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ABSTRACT OF THE DISSERTATION

Essays on Monetary Policy and Financial Markets

By

David Conway

Doctor of Philosophy in Economics

University of California, Irvine, 2015

Associate Professor Fabio Milani, Chair

My dissertation is composed of three chapters that contribute to the fields of Applied Econo-

metrics and Macroeconomics.

The first chapter, “A Copula Model for Discrete Duration Data with Sample Selection,”

presents a copula model to account for sample selection in a model of unemployment dura-

tion data. I apply two Markov Chain Monte Carlo (MCMC) methods to determine posterior

distributions for the model parameters. In particular, a version of the Gibbs sampler is

applied to evaluate the integrals that result from the copula representation of the likelihood,

and the Random Walk Metropolis Hasting (RW-MH) algorithm for sampling from the pos-

terior distribution. The model is applied to discrete data on unemployment duration from

the 2011 Current Population Survey. Joint estimation of the selection and duration equa-

tions indicates that selection bias is present, and the data are informative about the model

parameters.

The second chapter, “Monetary Policy and Equity Prices in a Multivariate GARCH Model,”

develops a model for the high-frequency analysis of a fundamental relationship in macroeco-

nomics, between monetary policy and equity prices. A market-based approach to estimating

daily changes in unexpected monetary policy is incorporated into a multivariate copula-

GARCH model. This allows for efficient estimation of parameters in the mean equations for

x



each of the variables, as well as the conditional heteroskedasticity and spillovers in volatility.

I find little evidence for a relationship between monetary surprises and equity prices on this

scale, with a mean correlation of -0.0503 between the two time series, which does not vary

systematically over time.

The third chapter, “Federal Reserve Communication and its Time-Varying Impact on the

Yield Curve: A Dynamic Nelson-Siegel Model for Daily Data,” implements the first Dynamic

Nelson-Siegel (DNS) model for daily data. This allows for estimation of the effect of daily

shocks to monetary policy and macroeconomic factors. Time-varying coefficients account for

the changing degree to which the zero lower bound (ZLB) constrains medium-term yields.

My results indicate that yields were most sensitive to shocks to the future path of monetary

policy in 2006-2007 with a rapid decline in sensitivity from 2008 to 2013. By the second

quarter of 2013 the effect of a one standard deviation path shock on maturities under two

years had fallen by more than 50% from the fourth quarter of 2007. As of July 2014 the

sensitivity of 1-year yields began to show a modest increase, suggesting the market expects

lift-off from the ZLB by mid-2015.
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Chapter 1

A Copula Model for Discrete

Duration Data with Sample Selection

1.1 Introduction

Sample selection is a common problem in applied econometrics. Beginning with the original

treatment of sample selection in [15], empirical economic literature was forced to address this

source of estimation bias. Much of the early work in this field assumed a multivariate normal

distribution for the latent variables of the outcome and selection equations. However, as

pointed out in [23] and others, in cases where the outcome variable is discrete this assumption

of joint normality leads to misspecification of the model. A better approach is to utilize

a copula function which creates a tractable joint distribution yet maintains the intended

combination of discrete and continuous marginal distributions.

In the paper I use the Gaussian copula function to construct the likelihood of a two-equation

model for the analysis of individuals durations of unemployment during the year 2010. The

duration of unemployment takes on a modified geometric marginal distribution and the prob-
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ability of incidence of unemployment is given by a probit representation. More specifically,

the duration variable considered is the number of weeks in which individuals were consid-

ered members of the labor force but not in a state of paid employment, as measured by the

March 2011 Current Population Survey Supplement. Incidence of unemployment is a binary

variable, which indicates whether an individual experienced unemployment at any point in

the sample period. The copula function couples the distributions of these two variables to

determine a bivariate joint distribution.

To estimate the model I use two Markov Chain Monte Carlo approaches. First, the density

formed by the copula lacks a closed-form solution, so the Gibbs sampler allows for evaluation

of the likelihood contributions via the CRT method from [18]. The Random-Walk Metropo-

lis Hastings algorithm (RW-MH) facilitates sampling from the posterior distributions of the

model parameters. The likelihood is highly non-convex so Bayesian estimation is indispens-

able in this situation and far more computationally efficient than existing algorithms for

obtaining maximum likelihood estimates.

It should be noted that this application is intended as an illustration for the basic model and

techniques I propose in the paper, rather than an addition to the unemployment duration

literature per se. In Section 6 I consider potential solutions for some of the shortcomings of

this particular application, as well as ways of strengthening the interpretation and meaning-

fulness of the empirical results.

The rest of the paper is organized in the following way. Section 2 outlines the basic selection

model and how the Gaussian copula function improves model estimation. In Section 3 an

explanation of the data is given. Section 4 presents the estimation strategy. I offer results

and discussion in Section 5, and offer concluding thoughts in Section 6.

2



1.2 The Selection Model

1.2.1 Gaussian Copula Function

Over the past twenty years the prevailing approaches to correcting for selection bias have

come under scrutiny, especially in situations where the outcome variable is discrete. The

issue of how to properly specify the joint distribution of the outcome and selection equations

was first addressed in [23], and later in [34] and [26]. Rather than a top-down approach in

which a functional form is first assumed for the joint distribution, these authors suggested

that a better approach would be to first specify marginal distributions and then form a joint

distribution in a way that maintains the original margins. One such method is to couple

univariate distributions with copula functions. As described in [36], and [24] a copula is any

function C that meets the following criteria:

1. C(1, ..., 1, ap, 1, ..., 1) = ap for all ap ∈ [0, 1]

2. C(a1, ..., aq) = 0 if ap = 0 for any p ∈ {1, ..., q}

3. C is q-increaing, i.e. any hyperrectangle in [0, 1]q has non-negative C-volume

Since we know that the inverse of a cumulative distribution function is distributed uni-

formly, inserting inverse distribution functions F1
−1, ..., Fq

−1 as arguments of C(·) leads to

a joint distribution with margins F1, ..., Fq. This can be illustrated by a flexible and easily

interpretable parametric form of the copula function, the Gaussian copula, given by (1.1).

C(z|Ω) = Φq(Φ
−1(z1), ...,Φ−1(z1)|Ω) (1.1)

where z = (z1, ..., zq), Φ is the standard normal cumulative distribution, and Ω is the cor-

relation matrix. The elements z1, ..., zq are distributed according to F1, ..., Fq (which can be

3



discrete or continuous), with a resulting joint distribution H. The key point here is that H is

a joint distribution with any desired marginal distributions. Few multivariate distributions

exist with both discrete and continuous margins, so this property of copulas makes them

extremely valuable in cases where joint modeling is required. The sacrifice for using such a

model is that the joint distribution does not have a closed-form solution, so that evaluation

of a copula model requires MCMC sampling.

The data generating process associated with the Gaussian copula is given by (1.2). The latent

variables zij come from a q-variate standard normal distribution with correlation matrix Ω.

The yij’s we observe take on separate marginal distributions Fij, while maintaining the

correlation created by Ω.

yij = Fij
−1(Φ(zij)) for zi∼N(0,Ω) (1.2)

Though an array of different copula functions abound in the literature for usage in sample

selection problems (as in [24]), the Gaussian copula has desirable properties for our uses.

Most significantly, the Gaussian copula can accommodate any correlation on the [−1, 1]

interval, a property that does not hold for many other classes of copulas.

1.2.2 Likelihood Function

For application to the two-equation selection model, the Gaussian copula combines the dis-

tribution of the error term in the selection equation with the distribution of the discrete

duration variable. For the present model I have binary data on an individuals incidence of

unemployment (yi1) to indicate selection into the state of unemployment, and the duration

of an unemployment spell in number of weeks (yi2). The real quantity of interest is the co-

variate effects on an individual’s duration of unemployment but I incorporate yi1 to account

for the individuals selection into a state of unemployment. Since yi2 is measured in weeks it

4



should be represented as having a discrete distribution, with no recorded yi2 for those agents

who were employed for the entire period for which they were observed.

I choose a modified geometric distribution for duration variable yi2 as in [29]. Therefore yi2

has probability distribution and hazard rate given by:

f(yi2|p) ∼p((yi2 + 1)!)−1(1− p)(2− p)...(yi2 − p) (1.3)

H(yi2|p) ∼
p

(yi2 + 1)
(1.4)

Here p is the probability of leaving the state of unemployment in any period. The arguments

of the copula function are cumulative distribution functions, provided in (1.5).

F (yi2|p) =

yi2∑
k=1

p((k + 1)!)−1(1− p)(2− p)...(k − p) (1.5)

The hazard rate makes it clear why this distribution is chosen for the present application.

Unlike a geometric distribution which has a hazard rate of p, or the Poisson and negative

binomial distributions that have constant hazard rates, the hazard for this distribution de-

creases as yi2 increases. This has intuitive appeal in the case of unemployment duration by

capturing the hysteresis effect. Being unemployed for an extra week may lower the prob-

ability of finding a job in the next period, in the sense that an individual’s skills diminish

relative to the progress of processes and technology used by firms. Firms will be less likely

to hire a worker the longer the workers unemployment spell has persisted. This implies that

the rate at which individuals leave the state of unemployment in period t+1 given that they

have been in unemployment for t periods, should decline.

Of course hysteresis is not the only effect present in the determination of the rate at which

individuals find employment. One could postulate a functional form for the duration variable

likelihood with an increasing hazard rate. This would be consistent with the decrease in

5



reservation wages experienced by workers as the unemployment duration increases. As the

duration of unemployment grows for a particular individual, the lowest wage for which

they will work should drop since they become more desperate to find employment. While

hysteresis captures the decrease in a firms willingness to hire a worker as the workers duration

of unemployment increases, the decrease in a workers reservation wage makes it easier for

a firm to fill an open position. This implies an increase in the probability of leaving the

state of unemployment as the duration of the unemployment spell increases, suggesting an

increasing hazard rate. It is unclear whether hysteresis or falling reservation wages is the

dominant effect but my functional form for the duration variable assumes the dominance of

hysteresis.

Covariates enter the distribution through p:

p =
1

(1 + exp(xi2β2))
(1.6)

Taking the exponential function of xi2β2 in the denominator implies that p is bounded by

[0, 1]. The selection equation is modeled as a univariate probit equation, such that the error

term νi is assumed to follow the standard normal distribution. yi1 takes on a value of 1 if

the individual experiences at least one week of unemployment in the sample period, or 0 in

the case of full employment.

yi1 =

 1 if xi1β1 + νi > 0

0 if xi1β1 + νi ≤ 0 where νi∼N(0, 1)
(1.7)

From the marginal distributions it is possible to specify the joint likelihood. For individ-

uals with no unemployment (yi1 = 0), data on unemployment duration is missing, so the

likelihood contribution of these individuals is based solely on the marginal distribution of

νi. In the case where an individual does experience some unemployment (yi1 = 1), we must

6



evaluate the joint likelihood of yi1 and yi2.

f(y1, y2|X) =
∏

t:yi1=0

f(yi1|xi1)
∏

t:yi1=1

f(yi1, yi2|xi1, xi2) (1.8)

As discussed above, the first term on the right-hand side represents the selection variable

modeled as univariate probit. In the second term the copula constructs the joint distribu-

tion as a function of the marginal distributions. Implementing the Gaussian copula and

following [40], and [34], the full likelihood can be represented as (1.9).

f(y1, y2|X) =
∏

t:yi1=0

Φ(−xi1β1)
∏

t:yi1=1

Φ2(Φ−1(F (yi1)),Φ−1(F (yi2)), ρ) (1.9)

The next step is to evaluate the likelihood. The probit term is straightforward, since a

closed-form expression exists for the standard normal cdf. However, evaluating the bivariate

cdf in the second term is significantly more complex, since it requires evaluating a double

integral. From [19] the expression for the joint distribution can be given in terms of the

latent variables (zi1,zi2) from (1.2):

Pr(yi1, yi2|Xi, β, ρ) =

∫
βi2

∫
βi1

fN(zi|0, ρ)dzi where Bij = (γij,L, γij,U) (1.10)

By using the latent variable representation the marginal distributions Fj for (j = 1, 2)

are present in the cutpoints γij,U as γij,U = Φ−1(Fj(yij|βj)) and γij,U = Φ−1(Fj(yij|βj) −

Pr(yij|βj). The problem has therefore become one of evaluating a bivariate truncated normal

distribution. The way in which the bivariate normal is truncated is represented graphically

in Figure 1.1 borrowed from [19]. Furthermore, since yi1 is modeled as a univariate probit

the cutpoints in Bi1 can be simplified to:

γij,U = Φ−1(1) =∞ and γij,U = Φ−1(Φ(−xi1β1)) = −xi1β1 (1.11)

7



Figure 1.1: Truncated area for bivariate normal distribution.

