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Body size and feeding morphology influence how animals partition them-
selves within communities. We tested the relationships among sex, body
size, skull morphology and foraging in sympatric otariids (eared seals) from
the eastern North Pacific Ocean, the most diverse otariid community in the
world.We recorded skullmeasurements and stable carbon (δ13C) and nitrogen
(δ15N) isotope values (proxies for foraging) from museum specimens in four
sympatric species: California sea lions (Zalophus californianus), Steller sea
lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and Guada-
lupe fur seals (Arctocephalus townsendi). Species and sexes had statistical
differences in size, skull morphology and foraging significantly affecting the
δ13C values. Sea lions had higher δ13C values than fur seals, and males of all
species had higher values than females. The δ15N values were correlated
with species and feeding morphology; individuals with stronger bite forces
had higher δ15N values. We also found a significant community-wide corre-
lation between skull length (indicator of body length), and foraging, with
larger individuals having nearshore habitat preferences, and consuming
higher trophic level prey than smaller individuals. Still, therewas no consistent
association between these traits at the intraspecific level, indicating that other
factors might account for foraging variability.
1. Introduction
Body size and other morphological differences play major roles in resource
partitioning among sympatric species, influencing the structure of communities
[1,2]. Among marine tetrapods, body size and feeding morphology affect fora-
ging dynamics [3–5]. Larger taxa can dive deeper and longer, display lower
relative metabolic rates than smaller taxa [6–10] and can exploit a vaster diversity
of prey by reaching greater depths. Skull traits can limit prey size and processing
efficiency [4,11–14], further influencing foraging dynamics [15–19]. Few studies
have quantified the relationship between body size, feeding morphology and
foraging ecology in co-occurring marine tetrapods (e.g. [20–23]). While these
studies revealed associations between size, feeding morphology and trophic
level, no consistent trends among species were uncovered presumably because
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Figure 1. Distribution of otariids. Circles represent the location of major breeding colonies and their size, the number of coexisting species. Communities from sub-
Antarctic islands are not depicted. Inset illustrates the distribution range of species inhabiting the eastern North Pacific Ocean. Modified from [24].
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of the lack of a comprehensive assessment of the communities
examined. These studies included taxa (e.g. cetaceans, pen-
guins and seals) with disparate body sizes and life histories,
and it is possible that taxon-specific evolutionary trade-offs
may be confounding these results. Therefore, additional
studies testing ecomorphological relationships in closely
related sympatric species can illuminate the factors influencing
the structure of marine communities.

Pinnipeds (true seals, eared seals and walruses) are marine
mammals that breed on land and forage in the water. Eared
seals (otariids) are polygynous breeders that inhabit upwell-
ing zones throughout the North Pacific and the Southern
Hemisphere ([24]; figure 1). Otariids have been traditionally
grouped into fur seals and sea lions based on morphological
and foraging differences [25–30]. Sea lions have a larger
body size, their insulation relies on a thick blubber layer and
lactating females undertake short foraging trips. Fur seals,
instead, are smaller in size, have a dense underfur coat that
provides insulation, and females conduct long foraging trips.
Nevertheless, fur seals and sea lions are not monophyletic
(electronic supplementary material, figure S1), indicating
repeated evolutionary convergence on these modes of life.
They commonly co-occur throughout their range (figure 1),
and variable levels of competition and resource partitioning
have been described between them (e.g. [31–34]). Studies
have shown that size and feeding functional morphology
affect foraging performance in otariids (e.g. [11,27]), shaping
these sympatric associations. However, the explicit association
between size, feeding morphology and foraging in sympatric
otariids, and their role in structuring their communities
remain unknown.

