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ABSTRACT OF THE DISSERTATION

Investigations of neural networks and long-term memory

by

Bradley Ross Monk

Doctor of Philosophy in Experimental Psychology & Cognitive Science

University of California San Diego, 2021

Professor Stephan Anagnostaras, Co-chair

Professor Roberto Malinow, Co-chair

This dissertation presents findings from two studies investigating the neuroscience of memory.
Chapter 1 reports findings from a computational genomics study on Alzheimer's Disease (AD), a common
neurodegenerative disease that causes memory loss and dementia. There is hope that genomic information
can reveal insights to AD pathophysiology, along with aiding in risk assessment, screening, and
diagnosis. This study involved using exome sequencing data from approximately 10,000 individuals

(~5000 AD patients) to train neural net (NN) classifiers tasked with estimating the impact of single
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genomic variants on AD polygenic risk. Together, these chapters and the studies presented therein add to
our corpus of knowledge on memory systems, and contribute to our quest of understanding and treating
dementia. Chapter 2 covers a study that details a model (supported by experimental results) that can
explain how memories can be formed and maintained within neural network synapses, despite continuous
and complete molecular turnover of synaptic proteins. Memory formation is thought to involve acute
changes to synaptic weights; the ability for synaptic weights to remain stable over long time-periods and
undergo evoked change is considered fundamental to our brain’s information storage schema. Yet basic
questions regarding synaptic plasticity remain unresolved, including a) how synaptic weights remain
stable in the face of perpetual and complete molecular turnover; and b) how such weights can be modified
to new stable levels by transient signals. Through a series of computational and biological experiments,
we elucidate actin, a protein with unique polymer properties, as a potential central mediator of synaptic

weights.



GENERAL INTRODUCTION

A topic that has captivated researchers in the broad fields of psychology and neuroscience,
perhaps more than any other, is that of memory. The study of memory is vast and diverse, and includes for
example research on the formation of place-preference memory (Gremel & Cunningham, 2010), fear
memory (Anagnostaras, et al. 1999), recognition memory (Wixted, 2007), memory correlates in
biological neural networks (Malinow, 2003) or artificial neural networks (Sejnowski, 2020). One reason
why memory receives such widespread attention is that memory is a conserved ability that spans from
humans down to single celled organisms. For example the actin cytoskeleton of single-celled amoebae
exhibit bistable memory properties, allowing cells to orient and move towards chemoattractant signals
(Pershin et al. 2009; Westendorf, et al. 2013; Artemenko et al. 2014; Skoge, et al., 2014). Individual cells
in multicellular organisms have similar abilities. For example, white blood cells known as neutrocytes
display long-lived directional memories, which are also attributed to cytoskeletal dynamics (Albrecht &
Petty 1998; Prentice-Mott et al. 2016). Indeed, long-lived memory traces at the cellular level tend to
follow a generic law centrally involving a dynamic network of filament scaffolding (Maiuri et al. 2015).

Structural plasticity also plays a role supporting higher-order forms of memory (e.g. explicit and
implicit memory) stored within neural networks (Fischer et al. 1998; Okamoto et al. 2004). Information
stored in neural networks is thought to be encoded by synaptic weights, which refers to the efficacy by
which an upstream neuron evokes responses (often via postsynaptic glutamate receptors) in a downstream
neuron at a particular synaptic connection (Kessels & Malinow, 2009; Huganir & Nicoll 2013).
Converging evidence suggests structural plasticity at dendritic spines, femtoliter-sized sites of synaptic
input, plays a central role in the induction and maintenance of synaptic weights (Halpain, 1998;
Fukazawa, 2003; Kopec et al., 2006; Bosch, 2014). Compared to small spines, large spines generally have

larger synapses (Bourne & Harris, 2012), more filamentous actin (Lin et al. 2005), more glutamate



receptors (Fischer et al. 1998), and greater synaptic weights (Malenka & Nicoll, 1999; Makino &
Malinow, 2009; Nicoll & Roche, 2013). Also large spines are more robust, known to outlive small spines
by at least hundreds of hours (Holtmaat, 2005).

While synaptic weights are considered fundamental to brain information storage, several
important questions concerning these processes remain unresolved, including a) how synaptic weights
remain stable despite protein turnover, and b) how such weights can be modified to new stable levels by
transient signals. Chapter 2 of this dissertation addressed these questions by examining structural
plasticity with a focus on actin dynamics in dendritic spines using a combined molecular and
computational approach.

While actin is extremely well conserved across eukaryotic species and has remained unchanged
in the billion years that separate humans and yeast (Gunning et al., 2015), there is another cellular-level
memory system even more ancient and conserved. Genes and the mechanisms that regulate gene
expression make possible the existence of a diversity of cell subtypes. This so called epigenetic
transcriptional memory system allows cells to differentiate into specific populations (e.g. neutrocytes,
astrocytes, neurons) in response to transient stimuli (Ringrose & Paro, 2004).

Genomes of course determine many physiological features of organisms, including the general
makeup of their nervous system, but they don’t determine the precious memories for which they become
populated. These memories, collected over a lifespan of interacting with the world are precariously stored
within a meshwork of living cells, and as such are susceptible to age-related degeneration and
degenerative disease. For example Alzheimer's disease (AD) is a chronic neurodegenerative disease that
is the most common cause of dementia in humans (Burns & Iliffe, 2009). AD is characterized by a cluster
of symptoms, most notably progressive memory loss and cognitive dysfunction (Lambert et al., 2013).
This disease currently affects 47 million people worldwide, and with no current treatments is projected to
increase threefold by 2050 (Tiwari et al., 2019).

AD is highly heritable (>75% heritability) but genetically complex (Avramopoulos, 2009). The

APOE gene (which encodes apolipoprotein E) has been consistently identified as a susceptibility locus for



late-onset Alzheimer’s disease (Corder, et al., 1993; Farrer, et al., 1997; Genin, et al., 2011). Since the
identification of APOE, genome-wide association studies (GWAS) on AD have recruited substantial
participant pools. These sequencing studies have identified an additional 15+ susceptibility loci,
including: CLU, CR1, PICALM (Lambert, et al., 2009; Harold, et al., 2009), BIN1 (Seshadri, et al.,
2010), MS4A6A, ABCA7, EPHAL, CD33, CD2AP (Hollingworth, et al., 2011; Naj, et al., 2011),
TREM2 (Guerreiro, et al., 2013), HLA-DRB5-DRBI1, PTK2B, SORL1, SLC24A4-RIN3, and DSG2
(Lambert, et al., 2013). Yet, as you will see in Chapter 1 (Figure-4D) this growing list still provides rather
limited information about AD risk.

In general GWAS methods aim to identify single nucleotide polymorphisms (SNPs) with case-
control asymmetries surpassing a genome-wide statistical significance (p < 5 x 107%). In this pursuit
there are often SNPs identified to be marginally below this threshold. While some of these marginal SNPs
arise due to chance, others fail to reach significance due to low statistical power (particularly when the
minor allele is relatively rare). Indeed it has been shown that polygenic risk models that incorporate sub-
alpha SNPs are significantly better at predicting AD outcomes (Escott-Price, et al., 2015). Chapter 1 of
this dissertation presents a novel approach to polygenic risk quantification. Using exome SNPs from
approximately 5000 AD cases and 5000 controls, this study is the first to use artificial neural networks to
estimate AD risk. Furthermore, we present a method for quantifying a SNP’s impact on NN output, which
identifies hundreds of novel AD-linked SNPs. Importantly the estimates provided by this method
correlated with AD onset age and neuropathology severity (i.e. BRAAK score). Our hope is that these
findings will yield tools to assist with AD diagnosis, lead to a better mechanistic understanding of AD,

and ultimately preserve precious memories.
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A Machine Learning Method to
|ldentify Genetic Variants Potentially
Associated With Alzheimer’s Disease

Bradley Monk'2, Andrei Rajkovic3, Semar Petrus*, Aleks Rajkovic®, Terry Gaasterland*
and Roberto Malinow"°*

" Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California,

San Diego, San Diego, CA, United States, 2 Cognitive Science & Psychology IDP, University of California, San Diego, San
Diego, CA, United States, * Department of Computer Science, Royal Holloway, University of London, Egham,

United Kingdom, # Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego,
San Diego, CA, United States, ® Department of Pathology, Department of Obstetrics, Gynecology and Reproductive
Sciences, University of California, San Francisco, San Francisco, CA, United States, ¢ Section of Neurobiology, Division

of Biological Sciences, University of California, San Diego, San Diego, CA, United States

There is hope that genomic information will assist prediction, treatment, and
understanding of Alzheimer’s disease (AD). Here, using exome data from ~10,000

individuals, we explore machine learning neural network (NN) methods to estimate
the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based
method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-
associated SNPs (along with an effect measure); the majority with frequency under
0.01. For case individuals, the number of “protective” (or “at-risk”) netSNP-identified
SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis
and inversely (or positively) with autopsy neuropathology. The effect measure increases
correlations. Simulations suggest our results are not due to genetic linkage, overfitting,
or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs
associated with AD pathophysiology that may assist with the diagnosis and mechanistic
understanding of the disease.

Keywords: machine learning, neural network, Alzheimer’s, disease, polygenic

INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is heritable [58-79%, estimated
from twin studies (Gatz et al., 2006)], and highly polygenic (Cauwenberghe et al., 2015). Mutations
in three genes (4PP, PSI, PS2) cause rare forms of the disease [accounting for~1% of AD
cases (Mendez, 2017)], which shows autosomal dominant transmission with high penetrance and
displays an early onset [generally before age 60 (Carmona et al., 2018)]. In the more common form
of the disease, late onset AD (LOAD), APOE has been established unequivocally as a susceptibility
gene (Saunders et al.,, 1993) with several dozen other genetic loci receiving genetic support
(Carmona et al., 2018; Jansen et al., 2019; Kunkle et al., 2019).

The neuropathology of AD is defined by the presence of extracellular senile plaques containing
amyloid beta 42 and intracellular neurofibrillary tangles containing hyperphosphorylated tauprotein
(DeTure and Dickson, 2019). The neuropathological progression of disease has been best described
using the Braak staging scheme (I-VI) (Braak et al., 2006). The most important genetic
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variant in LOAD is the APOE €4 isoform, which predisposes
patients to an earlier appearance of AD and a higher Braakscore.
The role of APOE or other identified genetic variantsin the
pathophysiology of AD is not well understood (Sisodia and
George-Hyslop, 2002; Koffie et al., 2012; Karch and Goate,2014;
Shi et al., 2017). Currently available disease biomarkers can be
expensive, labor intensive, and do not provide a definitive clinical
diagnosis (Gustaw-Rothenberg et al., 2010; Hampel et al.,2018;
Jack et al., 2018; Penner et al., 2019). The identificationof
additional LOAD-linked genetic variants could potentially
increase diagnostic accuracy, increase our understanding of the
disease, and unmask potential drug targets.

In 2009 two high-powered genome-wide association (GWAS)
studies were published that identified, along with APOE, several
single nucleotide polymorphism (SNPs) loci significantly linked
to AD, including SNPs in PICALM, CLU, and CR1 (Harold
et al., 2009; Lambert et al., 2009). To continue the search for
genetic targets linked to AD, the Alzheimer’s Disease Sequencing
Project (ADSP) was established as a collaboration between the
National Human Genome Research Institute (NHGRI) and the
National Institute on Aging (NIA). As part of this effort, whole-
exome sequencing was performed on 5,740 LOAD cases and
5,096 cognitively normal, older individuals, serving as controls
(Bis et al., 2018). The overarching goals of this initiative have been
to identify novel genomic targets that contribute risk or confer
protection toward AD outcomes, and to develop new insights
as to why some at-risk individuals do not develop AD. Indeed,
data from this project have been used to identify a number of
novel SNPs linked to AD (Beecham et al., 2018; Bis et al., 2018,
Raghavan et al., 2018; Ma et al., 2019; Patel et al., 2019; Zhang
etal., 2019).

Recent studies have presented polygenic risk score (PRS)
models for estimating AD risk (Escott-Price et al., 2015, 2017;
Desikan et al., 2017; Zhang et al., 2020). In these models, GWAS
summary data were used to identify AD-linked genomic variants
and to assign each variant a coefficient based on their case-control
asymmetries. While PRS models are a powerful method to
identify individuals at risk for a disease, we believe they could
provide another powerful utility — identifying novel genetic
variants that confer AD risk or protection that escape GWAS
identification for a number of factors, including rarity and
potential interactions (linear and non-linear) with other variants.
However, in order to capture these interactions thePRS model
needs to be based on individual genotypes (not just GWAS
summary data). Here we developed such a model based on
individual AD case and control SNP data provided by ADSP.
Specifically, artificial neural networks (Sejnowski, 2020) were
trained using individual case and control genotypes to estimate
polygenic risk. A primary aim of this study was to develop
a machine learning-based method (netSNP) that can be used
to identify the importance of individual SNPs in a complex
polygenic classifier’s decision making process.

netSNP can identify hundreds of AD-linked SNPs, most of
which have a low population frequency (<0.01). Supporting the
validity of our method are the observations that the number
of AD-linked SNPs identified by this method that are harbored by
an individual diagnosed with AD is correlated with the age
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at which that individual’s AD was diagnosed as well as their brain
pathology. In particular, the number of risk- (or protection-

) linked SNPs an individual harbors correlates negatively (or
positively) with the age at which an individual is diagnosed with
AD and with their Braak score (i.e., individuals with more risk
SNPs had AD at earlier ages and higher Braak scores; individuals
with more protective SNPs had AD at later ages and lower Braak
scores). Furthermore, scaling the SNPs with a netSNP-derived
“importance factor” further increases the correlations. Thus, these
correlations provide support for the view that this method
correctly identifies AD-linked SNPs and correctly quantifies their
importance.

RESULTS

Dataset Pipeline, Case:Control

Balancing, and SNP Properties

A large variant call format (VCF) datafile [ 200 GB; Alzheimer’s
Disease Sequencing Project, ADSP (Beecham et al., 2017)]
containing SNP information (i.e., reference or alternate allele for
~1.4 million SNP sites) on 1,000 individuals over the ageof
60 (Northern European descent; 6,000 diagnosed with AD, and
5,000~ aged non-AD controls), was organized into a more
manageable file (2 GB; N.B.: a VCF datafile contains mainly
zeros — indicating reference alleles — since >95% of minor allele
frequencies are <0.01) permitting rapid queries regarding SNP
content for any individual (see section “Materials and Methods”).
The minor frequency allele (MFA) and reference allele count were
determined at each SNP locus, separately for case and control
groups. The Fisher’s exact test was used to quantify the probability
(FishP) that the observed case/control minor allele asymmetry
could be due to chance.

The ADSP dataset consists of SNP information originating
from 24 cohort groups (Beecham et al., 2017; Crane et al.,2017;
Naj et al., 2018). We initially tested if a neural net (NN) classifier
could be trained (Moller, 1993), with SNPs as features (50 SNPs
with the lowest FishP values; 50 features were chosen as this was
computationally tractable; see section “Materialsand Methods”),
to identify from which cohort an individualoriginated. Indeed,
the classifier could identify cohort identityfor each individual
with 50% accuracy, much-above the 4% expected by chance
(Supplementary Figures 1, 2). This was of concern, because
given the large case:control imbalance in many cohorts (see
Supplementary Figure 2), the classifier could use cohort
information to help identify patient AD status. Thus, the SNPs
would indicate something about the cohort (e.g., platform-or
probe-specific aspects of cohorts) rather than the disease. To
avoid this potentially confounding issue, we balanced cohorts.
In short, (a) only cohorts with at least 20% of the cohort being
cases or controls were used; and (b) the same numberof case
and control individuals from each cohort was used in training sets
(see Supplementary Figure 2 and “Materials and Methods” for
details).

