
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Invariant Recognition of Vocal Features

Permalink
https://escholarship.org/uc/item/4zp9m856

Author
Moore, Richard Channing

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zp9m856
https://escholarship.org
http://www.cdlib.org/


Invariant Recognition of Vocal Features 

By 

Richard Channing Moore, III 

A dissertation submitted in partial satisfaction 

of the requirements for the degree of 

Doctor of Philosophy 

in  

Biophysics 

in the 

Graduate Division 

of the 

University of California, Berkeley 

Committee in charge: 

Professor Frédéric E. Theunissen, Chair 
Professor Jack L. Gallant 

Professor Michael R. DeWeese 
Professor Fritz T. Sommer 

Fall 2011 



Copyright 2011 Richard Channing Moore, III 



	   	   1 

Abstract 

Invariant Recognition of Vocal Features 

by 

Richard Channing Moore, III 

Doctor of Philosophy in Biophysics 

University of California, Berkeley 

Professor Frédéric E. Theunissen, Chair 

Animals and humans are able to communicate vocally in very challenging acoustic conditions. 
Background noise, especially from other individuals of the same species, may mask the relevant 
signal and propagation can introduce significant distortions to the sound waveform. While our 
brains are able to extract meaningful information from heavily degraded communication sounds, 
the mechanisms by which the auditory system performs this task are not well understood. This 
thesis shows how neural systems can and do handle signal degradations. by examining how 
auditory neurons in an animal model of communication, the Zebra Finch Taeniopygia guttata, 
process degraded and undegraded signals, and demonstrates that these principles can be used to 
perform noise reduction on voice recordings. I discuss how the notion of invariance, common in 
studies of sensory perception for roughly a century, has more recently been helpful in the 
analysis of sensory systems at the neural level. I discuss how to characterize the invariant 
properties of vocal sounds, and how to connect this analysis to the mathematical theory of 
invariants. 

To characterize invariance at the neural level, I construct a novel metric using spike-train cross-
correlation between neural responses to the same signal obtained under various conditions.  
Using this measure, I show that a subset of neurons in avian secondary auditory forebrain area 
NCM can extract a representation of birdsong that is robust to background noise interference. 
Spectro-temporal receptive field (STRF) and modulation transfer function (MTF) analysis show 
that these invariant neurons are sensitive to slowly changing pitch features. Then, using stimuli 
that have been degraded systematically along spectral and temporal features, I further 
characterize the nature and origin of invariant response properties in neurons throughout avian 
auditory forebrain. The response of auditory neurons to spectral degradation is well explained by 
their MTF, but results in the temporal domain show that some neurons show invariance 
properties beyond those expected from this model. 

Finally, I use the insights from these experiments to construct a noise-reduction algorithm that 
can be implemented in real-time on digital systems. The system performs well when compared to 
state-of-the-art algorithms for noise reduction and I discuss how these systems interrelate in 
terms of processing the statistics of vocal sounds. Using these comparisons and interpretations, I 
show how we might improve the performance of such noise reduction algorithms. 
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	  	  Introduction	  
One of the unifying themes in my thesis is how neurons construct representations of the 

stimulus that are robust to degradations. Equivalently, this can be formulated as an investigation 
of how these neurons are invariant to stimulus transformations. This introduction is intended to 
provide a framework in which to consider this problem: I will provide an overview of what is 
currently known about invariant sensory representations both at the perceptual level and at the 
neural level, and I will show how a theoretical treatment of invariance could help us understand 
sensory encoding. In chapter 1, I will analyze how neurons in higher areas of the avian auditory 
system produce invariant representations of important communication signals in spite of 
background noise. In chapter 2, I will investigate how neurons process systematic degradations 
of the spectral and temporal characteristics of sounds. In chapter 3, I will use the insights about 
vocal signal processing from these experiments to build a noise-reduction algorithm. 

One of the most striking features in sensory perception is that of invariance, in which the 
underlying stimulus may change substantially, but the percept changes little. This manifests in 
different ways in behavioral and neural experiments, but a basic formulation involves differing 
stimuli being classed as similar. In some cases, it can mean that the different inputs are in fact 
indiscriminable. These two options form a positive and a negative definition, respectively. In 
behavioral experiments, the positive sense means that while the stimuli can be classed as same, 
information is still available to discriminate among classes and that this is the discrimination that 
is behaviorally relevant. The negative sense in these cases means that the information has been 
lost and is no longer available. 

