
)

∆t
, (5.54)

where ∆t is the time-step size. For simplicity, we fix the time-step size to be 30

seconds.

5.4.2 Potential issue with near-stationary state traffic

In the case of stationary state traffic when the congestion queue tail has zero speed,

all vehicles have similar trajectories as shown in Figure 5.6. By (5.46c), we have

K =
G(e(i)− l−X(e(i),i)

W
)−G(s(i))

l −X(e(i), i)
. (5.55)

where l−X(e(i), i) and s(i)− e(i) are constant for any vehicle i. If we define g as the

average downstream flow rate during time [e(i)− l−X(e(i),i)
W

, s(i)] with is a constant,

(5.55) can be simplified as

K = g · ( s(i)− e(i)
l −X(e(i), i)

+
1

W
). (5.56)
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Figure 5.6: Stationary state with constant queue

This result implies that the parameter W and K follows a hyperbolic relationship in

the stationary state traffic. The estimation problem is ill-posed in this case as K and

W cannot be uniquely determined. This is similar to the case discussed in Subsection

4.3.2.

5.5 Application to NGSIM I80 dataset

The I-80 NGSIM dataset is used to test the proposed estimation method as this dataset

starts with free-flow traffic and gets into congested traffic in the last 10 minutes. The

dataset is collected on Freeway I-80 between 2:35 pm to 3:05 pm. A homogeneous

road segment with five lanes illustrated in is used in this study. The rightmost lane is

excluded in the study due to excessive lane changing and queuing caused by on/off

ramps. The study site is illustrated in Figure 5.7

The data collection frequency is 15 HZ. There are 4733 trajectories used in this data
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Figure 5.7: Illustration of I-80 study site

set. We used 2-min warm-up time at the beginning of time period to ensure all vehicle

trajectories are fully captured.

5.5.1 Data Preparation

We deploy virtual detectors at both ends of the road segments and generate volume

counts and vehicle entry/exit times based on vehicles’ longitudinal coordinates (‘‘Lo-

calY’’ field in the NGSIM trajectory dataset). We use the same method as discussed

in Subsection 4.4.1 to derive cumulative flow count data at upstream/downstream

locations.

The NGSIM vehicle trajectory data are collected in the form of vehicle location at
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each sampling time. Due to the measurement errors, the observed vehicle location

scatters around the actual unknown vehicle path. To make the errors unbiased, it is

possible to project the points over the lane alignment. This is the reason we use the

value ‘‘LocalY’’ in the NGSIM dataset to measure the distance traveled, which are

the longitudinal coordinate of the front center of the vehicles. For simplicity, we use

linear interpolation to reconstruct the longitudinal distance traveled by each vehicle

based on ‘‘LocalY’’. Formally, we have

X(t, i) = X(j∆t, i) +
X((j + 1)∆t, i)−X(j∆t, i)

∆t
· (t− j∆t), (5.57)

where j satisfies j∆t ≤ t ≤ (j + 1)∆t.

5.5.2 Estimation of initial states and model parameters

We estimate the initial states and model parameters under the four different market

penetration rates (MPR) (100%, 50%, 20% and 5%) which is also used when validating

LoopReid method in Section 4.4. In other words, we assume only the corresponding

percentage of vehicle trajectories are observed. The same 2-minutes warm-up period

is used to ensure all vehicle trajectories are fully tracked in the study domain. We

implemented the solution method as in 5.4. The solution method requires the free-flow

speed to be given in advance. To test the sensitivity of the free-flow speed, we used

four different values of free-flow speeds (55mph, 60mph, 65mph, and 70mph). The

initial guess of Ŵ is 20 mph and that of K̂ is 200 vehicles per mile per lane for all

cases.

The results in Table 5.1 illustrates the mean value of n̂0, Ŵ , and K̂ followed by their

standard deviation for 100 runs each. The true value of the initial number of vehicles,

n0, is shown in the parentheses in the header line.
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The initial states is estimated with high accuracy. Even in the case with 5% MRP, the

error is around 1% with subtle standard deviation. The mean values of the parameters

are relatively constant across different MPRs given the same free-flow speed. The

standard deviation of the parameter estimation is much larger for the case with lower

MPR. The estimated shock wave speed is larger for cases with larger free-flow speed,

while the estimated jam density is smaller.