A quantile-quantile (Q-Q) plot of the -log(FishP) values of
a balanced dataset plotted against a similar computation of the
same dataset with shuffled case-control labels shows that
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FIGURE 1 | (A) Q-Q plots of balanced ADSP dataset for Alzheimer's disease. Gray symbols (here and below) represent Q-Q plot of 100 random versus random
distributions (i.e., chance). See text for details. SNP order [based on - log(P)] is indicated by colors (see legend). (B) Q-Q plots of balanced ADSP dataset for 12
constructed (simulated) diseases (BDs). Each BD is represented by a different color. (C) Same as above with SNPs from APOE-residing chromosome 19 removed
before p-value quantiles were computed. Inset is a blow up of the indicated region, showing magenta SNPs fall outside the 100 random versus random distributions
(gray symbols). SNP order [based on - log(P)] is indicated by colors (see legend). (D) Same as above with SNPs from BDgene-residing chromosome removed
before p-value quantiles were computed. Plot as in B is shown for all BD1-33 in Supplementary Figure 12.

most of the case-control minor allele asymmetries across the 1.4
million SNP loci can be explained by chance (i.e., lie on the
x =y line; Figures 1A-D). For comparison we plotted 100 Q-Q
plots, wherein -log(FishP) values from one shuffled dataset was
plotted against -log(FishP) values from another shuffled dataset
(Figures 1A-D, gray symbols). For the AD population, in a
few SNPs from APOE and (its physically close linkage partner)
TOMM40 genes (Yu et al., 2007; Guerreiro and Hardy, 2012),
the observed distribution of reference allele (Ref) and MFA in the
case and control populations was far (orders of magnitude) from
what can be accounted for by chance (Figures 1A,C).

To address the possibility that artifacts can account for SNPs
off the x =y line (e.g., SPNs being linked to APOE, rather than to
AD), we constructed 33 separate simulated diseases (“bad
diseases,” BDs) using all ADSP individuals (cf., Bulik-Sullivan
et al., 2015). Each BD was based on an existing gene (BDgene)
that has two SNPs with frequencies in our population very close
to APOE¢e4 (0.147, E4-like) and APOEe2 (0.076, E2-like); see
Table 1, MAF (minor allele frequency) columns. Individuals with
the BDgene genotype (i.e., having E4-like or E2-like SNPs) in the
ADSP dataset were randomly ascribed to have BDs based on
control/case odds ratio of APOE€4 (0.30) and APOEe2 (2.41) for
AD. Individuals without BDgene SNPs were randomly assigned
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based on the odds ratio of individuals without APOE€4 or €2 (i.e.,
APOE¢e33 = (.89). FishP values were computed for each SNP from
true (AD) and simulated (BDs) diseases from balanced data sets,
and Q-Q plots were generated (Figures 1B,D). Plots including all
SNPs showed many with FishP values outside what could be
accounted for by chance for both AD and BDs (Figures 1A,B).
However, if SNPs from chromosome 19 (where 4 POE resides) or
the chromosome with BDgene were removed, only SNPs for AD
could not be accounted for by chance (Figures 1C,D). This result
is consistent with the view previously observed that AD isa highly
polygenic disorder (Cauwenberghe et al., 2015; Escott- Price et
al., 2017) as there was a considerable asymmetry in MAF
between case and control populations for over 2,000 SNPs(see
Figure 1D). While artifacts related to data stratification can
account for this behavior in Q-Q plots (Lander and Schork,1994;
Slatkin, 2007), cohort balancing and our simulations argueagainst
such artifacts for our dataset, and support the existence ofa large
number of SNPs linked to AD, consistent with previous results
(Cauwenberghe et al., 2015; Escott-Price et al., 2017).

NN Construction and Performance
Once the cohorts were balanced, we calculated the FishP values
for SNPs from a “training set” composed of 3,200 randomly
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TABLE 1 | netSNP identified tSNPs with greatest absolute average CVt when APOE locus variants were not excluded from the training set.

tSNPs predicted to confer most protection against AD

tSNPs predicted to confer the most risk for AD

Chr Pos Gene mCVt FishP MAF Chr Pos Gene mCVt FishP MAF
5 612,536 CEP72 -0.243 5.7E-03  0.002 11 10,327,875 ADM 0.289 4.1E-08  0.008
6 1,390,303 FOXF2 -0.182 1.4E-02  0.003 19 45,411,941 APOE €4* 0.261  3.4E-111  0.135
4 110,638,764 PLA2G12A -0.178 2.8E-02  0.002 7 23,213,734 KLHL7 0.217 5.1E-03  0.003
1 16,890,642 NBPF1 -0.174 3.3E-02  0.002 9 130,439,029 STXBP1 0.207 1.9E-02  0.001
11 1,017,294 MUC6 -0.157  1.4E-07 0.01 20 37,258,198  ARHGAP40  0.203 1.1E-02  0.002
1 40,961,395 ZFP69 -0.156  4.8E-04  0.002 15 41,862,356 TYRO3 0.197 8.4E-18  0.018
15 50,154,563 ATP8B4 -0.156  2.3E-02  0.004 6 146,276,263 SHPRH 0.195 6.6E-03  0.002
19 52,793,834 ZNF766 -0.155 2.8E-02  0.002 1 228,879,367 RHOU 0.195 6.4E-03  0.004
15 64,017,685 HERCA1 -0.152 3.5E-03  0.004 9 131,398,647 WDR34 0.19 7.0E-03  0.002
19 45,412,079 APOE €2* -0.152 7.1E-38 0.079 19 52,497,235 ZNF615 0.188 3.3E-02  0.003
16 8,740,006 METTL22 -0.15 2.1E-03  0.002 12 85,450,243 LRRIQ1 0.188 1.0E-02  0.006
9 139,396,933 NOTCH1 -0.143 3.3E-02  0.004 15 25,963,545 ATP10A 0.185 1.2E-02  0.002
19 18,561,473 ELL -0.137 7.3E-03  0.008 12 108,011,971 BTBD11 0.183 3.8E-03  0.007
11 57,467,411 ZDHHC5 -0.133 3.5E-03  0.002 9 107,533,232 NIPSNAP3B  0.181 1.1E-02  0.003
9 100,372,648 TSTD2 -0.131 2.2E-02 0.003 1 8,420,270 RERE 0.18 3.0E-02  0.004
1 65,120,426 CACHD1 -0.131 1.0E-02  0.002 8 10,480,495 RP1L1 0.179 3.1E-02  0.003
12 69,113,184 NUP107 -0.126  5.6E-03  0.006 4 5,682,993 EVC2 0.178 2.2E-02  0.004
5 145,508,644 LARS -0.126 1.2E-02  0.006 5 140,530,973 PCDHB6 0.178 1.4E-02  0.002
7 6,561,105 GRID2IP -0.125 2.9E-04  0.002 6 30,712,298 IER3 0.177 3.3E-03  0.007
19 43,268,061 PSG8 -0.125 2.9E-02  0.004 15 50,264,839 ATP8B4 0.176 1.1E-02  0.008
11 47,264,353 ACP2 -0.125 1.4E-03  0.004 16 3,604,305 NLRC3 0.176 2.7E-02  0.002
6 7,405,242 RIOK1 -0.124 1.5E-02  0.003 22 46,780,446 CELSR1 0.174 1.9E-02  0.003
3 146,167,089 PLSCR2 -0.123 2.3E-02  0.003 19 39,103,307 MAP4K1 0.173 1.9E-02  0.001
16 30,775,522 RNF40 -0.123 2.9E-02  0.006 1 89,579,827 GBP2 0.173 2.5E-02  0.005
9 139,008,644 C9orf69 -0.121 2.9E-03  0.003 12 50,500,080 GPD1 0.173 2.6E-03  0.002

Rows 26:1000 available online

* Previously published AD-linked gene

chosen individuals (case #ontrols; equal number of each)and
used the 50 SNPs with the lowest FishP values in the training set
to train an NN classifier to predict if an individual was a case or
control (Figure 2, left; see section “Materialsand Methods”).
Briefly (Demuth et al., 2014), an artificial NN was trained to
classify cases vs. controls using genotypes (for
50 SNPs) of individuals in the training set. The NN was initialized
with random weights connecting each node, so the initial
prediction y was random (each y was a real number scaled
between 0.5, the—control label, and 0.5, the case label). This
prediction, also known as a classifier value (CV), was evaluated
against the true label (case or control) using aloss function,
and the network weights were updated using an optimization
function. Throughout training the optimizer adjustsNN weights,
working to minimize the loss function. Training concluded when
the NN weights were considered optimal (withinthe constraints of
the stopping criteria and cross validation; see section “Materials
and Methods”), at which point the NN weightsremain fixed. Thus,
additional input to the NN would yield CV predictions, but would
not change network weights or alter the model in any regard.
After the NN was trained as described above, it was applied
to the 50 SNPs of each individual from the “holdout set”

Rows 26:1000 available online

* Previously published AD-linked gene

(1,500 individuals randomly chosen who were not included in
the training set), providing a CV for each. Overall these CVs
correlated well with actual AD status of each individual (case,
red; control, blue; Figure 2A and Supplementary Figure 4).
Using a classification threshold of zero (such that any positive
CV was predicted as case, and any negative CV was predicted
as control), the classifier accuracy was 67.3% (SD = 0.3%, see
section “Materials and Methods”). The NN performance with
50 SNPs was significantly better than what could be achieved
using only SNPs from the APOE locus (62.2%). It also performed
better than a logistic regression model using the same 50 SNPs
(64.2%, p < 10e-20, McNemar Test). When only considering
individuals with CVs closer to 075 or 0.3; the accuracy of theNN
increased. For individuals with CVs in the outer quartiles,
prediction accuracy was 76.4% (SD = 0.5%); for those with a
CV ranked in the upper 12.5% and lower 12.5% quantiles, the
classification accuracy was 82.6% (SD = 0.6%) (see Figure 2C).
We next trained an NN using a set of 50 SNPs (a) not
containing APOE gene SNPs, or (b) not containing the 22
previously published AD-associated SNPs (Carmona et al., 2018),
or (c) with the 51-100 lowest FishP values. The resulting
accuracy and receiver operator characteristic (ROC) curves,
which provide a measure of the sensitivity and specificity of a
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FIGURE 2 | Neural net prediction of case and control individuals. (Left) General neural net protocol and architecture; see text for details. (A) Histogram of neural net
confidence value (CV) output for case (red) and control (blue) holdout set individuals. (B) Receiver operator characteristic (ROC) curves for indicated SNP sets as
features. (C) (Left) Neural net accuracy for indicated populations using indicated SNP sets as features. “All CV” and “High abs(CV)” indicate inclusion of populations
with 100% or top 30% abs(CV) values in accuracy calculations. Error bars, SEM. (Right) Neural net accuracy with indicated size training set; two samples
(chromosomes) per individual. (D) False discovery rate (FDR) and positive predictive value (PPV) at each corresponding x-axis case prevalence, using a fixed CV
threshold (set to 0) or optimal operating point classification threshold (see section “Materials and Methods”). Additional measures are in
Supplementary Figures 9-11.

method (Koen et al., 2016), were all above chance in predicting
AD status of an individual (Figures 2B,C). Reducing the size of
the training set reduced the accuracy in a roughly linear fashion
(Figure 2C), suggesting that the NN accuracy did not asymptote
at 3,200 individuals, and that gathering SNP information from
more individuals would increase NN accuracy. The area under the
ROC curve (AUC) for our NN model with 50 SNPs was 0.755.
Further analysis of NN hyperparameters such as the number of
SNPs, which SNPs were employed, NN architecture, etc., may
improve NN performance; we note that producing an optimal NN
was not the primary goal of this study. Other methods, such as
PCA (Jolliffe, 1986; Selzam et al., 2018), or Random Forest
(Goldstein et al., 2011) analyses were not examined.

Due to the cohort counterbalancing requirement (see above),
the prevalence of AD in our training set was 0.5. Since disease
prevalence in most populations will almost certainly be lower
than 0.5, we quantified signal detection metrics for a range of
disease prevalence rates from 0.05 to 0.5 (0.05 is the approximate
AD prevalence at age 75), using the optimal operating point
(OOP) for each respective base rate (see section ‘“Materials and
Methods”). Using the OOP, the false discovery rate was largely
independent of prevalence for values from 0.05 to-0.5 (Figure
2D). Similarly, the same optimal threshold maintaineda largely
constant positive predictive rate (Figure 2D). Thus,
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computing an NN with training data composed of an equal
number of cases and controls can be used despite a low disease
prevalence.

netSNP Description and Application
While NNs can perform well in solving complex problems,
determining the importance of different NN input features (in this
case, different SNPs) is difficult to assess. With this inmind, we
developed a method (netSNP) using a modificationof the
standard NN protocol, aimed to assess the impact ofany SNP
on conferring AD risk or protection. Specifically, we derived a
quantitative measure for the impact of an SNP on the output of an
NN.

netSNP is a modification of the Permutation Importance
method used in machine learning (Altmann et al., 2010; Molnar,
2021), which we have adapted for use with polygenic models. In
general Permutation Importance is used to address the question
“What variables have the biggest impact on the predictions of
a trained neural network classifier?” Permutation Importance
computations are performed after a model has already been fitted,
and works using a basic strategy: a single predictor variable
is modified in the input data, leaving all the other predictor
variables unchanged, and examining how this affects classifier



Monk et al.

performance. This procedure is then repeated, one variable at
a time, for all the predictor variables used in the model. This
permits one to determine the relative effect of each predictor
variable. The netSNP method uses a similar strategy. For a specific
SNP, netSNP addresses this question “if this SNP is artificially
made homozygous for the MFA, what impact does it have on
the classifier output?” If the average CV shifts to the right (e.g.,
goes from 0.1 to 0.3) when a SNP is set to homozygous for
the MFA, netSNP deems this SNP to confer risk. If the average
CV shifts to the left (e.g., goes from 0.1 to 6.2) when a SNPis
set to homozygous for the MFA, netSNP deems this SNP to
confer protection.

To demonstrate the netSNP method on a specific example,
we used netSNP to compute the impact of the APOE genotype on
AD risk. From a balanced dataset, we randomly chose a training
set composed of 3,200 cases ebntrols (which contained
individuals with all APOE genomic variants; i.e., APOE €22, €23,
€24, €33, €34, and €44). This set was used to train anNN
(which we call NNg) to identify cases or controls basedon
their top 50 SNPs (see section “Materials and Methods”and
Figure 3 left panel, top). After this training session, NN€ was not
modified in the subsequent analysis of the APOE genomic
variants. We then applied NNe to a holdout set of 1,500
individuals (Figure 3, left panel, bottom), producing 1,500CV
outputs with a distribution shown in Figure 3A (dashedline; this
is used as a baseline for comparisons). We next reasoned that the
impact of a specific APOE genotype on NN¢ predictions could be
assessed by artificially modifying the 4POEgenotype of every
holdout set individual to that specific APOE genotype. For
instance, to assess the impact of the €22 genotype,we artificially
assigned every holdout set individual the APOE €22 genotype
(keeping non-APOE genotypes of each individual unaltered).
After applying NN to these modified genotypes,the distribution
of CV outputs was strongly shifted leftwardcompared to the
baseline distribution (Figure 3A, compare blue distribution to
dashed line). Alternatively, if we assigned allholdout set
individuals the €44 genotype, the CV distribution shifted
significantly rightward from baseline (Figure 3A, compare orange
distribution to dashed line). Falling between the €22and €44
distributions were the CV distributions when NN¢& was applied to
holdout set individuals assigned either the €23, or €33,or €24, or
€34 genotype (Figure 3A).

We next performed a critical test of netSNP: to determine
if the above (i.e., the colored CV distributions in Figure 3A)
corresponded to distributions when NNe was applied for
individuals who did have distinct APOE genotypes. To test for
this, we created holdout sets with individuals with onlyone
APOE genotype (i.e., one holdout set included only APOE €22
individuals, another holdout set only APOE €23 individuals, etc.).
We then used NN¢ to compute CVs for individuals in each of
these holdout sets (using the true genotypes for each individual,
for 50 SNPs). The resulting CV distribution for true APOE
genotype holdout sets moved from left to right as APOE changed
from €22 to €44 (Figure 3B), closely matching the CV
distributions from above, where APOE status was assigned to
all individuals in the holdout set (compare Figures 3A,B).
This result suggests that netSNP
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can accurately assess the impact of individual SNPs on a classifier
output.

