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 ABSTRACT OF THE DISSERTATION 

 

Investigations of neural networks and long-term memory 

 

by 

 

Bradley Ross Monk 

 

Doctor of Philosophy in Experimental Psychology & Cognitive Science 

 

University of California San Diego, 2021 

 

Professor Stephan Anagnostaras, Co-chair 

Professor Roberto Malinow, Co-chair 
 

  

 This dissertation presents findings from two studies investigating the neuroscience of memory. 

Chapter 1 reports findings from a computational genomics study on Alzheimer's Disease (AD), a common 

neurodegenerative disease that causes memory loss and dementia. There is hope that genomic information 

can reveal insights to AD pathophysiology, along with aiding in risk assessment, screening, and 

diagnosis. This study involved using exome sequencing data from approximately 10,000 individuals 

(~5000 AD patients) to train neural net (NN) classifiers tasked with estimating the impact of single 



 

 x 

genomic variants on AD polygenic risk. Together, these chapters and the studies presented therein add to 

our corpus of knowledge on memory systems, and contribute to our quest of understanding and treating 

dementia. Chapter 2 covers a study that details a model (supported by experimental results) that can 

explain how memories can be formed and maintained within neural network synapses, despite continuous 

and complete molecular turnover of synaptic proteins. Memory formation is thought to involve acute 

changes to synaptic weights; the ability for synaptic weights to remain stable over long time-periods and 

undergo evoked change is considered fundamental to our brain’s information storage schema. Yet basic 

questions regarding synaptic plasticity remain unresolved, including a) how synaptic weights remain 

stable in the face of perpetual and complete molecular turnover; and b) how such weights can be modified 

to new stable levels by transient signals. Through a series of computational and biological experiments, 

we elucidate actin, a protein with unique polymer properties, as a potential central mediator of synaptic 

weights. 
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GENERAL INTRODUCTION 

  
A topic that has captivated researchers in the broad fields of psychology and neuroscience, 

perhaps more than any other, is that of memory. The study of memory is vast and diverse, and includes for 

example research on the formation of place-preference memory (Gremel & Cunningham, 2010), fear 

memory (Anagnostaras, et al. 1999), recognition memory (Wixted, 2007), memory correlates in 

biological neural networks (Malinow, 2003) or artificial neural networks (Sejnowski, 2020). One reason 

why memory receives such widespread attention is that memory is a conserved ability that spans from 

humans down to single celled organisms. For example the actin cytoskeleton of single-celled amoebae 

exhibit bistable memory properties, allowing cells to orient and move towards chemoattractant signals 

(Pershin et al. 2009; Westendorf, et al. 2013; Artemenko et al. 2014; Skoge, et al., 2014). Individual cells 

in multicellular organisms have similar abilities. For example, white blood cells known as neutrocytes 

display long-lived directional memories, which are also attributed to cytoskeletal dynamics (Albrecht & 

Petty 1998; Prentice-Mott et al. 2016). Indeed, long-lived memory traces at the cellular level tend to 

follow a generic law centrally involving a dynamic network of filament scaffolding (Maiuri et al. 2015). 

 Structural plasticity also plays a role supporting higher-order forms of memory (e.g. explicit and 

implicit memory) stored within neural networks (Fischer et al. 1998; Okamoto et al. 2004). Information 

stored in neural networks is thought to be encoded by synaptic weights, which refers to the efficacy by 

which an upstream neuron evokes responses (often via postsynaptic glutamate receptors) in a downstream 

neuron at a particular synaptic connection (Kessels & Malinow, 2009; Huganir & Nicoll 2013). 

Converging evidence suggests structural plasticity at dendritic spines, femtoliter-sized sites of synaptic 

input, plays a central role in the induction and maintenance of synaptic weights (Halpain, 1998; 

Fukazawa, 2003; Kopec et al., 2006; Bosch, 2014). Compared to small spines, large spines generally have 

larger synapses (Bourne & Harris, 2012), more filamentous actin (Lin et al. 2005), more glutamate 
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receptors (Fischer et al. 1998), and greater synaptic weights (Malenka & Nicoll, 1999; Makino & 

Malinow, 2009; Nicoll & Roche, 2013). Also large spines are more robust, known to outlive small spines 

by at least hundreds of hours (Holtmaat, 2005). 

While synaptic weights are considered fundamental to brain information storage, several 

important questions concerning these processes remain unresolved, including a) how synaptic weights 

remain stable despite protein turnover, and b) how such weights can be modified to new stable levels by 

transient signals. Chapter 2 of this dissertation addressed these questions by examining structural 

plasticity with a focus on actin dynamics in dendritic spines using a combined molecular and 

computational approach. 

While actin is extremely well conserved across eukaryotic species and has remained unchanged 

in the billion years that separate humans and yeast (Gunning et al., 2015), there is another cellular-level 

memory system even more ancient and conserved. Genes and the mechanisms that regulate gene 

expression make possible the existence of a diversity of cell subtypes. This so called epigenetic 

transcriptional memory system allows cells to differentiate into specific populations (e.g. neutrocytes, 

astrocytes, neurons) in response to transient stimuli (Ringrose & Paro, 2004). 

Genomes of course determine many physiological features of organisms, including the general 

makeup of their nervous system, but they don’t determine the precious memories for which they become 

populated. These memories, collected over a lifespan of interacting with the world are precariously stored 

within a meshwork of living cells, and as such are susceptible to age-related degeneration and 

degenerative disease. For example Alzheimer's disease (AD) is a chronic neurodegenerative disease that 

is the most common cause of dementia in humans (Burns & Iliffe, 2009). AD is characterized by a cluster 

of symptoms, most notably progressive memory loss and cognitive dysfunction (Lambert et al., 2013). 

This disease currently affects 47 million people worldwide, and with no current treatments is projected to 

increase threefold by 2050 (Tiwari et al., 2019).  

AD is highly heritable (>75% heritability) but genetically complex (Avramopoulos, 2009). The 

APOE gene (which encodes apolipoprotein E) has been consistently identified as a susceptibility locus for 
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late-onset Alzheimer’s disease (Corder, et al., 1993; Farrer, et al., 1997; Genin, et al., 2011). Since the 

identification of APOE, genome-wide association studies (GWAS) on AD have recruited substantial 

participant pools. These sequencing studies have identified an additional 15+ susceptibility loci, 

including: CLU, CR1, PICALM (Lambert, et al., 2009; Harold, et al., 2009), BIN1 (Seshadri, et al., 

2010), MS4A6A, ABCA7, EPHA1, CD33, CD2AP (Hollingworth, et al., 2011; Naj, et al., 2011), 

TREM2 (Guerreiro, et al., 2013), HLA-DRB5–DRB1, PTK2B, SORL1, SLC24A4-RIN3, and DSG2 

(Lambert, et al., 2013). Yet, as you will see in Chapter 1 (Figure-4D) this growing list still provides rather 

limited information about AD risk. 

In general GWAS methods aim to identify single nucleotide polymorphisms (SNPs) with case-

control asymmetries surpassing a genome-wide statistical significance (𝑝 < 5 × 10!"). In this pursuit 

there are often SNPs identified to be marginally below this threshold. While some of these marginal SNPs 

arise due to chance, others fail to reach significance due to low statistical power (particularly when the 

minor allele is relatively rare). Indeed it has been shown that polygenic risk models that incorporate sub-

alpha SNPs are significantly better at predicting AD outcomes (Escott-Price, et al., 2015). Chapter 1 of 

this dissertation presents a novel approach to polygenic risk quantification. Using exome SNPs from 

approximately 5000 AD cases and 5000 controls, this study is the first to use artificial neural networks to 

estimate AD risk. Furthermore, we present a method for quantifying a SNP’s impact on NN output, which 

identifies hundreds of novel AD-linked SNPs. Importantly the estimates provided by this method 

correlated with AD onset age and neuropathology severity (i.e. BRAAK score). Our hope is that these 

findings will yield tools to assist with AD diagnosis, lead to a better mechanistic understanding of AD, 

and ultimately preserve precious memories. 
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ABSTRACT 

 
It is generally accepted that neural networks integrate new information by modifying synaptic 

weights, a term that refers to the signaling efficacy between neurons at a given synapse. To retain new 

information as long-term memories, synaptic weights must then adopt a state of relative stability. How 

brief signals induce persisting changes to synaptic weights, and how these weights are maintained for 

periods far outlasting the lifetime of synaptic molecules is unknown. Here we examine a simple proposal: 

synaptic weights are maintained despite molecular turnover because they are proportional to actin 

filament content in synaptic regions. In the simplest case, one can consider a single dimensional filament; 

its length can be maintained by ‘treadmilling’: individual actin monomers are added on one end while 

removed on the other end. To explore this idea in more biologically realistic conditions we developed a 

computational model, and performed various empirical experiments probing actin dynamics in neural 

dendrites.  In simulating plasticity, the model shows that (a) a filamentous  actin network can remain 

stable indefinitely, despite molecular turnover; and (b) transient increase (or decrease) in available actin 

monomers can rapidly lengthen (or shorten) filaments, which retain their new length after monomer 

concentration returns to baseline levels. Empirical experiments support essential elements of this model: 

(a) filament networks in dendritic spines are stable far longer than their individual actin subunits; (b) 

increasing synaptic filamentous actin increases synaptic weights; and (c) transient signals that release 

monomeric actin from reserve pools cause spine growth and long-term potentiation. 
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INTRODUCTION 

  
Memories are thought to be encoded by synaptic weights, a term that refers to the strength or 

efficacy by which an upstream neuron evokes downstream responses via a particular synapse. In many 

brain regions synaptic weights are largely determined by postsynaptic AMPA-type glutamate receptor 

(AMPAR) levels, which mediate fast-excitatory transmission in the central nervous system  (Bassani et 

al., 2013; Bredt & Nicoll, 2003; Lüscher et al., 1999; Malinow & Malenka, 2002; Song & Huganir, 

2002). Given these weights encode a lifetime of memories, synaptic receptor counts must remain stable 

for many years; yet all synaptic proteins undergo constant turnover (Ehlers et al., 2007; Shi et al., 2001). 