Invariance is directly related to object recognition. In order to produce persistent percepts 
of physical objects in the world around us, neural representations at some level must be able to 
disregard variations in the raw sensory input. In his monograph on the concept of an “auditory 
object”, Griffiths describes invariance as “the abstraction of sensory information so that 
information about an object can be generalized between particular sensory experiences in any 
one sensory domain,” (Griffiths	  &	  Warren,	  2004). This separation—foregrounding—of objects 
against the scene or background inherently requires an invariant representation of the world. 
Higher-level sensory systems create this sort of representation by grouping or binding together 
information from lower levels. Paradoxically, these lower level systems must encode the stimuli 
in a highly variable fashion in order for the higher level systems to produce an invariant 
representation (Okada	  et	  al.,	  2010). Experimental evidence of invariant representations has 
provided important information about the function of higher-level sensory processing areas in 
vision and, to a lesser extent, in audition. 

The presence of invariance places strong constraints on the underlying computations. In 
this work, I will use the root word “invariant” or “invariance” to refer to two related concepts. 
The first is the invariant: this is a percept that remains unchanged despite changes in the sensory 
information available to the observer. The second is the transformation, always preceded by the 
words “invariant under” or “invariant to”: these are the specific changes made to the stimuli, in 
spite of which the percept or response remains unchanged. So were I to claim that, “face identity 
is invariant under rotation,” face identity would be the invariant percept, and rotation the 
transformation that does not change the perceived identity.  
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Historical	  context	  
Cutting (Cutting,	  1983) traces the origins of the term to algebraic and mechanical 

analysis in the early 19th Century, and its formalization in the mathematics of group theory in the 
late 19th Century. He puts the use of the term in the psychology of perception a bit later, when 
early English translations of Helmholtz’ work on perception rendered certain observations about 
constancy using the word invariance. Helmholtz is credited with one statement of the 
conservation of energy, and it is conceivable that he saw some parallels between physical and 
perceptual invariances. It seems unlikely to me that he made a direct connection with the 
mathematics: Noether’s beautiful proof that conservation laws in mechanics are the direct result 
of group-theoretic invariance came more than two decades after his death. It is in principle 
conceivable that Helmholtz would have connected his observations in perception with 
mathematical formalisms like algebraic invariances, and this would be corroborated if he used 
the same words in perception that contemporary mathematicians and physicists employed in their 
work. Such an exact history of the term in Helmholtz’ work is a separate project for a historian 
of science, and certainly one with a better grasp of German than I possess.  

Invariance	  in	  behavior:	  human	  psychophysics	  and	  perception	  
In any event, the word invariance certainly had some use in psychology in the early 20th 

Century: the word appears in Koffka’s monograph Principles of Gestalt Psychology, written in 
English and first published in 1935. Such modern use of the term primarily relates to our 
experience of certain percepts remaining the same under drastically different conditions. One of 
the classical invariances in vision, the perception of absolute size, is described by Boring, who 
points out that while on the one hand railroad tracks appear to converge as they recede into the 
distance, on the other hand we retain a strong sense that the distance between them is constant. 
By the same token, we perceive that a person’s height and build remain unchanged as they walk 
away from us, even as they appear smaller (Boring,	  1952). 

Many of these consistent percepts correspond to things we otherwise know to remain the 
same: objects, people in our life; or from clearly changing circumstances, e.g. rotations or 
illumination in vision. Because this thesis is focused on auditory processing, I will start by 
reviewing invariance in auditory perception. The literature here is not broad, but we can identify 
a few important invariants: pitch, intensity, physical object, speaker, and semantic content. 