In order to estimate β1, β2 and the off-diagonal element of Ω (correlation parameter ρ), I

estimate the value of the bivariate truncated normal with the CRT method from [18], and

draw from the posterior distributions of the model parameters with the RW-MH algorithm.

1.3 Estimation

1.3.1 CRT Method

Several methods exist for evaluating problems with multiple integrals and no closed-form

solution, as discussed in [18]. One possible approach is known as the CRT method, which

relies on MCMC sampling to create an efficient algorithm for directly drawing from the

double integral in (1.12). As a first step, the probability of observing the realization yi =

8



(yi1, yi2) can be rewritten as:

Pr(yi|β, ρ) =

∫
βi2

∫
βi1

fN(zi|0, ρ)dzi =

∫
zi ∈ BifN(zi|0,Ω)

=
1(zi ∈ Bi)fN(zi|0,Ω)

fTNBi
(zi|0,Ω)

(1.12)

where Bi = Bi1 ∗ Bi2. From Bayes rule 1[zi ∈ Bi] can be seen as the likelihood, fN(zi|0,Ω)

the prior distribution, and the posterior distribution. The left-hand side is therefore the

integrating constant. Taking logs of both sides this problem can be written as:

ˆlnPr(yi|β, ρ) = lnfN(zi
∗|0,Ω)− ˆln fTNBi

(zi
∗|0,Ω) (1.13)

The log of fN(z∗i |0,Ω) can be found directly, where any z∗i can be chosen but is commonly

taken to be the mean of the values from the Gibbs sample. The second term on the right-

hand side is estimated by the Gibbs sampling algorithm for a multivariate standard normal

distribution, presented in (1.14) and (1.15).

zi1
(g)|zi2(g−1) ∼(zi1

(g)|yi1, zi2(g−1),Ω) = TNBi(µi1
(g), σi1

2(g)
) (1.14)

zi2
(g)|zi1(g) ∼(zi2

(g)|yi1, zi1(g),Ω) = TNBi(µi2
(g), σi2

2(g)
) (1.15)

where µij
(g) = ρµij

(g−1) and σij
2(g)

. This process is iterated G times, creating a sample of

draws from the joint distribution for (zi1, zi2). These values are then used to estimate the

Gibbs transition kernel in (1.16).

K(zi, zi
∗) = f(zi1|yi, zi2, β,Ω)×f(z∗i2|yi, z∗i1, β,Ω) (1.16)
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Finally, (1.17) shows that the truncated normal distribution evaluated at zi
∗ is given by the

average of the Gibbs kernel evaluated at zi
∗.

ˆfTNBi
(zi ∗ |0,Ω) =

1

G

G∑
g=1

K(zi, zi
∗|yi, β,Ω) (1.17)

The value of the likelihood contribution for a particular observation in (1.17) can then be

calculated, and is repeated across all observations to determine the value of the likelihood

for a particular set of parameter values from (1.9).

1.3.2 Metropolis Hastings Algorithm

The estimation of the model continues by applying an MCMC approach known as the Ran-

dom Walk Metropolis Hastings (RW-MH) algorithm, in order to sample from the posterior

distributions of the model parameters. I first define my priors in Table 1.1. Since I am

Table 1.1: Prior parameter distributions

Variable Prior distribution
ρ N(0,0.10)

β1, β2 N(0,0.50)

initially agnostic as to the signs of the parameters they each receive a standard normal prior.

The algorithm for sampling directly from the posterior distribution proceeds in the following

steps:

1. Begin with parameter values, θ(i) (when i = 1, θ(i) = θ̄ )

2. Draw θ(?) from N(θ(i), σ2) where σ2 is calibrated to achieve an optimal acceptance rate

3. • If π(θ∗)

π(θ(i))
= r > 1 the draw is accepted and θ(i+1) = θ∗

• If π(θ∗)

π(θ(i))
= r < 1 the draw is accepted and θ(i+1) = θ∗ with probability r
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4. Repeat steps 2-3 for 12,500 iterations.

This creates a sample from the posterior distribution, which has no closed-form solution. In

the application to follow I use 12,500 draws, discarding the first 2,500 as a burn-in that is

dropped from the sample. This is to only retain samples that are more likely to have been

drawn after the convergence of the algorithm. For the entire sample the acceptance rate was

38.1%, within the efficient range of 23.4% to 44.4% suggested in [13].

1.4 Application

Following the Great Recession of 2008/2009, the high-water mark for the unemployment

rate in the United States came in October of 2009, eclipsing 10% for the first time since

1983. Throughout the course of 2010 the rate of unemployment remained above 9.4% .An

equally important point to consider is the duration for which these individuals were out of

work. As of November 2010 the BLS found the average duration of unemployment to be

34.5 weeks, well above values that had obtained in all other recessions in the post-war era.

It is appropriate then to think about who these people are that experience long durations

of unemployment, and specifically what factors contribute to the length of time for which

individuals are out of work. Descriptive statistics for the data set are presented in Table 1.2.

For the application of the copula model I have constructed, I use individual level cross-

sectional data from the Current Population Survey March 2011 Supplement. The Supple-

ment is done once a year and is different from the typical CPS survey in that it includes

data on the number of weeks of employment in the previous year. The survey includes more

than 204,000 people randomly chosen from throughout the U.S. Exogenous variables in the

outcome are given as a dummy for gender, race, and highest level of education obtained. I

11



Table 1.2: Descriptive Statistics

Weeks of Unemployment
Mean 3.40

Std. Dev. 18.31

% of Population that experienced unemployment: 27.62

State of Residence (%)
CT DE ME MD MA NH NJ NY PA RI
2.34 1.62 1.63 2.60 1.56 2.06 2.23 4.19 2.76 1.61

Gender (%)
Male Female
51.95 48.05

Race (%)
White Black Asian Other
79.89 10.08 5.69 3.54

Education (%)
¡High School High School Associates Bachelors ¿Bachelors

9.88 28.14 28.87 20.64 8.05

also include each respondents age and marital status. In the selection equation I use all of

these variables and additionally include an instrument, state of residence. For the selection

equation the dependent variable takes on a value of 1 if the individual did experience unem-

ployment in 2010, and 0 if they did not. The outcome variable is measured as the number

of weeks in 2010 for which an individual was in the labor force but not employed for pay.

At this point several additional clarifications concerning the data are needed. First, serious

measurement error seems to be at work in the responses on the duration variable, with many

values at 10, 20, 26, 30 etc. This is likely due to the fact that the survey was given in March

2011, asking individuals to recollect their number of weeks of unemployment during 2010.

Since they may not be able to recall an exact figure, many seem to respond by rounding

their answer to the closest multiple of 10, or 26 as it marks half of the year. To handle

this I group responses into tens of weeks, such that 1-10 weeks of unemployment takes on

the value 1, 11-20 takes on the value 2 etc. As the histograms in Figure 1.2 and Figure 1.3

show, this transformation of the data leads to a distribution of the data that better reflects
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actual behavior. Another approach to this measurement error would be to use dummies

for roundability as in [31] but grouping the data into tens of weeks also facilitates easier

evaluations of the likelihood so I continue in this way.

Figure 1.2: Histogram of weeks of unemployment (frequency).

Figure 1.3: Histogram of tens of weeks of unemployment (frequency).

Second, since the survey does not include reliable information on the number of different

spells of unemployment experienced by each respondent I assume that all unemployment

was experienced consecutively. It may be the case that individuals had multiple spells for

which they were unemployed during the year, but from the given data I cannot distinguish

between respondents on this basis.

Third, selection enters the model due to an individual’s geographic location. The assump-

tion here is that an individuals state of residence is a significant variable in determining
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an individual’s probability of being unemployed but does not affect his or her duration of

unemployment. In this sense, becoming unemployed in different states should not impact for

how long one is unemployed. At the time when a workers job is eliminated the worker enters

a labor market national in scope, and is willing to take a job in any other state in the U.S.

To make a stronger case for the geographic flexibility of workers in the labor market, I focus

on the 10 states mentioned in the descriptive statistics and individuals who are currently

unmarried and without dependents. The areas under study include all states roughly consid-

ered part of the Northeast region of the U.S., where the flow of workers across state lines is

common. The lack of spouse or children makes it less likely to have it a family attachment to

any state. The subsample acquired in this way is then weighted by the CPS sample weights

provided by the Census Bureau.

Lastly, there are many observations subject to censoring at a duration of 52 weeks. In order

to account for this I set the value of the distribution function at this point equal to one, such

that F (6, p) = 1. Here I use the value 6 because that is the group into which 52 weeks falls,

once I have grouped data into tens of weeks as explained above.

1.5 Results

The estimation algorithm returns some strong results concerning the distributions of the

model parameters. The relevant posterior distributions are presented in Table 1.3 and are

shown graphically alongside the prior distributions in Figure 1.4. In several cases the data

are quite informative about the model parameters. To interpret the sign of the results we

can refer to (1.11) and (1.12), which indicate that a negative value for a parameter in β2

parameter implies a decrease in the duration of unemployment, while a positive value implies

an increase.
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Table 1.3: Posterior means and standard deviations

Variable Posterior Mean Standard Deviation
ρ 0.312 0.215
β2

Intercept 1.121 0.344
Female 4.093 0.901
Age -0.893 0.462

White,Non−Hispanic -1.102 0.453
Black,Non−Hispanic 1.943 0.561

White,Hispanic -0.521 1.049
Black,Hispanic 0.065 0.599

Non−White ∗ Female -1.524 0.804
Income > 50, 000 -2.044 0.913
CollegeEducated -2.510 0.823

In Table 3 we see that being male, being white, having a college education, having a job with

annual income above $50,000, and increasing age are all factors that decrease the length of

time for which one is unemployed. It should be pointed out that here White includes those

who responded as having race either White or Asian. I have also included an interaction term

for Black females, since the data indicate that this is the only group of women that tends to

be unemployed less than their male counterparts of the same race. Though the effect does

not seem to be particularly strong, the sign of the posterior mean for this interaction term

in the table suggests that being Black and female does lower duration of unemployment.

The results also provide an estimate of the correlation coefficient ρ from the Gaussian cop-

ula. This parameter measures the correlation between the distributions of selection and

duration variables. In the estimation of the model I find that the posterior mean for ρ is

0.283, with a standard deviation of 0.191. This implies a positive correlation between the

distributions that were coupled by the copula function, such that the higher an individuals

probability of becoming unemployed, the greater the duration of the individuals unemploy-

ment spell. Though the correlation is not particularly strong and the standard deviation is

relatively large, the results suggest that the probability of unemployment and duration of

unemployment are likely linked, making the case for the joint estimation of the model via the
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Figure 1.4: Prior (black) and posterior (blue) distributions
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copula representation. The fact that a correlation exists between the selection and duration

equations implies that selection bias does indeed exist in the unemployment duration data.

