
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Enhancing the performance, fault tolerance, and security of distributed data management
systems

Permalink
https://escholarship.org/uc/item/4zx2m54f

Author
Maiyya, Sujaya Anantha

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zx2m54f
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Enhancing the performance, fault tolerance, and

security of distributed data management systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Sujaya Maiyya

Committee in charge:

Professor Divyakant Agrawal, Co-Chair
Professor Amr El Abbadi, Co-Chair
Professor Prabhanjan Ananth

June 2022

The Dissertation of Sujaya Maiyya is approved.

Professor Prabhanjan Ananth

Professor Divyakant Agrawal, Committee Co-Chair

Professor Amr El Abbadi, Committee Co-Chair

June 2022

Enhancing the performance, fault tolerance, and security of distributed data

management systems

Copyright © 2022

by

Sujaya Maiyya

iii

To my family – Jim, Appa Amma, Shunti & Shenga

iv

Acknowledgements

“None of us, acting alone, can achieve the success” - Nelson Mandela

The completion of this dissertation, and hence my PhD, was not a solo act. Many people

have played a key role in guiding me in the right direction and proving a steadfast support

during this journey. I want to acknowledge these individuals and convey my gratitude.

My sincere thanks go to my advisors Divy Agrawal and Amr El Abbadi. Their con-

stant support and encouragement has been paramount in all my accomplishments. Back

in 2016-17, I was eager to graduate with a master’s degree as quickly as possible; it was

Amr’s Distributed Systems class that convinced me to stay and pursue a master’s project

with him. While working on my master’s project, Amr and Divy’s passion for distributed

systems and databases enthralled me and their friendly and supportive student advising

techniques encouraged me to continue on to pursue my PhD with them. Their training

over the years has instilled courage in me to take on open and challenging research ideas

and taught me to think critically about open research problems. With regard to teach-

ing, I have worked as a teaching assistant to both Amr and Divy. Amr, by setting an

example, has shown me the joy of teaching and he has helped me push my boundaries

in preparing and delivering lectures. One of the things, in my humble opinion, that

makes Amr and Divy standout is their encouragement to allow their students to pur-

sue non-academic endeavors such as volunteering as a graduate student representative

within the CS department at UCSB or to serve in Diversity & Inclusion committees in

the database community. Although these endeavors consume our research time, Amr and

Divy recognize the significance of taking on such roles in our overall development and

hence they are nothing but encouraging in this regard. All in all, I am and will continue

to be forever grateful for their training in research, teaching, and service, which will aid

me tremendously in the academic career I am about embark upon.

v

I am also deeply grateful to Prabhanjan for being my committee member and for

educating me many times over about complex topics in cryptography. I fondly recall the

time Prabhanjan spent during his second interview visit to UCSB where I bombarded

him with my ideas and questions regarding an ongoing project; I am grateful for his

suggestions that helped solidify our paper. I am also indebted to professor and current

department chair Tevfik Bultan for writing many letters of recommendation over the years

for various fellowships and academic jobs. Tevfik’s positive emails during the challenging

times of the pandemic helped me, and I am sure many others, not lose my hope; our

department could not have asked for a better chair during those challenging times. I

am also thankful to Olivier Tardieu, my mentor during my internship at IBM Research.

Olivier’s kind and supportive nature not only helped me during my internship but also

during my academic job search where he provided recommendation letters.

I am grateful to Professors Rachel Lin and Stefano Tessaro for many hours of fasci-

nating discussions on ORAM; it is through these discussions that I understand systems

security better. I extend my thanks to Professor Ambuj Singh for always identifying

and believing in the inner academic in me, even before I recognized it myself. I am

thankful for Professor Jonathan Balkind for being a mentor-figure during my academic

interview process and providing me with great tools and tactics to navigate the process.

A hearty thanks to Professor Scott Marcus from the music department for teaching me

how to play sitar, which helped me retain a sense of work-life balance. I thank professors

Ömer Eğecioğlu, Trinabh Gupta, Chandra Krintz, Daniel Lokshtanov, Tim Sherwood,

Rich Wolski, Xifeng Yan, and Ben Zhao for their classes, technical discussions, or general

advice.

I have been fortunate to have had wonderfully talented and gregarious lab mates -

Faisal, Vaibhav, Victor, Mohammad, Ishtiyaque, Fuheng, and Lawrence. I have had an

immense joy discussing technical problems with them and have realized what a great

vi

conference-travel partner Victor is. Faisal has been a great mentor, providing me feed-

backs on my talks and general academic advice over the years. I also thank Danny,

Hari, Aarti, Seif, Yuval, Sharath, and Daniel for providing me with the opportunity to

mentor them for their undergraduate or master’s projects. I am also grateful for all the

behind-the-scenes support provided by the CS department staff Greta, Maritza, Karen,

Samantha, Nicole, and Benji.

The duration of my graduate school would not have been as much fun without my

friends whose memories I will cherish forever. My special thanks to my friends Devin

and Aishwarya, one for convincing me to pursue a PhD and one for helping me sustain

it, and to Rachel for becoming a pseudo-DSLer for me. My many thanks to my friends

for sharing their time with me: Angela, Arnab, Atefeh, Bradley, Burak, Cliff, Connor,

Deeksha, Fatih, Goksu, Haraldur, Lale, Mohith, Neeraj, Nevena, Nimisha, Omid, Ryan,

Seemanta, and Shashank.

And last but not the least, I could not have completed my PhD without the constant

support of my family. I am grateful to my sister, Sindhu, my aunts, uncles, and cousins

for their positive encouragement, and to my in-laws Alice, Glenn, and Danny for being

my wonderful family outside of my home country. I am fortunate to have the parents I

have and I am indebted to them for teaching me to believe in myself time and again and

guiding me to never be afraid of trying new things. And finally, I am extremely grateful

to Jim for his thoughtfulness and patience, for being a constant support at my lowest

and highest, for patiently proofreading all my statements, for caring for our cats Shunti

& Shenga, and for providing me the space to grow in my career.

vii

Curriculum Vitæ
Sujaya Maiyya

Education

2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2017 M.Sc. in Computer Science, University of California, Santa Bar-
bara.

2014 B.E in Information Science, PES Institute of Technology, Bangalore.

Publications

[1] Sujaya Maiyya, Y. Steinhart, P. Ananth, D. Agrawal, and A. El Abbadi. ORTOA:
One Round Trip Oblivious Access. In submission [145].

[2] MJ. Amiri, D. Shu, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. Ziziphus:
Scalable Data Management Across Byzantine Edge Servers. In submission [9].

[3] Sujaya Maiyya, S. Ibrahim, C. Scarberry, D. Agrawal, A. El Abbadi, H. Lin, S.
Tessaro, and V. Zakhary. QuORAM: A Quorum-based Replicated ORAM Datastore. To
appear in USENIX Security 2022 [147].

[4] Sujaya Maiyya, I. Ahmad, D. Agrawal, and A. El Abbadi. Samya: Geo-distributed
data system for high contention data aggregates. International Conference on Data En-
gineering (ICDE), 2021 [144].

[5] F. Zhao, Sujaya Maiyya, R. Wiener, D. Agrawal, and A. El Abbadi. Kll±: Approx-
imate quantile sketches over dynamic datasets. Proceedings of the VLDB Endowment,
2021 [229].

[6] Sujaya Maiyya, DBH. Cho, D. Agrawal, and A. El Abbadi. Fides: Managing data
on untrusted infrastructure. International Conference on Distributed Computing Systems
(ICDCS), 2020 [146].

[7] MJ. Amiri, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. Seemore: A fault-
tolerant protocol for hybrid cloud environments. International Conference on Data Engi-
neering (ICDE), 2020 [8].

[8] Sujaya Maiyya, V. Zakhary, MJ. Amiri, D. Agrawal, and A. El Abbadi. Database
and distributed computing foundations of blockchains. (Tutorial) In SIGMOD, 2019 [150].

[9] Sujaya Maiyya, F. Nawab, D. Agrawal, and A. El Abbadi. Unifying consensus
and atomic commitment for effective cloud data management. Proceedings of the VLDB
Endowment, 12(5):611–623, 2019 [148].

[10] V. Zakhary, MJ Amiri, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. Towards
global asset management in blockchain systems. BCDL co-located with VLDB, 2019
[222].

viii

[11] Sujaya Maiyya, V. Zakhary, D. Agrawal, and A. El Abbadi. Database and dis-
tributed computing fundamentals for scalable, fault-tolerant, and consistent maintenance
of blockchains. (Tutorial) Proceedings of the VLDB Endowment, 2018 [149].

[12] V. Arora, RKS. Babu, Sujaya Maiyya, D. Agrawal, A. El Abbadi, X. Xue, et
al. Dynamic timestamp allocation for reducing transaction aborts. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), 2018 [13].

Please Note: Text and figures from these papers appear in this dissertation.

ix

Abstract

Enhancing the performance, fault tolerance, and security of distributed data

management systems

by

Sujaya Maiyya

Individuals and enterprises produce over 2.5 exabytes (1018 bytes) of data everyday.

Much of this data - including sensitive and private information - is stored with and man-

aged by third-parties, such as Amazon Web Services or Google Cloud. These companies

can lose millions to billions of dollars in sales if their data access latencies increase by

only a few hundred milliseconds. Achieving data fault tolerance – a necessary primitive

of database systems – while maintaining low access latency is particularly challenging.

Hence, reducing data access latency to improve performance and guaranteeing data fault

tolerance received the highest priority while designing cloud data management systems.

But the ever growing number and sophistication of cyber attacks on the cloud coupled

with increasing legal requirements for data privacy and security (e.g., GDPR or HIPAA)

have forced cloud providers to re-evaluate their priorities. However, there exists a fun-

damental trade-off between security and efficiency in data management systems.

This dissertation discusses designing and evaluating data management protocols that

strike a balance between efficiency, fault tolerance, and security in both trusted and un-

trusted environments. Before being able to solve security challenges in database systems,

we first delve into traditional cloud settings, which assumes trust, to understand existing

system designs. Existing cloud databases replicate their data to provide fault tolerance

and shard (or partition) the data and store the shards on multiple servers to provide

scalability. In trusted environments, we propose two solutions: G-PAC, an atomic com-

x

mitment protocol that commits transactions accessing data that is both sharded and

replicated, and Samya, a data system that maintains aggregate data and supports high-

contention write-intensive workloads. As the next step towards building secure data

systems, to better understand the interplay between multiple security guarantees and

performance, we study various blockchain systems – an ideal example where untrusted

geo-distributed entities manage critical data.

Equipped with blockchain techniques that protect data, we build three solutions that

focus on data Confidentiality, Integrity, and Availability, more popularly known as the

CIA triad, which forms the pillars of secure systems. For confidentiality, this dissertation

proposes ORTOA: a protocol that allows users to read or write data onto an untrusted

external server without revealing the type of operation in a single round, whereas all ex-

isting solutions to hide the type of operation require two rounds of communication. For

integrity, this dissertation presents Fides : a transactional database system that guar-

antees data integrity and provides verifiable ACID guarantees. In this work, we also

propose TFCommit - the first distributed transaction commitment protocol that toler-

ates up to n − 1 maliciously failing servers (out of n servers) without using expensive

data replication. And for availability, we propose QuORAM : the first fully fault-tolerant

Oblivious RAM datastore that guarantees data privacy by hiding access patterns of users

along with the contents of data.

xi

Contents

Curriculum Vitae viii

Abstract x

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Overview . 4
1.3 Dissertation Organization . 10

2 Unifying Consensus and Atomic Commitment for Effective Cloud Data
Management 11
2.1 Overview . 11
2.2 Introduction . 12
2.3 Background . 15
2.4 Unifying Consensus and Commitment . 20
2.5 Sharding-Only in the Cloud . 26
2.6 Replication-Only in the Cloud . 31
2.7 Sharding + Replication in the Cloud . 33
2.8 Safety in the C&C framework . 37
2.9 Evaluation . 39
2.10 Related Work . 48
2.11 Conclusion . 51

3 Samya: Geo-Distributed Data System for High Contention Data Ag-
gregates 52
3.1 Overview . 52
3.2 Introduction . 53
3.3 Related Work . 57
3.4 Samya Architecture . 61
3.5 Samya . 63
3.6 Experimental Evaluation . 82

xii

3.7 Conclusion . 98

4 Fides: Managing Data on Untrusted Infrastructure 100
4.1 Overview . 100
4.2 Introduction . 101
4.3 Cryptographic Preliminaries . 104
4.4 Fides Architecture . 107
4.5 Fides . 110
4.6 Failure Examples . 131
4.7 Evaluation . 133
4.8 Related Work . 138
4.9 Conclusion . 141

5 QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore 142
5.1 Overview . 142
5.2 Introduction . 143
5.3 Background . 147
5.4 System and Failure Model . 148
5.5 Security Model: Obliviousness in a Replicated ORAM Setting 151
5.6 QuORAM: a replicated ORAM datastore 154
5.7 Evaluation . 171
5.8 Security of replicated ORAM datastores 183
5.9 Linearizability . 186
5.10 Space analysis . 190
5.11 Related Work . 193
5.12 Conclusion . 195

6 ORTOA: One Round Trip Oblivious Access 196
6.1 Introduction . 197
6.2 System and Security Model . 200
6.3 FHE based solution . 202
6.4 ORTOA . 207
6.5 Optimizations . 215
6.6 Protocol evaluation . 220
6.7 Security of ORTOA . 228
6.8 Conclusion . 234

7 Concluding remarks 235

8 Future directions 240
8.1 Frequency Smoothing using a BST Framework 240
8.2 High functionality oblivious datastores 242

xiii

Chapter 1

Introduction

1.1 Motivation

Enterprises and individuals produced 79 zettabytes (1021) of data in the year 2021.

Much of this data is stored in the cloud, typically managed by third-party vendors such as

Amazon Web Services [4], Microsoft Azure [153], or Google Cloud [81]. Some of the most

common reasons why enterprises migrate to cloud are to reduce deployment costs due to

not owning and maintaining on-premise infrastructure, for the scalability and elasticity

of the cloud with practically unbounded amount of resources, and for the reliability

and global availability of cloud-hosted applications where typically the data is available

99% of the time and clients across the globe can access the data [203]. Although these

are irrefutable advantages of why a client should migrate to cloud, there exists many

challenges in designing cloud-based data management systems that provide guarantees

such as such as providing high performance, scalability and reliability, and security and

privacy. In this dissertation, we address three such challenges faced by the cloud provider

in developing cloud-based data management systems: high performance & low latency,

fault tolerance, and security & privacy.

1

Introduction Chapter 1

A recent study by Microsoft shows that people’s attention span is now around 8

seconds [156] and, in fact, when interacting with computers, people require even lower

latency of less than one second [169, 207]. Companies such as Google and Amazon

lose millions to billions of dollars in sales if their data access latencies increase by only

a few hundred milliseconds [103]. Hence, in both industry [52, 121, 180, 159, 38] and

academia [108, 143, 200, 94, 69, 137], much effort is spent on designing data management

systems that minimize access latency. But designing data management systems that pro-

vide low latency for all clients becomes challenging when the clients are geo-distributed.

For example: if a database system chooses to store all its data in a US-West datacenter,

a client close to the US-West datacenter may have low data access latency but a client

from Asia will inevitably face large data access latency. Therefore, achieving low latency,

which directly impacts performance, becomes one of the main challenges in designing

database systems for global-scale applications.

Another major challenge faced by cloud-based database designers is fault tolerance.

Due to reduced deployment and maintenance costs, much of the cloud architecture today

relies on hundreds of thousands of commodity servers rather than sophisticated main-

frame computers [12, 17, 101]. Although individual commodity hardware can last be-

tween 3-5 years with minimal failures, at the scale of hundreds of thousands of machines,

cloud datacenters face constant server failures [18]. Many works have studied the un-

avoidable nature of individual servers, server racks, and even the entire datacenter-level

failures [210, 64, 24, 212, 93]. Given this inevitability, database systems must ensure that

a hardware failure does not result in data losses, i.e., ensure that an application’s data is

fault-tolerant even in the presence of hardware failures. Modern day databases typically

ensure this by replicating the data across different geographically distant datacenters [31,

188, 45, 198]. However, replicating data presents further challenges in guaranteeing the

correctness of the data: when a client updates data in one datacenter, should all copies

2

Introduction Chapter 1

of the data be updated immediately or can an application allow other users to access stale

versions of the data from un-updated replicas? If an application requires propagating

the update immediately to all replicas, this further aggravates the latency issue, since

updating cross-datacenter replicas typically requires hundreds of milliseconds. Hence,

achieving fault tolerance while maintaining low latency and high performance becomes

one of the other major difficulty in designing data management systems.

Finally, apart from achieving low latency and fault tolerance, another major challenge

in designing data management systems is security & privacy. With the ever increasing

adaption of cloud where individuals and enterprises outsource their data storage and

management to external cloud providers, the clients lose control over how the external

cloud views and manages their data internally. The growing number and sophistication

of cyber attacks on the cloud [104] have attracted more attention to the security con-

cerns of storing data on external clouds. The lack of control over one’s own data and the

increasing number of cyber threats have necessitated legal requirements for data privacy

and security (e.g., GDPR [72] or HIPAA [100]) from third-party cloud providers [89].

When cloud providers fail to meet legal regulations, the authorities fine them in millions

to billions of dollars [199, 65]. As a result, cloud providers are being forced to reevaluate

their priorities and focus on data security as well while designing cloud based data sys-

tems. However, there exists a fundamental trade-off between security and efficiency in

data management systems. Although resolving this tension is challenging, it has fostered

the growth of a deep field at the intersection of cryptography and database research. In

Springer, for example, as of 2021, the number of articles published at this intersection

increased by 50.1% since 2015 and by 91.8% since 20001. A database system aiming

to provide security guarantees needs to consider three facets of security: confidentiality,

1We searched for conference papers with keywords database AND security OR privacy OR encryption
on https://link.springer.com/search.

3

Introduction Chapter 1

Figure 1.1: An overview of how different data managing systems and protocols pre-
sented in the dissertation connect together.

integrity, and availability – generally known as the CIA triad. Confidentiality ensures

data privacy, integrity guarantees data accuracy and consistency, and availability im-

plies that authorized users have reliable access to data. Providing CIA guarantees while

maintaining low data access latency and ensuring data fault tolerance becomes extremely

challenging, forming one of the other major difficulties of developing cloud databases.

In summary, designing cloud-based databases for global scale applications entails

many challenges including ensuring low data access latency and high performance, data

fault tolerance, and data security. Addressing these challenges and improving the perfor-

mance, fault tolerance, and security of data management systems form the basis of this

dissertation.

1.2 Dissertation Overview

This dissertation presents designs and evaluations of data management systems and

protocols that strike a balance between performance, fault tolerance, and security. The

first question we pose before tackling an issue is: is the underlying infrastructure that

4

Introduction Chapter 1

hosts the data trusted? Applications that own a large storage and compute fleet can typ-

ically trust their data storage infrastructure, in which case enhancing the performance

and fault tolerance becomes the main focus when designing database systems. If an

application rents storage and compute from an external cloud provider, where the ap-

plication has limited control on how the external cloud views and manages the data,

then the application cannot assume the underlying infrastructure to be fully trusted, in

which case we focus developing systems that provide data security. Figure 1.1 presents

an overview of the various data managing solutions proposed in the dissertation and how

they connect each other. The following sections provide an overview of the systems and

protocols presented in the later chapters of the dissertation.

1.2.1 Trusted Infrastructure

Before delving into untrusted settings, this dissertation considers traditional cloud

settings, which assume trust. Cloud enterprises typically replicate their data to provide

fault tolerance, and shard (or partition) their data and store the shards on multiple servers

to provide scalability. State of the art databases, such as Google’s Spanner [45], rely on

atomic commit protocols (e.g., Two Phase Commit [87]) to allow scalability and consensus

protocols (e.g., Paxos [122]) to achieve replication. Spanner treats atomic commitment

and consensus disjointedly, wherein it hides the consensus logic from commitment logic

and vice versa. Motivated by the coexistence of sharding and replication in most real-

world databases, our work [148] unifies the two seemingly disparate paradigms into a

single framework called Consensus and Commitment (C&C). The C&C framework is

a great pedagogical tool as it can model many established data management protocols,

while also providing insight to propose new ones. To highlight its advantages, we propose

a novel commit protocol, G-PAC, which merges consensus with commitment. As a key

feature, unlike many existing protocols that separate failure recovery logic from failure-

5

Introduction Chapter 1

free execution logic, G-PAC executes the same set of instructions for both scenarios,

easing a developer’s job. The unified approach of G-PAC reduces one (out of three)

round of cross-datacenter communication compared to Google’s Spanner; this allows G-

PAC to perform between 27-88% better than Spanner-like protocols in terms

of throughput.

While G-PAC leveraged the C&C framework to commit distributed transactions for

generalized workloads, we developed Samya [144] to extend the C&C framework to man-

age high contention, hotspot data. Samya, a geo-distributed data management system,

stores and manages hotspot aggregate data (e.g., number of cloud resources or number

of items in stock). State-of-the-art geo-distributed databases such as Google’s Spanner

[45] employ a centralized approach where a server acting as a leader processes all client

requests to a specific data item sequentially, which thwarts throughput and leaves the

data replicas underutilized. To utilize all replicas or sites that store a data item, Samya

splits or partitions the aggregate data, modeled as tokens (e.g., resource tokens), and

stores individual token-partitions on different servers. This design choice allows servers

in Samya to independently and concurrently serve client requests. A site serves requests

locally as long as it has locally available tokens. Samya employs predictive models to

predict if a site will exhaust its tokens; if so, the sites execute a novel synchronization

protocol, Avantan, extended from the abstractions of the C&C framework, to redistribute

the spare tokens in the system. Compared to the centralized solution, Samya’s paral-

lelism reduces the 99th percentile latency by 76% and allows Samya to serve

16x to 18x more requests.

6

Introduction Chapter 1

1.2.2 Untrusted Infrastructure

After working with fully trusted infrastructures, we became intrigued by the question

“What if we host the data on completely untrusted infrastructure?”. As noted earlier,

when storing data on completely untrusted infrastructure, we primarily focus on ensuring

data security while striving for the best possible performance. With regard to security,

this dissertation proposes three solutions, each addressing one of the challenges of the

CIA triad: confidentiality, integrity, and availability.

Ensuring data integrity : As the first step towards building secure data manage-

ment systems, we propose Fides [146], a transactional DBMS that ensures data integrity,

i.e., it ensures the data stored across untrusted servers remains accurate and consistent.

Being a transactional system, Fides guarantees verifiable-ACID : an external auditor can

audit the untrusted storage servers to detect any violations to transactional Atomicity,

Consistency, Integrity, or Durability guarantees. As an integral part of Fides, we pro-

pose Trust-Free Commit (TFCommit), a trust-free commitment protocol that executes

transactions across multiple untrusted servers [146]. To our knowledge, TFCommit is

the first atomic commitment protocol to handle malicious failures without

using expensive Byzantine replication. Byzantine replication protocols tolerate

less that n/3 malicious failures, where n represents the total number of servers, whereas

TFCommit tolerates up to n − 1 malicious failures. TFCommit combines Two Phase

Commit [87] with a collective signature scheme, CoSi [196], to commit transactions across

multiple untrusted servers. Similar to blockchain, committing each transaction (or a set

of transactions) produces a tamper-resistant log entry, which each server appends to its

log. The tamper-resistance stems from collective signature created during commitment

that cannot be modified by a single server. An external auditor then audits this log to

detect any faulty behavior. TFCommit’s failure detection mechanism precisely identifies

7

Introduction Chapter 1

the point in the execution history at which a fault occurred as well as the servers that

failed. These guarantees provide two fold benefits: (i) An auditor always detects both a

malicious fault and the misbehaving database server, and (ii) A benign server can always

defend itself against false accusations. Many scenarios can benefit from TFCommit, such

as blockchain systems or supply-chain management where the participating entities span

different administrative domains that do not trust each other. Compared to executing

a transaction in trusted infrastructures, executing TFCommit has only 1.8x over-

head in latency and 2.1x in throughput - an acceptable overhead for many

use cases given the additional security guarantees of TFCommit.

Ensuring data availability : While Fides ensured data integrity, the lack of secure

and private datastores that guarantee data fault tolerance inspired us to work on data

availability in privacy-preserving systems. Recent attacks revealed the inefficiency of

mere data encryption in protecting data privacy [166, 165, 105, 211]; an attacker can

uncover non-trivial information either about the data or its users by observing the users’

access patterns. Oblivious RAM, or ORAM, a cryptographic technique introduced by

Goldreich and Ostrovsky [78], prevents access pattern attacks. Although the database

literature consists of many ORAM-based systems, to-date no ORAM-based datastore

supports fault tolerance – an important primitive in database systems. To this end,

our work QuORAM [147], proposes a quorum-based replicated ORAM datastore that

tolerates crash failures while preserving obliviousness. QuORAM consists of multiple

untrusted and potentially colluding storage servers, each accessed via a separate trusted

proxy. QuORAM guarantees linearizable semantics – all operations on a data item appear

to be linear – using a lock-free replication protocol where a client always reads from a

quorum (e.g., majority) of replicas and writes to the same quorum, for both read and write

requests. If proxies treat the reads and writes as separate ORAM requests, then they fetch

the path twice sequentially from the storage server, which leads to prohibitive latencies.

8

Introduction Chapter 1

To avoid double-fetching, the proxies in QuORAM maintain an incompleteCacheMap to

store request mappings of requests that are read but not yet written back. Our evaluations

of QuORAM reveal the advantages of geo-replication in ORAM systems: reduced latency

for geo-distributed clients and reduced load on a single proxy. QuORAM reduces the

average data access latency by 61.6% and improves the throughput by 1.4x

compared to a non-replicated ORAM system, while providing fault tolerance.

Ensuring data confidentiality : After developing systems that guarantee data

integrity and availability in untrusted settings, we delve into building a low-latency

confidentiality-preserving datastore. Given that data encryption alone cannot guarantee

complete data privacy, researchers have built solutions such as ORAM [78, 195, 25,

184, 181, 215, 51], Private Information Retrieval (PIR) [42, 120, 75, 32, 25, 134], and

frequency smoothing [90] to hide access patterns. In general, access pattern obliviousness

in the above schemes consists of two aspects: (i) hiding the exact data item, or rather

the exact physical location of the data item accessed by a client; (ii) hiding the type of

access, i.e., a read vs. a write, requested by a client. To our knowledge, most existing

solutions for access pattern obliviousness focus on proposing novel ways to solve aspect

(i); while for aspect (ii), the most commonly adapted solution is to always perform a

read followed by a write [195, 184, 90, 181], irrespective of the type of request. Always

reading followed by writing to hide the type of access incurs two sequential rounds of

accesses between the clients and the external server resulting in significant overhead;

eliminating this additional overhead is the focus of this work. To achieve this goal, we

propose ORTOA [145], a novel One Round Trip Oblivious Access protocol to access a

data item stored on an external untrusted server without revealing the type of access,

in a single round. This reduction in one round of communication plays a vital role in

reducing end-to-end latency, especially in geo-distributed settings. ORTOA’s solution is

inspired by garbled circuit constructions [217, 132] wherein the external storage server

9

Introduction Chapter 1

stores secret labels corresponding to each bit of the plaintext value. To ensure read-

write indistinguishability, after each access to a data item, ORTOA updates the labels

of that data item. Our experimental evaluations show that compared to OR-

TOA a baseline that requires two rounds to hide the type of access incurs

0.76x-1.61x higher latency and 43%-61% lower throughput than ORTOA.

1.3 Dissertation Organization

This dissertation is organized as follows: In the trusted environments, Chapter 2

presents an abstract unified framework called Consensus & Commitment (C&C) frame-

work that captures both distributed consensus and atomic commit protocols. The chap-

ter also presents G-PAC, an atomic commitment protocol to commit transactions across

sharded and partitioned data. Chapter 3 presents Samya, a data system that handles hot

spot data and provides high performance for write intensive workloads. It also proposes a

novel consensus protocol, Avantan, derived from the abstractions of the C&C framework.

In the untrusted environments, Chapter 4 proposes Fides, a data system that provides

data integrity guarantees when the data fully resides on untrusted infrastructure. The

chapter also presents the first atomic commitment protocol, TFCommit, that tolerates

malicious failures without relying on expensive byzantine replication protocols. Chapter 5

aims to provide data availability of privacy-preserving datastores and presents QuORAM,

the first fault-tolerant and quorum-replicated oblivious datastore. Chapter 6 provides

data confidentiality guarantees and proposes ORTOA, a one round trip oblivious access

protocol that hides the type of access performed by a client. Chapter 7 concludes the

systems and protocols presented in this dissertations and Chapter 8 discusses future

research directions that can be spawned from the ideas presented in this dissertation.

10

Chapter 2

Unifying Consensus and Atomic

Commitment for Effective Cloud

Data Management

2.1 Overview

Data storage in the Cloud needs to be scalable and fault-tolerant. Atomic commit-

ment protocols such as Two Phase Commit (2PC) provide ACID guarantees for trans-

actional access to sharded data and help in achieving scalability. Whereas consensus

protocols such as Paxos consistently rep- licate data across different servers and provide

fault tolerance. Cloud based datacenters today typically treat the problems of scalabil-

ity and fault-tolerance disjointedly. In this chapter, we propose a unification of these

two different paradigms into one framework called Consensus and Commitment (C&C)

framework. The C&C framework can model existing and well known data management

protocols as well as propose new ones. We demonstrate the advantages of the C&C

framework by developing a new atomic commitment protocol, Paxos Atomic Commit

11

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

(PAC), which integrates commitment with recovery in a Paxos-like manner. We also

instantiate commit protocols from the C&C framework catered to different Cloud data

management techniques. In particular, we propose a novel protocol, Generalized PAC

(G-PAC) that integrates atomic commitment and fault tolerance in a cloud paradigm

involving both sharding and replication of data. We compare the performance of G-PAC

with a Spanner-like protocol, where 2PC is used at the logical data level and Paxos is used

for consistent replication of logical data. The experimental results highlight the benefits

of combining consensus along with commitment into a single integrated protocol.

2.2 Introduction

The emergent and persistent need for big data management and processing in the

cloud has elicited substantial interest in scalable, fault-tolerant data management pro-

tocols. Scalability is usually achieved by partitioning or sharding the data across mul-

tiple servers. Fault-tolerance is achieved by replicating data on different servers, often,

geographically distributed, to ensure recovery from catastrophic failures. Both the man-

agement of partitioned data as well as replicated data has been extensively studied for

decades in the database and the distributed systems communities. In spite of many pro-

posals to support relaxed notions of consistency across different partitions or replicas,

the common wisdom for general purpose applications is to support strong consistency

through atomic transactions [133, 87, 128, 189]. The gold standard for executing dis-

tributed transactions is two-phase commit (2PC). But 2PC is a blocking protocol even in

the presence of mere site failures [87, 189, 128] which led to the three phase commit pro-

tocol (3PC) [189] that is non-blocking in the presence of crash failures. But the general

version of 3PC is still blocking in the presence of partitioning failures [190].

12

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

On the other hand, the distributed systems and cloud computing community have

fully embraced Paxos [122, 37] as an efficient asynchronous solution to support full state

machine replication across different nodes. Paxos is a leader-based consensus protocol

that tolerates crash failures and network partitions as long as majority of the nodes are

accessible. As with all consensus protocols, Paxos cannot guarantee termination, in all

executions, due to the FLP Impossibility result [62]. The rise of the Cloud paradigm

has resulted in the emergence of various protocols that manage partitioned, replicated

data sets [45, 143, 116, 88]. Most of these protocols use variants of 2PC for the atomic

commitment of transactions and Paxos to support replication of both the data objects

as well as the commitment decisions.

Given the need for scalable fault-tolerant data management, and the complex land-

scape of different protocols, their properties, assumptions as well as their similarities and

subtle differences, there is a clear need for a unifying framework that unites and explains

this plethora of commitment and consensus protocols. In this chapter, we propose such a

unifying framework: the Consensus and Commitment (C&C) framework. Starting with

2PC and Paxos, we propose a standard state machine model to unify the problems of

commitment and consensus.

The unifying framework, C&C, makes several contributions. First, it demonstrates

in an easy and intuitive manner that 2PC, Paxos and many other large scale data man-

agement protocols are in fact different instantiations of the same high level framework.

C&C provides a framework to understand these different protocols by highlighting how

they differ in the way each implements various phases of the framework. Furthermore,

by proving the correctness of the framework, the correctness of the derived protocols is

straightforward. The framework is thus both pedagogical as well as instructive.

Second, using the framework, we derive protocols that are either variants of existing

protocols or completely novel, with interesting and significant performance characteris-

13

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

tics. In particular, we derive several data management protocols for diverse cloud settings.

Paxos Atomic Commitment (PAC) is a distributed atomic commitment protocol manag-

ing sharded but non-replicated data. PAC, which is a variant of 3PC, integrates crash

recovery and normal operations seamlessly in a simple Paxos-like manner. We then derive

Replicated-PAC (R-PAC) for fully replicated cloud data management, which is similar

to Replicated Commit [143], and demonstrate that protocols like Google’s Spanner [45]

as well as Gray and Lamport’s Paxos Commit [88] are also instantiations of the C&C

framework. Finally we propose G-PAC, a novel protocol for sharded replicated archi-

tectures, which is similar to other recently proposed hybrid protocols, Janus [161] and

TAPIR [227]. G-PAC integrates transaction commitment with the replication of data

and reduces transaction commit latencies by avoiding the unnecessary layering of the

different functionalities of commitment and consensus.

Many prior works have observed the similarities between the commitment and con-

sensus problems. At the theoretical end, Guerraoui [92], Hadzilacos [95] and Charron-

Bost [39] have investigated the relationship between the atomic commitment and consen-

sus problems providing useful insights into the similarities and differences between them.

Gray and Lamport [88] observe the similarities and then derive a hybrid protocol. In

contrast, the main contribution of this chapter is to encapsulate commitment and con-

sensus in a generic framework, and then to derive diverse protocols to demonstrate the

power of the abstractions presented in the framework. Many of these derived protocols

are generalizations of existing protocols, however, some of them are novel in their own

right and provide contrasting characteristics that are particularly relevant in modern

cloud computing settings.

The chapter is developed in a pedagogical manner. In §2.3, we explain 2PC and

Paxos and lay the background for the framework. In §2.4 we propose the C&C unifying

framework. This is followed in §2.5 by the derivation of a novel fault-tolerant, non-

14

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Algorithm 1 Given a set of response values sent by the cohorts, the coordinator chooses
one value for the transaction based on the following conditions.

Possible values are: V = {2PC-yes, 2PC-no}.
Value Discovery: Method V
1: Input: response values ⊂ V response values from all cohorts 2PC-no ∈ response

values
2: value← abort
3: value← commit Timer T times out
4: * If a cohort crashed *\
5: value← abort

blocking commit protocol, PAC, in a sharding-only environment. In §2.6, we propose R-

PAC for atomically committing transaction across fully-replicated data. §2.7 introduces

G-PAC for managing data in a hybrid case of sharding and replication. §2.8 provides a

safety proof for the C&C framework. In §2.9 we experimentally evaluate the performance

of G-PAC and compare it with Spanner-like commit protocol. We discuss the related

work in §2.10 and §2.11 concludes the chapter.

2.3 Background

In this section, we provide an overview of 2PC and Paxos as representatives of con-

sensus and atomic commit protocols, respectively. Our goal is to develop a unified frame-

work for a multitude of protocols used in the cloud. In this section, we provide a simple

state-machine representation of 2PC and Paxos. These state-machine representations

are essential in our framework development later in the chapter.

2.3.1 Two Phase Commit

Two-Phase Commit (2PC) [87, 128] is an atomic commitment protocol. An atomic

commitment protocol coordinates between data shards whether to commit or abort a

transaction. Commitment protocols typically consist of a coordinator and a set of co-

15

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

horts. The coordinator drives the commitment of a transaction. The cohorts vote on

whether they agree to commit or decide to abort. We use the notion of a method V

that takes as input all the votes of individual cohorts and decides on a final value for the

transaction. Method V is represented in Algorithm 1.

q2PC(c)

w2PC(c)
V

2PC-req(v)
2PC-get-votes

c2PC(c)

 2PC-yes | 2PC-no
2PC-decision

Value
Discovery

Phase

Decision
Phase

Figure 2.1: State machine representation of a Two Phase Commit coordinator.

q2PC(h)

w2PC(h)
V

2PC-get-votes

c2PC(h)

2PC-yes

2PC-decision

2PC-get-votes
2PC-no

Value
Discovery

Phase

Decision
Phase

Figure 2.2: State machine representation of a Two Phase Commit cohort.

We now present a state machine that represents 2PC. We show two distinct state

machines, one for the coordinator that triggers the commitment protocol, and another

for each cohort responding to the requests from the coordinator. In each state machine,

a state is represented as a circle. An arrow from a state si to sj with the label
ei,j
ai,j

denotes that a transition from si to sj is triggered by an event ei,j and causes an action

ai,j. Typically, events are received messages from clients or other nodes but may also be

internal events such as timeouts or user-induced events. Actions are the messages that

16

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

are generated in response to the transition, but may also denote state changes such as

updating a variable. We use notations q as a starting state, followed by one or more

waiting states, denoted by w and the final commit (representing both commit and abort)

state, c.

Figures 2.1 and 2.2 show the state machine representation of 2PC. In this work, we

represent both transaction commit and transaction abort as one final state, instead of

having two different final states for commit and abort decisions as represented in [189].

The coordinator (Figure 2.1) begins at the initial state q2PC(C) (the subscript 2PC(C)

denotes a 2PC coordinator state). When a client request, 2PC-req1, to end the transaction

arrives, the coordinator sends 2PC-get-votes messages to all cohorts and enters a waiting

state, wV
2PC(C). Once all cohorts respond, the responses are sent to method V represented

in Algorithm 1 and a decision is made. The coordinator propagates 2PC-decisionmessages

to all cohorts and reaches the final state c2PC(C). Although 2PC handles asynchronous

network, in practice, if the coordinator does not hear back the value from a cohort after

a time T , the cohort is considered to be failed and the method V returns abort.

Figure 2.2 shows the state machine representation for a cohort. Initially, the cohort

is in the initial state, q2PC(h) (the subscript 2PC(h) denotes a 2PC cohort state). If

it receives a 2PC-get-votes message from a coordinator, it responds with a yes or no

vote. A no vote is a unilateral decision, and therefore the cohort moves to the final

state immediately with an abort decision. A yes vote will move the cohort to a waiting

state, wV
2PC(h). In both cases, the cohort responds with its vote to the coordinator.

While in wV
2PC(h) state, the cohort waits until it receives a 2PC-decision message from the

coordinator and it moves to the final decision state of c2PC(h). 2PC can be blocking when

there are crashes but we will not discuss it in this work.

1The different protocols we discuss use similar terminology for messages with different meanings. To
avoid confusion, we will use a prefix to denote the corresponding protocol.

17

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Algorithm 2 Given a set of responses sent by the acceptors, the leader decides whether
to transit from one state to another based on the conditions explained below.

Possible responses: {pax-prepared, pax-accept}.
Leader election: MethodM
1: QM ← majority quorum pax-prepared messages from QM

2: return true
3: return false

Replication: Method R
1: QM ← majority quorum pax-accept messages from QM

2: return true
3: return false

2.3.2 Paxos Consensus Protocol

Paxos [122] is a consensus protocol that is often used to support fault-tolerance

through replication. Consensus is the problem of reaching agreement on a single value be-

tween a set of nodes. To achieve this, Paxos adopts a leader-based approach. Figures 2.3

and 2.4 present the state machine representation of Paxos: one for the process aspiring

to be the leader, called a proposer, and another for each process receiving requests from

the proposer, called an acceptor.

qpax(p)

wpax(p)
LE

pax-req(v) |
time-out

pax-prepare

wpax(p)
R

pax-prepared
pax-propose

cpax(p)

pax-accept
pax-apply

Time-out
pax-prepare

Time-out
pax-prepare

Leader
Election
Phase

FT
Agreement

Phase

Decision
Phase

Figure 2.3: State machine representation of a Paxos proposer.

Consider the proposer state machine in Figure 2.3. The proposer is with an initial

state qpax(p) (the subscript pax(p) denotes a Paxos proposer state). A user request to

18

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

qpax(a)

wpax(a)
P

pax-prepare

wpax(a)
A

pax-prepared

pax-propose

cpax(p)

pax-accept

pax-apply

pax-prepare (>pmax)
pax-prepared

Leader
Election
Phase

FT
Agreement

Phase

Decision
Phase

Figure 2.4: State machine representation of a Paxos acceptor.

execute value v, pax-req(v), triggers the Leader Election phase. pax-prepare messages

are sent with the proposal number (initially 0) to at least a majority of acceptors. The

proposer is then in state wLE
pax(p) waiting for pax-prepared messages. The condition to

transition from wLE
pax(p) state to the next state is given by method M in Algorithm 2:

once a majority of acceptors, denoted bymajority quorum QM , respond with pax-prepared

messages, the proposer moves to the Replication phase (state wR
pax(p)), sending pax-propose

messages to at least a majority of acceptors and waiting to receive enough pax-accept

messages. To decide the completion of replication phase, the leader uses method R

described in Algorithm 2, which requires a majority of pax-acceptmessages. The proposer

then moves to the final commit state, denoting that the proposed value has been chosen,

and pax-apply messages are sent to acceptors, notifying them of the outcome.

An unsuccessful Leader Election or Replication phase may be caused by a majority

of acceptors not responding with pax-prepared or pax-accept messages. In these cases, a

timeout is triggered (in either state wLE
pax(p) or w

R
pax(p)). In such an event, a new unique pro-

posal number is picked that is larger than all proposal numbers received by the proposer.

This process continues until the proposer successfully commits the value v.

Now, consider the acceptor state machine in Figure 2.4. Initially, the acceptor is

in an initial state qpax(a) (the subscript pax(a) denotes a Paxos acceptor state). The

19

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

acceptor maintains the highest promised proposal number, denoted pmax. An acceptor

may receive a pax-prepare message which triggers responding with a pax-prepared message

if the received ballot is greater than pmax.. After responding, the acceptor moves to state

wP
pax(a) waiting for the next message from the leader. If the acceptor receives a pax-accept

message with a proposal number that is greater or equal to pmax, then it moves to state

wA
pax(a). Finally, the acceptor may receive a pax-apply message with the chosen value.

Note that, for presentation purposes, we omit reactions to events that do not change

the state of the process. An example of such reactions is an acceptor responding to a

pax-prepare or a pax-propose messages in the commit state. In case of a leader failure

while executing Paxos, an acceptor will detect the failure using a timeout. This acceptor

now tries to become the new leader, thus following the states shown in Figure 2.3.

2.4 Unifying Consensus and Commitment

In this section, we present a Consensus and Commitment (C&C) framework that

unifies Paxos and 2PC. This general framework can then be instantiated to describe a

wide range of data management protocols, some of them well known, and others novel

in their own right. We start by exploring a high level abstraction of Paxos and 2PC that

will aid in developing the framework, and then derive the general C&C framework.

2.4.1 Abstracting Paxos and 2PC

In this section we deconstruct Paxos and 2PC into their basic tasks. Through this

deconstruction we identify the tasks performed by both protocols that lead to the con-

struction of the C&C framework.

Both consensus and atomic commit protocols aim at ensuring that one outcome is

agreed upon in a distributed environment while tolerating failures. However, the condi-

20

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Leader
election

Value
discovery

FT
agreement Decision

Figure 2.5: A high-level sequence of tasks that is generalized based on Paxos and 2PC.

tions for achieving this agreement is different in the two cases. The basic phase transitions

for Paxos are: leader election, followed by fault-tolerant replication of the value and fi-

nally the dissemination of the decision made by leader. For 2PC, considering a failure

free situation, a predetermined coordinator requests the value to decide on from all co-

horts, makes the decision based on the obtained values and disseminates the decision to

all cohorts. We combine the above phases of the two protocols and derive a high level

overview of the unified framework shown in Figure 2.5. Each of the phases shown in

Figure 2.5 is described in detail explaining each phase, its significance and its derivation.

Phases of the C&C Framework

• Leader Election : A normal operation in Paxos encompasses a leader election

phase. 2PC, on the other hand, assumes a predesignated leader or a coordinator, and

does not include a leader election process as part of normal operation. However, if the

coordinator fails while committing a transaction, one way to terminate the transaction is

by electing one of the live cohorts as a coordinator which tries to collect the states from

other live nodes and attempts to terminate the transaction.

• Value Discovery : Both Paxos and 2PC are used for reaching agreement in a

distributed system. In Paxos, agreement is on arbitrary values provided by a client,

while in 2PC agreement is on the outcome of a transaction. The decision in 2PC relies

on the state of the cohorts and hence requires communication with the cohorts. This

typically constitutes the first phase of 2PC. Whereas in Paxos, although it is agnostic

to the process of deriving the value and the chosen value is independent of the current

state of acceptors, it does incorporate value discovery during re-election. The response

21

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

to a leader election message inherently includes a previously accepted value and the new

leader should choose that value, in order to ensure the safety of a previously decided

value.

• Fault-Tolerant Agreement : Fault tolerance is a key feature that has to be

ensured by all atomic commitment and consensus protocols. In the most naive approach,

2PC provides fault tolerance by persisting the decision to a log on the hard disk and

recovering from the logs after a crash [127]. In Paxos, the role of the replication phase is

essentially to guarantee fault tolerance by ensuring that the value chosen by the leader is

persistent even in the event of leader failure. As explained in §2.3.2, the value proposed by

the leader will be stored in at least a majority of the nodes, thus ensuring fault-tolerance

of the agreed upon value.

• Decision : In Paxos, once the leader decides on the proposed value, it propagates

the decision asynchronously to all the participants who learn the decision. Similarly in

2PC, once a decision is made, the coordinator disseminates the decision to all the cohorts.

Essentially, in both protocols a value is decided by the leader based on specific conditions

and that value (after made fault tolerant) is broadcast to all the remaining nodes in the

system.

Given the task abstraction of the C&C framework, we can see that a Paxos instanti-

ation of the framework, in normal operation, will lead to Leader Election, Fault-tolerant

(FT) Agreement and Decision phases but will skip the additional Value Discovery phase.

On the other hand, a 2PC instantiation of the C&C framework, in normal operation, will

become a sequence of Value Discovery and Decision phase, avoiding an explicit Leader

Election phase and FT-Agreement phase.

Although we highlighted the high-level similarities in the two protocols, there are

subtle differences between the two problems of consensus and commitment. For example:

the difference in the number of involved participants in both protocols: Paxos only needs

22

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

a majority of nodes to be alive for a decision to be made whereas 2PC needs votes from

all the participants to decide on the final value. Such subtleties in different protocols can

be captured by specific protocol instantiations of the generic framework.

2.4.2 The C&C Framework

The Consensus and Commitment (C&C) framework aims to provide a general frame-

work that represents both consensus and atomic commitment protocols. In Section 3.1,

we started by unifying the two key protocols, Paxos and 2PC, and developed a high level

abstraction of the unified framework. Now we expand the precise states in the C&C

framework and the transitions across different states. Since our framework takes a cen-

tralized approach, each participating node in the system either behaves as a leader or

a cohort. Figures 2.6 and 2.7 show the state machines for a leader and a cohort in the

framework. As mentioned earlier, an arrow from states si to sj with the label
ei,j
ai,j

denotes

a transition from si to sj. This transition is triggered by an event ei,j and the transition

causes an action ai,j. One important point to keep in mind is that each event ei,j and its

corresponding action ai,j can have different meaning in different protocol instantiations.

Time-out
c&c-elect-me

qc&c(l)

wc&c(l)
V

c&c-req(v?)

c&c-get-value

wc&c(l)
A

c&c-value
c&c-ft-agree

cc&c(l)

c&c-agreed
c&c-apply

c&c-elect-me

Time-out
c&c-elect-me

w
c&c(l)

LE
c&c-elect-you

Leader
Election
Phase

FT
Agreement

Phase

Decision
Phase

Value
Discovery

Phase

Figure 2.6: State machine representation of a primary node in C&C framework.

23

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

qc&c(c)

w
c&c(c)

V

c&c-get-value

wc&c(c)
A

c&c-value

c&c-ft-agree

cc&c(c)

c&c-agreed

c&c-apply

c&c-elect-mec&c-elect-me

wc&c(c)
S

c&c-elect-youc&c-elect-you

c&c-elect-me
c&c-elect-you

Leader
Election
Phase

Decision
Phase

Value
Discovery

Phase

FT
Agreement

Phase

Figure 2.7: State machine representation of a secondary node in C&C framework.

We first define the typical behavior of a leader node in the C&C framework. As shown

in Figure 2.6, the leader node starts in the initial state qc&c(l) (l indicates leader). A client

sends c&c-req(v?) request to node L. Depending on the protocol being instantiated, a

client request may or may not contain the value v on which to reach agreement. In

commitment protocols, the client request will be void of the value. The leader L incre-

ments its ballot number b and starts Leader Election by sending c&c-elect-me messages

containing b to all the cohorts. The leader waits in the wLE
c&c(l) state for a majority of the

cohorts to reply with c&c-elect-you messages. We model the above event as the method

M as explained in Algorithm 2 which will return true when a majority of the cohorts

vote for the contending leader. Once L receives votes from a majority, it starts Value

Discovery. The c&c-elect-you message can contain previously accepted values by the co-

horts, in which case L chooses one of these values. Otherwise, L sends c&c-get-value to

all participants and transitions to the wait state wV
c&c(l). The leader now waits to receive

c&c-value messages from all the participants and since value discovery is derived from

2PC, C&C uses the method V , explained in Algorithm 1, to decide on a value based

on the c&c-value replies. Method V can be overridden depending on the requirements

of the instantiating protocol (as will be shown in §2.5). The leader makes the chosen

24

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

value fault-tolerant by starting FT-Agreement and sending out c&c-ft-agree messages to

all nodes. L waits in the wA
c&c(l) state until method R in Algorithm 2 (with c&c-agreed

messages as input) returns true. In R we use majority quorum but an instantiated pro-

tocol can use any other quorum as long as the quorum in method R intersects with

the quorum used in methodM. This follows from the generalizations proposed in [102,

160]. The leader L finally propagates the decision by sending c&c-apply messages and

reaches the final state cc&c(l).

Now we consider the typical behavior of a cohort in the C&C framework, as shown in

Figure 2.7. The cohort C starts in an initial state qc&c(c) (c stands for cohort). After re-

ceiving a c&c-elect-me message from the leader L, the cohort responds with c&c-elect-you

upon verifying if ballot b sent by the leader is the largest ballot seen by C. The c&c-elect-

you response can also contain any value previously accepted by C, if any. C then moves

to the wLE
c&c(c) state and waits for the new leader to trigger the next action. Typically,

the cohort receives a c&c-get-value request from the leader. Each cohort independently

chooses a value and then replies with a c&c-value message to L. In atomic-commitment-

like protocols, the value will be either commit or abort of the ongoing transaction. The

cohort then waits in the wV
c&c(c) state to hear back the value chosen by the leader. Upon

receiving c&c-ft-agree, the cohort stores the value sent by leader and acknowledges its

receipt to the leader by sending c&c-agreed message, and moving to wA
c&c(c) state. Once

fault-tolerance is achieved, the leader sends c&c-apply and the cohort applies the decided

value and moves to the final state cc&c(c).

A protocol instantiated from the framework can have either all the state transitions

presented in Figures 2.6 and 2.7 or a subset of the states. Specific protocols can also

merge two or more states for optimization (PAC undertakes this approach).