Since APOE SNPs are known to significantly impact AD risk,
this result also suggests that the netSNP method could be used
to estimate the impact of many different target SNPs of interest
(which we call tSNPs) on AD risk. We achieved this for each
tSNP by performing the following procedure (analogous to the
procedure used to test the impact of APOE genotypes above;
see Figure 3, left panel): From a balanced dataset, we randomly
chose a training set composed of 3,200 cases-controls. This
set was used to train an NN (which we call NNt) to identify
cases or controls based on their true genotypes for S0 SNPs (the
top 49 SNPs based on FishP value, and the tSNP of interest).
Then we constructed a holdout set of 1,500 individuals, and
applied NNt on each individual, using the same 50 SNPs used
in training, and using the true genotypes of each individual.
This produced 1,500 baseline CV values. Finally we constructed
a holdout set of 1,500 individuals, and used the same 50 SNPs,
using their true genotypes for each individual for 49 SNPs,but
the tSNP was set to be homozygous for the tSNP MFA. We
then applied the NNt producing 1,500 CV values (whichwe
call CVt) which can be plotted in a frequency distribution
(Figure 3, bottom). We repeated this procedure for many tSNPs
(see section “Materials and Methods”; Figure 3C shows CVit
distributions for several £SNPs). Intuitively, we reasoned that if
an SNP had an effect on AD risk, then when evaluated as a tSNP,
the CVt distribution would be shifted compared to the baseline
CV distribution — shifts to the left would indicate the MFA SNP is
AD-protective (Figure 3, left panel, “Protective SNP ¢’
distribution); shifts to the right would indicate the MFA SNP
incurs AD risk; the larger the shift, the greater the impact on AD.
We test this proposal below.

We used netSNP to test 4,000 individual SNPs as tSNPs; we

chose those SNPs with the 4,000 lowest FishP values. Each tSNP
was evaluated 20 times (see section “Materials and Methods™)
from which a mean CVt (mCVt) is computed over all holdout
set individuals for all 20 runs. Evaluating APOFE€4 as a tSNP
with netSNP resulted in a CVy distribution that was shifted
to the right (Figure 3C, 2nd from top; same as Figure 3A, green),
as expected. Surprisingly, the MFA of an adrenomedullin(4DM)
SNP shifted the CV distribution more to the right than APOE€4
(mCVy4 =026 0.001; #mCV,py= 029 0.001).%
Also, a number of SNPs shifted NNt output CVs moreto
the left than APOEE2 (e.g., mCVy = —0.15 * 0.001; mCV¢gpn
= 024 0.001; seeﬁ‘able 1 for tSNPs with the most extreme
mCVt. Thus netSNP appears to identify a numberof SNPs that
can considerably shift NN output CV, potentially identifying
SNPs that confer AD protection (shifting CV to the left) and AD
risk (shifting CV to the right).

To exclude the artifactual possibility that netSNP was
dependent on APOE, we repeated the netSNP method with APOE
(and TOMM40) SNPs excluded from the 49 SNPs with the lowest
FishP values as features in training NNt (although APOE was
tested as a target tSINP). Results were very similar to the above,
with hundreds of £SNPs shifting CV to the right (potentially
AD risk SNPs) and hundreds of tSNPs shifting CV to theleft
(potentially AD protective SNPs; Supplementary Table 1).
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FIGURE 3 | netSNP accurately reproduces CV values for APOE genotypes and identifies potential AD-risk and AD-protective SNPs. (Left) Diagram of netSNP
method; details in text. SNP t assignment, APOE genotype for A; and homozygous MFA for C. (A) netSNP-generated CVt values for all holdout set individuals (all
APOE genotypes) with their genotype artificially assigned to indicated genotype. The dashed line indicates distribution of CV values for all holdout set individuals with

(C) Example netSNP-generated CV distributions for all holdout individuals with true genotype (light gray) or CVt with indicated target SNPs (dark gray) assigned
alt/alt; symbols on X-axis: mean CVt (mCVt) values. Note that mCVt value for TOMM40 SNP is close to zero, indicating that it perturbs NN output little (i.e., provides
little additional information) when APOE SNPs are used in training. CVt distributions for 50 tSNPs shifting CV most to the left and 50 tSNPs shifting CV most to the
right are shown in Supplementary Figure 5. tSNPs having potentially a protective effect on individuals with APOE4 are shown in Supplementary Figure 5,
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containing only individuals with indicated APOE genotype. Dashed line as above.

In general, this method provides a quantitative measure of the
impact (as indicated by mCV1 values) of specific SNPs on NN
output, and potentially (see below) the effect of such SNPson
developing AD.

NN and CV as Predictors of AD and Its

Pathophysiology

While CV values (computed with or without APOE as an NN
feature) predict well the likelihood of an individual being
diagnosed with AD (Supplementary Figure 4), we aimed to
determine if CV values correlate with the pathophysiology
underlying AD. We reasoned that individuals diagnosed with
AD at an earlier age may have a more aggressive form of the
disease, which could be a consequence of their genetics, and
this might be detected by more positive CV values; equivalently,
AD diagnosis at an older age may correlate with less aggressive
AD pathophysiology, and may have more negative CV values.
This reasoning is supported by previous findings with APOE

genotypes (Corder et al., 1993), which we found to also be true
in our dataset (Figure 4A). Linear regression fitting shows that,
for case individuals, as their APOEE€2 allele count increases,so
does their observed disease onset age [F(2,4750) = 86,8
(slope; indicating number of years per €2 allele) = 3.8,p <
2.6e-20; general linear model, see section “Materials and
Methods”]; conversely, the number of APOEg4 alleles reduces
the age of AD diagnosis [F(2,4750) = 1910, B = 8.4, p < le-
300]. With this reasoning in mind, we tested and found that the
age at which cases were diagnosed with AD could be predicted
by their CV values [as computed in section “NN Construction
and Performance”; more positive CV for younger age of AD
diagnosis, F(2,4752)=571,B= 27,p <2.3e-119; Figure 4B].
Furthermore, an individual’s CV was positivelycorrelated with
Braak score, for case individuals receiving autopsy [F(2,2025) =
154, B = 1.8, p < 4.1e-34; Figure 4G]. These effects were also
highly significant if APOE was not included inthe NN calculation
of CV [CV vs. age, F(2,4752) =422, 3 =-22.4,
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p =15.3e-90; CV vs. Braak, F(2,2025)= 59,3 =1.7, p = 1.8e-14].
These findings support the view that the NN output value CV, as
described above in section “NN Construction and Performance,”
is related to the pathophysiology of AD.

netSNP as Predictor of AD-Linked tSNPs

and AD Pathophysiology

We next tested if netSNP can identify AD-linked SNPs and
can quantify their impact on the likelihood of developing AD.
We considered a set of tSNPs for which their computed mCVit
values were significantly (p < 0.05) outside the rangeof mCVit
values generated by randomly choosing target SNPs from the set
of all 1.4 10° ADSP SNPs (see section “Materials and Methods”).
This resulted in 851 tSNPs with mCVt < (0 (provisionally
indicated “AD-protective tSNPs”) and 672 tSNPs with mCVt >
0 (“AD-risk tSNPs”), the majority (64%) with MAF under 0.01.
Only some of the previously published AD- linked SNPs (which
we exclude from the subsequent validation analysis) are in these
sets (see Table 1). Using a general linear model, we found that
the number of “AD-protective tSNPs” harbored by each case
individual correlated positively with their age of AD diagnosis
[F(2,4750) = 13.9, B = 0.072, p < 1.9e-4; Figure 4C], while the
number of “AD-risk tSNPs” they harbored correlated inversely
with age of AD diagnosis [F(2,4750)=18.2,8 = 0.11, p < 1.9e-
05; Figure 4C]. Providing tSNPs witha CVt weight increased
the positive correlation between CVt- weighted “AD protective
tSNPs” [F(2,4750) = 400, B = 22,p < 1.6e-85], or the negative
correlation between CVit-weighted “AD risk tSNPs”
[F(2,4750) = 404, B = 25, p < 2.4e-86; -

Figure 4D] and age of AD diagnosis. Interestingly, the number
of previously published AD risk SNPs (excluding APOE and
TOMM40 SNPs) per individual did not correlate with age of
AD diagnosis (p = 0.32; Figure 4E). However, if netSNP is
used to calculate CVt for each of these SNPs, the number
of CVit-weighted SNPs did correlate inversely with age of AD
diagnosis [F(2,4750) =419, B =-22, p < 2.2e-89; Figure 4E],
supporting the view that CV1 provides a quantitative measure
of the impact of an SNP on AD pathophysiology. We were
concerned that the netSNP method may ascribe CVt values
to SNPs based on genetic linkage to APOEE€2 or €4, therefore
we performed simulations using BD populations (see section
“Materials and Methods”: netSNP Validation Simulations). These
simulations support the view that the netSNP method is not
choosing AD “protective” and AD “at-risk” SNPs based on
genetic linkage or some other bias introduced in the netSNP
procedure.

We also examined the relation of netSNP-identified tSNPs to
the Braak scores that individuals (cases and controls) received
during autopsy. The number of netSNP-identified “AD
protective tSNPs” harbored per person displayed a negative
correlation with Braak scores [F(2,2698) = 349, = 0.08,
p < 3.0e-73; Figure 4H], while the numberof netSNP-
identified “AD risk £SNPs” harbored perperson displayed a
positive correlation with Braak scores [F(2,2698) = 272, B =
0.09, p < 3.4e-58; Figure 4H].

These significant correlations, and the effect of providing

Alzheimer’s Disease Neural Networks

CVt weights, were obtained if APOE and TOMM40 SNPs were
(Figure 4) or were not (Supplementary Figure 8) included in
the training matrix, indicating that the observed correlations were
not driven by APOE (or SNPs in linkage disequilibrium with
APOE; see Supplementary Figure 13 and “Materials and
Methods”).

DISCUSSION

Here we applied a standard and modified neural network tool
to a large LOAD dataset and examined the association of SNPs
to AD. We found that a standard NN trained with 50SNPs
can identify an individual’s cohort identity above chance; thus
data were subsequently analyzed using only cohorts that were
case:control balanced. Comparing Q-Q plots for AD and
simulated constructed diseases (based on real genes with SNPs
that have true population frequency as APOE€2 and €4) supports
previous suggestions (Escott-Price et al., 2015, 2017) that there
exist considerably more SNPs than the 20 previously identifiedas
AD-associated.

An NN trained with 50 SNPs can predict dataset cases with
accuracy greater (albeit, slightly) than if using only APOE SNPs
genotypes, or a basic logistic regression model. NN accuracy was
related approximately linearly with training set size, suggesting
increasing dataset size will increase NN accuracy. NN accuracy
was above chance if an NN was trained without (a) 4POESNPs,
or (b) previously published AD-linked SNPs, or (c) 50 SNPs
displaying the greatest case control asymmetry. Thesefindings
further support the view (Escott-Price et al., 2015, 2017) that
more than the previously identified SNPs containinformation
regarding AD.

We developed netSNP, which investigated the impact of
specific SNPs on NN output. In netSNP, once an NN was trained,
the holdout set genotype was artificially assigned ata single
(or multiple) target SNP(s); in the general case thetarget SNP was
assigned as homozygous to the minor frequency allele; the effect
of the artificially introduced genotype was reflected by how much
the NN output value was modified. netSNP recapitulated well the
effect of different APOE genotypes on NN output. netSNP
identified several hundred SNPs with weight values (i.e., mCVt)
significantly outside values producedby randomly chosen SNPs.
Some netSNP-identified SNPs had more extreme weight values
than APOEe2 or €4. Notably, FishP values of SNPs with
extreme MCVt values were notlow in general, likely because
too few individuals carry these SNPs. Yet their impact on NN
output was large, possibly by leveraging non-linear interactions
embedded in an NN. Notably, ADM (containing an SNP with the
largest mCVit value despite a MAF = 0.009) was elevated in AD
brains (Ferrero et al., 2017), contributed to age-related memory
lossin mice (Larrayoz et al., 2017), was elevated in aging human
brains (Larrayoz et al., 2017), and had been proposed as a novel
drug target for AD (Ferrero et al., 2018). We also examined
ABHDI17A, as it relates to findings indicating that reduced
function of this enzyme increases synaptic PSD-95 levels
(Jeyifous et al., 2016; Yokoi et al., 2016), which protect
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FIGURE 4 | netSNP validation: Number of netSNP-identified tSNPs and netSNP-CVt-weighted tSNPs correlate with age of AD diagnosis of all case individuals

(N =4752) and AD pathology (case and control receiving autopsy, N = 2700). (See Supplementary Figure 8 for results excluding APOE and TOMM40 in netSNP
training matrices; results are similar; conclusions are the same.) (A) Age of AD diagnosis plotted against the number of APOE e4 (or APOE e2) SNPs per person.
Here and below: boxplot X-axis values indicate mean value of boxed group; p-values based on general linear model analysis of variance. (B) Age of AD diagnosis
plotted versus 50 SNP neural net CV. (C) Age of AD diagnosis plotted versus number of netSNP-identified AD-protective, left, or AD-risk tSNPs. (D) Age of AD
diagnosis plotted versus netSNP-CVt-weighted number of AD-protective (left) and AD-risk (right) tSNPs. (E) Age of AD diagnosis plotted versus number (left) or
netSNP-CVt-weighted number (right) of previously published AD-linked SNPs, excluding those in APOE/TOMMA40. n.s., not significant. (F) Diagram of human brain
with affected regions for indicated Braak scores. (G) Neural net CV plotted versus Braak score. (H) netSNP-identified AD-protective (left) and AD-risk (right) tSNPs

per person plotted versus Braak score.

synapses from beta amyloid (Malinow, unpublished observation).
netSNP predicted that an ABHD17A SNP was protective for
individuals with APOE¢€4 (see Supplementary Table 2). Indeed,
we found that €4 carrier case individuals with this ABHD174
SNP received an AD diagnosis almost 6 years later than such
individuals without this SNP [76.6 years (N = 19) vs. 70.8 years
(N=1831), p<0.0001; #-test], which is consistent withthis
SNP being protective against AD in APOEg4 carriers. These
findings support the view that netSNP can identify AD-
relevant SNPs.

To validate netSNP we considered variables not used in any
netSNP computations: age of an individual’s AD diagnosis (cf.,
Mars et al., 2020) and Braak score. The number of netSNP-
identified “AD-protective SNPs” harbored by an individual
correlated significantly with the age an individual was diagnosed
with AD and inversely with Braak score; while the number of

netSNP-identified “AD-risk SNPs” harbored by an individual
correlated significantly inversely with the age an individual was
diagnosed with AD and positively with Braak score. Scaling
each netSNP-identified SNP with CVt increased the significance
of these correlations. Notably, applying netSNP- derived CVt
weights to previously reported AD SNPs (each thought to have a
small effect on AD pathophysiology) convertedtheir correlation to
age of diagnosis from not significant to significant, suggesting
that netSNP can accurately assess small- effect SNPs. The
correlations examined in this validation test hold if 4POE or
TOMM40 are not used in the training stepof netSNP,
indicating that the netSNP-identified SNPs as wellas the
netSNP-generated CVt weights are not dependent on a bias
imposed by APOE SNPs (or SNPs in linkage disequilibriumwith
APOE, Supplementary Figure 13) in netSNP. Furthervalidation
of netSNP and net-SNP-identified SNPs suggested
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to be “protective” or “at-risk” in this study will requiretests
using an independent AD dataset as well as biological
experimentation.