While the plots and signs of the posterior means are telling of the relationship among the

variables, the magnitude of the effect of each covariate on the probability of experiencing a

duration of unemployment of a certain length is not straightforward. These covariate effects

can be estimated by averaging over the entire sample population and other parameter values;

a process I consider in the next subsection.

1.5.1 Covariate Effects

In interpreting the coefficients it should be pointed out that the variables have been rescaled,

such that all of the dummy variables take on values in the set [0, 0.1], rather than the typical

[0, 1]. As well, the age variable was rescaled such that each year counts as 0.1. For example,

a thirty year old person would have age variable equal to 3.00.

In the nonlinear model I have used thus far, the interpretation of the beta coefficients is not

that of a marginal effect. The sign of the coefficient is informative, in that (1.6) tells us

a negative value implies lower duration of unemployment, whereas a positive value implies

a longer duration of employment. However, the magnitude of a change in unemployment

duration due to a change in the value of a covariate is dependent upon the other parameter

values as well as other covariate values.

A better approach to determine the effect on the dependent variable of changing the value

of a single covariate is discussed in [16] and [17]. When looking at the effect of covariate βi

on the probability of a particular realization of the dependent variable, the value in question

is:

Pr(yi2 = k|xi2j†, xi2−j, β2)− Pr(yi2 = k|xi2j‡, xi2−j, β2) (1.18)
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where xi2j
† and xi2j

‡ are the desired different values of the covariate. This value differs across

the population from the data, so I average these values over the distribution of the data and

the posterior parameters. It can be shown that the difference in (1.18) can be represented

as:

∫
(Pr(yi2 = k|xi2j†, xi2−j, β2)−Pr(yi2 = k|xi2j‡, xi2−j, β2))π(xi2−j)π(β2|yi2)dxi2−jdβ2 (1.19)

Since we have already sampled from the posterior distribution of the parameters in the

RW-MH process, this only requires taking a random draw from the β2 parameters and

matching them with a random individual from the empirical distribution of the covariates.

By varying covariate xi2j from xi2j
† to xi2j

‡ in the bracketed term in (1.19), the difference in

the probability of realization yi2 is determined. Table 1.4 provides estimates of the covariate

effects.

Table 1.4: Covariate effects for gender, race and education

∆Pr(y2 = 1) ∆Pr(y2 = 3) ∆Pr(y2 = 5) ∆Pr(y2 = 6)
Male− > Female 0.091 0.045 0.037 0.062
White− > Non 0.110 0.048 0.007 0.033

NoCollege− > College -0.144 -0.071 -0.062 -0.094

According to Table 1.4, gender, race and education all have similar effects on the probability

that an individual experiences a particular duration of unemployment, especially for small

values of y2. For example, a female is 9.1% more likely to be unemployed for 1-10 weeks than

a male with all other covariates the same. Over time the difference in probabilities diminish,

which we would expect due to the fact that the probability of experiencing long duration of

unemployment is lower than the probability of a short duration. However, since the data is

censored at 52 weeks, the covariate effects for y2 = 6 reflect the point mass at this value,

and the fact that nearly 20% of the population falls into this category.
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The greatest difference among the covariate effects is that having a college education is much

more important at longer durations of unemployment than the other variables. Having a

college education creates almost a 6% gap in the probabilities of experiencing between 40 and

50 weeks of unemployment. This is about four times the gap for the gender and race variables.

In this sense, college education is the most persistent of the covariate effects over time. Not

having a college education is the most important factor for increasing the probability one

experiences a particular duration of unemployment, particularly when looking at longer

durations.

1.6 Conclusion

In this paper I have estimated the posterior distribution of the parameters of a two-equation

model for a discrete duration variable in the presence of sample selection. Using a copula

function to form the likelihood of the model, I use two MCMC approaches to both evaluate

the likelihood function, and then sample from the posterior distributions of the parameters.

I apply this model to discrete data on duration of unemployment, and estimate covariate

effects and the correlation parameter of the Gaussian copula. I find that in many cases the

data are informative on parameter values. A positive correlation parameter is found, suggest-

ing that the distributions of incidence and duration of unemployment are positively related.

Due to the Gaussian copula function the marginal distributions are properly specified, and

joint estimation is possible.

Another area for improvement is to make the empirical results more comprehensive. This

can be done by using different functional forms for the distribution of the duration variable,

as well as estimating the copula model with alternatives like the quadrature method or

simple maximum likelihood. Additionally, the introduction of other dependent variables
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can take advantage of the relative ease with which the Gaussian copula can estimate higher

dimensional problems. This line of inquiry seems promising and applications of copula

functions to problems of sample selection are numerous.
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Chapter 2

Monetary Policy and Equity Prices in

a Multivariate GARCH Model

2.1 Introduction

The relationship between monetary policy and equity markets has been a topic of interest for

financial institutions and economists for some time. For investors, knowing the correlation

between equity prices and monetary policy expectations can be a valuable aspect of any

investment strategy. Determining the impact of possible changes to current stated policy

or expected future policy for an equity portfolio relies on an understanding of how stocks

co-move with monetary policy. For central bankers, the interest in the equity-monetary

policy relationship stems from the immediate effect that equity price changes have on the

real wealth of consumers. While the transmission of monetary policy to the real economy via

interest rates and capital investment may take a considerable amount of time to play out,

policymakers may be able to create an immediate impact on current levels of consumption

by altering the value of consumers’ equity portfolios. An estimate of the correlation between
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policy and equity prices is therefore essential in calibrating the optimal policy action.

Most of the focus on the correlation between equity prices and monetary policy is concen-

trated at meetings of the Federal Open Market Committee (FOMC), usually held eight times

per year. At these meetings the FOMC can make adjustments to the Federal Funds Rate

(FFR) target for the current period, or (particularly since the 2007/2008 financial crisis)

announce unconventional monetary policy such as quantitative easing (QE) or forward guid-

ance on the future path of the short rate. However, there are two considerations that suggest

an event-study model in this framework is misspecified. First, interest in the FOMC is not

limited to days on which the committee has a regularly scheduled meeting. Whether through

unconventional monetary policy, speeches by FOMC members, or research published by the

Federal Reserve, a variety of means exist for dissemination of monetary policy information.

This suggests that a full understanding of the correlation between stock markets and mon-

etary policy might be gained by incorporating data from all trading days, not simply those

on which an official FOMC meeting is due to take place. Second, if a model is to incor-

porate observations from non-meeting days, the causation can not be assumed to strictly

flow from monetary policy expectations to equity markets. An equally viable hypothesis is

that changes in the value of equity reflects the overall health of the economy and therefore

will influence the policy choices of the monetary authority. While the assumption is that a

policy shock should ‘cause’ a change in equity prices in some small window of time around

the policy event, on a daily basis there is likely to be a causal link in both directions.

The question that I address in this paper is how to properly measure the relationship between

daily fluctuations in monetary policy and equity prices. While overall changes to equity prices

is most easily captured by a stock index such as the Dow Jones Industrial Average or the

S&P 500, the measurement of daily changes to monetary policy is non-trivial. The effective

FFR could present an option, but this is flawed for two reasons. First, since December 2008

the FFR target as has been fixed in a range of 0-25bp, and daily fluctuations in the effective
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FFR are a reflection of the supply and demand for bank reserves. Information content in

the effective FFR therefore seems to be limited and the channel by which this is related to

changes in equity prices is not obvious. More importantly, this is not the focus of this paper.

Second, ideally this model should capture the impact of changes to expectations regarding

future monetary policy. If equity markets are assumed to be forward looking the target FFR

expected in future periods will be essential to equity valuations, more than just the current

target rate.

In order to evaluate the equity/monetary policy relationship on a high-frequency basis this

paper implements a multivariate generalized autoregressive conditional heteroskedasticity

(MGARCH) model. More specifically, I apply a variant of MGARCH known as copula-

MGARCH, which allows for more efficient specification for the distributions of the financial

assets in the model. I find that the monetary policy shock is conditionally correlated with

equity price changes at about -0.05 throughout the sample, while conditional variances of

each of the time-series do vary greatly over time. As well, the low conditional correlation

suggests that there is little evidence for spillovers in volatilities between the two series.

I begin in Section 1 with a literature review of previous work in this field. Section 2 presents

the copula-MGARCH model, while Section 3 addresses the data and measurement of the

monetary policy shock variable. In Section 4 I discuss estimation methodology. Section 5

provides results and discussion.

2.2 Literature Review

This paper synthesizes two strains in the financial economics literature concerning the in-

teraction of monetary policy and stock returns, and models for high-frequency data that

incorporate time-varying conditional heteroskedasticity. I discuss the former here and the
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latter in Section 3 as I work through the development of the model.

Much of the literature on the relationship between monetary policy and equity prices takes

the form of event studies, where returns and rate changes are measured only on days where

the FOMC meets. This makes intuitive sense, since only on these days is there a possibility

of a target rate change. Moreover, anecdotal evidence from the financial press might suggest

that these are the only days that really matter for creating shocks to monetary policy. In

this sense, [35] consider a simple linear regression of the change in major index returns on

the change in the target FFR, where the events in the study are only meeting days. For

data from 1974-1979 the authors find that a higher FFR target significantly depresses equity

prices. This can be explained as a consequence of higher interest rates slowing the pace of

growth in the economy and thereby lowering the market values of firms in the economy, or

as the result of a lower present value of returns. Using a similar methodology [20] find that

tighter monetary policy is correlated with decreases in returns for stock markets in a handful

of (mostly) developed economies.

Notably, the preceding papers have emphasized the role of observed changes to the policy

rate, when the focus should have been on the unexpected component of the policy action. For

this reason [11] consider the role of monetary policy surprises in relation to equity markets,

calculating the surprise monetary policy as the difference between projections from a survey

of market analysts and the actual FOMC decision. The difference in the mean expected

value from the survey and the actual target rate change should reflect the component of the

FOMC action that the market did not expect. Assuming that the information regarding the

expected rate is already included in asset prices at the time of the meeting, the unexpected

component of the rate change is what may possibly move equity prices. Looking at a cross-

section of firms listed on the S&P 500, the authors find that this measure of monetary surprise

is a good indicator of equity returns for firms with certain balance sheet characteristics, but

not for all equities in general.
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In the same paper [11] suggest that the correlation between monetary policy shocks and

asset price changes is best observed on a high-frequency basis, though this would greatly

increase the difficulty of estimating the model. Their observation, that identifying monetary

policy surprises at times other than policy event days could be quite difficult, has apparently

led the issue to be dismissed in the literature thus far. For the reasons mentioned in the

introduction a better understanding of how policy and equity markets interact could be very

valuable to policymakers and market participants alike.

While maintaining an event study approach, [4] and [22] improve upon the survey method-

ology of [11] by incorporating a financial product called the Federal Funds Futures (FFF)

contract to measure the unexpected element of monetary policy. These futures contracts

are sold by CME Group at monthly maturities up to twelve months into the future. Each

FFF contract pays out $100 minus the value of the average target FFR for that month.

This implies that the changes in the value of these contracts are an immediate indicator of

updates to the expectations for the target rate at particular horizons into the future. [14]

finds the FFF rate is an approximately unbiased predictor of the Fed Funds rate target, so

this seems like a reasonable measure for the purposes of this paper.

On FOMC meeting days [4] calculate the monetary policy shock for the next month as

D
d−D (ff t−fft−1), where D is the number of days in the month, d is the current day and ff t

is the implied value of the average FFR target on day t. Because the FFF rate is a predictor

of the average target rate for a particular month, changes in the rate must be weighted so

that an equal change at the end of the month implies a much stronger expectation change

than at the beginning of the month. For example, if an FOMC meeting is held on January

1st a 1.00 increase in ff t for the spot month suggests that the average target FFR over the

course of the rest of the month will be 100bp lower than was expected on the day prior to

the meeting. However, if the same change to ff t occurs on January 20th this implies that

the average target FFR for the final 10 days of the month will be 300bp lower than was

25



expected. Using this methodology in an event study setting the authors find that a 25bp

surprise decrease in the target rate leads to a 1% increase in equity prices. [37] follows up on

this study with a similar methodology where equity and futures prices are calculated in the

10-20 minutes directly prior to and following FOMC announcements. The author finds that

in international markets a 25bp decrease in the unexpected target rate leads to 1.5%-2.0%

increase in equity indexes.