25

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Safety in the C&C framework:

Any consensus or commitment protocol derived from the C&C framework should

provide safety. The safety condition states that a value once decided, will never

be changed. A protocol instantiated from the C&C framework will guarantee an overlap

in the majority quorum used for Leader Election and the majority quorum used in Fault-

Tolerant Agreement. This allows the new leader to learn any previously decided value,

if any. We provide a detailed Safety Proof in the Appendix section 2.8 and show that

the C&C framework is safe, and thus, we argue that any protocol instantiated from the

framework is also safe.

2.5 Sharding-Only in the Cloud

We now consider different data management techniques used in the cloud and de-

rive commitment protocols in each scenario using the unified model. This section deals

with the sharding only scenario where the data is sharded and there is no replication.

When the data is partitioned, transactions can access data from more than one parti-

tion. To provide transactional atomicity, distributed atomic commitment protocols such

as 2PC [87] and 3PC [189] are used. Since crash failures are frequent and 2PC can be

blocking, 3PC was proposed as a non-blocking commitment protocol under crash failures.

3PC is traditionally presented using two modes of operation: 1) Normal mode (without

any failures), 2) Termination mode (to terminate the ongoing transaction when a crash

occurs) [22, 189]. 3PC is non-blocking if a majority (or a quorum) of sites are connected.

However, Keidar and Dolev [109] show that 3PC may still suffer from blocking after a

series of failures even if a quorum is connected. They develop a protocol, E3PC, that

guarantees any majority of sites to terminate irrespective of the failure pattern. However,

E3PC still requires both normal and failure mode operations. Inspired by the simplicity

26

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

of Paxos to integrate the failure-free and crash- recovery cases in a single mode of oper-

ation, we use the C&C framework to derive an integrated atomic commitment protocol,

PAC, which, similar to E3PC, is guaranteed to terminate as long as a majority of sites

are connected irrespective of the failure pattern. The protocol presented in this section

and the subsequent ones assume asynchronous networks.

2.5.1 System Model

Transactions accessing various shards consist of read and/ or write operations on the

data objects stored in one or more shards. The term node abstractly represents either a

process or a server responsible for a subset of data. A key point to note here is that the

protocol developed in this section (and the subsequent ones) is oblivious to the underlying

concurrency control (CC) mechanism. We can use a pessimistic CC such as Two Phase

Locking [87] or an optimistic CC technique [119]. The commit protocol is derived such

that each data shard has a transaction manager and when the client requests to end

a transaction, the underlying transaction manager for each data shard decides to either

commit or abort the transaction based on the chosen CC mechanism. Hence, the isolation

and serializability guarantees depend on the deployed CC, and is orthogonal to the work

presented here, which is focused on the atomic commitment of a single transaction, as is

traditional with atomic commitment protocols.

2.5.2 Protocol

We now derive the Paxos Atomic Commitment (PAC) protocol from the C&C

framework. Each committing transaction executes a single instance of PAC, i.e., if there

are several concurrent transactions committing at the same time, multiple concurrent

PAC instances would be executing independently. In PAC, each node involved in a

27

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

qpac(l)

wpac(l)
L-V

wpac(l)
A

pac-elect-you
pac-ft-agree

cpac(l)

pac-elect-me

pac-agreed

LE + VD
Phase

FT
Agreement

Phase

Decision
Phase

pac-req

pac-apply

Figure 2.8: State machine representation of a PAC leader.

qpac(c)

wpac(c)
L-V

pac-elect-me

w
pac(c)

A

pac-elect-you

pac-ft-agree

cpac(c)

pac-agreed

pac-apply

LE + VD
Phase

FT
Agreement

Phase

Decision
Phase

Figure 2.9: State machine representation of a PAC cohort.

transaction T maintains the variables shown in Table 2.1, with their initial values, where

p is the process id.

Figures 2.8 and 2.9 show the state transition diagram for both the leader and a cohort

in PAC. Abstractly, PAC follows the four phases of the C&C framework: Leader Election,

Value Discovery, Fault-tolerant Agreement and the Decision Phases. However, as an

optimization, Leader Election and Value Discovery are merged together. Furthermore,

in the C&C framework, Leader Election needs response from a majority while Value

Discovery requires response from all the nodes. Hence, the optimized merged phase in

PAC needs to receive responses from all nodes in the initial round, while any subsequent

(after failure) Leader Election may only need to receive response from a majority.

28

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

BallotNum initially < 0, p >
InitVal commit or abort

AcceptNum initially < 0, p >
AcceptVal initially Null
Decision initially False

Table 2.1: State variables for each process p in PAC.

Unlike 3PC, in PAC, the external client can send an end-transaction(T) request to

any shard accessed by T . Let L be the node that receives the request from the client.

L, starting with an initial ballot, tries to become the leader to atomically commit T .

Note that in failure-free mode, there are no contending leaders unless the client does not

hear from L for long-enough time and sends the end transaction- (T) request to another

shard in T . L increments its ballot number and sends pac-elect-me messages and moves

to the WL−V
pac(l) state (l represents leader). A cohort, C, starts in state qpac(c) (c for cohort).

After receiving the election message, C responds with a pac-elect-you message only if L’s

ballot number is the highest that C has received. Based on the CC execution, each node,

including L, sets its InitVal with a decision i.e., either commit or abort the transaction.

The pac-elect-you response contains InitVal, any previously accepted value AcceptVal,

and the corresponding ballot number AcceptNum, along with the Decision variable (the

initial values are defined in Table 2.1).

The transition conditions for L to move from WL−V
pac(l) to WA

pac(l) are shown in method

V in Algorithm 3. Once L receives pac-elect-you messages from a majority of cohorts, it

is elected as leader, based on the Leader Election phase of the C&C framework. If none

of the responses had Decision value true or AcceptVal value set, then this corresponds

to Value Discovery phase where L has to wait till it hears pac-elect-you from ALL the

cohorts to check if any cohort has decided to abort the transaction. If any one cohort

replies with InitVal as abort, L chooses abort as AcceptVal, and commit otherwise. We will

describe crash recovery later. The leader then propagates pac-ft-agree message with the

29

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Algorithm 3 Given the pac-elect-you replies from the cohorts, the leader chooses a value
for the transaction based on the conditions presented here.

Leader Election + Value Discovery: Method V

The replies contain variables defined in Table 2.1.

1: if received response from a MAJORITY then
2: if at least ONE response with Decision=True then
3: AcceptV al← AcceptVal of that response
4: Decision← True
5: else if at least one response with AcceptVal ̸= ⊥ then
6: * Decision is True for none in the received responses.*\
7: AcceptVal ← AcceptVal of the highest AcceptNum
8: else if received response from ALL cohorts then
9: * The normal operation case *\
10: if all InitVal = commit then
11: AcceptV al← commit
12: else
13: AcceptV al← abort
14: else
15: AcceptV al← abort
16: else transaction is blocked

chosen AcceptVal to all the cohorts and starts the fault-tolerant agreement phase Each

cohort upon receiving pac-ft-agree message validates the ballot number and updates the

local AcceptVal to the value chosen by the leader. It then responds to the leader with

pac-ft-agreed message, thus moving to WA
pac(c) state.

The leader waits to hear back pac-ft-agreedmessage from only a majority, as explained

in methodR in Algorithm 2 but with pac-ft-agreed messages as input. After hearing back

from a majority, the leader sets Decision to True, informs the client of the transaction

decision and asynchronously sends out pac-apply message with Decision as True to all

cohorts, eventually reaching the final state cpac(l). A cohort C can receive pac-apply

message when it is in either WL−V
pac(c) or W

A
pac(c) states, upon which it will update its local

Decision and AcceptVal variables and applies the changes made by the transaction to

the data shard that C is responsible for.

30

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

In case of leader failure while executing PAC, the recovery is similar to Paxos (Section

2.3.2). A cohort will detect the failure using a timeout and sends out pac-elect-me to all

the live nodes and will become the new leader upon receiving a majority of pac-elect-you.

The value to be selected by the leader depends on the obtained pac-elect-you messages,

as described in method V in Algorithm 3. If any node, say N replies with Decision as

True, this implies that the previous leader had made the decision and propagated it to

at least one node before crashing; so the new leader will choose the value sent by N .

If none of the replies has Decision as True but at least one of them has AcceptVal as

commit (or abort), this implies that the previous leader obtained replies from all and had

chosen commit (or abort) and sent out pac-ft-agree messages. Hence, the new leader will

choose commit (or abort). In all the other cases, abort is chosen. If the new leader does

not get a majority of pac-elect-you, then the protocol is blocked. The subsequent phases

of replication and decision follow the states shown in Figures 2.8 and 2.9.

2.6 Replication-Only in the Cloud

In this section, we explore a data management technique that deals with fully repli-

cated data i.e., the data is fully replicated across, potentially different, data-centers.

Using the unified C&C framework, we derive a commit protocol, similar to PAC, called

Replicated-PAC (R-PAC).

2.6.1 System Model

In a traditional state machine replication (SMR) system, the client proposes a value

and all replicas try to reach agreement on that value. In a fully replicated data manage-

ment system, each node in the system maintains an identical copy of the data. Clients

perform transactional accesses on the data. Here, the abstraction of a node can represent

31

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

a datacenter or a single server; but all entities denoted as nodes handle identical data.

At transaction commitment, each node independently decides whether to commit or to

abort the transaction. The transactions can span multiple data objects in each node and

any updates on the data by a transaction will be executed atomically. Since the data is

fully replicated, R-PAC is comparable to the Replicated Commit protocol [143].

Every node runs a concurrency control (CC) protocol and provides a commitment

value for a transaction. If a node is an abstraction for a single machine, we can have a

CC, such as 2PL, that decides if a transaction can be atomically committed or if it has to

be aborted. Whereas, if a node represents a datacenter and if data is partitioned across

different machines within the datacenter, the commitment value per node can be obtained

in two ways. In the first approach with shared-nothing architecture, each data center

has a transaction manager which internally performs a distributed atomic commitment

such as 2PC or PAC (§2.5) and provide a single value for that node (datacenter). In the

second approach with a shared-storage architecture, different machines can access the

same storage driver and detect any concurrency violations [22]. In either architecture,

each node provides a single value per transaction. For simplicity, we do not delve deeper

into the ways of providing CC; rather we work with the abstraction that when the

leader asks for a commitment value of a transaction, each node provides one value. The

protocol presented below ensures that all the nodes either atomically commit or abort

the transaction, thus maintaining a consistent view of data at all nodes.

2.6.2 Protocol

The commit protocol, Replicated-PAC (R-PAC), is similar to PAC except for one

change: the Value Discovery method V . In PAC (§2.5), during value discovery, the leader

waits to receive pac-elect-you message from all cohorts. When the data is partitioned, a

32

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

commit decision cannot be made until all cohorts vote because each cohort is responsible

for a disjoint set of data. In the replication-only case, since all nodes maintain identical

data, the leader need to only wait for replies from a majority of replicas that have the

same InitVal. Hence, the method V presented in Algorithm 3 differs for R-PAC only at

line 8, namely waiting for pac-elect-you messages from a majority rather than all cohorts.

Since R-PAC only requires a majority of replicas to respond, it is similar to the original

majority consensus protocol proposed by Thomas [201]. The rest of the replication phase,

decision phase and in case of a crash, the recovery mechanism, are identical to PAC.

Depending on the CC mechanism adopted, and due to the asynchrony of the system,

different replicas can end up choosing different commitment values. A key observation

here is that if a majority of the replicas choose to commit and one or more replicas in

the minority choose to abort the transaction, the leader forces ALL replicas to commit

the transaction. This does not violate the isolation and serializabilty guarantees of the

CC protocol, as updates will not be reflected on the data of a replica R until R receives

a pac-apply message. This ensures that all replicas have consistent views of the data at

the end of each transaction.

2.7 Sharding + Replication in the Cloud

In this section, we present a general hybrid of the two previously presented data

management schemes i.e., data is both partitioned across different shards and each shard

is replicated across different nodes. Transactions can span multiple shards, and any

update of a shard will cause an update of its replicas. When the data is both sharded

and replicated, solutions like Spanner and MDCC [45, 116] use a hierarchical approach

by horizontally sharding the data and vertically replicating each shard onto replicas. The

replication is managed by servers called shard leaders. The other category of solutions,

33

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

such as Janus [161] and TAPIR [227] deconstruct the hierarchy of shards and replicas and

atomically access data from all the involved nodes. Hence, we categorize the hybrid case of

sharded and replicated data into two different classes based on the type of replication: 1)

Using standard State Machine Replication (SMR) wherein the coordinator communicates

only with the leaders of each shard, 2) Using PAC-like protocol wherein the coordinator

of a transaction communicates with all the involved nodes.

2.7.1 Replication using standard SMR: Layered architecture

A popular approach for providing non-blocking behavior to a commitment protocol

such as 2PC is to replicate each state of a participating node (coordinator or cohort).

SMR ensures fault-tolerance by replicating each 2PC state of a shard to a set of replica

nodes. This has been adopted by many systems including Spanner [45] and others [76,

143, 116]. We will refer to this approach as 2PC/SMR. 2PC/SMR shares the objective of

3PC which is to make 2PC fault-tolerant. While SMR uses replicas to provide fault

tolerance, 3PC uses participants to provide persistence of decision. Therefore,

2PC/SMR can be considered as an alternative to commitment protocols that provides

fault tolerance using as additional phase such as 3PC or PAC. 2PC/SMR follows the

abstraction defined by the C&C framework. In particular, 2PC provides the Value Dis-

covery phase of C&C and any SMR protocol, such as Paxos, provides the Fault-Tolerant

Agreement phase of the framework. The Decision phase of C&C is propagated hierar-

chically by the coordinator to SMR leaders and then the leaders propagate the decision

on to the replicas.

The system model of 2PC/SMR consists of a coordinator and a set of cohorts, each

responsible for a data shard. Along with that, 2PC/SMR also introduces SMR replicas.

SMR replicas are not involved in the 2PC protocol. Rather, they serve as backups for

34

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

the coordinator and cohorts and are used to implement the FT-Agreement phase of

C&C. The coordinator and cohorts each have a set of—potentially overlapping—SMR

replicas, the idea originally proposed by Gray and Lamport in [88]. If a shard holder

(coordinator or cohort) fails, the associated SMR replicas recover the state of the failed

shard. This changes the state transitions of 2PC. At a high level, every state change in

2PC is transformed into two state changes: one to replicate the state to the associated

SMR replicas and another to make the transition to the next 2PC state. For example,

before a cohort in 2PC responds to 2PC-get-votes, it replicates its value onto a majority

of SMR replicas. Similarly, the coordinator, after making a decision, first replicates it on

a majority of SMR replicas before responding to the client or informing other cohorts.

The advantage of using 2PC/SMR in building a system is that if the underlying SMR

replication is in place, it is easy to leverage the SMR system to derive a fault-tolerant

commitment protocol using 2PC. Google’s Spanner is one such example. We discuss

the trade-offs in terms of number of communication rounds for a layered solution vs.

flattened solution in the evaluation §2.9.

2.7.2 Replication using Generalized PAC: Flattened architec-

ture

In this section, we propose a novel integrated approach for SMR in environments

with both sharding and replication. Our approach is a generalized version of PAC, hence

is named Generalized PAC or G-PAC. The main motivation driving our proposal is to

reduce the number of wide-area communication messages. One such opportunity stems

from the hierarchy that is imposed in traditional SMR systems—such as Spanner. The

hierarchy of traditional SMR systems incur wide-area communication unnecessarily. This

is because the 2PC (Atomic Commitment) layer and Paxos (consensus/replication) layers

35

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

are operating independently from each other. Specifically, a wide-area communication

message that is sent as part of the 2PC protocol can be used for Paxos (e.g., leader

election). We investigate this opportunity and propose G-PAC to find optimization

opportunities between the Atomic Commit and Consensus layers.

Algorithm 4 For G-PAC, given the plac-elect-you replies from the participating servers,
the leader chooses a value for the transaction based on the conditions presented here.

Leader Election + Value Discovery: Method V
The replies contain variables defined in Table 2.1.

1: if received response from a SUPER-MAJORITY then
2: if at least ONE shard response has Decision=True then
3: AcceptV al← AcceptVal of that response
4: Decision← True
5: else if a majority of replicas of at least one shard respond and at least one

of them has AcceptVal ̸= ⊥ then
* Decision is True for none in the SUPER-MAJORITY.*\

6: AcceptVal ← AcceptVal of the highest AcceptNum across all the received
responses

7: else if received response from SUPER-SET then
8: * The normal operation case *\
9: if all InitVal = commit
10: AcceptV al← commit
11: else
12: AcceptV al← abort
13: else
14: AcceptV al← abort
15: else transaction is blocked

The G-PAC protocol consists of three phases: an integrated Leader Election and Value

Discovery phase, a Fault-Tolerant Agreement phase, followed by the Decision phase. If

a transaction, T , accesses n shards and each shard is replicated in r servers, there are

a total of n ∗ r servers that are involved in the transaction T . This set of servers will

be referred as participating servers. The client chooses one of the participating servers,

L, and sends an end transaction(T) request. L then tries to become the leader or the

coordinator for transaction T . The coordinator, L, and the cohorts follow the same

36

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

state transition as shown in Figures 2.8 and 2.9 except that the contending leader sends

plac-elect-me message to all the participating servers. The overridden Value Discovery

method V is similar to the one presented Algorithm 3. The flattening of the architecture

for sharding and replication changes the notion of all andmajority cohorts that is referred

in Algorithm 3 to:

• super-set: Given n shards, each with r replicas, super -set is a majority of replicas

for each of the n shards. The value for each shard is the one chosen by a majority of

replicas of that shard i.e., (r
2
+1) replicas. If any shard (represented by a majority

of its replicas) chooses to abort, the coordinator sets AcceptVal to abort.

• super-majority: a majority of replicas for a majority of shards involved in trans-

action T i.e., (n
2
+1) shards and for each shard, a value is obtained when a majority

of its replicas respond i.e., (r
2
+ 1) replicas for each shard.

Method V with the newly defined notions of super-set and super-majority, which

decides the value for the transaction, in described in Algorithm 4. We reuse the definition

of replication method R described in Algorithm 2, where majority is replaced by super-

majority. Note that during the integrated Leader Election and Value Discovery phase, if

a node receives response from a super-majority, it could be elected as leader, however to

proceed with Value Discovery, it needs to wait for a super-set, which is a more stringent

condition due to the atomic commitment requirement.

2.8 Safety in the C&C framework

Proof: In this section we discuss the safety guarantees that any consensus or

commit protocol derived from the C&C framework will provide. The safety condition

sta-tes that a value once decided, will never be changed. Although majority

37

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

quorums are used to explain the state transitions of the C&C framework, for the safety

proof we do not assume any specific form of quorum.

Let QL be the set of all possible leader election quorums used in the Leader Election

phase and QR be the set of all possible replication quorums used in the Fault-Tolerant

Agreement phase of the C&C framework. Any protocol instantiated from the C&C

framework should satisfy the following intersection condition:

∀QL ∈ QL,∀QR ∈ QR : QL ∩QR ̸= ∅ (2.1)

The safety condition states that: If a value v is decided for ballot number b, and if a

value v′ is decided for another ballot number b′, then v=v′.

Let L be the leader elected with ballot number b and v be the value chosen by method

V based on the c&c-value responses. For the chosen value v to be decided, v must be

fault-tolerantly replicated on a quorum QR ∈ QR.

Now consider another node L′ decides to become leader. L′ sends out c&c-elect-me

message with ballot b′ to all the other nodes. L′ becomes a leader if it receives c&c-elect-

you messages from a quorum QL ∈ QL. Based on condition 2.1, QL ∩ QR is non-empty

i.e., there is at least one node A such that A ∈ QL and A ∈ QR. There can be two

possibilities for ballot b′.

• b′ < b: In this case, L′ will not be able to get c&c-elect-you replies from a quorum

QL as there is at least one node A that a ballot b > b′ and hence will reject L′’s message.

• b′ > b: In this case, as a response to L′’s c&c-elect-me message, A sends the

previously accepted value v to the new leader. L′ then updates the value to propose from

v′ to v.

Hence, we show that the C&C framework is safe and any protocol instantiated from

the framework will be safe as long as condition 2.1 is satisfied.

38

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

2.9 Evaluation

In our evaluations we compare the performance of G-PAC and 2PC/SMR and discuss

the trade-offs in wide-area communication delays between the two approaches. The

performance of 2PC/SMR varies widely based on the placement of the SMR leaders.

When the SMR leaders are dispersed across different datacenters, the commitment of a

transaction needs 4 inter-datacenter round-trip time (RTT) delays: two rounds for the

two phases of 2PC and one round each for replicating each of those phases using multi-

Paxos [37]. As an optimization, placing all the leaders in a single datacenter will reduce

the inter-datacenter communication to 3 RTTs. G-PAC, on the other hand, always only

needs 3 RTTs (one for each phase of G-PAC) to complete a transaction commitment.

The practical implications of using G-PAC is that in G-PAC, the leader should know

not only the involved shards in a transaction, but also about their replicas. This requires

the replicas to have additional information which either has to be stored as meta-data for

each transaction or can be stored in a configuration file. If a replica is added/removed

or if new shards are added, this will require a configuration change. Propagating this

change can be challenging, potentially leading to additional overhead. Although this

is practically challenging, many existing practical deployments deal with configuration

changes using asynchronous but consistent roll-out based methods such as Raft [172] or

Lamport proposals [125, 124]. Any such method can be adapted in the case of G-PAC.

Our experiments evaluate the performance of G-PAC with respect to two versions

of 2PC/SMR: the most optimal one (collocated SMR leaders) and the worst-case (geo-

graphically distributed SMR leaders across different datacenters). Hence, on average, the

performance of 2PC/SMR would lie in between the two cases. We compare the behavior

of all the protocols by increasing the concurrent clients (or threads), each of which gen-

erates transactions sequentially. We leveraged Amazon EC2 machines from 5 different

39

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

V I SP T
C 60.3 150 201 111
V - 74.4 139 171
I - - 183 223
SP - - - 269

Table 2.2: RTT latencies across different datacenters in ms.

datacenters for the experiments. The datacenters used were N.California (C), N.Virginia

(V), Ireland (I), Sao Paolo (SP) and Tokyo (T). In what follows we use the capitalized

first initial of each datacenter as its label. Cross datacenter round trip latencies are shown

in Table 2.2. In these experiments, we used compute optimized EC2 c4.large machines

with 2 vCPUs and 3.75 GiB RAM.

Although G-PAC can be built upon any concurrency control, for equivalent compari-

son, both G-PAC and 2PC/SMR implementations used Two Phase Locking (2PL) as

a concurrency control technique. In 2PC/SMR, only the shard leaders maintain the lock

table; whereas in G-PAC, all participating servers maintain their own lock tables. Both

protocols execute the decision phase asynchronously.

2.9.1 Micro Benchmark

As the first step in our evaluation, we performed the experiments using a transactional

YCSB-like [44] micro- benchmark that generated read-write transactions. Every opera-

tion within a transaction accessed different keys, thus, generating multi-record transac-

tional workloads. Each shard consisted of 10000 data items. Every run generated 2500

transactions; each plotted data point is an average of 3 runs. To imitate real global data

access patterns, the transactions perform a skewed data access i.e, 90% of the transac-

tions access 10% of the data objects, while the remaining transactions access the other

90% of the data items.

40

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

Varying number of shards

5 4 3 2 1
0

200

400

600

Number of shards

A
vg

la
te
n
cy

(m
s)

G-PAC

2PC/SMR Collocated Leaders

2PC/SMR Scattered Leaders

Figure 2.10: Commit latency vs. number of shards.

Commit latency, as measured by the client, is the time taken to commit a transac-

tion once the client sends an end transaction request. As the first set of experiments,

we assessed the average commit latency of transactions when the transactions spanned

increasing number of shards. In this experiment, both the coordinator and the client are

located on datacenter C. We measure the average latencies for the three protocols by

increasing the number of shards accessed by transactions from 1 to 5. And the data was

partially replicated i.e., each shard was replicated in only 3 datacenters. The results

are depicted in Figure 2.10.

When the data objects accessed by the transactions are from all 5 shards (at data-

centers C, V, I, SP and T), 2PC/ SMR with leaders scattered on 5 different datacenters,

has the highest commit latency, as the coordinator is required to communicate with geo-

distributed shard leaders. For 2PC/SMR with scattered leaders, the average commit

latency decreases with the reduction in the number of involved shards. This is because

with each reduction in number of shards, we removed the farthest datacenter from the

experiment. Whereas, the average commit latency for G-PAC does not increase substan-

tially with increasing shards as it communicates only with the closest replicas of each

41

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

shard, before responding to the client. When the clients access data from a single shard,

the average latencies for all three protocols converge almost to the same value. This is

because with a single shard, all three protocols need to communicate with only a majority

of the 3 replicas for the shard.

This experiment not only shows that G-PAC has highly stabilized performance when

the number of involved shards increase, but it also highlights the fact that, with 2PC/SMR

with collocated leaders, at least one datacenter must be over-loaded with all shards in

order to obtain optimal results. This is in contrast to G-PAC which equally distributes

the load on all datacenters, while preserving optimal latency.

From the results shown in Figure 2.10, we choose 3 shards to run each of the experi-

ments that follow, as it is representative of the trade-offs offered by the three protocols.

2.9.2 TPC-C Benchmark

As a next step, we evaluate G-PAC using TPC-C benchmark, which is a standard for

benchmarking OLTP systems. TPC-C includes 9 different tables and 5 types of trans-

actions that access the data stored in the tables. There are 3 read-write transactions

and 2 read-only transactions in the benchmark. In our evaluation, we used 3 ware-

houses, each with 10 districts, each of which in-turn maintained 3000 customer details

(as dictated by the spec). One change we adapted was to allocate disjoint sets of items

to different warehouses, as the overall goal is to evaluate the protocols for distributed,

multi-record transactions. Hence, each warehouse consisted of 33,333 items and the New

Order transaction (which consisted of 70% of the requests) accessed items from all 3

warehouses. Each run consisted of 2500 transactions and every data point presented in

all the experiments is an average of three runs.

42

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

We measured various aspects of the performance of G-PAC and contrasted it with the

two variations of 2PC/SMR. We used AWS on 3 different datacenters for the following

experiments: C, V and I. In 2PC/SMR with dispersed leaders, the three shard leaders

are placed on 3 different datacenters. And for 2PC/SMR with collocated leaders, all

shard leaders were placed in datacenter C. Although not required, for ease of evaluation,

each shard was replicated across all three datacenters.

Commit Latency

0 200 400 600 800 1,000
0

200

400

600

Number of clients

L
at
en
cy

(m
s)

G-PAC

2PC/SMR Collocated Leaders

2PC/SMR Scattered Leaders

Figure 2.11: Commit latency.

In this experiment, we measure the commit latencies for G-PAC and the two versions

of 2PC/SMR while increasing the number of concurrent clients from 20 to 1000. The

results are shown in Figure 2.11. Both G-PAC and the optimized 2PC/SMR respond to

the client after two RTTs (as the decision is sent asynchronously to replicas), and hence,

both protocols start off with almost the same latency values for lower concurrency levels.

But with high concurrency, 2PC/SMR has higher latency as all commitments need to

go through the leaders, which can become a bottleneck for highly concurrent workloads.

43

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

2PC/SMR with dispersed leaders is the least efficient with the highest latency. This is

because the coordinator of each transaction needs at least one round of communication

with all geo-distributed leaders for the first phase of 2PC (2PC-get-value and 2PC-value).

Hence, we observed that G-PAC, when compared to the most and the least performance

efficient versions of 2PC/SMR, provides the lowest commit latency of the three.

Number of Commits

0 200 400 600 800 1,000
1,000

1,500

2,000

2,500

Number of clients

N
u
m
b
er

of
co
m
m
it
s

G-PAC

2PC/SMR Collocated Leaders

2PC/SMR Scattered Leaders

Figure 2.12: Number of commits.

In this set of experiments, we measured the total number of committed transactions

out of 2500 transactions by all three protocols while increasing the number of concurrent

clients from 20 to 1000. The results are shown in Figure 2.12. From the graph, we

observe that G-PAC commits, on an average, 15.58% more transactions than 2PC/SMR

with collocated leaders and and 32.57% more than 2PC/SMR with scattered leaders.

Both G-PAC and 2PC/SMR implemented 2-Phase Locking for concurrency control

among contending transactions. The locks acquired by one transaction are released after

the decision is propagated by the coordinator of the transaction. The leader based layered

44

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

architecture of 2PC/ SMR, and its disjoint phases of commitment and consensus, takes

an additional round-trip communication before it can release the locks, as compared

to G-PAC. And in 2PC/SMR, since lock tables are maintained only at the leaders, at

higher contention, more transactions end up aborted. Hence, this experiment shows that

flattening the architecture by one level and off-loading the concurrency overhead to all the

replicas, G-PAC can release the locks obtained by a transaction earlier than 2PC/SMR,

and thus can commit more transactions than 2PC/SMR.

Throughput

0 200 400 600 800 1,000
0

500

1,000

1,500

Number of clients

T
h
ro
u
gh

p
u
t
(T

x
n
s/
se
c)

G-PAC

2PC/SMR Collocated Leaders

2PC/SMR Scattered Leaders

Figure 2.13: Throughput.

We next show the throughput measurements for G-PAC and 2PC/SMR. Through-

put is measured as number of successful transaction commits per second and hence,

the high contention of data access affects the throughput of the system. Figure 2.13

shows the performance as measured by transactions executed per second with increasing

number of concurrent clients. G-PAC provides 27.37% more throughput on an average

than 2PC/SMR with collocated leaders and 88.91% higher throughput than 2PC/SMR

45

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

with scattered leaders, thus indicating that G-PAC has significantly higher throughput

than 2PC/SMR. Although Figure 2.11 showed similar commit latencies for G-PAC and

optimized 2PC/SMR, the throughput difference between the two is large. This behav-

ior is due to lower number of successful transaction commits for 2PC/SMR, as seen in

Figure 2.12. The scattered leader approach for 2PC/SMR provides low throughput due

to larger commit delays. The lower latencies along with greater number of successful

transactions boosts the throughput of G-PAC as compared to 2PC/SMR.

Latency of each phase in G-PAC

10 250 500 1000
0

50

100

150

200

250

Number of clients

A
vg

la
te
nc
y
of

ea
ch

ph
as
e
(m

s)

Value Discovery phase

FT Agreement phase

Total latency

Figure 2.14: Latency of each phase in G-PAC

G-PAC consists of 3 phases: Value Discovery, Fault Tolerant Agreement (essentially

replicating the decision) and the Decision phase. In our implementation, the decision

is first disseminated to the client, and then asynchronously sent to the cohorts. In this

experiment, we show the breakdown of the commit latency and analyze the time spent

during each phase of G-PAC. Figure 2.14 shows the average latency spent during each

phase, as well as the overall commit latency, with low to high concurrency. The results

indicate that the majority of the time is spent on Value Discovery phase (which requires

response from super-set of replicas as well as involves acquiring locks using 2PL) and the

46

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

FT-Agreement time is quite consistent throughout the experiment (which needs responses

only from super-majority and does not involve locking). The increased concurrency adds

additional delays to the overall commit latency.

2.9.3 Availability Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.2

0.4

0.6

0.8

1.0

Probability of a single replica’s availability

A
va
il
a
b
il
it
y
o
f
th
e
sy
st
em

G-PAC

2PC/SMR

Figure 2.15: Availability Analysis

In this section, we perform a simple availability analysis to better understand how

the availability of G-PAC and 2PC/SMR vary with the availability of individual replicas.

Let p be the probability with which an individual replica is available. Consider a system

involving three shards, where each shard is replicated three ways (2*f+1 with f = 1).

For the Value Discovery phase, both protocols require a majority of replicas from all the

shards, hence there is no difference in their availability. But to replicate the decision,

G-PAC needs only a super-majority (majority of majority) while 2PC/SMR requires a

majority from all the shards.

We mathematically represent the availability of both the protocols. First, the avail-

ability of each shard (each of which is replicated 3 ways) is computed as shown in Equa-

tion 2.2: either all 3 replicas of the shard are available or a majority of the replicas are

available. Second, based on the probability, pshard, of each shard being available, we de-

47

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

rive the availability of the two protocols. In G-PAC, the decision needs to be replicated

in a majority of shards. Provided there are 3 shards, the availability of G-PAC is given

by Equation 2.3: either all shards are alive or a majority of them are alive. Similarly, the

availability of 2PC/SMR is given by Equation 2.4 which indicates that all shards need

to be alive to replicate the decision in 2PC/SMR.

pshard = 3C3 ∗ p3 + 3C2p
2 ∗ (1− p) (2.2)

AG PAC = 3C3 ∗ p3shard + 3C2p
2
shard ∗ (1− pshard) (2.3)

A2PC/SMR = 3C3 ∗ p3shard (2.4)

Figure 2.15, shows the availability of G-PAC and 2PC/SMR with increasing proba-

bility of an individual site being available. The analysis indicates that G-PAC has higher

tolerance to failures than 2PC/SMR. In particular, G-PAC achieves four nines of avail-

ability (i.e., 99.99%) when each replica is available with probability p = 0.96, where as

to achieve the same, 2PC/SMR requires each replica to be available with probability

p = 0.997.

2.10 Related Work

Distributed transaction management and replication protocols have been studied ex-

tensively [22, 213, 122, 158]. These works involve many different aspects, including but

not restricted to concurrency control, recovery, quorums, commitment etc. Our focus in

this chapter has been on the particular aspect of transaction commitment and how this

48

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

relates to the consensus problem. The other aspects are often orthogonal to the actual

mechanisms of how the transaction commits. Furthermore, the renewed interest in this

field has been driven by the recent adoption of replication and transaction management

in large scale cloud enterprises. Hence, in this section we focus on commitment and

consensus protocols that are specifically appropriate for Cloud settings that require both

sharding and replication, and contrast them with some of the proposed protocols derived

from C&C.

We start-off by discussing one of the early and landmark solutions for integrating

Paxos and Atomic Commitment, namely, Paxos Commit, proposed by Gray and Lam-

port [88]. Abstractly, Paxos Commit uses Paxos to fault-tolerantly store the commitment

state of 2PC on multiple replicas. Paxos Commit optimizes on the number of message

exchanges by collocating multiple replicas on the same node. This is quite similar to the

2PC/SMR protocol of §2.7.1.

Google Spanner [45] adapts an approach similar to Paxos Commit to perform trans-

actional commitment but unlike Paxos Commit, Spanner replicates on geo-distributed

ser-vers. 2PC/SMR, developed in §2.7.1 is a high level abstraction of Spanner. Repli-

cated Commit by Mahmoud et al. [143] is a commit protocol that is comparable to

Spanner, but unlike Spanner, it assumes full replication of data. Replicated Commit can

also be viewed as an instance of the C&C framework, as it can be materialized from

the R-PAC protocol (§2.6). MDCC by Kraska et al. [116] is another commit protocol

for geo-replicated transactions. MDCC guarantees commitment in one cross datacenter

round trip for a collision free transaction. However, in the presence of collision, MDCC

requires two message rounds for commitment. Furthermore, MDCC restricts the ability

of a client to abort a transaction once the end transaction request has been sent.

More recently, there have been some attempts to consolidate the commitment and

consensus paradigms. One such work is TAPIR by Zhang et al. [227]. TAPIR identi-

49

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

fies the expensive redundancy caused due to consistency guarantees provided by both

the commitment and the replication layer. TAPIR can be specified by the abstractions

defined in the C&C framework. In a failure-free and contention-free case, TAPIR uses

a fast-path to commit transactions, where the coordinator communicates with 3
2
f + 1

replicas of each shard to get the value of the transaction. This follows the Value Dis-

covery phase of the C&C framework. G-PAC contrasts with TAPIR mainly in failure

recovery during a coordinator crash. TAPIR executes an explicit cooperative termination

protocol to terminate a transaction after a crash whereas G-PAC has the recovery tightly

integrated in its normal execution. There are other subtle differences between G-PAC

and TAPIR: TAPIR does not allow aborting a transaction by the coordinator once com-

mitment is triggered. And although fast paths provide an optimization over G-PAC,

in a contentious workload, TAPIR’s slow paths make the complexity of both protocols

comparable. Finally, G-PAC provides flexibility in choosing any quorum definition across

different phases, unlike the fast-path quorum (3/2f+1) in TAPIR.

Janus by Mu et al. [161] in another work attempting towards combining commitment

and consensus in a distributed setting. In Janus, the commitment of a conflict free

transaction needs one round of cross-datacenter message exchange to commit, and with

conflicts, it needs two rounds. Although Janus provides low round-trip delays in conflict-

free scenarios, the protocol is designed for stored procedures. The protocol also requires

explicit a priori knowledge of write sets in order to construct conflict graphs, which are

used for consistently ordering transactions. In comparison, G-PAC is more general, as it

does not make any of the assumptions required by Janus.

Another on-going line of work is on deterministic data- bases, where the distributed

execution of transactions are planned a priori to increase the scalability of the system.

Calvin [202] is one such example. However, this planning requires declaring the read

and write sets before the processing of each transaction. This limits the applicability

50

Unifying Consensus and Atomic Commitment for Effective Cloud Data Management Chapter 2

of deterministic approaches, whereas G-PAC is proposed as a more generalized atomic

commit protocol that can be built on top of any transactional concurrency mechanism.

2.11 Conclusion

A plethora of consensus, replication and commitment protocols developed in the past

years poses a need to study their similarities and differences and to unify them into a

generic framework. In this chapter, using Paxos and 2PC as the underlying consensus

and commit protocols, we construct a Consensus and Commitment (C&C) unification

framework. The C&C framework is developed to model many existing data management

solutions for the Cloud and also aid in developing new ones. This abstraction pedagogi-

cally helps explain and appreciate the subtle similarities and differences between different

protocols. We demonstrate the benefits of the C&C framework by instantiating a number

of novel or existing protocols and argue that the seemingly simple abstractions presented

in the framework capture the essential requirements of many important distributed pro-

tocols. The chapter also presents an instantiation of a novel distributed atomic commit

protocol, Generalized-Paxos Atomic Commit (G-PAC), catering to sharded and repli-

cated data. We claim that separating fault-tolerant replication from the transaction

commitment mechanism can be expensive and provide an integrated replication mecha-

nism in G-PAC. We conclude the chapter by evaluating the performance of G-PAC with

a Spanner-like solution and highlight the performance gains in consolidating consensus

with commitment.

51

Chapter 3

Samya: Geo-Distributed Data

System for High Contention Data

Aggregates

3.1 Overview

Geo-distributed databases are the state of the art to manage data in the cloud. But

maintaining hot records in geo-distributed databases such as Google’s Spanner can be

expensive, as it synchronizes each update across a majority of replicas. Frequent syn-

chronization poses an obstacle to achieve high throughput for contentious update-heavy

workloads. While such synchronizations are inevitable for complex data types, simple

data types such as aggregate data can benefit from reduced synchronizations. In this

chapter, we propose an alternate data management system, Samya, to store and main-

tain aggregate data. It is presented as a system that stores cloud resource usage data.

Samya dis-aggregates tokens of available resources and stores fractions of these tokens

across geo-distributed sites. Dis-aggregation allows sites in Samya to serve client requests

52

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

independently without the need to synchronize each update. Samya also incorporates a

learning mechanism to predict the future resource demands at each site. If the predicted

demand cannot be satisfied locally at a site, sites execute a synchronization protocol

called Avantan to rebalance the available resource tokens in the system. Avantan is

a novel fault-tolerant consensus protocol where sites agree on the global availability of

resources that are then redistributed. After the redistribution, the sites continue to inde-

pendently serve client requests. Our experiments, conducted on Google Cloud Platform,

highlight that dis-aggregating data and reducing the number of synchronizations allows

Samya to commit 16x to 18x more transactions than current state of the art cloud based

geo-distributed databases.

3.2 Introduction

Many small and mid-sized enterprises rely on large cloud providers, such as Amazon

AWS, Google GCP, and Microsoft Azure, to provide the backend infrastructure. While

the cloud’s pay-per-use strategy along with the elasticity to spawn new resources on de-

mand has many benefits, it comes with a cost: an unexpected traffic spike can drastically

increase the consumed resources, leaving the customer with a hefty bill.

To avoid such surcharges, cloud customers can set limits on the amount of resources

they consume through a variety of resource tracking services [182]. Clients can set

limits on resources such as storage capacity, number of deployable VMs, and network

bandwidth. Resource tracking services within a cloud provider actively maintain data on

current resource usage; this data helps enforce the limits and bill the customer accurately

for their usage. A resource can be consumed only if its current usage is below the preset

limit of that resource – this translates to a read-write transaction at the resource tracking

services.

53

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Consider an example where a large cloud provider, ultraCloud, has a start-up eCom-

merce.com as a customer. The start-up comprises of many teams such as clothing,

electronics, etc, as shown in Figure 3.1, and the teams consume resources as indicated in

the leaf nodes. The resource limit is set by an admin of eCommerce.com and is appli-

cable to all teams within the organization. This type of hierarchical structure is widely

used by the cloud providers to allocate resources, track the usage, and accurately bill the

customer [82, 5, 154].

Figure 3.1: Hierarchical org structure of a cloud customer eCommerce.com.

The cloud provider, ultraCloud, tracks the number of resources eCommerce.com can

consume. For example, each vm creation a read-write transaction in ultraCloud ’s re-

source tracking service to check if the overall vms consumed exceeds eCommerce.com’s

threshold. Only after this transaction succeeds can the actual physical resource be al-

located. Any update to an intermediary or leaf unit (team) must percolate to the root

node, eCommerce.com, as the cumulative resource usage by all the teams in the hierarchy

is tracked at the root level. Typical update rates for a single node in the hierarchy may

be in the hundreds of transactions per second, but the aggregate load on the root for a

moderately sized enterprise hierarchy may easily be in thousands of transactions, causing

the root node’s data to become a hotspot.

In a cloud setting, data – including a tracking service’s data – are stored on multiple

servers in a data center to ensure high availability and fault-tolerance. Examples of

geo-distributed databases are Google’s Spanner [45] and Amazon Aurora [209].

54

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Consider the design choices of a Spanner-like database: each data item is replicated

across multiple sites, one of which acts as a leader. For each update, the leader replicates

the change onto a set of replicas using consensus protocols such as Paxos [122]. While

this is a good choice for high availability, it aggravates the hot-spot problem in two ways:

(1) Sequential execution: for hot-spots, where many transactions access the same data,

conflicting transactions are processed by the leader sequentially; and (2) High Latency :

each update is propagated to geographically distant sites, incurring high latency. Spanner

commits a transaction with a mean latency of 17ms and a tail latency of 75ms [45]; hence

for a single data item, Spanner can commit on average 58.8 transactions per second (tps)

and a tail throughput of 13.3 tps. For a customer such as eCommerce.com (Figure 3.1),

perhaps 60 tps is enough for an individual node, but for the aggregate root node with

hundreds of teams in the hierarchy, this throughput value becomes problematic.

Our observation is that while geo-distributed databases are a good choice for sup-

porting complex forms of data, they are not ideal for simple aggregate data types where

the operations are mostly limited to additions or subtractions, such as maintaining re-

source usage data. Spanner-like solutions provide high scalability but fail to provide the

high throughput necessary for hot-spot data. Based on this observation, our research

objective is to design an alternate system that manages simple data types and provides

high throughput for update heavy workloads in a cloud setting.

This question has been addressed for traditional non-cloud databases in many works

such as [171, 16, 118, 79]. Escrow transactions [171] introduced the notion of concur-

rent transactions updating different ‘chunks’ of the an aggregate data, albeit in a non-

distributed database. Barbara et al. [16], Kumar et al. [118], and Golubchik et al. [79]

introduced the idea of partitioning aggregate data onto multiple sites allowing each site to

independently update its portion of the data value (e.g., multiple sites independently sell-

ing airline tickets). The problem is made non-trivial by introducing a constraint while

55

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

updating the distributed data (e.g., not selling more airline tickets than the available

seats). The solution proposed in this chapter is motivated by these works, adapted for

the radically different settings of large scale geo-distributed cloud infrastructures.

If partitions of available resources are to be stored on different sites, the next logical

question to ask is: how to distribute the available resources among these sites? The

advancements in machine learning and deep learning techniques as well as the abundance

of cloud resource demand data collected by cloud providers can aid in answering this

question. In fact if resource demand can be predicted and resources can be allocated to

sites accordingly, most client requests can be served locally, without incurring expensive

cross-datacenter communications.

In this chapter, we propose an alternate design for geo-distributed data management

systems to manage aggregate data. Specifically, we present Samya1 – a system that

stores and tracks resource usage data across geo-distributed sites. Samya avoids the high

latency and low throughput of Spanner-like databases by allowing a site to serve a client

request locally, without the need for expensive synchronization.

Overview: To serve client requests locally while still maintaining the global resource

limit, sites in Samya start with an initial allocation of available resources. We model the

resource data as tokens (tokens of a specific resource are indistinguishable). A site can

serve requests locally as long as it has locally available tokens; once it exhausts its local

tokens or if it predicts an increase in resource demand that cannot be satisfied locally,

the sites synchronize to redistribute any unused tokens in the system. We propose a novel

protocol –Avantan2 – to redistribute spare tokens.

Avantan is a fault-tolerant consensus protocol, in which, unlike Paxos, the value to

agree upon is unknown at the start of the protocol. The sites communicate with each

1Samya is the Sanskrit word to equilibrium or equality.
2Avantan in Sanskrit means allocation.

56

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

other to share their local token values and attempt to reach agreement on the shared

values. If successful, the sites use the shared values to redistribute any spare tokens.

Thus, sites in Samya are constantly rebalancing the tokens among themselves based on

the demand predictions, to maximize the number of client requests served with minimal

latency.

Along with providing low latency, the dis-aggregation strategy of Samya increases

its availability compared to Spanner-like databases. For a specific resource, Spanner

becomes unavailable if a majority of the sites that store the resource information fail,

whereas Samya is available as long as at least one site is available.

Other Applications of Samya : Although Samya is motivated and presented as a

service that stores and tracks resource usage, it can be used as a data managing system

to maintain any aggregate data in the cloud. Examples of applications consisting of

aggregate data are: rate limiting services to manage quotas and policies; inventory man-

agement such as online shopping, car rentals, etc.; airline ticket booking; advertisement

campaigns tracking; billing services; etc,. For ease of exposition, in this chapter we focus

on one application: maintaining resource usage data.

The chapter is structured as: §3.3 discusses existing works related to Samya, §3.4

discusses the system and data model employed in Samya. §3.5 explains transaction

executions and introduces Avantan, §3.6 presents the experimental evaluation of Samya

and §3.7 concludes the chapter.

3.3 Related Work

The hotspot problem for aggregated data fields is an important practical problem

studied extensively by the database community. Data partitioning is the most predomi-

nantly adopted solution for the hotspot problem, generally present in the two main forms:

57

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

(i). Key partitioning where data items are partitioned into different, non-overlapping sets

based on their keys and the sets are stored across multiple sites; and (ii). Value partition-

ing where the same data item, irrespective of its key, is partitioned into different values

and these values are stored across multiple sites. Since Samya is designed for a single high

contention hotspot data, such as the root of an organization hierarchy, Samya adopts the

value partitioning approach to store fractions of an aggregate value (i.e., available tokens)

across different sites.

The idea of value partitioning has been studied extensively, starting with the seminal

paper by O’Neil [171]. In [171], O’Neill introduced escrow transactions where different

transactions operate on different fractions of the same data, thus allowing concurrency;

this was proposed for a non-distributed database. In [118], Kumar and Stonebreaker

extended transactions acquiring escrows to sites acquiring escrows. The sites serve trans-

actions locally as long as they have non-zero escrow quantity. In [97], Harder extended

the idea of escrows and introduced hierarchical escrows to reduce coordination to dynam-

ically update escrows of multiple sites. In [117], Krishnakumar and Bernstein proposed

Generalised Site Escrow to dynamically allocate parts of aggregate data (i.e., resources)

to different sites using quorum locking and gossip messages.

The demarcation protocol [16] introduced by Barbara and Garica-Molina partitions

an individual data value (which has a global constraint) and stores different partitions

on separate machines; the protocol explains how to maintain constraints on the data

when the data is distributed. In [3], Alonso and El Abbadi extend the demarcation

protocol to store the value partitions across more than two sites and formalize the theory

of partitioned data. In [79], Golulbchik and Thomasian introduce a token allocation

system assuming that the incoming request pattern follows a Poisson distribution and

tokens are allocated to different sites based on this distribution.

58

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

In essence, the above discussed works aim to partition a data item based on its value,

store the partitions on multiple sites, and update them concurrently, while maintaining

a global constraint. These protocols are proposed for radically different environments

where typically the sites are not geo-distributed, the networks are assumed reliable, and

the results presented are typically via simulations. Samya brings the basic idea – dis-

aggregate the aggregate data to increase concurrency – from these works into the more

modern context of cloud computing and geo-distributed data management systems.

A related approach that supports local operations without global synchronization is

proposed by Shapiro et al. [187] in the context of Conflict-free Replicated Data Types

(CRDTs). CRDTs supports conflict freedom by using eventually consistent replicas on

different sites. Due to the eventual consistency guarantees and the semantics of the data

types, replicas are updated locally and are synchronized with other replicas eventually.

CRDTs, or rather systems that use CRDTs, differ from Samya in that the replicas

of CRDTs do not dis-aggregate the value of a data item nor maintain a global and

distributed constraint, which are important aspects of Samya. All the replicas of a data

item in CRDT systems eventually become consistent with each other, without a notion

of re-balancing the values maintained by each replica, as is performed in Samya. Another

major difference between CRDT systems and Samya is CRDTs are typically commutative

whereas data in Samya can be non-commutative.

Recent works have proposed key partitioning as a way to scale and improve the

throughput of database systems, such as Schism [48], Horticulture [176], Clay [186], E-

Store [197], and Chiller [225]. All of these works differ from Samya in two major ways: (i).

they partition the data records and optimally place hot records on different sites (except

Chiller [225] which places hot records on the same site) to load balance and increase

performance; (ii) they optimize for a set of hot records by opting for key partitioning,

whereas Samya optimizes for a single hot record by choosing value partitioning.

59

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

With the rise of the cloud paradigm, many new database designs opt for geo-distribution

to provide high availability [45, 52, 209, 14, 198]. The data in these systems are key

partitioned and replicated across geo-distributed sites. Google Spanner [45], Amazon

Aurora [209], and CockroachDB [198] all use replication protocols such as Paxos [122] or

Raft [172] to consistently replicate each update to a quorum (typically majority). While

Amazon’s Dynamo [52] chooses eventual consistency and is hence less stringent in repli-

cating each update, it may suffer from inconsistent data. Recently, there has also been

increasing interest in efficiently executing transactions on data that is both partitioned

and replicated in a cloud geo-distributed environment, in works such as MDCC [116],

TAPIR [227], Replicated Commit [143], G-PAC [148], and Janus [161].

In general, these approaches differ from Samya in that they employ key partitioning

and aim to efficiently execute distributed transactions across these partitions, which

are often also replicated. First, due to replicating each update on to a quorum of geo-

distributed sites, all of the above systems are prone to hot-spot problems for update heavy

and contentious workloads. Second, the design mantra common across these works is to

build a general data management system that can store varied and complex forms of data.

While the general approach has many benefits, it fails to take advantage of application

specific data forms (such as aggregate data fields) to optimize performance. This causes

applications such as cloud resource tracking services to inevitably design their own data

managing systems. Samya is designed to take advantage of aggregate data to provide

high performance for hot-spots without compromising availability.