Table 5.1: Parameter estimation

Case No. V (mph) MPR (%) n̂0 (True: 38) Ŵ (mph) K̂(vpmpl)
1

50.00

100.00 38.00 (0.00) 15.24 (0.00) 205.57 (0.00)
2 50.00 38.03 (0.18) 15.30 (0.46) 205.30 (4.13)
3 20.00 38.04 (0.38) 15.74 (0.84) 203.11 (8.82)
4 5.00 37.83 (0.42) 15.23 (2.02) 206.14 (12.66)
5

55.00

100.00 38.00 (0.00) 16.25 (0.00) 192.43 (0.00)
6 50.00 37.98 (0.10) 15.76 (0.90) 196.57 (6.92)
7 20.00 37.98 (0.18) 16.03 (1.51) 194.90 (12.00)
8 5.00 37.96 (0.37) 16.33 (4.71) 196.01 (18.00)
9

60.00

100.00 38.00 (0.00) 21.63 (0.00) 166.73 (0.00)
10 50.00 37.99 (0.10) 19.15 (5.22) 173.88 (23.84)
11 20.00 37.99 (0.16) 18.38 (3.41) 175.49 (18.28)
12 5.00 38.05 (0.45) 20.37 (9.04) 173.47 (31.77)
13

65.00

100.00 38.00 (0.00) 34.31 (0.00) 130.64 (0.00)
14 50.00 38.00 (0.09) 33.35 (10.66) 123.51 (27.20)
15 20.00 38.01 (0.17) 31.04 (9.87) 128.26 (26.03)
16 5.00 38.17 (0.30) 37.20 (78.62) 125.55 (39.00)

The objective function corresponding to case 9 is shown in Figure 5.8 as a heat map.

We pick 900 points from the parameter space of Ŵ ∈ [10, 40] and K̂ ∈ [50, 300] with

30 grids along each axis. The trace of the iterations is also shown in the plot. Started

from the initial guess of (Ŵ 0, K̂0) = (20, 200), the algorithm found the optimal in 8

iterations. The contour lines roughly follow hyperbolic relationships, which implies

the existence of near-stationary traffic state in reality as derived in (5.56). Comparing

the heatmap in Figure 5.8 with that in Figure 4.4, the objective function in Figure

5.8 seems steeper. This is probably because the I80 data contains both free-flow and

congested traffic, thus has more fluctuations than the I101 dataset.
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Figure 5.8: Objective function plot with trace

5.5.3 Validation using average density and cumulative count

contour

In this subsection, we compared the estimated average density, cumulative flow

contour with their corresponding observations.

The average density within the segment is estimated using the (4.13) for every second.

The mean absolute percentage error (MAPE) defined in (4.27) is used to evaluate

the performance of the average density estimation. The cumulative count contour is

calculated based on (4.11) at the resolution of 20 ft by 10 second. Since the absolute

value of cumulative count depends on the choice of reference vehicle, the use of MAPE

as a metric for cumulative count estimation is not meaningful. Thus, we use the mean

absolute error (MAE) instead. The MAE of the cumulative count contour is defined

as:

MAEN =

∑J
j=1

∑I
i=1 |N̂(i∆t, j∆x)−N(i∆t, j∆x)|

IJ
, (5.58)
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where ∆t = 10s and ∆x = 20ft as mentioned before. Both average density and

cumulative contour are calculated for 100 runs for each combination of free-flow

speed (50mph, 55mph, 60mph, and 65mph) and MPR (100%, 50%, 20%, 5%). The

average of the MAPE for average density estimate and MAE for cumulative contour

estimation are shown in Table 5.2 with the corresponding standard deviated listed in

the parentheses.

Table 5.2: MAPE/MAE of estimated average density and cumulative contour

Traffic State MPR V=50 mph V=55 mph V=60 mph V=65 mph

Average Density
(MAPE%)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
50% 0.24 (0.18) 0.29 (0.22) 0.23 (0.24) 0.26 (0.16)
20% 0.54 (0.35) 0.54 (0.36) 0.45 (0.34) 0.48 (0.37)
5% 1.34 (0.89) 1.17 (0.61) 1.20 (0.93) 0.99 (0.68)

Cumulative Counts
(MAE)