A different approach to the same topic is that of [28]. The authors address the issue of

determining correlation between monetary policy and equity shocks with the assumption

that the variance of monetary policy shocks is greatest on FOMC meeting days, in what

they call “identification through heteroskedasticity”. Using data from these event days and

1 day prior to the events the authors find that increases in short-term interest rates have the

predictable effect of depressing stock markets, of a similar magnitude to previous studies.

This paper is related to [28] in that it incorporates volatility in monetary policy and equities

in order to better understand their correlation, but the measurement of the monetary surprise

variable originates in [22].

2.3 Model

2.3.1 GARCH

Beginning with [12] economists began to take seriously the idea that in order to study high

frequency time-series data one must account for the clustering of volatility over time. This

implies that a given time-series variable (say, daily change in return for a stock market index)

experiences periods of low and high variance, such that the variance at any point in time

depends on past squared errors and lagged variances. [2] formalized this approach in the

generalized autoregressive conditional heteroskedasticity (GARCH) model, later adapted to
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a multivariate setting. The foundational univiariate GARCH (1,1) model can be represented

as:

Yt =µt(θ) +
√
ht(θ)εt εt∼N(0, 1) (2.1)

ht =ω + βht−1 + αεt−1
2 (2.2)

Here the unconditional variance of Yt is the variance of the normally distributed unconditional

error term εt, but by conditioning on information from previous periods Yt has a conditional

variance of ht. This ht value varies over time in a manner similar to an ARMA(1,1) process,

so that ht is observed to have many consecutive periods of large values followed by periods

of small values.

Applying this model to the multivariate case is not straightforward. A naive approach

would be for the covariance matrix Ht to progress over time in the same way as (2.2),

simply in matrix form. However, this ignores the problems of imposing positive definiteness

and stationarity on Ht, as well as how to reduce the (potentially quite large) number of

parameters and achieve identification. While there are many possible parameterizations in

the literature [3], I implement the Dynamic Conditional Correlation (DCC) model of [12]

because it achieves the requirements just mentioned and maintains easy interpretability of

the parameters. The model is parameterized according to 2.3-2.6.

Yt =µt(Θ) +Ht(Θ)
1
2 εt εt∼N(0n, 1n) (2.3)

Ht =DtRtDt (2.4)

Dt =diag(h11t

1
2 , ..., hNNt

1
2 ) (2.5)

Rt =(1− θ1 − θ2)R + θ1Ψt−1 + θ2Rt−1 θ1 + θ2 < 1 (2.6)

Here the elements of Dt represent the conditional variances while Rt is the conditional

correlation matrix. The constant R matrix is fixed at the unconditional correlation matrix
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of the data, and Ψt is in correlation form with off-diagonal elements determined by the

standardized residuals, ui,t:

Ψij,t−1 =
(
∑M

m−1 ui,t−muj,t−m)√
(
∑M

m−1 ui,t−m
2)(

∑M
m−1 uj,t−m

2)
(2.7)

The value of m is chosen to be any value greater than n (the number of dependent variables)

in order to assure positive definiteness of Ψt−1 and therefore Rt. Application of this model

to financial data has one major shortcoming: the assumption of joint normality. Many

types of high frequency time series data exhibit much fatter tails than are allowed by the

normal distribution, so it is possible that more efficient inference can be achieved by a more

appropriate specification of the marginal distributions of the data.

2.3.2 Copula Functions

Since [30], copula functions have become a popular and tractable way to specify a joint

distribution for a set of known margins. What Sklar found in this seminal work was that

while a given multivariate distribution defines the entire set of univariate margins by simply

integrating out the other parameters, a copula function can do the opposite: begin with any

univariate margins and determine the joint distribution. For a function to qualify as a valid

copula it must meet the following criteria:

1. C(1, ..., 1, ap, 1, ..., 1) = ap for all ap ∈ [0, 1]

2. C(a1, ..., aq) = 0 if ap = 0 for any p ∈ {1, ..., q}

3. C is q-increaing, i.e. any hyperrectangle in [0, 1]q has non-negative C-volume

This general definition is met by a wide array of functions, many of which are mentioned

in [24]. In estimation of the model I use the Gaussian copula function because it is based

28



on a common and tractable distribution, and most importantly because it maintains sym-

metric dependence (a property not shared by most common copulas) which implies that the

correlations of the dependent variables are also symmetric. The Gaussian copula takes the

following form:

C(u|Ωt) = Φq(Φ
−1(X1t), ...,Φ

−1(Xqt)|Ωt) (2.8)

Here Φq is the q−variate normal cumulative distribution function with correlation matrix Ω,

Φ−1 is the normal inverse cdf, and u1, ..., uq are the q dependent variables following (possibly

different) univariate distributions. It is easily seen that C(u|Ω) is a copula function according

to the properties listed above, and that the output will be a properly specified multivariate

distribution function according to the probability integral transform. According to [32] we

can express the joint density function as:

C(Y1, Y2|Ω) =Ω|−
1
2 exp(−1

2
Z ′ΩZ) ln(f1(y1))× ...× ln(fN(yN))

where Z =(Φ−1(F1
−1(Y1)), ...,Φ−1(FN

−1(YN)))

(2.9)

2.3.3 Copula-GARCH

Following on the work of [27] and [21], the copula-MGARCH model improves on the as-

sumption of joint normality found in the standard multivariate GARCH model by specifying

marginal distributions for each dependent variable separately and then determining a joint

distribution using a copula function. In the case of just two variables the marginal distribu-

tions can be given as:

Y1∼f1(θ), Y2∼f2(θ) (2.10)
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The Gaussian copula then forms a joint distribution of these two variables with the as-

sumption of a data generating process for an underlying variable Z, such that Z∼N(0,Ω),

with some correlation matrix Ω. This underlying vector of variables gives us the observed

variables according to:

Yi = Fi
−1(Φ(zi)) (2.11)

Following [32], the Gaussian copula density and log-likelihood contributions are given by:

c(y1, y2|Ω) =|Ω|−
1
2 exp(−1

2
Z ′ΩZ)(f1(y1))(f2(y2)) (2.12)

lt(y1t, y2t|Ωt) =
T∑
t=1

− 1

2
ln |Ωt| −

1

2
Z ′ΩtZ) + ln(f1(y1)) + ln(f2(y2)) (2.13)

The process that determines Ht remains the same as in (2.13) but this enters the Gaussian

copula in correlation form, such that:

Ωt = corr(Ht)

In the application to monetary policy and equities I also specify parameters for the marginal

distributions. Changes in both SP and MP follow a random-walk with Student-t distributed

error terms, as in 2.14

∆MP t∼tν1

∆SP t∼tν2
(2.14)

2.4 Data

The equity price variable is calculated from daily percent changes in the S&P 500 index,

which incorporates many stocks from various sectors and is considered to be representative

30



of the equity market as a whole. Figure 2.2 presents data on this variable from January 1,

1998 until March 1, 2013. It appears that several periods of high volatility exist, followed

by sustained periods of low volatility. This suggests that a GARCH representation for the

variance of this data series is reasonable and should improve inference in the model. As well,

a fat-tailed distribution would seem to be a wise choice to represent these returns, as there

are a high number of large deviations relative to the mean, which is approximately 0. This

agrees with the finance literature on this subject, which tends to find asset prices to display

greater kurtosis than that of a normal distribution.

Measurement of the monetary shock variable is similar to that in [4]. The policy shock for

a given day is calculated as the difference in the implied rate on the FFF contract on that

day, weighted according to the timing of the next scheduled FOMC meeting. For each day

I use FFF contract data for the month in which the next scheduled FOMC meeting is to

be held. The FFF values are then weighted according to (2.15). Here d is the day of the

next meeting, D is the number of days in the month of the next meeting, and ffri,t is the

implied rate of the average target FFR from the FFF contract for i months ahead. Due to

the spacing of FOMC meetings approximately every 6 weeks, this means that a scheduled

meeting could be 0, 1 or 2 months ahead. Data is collected on FFF contracts of these

maturities. This is convenient because FFF contracts less than 3 months forward tend to

have the highest liquidity. An additional point regarding (2.15) is that for observations that

reference a meeting to occur within the last 3 days of a month, the weighting becomes so

large that these points outweigh the rest of the sample, so I follow [4] by including these

observations in unweighted form.

MP t =
d

D − d
(ffr0,t − ffr0,t−1) (2.15)

While MPt does reflect the change in price of an FFF contract a given number of months
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ahead and therefore the unexpected change in the average target FFR for that month, it

should be noted that this does not capture changes to future monetary policy as a whole.

It could be the case that the real monetary policy shock on a given day comes in the form

of unexpected forward guidance for 2 or 3 years into the future, which the measure I have

constructed here will not be able to measure. A specification that does consider incorporating

unexpected changes to monetary policy expectations at all horizons is considered in the third

chapter of this dissertation. The approach there is to decompose shocks to monetary policy

in terms of the ’target’, or current rate, and the future ‘path’ of the policy rate, as in [14].

However, for this paper I restrict the analysis to the next meeting.

Figure 2.1: Plots of daily changes in FFF contracts for 0, 1 and 2 months ahead (bp)

Figure 2.2: Plots of daily % changes in S&P500 index and the monetary policy shock (100bp).
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A time-series plot of MP t is given in Figure 2.2. This plot indicates the possibility of

sustained periods of high and low volatility, as well as many more observations in the tails

of the distribution than would be likely under a Gaussian distribution. Descriptive statistics

for both MP t and S&P500 variables can be found in Table 2.1.

Table 2.1: Descriptive Statistics

S&P%dailychange Monetarypolicysurprise(100bps)
Mean 0.017 0.0

V ariance 2.015 0.48
Minimum -9.000 -2.90
Maximum 10.800 2.27

2.5 Estimation

I use Bayesian methods to estimate the model. Prior distributions are set on each of the

parameters and then the mean and variance of the joint posterior distribution are calculated

to describe the distribution of each parameter individually. Since the likelihood function

for the copula-MGARCH model is completely intractable, no closed form solution for the

posterior parameter distributions exist. The solution is to instead draw samples from the

posterior distributions by way of the Metropolis-Hastings (MH) algorithm, so that the pos-

terior moments are estimated from the sample of draws.

The prior distributions on the model parameters are chosen to satisfy stationarity of the

volatility evolution equations, by amending the basic model given by (2.3)-(2.6). The model

should work best if I can parameterize it in a way such that all the parameters are unbounded,

but still meet the positive-definiteness requirements. All of the parameters in (2.4)-(2.6) are

restricted to be positive, so I set a normal prior on the square root of each of these. The

specific means and variances for the priors on each parameter are decided according the

MLE estimates of the likelihood, as explained later. The variances are set at what I expect
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is a large enough value to encompass any reasonable parameter values within two standard

deviations. All priors are specified in Table 2.2.

Because the posterior distribution is intractable, a numerical sampling method is needed. I

use a common form of the MH algorithm known as the Random Walk Metropolis-Hastings

(RW-MH) algorithm from [6]. This proceeds in the following way, where θ is taken to be the

set of all parameters:

1. Begin with parameter values, θ(i) (when i = 1, θ(i) = θ̄ from the prior mean

2. Draw θ(?) from N(θ(i), σ2) where σ2 is calibrated to achieve an optimal acceptance rate

3. • If π(θ∗)

π(θ(i))
= r > 1 the draw is accepted and θ(i+1) = θ∗

• If π(θ∗)

π(θ(i))
= r < 1 the draw is accepted and θ(i+1) = θ∗) with probability r

4. Repeat steps 2-3 for 25,000 iterations.

According to [13] an optimal acceptance rate is between 25-70%, which the acceptance rates

for each parameter approximately fall into.