60

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.2: Clients interact with the data stored across sites through application
managers (app mgr).

3.4 Samya Architecture

3.4.1 System Model

Samya is a niche distributed data management system that stores and maintains

aggregate data specifically related to resource usage information; the data is stored across

multiple geo-distributed sites. Figure 3.2 represents the system model and the client

interactions with the system. Samya consists of sites and application managers.

Sites : To enhance the performance and for high availability, the aggregate data

is dis-aggregated into different partitions and the partitions are stored across multiple

sites, typically geo-distributed. Sites in Samya act as data shards that store fractions

of available resources and partial usage information of a resource; and for simplicity, we

assume that all sites store information about all resources. Changing this design choice

to allow only some sites to store information of specific resources is fairly straightforward,

and furthermore, a run-time library can provide lookup and directory services to identify

the sites that store a specific resource.

Application Managers : These are stateless processes that relay the messages

between a client and the sites. App managers mask the network topology and individual

site availability from external clients. Since the sites storing the data and the clients

accessing the data are geo-distributed, multiple geo-distributed app manager processes

exist to reduce the communication latencies between clients and sites. Being stateless,

app manager processes can easily scale on demand depending on the request load.

61

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Samya assumes an underlying asynchronous communication network where messages

can be delayed, dropped, or reordered. The sites and the application managers can fail

by crashing but do not exhibit malicious behavior. Unless they crash, the sites and

application managers execute the designated protocol correctly. Samya further assumes

that a site, which stores the data, does not crash indefinitely ; when a crashed site recovers,

it reconstructs its previous state before the crash. If an application manager crashes, since

app managers are stateless, a new process can be spawned easily and plugged into the

system.

3.4.2 Data Model

Abstractly, we term each resource stored in Samya as an entity. The clients (i.e., cloud

customers) acquire or release these entities and Samya tracks client actions to maintain

up-to-date resource usage and resource availability information for each entity. A high

privilege-user (e.g., admin of an enterprise) within a client configures a preset maximum

Me – the maximum limit of available tokens for entity e – and other clients (e.g., smaller

organizational units in the enterprise or end users of the enterprise) can acquire or release

specific quantities of the entity.

Samya maintains the following system level constraint: at no point does the system

allow the clients to collectively acquire more thanMe tokens for an entity e.

0 ≤ total acquired tokens ≤Me (3.1)

item description

id UUID to identify type of resource
TokensLeftS Num. of tokens left at site S

TokensWantedS Num. of tokens site S wants

Table 3.1: State variables of an entity e maintained by each site in the system.

62

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

The state of an entity e, as maintained by each site S in the system, refers to specific

details as presented in Table 3.1: id is a unique identity to identify the type of entity

(or resource) e; TokensLeft indicates the number of tokens of entity e available at site

S; TokensWanted indicates the number of tokens of entity e that site S needs during a

redistribution.

Transactions: Clients perform 2 types of transactions:

• acquireTokens(e, n): A client asks for n tokens of entity e, where n is a positive

integer.

• releaseTokens(e, m): A client returns m tokens of entity e back to the system,

where m is a positive integer. These tokens can later be acquired by other clients.

An individual client never returns more tokens than what it has acquired.

3.5 Samya

In this section we discuss how Samya efficiently manages and tracks resource usage.

Samya is a highly available distributed data management system proposed as an alter-

native to manage resource data in geo-distributed databases. If a client consumes any

resource such as creating additional VMs, then in traditional geo-replicated databases, all

the replicas are updated to reflect the resource usage. Samya, on the other hand, chooses

a single site to update the resource usage data, thus avoiding the cross data-center com-

munications for each update. To cope with varying resource demands at different sites,

Samya relies on learning based predictions and dynamic reallocation of resources.

63

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

3.5.1 Overview

In this section, we provide an overview of Samya’s request serving approach. A site

receives either an acquireTokens(e, n) or releaseTokens(e, m) request from a client, where

e identifies the entity, and n, m are the number of tokens to be acquired or released. The

main goal of each site in Samya is to serve as many requests locally as possible while

maintaining the global constraint that the overall acquired tokens of an entity e stored

across all sites never exceeds the limitMe. Since a releaseTokens request returns tokens,

it never violates the global constraint and hence, can always be served locally at a site.

Meanwhile, a site may receive an acquire request with a value greater than the number

of tokens available locally at that site. A site could choose to reject these requests but

Samya takes an alternate approach. If a site S cannot serve an acquire request locally,

it triggers a redistribution by communicating with other sites. The sites share the state

of their tokens for entity e and redistribute any spare tokens, after which site S may

acquire enough tokens to serve pending or future client requests. We term this as reactive

redistribution: a redistribution triggered in response to a client request that could not

be satisfied locally

While reactive redistributions avoid rejecting client requests merely because tokens

are exhausted locally, the requests that cause redistributions incur large delays. The

cloud computing literature [80, 46, 168, 56, 107, 41] has shown that resource demand

typically can be predicted. We take advantage of predictable workloads to trigger proac-

tive redistributions – redistributions where a site predicts if the demand is increasing and

triggers a redistribution to satisfy the predicted load. This approach further minimizes

the latency to serve client requests.

64

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.3: Components of each site in Samya.

Components of a Site in Samya

Each site in Samya consists of 4 components as shown in Figure 3.3.

• Request Handling Module: This module communicates with app managers and

serves client requests locally. This module also triggers redistributions.

• Prediction Module: This is a learning module generated by training on existing

resource demand data such that it predicts the future resource demand in terms of

number of tokens.

• Redistribution Module: If the Request Handling module triggers a redistribu-

tion, this module calls the Protocol module to check if other sites have any spare

tokens; based on the responses from other sites, this module re-allocates the spare

tokens.

• Protocol Module: This module executes a multi-round fault-tolerant protocol

that collects token information from other sites for redistribution.

Each of these modules is pluggable and can be easily replaced with an upgraded

version, if and when needed.

Life-cycle of a client request

A step-wise overview of how sites in Samya serve client requests is presented in Fig. 3.4:

65

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.4: Life-cycle of a client request.

1). Client request: A client generates and sends either an acquireTokens(e, n) or

releaseTokens(e, m) request, where e is the entity id, and n, m are number of tokens.

This request reaches the closest app manager to the client (this can be achieved using a

load balancer).

2). App Manager: Typically, the app manager relays the client request to the closest

site. But if the closest site has failed or is overloaded, an app manager may relay the

client request to another site. As a result, a single client’s acquireTokens request may

be sent to a site Sk whereas a releaseTokens request may be sent to a different site Sj.

This is acceptable because sites in Samya only store the resource usage data; Samya is

not responsible for the actual physical resource allocation, which is the function of higher

level applications.

3). Site serving request: A site S that receives a client request attempts to serve the

request locally; if successful, it updates its local token state based on the type of request:

TokensLeftS = TokensLeftS − n (3.2)

66

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

if the client acquired n tokens; or

TokensLeftS = TokensLeftS +m (3.3)

if the client released m tokens. The site then responds to the client, which is relayed via

an app manager.

4). Demand prediction: After serving a client request, the site checks if it is close to

exhausting its tokens for that entity, i.e, TokensLeft is below a pre-configured threshold.

If so, the site predicts the demand for the near future (e.g., next 5 minutes).

5). Trigger redistribution: If the predicted value indicates a decrease in demand, the

site simply continues to serve more requests. Whereas if the predicted value indicates an

increase in demand that cannot be satisfied locally, the site triggers a redistribution.

6). Execute protocol: If the site triggers a redistribution, it communicates with other

sites to collectively execute a fault-tolerant protocol to share with each other the state

of entity e, which includes the information shown in Table 3.1.

7). Reallocate tokens: Based on the shared information, each site independently

reallocates the overall spare tokens using a deterministic reallocation procedure.

8). Update tokens state: Depending on the outcome of the reallocation, the site that

triggered the redistribution may acquire more tokens, upon which it updates its state of

entity e and serves any pending or future requests.

Note that the above steps describe a proactive redistribution. Samya also supports

a reactive redistribution triggered when a site receives a client request that cannot be

served locally (due to insufficient locally available tokens). Cloud workloads typically

consist of spikes and a reactive approach caters to such spiky workloads.

In the following sections, we elaborate on when a redistribution is triggered, how

the redistribution protocol is executed, and once the protocol terminates, how the spare

67

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

tokens are reallocated. Table 3.2 defines the variables used in the following sections.

Symbol Meaning

M Maximum Limit (of entity e)
N Number of sites
TUt Tokens Used at tth redistribution
TLt Tokens Left at tth redistribution
TWt Tokens Wanted at tth redistribution
St Total spare tokens in tth redistribution
Rt Set of sites participating in tth redistribution
Lt List of state variables of the sites in Rt

Table 3.2: Variables used in the tth redistribution of an entity e at site i.

3.5.2 Triggering Redistribution

Before delving into the details of triggering a redistribution, we discuss predictability

of cloud workloads. The cloud computing literature consists of many works that highlight

the predictability of resource demands in the cloud, e.g., [80, 46, 168, 56, 107, 41]; they

also discuss various techniques to predict resource demand. The common underlying

idea is to collect a large amount of actual demand data, analyze this data to uncover any

periodicity or patterns, and develop mathematical models that can learn from the past

data to predict future demands.

Samya adopts a similar approach where application-specific historical resource de-

mand data is collected to train a learning model. Once this model is trained and tuned

to predict future demands, it is used as the Prediction Module (Figure 3.3). The Pre-

diction Module is a pluggable module wherein the application developers using Samya

are free to choose the best prediction technique suitable for their workload. This module

can be replaced even after deployment, if a better learning approach is found or if the

application workload changes. We discuss the prediction methods used in evaluating

Samya in §3.6.
68

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

An epoch is defined as the look-ahead time duration used during prediction. This

dictates how far ahead in the future to predict resource demand (e.g., 5 or 10 minutes)

depending on the workload pattern. Samya triggers a redistribution in two ways.

• Proactive redistribution: After a site serves an acquireTokens(e,n) request, in a

background thread, it checks if it is close to exhausting its local tokens for that

entity. If so, it uses the Prediction module to predict resource demand for the next

epoch. If demand is decreasing, the site continues to serve client requests. Whereas,

if demand is to increase in the next epoch such that it cannot cater to the increasing

demand locally, the site triggers a redistribution by updating its state of entity e:

TokensWanted = PredictedV alue− TokensLeft (3.4)

• Reactive redistribution: Since prediction techniques are rarely 100% accurate, Samya

allows for reactive redistribution wherein a site receives an acquireTokens(e,m) re-

quest asking for m tokens and m > TokensLeft at the site. In order to satisfy this

request, the site triggers redistribution by updating its state of entity e:

TokensWanted = m (3.5)

3.5.3 Executing Redistribution Protocol

Once a site decides to trigger redistribution, it executes Avantan: a novel fault-

tolerant consensus protocol designed specifically for redistributing available resources.

In this section we present two different versions of Avantan differing primarily in their

failure assumptions and failure recoveries. Sites execute multiple instances of Avantan

either sequentially or concurrently; a single execution instance is presented in this section.

For each instance of redistribution, the Avantan protocol aims to reach agreement on the

69

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

list of sites participating in that instance. The protocol is designed to tolerate arbitrary

crashes, message losses, and network partitions, while making the best effort in providing

liveness.

The two versions of Avantan are:

• Avantan[n+1
2
]: Requires a majority (N

2
+1) of sites to be alive and communicating

during protocol execution. This version of Avantan is a better choice when individ-

ual network links are highly unreliable (prone to message drops) and servers crash

frequently but network partitions are infrequent. In this version all sites execute

one redistribution after another.

• Avantan[∗]: No requirements on majority of sites being alive to execute the proto-

col; it tolerates network partitions of arbitrary sizes and allows different partitions

to execute redistribution concurrently. But this version is sensitive to message

losses during the execution of the protocol.

The two versions also differ in their failure recovery mechanism, which will be discussed

later. In developing the protocol, we follow the abstractions defined in the Consensus

and Commitment (C&C) framework [148] and the protocol is motivated by the Paxos

Atomic Commit (PAC) protocol proposed in [148]. Avantan abstractly consists of the

following phases: the first phase executes Leader Election as well as Value Construction,

the second phase makes the value Fault-Tolerant, and finally, the third asynchronous

phase distributes the Decision.

We explain the two versions of Avantan with respect to redistributing the tokens

of a single entity e; the protocol can be easily extended to include multiple entities.

During protocol execution, sites maintain the variables defined in Table 3.3, which mainly

correspond to the standard variables used in Paxos. BallotNum is a tuple of the form

<num, id> where num is a local, monotonically increasing integer and id is site id. Ballot

70

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Algorithm 5 Avantan[n+1
2
] redistribution protocol.

Let statet.i be the state of entity e at site with id i during tth execution of Avantan.

1: Procedure Election-GetValue()

2: BallotNum ← (BallotNum.num+1, selfId)
3: InitVal ← currState /* With an updated TokensWanted */
4: Send Election-GetValue(BallotNum) to all

5: Procedure ElectionOk-Value()

6: upon receiving Election-GetValue(bal) from S
7: if bal > BallotNum
8: BallotNum ← bal
9: predictedVal ← PredictForNextEpoch()
10: if predictedVal > currState.TokensLeft
11: currState.TokensWanted ← predictedVal - currState.TokensLeft
12: InitVal ← currState
13: Send ElectionOk-Value(BallotNum, InitVal,

AcceptVal, AcceptNum, Decision) to S

14: Procedure Accept-Value()

15: if received ElectionOk-Value(bal, initV, acceptV, acceptN, dec) from major-
ity then

16: if at least ONE response with dec=True then
17: AcceptVal ← acceptV of that response
18: Decision ← True
19: else if at least one response with acceptV ̸= ⊥

/* dec is True for none. */ then
20: AcceptVal ← acceptV of that response
21: else
22: AcceptVal ← (InitVal || all received initV s)
23: AcceptNum ← BallotNum
24: Send Accept-Value(BallotNum, AcceptVal, Decision) to all

71

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

25: Procedure Accept-ok()

26: upon receiving Accept-Value(bal, acceptV, acceptN,
dec) from S

27: if bal ≥ BallotNum
28: AcceptVal ← acceptV
29: AcceptNum ← bal
30: Decision ← dec
31: Send Accept-ok(BallotNum) to S

32: Procedure Decision()

33: if received Accept-ok(bal) from majority
34: Decision ← True
35: Send Decision(BallotNum, Decision) to all

BallotNum initially < 0, s >
InitVal state of entity e (Table 3.1)

AcceptVal initially ⊥ (Null)
AcceptNum initially < 0, s >
Decision initially False

Table 3.3: Variables maintained by a site with id s during each execution of redistri-
bution protocol for entity e.

number ensures the total ordering of different redistributions. InitVal is the current

state value of entity e (as defined in Table 3.1) at site s when the redistribution starts.

AcceptVal represents the list of state values of the sites participating in the redistribution

and AcceptNum is the ballot number at which a site updates its AcceptVal. Finally,

Decision indicates if the sites reached agreement on AcceptVal at ballot BallotNum.

The redistribution protocol is initiated by a site S either for proactive or reactive

reasons. The different phases of the protocol are shown in Figure 3.5. Abstractly, site

S attempts to become the leader and collects state values from: at least a majority

of the sites in the case of Avantan[n+1
2
]; and any number of sites in Avantan[∗]. We

denote the set of sites participating in the tth instance of redistribution as Rt
3. Site S

3These variables are defined in Table 3.2.

72

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.5: Phases of Avantan[n+1
2] protocol.

then ensures that the list of state values – as denoted by Lt – is fault-tolerantly stored

across: a majority of sites in Avantan[n+1
2
]; and the same set of sites that responded

with their state values in Avantan[∗]. S then finalizes the value Lt and all participating

sites reallocate the tokens. Note that once a site starts participating in the redistribution

protocol, it queues all the acquireTokens and releaseTokens requests from clients until

the protocol terminates.

Avantan[n+1
2
]

The protocol consists of 3 rounds (5 phases) as described in Algorithm 5 and shown

in Figure 3.5:

• Election-GetValue : In the first phase site S attempts to become the leader

as well as collect the state values from other sites. Site S increments its ballot

number (line 2) and sets its InitV al to the current local state of entity e, i.e.,

all the fields of TokensUsed, TokensLeft, and TokensWanted. Site S then sends

Election-GetValue(BallotNum) message to all sites.

• ElectionOk-Value : As shown in lines 6-13, upon receiving the Election-GetValue

message, a site C (termed as cohort to distinguish from the leader) checks if the

received ballot number is greater than its current ballot number. If yes, it updates

its ballot number, and it runs the Prediction Module to predict its demand for the

73

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

next epoch (line 9). If the predicted value is greater than the current number of

tokens left, then site C’s demand is increasing such that C cannot satisfy the in-

creasing demand. Hence, it sets its TokensWanted field (line 11) to the difference

between the predicted value and its locally available tokens. C then sets its InitV al

to the updated state and sends ElectionOk-value(BallotNum, InitVal, AcceptVal, Ac-

ceptNum, Decision) to leader S. The AcceptVal, AcceptNum, and Decision variables

are used in failure recovery; in a failure-free execution, these variables are set to

the initial values as defined in Table 3.3.

• Accept-Value : As shown in lines 15-25, the leader site S waits until it receives

ElectionOk-Value messages from at least a majority of the sites (including itself). In

a failure-free execution (failure recovery explained later), S sets AcceptV al to the

concatenated InitVals received in the ElectionOk-Value responses (line 22), and sets

AcceptNum to its current ballot number. S then sends Accept-Value(BallotNum,

AcceptVal, Decision) to all sites.

• Accept-ok : Upon receiving the Accept-Value message from the leader, indicated

in lines 27-32, a cohort C checks whether the received ballot number is at least as

high as its current ballot number. If yes, it updates the AcceptV al, AcceptNum,

and Decision variables and sends an Accept-ok(BallotNum) message to the leader.

• Decision : Finally, the leader waits for Accept-ok messages from at least a majority

of sites (including self), then sets its Decision variable to True, and sends the

Decision(BallotNum, Decision)message to all. The protocol terminates for the leader

when it sends the Decision message; whereas the protocol terminates for a cohort

once it receives the Decision message. The sites then reallocate the tokens using

the information in AcceptV al and respond to any pending client requests that were

queued. The sites also reset the variables defined in Table 3.3 (except BallotNum)

74

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

once the protocol successfully terminates.

Failure Recovery: If the leader crashes or is network partitioned from the rest

of the sites, the sites must recover in order to continue serving the clients. The failure

recovery execution follows the same steps as a failure-free execution: if a site S ′ times-out

waiting for the leader’s message, S ′ attempts to become the new leader and terminate

the protocol by sending Election-GetValue message to all the sites. As shown in Procedure

Accept-Value (lines 16-28), in the received ElectionOk-Valuemessages, if S ′ receives at least

one message with Decision as True, this implies that the previous leader had terminated

the protocol and had sent at least one Decision message before failing; so S ′ chooses the

AcceptV al received in this message (lines 18-20).

If none of the received messaged has Decision as True but at least one message

has a non-empty AcceptV al, this implies that the previous leader had received all the

InitV als and constructed the AcceptV al and had sent Accept-Value to at least one site

before failing; hence the new leader S ′ chooses this value as AcceptV al (lines 21-22). If

multiple sites respond with differing AcceptV als, the new leader chooses the AcceptV al

corresponding to the highest AcceptNum. Any other case implies the previous leader

had either failed to construct AcceptV al or to store it on a majority before failing, and

hence, S ′ is free to construct AcceptV al based on the received InitV als (line 24) (this is

also the failure-free behavior). The next steps of fault-tolerantly storing the chosen value

and sending the decision are the same as in failure-free executions.

Fault Tolerance : As stated in the FLP impossibility result [62], no consensus protocol

can guarantee termination even with a single site failure. Following the impossibility

result, Avantan[n+1
2
] can block if a majority of the sites fail or are unreachable, similar

to Paxos.

In spite of the blocking behaviour of Avantan[n+1
2
], the availability of Samya is higher

75

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

than that of a system that executes Paxos for each transaction (e.g., Spanner). This is

because the Avantan[n+1
2
] protocol does not block if a majority of the sites have failed in

the first phase of the protocol. To provide liveness, we use timeouts: if a site that wants to

be a leader sends out Election-GetValue message but does not receive enough ElectionOk-

Value messages within the timeout period, the site terminates the redistribution and

continues to serve any client requests that can be served locally. This is acceptable since

the leader failed to construct any value before aborting the redistribution.

Whereas, if the leader successfully constructed a value (after receives enough ElectionOk-

Value messages) and sent Accept-Value messages to all sites but it failed to make the value

fault-tolerant, i.e., it did not not receive enough Accept-Ok messages, then that site and

the other live sites are blocked until a majority recover.

Theorem 1: No two distinct values are both chosen for a given instance of Avantan[n+1
2
].

The recovery mechanism of Avantan guarantees safety of the value – if a majority of

the sites accepted the value by sending Accept-ok message, then no site will agree on

a different value for that instance of redistribution. This guarantee is ensured because

there exists at least one overlapping site in the two sets of majority used in the first and

second phase of the protocol and any new leader learns of a value that was chosen by the

previous leader through the overlapping site. This guarantee holds as long as majority

of the sites are alive and reachable. 2

Avantan[∗]

Avantan[n+1
2
], similar to Paxos [122] and other other consensus algorithms, is re-

strictive as it requires communication among a majority of sites for redistribution to

succeed. If a majority of the sites are down or if the network partitions such that no par-

tition has a majority, then the sites cannot redistribute tokens and may end up rejecting

76

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

many client requests. However, the token requirements of a site S, as represented in the

TokensWanted field of its state, might be satisfied by fewer than a majority of sites.

The logic of redistributing tokens among a set of sites does not impose any require-

ments on the minimum number of sites. Hence, we propose an alternative consensus

protocol that allows any subset of sites to participate and ensures that all participat-

ing sites agree on the same value. We modify Avantan[n+1
2
] to accommodate these new

requirements.

The failure free execution of Avantan[∗] is the same as the one presented in Algorithm

5 but with 3 major changes:

(i). The leader S that triggers the redistribution sends Election-GetValue messages

to all sites. But instead of waiting for responses from a majority of sites, it waits until

it receives ElectionOk-Value messages (with TokensLeft field set) such that S’s token

requirements can be satisfied; if after a predefined amount of time, if S does not receive

enough responses, it aborts the redistribution and notifies other sites and the client (for

reactive redistributions). All the sites whose InitV als were collected form the setRt – the

set of sites participating in tth redistribution; in all subsequent rounds, S communicates

only with the sites in the Rt, while notifying the other sites to discard this redistribution.

(ii). If a cohort site responds with ElectionOk-Value message to one leader, it rejects

all other Election-GetValue messages from concurrent leaders (even if they have higher

ballot) until the former instance of Avantan[∗] is complete. This ensures that a site

participates in one instance of redistribution after another.

(iii). Rather than wait for any majority of sites to respond with Accept-ok messages

(as shown in line 37), the leader S waits to receive Accept-ok from ALL the sites in Rt

before it sends out the decision.

Different sets of sites can execute parallel redistributions but an individual site par-

ticipates in one redistribution at a time.

77

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.6: Phases of Avantan[∗] protocol.

Failure Recovery: Since Avantan[∗] does not require a majority quorum to proceed,

its failure recovery differs from that of Avantan[n+1
2
]. In Figure 3.6, the leader S or other

participants can fail at any point during the execution of the protocol. Sites such as

site N , that did not even receive the Election-GetValue message are free to participate in

other redistributions. If the leader fails (crash or network partition), sites such as 1 and

2 that participated in the redistribution, must be able to recover.

A cohort site C that participated in the redistribution detects leader failure using

time-outs. Upon timeout, C checks the progress of the protocol execution using the

variables defined in Table 3.3. If site C’s Decision variable is set to True, this implies

the protocol had terminated and so C reallocates the tokens. If the Decision is not true,

C decides its next action based on the value of AcceptV al:

i). If AcceptV al = ⊥: This implies that C did not receive AcceptVal from the leader

S before S failed; thus, C is free to abort this redistribution because the previous leader

could not have proceeded to the Decision phase without the Accept-ok from C.

ii). If AcceptV al ̸= ⊥: This implies that the leader had chosen a value but may not

have decided on it, as the leader may have failed to receive enough Accept-oks before

failing. In this case, C contacts all sites in Rt and waits for the response from the sites

in Rt (note that C knows all the sites in Rt based on list of InitV als in AcceptV al). If

any site responds with Decision as True, this implies the previous leader was successful

78

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

in making the value fault-tolerant but failed before sending Decision to all. Hence, site

C sends the Decision message to all sites in Rt.

Otherwise, if any site responds with AcceptV al = ⊥, C can safely abort the redis-

tribution (and perhaps notify other sites in Rt) as this implies that the previous leader

failed before making the constructed value fault-tolerant, and hence could have decided

on it. If all sites in Rt, except the previous leader S, respond with identical AcceptV al,

this implies that S was successful in storing the value on all sites in Rt but failed before

sending any Decision message. Hence, site C decides on that value, sets Decision to True,

and sends the Decision message. And finally, if C cannot communicate with all the other

blocked sites in Rt, C is blocked.

Fault tolerance: Similar to Avantan[n+1
2
], failures during protocol execution can cause

the set of sites, Rt, participating in that execution of Avantan[∗] to be blocked. But since

Avantan[∗] allows fewer number of sites to participate in a redistribution compared to

Avantan[n+1
2
], the set of sites not participating in the tth instance of Avantan[∗] are free

to serve client requests or execute another instance of redistribution. The experiments in

§3.6 analyze and contrast the fault tolerance of the two versions on Avantan in a practical

setting.

Theorem 2: No two distinct values are both chosen by the set of sites participating in

a given instance of Avantan[∗].

A value is chosen once all the sites participating in an instance of redistribution,

denoted by Rt, respond with Accept-Ok messages. In Avantan[∗], an individual site

participates in only one redistribution at a time and rejects any other concurrent redis-

tribution request. Due to this behaviour, in a failure-free execution, sites in Rt have

a single leader who proposes a single value. Thus, in failure-free executions, all sites

participating in an instance of Avantan[∗] agree on a single value.

79

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

If one or more sites fail while executing Avantan[∗], the recovery mechanism indicates

that the live sites can either successfully terminate the redistribution or are blocked until

more sites recover. Blocking implies the sites will not participate in other redistributions

until the current redistribution instance is terminated, and hence, the sites in Rt will not

choose two distinct values for tth instance. 2

While Avantan seems similar to Paxos, they differ in two major ways: (i) Paxos aims

to reach agreement on a single, client provided value whereas Avantan collects partial

values from each site and aims to reach agreement on the aggregated values, and (ii) the

redistribution correctness condition (Equation 3.1) does not require a majority – a fact

that is exploited in designing Avantan[∗]– which is stringent requirement of Paxos.

3.5.4 Reallocating Tokens

After a site triggers redistribution and a subset of the sites execute either versions of

Avantan protocol successfully, the sites execute a deterministic procedure to reallocate

the tokens. In this section, we discuss how to compute the spare tokens and the procedure

to reallocate the spare tokens.

A successful execution of either versions of Avantan ensures agreement on theAcceptV al,

which is a list of InitV als, i.e.,:

Lt =< e, TUt, TLt, TWt > ∀ i ϵRt (3.6)

The reallocation logic defined in Algorithm 6 takes Lt as input and reallocates the

available tokens among the set of sites in Rt. The redistribution algorithm ensures the

constraint in Equation 3.1 that at no point does the token allocation count across all sites

exceed the maximum limitMe for a given entity e. For ease of exposition, we again focus

of reallocating the tokens for a single entity e and use the variables defined in Table 3.2

80

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

to explain the algorithm.

Algorithm 6 Procedures to re-allocate spare tokens after a successful redistribution

1: Procedure RedistributeTokens(Lt)

2: St ← 0 /* Spare tokens */
3: TotalTW ← 0 /* Total tokens wanted*/
4: for i in Rt

5: TotalTW ← TotalTW + Lt[i].TWt

6: St ← St + Lt[i].TLt

7: if TotalTW > St
8: Lt,St ← RejectSomeRequests(Lt,St)
9: AllocateTokens(Lt,St)

10: Procedure RejectSomeRequests(Lt,St)

11: sortedLt ← Lt sorted in ascending order of TWt

12: for i in sortedLt

13: sortedLt[i].TWt ← 0

14: St ← St + sortedLt[i].TLt

15: if TotalTW ≤ St
16: break
17: return sortedLt,St

18: Procedure AllocateTokens(Lt,St)

19: fori in Rt

20: Lt[i].T okensGranted← Lt[i].TWt

21: St ← St − Lt[i].TWt

22: for i in Rt

23: Lt[i].T okensGranted← Lt[i].T okensGranted+ St

len(Rt)

Redistributing tokens: As defined in line 1 of Algorithm 6, the RedistributeTokens

procedure takes Lt as input. The spare tokens and the total tokens wanted (sum of tokens

specified in the TokensWanted field of each site) across all sites in Rt are computed as

shown in lines 4-6. If the spare tokens are more than the total tokens wanted, all pending

client requests can be satisfied, and AllocateTokens procedure is called.

Rejecting requests: If the tokens wanted is more than the spare, some requests

81

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

must be rejected. The logic for handling this case is defined in the procedure at line

10 of Algorithm 6. We take a greedy approach to maximise overall token usage rather

than maximise the number of requests satisfied. This is achieved by first sorting the list

Lt in ascending order of tokens wanted (line 11); we choose ascending order since the

algorithm can reject requests with least tokens wanted first. From this ascending ordered

list, requests with smaller number of tokens wanted are rejected (by setting tokens wanted

to 0 in line 13 and increasing the spare quantity in line 14) until the number of spare

tokens exceed total tokens wanted (lines 15-16).

Allocating spare tokens: Finally, AllocateTokens (line 18) is called with updated

list Lt and spare tokens St. At this point, the redistribution satisfies all sites with non-

zero tokens wanted (as the requests that cannot be satisfied are already rejected). A

tokens request is granted as shown in line 20 and for each granted request, the spare

quantity is updated (line 21) After satisfying all the tokens wanted requests, if any more

tokens are left, they are equally distributed among all the participating sites (line 23).

3.6 Experimental Evaluation

In this section we discuss the experimental evaluation of Samya, specifically the per-

formance of two versions of Samya where one version uses Avantan[n+1
2
] and the other

uses Avantan[∗] to handle any redistributions during the experiments. Samya’s perfor-

mance is compared with two baselines implemented by us in Go and one open-sourced

database:

i). MultiPaxSys : A Spanner-like geo-distributed database that executes multi-Paxos [37]

for each transaction.

ii). Demarcation/Escrow : A value-partitioned system that captures the underlying

mechanisms proposed in [16, 118, 3, 117]. Specifically, Demarcation/Escrow extends the

82

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Demarcation protocol proposed by Barbara et al. [16] to more than 2 sites, similar to [3]

by Alonso et al., and integrates the notion of site escrows used in [118] by Kumar et

al. All sites start with an equal ‘escrow’ of an entity e (maximum limit, Me, divided

equally among all sites), and the sites serve requests locally until they exhaust the spare

escrow locally. When a request cannot be served locally at site i, i borrows escrows from

one or more sites. If site i fails to borrow escrow from other sites (if they are also out of

escrows), then site i rejects the client request. A stringent requirement of this baseline,

inherited from [16] and [118], is it requires the network to be reliable; a message drop

may lead to blocking.

(iii). CockroachDB : A state-of-the-art open sourced geo-distributed database that

uses Raft[172] to replicate any changes to the data.

In evaluating Samya, the experiments focus on two performance aspects: commit la-

tency – time taken to commit a transaction measured by the client as the time from when

it sent a transaction to when it received a response to that transaction; and throughput –

the number of transactions successfully committed per second, i.e, only the acquireTokens

and releaseTokens requests that succeed are counted in throughput.

3.6.1 Resource Demand Data and Its Prediction

Samya is evaluated on a VM workload dataset published by Microsoft Azure [15].

The dataset, consisting of roughly 2 million data points, contains a representative trace

of Azure’s VM workload in a single geographical region collected over a month in 2017.

Along with other information, it includes VM creation and deletion requests reported

at discrete 5-minute intervals. A detailed description and an analysis of the dataset is

published by Cortez et al. [46] where several interesting patterns of the dataset are

demonstrated. A noteworthy observation among them is that the VM requests have

83

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

0 100 200 300 400 500 600 700

−2,000

−1,000

0

1,000

2,000

Hours of a month
N
o.

of
to
ke
n
s
(v
m

d
em

an
d
)

Figure 3.7: Resource demand data recorded for one month at a single region.

nearly periodic properties over time. The authors conclude that for such requests, “his-

tory is an accurate predictor of future behavior”. We leverage the periodic property of

the requests in the dataset to build a prediction module for Samya.

Resource Demand Prediction

The original Azure data was pre-processed such that the number of VM creations

and deletions represent a demand for VMs, as depicted in Figure 3.7. The figure shows

the periodically increasing and decreasing demand patterns in the data, indicating that

a learning model can learn these patterns to predict future demands. Although the cloud

computing literature consists of many sophisticated learning methods for resource predic-

tion, we picked 3 simple options for resource prediction: the random walk model as the

baseline model, ARIMA (autoregressive integrated moving average) as a linear regression

model, and LSTM, a type of recurrent neural network, as a non-linear regression model.

To evaluate which out of the three models best predict the VM demands in Azure

dataset, the original one month data was split into 80% of training data and 20% of

testing data. The result of our evaluation is shown in Table 3.4. LSTM predicted the

resource demands with highest accuracy, and hence, was chosen as the prediction module

for Samya.

84

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Random Walk ARIMA LSTM
MAE

(no. of tokens)
1212.19 609.13 259.21

Table 3.4: Mean Absolute Error (MAE) - in units of number of tokens - of resource
demand prediction for three different prediction models.

Data processing

Since Samya is proposed as a solution for the hot-spot problem of aggregate data, the

dataset used to evaluate Samya needs to have a high request-arrival-rate. To achieve this,

we modified the original data’s sampling interval of 5 minutes to 5 seconds. As a result,

the same number of requests that arrived in a span of 5 minutes in the original dataset

now arrived in a span of 5 seconds, generating a workload with high request-arrival-rate.

Due to the shrinking of the sampling interval, the original duration of 30 days of the

entire dataset was reduced to 12 hours.

From this 12 hours of data, we trained the LSTM prediction model with 11 hours of

data, and used the last one hour (corresponding to 60 hours in the original dataset) to

generate client transactions. This train and test ratio differs from the 80:20 ratio used

specifically to evaluate various prediction models and to choose one among them; for

real-deployment, the train and test ratio was changed to approximately 90:10.

Samya is a geo-distributed system with sites across different time zones while the

Azure dataset corresponds to only a single geographical region in a single time zone. To

generate the client requests at different regions, the original dataset is phase shifted based

on the time difference between the regions. For example, if the demand in the original

dataset peaks at 10 AM Tuesday and drops at 1 AM Wednesday, in our experiments,

clients in North America generate peak demand load at 10 AM Tuesday at the same

time as clients in Asia generate the reduced demand of 1 AM Wednesday – phase-shifted

demands corresponding to the time difference between North America and Asia. The

85

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

phase shifting retains the periodicity in each region while avoiding peak demand in all

regions at the same time. The clients in different regions generate respective phase-

shifted transactional workloads where the VM creation and deletion requests from the

dataset are transformed to acquireTokens(VM, 1) and releaseTokens(VM, 1) requests

respectively.

3.6.2 Experimental Setup

The three systems, Samya, Demarcation/Escrow, and MultiPaxSys were deployed on

Google Cloud Platform where each server was a general purpose n1-standard VM with

8 vCPUs and 30 GiB RAM. For most experiments, the VMs were placed in 5 different

regions: US-West1 (US), Asia-East2 (AS), Europe-West2 (EU), Australia-Southeast1

(AU), and SouthAmerica-East1 (SA). 3 to 5 is the typical default number of replicas

used in current state-of-the-art databases [53, 54]. The inter-region latency is presented

in Table 3.5.

AS EU AU SA
US 131 132 161 180
AS - 262 125 302
EU - - 265 218
AU - - - 305

Table 3.5: Inter-region latencies in ms.

To simplify the evaluation, in the experiments, we merged the application managers

and clients into a single machine. Thus, each region consisted of one VM as the client

generating token acquire or release requests and another VM as the server serving client

requests. In the experiments, all five clients generated phase-shifted transactions simul-

taneously and a client’s requests were served by the site closest to it.

86

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Samya w/
Av.[n+1

2
]

Samya w/
Av.[∗]

Demarcation/
Escrow

MultiPaxSys CockroachDB

90th percentile 1.40 ms 2.9 ms 3.5 ms 126.8 ms 158.7 ms
95th percentile 10.2 ms 37.3 ms 59.6 ms 172.7 ms 184.2 ms
99th percentile 65.1 ms 97.3 ms 213.9 ms 276.3 ms 351.4 ms

Table 3.6: Various latency percentiles in ms.

For MultiPaxSys and CockroachDB, since the recommendation is to place a majority

of the sites in close-by regions to achieve faster replication time, we placed 3 out of 5

sites in different regions within the US, and 2 others in Asia and Europe.

All the experiments focused on entity VM and the maximum global limit, Me, was

set to 5000, indicating that each site in Samya and Demarcation/Escrow starts with 1000

tokens. Note from Figure 3.7 that a single region’s demand can go beyond 1000, ensur-

ing that sites in Samya would require redistribution. Another implementation specific

optimization was when to perform predictions: since prediction can be computationally

expensive, in our experiments, a site predicts future demand only when its TokensLeft

value is 20% of the tokens granted value in the previous redistribution round. If the

prediction indicates an increase in demand, the site triggers a proactive redistribution.

3.6.3 Latency and throughput

The first set of experiments evaluate the commit latency and throughput of the two

versions of Samya, and the three baselines: Demarcation/Escrow, MultiPaxSys and Cock-

roachDB by generating load for one hour (corresponding to 60 hours in the original

dataset), creating roughly 820000 transactions. The goal of this experiment is to study

the behavior of the systems over extended periods of time when the workload is highly

contentious (each request either acquires or releases tokens for the same entity, VMs).

87

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.8: Latency of each transaction sent for an hour.

Latency: Figure 3.8 plots a sample of commit latencies of individual transactions

sent by clients for the duration of an hour. Since each transaction in MultiPaxSys

and CockroachDB executes a replication round before responding to the client, and the

workload is contentious, both the systems incur significantly higher latencies compared

to Samya. For Samya (both versions), most client requests are served locally at the

closest site; the spikes in latencies of specific transactions indicate an ongoing redistri-

bution during that transaction’s processing. For Demarcation/Escrow, although most

requests are served locally, due to the lack of prediction and an efficient escrow redis-

tribution strategy, the peaks in resource demand causes latency peaks; hence latency of

Demarcation/Escrow is higher than Samya.

Latency incurred at different percentiles for all five systems are tabulated in Table 3.6.

The interesting behaviour here is the contrast in latency numbers for Avantan[∗] and

Avantan[n+1
2
]. We suspected Avantan[∗] to outperform Avantan[n+1

2
], since the latter

needs to wait for responses from a majority to execute a redistribution, unlike Avantan[∗],

which can proceed with any number of responses. But the latencies in Table 3.6 indicate

the opposite – Avantan[n+1
2
] has lower latencies than Avantan[∗] across all percentiles.

This counter-intuitive result is explained by the difference in how the two versions

construct the value during the first phase of the redistribution protocol. Avantan[n+1
2
]

88

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

requires at least a majority of sites to respond with their local token values, which

the leader concatenates into a single value (i.e., AcceptV al). This redistribution re-

balances the tokens between a majority of sites. Whereas, Avantan[∗] collects just enough

responses (consisting of local token values) to satisfy its token needs, and immediately

proceeds to the fault-tolerance phase. While this greedy approach may be beneficial for

specific transactions, Avantan[∗] ends up re-balancing the tokens between a small number

of sites, causing more sites to trigger subsequent redistributions. Hence, in the long run,

Avantan[n+1
2
] is better at re-balancing the tokens and causing fewer redistributions. In

the experiments, for the same client workload, Avantan[n+1
2
] required 208 redistributions

(proactive and reactive combined) whereas Avantan[∗] required 792 redistributions.

Figure 3.9: Throughput of the systems recorded for an hour.

Throughput: Figure 3.9 shows the 5-minute moving average throughput of all five

systems when five clients generate concurrent requests each second and send the requests

to the sites. Since MultiPaxSys and CockroachDB serve these requests sequentially (as

they all update the same data entry), their throughput is roughly 16-18x worse than

Samya and 11x worse that Demarcation/Escrow. This result highlights the benefits of

dis-aggregating an aggregate value to allow executing concurrent transactions.

Between Demarcation/Escrow and Samya, the demand prediction and a more efficient

redistribution strategy of Samya causes its throughput to be almost 1.3x better than

89

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.10: Throughput recorded when sites fail.

Demarcation/Escrow. The performance difference between Avantan[n+1
2
] and Avantan[∗]

is due to the increased number of redistribution in the latter, which slows the rate with

which client requests are served.

Since this experiment establishes that the performance of MultiPaxSys and Cock-

roachDB are comparable, we use MultiPaxSys for performance comparisons in the fol-

lowing experiments.

3.6.4 Failure Experiments

Crash Failures

This set of experiments evaluate the Samya and MultiPaxSys when crash failures

occur (Demarcation/Escrow is not evaluated in failure experiments for it requires reliable

networks and hence is not fault-tolerant). The experiment starts with five regions and

roughly every 10 minutes, we crash both the site and the client in a region, until only one

region remains alive, while recording the throughput throughout the experiment. The

results are highlighted in Figure 3.10. As indicated in the figure, once three sites crash,

the throughput of MultiPaxSys drops to 0, since no transaction can be committed once

a majority of the sites fail.

90

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

For the two versions of Samya, the performance is roughly the same up to 2 site

failures (note that the performance is similar for both and not worse for Avantan[∗]

because in the first few minutes, the number of redistributions are low due to low resource

demand in the Azure dataset; when the number of redistributions are low, the two

versions perform comparably). When 3 sites fail, Avantan[n+1
2
] attempts redistribution,

times-out, and fails to perform any redistribution due to the failed majority. However,

sites continue to serve requests that can be served locally. Meanwhile, Avantan[∗] can

successfully redistribute tokens even if only a minority of the sites are alive, thus causing

its performance to be higher than Avantan[n+1
2
] when failures occur.

Network Partitions

Figure 3.11: Throughput recorded during network partition.

This experiment measures the performance of Samya and MultiPaxSys during a net-

work partition. The experiment is performed in the presence of a 3-2 network partition,

i.e., one partition consists of 3 sites and the other consists of 2 sites, and clients send

transactions for thirty minutes. The results are indicated in Figure 3.11. In MultiPaxSys,

only the partition with 3 replicas continues to serve client requests and are up-to-data

while the other two replicas are rendered stale. Its performance is significantly low com-

pared to Samya.

91

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

For Samya, although both Avantan[n+1
2
] and Avantan[∗] start off with comparable

performance, once the sites exhaust local tokens and trigger redistributions, Avantan[∗]

outperforms Avantan[n+1
2
], since Avantan[n+1

2
] cannot redistribute tokens in the smaller

network partition whereas Avantan[∗] can.

The two failure experiments highlight that between the two versions of redistribution

strategies for Samya, Avantan[∗] performs better in a failure prone environment, com-

pared to Avantan[n+1
2
]; but in a failure-free scenario, Avantan[n+1

2
] performs better as

indicated in Section 3.6.3.

One advantage of MultiPaxSys over Samya in both failure scenarios is that Multi-

PaxSys can allot more tokens as long as a majority of the replicas are alive, because the

synchronous replication makes sure that the entire quota limit can be used. Whereas

some tokens claimed tokens in Samya are lost temporarily until recovery.

3.6.5 No Constraint vs. No Redistribution

Figure 3.12: Throughput of Samya with no constraints and no redistributions vs.
Samya with redistributions.

The remaining experiments focus on contrasting the two version of Avantan in Samya.

In this experiment, we explore whether redistribution is worth it and the cost of redis-

tribution on throughput. This experiment compares Samya’s performance with its two

baseline versions: i). No Constraints : there is no upper-bound on the number of resource

92

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

tokens allotted, hence every requests (acquire or release) succeeds locally at a site; ii).

No Redistribution: there is a maximum limit constraint but once a site exhausts its local

quota, it simply rejects the client request, rather than triggering a redistribution (neither

proactive nor reactive). The results are shown in Figure 3.12.

Comparing the baselines: i). Samya with no constraints is the best case scenario

with optimal performance, and as seen in Figure 3.12, Samya with constraints and re-

distributions has only 3.5-4% less throughput than the optimal throughput. ii). Samya

with both versions of Avantan has about 14% higher throughput than Samya with no

redistributions, i.e., 14% of the transactions would be rejected if Samya did not perform

redistributions. This indicates that although executing global redistribution is expensive,

the system performs better with the redistributions.

3.6.6 Proactive vs. Reactive Redistributions

Figure 3.13: Samya’s performance with and without predictions.

This experiment aims to measure the significance of predictions in Samya. Perfor-

mance of four variants of Samya are measured: Avantan[n+1
2
] with and without prediction,

and Avantan[∗] with and without prediction. The clients execute transactions for thirty

minutes for each variant. As indicated in Figure 3.13, Samya performs about 1.4x better

with predictions (for both versions). Predictions proactively prepare a site for the incom-

93

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

ing demand and allows a site to indicate its token requirements with higher precision.

This experiment highlights the advantages of using predictions in building distributed

systems such as Samya.

3.6.7 Increasing number of sites

Figure 3.14: Average throughput (line graphs) and latency (bar graphs) measured for
increasing number of sites.

This set of experiments evaluate the scalability of Samya by increasing the number

of sites from 5 to 20, with additional sites spawned in each of the 5 regions in which

previous experiments were conducted. In this experiment, for each configuration, the

clients generate transactions for 10 minutes. Figure 3.14 depicts the average latency and

average throughput for each configuration. As indicated in the figure, Samya shows a

roughly linear increase in throughput as the number of sites increase, while keeping the

average latency below 2ms for both versions of Avantan. This experiment highlights that

Samya is highly scalable as more clients can concurrently acquire or release tokens when

the number of sites increase.

94

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.15: Average throughput measured with increasing ratio of read-only transactions.

3.6.8 Read-Write workload

This experiment compares the average throughput of the two versions of Avantan

with that of MultiPaxSys, when the ratio of read-only transactions increases, as shown in

Figure 3.15. For Avantan, when a client issues a read request to a site S, S communicates

with all the other sites to learn their current token availability, aggregates the received

values and responds to the client with a global snapshot of the total available tokens. For

MultiPaxSys, the current available tokens is read at a single leader site. This experiment

highlights the threshold at which MultiPaxSys has performance advantages over Avantan:

when the read ratio increases roughly past 65%, the throughput of MultiPaxSys increases

more than Avantan. Since reads are performed at a single site in MultiPaxSys and most

writes are performed a single site in Samya, one would expect the crossover point to

be at 50%, which is not the case. The reason is: in our experimental setup, five geo-

distributed clients generate requests in parallel and for MultiPaxSys, all client requests

are sent to one single leader site, which sequentially processes the requests, thus incurring

high latency. Whereas for Avantan, due to the decentralised design choice, write requests

are typically served locally by sites closest to the clients, in parallel. Hence, as long as

an application’s write load is 35% or more, it can benefit by choosing Samya.

95

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

3.6.9 Varying the maximum limit Me

Figure 3.16: Average throughput measured with increasing maximum resource limitMe.

This experiment compares the average throughput of the two versions of Avantan

when the maximum limitMe of VM resource increases from 600 to 16000, as shown in

Figure 3.16. This experiment consists of 5 sites in 5 different regions and each experi-

mental run was executed for half an hour. From the VM demand data shown in Figure

3.7, 624 is the mean positive demand and 3118 is max positive demand at a single region.

Hence, in this experiment we set the maximum limit from 600 to 16000. When Me is

set to 600, each site starts with 120 tokens each, causing roughly 1960 redistributions

(predictive and reactive combined); similarly, withMe set to 16000, each site starts with

3200 tokens causing no redistribution. The experiment shows that Avantan’s throughput

increases roughly 5x when the maximum limit is increased from mean to max demand

for the specific Azure VM demand data, thus bringing out the sensitivity of Avantan’s

performance with regard to the maximum resource limit.

3.6.10 Request arrival rate

This experiment measures the sensitivity of Avantan to the request arrival rate. As

mentioned in Section 3.6.1, to generate a high request arrival rate, the original data’s sam-

pling interval was modified from 5 minutes (300 seconds) to 5 seconds. This experiment

96

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Figure 3.17: Average throughput measured with increasing delay between requests.

starts with 5 second interval and goes up to the original scale of 300 seconds. For each

configuration, we measure the average throughput of a 5-minute moving average through-

put. As seen in Figure 3.17, the throughput of Avantan reduces by 33% when the request

arrival rate reduces by 60x (5 seconds to 300 seconds). For MultiPaxSys, we notice as

increase in throughput for reduced request arrival rate as the number of contentious re-

quests sent per second reduces, causing MultiPaxSys to commit more transactions (i.e.,

the rate of aborted transactions decreases). The main conclusion of this experiment is

that even at the original request arrival rate, Avantan commits 43% more transactions

than MultiPaxSys.

3.6.11 Limitations and Future Work

Effect of Maximum Limit Me: Samya’s performance is inversely correlated to the

number of redistributions executed by the sites (as indicated in Section 3.6.3). The

higher the maximum limit,Me, for a resource e, the fewer the number of redistributions

sites need to execute. Hence, if most resources of an application have small maximum

limit value, Samya’s performance benefits may reduce, as indicated in the experiment

presented in Section 3.6.9.

97

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

Read-Heavy Workloads: In its current design, Samya is optimized for update heavy

workloads. Samya can be easily extended to incorporate partial read transactions, i.e.,

transactions that read partial resource availability information stored at a single site.

To obtain global resource availability information, sites in Samya execute a round of

communication, unlike reading at the leader in Spanner-like systems. Therefore, Samya

is a better choice if the client workload consists of at least 35% writes, as indicated in

Section 3.6.8.

Global Predictions: In its current design, a site in Samya predicts future demand

locally and triggers a redistribution. In addition to relying on each site’s local knowledge

to determine when to trigger redistribution, a global optimizer can be designed that

predicts workload spike/trough at each site and triggers redistribution based on the

global knowledge. This is an interesting future direction.

3.7 Conclusion

In this chapter, we propose Samya – a geo-distributed data management system to

store aggregate data, presented as a system that specifically maintains cloud resource us-

age data. Samya dis-aggregates the aggregate resource usage data and stores fractions of

available tokens of resources on multiple geo-distributed sites. The dis-aggregation allows

concurrent updates to the hotspot data, in contrast to sequentially ordering all concurrent

and contentious updates at a leader site as in traditional geo-distributed databases such

as Google’s Spanner. A site in Samya serves client requests independently until, based

on a learning mechanism, it predicts an increase in its local resource demand that can-

not be satisfied locally. This triggers a synchronization protocol Avantan to redistribute

the available tokens, after which, sites continue to serve client requests independently.

We discuss two version of Avantan where one version performs better in an infrequent

98

Samya: Geo-Distributed Data System for High Contention Data Aggregates Chapter 3

failure setting, and the other performs better when crash failures or network partitions

are frequent. The experimental evaluation of Samya’s performance highlights the benefit

of dis-aggregation as Samya commits 16x to 18x more transactions than a Spanner-like

database.