100% 2.35 (0.00) 2.28 (0.00) 2.27 (0.00) 3.16 (0.00)
50% 2.33 (0.02) 2.28 (0.02) 2.28 (0.03) 2.90 (0.02)
20% 2.34 (0.06) 2.29 (0.05) 2.20 (0.07) 2.94 (0.14)
5% 2.35 (0.05) 2.28 (0.09) 2.27 (0.09) 3.06 (0.26)
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(c) Free-flow speed: 60 mph
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(d) Free-flow speed: 65 mph

Figure 5.9: Absolute difference between the estimated and observed cumulative count

The performance of the average density estimation seems to be highly related with

the MPR. However, even under low MPR (5%), the estimation is still reliable with
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mean MAPE around 1% and standard deviation lower than 1%. The value of the

free-flow speed has limited impact on the MAPE, but we can still tell V = 60 seems

to be a good choice of free-flow speed for this dataset.

The MPR has little impact on the cumulative count estimation. The mean MAE

seems to be constant for different MPR with the same free-flow speed. The standard

deviation of MAE increases with lower MPR. However, the effect is not very significant.

The cases with free-flow speed of 60mph has the lowest average MAE and standard

deviation, which implies that the optimal free-flow speed should be around 60mph.
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Figure 5.10: Observed density contour plot

The absolute difference between estimated cumulative contour and the observation

for different predetermined free-flow speeds are shown in Figure 5.9. By referring to

the observed density contour plot in Figure 5.10, we found that the cumulative count

estimation is more accurate when the density is low and most of the errors appears in

the last 10 minutes when traffic is fully congested.
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5.5.4 Vehicle trajectory estimation

The trajectory estimation method proposed in Subsection 5.3.2 is implemented here.

The estimation error is calculated based on the difference between the observed and

estimated cumulative trajectory. Formally, we define the estimation error of vehicle i

as:

Error(i) =
A1(i)

A2(i)
=

∫ s(i)
r(i)
|X̂(t, i)−X(t, i)|dt∫ s(i)
r(i)
|X(t, i)|dt

≈

∑ s(i)
∆t

j=
r(i)
∆t

|X̂(j∆t, i)−X(j∆t, i)|∑ s(i)
∆t

j=
r(i)
∆t

|X(j∆t, i)|
,

(5.59)

where A1(i) is the absolute difference between the observed and estimated cumulative

trajectory, A2(i) is the observed cumulative trajectory. ∆t is the time step, which is

fixed to be 10 seconds in this case.

Figure 5.11 provides the trajectory estimation of vehicle #3164 compared with obser-

vation. The calculated areas A1 and A2 are also shown in the figure.
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Figure 5.11: Estimation v.s. observation, Vehicle #3164
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We tested four different sets of parameters with free-flow speed of 50 mph, 55 mph, 60

mph, and 65 mph under 100% MPR. The errors are calculated for each case with 100

runs and the mean and standard deviation of the errors are summarized in Table 5.3.

Table 5.3: Trajectory estimation error

Case No. V (mph) W (mph) K (vpmpl) mean (%) sd (%)
1 50 15.24 205.57 4.85 5.60
2 55 16.25 192.43 5.06 5.85
3 60 21.63 166.73 5.76 6.35
4 65 34.31 130.64 6.89 6.24

The cases with free-flow speed 50mph have the lowest mean and standard deviation

of errors. Recall that the parameters estimated with free-flow speed 60mph yields the

best cumulative contour and average density estimation. It is most likely that there

is not a uniformly best set of parameters that works for all traffic state estimation.

5.6 Summary

This chapter proposed another traffic state estimation method, the LoopCT method.

As an extension of the LoopReid method proposed in Chapter 4, the LoopCT method

can handle both congested and free-flow traffic. This chapter proved several lemmas

and theorems, which provided important insights about the traffic dynamic within a

homogeneous link. In particular, the single transition theorem leads to a new method

for trajectory estimation based on boundary flux and vehicle entrance/exit time. We

also showed that the LoopCT method degenerates to the LoopReid method when the

road segment is fully congested using both theoretical analysis and data analysis. By

predetermining the free-flow speed, the original estimation problem is greatly simplified

and the gradient-based Gauss-Newton method can be used to find the optimal set.