We examined the association between body size, feeding
morphology and bone collagen stable carbon (δ13C) and
nitrogen (δ15N) isotopes, which are proxies of the foraging
habitat and trophic level, respectively [35] in sympatric
otariids from the eastern North Pacific Ocean. In this
region, four species co-occur: California sea lions (Zalophus
californianus), Steller sea lions (Eumetopias jubatus), northern
fur seals (Callorhinus ursinus) and Guadalupe fur seals
(Arctocephalus townsendi), constituting the most diverse
otariid community in the world.
2. Methodology
(a) Skull measurements and morphological indices
We measured 205 physically mature skulls (with fused bone
sutures) collected from central and northern California between
1915 and 2015 from the sympatric Guadalupe fur seals (four
females), northern fur seals (10 females, four males), California
sea lions (53 females, 103 males) and Steller sea lions (22 females,
nine males). We recorded five linear measurements of the skull
using a digital caliper with an accuracy of 0.01 mm (electronic
supplementary material, table S1). We also recorded standard
body length (SL) of a subset of 141 specimens and used it to
evaluate its relationship with skull length (condylobasal length;
CBL). SL was recorded in the field by the original collectors
and consisted of the straight-line distance from the snout to the
tip of the tail. We calculated three morphological indices account-
ing for skull feeding mechanics. Mechanical advantage (MA) and
skull shape index (SSI) served as proxies for the relative ability to
generate bite force in the mandible and cranium, respectively,
whereas the relative palatal length (RPL) indicated the relative
size of the oral cavity.

(b) Stable isotope analysis
We analysed the bulk δ13C and δ15N values of bone collagen of 205
specimens (representing a time-average from months to years).
Samples consisted of approximately 20 mg of turbinate bone
from the nasal cavity that were cleaned and demineralized [35].
Lipids were extracted by cycles of soaking and agitation in a
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petroleum ether solution followed by rinses with deionized water.
Samples were freeze-dried and then weighed into tin capsules
(Costech; 5 × 9 mm) for analysis. Isotope data are expressed in
delta (δ) notation which for δ13C and δ15N (‰) = [(Rsample/
Rstandard)− 1] × 1000, where Rsample or Rstandard are the 13C/12C
and 15N/14N ratios in the sample or standard. Measurements
were corrected to VPDB (Vienna PeeDee Belemnite) for δ13C and
AIR for δ15N against an in-house gelatine standard reference
material (PUGel) which is calibrated against international stan-
dard reference materials. Reports of instrument precision and
reference materials are supplied in the electronic supplementary
material. The atomic C : N ratio of samples ranged between 3.1
and 3.3, indicating well-preserved collagen [36].

(c) Data analysis
We used R statistical software version 4.0.3 [37] for analyses. Nor-
mality and homoscedasticity of the data were inspected using
diagnostic plots. The δ13C values were corrected by the Suess
effect following [38] before analysis accounting for global decrease
in the 13C concentration of atmospheric CO2 during the collection
period.We further investigated the effect of temporal δ13C baseline
changes by analysing specimens collected from 1990 onward in
addition to the full dataset (electronic supplementary material).
We conducted Spearman’s correlation coefficient to test the
relationship between CBL and SL and a two-way analysis of var-
iance using species and sex as fixed variables and CBL and
morphological indices as dependent variables to test differences
between populations. We used generalized linear models
(GLMs) to examine the drivers of the variability of the δ13C and
δ15N values (response variables) using the function glm. Species,
sex, CBL, MA, RPL and SSI were the explanatory variables. We
verified the correlation between explanatory variables was less
than 0.7 through the Pearson correlation coefficient using the
packages corrplot [39] and ggcorrplot [40] (electronic supplemen-
tary material, figure S2). We ran models for δ13C and δ15N,
employing a gamma distribution with an inverse link function
and a Gaussian distribution for the absolute δ13C and δ15N
values, respectively. We ranked models based on their Akaike’s
information criterion (AIC) using the package AICcmodavg [41].
The models with the lowest AIC values were considered to best
fit [42]. Model validation was conducted by plotting residuals
versus fitted values. We examined the community-wide relation-
ship between the δ13C and δ15N values and the CBL using linear
regression with sex as an explanatory variable, accounting for
sexual dimorphism.
3. Results
CBL and SL were strongly correlated (ρ = 0.88, p < 0.001; elec-
tronic supplementary material, figure S3), indicating that
skull length is a valid proxy of body size [43]. We found signifi-
cant differences in the CBL between species (F = 804.90,
p < 0.001) and sexes (F = 1691.38, p < 0.001), resulting in a size
continuum from the smallest female northern fur seals
(184.47 ± 10.00 mm) to the largest male Steller sea lions
(371.44 ± 19.29 mm) (electronic supplementary material, table
S2 and figure S4). Feedingmorphology varied between species
and sexes but no consistent differences were found (electronic
supplementary material, figure S4 and table S2).