Our data suggest the set, as a whole, of netSNP-identified
SNPs are highly predictive of AD age of onset and physiological
severity, and their relative importance may be indicated by the
netSNP-derived mCVt weight. The netSNP-identified SNPs
would each, on average, be expected to have a small impact
on the disease (on average 1/200 that of APOE€4; but see above
for ABHD17A4 SNP). Insight into AD provided by such small-
effect SNPs will require computational methods that can
analyze disease and biochemical pathways from large groups of
genes. Such tools may be aided by incorporationof mCVt
values.

In general, our findings suggest that netSNP may be useful
in identifying pathophysiologically relevant genes in AD; it may
be equally applicable to other conditions. It will be important
to test these methods on a completely independent AD dataset
with similar ethnic make-up (and compare those results with
results in this study), as well as AD datasets with different ethnic
backgrounds, for this method to be generally applicable to the
multicultural nature of the United States and world population
(Martin et al., 2019).

MATERIALS AND METHODS

Alzheimer’s Disease Sequencing Project

Dataset

The dataset used in these analyses was generously providedby
the Alzheimer’s Disease Sequencing Project (ADSP), andhas
been previously described in detail in other manuscripts(Harold
et al., 2009; Raghavan et al., 2018) and online at niagads.org. To
summarize, individuals in this dataset were from well-
characterized cohorts, including 6,000 individeals diagnosed with
late-onset Alzheimer’s disease (mean age ofdiagnosis: 75.4) and
5,000 elderly controls=without dementia (mean age: 86.1, at the
date of last visit to AD practitioner). Whole-exome sequencing
data for each individual went through a quality-control “cleaning”
process by two independent sources(Baylor and Broad Institutes),
and was provided in variant call format (.vcf); genotype data
was accompanied by several phenotypic and qualitative metrics
(e.g., each individual’s sex, age, race, cohort, etc.). For 28% of
individuals an autopsy was performed and their Braak staging
score was reported (Braaket al., 2006). Data are available for
download upon administrativeapproval from the NIA Genetics of
Alzheimer’s Disease StorageSite (NIAGADS).

VCF Data Compression

Raw SNP data were passed through an automated preprocessing
pipeline that involved reducing the dataset size by 100-fold using
sparse matrices and annotating SNPs of interest. The raw data
were downloaded to a secure local hard drive as VCFs. VCFswere
formatted as a matrix with rows being loci and columns being
samples. This matrix was converted into a structure likean
adjacency list. Sample IDs were replaced with seven-digit IDs.
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Flags passed through the VCFs were converted to numeric flags.
Counts of homozygous and heterozygous samples, as well as
the sample names and genotypes were recorded per locus. The
dataset was binned into three bins according to the following
criteria: first, if the genotype was heterozygous (noted as 1), or
homozygous (noted as 2) for the alternate allele. The second, if
the genotype was homozygous for the reference allele (noted as
0). Third, if there was missing data for that sample (noted as 1).
The combination of the bins and information contained within
makes the +00-fold compression conversion a lossless process.
The resulting matrices were relatively small and thus easier to
query/manipulate than VCFs.

General Data Processing

Unless otherwise stated, data processing and analyses were
conducted using MATLAB scientific computing software
(Mathworks, 2020a,b). A compressed version of the data (as
described in the section above) was imported into the MATLAB
workspace. The data were then prepared for machine learning
by splitting the data into training and holdout datasets. As the
data were split, an attempt was made to balance cases and controls
from each cohort. Cohorts that had too few cases or controls
(<20% of each other; or fewer than 20 individuals) were omitted
(see Supplementary Figure 2). After splitting and
counterbalancing, a Fisher’s exact test was performed for each
SNP to assign a p-value to the case:control asymmetries. SNPs
were then sorted, ascending, by p-value.

Artificial Neural Network Classification

In most instances, the model training matrix (feature matrix)
consisted of individual genotypes for the 50 top SNPs after sorting
SNPs by the training group’s Fisher’s exact test p-value. The rows
and columns of this feature matrix represented individuals and
SNPs, respectively, with each cell indicating whether a person was
a homozygous reference, heterozygous, or homozygous alternate
(see Supplementary Figure 3).

For polygenic classification we used a multilayer pattern
recognition neural network (Mathworks, 2020a). This feed-
forward neural net architecture can be trained to predict target
classes (i.e., “labels” or “conditions” like case/control) based on a
set of training features (Demuth et al., 2014). Labels for pattern
recognition networks in a binary classification problem consist of
avector of 0 s and 1 s, where a 0 represents the negative condition
(i.e., control), while a 1 represents the positive condition (i.e.,
case). In our formulation a pattern recognition network includes
the following parameterization:

patternnet(nLayers, fTrain, fPerf)

where nLayers is the row vector of length n, representing the
number of hidden layers; each nth value specifies the number of
neurons in a given layer (e.g., 50, 10 would Have twp hidden
layers of 50 neurons and 10 neurons, respectively). fTrain
specifies the network training function (e.g., BFGS Quasi-
Newton). fPerf specifies the performance function (e.g., cross-
entropy).
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We used a scaled conjugate gradient (SCG) training function
for the polygenic classification task (f7rain = SCG). The SCG
network training function updates network weights and bias
values using conjugate gradient backpropagation, and can be used
to train any network with derivatives for weight, input,and
transfer functions (Moller, 1993). With regard to network training
speed, SCG is significantly faster than other conjugate gradient
methods, because it does not require line searches duringeach
machine learning iteration ( 0.1 core hours per training session).
Parameterization of the training function involves:

[fTrain (maxEpochs, minGrad, maxFails, WtSigma, Lambda)
where maxEpochs is the maximum number of epochs to
train (e.g., 1000), minGradient is the minimum performance
gradient (e.g., 1e-6), maxFails is the maximum validation failures
allowed (e.g., 10), WtSigma is the change in weight for second
derivative approximation (e.g., 5.0e-5), and Lambda regulates
the indefiniteness of the Hessian (e.g., 5.0e-7). Unless otherwise
noted, the model was implemented in the MATLAB (Mathworks
— Deep Learning Toolbox) scientific programming environment
and parameterized with the following values:

patternnet(nLayers = (50, 10), fTrain = “SCG”,

fPerf = “cross-entropy”)
SCG(maxEpochs = 1000, minGrad = le - 6, maxFails = 10,

WtSigma = 5e -5, Lambda = 5e-")

cross-entropy(reg = 0.1, norm = (=0.5, 0.5)).

The last steps involve preparing the data for network training:
(1) individuals are randomly split into a training, validation,or
holdout group; (2) a Fisher’s exact test is used to computethe
p-value associated with the case:control asymmetry in the
training set at each variant locus; (3) the list of SNPs are sorted,
ascending by p-value; and (4), some number of SNPs (e.g., the
top 50) are selected for generating an individual-by-SNP matrix,
where each cell contains the genotype of a given person at a given
SNP locus. Finally, with the feature matrices prepared, and the
model fully parameterized, neural net training can commence:

net = train(patternnet, Xt, Yt, Xv, Yv)

Again, patternnet represents the parameterized model (and
all instructions for model training), X¢ and Xv representthe
individual-by-SNP feature matrix for the training and validation
groups, respectively, and Y7 and Yv are binary arrays indicating
whether each person is a case or control (i.e., the condition
labels). The model is trained as described above, and the final
output is a fitted neural network model (a set of network

weights).

netSNP Validation Test Using BD

Populations

We conducted simulations to rule out the possibility thatthe
netSNP method may choose SNPs based on genetic linkage to
APOE €2 or €4; i.e., significant tSNPs could
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display at-risk or protective properties despite their not being
pathophysiologically associated with AD. Furthermore, other
details of the netSNP method may predispose cases to artifactual
correlations with age of AD diagnosis and Braak scores (We note,
however, that neither the age of AD diagnosis, nor their Braak
score, was used in any calculations performed in section “NN
Construction and Performance” or “netSNP Descriptionand
Application”).

We thus tested for the correlations shown in section “NN
and CV as Predictors of AD and Its Pathophysiology.” for BDs
1-12 (see above; Supplementary Table 3 and Supplementary
Figure 7). Age of diagnosis of BD was ascribed based on APOE
SNPs effects in age of AD diagnosis (using MATLAB empirical
cumulative distribution functions). For each BD,a balanced
dataset was constructed (as for AD, see section “Dataset Pipeline,
Case:Control Balancing and SNP Properties”), and BD
“protective” and “at-risk” tSNPs were identified as described for
AD in section “NN and CV as Predictors of AD and Its
Pathophysiology.” Next, we considered the set of individuals
ascribed BD. We computed a correlation probability,based on a
general linear model, between their age of BD diagnosis and the
number of BD tSNPs or number of BDCVt-weighted £SNPs.
Results for one BD (based on a BDconstructed from BDgene
CHSY1; Supplementary Figure 7D) is compared with results
for AD (Supplementary Figure 7C).A summary of results for
the 12 separate BDs, and AD for comparison, are shown in
Supplementary Table 3. Note thatfor no BD was there a
significant correlation (right columns). These simulations support
the view that the netSNP methodis not choosing AD
“protective” and AD “at-risk” SNPs basedon genetic linkage or
some other bias introduced in the netSNP procedure.

Statistics
Statistical methods described per figure below.

For each BD constructed, individuals in the ADSP population
were assigned a BD based on their genotype; those with APOE2-
like SNPs were randomly assigned as control with OR 2.41; those
with APOE4-like SNPs were assigned as case with OR 0.30.
Those without either SNPs were assigned randomlyto control
with OR 0.89 (see Supplementary Table 3). Togenerate random
Q-Q plots, 100 datasets were generated with randomly scrambled
case-control labels. Fisher’s exact test p- values were then
computed for those 100 scrambled sets. Scrambled sets were
plotted against each other to generate the
C.I region (gray dots) and also plotted against the actual data
(colored dots).

Hundred random groups were generated with cases and
controls counterbalanced within cohorts to formulate neural
network training matrices. As described above, in each run one
of these random groups was selected and an artificial NN was
trained using the 50 SNPs with the lowest Fisher’s exacttest
p-value among training group individuals. NN classifier
performance on the holdout set was then evaluated. A histogram
of each individual’s mean NN classifier value (CV). Shows
receiver operator characteristic (ROC) curves using SNP sets as
features and normalizing CVs to range between 0 and 1: curve
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“1-50” used 50 SNPs with the lowest training group p-values; “1-
50 -APOE” used 50 SNPs with the lowest training group p-values
omitting APOE and TOMM40; “1-50 -GWAS” used 50 SNPs with
the lowest training group p-values omitting SNPs that previously
met genome-wide significance in the literature; “51-100” used
SNPs with the 51st—100th lowest training group p-values. The left
panel shows the mean correct predictions in percent for each
condition in (Figure 2B); the right panel was generated like the
left panel’s “Top 50,” except the experimental manipulation varied
the number of samples in the training group (1 sample = 1
chromosome), as indicated in the figure legend. CVs were
generated like in “2B 1-50,” and normalized to a range between —
0.5 and 0.5. The classification threshold was fixed at 0 and the false
discovery rate (FDR) and positive predictive value (PPV) were
then computed at each corresponding x-axis case prevalence.
The FDR and PPV were also computed using the optimal
operating point (OOP):

Cost(P|N) — Cost(N|N) *N
Cost(N|P) — Cost(P|P) P

where Cost(NV] P) is the cost of misclassifying a case, Cost(P)|

N) is the cost of misclassifying a control, where P = TP
+ FN, and N = # FP (TP, true positive; TN, true

negative; FP, false positive; FN, false negative). The OOP

was then determined by moving a line with slope S from

FPR =0, TPR =1 (the top left of the ROC) down-and-

right, until it intersected with the ROC curve (Mathworks,
2020b).

The histograms shown in (Figure 3A) are the result of training

an NN using individuals of all APOE subtypes, and applying
this NN on holdout set individuals assigned to each of the six
APOE genotypes. That is, after the NN is trained as described
above in General Data Preprocessing, all holdout individuals are
assigned the APOFE€22 genotype and a histogram is generated,
then all holdout individuals are assigned the APOE€23 genotype
and another histogram is generated, etc. We call this genotype
assignment procedure the netSNP method (described below)
which we show can be used as a general method for assessing the
importance of any SNP on NN performance. For comparison,
histograms shown in (Figure 3B) are the result of training an
NN using a balanced set of individuals, and computing CVs
for holdout set subgroups of individuals with the APOE
genotypes limited to one of APOE€22, €23, €24, €33, €34, or €44.
netSNP method: 4,000 target SNPs were chosen based on them
having the lowest Fisher’s exact test p-value. For each target SNP,
the netSNP method can produce a NAT, REF, ALT, and DIF value
for each individual. For a single target SNP, obtaining these
values involved the following steps: (1) a target SNP was
selected to be part of a 50-SNP training matrix.
(2) A random subset (<70%) of a balanced set of individuals
served as a training set. (3) From this training set, a Fisher’s exact
test p-value was calculated for each of the ( 1.4 million) SNPs.
(4) A single target SNP was paired with the 49 SNPswith the
lowest p-value to generate a neural network training matrix. (5)
The neural network was trained as described abovein the
General Data Processing methods. (6) A CV score was
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generated for each of the individuals in the holdout set (NAT
score). (7) All holdout individuals were assigned the homozygous
reference genotype for the target SNP and again a CV was
generated (REF score). (8) All holdout individuals were assigned
the homozygous alternate allele (minor frequency allele) forthe
target SNP and a CV was generated (ALT score). (9) The
difference between the ALT and REF scores were computed (DIF
score). This procedure was performed 20x for each target SNP;
for a given target SNP, each individual’s average ALT score
represents that individual’s CVt score for the given target SNP. In
this study we tested if CVt value could be considered a weighted
measure of the impact of target SNP & on the NN. Similar to how
histograms are generated for, after the NN was trainedas
described above in General Data Preprocessing, all holdout
individuals were assigned the homozygous genotype for minor
frequency allele of the target SNP for the indicated gene (see
Table 1 for chromosome and position of the target SNP for each
indicated gene).