The copula-MGARCH model relaxes the joint normality assumption found in the standard

DCC model. I assume that the degrees of freedom parameter on each marginal distribution

is fixed, according to the apparent kurtosis of the observations found in Figure 2.2. I set

ν1 = 5 which reflects very heavy tail observations in monetary policy shocks and ν2 = 10 for

S&P returns. This reflects the fact that the monetary policy shock variable is observed to

have a very fat-tailed distribution, while equity returns are fat-tailed but not to as great an

extent.
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2.6 Results

Beginning from the maximum likelihood estimates given by the dcc.estimation function in R

(shown in columns 1 and 2 of Table 2.2), I run 25,000 iterations of the algorithm enumerated

above. After the initial 5,000 iteration burn-in, I keep the remaining sample that is found

to have an acceptance rate of 31.2%. The means and variances of the sampled marginal

posterior distributions are given in columns 3 and 4 of Table 2.2). The posterior moments

indicate similar results for point estimates relative to the maximum likelihood estimates.

However, in some cases the variances of the sample of MCMC draws from the posterior

distributions are quite different than the variances found from the MLE solution, but with

an even split in terms of which estimation method finds smaller variances. To be clear, the

MLE method was used to estimate the MGARCH model without a copula representation

for the joint distribution so the estimates can not indicate which estimation method was

superior.

Table 2.2: Copula-MGARCH

PriorMean PriorV ariance PosteriorMean PosteriorV ariance
Parameters in Dt

α1 0.023 0.010 0.013 0.002
α2 0.016 0.020 0.014 0.024
β11 0.112 0.079 0.131 3.0e-5
β12 1.2e-07 0.020 -0.001 0.024
β21 0.015 0.005 0.053 0.002
β22 5.031 0.013 4.906 0.032
γ11 0.873 0.001 0.799 2.4e-4
γ12 0.002 0.747 0.019 0.164
γ21 3.5e-06 0.007 0.003 1.3e-4
γ22 1.0e-07 0.001 3.2e-05 0.002

Parameters in Rt

θ1 2.43e-07 0.021 0.009 4.0e-5
θ2 0.250 1.244 0.201 3.0e-5

Previous studies on this topic were done in an event study setting, so it seems reasonable
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that less of an effect would be found in my model, where less monetary policy information

is conveyed on days when the FOMC does not meet. Most of the coefficients in (2.13) is

indistinguishable from zero considering that the posterior variance is greater than the mean.

This implies that on a daily basis changes in equity prices do not impact unanticipated

monetary policy.

Regarding the volatility parameters, interpretability is much easier when considering how

the parameters affect the time-path of the variances and correlations over time. The plots

of the parameters and their associated 95% HPD intervals present a similar picture to what

we observe in the original time series. The plot of the conditional correlation is tightly

distributed around the mean of -0.0503. This is barely different from zero, and seems to

vary little over time. From this it seems that the conditional correlation between the two

variables is mildly negative but also does not vary in a noticeable trend over time.

Figure 2.3: Conditional correlation over time (with 95%HPD interval)

In terms of volatility parameters, the results seem to be very similar to those derived as max-

imum likelihood estimates from the standard DCC model. It does seem that the conditional

correlations are significantly negative at all times but the magnitude is quite low. This is

evidence against a relationship between the monetary policy variable and equity markets in

terms of a spillover in volatilities. Conditional volatilities tend to vary over time as seen in

Figure 2.4 and Figure 2.5, and conditional correlations are quite low and relatively constant
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Figure 2.4: Conditional variance of S&P returns over time (with 95%HPD interval).

Figure 2.5: Conditional variance of MP returns over time (with 95%HPD interval).

through time.

These results are not necessarily an indication that the copula-MGARCH model does not

offer improvements on the standard multivariate GARCH model. From the estimation results

it seems that parameter estimates are very close, even though the normality assumption is

likely to be restrictive for these two variables. It may be that the presence of many zeros

in the monetary policy variable is adversely affecting my ability to estimate the parameters.

Allowing the degrees of freedom parameters in the specification of the marginal distributions

to vary might improve the fit of the copula-MGARCH model overall, but it seems unlikely

this would make a large difference in the current application. My findings here suggest

that although there is merit to representing each of the univariate time-series by either a

GARCH or stochastic volatility model, there is little gain from modeling the two series
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jointly. Correlations between the monetary policy shock I have calculated and changes in

equity prices do not exist in the sample I have studied.
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Chapter 3

Federal Reserve Communication and

its Time-Varying Impact on the Yield

Curve: A Dynamic Nelson-Siegel

Model for Daily Data

3.1 Introduction

On December 16, 2008 the U.S. economy entered unfamiliar territory when the Federal

Funds Rate (FFR) target was lowered to an historic low of 0-25bp. In the months prior

there had been a series of often large rate cuts but this particular policy action was unique:

the target was now constrained from below, according to the zero lower bound (ZLB) on

nominal interest rates. At the ZLB the Federal Reserve had given up the power to exert

downward pressure on short term interest rates. In a time when expansionary policy is

especially necessary this limit on the Fed is problematic. Policymakers have responded by
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shifting the emphasis of monetary policy from the short end of the yield curve to longer

maturities.

With its shift in focus to medium and long maturity yields, the Fed has been forced to rely

more heavily on unconventional monetary policy. This has primarily come in two forms:

1. quantitative easing (QE), and 2. ‘communication’ regarding future plans for the target

rate (termed the ‘path’ of policy). Unlike quantitative easing, communication (explicit or

implicit) concerning the path has been disseminated to the markets via official Federal Open

Market Committee (FOMC) announcements for over twenty years. Communication therefore

represents the only aspect of monetary policy that spans the pre- and post-crisis period, and

offers the best glimpse into how market sensitivity to policy has changed over time.

Communication can be a difficult policy tool to manage for two reasons. First, the important

aspect of communication, like more traditional policy, is the surprise component. The impact

of a rate change on financial markets will derive from how unexpected the rate change is; the

expected component of a rate change should already be priced into the market. The same

principle applies to path changes: the expected component of the Fed’s published statements

should be anticipated by the market, so that changes to asset prices on an event day are

only correlated with whatever is unexpected. Market perceptions must be understood if Fed

communication is to be effective.

The second complication for communication is that the Fed’s actual intended path change

is up to market interpretation. Whereas the actual target change on an FOMC meeting day

is a matter of fact, the precise meaning of what the Fed says in its press release is often

up for debate. When the minutes from the meeting are released two weeks later, market

agents may have to revise their interpretation once again. Likewise with communication, the

surprise element of a path change is the difference between what the market expects prior

to the change and how the market interprets the Fed statement. This can make the impact

of the Fed’s words highly uncertain.
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To understand how the ZLB alters the impact of communication, it is first important to

have the correct interpretation for how the bound affects the yield curve in general. The

ZLB is traditionally viewed as a binary state: either the lower end of the FFR target range

is zero, or it is not. At any point in time whether the ZLB binds on the target rate is solely

determined by the Fed and is directly observable. However, the ZLB takes on a continuous,

unobservable form in reference to the yield curve as a whole. The value at which the yield

of a particular maturity is bound from below depends on: 1. the rate at which the market

discounts future returns 2. the length of time which the ZLB is expected to bind on the short

rate and 3. the time-varying risk premium. Suppose the market expects the Fed to maintain

a target rate at zero for the next 12 months. Any event that would typically lower the yield

on 9 or 12 month bonds, whether macroeconomic or monetary shocks, will have much less

of an effect than if the short rate was unbounded. The actual value at which the yield is

bound is then a function only of the market discount rate and the risk premium, according

to the term structure of interest rates. As both of these factors are unobservable, the value

at which the yield of a particular maturity is bound can not be known a priori and may

change with time. The largest maturity for which the ZLB binds can be thought of as its

”tightness”.

The continuous nature of the ZLB creates a dilemma for monetary policy makers: as commu-

nication becomes more successful in altering market expectations the sensitivity of interest

rates to communication will likely decrease. If the market expects the ZLB to persist for

the next 24 months, say, maturities under 24 months should be much less sensitive to path

shocks. No information can cause the market to lower its expectation for the short rate any

further up to the 24 month horizon. Likewise, as the longer maturity yields are a function

of expected future medium-term yields as well, sensitivity of long-term rates to a path shock

should also fall.This implies two hypotheses: 1. path shocks should have less of an impact

on the short end of the yield curve beginning in December 2008 and 2. the effectiveness of

monetary policy should tend to decrease as the tightness of the ZLB increases.
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In order to study this aspect of monetary policy I implement a Dynamic Nelson-Siegel (DNS)

model for daily changes in yields. This requires the first-differenced DNS model in order to

circumvent the issue of non-stationarity that arises with high-frequency data. Bayesian

estimation via the Gibbs sampler is then used for estimation, generating draws from the

conditional posterior distributions of the parameters and the latent states. The mean and

variance of the conditional posteriors for the parameters and latent states are derived from

the Bayesian update for Gaussian conjugate priors and the Kalman filter, respectively.

This paper makes a significant contribution to the literature on unconventional monetary

policy. By expanding the first-differenced DNS model to daily data and including macroe-

conomic and monetary policy factors, I obtain a model that reflects yield curve changes at

a shorter horizon than in any previous work. Whereas DNS models are typically estimated

with quarterly data to facilitate the inclusion of stock variables like capacity utilization and

inflation, my approach can measure the sensitivity of the yield curve to macroeconomic or

financial variables on a daily basis. This allows the monetary authority to have an accurate

picture of the effects its communication to the market is having, and to adjust policy accord-

ingly. I find that the sensitivity of yields to path shocks was at its height in 2006-2007 with

a rapid decline in 2008-2011, so that by the third quarter of 2011 the effect of a one standard

deviation path shock on yield maturities under two years was less than 50% of what it was

in early 2007. By 2013 that trend began to reverse, as the market seems to expect the target

rate to move away from the ZLB sometime in 2015.

The rest of the paper is structured as follows: Section 2 provides a literature review and

Section 3 offers a description of the data used in my analysis. In Section 4 the model is

presented. In Section 5 I lay out the estimation scheme and Section 6 includes results on

parameter estimates and impulse response functions. Section 7 concludes with discussion of

the results and plans for future work.
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3.2 Literature Review

This paper draws primarily from the literature on central bank communication, which has

seen renewed interest since the recent financial crisis. This line of research began with the

creation of a method to measure monetary policy shocks from the principal components

of asset prices. Originally, this was to calculate the surprise component of a target rate

change. [4] find the unexpected target rate shock from the difference in the value of the

current month’s Federal Funds Futures (FFF) contracts. These contracts are priced based

on the average federal funds rate expected to obtain for a given month. On an event day

(FOMC meeting or minutes release), the daily change in the price of an FFF contract can be

used to extract an expectations surprise. The authors then use this measure in regressions

to explain variation in equity market markets.

A similar approach can be used in regards to communication. In the period from 1990-2004

the FFR target was free to vary but FOMC announcements often contained content on

future policy. To understand the impact of communication concerning future periods [14]

collect data on assets that reflect daily changes to monetary policy expectations. Daily

changes in FFF contracts for up to three months ahead reflect how the market revises

expectations for the next scheduled meeting, in the same way spot month contracts reflect

the change in expectations for the current meeting. As well, daily changes to Eurodollar

futures contracts indicate the change to expected interest rates at longer horizons. For a set

of FFF and Eurodollar futures contracts up to two years in maturity the authors find that

the first two principal components of the data mimic surprise changes to monetary policy

very closely. The first principal component can be seen to correlate with unexpected changes

to the current target rate, as it has a 95% correlation with the spot month FFF changes.