Invariance	  in	  auditory	  perception	  
One of the most studied invariants in audition is pitch. To some degree the existence of 

the strange negatively-defined percept of timbre is a consequence of just how strong the percept 
of pitch is. Humans and some animals (Cynx,	  Williams,	  &	  Nottebohm,	  1990;	  Lohr	  &	  Dooling,	  
1998) can order tones according to whether they are higher or lower, even when the tones are as 
dissimilar as a bandpass noise burst and a note from a flute. Another strong piece of evidence for 
invariant perception of pitch is the illusion of the missing fundamental. For the most part, pitch 
maps well to the axis of fundamental frequency; but if sufficient harmonic information is 
present, the fundamental itself can in fact be completely absent without altering the apparent 
pitch for humans and some animals (Cynx	  &	  Shapiro,	  1986). 

Humans are able to perceive small increments of relative loudness over a range 
exceeding 115dB (Viemeister	  &	  Bacon,	  1988), indicating that relative level is independent of 
absolute level, and this level-invariant percept of relative loudness exists across a wide range of 
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frequencies (Buus	  &	  Florentine,	  1991). This ability to hear, and recognize sounds, over a large 
range of loudnesses suggests that invariant neural representation must exist at some point in the 
auditory processing hierarchy (Sadagopan	  &	  X.	  Wang,	  2008). 

Complex stimuli like music and language exhibit other invariances. Listeners can extract 
speaker-invariant meaning from a word, phoneme, or sentence that is uttered by different people 
(Aulanko,	  Hari,	  Lounasmaa,	  Näätänen,	  &	  Sams,	  1993;	  Blumstein	  &	  Stevens,	  1979). 
Conversely, listeners can perform content-invariant identification of the speaker across different 
utterances. In music, we see a representation of relative pitch that is invariant to absolute pitch. 
Listeners can identify a melody despite its being shifted an octave or transposed into a different 
key (Bharucha	  &	  Mencl,	  1996;	  Paavilainen,	  Jaramillo,	  Naatanen,	  &	  Winkler,	  1999), and can 
group instruments despite differing listening conditions and musical pieces. 

Auditory perception of innate properties is not limited to musical instruments: while even 
untrained human listeners can group pieces of music by the instrument that produced them, a 
similar result applies for objects in general. Listeners can identify qualities like hollowness, 
material, shape, and size from impact sounds over a range of distances, constructing a distance-
invariant representation of physical properties of the object (Lutfi,	  2007). 

One interesting special case occurs when a sound has a substantially fractal quality. This 
condition holds, for instance, for many textured natural sounds like running water, and can be 
created in synthetic sounds. In this case, the stimulus will be perceived as similar even when 
played back at a different rate, even across the range from ¼ to 4x the original recording speed 
(Geffen,	  Gervain,	  Werker,	  &	  Magnasco,	  2011). 

Invariance	  in	  visual	  perception	  
The original sense in which invariance was been investigated was vision. While only a 

few of the psychophysical invariances in audition have been observed at the neural level, many 
have been observed and investigated in vision. 

An early study of invariance in vision focused on invariant perception of size. Observers 
can, to a degree, estimate the absolute size of objects and people at a distance, across a wide 
range of retinal image sizes, creating a “size-distance” invariance (Boring,	  1952).  Absolute size 
is perceived separately from the actual retinal size, though proportionality is not strictly 
preserved: to some degree, observers will actually overstimate the size of an object as it grows 
more distant (Gilinsky,	  1955). This effect plays some a role, for instance, in making the moon 
look very large on the horizon and small at its zenith in the sky: the moon subtends the same arc 
in both cases, but is judged to be much larger in the former. That phenomenon may be due to 
having a referent in the objects on the horizon to which the visible features on the moon can be 
compared (L.	  Kaufman	  &	  J.	  Kaufman,	  2000). 

Many of the classical mechanical invariances—to translation, rotation, and scaling—have 
been studied in vision, and for the most part objects can be recognized over a range of positions, 
angles, and sizes. Faces form a particularly well studied case of this, in large part because of the 
possibility that they may occupy a dedicated chunk of cortical real estate (Freiwald	  &	  Tsao,	  
2010). 

Neural	  Invariance	  
Given that the brain can develop representations like these, it would be nice to know just 

how the neural circuitry constructs them. Some of the abovementioned phenomena have been 
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observed in action at the neural level, either through direct electrophysiological recordings, or by 
imaging. The computational mechanisms by which they are produced, though, remain mostly 
undiscovered. 