Boxplots in (Figure 4A) were generated by grouping case
individuals based on whether they had a homozygous reference,
heterozygous, or homozygous minor frequency for the indicated
allele, and plotted the median AD age-of-onset (+/— interquartile
range, IQR; whiskers = range; dots = outliers). Boxplots were
generated by pooling case individuals into six bins that were
uniformly discretized based on the NN CV value, on the number
of protective (left) or risk (right) target SNPs each individual had,
or CVit-weighted target SNPs, and then plotted the median AD
age-of-onset (+/— IQR; whiskers = range; dots = outliers) for each
of these bins. Figure 4E (left) was generated like Figure 4C,
considering previously published (without APOE) AD SNPs.
Figure 4D (right) was generated like Figure 4C, providing a
netSNP-computed CVit for each previously published (without
APOE) AD SNPs. Brain sections in (Figure 4F) depict Braak
staging — a method used to classify the degree of pathology in
Alzheimer’s disease — commonly used in post-mortem clinical
diagnosis of AD by performing brain autopsy; images here intend
to summarize the general disease sequelae as shown in actual
brain images from Braak et al. (2006). The bar plot in (Figure
4G) was generated by identifying individuals that had mCVt
scores across all £SNPs that fall into each of the indicatedbins,
and the mean Braak stage of the individuals in each binwas
plotted. Boxplots in (Figure 4H) pool individuals based on
ADSP-reported Braak values and plot the median number of
target SNPs (+/— IQR; whiskers = range; dots = outliers) found
in individuals with a brain pathology that fall into one of these six
Braak stages; as in (Figures 4C,D), effects are shown separately
for SNPs that potentially confer protection (left panel) and risk
(right panel). P-values were computed using a general linear
model, where p-value represents the probability of the slope
coefficient having such a magnitude, under the null hypothesis.
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ABSTRACT

It is generally accepted that neural networks integrate new information by modifying synaptic
weights, a term that refers to the signaling efficacy between neurons at a given synapse. To retain new
information as long-term memories, synaptic weights must then adopt a state of relative stability. How
brief signals induce persisting changes to synaptic weights, and how these weights are maintained for
periods far outlasting the lifetime of synaptic molecules is unknown. Here we examine a simple proposal:
synaptic weights are maintained despite molecular turnover because they are proportional to actin
filament content in synaptic regions. In the simplest case, one can consider a single dimensional filament;
its length can be maintained by ‘treadmilling’: individual actin monomers are added on one end while
removed on the other end. To explore this idea in more biologically realistic conditions we developed a
computational model, and performed various empirical experiments probing actin dynamics in neural
dendrites. In simulating plasticity, the model shows that (a) a filamentous actin network can remain
stable indefinitely, despite molecular turnover; and (b) transient increase (or decrease) in available actin
monomers can rapidly lengthen (or shorten) filaments, which retain their new length after monomer
concentration returns to baseline levels. Empirical experiments support essential elements of this model:
(a) filament networks in dendritic spines are stable far longer than their individual actin subunits; (b)
increasing synaptic filamentous actin increases synaptic weights; and (c) transient signals that release

monomeric actin from reserve pools cause spine growth and long-term potentiation.
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INTRODUCTION

Memories are thought to be encoded by synaptic weights, a term that refers to the strength or
efficacy by which an upstream neuron evokes downstream responses via a particular synapse. In many
brain regions synaptic weights are largely determined by postsynaptic AMPA-type glutamate receptor
(AMPAR) levels, which mediate fast-excitatory transmission in the central nervous system (Bassani et
al., 2013; Bredt & Nicoll, 2003; Liischer et al., 1999; Malinow & Malenka, 2002; Song & Huganir,
2002). Given these weights encode a lifetime of memories, synaptic receptor counts must remain stable
for many years; yet all synaptic proteins undergo constant turnover (Ehlers et al., 2007; Shi et al., 2001).
How synaptic weights remain stable despite continuous molecular turnover is unknown (Shouval, 2005;
Smolen et al., 2019). This chapter addresses two fundamental questions on the neurobiology of memory:
(a) how synaptic weights are maintained for periods far outlasting the lifetime of synaptic molecules, and
(b) how temporary signals induce persisting changes to synaptic weights.

The question of how memories persist orders of magnitude longer than their molecular substrates
has been of interest since the 1980s (Crick, 1984). Various attempts to explain this phenomena have
centered around theoretical molecular switches: molecules that, when activated, remain activated
indefinitely (see Figure 2.1A) (J. E. Lisman & Goldring, 1988; Sacktor, 2012; Si & Kandel, 2016).
However, the role of molecular switches in memory maintenance remains poorly understood (Jones,
2013; Otmakhov et al., 1997; Volk et al., 2013).

Shouval (2005) proposed an interesting alternative to molecular switches, where LTM
maintenance is achieved through receptor clustering. In this computational model, surface receptors form
metastable clusters governed by local interactions (see Figure 2.1B) - metastable meaning the cluster can
remain a stable size while all its individual subunits turn over. This model is elegant in its simplicity,

addressing both questions (a) and (b) raised above. The synaptic membrane is represented as a uniform
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2D grid, where any given lattice position is either vacant or occupied by a receptor. This can be

represented as a matrix of zeros (vacant) and ones (occupied):

000000000
000000000
001111100
001110100
001111100
000111100
001111000
000000000
000000000

Receptors occupy and vacate lattice positions in a probabilistic manner. Any given position has
an on-rate probability that depends on the number of neighboring receptors (immediately above, below,
left and right, with 0—4 possible neighbors). The off-rate probability does not consider neighbors, and is
uniform across the lattice. At the crux of this model is (1) a neighbor dependent on-rate that provides a
means to prevent cluster growth, while (2) a uniform off-rate ensures total receptor turnover. The on-rate
formulation to prevent cluster growth is particularly innovative, circumventing the need to actively
change rate parameters to achieve metastability. Clusters are sustained because kon>>kosr within the
cluster (2, 3, or 4 neighbors), and because ko~ 0 outside the cluster (1 or 0 neighbors).

A primary issue with the Shouval cluster model is that it lacks biophysical and biological support.
It is generally thought that receptors are not exocytosed at the postsynaptic membrane, as would be
necessary to fill gaps in the center of the cluster; they are instead inserted into dendritic membrane
regions outside of spines and diffuse laterally along the surface into spines and postsynaptic areas
(Borgdorff & Choquet, 2002; Makino & Malinow, 2009; Yudowski et al., 2007). Also there is no
evidence that AMPARSs directly interact with each other to form clusters (Bassani et al., 2013). Another
issue is that this model requires that on-rate probability for two, three, and four neighbors is relatively
high (p = 0.1), while for one neighbor it is extremely small (p = 0.1 x 10~11), which lacks a biophysical
basis. It would be more biologically plausible to have a neighbor dependent off-rate (i.e. breaking 4 bonds

takes longer than 1 bond) and a fixed on-rate that scales with molecular concentration. However under
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Shouval’s formulation, such clusters are unstable. For these reasons the Shouval cluster model, while an
interesting concept that can provide a mathematical insight into the questions (a) and (b) introduced in the

first paragraph, the model lacks a biological analog.
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Figure 2.1: LTM models. (A) Depiction of a Lisman molecular switch model. This model shows the primary
reactions in a proposed bistable switch. Two kinase proteins, denoted here as K1 and K2, compose the switch. The
K1 protein exists in either an inactive or active (K1%*) state. Theoretically this reaction can be initiated by neural
stimulation, at which point it can be self-sustained. (B) Depiction of the Shouval cluster model of synaptic receptors,
projected onto the postsynaptic region of a dendritic spine. In this model surface receptors cluster in synaptic regions
with a uniform off-rate and a neighbor-dependent on-rate. Lattice locations highlighted in red, purple, blue, and
green have one, two, three and four neighbors, respectively. In this model exocytosis (cluster addition) is neighbor-
dependent, while endocytosis (cluster removal) happens at a fixed-rate uniformly across the surface.

Where do we go from here? Our approach towards addressing the two questions above has been
to examine the behavior of AMPAR in-and-around synapses, as described in experimental studies (see
below), and then propose a metastable mechanism to control their synaptic levels. Studies indicate that
AMPARSs are inserted into the dendritic membrane outside of spines (Borgdorff & Choquet, 2002;
Collingridge et al., 2004; Makino & Malinow, 2009; Yudowski et al., 2007). Once on the surface,
AMPARSs stochastically diffuse along the membrane where they enter and exit dendritic spines and

synaptic areas (Hoze et al., 2012; Nair et al., 2013; Renner et al., 2009). An emerging theory is that
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synaptic membrane viscosity or diffusional trapping could dictate synaptic receptor levels (Czondor et al.,
2012; Ehlers et al., 2007; Holcman & Triller, 2006). The idea is simple: as synapses reduce their diffusion
rate they increase receptor levels. A similar, and likewise parsimonious idea is that as spines and synapses
increase in size they contain more receptors. Indeed, LTP signals have been shown to induce dendritic
spine growth (Fischer et al., 1998; Kopec et al., 2007; Lang et al., 2004).

Both ideas are eloquent solutions to a seemingly complex problem. Though, the key questions
mentioned above, (a) and (b), remain. Here we present a model inspired by Shouval’s approach to these
questions (i.e. identify a metastable system or structure in dendritic spines), but is also supported by
physiological evidence. Central to this model is the protein actin, a structural molecule identified to have
metastable properties in its filamentous form. Dendritic spine size and synaptic area are generally
proportional to a spine’s total actin filament content (Honkura et al., 2008; Korobova & Svitkina, 2010).
Actin filaments also provide scaffolding for scaffold-associated proteins (SAP) known to interact with
synaptic AMPARs (Kessels et al., 2009; Shen et al., 2000) likely reducing their synaptic diffusion rate
(Czondor et al., 2012; Ehlers et al., 2007; Holcman & Triller, 2006; Simon et al., 2013).

Given that actin filaments have metastable properties and spine actin content can influence
synaptic AMPAR levels, actin could be a primary regulator of synaptic weights. Our findings support this
conclusion - that the metastable properties of actin filaments allow synaptic weights to be modified by
transient signals and attain long-term stability despite total molecular turnover. These findings are
supported by both computational simulations and biological experiments that demonstrate how actin
dynamics explains (@) how are synaptic sizes and/or diffusion rates maintained for periods far outlasting
the lifetime of synaptic molecules, and (b) how do temporary signals induce persisting changes to

synaptic sizes and/or diffusion rates.
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RESULTS

PART [: COMPUTATIONAL MODELS

Dendritic spine area & diffusion rate can determine synaptic receptor levels: AMPARs diffuse
stochastically along the membrane where they enter and exit dendritic spines and synaptic areas. Using a
computational model, we tested whether synaptic membrane viscosity could stably mediate synaptic
receptor levels. Receptor surface diffusion was first simulated using a simplified scaled model of a 3 um
x 6 pm dendritic segment with two 0.8 um diameter synaptic regions (Figure 2.2A). Parameters were set
to empirically measured receptor diffusion rates (Ehlers et al., 2007) across extrasynaptic dendrite
surfaces (e.g. 0.15 pm?%/s) and postsynaptic regions (e.g. 0.01 um?s).

Simulations demonstrated that although receptors are diffusing randomly in-and-out of various
dendritic compartments, synaptic receptor density is remarkably stable for hundreds of minutes during
baseline conditions (Figure 2.2B-C). We also find that changing the diffusing rate of a particular synapse
is sufficient to stably increase or decrease surface receptor counts in the respective synaptic region. In
general a region with half the diffusion rate (e.g. 0.01 um?s™ vs. 0.02 um?s™) of another similarly-sized
region will have twice the receptor density; a region with one-third the diffusion rate of another will have
a three-fold higher receptor density, etc. (Figure 2.2D).

Simulations also demonstrated that changes in synaptic area can parallel the effects of diffusion
rate with regard to synaptic receptor counts (i.e. total receptors as opposed to receptor density). For
example total receptor count will increase by precisely the same amount in a given synapse, whether it
doubles its area or halves its diffusion rate. (Figure 2.2E-F). A key takeaway from these computational
simulations is that synaptic area and diffusion rate can mediate synaptic receptor levels, which remain
stable for periods that outlast the lifetime (i.e. dwell time) of individual molecules. Changes to either
synaptic area or synaptic diffusion rate will have a similar effect on total receptor counts, while only

diffusion rate, not synaptic area, can modulate synaptic receptor density.
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Figure 2.2: Receptor density is a function of local diffusion rate. Simulating receptor surface diffusion using a
simplified scaled model of a 3 um x 6 pm dendritic segment with two 0.8 um diameter synaptic regions. Global
diffusion rate was set to 0.1 um?/s while reduced diffusion rates were tested in synaptic regions. (A) Left-panel
shows a snapshot of stochastic receptor locations after reaching a diffusional steady-state; diffusion in the upper
synaptic area (S7) was set to 0.01 um?*/s, while the lower synaptic area (S2) was 0.02 um?/s. (B) Heatmap of mean
receptor density over a 60-minute window using the same conditions as A. (C) Receptor densities are remarkably
stable during steady state turnover. At diffusion rates in A receptor densities were stable for hundreds of minutes.
(D) Surface diffusion rate is proportional to receptor density, such that a region with half the diffusion rate of a
nearby region sharing a common pool of receptors will have twice the receptor density; a region with one-third the
diffusion will have a three-fold higher receptor density, etc. (E) Heatmap of mean receptor density when S1 has 5
diffusion rate of a similarly sized synapse, S2. The result is that S1 has twice the receptor density and twice the total
number of receptors. (F) Heatmap of mean receptor density when S1 has ' diffusion rate and 5 the area of S2. The
result is that S2 still has half the receptor density, but the same total number of receptors as S1. (G) Three scenarios
were independently simulated, where synaptic areas S1 and S2 were assigned an area ‘a’ and diffusion rate ‘d’.
These simulations further demonstrate that changes in synaptic area and diffusion rate have proportional effects on
total receptor counts. However only changes to diffusion rate, not area, impact synaptic receptor density.
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The case for actin as a primary regulator of synaptic weights: Since surface area and diffusion
rate can dictate synaptic receptor levels, we sought to identify synaptic proteins that could influence
synaptic membrane viscosity or dendritic spine size. We examined the properties of actin, as the amount
of this molecule in a spine correlates with its size (Cingolani & Goda, 2008; Hotulainen & Hoogenraad,
2010) and actin can bind to proteins that could affect synaptic membrane viscosity (Kusumi et al., 2011;
Renner et al., 2009)(Bassani et al., 2013; Derkach et al., 2007; Lin & Webb, 2009; Opazo et al., 2012;
Sainlos et al., 2010). Actin continuously cycles between a diffusible monomeric state (G-actin), and a
filamentous state (F-actin) whereby many actin molecules assemble into linear polymers (see Figure
2.3A). As a structural protein highly expressed in dendritic spines, actin may influence synaptic efficacies
in several ways. Studies indicate that rapid actin filament polymerization precedes dendritic spine growth
during LTP (Lin & Webb, 2009; J. Lisman, 2003); and blocking actin polymerization disrupts LTP (Chen
et al., 2007; Fukazawa et al., 2003b; Krucker et al., 2000; Okamoto et al., 2009; Ramachandran & Frey,
2009) . Controlling synaptic size is one way actin may influence synaptic weights; another is through its
influence on surface receptor diffusion rate. Actin filaments increase membrane viscosity and molecular
drag coefficients (Kusumi et al., 2011; Renner et al., 2009). Furthermore, actin filaments support and
localize scaffold-associated proteins (SAP). SAP are multivalent proteins known to form clusters, anchor
to actin scaffolding, and interact with a variety of molecular species including surface receptors (Bassani
et al., 2013; Derkach et al., 2007; Lin & Webb, 2009; Opazo et al., 2012; Sainlos et al., 2010). SAP
clusters ultimately anchor to actin scaffolding, so cellular regions with more filaments can support greater
SAP densities. When these densities are localized near synaptic membranes, SAP can bind surface
receptors to reduce their diffusion rate. Thus, actin may govern synaptic weights by regulating synaptic
size and receptor diffusion rate.

There is another enticing reason to explore actin’s role in synaptic plasticity: actin filaments seem
to have metastable clustering properties. As a 1-dimensional (1-D) polymer, actin filaments do not suffer
from the same ‘edge-effects’ that limit the stability of 2-D clusters. The stability of 2-D clusters like those

described above (Shouval, 2005) are dependent on cluster/perimeter size; small clusters tend to dissipate
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completely, while large clusters tend to display runaway growth. In contrast, a 1-D cluster such as a
filament only has two ends, and are not subject to perimeter effects that scale with size. With regard to
actin filaments, monomers can only be gained or lost at either end of the filament, regardless of its
internal length. This suggests that actin filaments can be stable through a range of different lengths (see
Figure 2.3A,B).

Importantly, actin filaments can maintain their length while undergoing complete monomer
turnover. Actin filaments are asymmetrical, with a so-called ‘barbed @end’ and a ‘pointed Send’. While
both ends are capable of polymerization and depolymerization, the critical concentration (CC) of free
actin monomers required for polymerization is lower at the @end than ©end. When free G-actin
concentration falls between the @/&end CCs (as will during steady-state, details below), monomers are
added to the @end, and lost at the Send, at the same rate. As a result, actin fibers maintain their length
while undergoing complete subunit turnover. Taken together, actin has several properties that may
explain how synaptic weights can remain stable despite constant molecular turnover, and how synaptic
weights can stabilize at new levels when evoked by transient signals.