How synaptic weights remain stable despite continuous molecular turnover is unknown (Shouval, 2005; 

Smolen et al., 2019). This chapter addresses two fundamental questions on the neurobiology of memory: 

(a) how synaptic weights are maintained for periods far outlasting the lifetime of synaptic molecules, and 

(b) how temporary signals induce persisting changes to synaptic weights. 

The question of how memories persist orders of magnitude longer than their molecular substrates 

has been of interest since the 1980s (Crick, 1984). Various attempts to explain this phenomena have 

centered around theoretical molecular switches: molecules that, when activated, remain activated 

indefinitely (see Figure 2.1A) (J. E. Lisman & Goldring, 1988; Sacktor, 2012; Si & Kandel, 2016). 

However, the role of molecular switches in memory maintenance remains poorly understood (Jones, 

2013; Otmakhov et al., 1997; Volk et al., 2013). 

Shouval (2005) proposed an interesting alternative to molecular switches, where LTM 

maintenance is achieved through receptor clustering. In this computational model, surface receptors form 

metastable clusters governed by local interactions (see Figure 2.1B) - metastable meaning the cluster can 

remain a stable size while all its individual subunits turn over. This model is elegant in its simplicity, 

addressing both questions (a) and (b) raised above. The synaptic membrane is represented as a uniform 
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2D grid, where any given lattice position is either vacant or occupied by a receptor. This can be 

represented as a matrix of zeros (vacant) and ones (occupied): 

 
0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  0  0  0 
0  0  1  1  1  1  1  0  0 
0  0  1  1  1  0  1  0  0 
0  0  1  1  1  1  1  0  0 
0  0  0  1  1  1  1  0  0 
0  0  1  1  1  1  0  0  0 
0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  0  0  0 

 

Receptors occupy and vacate lattice positions in a probabilistic manner. Any given position has 

an on-rate probability that depends on the number of neighboring receptors (immediately above, below, 

left and right, with 0−4 possible neighbors). The off-rate probability does not consider neighbors, and is 

uniform across the lattice. At the crux of this model is (1) a neighbor dependent on-rate that provides a 

means to prevent cluster growth, while (2) a uniform off-rate ensures total receptor turnover. The on-rate 

formulation to prevent cluster growth is particularly innovative, circumventing the need to actively 

change rate parameters to achieve metastability. Clusters are sustained because kon>>koff within the 

cluster (2, 3, or 4 neighbors), and because kon≈ 0 outside the cluster (1 or 0 neighbors). 

 A primary issue with the Shouval cluster model is that it lacks biophysical and biological support.  

It is generally thought that receptors are not exocytosed at the postsynaptic membrane, as would be 

necessary to fill gaps in the center of the cluster; they are instead inserted into dendritic membrane 

regions outside of spines and diffuse laterally along the surface into spines and postsynaptic areas 

(Borgdorff & Choquet, 2002; Makino & Malinow, 2009; Yudowski et al., 2007). Also there is no 

evidence that AMPARs directly interact with each other to form clusters (Bassani et al., 2013). Another 

issue is that this model requires that on-rate probability for two, three, and four neighbors is relatively 

high (p ≈ 0.1), while for one neighbor it is extremely small (p ≈ 0.1 × 10!##), which lacks a biophysical 

basis. It would be more biologically plausible to have a neighbor dependent off-rate (i.e. breaking 4 bonds 

takes longer than 1 bond) and a fixed on-rate that scales with molecular concentration. However under 



 

 29 

Shouval’s formulation, such clusters are unstable. For these reasons the Shouval cluster model, while an 

interesting concept that can provide a mathematical insight into the questions (a) and (b) introduced in the 

first paragraph, the model lacks a biological analog. 

 

 

 

Figure 2.1: LTM models. (A) Depiction of a Lisman molecular switch model. This model shows the primary 
reactions in a proposed bistable switch. Two kinase proteins, denoted here as K1 and K2, compose the switch. The 
K1 protein exists in either an inactive or active (K1*) state. Theoretically this reaction can be initiated by neural 
stimulation, at which point it can be self-sustained. (B) Depiction of the Shouval cluster model of synaptic receptors, 
projected onto the postsynaptic region of a dendritic spine. In this model surface receptors cluster in synaptic regions 
with a uniform off-rate and a neighbor-dependent on-rate. Lattice locations highlighted in red, purple, blue, and 
green have one, two, three and four neighbors, respectively. In this model exocytosis (cluster addition) is neighbor-
dependent, while endocytosis (cluster removal) happens at a fixed-rate uniformly across the surface. 

 

 

 Where do we go from here? Our approach towards addressing the two questions above has been 

to examine the behavior of AMPAR in-and-around synapses, as described in experimental studies (see 

below), and then propose a metastable mechanism to control their synaptic levels. Studies indicate that 

AMPARs are inserted into the dendritic membrane outside of spines (Borgdorff & Choquet, 2002; 

Collingridge et al., 2004; Makino & Malinow, 2009; Yudowski et al., 2007). Once on the surface, 

AMPARs stochastically diffuse along the membrane where they enter and exit dendritic spines and 

synaptic areas (Hoze et al., 2012; Nair et al., 2013; Renner et al., 2009). An emerging theory is that 
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synaptic membrane viscosity or diffusional trapping could dictate synaptic receptor levels (Czöndör et al., 

2012; Ehlers et al., 2007; Holcman & Triller, 2006). The idea is simple: as synapses reduce their diffusion 

rate they increase receptor levels. A similar, and likewise parsimonious idea is that as spines and synapses 

increase in size they contain more receptors. Indeed, LTP signals have been shown to induce dendritic 

spine growth (Fischer et al., 1998; Kopec et al., 2007; Lang et al., 2004). 

Both ideas are eloquent solutions to a seemingly complex problem. Though, the key questions 

mentioned above, (a) and (b), remain. Here we present a model inspired by Shouval’s approach to these 

questions (i.e. identify a metastable system or structure in dendritic spines), but is also supported by 

physiological evidence. Central to this model is the protein actin, a structural molecule identified to have 

metastable properties in its filamentous form. Dendritic spine size and synaptic area are generally 

proportional to a spine’s total actin filament content (Honkura et al., 2008; Korobova & Svitkina, 2010). 

Actin filaments also provide scaffolding for scaffold-associated proteins (SAP) known to interact with 

synaptic AMPARs (Kessels et al., 2009; Shen et al., 2000) likely reducing their synaptic diffusion rate 

(Czöndör et al., 2012; Ehlers et al., 2007; Holcman & Triller, 2006; Simon et al., 2013).  

Given that actin filaments have metastable properties and spine actin content can influence 

synaptic AMPAR levels, actin could be a primary regulator of synaptic weights. Our findings support this 

conclusion - that the metastable properties of actin filaments allow synaptic weights to be modified by 

transient signals and attain long-term stability despite total molecular turnover. These findings are 

supported by both computational simulations and biological experiments that demonstrate how actin 

dynamics explains (a) how are synaptic sizes and/or diffusion rates maintained for periods far outlasting 

the lifetime of synaptic molecules, and (b) how do temporary signals induce persisting changes to 

synaptic sizes and/or diffusion rates. 
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RESULTS 

 
PART I: COMPUTATIONAL MODELS 

 
 Dendritic spine area & diffusion rate can determine synaptic receptor levels: AMPARs diffuse 

stochastically along the membrane where they enter and exit dendritic spines and synaptic areas. Using a 

computational model, we tested whether synaptic membrane viscosity could stably mediate synaptic 

receptor levels. Receptor surface diffusion was first simulated using a simplified scaled model of a 3 μm 

× 6 μm dendritic segment with two 0.8 μm diameter synaptic regions (Figure 2.2A). Parameters were set 

to empirically measured receptor diffusion rates (Ehlers et al., 2007) across extrasynaptic dendrite 

surfaces (e.g. 0.15 μm2/s) and postsynaptic regions (e.g. 0.01 μm2/s). 

Simulations demonstrated that although receptors are diffusing randomly in-and-out of various 

dendritic compartments, synaptic receptor density is remarkably stable for hundreds of minutes during 

baseline conditions (Figure 2.2B-C). We also find that changing the diffusing rate of a particular synapse 

is sufficient to stably increase or decrease surface receptor counts in the respective synaptic region. In 

general a region with half the diffusion rate (e.g. 0.01 µm2s-1 vs. 0.02 µm2s-1) of another similarly-sized 

region will have twice the receptor density; a region with one-third the diffusion rate of another will have 

a three-fold higher receptor density, etc. (Figure 2.2D).  