Audition	  
The most basic neuron-level invariance in auditory processing is center-frequency tuning 

at the auditory periphery. Inner hair cells remain most sensitive to a particular frequency 
regardless of sound level, although the bandwidth is level-dependent. 

While psychophysical experiments suggest that the brain can process sounds in an 
intensity-invariant manner, the phenomenon is not well understood, or well documented, at the 
neural level. To date the only examples of intensity invariance have been observed with 
broadband sounds, not the simple tones commonly used to probe auditory regions (Barbour,	  
2011). For instance, while in general the fibers in the auditory increase bandwidth and rate with 
increasing sound level, many neurons in Marmoset A1 exhibit tuning that is more level 
independent. In these cells, termed “I” and “O” cells, the bandwidth and temporal activation 
profiles remain relatively constant over all levels (Sadagopan	  &	  X.	  Wang,	  2008). While these 
cells themselves are not strictly invariant, the authors demonstrate through modeling that a 
relatively simple computation can construct a level-invariant representation from such outputs. 

The only clear neural observation of truly level-invariant neurons comes from recordings 
of responses to conspecific song in Field L of the Zebra Finch, roughly an analogue to 
mammalian A1 (Billimoria,	  Kraus,	  Narayan,	  Maddox,	  &	  Sen,	  2008). As mentioned above, this 
is a broadband sound, not a narrowband one; further, it is highly complex. This computation 
seems necessary to handle the sort of content recognition performed by higher level areas that 
receive information from Field L like HVC, which produces very selective responses to certain 
sound features (Margoliash	  &	  Fortune,	  1992).	  

Pitch invariance is less well defined, though no less studied. In particular one issue is the 
definition of pitch in the first place: studies looking for pitch have to provide a definition of how 
they measure it. Pitch can be defined in terms of the first peak in the spectrum; in terms of the 
separation of two peaks in the spectrum; and in terms of how listeners describe or classify it. The 
former two are clearly easier to extract from the raw waveform, but there are cases in which they 
do not accurately describe what listeners perceive. Pitch as defined by human listeners can be 
extracted from interspike intervals in the auditory nerve of anesthetized cats (Cariani	  &	  
Delgutte,	  1996a), and this encoding accurately predicts how pitch changes due to modifications 
in complex tones (Cariani	  &	  Delgutte,	  1996b). Thus neurons in basal auditory areas could, in 
principle, construct invariant representations of what humans perceive as pitch. At the level of 
cortex, harmonic pitch is represented by a more traditional rate-coding mechanism (Bendor	  &	  X.	  
Wang,	  2005), though the more careful representation of how perceived pitch varies with 
modifications has not been investigated (Bendor	  &	  X.	  Wang,	  2006). 

Linguistic invariances like speaker-invariant encoding of semantic content and the 
reverse are difficult to measure at the single-neuron level because we have only simple animal 
models of langue. Functional imaging studies in humans have demonstrated that some areas in 
auditory cortex are invariant to transformations of spoken phrases. Certain areas are invariant to 
time-reversal of speech sounds, which preserves their spectral qualities; others are invariant to 
spectral reversal, which preserves the temporal qualities (Okada	  et	  al.,	  2010). The linguistic 
correlates of these transformations is not immediately clear, but this paper represents a step 
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forward in understanding the function of auditory belt regions and shows how studies of 
invariance can provide useful insights into auditory processing. 

Vision	  
As suggested by the behavioral evidence, neurons in visual cortex produce 

representations of objects that are invariant to physical transformations like translation, rotation, 
scaling, and mirroring. In the most striking case, some neurons in human amygdala appear to 
discriminate between different individual people and places (Quiroga,	  Reddy,	  Kreiman,	  Koch,	  &	  
Fried,	  2005). This finding provides a bound on where such representation can be constructed. In 
macaque cortex, clusters of face-selective neurons as measured by fMRI represent faces with 
invariance to mirroring and rotation. While neurons in the middle lateral (ML) and middle 
fundus (MF) face patches were sensitive to view angle, those in anterior lateral (AL) were 
invariant to horizontal mirroring, and those in anterior medial (AM) tended to be insensitive to 
viewing angle (Freiwald	  &	  Tsao,	  2010). 