To explore this idea in detail, we developed a computational model of actin polymerization
dynamics. Actin polymerization has been extensively studied, quantified, and modeled (for an excellent
review see: (Bindschadler, 2010)). Like other models, ours integrates well established rate parameters
observed across independent empirical experiments (Bindschadler et al., 2004; Halavatyi et al., 2009;
Yarmola et al., 2008). Actin models have been categorized into several broad classes (Bindschadler,
2010), and following this schema our model would be considered a time-dependent, Monte-Carlo
Markov-Chain (MCMC), spatially-resolved model (Figure 2.3C). To our knowledge it is the only such
model integrating these three aspects, which is mainly attributed to the spatially-resolved feature of our

model.
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Figure 2.3: Metastable actin synaptic efficacy model. (A) Actin protein can exist as monomeric G-actin or as
filamentous F-actin. (B) Actin fibers contain a barbed @end a pointed Send, each capable of adding and removing
actin monomers. The critical concentration required for polymerization is lower at the @end than Send; at steady-
state the number of actin subunits added to the @end is proportional to the subunits lost at the Send. If G-actin
levels rise, filaments will increase in length until G-actin concentration drops back to steady-state levels. At steady-
state actin levels, monomers are lost and added to filaments at equal rates; this exchange rate is independent of
filament length. (C) Actin polymerization and branching were simulated in dendritic spines using time-dependent
MCMC spatially-resolved modeling. This procedure can be used to generate the spatial coordinates of filament
networks in euclidean 3-space as they evolve over time. Shown here is a side-profile view of a dendritic spine
filament network that was procedurally generated using our model. (D) Empirical values used to model actin
polymerization are shown in the table as prototypical +end and -end polymer on-rates (Ka) and off-rates (Kd). Also
shown is the critical concentration (Cc) of G-actin required for net monomer addition at a given end. (E) Actin
polymer dynamics play a central role in our model of synaptic plasticity, shown above. Primary components of this
model included [1] a dendritic segment with several prototypical spines, [2] diffusible surface receptors, [3] a
dynamic actin filament network (including actin, arp, thymosin, cofilin molecules; see text), and [4] multivalent
SAP that can interact with filaments, surface receptors, and other SAP. Components of this model can be graphically
rendered across all timesteps of the simulation, and viewed as a live animation.
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MCMC methods and empirically established parameters were used to model time-evolved actin
filament networks inside dendritic spine volumes (Figure 2.3C,D), a centerpiece of our model of synaptic
plasticity. In this model, actin serves as the primary coordinator of synaptic weights through its influence
of spine size and receptor diffusion rate. In short, the primary components of our model of synaptic
plasticity include: (1) receptors that diffuse along the surface of a short dendritic segment with several
prototypical spines, (2) a dynamic actin filament network within spine regions, and (3) multivalent SAP
that interacts with actin filaments, surface receptors, and other SAP (Figure 2.3E). Since actin dynamics
are central to this model, we present those findings in detail next, and subsequently show observations
regarding other components of our model.

Simulated actin filament networks are metastable: To determine if synaptic weights can be
regulated by interactions between surface receptors, SAP, and actin filaments, we simulated the real-time
spatial molecular dynamics of actin filament networks. In addition to actin, the proteins arp2/3 (arp) for
filament branching, thymosin-f34 (thymosin) for G-actin sequestering, and cofilin for filament severing,
were included in the model (see METHODS). We find that simulated actin filament networks display
long-term stability. Actin subunits rapidly transition between (globular, monomeric) G-actin and
(filamentous, polymeric) F-actin, while maintaining stable molecular concentrations (Figure 2.4A-B).
Likewise under steady-state conditions, the average length across all filaments (Figure 2.4C), as well as
the total number of filament branches found throughout the entire spine filament network (Figure 2.4D)
remain stable for many simulated hours.

We next examined whether all F-actin undergoes turnover in the context of a branched filament
network. To address this, we evolved a series of actin networks until they reached a steady-state with
regard to overall morphology. After these networks settled into a morphological steady-state, the
simulation was briefly paused and each filament in the network was tagged with a unique identifier. The
simulation then continued, while tracking the lifespans of each tagged filament. In these simulations, most

filaments survived less than 1-hour, and no single filament was sustained longer than 5 hours (Figure
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2.4E,F). Thus it appears that metastability in the context of a multi-filament network is represented at the
network-level: total F-actin content, average filament length, and number of filament branches within the
network remain stable while individual monomers turn-over within filaments, and individual filaments
turn-over within the network.

We next tested whether average filament length within an actin network stably increases
following transient growth signals. As mentioned above, thymosin sequesters G-actin through reversible
binding, which creates a large reserve pool of G-actin (Xue & Robinson, 2013), that could be released
from thymosin by a transient signal. During steady-state conditions, the concentration of free G-actin (i.e.
not bound by either thymosin or filaments) remains stable (Figure 2.4G). At the 2-hour mark, we
transiently reduce the affinity between thymosin and G-actin, which liberates many sequestered actin
molecules into the pool of firee G-actin. These monomers are quickly absorbed by the filament network,
significantly and stably increasing filament lengths throughout the network (Figure 2.4H,I). Interestingly,
this transient influx of monomers also increases, stabily, the total number of network branches (Figure
2.4)).

This outcome demonstrates that branch formation rate is a function of the total length of all
filaments within a network. Arp protein can bind anywhere along a filament to create a new branch;
therefore, as the total length of a filament network increases, the probability-rate of arp binding also
increases (and as soon as arp binds a filament, it nucleates a new branch site). Lastly, we observe that the
increased mean filament length and increased branch count both remained stable, despite all F-actin
content undergoing complete turnover (Figure 2.4K,L). The time constant for F-actin turnover was not

significantly different pre- and post-growth.
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Figure 2.4: Simulated actin dynamics inside dendritic spines. All plots in this figure use data averaged over 10
independent runs, with a simulated real-world time of 5 hours. The x-axis of all plots represent time; and all display
exactly the same 5-hour (300-minute) time window. Each metric plotted on the y-axis refers to a quantity measured
inside a single dendritic spine. (A) Diffusible unbound G-actin monomers. (B) The total number of F-actin subunits
composing all filaments inside a spine. (C) Average number of F-actin subunits composing each filament. (D) Total
number of filaments; equal to the total number of branches across the entire spine filament network (E) The spine
filament network was allowed to evolve until reaching a steady-state, at which point each filament in the network
was tagged with a unique identifier. The filament network was then allowed to continue evolving, and the lifespans
of the tagged filaments were tracked. The plot here shows the percent of tagged filaments remaining as the network
evolved over 5 hours. Most filaments survive less than 1 hour; no filament from any run lasted the full 5 hours. (F)
Survival times as a function of filament length. (G-L) Same as A-F, except a brief LTP event was delivered at the 2-
hour (120-min.) mark. This event consisted of temporarily making a reserve pool of G-actin available for

polymerization. This reserve pool was made available for 30 sec. after which point G-actin levels were returned to
baseline.

Metastability of actin filament networks carries through to synaptic receptor levels: Actin filament
network dynamics, SAP clustering, and receptor diffusion were modeled as three layers of interactions

(see METHODS). Filament networks were simulated inside dendritic spine regions, with quantitatively
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similar outcomes as those described above (see Figure 2.4). In this model, filaments located near
postsynaptic surfaces acted as seed points for SAP clusters (Figure 2.5A). Clustering behavior was
simulated using a customized neighbor-dependent algorithm (see above and METHODS). The primary
difference between our algorithm and Shouval (2005): in our model lattice on-rate probability is a
function of actin filament proximity, and lattice off-rate is neighbor dependent. These updates to

Shouval’s clustering algorithm better reflect an expected biophysical basis.
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Figure 2.5: Simulated actin dynamics inside dendritic spines and receptor count at synapses. An MCMC
spatially resolved model was used to simulate actin filament dynamics inside dendritic spine regions. (A) Overhead
view of procedurally generated filament network inside prototypical spine. Filament that fell within 20 nm of
postsynaptic membrane (PSD) colored red, otherwise colored blue. (B) Filaments in PSD acted as seed-points for
SAP clusters, simulated using a neighbor-dependent algorithm where on-rate was a function of actin filament
proximity, and lattice off-rate was neighbor dependent. Filament tips shown in red; SAP in gray. (C) Heatmap
displays SAP-receptor interaction probabilities. Synaptic locations highly populated by SAP have high interaction
probabilities compared to regions with sparse SAP. Probabilities dynamically change each timestep according to
stochastic behavior of proteins. (D) Surface receptor diffusion was simulated along a prototypical dendritic segment
with several spines. Shown here is a 10-min trace of a single receptor, along the dendrite shaft and both spine
regions. (E) Integrated model with all components simulated in parallel. (F-I) Independent simulations were
performed that tracked filament count, mean filament length, synaptic filament count, and synaptic receptors during
a 120 min. baseline. At 120 min. a brief 60 sec. LTP signal was delivered. Same metrics were tracked for another
120 min. In each plot, the solid line is mean of all runs; dots are values from each replicate. Red dashed lines are
mean outcomes from replicates where filament network was not allowed to exceed 350 total branches. (F) Total
number of filaments in each actin filament network. (G) Mean length across all filaments in each actin network. (H)
Number of actin filaments at each timepoint located inside the PSD (<20 nm from the postsynaptic membrane). (I)
Number of surface receptors in synaptic regions.
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In our model the precise spatial location of every actin filament (Figure 2.5A), SAP cluster
molecule (Figure 2.5B), and surface receptor (Figure 2.5D) is known. This allows us to compute
proximity-dependent binding probabilities to model the interactions between surface receptor and SAP
(Figure 2.5C). Each interaction made between a SAP molecule and a surface receptor was transient, and
consisted of briefly reducing the receptor’s diffusion rate. The reduction of diffusion rate during a
transient interaction was based on empirically measured values (Ehlers et al., 2007)

Using all components of the model (Figure 2.5E) (filament dynamics, SAP clustering, and surface
receptor diffusion) in parallel, we performed ten independent simulations representing 4-hours each of
real-world time. In these simulations we tracked filament counts, average filament length, synaptic
filament counts, and synaptic receptors throughout the entire simulation. The first 120-minutes consisted
of a baseline period, to evaluate steady-state dynamics. To mimic an LTP signal, at the 120-minute mark,
we transiently reduced the thymosin-actin binding for 30-seconds; after which point the binding affinity
was restored to baseline. Data was again collected for an additional 120-minutes to monitor the effects of
the LTP signal.

We find that all metrics are stable during the steady-state period, including the total number of
branches composing the filament network (Figure 2.5F), average filament length (Figure 2.5G), number
of filaments inside the postsynaptic density (PSD) (Figure 2.5H), and number of surface receptors located
in the synaptic area (Figure 2.5I). During LTP we find that all metrics related to the actin filament
network abruptly increase, including the number of filaments, average filaments length, and the number
of PSD filaments. These changes are immediately followed by a sharp increase in the number of synaptic
receptors. To determine whether the LTP-induced increase in total filament branches is necessary to
significantly and stably increase synaptic receptors, we performed another 10 runs using the exact same
parameters, except total filament branch count was capped at 350 total branches (see dashed red line in
Figure 2.5F). Interestingly we find that synaptic receptors levels still increased, and to a greater extent

than before branching was limited. This suggests that stable increases in synaptic receptor levels are not
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strictly dependent on the number of branches in a filament network; lengthening of existing branches is

sufficient to achieve stable increases in receptor counts.

PART II: EXPERIMENTAL TESTS OF KEY MODEL COMPONENTS

Altering actin bioavailability can change otherwise stable dendritic spine morphologies: To test
whether dendritic spines in biological neurons generally maintained stable sizes, we expressed GFP-
tagged actin in mouse hippocampal slice cultures, and monitored the size of dendritic spines for 1-hour
using two-photon laser scanning microscopy. Spine area was computed by manually tracing the boundary
around each spine, at each timepoint (Figure 2.6A). The average size across all spines was 0.499 um? (n =
20, sd = 0.014). Over the 1-hour monitoring period the average absolute change in size was 0.017 pm? (sd
=0.016), with the smallest change being <0.001 pm? (~0%) while the largest change was measured to be
0.065 um? (15.7%). Only 3 of the 20 spines changed their relative size ranking over the 1-hour
experiment, with the largest rank-change being just 2 positions (from 13th largest to 11th largest). Thus
among this sample, relatively small spines stayed small, medium spines remained medium, and large
spines persisted being large, which suggests that irrespective of size, dendritic spines can remain stable
for at least duration on the order of hours.

One possible explanation for the stability in spine sizes as measured in the experiment above,
could be that under experimental conditions, morphological change is diminished due to the slowed or
fully-arrested dynamics of the underlying structural molecules. To determine if this was the case, we
again expressed GFP-tagged actin in hippocampal primary cultures, and then assessed the turnover rate of
actin protein inside dendritic spines through fluorescence recovery after photobleaching (FRAP)
experiments. This is a well established technique used to estimate the rate of molecular turning-over
within a cellular compartment. Using FRAP, we find that within 60-minutes, tagged actin underwent

complete turnover (Figure 2.6B,C).
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Figure 2.6. Dendritic spines are morphologically stable despite complete actin turnover. (A) To estimate
stability of the actin filament network, we monitored the size of dendritic spines expressing GFP-tagged actin with
two-photon laser scanning microscopy in hippocampal primary cultures. Irrespective of size, spines remained stable
over a 60-minute monitoring period. (B) To measure the turnover of actin we performed FRAP experiments. Images
of neuron expressing GFP-tagged actin were collected 1 minute prior to bleaching, immediately after bleaching, then
15 minutes after, 30 minutes after, and 60 minutes after bleaching. (C) At 60 minutes post-photobleaching, actin-
GFP fluorescence generally displayed complete recovery, indicating that all actin content in dendritic spines,
including filamentous actin, is recycled within approximately one hour. (D) We performed overexpression
experiments to determine if the actin overexpression has an effect on dendritic spine size. Images of neuron
overexpressing GFP alone or GFP-tagged actin were taken after 8§ DIV and 15 DIV. (E) After 15 days DIV,
dendritic spines are significantly larger in neurons overexpressing actin than in control neurons. (F) After 15 days
DIV, the density of spines along the length of dendrites is significantly greater in neurons overexpressing actin than
control neurons. Error bars represent SEM. *p<.05, **p<.01
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We conclude that fluorescence recovery (ti» ~ 10 min) is rate-limited by filamentous F-actin-GFP
in spines, as monomeric G-actin-GFP is expected to recycle in-and-out of spines within seconds (Biess et
al., 2007; Holcman & Schuss, 2011; Svoboda et al., 1996). These findings rule out that spine size stability
is due to arrested structural protein dynamics; and in fact demonstrate that spines retain their size despite
the complete turnover of structural F-actin protein.

To determine whether increased actin availability is sufficient to increase dendritic spine sizes we
performed an actin overexpression experiment. On DIV4, hippocampal cultures were incubated with
either actin-GFP or GFP alone. Morphological assessments were then performed on DIVS and and DIV15
(Figure 2.6D). On DIV8 there were no statistical differences between the GFP-actin and GFP control
group, with regard to spine size or density. By DIV15 however, we find that hippocampal neurons
expressing actin-GFP had significantly larger dendritic spines than neurons only expressing GFP (by 0.28
+ 0.04 microns), #(161) = 6.74, p <.001 (Figure 2.6E). Likewise, neurons overexpressing actin had a
higher spine density than controls, #(161) = 4.05, p <.001 (Figure 2.6F). These findings suggest the
bioavailability of actin can drive significant morphological effects in dendritic spines after DIVS (there
may be some other limiting molecules prior to DIV8). Specifically, we demonstrate that global increases
in actin protein expression in neurons results in dendrites with significantly more spines, and significantly
larger spines.

Actin overexpression increases synaptic weights: Results from our simulation experiments, along
with evidence from previous research (Fukazawa et al., 2003a; Krucker et al., 2000), suggest that
increased actin bioavailability in dendrites may be sufficient to increase synaptic weights. To
experimentally determine whether actin bioavailability can impact synaptic weights, we performed a
series of overexpression experiments and measured spontaneous miniature excitatory postsynaptic
currents (MEPSC), which are indicative of functional synapses and their synaptic weight (Ehrlich et al.,
2007; Otmakhov et al., 1993; Raastad et al., 1992; Simoni et al., 2003; Wyllie et al., 1994). It is possible
that actin overexpression may increase spine size without producing a complementary increase in

synaptic receptors. On the other hand, if we find increased mEPSC amplitudes following acute actin
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overexpression, it would suggest that increasing actin bioavailability is sufficient to upregulate excitatory
receptors in hippocampal synapses.