99

Chapter 4

Fides: Managing Data on Untrusted

Infrastructure

4.1 Overview

Significant amounts of data are currently being stored and managed on third-party

servers. It is impractical for many small scale enterprises to own their private datacenters,

hence renting third-party servers is a viable solution for such businesses. But the increas-

ing number of malicious attacks, both internal and external, as well as buggy software on

third-party servers is causing clients to lose their trust in these external infrastructures.

While small enterprises cannot avoid using external infrastructures, they need the right

set of protocols to manage their data on untrusted infrastructures. In this chapter, we

propose TFCommit , a novel atomic commitment protocol that executes transactions on

data stored across multiple untrusted servers. To our knowledge, TFCommit is the first

atomic commitment protocol to execute transactions in an untrusted environment with-

out using expensive Byzantine replication. Using TFCommit, we propose an auditable

data management system, Fides , residing completely on untrustworthy infrastructure.

100

Fides: Managing Data on Untrusted Infrastructure Chapter 4

As an auditable system, Fides guarantees the detection of potentially malicious failures

occurring on untrusted servers using tamper-resistant logs with the support of crypto-

graphic techniques. The experimental evaluation demonstrates the scalability and the

relatively low overhead of our approach that allows executing transactions on untrusted

infrastructure.

4.2 Introduction

A fundamental problem in distributed data management is to ensure the atomic

and correct execution of transactions. Any transaction that updates data stored across

multiple servers needs to be executed atomically, i.e., either all the operations of the

transaction are executed or none of them are executed. This problem has been solved

using commitment protocols, such as Two Phase Commit (2PC) [87]. Traditionally, the

infrastructure, and hence the servers storing the data, were considered trustworthy. A

standard assumption was that if a server failed, it would simply crash; and unless a server

failed, it executed the designated protocol correctly.

The recent advent of cloud computing and the rise of blockchain systems are dramat-

ically changing the trust assumptions about the underlying infrastructure. In a cloud

environment, clients store their data on third-party servers, located on one or more data

centers, and they execute transactions on the data. The servers hosted in the data centers

are vulnerable to external attacks or software bugs that can potentially expose a client’s

critical data to a malign agent (e.g., credit details exposed in Equifax data breach [59],

breaches to Amazon S3 buckets [7]). Further, a server may intentionally decide not to fol-

low the protocol execution, either to improve its performance or for any other self-interest

(e.g., the next big cyber threat is speculated to be intentional data manipulation[49]).

The increasing popularity of blockchain is also exposing the challenges of storing data

101

Fides: Managing Data on Untrusted Infrastructure Chapter 4

on non-trustworthy infrastructures. Applications such as supply chain management [115]

execute transactions on data repositories maintained by multiple administrative domains

that mutually distrust each other. Open permissionless blockchains such as Bitcoin [162]

use computationally expensive mining, whereas closed permissioned blockchains such as

Hyperledger Fabric [11] use byzantine consensus protocols to tolerate maliciously failing

servers. Blockchains resort to expensive protocols that tolerate malicious failures because

for many applications, both the underlying infrastructure and the participating entities

are untrusted.

The challenge of malicious untrustworthy infrastructure has been extensively stud-

ied by the cryptographic and security communities (e.g., Pinocchio [174] that verifies

outsourced computing) as well as in the distributed systems community, originally in-

troduced by Lamport in the famous Byzantine Agreement Protocol [126]. One main

motivation for the protocol was to ensure continuous service availability in Replicated

State Machines even in the presence of malicious failures.

In most existing databases, the prevalent approach to tolerate malicious failures is by

replicating either the whole database or the transaction manager [68, 71, 208, 230, 19].

Practical Byzantine Fault Tolerance (PBFT) [35] by Castro and Liskov has become the

predominant replication protocol used in designing data management systems residing on

untrusted or byzantine infrastructure. These systems provide fault-tolerance in that the

system makes progress in spite of byzantine failures; the replication masks these failures

and ensures that non-faulty processes always observe correct and reliable information.

Fault tolerance is guaranteed only if at most one third of the replicas are faulty [29].

In a relatively open and heterogeneous environment knowing the number of faulty

servers – let alone placing a bound on them – is unrealistic. In such settings, an alternate

approach to tolerate malicious failures is fault-detection which can be achieved using

auditability. Fault detection imposes no bound on the number of faulty servers – any

102

Fides: Managing Data on Untrusted Infrastructure Chapter 4

server can fail maliciously but the failures are always detected as they are not masked

from the correct servers; detection requires only one server to be correct at any given

time. To guarantee fault detection through audits, tamper-proof logs have been proposed

and widely used in systems such as PeerReview [96] and CATS [219].

Motivated by the need to develop a fault-detection based data management system,

we make two major propositions in this chapter. First, we develop a data management

system, Fides1, consisting of untrusted servers that may suffer arbitrary failures in all the

layers of a typical database, i.e., the transaction execution layer, the distributed atomic

commitment layer, and the datastore layer. Second, we propose a novel atomic commit

protocol –TrustFree Commitment (TFCommit) – an integral component of Fides

that commits distributed transactions across untrusted servers while providing auditable

guarantees. To our knowledge, TFCommit is the first to solve the distributed atomic

commitment problem in an untrusted infrastructure without using expensive byzantine

replication protocols. Although we present Fides with TFCommit as an integral com-

ponent, TFCommit can be disintegrated from Fides and used in any other design of a

trust-free data management.

With detection being the focus rather than tolerance of malicious failures, Fides

precisely identifies the point in the execution history at which a fault occurred, as well

as the servers that acted malicious. These guarantees provide two fold benefits: i) A

malicious fault by a database server is eventually detected and undeniably linked to

the malicious server, and ii) A benign server can always defend itself against falsified

accusations. By providing auditabiity, Fides incentivises a server not to act maliciously.

Furthermore, by designing a stand-alone commit protocol, TFCommit, that leverages

cryptography, we take the first step towards developing a full-fledged data management

system that fully resides in untrusted infrastructures. We believe it is critical to start

1Fides is the Roman Goddess of trust and good faith.

103

Fides: Managing Data on Untrusted Infrastructure Chapter 4

with a strong and solid atomic commitment building block that can be expanded to

include fault tolerance and other components of a transaction management hierarchy.

§4.3 provides the necessary background used in developing a trust-free data man-

agement system. §4.4 discusses the architecture, system, and failure models of Fides.

§4.5 describes the auditable transaction model in Fides and also introduces TFCommit.

§4.6 provides a few failure examples and their detection. Experimental evaluation of

TFCommit is presented in §4.7, followed by related work in §4.8. §4.9 concludes the

chapter.

4.3 Cryptographic Preliminaries

Developing a data management system built on untrusted infrastructure relies heavily

on many cryptographic tools. In this section, we provide the necessary cryptographic

techniques used throughout this chapter.

4.3.1 Digital Signatures

A digital signature, similar to an actual signature, authenticates messages. A public-

key signature [183] consists of a public key, pk, which is known to all participants, and

a secret key, sk, known only to the message author. The author, A, signs message m

using her secret key sk. Given the message m and the signature, any receiver can verify

whether the author A sent the message m by decrypting the signature using A’s public

key pk. Public-key signature schemes are used to prevent forgery as it is computationally

infeasible for author B to sign a message with author A’s signature.

104

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.1: Collective Signing.

4.3.2 Collective Signing

Multisignature (multisig) is a form of digital signature that allows more than one

user to sign a single record. Multisigs, such as Schnorr Multisignature [185], provide

additional authenticity and security compared with single user’s signature. Collective

Signing (CoSi) [196], an optimization of Schnorr Multisigs, allows a leader to produce a

record which then can be publicly validated and signed by a group of witnesses. CoSi

requires two rounds of communication to produce a collective signature (co-sign) with

the size and verification cost of a single signature. Figure 4.1 represents the phases of

CoSi where L is the leader and 1, 2, .., N are the witnesses. The phases of CoSi are:

Announcement: The leader announces the beginning of a new round to all the

witnesses and sends the record R to be collectively signed.

Commitment: Each witness, in response, picks a random secret, which is used to

compute the Schnorr commitment, xsch. The witness then sends the commitment to the

leader.

Challenge: The leader aggregates all the commits, X =
∑

xsch and computes a

Schnorr challenge, ch = hash(X|R). The leader then broadcasts the challenge to all the

witnesses.

Response: Each witness validates the record before computing a Schnorr-response,

rsch, using the challenge and its secret key. The leader collects and aggregates all the

responses to finally produce a Schnorr multisignature.

105

Fides: Managing Data on Untrusted Infrastructure Chapter 4

The collective signature provides a proof that the record is produced by the leader

and that all the witnesses signed it only after a successful validation. Anyone with the

public keys of all the involved servers can verify the co-sign and the verification cost

is the same as verifying a single signature. An invalid record will not produce enough

responses to prove the authenticity of the record. We refer to the original work [196] for

a detailed discussion of the protocol.

4.3.3 Merkle Hash Tree

Figure 4.2: Merkle Hash Tree example.

A merkle hash tree (MHT) [152] is a binary tree with each leaf node labeled with the

hash of a data item and each internal node labeled with the hash of the concatenated

labels of its children. Figure 4.2 shows an example of a MHT. The hash functions, h,

used in MHTs are one way hash functions i.e., for a given input x, h(x) = y, such that,

given y and h, it is computationally infeasible to obtain x. The hash function h must

also be collision-free, i.e., it is highly unlikely to have two distinct inputs x and z that

satisfies h(x) = h(z). Any such hash function can be used to construct a MHT.

Data Authentication Using MHTs: MHTs are used to authenticate a set of

data values [152] by requiring the prover, say Alice, to publicly share the root of the

MHT, hroot, whose leave form the data set. To authenticate a single data value, all

that a verifier, say Bob, needs from Alice is a Verification Object (VO) consisting of

all the sibling nodes along the path from the data value to the root. The highlighted

106

Fides: Managing Data on Untrusted Infrastructure Chapter 4

nodes in Figure 4.2 form the verification object for data item a, VO(a), which is of

size log2 n. To authenticate data item a, Alice generates the VO(a), and provides the

value of a and VO(a) to Bob. Given the value of a, Bob computes h(a) and uses hb

from VO(a) to compute ha,b = h(h(a)|h(b)) i.e., the hash of h(a) concatenated with h(b).

Finally, using ha,b and hc,d sent in the VO(a), Bob computes the root, ha,b,c,d = (ha,b|hc,d).

Bob then compares the computed root, ha,b,c,d, with the root publicly shared by Alice

hroot. Assuming the use of a collision free hash function (h(a1) ̸= h(a2) where a1 ̸= a2), it

would be computationally infeasible for Alice to tamper with a’s value such that the hroot

published by Alice matches the root computed by Bob using the verification object.

4.4 Fides Architecture

Fides is a data management system built on untrusted infrastructure. This section

lays the premise for Fides by presenting the system model, the failure model, and the

audit mechanism of Fides.

4.4.1 System Model

Fides is a distributed database of multiple servers; the data is partitioned into multiple

shards and distributed on these servers (perhaps provisioned by different providers).

Shards consist of a set of data items, each with a unique identifier. The system assumes

neither the servers nor the clients to be trustworthy and can behave arbitrarily. Servers

and clients are uniquely identifiable using their public keys and are aware of all the other

servers in the system. All message exchanges (client-server or server-server) are digitally

signed by the sender and verified by the receiver.

The clients interact with the data via transactions consisting of read and write oper-

ations. The data can be either single-versioned or multi-versioned with each committed

107

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.3: Components of a database server.

transaction generating a new version. Every data item has an associated read times-

tamp rts and a write timestamp wts, indicating the timestamp of the last transaction

that read and wrote the item, respectively. When a transaction commits, it updates the

timestamps of the accessed data items.

We choose a simplified design for a database server to minimize the potential for

failure. As indicated in Figure 4.3, each database server is composed of four components:

an execution layer to perform transactional reads and writes; a commitment layer to

atomically (i.e., all servers either commit or abort a transaction) terminate transactions;

a datastore where the data shards are stored; and a tamper-proof log.

As individual servers are not trusted, we replace the local transaction logs used in

traditional protocols such as Aries [157] with a globally replicated tamper-proof log (this

approach is inspired by blockchain). The log – a linked-list of transaction blocks linked

using cryptographic hash pointers – guarantees immutability. Global replication of the

log guarantees that even if a subset (but not all) of the servers collude to tamper the log,

the transaction history is persistent.

108

Fides: Managing Data on Untrusted Infrastructure Chapter 4

4.4.2 Failure model

In Fides, a server that fails maliciously can behave arbitrarily i.e., send arbitrary

messages, drop messages, or corrupt the data it stores. Fides assumes that each server

and client is computationally bounded and is incapable of violating any cryptographic

primitives such as forging digital signatures or breaking one-way hash functions – the

operations that typically require brute force techniques.

Let n be the total number of servers and f the maximum number of faulty servers.

Fides tolerates up to n − 1 faulty servers, i.e., n > f . To detect failures, Fides requires

at least one server to be correct and failure-free (free of malicious, crash, or network

partition failures) at a given time. This implies that the correct set of servers are not

static and can vary over time. This failure model is motivated by Dolev and Strong’s [57]

protocol where the unforgeability of digital signatures allows tolerating up to n-1 failures

rather than at most 1
3
n malicious failures without digital signatures.

An individual server, comprising of four components as shown in Figure 4.3, can fail

at one or more of the components. A fault in the execution layer can return incorrect

values; in the commit layer can violate transaction atomicity; in the datastore can corrupt

the stored data values; and in the log can omit or reorder the transaction history. We

discuss these faults in depth in §4.5. These failures can be intentional (to gain application

level benefits) or unintentional (due to software bugs or external attacks); Fides does not

distinguish between the two.

A malicious client can send arbitrary messages or semantically incorrect transactions

to a database server but later blame the server for updating the database inconsistently.

To circumvent this, the servers store all digitally signed, unforgeable messages exchanged

with clients. This message log serves as a proof against a falsified blame or when a client’s

transaction sends the database to a semantically inconsistent state.

109

Fides: Managing Data on Untrusted Infrastructure Chapter 4

4.4.3 Auditing Fides

Auditability has played a key role in building dependable distributed systems [221,

220, 96]. Fides provides auditablility: the application layer or an external auditor can

audit individual servers with an intent to either detect failures or verify correct behavior.

Fides guarantees that any failure, as discussed in §4.4.2, will be detected in an offline

audit. Fides focuses on failure detection rather than prevention; detection includes iden-

tifying (i) the precise point in transaction history where an anomaly occurred, and (ii)

the exact misbehaving server(s) that is irrefutably linked to a failure.

The auditor is considered to be a powerful external entity and during each audit:

(i) The auditor gathers the tamper-proof logs from all the servers before the auditing

process.

(ii) Given that at least one server is correct, from the set of logs collected from all

servers, the auditor identifies the correct and complete log (how is explained in detail in

§4.5.4). The auditor uses this log to audit the servers.

Optimizations such as checkpointing [113] can be used to minimize the log storage

space at each server; these optimizations are orthogonal and hence not discussed further.

If the audit uncovers any malicious activity, a practical solution can be to penalize the

misbehaving server in legal, monetary, or other forms specific to the application. This

discourages a server from acting maliciously.

4.5 Fides

In this section we present Fides: an auditable data management system built on

untrusted infrastructure. The basic idea is to integrate crypotographic techniques such as

digital signatures (public and private key encryption), collective signing, and Merkle Hash

Trees (MHT) with the basic transaction execution in database systems. This integration

110

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.4: Client interactions in Fides

results in verifiable transaction executions in an environment where the database servers

cannot be trusted.

4.5.1 Overview

Figure 4.4 illustrates the overall design of Fides. The clients read and write relevant

data by directly interacting with the appropriate database partition server (this can be

accomplished by linking the client application with a run-time library that provides a

lookup and directory service for the database partitions). The architecture intentionally

avoids the layer of front-end database servers (e.g., Transaction Managers) to coordinate

the execution of transaction reads and writes as these front-end servers may themselves be

vulnerable and exhibit malicious behavior by relaying incorrect reads/writes. Hence, all

data-accesses are managed directly between the client and the relevant database server.

Since data-accesses are handled with minimal synchronization among concurrent ac-

tivities, the burden of ensuring the correct execution of transactions occurs when a trans-

action is terminated. We use a simplified setup where one designated server acts as the

transaction coordinator responsible for terminating all transactions. The coordinator is

also an untrusted database server that has additional responsibilities only during the

termination phase.

111

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.5: Transaction life-cycle in Fides

When a client application decides to terminate its transaction, it sends the termi-

nation request to the designated coordinator; all other database servers act as cohorts

during the termination phase. For ease of exposition, we first present a termination pro-

tocol executed globally involving all database servers, irrespective of the shards accessed

in that transaction. The global execution implies transactions are terminated sequen-

tially. Later we relax this requirement and allow different coordinators for concurrent

transactions.

The following is an overview of the client-server interaction: a typical life-cycle of a

transaction as depicted in Figure 4.5.

1. Begin transaction: A client starts accessing the data by first sending a Begin

Transaction request to all the database servers storing items read or written by the

transaction.

2. Read-write request: The client then sends requests to each server indicating the

data items to be read and written.

3. Read-write response: The transaction execution layer responds to a read request

by fetching the data from the datastore and relaying it to the client. The write requests

are buffered.

4. End Transaction: After completing data access, the client sends End Transaction

to the coordinator which coordinates the commitment to ensure transaction correctness

(i.e., serializability) and transaction atomicity (i.e., all-or-nothing property).

112

Fides: Managing Data on Untrusted Infrastructure Chapter 4

key description

TxnId commit timestamp of txn
R set list of ⟨id : value, rts, wts⟩
W set list of ⟨id : new val, old val, rts, wts⟩∑
roots MHT roots of shards

decision commit or abort
h hash of previous block

co-sign a collective signature of participants

Table 4.1: Details stored in each block

5. Atomic commitment: The coordinator and the cohorts collectively execute the

atomic commit protocol – TFCommit– and decide either to commit or abort the trans-

action. The commitment produces a block (i.e., an entry in the log) containing the

transaction details. If the decision is commit, then the next two steps are performed.

6. Add log: All servers append, to their local copy of the log, the same block in a

consistent order, thus creating a globally replicated log.

7. Update datastore: The datastore is updated based on the buffered writes, if any,

along with updating the timestamps rts and wts of the data items accessed.

8. Response: The coordinator responds to the client informing whether the transaction

was committed or aborted.

The log, stored as a linked-list of blocks, encompasses the transaction details essential

for auditing. It is vital to understand the structure of each block before delving deeper

into the transaction execution details. Every block stores the information shown in

Table 4.1. Although a block can store multiple transactions, for ease of explanation, we

assume that only one transaction is stored per block.

As indicated in Table 4.1, each transaction is identified by its commit timestamp,

assigned by the client that executed this transaction. Any timestamp that supports total

ordering can be used by the client – e.g., a Lamport clock with ⟨client id : client time⟩

– as long as all clients use the same timestamp generating mechanism.

113

Fides: Managing Data on Untrusted Infrastructure Chapter 4

A block contains the transaction read and write sets consisting of three vital pieces

of information: 1) the data-item identifiers that are read/written, 2) the values of items

read and the new values written; the old val in the write set is populated only for blind

writes, and 3) the latest read rts and write wts timestamps of those data items at the

time of access (read or write).

The blocks also contain: the Merkle Hash Tree roots of the shards involved in the

transaction (explained more in §4.5.2); the commit or abort transaction decision; the

hash of the previous block forming a chain of blocks linked by their hashes; and finally,

a collective signature of all the servers (how and why are explained in §4.5.3).

The following subsections elaborate on the functionalities of a database server in a

transaction life cycle. For each functionality, we first explain the correct behavior followed

by the techniques to detect malicious faults.

4.5.2 Transaction Execution

This section describes the correct mechanism for executing transactions (reads and

writes) and discusses techniques to detect deviations from the expected behavior.

Figure 4.6: Transaction execution in Fides

Correct Behavior

Figure 4.6 depicts the client-server interactions during transaction execution. With

regard to transaction execution, a correct database server is responsible for the following

114

Fides: Managing Data on Untrusted Infrastructure Chapter 4

actions: (i) return the values and timestamps of data-items specified in the read requests,

and (ii) buffer the values of data-items updated in the transaction and if the transaction

successfully commits, update the datastore based on the buffered writes. We explain how

a correct server achieves these actions.

Reads and Writes : A client sends a begin transaction message to all the database

servers storing the items read or written by the transaction. The client then sends a

Read request consisting of the data-item ids to the respective servers. For example, if a

transaction reads data item x from server S1 and item y from server S2, the client sends

Read(x) to S1 and Read(y) to S2. The servers respond with the data values along with

the associated read rts and write wts timestamps.

The client then sends the Write message with the data-item ids and their updated

values to the respective servers. For example, if a transaction writes data item x in

server S1 with value 5 and item y in server S2 with value 10, the client sends Write(x,5)

to S1 and Write(y,10) to S2. The servers buffer these updates and respond with an

acknowledgement. To support blind writes, the acknowledgement includes the old values

and associated timestamps of the data-items that are being written but not read before.

After completing the data accesses, the client sends the end transaction request –

sent only to the designated coordinator – consisting of the read and the write set: a list

of data item ids, the corresponding timestamps rts and wts returned by the servers, and

the values read and the new values written. The coordinator then executes TFCommit

among all the servers to terminate (commit or abort) the transaction (explained in detail

in §4.5.3). If all the involved servers decide to commit the transaction, each involved

server constructs a Merkle Hash Tree (MHT) (§4.3.3) of its data shard with all the data

items – with updated values – as the leaves of the tree and with the root node rootmht.

The read and write sets and MHT roots become part of the block in the log once the

transaction is committed.

115

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Updating the datastore : If the transaction commits, the servers involved in the

transaction update the data values in their datastores based on the buffered writes. The

servers also update the read and write timestamps of the data items accessed in the

transaction to the transaction’s commit timestamp.

The data can be single-versioned or multi-versioned. For multi-versioned data, when a

transaction commits, a correct server additionally creates a new version of the data items

accessed in the transaction while maintaining the older versions. Although an application

using Fides can choose between single-versioned or multi-versioned data, multi-versioned

data can provide recoverability. If a failure occurs, the data can be reset to the last

sanitized version and the application can resume execution from there.

Detecting Malicious Behavior

With regard to transaction execution, a server may misbehave by: (i) returning in-

consistent values of data-items specified in the read requests; and (ii) buffering incorrect

values of data-items updated in the transaction or updating the datastore incorrectly.

(i) Incorrect Reads : All faults in Fides are detected by an auditor during an audit.

As mentioned in §4.4.3, during an audit, the auditor collects the log from all servers and

constructs the correct and complete log.

To detect an incorrect read value returned by a malicious server, the auditor must

know the expected value of the data-item. The read and write sets in each log entry

contains the information on the updated value of a written item and the read value of a

read item. Note that in our simplifying assumption (which will be relaxed later), each

block contains only one transaction and the transactions are committed sequentially with

the log reflecting this sequential order. By traversing the log, at each entry, the auditor

knows the most recent values of a given data item. We leverage this to identify incorrectly

returned values.

116

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Lemma 1 : The auditor detects an incorrect value returned for a data item by a malicious

server.

Proof : Consider a transaction Ti that committed at timestamp tsi and stored in the

log at block bi. Assume transaction Ti read an item x and updated it. Let bj be the first

block after bi to access the same data item x – where j > i, indicating that transaction

Tj in bj committed after the transaction Ti in bi. The read value of x in bj must reflect

the value written in bi; if the values differ, an anamoly is detected. 2

(ii) Incorrect Writes: The effect of incorrectly buffering a write or incorrectly

updating the datastore is the same: the datastore ends up in an inconsistent state.

The definition of incorrect datastore depends on the type of data: for single versioned

data, the latest state of data (data values and timestamps) in the datastore is incorrect;

for multi-versioned data, one or more versions of the data are incorrect. We discuss

techniques to detect incorrect datastore for both types of data.

To detect an inconsistent datastore, we use the data authentication technique pro-

posed by Merkle [152] discussed in §4.3.3. To use this technique, the auditor requires the

read and written values in each transaction and the resultant Merkle Hash Tree (MHT)

root – all pieces of information stored within each block.

Multi-versioned data: For multi-versioned data, the audit policy can involve au-

diting a single version chosen arbitrarily or exhaustively auditing all versions starting

from either the first version (block 0) or the latest version. We explain auditing a single

version, which can easily be extended to exhaustively auditing all versions.

Let Ti be a transaction committed at timestamp ts that read and wrote data item x

stored in server Sk. Assume the auditor audits server Sk at version ts. Once the auditor

notifies the server about the audit, the server constructs the Merkle Hash Tree with the

data at version ts as the leaves; Sk then shares the Verification Object VO– consisting

117

Fides: Managing Data on Untrusted Infrastructure Chapter 4

of all the sibling nodes along the path from the data x to the root – with the auditor.

The log entry corresponding to transaction Ti stores the value read for item x and

the new value written. The auditor uses (i) the VO sent by Sk, and (ii) the hash of x’s

value stored in the write set of the log, to compute the expected MHT root for the data

in Sk (discussed in §4.3.3). The auditor then compares the computed root with the one

stored in the log. A mismatch indicates that the data at version ts is incorrect.

Single-versioned data: For single versioned data, the correctness is only with

respect to the latest state of the data. Hence, rather than using an arbitrary block

to obtain the MHT root of server Sk, the auditor uses the latest block in the log that

accessed the data in Sk to obtain the latest MHT root. The other steps are similar to

multi-versioned data: the auditor fetches the VO based on the latest state of Sk and

recomputes the MHT root to compare the root stored in the log.

Lemma 2 : The auditor detects an inconsistent datastore. For multi-versioned data, the

auditor detects the precise version at which the datastore became inconsistent.

Proof : Detection is guaranteed since Merkle Hash Trees (MHT) use collision-free

hash functions (i.e., h(x) ̸= h(y) where x ̸= y), and a malicious server cannot update

a data value such that the MHT root stored in the block matches the root computed

by the auditor using the verification object sent by the server. For multi-versioned

datastores, the auditor identifies the precise version at which data corruption occurred

by systematically authenticating all blocks in the log until a version with mismatching

MHT roots is detected. 2

4.5.3 Transaction Commitment

This section describes how transactions are terminated in Fides and presents a novel

distributed atomic commitment protocol – TrustFree Commit (TFCommit) – that

118

Fides: Managing Data on Untrusted Infrastructure Chapter 4

handles malicious failures. This section also discusses techniques to detect failures if a

server deviates from the expected behavior. With regard to transaction commitment, a

correct database server is responsible for the following actions: (i) Ensure transaction

isolation (i.e., strict serializability); (ii) Ensure atomicity – either all servers commit the

transaction or no servers commit the transaction; and (iii) Ensure verifiable atomicity.

Correct Behavior

Transaction Isolation : Transaction isolation determines how the impact of one

transaction is perceived by the other transactions. In Fides, even though multiple transac-

tions can execute concurrently, Fides provides serializable executions in which concurrent

transactions seem to execute in sequence. To do so, servers in Fides abort a transaction if

it cannot be serialized with already committed transactions in the log. The read rts and

write wts timestamps associated with each data item is used to detect non-serializable

transactions. The latest timestamps can be obtained from either the datastore or the

transaction log. Similar to timestamp based optimistic concurrency control mechanism,

at commit time, a server checks if the data accessed in the terminating transaction has

been updated since they were read. If yes, the server chooses to abort the transaction.

Atomicity and Verifiablity: Consider a traditional atomic commit protocol that

provides atomicity: Two Phase Commit (2PC) [87]. 2PC guarantees atomicity provided

servers are benign and trustworthy. It is a centralized protocol where one server acts as

a coordinator and the others act as cohorts. To terminate a transaction, the coordinator

collects commit or abort votes from all cohorts, and decides to commit the transaction

only if all the cohorts choose to commit, and otherwise decides to abort. The decision

is then asynchronously sent to the client and the cohorts. 2PC is sufficient to ensure

atomicity if servers are trustworthy; but in untrusted environments, 2PC is inadequate

as a cohort or the coordinator may maliciously lie about the decision. We need to develop

119

Fides: Managing Data on Untrusted Infrastructure Chapter 4

an atomic commitment protocol that can overcome such malicious behaviour.

Figure 4.7: Different phases and block generation progress made in each phase of TFCommit

To make 2PC trust-free, we combine 2PC with a multi-signature scheme, Collective

Signing or CoSi (§4.3.2): a two-round protocol where a set of processes collectively sign a

given record using their private keys and random secrets. CoSi guarantees that a record

(or in our case block) produced by a leader (or coordinator) is validated and signed by

all the witnesses (or cohorts) and that if any of the involved processes lied in any of the

phases, the resulting signature will be incorrect. A signature is bound to a single record;

any process with the public keys of all the processes can verify whether the signature is

valid and corresponds to that record.

We propose a novel approach of integrating 2PC with CoSi to achieve the atomicity

properties of 2PC and the verifiable properties of CoSi. The basic idea is that the

coordinator, similar to 2PC, collects commit or abort votes from the cohorts, forms a

decision, and encapsulates the transaction details including the decision in a block. The

coordinator then sends the block to be verified and collectively signed by the cohorts. An

incorrect block (either with inaccurate transaction details or wrong decision) produced

by a malicious coordinator will not be accepted by correct servers, thus resulting in an

invalid signature that can be easily verified by an auditor.

A successful round of TFCommit produces a block to be appended to the log in a

consistent order by all servers. For ease of exposition, this section presents TFCommit

120

Fides: Managing Data on Untrusted Infrastructure Chapter 4

with two main assumptions: (i) the transactions are committed sequentially to avoid

forks in the log; and (ii) all servers participate in transaction termination – even the

servers that did not partake in transaction execution – to have identical block order in

their logs. In §4.5.6 we relax these assumptions and discuss various techniques to scale

TFCommit.

Recall from Table 4.1 all the details stored in each block. Once a block is cosigned

and logged by all servers, it is immutable; hence, all the details must be filled in during

different phases of TFCommit. However, to ensure atomicity and verifiability of TFCom-

mit, we only need the transaction id, its decision, and the co-sign. Other details such as

the Read and Write sets, Merkle Tree roots, and hashes are necessary to detect other

failures including isolation violation and data corruption.

The protocol:

A client, A, upon finishing transaction execution, sends a signed µ =
〈
end transaction(Tid,

tsi, R set-Wset)
〉
σA request to the coordinator, where Tid is a unique transaction id and

tsi is a client-assigned commit timestamp of the transaction. The request also includes

R set-Wset: the read and write sets consisting of data item ids, values read and new

values written, rts, and wts. The servers ignore any end transaction request with a

timestamp lower than the latest committed timestamp.

TFCommit is a 3-round protocol involving 5 phases of communication as shown in

Figure 4.7. Since TFCommit merges 2PC with CoSi, we indicate each phase by a mapping

of <2PC phase, CoSi phase>. Figure 4.7 shows the phases as well as the progress made

in constructing the block at each phase. The phases of TFCommit are:

1) <GetVote, SchAnnouncement>: Upon receiving the µ =
〈
end transaction(Ti,

tsi, R set-Wset)
〉
σA request from the client, to commit transaction Ti, the coordinator

C prepares a partially filled block, bi = [tsi, Rset - Wset, hi−1], containing the commit

121

Fides: Managing Data on Untrusted Infrastructure Chapter 4

timestamp, read and write sets, and hash of the previous block. C then encapsulates the

signed client request µ and sends the
〈
get vote(bi, µ)

〉
σC

message to all the cohorts.

2) <Vote, SchCommitment>: Every cohort H verifies both the get vote message

and the encapsulated client request, and computes the Schnorr-commitment (xsch) for

CoSi. Then, only the cohorts that are part of the transaction, perform the following

actions. A cohort involved in the transaction locally decides whether to commit or abort

the transaction. If the cohort locally decides to commit, then it constructs a Merkle Hash

Tree (MHT) (§4.3.3) of its shard with all the data items as leaves of the MHT and with the

root node rootmht. The MHT reflects all the updates in Ti assuming that Ti be committed;

since MHT computation is done in memory, the datastore is unaffected if Ti eventually

aborts. (The MHT root is required for datastore authentication, as explained in §4.5.2.)

The involved cohorts then send
〈
vote(decision, rootmht, xsch)

〉
σH whereas the cohorts not

part of the transaction send
〈
vote(xsch)

〉
σH to the coordinator. As the coordinator is also

involved in co-signing, it produces the appropriate vote message.

3) <null, SchChallenge>: In this phase, the coordinator C collects all the cohort

responses and checks if any cohort (or itself) involved in the transaction decided to abort.

If none, it chooses commit, otherwise abort. It then aggregates all the MHT roots of the

involved cohorts (roots =
∑

rootmht), and fills the roots field in the block bi along with

the decision field. If any involved cohorts chose abort, the respective roots will be missing

in the block. Finally, the coordinator aggregates the Schnorr-commitmentsXsch =
∑

xsch

from all the servers and computes the Schnorr-challenge by concatenating and hashing

Xsch with bi i.e., ch = h(Xsch||bi). The coordinator then sends
〈
challenge(ch,Xsch, bi)

〉
σC

to all cohorts.

4) <null, SchResponse>: In this phase, every cohort, H, checks if the decision

within the block bi is abort, and if so, bi should have some missing roots; if the decision is

122

Fides: Managing Data on Untrusted Infrastructure Chapter 4

commit, bi should have all the roots from the involved servers. Every involved cohort that

sent the MHT root in the vote phase verifies if its corresponding root in the block is the

same as the one it sent. Cohorts also verify whether a potentially malicious coordinator

computed the challenge, ch, correctly by hashing the concatenated Xsch and bi, both

of which were sent in the challenge message. A cohort then computes the Schnorr-

response ri using its secret key and the challenge ch, and sends
〈
response(ri)

〉
σH to the

coordinator.

5) <Decision, null>: The coordinator collects all the Schnorr-responses and ag-

gregates them, Rsch =
∑

rsch, to form the collective signature represented by ⟨ch,Rsch⟩.

Intuitively, the challenge ch is computed using the block; and the Schnorr-response Rsch

requires the private keys of the servers, thus the signature binds the block with the public

keys of the servers. The coordinator then updates the co-sign field in the block and sends

the finalized block to the client and the cohorts. If the decision is commit, all servers

append block bi to their log and update their respective datastores.

The client, with the public keys of all the servers, verifies the co-sign before accepting

the decision – even an aborted transaction must be signed by all the servers. If the

verification fails, the client detects an anomaly and triggers an audit, which may halt the

progress in the system.

TFCommit, similar to 2PC, can be blocking if either the coordinator or any cohort

fails (crash or malicious). TFCommit can be made non-blocking by adding another phase

that makes the chosen value available, as in the case of Three Phase Commit [189]; we

leave this extension for future work.

123

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Detecting Malicious Behavior

A correct execution of TFCommit ensures serializable transaction isolation, atomicity,

and verifiable commitment. However, a malicious server can (i) violate the isolation

guarantees by committing non-serializable transactions; (ii) a malicious coordinator can

break atomicity by convincing some servers to commit a transactions and others to

abort; or (iii) a server can send wrong cryptographic values during co-signing to violate

verifiability.

Lemma 3 : The auditor detects serializablity violation.

Proof : Transaction execution is based on executing read and write operations in

the timestamp order. The transactions are ordered based on the timestamps, which

are monotonically increasing. If a transaction has done a conflicting access inconsistent

with the timestamp order, it leads to one of the following conflicts: 1) RW-conflict: a

transaction with a smaller timestamp read a data-item with a larger timestamp; 2) WW-

conflict: a transaction with a smaller timestamp wrote a data-item that was already

updated with a larger timestamp; 3) WR-conflict: a transaction with a smaller timestamp

wrote a data-item after it was read by a transaction with a larger timestamp. For each

transaction audited, the auditor verifies if any of the above violations exist, and if so,

the auditor detects the server responsible for the violation to be misbehaving. This is

equivalent to verifying that no cycle exists in the Serialization Graph of the transactions

being audited. 2

Lemma 4 : The auditor or a correct server detects incorrect cryptographic values for

CoSi sent by a malicious server – which hampers verifiablity of TFCommit.

Proof : If any server sends an incorrect cryptographic value used for co-signing, this

results in an invalid signature, and the original work CoSi [196] guarantees identifying

the precise server that computed the crytographic values incorrectly. Since TFCommit

124

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.8: Atomicity violation of TFCommit

incorporates CoSi, it inherits this guarantee from CoSi. Intuitively, in the schResponse

phase, the coordinator can identify if the signature is invalid, in which case, it can check

partial signatures produced by excluding one server at time and detect the precise server

without which the signature is valid. The coordinator is incentivised to perform this

rigorous check because if the signature is invalid, the auditor suspects the coordinator

for producing an incorrect block. We refer to the original work [196] that discusses the

proof in depth. 2

Lemma 5 : The auditor or a correct server detect atomicity violation of TFCommit.

Proof : Recall that the coordinator C collects votes in phase two of TFCommit, forms

the decision, and sends the partial block containing the decision in the challenge message.

Consider Figure 4.8 where a malicious coordinator sends block bc with commit decision to

group Gc and block ba with abort decision to group Ga. More precisely, the coordinator

sends
〈
challenge(ch,Xsch, bc)

〉
σC

to Gc (Xsch is the aggregated Schnorr-commits) and〈
challenge(ch,Xsch, ba)

〉
σC

to Ga. Since the decision is part of the block, the two blocks

bc and ba have to be different if the coordinator violates atomicity. But with respect to

the challenge ch, there are two possibilities, both producing invalid signatures:

• Case 1 : Coordinator sends the same challenge ch computed using block bc (or ba)

to both groups.

Any correct server in the group Ga will recompute the challenge using the block it

received, ba, and immediately recognize that the challenge sent by the coordinator does

not correspond to the block ba. (Alternatively, if the coordinator used ba to compute the

125

Fides: Managing Data on Untrusted Infrastructure Chapter 4

challenge ch, then servers in Gc will detect the anomaly.) Even if the servers in one group,

say Ga, collude with the coordinator and do not expose the anomaly, the challenge ch

corresponds only to block bc. The auditor, while auditing a server in group Ga, detects

that the co-sign in block ba is invalid as it does not correspond to that block.

• Case 2 : Coordinator sends the challenge ch computed using block bc to group Gc

and the challenge ch′ computed using block ba to group Ga.

In the final step of TFCommit, the servers in group Gc will use ch to compute the

Schnorr-response, whereas the servers in group Ga will use ch′ to compute the Schnorr-

response. Given that the final collective signature can be tied only to a single block, the

co-sign does not correspond to either bc or ba, hence producing a wrong signature. 2

The coordinator or a cohort can never force all servers to commit if at least one

server decides to abort a transaction. For committed transaction, the transaction block

must contain MHT roots from all the involved servers; for aborted transactions, the

block should have at least one MHT root missing. Assume a server Sb chooses abort and

hence, does not send its MHT root. If the coordinator produces a fake root for server Sb,

the server will detect it in the schResponse phase. And in case server Sb colludes with

the coordinator by either not exposing the fake root or by producing a fake root itself,

the datastore verification (discussed in Section 4.5.2), which uses MHT roots, will fail

for server Sb. An involved server (coordinator or cohort) can only force an abort on all

servers by choosing to abort the transaction, which is tolerable as the decision will be

consistent across all servers and will not violate the atomicity of TFCommit.

4.5.4 Transaction Logging

The transaction log in Fides is a tamper-proof, globally replicated log. When a

transaction commits after a successful round of TFCommit, all servers append the newly

126

Fides: Managing Data on Untrusted Infrastructure Chapter 4

produced block to their logs.

Detecting Malicious Behavior: One or more faulty servers can collude (but not

all at once) to (i) tamper an arbitrary block, (ii) reorder the blocks, or (iii) omit the tail

of the log (last few blocks). The auditor collects logs from all the servers and uses the

collective signature stored in each block to detect an incorrect log.

Lemma 6 : Given a set of logs collected from all servers, the auditor detects all incorrect

logs – logs with arbitrary blocks that are modified or logs with reordered blocks.

Proof : The collective signature in each block prevents a malicious server from ma-

nipulating that block once it is appended to the log. The signature is tied specifically to

one block and if the contents of the block are manipulated, the signature verification will

fail. One or more malicious servers cannot tamper with an arbitrary block successfully

without the cooperation of all the servers. And since the hash of the previous block

is part of a log entry, unless all the servers collude, the blocks cannot be successfully

re-ordered. 2

Lemma 7 : Given a set of logs collected from all servers, the auditor detects all incom-

plete logs – logs with missing tail entries.

Proof : A subset of servers cannot successfully modify arbitrary blocks in the log

(proof in Lemma 6) but they can omit the tail of the log. During an audit, the auditor

gathers the logs from all the servers. At least one correct server exists with the complete

log – which can easily be verified for correctness by validating the collective signature

and hash pointer in each block. The auditor uses this complete and verified log to detect

that one or more servers store an incomplete log. 2

4.5.5 Correctness of Fides

Definition 1: Verifiable ACID properties

127

Fides: Managing Data on Untrusted Infrastructure Chapter 4

In transaction processing, ACID refers to the four key components of a transaction:

i) Atomicity: A transaction is an atomic unit in that either all operations are executed

or none.

ii) Consistency: Data is in a consistent state before and after a transaction executes.

iii) Isolaiton: When transactions are executed concurrently, isolation ensures that the

transactions seem to have executed sequentially.

iv) Durability: If a transaction commits, its updates are persistent even in the presence

of failures.

We define v-ACID as the ACID properties that can be verified. v-ACID indicates

that a database system provides verifiable evidence that the ACID guarantees are upheld.

This definition is useful when individual database servers are untrusted and may violate

ACID – in which case the system must allow verifying and detecting the violations.

Theorem 1: Fides provides Verifiable ACID guarantees.

Proof : Fides guarantees that an external auditor can verify if the database servers

provide ACID guarantees or not.

The first step in the verification is for the auditor to obtain a correct and complete

log. Given the assumption that at least one server is correct at a given time, Lemmas 6

and 7 prove that during an audit, the auditor always identifies the correct and complete

log.

Lemma 5 proves that Atomicity violation is verifiable; Lemma 2 proves that the

auditor verifies if the effect of a transaction resulted in an inconsistent database when

a server buffers inconsistent writes, i.e., verifiable Consistency ; Lemma 3 proves that

the Isolation guarantee which ensures serializable transaction execution is verifiable; and

finally, Lemmas 1 and 2 verify if the effects of committed transactions are Durable. Hence,

an auditor verifies whether the servers in Fides uphold ACID properties.

128

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Note that multiple ACID violations can exist in the transaction execution. Since the

log is sequential, the auditor identifies the first occurrence of any of these violations and

the blocks after that need not be audited since everything following that violation can

be incorrect and hence irrelevant to a correct execution. 2

4.5.6 Scaling TFCommit protocol

The TFCommit protocol discussed in §4.5.3 makes simplifying assumptions that each

block contains a single transaction and a globally designated coordinator terminates all

transactions which requires participation from all servers. This makes TFCommit expen-

sive as any server not involved in a transaction must also participate in its termination.

In this section we provide an intuitive overview of how to scale TFCommit.

To scale TFCommit, two aspects can be enhanced: (i) Allow multiple transactions to

commit simultaneously by storing multiple transactions in a block, and (ii) Reduce the

number of servers participating in transaction termination to only the servers involved

in that transaction.

Extending each block to contain multiple transactions is straight-forward. The co-

ordinator collects and inserts a set of non-conflicting client generated transactions and

orders them within a single block at the start of TFCommit. Once the protocol begins,

the coordinator or any other server cannot re-order the transactions within the block (the

argument is similar to Lemma 4). This technique allows each execution of TFCommit to

commit multiple transactions. In our evaluations in §4.7, we store multiple transactions

in each block.

To reduce the number of servers participating in transaction termination, servers are

divided into small dynamic groups. The servers accessed by a transaction forms one

group, in which one server acts as the coordinator to terminate that transaction (instead

129

Fides: Managing Data on Untrusted Infrastructure Chapter 4

of one globally designated coordinator). Each group executes TFCommit internally and

upon a successful execution, the coordinators of each group publish the block to all other

groups. The problem with such a solution is in deciding the order of blocks across groups

such that all the servers maintain a consistently ordered transaction log.

Figure 4.9: Scaling TFCommit.

There are multiple ways to solve the ordering problem. Figure 4.9 depicts a scalable

solution that abstracts the ordering of blocks as a service (OrdServ). The figure shows

two groups of serversGi andGj, each accessed by transactions Ti and Tj respectively. The

OrdServ component is responsible for atomically broadcasting a single stream of blocks,

each generated by TFCommit executed in different groups of servers. OrdServ can use a

byzantine consensus protocol such as PBFT [35] among the coordinators to consistently

order blocks; or it can be an off-the-shelf application such as Apache Kafka, used to

provide ordering service in a recent work, Veritas [2]. OrdServ is also responsible for

chaining the blocks i.e., the coordinators of the groups do not fill in the hash of previous

block, rather it is filled by the OrdServ. There are two possible scenarios regarding the

groups:

• Gi ∩ Gj = ∅: If any two groups of servers have no overlapping server, there is no

dependency between the two blocks of transactions Ti and Tj, and OrdServ can order

them in any way and broadcast a consistent order.

• Gi ∩ Gj ̸= ∅: If any two groups have a non-empty intersection, then transactions

Ti and Tj may have a dependency order (e.g., Tj wrote a data item after Ti read it);

130

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.10: Isolation guarantee violation example.

the OrdServ should ensure that the transaction log reflects this dependency between the

published blocks.

Although there is flexibility in choosing OrdServ, it is important to choose a solution

that maintains local transaction order (within a group) across the globally replicated log.

Solutions such a ParBlock [10] track the transaction dependency order and maintains

that order while publishing blocks. We plan to integrate ParBlock with TFCommit as

future work.

4.6 Failure Examples

In this section we discuss various malicious failures and safety violation scenarios and

explain how the failures are detected. The failure model of Fides permits a server to

misbehave but captures enough details in the transaction log for an auditor to detect the

malicious failures as well as the failing servers.

Scenario 1: Incorrect Reads

A malicious server can respond with incorrect values for the data items read in the

read requests. We use Lemma 1 to detect this.

Figure 4.10 gives an example of incorrect reads. Assume that the severs store bank

details and there are two transactions T1 and T2 deducting $100 from two accounts, x

131

Fides: Managing Data on Untrusted Infrastructure Chapter 4

and y. Block-10 contains T1 and Block-11 contains T2. T1 reads two data items: one with

id x, value 1000, rts = ts-92, and wts = ts-88, and the second with id y, value 500, rts =

ts-48, and wts = ts-48. T1 updates x to $900 and y to $400, and upon commitment, it

also updates their rts and wts to ts-100. Any transaction executing after this must reflect

the latest data. But T2, committing at timestamp ts-115, has incorrect value of $1000

for x (but up-to-date timestamps). This indicates that the server storing data items x is

misbehaving by sending incorrect read values.

Scenario 2: Incorrect Block Creation

While executing TFCommit to terminate a transaction Ti, a malicious coordinator

can add an incorrect Merkle Hash Tree (MHT) root of a benign server Sb in the block;

this can cause audit failure of Sb (as Lemma 2 uses MHT roots to detect datastore

corruption). But such an attempt will be detected by the benign server, as proved in

Lemma 5.

In the vote phase of TFCommit, explained in §4.5.3, server Sb sends the MHT root

corresponding to transaction Ti to the coordinator. If the coordinator stores an incorrect

MHT root or a correct root but corresponding to an older transaction Ti−1, Sb can detect

this in the schResponse phase of TFCommit. and not cooperate to produce a valid

co-sign.

Scenario 3: Data corruption

A server may corrupt the data stored in the datastore, essentially not reflecting the

expected changes requested by the clients. We assume a multi-versioned datastore in this

example and use Verification Objects VO and MHT roots to detect datastore corruption,

as proved in Lemma 2.

Consider a transaction Ti committed at timestamp ts-100 and updated a data item

x stored in Sm. Figure 4.11 indicates the data stored in server Sm that is being audited

132

Fides: Managing Data on Untrusted Infrastructure Chapter 4

Figure 4.11: Data corruption example

at version ts-100. The auditor fetches the corresponding block (block 10) from the log

and extracts x’s value written by Ti and the MHT root corresponding to Sm. This MHT

root should reflect x’s updated value.

Assume Sm was malicious and did not update x to 900. In the next step of verification,

auditor asks Sm for the VO of data item x at timestamp ts-100. Sm responds with

{h2, h6, hroot} (hash values of the sibling nodes of data x in the path from leaf to root).

Auditor hashes x’s value stored in the block (H(900)) and uses h2 sent in VO to compute

h′
5 and further, hash h′

5 and h6 (from VO) to compute the expected root, h′
root. This

computed root should match the root the root stored in the block i.e., h′
root = rootSm−ts100.

But since Sm did not update the value of x to 900, the root computed by the auditor

will not not match the root stored in the block (assuming collision-free hash functions).

Thus data corruption at Sm, precisely at version ts-100 is detected.

4.7 Evaluation

In this section, we discuss the experimental evaluation of TFCommit. Our goal is

to measure the overhead incurred in executing an atomic commit protocol on untrusted

infrastructure. The focus of Fides and TFCommit is fault detection in a non-replicated

system, hence solutions based on replication that typically use PBFT [35] are orthogonal

133

Fides: Managing Data on Untrusted Infrastructure Chapter 4

to TFCommit.

In evaluating TFCommit, we measure the performance using two aspects: commit

latency - time taken to terminate a transaction once the client sends end transaction re-

quest, and throughput - the number of transactions committed per second; TFCommit

was implemented in Python. We deployed multiple database servers on a single Amazon

AWS datacenter (US-West-2 region) where each server was an EC2 m5.xlarge vm consist-

ing of 4 vCPUs, 16 GiB RAM and upto 10 Gbps network bandwidth. Unless otherwise

specified in the experiment, each database server stores a single shard (or partition) of

data consisting of 10000 data items.

To evaluate the protocol, we used Transactional-YCSB-like benchmark [44] consisting

of transactions with read-write operations. Each transaction consisted of 5 operations on

different data items thus generating a multi-record workload. The data items were picked

at random from a pool of all the data partitions combined, resulting in distributed trans-

actions. Although we presented TFCommit and Fides with the simplifying assumption

of one transaction per block, in the experiments, we typically stored 100 non-conflicting

transactions in each block. Every experimental run consisted of 1000 client requests and

each data point plotted in this section is an average of 3 runs.

4.7.1 TFCommit vs. 2PC

As a first step, we compare the trust-free protocol TFCommit with its trusted coun-

terpart Two Phase Commit [87]. TFCommit is essentially 2PC combined with the cryp-

tographic primitives (Co-Signing and Merkle Hash Trees) which results in an additional

phase due to the trust-free nature. Thus, comparing TFCommit with 2PC highlights the

overhead incurred by TFCommit to operate in an untrusted setting. Both 2PC and TF-

Commit are implemented such that transactions are terminated and blocks are produced

134

Fides: Managing Data on Untrusted Infrastructure Chapter 4

sequentially so that the log does not have forks.

0

200

400

600

T
h
ro
u
gh
p
u
t
(t
x
n
s/
se
c)

TFC Throughput
2PC Throughput

3 4 5 6 7

2

4

6

8

Number of servers

L
at
en
cy

(m
s)

TFC Latency
2PC Latency

Figure 4.12: 2PC vs. TFCommit (TFC).