Simulations also demonstrated that changes in synaptic area can parallel the effects of diffusion 

rate with regard to synaptic receptor counts (i.e. total receptors as opposed to receptor density). For 

example total receptor count will increase by precisely the same amount in a given synapse, whether it 

doubles its area or halves its diffusion rate. (Figure 2.2E-F). A key takeaway from these computational 

simulations is that synaptic area and diffusion rate can mediate synaptic receptor levels, which remain 

stable for periods that outlast the lifetime (i.e. dwell time) of individual molecules. Changes to either 

synaptic area or synaptic diffusion rate will have a similar effect on total receptor counts, while only 

diffusion rate, not synaptic area, can modulate synaptic receptor density. 
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Figure 2.2: Receptor density is a function of local diffusion rate. Simulating receptor surface diffusion using a 
simplified scaled model of a 3 μm × 6 μm dendritic segment with two 0.8 μm diameter synaptic regions. Global 
diffusion rate was set to 0.1 μm2/s while reduced diffusion rates were tested in synaptic regions. (A) Left-panel 
shows a snapshot of stochastic receptor locations after reaching a diffusional steady-state; diffusion in the upper 
synaptic area (S1) was set to 0.01 μm2/s, while the lower synaptic area (S2) was 0.02 μm2/s. (B) Heatmap of mean 
receptor density over a 60-minute window using the same conditions as A. (C) Receptor densities are remarkably 
stable during steady state turnover. At diffusion rates in A receptor densities were stable for hundreds of minutes. 
(D) Surface diffusion rate is proportional to receptor density, such that a region with half the diffusion rate of a 
nearby region sharing a common pool of receptors will have twice the receptor density; a region with one-third the 
diffusion will have a three-fold higher receptor density, etc. (E) Heatmap of mean receptor density when S1 has ½ 
diffusion rate of a similarly sized synapse, S2. The result is that S1 has twice the receptor density and twice the total 
number of receptors. (F) Heatmap of mean receptor density when S1 has ½ diffusion rate and ½ the area of S2. The 
result is that S2 still has half the receptor density, but the same total number of receptors as S1. (G) Three scenarios 
were independently simulated, where synaptic areas S1 and S2 were assigned an area ‘a’ and diffusion rate ‘d’. 
These simulations further demonstrate that changes in synaptic area and diffusion rate have proportional effects on 
total receptor counts. However only changes to diffusion rate, not area, impact synaptic receptor density. 
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 The case for actin as a primary regulator of synaptic weights: Since surface area and diffusion 

rate can dictate synaptic receptor levels, we sought to identify synaptic proteins that could influence 

synaptic membrane viscosity or dendritic spine size. We examined the properties of actin, as the amount 

of this molecule in a spine correlates with its size (Cingolani & Goda, 2008; Hotulainen & Hoogenraad, 

2010) and actin can bind to proteins that could affect synaptic membrane viscosity  (Kusumi et al., 2011; 

Renner et al., 2009)(Bassani et al., 2013; Derkach et al., 2007; Lin & Webb, 2009; Opazo et al., 2012; 

Sainlos et al., 2010). Actin continuously cycles between a diffusible monomeric state (G-actin), and a 

filamentous state (F-actin) whereby many actin molecules assemble into linear polymers (see Figure 

2.3A). As a structural protein highly expressed in dendritic spines, actin may influence synaptic efficacies 

in several ways. Studies indicate that rapid actin filament polymerization precedes dendritic spine growth 

during LTP (Lin & Webb, 2009; J. Lisman, 2003); and blocking actin polymerization disrupts LTP (Chen 

et al., 2007; Fukazawa et al., 2003b; Krucker et al., 2000; Okamoto et al., 2009; Ramachandran & Frey, 

2009) . Controlling synaptic size is one way actin may influence synaptic weights; another is through its 

influence on surface receptor diffusion rate. Actin filaments increase membrane viscosity and molecular 

drag coefficients (Kusumi et al., 2011; Renner et al., 2009). Furthermore, actin filaments support and 

localize scaffold-associated proteins (SAP). SAP are multivalent proteins known to form clusters, anchor 

to actin scaffolding, and interact with a variety of molecular species including surface receptors (Bassani 

et al., 2013; Derkach et al., 2007; Lin & Webb, 2009; Opazo et al., 2012; Sainlos et al., 2010). SAP 

clusters ultimately anchor to actin scaffolding, so cellular regions with more filaments can support greater 

SAP densities. When these densities are localized near synaptic membranes, SAP can bind surface 

receptors to reduce their diffusion rate. Thus, actin may govern synaptic weights by regulating synaptic 

size and receptor diffusion rate. 

There is another enticing reason to explore actin’s role in synaptic plasticity: actin filaments seem 

to have metastable clustering properties. As a 1-dimensional (1-D) polymer, actin filaments do not suffer 

from the same ‘edge-effects’ that limit the stability of 2-D clusters. The stability of 2-D clusters like those 

described above (Shouval, 2005) are dependent on cluster/perimeter size; small clusters tend to dissipate 
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completely, while large clusters tend to display runaway growth. In contrast, a 1-D cluster such as a 

filament only has two ends, and are not subject to perimeter effects that scale with size. With regard to 

actin filaments, monomers can only be gained or lost at either end of the filament, regardless of its 

internal length. This suggests that actin filaments can be stable through a range of different lengths (see 

Figure 2.3A,B).  

Importantly, actin filaments can maintain their length while undergoing complete monomer 

turnover. Actin filaments are asymmetrical, with a so-called ‘barbed ⊕end’ and a ‘pointed ⊖end’. While 

both ends are capable of polymerization and depolymerization, the critical concentration (CC) of free 

actin monomers required for polymerization is lower at the ⊕end than ⊖end. When free G-actin 

concentration falls between the ⊕/⊖end CCs (as will during steady-state, details below), monomers are 

added to the ⊕end, and lost at the ⊖end, at the same rate. As a result, actin fibers maintain their length 

while undergoing complete subunit turnover. Taken together, actin has several properties that may 

explain how synaptic weights can remain stable despite constant molecular turnover, and how synaptic 

weights can stabilize at new levels when evoked by transient signals.  

To explore this idea in detail, we developed a computational model of actin polymerization 

dynamics. Actin polymerization has been extensively studied, quantified, and modeled (for an excellent 

review see: (Bindschadler, 2010)). Like other models, ours integrates well established rate parameters 

observed across independent empirical experiments (Bindschadler et al., 2004; Halavatyi et al., 2009; 

Yarmola et al., 2008). Actin models have been categorized into several broad classes (Bindschadler, 

2010), and following this schema our model would be considered a time-dependent, Monte-Carlo 

Markov-Chain (MCMC), spatially-resolved model (Figure 2.3C). To our knowledge it is the only such 

model integrating these three aspects, which is mainly attributed to the spatially-resolved feature of our 

model. 
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Figure 2.3: Metastable actin synaptic efficacy model. (A) Actin protein can exist as monomeric G-actin or as 
filamentous F-actin.  (B) Actin fibers contain a barbed ⊕end a pointed ⊖end, each capable of adding and removing 
actin monomers. The critical concentration required for polymerization is lower at the ⊕end than ⊖end; at steady-
state the number of actin subunits added to the ⊕end is proportional to the subunits lost at the ⊖end. If G-actin 
levels rise, filaments will increase in length until G-actin concentration drops back to steady-state levels. At steady-
state actin levels, monomers are lost and added to filaments at equal rates; this exchange rate is independent of 
filament length. (C) Actin polymerization and branching were simulated in dendritic spines using time-dependent 
MCMC spatially-resolved modeling. This procedure can be used to generate the spatial coordinates of filament 
networks in euclidean 3-space as they evolve over time. Shown here is a side-profile view of a dendritic spine 
filament network that was procedurally generated using our model. (D) Empirical values used to model actin 
polymerization are shown in the table as prototypical +end and -end polymer on-rates (Ka) and off-rates (Kd). Also 
shown is the critical concentration (Cc) of G-actin required for net monomer addition at a given end. (E) Actin 
polymer dynamics play a central role in our model of synaptic plasticity, shown above. Primary components of this 
model included [1] a dendritic segment with several prototypical spines, [2] diffusible surface receptors, [3] a 
dynamic actin filament network (including actin, arp, thymosin, cofilin molecules; see text), and [4] multivalent 
SAP that can interact with filaments, surface receptors, and other SAP. Components of this model can be graphically 
rendered across all timesteps of the simulation, and viewed as a live animation. 
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MCMC methods and empirically established parameters were used to model time-evolved actin 

filament networks inside dendritic spine volumes (Figure 2.3C,D), a centerpiece of our model of synaptic 

plasticity. In this model, actin serves as the primary coordinator of synaptic weights through its influence 

of spine size and receptor diffusion rate. In short, the primary components of our model of synaptic 

plasticity include: (1) receptors that diffuse along the surface of a short dendritic segment with several 

prototypical spines, (2) a dynamic actin filament network within spine regions, and (3) multivalent SAP 

that interacts with actin filaments, surface receptors, and other SAP (Figure 2.3E). Since actin dynamics 

are central to this model, we present those findings in detail next, and subsequently show observations 

regarding other components of our model. 

 Simulated actin filament networks are metastable: To determine if synaptic weights can be 

regulated by interactions between surface receptors, SAP, and actin filaments, we simulated the real-time 

spatial molecular dynamics of actin filament networks. In addition to actin, the proteins arp2/3 (arp) for 

filament branching, thymosin-β4 (thymosin) for G-actin sequestering, and cofilin for filament severing, 

were included in the model (see METHODS). We find that simulated actin filament networks display 

long-term stability. Actin subunits rapidly transition between (globular, monomeric) G-actin and 

(filamentous, polymeric) F-actin, while maintaining stable molecular concentrations (Figure 2.4A-B). 