Here we used Sindbis virus (Makino & Malinow, 2009) to acutely overexpress actin in
organotypic hippocampal slice cultures. Within 24 hours of virus exposure, electrophysiological
recordings were performed in voltage clamp to measure mEPSC amplitude and frequency in control
neurons and in neurons overexpressing actin. Indeed we find a significant increase in the mEPSC
amplitude in neurons expressing actin (28.6 +/- 1.4 SEM) compared to control neurons (19.1 +/- 1.2
SEM), #(43) = 6.74, p <.001 (Figure 2.7A-D). This signifies there are substantially more AMPA
receptors in synapses of actin-overexpressing neurons than in control synapses. Interestingly, despite our
finding that actin overexpression increases spine density, we find no statistical difference in mEPSC
frequency (p = .09) (Figure 2.7E).

This could mean one of several things. First, it could be that our dataset is underpowered, and
additional data would reveal small group differences in frequency exist. It could also mean that increased
actin bioavailability first impacts the sizes of existing spines before evoking de novo synthesis of new
spines (i.e. high actin levels must be sustained for longer than 24 hours). If however actin expression did
acutely increase spine density, this result could mean that some spines are completely starved of AMPA
receptors (i.e. ‘silent synapses’) (Liao et al., 1995; Poncer & Malinow, 2001). While those scenarios will
be interesting to explore in future research, the primary result here is that actin overexpression

substantially increased the amplitude of synaptic responses.
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Figure 2.7. Actin overexpression increases excitatory postsynaptic currents. (A) Example of postsynaptic
current recordings from control neurons vs. neurons overexpressing actin protein. (B) Stacked overlay of dozens of
mEPSCs from neurons overexpressing actin and control neurons. (C) Average shape of spontaneous mEPSCs from
neurons overexpressing actin and control neurons. (D) Average mEPSC peak amplitude in neurons overexpressing
acting and control neurons. (E) Average mEPSC frequency in neurons overexpressing actin and control neurons.
Error bars represent SEM. *p <0.001

Actin dissociates from actin-sequestering protein, thymosin, during LTP: The experiments so far
illustrate that upregulating actin availability can drive increases in spine sizes and synaptic weights, in
preparations where actin was increased chronically, throughout the neuron, over the course of hours or
days. In this final series of experiments we investigate whether acute, local increases in actin
bioavailability yields similar effects to those observed during chronic global actin increases. We also
assess a specific mechanism that neurons may use to quickly and transiently increase actin bioavailability:
the liberation of G-actin from a reserve pool of actin monomers bound by thymosin protein (Figure 2.8A).

We reasoned that such an event could drive spine growth during relatively brief LTP signals. If indeed a
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significant reduction in thymosin-actin interactions were observed during potentiation signals, it would
provide striking insight regarding the structural plasticity component of LTP.

Since relatively little is known about thymosin-actin sequestration, particularly in neurons, we
first tested whether thymosin expression had any effect on dendritic spine sizes, on its own, and in
conjunction with actin overexpression. Interestingly, we find that thymosin expression on its own does
not impact spine size, but does significantly attenuate spine size in actin-overexpressing neurons (Figure
2.8B). That is, aside from the control vs. thymosin comparison, all other pairwise comparisons were
significant. Spines in neurons overexpressing actin were significantly larger than control neurons t(89) =
9.96, p <.001, and as predicted thymosin attenuated this effect t(130) = 5.52, p <.001. However, this was
only a partial attenuation, as thymosin+actin overexpressing samples still had larger spines than controls
on average, t(131) = 6.56, p <.001.

We next used an occlusion-type experiment to test if the increase in transmission produced by
over-expressed actin maximized a signaling mechanism used in LTP. If such were the case, one would
expect reduced or absent LTP in neurons overexpressing actin. Here we used a chemical-LTP (cLTP)
protocol to acutely and globally induce LTP across all neurons in the preparation (see METHODS). We
find that before LTP, spines from actin-overexpressing neurons are larger than control counterparts
(consistent with results above). The cLTP protocol induced spine growth in both the control group
(increase p=0.12 pm?, 6=0.04), #(19) = 12.9, p < .001, and to a slightly lesser extent in the actin group
(increase p=0.10 um?, 6=0.05), #(19) = 56.5, p < .001 (Figure 2.8C). With regard to fold-change, spines
from control neurons displayed significantly grater change than spines from actin expressing neurons,
#(38) =5.23, p <.001 (Figure 2.8D).

We also examined whether pre-cLTP spine size had any effect on spine growth. To test this we
split spines into equal groups based on original spine size (large and small spines). We used a linear
regression model where fold-change was the dependent variable, and the independent variables were
spine size, and condition (actin vs. control). We find the overall prediction model is significant,

F(4,36)=20.6, p<.001, R>=.632, with condition being a significant predictor (8=0.20; p=.022), and the
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condition-by-size interaction being a significant predictor (f=0.35; p=.004). This suggests that small
spines particularly in the control group (that had the smallest spines overall) display the greatest growth
relative to their own starting (pre-cLTP) size. These results are consistent with the view that in large
spines, increasing actin maximizes a signaling mechanism used in LTP. In smaller spines, increased actin
enhances a signaling mechanism that has been used to a similar amount as that used to produce large
spines in control cells. In general, increased levels of actin partially or completely occlude LTP.

In order to determine if LTP signals drive a change in the interactions of actin and thymosin, we
developed an experimental procedure involving glutamate uncaging and fluorescence lifetime imaging
microscopy (FLIM). Glutamate uncaging allows the precise spatial and temporal triggering of LTP
events, localized to single dendritic spines. FLIM can be used to quantify protein-protein interactions,
with adequate temporal resolution and sub-micron spatial resolution. By co-expressing thymosin tagged
with a red fluorescent protein (mCherry or mApple) along with GFP-tagged actin, we monitor actin
thymosin interactions before, during and after LTP at individual spines. Our data indicate that actin
reversibly dissociates from thymosin during LTP signaling (Figure 2.8E). The experiment was repeated
independently in the lab of collaborator (Y. Hayashi), and the same result was observed (Figure 2.8F):
induction of LTP evokes a significant dissociation of actin-thymosin dimers, which peaks within 60
seconds of the signal (relative FRET efficiency p = 1.78 +/- 0.12 SEM), and returns to baseline within
120 seconds (relative FRET efficiency p = 0.06 +/- 0.09 SEM). Furthermore, we find this transient
dissociation is coupled with a long-term increase in dendritic spine size (limited to only spines at the site
of glutamate uncaging). Spines in neurons overexpressing thymosin displayed a greater peak than control
neurons (peak thymosin p = 2.55 +/- 0.23 SEM; peak control p = 1.64 +/- 0.21 SEM), t(40) = 161.4,p <
.001. Also, spines in neurons overexpressing thymosin had greater sustained growth than spines from
control neurons (between 5.5-6.0 hours, thymosin p = 1.90 +/- 0.33 SEM; peak control u = 1.42 +/- 0.29
SEM), t(40) = 114.8, p <.001, that persisted the duration of the experiment (Figure 2.8G). This is
consistent with the view that overexpression of thymosin produces a larger thymosin-actin pool at spines,

and, through LTP-induced actin-thymosin dissociation, increased actin bioavailability during LTP.
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Figure 2.8. Actin dissociates from thymosin-sequestering protein during LTP. (A) During baseline conditions
actin (blue) is sequestered by thymosin (red), which creates a reserve pool of monomeric actin. Some actin
monomers spontaneously transition from the sequestered reserve pool to the relatively small free polymerizable
monomeric pool. An LTP signal temporarily causes thymosin and actin to unbind in high quantities, resulting in
filament growth. After the LTP signal dissipates, the system returns to steady-state. (B) Actin overexpression
increases dendritic spine area, and thymosin expression partially mitigates this effect. Thymosin expression on its
own does not appear to significantly affect spine size. (C) Neurons overexpressing actin had spines that were larger
than control neurons, both during baseline, and after cLTP (see plot C for group labels; gray solid and gray dotted
lines represent GFP and actin group means, respectively). In general, average spine size of control neurons after
cLTP was on-par with actin-overexpressing neurons prior to cLTP. In terms of relative change, control neurons
displayed significantly more growth than actin-overexpressing neurons during cLTP. (E) FLIM reveals that actin
reversibly dissociates from thymosin during a glutamate uncaging protocol designed to mimic LTP signaling. Two
different red fluorophores were used to tag thymosin; both producing similar FRET lifetime change results. Here an
increase in lifetime change indicates less thymosin-actin association (F) Similar result as in A, with the experiment
repeated independently in another lab. Greater relative FRET efficiency indicates less thymosin-actin association.
(G) Average change in dendritic spine size near the site of glutamate uncaging. Spines in neurons overexpressing
thymosin displayed significantly greater initial growth than spines from control neurons. This significant size
difference persisted for at least the full 6-hour duration of the experiment. Error bars in all figures represent SEM.
*p<.001
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DISCUSSION

Memories are thought to be encoded by synaptic weights, which govern signaling efficacies
between neurons. Currently there is no broadly accepted model that explains how synaptic weights are
maintained and how temporary signals induce long-term changes to signaling efficacy. In this chapter we
propose a model involving actin as the central regulator of synaptic weights, and illustrate through a
series of computational and biological experiments how temporary signals induce persisting changes to
synaptic actin networks, and how these filament networks are maintained for periods far outlasting the
lifetime of synaptic molecules. Our model illustrates how metastable actin filament networks can support
both synaptic stability and plasticity, and that synaptic weights could ultimately be a function of the total
F-actin content within dendritic spines. These conclusions are supported by both the computational
simulations and biological experiments.

The computational modeling experiments in this chapter show that synaptic receptor levels can
simply be a function of synaptic diffusion rates. Indeed, despite stochastic turnover of surface receptors,
as long as a stable diffusion rate differential is maintained between synaptic areas and membrane regions
outside of synapses, a predictable number of surface receptors will accumulate in synapses. However it is
unclear how this diffusion rate gradient is achieved, how it is modified, and how it remains stable despite
constant protein turnover. To address these questions, we extended our model to include actin, a structural
protein highly expressed in synapses. We included actin in our model after identifying its promising
metastable properties. It’s also known that postsynaptic area and spine size are highly correlated with total
actin content within dendritic spines, and actin filaments provide scaffolding for SAP that interact with
surface receptors. This last fact links a metastable protein network to surface receptor diffusion rate,
thereby providing a potential mechanism for synaptic weight regulation.

The computational modeling experiments incorporating actin show that actin filament networks

can maintain average filament lengths despite the complete turnover of their F-actin subunits. Simulation
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experiments also show that average filament length within an actin network can stably increase following
transient growth signals. Temporarily lowering the affinity between thymosin and G-actin liberates many
sequestered actin molecules into the pool of G-actin, which are quickly polymerized into existing
filaments. This results in a significant increase in average filament lengths throughout the network. Indeed
these newly increased filament lengths remained stable, despite all F-actin content undergoing complete
turnover. This stability is maintained even after monomer concentration returns to baseline levels.

Biological experiments also support essential elements of this model. We find that actin filament
networks in dendritic spines are morphologically stable orders of magnitude longer than individual G-
actin and F-actin subunits. Photobleaching experiments show that all spine actin content is replaced in
about one hour, without spines undergoing significant changes in size. This result agrees with our
computational models addressing the same phenomena. To assess whether modifying synaptic F-actin
content was sufficient to alter synaptic morphology, we globally overexpressed actin in hippocampal
neurons. This resulted in significant increases in average dendritic spine size and density.

Next we aimed to determine if upregulating actin bioavailability was sufficient to increase
synaptic weights. To test this, we overexpressed actin in organotypic hippocampal slice cultures and
performed electrophysiological recordings of mEPSCs. Indeed we found that acute actin overexpression
in hippocampal neurons produced a significant increase in mEPSC amplitudes compared to control
neurons. This result signifies that acute actin upregulation leads to an accompanying increase in synaptic
AMPAR levels. Finally we identify a biological mechanism that can produce acute increases in actin
bioavailability at single dendritic spines. We find that under baseline conditions, a peptide called
thymosin interacts with G-actin to create a reserve pool of unpolymerized monomeric actin. Furthermore
we observe that thymosin releases this reserve pool in response to LTP signals. Indeed this event is
followed by a significant and long-lasting increase in dendritic spine size.

Overall, our model provides an example wherein stochastic systems within dendrites (actin, SAP,
and surface receptors) can interact and give rise to stability in the aggregate. Through a series of

computational and biological experiments, we show that actin filaments have metastable properties and
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spine actin content can influence synaptic receptor levels. Together these experiments suggest that actin
could be a primary regulator of synaptic weights. Indeed our findings support the conclusion that the
metastable properties of actin filaments allow synaptic weights to be modified by transient signals and

attain long-term stability despite total molecular turnover.

METHODS

PART I: COMPUTATIONAL MODELS AND SIMULATIONS: All computational models were
developed using the Python programming language (Python Software Foundation, version 3.7. available
at http://www.python.org) and the MATLAB programming and numeric computing platform (R2020a,
version 9.8.0, Update 6. The MathWorks Inc.)

Figure 2.2: Receptor diffusion was simulated in MATLAB along a 2-D surface scaled to 3 pm x
6 um, with smaller circular regions (e.g. 0.8 pm diameter) representing synaptic areas. To simulate
surface diffusion using empirical values requires a decomposition of reported diffusion rate coefficients.
A diffusion rate coefficient D (in units: pm?/s) technically represents to a constant velocity, however it is
often used to describe the average velocity of a particle as it moves along a multitude of trajectories over
time. If D is known for a given particle under a given set of conditions, it can be implemented in true-to-
scale computer simulations of Brownian motion. Concretely, D = L*/ (2 m £) , where L is the step length
vector, m is the number of diffusible dimensions, and ¢ is elapsed time.

To accurately simulate diffusion rate to-scale, an important value to calculate is %, the standard
deviation of the diffusion rate step size distribution. This value can be determined using the equation: k =
sqrt(m D), where m is the number of diffusible dimensions, and D is the diffusion rate coefficient. The
reason this constant is valuable is because it can be used to directly scale random values pulled from a
standard normal distribution N(u=0,6=1). To demonstrate the utility of this constant, say there is a 2-by-
10 array A4, that contains the x and y coordinates for 10 particles at time ¢; also there exists a function

randn(2,10), that returns a 2-by-10 array of random values from a standard normal distribution. Then the
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following equation can be used to update particle locations: A;+1 = k X randn(2,10) + A;. This
equation can be used to update particle locations for each and every time step . to produce Brownian
motion at exactly a diffusion rate D, according to Einstein’s equations on the theory of Brownian
movement (Einstein, 1956).

The generation of all panels of this figure involved simulating particle displacement according to
the equations above. Diffusion rates for each surface region are given in the figure caption, or as labels on
each figure panel; global diffusion rate was always set to 0.1 um”s™". In general the total number of
particles used in each simulation was a fixed value (e.g. 400). Boundary conditions were modeled such
that particles deflected off the outer edges of the enclosure as if bouncing off a wall. while reduced
diffusion rates were tested in synaptic regions. In panel G, instead of giving rate constants in real units of
um?s™, diffusion rates are shown as arbitrary units 1 and 0.5 to emphasize the comparison between a
given diffusion rate D and '4D.

Figure 2.3: Experimentally determined values (e.g. actin filament Ka and Kd) were used in an
MCMC procedure to simulate actin filament polymerization dynamics inside dendritic spines. The rate
parameters used in our model can be found in (Bindschadler et al., 2004; Halavatyi et al., 2009; Yarmola

et al., 2008). Full simulation code can be found online at: github.com/bradmonk/dissertation . The

molecular components used in the filament simulation model are actin, arp, thymosin, cofilin.