The second principal component is then observed to follow shocks to the path of rates. By

comparing to the actual content of FOMC press releases, the second principal component

seems to track changes to the expected future target. [14] estimate that a 100bp positive
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innovation in the path rate leads to a statistically significant 40bp, 36bp and 27bp increase

in 2-, 5- and 10-year yields, respectively.

Adapting this methodology to different settings, a variety of papers suggest that path shocks

have less of an effect on yields for periods in which the ZLB binds on the short rate. For

data only in the ZLB period, [38] finds the first principle component of FFF and Eurodollar

futures contracts to reflect surprise path changes. This is to be expected, as the short

rate is bounded and the first principal component explains most of the variation in the

underlying asset prices should only indicate changes to the path. The author finds that a 1

standard deviation negative path shock leads to a 6bp drop in the 2-year Treasury yield and

a 12bp drop in the yield on 10-year Treasuries. This is a similar direction of effect to what

was found in [14]. [10] include further data points in their sample from both inter-meeting

announcements and minutes release days. The authors find that a negative 100bp path

surprise leads to a 32bp, 35bp and 29bp decrease on 2-, 5- and 10-year yields in the period

from 1990-2007. From 2007-2013 the effect is slightly less, leading to a decrease of 24bp,

32bp and 29bp for the same maturities. This agrees with [5] which finds that the effect of a

path shock has decreased somewhat from 2008, particularly for maturities up to two years.

The consensus from the literature is that a negative (positive) surprise to the expected path

of future rates is correlated with a decrease (increase) in yields on Treasury securities, and

this effect is diminished in magnitude during the ZLB period.

As the short rate is expected to stay at zero for a longer duration yields should become less

sensitive to shocks. [33] find that yields of maturities up to two years are less responsive to

macroeconomic shocks the longer the ZLB is expected to persist into the future. By April

2012, 3-, 6- and 12- month yields were found to be completely insensitive to news about the

labor market, prices and production. The sensitivity of 2-year yields was not quite zero but

had declined by more than 50% and no significant change in the responsiveness of 5 or 10

year yields was found. The authors match this to survey data from professional forecasters.
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From December 2008 to October 2011 forecasters expected the federal funds target rate to

stay below 25bp for roughly four quarters, at which point the expected duration increased

to seven quarters or more. From 12-month rolling regressions [10] find that the effect of a

path surprise on Treasuries up to 10-years in maturity has tended to decrease within the zero

lower-bound period. The authors suggest that this is due to the increasing tightness with

which the ZLB binds during this period, which is validated by [33]. However, a different

approach would be to explicitly describe changes to the shape of the yield curve as a function

of path shocks. In Section 4 I provide a model that does just that.

3.3 Data

Data for this paper covers the period from September 2004 to April 2014, including 2390

trading days. Yield data is collected from the St. Louis Federal Reserve’s FRED database.

One reason that a Dynamic Nelson-Siegel model is needed for this data can be found in

Figure 3.1. The figure contains plots of daily changes in empirical estimates of the level,

slope and curvature of the yield curve for each year from 2004-2014. The empirical level

factor is given by the daily change in the 10-year yield, the slope by the daily change in

the difference between the 10-year and 6-month yield, and the curvature by daily change

in the ‘butterfly’ spread, calculated as (10year + 6month − 2 ∗ 5year). Days on which the

FOMC had a meeting or published a press release are plotted in red. This figure shows that

there can be quite a bit of variation in the variability of the shape of the yield curve over

time. The greatest volatility in the shape factors is found roughly between 2007 and 2011,

consistent with a period of overall market turmoil. As we will see in Section 4, these changes

in the amount of variation in yields can be accounted for by the parametrization of the DNS

model.

In the spirit of a traditional macro-finance DNS model like [8] I must include in my model
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Figure 3.1: Daily changes in level, slope and curvature factor (bp), 2004-2013 (FOMC meet-
ing days in red).

variables for inflation and growth that may affect the evolution of the yield curve shape

factors. Daily changes in inflation are calculated from Treasury Inflation Protected Securities

(TIPS). The par value of these securities is linked to the value of inflation so that daily

changes should reflect the update to the market expectations for inflation.

To measure daily changes in production I use the Aruoba-Diebold-Scotti Business Index

(BI) found on the Philadelphia Federal Reserve website. This measure is a daily, seasonally
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Figure 3.2: Daily changes in TIPS and BI

adjusted index that aggregates data on: weekly initial jobless claims, monthly payroll em-

ployment, industrial production, personal income less transfer payments, manufacturing and

trade sales, and quarterly real GPD. The index is scaled to have mean zero, with positive

values reflecting a growing economy. Though this measure is far from a perfect analog to

capacity utilization (as is typically found in a DNS model), it should mimic changes to the

health of the economy fairly well. Plots of TIPS and BI are provided in Figure 3.2.

The measurement of daily fluctuations in the expected path of the FFR target is the most

involved aspect of the data collection for this paper. I follow [14] and [10] in using Federal

Funds Futures (FFF) rates and Eurodollar futures to calculate monetary policy shocks as

the principal components of all of these asset prices. FFF contracts change in value based

on the expected average federal funds rate for a particular month. Specifically, at the end of

each month the value of a 100 dollar contract for the spot month is worth 100-(the average

federal funds rate for all trading days in that month). This can then be translated into a

value for how much the market expects the federal funds rate to change at the next FOMC
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Figure 3.3: Daily shocks to target and path

meeting. An increase (decrease) in the price of a spot month contract indicates an expected

decrease (increase) in the federal funds rate of:

mp1t =
d

D − d
(ffr0,t − ffr0,t−1) (3.1)

where d is the day of the next meeting, D is the number of days in the month, and ffr0,t is

the implied rate of the federal funds rate from the FFF contract for the spot month.

The above measure in (3.1) gives the change in expectations for the federal funds rate at the

time of the next scheduled FOMC policy meeting. A similar calculation for the expectational

change in the target at the next policy meeting determines the shock to the path of monetary

policy. The change to the FFF contract at the policy meeting j months ahead should be the

change to ffrj,t that is not due to the change in ffr0,t. For this reason the expected future

change of the FFF rate is given by:

mp2t = ((ffrj,t − ffrj,t−1)−mp1t
d2

D2

)
D2

D2 − d2

(3.2)
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where d2 and D2 are the number of days in the month at the next event day. In general,

FOMC meetings are scheduled approximately six weeks apart,so for the calculation of mp1

and mp2 I acquire data on FFF contracts for the spot month and from 1-3 months ahead.

Figure 3.4: 1-year rolling regression of yields on the path shock, in bp.

While FFF contracts are available up to 12 months into the future, volume for these securities

is quite low more than 3 months ahead. If the market is using Fed communication to

update its monetary policy expectations far beyond the next three months, an accurate

formulation of the path variable must include changes in expectations for at a significantly

longer horizon. For this I use daily changes in Eurodollar futures. Like FFF contracts the
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value of a Eurodollar futures contract increases (decreases) as the expected interest rate

on Eurodollars decreases (increases). The value of Eurodollar futures contracts are tied to

international interest rates beyond just the federal funds rate, so I must make the assumption

that the only factor moving the value of these contracts on FOMC event days is the FOMC

announcement. Daily changes in Eurodollars futures from 1 to 10 quarters ahead are included

for the present application.

Collectively, data from FFF and Eurodollar futures contracts make up 12 different variables

on 159 event days, an unwieldy amount of information to include as distinct measures of

monetary policy shocks. To condense information and have a more straightforward measure

of path shocks I use principal components analysis on these variables, as in earlier work on

this subject. The first two principal components seem to follow the pattern we would expect

of shocks to both the short-term target rate and the medium-term path. Of note is the order

of the principal components: in the period covered by [14] shocks to the short rate were much

more important than shocks to communication, so the first principal component is related to

shocks to the target rate. In my application the interpretation of the principal components

is flipped. This agrees with the observation that the target rate has been bounded by the

ZLB for all of the 2009-2014 period, so that most policy shocks should be related to expected

future rate. The target and path shocks are displayed in Figure 3.3.

Since the data on target and path shocks are not readily available in [10], to compare results

of the principal component analysis I replicate the rolling regressions from that paper in

Figure 3.6. This also acts as a prelude to later results on the time-varying effect of a path

shock. Though I would not expect identical results because the time frame of the data in

each paper is slightly different, I find results similar to those in [10]. I plot the effect of a

1 standard deviation increase in the path shock on yields, resulting in a 14bp increase in

2-year yields in 2007, while by 2013 the same shock led to only a 2bp increase in the same

yield. Yields on 5- and 10-year bonds also decrease in sensitivity to a path shock during the
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same period, but only slightly. From 2007-2013 the effect of a 100bp path shock on 5-year

yields falls from 12bp to 5bp, while the effect on 10-year yields falls from 10bp to 6bp. These

results are consistent with the findings of [10]. Importantly, these results are also consistent

with increasing tightness of the ZLB on medium-term yields during this period. Two-year

yields became significantly less sensitive to path shocks, while the fall in sensitivity of 5- and

10-year yields is comparatively small.

It is not as easy to verify the validity of the target shock variable, as there is no point of

reference for this in previous work. However, the fact that the path shock is similar to previ-

ous papers suggests the target shock is also estimated appropriately. In Table 3.1 I provide

correlations of the target and path shocks with each of the underlying asset prices. The path

variable is somewhat correlated with 3 to 12 month changes to interest rate expectations,

and much more highly correlated with 12 to 30 month rate expectations. The converse is

true of the target shock.

Table 3.1: Correlations between estimated monetary policy shocks and underlying asset price
changes.

mp1 mp2 edf 3 edf 6 edf 12 edf 18 edf 30

targett 0.965 0.551 0.454 0.291 0.248 0.225 0.156
patht 0.185 0.291 0.670 0.839 0.944 0.950 0.901

3.4 Model

To model the shape of the yield curve one must account both for its cross-sectional properties

and variation over time. As well, it is desirable to impose a smooth curve connecting yields

of all maturities. A popular approach to this problem was developed by [25]. Looking only

at the cross-sectional properties of the yield curve, the authors give Treasury yields the
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functional form:

y(τ) = β1 + β2
1− e−λτ

λτ
+ β3(

1− e−λτ

λτ
− e−λτ ) (3.3)

Here β1, β2, β3 and λ are parameters, while τ is the maturity (in months) of the yield (y).

This function has many nice properties that fit the yield curve. First, as τ goes to ∞,

the yield approaches the constant β1 which signifies the long rate. This coincides with the

observation that long-term yields appear to approach a constant limit as maturity increases.

Second, under this parameterization the curve can take on any shape that is either globally

concave of globally convex, which goes along with historical data on the yield curve, like the

plots presented in 3.1. This implies that either upward or downward sloping portions of the

yield curve are possible, but with only one hump to its shape.

The third advantage of the functional form of the DNS model is that it can easily be trans-

formed to account for the time-varying nature of the yield curve. Coefficients from the

cross-sectional model take on the interpretation of the level, slope and curvature of the

dynamic yield curve. This is seen by rewriting the yield curve with time-varying β’s as:

yt(τ) = β1t + β2t
1− e−λτ

λτ
+ β3t(

1− e−λτ

λτ
− e−λτ ) (3.4)

The time-constant factor loadings are therefore given by (1,1−e−λτ
λτ

,1−e−λτ
λτ
−e−λτ ). Unlike the

cross-sectional model, we can now interpret the time-varying βs as latent factors, while λ is

the free parameter that governs the time-constant factor loadings. If we vary the maturities

for a fixed λ, we see that plots of the factor loadings look very much like what we expect to

be the three principle shape factors of the yield curve. The long run level (β1) of the yield

curve stays constant, the slope (β2) tends to decrease as maturity increases and curvature

(β3) tends to peak in the 24-36 month range. This can be seen in the plots of factor loadings

when λ = 0.0609, found in FIgure3.5. Note that the ‘slope’ factor as estimated in the model
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Figure 3.5: Factor loadings by maturity

is the inverse of the actual slope of the yield curve. By stacking the yields and factor loadings

over maturities, (3.2) can be rewritten in matrix form as

yt = Λft + εt t = 1, ...T (3.5)

Here yt is an (n× 1) vector, where n is the number of distinct maturities being considered.