At the single-cell level, a portion of neurons in cortical area MT of the macaque respond 
to the speed of sine gratings across a wide range of spatial frequencies. Other neurons in the area 
decrease their sensitivity to spatial frequency when multiple frequencies are presented 
simultaneously, indicating that some level of content-invariant encoding of movement speed is 
present in this area (Priebe,	  Cassanello,	  &	  Lisberger,	  2003). Conversely, neurons in area IT of 
the macaque show selectivity for particular simple silhouette shapes over a range of positions 
and sizes, demonstrating a type of scale- and translation-invariance for object recognition (Ito,	  
Tamura,	  Fujita,	  &	  Tanaka,	  1995). Unlike face images, rotations of simple objects diminishes 
response in cortical neurons (Freiwald	  &	  Tsao,	  2010). 

Computations	  needed	  for	  invariance	  
The preceding evidence suggests that invariant representations can be built up, in a 

hierarchical process, from low-level features in the brain. If such a process is indeed happening, 
we would like to know precisely how these neurons are going about the process. To examine 
this, I will now step back and look at how invariance can be achieved from a mathematical point 
of view.  

Intuitively, the primary computation required for invariance is that some function 

€ 

f  
must remain unchanged over some domain. E.g., if 

€ 

f  extracts the pitch of a sound 

€ 

x , the value 
of 

€ 

f  must be constant throughout the set 

€ 

U  of all sounds with the same pitch: 

	  

€ 

f x( ) = c : x∈U ⊂ D

	  

(i.1) 	  

where 

€ 

D is the set of all sounds. Inspection shows that, so long as 

€ 

D has more than one member 
for each pitch, 

€ 

f  must be non-invertible on 

€ 

D. The solutions to this problem, and the problem 
more generally, are the subject of mathematical group theory. While the non-invertibility of 

€ 

f  
might seem at first to be troubling, one task of formal invariant theory is to describe how 

€ 

f  
reparameterizes the space 

€ 

D  by a the value of 

€ 

c  and a smaller number of local variables. In the 
auditory context, we might think of these local variables as loudness and duration plus the 
timbral parameters. 
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Groups	  and	  Lie	  algebra	  
Mathematically, the term invariance is associated with group theory and particularly with 

Lie groups. A group comprises the pairing of a set, and an operation that maps between elements 
in the group. The Lie groups are a special case of this with the additional constraint that both the 
operation and the inverse of the elements must be analytic (continuously differentiable). 

Many formal treatments exist, though one of the more accessible is (Olver,	  1999). A full 
treatment of the subject is beyond the scope of this introduction, buts the notions of groups and 
their invariants will makes a fair amount of sense given a few examples. A particularly simple 
group is the set of the real number line 

€ 

R1{ }, and the operation of addition. If we take two 

elements 

€ 

h =1∈ R1{ } and 

€ 

g = −4.23∈ R1{ }, then the combination is also within the set: 

	  

€ 

k = h⋅ g ≡ h + g = −3.23∈ R1{ }

	  

	  

The theory of invariants depends on a subset, that of the transformation groups. These 
are groups that map from one space to another. For instance, the set of linear transformations 
from   

€ 

R2{ } R2{ }, i.e. the set of 

€ 

2 × 2  matrices, forms a Lie group: the inverse is continuously 
differentiable, as is the operation, in this case, matrix multiplication. The invariants of Lie 
transformation groups are properties of the transform space that remain unchanged. 

A simple example to consider is rotation: distances between points are unchanged, 
invariant, under rotation of the coordinate system. This corresponds to the set of rotation groups, 
the set of square, orthogonal matrices with determinant 1: 

	     

€ 

R = A AT A = kI, A =1{ } :RN  RN

	  

	  

The point-to-point distance constraint can equivalently be stated that the distance from a point 
represented by X to the origin remains constant, i.e. that vector magnitude remains unchanged. 
The set of all points to which a given vector can be rotated traces out the surface of a 
hypersphere, an N-1 dimensional manifold embedded in N-space, called the orbit of this group. 