Figure 4.12 contrasts the performance of 2PC vs. TFCommit. We increase the

number of servers and measure commit latency and throughput. In this experiment,

each block stores a single transaction so that we can measure the overhead induced by

TFCommit per transaction. Given that each block contains a single transaction and that

blocks are generated sequentially, the servers are essentially committing one transaction

after another.

As indicated in the figure, the average latency to commit a single transaction in an un-

trusted setting is approximately 1.8x more than a trusted environment. The throughput

for 2PC is approximately 2.1x higher than TFCommit. TFCommit performs additional

computations compared with 2PC: Merkle Hash Tree (MHT) updates to compute new

roots after each transaction, collective signature on each block, and an additional phase.

In spite of the additional computing and achieving trust-free atomic commitment, TF-

Commit is only 1.8x slower than 2PC. Having shown the overhead of TFCommit as

compared to 2PC, the following experiments measure the performance of TFCommit by

varying different parameters.

135

Fides: Managing Data on Untrusted Infrastructure Chapter 4

4.7.2 Number of transactions per block

2 20 40 60 80 100 120

500

1,000

1,500

T
h
ro
u
g
h
p
u
t
(t
x
n
s/
se
c)

Throughput (tps)
Latency (ms)

2 20 40 60 80 100 120

1

1.5

2

2.5

3

Number of txns per block

L
a
te
n
cy

(m
s)

Figure 4.13: Varying number of transaction per block

In this experiment, we fix the number of servers to 5 and increase the load on the

system by increasing the number of transactions stored within each block. Each database

server consisted of 10000 data items. Figure 4.13 indicates the average latency to commit

a single transaction and the throughput while increasing number of transactions stored

within each block from 2 to 120. The latency to commit a single transaction reduces

by 2.6x and the throughput increases by 2.5x when 80 or more transactions are batched

in a single block. This experiment highlights that even though the blocks are produced

sequentially, the performance of TFCommit can be significantly enhanced by processing

multiple transactions in one block.

4.7.3 Number of shards

In this experiment, we measure the scalability of TFCommit by increasing the num-

ber of database servers (each storing a shard of 10000 data items) from 3 to 9, while

keeping the number of transaction per block constant (100 per block). Figure 4.14 de-

picts the experimental results. The throughput of TFCommit increases by 47% and the

commit latency reduces by 33% when the number of servers are increased from 3 to

136

Fides: Managing Data on Untrusted Infrastructure Chapter 4

3 4 5 6 7 8 9

1,000

1,200

1,400

1,600

T
h
ro
u
g
h
p
u
t
(t
x
n
s/
se
c)

Throughput (tps)

Latency (ms)

MHT Update time (ms)

3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1.2

Number of servers
L
a
te
n
cy

(m
s)

Figure 4.14: Varying number of servers.

9. Figure 4.14 also shows the most expensive operation in committing transactions i.e.,

Merkle Hash Tree (MHT) updates. Recall from §4.5.3 that in TFCommit, termination of

each transaction requires computing the updated MHT root. Given that each block has

100 transactions, which in turn consists of 5 operations each, there are 500 operations in

each block. With only 3 servers, all the operations access the three shards whereas with

9 servers, the 500 operations are spread across nine shards. Thus, the load per server

reduces when there are more servers, resulting in the reduction of MHT update latencies.

This experiment highlights that TFCommit is scalable and performs well with increasing

number of database servers.

4.7.4 Number of data items

In the final set of experiments, we measure the performance of TFCommit by varying

the number of data items stored in each database server, while keeping a constant of

100 transactions per block and using 5 database servers. The number of items stored in

each server increased from 1000 to 10000 to measure the commit latency and throughput

of TFCommit, as shown in Figure 4.15. The commit latency increases by 15% and the

throughput reduces by 14% with the increase in number of data items per shard. The

137

Fides: Managing Data on Untrusted Infrastructure Chapter 4

1k 2k 3k 4k 5k 6k 7k 8k 9k10k
1,100

1,200

1,300

1,400

1,500

1,600

T
h
ro
u
g
h
p
u
t
(t
x
n
s/
se
c)

Throughput (tps)
Latency

1k 2k 3k 4k 5k 6k 7k 8k 9k10k

0.60

0.65

0.70

0.75

Number of data items per shard
L
a
te
n
cy

(m
s)

Figure 4.15: Varying number of data items per shard

performance fluctuation is due to the Merkle Hash Tree updates that varies with the

number of data items. Updating a single leaf node in a binary hash tree with 1000 leaf

nodes (data items) updates 10 nodes (from leaf to the root) and a tree with 10000 leaf

nodes updates roughly 14 nodes. Thus, the performance of TFCommit decreases with

increasing number of data items stored within each server.

4.8 Related Work

The literature on databases that tolerate malicious failures is extensive [68, 71, 208,

67, 140, 177]. All of these solutions differ from Fides as they: assume a singe non-

partitioned database, rely on replicating the database to tolerate byzantine failures, and

some also require a trusted component for correctness. Garcia-Molina et al.[68] were the

earliest to propose a set of database schemes that tolerate malicious faults. The work

presents the theoretical foundations on replicating the database on enough servers to

handle malicious faults but lacks a practical implementation. Gashi et al. [71] discuss

fault-tolerance other than just crash failures and provide a report composed of database

failures caused by software bugs. HRDB by Vandiver et al. [208] propose a replication

scheme to handle byzantine faults wherein a trusted coordinator delegates transactions

138

Fides: Managing Data on Untrusted Infrastructure Chapter 4

to the replicas. The coordinator also orders the transactions and decides when to safely

commit a transaction. Byzantium by Garcia et al. [67] provides an efficient replicated

middleware between the client and the database to tolerate byzantine faults. It differs

from previous solutions by allowing concurrent transactions and by not requiring a trusted

component to coordinate the replicas.

The advent of blockchains brought with it a set of technologies that manage data

in untrusted environments. In both the open perimissionless and closed permissioned

blockchains, due to lack of trust, the underlying protocols must be designed to tolerate

any type of malicious behavior. But these protocols and their applications are mostly

limited to crypto-currencies and cannot be easily extended for large scale distributed

data management. Although permissionless blockchain solutions such as Elastico [141]

Omniledger [112], and RapidChain [224] discuss sharding, it is with respect to transac-

tions, i.e., different servers execute different transactions to enhance performance but all

of them maintain copies of same data, essentially acting as replicas of a single database.

These solutions differ from Fides as they focus of replicated data rather than distributed

data.

In the space of transaction commitment, proposals such as [158, 230, 19, 226] tol-

erate malicious faults. Mohan et al. [158] integrated 2PC with byzantine fault-tolerance

to make 2PC non-blocking and to prevent the coordinator from sending conflicting deci-

sions. Zhao et al.[230] propose a commit protocol that tolerates byzantine faults at the

coordinator by replicating it on enough servers to run a byzantine agreement protocol

to agree on the transaction decision. Chainspace [19] proposes a commit protocol in

a blockchain setting wherein each shard is replicated on multiple servers to allow exe-

cuting byzantine agreement per shard to agree on the transaction decision. All these

solutions require replication and execute byzantine agreement on the replicas, and hence

differ from TFCommit. TFCommit uses Collective Signing (CoSi) [196], a cryptographic

139

Fides: Managing Data on Untrusted Infrastructure Chapter 4

multisignature scheme to tolerate malicious failures during commitment. CoSi has been

adapted to make consensus more efficient in blockchains, e.g., ByzCoin [111]. To our

knowledge, TFCommit is the first to merge CoSi with atomic commitment.

Fides uses a tamper-proof log to audit the system and detect any failures across

database servers; this technique has been studied for decades in distributed systems [221,

220, 219, 96]. In [221] and [220], Yumerefendi et al. highlight the use of accountabil-

ity – a mechanism to detect and expose misbehaving servers– as a general distributed

systems design. They implement CATS [219] an accountable network storage system

that uses secure message logs to detect and expose misbehaving nodes. PeerReview

[96] generalizes this idea by building a practical accountable system that uses tamper-

evident logs to detect and irrefutably identify the faulty nodes. More recent solutions

such as BlockchainDB [99], BigchainDB [151], Veritas [2] and [66] use blockchain as

a tamper-proof log to store transactions across fully or partially replicated databases.

CloudBFT [170], on the other hand, tolerates malicious faults in the cloud by relying on

tamper-proof hardware to order the requests in a trusted way.

The datastore authentication technique that uses Merkle Hash Trees (MHT) and Ver-

ification Objects was first proposed by Merkle [152]. The technique employed in Fides

that enables verifing the datastore per transaction is inspired by the work of Jain et

al. [106]. Their solution assumes a single outsourced database, and more importantly,

it requires a central trusted site to store the MHT roots of the outsourced data and

the transaction history. Fides replaces the trusted entity by a globally replicated log

that stores the necessary information for authentication. Many works have looked at

query correctness, freshness, and data provenance for static data but only few solutions

such as [131] and [164] (apart from [106] discussed above) consider data updates. [131]

and [164] discuss alternate data authentication techniques but also assume a single out-

sourced database.

140

Fides: Managing Data on Untrusted Infrastructure Chapter 4

4.9 Conclusion

Traditional data management systems typically consider crash failures only. With the

increasing usage of the cloud, crowdsourcing, and the rise of blockchain, the need to store

data on untrusted servers has risen. The typical approach for achieving fault-tolerance,

in general, uses replication. However, given the strict bounds on consensus in malicious

settings, alternative approaches need to be explored. In this chapter, we propose Fides,

an auditable data management system designed for infrastructures that are not trusted.

Instead of using replication for fault-tolerance, Fides uses fault-detection to discourage

malicious behavior. An integral component of any distributed data management system

is the commit protocol. We propose TFCommit, a novel distributed atomic commitment

protocol that executes transactions on untrusted servers. Since every server in Fides is

untrusted, Fides replaces traditional transaction logs with a tamper-proof log similar to

blockchain. The tamper-proof log stores all the necessary information required to au-

dit the system and detect any failures. We discuss each component of Fides i.e., the

different layers of a typical DBMS comprising of a transaction execution layer, a trans-

action commitment layer, and a datastore. For each layer, both correct execution and

failure detection techniques are discussed. To highlight the practicality of TFCommit,

we implement and evaluate TFCommit. The experiments emphasize the performance

and scalability aspects of TFCommit.

141

Chapter 5

QuORAM: A Quorum-Replicated

Fault Tolerant ORAM Datastore

5.1 Overview

Privacy and security challenges due to the outsourcing of data storage and processing

to third-party cloud providers are well known. With regard to data privacy, Oblivi-

ous RAM (ORAM) schemes provide strong privacy guarantees by not only hiding the

contents of the data (by encryption) but also obfuscating the access patterns of the out-

sourced data. But most existing ORAM datastores are not fault tolerant in that if the

external storage server (which stores encrypted data) or the trusted proxy (which stores

the encryption key and other metadata) crashes, an application loses all of its data. To

achieve fault-tolerance, we propose QuORAM, the first ORAM datastore to replicate

data with a quorum-based replication protocol. QuORAM’s contributions are three-fold:

(i) it obfuscates access patterns to provide obliviousness guarantees, (ii) it replicates data

using a novel lock-free and decentralized replication protocol to achieve fault-tolerance,

and (iii) it guarantees linearizable semantics. Experimentally evaluating QuORAM high-

142

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

lights counter-intuitive results: QuORAM incurs negligible cost to achieve obliviousness

when compared to an insecure fault-tolerant replicated system; QuORAM performs

1.4x better in terms of peak throughput than its non-replicated baseline; and QuO-

RAM performs 33.2x better than an ORAM datastore that relies on CockroachDB, an

open-source geo-replicated database, for fault tolerance.

5.2 Introduction

Due to the cloud’s core policy of pay-by-use, individuals and organizations are in-

creasingly shifting from managing their own storage servers to renting storage from third

party cloud providers. Today, many products with high traffic, such as Twitter [206],

Spotify [191], and Netflix [167], rely on cloud storage for some or all of their data storage

requirements.

The cloud’s convenience, however, comes at the cost of potentially compromising the

privacy of the outsourced data. This privacy concern slows down the adoption of cloud

services for many businesses [43]. Even with the data encrypted, users’ access patterns

can leak sensitive information to the cloud provider. Consider an example where a doctor

stores patient records in a third-party cloud. If the doctor accesses a given patient’s record

more frequently than usual over a period of time, an intruder can infer some information

about the patient’s medical status. In fact, many works [105, 91, 110, 114, 34, 55] have

shown concrete inference attacks by exploiting access patterns alone.

The privacy of outsourced data requires first to hide the data content through encryp-

tion, and then to obfuscate the access pattern to that encrypted data. Oblivious RAM, or

ORAM, a cryptographic primitive originally introduced by Goldreich and Ostrovsky [78],

achieves access pattern obliviousness. Although ORAM originally protected software ex-

ecuting on a single machine from an adversary on that same machine [78], ORAM’s

143

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

functionalities are now extended to protect data accesses on remote storage [194, 192,

193, 23, 184, 136, 47, 36]. Summarizing the general idea in these works: they break up

the data into logical blocks, each stored at a unique physical addresses on the external

server. After each access to a logical block, the ORAM scheme shuffles the physical ad-

dress, thereby mapping any sequence of logical memory accesses to a sequence of random

physical memory accesses.

Broadly speaking, many remote ORAM system architectures [184, 47, 193, 23, 50]

consist of three-layers: an untrusted cloud storage server, a trusted proxy, and the clients.

An application encrypts its data under a key K and outsources the encrypted data onto

an untrusted storage server. The trusted proxy holds the key K and accesses the storage

server on behalf of the application’s clients. Clients send read and write requests to

the proxy, which then communicates with the server according to an ORAM scheme and

responds back to the clients. An ORAM scheme translates client requests into a sequence

of storage server accesses that are indistinguishable from other client request translations.

Recent proposals enhance the efficiency of ORAM schemes [184, 193, 47, 23, 216, 50,

36, 204, 27] by supporting concurrent and asynchronous client accesses. However, in most

of these proposals, the proxy and the storage server are not fault-tolerant, deeming both

components as single points of failure. If either crashes, the data becomes unavailable to

users. Putting it differently, mitigating the privacy concerns of cloud storage derails one

of the most significant advantages of the cloud: fault tolerance.

To date, Obladi [47] is the only ORAM system to tolerate crash failures without

losing the system’s state. For the storage server, Obladi relies on the standard fault-

tolerance guarantees of cloud storage servers and assumes a highly available server. For

the proxy, Obladi meticulously pushes ‘valid’ proxy states to the cloud storage such that

after a crash, the proxy resets to the last valid state stored fault-tolerantly in the cloud.

The main problem with this approach is that although a proxy’s relevant state can be

144

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

recovered from the storage after a crash, the system cannot progress while the proxy is

down. Moreover, delegating fault-tolerance to the cloud incurs higher latencies than an

ORAM system with inherent fault-tolerance guarantees, as shown in the later sections

of this chapter.

In distributed systems, the gold standard for fault tolerance is state machine replica-

tion. Zakhary et al. [223] discuss replication to tolerate failures in ORAM systems and

demonstrate the challenges of employing standard design choices – such as locking and

quorum based read-writes – in an ORAM system. The authors discuss only the risks

of standard design choices for replication in ORAM systems rather than provide any

solution to tolerate failures.

In this chapter, we present, QuORAM, the first (quorum) replicated fault-tolerant

ORAM system, consisting of multiple untrusted cloud storage instances and trusted

proxies. QuORAM replicates the data on multiple storage instances, where each storage

instance is accessed through its independent trusted proxy. A subset of these replicas

serve each client request, thus allowing the system to tolerate some failures at both the

storage and the proxy layers.

Serving client requests from only a subset of replicas raises the challenge of consis-

tency, which we define using linearizable semantics: “each operation applied by concur-

rent processes [appears to take] effect instantaneously at some point between its invo-

cation and its response” [98]. Note that the operations themselves need not take effect

instantaneously across all replicas (and cannot, in the presence of asynchronous network

delay); they only need to appear instantaneous to the clients. We address this challenge

and prove that QuORAM guarantees linearizable semantics.

Apart from obliviousness and fault tolerance, QuORAM achieves the following addi-

tional functionalities:

1. It supports multiple concurrent reads and writes,

145

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.1: TaORAM’s architecture

2. It has no single point of failure,

3. It replicates data across multiple (possibly colluding) cloud storage servers, and

4. It guarantees linearizable semantics.

In the rest of the chapter, §5.3 provides background on the ORAM scheme on which

we build QuORAM; §5.4 describes the system and failure model of QuORAM; §5.5 defines

security model of QuORAM; §5.6 proposes the replication and ORAM scheme designs

on QuORAM; and §5.7 experimentally evaluates QuORAM with three baselines. §5.8

details security and linearizability proofs of QuORAM. §5.10 analyzes QuORAM’s stash

size and proves its space complexity to be O(logN). §5.11 discusses related work and §5.12

concludes this chapter.

146

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

5.3 Background

This section introduces an ORAM scheme, TaORAM [184], that acts as a build-

ing block of QuORAM. TaORAM ensures obliviousness in the presence of concurrent,

arbitrarily-scheduled accesses while preserving linearizable semantics. TaoStore’s [184]

ORAM scheme, TaORAM, builds upon another ORAM scheme Path ORAM [195]. Path

ORAM organises data into a tree of buckets, each of which contains multiple data blocks.

Path ORAM maps each block’s position to a leaf node lf, and stores the block in any one

of the buckets along the path from the root to that leaf lf. TaoStore [184] extends Path

ORAM for asynchronous and concurrent queries. TaoStore’s system architecture (Figure

1) consists of a storage server, a proxy, and the clients. The storage server stores the

encrypted data in a tree and the clients access the data by sending read/write requests

to the trusted proxy; the proxy accesses the storage server on behalf of the clients (using

the encryption key it stores) according to the TaORAM protocol.

The proxy consists of two components: a Sequencer and Processor. The Sequencer

communicates with clients and the Processor communicates with the server. The Se-

quencer maintains a FIFO request queue, which stores client requests in the order they

arrive. When the proxy finds a response to a client request (after communicating with

the server), the Sequencer forwards responses to clients in the request queue’s FIFO or-

der. The Processor maintains three pieces of local state: a position map, a local subtree,

and a stash. The position map stores a block’s leaf node id lf on whose path the block

resides. The local subtree consists of blocks already fetched from the storage server (and

possibly updated) but not yet written back, whereas blocks that do not fit in the subtree

are stored in the stash. After the Processor fetches k paths, where k is a system config-

uration constant, a background thread writes those paths back to the server and deletes

their contents from the local subtree. As k increases, the amount of memory consumed

147

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

by the proxy also increases.

At a high level, TaORAM executes the following steps for both reads and writes to a

block B:

1) Let P be the path containing block B. TaORAM fetches P from the server if not

already fetched; otherwise, it performs a fake read by fetching a random path.

2) TaORAM adds the read path to the local subtree. For write operations, it updates

the value of B’ in the local subtree.

3) TaORAM answers the client’s request with B’s value.

4) It assigns B to a new random path P ′ and updates the position map accordingly.

5) TaORAM next executes flushing : it reassigns each block in the subtree’s path P

or in the stash to the lowest non-full bucket intersecting with P and P ′, the block’s

newly assigned path. If no such bucket exists, TaORAM moves the block to the stash.

TaORAM [184] proves that the stash size is bounded.

6) If TaORAM fetched k paths since the last write-back (where k is a system configuration

constant), it writes the k paths from the subtree to the storage server. It then deletes

all blocks in these k paths with no in-progress requests and retains blocks modified since

initiating the write-back.

Although TaORAM preserves linearizability (as the authors proved in [184]), by itself,

TaORAM does not tolerate failures. A user loses access to the data if the proxy or the

storage server become unavailable. Additionally, the data cannot be recovered if the

proxy or/and the storage server lose data.

5.4 System and Failure Model

Given the lack of fault-tolerance in TaORAM and almost all existing ORAM data-

stores, we propose QuORAM, an ORAM datastore that provides fault-tolerance via

148

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.2: QuORAM Architecture

replication. This section presents the system and failure models of QuORAM.

5.4.1 System Model

QuORAM is a replicated oblivious data storage system that supports single key read

and write operations on a key-value store, modeled as get() and put() requests.1 QuO-

RAM has the same three-layered structure as a non-replicated ORAM system: untrusted

storage servers to store encrypted data, trusted proxies controlled by the application to

answer client requests by accessing the storage server, and clients who send read/write

requests to the proxies. Typically in non-replicated ORAM systems, the overall state

of the data is split between the proxy and the external storage. Extending an ORAM

system to include replication also needs to maintain this one-to-one correspondence be-

tween a proxy and a storage server. Hence QuORAM replicates storage servers and

proxies in pairs such that each proxy contacts exactly one storage server, and no two

proxies contact the same storage server. We refer to a pair of ORAM server and proxy

as an ORAM unit and depict the system architecture in Figure 5.2. Although not a

requirement, since QuORAM aims to tolerate crash failures, we envision QuORAM to

1Inserts and deletes are modeled using get() and put() requests.

149

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

be a geo-replicated datastore wherein the ORAM units and the clients accessing the data

are all geo-distributed.

Within each ORAM unit, the external server S stores encrypted data while the cor-

responding proxy stores the respective secret key that encrypts S’s data. The proxies in

QuORAM also store other metadata necessary for the ORAM scheme (explained more

in §5.6). All proxies in the system run the same ORAM scheme translating each ORAM

operation into a sequence of storage server operations. From a client’s perspective, it

treats an ORAM unit as a black box that exposes a read-write interface.

5.4.2 Failure Model

Crash failures : Our goal in developing a replicated ORAM system is to provide dura-

bility and failure tolerance comparable to production cloud storage. An ORAM unit

enters a failed state when its storage server and/or its proxy crashes or when network

partitions occur. These failures are effectively equivalent to the entire unit being un-

reachable: since the proxy holds the encryption secret key, the data accessed from the

storage server cannot be decrypted without the proxy’s decryption key, and the proxy’s

key is useless without the data from its corresponding storage server. As such, we con-

sider an ORAM unit failure to be a single failure event, regardless of which component

actually failed.

To tolerate a maximum of f failures, QuORAM replicates data onto 2f+1 ORAM

units. When a failed unit (server and proxy) resumes operation after a crash, it resumes

the state before the crash. If an application assumes that a failed unit does not recover

its previous state upon crash recovery, then the recovered unit can copy the current state

from a majority of the ORAM units (this is because QuORAM uses majority quorums to

replicate the data and reading data from a majority guarantees reading the latest values

of data, as will be discussed in §5.6.1).

150

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

All communication channels – clients to proxies, proxies to servers – are asynchronous,

unreliable, and insecure. All communication channels are made secure using encryption

mechanisms such as transport layer security or secure socket layer to mitigate message

tampering.

Threat model : QuORAM assumes an honest-but-curious adversary that executes the

designated protocol correctly. An adversary may control one or all external storage

servers and can observe, track, and analyze data accesses to and from the server and

perform inference attacks based on the access patterns. The adversary can control the

asynchronicity of the network and also schedule read/write requests via a compromised

client. Crash failures are consistent with the honest-but-curious adversarial model, hence

we do not consider more severe malicious failure modes in this chapter. The goal is to

design an oblivious data storage system that tolerates catastrophic crash failures under

the aforementioned adversarial model.

5.5 Security Model: Obliviousness in a Replicated

ORAM Setting

Existing definitions of obliviousness are insufficient to capture the security of a repli-

cated ORAM system because even if a single proxy-server pair provides ORAM guar-

antees, the choice of replication protocol may leak non-trivial information. Consider

quorum based replication protocols such as CRAQ [200] or Hermes [108]. In these works,

read requests access a single node (i.e., single-node read quorums) and write requests

access all the nodes in the system (i.e., all-node write quorums, which intersect with all

single-node read quorums). Deploying such schemes allows an adversary to distinguish

between read and write operations by merely observing how many units are accessed for

151

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

an operation, regardless of whether the ORAM scheme leaks any information about the

operation type.

To formalize the above information leak, we develop a new definition of obliviousness,

adapted from the notion of aaob-security (adaptive asynchronous obliviousness) from

TaORAM [184]. Intuitively, an ORAM scheme is aaob-secure if any two sequences of

operations and any two data sets are indistinguishable to the attacker. This section first

defines the ORAM scheme of QuORAM and then presents a security game based on

which we define the security of replicated ORAM datastores.

5.5.1 ORAM scheme definition

A typical asynchronous ORAM scheme consists of two modules ORAM = {Encode,

OClient}. Encode encrypts data D, and produces Denc and a secret key K. An external

server stores Denc and a stateful ORAM client, OClient, stores K. QuORAM uses the

above definition of ORAM = {Encode, OClient} for individual ORAM units but extends it

to a list: Rep-ORAM = (ORAM1, ORAM2, ..., ORAMn) for n ORAM units. Each ORAM

unit ORAMi’s Encode module receives the same data D. Given D, the Encode module

outputs a secret key Ki and the data set DencKi
encrypted using Ki after internally

shuffling the data in a random order. The shuffling mitigates identical access patterns

across different storage servers at the beginning of execution. The ith external server

stores DencKi
and the corresponding ith OClient retains Ki – both the server and OClient

(executed by proxy) form an ORAM unit, ORAMi.

Individual OClient’s execute ORAM requests denoted as (op, bid, v) where op ∈ {read,

write}, bid represents a data block’s id, and v=⊥ for reads or a new block value for writes.

These operations result in read/write accesses to the storage server. While an OClient

process recognizes a single type of operation – ORAM operation – represented by (op, bid,

152

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

v), QuORAM distinguishes between two types of operations: logical and ORAM. Logical

operations are client requested read/write operations2 represented as (lop, bid, v) – where

lop ∈ {read, write}, bid is a data block’s id, and v=⊥ for reads or an updated value for

writes. Each logical operation in-turn translates to a sequence of ORAM operations (op,

bid, v)i where i identifies an ORAM unit. For example: a logical read can translate to a

set of ORAM reads sent to a quorum of ORAM units followed by ORAM writes sent to

that quorum.

5.5.2 Security definition

A replicated ORAM system, such as QuORAM, requires a slightly different security

definition compared to aaob-security. The attack presented at the beginning of this

section of using CRAQ [200] or Hermes [108] replication protocol clearly indicates that

an aaob-secure system can still leak the type of logical operation. Hence, we extend

aaob-security to include logical obliviousness i.e., l-aaob-security. l-aaob-security is an

indistinguishability based security definition, which we define using a game G. The steps

of the game are:

• The game picks a uniformly random bit b ∈ {0, 1}, called the challenge bit.

• An adversary A generates two same-sized sets of data D0 and D1. The game calls

Rep-ORAM on Db, i.e., it calls Db
encKi

, Ki ←Encodei(Db) for each ORAM unit i.

The external server and OClient of an ORAM unit i store the encrypted data DencKi

and the secret key Ki, respectively.

• The adversary, at any point in time, schedules two logical operations (lopi,0, lopi,1)

consisting of arbitrary logical reads/writes. The game picks only one of the oper-

ations lopi,b and executes a replication protocol chosen by the replicated ORAM

2Logical reads/writes are equivalent to a key value store’s GETs/PUTs.

153

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

system by sending ORAM read/write operations to the ORAM units. The game

notifies the adversary once the operation terminates without revealing the actual

result, as the adversary can easily guess the challenge bit b based on the result.

• Throughout the above process, the adversary can read, delay, drop, and learn the

timing of (but not modify) messages. The adversary can also cause any storage

server, proxy, and/or client to crash, with at most f proxy/storage server failures.

• Finally, after scheduling any number of logical operations, the adversary decides on

the value of the challenge bit b. The game G returns True if the adversary chooses

the right bit; and otherwise returns False. At this point, the game terminates.

We define l-aaob-advantage of the adversary A against Rep-ORAM as

Advl−aaob
Rep−ORAM = 2 ∗ Pr[Gl−aaob

Rep−ORAM ⇒ True]− 1 (5.1)

A replicated ORAM system is l-aaob-secure if Advl−aaob
Rep−ORAM is negligible for any

polynomial time adversary A, i.e., any polynomial-time adversary can guess the challenge

bit with probability negligibly higher than half. In other words, an ORAM scheme

is l-aaob-secure if any two sequences of logical operations2 and any two data sets are

indistinguishable to the attacker.

5.6 QuORAM: a replicated ORAM datastore

This section presents the design of the replicated ORAM datastore, QuORAM. In

designing QuORAM, we aim to achieve three goals: (i) obfuscate the access patterns to

achieve privacy and l-aaob-security, (ii) replicate the data for fault-tolerance, and (iii)

achieve the above two goals while preserving linearizable semantics.

154

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

To describe how we achieve the above goals, this section first discusses the design of

a data replication protocol that preserves linearizability, followed by the ORAM scheme

that hides access patterns.

5.6.1 QuORAM’s replication protocol

To describe QuORAM’s replication protocol, for now, we assume the system employs a

state-of-the-art ORAM algorithm, TaORAM, as a black-box (this is relaxed in §5.6.2) and

focus only on the replication protocol that provides linearizability guarantees. Choosing

an existing replication protocol or designing one is a non-trivial task due to preserving

obliviousness. To highlight the challenges in replicating an ORAM datastore, we propose

a naive solution followed by QuORAM’s replication design.

Naive solution:

As discussed in §5.5, using optimized replication solutions such as Hermes [108] or

CRAQ [200] breaks obliviousness because they access varying numbers of replicas for

logical read and write operations. The naive solution presented here mitigates the above

challenge by deploying a single round replication protocol wherein a client accesses the

same number of ORAM units for both read and write operations. Note that to ensure

linearizability, the sites that handle read and write requests, read quorum and write

quorum, must intersect with each other (e.g., majority quorums). In this single round

multicast protocol, assuming majority quorums, a client reads from a majority and writes

to a majority of the ORAM units.

While this solution is efficient since a client communicates with the ORAM units

only once, it violates linearizability. We show how this solution breaks linearizability by

providing an example. Consider a system with 3 replicated ORAM units where clients

read or write from 2 out of the 3 replicas. A client cl1 sends a write request for a data item

155

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

identified by key k, (k = v′) to ORAM units 1 and 2. Since the communication channels

are asynchronous, assume that ORAM unit 1 receives the request and updates k’s value

to v′ while ORAM 2’s write request is in-transit. Now, another client cl2 performs

two consecutive reads on key k once from ORAM units 1 and 2 and subsequently from

ORAM units 2 and 3. For each request, the client picks a read value corresponding to

the latest timestamp (typically achieved using totally ordered timestamps [123]). For

the first request, the client reads the most up-to-date value v′, whereas for the second

request, it reads only the older value of k.

This is a linearizability violation as from the external client’s perspective, the opera-

tions on k appear non-linear.

To circumvent this problem, the proxies can either deploy a locking mechanism (as

is typical in database systems and as is done in Hermes [108]) or add another round of

communication to ensure correct ordering of requests. But employing a locking mech-

anism can breach obliviousness as locking leads to deadlocks and detecting/resolving

deadlocks in distributed systems requires additional communication across replica units.

Since the adversary controls all communication channels, such additional communica-

tion leaks non-trivial information. Due to these reasons, QuORAM replicates data using

a lock-free approach that uses two rounds of communication between a client and the

ORAM units.

QuORAM’s replication

QuORAM’s replication protocol design is inspired by Lynch and Shvartsman’s repli-

cation protocol [142]. In designing the replication protocol, we follow the abstractions

defined in the Consensus and Commitment (C&C) framework [148], which consists of

four phases: Leader election, Value Discovery, Fault-tolerance, and Decision. The C&C

framework [148] describes that most replication protocols are centralized in that one of

156

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

the replicas acts as a leader and drives the protocol by communicating with other replicas.

In such compositions, the leader node can be overloaded and become a bottleneck.

QuORAM chooses a different, decentralized approach where a client interested in

reading or writing the data takes on the role of a leader and communicates with all

ORAM units. This choice reduces the additional overhead on a single leader unit and

avoids an adversarial case where an adversary delays the leader’s communication links,

thwarting the system performance.

Following the abstractions of the C&C framework, QuORAM’s replication has two

phases: in the first phase, a client identifies the most up-to-date value of an item by

reading from a read quorum and in the second phase, it writes either the identified value

(for read requests) or the updated value (for write requests) onto a write quorum of

ORAM units, where the read and write quorums have non-empty intersection. Using the

terminology of Lynch and Shvartsman’s protocol [142], we term the first phase as the

query phase and the second as the propagate phase. Given that some replica units’ states

may diverge due to crash or network failures, to easily identify the most up-to-date value

of a given data item, each data item in QuORAM additionally maintains a monotonically

increasing tag consisting of a sequence number and client id, t =< seqNum, clientId >.

This is analogous to version or timestamp based datastores.

Overview : Figure 5.3 represents a high-level description of QuORAM’s replication proto-

col. A client that wants to logically read or write a key k executes the replication protocol

in two phases: query and propagate. The client first sends ORAM read requests for key

k to a read quorum of ORAM units and waits to receive a response consisting of value v

and tag t from the read quorum. The actions of the propagate phase depend on the type

of client request: for logical reads (GETs), the client selects the value v with the highest

tag t and multicasts ORAM write with v and t to a write quorum of units. For logical

writes (PUTs), the client creates a new tag t′ by incrementing the highest tag t (how is

157

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.3: QuORAM’s replication protocol. Each circle represents an ORAM unit a
client Cl executes the protocol

explained later) and multicasts ORAM write with v′ and t′ to a write quorum of units

where v′ is the new value. Upon receiving the ORAM write request, proxies in QuORAM

update the value and tag if and only if the received tag t′ is greater than its own tag

value. The propagate phase terminates when the client receives acknowledgments from

the write quorum. For both logical read and write requests, a client considers its request

to be complete only after completing both phases.

From this overview, it is clear that if a client uses different read and write quorums

in the query and propagate phases, then both sets of quorum fetch a path, shuffle, and

write it back onto external servers. This creates unnecessary bandwidth and compute

overheads. QuORAM addresses this issue by using the same quorum for both query

and propagate phases. Since QuORAM reuses read and write quorums interchangeably,

we stop distinguishing between read and write quorums and impose a requirement that

any two quorums must intersect with each other (rather than imposing read and write

quorums must intersect). This way, a client can pick any quorum and use it in query and

propagate phases. While for simplicity, QuORAM uses majority quorums [201], i.e., sets

of ⌈(N+1)/2⌉ ORAM units, the application can pick any other quorum composition that

guarantees non-empty intersection between any two quorums (e.g., tree quorums [1] or

158

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.4: Timeline of the proxy in TaORAM

grid quorums [163]). Informally, using the same quorum for both the query and propagate

phases does not leak any additional information since an attacker already observes what

ORAM units are accessed while querying.

QuORAM’s choice to communicate with only a quorum of ORAM units, instead of

all, may result in a client not receiving a full quorum of responses (due to individual

unit failures or message losses), even if globally, a majority of the units are alive. To

ensure system progresses as long as a majority of ORAM units are live, we use timeouts

to detect an unresponsive unit in a quorum and replace it with another. This brings us

to the final design of QuORAM’s replication protocol, whose pseudocode is described

in Algorithm 7. Algorithm 7 and the rest of the chapter distinguishes logical reads

and writes from ORAM reads and writes by denoting logical operations as l read and

l write (indicating GET() and PUT() requests respectively of a key value store), and

ORAM operations as o read and o write (representing the query and propagate phase

messages respectively). Algorithm 7:

1. A client C that either wants to logically read or write a block bId starts the protocol

by picking a quorum Q of randomly chosen majority of ORAM units (line 1).

159

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Algorithm 7 Pseudocode for QuORAM executed by a client with id cId for an operation
of opType ∈ l read, l write on block bId and value v.

Query Phase:

1: Q ← randomly select a set of ⌈(N + 1)/2⌉ ORAM units
2: opId ← a globally unique operation ID
3: Multicast o read(bId, opId) to all ORAM units in Q. Collect each response (vi,

tagi), where tagi is a tuple of (seqNumi, cIdi)
4: While waiting for all responses from Q, if a read request sent to ORAM unit U times

out:

(a) U′ ← randomly selected unit not in Q

(b) Q ← Q + U′ - U

(c) Send o read(opId,bId) to U′

5: Upon receiving responses from all Q units, select the response r with the highest tag
6: If opType = l write, set t′ ← (r.tag.seqNum+ 1, cId) and v′ ← v
7: If op type = l read, set t′ ← r.tag and v′ ← r.v

Propagate Phase:
8: Multicast o write(opId,bId,v′,t′) to all units in Q
9: While waiting for all responses from Q, if a write request sent to ORAM unit U times

out:

(a) Execute steps 4(a) to 4(c)

(b) Send o write(opId, bId, v′, t′) to U′, without changing t′ and v′ sent in Step
8

10: Upon receiving acknowledgements from Q, the client considers the (logical) operation
complete

2. The client assigns its operation a globally unique operation id, opId, (e.g., a se-

quence number and a client’s unique id) as shown in line 2. This opId, a separate

identifier from a data item’s tag, is important to identify in-progress operations at

both the client and proxies.

3. The client then multicasts o read(bId, opId) to the proxies in quorum Q, who

in-turn may fetch the block and the associated tag from their respective storage

servers and retain it in the subtree until the block is written back (see §5.6.2 for

the steps executed by a proxy). The client waits to receive responses consisting of

160

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.5: Timeline of a proxy in QuORAM. Figures 5.4 and 5.5 capture the difference
between the functionalities of a proxy in TaORAM vs. a proxy in QuORAM.

the block’s value and tag from all proxies in Q (line 3).

4. If the client times-out while waiting for a response from an ORAM unit U , it

updates its quorum by removing U and adding another randomly selected unit U ′

to Q. The client then sends the o read request to U ′.

5. Upon receiving Q responses, the client picks the response r with the highest tag

(line 5).

6. If client C’s operation is l write, it updates the tag (t′) by incrementing the

sequence number of the highest tag and updating the tag’s client id to C’s id and

sets the value (v′) to the block’s new value v.

7. If client C’s operation is l read, it retains the highest tag (t′) and its corresponding

value (v′) of the response r identified in Step 5.

8. Client C then broadcasts o write(opId, bId, v′, t′) with the respectively up-

dated value v′ and tag t′ to the proxies in Q and waits for their acknowledgements.

A proxy P that receives the o write() message sends an acknowledgement to C.

161

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

However, the proxy P updates the value and tag if and only if the received tag

t′ is greater than its own tag value.

9. If the client times-out while waiting for an acknowledgement from a unit U (line

9), the client re-executes steps 4(a) to 4(c), essentially updating the quorum Q and

sending o read to the newly added unit U′. The client then sends the o write

request to U′, without changing the value v′ or tag t′ sent in Step 8, which is

important to preserve linearizability. Note that even though only the write part

of the operation timed-out, the client sends o read before retrying o write on the

newly added unit to ensure the proxy fetches the necessary block and update its

data structures accordingly.

10. Once the client receives acknowledgements from the quorum Q, the client considers

the logical operation to be successful.

This concludes the discussion of QuORAM’s replication protocol. This protocol guaran-

tees linearizability, which is discussed in §5.6.3.

5.6.2 QuORAM’s ORAM Scheme

Having discussed the replication protocol of QuORAM that preserves linearizability,

this section discusses QuORAM’s goal of providing obliviousness by hiding access pat-

terns. QuORAM builds its ORAM scheme on top of TaORAM, described in §5.3 and we

suggest reviewing it before proceeding.

Challenge of using TaORAM as-is : If proxies in QuORAM implement the ORAM

scheme as-is in TaORAM, for each logical request the proxies fetch the requested block’s

path twice and write it back to the server twice, incurring unnecessary communication

and compute overhead. The reason for the inefficiency is as follows: based on the repli-

cation protocol described in §5.6.1, in a single execution of the protocol, a given proxy

162

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

is either part of the quorum or not. If part of the quorum, the proxy always receives

an o read request in the query phase followed by an o write request in the propagate

phase, irrespective of the type of logical request (Figure 5.3). Recall from §5.3 that for

every ORAM request, TaORAM fetches a path, flushes it, and writes it back (after k

requests) to the server. If the proxy treats them as two separate and independent ORAM

operations, then it fetches a path (real or fake) and writes it back to the server for both

ORAM requests, incurring unnecessary overhead.

Solution: To mitigate the double fetching/writing of a block’s paths, all proxies in

QuORAM treat the two ORAM operations as correlated, and execute a single fetch and a

single write-back for each logical operation. We discuss what happens when an adversary

suppresses an o read or o write later. Figures 5.4 and 5.5 illustrate the details of a

proxy’s interactions between a client and it’s external storage in QuORAM and contrasts

them with the corresponding interactions in TaORAM. We now discuss in more details

how QuORAM manages the execution of logical operations.

Challenge of asynchronously receiving o read and o write : QuORAM considers an

o read followed by an o write as a single client’s request but they arrive sequentially;

an adversary who controls the communication channels can control the interval between

the two ORAM requests. This implies a proxy needs to remember for which request it

has already fetched a path from the server and for which request it has not.

Solution: We achieve this by introducing a new data structure in TaORAM’s Pro-

cessor: incompleteCacheMap, as depicted in Figure 5.6. The incompleteCacheMap tracks

client operations that are read but not written by mapping an operation to its requested

block, i.e., opId to bId. If multiple operations access the same block, the incomplete-

CacheMap tracks them all. For the incompleteCacheMap, we use an LRU-based cache

with a bounded number of elements for our evaluations (but any other cache design can

be used). The size of the incompleteCacheMap is a system configuration and we assume

163

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.6: QuORAM’s ORAM scheme built atop of TaORAM.

this size is not hidden from the adversary.

Another change in QuORAM’s ORAM scheme compared with TaORAM is in decid-

ing when to write-back fetched paths (Figures 5.4 and 5.5). Conceptually, both ORAM

schemes write-back k paths to the server after serving k requests, where k is a system

configuration and both schemes track the number of requests served with a counter de-

noted by paths. But the main difference lies in how the two schemes define a single client

request: TaORAM considers an o read or an o write as an independent, single client

request, whereas QuORAM considers an o read followed by an o write with matching

opId as a single client request. Due to this difference, TaORAM increments paths imme-

diately after fetching a path from the server, indicating the accessed path is ready to be

written back; whereas QuORAM waits until receiving the corresponding o write before

incrementing paths. Both schemes write-back when the paths counter value is a multiple

of k.

164

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Figure 5.6 provides the step-wise interactions between the various components of

QuORAM. In the figure, Subtree, TaORAM Logic, and TaORAM Sequencer denote TaO-

RAM’s unmodified subtree, Processor and Sequencer logic (see Section 5.3). The steps

depicted in Figure 5.6 are as follows:

1 A client sends an o read(opId,bId) request to a quorum of proxies (Figure depicts

interaction with one). The unmodified TaORAM Sequencer records the request and

forwards it to the Processor.

2 The Processor adds a new entry opId : bId to the incompleteCacheMap. If the cache

is full, it evicts an entry based on the cache policy before adding the new entry;

cache eviction increments paths (§5.6.2 describes the reasoning). The Processor

then forwards the request to the TaORAM Logic, which abstractly represents all

the unmodified data structures and execution logic of TaORAM’s Processor.

3 The TaORAM Logic then fetches a path - real or fake - from the external server.

4 The Processor moves the fetched path, real or fake, to the Subtree.

5 Irrespective of real or fake reads from the server, the Processor sends the read

response back to the client, through the Sequencer. For fake reads, the block’s real

value can be found either in the Subtree or Stash. For real reads, the Processor

assigns the block bId to a new path. The Processor then flushes the fetched path

– real or fake (see §5.3 for details on flushing).

6 The client (after receiving responses from a quorum and updating the value and tag

according to Algorithm 7) sends an o write(opId,bId,v,t) to the chosen quorum

of proxies.

165

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

7 Since o write requests do not access the external server, they can be processed

directly by the Processor bypassing the Sequencer, without breaking obliviousness.

Upon receiving o write, the Processor of a proxy checks if the incompleteCacheMap

has entry for opId and bId : if yes, it executes step 8 ; if no, i.e., the cache evicted

opId : bId entry in between o read and o write, then it executes step 9 by

sending a negative acknowledgement to the client, indicating this request has failed.

8 The Processor removes opId : bId entry from the incompleteCache, increments the

paths counter and forwards the o write request to TaORAM Logic. When paths

reaches a multiple of k, TaORAM Logic asynchronously writes back k paths to the

server. After receiving a write acknowledgement from the server, TaORAM Logic

deletes the k paths from the Subtree. Importantly, while deleting the paths, TaO-

RAM Logic does not delete blocks that are pointed to by the incompleteCacheMap.

9 The Processor then sends a positive acknowledgment to the client, and after re-

ceiving acknowledgments from the chosen quorum, the client considers its operation

complete. If a client receives at least one negative acknowledgement from any proxy,

it deems its request as unsuccessful. Based on the application, the client may retry

the failed request.

Discussion on incompleteCacheMap eviction

Along with tracking ongoing client requests, incompleteCacheMap’s other main role

is to limit an adversary from causing a memory overflow at a proxy. An adversary can

send only o read messages of clients and suppress all o write messages. Because the

ORAM scheme fetches paths on o reads and it writes-back paths and clears their memory

upon receiving k o writes, if a proxy receives only o reads without any o writes, its

memory can overflow. To mitigate such adversarial behavior, we choose a limited size

166

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

cache-like datastructure that dictates how many in-progress requests a proxy can serve

at a given time. As described in Step 2 , if the Processor finds incompleteCacheMap to

be full when a new o read arrives, it evicts an entry based on the cache eviction policy

and increments the paths counter. The counter increment is necessary to ensure a proxy

writes-back paths even if it receives no o writes. Because we assume an adversary knows

the incompleteCacheMap size, writing k paths back after k combined o writes and cache

evictions does not leak any non-trivial information to an adversary.

An important detail for obliviousness and linearizability lies in the details of what

happens when a block gets evicted from the incompleteCacheMap. Eviction from incom-

pleteCacheMap does not mean eviction from the proxy. Eviction merely allows the proxy

to forget that the evicted block had an in-progress request and allows the proxy to treat it

as a block whose logical operations are complete. When the incompleteCacheMap evicts

an entry, opId : bId, the operation’s o write request becomes a no-op because what-

ever the proxy read in the o read operation is no longer guaranteed to be present in

the proxy. Hence, the proxy notifies a client if its o write request failed by sending a

negative acknowledgement (7) and the application can decide how to handle negative

acknowledgements. We assume that the adversary knows the incompleteCacheMap size;

hence revealing the type of acknowledgement – positive or negative – to the adversary

does not break obliviousness.

Discussion on a proxy’s memory usage

As discussed earlier, QuORAM writes-back k paths to the server after serving k client

requests. But as seen in step 8 , after a write-back completes QuORAM deletes only

those blocks with no pointers in the incompleteCacheMap (i.e., QuORAM retains blocks

accessed by ongoing requests).

Memory Issue: QuORAM’s logic of not deleting certain blocks in the k paths

167

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

after a write-back can cause a proxy’s memory, i.e., Subtree, to grow unbounded if the

retained blocks are never accessed again (a larger Subtree may indirectly cause a larger

Stash). To see why, we consider a simple example where k = 1 and two concurrent

logical operations op1 and op2 access the same block, b1. Say a proxy receives op1’s

o read first, upon which it fetches a real path containing b1 from the external server.

While the path is being fetched, it receives op2’s o read and since the proxy already

asked to read b1’s real path, it reads a fake path from the server for op2. When both

o reads are answered, the proxy receives op1’s o write, which increments paths and

initiates a write-back (because k = 1). The proxy writes the path back but cannot delete

b1 because it has not yet received op2’s o write request (and op2 read a fake path).

If op2 updates the block and the path that block b1 resides on is never accessed and

hence never written back again, then b1 may permanently reside in the proxy. If many

such contending requests occur for different blocks at k write-back boundaries, a proxy’s

memory may grow unbounded. We note that in practical scenarios, this type of memory

growth is improbable since clients will likely access some block in b1’s path over time

and b1 will be opportunistically written back to the server, freeing it’s memory. But the

unbounded memory issue is a theoretical possibility.

Solution : To mitigate the unbounded memory growth problem, QuORAM creates

a daemon process in the proxies wherein the daemon process simulates a client access

every preset interval of time (e.g., 100 ms). The background process mimics both o read

and o write requests within a proxy and that proxy fetches a path – real or fake –

in accordance with the ORAM algorithm, flushes the path, and writes-back k paths

after k accesses, including the accesses generated by the background process. We assume

the adversary is aware of this behavior where irrespective of client requests, each proxy

performs its own access at regular intervals.

168

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

To further ensure that a proxy’s Subtree (and hence it’s Stash) does not grow in

between the access intervals, we add a new datastructure called excessBlocks. Going back

to the memory issue example, excessBlocks stores all blocks retained by the proxy after a

write back to accommodate ongoing client requests. Introducing this new datastructure

modifies Step 8 of the ORAM logic: after receiving a write acknowledgement of k

paths from the server, a proxy moves all blocks in those k paths that are pointed to by

the incompleteCacheMap and which would have otherwise been deleted by TaORAM to

excessBlocks. This allows TaORAM Logic to free up all k paths from Subtree. In the

evaluation section §5.7, we experimentally show that the size of excessBlocks remains low

(c·logN , where c is a constant), irrespective of contention in the workload. §5.10 formally

analyzes the size of Stash, which is of order O(logN), as well as the space utilization of

a proxy.

Regarding how the daemon process selects blocks to access, it can be sequential,

pseudorandom, or blocks in excessBlocks. If an application chooses to access blocks in

excessBlocks, it must be noted that only blocks with no entries in incompleteCacheMap

can be accessed and if no such blocks exist or if excessBlocks is empty, then the daemon

process must continue to access blocks at preset intervals of time. Intuitively, how the

daemon process selects blocks has no implications on obliviousness because this process

simulates client requests; if an ORAM scheme hides how and what blocks are accessed by

clients, then it also hides how and what blocks are accessed by the background process.

5.6.3 Security and linearizability of QuORAM

Security:

The following theorem captures QuORAM’s security.

Theorem 1: Assuming individual ORAM units are aaob-secure, QuORAM is l-aaob-

169

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

secure.

§5.8 describes the detailed proof of the theorem. The core idea of the proof lies in

how QuORAM replicates data: for all types of logical requests, QuORAM executes a

query phase followed by a propagate phase. Both phases access the same number (i.e.,

majority) of ORAM units, even in the presence of failures. All system configurations – k

the write-back frequency parameter, the size of the incompleteCacheMap, and the access

interval of a proxy’s daemon process – are known to an adversary, and hence any decision

made based on these configurations do not leak any new information to an adversary.

Linearizability:

Theorem 2: QuORAM provides linearizability.

Arguing for linearizability – defined per data item – in replicated data systems, espe-

cially semi-honest ones, is non-trivial. §5.9 provides a detailed proof of how QuORAM

guarantees linearizable semantics.

Intuitively, QuORAM’s linearizability proof captures two main relations between any

two operations: (i) the tag values of any two completed logical operations have a strict

less-than or less-than-or-equal-to relation; and (ii) a given logical operation – read or write

– is atomic. The former point captures the relative ordering of logical operations and this

order is particularly important for conflicting operations. The latter point implies that if

an operation opi wrote a block, then an operation opj immediately succeeding opi must

read the block written by opi; and if operation opi merely read a block without writing it,

then operation opj immediately succeeding opi must also read the same value as opi. We

further note that even a compromised client executing QuORAM’s replication protocol

does not violate linearizability.