Likewise under steady-state conditions, the average length across all filaments (Figure 2.4C), as well as 

the total number of filament branches found throughout the entire spine filament network (Figure 2.4D) 

remain stable for many simulated hours. 

We next examined whether all F-actin undergoes turnover in the context of a branched filament 

network. To address this, we evolved a series of actin networks until they reached a steady-state with 

regard to overall morphology. After these networks settled into a morphological steady-state, the 

simulation was briefly paused and each filament in the network was tagged with a unique identifier. The 

simulation then continued, while tracking the lifespans of each tagged filament. In these simulations, most 

filaments survived less than 1-hour, and no single filament was sustained longer than 5 hours (Figure 
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2.4E,F). Thus it appears that metastability in the context of a multi-filament network is represented at the 

network-level: total F-actin content, average filament length, and number of filament branches within the 

network remain stable while individual monomers turn-over within filaments, and individual filaments 

turn-over within the network. 

We next tested whether average filament length within an actin network stably increases 

following transient growth signals. As mentioned above, thymosin sequesters G-actin through reversible 

binding, which creates a large reserve pool of G-actin (Xue & Robinson, 2013), that could be released 

from thymosin by a transient signal. During steady-state conditions, the concentration of free G-actin (i.e. 

not bound by either thymosin or filaments) remains stable (Figure 2.4G). At the 2-hour mark, we 

transiently reduce the affinity between thymosin and G-actin, which liberates many sequestered actin 

molecules into the pool of free G-actin. These monomers are quickly absorbed by the filament network, 

significantly and stably increasing filament lengths throughout the network (Figure 2.4H,I). Interestingly, 

this transient influx of monomers also increases, stabily, the total number of network branches (Figure 

2.4J).  

This outcome demonstrates that branch formation rate is a function of the total length of all 

filaments within a network. Arp protein can bind anywhere along a filament to create a new branch; 

therefore, as the total length of a filament network increases, the probability-rate of arp binding also 

increases (and as soon as arp binds a filament, it nucleates a new branch site). Lastly, we observe that the 

increased mean filament length and increased branch count both remained stable, despite all F-actin 

content undergoing complete turnover (Figure 2.4K,L). The time constant for F-actin turnover was not 

significantly different pre- and post-growth. 
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Figure 2.4: Simulated actin dynamics inside dendritic spines. All plots in this figure use data averaged over 10 
independent runs, with a simulated real-world time of 5 hours. The x-axis of all plots represent time; and all display 
exactly the same 5-hour (300-minute) time window. Each metric plotted on the y-axis refers to a quantity measured 
inside a single dendritic spine. (A) Diffusible unbound G-actin monomers. (B) The total number of F-actin subunits 
composing all filaments inside a spine. (C) Average number of F-actin subunits composing each filament. (D) Total 
number of filaments; equal to the total number of branches across the entire spine filament network (E) The spine 
filament network was allowed to evolve until reaching a steady-state, at which point each filament in the network 
was tagged with a unique identifier. The filament network was then allowed to continue evolving, and the lifespans 
of the tagged filaments were tracked. The plot here shows the percent of tagged filaments remaining as the network 
evolved over 5 hours. Most filaments survive less than 1 hour; no filament from any run lasted the full 5 hours. (F) 
Survival times as a function of filament length. (G-L) Same as A-F, except a brief LTP event was delivered at the 2-
hour (120-min.) mark. This event consisted of temporarily making a reserve pool of G-actin available for 
polymerization. This reserve pool was made available for 30 sec. after which point G-actin levels were returned to 
baseline. 

 

 

Metastability of actin filament networks carries through to synaptic receptor levels: Actin filament 

network dynamics, SAP clustering, and receptor diffusion were modeled as three layers of interactions 

(see METHODS). Filament networks were simulated inside dendritic spine regions, with quantitatively 
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similar outcomes as those described above (see Figure 2.4). In this model, filaments located near 

postsynaptic surfaces acted as seed points for SAP clusters (Figure 2.5A). Clustering behavior was 

simulated using a customized neighbor-dependent algorithm (see above and METHODS). The primary 

difference between our algorithm and Shouval (2005): in our model lattice on-rate probability is a 

function of actin filament proximity, and lattice off-rate is neighbor dependent. These updates to 

Shouval’s clustering algorithm better reflect an expected biophysical basis.  

 

 

Figure 2.5: Simulated actin dynamics inside dendritic spines and receptor count at synapses. An MCMC 
spatially resolved model was used to simulate actin filament dynamics inside dendritic spine regions. (A) Overhead 
view of procedurally generated filament network inside prototypical spine. Filament that fell within 20 nm of 
postsynaptic membrane (PSD) colored red, otherwise colored blue. (B) Filaments in PSD acted as seed-points for 
SAP clusters, simulated using a neighbor-dependent algorithm where on-rate was a function of actin filament 
proximity, and lattice off-rate was neighbor dependent. Filament tips shown in red; SAP in gray. (C) Heatmap 
displays SAP-receptor interaction probabilities. Synaptic locations highly populated by SAP have high interaction 
probabilities compared to regions with sparse SAP. Probabilities dynamically change each timestep according to 
stochastic behavior of proteins.  (D) Surface receptor diffusion was simulated along a prototypical dendritic segment 
with several spines. Shown here is a 10-min trace of a single receptor, along the dendrite shaft and both spine 
regions. (E) Integrated model with all components simulated in parallel. (F-I) Independent simulations were 
performed that tracked filament count, mean filament length, synaptic filament count, and synaptic receptors during 
a 120 min. baseline. At 120 min. a brief 60 sec. LTP signal was delivered. Same metrics were tracked for another 
120 min. In each plot, the solid line is mean of all runs; dots are values from each replicate. Red dashed lines are 
mean outcomes from replicates where filament network was not allowed to exceed 350 total branches. (F) Total 
number of filaments in each actin filament network. (G) Mean length across all filaments in each actin network. (H) 
Number of actin filaments at each timepoint located inside the PSD (<20 nm from the postsynaptic membrane). (I) 
Number of surface receptors in synaptic regions. 
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In our model the precise spatial location of every actin filament (Figure 2.5A), SAP cluster 

molecule (Figure 2.5B), and surface receptor (Figure 2.5D) is known. This allows us to compute  

proximity-dependent binding probabilities to model the interactions between surface receptor and SAP 

(Figure 2.5C). Each interaction made between a SAP molecule and a surface receptor was transient, and 

consisted of briefly reducing the receptor’s diffusion rate. The reduction of diffusion rate during a 

transient interaction was based on empirically measured values (Ehlers et al., 2007) 

Using all components of the model (Figure 2.5E) (filament dynamics, SAP clustering, and surface 

receptor diffusion) in parallel, we performed ten independent simulations representing 4-hours each of 

real-world time. In these simulations we tracked filament counts, average filament length, synaptic 

filament counts, and synaptic receptors throughout the entire simulation. The first 120-minutes consisted 

of a baseline period, to evaluate steady-state dynamics. To mimic an LTP signal, at the 120-minute mark, 

we transiently reduced the thymosin-actin binding for 30-seconds; after which point the binding affinity 

was restored to baseline. Data was again collected for an additional 120-minutes to monitor the effects of 

the LTP signal.  

We find that all metrics are stable during the steady-state period, including the total number of 

branches composing the filament network (Figure 2.5F), average filament length (Figure 2.5G), number 

of filaments inside the postsynaptic density (PSD) (Figure 2.5H), and number of surface receptors located 

in the synaptic area (Figure 2.5I). During LTP we find that all metrics related to the actin filament 

network abruptly increase, including the number of filaments, average filaments length, and the number 

of PSD filaments. These changes are immediately followed by a sharp increase in the number of synaptic 

receptors. To determine whether the LTP-induced increase in total filament branches is necessary to 

significantly and stably increase synaptic receptors, we performed another 10 runs using the exact same 

parameters, except total filament branch count was capped at 350 total branches (see dashed red line in 

Figure 2.5F). Interestingly we find that synaptic receptors levels still increased, and to a greater extent 

than before branching was limited. This suggests that stable increases in synaptic receptor levels are not 
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strictly dependent on the number of branches in a filament network; lengthening of existing branches is 

sufficient to achieve stable increases in receptor counts. 

 

PART II: EXPERIMENTAL TESTS OF KEY MODEL COMPONENTS 

 
 Altering actin bioavailability can change otherwise stable dendritic spine morphologies: To test 

whether dendritic spines in biological neurons generally maintained stable sizes, we expressed GFP-

tagged actin in mouse hippocampal slice cultures, and monitored the size of dendritic spines for 1-hour 

using two-photon laser scanning microscopy. Spine area was computed by manually tracing the boundary 

around each spine, at each timepoint (Figure 2.6A). The average size across all spines was 0.499 µm2 (n = 

20, sd = 0.014). Over the 1-hour monitoring period the average absolute change in size was 0.017 µm2 (sd 

= 0.016), with the smallest change being <0.001 µm2 (~0%) while the largest change was measured to be 

0.065 µm2 (15.7%). Only 3 of the 20 spines changed their relative size ranking over the 1-hour 

experiment, with the largest rank-change being just 2 positions (from 13th largest to 11th largest). Thus 

among this sample, relatively small spines stayed small, medium spines remained medium, and large 

spines persisted being large, which suggests that irrespective of size, dendritic spines can remain stable 

for at least duration on the order of hours. 