The N-1 dimensional subspace is now parametrized by the invariant (the radius of the 
hypersphere) and N-1 local coordinates. Defining this group is equivalent to defining a function f 
that computes the invariant; in the case of the rotations, 

	     

€ 

f x( ) = xT x :RN  R1

	  

	  

Applicability	  
Strict mathematical descriptions may or may not map well to experiments on perception. 

In certain cases, the mathematical formalisms elegantly describe physical phenomena that the 
brain must account for: the classical coordinate transformations like rotation and translation 
preserve the relationships between points in an N-dimensional space. For example, the actual 
relationship between the vertices of a wooden block will remain unchanged as we move it 
around a desk, or turn it, or move it closer and further from our eyes, even as the representation 
at the retina changes greatly (Cutting,	  1983). The relationship is straightforward enough, in fact, 
that the 2D coordinates of vertices in an image (or the area contained between them) can be 
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transformed directly into relevant coordinates in 3D space in a fashion that holds even if the 
camera, lens train, or viewing angle changes (Van	  Gool,	  Moons,	  Pauwels,	  &	  Oosterlinck,	  
1995). This experiment does require substantial preprocessing of the images, however, to extract 
the positions of the vertices. 

It should be possible for the brain to learn principles like the connections inherent in a 
solid object. Recent work on Slow Feature Analysis demonstrates that following a system 
through time can reveal intrinsic dependencies like point-to-point distances (Wiskott	  &	  
Sejnowski,	  2002). Those relationships, constraints on the distance between sets of points in 3D 
space, are among the elementary relationships that group theory treats. 

The application of these to a perceptually-defined space, though, is not always so 
straightforward. Visual invariants like the edges of a solid object obey well-defined laws with 
respect to mechanical and optical transformations. Rigid bodies can translate and rotate, and their 
representation in the brain is governed first of all by the optical projection onto the 2D manifold 
of the retina. There is no general law governing all representations, though. Face recognition is a 
much trickier problem, as demonstrated by the difficulty of performing it with a computer, 
though the human brain performs the task seemingly as effortlessly. Many invariances in 
audition would fall into this latter, more complex category: the mechanics that link the identity of 
the speaker to the perception, through the production of their voice, the propagation through the 
air, to the mechanical transduction at the cochlea, are more complicated than a few 

€ 

1× 3 
(translation), 

€ 

2 × 3 (projection), and 

€ 

3 × 3 (rotation) matrices. 
A strict mathematical analysis of such other invariants quickly becomes more 

complicated. As an example, consider pitch: humans can recognize, discriminate, and match 
different sounds along the single dimension of pitch. There is a fair amount of debate, though, 
about what physical events, i.e. what features of the sound-pressure waveform, create this 
percept, and about how the neurons of the auditory system represent it (Cariani	  &	  Delgutte,	  
1996a). Just the proliferation of terms for pitch listed in the aforementioned study gives 
evidence that this case is somewhat less straightforward than Cutting’s wooden block. Pitch is 
thus very much defined by the percept, rather than by some clear physical law: it has more in 
common with US Supreme Court Justice Potter Stewart’s maxim of “I know it when I see it” 
than with Noether’s theorem. 

The	  origin	  of	  vocal	  features	  
Perceptual invariants should, somewhere in the brain, have a neural correlate. That fact, 

though, is not of immediate use when attempting to understand how networks of neurons 
construct such a representation out of sensory inputs from the periphery. One possible way 
forward, then, is to try a representation that looks more like Cutting’s wooden block: precise, and 
measurable. In this section, I will describe how the modulation power domain may provide a 
way forward. 

If the computation of invariants works best with explicit representations of physical 
space, then auditory invariants would need some sort of features to represent. One option for 
extracting coordinates like Van Gool’s from vocal sounds is to compute an explicit 
representation of physical production variables. For instance, information about tongue position 
can be inferred from clean recordings of stop consonants (Blumstein	  &	  Stevens,	  1979). In 
practice, though, it may not be necessary to compute such explicit representations if the 
underlying information about the vocal tract is present in a clear enough fashion. In this section, I 
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will demonstrate how one representation, the Modulation Power Spectrum or MPS, is 
determined directly by the vocal production apparatus and contains accessible representations 
thereof. 