We used GLMs to examine the variability of the stable iso-
tope composition. The selected GLM explained 50.1% of the
δ13C variance (electronic supplementary material, table S3)
and included the significant effect of species and sex. California
(t = 3.43; p < 0.001) and Steller (t = 4.35; p < 0.001) sea lions had
significantly higher δ13C values than coeval fur seals (electronic
supplementary material, figure S3). Furthermore, males had
significantly higher δ13C values than females (t = 2.25;
p = 0.026). The additive effect of species, sex, CBL andmorpho-
logical indices had a significant effect on the δ15N values with
the model accounting for 34.0% of the variance (electronic
supplementary material, table S3). Otariids overlapped in
their δ15N values with only northern fur seals showing signifi-
cantly lower δ15N values than sympatric species (t =−2.88;
p = 0.0045). Still, we found that SSI had a significant effect on
the δ15N values (t = 2.68, p = 0.0081) with individuals with
stronger bite forces (as indicated by SSI) showing significantly
higher values.

We obtained a significant community-wide correlation
between the δ13C and δ15N values (R2 = 0.44, p < 0.001;
figure 2a), with larger individuals generally occupying a
higher position in the isotopic space. TheGLMs showed a posi-
tive correlation between the CBL and the δ13C and δ15N values
when accounting for sexual dimorphism (δ13C: t = 9.78, p <
0.001; δ15N: t = 0.68, p < 0.001; figure 2b,c). However, no signifi-
cant relationship between the CBL and the δ13C and δ15N
values was found at the intraspecific level. The only exceptions
were female northern fur seals, with a positive relationship
between δ13C and CBL, and male California sea lions, which
had a positive relationship between CBL and both δ13C and
δ15N values (electronic supplementary material, figure S5).
4. Discussion
Sympatric otariid species from the eastern North Pacific Ocean
display significant differences in their size, feeding mor-
phology and foraging ecology. California and Steller sea
lions have larger body sizes than sympatric Galapagos and
northern fur seals; however, no consistent differences in their
feeding morphology were detected (electronic supplementary
material, figure S4). Relative to fur seals, California and Steller
sea lions were significantly 13C-enriched (1.2‰) with minimal
differences in their δ15N values, hinting at foraging habitat
differences (electronic supplementary material, figure S4).
These results align with an offshore to nearshore 13C-enrich-
ment gradient due to baseline differences linked with higher
coastal primary productivity [44]. Sea lions might preferen-
tially exploit nearshore habitats (with higher δ13C values)
whereas fur seals would feed in offshore environments (with
lower δ13C values), but on similar trophic level prey, resem-
bling findings from animal-borne telemetry and dietary
analyses (e.g. [45–50]). Still, significant latitudinal gradients
on the isotope baselines exist along the California Current.
Moreover, bone collagen turnover ranges from months to
years, and its isotope composition reflects time-averaged eco-
logical information. These factors and the different migratory
patterns, complicate interpretations of δ13C and δ15N values
variation among marine predators. Compound-specific stable
isotopes on bone collagen and other tissues with shorter turn-
over rates will further clarify foraging differences among
sympatric otariids.