One possible explanation for the stability in spine sizes as measured in the experiment above, 

could be that under experimental conditions, morphological change is diminished due to the slowed or 

fully-arrested dynamics of the underlying structural molecules. To determine if this was the case, we 

again expressed GFP-tagged actin in hippocampal primary cultures, and then assessed the turnover rate of 

actin protein inside dendritic spines through fluorescence recovery after photobleaching (FRAP) 

experiments. This is a well established technique used to estimate the rate of molecular turning-over 

within a cellular compartment. Using FRAP, we find that within 60-minutes, tagged actin underwent 

complete turnover (Figure 2.6B,C).  
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Figure 2.6. Dendritic spines are morphologically stable despite complete actin turnover. (A) To estimate 
stability of the actin filament network, we monitored the size of dendritic spines expressing GFP-tagged actin with 
two-photon laser scanning microscopy in hippocampal primary cultures. Irrespective of size, spines remained stable 
over a 60-minute monitoring period. (B) To measure the turnover of actin we performed FRAP experiments. Images 
of neuron expressing GFP-tagged actin were collected 1 minute prior to bleaching, immediately after bleaching, then 
15 minutes after, 30 minutes after, and 60 minutes after bleaching. (C) At 60 minutes post-photobleaching, actin-
GFP fluorescence generally displayed complete recovery, indicating that all actin content in dendritic spines, 
including filamentous actin, is recycled within approximately one hour. (D) We performed overexpression 
experiments to determine if the actin overexpression has an effect on dendritic spine size. Images of neuron 
overexpressing GFP alone or GFP-tagged actin were taken after 8 DIV and 15 DIV. (E) After 15 days DIV, 
dendritic spines are significantly larger in neurons overexpressing actin than in control neurons. (F) After 15 days 
DIV, the density of spines along the length of dendrites is significantly greater in neurons overexpressing actin than 
control neurons. Error bars represent SEM.  *p<.05, **p<.01 
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 We conclude that fluorescence recovery (t1/2 ~ 10 min) is rate-limited by filamentous F-actin-GFP 

in spines, as monomeric G-actin-GFP is expected to recycle in-and-out of spines within seconds (Biess et 

al., 2007; Holcman & Schuss, 2011; Svoboda et al., 1996). These findings rule out that spine size stability 

is due to arrested structural protein dynamics; and in fact demonstrate that spines retain their size despite 

the complete turnover of structural F-actin protein. 

To determine whether increased actin availability is sufficient to increase dendritic spine sizes we 

performed an actin overexpression experiment. On DIV4, hippocampal cultures were incubated with 

either actin-GFP or GFP alone. Morphological assessments were then performed on DIV8 and and DIV15 

(Figure 2.6D). On DIV8 there were no statistical differences between the GFP-actin and GFP control 

group, with regard to spine size or density. By DIV15 however, we find that hippocampal neurons 

expressing actin-GFP had significantly larger dendritic spines than neurons only expressing GFP (by 0.28 

± 0.04 microns), t(161) = 6.74, p < .001 (Figure 2.6E). Likewise, neurons overexpressing actin had a 

higher spine density than controls, t(161) = 4.05, p < .001 (Figure 2.6F). These findings suggest the 

bioavailability of actin can drive significant morphological effects in dendritic spines after DIV8 (there 

may be some other limiting molecules prior to DIV8). Specifically, we demonstrate that global increases 

in actin protein expression in neurons results in dendrites with significantly more spines, and significantly 

larger spines. 

 Actin overexpression increases synaptic weights: Results from our simulation experiments, along 

with evidence from previous research (Fukazawa et al., 2003a; Krucker et al., 2000), suggest that 

increased actin bioavailability in dendrites may be sufficient to increase synaptic weights. To 

experimentally determine whether actin bioavailability can impact synaptic weights, we performed a 

series of overexpression experiments and measured spontaneous miniature excitatory postsynaptic 

currents (mEPSC), which are indicative of functional synapses and their synaptic weight (Ehrlich et al., 

2007; Otmakhov et al., 1993; Raastad et al., 1992; Simoni et al., 2003; Wyllie et al., 1994). It is possible 

that actin overexpression may increase spine size without producing a complementary increase in 

synaptic receptors. On the other hand, if we find increased mEPSC amplitudes following acute actin 
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overexpression, it would suggest that increasing actin bioavailability is sufficient to upregulate excitatory 

receptors in hippocampal synapses. 

Here we used Sindbis virus (Makino & Malinow, 2009) to acutely overexpress actin in 

organotypic hippocampal slice cultures. Within 24 hours of virus exposure, electrophysiological 

recordings were performed in voltage clamp to measure mEPSC amplitude and frequency in control 

neurons and in neurons overexpressing actin. Indeed we find a significant increase in the mEPSC 

amplitude in neurons expressing actin (28.6 +/- 1.4 SEM) compared to control neurons (19.1 +/- 1.2 

SEM), t(43) = 6.74, p < .001 (Figure 2.7A-D). This signifies there are substantially more AMPA 

receptors in synapses of actin-overexpressing neurons than in control synapses. Interestingly, despite our 

finding that actin overexpression increases spine density, we find no statistical difference in mEPSC 

frequency (p = .09) (Figure 2.7E).  

This could mean one of several things. First, it could be that our dataset is underpowered, and 

additional data would reveal small group differences in frequency exist. It could also mean that increased 

actin bioavailability first impacts the sizes of existing spines before evoking de novo synthesis of new 

spines (i.e. high actin levels must be sustained for longer than 24 hours). If however actin expression did 

acutely increase spine density, this result could mean that some spines are completely starved of AMPA 

receptors (i.e. ‘silent synapses’) (Liao et al., 1995; Poncer & Malinow, 2001). While those scenarios will 

be interesting to explore in future research, the primary result here is that actin overexpression 

substantially increased the amplitude of synaptic responses. 

 

 



 

 45 

 

Figure 2.7. Actin overexpression increases excitatory postsynaptic currents. (A) Example of postsynaptic 
current recordings from control neurons vs. neurons overexpressing actin protein. (B) Stacked overlay of dozens of 
mEPSCs from neurons overexpressing actin and control neurons. (C) Average shape of spontaneous mEPSCs from 
neurons overexpressing actin and control neurons. (D) Average mEPSC peak amplitude in neurons overexpressing 
acting and control neurons. (E) Average mEPSC frequency in neurons overexpressing actin and control neurons. 
Error bars represent SEM.  *p < 0.001

 
 

 Actin dissociates from actin-sequestering protein, thymosin, during LTP: The experiments so far 

illustrate that upregulating actin availability can drive increases in spine sizes and synaptic weights, in 

preparations where actin was increased chronically, throughout the neuron, over the course of hours or 

days. In this final series of experiments we investigate whether acute, local increases in actin 

bioavailability yields similar effects to those observed during chronic global actin increases. We also 

assess a specific mechanism that neurons may use to quickly and transiently increase actin bioavailability: 

the liberation of G-actin from a reserve pool of actin monomers bound by thymosin protein (Figure 2.8A). 

We reasoned that such an event could drive spine growth during relatively brief LTP signals. If indeed a 



 

 46 

significant reduction in thymosin-actin interactions were observed during potentiation signals, it would 

provide striking insight regarding the structural plasticity component of LTP. 

Since relatively little is known about thymosin-actin sequestration, particularly in neurons, we 

first tested whether thymosin expression had any effect on dendritic spine sizes, on its own, and in 

conjunction with actin overexpression. Interestingly, we find that thymosin expression on its own does 

not impact spine size, but does significantly attenuate spine size in actin-overexpressing neurons (Figure 

2.8B). That is, aside from the control vs. thymosin comparison, all other pairwise comparisons were 

significant. Spines in neurons overexpressing actin were significantly larger than control neurons t(89) = 

9.96, p < .001, and as predicted thymosin attenuated this effect t(130) = 5.52, p < .001. However, this was 

only a partial attenuation, as thymosin+actin overexpressing samples still had larger spines than controls 

on average, t(131) = 6.56, p < .001. 

We next used an occlusion-type experiment to test if the increase in transmission produced by 

over-expressed actin maximized a signaling mechanism used in LTP. If such were the case, one would 

expect reduced or absent LTP in neurons overexpressing actin. Here we used a chemical-LTP (cLTP) 

protocol to acutely and globally induce LTP across all neurons in the preparation (see METHODS). We 

find that before LTP, spines from actin-overexpressing neurons are larger than control counterparts 

(consistent with results above). The cLTP protocol induced spine growth in both the control group 

(increase µ= 0.12 µm2, σ=0.04), t(19) = 12.9, p < .001, and to a slightly lesser extent in the actin group 

(increase µ= 0.10 µm2, σ=0.05), t(19) = 56.5, p < .001 (Figure 2.8C). With regard to fold-change, spines 

from control neurons displayed significantly grater change than spines from actin expressing neurons, 

t(38) = 5.23, p < .001 (Figure 2.8D).  