170

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

N.California Ohio N. Virginia
N. California 6.3ms 51.32ms 62.19ms

Ohio 53.34ms 3.24ms 13.26ms
N. Virginia 63.48ms 11.98ms 4.87ms

Table 5.1: RTT latencies across different datacenters in ms.

5.7 Evaluation

In this section, we discuss QuORAM’s experimental evaluations and contrast its

performance with multiple baselines. Of particular interest is a baseline that resembles

Obladi [47]’s approach to fault-tolerance. As noted earlier, to date Obladi is the only

other ORAM-based system that tolerates trusted proxy failures. Obladi achieves this by

relying on the fault tolerance guarantees of cloud databases; Obladi pushes the necessary

state of the proxy periodically to the external fault tolerant database and recovers the

proxy’s state from the database if and when the proxy fails. While Obladi provides many

additional guarantees, such as oblivious ACID transactional guarantees, we focus on its

design choice for fault tolerance.

While replication forms the core of fault tolerance, the two systems choose contrasting

designs to replicate data: Obladi relies on the external cloud database to manage the

replicas and QuORAM manages the replicas itself. To precisely measure how the choice

of replication affects performance we build a baseline consisting of a single TaORAM

proxy (since TaoStore is the basis of QuORAM’s ORAM scheme) that relies on a fault-

tolerant open source database, CockroachDB [198], to replicate data. The goal of this

baseline is to contrast the performance when an ORAM datastore (such as Obladi) relies

on a replicated database for fault tolerance vs. using QuORAM.

171

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

5.7.1 Experimental Setup

We evaluated QuORAM and its baselines on AWS using r5.xlarge instances with

32GB of memory, Intel Xeon Platinum 8000 CPU with 4 cores @ 3.1GHz, and a gp2

SSD. Storage servers for QuORAM and its baselines persist the data on disk. We run

our experiments on three different datacenters N. California, Ohio, and N. Virginia and

Table 5.1 records the round-trip-time (RTT) latencies across and within the three data-

centers. All the experiments place an ORAM unit (server & proxy) and a client process

in each datacenter. Each client process creates 100 concurrent threads to achieve concur-

rency. We believe this reflects a setup for real-world applications where geo-distributed

clients access data replicated across different datacenters. Note that we chose a replication

factor of 3 as it is typically the default replication factor used in current state-of-the-art

databases [53, 54].

Baselines:

Along with the CockroachDB-backed baseline, we evaluate QuORAM with 2 other

baselines as well. Note that all baselines and QuORAM receive requests from geo-

distributed clients. The 3 baselines are:

1. Insecure Replication Baseline: To measure the cost of providing obliviousness

guarantees, we compare QuORAM with an insecure replication baseline system that

deploys QuORAM’s replication protocol (§5.6.1) for fault-tolerance. More precisely, a

client queries from a majority quorum; for read operations it picks the value corresponding

to the highest tag and for write operations it increments the highest tag and updates

the value; it propagates the (potentially updated) tag and value to the same quorum

it read from. In this baseline, the clients interact directly with the data store replicas,

eliminating the need for proxies, and clients do not encrypt their data or perform any

ORAM related operations.

172

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

2. Secure No Replication (TaoStore): To measure the costs and benefits of fault-

tolerance, we use as a baseline the original non-replicated TaoStore [184] design consisting

of a trusted proxy and an external server both located in N. California. We choose

TaoStore as the non-replicated baseline over other concurrent ORAM schemes such as

ConcurORAM [36] or Oblivistore [193] because QuORAM ’s ORAM logic closely relates

to TaoStore’s and hence, TaoStore forms a better baseline for evaluating the costs-benefits

of replication, without accounting for performance differences due to ORAM scheme

disparities.

3. CockroachDB Baseline: This baseline uses TaoStore for obliviousness guarantees

and CockroachDB [198] for fault-tolerance (via replication managed by CockroachDB).

We use a single trusted proxy (analogous to Obladi’s single-proxy design) placed in N.

California and a three-node CockroachDB cluster with replicas distributed across N.

California, Ohio, and N. Virginia data centers, similar to QuORAM’s setup.

5.7.2 Implementation details

We implemented QuORAM as well as the three baselines by modifying an open-source

Java implementation of TaoStore, which forms the base ORAM scheme of QuORAM.

The implementation consists of ∼9,400 lines of Java code. To evaluate the systems, we

use YCSB-like [44] benchmarking.

The storage server stores 1 GB of data with a block size of 4096 bytes and a bucket

size of 4 blocks (i.e., each node in the tree stored at the external server consists of 4

blocks). To simulate an increasing load on the system, multiple client threads request

logical read/write operations. By default, the experiments use 300 concurrent and geo-

distributed clients accessing data at once (unless noted otherwise in an experiment). Each

client chooses a type of operation at random, sends the request, waits for the response,

173

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0 200 400 600 800 1,000
0

200

400

600

800

1000

1200

Concurrent Clients

T
h
ro
u
gh

p
u
t
(o
p
s/
s)

QuORAM
Insecure Replication
Secure No Replication
CockroachDB Baseline

Figure 5.7: QuORAM’s throughput is comparable with the Insecure replication base-
line, 1.4x higher than the No Replication baseline, and 33.2x higher than using Cock-
roachDB for fault-tolerance.

and then repeats the process. Each run of the experiment lasts three minutes, with all

clients ending at precisely the same time. For each operation, the block to be read or

written is chosen randomly among all the blocks using a Zipfian distribution with an

exponent of 0.9 (unless stated otherwise in an experiment), and the operation type is

picked uniformly at random between read and write. In all the experiments, each data

point represents an average of 3 runs and also marks the confidence interval. For system

configurations, we use a default value k = 40 and the daemon process accesses blocks

every 100ms where blocks are selected in a pseudorandom order.

5.7.3 Throughput and Latency

In the first set of experiments, we compare the throughput and latency of QuORAM

with the three baselines. Figures 5.7 and 5.8 respectively show throughput and latency

observed while increasing the number of concurrent clients.

174

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0 200 400 600 800 1,000
0

4

8

12

16

20

24

28

Concurrent Clients

L
at
en
cy

(s
)

QuORAM
Insecure Replication
Secure No Replication
CockroachDB Baseline

Figure 5.8: QuORAM’s latency is comparable with the Insecure replication baseline,
whereas the No replication baseline and CockroachDB suffer from a bottle-necked
single proxy.

Query phase Propagate phase
QuORAM 12ms 0.55ms

Insecure Replication 0.05ms 0.03ms

Table 5.2: Processing time spent in the query and propagate phases by replicas in
QuORAM vs. the Insecure replication baseline.

i. QuORAM vs. Insecure Replication Baseline

We first compare QuORAM with an insecure baseline that replicates data using

QuORAM’s replication protocol (§5.6.1). As seen in Figures 5.7 and 5.8, QuORAM’s

throughput and latency values are comparable with that of the insecure baseline in spite

of QuORAM providing privacy and obliviousness guarantees. To better understand the

minor performance differences between QuORAM and the insecure baseline, we measured

the average processing times spent by a replica in both the query and propagate phases

of the two protocols. Table 5.2 records the processing time breakdown. As noted in the

table, QuORAM’s query phase requires the most time because a proxy communicates

with its server to fetch a path. This includes 3-6ms intra-datacenter communication la-

175

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

tency (Table 5.1). The proxy also decrypts the read path, merges it with the Subtree, and

flushes the path, all of which incur processing latency. Meanwhile, the propagate phase

merely updates a block in the Subtree. Although as noted in Table 5.2, the processing

time for both phases of the insecure baseline require extremely low latency compared

to QuORAM, the communication cost (Table 5.1) overwhelms the processing time of

either protocols, causing both protocols to be latency bound. Due to this reason, both

QuORAM and the insecure baseline have comparable performances. This experiment

indicates that in geo-replicated datastores, the overhead of encrypting and hiding access

patterns of data is negligible compared to communicating with geo-distributed replicas.

ii. QuORAM vs. Secure No Replication Baseline

When comparing QuORAM’s performance with a non-fault tolerant baseline (Tao-

Store as-is), we see the most counter-intuitive result in this work. Because replication

involves additional communication with replicas and maintaining additional data struc-

tures (e.g., incompleteCacheMap), one can expect a replicated solution to perform worse

than its non-replicated counterpart. The reason why QuORAM outperforms a non-

replicated TaoStore datastore is because TaoStore consists of a single proxy, located in

N. California, which receives increasingly higher number of concurrent client requests,

whereas the client load is balanced across the three proxies in QuORAM. More impor-

tantly, since the experiment consists of geo-distributed clients and the proxy resides in

just one location, the clients farther from the proxy face large access latencies, reducing

the overall performance. Due to both load balancing and geo-replication, QuORAM’s

peak throughput is 1.4x higher than the non-replicated baseline.

iii. QuORAM vs. CockroachDB Baseline

Finally comparing QuORAM with a replicated ORAM scheme that relies on a fault-

tolerant database, CockroachDB, both in-terms of throughput and latency, QuORAM

clearly outperforms CockroachDB. The two main reasons causing CockroachDB to per-

176

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

form poorly are: (i) This baseline also consists of a single proxy that uses the read/write

interface of CockroachDB to read and write the data on the external database. This

single proxy, located in N. California, suffers from the same bottleneck issues as the non-

replicated baseline. To mitigate the single proxy bottleneck, deploying multiple proxies

– where a client communicates with any one proxy to access data – is a non-trivial task.

This is because each access updates only one proxy’s position map, stash, and subtree

data structures, and the other proxies now have inconsistent data or position maps.

Such solutions can neither guarantee linearizability nor obliviousness; (ii) The second

reason causing CockroachDB to perform poorly is its choice of replication design: Cock-

roachDB has a single leader for a given data item and this leader sequentially replicates

data across replicas. Because of this single leader approach, since every read or write

operation accesses the root node of the ORAM storage tree, all client operations are

executed sequentially. QuORAM, on the other hand, employs a decentralized replication

protocol, mitigating the single leader bottleneck. Because of the above two bottlenecks,

CockroachDB performs worse with increasingly concurrent client requests.

5.7.4 Varying write-back threshold k

This set of experiments measures the throughput and latency of client accesses while

varying the write-back threshold k, as seen in Figure 5.9. The parameter k resembles a

batching threshold: the higher the value of k, the higher the number of paths written

back together and vice versa. Although proxies in QuORAM process and maintain

larger number of paths locally with higher k values, it also results in fewer write-backs.

Moreover, because a background thread executes write-backs, k values do not have a

significant impact on throughput (with a range of 980-1030 ops/sec) or latency (about

290 ms), as can be seen in Figure 5.9. This indicates the performance of the system is

177

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0

200

400

600

800

1,000

1,200

T
h
ro
u
gh

p
u
t
(o
p
s/
s)

Throughput

0 20 40 60 80 100
0

100

200

300

400

k

L
at
en
cy

(m
s)

Latency

Figure 5.9: Varying the write-back frequency parameter k has no significant effect on
throughput or latency of QuORAM.

independent of the frequency of write-backs.

5.7.5 Varying contention

This experiment measures QuORAM’s performance – throughput and latency – while

varying the contention levels in client generated workloads and the results are shown in

Figure 5.10. Low contention, achieved by setting Zipfian exponent close to 0, implies

clients select blocks uniformly at random from a pool of 262,140 blocks (the size of

our dataset). High contention, achieved by setting Zipfian exponent to 0.9, indicates

clients pick a small percent of the blocks (e.g., 10%) with a high probability. Typi-

cally, in non-oblivious datastores, contention in client workloads directly impacts the

performance with higher contention causing low performance and vice versa. But the

performance of an oblivious datastore, such as QuORAM, must remain independent of

the contention in client workloads; otherwise an adversary can infer contention in client

workloads just by observing requests served per second. As Figure 5.10 clearly indicates,

178

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0

200

400

600

800

1,000

1,200

T
h
ro
u
gh

p
u
t
(o
p
s/
s)

Throughput

0 0.1 0.3 0.5 0.7 0.9
0

100

200

300

400

Zipf

L
at
en
cy

(m
s)

Latency

Figure 5.10: Varying Zipfian exponent to produce low to high contention workloads
has no significant effect on throughput or latency of QuORAM.

QuORAM’s throughput and latency values remain mostly constant with increasing con-

tention (increasing Zipfian exponent) in client workloads. This experiment highlights the

effectiveness of QuORAM in remaining impervious to contention in client workloads.

5.7.6 Stash and excessBlocks size analysis

In the next set of experiments, we measure the average sizes of Stash and excessBlocks

data structures over a 10-second window, calculated for the duration of 6 minutes, as

shown in Figures 5.11 and 5.12 respectively. Both figures depict the size of the respective

data structures for two different Zipfian distributions in client workloads: Zipfian expo-

nent close to 0 (≈ 0.00001) indicates low contention (i.e., most requests access unique

blocks) and Zipfian exponent of 0.9 implies high contention (i.e., most requests access a

small subset of blocks). Moreover, this experiment executes with the write-back thresh-

old k set to 1. The reason we choose to analyze the sizes of Stash and excessBlocks with

varying contention and with k = 1 is because of the memory issue discussed in §5.6.2.

179

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0 100 200 300 360
0

0.25

0.5

0.75

1

Time (s)

N
u
m
b
er

of
B
lo
ck
s

zipf=0.000001
zipf=0.9

Figure 5.11: The number of blocks in Stash remains low. The Stash’s 10-second
moving average size is under 1 block (implies the Stash has at least one block in the
last 10 seconds).

0 100 200 300 360
0

1

2

3

4

5

6

Time (s)

N
u
m
b
er

of
B
lo
ck
s

zipf=0.000001
zipf=0.9

Figure 5.12: The number of blocks in excessBlocks remains low. The excessBlocks’s
10-second moving average size at peak 6 blocks (= 0.33 · logN where N=262140 blocks
and logN ≈18).

180

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

Recall that the memory issue is caused when say two logical operations access the same

block and the second operation triggered a fake read. If the second operation’s o write

arrives after the proxy initiates a write-back, the proxy cannot delete the block after

receiving a write acknowledgement from the server (as TaoStore would have). To ensure

the size of Subtree, which impacts the size of Stash, remains low, we move blocks that

cause the memory issue into excessBlocks. Because excessBlocks’s size can vary based on

contention as well as when the write-back occurs frequently, we measure its sizes across

two extreme contention values and the worst case write-back threshold. First, analyzing

the Stash size, Figure 5.11 highlights that the size of the stash remains less than 1 over

a 10-second window, matching QuORAM’s theoretical Stash size guarantees of logN .

Second, analyzing the size of excessBlocks, Figure 5.12 indicates that even though excess-

Blocks’s size in larger for high contention, for both high and low contention workloads,

it’s size remains low (at worse (0.33 · logN) with N=262140 and logN = 18). We note

that choosing various strategies of how the daemon process in a proxy accesses blocks –

sequential, pseudorandom, or blocks from excessBlocks – has no significance on the size of

excessBlocks. This experiment clearly highlights that both Stash and excessBlocks remain

small for all types of contention in workloads.

5.7.7 Crash Experiment

The final experiment measures QuORAM’s performance when one (N. California) of

the three ORAM units crashes when 300 clients execute operations and the crashed unit

remains unavailable for the remainder of the experiment. The throughput and latency

over time is depicted in Figures 5.13 and 5.14 respectively. As the figures indicate, the

throughput drops and the latency increases steeply as soon as the crash occurs; both

values stabilize afterwards. In both figures, QuORAM’s throughput stabilizes at ∼800

181

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

0 100 200 300 360
0

200

400

600

800

1,000

1,200

Time (s)

T
h
ro
u
gh

p
u
t
(o
p
s/
s)

Crash Experiment
No Crash Experiment

Figure 5.13: When an ORAM unit crashes, after a short adjustment period, through-
put value stabilizes and the stabilized value is higher than the non-replicated baseline.

0 100 200 300 360
0

200

400

600

800

1,000

Time (s)

L
at
en
cy

(m
s)

Crash Experiment
No Crash Experiment

Figure 5.14: When an ORAM unit crashes, after a short adjustment period, latency
value stabilizes and the stabilized value is lower than the non-replicated baseline.

182

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

ops/s and latency stabilizes at ∼400ms. Even when failures occur, QuORAM performs

better that the non-replicated baseline. The drop in QuORAM’s throughput, which

is ∼300 ops/s, is roughly one-third of the overall throughput ∼1080 ops/s. In fact, the

reason the drop in throughput is less than one-third of the total throughput (∼300 instead

of ∼360) is because this experiment crashes the proxy in N. California, which adversely

affects only one set of clients. Whereas the clients in Ohio and N. Virginia continue to

benefit from forming a quorum of two nearby proxies (Table 5.1). This experiment shows

that QuORAM performs better than the non-replicated baseline even while tolerating f

ORAM unit failures.

5.8 Security of replicated ORAM datastores

This section discusses obliviousness of QuORAM. Recall the ORAM scheme and the

security definitions defined in Section 5.5.2. While the underlying ORAM scheme TaO-

RAM [184] is proved to be aaob-secure (adaptive asynchronous obliviousness), QuORAM

extends aaob-secure definition to include logical operations and defines l-aaob-security in

Section 5.5.2. Logical operations are client requested read and write operations, which

may internally consist of ORAM read and write operations. l-aaob-secure is an indistin-

guishability based security definition defined using a security game G in Section 5.5.2.

Theorem 1: Assuming individual ORAM units are aaob-secure, QuORAM is l-aaob-

secure.

Proof (Sketch): Sahin et al. proved the obliviousness of TaORAM in [184]. The most

important property of TaORAM (and tree-based ORAMs in general) is that every logical

access translates into fetching a random path from the server to the TaORAM Processor,

right after the Processor receives the logical access request. TaORAM achieves this

by initially randomly shuffling the dataset before uploading to the storage server, and

183

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

assigning a new random position to a block after each access. The position map in

TaORAM’s Processor keeps track of the random positions of all blocks.

We here focus only on the obliviousness of QuORAM, showing that it is l-aaob-secure.

The security game G is defined in Section 5.5.2. Because the actual proof involves similar

steps as TaORAM’s, we omit the full proof due to lack of space but we outline the

main steps necessary for the formal argument. The following are the key properties of

QuORAM in arguing for its l-aaob-security :

1) During initialization, the game shuffles the data set Db (after encryption) chosen

by the adversary as done in TaORAM. Note that a consequence of this is that no two

external servers store Db in the same order.

2) QuORAM’s replication protocol always accesses a quorum (majority) of ORAM

units for the query phase and the same quorum for the propagate phase. An adversary

A observing the communication between a client and the ORAM units sees 2 rounds of

communication between the client and a quorum, for either type of logical operations,

irrespective of the address or content of the block accessed.

3) In executing a logical operation, a proxy, p, is either part of the quorum or not. If

p is part of the quorum, it always receives o read before o write (if o read was dropped,

the proxy sends negative acknowledgement for the o write).

4) Given the fixed order of ORAM read and write requests for each logical request, in

response to o read, a proxy always fetches exactly one random path, either real or fake,

from the server. There are three ways in which a path may become ready to be written

back to the server. 1) The client sends an o write, and then the path fetched for the

corresponding o read becomes ready to be written back. 2) The incompleteCacheMap

becomes full and it chooses an entry to evict according to the eviction policy; the path

associated with that entry becomes ready to be written back. 3) A path fetched by the

daemon process is ready to be written back. When the number of paths to be written

184

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

back accumulates to k, the proxy writes them back in a batch. Importantly, the adversary

can predict the trigger for each of the case above, since 1) it observes every o read and

o write requests from the client and knows the random path fetched for each o read,

2) it can deduce the entries that reside in incompleteCacheMap and when it becomes full

and which entry should be evicted, and 3) the adversary predicts the access from the

daemon process (based on the preset interval). Therefore, observing the write-backs to

the server reveals no non-trivial information.

5) The incompleteCacheMap in QuORAM identifies blocks that are read but not yet

written. Maintaining this information crucially avoids re-fetching a path from the server

for a given logical request. Further, even if the incompleteCacheMap evicts an in-progress

block, the proxy still retains the block locally until it is written back to the server.

6) If an adversary A crashes either a server or a proxy, especially in the middle of a

query or a propagate phase, A observes the client, executing the protocol, randomly ac-

cess another ORAM unit and send two sequential requests (query followed by propagate)

to this additional unit.

7) The game notifies the completion of a logical operation to the adversary only after

a quorum of ORAM units complete executing both the query and propagate phase. If

the adversary delays scheduling one or more messages in either of the phases, it receives

delayed notification from the game.

In the security game (defined in game G in §5.5.2), an adversary generates two data

sets of the same size D0 and D1 and schedules multiple but finite pairs of logical requests

(lop0,m, lop1,m), where m identifies each request pair generated by the adversary. The

game randomly picks the challenge bit b ∈ {0, 1} and stores only Db in QuORAM and

executes only lopb,m from each request pair. To store Db in QuORAM, the game calls

Rep-ORAM on Db by invoking Db
encKi

, Ki ←Encodei(Db) for each ORAM unit i. The

external server and the proxy of an ORAM unit i store the encrypted data DencKi
and

185

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

the secret key Ki, respectively. The game executes QuORAM’s replication protocol as

defined in §5.6.1 for each logical request lopb,m. The adversary does not see the output

value of any operation it schedules (if it did, it would be trivial to guess the challenge

bit). To prove that QuORAM is l-aaob-secure, we need to argue that an adversary has

negligible advantage over randomly guessing the value of challenge bit b.

To do this, we show that from the adversary’s point of view, it cannot distinguish

a real execution of the game with a simulated game that does not use Db or lopb,m for

either b. First, instead of storing Db, the simulated game stores encryption of dummy

blocks (e.g., zero-value) and replaces block values in each lopb,m logical request also with

encryption of dummy blocks. Next, it simulates the view of the adversary as follows:

(i). For each o read request, a quorum (majority) of ORAM unit proxies are accessed;

(ii). After the first access, the proxies always fetch one random path from the server and

upon receiving the server response, proxies send a (response) message back; (iii) For each

o write request, the same quorum of ORAM unit proxies are accessed the second time,

and they return to the client a small (acknowledgement) message; (iv) The simulator

keeps track of the paths that are ready to be written-back triggered by o write, as well

as entries evicted from the incompleteCacheMap and accesses by the daemon process, and

batch-write k paths back to the server, whenever k paths become ready.

Based on the above discussed properties of QuORAM, we assert that the adversary

cannot distinguish the access behavior in the real and simulated cases, even in the pres-

ence of crash failures. This implies the l-aaob-secure of QuORAM.

5.9 Linearizability

As noted in TaoStore [184], the correctness of a read or write operation differs from

the obliviousness of the operation. Similar to TaORAM [184], QuORAM defines correct-

186

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

ness using linearizability or atomic semantics : to an external observer, a client operation

appears to take effect at a specific instance between the operation’s invocation and its

response indicating the operation’s success. This section proves the correctness of QuO-

RAM.

To argue for the correctness of QuORAM, we use the game G defined in Section 5.5.2

where the adversary schedules logical read/write operations but with a slight modification

where the adversary now receives the response values and hence the challenge bit is non-

existent. We call the modified game Gcorr and use it in arguing correctness.

Definitions : A history Hist represents a sequence of logical read/write operations,

viewed as the transcript after executing game Gcorr. Each operation opi in Hist consists

of an invocation event invi and a response event respi (which occurs after a successful

propagate phase in QuORAM). A history is said to be complete if for every invocation

event invi in the history there exists a corresponding response event respi; and otherwise

the history is said to be partial.

We represent each operation opi as (opid, bId, tagi, vi, ui) where opid identifies a glob-

ally unique logical operation, bId identifies a data block, tagi represents a non-decreasing

tag associated with the block, vi equals ⊥ for read operations and otherwise block’s value

to be updated with, and ui indicates the existing value of the block prior to executing

opi, derived by a client after the query phase of opi.

Similar to [184], ≤lin defines a linearizable relation between any two operations opi and

opj: opi ≤lin opj implies respi precedes invj in a given history. We note that linearizability

is defined for a single data block, i.e., both opi and opj operate on the same block

bId. Given a complete and finite history of operations executed by QuORAM, this

section proves QuORAM is linearizable, provided any adversary A eventually delivers all

messages (after delaying and/or reordering).

Lemma 1: A block bId’s response value ui, derived by a client after a successful query

187

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

phase of an operation opi, corresponds to bId’s highest tagged value.

Proof : Since each logical request in QuORAM reads from and writes to a (majority)

quorum, there exists at least one over-lapping ORAM unit between any two logical

requests. For each ORAM unit, TaORAM [184] guarantees that the unit maintains

fresh-subtree invariant: “The contents on the paths in the local subtree and stash are

always up-to-date, while the server contains the most up-to-date content for the remaining

blocks”. Thus, when a client executes the query phase of a logical operation opi, at least

one ORAM unit answers with block bId’s value ui corresponding to the highest tag (either

from the ORAM unit’s proxy or the server), proving Lemma 1 holds. □

Lemma 2: Tags of a block bId maintained by an ORAM unit (either at the proxy or at

the server) are monotonically non-decreasing.

Proof : As described in Algorithm 7, clients in QuORAM either retains tag values (for

reads) or increments them (for writes) but never decrements tag values. Lemma 1 shows

that a client always receives the highest tag for a block while executing the query phase,

which it may retain or increment based on the type of the operation. Further, as discussed

in §5.6.1, an ORAM unit’s proxy updates a block’s tag after receiving an o write request

if and only if the new tag is greater than the block’s current tag. Based on the above

arguments, it is shown that Lemma 2 holds. □

In our proposed system, linearizability captures two main relations between any two

operations in a history: (i) the tag values of any two completed logical operations have a

strict < or ≤ relation; and (ii) a given logical operation – read or write – is atomic. The

former point captures the relative ordering of logical operations. The latter point implies

that if an operation opi wrote a block, then an operation opj immediately succeeding opi

must read the block written by opi; and if operation opi merely read a block without

writing it, then operation opj immediately succeeding opi must also read the same value

188

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

as opi. We formally define the two relations captured by linearizability as follows.

Definition 1: A complete and finite history Hist is linearizable if for any two logical

operations opi = (bId, tagi, vi, ui) and opj = (bId, tagj, vj, uj), and opi, opj ∈ Hist, the

following conditions hold:

1 if opi precedes opj, then (i) tagi < tagj if opj is a write operation, or (ii) tagi ≤ tagj

if opj is a read operation.

2 if opi precedes opj such that tagi is the highest tag less than or equal to tagj, then

(i) uj = vi if vi ̸= ⊥ (opi is a write), or (ii) uj = ui if vi = ⊥ (opi is a read).

Theorem 2: QuORAM provides linearizability.

Proof : 1 To prove the first condition, we consider the two possible types of operations

opj can be:

(i) If opj is a write: From Lemma 1 and 2, a logical write always increments the

highest tag of a block. Since opj is a write, and opi may or may not be, due to the

quorum intersection, opj receives the highest tag in its query phase and increments it.

Hence, the tag of opj is strictly greater than that of opi.

(ii) If opj is a read : From Lemma 1 and 2, given the tag of a block is monotonically

non-decreasing, we know that tagj ≮ tagi, as opi precedes opj. Since tags are incremented

only on writes, if no write took place between opi and opj, then tagi = tagj; whereas if

a write operation opk occurred after opi and before opj, then tagi < tagk (from step (i)),

and by transitivity, tagi < tagj. This is true for any number of write operations between

opi and opj. Hence, tagi ≤ tagj.

2 Given that tagi is the highest tag less than or equal to tagj, irrespective of the

type of operation of opj, due to Lemma 1, when opj executes the query phase, it receives

the current highest tag of the block, i.e., tagi and its associated value. (i) Now, if opi

wrote the block, then the block’s value is vi and hence when opj queries the block, it

189

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

receives vi. Thus uj = vi. This shows that writes are atomic as any operation executing

after a write reads the updated value.

(ii) If opi merely read the value, which was equal to ui, then since opj immediately

succeeds opi for block bId, opj’s read value also equals ui as no other operation updated

the block. Thus ui = uj. This shows that reads are atomic. □

5.10 Space analysis

This section analyzes the stash size of QuORAM and the space utilized at the proxy.

5.10.1 Stash size analysis

Lemma 3: Similar to TaORAM, QuORAM’s stash size is bounded by any function F(N)

= ω·logN, except with negligible probability in N .

Proof: The core idea of this proof lies in mapping the execution of QuORAM to that

of TaORAM in a straight-forward way. TaORAM’s stash size is proved to be bounded

by a function F (N) = ω · logN (e.g., F (N) = (logloglogN) · logN) and by mapping

QuORAM’s execution to that of TaORAM we prove that QuORAM has the same stash

size guarantees as TaORAM.

To analyze QuORAM’s stash size, recall the details of the unbounded space issue

and its solution discussed in §5.6.2. The memory issue is caused due to the asynchrony

in receiving o read and o write requests for a logical request; if a proxy initiates a

write-back in between receiving the two requests, and if the o read had triggered a fake

read, the proxy cannot delete the block after receiving a write acknowledgement from

the server. This is because the block’s latest o write arrived after the proxy initiated

the write-back. In the unlikely case that this block or any block in its path is never

accessed again, this block will always reside in the Subtree. This may in-turn affect the

190

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

size of the Stash. QuORAM mitigates this issue by moving such blocks to excessBlocks

datastructure and the daemon process in each proxy accesses (i.e., mimics o reads and

o writes) blocks in the excessBlocks at pre-set intervals of time. This can be viewed as,

from TaORAM’s perspective, all blocks that can be deleted after receiving a write-back

acknowledgement from the server will be deleted from the Subtree (and some may move

to excessBlocks). As seen with this abstraction, QuORAM relies on TaORAM’s logic

of freeing the Subtree, without any changes, and hence QuORAM’s stash size analysis

follows that of TaORAM and the size is bounded by any function F(N) = ω·logN, except

with negligible probability in N . □

5.10.2 Proxy space analysis

A proxy in QuORAM maintains two types of information: temporary data pertaining

to the on-going requests and permanent data related to the ORAM scheme. As discussed

in TaoStore [184] and as proved in the Lemma 3, with regard to permanent data for the

ORAM scheme, the proxy maintains a stash (of size ω · logN), position map (of size

N · logN), and secret key (of size λ), and so the order of storage size of this is:

ORAM related = O(N · logN + λ)

The size of the temporary data is directly proportional to the number of concurrent

logical requests, I. The size of I depends on many dynamically changing parameters

such as the number of concurrent clients and their request sending rate, the processing

powers of the proxy, the server and the clients, the bandwidth and asynchronous nature

of the network, the geo-graphical distance between the client and the ORAM units,

etc. The temporary storage, analyzed w.r.t I, stems mainly the incompleteCacheMap

and excessBlocks. The incompleteCacheMap has bounded size fixed by a configurable

191

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

parameter, R, and the excessBlocks datastructure’s size depends on the access pattern as

well as the daemon process’s data access interval. Since we have already shown through

experiments that excessBlocks’ size remains a constant, E, in most practical workloads,

the temporary storage can be computed as:

Temporary space =

O(I · logN)︸ ︷︷ ︸
Subtree

+ O(R)︸ ︷︷ ︸
incompleteCacheMap

+ O(E)︸ ︷︷ ︸
excessBlocks

We consider steady execution state to be the one where the server responds to the path

fetching requests and the clients send o write requests, both within a reasonable time

bounds. In steady state, after receiving o write request for a given logical request, the

proxy removes the incompleteCacheMap entry and writes back to the server after k logical

requests, freeing Subtree. Hence the steady state memory consumption of QuORAM is

the same as TaORAM:

Steady memory use = O(k · logN +N · logN + λ)

A malicious adversary can hamper the steady state in two ways: (i) not send any

responses to the path fetch requests, or (ii) discard all o write requests from clients. The

proxy mitigates the latter case (as discussed in §5.6.2) by evicting entries corresponding

to previously received o reads from incompleteCacheMap; evictions increment the paths

counter and in the discussed adversarial case, a proxy writes k paths back after k evictions

(if a proxy receives no o write). For the former case, if a proxy receives no path fetch

response for a set threshold of time, the proxy stops accepting any requests from a client.

192

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

5.11 Related Work

While the literature on ORAM schemes consists of many works [78, 194, 192, 193,

23, 184, 136, 47], to date, Obladi [47] by Crooks et al. is the only system to consider

the fault-tolerance aspect of an ORAM system. While Obladi provides transactional

(ACID) guarantees in an ORAM setting, it compares to QuORAM in its durability or

fault-tolerance aspect. Obladi assumes the external and untrusted cloud storage server to

be inherently fault-tolerant – a property guaranteed by most cloud providers – and relies

on this guarantee to make the ORAM proxy fault-tolerant as well. Obladi pushes the

state of the stateful proxy to the external server at periodic intervals; if the proxy crashes,

it is restored to the last state pushed to the server. QuORAM has two main advantages

over Obladi’s design choice of fault-tolerance: i) in spite of backing up the proxy’s state

at set intervals, Obladi becomes unavailable during proxy failures and recovery, and

ii) as shown in the experiments, relying on cloud providers for fault-tolerance incurs

performance penalties compared to QuORAM’s choice of fault-tolerance. Another work

EHAP-ORAM [135] relies on Non-volatile Memory (NVM) based hardware to persist

data to recover from crashes. But the proposed solution cannot be generalized for non-

NVM based ORAM datastores.

In Pharos [223], Zakhary et al. are one of the first to demonstrate the challenges

of extending ORAM schemes to include replication. The authors show that naively

replicating an ORAM system leaks non-trivial sensitive information. However, no correct

ORAM fault-tolerant solution is proposed.

In a separate line of work, many works [36, 194, 192, 138, 136, 193, 228] have looked

at extending a single ORAM server model to multi-server, multi-cloud settings. In SSS-

ORAM[194] Stefanov et al. propose partitioned ORAM: an ORAM of N items split into
√
N ORAMs, each of

√
N size, albeit with a single cloud assumption. In [138], Lu et

193

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

al. propose a distributed two-server ORAM from a theoretical perspective. They show

that with two non-colluding servers, client bandwidth can be reduced to O(logN). In

[192] Stefanov et al. extend [194] to propose a multi-cloud oblivious storage solution to

reduce client-cloud bandwidth cost. The paper discusses a 2-cloud solution: an ORAM

of N items is split across two non-colluding servers where after each data block’s access,

the two servers perform two-cloud shuffling to randomly shuffle the accessed block before

its next access. In [136] Liu et al. build on [192] to optimize not only client storage

and server bandwidth, but also on the cloud-cloud bandwidth, leading to reduced overall

response time. Oblivistore[193] by Stefanov et al. also extends SSS-ORAM [194] to not

only incorporate asynchronous concurrency but also to distribute an N item ORAM into

multiple servers. The work also proposes ways to dynamically add ORAM nodes and

external storage servers. CURIOUS [23] proposes a simpler solution to distribute data

across multiple storage servers and serves concurrent client requests. ConcurORAM [36]

allows a constant c number of concurrent clients to query at a time and require APIs for

fine-grained locking and additional datastructures from the server.

While the above works extend a partition-based ORAM scheme ([194]) to multi-

server or multi-cloud schemes, in [228] Zhang et al. extend the tree-based ORAM ([195])

into a two-server setting by splitting the storage tree across two non-colluding servers to

enhance performance. While the above proposals distribute data across storage servers,

their deployment uses a single proxy. Recently Snoopy [50] partitions the data and the

proxies where for scalability, proxies executing on trusted hardware serve different sets

of client requests.

The main differences between prior proposals [194, 192, 138, 136, 193, 228, 50] and

QuORAM are: i). the former proposals are non-replicated, i.e. each server stores a

disjoint set of data items, whereas in QuORAM all servers store the same set of data

items; ii) the former proposals are not fault-tolerant and can lose the data if a server

194

QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore Chapter 5

or an ORAM client fails, unlike in QuORAM that tolerates server and ORAM client

failures.

5.12 Conclusion

This work proposed QuORAM a quorum-replicated ORAM datastore that provides

fault-tolerance and linearizable semantics. To date, QuORAM is the first system to

replicate data while preserving obliviousness by hiding access patterns. QuORAM’s

novel replication protocol avoids locking – a standard technique to guarantee lineariz-

ability in distributed data systems – as employing locking can leak non-trivial informa-

tion. Because QuORAM’s replication protocol chooses a decentralized design, QuORAM

performs 33.2x better in throughput compared to relying on CockroachDB for fault tol-

erance, which consists of a centralized replication protocol. QuORAM’s evaluation with a

non-replicated ORAM baseline establishes the performance benefits of replication: due to

geo-replication, clients can access data from close-by replicas thus increasing QuORAM’s

peak throughput by 1.4x compared to the non-replicated baseline. Finally, the experi-

ments indicate that the overhead of achieving obliviousness using QuORAM is negligible

compared to the cost of fault-tolerance due to communication among geo-distributed

replicas.

195

Chapter 6

ORTOA: One Round Trip Oblivious

Access

Cloud based storage-as-a-service is quickly gaining popularity due to its many advantages

such as scalability and pay-as-you-use cost model. However, storing data using third-

party services on third-party servers creates vulnerabilities, especially pertaining to data

privacy. While data encryption is an obvious choice to achieve data privacy, attacks

based on access patterns have shown that mere encryption is insufficient to fully hide the

data from the storage vendor. Solutions such as Oblivious RAM (ORAM) and Private

Information Retrieval (PIR) propose techniques to hide data access patterns. Hiding

access patterns involves hiding both the specific data item accessed and the type of access

– read or write – on the item. Most existing obliviousness solutions focus on hiding the

accessed data item; whereas to hide the type of access, these techniques communicate

twice with the remote storage, sequentially: once to read and once to write, even though

one of the rounds is redundant with regard to a user’s access request. To mitigate this

redundancy, we propose ORTOA- a One Round Trip Oblivious Access protocol that

reads or writes data stored on remote storage in one round without revealing the type

196

ORTOA: One Round Trip Oblivious Access Chapter 6

of access. To our knowledge, ORTOA is the first generalized protocol to obfuscate the

type of access in a single round, reducing the communication overhead by half. ORTOA

focuses on hiding the type of access and due to its generalized design, can be integrated

with many existing obliviousness techniques that hide the specific data item accessed.

Our experimental evaluations show that compared to ORTOA a baseline that requires

two rounds to hide the type of access incurs 0.76x-1.61x higher latency and 43%-61%

lower throughput than ORTOA.

6.1 Introduction

Data privacy is becoming one of the major challenges faced by the systems community

today. Industries such as Facebook and Google are fined millions to billions [60, 84] of

dollars for violating user data privacy, creating an urgent need to build systems that

provide data privacy. While data encryption provides a preliminary data privacy solution,

many works [166, 165, 105, 211] highlight that mere data encryption is insufficient to

preserve data privacy. These works show that just by observing data access patterns, an

adversary can infer non-trivial information about the data or the user. Such inference

attacks are termed access pattern attacks.

Solutions such as Oblivious RAM (ORAM) [78, 195, 25, 184, 181, 215, 51] and

Private Information Retrieval (PIR) [42, 218, 120] provide mechanisms to hide access

patterns. Most of these works assume trusted clients who host their data on untrusted

servers that are typically managed by third party cloud providers. ORAM solutions

achieve access pattern obliviousness by shuffling the physical locations of the data stored

on the untrusted server after every access. While some PIR schemes write the data [25,

134], most PIR schemes focus on retrieving or reading a data item without revealing the

identity of the retrieved item to the external server. More recently, Pancake [90] proposed

197

ORTOA: One Round Trip Oblivious Access Chapter 6

frequency smoothing to obfuscate access patterns wherein the access frequencies to all

entries in the database are smoothed so that an adversary cannot infer any non-trivial

insights on the data. Albeit using a less stringent but realistic security model, Pancake

highlights the highly pragmatic nature of frequency smoothing, with significantly better

performance than ORAM based solutions.

In general, access pattern obliviousness in the above schemes consists of two aspects:

(i) hiding the exact data item, or rather the exact physical location of the data item

accessed by a client; (ii) hiding the type of access, i.e. a read vs. a write, requested by a

client. To our knowledge, most existing solutions for access pattern obliviousness focus

on proposing novel ways to solve aspect (i); whereas for aspect (ii), the most commonly

adapted solution is to always perform a read followed by a write [195, 184, 90, 181],

irrespective of the type of request. Always reading followed by writing to hide the type

of access incurs two sequential rounds of accesses between the clients and the external

server resulting in significant overhead; eliminating this additional overhead is the focus

of this chapter.

The goal of this work is to provide a one-round solution to read or write data stored

on an external server without revealing the type of access. This work does not focus on

hiding the physical locations that clients access, which is orthogonal to hiding the type

of access. The proposed solution can be integrated with solutions such as frequency

smoothing or ORAM to hide the specific data item accessed in a single round.

We propose, ORTOA, a novel One Round Trip Oblivious Access protocol to access

a data item stored on an external untrusted server without revealing the type of access,

in a single round. This reduction in one round of communication plays a vital role in

reducing end-to-end latency, especially in geo-distributed settings. For companies such as

Amazon and Google, end-to-end latency directly impacts revenue. For example, Amazon

198

ORTOA: One Round Trip Oblivious Access Chapter 6

reported losing 1% revenue (worth $3.8 billion!) for every 100 ms lag in loading pages [6];

Google stated that its traffic drops by 20% if search results take an additional 500 ms to

load [86].

Our motivation in proposing ORTOA is to bridge the gap between traditional vs.

privacy-preserving datastores. Contrasting oblivious datastores with their trusted non-

privacy-preserving counterparts, many real world databases such as MongoDB [159] and

Redis [180] read and write (or get and put) data in a single round. The low performance

of oblivious datastores forms a major barrier towards their adoption in industry. Hence,

by proposing a technique that allows oblivious datastores to read/write data in a single

round trip, we aim to bridge some of the gaps prevalent in commercializing oblivious

datastores.

Furthermore, with increasing privacy laws such as GDPR [72] that prohibit data

movement across continents, a solution such as ORTOA becomes even more relevant.

This is because cross-continent communication suffers from expensive latency and avoid-

ing sequential rounds of communication can be of great value for application developers.

With restricted data movement, we believe that new protocols should trade-off sending

larger amounts of data for reduced number of communication rounds.

Related work: To the best of our knowledge, ORTOA is the only solution that tackles

the problem of hiding the type of operation in a generalized manner. The literature on

ORAM constructions consists of a number of specialized solutions that achieve single

round communication complexity [215, 139, 63, 51, 77, 26, 74, 70]. Despite achieving

a one-round ORAM scheme, these solutions primarily differ from ORTOA in that they

mainly focus on hiding the data access patterns, with mechanisms to hide the type of

access that is tightly coupled with hiding access pattern. ORTOA on the other hand

focuses on hiding the type of access in a more generalized way that can be adapted to

construct obliviousness solutions such as ORAM or frequency smoothing [90]. Moreover,

199

ORTOA: One Round Trip Oblivious Access Chapter 6

all of the above single round ORAM schemes have a lower bound bandwidth cost of

log(N), where N is the number of data items [78, 130] or
√
N lower bound when the data

storage server performs no computations [33]. Most of this cost stems from hiding the

data access patterns. Since ORTOA focuses only on obfuscating the type of access, it

has a constant bandwidth cost independent of N , the number of data items (as will be

shown in §6.4).

Chapter organization: The chapter is organized as follows: Section 6.2 presents the

system and security model; Section 6.3 proposes a one-round oblivious access solution us-

ing an existing cryptographic primitive, fully homomorphic encryption, and discusses the

impracticality of this approach. Section 6.4 then presents our novel protocol, ORTOA,

to obliviously read or write in one round, followed by Section 6.5 discussing a space op-

timization and other optimizations of the protocol. Section 6.6 presents an experimental

evaluation of ORTOA. Section 6.7 proves the security of ORTOA and finally Section 6.8

concludes the chapter.

6.2 System and Security Model

6.2.1 System Model

ORTOA is designed for key-value stores where a unique key identifies a given data

item and the key-value store supports single key GET and PUT operations. The data is

stored on an external server(s) managed by a third party, analogous to renting servers

from third party cloud providers.

We assume the external server that stores the data to be untrusted. Furthermore, the

system uses a proxy model commonly deployed in many privacy preserving data systems

[179, 184, 90, 193]. The proxy is assumed to be trusted and the clients interact with the

200

ORTOA: One Round Trip Oblivious Access Chapter 6

external server by routing requests through the proxy. Alternately, the system can also

be viewed as a single trusted client interacting with the externally stored data on behalf

of users from within the trusted domain. The proxy is a stateful entity and remains

highly available; ensuring high availability of the proxy is orthogonal to the protocol

presented here.

All communication channels – clients to proxy, proxy to server – are asynchronous,

unreliable, and insecure. The adversary can view (encrypted) messages, delay message

deliveries, or reorder messages. All communication channels use encryption mechanisms

such as transport layer security [205] to mitigate message tampering.

6.2.2 Data and Storage Model

Each data item consists of a unique key and a value, where all values are of equal

length – an assumption necessary to avoid any leaks based on the length of the values

(equal length can be achieved by padding). Neither an item’s key nor its value is stored

in the clear at the server. For a given key-value item < k, v >, the keys are encoded using

pseudorandom functions (PRFs) 1. A PRF’s determinism permits a proxy to encode a

given key multiple times while resulting in the same encoding; this encoding can then

be used to access the value of a given key from the server. We use a procedure Enc to

encode the values (this procedure differs from Section 6.3 to Section 6.4). For a key k

and its corresponding value v, the server essentially stores < PRF (k), Enc(v) >.

6.2.3 Threat Model

As mentioned earlier, this work focuses on hiding only the type of access generated

by clients and not the actual physical locations accessed by client requests. We assume an

1Alternate to PRFs, searchable encryption schemes can also be used. The main requirement is to
have a deterministic encoding of plaintext keys.

201

ORTOA: One Round Trip Oblivious Access Chapter 6

honest-but-curious adversary that wants to learn the type of access performed by clients

without deviating from executing the designated protocol correctly. The adversary can

control the external server as well as all the communication channels – proxy to external

server and clients to proxy. We further assume the adversary can access (encrypted)

queries to and from a sender and can inject queries (say by compromising clients).

6.3 FHE based solution

This section presents a one round mechanism to hide the type of accesses using an

existing cryptographic primitive, Fully Homomorphic Encryption (FHE) [73, 30, 61].

We first provide a high-level overview of FHE, and then present a one-round read-write

solution that uses FHE, and finally discuss the impracticality of the solution.

6.3.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a form of encryption scheme that allows computing on

encrypted data without having to decrypt the data, such that the result of the compu-

tation remains encrypted. Homomorphic encryption schemes add a small random term,

called noise, during the encryption process to guarantee security. A homomorphic en-

cryption function HE takes a secret-key sk, a message m, and a noise value n as input

and produces the ciphertext, ct, as output as shown in Equation 6.1. The correspond-

ing decryption function HD takes the secret-key and the ciphertext as input to produce

message m:

ct = HE(sk,m, n); m = HD(sk, ct) (6.1)

An important property of a homomorphic encryption scheme is that the noise must be

small; in fact, the decryption function fails if the noise becomes greater than a threshold

202

ORTOA: One Round Trip Oblivious Access Chapter 6

value, a value that depends on a given FHE scheme.

Homomorphic encryption schemes allow computing over encrypted data. Some homo-

morphic encryption schemes support addition [173, 21] and some other schemes support

multiplication [58]. A fully homomorphic encryption (FHE) scheme supports both addi-

tion and multiplication on encrypted data [73, 30, 61]. An FHE scheme, FHE , applied

on two messages m1 and m2 (and two noise values n1 and n2) can perform the following

two operations:

FHE(m1;n1) + FHE(m2;n2) = FHE(m1 +m2;n1 + n2) (6.2)

FHE(m1;n1) ∗ FHE(m2;n2) = FHE(m1 ∗m2;n1 ∗ n2) (6.3)

For small noise values n1 and n2, decrypting FHE(m1 + m2;n1 + n2) results in the

plaintext addition of m1 +m2, and similarly decrypting FHE(m1 ∗m2;n1 ∗ n2) results

in the plaintext multiplication of m1 ∗ m2. As illustrated above, each homomorphic

operation increases the amount of noise included in the encrypted value.

6.3.2 One-round oblivious read-write using FHE

To hide the type of client operation, i.e., read or write, from an adversary who might

control the storage server, it is necessary for both read and write requests to be indis-

tinguishable. Hence, both operations need to read and write a given physical location.

More specifically, a read request should write back the same value it read, while a write

request should write the new value, potentially distinct from the value it read. This is

especially challenging to achieve in a single round as the value to be read is stored only at

the external server ; due to this challenge, existing solutions communicate with the server

twice: first to read an item and then to write it.

203

ORTOA: One Round Trip Oblivious Access Chapter 6

We aim to use FHE to support executing read and write operations in a single round

of communication to the external key-value store. Specifically, this section uses an FHE

scheme as the encoding procedure Enc specified in Section 6.2.2 to encrypt the values of

the key-value store. For a given key-value pair, the server stores < PRF (k),FHE(v) >.

Let vold be the current value of a given data item, which is stored only at the server

(after encrypting FHE(vold)), and let vnew be the updated value of the data item, for a

write operation (and an ‘empty’ value for a read). The challenge is to develop an FHE

procedure (or computation) Pr with parameters FHE(vold) and FHE(vnew) such that:

For reads : Pr(FHE(vold) , FHE(vnew)) = FHE(vold)

Forwrites : Pr(FHE(vold) , FHE(vnew)) = FHE(vnew) (5)

With such a procedure, the external server can execute the same procedure Pr for both

read and write requests but the result of Pr would vary depending on the type of access.

If we can design such a procedure, since the server already stores FHE(vold), the proxy

only needs to send FHE(vnew) in a single round and expect the correct result for either

type of operations.

To develop such a procedure, the proxy creates a two-dimensional binary vector

C = [cr, cw] where cr is 1 for read operations (otherwise 0) and cw is a 1 for write

operations (otherwise 0). To see how the vector can be helpful, briefly disregard any

data encryption and consider the data in the plain. We construct a procedure Pr′:

Procedure Pr′(vold, vnew, [cr, cw]):

return (vold ∗ cr) + (vnew ∗ cw)

For reads, when cr = 1 and cw = 0, the result of Pr′ is vold; otherwise, for writes

when cr = 0 and cw = 1, the result of Pr′ is vnew. The above procedure gives us the

204

ORTOA: One Round Trip Oblivious Access Chapter 6

desired functionality, albeit with no encryption. Given that FHE encrypted values can

be added and multiplied, Pr′ can be refined to procedure Pr to include FHE encrypted

inputs:

Procedure

Pr(FHE(vold), FHE(vnew), [FHE(cr), FHE(cw)]):

return FHE(vold) ∗ FHE(cr) + FHE(vnew) ∗ FHE(cw)

With Procedure Pr that results in the desired outcomes as defined in Equation 5,

the next steps elaborate on the specific operations of the proxy and the server:

(1) Upon receiving either a Read(k) or a Write(k, vnew) request from a client, the

proxy creates vector C such that for reads, C = [1, 0] and for writes, C = [0, 1].

(2) Proxy then sends FHE(C), i.e. [FHE(cr), FHE(cw)], along with FHE(vnew),

where vnew has a dummy value for reads. It also sends PRF (k) so that the server can

identify the location to access.

(3) The server, upon receiving the encoded key along with the 3 encrypted entities,

reads the value currently stored at key PRF (k). The server then executes Procedure Pr

by using the stored value FHE(vold) and the 3 entities sent by the proxy. The server then

updates its stored value to the output of the computation and sends the output back to

the proxy.