The SSI, proxy for relative force production in the cra-
nium, had a significant relationship with the δ15N values of
sympatric otariids. Individuals with higher bite force capa-
bility tend to be more 15N-enriched than individuals with
lower SSI, suggesting the preferential consumption of larger
(and 15N-enriched) prey. Although pinnipeds do not masti-
cate, consuming whole prey, otariids can chop large prey,
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breaking it into smaller pieces that are then consumed whole
[51]. A stronger bite force would enable individuals to forage
on larger prey [52]. The non-significant effect of the MA on
the δ15N values suggests that bite force in sympatric otariids
might have been achieved by alternative factors including
shifts in muscle configuration.

Our study did not find a consistent association between
body size and foraging ecology at the intraspecific level (elec-
tronic supplementary material, figure S5). While the low
sample size can partially explain these results for some
groups (e.g. Guadalupe fur seals), the lack of patterns in
female and male California and Steller sea lions (with a
larger sample size) suggests that, at the intraspecific level,
morphological differences might be too small to drive differ-
ences in foraging. Although studies have found that body
size influences foraging behaviour at the intraspecific level
in some pinniped species (e.g. [10,53–55]), other studies
have found no relationship (e.g. [56,57]). Recent research
has emphasized how individual specialization emerging
from physiological, behavioural and environmental trade-
offs within populations can influence ecological dynamics,
including small-scale resource competition [58–65]. Indeed,
otariids display large individual behavioural variability
independent from size or physical condition (e.g. [66–69]),



5

royalsocietypublishing.org/journal/rsbl
Biol.Lett.19:20220534
suggesting that additional factors like ontogeny might
account for foraging dynamics at the intraspecific level [70].

The community-wide association between body size and
δ13C and δ15N values shows that larger individuals with
stronger bite forces might forage closer to shore at an equiv-
alent trophic level. This relationship can be explained by
energetic trade-offs originating from benthic versus pelagic
foraging (the predominant foraging strategies among
otariids). Benthic diving entails longer durations and thus
longer time spent at sea than pelagic foraging [71,72],
making it more energetically costly [71,73]. Benthic and pela-
gic food webs are functionally and structurally different,
influencing the energetic offset associated with their exploita-
tion. Benthic food webs have higher species richness with a
relatively homogeneous and predictable spatial distribution
([67] and references therein). Pelagic food webs have lower
species diversity but more abundant and energy-dense in
highly sporadic prey aggregations [69,74–76]. Larger individ-
uals have a lower relative metabolic rate and cost of transport
than smaller individuals (e.g. [10]), which combined with the
consumption of a broader prey size range [77], likely enabled
by their larger sizes and stronger bite capacities in coastal and
benthic environments, might offset the higher absolute ener-
getic costs of benthic diving. Smaller individuals have a
smaller feeding apparatus, favouring the exploitation of
schooling energy-rich but smaller pelagic fish [74–76].

Although phylogenetic relationships can constrain otariid
ecology andmorphology, shared ancestry is unlikely to explain
our findings. Northern fur seals are the earliest diverging
lineage of crown Otariidae [78]. By contrast, Guadalupe fur
seals are nested within a southern clade, a derived group of
fur seals, suggesting that the correspondence between the
morphology and the isotope composition of these species
emerged convergently. California and Steller sea lions together
form a northern otariid clade [78] with larger body sizes and
relatively higher δ13C and δ15N values than sympatric fur
seals. Still, they display differences in feeding morphology
and stable isotope composition, implying that factors distinct
from phylogenetic relatedness might contribute to their
foraging performance.

While we focused on otariids from the eastern North
Pacific Ocean, the ecomorphological relationships found
here may be prevalent in other geographical areas. Otariid
communities throughout the Southern Hemisphere have
lower taxonomic richness; however, comparable morphologi-
cal and foraging disparities occur among sympatric species
[24]. Likewise, the fossil record reveals that pinniped assem-
blages were diverse and had morphological differences
analogous to modern communities [79,80]. These obser-
vations hint that variations in size and skull morphology
among co-occurring pinnipeds have repeatedly evolved, con-
tributing to resource segregation as in marine herbivore and
terrestrial carnivore communities (e.g. [81–84]).
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