We also examined whether pre-cLTP spine size had any effect on spine growth. To test this we 

split spines into equal groups based on original spine size (large and small spines). We used a linear 

regression model where fold-change was the dependent variable, and the independent variables were 

spine size, and condition (actin vs. control). We find the overall prediction model is significant,  

F(4,36)=20.6, p<.001, R2=.632, with condition being a significant predictor (β=0.20; p=.022), and the 
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condition-by-size interaction being a significant predictor (β=0.35; p=.004). This suggests that small 

spines particularly in the control group (that had the smallest spines overall) display the greatest growth 

relative to their own starting (pre-cLTP) size. These results are consistent with the view that in large 

spines, increasing actin maximizes a signaling mechanism used in LTP. In smaller spines, increased actin 

enhances a signaling mechanism that has been used to a similar amount as that used to produce large 

spines in control cells. In general, increased levels of actin partially or completely occlude LTP.  

In order to determine if LTP signals drive a change in the interactions of actin and thymosin, we 

developed an experimental procedure involving glutamate uncaging and fluorescence lifetime imaging 

microscopy (FLIM). Glutamate uncaging allows the precise spatial and temporal triggering of LTP 

events, localized to single dendritic spines. FLIM can be used to quantify protein-protein interactions, 

with adequate temporal resolution and sub-micron spatial resolution. By co-expressing thymosin tagged 

with a red fluorescent protein (mCherry or mApple) along with GFP-tagged actin, we monitor actin 

thymosin interactions before, during and after LTP at individual spines. Our data indicate that actin 

reversibly dissociates from thymosin during LTP signaling (Figure 2.8E). The experiment was repeated 

independently in the lab of collaborator (Y. Hayashi), and the same result was observed (Figure 2.8F): 

induction of LTP evokes a significant dissociation of actin-thymosin dimers, which peaks within 60 

seconds of the signal (relative FRET efficiency µ = 1.78 +/- 0.12 SEM), and returns to baseline within 

120 seconds (relative FRET efficiency µ = 0.06 +/- 0.09 SEM). Furthermore, we find this transient 

dissociation is coupled with a long-term increase in dendritic spine size (limited to only spines at the site 

of glutamate uncaging). Spines in neurons overexpressing thymosin displayed a greater peak than control 

neurons (peak thymosin µ = 2.55 +/- 0.23 SEM; peak control µ = 1.64 +/- 0.21 SEM), t(40) = 161.4, p < 

.001. Also, spines in neurons overexpressing thymosin had greater sustained growth than spines from 

control neurons (between 5.5-6.0 hours, thymosin µ = 1.90 +/- 0.33 SEM; peak control µ = 1.42 +/- 0.29 

SEM), t(40) = 114.8, p < .001, that persisted the duration of the experiment (Figure 2.8G). This is 

consistent with the view that overexpression of thymosin produces a larger thymosin-actin pool at spines, 

and, through LTP-induced actin-thymosin dissociation, increased actin bioavailability during LTP. 
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Figure 2.8. Actin dissociates from thymosin-sequestering protein during LTP. (A) During baseline conditions 
actin (blue) is sequestered by thymosin (red), which creates a reserve pool of monomeric actin. Some actin 
monomers spontaneously transition from the sequestered reserve pool to the relatively small free polymerizable 
monomeric pool. An LTP signal temporarily causes thymosin and actin to unbind in high quantities, resulting in 
filament growth. After the LTP signal dissipates, the system returns to steady-state. (B) Actin overexpression 
increases dendritic spine area, and thymosin expression partially mitigates this effect. Thymosin expression on its 
own does not appear to significantly affect spine size. (C) Neurons overexpressing actin had spines that were larger 
than control neurons, both during baseline, and after cLTP (see plot C for group labels; gray solid and gray dotted 
lines represent GFP and actin group means, respectively). In general, average spine size of control neurons after 
cLTP was on-par with actin-overexpressing neurons prior to cLTP. In terms of relative change, control neurons 
displayed significantly more growth than actin-overexpressing neurons during cLTP. (E) FLIM reveals that actin 
reversibly dissociates from thymosin during a glutamate uncaging protocol designed to mimic LTP signaling. Two 
different red fluorophores were used to tag thymosin; both producing similar FRET lifetime change results. Here an 
increase in lifetime change indicates less thymosin-actin association (F) Similar result as in A, with the experiment 
repeated independently in another lab. Greater relative FRET efficiency indicates less thymosin-actin association. 
(G) Average change in dendritic spine size near the site of glutamate uncaging. Spines in neurons overexpressing 
thymosin displayed significantly greater initial growth than spines from control neurons. This significant size 
difference persisted for at least the full 6-hour duration of the experiment. Error bars in all figures represent SEM. 
*p<.001 
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DISCUSSION 

 
Memories are thought to be encoded by synaptic weights, which govern signaling efficacies 

between neurons. Currently there is no broadly accepted model that explains how synaptic weights are 

maintained and how temporary signals induce long-term changes to signaling efficacy. In this chapter we 

propose a model involving actin as the central regulator of synaptic weights, and illustrate through a 

series of computational and biological experiments how temporary signals induce persisting changes to 

synaptic actin networks, and how these filament networks are maintained for periods far outlasting the 

lifetime of synaptic molecules. Our model illustrates how metastable actin filament networks can support 

both synaptic stability and plasticity, and that synaptic weights could ultimately be a function of the total 

F-actin content within dendritic spines. These conclusions are supported by both the computational 

simulations and biological experiments. 

The computational modeling experiments in this chapter show that synaptic receptor levels can 

simply be a function of synaptic diffusion rates. Indeed, despite stochastic turnover of surface receptors, 

as long as a stable diffusion rate differential is maintained between synaptic areas and membrane regions 

outside of synapses, a predictable number of surface receptors will accumulate in synapses. However it is 

unclear how this diffusion rate gradient is achieved, how it is modified, and how it remains stable despite 

constant protein turnover. To address these questions, we extended our model to include actin, a structural 

protein highly expressed in synapses. We included actin in our model after identifying its promising 

metastable properties. It’s also known that postsynaptic area and spine size are highly correlated with total 

actin content within dendritic spines, and actin filaments provide scaffolding for SAP that interact with 

surface receptors. This last fact links a metastable protein network to surface receptor diffusion rate, 

thereby providing a potential mechanism for synaptic weight regulation. 

The computational modeling experiments incorporating actin show that actin filament networks 

can maintain average filament lengths despite the complete turnover of their F-actin subunits. Simulation 
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experiments also show that average filament length within an actin network can stably increase following 

transient growth signals. Temporarily lowering the affinity between thymosin and G-actin liberates many 

sequestered actin molecules into the pool of G-actin, which are quickly polymerized into existing 

filaments. This results in a significant increase in average filament lengths throughout the network. Indeed 

these newly increased filament lengths remained stable, despite all F-actin content undergoing complete 

turnover. This stability is maintained even after monomer concentration returns to baseline levels.  

Biological experiments also support essential elements of this model. We find that actin filament 

networks in dendritic spines are morphologically stable orders of magnitude longer than individual G-

actin and F-actin subunits. Photobleaching experiments show that all spine actin content is replaced in 

about one hour, without spines undergoing significant changes in size. This result agrees with our 

computational models addressing the same phenomena. To assess whether modifying synaptic F-actin 

content was sufficient to alter synaptic morphology, we globally overexpressed actin in hippocampal 

neurons. This resulted in significant increases in average dendritic spine size and density.  

Next we aimed to determine if upregulating actin bioavailability was sufficient to increase 

synaptic weights. To test this, we overexpressed actin in organotypic hippocampal slice cultures and 

performed electrophysiological recordings of mEPSCs. Indeed we found that acute actin overexpression 

in hippocampal neurons produced a significant increase in mEPSC amplitudes compared to control 

neurons. This result signifies that acute actin upregulation leads to an accompanying increase in synaptic  

AMPAR levels. Finally we identify a biological mechanism that can produce acute increases in actin 

bioavailability at single dendritic spines. We find that under baseline conditions, a peptide called 

thymosin interacts with G-actin to create a reserve pool of unpolymerized monomeric actin. Furthermore 

we observe that thymosin releases this reserve pool in response to LTP signals. Indeed this event is 

followed by a significant and long-lasting increase in dendritic spine size. 

Overall, our model provides an example wherein stochastic systems within dendrites (actin, SAP, 

and surface receptors) can interact and give rise to stability in the aggregate. Through a series of 

computational and biological experiments, we show that actin filaments have metastable properties and 
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spine actin content can influence synaptic receptor levels. Together these experiments suggest that actin 

could be a primary regulator of synaptic weights. Indeed our findings support the conclusion that the 

metastable properties of actin filaments allow synaptic weights to be modified by transient signals and 

attain long-term stability despite total molecular turnover.  

 

METHODS 

 
 PART I: COMPUTATIONAL MODELS AND SIMULATIONS: All computational models were 

developed using the Python programming language (Python Software Foundation, version 3.7. available 

at http://www.python.org)  and the MATLAB programming and numeric computing platform (R2020a, 

version 9.8.0, Update 6. The MathWorks Inc.) 

Figure 2.2: Receptor diffusion was simulated in MATLAB along a 2-D surface scaled to 3 μm × 

6 μm, with smaller circular regions (e.g. 0.8 μm diameter) representing synaptic areas. To simulate 

surface diffusion using empirical values requires a decomposition of reported diffusion rate coefficients. 

A diffusion rate coefficient D (in units: µm²/s) technically represents to a constant velocity, however it is 

often used to describe the average velocity of a particle as it moves along a multitude of trajectories over 

time. If D is known for a given particle under a given set of conditions, it can be implemented in true-to-

scale computer simulations of Brownian motion. Concretely, D = L2 / (2 m t) , where L is the step length 

vector, m is the number of diffusible dimensions, and t is elapsed time. 