(4) Given that either cr or cw is 0, Procedure Pr’s output will either be FHE(vold)

for reads or FHE(vnew) for writes, as shown in Equation 7:

For reads : FHE(vold) ∗ FHE(1) + FHE(vnew) ∗ FHE(0) = FHE(vold)

Forwrites : FHE(vold) ∗ FHE(0) + FHE(vnew) ∗ FHE(1) = FHE(vnew) (7)

For reads, the proxy decrypts FHE(vold) using FHE’s secret-key to retrieve the data

205

ORTOA: One Round Trip Oblivious Access Chapter 6

item’s value. For writes, the proxy ignores the returned value.

Thus, by leveraging the properties of FHEs that allow computing on encrypted data,

specifically executing Procedure Pr, we theoretically showed how to read or write data

in one round without revealing the type of access.

6.3.3 Challenges with FHE based solution

Although we have shown the theoretical feasibility of using FHE to read or write data

obliviously in one round, this approach is not practically feasible, mainly due to the noise

n necessary for homomorphic encryption (as shown in Equations 6.2 and 6.3). As noted

above, the noise increases with each homomorphic computation, with the increase being

especially drastic for homomorphic multiplications, which the Procedure Pr requires for

both read and write accesses.

To gauge the practicality of the above described FHE based solution, we developed

and evaluated a prototype of the solution. The prototype used Microsoft SEAL [155]

FHE library with BFV [61] scheme. The evaluation used values of size 1kb and 128-bit

secret keys, and BFV coefficients set to their default in the SEAL library.

Our experiments revealed that after about 10 accesses to a specific data item, the

noise value grew too large for the FHE decryption to succeed, essentially rendering this

solution impractical for any use in real deployments. The inevitable multiplication in

Procedure Pr for both reads and writes is the root cause of this infeasibility. We believe

that our proposed FHE solution can be used in the future if better performing FHE

schemes are invented that control the amount of noise amplification.

206

ORTOA: One Round Trip Oblivious Access Chapter 6

6.4 ORTOA

Having shown that the use of an existing cryptographic primitive, Fully Homomorphic

Encryption (FHE), as-is is impractical to provide the desired one round-trip oblivious

access approach, we propose a novel protocol, ORTOA, that avoids FHE.

Since the existing encryption scheme, FHE, failed to provide the desired result, we

take a step further and define a rather unique way of encoding the data values stored

at the external server. We first consider the plaintext value in its binary format. For

each binary bit of the plaintext, the server stores a secret label generated by the proxy

using pseudorandom functions. This idea of encoding bits using secret labels is inspired

by garbled circuit constructions [217, 132].

More precisely, if k is a data item’s key and v its plaintext value in binary, then the

server stores:

< PRF (k), (sl
(1)
b1 , . . . , sl

(j)
bj , . . . , sl

(ℓ)
bℓ) >

where ℓ = |v|, sl(j)bj is a secret label corresponding to the jth index of v from the left

(indicated as the superscript) where j goes from 1 to ℓ, and ∀j, bj ∈ {0, 1} represents

bit value 0 or 1 (indicated as the subscript). For example if ℓ = 3 and v = 101 (in binary

notation) , then the server stores (sl
(1)
1 , sl

(2)
0 , sl

(3)
1). The secret labels are generated using

a pseudorandom function of the form PRF (k, j, b, ct) that takes the key k, position index

j from left, the corresponding bit value b and an access counter ct. Because PRFs are

deterministic functions, invoking the chosen PRF with the same set of inputs any number

of times will result in the same output secret label.

The goal of ORTOA is to read and write data in one round-trip, without revealing

the type of access. Intuitively, it becomes evident that to hide reads from writes, every

access to a data item must write the data, which is what ORTOA does at a high level:

it updates the secret labels of a data item whenever a client accesses the item – be it

207

ORTOA: One Round Trip Oblivious Access Chapter 6

for a read or a write. We use the notation ol to represent the old secret label currently

stored at the server and nl to represent the new label that would replace the old label.

To be able to regenerate the last array of secret labels for a given data item, the proxy

maintains an access counter indicating the total access count of an item.

6.4.1 An Illustrative Example

For ease of exposition, we first explain how ORTOA executes reads and writes using

a simple example. We formally present the protocol in the next section.

Recall that all data values are of the same length, ℓ bits, indexed 1 to ℓ. In this exam-

ple, let ℓ = 1, and let k be the specific key accessed by a client where the corresponding

key-value tuple is < k, 0 >, i.e., the value associated with k is 0. Since the server does

not store keys or values in plain, the server stores the corresponding tuple < PRF (k) ,

ol
(1)
0 > where ol

(1)
0 is a secret label for bit value 0 (indicated as the subscript) at index 1

(indicated as the superscript).

1. Client: The client either sends a Req(Read, k) or a Req(Write, k, v′) request to

the proxy, where v′ is an updated value for k. In this example, we assume v′ is 1.

2. Proxy: The proxy, in response, executes the following steps:

2.1 The proxy generates two old secret labels < ol
(1)
0 , ol

(1)
1 > (where ol indicates old

label) both for index 1 by calling PRF (k, 1, b, ct) where b ∈ {0, 1} and ct is k’s

access counter. For each index, the proxy needs to generate labels for both bit

values 0 and 1 since it does not know the actual value, which is stored only at the

server.

2.2 The proxy next generates two new labels < nl
(1)
0 , nl

(1)
1 > (where nl indicates new

label) both for index 1 by calling PRF (k, 1, b, ct+1) where b ∈ {0, 1} and it updates

k’s access count to ct+ 1.

208

ORTOA: One Round Trip Oblivious Access Chapter 6

2.3 The details of this step depend on the type of access: for reads, the proxy encrypts

each new secret label using the corresponding old secret label, thus generating two

encryptions for index 1:

E = [< Enc
ol

(1)
0
(nl

(1)
0), Enc

ol
(1)
1
(nl

(1)
1) >]

Whereas for writes, assuming the updated value v′ = 1, the proxy encrypts only

the new label corresponding to the updated value v′ = 1 using the old labels, i.e.:

E = [< Enc
ol

(1)
0
(nl

(1)
1), Enc

ol
(1)
1
(nl

(1)
1) >]

2.4 The proxy next shuffles E pairwise, i.e, randomly reorders the two encryptions, to

ensure that the first encryption does not always refer to bit 0 and the second to bit

1, and sends E to the external server.

3. Server: The external server, upon receiving E does the following:

3.1 For the pair of encryptions received, the server tries to decrypt both encryptions

using its locally stored label. But since it stores only one old label at index 1, it

succeeds in decrypting only one of the two encryptions. In this example, the server

decrypts Enc
ol

(1)
0
(nl

(1)
0) for reads or Enc

ol
(1)
0
(nl

(1)
1) for writes using the stored ol

(1)
0 .

3.2 The server then updates index 1’s secret label to the newly decrypted value, in this

case, nl
(1)
0 for reads or nl

(1)
1 for writes. For writes, since both encryptions for an

index encrypt only one new label nl
(1)
1 , either decryptions will result in the desired,

updated label that reflects the new value of < k, 1 >. Whereas for reads, the server

ends up with nl
(1)
0 , reflecting the existing value of < k, 0 >. The server sends the

output of the decryption to the proxy and since the proxy knows the mapping of

secret labels to plaintext bit values, the proxy learns the value of k to be 0 for reads

and ignores the output for writes.

209

ORTOA: One Round Trip Oblivious Access Chapter 6

Algorithm 8 Procedure Init(kv):

1: kv′ ← ∅
2: ct← 1 // indicates an access count of 1
3: for (k, v) ∈ kv
4: labels← ∅
5: i← 1 // index
6: for each bit b ∈ v starting from left most position // v is in binary representation
7: l← PRF (k, i, b, ct)

8: labels
∪←− l

9: i← i+ 1
10: kv′

∪←− {PRF (k), labels}
11: Return kv′

Figure 6.1: ORTOA’s algorithm for initializing a given set plaintext key value pairs kv.

6.4.2 Protocol

Having described a simple example that uses ORTOA to read and write data with-

out revealing the type of operation, this section formally presents the ORTOA protocol

described in the two functions depicted in Figures 6.1 and 6.2. Table 6.1 defines the

variables used in explaining ORTOA.

The Init(kv) procedure describes the data initialization process in ORTOA. The pro-

cedure receives the key-value pairs in plain text as input. For each key-value pair (line 3),

the procedure generates PRF labels at each of the ℓ indexes corresponding to bit b of the

value (represented in binary form) (line 7). All the labels appended together represent

the value (line 10) and the procedure returns the encoded keys and labels to be stored

at the external server.

When a client sends Req(Read,k) or a Req(Write,k,v′) to the proxy, the proxy and

the server execute the following steps.

1. Proxy: The proxy, upon receiving a Req(Read, k) or a Req(Write, k, v′) re-

quest from a client, where v′ is an updated value for k, invokes the ProcessClientRequest

210

ORTOA: One Round Trip Oblivious Access Chapter 6

Algorithm 9 Procedure ProcessClientRequest(op, k, val)

1: Retrieve key k’s ct // k’s latest access count
2: E ← ∅
3: i← 1 //index
4: for each bit b ∈ val starting from left most position // val is in binary representation

5: ol
(i)
0 ← PRF (k, i, 0, ct), ol

(i)
1 ← PRF (k, i, 1, ct)

6: nl
(i)
0 ← PRF (k, i, 0, ct+ 1), nl

(i)
1 ← PRF (k, i, 1, ct+ 1)

7: if op = read

8: E
∪←− {Enc

ol
(i)
0
(nl

(i)
0), Enc

ol
(i)
1
(nl

(i)
1)}

9: else
10: E

∪←− {Enc
ol

(i)
0
(nl

(i)
bi
), Enc

ol
(i)
1
(nl

(i)
bi
)}

11: i← i+ 1
12: ct← ct+ 1
13: Return E

Figure 6.2: ORTOA’s algorithm for processing of an individual client request for
operation type op, key k, and updated value val.

Symbol Meaning

ol
(j)
bj Secret label of a single bit of plaintext value

j Index from 1 to ℓ starting from the left of plaintext value
bj Bit value (0 or 1) at index j of plaintext value
ct Access counter

nl
(j)
bj New secret label of a single bit of plaintext value

Table 6.1: Variables used in ORTOA.

211

ORTOA: One Round Trip Oblivious Access Chapter 6

procedure as defined in Figure 6.2, which internally executes the following steps:

1.1 The proxy retrieves key k’s access counter ct (line 1).

1.2 For each of the ℓ indexes of the value, the proxy generates the two old secret labels

corresponding to both bit-values 0 and 1 by passing the current access counter ct

to the PRF (line 5):

{ol(1)0 ← PRF (k, 1, 0, ct), ol
(1)
1 ← PRF (k, 1, 1, ct), . . . ,

ol
(ℓ)
0 ← PRF (k, ℓ, 0, ct), ol

(ℓ)
1 ← PRF (k, ℓ, 1, ct)}

1.3 For each of the ℓ indexes of the value, the proxy next generates two new secret

labels corresponding to both bit-values 0 and 1 by passing the updated access

counter ct+ 1 (accounting for the ongoing access) to the PRF (line 6):

{nl(1)0 ← PRF (k, 1, 0, ct+ 1), nl
(1)
1 ← PRF (k, 1, 1, ct+ 1), . . . ,

nl
(ℓ)
0 ← PRF (k, ℓ, 0, ct+ 1), nl

(ℓ)
1 ← PRF (k, ℓ, 1, ct+ 1)}

1.4 The details of this step depend on the type of access: for reads, the proxy encrypts

each new secret label using the corresponding old secret label and generates two

encryptions for each of the ℓ indexes (line 8):

E = [< Enc
ol

(1)
0
(nl

(1)
0), Enc

ol
(1)
1
(nl

(1)
1) >, . . . , < Enc

ol
(ℓ)
0
(nl

(ℓ)
0), Enc

ol
(ℓ)
1
(nl

(ℓ)
1) >]

Whereas for writes, assuming bi represents the updated bit value at index i, the

proxy encrypts only the new labels corresponding to the updated value v′ using the

old labels (line 10):

E = [< Enc
ol

(1)
0
(nl

(1)
b1

), Enc
ol

(1)
1
(nl

(1)
b1

) >, . . . , < Enc
ol

(ℓ)
0
(nl

(ℓ)
bℓ

), Enc
ol

(ℓ)
1
(nl

(ℓ)
bℓ

) >]

212

ORTOA: One Round Trip Oblivious Access Chapter 6

As noted above for writes, at each index i, both the old labels encrypt only one

new label nl
(i)
bi

corresponding to v′.

1.5 The proxy increments k’s access counter (line 12).

1.6 The proxy pairwise shuffles each of the ℓ pairs of encryptions at each index and

sends this encryption to the external server.

2. Server: The server upon receiving the encryption E from the proxy performs the

following steps:

2.1 For each of the ℓ pairwise encryptions, the server tries to decrypt both encryptions

using the locally stored label. However, since it stores only one old label per index,

it succeeds in decrypting only one of the two encryptions per index. At index j,

the server either stores ol
(j)
0 or ol

(j)
1 , and hence, it can successfully decrypt only one

of < Enc
ol

(j)
0
(nl

(j)
0), Enc

ol
(j)
1
(nl

(j)
1) > obtaining nl

(j)
0 or nl

(j)
1 for reads. Note that

for writes, since both encryptions encrypt nl
(j)
bj
, either decryptions will result in the

new label corresponding to the updated bit bj at index j.

2.2 The server then updates each index’s secret label to the newly decrypted value and

sends the output to the proxy. Since the proxy knows the mapping of secret labels

to plaintext bit values at each index, the proxy learns the value of k for reads and

it ignores the output for writes.

After executing ORTOA to access a data item the server always updates its stored secret

labels. For reads, the updated labels reflect the existing value of the data item; for writes,

the updated labels reflect the updated value of the data item. Thus by choosing a unique

data representation model and taking advantage of that model, ORTOA provides a one

round-trip oblivious access protocol without restricting the number of accesses, unlike

the FHE approach.

213

ORTOA: One Round Trip Oblivious Access Chapter 6

6.4.3 Complexity Analysis

Space Analysis

Proxy : The only information the proxy needs to maintain to support ORTOA is the

access counter for each key in the database. While the complexity of storing access

counters for all the keys is O(N), where N is the database size, the actual space it

consumes is quite low. For example if a single counter consumes 8 bytes, for a database

of size 1 million items, the proxy requires about 8mB space to store the counters.

Server : While the storage cost at the proxy is insignificant to support ORTOA, the

same is not true for the server. The exact space analysis at the server is as follows: if ℓ

represents the length of a plaintext value (and all values have same length), r the output

size (in bits) of the PRF that generates secret labels, and N the database size, then

server’s storage space in bits can be calculated as:

(r ·N)︸ ︷︷ ︸
Space for keys

+ (r · ℓ ·N)︸ ︷︷ ︸
Space for values

Communication Analysis

Every bit of the plaintext can have 2 possible values – either a 0 or a 1. Since the

data values, or rather the data value mappings, are stored only at the server, the proxy

generates both possible secret labels, and the corresponding 2 encryptions, for each bit

of the plaintext. The proxy then sends 2 encryptions per bit to the server. If ℓ be the

length of data values and Elen the length of encrypted ciphertexts, for every data item

214

ORTOA: One Round Trip Oblivious Access Chapter 6

A few plaintext
bit combinations

1-label-per-bit representation

0000 sl
(1)
0 , sl

(2)
0 , sl

(3)
0 , sl

(4)
0

0001 sl
(1)
0 , sl

(2)
0 , sl

(3)
0 , sl

(4)
1

0010 sl
(1)
0 , sl

(2)
0 , sl

(3)
1 , sl

(4)
0

0011 sl
(1)
0 , sl

(2)
0 , sl

(3)
1 , sl

(4)
1

Table 6.2: When ℓ = 4 and each secret label represents one bit of plaintext data, i.e, y = 1.

A few plaintext
bit combinations

1-label-per-2-bits representation

0000 sl
(1,2)
00 , sl

(3,4)
00

0001 sl
(1,2)
00 , sl

(3,4)
01

0010 sl
(1,2)
00 , sl

(3,4)
10

0011 sl
(1,2)
00 , sl

(3,4)
11

Table 6.3: When ℓ = 4 and each secret label represents two bits of plaintext data, i.e, y = 2.

accessed by a client, ORTOA incurs the communication cost of:

2 · Elen︸ ︷︷ ︸
Encryptions per bit

· ℓ︸︷︷︸
Number of bits

6.5 Optimizations

6.5.1 Space optimized solution

In this section, we discuss a technique to optimize storage space by trading off com-

munication cost. Recall that for every bit of plaintext data, the server stores a secret

label of r bits; in other words, r bits are used to represent a single bit of plaintext data.

To optimize space, the next logical question we ask is: can we use r bits to represent

multiple bits of plaintext data?

One label represents two bits of the plaintext : We start with a simple case

215

ORTOA: One Round Trip Oblivious Access Chapter 6

where a single label represents two bits of plaintext data (Table 6.3), instead of one

(Table 6.2). In this case, the server stores ℓ/2 labels for every data item (instead of ℓ),

reducing the storage space by half. For example, if the plaintext value is 0010, then the

server stores [sl
(1,2)
00 , sl

(3,4)
10] where, say label sl

(3,4)
10 corresponds to plaintext values 1 and

0 at indexes 3 and 4 respectively.

There are 22 = 4 unique bit combinations for every 2 indexes of the plaintext – 00,

01, 10, and 11. Since the proxy does not know the value, which is stored only at the

server, it generates 4 secret labels for every 2-bits, i.e., labels for all possible unique bit

combinations, and creates 4 corresponding encryptions for every two bits of plaintext

data. The proxy then sends these 4 encryptions per 2-bits to the server, which then tries

to decrypt all 4 encryptions. Since the server stores only one label per 2-bits, it succeeds

in decrypting only one of the 4 encryptions per 2-bits, which becomes the new label for

those 2-bits.

One label represents y bits of the plaintext : This approach can be further

generalized where a single label represents y bits of the plaintext. For example a label

sl
(1,...,y)
b1...by

corresponds to bits b1 . . . by from indexes 1 to y. This approach reduces the storage

space to ℓ/y, i.e, the storage space reduces by a factor of y. Note that if the length of

values, ℓ, is not divisible by y, we can pad the plaintext with a specific character to

indicate the bit value at that index is invalid.

Communication complexity increase: While the space optimized solution re-

duces the storage space at the server by a factor of y, it incurs increased communication

and computation overhead as more labels need to be communicated from the proxy to

the server, as analysed next. As discussed in §6.4.3, the communication complexity of the

non-space-optimized solution is (2 · Elen · ℓ). Generalising this to when one secret label

represents y bits, there are 2y possible unique combinations for every y bits of plaintext

and the server stores ℓ/y labels. So the communication (and computation) complexity

216

ORTOA: One Round Trip Oblivious Access Chapter 6

Figure 6.3: Storage vs communication overhead factor analysis to find optimal y value
- the value that indicates how many bits are represented by a single label.

becomes (2y ·Elen ·ℓ/y), i.e, a factor of 2y/y increase compared to the non-space-optimized

solution.

Calculating optimal y value: The above discussion implies that there exists a

trade-off between the storage space and the amount of communication (and computation)

with the increase in y. When y increases, the storage space reduces by a factor fs = 1/y

and the communication expense increases by a factor fc = 2y/y, i.e., while the storage

space decreases non-linearly, the amount of communication increases exponentially.

To calculate the optimal value of y, we compare the overhead factors fs, fc, and the

total combined overhead of the system, fs+fc, as depicted in Figure 6.3. As expected and

as seen in the figure, the storage factor reduces with increasing y, and communication

factor increases with y. The total overhead plot is interesting: the overall overhead

decreases for y = 2 and starts increasing from y = 3. This is because when y = 2, the

storage space reduces by half, meanwhile the communication factor remains the same for

y = 1 and y = 2, with fc = 2. For any y > 2, the communication factor increases more

rapidly than the storage factor reduction, causing the total overhead factor to increase

with y. Since the total overhead is the least at y = 2, that becomes the optimal y for

ORTOA.

217

ORTOA: One Round Trip Oblivious Access Chapter 6

6.5.2 Reducing the number of decryptions

Given that ORTOA has the least overhead for y = 2, i,e, a single label representing

2-bits of plaintext, this implies that the proxy sends 2y = 22 = 4 encryptions for every

2-bits of plaintext. Since the server stores a single label corresponding to a unique bit

combination for every 2-bits of plaintext (Table 6.3) , the server can successfully decrypt

only one of the 4 encryptions. In the solution presented above, the four encryptions per

2-bits are randomly shuffled by the proxy, and hence, the server attempts to decrypt all

encryptions until it succeeds (note that ORTOA uses authenticated encryption to ensure

the server identifies successful decryptions). Essentially, the server wastes computation

trying to identify the right encryption. To mitigate this inefficiency and reduce the

number of potential decryptions on the server from 4 to 1 for every 2-bits of plaintext,

ORTOA adapts the point-and-permute [20] optimization.

To reduce the number of decryptions, instead of sending the 4 encryptions per 2-bits

in a randomly shuffled manner, the proxy generates the four entries in a deterministic

way. For ease of exposition, let us assume that the 4 encryptions are sent as a table where

each of the four entries are indexed in binary notation: 00,01,10, and 11 indicating the

1st, 2nd, 3rd, and 4th entry of the table.

Intuitively, the proxy generates two additional bits of information per label indicating

which of the four entries to decrypt upon the next access; we term them decryption

bits d1d2. The server stores bits d1d2 along with its corresponding secret label. For

example, if the server stores a label (sl
(1,2)
00 , 10) for the plaintext indexes (1,2) of an item,

the decryption bits 10 indicate that the server should decrypt only the 10th entry, i.e.,

the third entry, in the encryption table sent by the proxy for plaintext indexes (1,2). We

discuss how the proxy generates the two decryption bits, d1d2, next.

To simplify the explanation of the optimization, let us consider ℓ = 2. The server

218

ORTOA: One Round Trip Oblivious Access Chapter 6

stores a single label, olb1b2 , corresponding to two bits of plaintext of an item, and the

decryption bits d1d2. The main constraint that the proxy needs to guarantee while

generating the encryption table when a client accesses the item next is: the encryption

entry at index d1d2 uses the label olb1b2 , i.e., d1d
th
2 entry in the table is Encolb1b2 (nlb′1b′2)

where b′1b
′
2 is b1b2 for reads and the updated bits for writes. This constraint needs to be

guaranteed because with this optimization, we are stating that the server decrypts only

d1d
th
2 entry in the table but the server can only decrypt an encryption that used olb1b2

(since that is the only label it stores). Essentially, the proxy needs to deterministically

‘link’ d1d2 with b1b2 but also randomize this link for every access. The proxy achieves

this by leveraging two random bits, r1r2, which act as one-time padding bits to link

encryption table indexes with labels. Note that the proxy does not store these two bits

r1r2 explicitly; they can be derived with any PRF (e.g., a PRF P that takes the access

counter ct and key k as input to generate the two bits).

First, let us consider a simplified case where ORTOA supports accessing a data item

only once, and hence decryption bits d1d2 need not be updated. To access a given

item, the proxy generates the four encryption entries for the 2-bits of plaintext by first

generating the old and new labels as described in Steps 1.2 and 1.3 of §6.4.2. Next the

proxy creates d1d
th
2 entry and links it to the labels by xor-ing with bits r1r2:

For reads:

d1d
th
2 entry : Encold1d2⊕r1r2

(nld1d2⊕r1r2)

For writes where nlb′1b′2 represents the new label (essentially all entries encrypt the same

new label as discussed in §6.4.2):

d1d
th
2 entry : Encold1d2⊕r1r2

(nlb′1b′2)

219

ORTOA: One Round Trip Oblivious Access Chapter 6

To generalize this, where ORTOA supports any number of accesses to an item, the

two decryption bits need to be updated after each access. Essentially, at each access,

we update the decryption bits to d′1d
′
2 indicating which entry to decrypt upon the next

access. The proxy achieves this by generating two new bits r′1 and r′2 using the same

PRF that generated r1 and r2 (e.g., invoke PRF P with updated access counter ct + 1

and k). The proxy generates the encryption table with four entries as follows:

For reads:

d1d
th
2 entry : Encold1d2⊕r1r2

(nld1d2⊕r1r2︸ ︷︷ ︸
New label

, d1d2 ⊕ r1r2 ⊕ r′1r
′
2︸ ︷︷ ︸

Bits d′1d
′
2

)

For writes where nlb′1b′2 represents the new label :

d1d
th
2 entry : Encold1d2⊕r1r2

(nlb′1b′2︸ ︷︷ ︸
New label

, d1d2 ⊕ r1r2 ⊕ r′1r
′
2︸ ︷︷ ︸

Bits d′1d
′
2

)

The server upon receiving the encryption table decrypts one entry based on the de-

cryption bits d1 and d2. A decryption yields both the new label as well as the updated

bits d′1 and d′2, which determines what entry to decrypt for the next access. This ap-

proach can be generalized to values of any arbitrary length ℓ. Thus by constructing

an optimization similar to point-and-permute technique, ORTOA reduces the potential

number of decryptions performed by the server from 4 to 1.

6.6 Protocol evaluation

In this section, we discuss the merits and limitations of ORTOA by conducting ex-

perimental evaluations. In evaluating ORTOA, we consider a two-round-trip (2RTT)

protocol as the baseline: the baseline system also consists of a proxy, which routes client

220

ORTOA: One Round Trip Oblivious Access Chapter 6

requests to the external server. The baseline proxy translates each request by a client –

read or write – into a read request followed by a write request. This technique is on par

with how majority of the existing obliviousness solutions hide the type of operation [90,

195, 193, 184]. Note that since ORTOA focuses only on hiding the type of operation, the

baseline also mimics the same behavior and hence does not hide the physical location

being accessed by a client.

Experimental Setup: We evaluated ORTOA and its baseline on AWS. The clients

were deployed on a c5.large instance with 8GiB of memory with 2 cores @ 3.6GHz. The

proxy was evaluated on a c5.2xlarge instance with 8GiB of memory and 8 cores @ 3.6GHz.

The server was evaluated on an r5.xlarge instance with 8GiB of memory and 4 cores @

3.1GHz. The client and proxy were located in the US-West1 (California) datacenter and

in most of our experiments, the server was hosted in the US-West2 (Oregon) datacenter.

Unless stated otherwise, in each experiment a multi-threaded client (with a default

of 32 threads) sends requests concurrently to the proxy and the experiment runs until

each client thread sends 100 requests. Each thread sends requests sequentially, i.e., it

waits until its current request is answered before sending the next one. Each data point

plotted in all our experiments is an average of 3 runs. In our experiments, the server

stores 10000 data items, which results in 2GB of data in memory. Note that the baseline

requires 40.96MB to store 10000 data items. Each client thread picks a key to access

uniformly at random, and unless stated otherwise, it decides to read or write the data

also uniformly at random. Most of the experiments choose a 1kB value size, ℓ = 8000

bits. Each experiment measures latency, the time interval between when a client sends

a request to when it receives the corresponding response; and throughput, the number of

operations executed per one second.

221

ORTOA: One Round Trip Oblivious Access Chapter 6

6.6.1 ORTOA vs. two round trip baseline

Figure 6.4: Throughput and latency for ORTOA and the 2RTT baseline, with the
proxy in the California datacenter and the server placed at increasingly farther data-
centers.

In the first set of experiments, we compare ORTOA with the 2RTT baseline where

the proxy and client are located in the US-West1 (California) datacenter and the server is

placed at increasingly farther datacenters of US-West2 (Oregon), US-East1 (N. Virginia),

EU-West2 (London), and AP-South1 (Mumbai). Table 6.4 notes the round-trip time

(RTT) latencies from California to the other datacenters. The measured throughput and

latency are plotted in Figure 6.4. Note that we do not place the server in the same

datacenter as the proxy and client so as to mimic realistic behavior where between 79%-

95% of cloud users face more than 10 ms latency when accessing a cloud server [40].

Further, this experiment runs a single-threaded client since our goal is to measure the

effect of proxy-to-server distance on a given client’s throughput and latency, without

accounting for the performance effects due to concurrency.

As seen in Figure 6.4, as the physical distance between the proxy and the server

increases, latency increases and throughput decreases for both ORTOA and the 2RTT

baseline. But the latency of the 2RTT baseline is 0.76x-1.61x higher than ORTOA, and

its throughput is 43%-61% lower than ORTOA. This experiment highlights the benefits

of constructing a protocol that can hide the type of access in a single round, as compared

222

ORTOA: One Round Trip Oblivious Access Chapter 6

to the state-of-the-art two-round approach.

6.6.2 Latency breakdown of ORTOA

Oregon N. Virginia London Mumbai

California 21.84 62.06 147.73 230.3

Table 6.4: RTT latencies across different datacenters in ms.

Oregon N. Virginia London Mumbai

Computation (ms) 14.01 14.21 14.42 14.48

Communication (ms) 37.03 80.37 171.78 257.14

Total time (ms) 51.04 94.59 186.21 271.62

Table 6.5: Time spent in computation (creating old and new labels and encrypting
them) vs. time spent in communication, in ms, when the proxy and client are located
in California and the server is located at different datacenters.

Since ORTOA’s computation cost is high due to generating old and new labels for

every 2-bits of plaintext and performing 4 encryptions for every 2-bits of data, in this

experiment, we measure the time spent by the proxy in computation vs. in communi-

cation. Similar to the last experiment, this experiment places the proxy and the client

in the US-West1 (California) datacenter and the server at increasingly farther distances

from US-West1. Table 6.4 records the round trip time (RTT) from California to the

other datacenters and Table 6.5 notes the average computation time vs. communication

time and the total time, in milliseconds, spent by ORTOA in executing a request. As

shown in Table 6.5, ORTOA consistently spends 14 ms in computing the labels and

encrypting the data. In the total time spent per request, ORTOA spends the majority

of the time in communication. This latency breakdown also indicates when is ORTOA

223

ORTOA: One Round Trip Oblivious Access Chapter 6

a better choice compared to the 2RTT baseline: let c be the round-trip latency between

the proxy and the server. If 2 ∗ c < 14 ms, then this indicates that two sequential rounds

of communication requires less time than the computation time of ORTOA, and hence

the 2RTT baseline is a better choice for an application choosing between ORTOA and

the 2RTT solution. But since most cloud users face over (c =) 10 ms latency in accessing

a cloud server [40], most applications will save latency by choosing ORTOA.

6.6.3 Increasing Concurrency

Figure 6.5: ORTOA’s throughput measured with increasing the number of concurrent clients.

Having compared ORTOA with its 2RTT baseline, we now evaluate ORTOA’s be-

havior with increasing concurrent client requests. In this experiment, we place the server

at the US-West2 (Oregon) datacenter. Figure 6.5 depicts the throughput and latency

changes as the number of concurrent clients (implemented via threads) increases from 8

to 48. As seen in the figure, the throughput increases by 1.4x at 32 clients compared

to 8 clients and the throughput saturates at ∼64 ops/sec for higher concurrency values.

Since a concurrency of 32 clients has the lowest latency while providing close to peak

throughput, the following experiments choose the concurrency of 32 clients.

224

ORTOA: One Round Trip Oblivious Access Chapter 6

Figure 6.6: ORTOA’s throughput measured with increasing percent of PUTs.

6.6.4 Varying the percent of writes

This experiment measures ORTOA’s throughput and latency while increasing the

percent of PUT (or write) operations from 0 to 100%, as shown in Figure 6.6. In this

experiment, the server resides at the US-West2 (Oregon) datacenter and 32 concurrent

clients read or write the data. As seen in the figure, the throughput and the latency

values remain more or less constant (a maximum difference of 2 ops/sec for throughput

and 24 ms for latency). This experimentally demonstrates the obliviousness of ORTOA

in that its performance remains the same regardless of the percentage of read or write

operations in the client workload.

6.6.5 Varying ℓ: the length of values

Since the storage, communication and computation overhead of ORTOA are directly

proportional to ℓ (see §6.4.3), in this experiment, we measure ORTOA’s throughput and

latency while increasing the size of the values (where all values have the same length)

from 200B to 1.2kB (or 1600 to 9600 bits) and the results are depicted in Figure 6.7. The

server in this experiment resides in US-West2 (Oregon) datacenter and the client has 32

concurrent threads sending read or write requests. As expected, ORTOA’s performance,

both in terms of throughput and latency, degrades almost linearly with the increase in

225

ORTOA: One Round Trip Oblivious Access Chapter 6

Figure 6.7: ORTOA’s throughput and latency measured when the size of the values,
ℓ, increases from 200B to 1.2kB (1600 to 9600 bits).

the value size. This experiment indicates that ORTOA suits applications with smaller

value sizes rather than with larger value sizes.

6.6.6 Scaling ORTOA

Figure 6.8: ORTOA’s throughput and latency measured when the number of servers
and proxies in the system are scaled up.

In the final set of experiments, we highlight the scalability of ORTOA by increasing

the number of servers and proxies from 1 to 5. Since ORTOA aims to hide only the

type of access performed by a client, the system can scale the number of proxies without

compromising security. In this experiment, we pair each storage server with a proxy

and scale the pair. For each scaling factor s, the client concurrency is also increased

by the scaling factor 32 ∗ s. This experiment places all the proxies and clients in the

226

ORTOA: One Round Trip Oblivious Access Chapter 6

US-West1 (California) datacenter and the servers in the US-West2 (Oregon) datacenter.

The resulting throughput and latency are shown in Figure 6.8. As indicated in the plot,

ORTOA scales linearly with the increasing number of proxies: its peak throughput at a

scale factor of 5 is about 5x the throughput at a scale factor of 1. The latency remains

roughly constant (a maximum difference of 50 ms) across different scale factors. This

experiment highlights the that ORTOA is highly scalable – a highly desired property of

data management protocols.

6.6.7 Discussion

Through the above discussed experimental evaluations of ORTOA, we have shown the

benefits of a single round protocol that hides the type of operation. Since ORTOA incurs

high storage and communication overheads, in this section, we discuss the estimated

dollar cost of deploying ORTOA. To calculate the estimates, we consider the storage,

communication, and compute costs of Google Cloud [83, 85], whose costs are comparable

to other cloud providers. Google Cloud charges $0.02 per GB of storage per month, $0.12

per GB of network usage and $0.4 per million function invocations with a 1.4 GHz CPU

costing $0.00000330 per 200ms (ORTOA needs 145 ms to encrypt/decrypt a label). In

estimating the dollar cost, we consider the optimized protocol with y = 2, and PRFs

that produce 128-bit labels, i.e., r = 128, with data values of size 1kB, i.e., ℓ = 8000,

and with encryption schemes that produce 128-bit ciphertexts, i.e., Elen = 128. With

the above configuration, consider running ORTOA with a large dataset consisting of 1

million data items. This costs an application $1.28 in storage per month, and executing

1 million accesses will cost $30.72 in terms of bandwidth and $7.00 in terms of compute

(function calls). Taking into account the cost of a single access, ORTOA incurs a cost of

$0.000038 per request – a comparable price given that the 2RTT baseline incurs 0.76x-

227

ORTOA: One Round Trip Oblivious Access Chapter 6

1.61x higher latency overhead and decreases the overall request serving rate by 43%-61%

compared to ORTOA.

6.7 Security of ORTOA

This section defines and proves the security guarantees of ORTOA. ORTOA aims

to hide the type of client access – read or write – from an adversary that controls the

external database server. To capture this read or write obliviousness, we introduce a

security definition called real-vs-random read-write indistinguishability or ROR-RW indis-

tinguishability.

Algorithm 10 Security game where given a sequence of client generated accesses A, the

Real world takes A as input and the Ideal world takes the sequence of keys accessed in A

as input and both produce a sequence of encryptions that are sent to the external server

as output.

1: Real(A)

2: output← ∅

3: for ai ∈ A

4: output
∪←− Process− ClientRequest(ai)

5: Return output

1: Ideal(K)

2: output← ∅

3: for ki ∈ K

4: output
∪←− Simulator(ki)

5: Return output

228

ORTOA: One Round Trip Oblivious Access Chapter 6

Algorithm 11 The Simulator’s pseudocode accessed in the the Ideal algorithm.

1: Procedure Simulator(k)

2: E ← ∅

3: //Iterate over each of the ℓ indexes

4: for (i = 0; i < ℓ; i++)

5: Retrieve the old label ol(i) for k

6: nl(i)
$←− {0, 1}λ

7: ol′(i)
$←− {0, 1}λ

8: E
∪←− {Encol(i)(nl

(i)), Encol′(i)(0)}

9: ol(i) ← nl(i)

10: Return E

Security definition : Consider a sequence of m client accesses

A = {(op1, k1, val1), · · · , (opi, ki, vali), · · · , (opm, km, valm)}

where for ith request, opi indicates the type of operation (read or write), ki denotes the

key, and vali is either an updated value for writes or⊥ for reads. In our security definition,

the sequence of accesses A is given as input to both the real system and an ideal system

(simulator based), where both are stateful entities, and both produce outputs OutReal

and OutSim respectively consisting of a sequence of accesses to the external server. A

system is said to be ROR-RW secure if, given the two outputs, an adversary can distinguish

between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| Pr[A(OutReal)→ 1]− Pr[A(OutSim)→ 1] |≤ negl

229

ORTOA: One Round Trip Oblivious Access Chapter 6

To argue for ORTOA’s correctness, we consider a game G, as shown in Algorithm 10.

In proving ORTOA’s correctness, we assume the length ℓ of data values to be 1 but the

argument can be generalized to data values of any arbitrary length. Further, our proof

considers the non-optimized protocol as presented in §6.4.2 but the proof easily extends

to the optimized versions as well. The game either executes Real or Ideal algorithm

with uniformly random probability and provides the output to an adversary. ORTOA

is ROR-RW secure if the adversary, based on the received output, cannot distinguish with

high probability which system the game selected.

For Real algorithm in Algorithm 10, the game sends a sequence of m accesses in A

produced by clients where the algorithm in-turn calls ORTOA’s ProcessClientRequest

procedure (defined in Figure 6.2) for each access in A. Note that the ProcessClientRe-

quest procedure is a stateful algorithm. Let λ be the length of old and new labels and

let Enc be the encryption scheme deployed in the ProcessClientRequest procedure that

encrypts new labels of length λ using old labels of length λ. Since we assume ℓ = 1, Pro-

cessClientRequest produces two encryptions for each of the accesses (in real deployments,

the proxy sends each of these set of encryptions to the external server upon each access).

The Real algorithm collates the output consisting of a pair of encryptions produced by

each call to ProcessClientRequest method and produces the output. The Real algorithm’s

output can be represented as:

OutReal ← {Encolb(nlb′), Encol1−b
(nlb′′)}m

where for each read accesses (b′ = b) and (b′′ = 1−b), and for write accesses (b′ = b′′ = b̂),

the updated bit.

For the Ideal algorithm in Algorithm 10, the game provides the sequence of keys ac-

cessed in A as input where the algorithm in-turn calls a Simulator defined in Algorithm 11.

230

ORTOA: One Round Trip Oblivious Access Chapter 6

The Simulator’s goal is to produce encryptions similar to the ProcessClientRequest proce-

dure but with arbitrary values; one can notice the analogies between the two procedures.

To achieve this, we assume the Simulator to be stateful and it stores one old label ol per

index i of the value of a given key k – these are the labels stored at the external server.

The procedure takes key k as input and iterates over each of the ℓ indexes (where ℓ is the

value’s plaintext length). At each index, the Simulator retrieves the corresponding old

label; it then generates two randomly sampled labels nl(i) and ol′(i) of length λ (same as

the PRF used in ProcessClientRequest). It uses ol(i) to encrypt nl(i) and ol′(i) to encrypt

an invalid value, 0. This does not reveal any information to the adversary that controls

the external server since the server only stores label ol(i) and can decrypt only one of

the two encryptions sent by the Simulator. The Simulator shuffles the two encryptions

at each index and appends it a list E sent to the server. It also updates the old labels

ol(i) with the newly and randomly generated label nl(i). Because the Simulator encrypts

random values of length λ, the Ideal algorithm’s output is, assuming ℓ = 1:

OutSim ← {Enc{0,1}λ{0, 1}λ, Enc{0,1}λ{0, 1}λ}m

If we can prove that the output generated by the Real algorithm appears indistin-

guishable to OutSim, it proves that ORTOA is ROR-RW secure.

Proof intuition : Intuitively, we first show that a read and a write access to

ProcessClientRequest procedure are indistinguishable, and we then show that ProcessClientRequest’s

output is indistinguishable from that of the Simulator. Algorithm 12 captures the

argument for this indistinguishability. The basis of our argument lies in the PRF

deployed in ORTOA: ORTOA’s PRF, PRF , produces labels that are indistinguish-

able from a uniformly sampled random variable r
$←− {0, 1}λ. The argument invokes

ProcessClientRequest procedure once to read a key k and once to write a key k with

231

ORTOA: One Round Trip Oblivious Access Chapter 6

the updated bit value b′ (assuming the length of the value ℓ = 1). As shown in the figure,

given that the server stores only one old label olb and given PRF ’s security, the output

produced by both invocations of ProcessClientRequest are identical.

When the Real algorithm invokes ProcessClientRequest m times (for m accesses

in A), the output of the Real algorithm based on the argument shown in Algorithm 12

becomes indistinguishable from that of OutSim. We utilize this intuition in developing

the formal security proof using hybrids.

Algorithm 12 Intuition for read-write indistinguishability when a key k is accessed
where the server stores label olb corresponding to k’s plaintext value b ∈ {1, 0}. The
write request updates k’s value to bit b′. The PRF deployed in ORTOA generates labels
of length λ.

1: For Read Requests

2: {Encolb(nlb′), Encol1−b
(nl1−b′)} ← ProcessClientRequest(read, k,⊥)

3: //Because the server has only olb, it cannot decrypt Encol1−b
(nl1−b′). So it can be

replaced with a random string.
4: ≡ {Encolb(nlb′), Encol1−b

({0, 1}λ)}
5: // From PRF ’s security, the new label can be replaced with a random string of length

λ.
6: ≡ {Encolb({0, 1}λ), Encol1−b

({0, 1}λ)}
7: // From PRF ’s security, the old labels can be replaced with random strings of length

λ.
8: ≡ {Enc{0,1}λ({0, 1}λ), Enc{0,1}λ({0, 1}λ)}

1: For Write Requests

2: {Encolb(nlb′), Encol1−b
(nlb′)} ← ProcessClientRequest(write, k, b′)

3: Because the server has only olb, it cannot decrypt Encol1−b
(nlb′). So it can be replaced

with a random string.
4: ≡ {Encolb(nlb′), Encol1−b

({0, 1}λ)}
5: // From PRF ’s security, the label can be replaced with a random string of length λ.
6: ≡ {Encolb({0, 1}λ), Encol1−b

({0, 1}λ)}
7: // From PRF ’s security, the old labels can be replaced with random strings of length

λ.
8: ≡ {Enc{0,1}λ({0, 1}λ), Enc{0,1}λ({0, 1}λ)}

Formal proof: We now formally prove that the real and the ideal worlds are com-

232

ORTOA: One Round Trip Oblivious Access Chapter 6

putationally indistinguishable using a standard hybrid argument.

Hybrid1: This corresponds to the real experiment and the output of this hybrid is OutReal.

Hybrid2: We modify the real experiment where the labels generated using PRF in the

ProcessClientRequest procedure are now sampled from the uniform distribution.

The computational indistinguishability of Hybrid1 and Hybrid2 follows from the secu-

rity of PRF.

Hybrid3.i for i ∈ [m]: In the sequence of m accesses in A, consider the ith access, in which

the ProcessClientRequest procedure generates 2∗ ℓ = 2∗1 = 2 encryptions (ℓ = 1). Since

the server stores only one label per index and can only decrypt one of the two encryptions,

the other encryption sent has no significance: let the two ciphertexts be CT0 and CT1

where both the ciphertexts are encrypted with respect to two different old labels ol0 and

ol1. Note that the server has exactly one label olb for some bit b. Replace the message

in CT1−b with 0s - this encryption becomes insignificant since the server cannot decrypt

it. This hybrid replaces encryptions of all such insignificant entries with the encryptions

of an invalid value, say 0.

The computational indistinguishability of Hybrid3.i and Hybrid3.i−1 follows from the

security of encryption.

Hybrid4: This corresponds to the ideal experiment, i.e., OutReal is equivalent to OutSim.

The hybrids Hybrid4 and Hybrid3.m are identically distributed. The transition from

Hybrid3.m to Hybrid4 is as follows: in Hybrid3.m, the labels are still associated with bits and

only one of the two encryptions per index generated using the labels is valid. This implies

that only one label per index has significance. But note that in Hybrid3.m, the labels are

independent of the bits associated with them (due to Hybrid2). This essentially leads to

the conclusion that irrespective of the type of operation, only one of the two encryption

233

ORTOA: One Round Trip Oblivious Access Chapter 6

is valid and the valid encryption encrypts a label generated uniformly at random (new

label) using another label generated uniformly at random (old label). This is equivalent

to the encryptions generated by the Simulator in the ideal world. Hence, the output of

this hybrid corresponds to the output of the simulator, OutSim.

6.8 Conclusion

In this work, we propose ORTOA, a One Round Trip Oblivious Access protocol that

reads or writes data stored on remote storage, potentially controlled by an adversary, in

a single round of communication without revealing the type of access. Oblivious access

techniques consists of two components: obfuscating the data item accessed by a client

and hiding the type of client’s access, i.e., read or write. Most existing obliviousness

solutions focus on obfuscating the data item accessed by a client; whereas to hide the

type of access, they require two rounds of communication. To our knowledge ORTOA

is the first generalized protocol to hide the type of access in a single round. Experimen-

tally evaluating ORTOA and comparing it with a a baseline that requires two rounds

to hide the type of access confirmed the benefits of designing a single round solution:

the baseline incurred 0.76x-1.61x higher latency and 43%-61% lower throughput than

ORTOA. This work also presents a theoretically sound one round trip oblivious access

solution using Fully Homomorphic Encryption and discusses its improbability of practical

use due to the expensive multiplication operation. As future work, we aim to integrate

ORTOA into an end-to-end system that hides access pattern by integrating it with exist-

ing techniques such as frequency smoothing or by designing novel ORAM schemes that

leverage ORTOA to access data in a single round.

234

Chapter 7

Concluding remarks

Individuals and enterprises continue to produce ever increasing amounts of data. Much

of this data - including sensitive and private information - is stored with and managed

by third parties, such as Amazon Web Services or Google Cloud. These companies can

lose millions to billions of dollars in sales if their data access latencies increase by only a

few hundred milliseconds. Hence, reducing data access latency to improve performance

received the highest priority while designing cloud data management systems. But the

ever growing number and sophistication of cyber attacks on the cloud coupled with in-

creases in legal requirements for data privacy and security (e.g., GDPR or HIPAA) have

forced cloud providers to re-evaluate their priorities. However, there exists a fundamental

trade off between security and efficiency in data management systems. While resolving

this tension is challenging, it has fostered the growth of a deep field at the intersection

of cryptography and database research. While providing high performance and security

forms the more explicitly desired properties of data management systems, we have the

implicit requirement of fault tolerance. We cannot design database systems that are not

fault tolerant. Achieving all three desired goals of low latency & high performance, fault

tolerance, as well as security & privacy is an extremely challenging problem. This disser-

235

Concluding remarks Chapter 7

tation presents data management systems and protocols that strike a balance between

the three desired goals of cloud-based data systems.

Trusted infrastructure

Before being able to solve security challenges in database systems, we first had to

fully understand existing system designs. Our extensive study of distributed data man-

agement, where data is partitioned and/or replicated across geo-distributed locations,

led us to identify open problems in traditional, trusted cloud databases. Data in the

cloud is partitioned for scalability and replicated for fault tolerance. Atomic commit

protocols such as 2-Phase-Commit provide scalability and consensus protocols such as

Paxos achieve replication. Existing cloud data management protocols treat atomic com-

mitment and consensus disjointedly. Our work (VLDB 2019) unifies the two seemingly

disparate paradigms into a single framework called Consensus and Commitment(C&C).

The C&C framework can model established data management protocols as well as pro-

pose new ones; to highlight its advantages, we propose a novel commit protocol, G-PAC.

The unified approach of G-PAC reduces one (out of three) round of cross-datacenter

communication compared with Google’s Spanner; this allows G-PAC to perform between

27-88% better than Spanner in terms of throughput.

After instantiating G-PAC from the C&C framework to commit geo-distributed trans-

actions for generalized workloads, we were interested to tackle the problem of handling

extremely skewed workloads (such as hotspots) in geo-distributed settings. In this regard,

we developed Samya (ICDE 2021) as a database system that improves latency for high

contention, hotspot data compared to existing databases. Samya is a geo-distributed

data management system that stores and manages hotspot aggregate data. Samya dis-

aggregates aggregate data and stores partitions of the dis-aggregated data on different

236

Concluding remarks Chapter 7

servers. This design choice allows servers in Samya to independently and concurrently

serve client requests. State-of-the-art geo-distributed databases such as Google’s Spanner

take a centralized approach where a server acting as a leader processes client requests

sequentially. Compared to the centralized solution, Samya’s parallelism reduces the 99th

percentile latency by 76% and allows Samya to commit 16x to 18x more requests.

Untrusted infrastructure

While G-PAC and Samya successfully iterated on traditional cloud infrastructure, we

became intrigued by the question, “What if we host out data on completely untrusted in-

frastructure?”. When designing data management systems for an application that hosts

its data on untrusted infrastructure, we primarily focus of providing security while striv-

ing for the best possible performance. With regard to security, the solutions presented

in this dissertation focus on guaranteeing the CIA triad of security: confidentiality, in-

tegrity, and availability.

Ensuring data integrity : To tackle the problem of a database system that guarantees in-

tegrity of outsourced data, this dissertation proposed Fides (ICDCS 2020). Fides allows

an application to execute distributed transactions on data stored across completely un-

trusted servers. Through an audit mechanism, Fides guarantees detecting any violations

to the ACID (atomicity, consistency, isolation, and durability) properties. This work also

presents TFCommit, an integral part of Fides, which is a trust-free commitment protocol

that executes transactions across multiple untrusted servers. To our knowledge, TFCom-

mit is the first atomic commitment protocol to tolerate malicious failures without using

replication. TFCommit combines a transaction commitment protocol with collective sig-

natures and produces a tamper-resistant log; this log can then be audited to detect faulty

behavior. Compared to executing a transaction in trusted infrastructures, the overhead

237

Concluding remarks Chapter 7

of executing TFCommit is 1.8x in latency and 2.1 in throughput - an acceptable overhead

given the additional security guarantees of TFCommit.

Ensuring data availability : In the context of secure and private datastores, a prevalent

area of research is in designing oblivious datastores. Oblivious datastores that use the

cryptographic technique of Oblivious RAM (or ORAM) provide strong privacy guarantees

beyond encrypting the outsourced data by hiding the access patterns on the data. But

almost all existing ORAM datastores are not fault tolerant in that if the external server

storing the encrypted data or the trusted proxy maintaining the encryption key (and

other meta data) crash, the application’s data becomes completely unavailable. To solve

the data availability issue in oblivious datastores, this dissertation proposed, QuORAM,

a quorum based replicated ORAM datastore that tolerates crash failures while preserving

obliviousness. QuORAM replicates data on 2f +1 server-proxy units to tolerate up to f

server or proxy crash failures. Furthermore, QuORAM provides linearizable guarantees,

which ensures that all operations on a data item appear to be linear. QuORAM reduces

the average data access latency by 61.6% and improves the throughput by 1.4x compared

to a non-replicated ORAM system, while providing fault tolerance.