Briefly, actin polymerization was simulated by tracking the filament @/6end coordinates in
Euclidean 3-space. It’s known that each F-actin subunit adds approximately 2.71 nm of length to the
filament. Thus the filament origin, along with the number of F-actin subunits in each filament, and the x-,
y-, z-plane angle of each filament allows one to solve the coordinates of the filament tip (using 3-D
rotational matrices) for each timestep. Knowing the 3-D coordinates of both ends of the filament allows
computer software to quickly render the entire filament network at any timepoint.

To simulate thymosin-actin interaction dynamics, we use the Law of Mass Action (LMA). LMA
describes the rates at which molecules interact to protein complexes or dimers that can reversibly

dissociate back into component molecules: T + A <> TA . Here, T represents thymosin monomers, A
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represents actin monomers, TA represents thymosin-actin dimers. The rate equation describing the change
in dimer concentration over time At is TA/At = Ka[T[[A] - Kd[TA], where values in brackets represent

molecular concentrations, Ka represents the forward rate constant, and Kd represents backward rate

constant. Cytosolic cycling of thymosin and actin was simulated at a rate: C = kT /(6rvr) X 106°,
where k is the Boltzmann constant, temperature 7 = 310 kelvin, centipoise viscosity v = 3, and particle
radius » = 3e-9 meters

We simulate arp-mediated filament branching using empirically reported branch nucleation rates
(Smith et al., 2013). Arp is estimated to nucleate a new filament branch at a rate of 2.5 mM., "' pme" At
That is 2.5 new branches per mM free arp, per micron of existing filament, per second. Each new filament
branches off the existing filament at a 70-degree angle. Cofilin-mediated filament severing was simulated
using the same general rate principles as arp, using empirical rate constants (Halavatyi et al., 2009).

Figure 2.4: Actin dynamics were simulated in dendritic spine volumes of approximately 1e8 nm’
at full size steady-state. All quantitative data was averaged over 10 independent runs that were intended to
simulate 5 hours of real-world time. More runs could easily be generated, but 10 runs allows for easier
visualization of the variance between runs (the stochastic nature of the system). Prior to saving
quantitative data for using in plots, filament networks were allowed to reach a molecular and
morphological steady-state.

Figure 2.5: MCMC methods were used to generate a spatially resolved model of actin filament
networks inside dendritic spine volumes. The spatial coordinates of all filaments were collected each
small time-step. When any part of a filament passed within 20 nm of the postsynaptic membrane, those
line segments were stored, and used as seed-points for SAP clusters. SAP clustering used a modified
version of the Shouval algorithm. In our simulations we used a neighbor-dependent algorithm where
lattice on-rate probability was a function of actin filament proximity, and lattice off-rate was neighbor
dependent.

For comparison, the Shouval cluster model is simulated using a 2-D logical matrix S, where row

and column indices are denoted i and j respectively. This matrix represents a 2-D lattice where the
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presence or absence of a receptor is indicated by S;=1 or S;=0 respectively. The lattice off-rate, |, is a

constant. So the probability of a lattice location being vacated during each time step At is Pl(;f =

S;j p At. In the Shouval model, lattice on-rate is neighbor-dependent, so insertion probability of any
given lattice location S; depends on the occupancy of nearby locations. A 'field' F, a matrix with the
exact same dimensions as S, is used to represent the number of neighbors surrounding each lattice
location. In Shouval's sample model, any given field location F; could take an integer value ranging from
0 (neighbors) to 4 (neighbors), which is computed by convolving C, a simple 3-by-3 convolution matrix,
with S (though larger or more complex convolution matrices can be used to simulate more elaborate field

effects). Shouval also introduces a so called lattice repulsion constant L that is subtracted from the

convolution output such that Fj; = conv(S,C) - L. Concretely if lattice repulsion were set to L =2, and a

particular location Sj; had 4 neighbors, then the corresponding field F;; = 4 - 2. Finally the conditional on-

rate probability, is given by: P;;" = (1 /(1 + exp(—p Fj;)) p r At. Here B is the slope of the
conditional probability function, and both p and r are constants representing the availability of receptors.
The MCMC code detailing the modified version of the cluster model, where lattice on-rate

probability was a function of actin filament proximity, and lattice off-rate was neighbor dependent is also

available online: github.com/bradmonk/dissertation .

PART II: EXPERIMENTAL TESTS OF KEY MODEL COMPONENTS: Detailed methods and
reagents used for primary culture, glutamate uncaging, 2-photon imaging, FRAP, and FLIM/FRET are
described in a recent publication from our lab (Dore et al., 2015); most experiments in this chapter use the
same general protocols and exactly the same imaging equipment and rig.

Figure 2.6: To prepare primary cultures, the hippocampal regions from PO Sprague-Dawley rats
were dissected, sectioned, filtered, and resuspended in plating media, and plated on PDL-coated glass

coverslips in 12-well plates. Every 2-4 days, half the culture media was replaced (Neurobasal-A, FBS,
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Pen/Strep, Glutamax). For further description of primary culture methodology see (Nault & Koninck,
2009). Animal procedures were approved by UC San Diego IACUC.

To perform overexpression experiments, pCI-Actin-GFP and pCI-GFP were acquired from
addgene.org nonprofit plasmid repository. Plasmid transfection was performed 4 days prior to imaging.
Transfection was performed using lipofectamine 2000 reagent according to manufacturer’s protocol. Each
tissue coverslip was incubated for 4 hours with 2 pg DNA per 4 pL lipofectamine, and then transferred to
fresh culture media. Dendrite morphological features were measured and quantified using custom

MATLAB software: github.com/bradmonk/neuromorph .

Detailed FRAP methods are described in (Dore et al., 2015). For the FRAP experiment presented
in this chapter, images were collected at the following minute-marker relative to photobleaching: -1, 1, 5,
10, 15, 20, 30, 60 minutes. This was done for each spine. Graphed values of ‘fraction recovered’ are
normalized to the target spine’s mean fluorescence intensity 1-minute prior to beaching.

Figure 2.7: We used Sindbis virus to acutely overexpress actin in organotypic hippocampal slice
cultures, and then 18-24h later performed electrophysiological recordings to measure mEPSC amplitude
and frequency in control neurons and in neurons overexpressing actin. For detailed methods on the
Sindbis virus expression vector see (Makino & Malinow, 2009). Hippocampal slice cultures were
prepared from PD 6 rat pups (Stoppini et al., 1991), then maintained in culture for 8 days before Sindbis
virus (pSinRep5-GFP or pSinRep5-Actin-GFP) infection. Then as noted above, neurons were recorded at
within 24 h post-infection. For detailed methods used to record mini-excitatory postsynaptic currents see
(Alfonso et al., 2014). In our electrophysiology preparation, TTX and picrotoxin were added to the media.
Voltage clamp was held at -60mV; mEPSC output recorded in pA.

Figure 2.8: Actin dissociates from thymosin peptide during LTP. The polymerization rate of actin
filaments depends on the available concentration of free actin monomers. Generally actin polymerizes at a
rate of 10 actin subunits per uM each second (10 uM™'s™). So if the cellular concentration of free actin
was 10 uM, each filament would gain ~100 monomers per second (Kuhn & Pollard, 2005). The

depolymerization rate of actin filaments is independent of actin concentration, and generally proceeds at a
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rate of 1 subunit per filament per second (1 s™'). So during a 1-second period, filaments are expected to
lose 1 monomer each. Using these general rate parameters, the critical concentration for polymerization
would be 0.1 uM; at this concentration polymerization and depolymerization are at a steady state.

In spines, the levels of monomeric G-actin and filamentous F-actin are estimated to be 150 uM
and 500 uM, respectively. At 150 uM, G-actin is maintained at levels far above the critical concentration
(Cc) for polymerization in neurons (~0.1 uM). This is accomplished by the sequestering G-action by
cellular thymosin. Thymosin is a short peptide (~43 aa) known to reversibly bind G-actin (1:1
stoichiometry) at micromolar affinity (Goldschmidt-Clermont et al., 1992; Irobi et al., 2004; Safer et al.,
1990). By virtue of thymosin's reversible binding to G-actin, this peptide inhibits a portion of the
monomeric actin pool from freely polymerizing. This raises the overall cellular concentration of G-actin
well above the monomeric Cc of 0.1 pM, since a large fraction of G-actin will be tied-up in G-
actin:thymosin dimers. If indeed prior measurements of spine G-actin levels are accurate (150 pM), the
reserve pool of G-actin:thymosin would be approximately 149.9 uM (150 uM total G-actin, minus 0.1
uM Cc G-actin steady-state concentration).

Thymosin and actin overexpression experiments were performed in primary cultures (see
methods above), while glutamate uncaging and FLIM experiments were performed using organotypic
slice cultures. Thymosin-B4 plasmids: GFP-tagged thymosin 4 (Tmsb4x-GFP) was ordered from
OriGene. To examine thymosin-actin interactions, we replaced the thymosin GFP tag with one of two red
fluorescent proteins (RFP): mApple (ex/em A: 568/592; EC:75k QY:0.49) and mCherry (ex/em A:
587/610; EC:72k QY:0.22). Two RFPs were tested to assue eGFP (ex/em A: 488/507; EC:56k QY:0.60)
donor compatibility. For transfection in primary culture, products were inserted into pCI mammalian
expression vector (Promega, Madison, WI); methods for transfection in primary culture are described
above.

Uncaging and FRET/FLIM experiments were performed using slice cultures. Sindbis viral
vectors were used to express or coexpress recombinant constructs (pSinRepS5-GFP, pSinRep5-Actin-GFP,

pSinRep5-Thymosin-mApple) in slice culture (see above for general Sindbis infection protocol). The 1-
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photon uncaging of RuBi-Glutamate (30puM) was used to stimulate single dendritic spines and induce
LTP; immediately after uncaging, detailed images were captured using 2-photon microscopy.

FLIM image acquisition apparatus, software, and methods are described in (Dore et al., 2015),
with the following protocol modification: FLIM images were collected for 30 seconds followed by a 30
second gap, starting 60 seconds prior to RuBi-Glu uncaging, then immediately before uncaging,
immediately after uncaging, 60 seconds after uncaging. FLIM analysis was performed using a custom

analysis library coded in MATLAB: github.com/bradmonk/FLIM . Dendritic spines were selected from a

maximum projection image so that analyst is blind to primary dependent variable (lifetime) when
selecting spine ROIs. For each spine an adjacent segment of dendrite is also selected for normalization
purposes. For each ROI trace, mean lifetime, fluorescence intensity, and spine area are determined.

General & Analysis Methods: Primary components of this model include (1) a 3D mesh
representing a segment of dendrite with several spines, (2) surface receptors that can diffuse along the
dendrite membrane mesh, (3) a dynamic actin filament network within spine regions, and (4) multivalent
SAPs that interact with actin filaments and surface receptors. Surface receptor diffusion was simulated on
a 3D dendritic mesh that included several prototypical spines. Diffusion coefficients for surface receptors
were set to values reported in single-particle tracking studies that measured AMPAR diffusion along the
dendritic shaft, extrasynaptic spine areas, and postsynaptic densities. Receptor diffusion could be reduced
synapses through stochastic interactions with SAPs. Clusters of SAPs could form around actin filaments
near the postsynaptic membrane using Shouval’s clustering algorithm (Shouval, 2005).

All simulated molecules interacted probabilistically based on spatial proximity and empirical
Ka/Kd rate parameters; the primary particles (surface receptors, SAP, actin) could perform multivalent
interactions: receptors could interact with multiple SAPs; a SAP could interact with a receptor, another
SAP, and actin filaments; actin could interact with SAP, other actin monomers, and actin binding
proteins. The model was developed using the Python programming language (open-source) and

MATLAB programming language and software (MathWorks Inc., Natick, MA, 2011 160); model source-

code and additional synthesis details are provided online at github.com/bradmonk/dissertation .
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Chapter 2, in part, is currently being prepared for submission for publication of the material.
Monk, Bradley; Dore, Kim; Proulx, Christophe; Alphonso, Stephanie; Marino, Marc; Aronson, Sage;

Malinow, Roberto. The dissertation author was the primary investigator and author of this material.
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GENERAL DISCUSSION

In chapter 1, we presented a neural network model that could estimate polygenic risk scores
(PRS) for Alzheimer’s Disease, with better accuracy than any model reported to-date. Our model
represents an advancement over other polygenic risk models, for several reasons. First, other prevailing
models only used GWAS summary data to generate risk scores. This can only account for cumulative
main effects of variants, not variant-variant interactions. Our model on the other hand was developed
using individual genotype, so it could account for variant interactions. Second, our model leverages the
power of artificial neural networks, which are ideal for modeling high dimensional data and fitting
complex interactions. As a result, the trained model represents to most powerful classifier reported to-date
for identifying Alzheimer’s polygenic risk.

We also developed a machine learning-based method (netSNP) to identify the importance of
individual SNPs in a complex polygenic classifier’s decision making process. The netSNP method can be
used to investigate the impact of specific SNPs on NN output. We found that netSNP captured the effect
of different APOE genotypes on NN output, and also identified hundreds of SNPs with significant neural
network weights. netSNP even identified several variants that have more putative impact on AD risk than
the well-known APOE genotypes.

Importantly netSNP was well validated. For example the number of protective variants (as
identified by netSNP) harbored by an individual correlated significantly with an individual’s age of AD
diagnosis, and inversely with Braak score. Likewise while the number of netSNP-identified risk variants
harbored by an individual was inversely correlated with AD onset and positively correlated with Braak
score. Our data suggest the set of variants identified by netSNP are highly predictive of AD onset age and
physiological severity. Our findings suggest that netSNP could be an important tool for finding
pathophysiologically relevant genes in AD, and potentially as a general method applicable to other

conditions.
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In chapter 2 we present a model demonstrating that actin could be a central regulator of synaptic
weights. This hypothesis is supported by a series of computational and biological experiments illustrating
how temporary signals induce persisting changes to synaptic actin networks, and how these filament
networks are maintained for periods far outlasting the lifetime of synaptic molecules. In general
metastable actin filaments allow synaptic weights to be modified by transient signals and achieve long
lasting stability despite total molecular turnover.

The computational modeling experiments in chapter 2 demonstrate that, despite stochastic
turnover of surface receptors, synaptic receptor levels can be mediated by synaptic diffusion rates. If a
stable diffusion rate differential is maintained in synaptic areas, a predictable number of surface receptors
will accumulate in synapses. To explain how diffusion rate gradients are stable despite constant protein
turnover we included actin in our model after identifying its promising metastable properties. Our
computational modeling experiments incorporating actin show that actin filament networks can maintain
average filament lengths despite the complete turnover of their F-actin subunits. Simulation experiments
also show filament lengths can stably increase following transient growth signals.

Biological experiments in chapter 2 also support essential elements of an ‘actin memory’ model.
We find actin filament networks in dendritic spines are morphologically stable orders of magnitude longer
than individual actin subunits: all spine actin content is replaced in about one hour without spines
undergoing significant changes in size. We also find that global overexpression of actin was sufficient to
alter synaptic morphology, increase spine size, and increase spine density. Furthermore, upregulating
actin bioavailability was sufficient to increase synaptic weights. We found acute actin overexpression in
hippocampal neurons significantly increased mEPSC amplitudes compared to control neurons. Lastly, we
identify a biological mechanism that produced acute increases in actin bioavailability at single dendritic
spines. Thymosin, which sequesters G-actin under basal conditions, was found to release actin in large
quantities in response to LTP signals, leading to significant and long-lasting increase in dendritic spine
size. Overall, our model involving actin, SAP, and surface receptors, provides an example of stochastic

systems within dendrites giving rise to stability in the aggregate. We show through a series of
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computational and biological experiments that actin has metastable properties, which allow synaptic

weights to be modified by transient signals and attain long-term stability despite total molecular turnover.
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