 To accurately simulate diffusion rate to-scale, an important value to calculate is k, the standard 

deviation of the diffusion rate step size distribution. This value can be determined using the equation: 𝑘 =

𝑠𝑞𝑟𝑡(𝑚	𝐷), where m is the number of diffusible dimensions, and D is the diffusion rate coefficient. The 

reason this constant is valuable is because it can be used to directly scale random values pulled from a 

standard normal distribution N(µ=0,σ=1). To demonstrate the utility of this constant, say there is a 2-by-

10 array At that contains the x and y coordinates for 10 particles at time t; also there exists a function 

randn(2,10), that returns a 2-by-10 array of random values from a standard normal distribution. Then the 
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following equation can be used to update particle locations: 𝐴$%# = 𝑘 × 𝑟𝑎𝑛𝑑𝑛(2,10) 	+	𝐴$. This 

equation can be used to update particle locations for each and every time step t. to produce Brownian 

motion at exactly a diffusion rate D, according to Einstein’s equations on the theory of Brownian 

movement (Einstein, 1956). 

The generation of all panels of this figure involved simulating particle displacement according to 

the equations above. Diffusion rates for each surface region are given in the figure caption, or as labels on 

each figure panel; global diffusion rate was always set to 0.1 μm2s-1. In general the total number of 

particles used in each simulation was a fixed value (e.g. 400). Boundary conditions were modeled such 

that particles deflected off the outer edges of the enclosure as if bouncing off a wall. while reduced 

diffusion rates were tested in synaptic regions. In panel G, instead of giving rate constants in real units of 

μm2s-1, diffusion rates are shown as arbitrary units 1 and 0.5 to emphasize the comparison between a 

given diffusion rate D and ½D. 

Figure 2.3: Experimentally determined values (e.g. actin filament Ka and Kd) were used in an 

MCMC procedure to simulate actin filament polymerization dynamics inside dendritic spines. The rate 

parameters used in our model can be found in (Bindschadler et al., 2004; Halavatyi et al., 2009; Yarmola 

et al., 2008). Full simulation code can be found online at: github.com/bradmonk/dissertation . The 

molecular components used in the filament simulation model are actin, arp, thymosin, cofilin.  

Briefly, actin polymerization was simulated by tracking the filament ⊕/⊖end coordinates in 

Euclidean 3-space. It’s known that each F-actin subunit adds approximately 2.71 nm of length to the 

filament. Thus the filament origin, along with the number of F-actin subunits in each filament, and the x-, 

y-, z-plane angle of each filament allows one to solve the coordinates of the filament tip (using 3-D 

rotational matrices) for each timestep. Knowing the 3-D coordinates of both ends of the filament allows 

computer software to quickly render the entire filament network at any timepoint. 

To simulate thymosin-actin interaction dynamics, we use the Law of Mass Action (LMA). LMA 

describes the rates at which molecules interact to protein complexes or dimers that can reversibly 

dissociate back into component molecules: T + A ↔ TA . Here, T represents thymosin monomers, A 
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represents actin monomers, TA represents thymosin-actin dimers. The rate equation describing the change 

in dimer concentration over time Δt is TA/Δt = Ka[T][A] - Kd[TA], where values in brackets represent 

molecular concentrations, Ka represents the forward rate constant, and Kd represents backward rate 

constant. Cytosolic cycling of thymosin and actin was simulated at a rate: 𝐶 = 𝑘𝑇/(6𝜋𝑣𝑟) 	× 10&!, 

where k is the Boltzmann constant, temperature T = 310 kelvin, centipoise viscosity v = 3, and particle 

radius r = 3e-9 meters 

We simulate arp-mediated filament branching using empirically reported branch nucleation rates 

(Smith et al., 2013). Arp is estimated to nucleate a new filament branch at a rate of 2.5 mMarp
-1 µmF

-1 Δt-1. 

That is 2.5 new branches per mM free arp, per micron of existing filament, per second. Each new filament 

branches off the existing filament at a 70-degree angle. Cofilin-mediated filament severing was simulated 

using the same general rate principles as arp, using empirical rate constants (Halavatyi et al., 2009). 

Figure 2.4: Actin dynamics were simulated in dendritic spine volumes of approximately 1e8 nm3 

at full size steady-state. All quantitative data was averaged over 10 independent runs that were intended to 

simulate 5 hours of real-world time. More runs could easily be generated, but 10 runs allows for easier 

visualization of the variance between runs (the stochastic nature of the system). Prior to saving 

quantitative data for using in plots, filament networks were allowed to reach a molecular and 

morphological steady-state. 

Figure 2.5: MCMC methods were used to generate a spatially resolved model of actin filament 

networks inside dendritic spine volumes. The spatial coordinates of all filaments were collected each 

small time-step. When any part of a filament passed within 20 nm of the postsynaptic membrane, those 

line segments were stored, and used as seed-points for SAP clusters. SAP clustering used a modified 

version of the Shouval algorithm. In our simulations we used a neighbor-dependent algorithm where 

lattice on-rate probability was a function of actin filament proximity, and lattice off-rate was neighbor 

dependent.  

For comparison, the Shouval cluster model is simulated using a 2-D logical matrix S, where row 

and column indices are denoted i and j respectively. This matrix represents a 2-D lattice where the 
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presence or absence of a receptor is indicated by Sij=1 or Sij=0 respectively. The lattice off-rate, µ, is a 

constant. So the probability of a lattice location being vacated during each time step Δt is 𝑃'(
)** =

𝑆'( 	𝜇	𝛥𝑡. In the Shouval model, lattice on-rate is neighbor-dependent, so insertion probability of any 

given lattice location Sij  depends on the occupancy of nearby locations. A 'field' F, a matrix with the 

exact same dimensions as S, is used to represent the number of neighbors surrounding each lattice 

location. In Shouval's sample model, any given field location Fij could take an integer value ranging from 

0 (neighbors) to 4 (neighbors), which is computed by convolving C, a simple 3-by-3 convolution matrix, 

with S (though larger or more complex convolution matrices can be used to simulate more elaborate field 

effects). Shouval also introduces a so called lattice repulsion constant L that is subtracted from the 

convolution output such that Fij = conv(S,C) ! L. Concretely if lattice repulsion were set to L = 2, and a 

particular location Sij had 4 neighbors, then the corresponding field Fij = 4 ! 2. Finally the conditional on-

rate probability, is given by: 𝑃'()+ = (1	/	(1	 + 	𝑒𝑥𝑝(−𝛽	𝐹'( 	))	𝑝	𝑟	𝛥𝑡. Here β is the slope of the 

conditional probability function, and both p and r are constants representing the availability of receptors.  

The MCMC code detailing the modified version of the cluster model, where lattice on-rate 

probability was a function of actin filament proximity, and lattice off-rate was neighbor dependent is also 

available online: github.com/bradmonk/dissertation . 

PART II: EXPERIMENTAL TESTS OF KEY MODEL COMPONENTS: Detailed methods and 

reagents used for primary culture, glutamate uncaging, 2-photon imaging, FRAP, and FLIM/FRET are 

described in a recent publication from our lab (Dore et al., 2015); most experiments in this chapter use the 

same general protocols and exactly the same imaging equipment and rig. 

Figure 2.6: To prepare primary cultures, the hippocampal regions from P0 Sprague-Dawley rats 

were dissected, sectioned, filtered, and resuspended in plating media, and plated on PDL-coated glass 

coverslips in 12-well plates. Every 2-4 days, half the culture media was replaced (Neurobasal-A, FBS, 



 

 55 

Pen/Strep, Glutamax). For further description of primary culture methodology see (Nault & Koninck, 

2009). Animal procedures were approved by UC San Diego IACUC.  

To perform overexpression experiments, pCI-Actin-GFP and pCI-GFP were acquired from 

addgene.org nonprofit plasmid repository. Plasmid transfection was performed 4 days prior to imaging. 

Transfection was performed using lipofectamine 2000 reagent according to manufacturer’s protocol. Each 

tissue coverslip was incubated for 4 hours with 2 µg DNA per 4 µL lipofectamine, and then transferred to 

fresh culture media. Dendrite morphological features were measured and quantified using custom 

MATLAB software: github.com/bradmonk/neuromorph . 

Detailed FRAP methods are described in (Dore et al., 2015). For the FRAP experiment presented 

in this chapter, images were collected at the following minute-marker relative to photobleaching: -1, 1, 5, 

10, 15, 20, 30, 60 minutes. This was done for each spine. Graphed values of ‘fraction recovered’ are 

normalized to the target spine’s mean fluorescence intensity 1-minute prior to beaching. 

Figure 2.7: We used Sindbis virus to acutely overexpress actin in organotypic hippocampal slice 

cultures, and then 18-24h later performed electrophysiological recordings to measure mEPSC amplitude 

and frequency in control neurons and in neurons overexpressing actin. For detailed methods on the 

Sindbis virus expression vector see (Makino & Malinow, 2009). Hippocampal slice cultures were 

prepared from PD 6 rat pups (Stoppini et al., 1991), then maintained in culture for 8 days before Sindbis 

virus (pSinRep5-GFP or pSinRep5-Actin-GFP) infection. Then as noted above, neurons were recorded at 

within 24 h post-infection. For detailed methods used to record mini-excitatory postsynaptic currents see 

(Alfonso et al., 2014). In our electrophysiology preparation, TTX and picrotoxin were added to the media. 

Voltage clamp was held at -60mV; mEPSC output recorded in pA. 