The	  Modulation	  Power	  Spectrum	  
Spectrograms show characteristic spectral and temporal features that can be visualized by 

taking a 2D Fourier transform. The MPS for human speech and zebra finch song are similar and 
are distinctive because they are strongly nonseparable. Power for both classes of sound is 
distributed primarily along either the temporal modulation axis or the spectral modulation axis, 
and there is relatively little power for cross spectrotemporal modulations. This shape is not 
determined by any laws of physics or waveforms; in fact, the allowed region of the modulation 
power space includes these features, and they are present in white noise and many synthetic 
sounds (Singh	  &	  Theunissen,	  2003). 

Rather, this property is particular to animal vocalizations, and the different portions of the 
space represent different articulations of the vocal apparatus. The limited area of the MPS along 
the two axes contains virtually all of the information required for speech processing. In fact, 
other areas of the MPS can be removed with little effect on the intelligibility of speech (Elliott	  &	  
Theunissen,	  2009). 

The	  cepstrum	  and	  the	  source	  filter	  model	  
These properties of the MPS have their roots in the physical origin of animal 

vocalizations including human speech. This system is commonly modeled as a two-part system: 
vocalizations begin with a source, which is then filtered with a linear-time-invariant (LTI) filter 
to create the final sound. In the case of voiced sounds the source is a harmonic signal generated 
by the larynx or syrinx; in whisper speech, the source is broadband noise with little spectral 
character. In all cases the filter is the upper respiratory tract (Taylor	  &	  Reby,	  2010). Although 
early models  

For linear filters, the source and filter components can be separated by deconvolution, 
which can be performed elegantly using the cepstrum (Gold	  &	  Morgan,	  2000). The underlying 
principle behind the deconvolution is simple: linear filters are convolutional in the time domain, 
and convolution in the time domain is multiplication in the frequency domain. Following eq. 
20.1 and 20.2 from Gold & Morgan, 

	  

€ 

x t( ) = φ τ( )∗ s t( )

	  

(i.2) 	  

	  

€ 

X f( ) = Φ f( ) ⋅ S f( )

	  

(i.3) 	  

	  

€ 

log X f( )( ) = log Φ f( )( ) + log S f( )( )	   (i.4) 	  

where 

€ 

x t( )  is the emitted sound-pressure waveform at time 

€ 

t , 

€ 

φ τ( ) the linear vocal tract filter at 
delay 

€ 

τ , and 

€ 

s t( )  is the source at time 

€ 

t . 

€ 

X f( ), 

€ 

Φ f( ) , and 

€ 

S f( )  are the Fourier transforms of 
these signals, respectively, parameterized by the frequency 

€ 

f . 
The final key to the utility of the cepstrum is that the vocal tract filter and the laryngeal or 

noisy source vary in amplitude along the frequency axis with vastly different periods. The vocal 
tract filter tends to have slow features, meaning that 

€ 

Φ varies slowly with 

€ 

f . 

€ 

Φ typically has 
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only a few peaks, which correspond to the formants. Harmonic sounds 

€ 

S  from the larynx or 
syrinx vary quickly in amplitude along the spectral axis 

€ 

f , with peaks spaced by the 
fundamental 

€ 

f0 . Noisy sources, for example from whisper speech, behave differently and cause 

€ 

S  to vary very little, having roughly equal power at all 

€ 

f . Distally-produced sounds such as 
unvoiced consonants constitute a special case, where 

€ 

S  and 

€ 

Φ are both similarly flat. 
We can exploit these different scales by taking a second Fourier transform along the 

spectral axis, yielding the cepstrum, 

€ 

c ω f( ) : 

	  

€ 

c ω f( ) = FT log X f( )( )( )	   	  

	  

€ 

c ω f( ) = FT log Φ f( )( )( ) +FT log S f( )( )( )
	  

(i.5) 	  

So long as the assumption that the source and filter have different scales holds, their 
contributions will now be completely separate as illustrated by figure i.1. For many animal 
vocalizations, including songbirds and humans, this is a reasonably good approximation. For this 
reason the cepstrum is well known in the computational speech processing literature, and in fact 
forms the basis of most modern Automatic Speech Recognition (ASR) and many 
telecommunications data compression systems (Gold	  &	  Morgan,	  2000). 