Λ is an (n× 3) matrix with row j given by (1, 1−e−λτj
λτj

, (1−e−λτj
λτj

− e−λτj). ft is a 3× 1 vector

of the shape factors:

ft =


lt

st

ct

 t = 1, ...T (3.6)

where lt is the level, st the slope and ct the curvature of the yield curve.

For the latent factors the transition equation is given as a VAR(1):

ft = Aft−1 + ηt t = 1, ...T (3.7)

A is a 3 × 3 matrix of parameters. The error terms in the observation and state equations
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are assumed to be orthogonal, with ηt ∼ N(0,Ωη) and εt ∼ N(0,Ωε).

The application I consider in this paper requires daily data. This creates a problem for

estimation of (3.7). Even in the typical DNS model for monthly data the coefficient matrix

A is nearly non-stationary. With daily data the latent factors are in fact all approximately

non-stationary as indicated by my preliminary analysis. In this case, variance estimates

for parameters and confidence intervals do not have the properties that they would under

stationarity, so that inference in this model becomes very difficult.

A solution is to use the first-differenced DNS model of [39]. One can see from time-

differencing (3.5) that the factor loadings will stay the same, while ft is replaced by f̃t =

(ft− ft−1). Similarly yt has been replaced by ỹt = (yt− yt−1). The structure of the observa-

tion equation is therefore unchanged except that the data is now the daily difference in the

yields and the daily difference in the underlying latent factors, which I write as ỹt and f̃t,

respectively. Without loss of generality the error terms ε̃t = (εt − εt−1) and η̃t = (ηt − ηt−1)

are kept in the observation and state equation, though their actual distribution is likely not

the same as in the original model. The yields-only first-differenced DNS model can then be

written as

ỹt = Λf̃t + ε̃tt=1,...T

f̃t = Af̃t−1 + η̃t t = 1, ...Tε̃t
η̃t

∼Nn+3

Ωε̃ 0

0 Ωη̃

 t = 1, ...T

Macroeconomic variables have also been incorporated in the DNS model, beginning with [9]

and [1]. Beyond the three latent factors, additional observed factors are typically included
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for real activity, inflation and monetary policy. Only the latent factors are present in the

observation equation, while the macro and latent factors are included in the VAR(1) state

equation. Monthly data on macro variables typically take the form of the level of capacity

utilization, the level of inflation and the monthly average federal funds rate. To briefly

summarize this line of literature, he federal funds rate is closely correlated with the slope

factor and capacity utilization is correlated with the level factor. The curvature factor has

been found to be unrelated to any of the macro factors.

Macroeconomic measures TIPS and BI are combined into T × 2 matrix m, and shocks to

the monetary policy target and path are given by targett and patht. As is common in the

literature, the state (3.7) is reformulated as:

 f̃t
mt

 = A

 f̃t−1

mt−1

 + b(targett) + c(patht) + ηt t = 1, ...T

Here the A matrix is redefined to have dimensions (5× 5).

As discussed earlier, an additional element to include in the model is that the effect of the

path shock on yields likely varies considerably around the time that the zero lower bound

began to restrict yields. One possible solution to this problem is to allow the coefficients to

be governed by a regime switch at the point when the target rate came up against the ZLB,

as in [7]. However, this approach misses the potentially continuous coefficient change that

has been observed in [10]. If agents believe that short-term nominal rates will be fixed at

zero for longer periods of time, medium-term bonds will also begin to have less sensitivity to

monetary policy shocks. This has been found to be true of shocks to macroeconomic factors

in [33]. If this is also true in regards to path rate surprises short and medium yields should

not react as much to path surprises the longer the market expects the zero lower-bound to

restrict the target rate. The state equation is further modified to account for time-varying
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parameters on the path shock with the addition of ct: f̃t
mt

 = A

 f̃t−1

mt−1

 + b(targett) + ct(patht) + ηt t = 1, ...T

I assume that ct follows a random walk with Gaussian error term:

ct = ct−1 + ζt t = 1, ...T

where ζtj∼N(0, σζj) for j = 1, ...5. The full macro-yields model with time-varying parameters

can now be written in state space form. In what follows I suppress the tilde on the variables

and error terms for simplicity, though the variables maintain a first-differenced interpretation

as above.

yt = Λft + εt t = 1, ...T (3.8)

 ft
mt

 = A

 ft−1

mt−1

 + b(targett) + ct(patht) + ηt t = 1, ...T (3.9)

ct = ct−1 + ζt t = 1, ...T (3.10)

εt
ηt

∼Nn+3

Ωε 0

0 Ωη

 t = 1, ...T

ζtj∼N(0, σζj) j = 1, ...5

(3.11)

In the next section I estimate the model with Bayesian methods.

56



3.5 Estimation

(3.8)-(3.11) represent a standard latent factor model with time-varying parameters and a

nonlinear parameter λ in the factor loadings. In line with the DNS literature I calibrate λ

to be fixed over time, which greatly simplifies estimation of the model. Previous work has

found little reason to believe that different values of λ (within a reasonable range) have a

significant impact on the results. I therefore calibrate λ = 0.0609 as in [8].

The model allows for straightforward Bayesian estimation, wherein the parameters and la-

tent factors are estimated with the Gibbs sampler. I place multivariate Gaussian priors on

A and b so that the full-conditional posterior distributions are readily available. The con-

ditional posteriors for the latent states also have a multivariate Gaussian distribution with

mean and variance determined by the Kalman filter and smoother. Additionally, to achieve

identification in the model I calibrate the σζj variance parameters to be 0.01. As I will show

in the next section, the value of each cjt is in the range of -0.2 to 0.2, so this variance is large

enough to accommodate any variation in the coefficients over time.

3.5.1 Prior Distributions

For the sets of parameters A and b I choose multivariate normal priors with mean and

covariance given from the two-step estimation procedure of [8]. Two-step estimation works

by regressing yt on Λ for each day separately, so that the coefficients in these daily regressions

estimate the ft latent factors. In the second step of the process these estimated latent factors

are regressed on both their own lags and the monetary policy shocks by simple OLS. This

provides an estimate of A and b, and residuals from the observation and state equations

can be used to calculate moment estimators of Ωη and Ωε. The coefficient estimates are

inconsistent approximations to the likelihood solutions but nonetheless serve as a decent
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starting point for more robust estimation. These prior mean values are given by Ā, b̄, Ω̄ε

and Ω̄η, reported in Table 2.3.

In the top part of Table 2.3 the first five columns give the prior mean for A, while the

last column has the prior mean for b. The lower part of the table contains Ω̄η and the

prior covariances for the mean parameters can be found as ΣĀ = (Ω̄−1
η ⊗XA

′
XA) and Σb̄ =

(Ω̄−1
η ⊗Xb

′
Xb) where

XA =



f̃1 m1

f̃2 m2

...
...

f̃T−1 mT−1


Xb =



target1

target2
...

targetT−1


Y =



f̃2

f̃2

...

f̃T


The prior mean Ω̄ε is assumed to be diagonal, with entries taken from the squared residuals

of the first stage of the two-step estimation procedure:

Ω̄ε = diag(2.5e−04, 2.6e−04, 1.9e−04, 1.1e−04, 1.04e−04, 9.7e−05, 5.9e−05, 8.5e−05)

For the purpose of identification I assume that the covariance matrices Ωε and Ωη are fixed at

their prior values. With the assumption that both the observation and state equation have

normally distributed errors, conjugate priors for the state equation parameters are given by

the multivariate normal distributions:

A∼N(Ā,ΣĀ)

b∼N(b̄,Σb̄)

(3.12)
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Table 3.2: Prior means of A,Ωη and Ωε

Ā b̄

lt−1 st−1 ct−1 TIPSt−1 BIt−1 targett
lt -0.019 -0.001 -0.001 0.036 0.099 0.128
st 0.314 0.190 0.033 -0.177 -0.088 0.098
ct -0.643 -0.328 -0.080 0.273 -0.139 0.052

TIPSt -0.204 -0.062 -0.030 0.178 0.067 -0.103
BIt 0.012 0.002 0.000 -0.012 0.661 -0.019

Ω̄η

lt st ct TIPSt BIt
lt 5.70 e-03 -4.91 e-03 -4.59 e-03 2.85 e-03 -4.56 e-06
st -4.91 e-03 7.89 e-03 -1.77 e-03 -2.91 e-03 6.25 e-05
ct -4.59 e-03 -1.77 e-03 3.31 e-02 3.80 e-04 -1.25 e-04

TIPSt 2.85 e-03 -2.91 e-03 3.80 e-4 2.80 e-03 -2.77 e-06
BIt -4.56 e-06 6.25 e-05 -1.24 e-04 -2.77 e-06 4.04 e-04

Ω̄ε

lt st ct TIPSt BIt
lt 5.96e-03 -5.38e-03 -4.24e-03 4.70e-05 1.028e-06
st -5.38e-03 8.18e-03 -1.71e-03 -1.00e-04 -6.61e-06
ct -4.24e-03 -1.71e-03 3.21e-02 2.14e-04 1.76e-05

TIPSt 4.70e-03 -1.00e-03 2.14e-04 3.50e-03 -8.05e-07
BIt 2.85e-03 -2.91e-03 3.80e-4 2.80e-03 -2.77e-06

3.5.2 Posterior Distributions

The full likelihood can be written as

p(ct, ft, yt; θ) = p(y|ft, ct, θ)p(ft, ct|θ) (3.13)

where θ = (A, b,Ωε,Ωη, σj) for j = 1, ..., 5. Prior distributions were chosen as conjugates of

the likelihood so the conditional posterior distributions of the parameters are easily found.

According to Bayes’ Rule, multiplying the likelihood by the joint prior gives the joint pos-

terior distribution:

p(ct, ft, θ|yt)∝p(y|ft, ct, θ)p(ft, ct|θ)p(θ) (3.14)
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Because I have assumed that the covariance matrices of the error terms are known (setting

a dogmatic prior on these parameters), if ft and ct are held constant the posterior reduces

to a multivariate Gaussian distribution. In turn, when all parameters are assumed fixed,

ft and ct are distributed as multivariate Gaussian. The mean and variance of the posterior

for the parameters comes from the standard Bayesian update, and for the latent states the

mean and variance are estimated via the Kalman filter and smoother.

Sampling Scheme

Estimation of the model follows in three steps within each run of the MCMC chain. First,

the latent factors ft are sampled from a multivariate Gaussian distribution with mean and

variance found by the Kalman filter and smoother on (3.8) and (3.9). The same is true of the

time-varying coefficients ct where instead equations (3.9) and (3.10) are used for filtering.

Finally, the coefficient matrices A and b are sampled from their multivariate normal posterior

conditional on the latent factors and the time-varying covariates. The sampling algorithm

can be summarized by:

1. Initialize parameters A(0), b(0)

2. In the ith iteration, posterior mean and variance of the latent factors are given by mft
(i)

and vft
(i), the smoothed estimates from the Kalman filter on equations (7) and (8).

The draw from the posterior is given by ft
(i)∼N(mft

(i), vft
(i)) fort = 1, ...T .