In the end, we implement our method using the NGSIM I80 dataset which contains
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both free-flow and congested traffic. We achieved considerable accuracy for average

density estimation, cumulative contour estimation, and vehicle trajectory estimation.
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Chapter 6

Conclusion

6.1 Summary

A complete traffic estimation framework consists of traffic data, traffic flow model,

and the traffic estimation method. This dissertation presents a new traffic estimation

framework to reconstruct the traffic states and parameters within a homogeneous

road segment with Lagrangian and Eulerian sensor data.

The dissertation started with formulating the network sensor health problem (NSHP),

from which we calculate health indices for all sensors. Based on the network flow

conservation principle, flows on non-base links can be derived from those on the base

links. However, in reality, the network flow conservation principle can be violated due

to the existence of unhealthy sensors. Thus we propose to identify an optimal set of

sensors by solving an optimization problem, in which we minimize the inconsistency

between derived and observed link flows. We then defined the health index of a sensor

as its frequency that it appears in the optimal sensor sets. Other than finding all

the optimal sets using brute-force enumeration, we present a greedy search algorithm
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to find a subset of optimal sets effectively. The proposed method is applied to a

road network with 30 links, among which 18 links are monitored with loop detectors.

Using traffic count data from the Caltrans Performance Measurement System (PeMS)

database, we show that the generated health index matches the PeMS health status

very well. Although flow conservation is just a necessary (and not sufficient) condition

for sensors to be healthy, this method is still quite effective and powerful. Compared

with a statistic-based method, to use network flow conservation does not require

predetermining a ‘‘threshold’’. The same method can be implemented in almost all

traffic networks without calibration efforts.

The other important contributions of this dissertation are the simultaneous traffic

parameter and state estimation methods for a homogeneous freeway segment proposed

in Chapter 4 and Chapter 5.

Both methods share a similar optimization formulation, from which one can analytically

solve the initial number of vehicles and numerically calculate model parameters. The

LoopReid method incorporated loop detector data and vehicle reidentification data,

but only applies to congested traffic. Via theoretically analysis, we find a potential

observability problem when the shock wave speed and the jam density can not be

uniquely determined under absolute stationary traffic. This issue was also mentioned

in existing car-following model studies. The LoopReid method is tested using the

I101 data where traffic is fully congested in the road segment under different vehicle

correct matching rates. By comparing the estimated density and upstream flow rate

with the observation, we show that the LoopReid method is capable to yield accurate

traffic parameters and states and outperforms the benchmark stochastic three detector

method in all scenarios.

Although the LoopCT method resembles a similar simultaneous parameter and state

estimation framework as the LoopReid method, it adapts to both congested and
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free-flow traffic. However, the LoopCT method require complete vehicle trajectory

information instead of vehicle reidentification data compared with the LoopReid

method. While developing the underlying traffic flow theory of the LoopCT method,

we proved the single transition theorem which states that a vehicle going through

a homogenous road segment can experience at most one transition from free-flow

to congestion. This finding leads to a new method for vehicle trajectory estimation

given upstream/downstream cumulative flow and the vehicle entrance/exit time. By

predetermining free-flow speed, the optimization problem is greatly simplified and a

gradient search method can be implemented to find the optimal traffic parameters. We

find a similar observability issue with the traffic parameters when traffic is absolutely

stationary. We used the NGSIM I80 dataset to test the performance of the method

by comparing the estimated average density, cumulative flow contour, and the vehicle

trajectory with the observations respectively. The LoopCT method is capable to

estimate traffic state with considerable level of accuracy in most cases.

6.2 Future research directions

A limitation of the network sensor health problem is that it only works when at least

one base link set is observable. It would be preferred if the current method can be

extended to partial observable networks, which releases the constraint that the best

sensor set has to achieve full link observability. Furthermore, the NSHP for large

networks can be partitioned into sub-problems both in space (sub-network) and time

(certain time period, e.g. peak hours). It would be interesting to explore the possibility

to synthesize the results from each sub-problem and provide more insights.

The performance of the current traffic estimation methods is affected by various

error sources. It would be interesting to develop a metric to quantify the amount
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of errors caused by difference sources. The first-in-first-out (FIFO) is an important

assumption while deriving both estimation methods. However, it is almost surely

violated in reality for multi-lane traffic. We should be able to achieve higher accuracy

if the FIFO violation can be incorporated into the current methods. In addition,

the current methods can be extended to consider more general traffic sensor data,

for example, incomplete vehicle trajectory and measurements from mid-block traffic

sensor. Further research can also extend the proposed methods to network level by

incorporating junction models.
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