Figure 2.8: Actin dissociates from thymosin peptide during LTP. The polymerization rate of actin 

filaments depends on the available concentration of free actin monomers. Generally actin polymerizes at a 

rate of 10 actin subunits per µM each second (10 µM-1s-1). So if the cellular concentration of free actin 

was 10 µM, each filament would gain ~100 monomers per second (Kuhn & Pollard, 2005). The 

depolymerization rate of actin filaments is independent of actin concentration, and generally proceeds at a 
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rate of 1 subunit per filament per second (1 s-1). So during a 1-second period, filaments are expected to 

lose 1 monomer each. Using these general rate parameters, the critical concentration for polymerization 

would be 0.1 µM; at this concentration polymerization and depolymerization are at a steady state. 

In spines, the levels of monomeric G-actin and filamentous F-actin are estimated to be 150 µM 

and 500 µM, respectively. At 150 µM, G-actin is maintained at levels far above the critical concentration 

(Cc) for polymerization in neurons (~0.1 µM). This is accomplished by the sequestering G-action by 

cellular thymosin. Thymosin is a short peptide (~43 aa) known to reversibly bind G-actin (1:1 

stoichiometry) at micromolar affinity (Goldschmidt-Clermont et al., 1992; Irobi et al., 2004; Safer et al., 

1990). By virtue of thymosin's reversible binding to G-actin, this peptide inhibits a portion of the 

monomeric actin pool from freely polymerizing. This raises the overall cellular concentration of G-actin 

well above the monomeric Cc of 0.1 µM, since a large fraction of G-actin will be tied-up in G-

actin:thymosin dimers. If indeed prior measurements of spine G-actin levels are accurate (150 µM), the 

reserve pool of G-actin:thymosin would be approximately 149.9 µM (150 µM total G-actin, minus 0.1 

µM Cc G-actin steady-state concentration). 

Thymosin and actin overexpression experiments were performed in primary cultures (see 

methods above), while glutamate uncaging and FLIM experiments were performed using organotypic 

slice cultures. Thymosin-B4 plasmids: GFP-tagged thymosin β4 (Tmsb4x-GFP) was ordered from 

OriGene. To examine thymosin-actin interactions, we replaced the thymosin GFP tag with one of two red 

fluorescent proteins (RFP): mApple (ex/em λ: 568/592; EC:75k QY:0.49) and mCherry (ex/em λ: 

587/610; EC:72k QY:0.22). Two RFPs were tested to assue eGFP (ex/em λ: 488/507; EC:56k QY:0.60) 

donor compatibility. For transfection in primary culture, products were inserted into pCI mammalian 

expression vector (Promega, Madison, WI); methods for transfection in primary culture are described 

above. 

Uncaging and FRET/FLIM experiments were performed using slice cultures. Sindbis viral 

vectors were used to express or coexpress recombinant constructs (pSinRep5-GFP, pSinRep5-Actin-GFP, 

pSinRep5-Thymosin-mApple) in slice culture (see above for general Sindbis infection protocol). The 1-
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photon uncaging of RuBi-Glutamate (30μM) was used to stimulate single dendritic spines and induce 

LTP; immediately after uncaging, detailed images were captured using 2-photon microscopy. 

FLIM image acquisition apparatus, software, and methods are described in (Dore et al., 2015), 

with the following protocol modification: FLIM images were collected for 30 seconds followed by a 30 

second gap, starting 60 seconds prior to RuBi-Glu uncaging, then immediately before uncaging, 

immediately after uncaging, 60 seconds after uncaging. FLIM analysis was performed using a custom 

analysis library coded in MATLAB: github.com/bradmonk/FLIM . Dendritic spines were selected from a 

maximum projection image so that analyst is blind to primary dependent variable (lifetime) when 

selecting spine ROIs. For each spine an adjacent segment of dendrite is also selected for normalization 

purposes. For each ROI trace, mean lifetime, fluorescence intensity, and spine area are determined. 

General & Analysis Methods: Primary components of this model include (1) a 3D mesh 

representing a segment of dendrite with several spines, (2) surface receptors that can diffuse along the 

dendrite membrane mesh, (3) a dynamic actin filament network within spine regions, and (4) multivalent 

SAPs that interact with actin filaments and surface receptors. Surface receptor diffusion was simulated on 

a 3D dendritic mesh that included several prototypical spines. Diffusion coefficients for surface receptors 

were set to values reported in single-particle tracking studies that measured AMPAR diffusion along the 

dendritic shaft, extrasynaptic spine areas, and postsynaptic densities. Receptor diffusion could be reduced 

synapses through stochastic interactions with SAPs. Clusters of SAPs could form around actin filaments 

near the postsynaptic membrane using Shouval’s clustering algorithm (Shouval, 2005).  

All simulated molecules interacted probabilistically based on spatial proximity and empirical 

Ka/Kd rate parameters; the primary particles (surface receptors, SAP, actin) could perform multivalent 

interactions: receptors could interact with multiple SAPs; a SAP could interact with a receptor, another 

SAP, and actin filaments; actin could interact with SAP, other actin monomers, and actin binding 

proteins. The model was developed using the Python programming language (open-source) and 

MATLAB programming language and software (MathWorks Inc., Natick, MA, 2011 160); model source-

code and additional synthesis details are provided online at github.com/bradmonk/dissertation . 
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Chapter 2, in part, is currently being prepared for submission for publication of the material. 

Monk, Bradley; Dore, Kim; Proulx, Christophe; Alphonso, Stephanie; Marino, Marc; Aronson, Sage; 

Malinow, Roberto. The dissertation author was the primary investigator and author of this material. 
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GENERAL DISCUSSION 

 
In chapter 1, we presented a neural network model that could estimate polygenic risk scores 

(PRS) for Alzheimer’s Disease, with better accuracy than any model reported to-date. Our model 

represents an advancement over other polygenic risk models, for several reasons. First, other prevailing 

models only used GWAS summary data to generate risk scores. This can only account for cumulative 

main effects of variants, not variant-variant interactions. Our model on the other hand was developed 

using individual genotype, so it could account for variant interactions. Second, our model leverages the 

power of artificial neural networks, which are ideal for modeling high dimensional data and fitting 

complex interactions. As a result, the trained model represents to most powerful classifier reported to-date 

for identifying Alzheimer’s polygenic risk.  

We also developed a machine learning-based method (netSNP) to identify the importance of 

individual SNPs in a complex polygenic classifier’s decision making process. The netSNP method can be 

used to investigate the impact of specific SNPs on NN output. We found that netSNP captured the effect 

of different APOE genotypes on NN output, and also identified hundreds of SNPs with significant neural 

network weights. netSNP even identified several variants that have more putative impact on AD risk than 

the well-known APOE genotypes.  

Importantly netSNP was well validated. For example the number of protective variants (as 

identified by netSNP) harbored by an individual correlated significantly with an individual’s age of AD 

diagnosis, and inversely with Braak score. Likewise while the number of netSNP-identified risk variants 

harbored by an individual was inversely correlated with AD onset and positively correlated with Braak 

score. Our data suggest the set of variants identified by netSNP are highly predictive of AD onset age and 

physiological severity. Our findings suggest that netSNP could be an important tool for finding 

pathophysiologically relevant genes in AD, and potentially as a general method applicable to other 

conditions. 
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In chapter 2 we present a model demonstrating that actin could be a central regulator of synaptic 

weights. This hypothesis is supported by a series of computational and biological experiments illustrating 

how temporary signals induce persisting changes to synaptic actin networks, and how these filament 

networks are maintained for periods far outlasting the lifetime of synaptic molecules. In general 

metastable actin filaments allow synaptic weights to be modified by transient signals and achieve long 

lasting stability despite total molecular turnover.  

The computational modeling experiments in chapter 2 demonstrate that, despite stochastic 

turnover of surface receptors, synaptic receptor levels can be mediated by synaptic diffusion rates. If a 

stable diffusion rate differential is maintained in synaptic areas, a predictable number of surface receptors 

will accumulate in synapses. To explain how diffusion rate gradients are stable despite constant protein 

turnover we included actin in our model after identifying its promising metastable properties. Our 

computational modeling experiments incorporating actin show that actin filament networks can maintain 

average filament lengths despite the complete turnover of their F-actin subunits. Simulation experiments 

also show filament lengths can stably increase following transient growth signals.  

Biological experiments in chapter 2 also support essential elements of an ‘actin memory’ model. 

We find actin filament networks in dendritic spines are morphologically stable orders of magnitude longer 

than individual actin subunits: all spine actin content is replaced in about one hour without spines 

undergoing significant changes in size. We also find that global overexpression of actin was sufficient to 

alter synaptic morphology, increase spine size, and increase spine density. Furthermore, upregulating 

actin bioavailability was sufficient to increase synaptic weights. We found acute actin overexpression in 

hippocampal neurons significantly increased mEPSC amplitudes compared to control neurons. Lastly, we 

identify a biological mechanism that produced acute increases in actin bioavailability at single dendritic 

spines. Thymosin, which sequesters G-actin under basal conditions, was found to release actin in large 

quantities in response to LTP signals, leading to significant and long-lasting increase in dendritic spine 

size. Overall, our model involving actin, SAP, and surface receptors, provides an example of stochastic 

systems within dendrites giving rise to stability in the aggregate. We show through a series of 
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computational and biological experiments that actin has metastable properties, which allow synaptic 

weights to be modified by transient signals and attain long-term stability despite total molecular turnover.  