3. In the ith iteration, posterior mean and variance of the time-varying coefficients are

given by mct
(i) and vct

(i), the smoothed estimates from the Kalman filter on equations

(8) and (9). The draw from the posterior is given by ct
(i)∼N(mct

(i), vct
(i)) fort =

1, ...T .
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4. Draw A(i)∼N(Â, Σ̂A), where Σ̂A = (ΣĀ
−1 + Ωη⊗(X ′AXA)

−1
and Â = Σ̂A(ΣĀ

−1Ā +

Ωη⊗(X ′AY ))

5. DrawB(i)∼N(B̂, Σ̂b), where Σ̂b = (Σb̄
−1 + Ωη⊗(X ′b

TXb))
−1

and b̂ = Σ̂b(Σb̄
−1b̄+Ωη⊗(X ′bY )

6. Repeat steps 2-5

This is consistent with Bayesian updating for a multivariate Gaussian likelihood and prior.

The sampling process is repeated for 10,000 iterations with a burn-in of 500 draws. The

sample moments of these draws are used to categorize the posterior distributions.

3.6 Results

3.6.1 Latent Factors

The first check on the validity of the model is the behavior of the estimated factors ft. The

median values along with a 90% Bayesian credible interval at each point in time are plotted in

Figure 3.6. All three factors are estimated with relatively little variance between simulations,

so that the credible intervals are not distinguishable from the median estimates. To be

assured that these factors are reasonable approximations to the actual shape components

of the yield curve, I calculate the linear correlation between the estimated factors and the

empirical factors. The correlations are approximately 0.82 for curvature, 0.90 for slope and

0.95 for level. Thus, the factors estimated in the first-differenced DNS model are a reasonable

approximation to the actual shape factors of the yield curve.

61



Figure 3.6: Estimated latent factors

3.6.2 Parameters

Results for parameters from the MCMC sampling scheme are presented in Table 3.3. Median

estimates are quite similar to the prior values for A and b but the standard deviations of the

draws from the posterior are noticeably smaller than those of the prior distributions. This

suggests that the sample is quite informative about the values of coefficients. It should first

be noted that inflation, business activity and the target shock were rescaled, so that the

coefficients in the table are the effects of a one standard deviation change for each of these

three variables.

There are several significant results from Table 3.5. The first is that the target rate shock

only has a slightly positive effect on the slope factor. According to the interpretation of the

slope given in section 3, the positive coefficient implies that a positive one standard deviation

target shock leads to a mild 2bp decrease in the slope of the yield curve. This makes intuitive

sense, as a target shock should push up short-term rates while long rates remain unaffected.

I also find reason to believe that the yield curve has more of a significant effect on my macro

factors than vice versa. While the coefficients on BI and TIPS is very small, a 1 unit increase
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Table 3.3: Posterior median and standard deviation

lt−1 st−1 ct−1 TIPSt BIt−1 targett
lt -0.004 -0.013 0.001 0.005 0.128 0.034

(0.048) (0.032) (0.012) (0.047) (0.063) (0.023)
st 0.301 0.216 0.031 -0.124 -0.083 0.082

(0.058) (0.039) (0.015) (0.056) (0.074) (0.026)
ct -0.687 -0.325 -0.073 0.284 -0.114 0.085

(0.074) (0.115) (0.081) (0.110) (0.155) (0.052)
TIPSt -0.201 -0.067 -0.026 0.161 0.098 0.063

(0.034) (0.022) (0.008) (0.034) (0.042) (0.016)
BIt 0.011 0.002 0.000 -0.011 0.655 0.006

(0.012) (0.008) (0.003) (0.012) (0.015) (0.006)

in the level factor or slope factor leads to a -0.208 and -0.071 decrease in inflation on the

following day. This implies that higher long-term rates or a less steep yield curve today

leads to a decrease in inflation tomorrow. The first part of this is easily interpretable: higher

expected interest rates in the future are related to slower growth and lower inflation in the

future. The interpretation of the coefficient on the slope factor is not as obvious. However,

a more complete picture comes from plotting the impulse response functions in Section 6.3.

Table 3.4: Initial impulse response of TIPSt, BIt and targett on yields, in bp. 90% credible
intervals in parentheses.

TIPS BI target
3-month -0.476 0.121 3.402

(-0.681, -0.200) (-0.601, 0.234) (2.771, 4.172)
6-month -0.420 0.096 3.224

(-0.504, -0.078) (-0.054, 0.266) (2.413, 3.572)
1-year -0.073 0.114 3.189

(-0.312, 0.133) (-0.121, 0.314) (2.395, 3.826)
2-year 0.134 0.165 2.895

(-0.109, 0.309) (0.232, 0.501) (2.355, 3.504)
5-year 0.221 0.198 2.358

(-0.178, 0.478) (-0.002, 0.443) (1.500, 3.050)
10-year 0.345 0.187 1.611

(-0.193, 0.421) (0.032, 0.406) (0.141, 2.248)
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3.6.3 Macro Impulse Responses

Table 3.6 presents medians and 90% credible intervals for the initial impulse response to

a 1 standard deviation increase in the two macro variables and the target shock. Because

the impulses in all cases revert to almost zero by the second period, only the initial (and

therefore peak) response is shown. The results in Table 3.6 suggest that daily changes in

INF and BI have little impact on yields of any maturity. In no case is the median value from

the MCMC samples greater than 1bp. The target shock does have some impact on yields,

though it is very mild. A 1 standard deviation target shock leads to between a 2.7bp to

4.2bp increase in the 3-month yield on the event day, which falls to a 1.4bp to 2.3bp increase

for 10-year yields. This is consistent with the interpretation that the target shock mainly

affects the short end of the yield curve.

3.6.4 Sensitivity to Path Shocks

The most interesting aspect of this study is the role of the time-varying sensitivity of yields

to monetary policy path shocks. From the results I find that the coefficients ct are tightly

estimated, with little variance between simulations. Figure 3.7 and Figure 3.8 present plots

of the five coefficients over time.

A noticeable result is that the sensitivity of TIPSt and BIt to path shocks increases sig-

nificantly during the time around the most recent recession. Except for the period around

the financial crisis, path shocks have had approximately the same effect on macro factors.

In terms of the latent yield factors the pattern is different. From 2007 onward both the

level and slope have increased their sensitivity to path shocks. These are consistent with

one another, as an increase in the level is associated with a steeper slope (and therefore a

decrease in the slope factor). As well, the sensitivity of curvature increases from 2004-2008,

only to drop quickly and change sign by 2010. For interpretation of these results I calculate
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Figure 3.7: Time-varying sensitivity of latent factors to a path shock

Figure 3.8: Time-varying sensitivity of macro factors to a path shock

the time-varying peak impulse response to a path change, according to the estimates of ct.

3.6.5 Impulse Responses to Path Shocks

The time-varying peak impulse responses for path shocks is given in Figure 3.9. Because the

sensitivity of yields to path shocks has been seen to vary over time, the impulse responses will

also change depending upon when the initial impulse occurs. For this reason, in Figure 3.9

I plot the initial (and therefore peak) reaction of 6 different yield maturities to a 1 standard

deviation positive path shock.
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Figure 3.9: Peak impulse response of yields to a path shock, in basis points.

A second way of looking at the response of yields to a path shock is to observe the estimated

response on particular event days. In Table 3.6 I show the value of the IRF on five different

days, each roughly two years apart.

Both Figure 3.9 and Table 3.6 present a similar picture: yields of up to two years in maturity

see a significant drop in sensitivity to path shocks from 2007 to 2011, while long yields of

5- and 10-year maturities see a modest decrease in sensitivity. The difference is illustrated

most clearly by the difference in the effect of a path shock on 12/11/07 and 8/9/2011, during

which time the impact of a path shock fell by more than 50% for maturities under two years.
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Table 3.5: Initial response of yields to a positive 1 standard deviation path shock, at 6 points
in time. 90% credible intervals in parentheses.

4-12-2005 12-11-2007 03-18-2009 08-09-2011 06-19-2013 07-30-2014
3-month 0.73 1.90 -0.38 0.00 -0.88 0.02

(0.42, 0.99) (0.74, 3.10) (-0.61,-0.19) (-0.87,0.81) (-1.02,-0.73) (-0.24,0.91)
6-month 1.72 4.11 0.74 0.54 -0.25 0.21

(1.47, 1.99) (2.90, 5.31) (0.50,0.91) (-0.35,1.41) (-0.37,-0.16) (-0.51,1.24)
1-year 4.73 10.22 5.36 3.52 2.74 3.14

(2.82, 4.99) (6.15, 11.52) (2.29,5.29) (0.70,4.19) (0.77,2.81) (1.02,3.11)
2-year 5.38 11.50 7.20 5.12 4.13 5.20

(5.10, 5.61) (10.41, 11.12) (6.91,7.23) (4.32,5.74) (4.05,4.22) (4.61,5.97)
5-year 5.29 11.04 9.24 7.42 5.92 7.11

(5.20, 5.49) (10.11, 12.01) (9.10,9.43) (6.29,8.10) (5.73,6.07) (6.43, 8.29)
10-year 5.01 9.20 11.49 9.82 7.79 9.12

(4.88, 5.14) (8.47, 9.91) (11.27,11.59) (9.49,10.36) (7.64,7.86) (8.50,10.54)

3.7 Discussion

Figure 3.9 presents a similar picture to the rolling regressions of Figure 3.4. There are slight

differences in the values however, as the yield changes from the DNS model tend to be about

1 to 2bp lower than with the rolling regression method. This suggests that the earlier work

on this subject by [10] was accurate, without a more fully specified model. However, in my

results the effect of path shocks are estimated with much tighter credible intervals than the

confidence intervals found in [10].

The results from section 6 are clear: shocks to the path of monetary policy have had decreas-

ing influence on the latent factors in the DNS model between 2008 and 2013. The question

is to what extent this changing effect of path shocks impacts the yield curve. According to

Figure 3.9 and Table 3.6 the impact of a path shock becomes particularly weak in 2011 and

2012, in which the response of even 2-year yields was significantly muted. Interestingly, by

2013 2-year yields began to increase in responsiveness to path shocks, while the sensitivity

of maturities up to 1-year was unchanged. These findings coincide with the results of [33]

and [10] discussed above. As the ZLB is expected to bind on the target rate at longer time
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horizons, yields of longer maturities lose their sensitivity to shocks. The responsiveness of a

medium-term yield falls to nearly zero if the short rate is expected to stay at zero beyond the

yield maturity. This suggests that from 2009 to early 2013 the market generally increased

its expectation of the duration of the ZLB period up to at least two years.

An interesting result of this paper is that it appears the market assumes the ZLB period

is going to end sometime in 2015. In Figure 3.8 the coefficients change little from about

2010/2011 onward, but a slight up-tick in the path shock sensitivity of 2-year yields begins

in early 2013. As well, by 2014 the sensitivity of 1-year yields began to modestly increase.

This is consistent with a market that expects the target rate to finally lift-off from the ZLB

in 2015. From what I have shown here, this belief in a target rate bump in 2015 has been

held since mid-2013.

3.7.1 Future Work

There are a few areas in which this paper can be expanded to include realistic refinements to

the model. One of these is to use a different distribution for the model likelihood, specifically

to account for the fact that target and path shocks do not appear to be Gaussian. Looking

back at Figure 3.2, both of these variables display several large events suggesting that the

kurtosis of the underlying distributions is greater than 1. A starting point for this type of

analysis would be for the factors and yields to be distributed with multivariate Student-t

distribution.

A second area of potential future work is more broad. Now that I have shown the value of

daily estimation in a DNS model this methodology can be adapted to show the impact of

all kinds of macroeconomic shocks on the yield curve. Any macroeconomic variables that

have survey or asset price data that reflect expectations can be used in the same way as the

target or path shock. This could be useful for announcements on labor market, consumption
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or capacity utilization data. There are innumerable possible variables to be used for a better

understanding of yield curve dynamics for both investors and policymakers.
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