Ensuring data confidentiality : Oblivious datastores achieve two goals: (i). hide the

specific data item accessed by a client, and (ii). hide the type of access – read or write –

requested by a client. To hide the type of access, oblivious datastores typically execute

a two-round procedure where a trusted proxy reads the data from the external storage

server, re-encrypts the read value if a client requested to read the data or encrypt the

newly updated data if a client requests a write operation, and update the re-encrypted

or newly encrypted data back in the storage server. This incurs one additional and

unnecessary round of communication compared to non-private datastores. To mitigate

this inefficiency, in this dissertation we proposed ORTOA, a One Round Trip Oblivious

238

Concluding remarks Chapter 7

Access protocol that hides the type of operation in a single round. This reduction in one

round of communication plays a vital role in reducing end-to-end latency, especially in

geo-distributed settings. Our experimental evaluations show that compared to ORTOA

a baseline that requires two rounds to hide the type of access incurs 0.76x-1.61x higher

latency and 43%-61% lower throughput than ORTOA.

In conclusion, this dissertation proposes a number of novel data management sys-

tems and protocols that enhance one or more of the desired data system properties of

low latency & high performance, fault tolerance, and security & privacy. The solutions

proposed perform order of magnitude better than their state of the art counterparts or

tackle completely open and unsolved problems such as atomic commitment in malicious

settings or fault tolerance via replication in oblivious datastores.

239

Chapter 8

Future directions

This chapter discusses future research directions that can stem from the protocols and

systems proposed in this dissertation.

8.1 Frequency Smoothing using a BST Framework

As stated in the earlier chapters, researchers have exploited the access patterns alone

on encrypted data to reveal non-trivial information about a system [105, 91, 110, 114, 34,

55]. While Oblivious RAM, or ORAM, [78, 194, 192, 193, 23, 184, 136, 47, 36] technique

mitigates access pattern attacks, ORAM schemes incur fundamental performance over-

heads [28, 129, 130, 175, 178, 214, 33]. Recently, Grubbs et al. proposed Pancake [90] as

a key-value store that hides access patterns with constant storage and bandwidth over-

heads. At its core, Pancake introduces frequency smoothing idea where a trusted proxy

smoothens access frequencies of all items stored on the external server such that an ad-

versary cannot infer any information based on clients’ real access frequencies. Pancake

uses a weaker-than-ORAM yet practical security model of passive persistent adversary

that can view online queries but cannot inject queries (for example via compromised

240

Future directions Chapter 8

clients). To guarantee obliviousness, Pancake requires a priori knowledge on the real

access frequencies of all data items in the system. If Pancake estimates an incorrect real

access frequency, its security guarantees or performance benefits can be compromised.

To mitigate challenges pertaining to knowing access frequencies a priori, we aim to

propose Waffle – an oblivious system that achieves frequency smoothing without relying

on an estimated real access frequency. To achieve this, we introduce the Binary Search

Tree (BST) Framework that Waffle relies on for frequency smoothing. A trusted proxy in

Waffle maintains a balanced BST that stores a key’s access frequencies, i.e., the number

of times an item, identified by its key, stored on the external server is accessed. Any time

the proxy accesses a key on the storage server – either for a read or a write operation

– the proxy increments the key’s frequency and re-balances the tree based on the key

frequencies. Waffle utilizes the BST to ensure that the maximum and minimum access

frequencies of any two items in the system do not differ beyond a set threshold, ∆.

The key benefit of leveraging a binary search tree to maintain frequency is that it

helps track the frequency difference between the least accessed and most accessed item

with O(1) complexity (by maintaining pointers to the left-most and right-most BST

nodes). And the properties of a balanced BST allows the proxy to update frequencies

and re-balance the tree in O(logN) complexity where N is the number of data items.

Unlike Pancake [90] where the proxy needs to know the frequency distribution of all

keys a priori, Waffle’s choice of utilizing the BST Framework to dynamically maintain

access frequencies removes the stringent requirement of a-priori frequency distribution

knowledge. Some key advantages of using the framework to hide the frequencies are as

follows:

• No requirement on knowing frequency distribution ahead of time.

• Automatically handles any changes in the frequency distribution.

241

Future directions Chapter 8

• Easy to ensure the least and most accessed frequencies do not digress.

• Ease of picking keys for a fake access necessary to hide the real access frequencies.

8.2 High functionality oblivious datastores

Database researchers, and people in computing in general, are grappling with the

increasing challenge of data privacy. Laws such as GDPR and HIPAA make data privacy

not merely a desired property but a necessary property that database systems must pro-

vide. Merely encrypted data is susceptible to privacy attacks based on access patterns,

and Oblivious RAM or ORAM, a cryptographic technique, protects data from access

pattern attacks. Although traditional trust-assuming database systems have evolved sig-

nificantly over the years to provide a rich set of features such as concurrency control,

transactional ACID guarantees, and query optimizations, almost all currently existing

privacy preserving oblivious datastores strip away these features and downgrade the un-

trusted backend server to a simple system that supports single item Gets and Puts. This

simplifying of the backend database servers is usually necessary to uphold the strict defi-

nitions of obliviousness, as different database features may reveal non-trivial information

about the data. For example: allowing the untrusted database server to handle concur-

rency control may reveal high contention in application workloads, as multiple concurrent

requests might be accessing the same data item. Today, a trusted proxy server provides

much of these features such as concurrency control and the backend server merely Gets

and Puts individual data items.

We believe an important future research direction will be in developing feature-rich

databases, where the features themselves preserve privacy, and to remove the trusted

proxy, allowing the clients to access the database servers directly. To achieve this, we aim

to consider each database feature separately and build oblivious versions of those features.

242

For example, concurrency control can be made oblivious by creating fake accesses to

data items and mixing them with real access such that from the server’s perspective,

all data items have equal concurrency. Such a feature-by-feature approach to integrate

obliviousness into database systems can help bridge the gaps between theoretical oblivious

datastore constructions and existing practical databases.

With respect to building a transactional oblivious datastore, while the computing lit-

erature consists of many ORAM solutions, to this day, Obladi [47] by Crooks et al. is the

only ORAM solution that provides transactional guarantees. But even Obladi does not

address the problem of obliviously executing distributed transactions – transactions that

access data stored across different servers. We believe that a future research project can

design a distributed database system that guarantees oblivious serializable transactions.

One of the main challenges in ORAM systems today is that once a (uncommitted) write

operation propagates to the server, it cannot be undone or canceled. Undoing writes is a

necessary property in designing distributed databases as one database server may agree

to commit a transaction T but another may abort it, causing the first database server

to cancel any of T ’s updates; failing to cancel such updates will break data consistency

by allowing new transactions to read transaction updates that never committed. These

challenging open problems makes this research project interesting.

243

Bibliography

[1] Divyakant Agrawal and Amr El Abbadi. “An efficient and fault-tolerant solution
for distributed mutual exclusion”. In: ACM Transactions on Computer Systems
(TOCS) 9.1 (1991), pp. 1–20.

[2] Lindsey Allen, Panagiotis Antonopoulos, Arvind Arasu, Johannes Gehrke, Joachim
Hammer, James Hunter, Raghav Kaushik, Donald Kossmann, Jonathan Lee, Ravi
Ramamurthy, et al. “Veritas: Shared verifiable databases and tables in the cloud”.
In: CIDR. 2019.

[3] Gustavo Alonso and Amr El Abbadi. “Partitioned data objects in distributed
databases”. In: Distributed and Parallel Databases 3.1 (1995), pp. 5–35.

[4] Amazon AWS. https://aws.amazon.com/. Accessed: 2022-4-25.

[5] Amazon AWS Account Hierarchy. https://aws.amazon.com/answers/account-
management/aws-multi-account-billing-strategy/. Accessed: 2020-02-17.

[6] Amazon loses 1% revenue for every 100ms page load delay. https : / / www .

contentkingapp.com/academy/page-speed-resources/faq/amazon-page-

speed-study/. Accessed May 9, 2022.

[7] Amazon S3 Bucket Breaches. https://www.riskiq.com/blog/labs/magecart-
amazon-s3-buckets/. Accessed: 2019-07-10.

[8] MJ. Amiri, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. “SeeMoRe: A Fault-
Tolerant Protocol for Hybrid Cloud Environments”. In: International Conference
on Data Engineering (ICDE) (2020).

[9] MJ. Amiri, D. Shu, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. Ziziphus:
Scalable Data Management Across Byzantine Edge Servers. https://sites.cs.
ucsb.edu/~sujaya_maiyya/assets/papers/ziziphus.pdf. Accessed: 2021-11-
11. 2021.

[10] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. “ParBlockchain:
Leveraging Transaction Parallelism in Permissioned Blockchain Systems”. In: 39th
International Conference on Distributed Computing Systems (ICDCS). IEEE. 2019.

244

https://aws.amazon.com/
https://aws.amazon.com/answers/account-management/aws-multi-account-billing-strategy/
https://aws.amazon.com/answers/account-management/aws-multi-account-billing-strategy/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.riskiq.com/blog/labs/magecart-amazon-s3-buckets/
https://www.riskiq.com/blog/labs/magecart-amazon-s3-buckets/
https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/ziziphus.pdf
https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/ziziphus.pdf

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. “Hyperledger fabric: a distributed operating system
for permissioned blockchains”. In: Proceedings of the Thirteenth EuroSys Confer-
ence. ACM. 2018, p. 30.

[12] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H
Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Sto-
ica, et al. Above the clouds: A berkeley view of cloud computing. Tech. rep. Techni-
cal Report UCB/EECS-2009-28, EECS Department, University of California . . .,
2009.

[13] V. Arora, RKS. Babu, Sujaya Maiyya, D. Agrawal, A. El Abbadi, X. Xue, et
al. “Dynamic Timestamp Allocation for Reducing Transaction Aborts”. In: 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE. 2018,
pp. 269–276.

[14] Azure CosmosDB. https://azure.microsoft.com/en-us/blog/a-technical-
overview-of-azure-cosmos-db/. Accessed: 2020-06-17.

[15] Azure Public Dataset. https://github.com/Azure/AzurePublicDataset. 2019
(accessed June 30, 2020).

[16] Daniel Barbara and Hector Garcia-Molina. “The Demarcation Protocol: A tech-
nique for maintaining linear arithmetic constraints in distributed database sys-
tems”. In: International Conference on Extending Database Technology. Springer.
1992, pp. 373–388.

[17] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. “Web search for a planet: The
Google cluster architecture”. In: IEEE micro 23.2 (2003), pp. 22–28.

[18] Luiz André Barroso and Urs Hölzle. “The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines”. In: Synthesis lectures on computer
architecture 4.1 (2009), pp. 1–108.

[19] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. “Chainspace: A sharded smart contracts platform”. In: arXiv preprint
arXiv:1708.03778 (2017).

[20] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The round complexity of
secure protocols”. In: Proceedings of the twenty-second annual ACM symposium
on Theory of computing. 1990, pp. 503–513.

[21] Josh Benaloh. “Dense probabilistic encryption”. In: Proceedings of the workshop
on selected areas of cryptography. 1994, pp. 120–128.

[22] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency con-
trol and recovery in database systems. Vol. 370. Addison-wesley Reading, 1987.

245

https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://github.com/Azure/AzurePublicDataset

[23] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and
Yan Huang. “Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward”. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. 2015, pp. 837–849.

[24] Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea Wiesmann, and Ton En-
gbersen. “Failure analysis of virtual and physical machines: patterns, causes and
characteristics”. In: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE. 2014, pp. 1–12.

[25] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E Skeith. “Pub-
lic key encryption that allows PIR queries”. In: Annual International Cryptology
Conference. Springer. 2007, pp. 50–67.

[26] Dan Boneh, David Mazieres, and Raluca Ada Popa. “Remote oblivious storage:
Making oblivious RAM practical”. In: (2011).

[27] Elette Boyle, Kai-Min Chung, and Rafael Pass. “Oblivious parallel RAM and
applications”. In: Theory of Cryptography Conference. Springer. 2016, pp. 175–
204.

[28] Elette Boyle and Moni Naor. “Is there an oblivious ram lower bound?” In: Pro-
ceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science. 2016, pp. 357–368.

[29] Gabriel Bracha and Sam Toueg. “Asynchronous consensus and broadcast proto-
cols”. In: Journal of the ACM (JACM) 32.4 (1985), pp. 824–840.

[30] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from
classical GapSVP”. In: Annual Cryptology Conference. Springer. 2012, pp. 868–
886.

[31] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. “TAO:
Facebook’s Distributed Data Store for the Social Graph”. In: 2013 USENIX An-
nual Technical Conference (USENIX ATC 13). 2013, pp. 49–60.

[32] Christian Cachin, Silvio Micali, and Markus Stadler. “Computationally private in-
formation retrieval with polylogarithmic communication”. In: International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer.
1999, pp. 402–414.

[33] David Cash, Andrew Drucker, and Alexander Hoover. “A lower bound for one-
round oblivious RAM”. In: Theory of Cryptography Conference. Springer. 2020,
pp. 457–485.

[34] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. “Leakage-abuse
attacks against searchable encryption”. In: Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security. 2015, pp. 668–679.

246

[35] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In:
OSDI. Vol. 99. 1999. 1999, pp. 173–186.

[36] Anrin Chakraborti and Radu Sion. “ConcurORAM: High-throughput stateless
parallel multi-client ORAM”. In: arXiv preprint arXiv:1811.04366 (2018).

[37] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made live:
an engineering perspective”. In: Proceedings of the twenty-sixth annual ACM sym-
posium on Principles of distributed computing. 2007, pp. 398–407.

[38] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah AWallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. “Bigtable:
A distributed storage system for structured data”. In: ACM Transactions on Com-
puter Systems (TOCS) 26.2 (2008), pp. 1–26.

[39] Bernadette Charron-Bost. “Comparing the atomic commitment and consensus
problems”. In: Future directions in distributed computing. Springer, 2003, pp. 29–
34.

[40] Batyr Charyyev, Engin Arslan, and Mehmet Hadi Gunes. “Latency comparison
of cloud datacenters and edge servers”. In: GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE. 2020, pp. 1–6.

[41] Zhijia Chen, Yuanchang Zhu, Yanqiang Di, and Shaochong Feng. “Self-adaptive
prediction of cloud resource demands using ensemble model and subtractive-fuzzy
clustering based fuzzy neural network”. In: Computational intelligence and neu-
roscience 2015 (2015).

[42] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. “Private infor-
mation retrieval”. In: Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE. 1995, pp. 41–50.

[43] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,
Ryusuke Masuoka, and Jesus Molina. “Controlling data in the cloud: outsourc-
ing computation without outsourcing control”. In: Proceedings of the 2009 ACM
workshop on Cloud computing security. 2009, pp. 85–90.

[44] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the
1st ACM symposium on Cloud computing. ACM. 2010, pp. 143–154.

[45] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, et al. “Spanner: Google’s globally distributed database”.
In: ACM Transactions on Computer Systems (TOCS) 31.3 (2013), pp. 1–22.

[46] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms”. In: Proceedings
of the 26th Symposium on Operating Systems Principles. 2017, pp. 153–167.

247

[47] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal,
and Lorenzo Alvisi. “Obladi: Oblivious serializable transactions in the cloud”. In:
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). 2018, pp. 727–743.

[48] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.
“Schism: a workload-driven approach to database replication and partitioning”.
In: (2010).

[49] Cyber Threat Data Manipulation. https://www.theguardian.com/technology/
2015/sep/10/cyber-threat-data-manipulation-us-intelligence-chief.
Accessed: 2019-07-10.

[50] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and Raluca
Ada Popa. “Snoopy: Surpassing the Scalability Bottleneck of Oblivious Storage”.
In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Prin-
ciples. 2021, pp. 655–671.

[51] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. “Burst {ORAM}: Minimizing
{ORAM} Response Times for Bursty Access Patterns”. In: 23rd USENIX Security
Symposium (USENIX Security 14). 2014, pp. 749–764.

[52] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. “Dynamo: amazon’s highly available key-value store”. In:
ACM SIGOPS operating systems review 41.6 (2007), pp. 205–220.

[53] Default Replica Count For CockroahDB. https://www.cockroachlabs.com/
docs/stable/configure-replication-zones.html. Accessed Jan 10, 2021.

[54] Default Replica Count For Spanner. https://cloud.google.com/spanner/
docs/instances. Accessed Jan 10, 2021.

[55] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and Saurabh
Shintre. “{SEAL}: Attack Mitigation for Encrypted Databases via Adjustable
Leakage”. In: 29th {USENIX} Security Symposium ({USENIX} Security 20).
2020, pp. 2433–2450.

[56] Sheng Di, Derrick Kondo, and Walfredo Cirne. “Host load prediction in a Google
compute cloud with a Bayesian model”. In: SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
IEEE. 2012, pp. 1–11.

[57] Danny Dolev and H. Raymond Strong. “Authenticated algorithms for Byzantine
agreement”. In: SIAM Journal on Computing 12.4 (1983), pp. 656–666.

[58] Taher ElGamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE transactions on information theory 31.4 (1985),
pp. 469–472.

248

https://www.theguardian.com/technology/2015/sep/10/cyber-threat-data-manipulation-us-intelligence-chief
https://www.theguardian.com/technology/2015/sep/10/cyber-threat-data-manipulation-us-intelligence-chief
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://cloud.google.com/spanner/docs/instances
https://cloud.google.com/spanner/docs/instances

[59] Equifax Data Breach. https://investor.equifax.com/news-and-events/
news/2017/09-15-2017-224018832. Accessed: 2017-09-15.

[60] Facebook fined $5B over data privacy violation. https://www.ftc.gov/news-
events / press - releases / 2019 / 07 / ftc - imposes - 5 - billion - penalty -

sweeping-new-privacy-restrictions. Accessed June 7, 2021.

[61] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic
encryption.” In: IACR Cryptol. ePrint Arch. 2012 (2012), p. 144.

[62] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility of
distributed consensus with one faulty process”. In: Journal of the ACM (JACM)
32.2 (1985), pp. 374–382.

[63] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-
fanov. “Bucket ORAM: single online roundtrip, constant bandwidth oblivious
RAM”. In: Cryptology ePrint Archive (2015).

[64] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. “Availability in globally
distributed storage systems”. In: 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10). 2010.

[65] FTC imposes 5 billion dollars fine for privacy violations. https://www.ftc.
gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-

penalty-sweeping-new-privacy-restrictions-facebook. Accessed: 2022-4-
25.

[66] Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea
Margheri, and Vladimiro Sassone. “Blockchain-based database to ensure data in-
tegrity in cloud computing environments”. In: ITA-SEC (2017).

[67] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguiça. “Efficient middleware for
byzantine fault tolerant database replication”. In: European Conference on Com-
puter Systems (EuroSys). ACM. 2011, pp. 107–122.

[68] Hector Garcia Molina, Frank Pittelli, and Susan Davidson. “Applications of Byzan-
tine agreement in database systems”. In: ACM Transactions on Database Systems
(TODS) 11.1 (1986), pp. 27–47.

[69] Hector Garcia-Molina and Kenneth Salem. “Main memory database systems: An
overview”. In: IEEE Transactions on knowledge and data engineering 4.6 (1992),
pp. 509–516.

[70] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. “Garbled RAM
from one-way functions”. In: Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing. 2015, pp. 449–458.

[71] Ilir Gashi, Peter Popov, Vladimir Stankovic, and Lorenzo Strigini. “On design-
ing dependable services with diverse off-the-shelf SQL servers”. In: Architecting
Dependable Systems II. Springer, 2004, pp. 191–214.

249

https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook

[72] GDPR Regulations. https://gdpr-info.eu/. Accessed May 10, 2022.

[73] Craig Gentry et al. A fully homomorphic encryption scheme. Vol. 20. 9. Stanford
university Stanford, 2009.

[74] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and
Daniel Wichs. “Garbled RAM revisited”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2014, pp. 405–
422.

[75] Craig Gentry and Zulfikar Ramzan. “Single-database private information retrieval
with constant communication rate”. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2005, pp. 803–815.

[76] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-
derson. “Scalable consistency in Scatter”. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. 2011, pp. 15–28.

[77] Oded Goldreich. “Towards a theory of software protection and simulation by obliv-
ious RAMs”. In: Proceedings of the nineteenth annual ACM symposium on Theory
of computing. 1987, pp. 182–194.

[78] Oded Goldreich and Rafail Ostrovsky. “Software protection and simulation on
oblivious RAMs”. In: Journal of the ACM (JACM) 43.3 (1996), pp. 431–473.

[79] Leana Golubchik and Alexander Thomasian. “Token allocation in distributed sys-
tems”. In: [1992] Proceedings of the 12th International Conference on Distributed
Computing Systems. IEEE. 1992, pp. 64–71.

[80] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “Press: Predictive elastic resource
scaling for cloud systems”. In: 2010 International Conference on Network and
Service Management. Ieee. 2010, pp. 9–16.

[81] Google Cloud. https://cloud.google.com/. Accessed: 2022-4-25.

[82] Google Cloud Enterprise Hierarchy. https://cloud.google.com/docs/enterprise/
best-practices-for-enterprise-organizations. Accessed: 2020-02-17.

[83] Google Cloud Pricing. https://cloud.google.com/storage/pricing. Accessed
August 15, 2021.

[84] Google fined $57M over GDPR violation. https://digitalguardian.com/blog/
google- fined- 57m- data- protection- watchdog- over- gdpr- violations.
Accessed June 7, 2021.

[85] Google Function Pricing. https://cloud.google.com/functions/pricing.
Accessed August 15, 2021.

[86] Google loses 20% traffic for 0.5s page load delay. https://medium.com/@vikigreen/
impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a.
Accessed May 9, 2022.

250

https://gdpr-info.eu/
https://cloud.google.com/
https://cloud.google.com/docs/enterprise/best-practices-for-enterprise-organizations
https://cloud.google.com/docs/enterprise/best-practices-for-enterprise-organizations
 https://cloud.google.com/storage/pricing
https://digitalguardian.com/blog/google-fined-57m-data-protection-watchdog-over-gdpr-violations
https://digitalguardian.com/blog/google-fined-57m-data-protection-watchdog-over-gdpr-violations
 https://cloud.google.com/functions/pricing
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a

[87] James N Gray. “Notes on data base operating systems”. In: Operating Systems.
Springer, 1978, pp. 393–481.

[88] Jim Gray and Leslie Lamport. “Consensus on transaction commit”. In: ACM
Transactions on Database Systems (TODS) 31.1 (2006), pp. 133–160.

[89] Growth of Global Data Privacy Laws. https://stealthbits.com/blog/growth-
of-global-data-privacy-laws/. Accessed: 2021-10-25.

[90] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy
Li, Rachit Agarwal, and Thomas Ristenpart. “Pancake: Frequency smoothing for
encrypted data stores”. In: 29th {USENIX} Security Symposium ({USENIX} Se-
curity 20). 2020, pp. 2451–2468.

[91] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
“Learning to reconstruct: Statistical learning theory and encrypted database at-
tacks”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019,
pp. 1067–1083.

[92] Rachid Guerraoui. “Revisiting the relationship between non-blocking atomic com-
mitment and consensus”. In: International Workshop on Distributed Algorithms.
Springer. 1995, pp. 87–100.

[93] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D
Satria, Jeffry Adityatama, and Kurnia J Eliazar. “Why does the cloud stop com-
puting? lessons from hundreds of service outages”. In: Proceedings of the Seventh
ACM Symposium on Cloud Computing. 2016, pp. 1–16.

[94] Harshit Gupta and Umakishore Ramachandran. “Fogstore: A geo-distributed key-
value store guaranteeing low latency for strongly consistent access”. In: Proceed-
ings of the 12th ACM International Conference on Distributed and Event-based
Systems. 2018, pp. 148–159.

[95] Vassos Hadzilacos. “On The Relationship Between The Atomic Commitment
And Consensus Problems”. In: In Fault-Tolerant Distributed Computing. Springer-
Verlag, 1990, pp. 201–208.

[96] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. “PeerReview: Practi-
cal accountability for distributed systems”. In: ACM SIGOPS operating systems
review 41.6 (2007), pp. 175–188.

[97] Theo Härder. “Handling hot spot data in DB-sharing systems”. In: Information
Systems 13.2 (1988), pp. 155–166.

[98] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A correctness condi-
tion for concurrent objects”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 12.3 (1990), pp. 463–492.

[99] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and Ravi
Ramamurthy. “BlockchainDB: a shared database on blockchains”. In: Proceedings
of the VLDB Endowment 12.11 (2019), pp. 1597–1609.

251

https://stealthbits.com/blog/growth-of-global-data-privacy-laws/
https://stealthbits.com/blog/growth-of-global-data-privacy-laws/

[100] HIPAA Regulations. https://www.hhs.gov/hipaa/index.html. Accessed May
10, 2022.

[101] How many servers does a data center have? https://www.racksolutions.com/

news/blog/how-many-servers-does-a-data-center-have/. Accessed August
15, 2021.

[102] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. “Flexible paxos: Quo-
rum intersection revisited”. In: arXiv preprint arXiv:1608.06696 (2016).

[103] Impact of slow page load time. https://medium.com/@vikigreen/impact-of-
slow-page-load-time-on-website-performance-40d5c9ce568a. Accessed:
2021-06-6.

[104] Increasing Cyber-attacks on Cloud Services. https://compliancy-group.com/
cyber-attacks-on-cloud-services-rise-630/. Accessed: 2021-10-25.

[105] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. “Access pattern
disclosure on searchable encryption: ramification, attack and mitigation.” In: Ndss.
Vol. 20. Citeseer. 2012, p. 12.

[106] Rohit Jain and Sunil Prabhakar. “Trustworthy data from untrusted databases”.
In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE.
2013, pp. 529–540.

[107] Yexi Jiang, Chang-shing Perng, Tao Li, and Rong Chang. “Asap: A self-adaptive
prediction system for instant cloud resource demand provisioning”. In: 2011 IEEE
11th International Conference on Data Mining. IEEE. 2011, pp. 1104–1109.

[108] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. “Hermes: a fast, fault-
tolerant and linearizable replication protocol”. In: Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 2020, pp. 201–217.

[109] Idit Keidar and Danny Dolev. “Increasing the resilience of atomic commit, at
no additional cost”. In: Proceedings of the fourteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. 1995, pp. 245–254.

[110] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. “Generic at-
tacks on secure outsourced databases”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016, pp. 1329–1340.

[111] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Li-
nus Gasser, and Bryan Ford. “Enhancing bitcoin security and performance with
strong consistency via collective signing”. In: 25th {USENIX} Security Symposium
({USENIX} Security 16). 2016, pp. 279–296.

252

https://www.hhs.gov/hipaa/index.html
 https://www.racksolutions.com/news/blog/how-many-servers-does-a-data-center-have/
 https://www.racksolutions.com/news/blog/how-many-servers-does-a-data-center-have/
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://compliancy-group.com/cyber-attacks-on-cloud-services-rise-630/
https://compliancy-group.com/cyber-attacks-on-cloud-services-rise-630/

[112] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. “Omniledger: A secure, scale-out, decentralized ledger via
sharding”. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018,
pp. 583–598.

[113] Richard Koo and Sam Toueg. “Checkpointing and rollback-recovery for distributed
systems”. In: IEEE Transactions on software Engineering 1 (1987), pp. 23–31.

[114] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
“Data recovery on encrypted databases with k-nearest neighbor query leakage”.
In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 1033–
1050.

[115] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. “Digital supply chain trans-
formation toward blockchain integration”. In: proceedings of the 50th Hawaii in-
ternational conference on system sciences. 2017.

[116] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.
“MDCC: Multi-data center consistency”. In: Proceedings of the 8th ACM European
Conference on Computer Systems. 2013, pp. 113–126.

[117] Narayanan Krishnakumar and Arthur J Bernstein. “High throughput escrow al-
gorithms for replicated databases”. In: VLDB. Vol. 1992. 1992, pp. 175–186.

[118] Akhil Kumar and Michael Stonebraker. “Semantics based transaction manage-
ment techniques for replicated data”. In: ACM SIGMOD Record 17.3 (1988),
pp. 117–125.

[119] Hsiang-Tsung Kung and John T Robinson. “On optimistic methods for concur-
rency control”. In: ACM Transactions on Database Systems (TODS) 6.2 (1981),
pp. 213–226.

[120] Eyal Kushilevitz and Rafail Ostrovsky. “Replication is not needed: Single database,
computationally-private information retrieval”. In: Proceedings 38th annual sym-
posium on foundations of computer science. IEEE. 1997, pp. 364–373.

[121] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured
storage system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–
40.

[122] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001),
pp. 18–25.

[123] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem”. In: Commun. ACM 21.7 (1978), pp. 558–565.

[124] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Stoppable paxos”. In: TechRe-
port, Microsoft Research (2008).

253

[125] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Vertical paxos and primary-
backup replication”. In: Proceedings of the 28th ACM symposium on Principles of
distributed computing. ACM. 2009, pp. 312–313.

[126] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine gener-
als problem”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 4.3 (1982), pp. 382–401.

[127] Butler Lampson and David Lomet. “A new presumed commit optimization for
two phase commit”. In: 19th International Conference on Very Large Data Bases
(VLDB’93). 1993, pp. 630–640.

[128] Butler Lampson and Howard E Sturgis. “Crash recovery in a distributed data
storage system”. In: (1979).

[129] Kasper Green Larsen, Tal Malkin, Omri Weinstein, and Kevin Yeo. “Lower bounds
for oblivious near-neighbor search”. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2020, pp. 1116–1134.

[130] Kasper Green Larsen and Jesper Buus Nielsen. “Yes, there is an oblivious RAM
lower bound!” In: Annual International Cryptology Conference. Springer. 2018,
pp. 523–542.

[131] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. “Dynamic
authenticated index structures for outsourced databases”. In: Proceedings of the
2006 ACM SIGMOD international conference on Management of data. ACM.
2006, pp. 121–132.

[132] Yehuda Lindell and Benny Pinkas. “A proof of security of Yao’s protocol for two-
party computation”. In: Journal of cryptology 22.2 (2009), pp. 161–188.

[133] Bruce G Lindsay, Patricia G Selinger, Cesare Galtieri, James N Gray, Raymond A
Lorie, Thomas G Price, Franco Putzolu, Irving L Traiger, and Bradford W Wade.
Notes on distributed databases. IBM Thomas J. Watson Research Division, 1979.

[134] Helger Lipmaa and Bingsheng Zhang. “Two new efficient PIR-writing proto-
cols”. In: International Conference on Applied Cryptography and Network Secu-
rity. Springer. 2010, pp. 438–455.

[135] Gang Liu, Kenli Li, Zheng Xiao, and Rujia Wang. “EHAP-ORAM: Efficient
Hardware-Assisted Persistent ORAM System for Non-volatile Memory”. In: arXiv
preprint arXiv:2011.03669 (2020).

[136] Zheli Liu, Bo Li, Yanyu Huang, Jin Li, Yang Xiang, and Witold Pedrycz. “NewM-
COS: towards a practical multi-cloud oblivious storage scheme”. In: IEEE Trans-
actions on Knowledge and Data Engineering 32.4 (2019), pp. 714–727.

[137] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
“Stronger Semantics for Low-Latency Geo-Replicated Storage”. In: 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13). 2013,
pp. 313–328.

254

[138] Steve Lu and Rafail Ostrovsky. “Distributed oblivious RAM for secure two-party
computation”. In: Theory of Cryptography Conference. Springer. 2013, pp. 377–
396.

[139] Steve Lu and Rafail Ostrovsky. “How to garble RAM programs?” In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2013, pp. 719–734.

[140] Aldelir Fernando Luiz, Lau Cheuk Lung, and Miguel Correia. “Byzantine fault-
tolerant transaction processing for replicated databases”. In: 2011 IEEE 10th
International Symposium on Network Computing and Applications. IEEE. 2011,
pp. 83–90.

[141] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. “A secure sharding protocol for open blockchains”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2016, pp. 17–30.

[142] N. A. Lynch and A. A. Shvartsman. “Robust Emulation of Shared Memory Using
Dynamic Quorum-acknowledged Broadcasts”. In: Proceedings of the 27th Inter-
national Symposium on Fault-Tolerant Computing (FTCS ’97). FTCS ’97. Wash-
ington, DC, USA: IEEE Computer Society, 1997, pp. 272–. isbn: 0-8186-7831-3.
url: http://dl.acm.org/citation.cfm?id=795670.796859.

[143] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr
El Abbadi. “Low-latency multi-datacenter databases using replicated commit”. In:
Proceedings of the VLDB Endowment 6.9 (2013), pp. 661–672.

[144] Sujaya Maiyya, I. Ahmad, D. Agrawal, and A. El Abbadi. “Samya: Geo-Distributed
Data System for High Contention Data Aggregates”. In: International Conference
on Data Engineering (ICDE) (2021).

[145] Sujaya Maiyya, P. Ananth, D. Agrawal, and A. El Abbadi. ORTOA: One Round
Trip Oblivious Access. https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/
papers/ORTOA.pdf. Accessed: 2021-11-11.

[146] Sujaya Maiyya, DBH. Cho, D. Agrawal, and A. El Abbadi. “Fides: Managing
Data on Untrusted Infrastructure”. In: International Conference on Distributed
Computing Systems (ICDCS) (2020).

[147] Sujaya Maiyya, Seif Ibrahim, Caitlin Scarberry, Divyakant Agrawal, Amr El Ab-
badi, Huijia Lin, Stefano Tessaro, and Victor Zakhary. “QuORAM: A Quorum-
Replicated Fault Tolerant ORAM Datastore”. In: To appear in USENIX Security
(2022).

[148] Sujaya Maiyya, F. Nawab, D. Agrawal, and A. El Abbadi. “Unifying consensus
and atomic commitment for effective cloud data management”. In: Proceedings of
the VLDB Endowment 12.5 (2019), pp. 611–623.

255

http://dl.acm.org/citation.cfm?id=795670.796859
https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/ORTOA.pdf
https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/ORTOA.pdf

[149] Sujaya Maiyya, V. Zakhary, D. Agrawal, and A. El Abbadi. “Database and dis-
tributed computing fundamentals for scalable, fault-tolerant, and consistent main-
tenance of blockchains”. In: Proceedings of the VLDB Endowment 11.12 (2018),
pp. 2098–2101.

[150] Sujaya Maiyya, V. Zakhary, MJ. Amiri, D. Agrawal, and A. El Abbadi. “Database
and Distributed Computing Foundations of Blockchains”. In: SIGMOD. 2019.

[151] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. “BigchainDB: a scalable blockchain database”. In: white paper, BigChainDB
(2016).

[152] Ralph C Merkle. “A certified digital signature”. In: Conference on the Theory and
Application of Cryptology. Springer. 1989, pp. 218–238.

[153] Microsoft Azure. https://azure.microsoft.com/en-us/. Accessed: 2022-4-25.

[154] Microsoft Azure Resource Hierarchy. https://docs.microsoft.com/en-us/
azure/cloud-adoption-framework/ready/azure-setup-guide/organize-

resources?tabs=AzureManagmentGroupsAndHierarchy. Accessed: 2020-02-17.

[155] Microsoft SEAL. https://docs.microsoft.com/en-us/azure/architecture/
solution-ideas/articles/homomorphic-encryption-seal. Accessed June 15,
2021.

[156] Microsoft’s attention span study. https://dl.motamem.org/microsoft-attention-
spans-research-report.pdf. Accessed: 2022-4-25.

[157] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
“ARIES: a transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging”. In: ACM Transactions on Database
Systems (TODS) 17.1 (1992), pp. 94–162.

[158] C Mohan, Ray Strong, and Shel Finkelstein. “Method for distributed transaction
commit and recovery using Byzantine agreement within clusters of processors”.
In: Proceedings of the second annual ACM symposium on Principles of distributed
computing. 1983, pp. 89–103.

[159] MongoDB. https://www.mongodb.com/. Accessed March 14, 2022.

[160] Iulian Moraru, David G Andersen, and Michael Kaminsky. “There is more con-
sensus in egalitarian parliaments”. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 2013, pp. 358–372.

[161] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. “Consolidating con-
currency control and consensus for commits under conflicts”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 2016,
pp. 517–532.

256

https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/organize-resources?tabs=AzureManagmentGroupsAndHierarchy
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/organize-resources?tabs=AzureManagmentGroupsAndHierarchy
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/organize-resources?tabs=AzureManagmentGroupsAndHierarchy
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
https://dl.motamem.org/microsoft-attention-spans-research-report.pdf
https://dl.motamem.org/microsoft-attention-spans-research-report.pdf
https://www.mongodb.com/

[162] Satoshi Nakamoto et al. “Bitcoin: A peer-to-peer electronic cash system”. In:
(2008).

[163] Moni Naor and Udi Wieder. “Scalable and dynamic quorum systems”. In: Dis-
tributed Computing 17.4 (2005), pp. 311–322.

[164] Maithili Narasimha and Gene Tsudik. “Authentication of outsourced databases
using signature aggregation and chaining”. In: International conference on database
systems for advanced applications. Springer. 2006, pp. 420–436.

[165] Arvind Narayanan and Vitaly Shmatikov. “Myths and fallacies of” personally
identifiable information””. In: Communications of the ACM 53.6 (2010), pp. 24–
26.

[166] Arvind Narayanan and Vitaly Shmatikov. “Robust de-anonymization of large
sparse datasets”. In: 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE. 2008, pp. 111–125.

[167] Neflix uses AWS for all compute and storage needs. https://aws.amazon.com/
solutions/case-studies/netflix/. Accessed October 5, 2021.

[168] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
“{AGILE}: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service”.
In: Proceedings of the 10th International Conference on Autonomic Computing
({ICAC} 13). 2013, pp. 69–82.

[169] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[170] Rodrigo Nogueira, Filipe Araújo, and Raul Barbosa. “CloudBFT: elastic byzan-
tine fault tolerance”. In: 2014 IEEE 20th Pacific Rim International Symposium
on Dependable Computing. IEEE. 2014, pp. 180–189.

[171] Patrick E O’Neil. “The escrow transactional method”. In: ACM Transactions on
Database Systems (TODS) 11.4 (1986), pp. 405–430.

[172] Diego Ongaro and John Ousterhout. “In search of an understandable consensus
algorithm”. In: 2014 USENIX Annual Technical Conference (Usenix ATC 14).
2014, pp. 305–319.

[173] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity
classes”. In: International conference on the theory and applications of crypto-
graphic techniques. Springer. 1999, pp. 223–238.

[174] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio: Nearly
practical verifiable computation”. In: 2013 IEEE Symposium on Security and Pri-
vacy. IEEE. 2013, pp. 238–252.

[175] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. “What Storage Access Privacy
is Achievable with Small Overhead?” In: Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 2019, pp. 182–
199.

257

https://aws.amazon.com/solutions/case-studies/netflix/
https://aws.amazon.com/solutions/case-studies/netflix/

[176] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. “Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems”. In: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. 2012,
pp. 61–72.

[177] Fernando Pedone and Nicolas Schiper. “Byzantine fault-tolerant deferred update
replication”. In: Journal of the Brazilian Computer Society 18.1 (2012), p. 3.

[178] Giuseppe Persiano and Kevin Yeo. “Lower bounds for differentially private RAMs”.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2019, pp. 404–434.

[179] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. “CryptDB: Protecting confidentiality with encrypted query processing”. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples. 2011, pp. 85–100.

[180] Redis. https://redis.io/. Accessed March 14, 2022.

[181] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
Van Dijk, and Srinivas Devadas. “Constants Count: Practical Improvements to
Oblivious {RAM}”. In: 24th USENIX Security Symposium ({USENIX} Security
15). 2015, pp. 415–430.

[182] Resource Tracking Services. https://thedigitalprojectmanager.com/resource-
scheduling-software-tools/. Accessed Oct 3, 2020).

[183] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining
digital signatures and public-key cryptosystems”. In: Communications of the ACM
21.2 (1978), pp. 120–126.

[184] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.
“Taostore: Overcoming asynchronicity in oblivious data storage”. In: 2016 IEEE
Symposium on Security and Privacy (SP). IEEE. 2016, pp. 198–217.

[185] Claus-Peter Schnorr. “Efficient signature generation by smart cards”. In: Journal
of cryptology 4.3 (1991), pp. 161–174.

[186] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. “Clay: fine-grained adaptive partitioning for general
database schemas”. In: Proceedings of the VLDB Endowment 10.4 (2016), pp. 445–
456.

[187] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. “Conflict-
free replicated data types”. In: Symposium on Self-Stabilizing Systems. Springer.
2011, pp. 386–400.

258

https://redis.io/
https://thedigitalprojectmanager.com/resource-scheduling-software-tools/
https://thedigitalprojectmanager.com/resource-scheduling-software-tools/

[188] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel,
Radek Vingralek, ChadWhipkey, Xin Chen, Beat Jegerlehner, et al. “F1: the fault-
tolerant distributed RDBMS supporting google’s ad business”. In: Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. ACM.
2012, pp. 777–778.

[189] Dale Skeen. “Nonblocking commit protocols”. In: Proceedings of the 1981 ACM
SIGMOD international conference on Management of data. ACM. 1981, pp. 133–
142.

[190] Dale Skeen and Michael Stonebraker. “A formal model of crash recovery in a
distributed system”. In: IEEE Transactions on Software Engineering 3 (1983),
pp. 219–228.

[191] Spotify backend infrastructure moves to Google Cloud. https://variety.com/
2016/digital/news/spotify-goes-cloud-no-more-data-centers-1201712891/.
Accessed October 5, 2021.

[192] Emil Stefanov and Elaine Shi. “Multi-cloud oblivious storage”. In: Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
2013, pp. 247–258.

[193] Emil Stefanov and Elaine Shi. “Oblivistore: High performance oblivious cloud stor-
age”. In: 2013 IEEE Symposium on Security and Privacy. IEEE. 2013, pp. 253–
267.

[194] Emil Stefanov, Elaine Shi, and Dawn Song. “Towards practical oblivious RAM”.
In: arXiv preprint arXiv:1106.3652 (2011).

[195] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. “Path ORAM: an extremely simple oblivious
RAM protocol”. In: Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. 2013, pp. 299–310.

[196] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. “Keeping authorities”
honest or bust” with decentralized witness cosigning”. In: 2016 IEEE Symposium
on Security and Privacy (SP). Ieee. 2016, pp. 526–545.

[197] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. “E-store: Fine-grained
elastic partitioning for distributed transaction processing systems”. In: Proceed-
ings of the VLDB Endowment 8.3 (2014), pp. 245–256.

[198] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. “Cock-
roachDB: The Resilient Geo-Distributed SQL Database”. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2020,
pp. 1493–1509.

259

https://variety.com/2016/digital/news/spotify-goes-cloud-no-more-data-centers-1201712891/
https://variety.com/2016/digital/news/spotify-goes-cloud-no-more-data-centers-1201712891/

[199] Tech companies face billions in fines under new privacy laws. https://news.
bloomberglaw.com/privacy- and- data- security/tech- companies- face-

billions-in-fines-under-eu-content-rules. Accessed: 2022-4-25.

[200] Jeff Terrace and Michael J Freedman. “Object Storage on CRAQ: High-Throughput
Chain Replication for Read-Mostly Workloads.” In: USENIX Annual Technical
Conference. June. San Diego, CA. 2009, pp. 1–16.

[201] Robert H Thomas. “A majority consensus approach to concurrency control for
multiple copy databases”. In: ACM Transactions on Database Systems (TODS)
4.2 (1979), pp. 180–209.

[202] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J Abadi. “Calvin: fast distributed transactions for partitioned database
systems”. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. ACM. 2012, pp. 1–12.

[203] Top reasons to migrate to cloud. https://www.forbes.com/sites/forbestechcouncil/
2021/03/12/why-migrate-to-the-cloud-the-basics-benefits-and-real-

life-examples/?sh=ec5f3c65e272. Accessed: 2022-4-25.

[204] Shruti Tople, Yaoqi Jia, and Prateek Saxena. “Pro-oram: Practical read-only
oblivious {RAM}”. In: 22nd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2019). 2019, pp. 197–211.

[205] TSL. https://datatracker.ietf.org/doc/html/rfc5246. Accessed April 14,
2022.

[206] Twitter selects AWS to power user feeds. https://press.aboutamazon.com/
news-releases/news-release-details/twitter-selects-aws-strategic-

provider-serve-timelines/. Accessed October 5, 2021.

[207] User’s perception of performance delays. https://web.dev/rail/. Accessed:
2022-4-25.

[208] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. “Tolerating
byzantine faults in transaction processing systems using commit barrier schedul-
ing”. In: ACM SIGOPS Operating Systems Review. Vol. 41. ACM. 2007, pp. 59–
72.

[209] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, RamanMittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,
and Xiaofeng Bao. “Amazon aurora: Design considerations for high throughput
cloud-native relational databases”. In: Proceedings of the 2017 ACM International
Conference on Management of Data. 2017, pp. 1041–1052.

[210] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. “Characterizing cloud
computing hardware reliability”. In: Proceedings of the 1st ACM symposium on
Cloud computing. 2010, pp. 193–204.

260

https://news.bloomberglaw.com/privacy-and-data-security/tech-companies-face-billions-in-fines-under-eu-content-rules
https://news.bloomberglaw.com/privacy-and-data-security/tech-companies-face-billions-in-fines-under-eu-content-rules
https://news.bloomberglaw.com/privacy-and-data-security/tech-companies-face-billions-in-fines-under-eu-content-rules
https://www.forbes.com/sites/forbestechcouncil/2021/03/12/why-migrate-to-the-cloud-the-basics-benefits-and-real-life-examples/?sh=ec5f3c65e272
https://www.forbes.com/sites/forbestechcouncil/2021/03/12/why-migrate-to-the-cloud-the-basics-benefits-and-real-life-examples/?sh=ec5f3c65e272
https://www.forbes.com/sites/forbestechcouncil/2021/03/12/why-migrate-to-the-cloud-the-basics-benefits-and-real-life-examples/?sh=ec5f3c65e272
https://datatracker.ietf.org/doc/html/rfc5246
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/
https://press.aboutamazon.com/news-releases/news-release-details/twitter-selects-aws-strategic-provider-serve-timelines/
https://web.dev/rail/

[211] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei
Zaharia. “Splinter: Practical private queries on public data”. In: 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17). 2017,
pp. 299–313.

[212] Guosai Wang, Lifei Zhang, and Wei Xu. “What can we learn from four years of
data center hardware failures?” In: 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE. 2017, pp. 25–36.

[213] Gerhard Weikum and Gottfried Vossen. Transactional information systems: the-
ory, algorithms, and the practice of concurrency control and recovery. Elsevier,
2001.

[214] Mor Weiss and Daniel Wichs. “Is there an oblivious RAM lower bound for online
reads?” In: Journal of Cryptology 34.3 (2021), pp. 1–44.

[215] Peter Williams and Radu Sion. “Single round access privacy on outsourced stor-
age”. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. 2012, pp. 293–304.

[216] Peter Williams, Radu Sion, and Alin Tomescu. “Privatefs: A parallel oblivious file
system”. In: Proceedings of the 2012 ACM conference on Computer and commu-
nications security. 2012, pp. 977–988.

[217] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: 27th Annual
Symposium on Foundations of Computer Science. IEEE. 1986, pp. 162–167.

[218] Sergey Yekhanin. “Private information retrieval”. In: Locally Decodable Codes and
Private Information Retrieval Schemes. Springer, 2010, pp. 61–74.

[219] Aydan R Yumerefendi and Jeffrey S Chase. “Strong accountability for network
storage”. In: ACM Transactions on Storage (TOS) 3.3 (2007), p. 11.

[220] Aydan R Yumerefendi and Jeffrey S Chase. “The role of accountability in de-
pendable distributed systems”. In: Proceedings of HotDep. Vol. 5. Citeseer. 2005,
pp. 3–3.

[221] Aydan R Yumerefendi and Jeffrey S Chase. “Trust but verify: accountability for
network services”. In: Proceedings of the 11th workshop on ACM SIGOPS Euro-
pean workshop. ACM. 2004, p. 37.

[222] V. Zakhary, MJ Amiri, Sujaya Maiyya, D. Agrawal, and A. El Abbadi. “To-
wards Global Asset Management in Blockchain Systems”. In: BCDL co-located
with VLDB (2019).

[223] Victor Zakhary, Cetin Sahin, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.
“Pharos: Privacy Hazards of Replicating ORAM Stores”. In: Proceedings of the
21th International Conference on Extending Database Technology, EDBT 2018.
2018.

261

[224] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. “Rapidchain: Scaling
blockchain via full sharding”. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM. 2018, pp. 931–948.

[225] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. “Chiller: Contention-
centric Transaction Execution and Data Partitioning for Modern Networks”. In:
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2020, pp. 511–526.

[226] Honglei Zhang, Hua Chai, Wenbing Zhao, P Michael Melliar-Smith, and Louise E
Moser. “Trustworthy coordination of Web services atomic transactions”. In: IEEE
Transactions on Parallel and Distributed Systems 23.8 (2011), pp. 1551–1565.

[227] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan RK Ports. “Building consistent transactions with inconsistent replication”.
In: ACM Transactions on Computer Systems (TOCS) 35.4 (2018), pp. 1–37.

[228] Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. “TSKT-ORAM:
A two-server k-ary tree ORAM for access pattern protection in cloud storage”.
In:MILCOM 2016-2016 IEEE Military Communications Conference. IEEE. 2016,
pp. 527–532.

[229] F. Zhao, Sujaya Maiyya, R. Wiener, D. Agrawal, and A. El Abbadi. “KLL±:
Approximate Quantile Sketches over Dynamic Datasets”. In: Proceedings of the
VLDB Endowment (2021).

[230] Wenbing Zhao. “A byzantine fault tolerant distributed commit protocol”. In:
Third IEEE International Symposium on Dependable, Autonomic and Secure Com-
puting (DASC 2007). IEEE. 2007, pp. 37–46.

262

	Curriculum Vitae
	Abstract
	Introduction
	Motivation
	Dissertation Overview
	Dissertation Organization

	Unifying Consensus and Atomic Commitment for Effective Cloud Data Management
	Overview
	Introduction
	Background
	Unifying Consensus and Commitment
	Sharding-Only in the Cloud
	Replication-Only in the Cloud
	Sharding + Replication in the Cloud
	Safety in the C&C framework
	Evaluation
	Related Work
	Conclusion

	Samya: Geo-Distributed Data System for High Contention Data Aggregates
	Overview
	Introduction
	Related Work
	Samya Architecture
	Samya
	Experimental Evaluation
	Conclusion

	Fides: Managing Data on Untrusted Infrastructure
	Overview
	Introduction
	Cryptographic Preliminaries
	Fides Architecture
	Fides
	Failure Examples
	Evaluation
	Related Work
	Conclusion

	QuORAM: A Quorum-Replicated Fault Tolerant ORAM Datastore
	Overview
	Introduction
	Background
	System and Failure Model
	Security Model: Obliviousness in a Replicated ORAM Setting
	QuORAM: a replicated ORAM datastore
	Evaluation
	Security of replicated ORAM datastores
	Linearizability
	Space analysis
	Related Work
	Conclusion

	ORTOA: One Round Trip Oblivious Access
	Introduction
	System and Security Model
	FHE based solution
	ORTOA
	Optimizations
	Protocol evaluation
	Security of ORTOA
	Conclusion

	Concluding remarks
	Future directions
	Frequency Smoothing using a BST Framework
	High functionality oblivious datastores