 
Fig. i.1: Modulation Power Spectrum for Native English Speech. Both panels contain the MPS of “emotionless” English sentences 
spoken by American native talkers taken from the Iowa Corpus, and several characteristic features are labeled in both plots. The triangular 
region labeled filter contains most of the energy for the formants, and corresponds to the “core” modulations found by Elliott (Elliott	  &	  
Theunissen,	  2009). The region of energy from the harmonic pitch is marked pitch, and corresponds to a sinusoid in log-power frequency 
space. A larger region, marked source, contains the pitch as well as other energy that represents, among other things, the shape of the 
spectral lines making up the harmonic, i.e., the goodness of pitch. A: MPS for male speakers. The energy from the fudamental pitch falls 
entirely between 4 and 12 cycles/kHz, corresponding to f0 between 250 and 83Hz. B: MPS for female speakers. The fundamental pitch 
energy is between 2 and 7 cycles/kHz, corresponding to f0 between 500 and 143Hz. This difference is lower than for males, though there is 
significant overlap. The filter/formant region covers a smaller region for female talkers, likely due to the shorter overall length of the upper 
respiratory tract. 
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The	  Modulation	  Power	  Spectrum	  and	  the	  cepstrum	  
In fact, all of these analyses are the same. The MPS contains the information as the 

cepstrum, because up to this point the calculation is the same. To obtain the MPS, we simply 
take a series of spectral samples 

€ 

x ʹ′ t ( )  over time, parameterized by absolute time 

€ 

ʹ′ t . The linear 

spectrogram is then 

€ 

X f , ʹ′ t ( ) , and we can compute a “cepstrogram” 

€ 

c ω f , ʹ′ t ( ) = FTt log X f , ʹ′ t ( )( )( ) . 

The MPS is then 

	  

€ 

M ω f ,ω t( ) = FTt c ω f , ʹ′ t ( )( )	   (i.6) 	  

This simple derivation means that the MPS performs the same task as the cepstrogram: 
separating the source and filter based on their characteristic spectral modulations. 

Nonseparability	  of	  the	  MPS	  	  
The MPS, though, does something important that the cepstrum does not. For many 

vocalizations—certainly at least for Zebra Finch song and for English spoken by native 
speakers—structure of the MPS is nonseparable. This lab has previously demonstrated that this is 
not the result of any physical restriction on possible waveforms (Woolley,	  Fremouw,	  Hsu,	  &	  
Theunissen,	  2005), but rather, a characteristic either of these particular vocal repertoires or of 
the physical and neural vocal mechanisms. It is possible that this is the result of constraints 
imposed by the physical vocal apparatus. Limits on the speed of muscle movement in the upper 
respiratory tract or the diaphragm could in fact restrict what modulations can be produced, 
though this remains to be proven. 

Nonseparability means simply that the whole modulation power spectrum 

€ 

M ω f ,ω t( ) 
cannot be decomposed as the product of the spectral and temporal marginals: 

	  

€ 

M ω f ,ω t( ) ≠ F ω f( )⋅ G ω t( ) 	   (i.7) 	  

	  

€ 

F ω f( ) = 1
n f

M ω f ,ω t( )
i=1

n f

∑

	  

	  

	  

€ 

G ω t( ) = 1
nt

M ω f ,ω t( )
i=1

nt

∑

	  

	  

This nonseparability is the result of the fact that certain cepstral bands have strong 
temporal correlations while others do not. This in turn means that the characteristic timescales of 
the various parts of speech have drastically different timescales. Besides the vowel-formant 
separation achieved by the cepstrum, the MPS also separates formants from formant transitions 
and plosives. That separation is in fact quite challenging for many speech-processing systems 
(Hu	  &	  D.	  Wang,	  2004): using the cepstrum or the spectrogram as a representation tends to make 
an implicit assumption that all features are modulated at the same timescale. In fact, the 
empirical shape of the MPS of speech shows that this is a very poor approximation (Woolley	  et	  
al.,	  2005). 

Sensitivity to these particular modulations suggests that animal brains are exploiting 
these dependencies to identify and process vocalizations. The results that I will present in the rest 
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of this thesis further suggest a specific role for this sort of processing, both in brains and in audio 
processing.	  
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Chapter	  1	  

Noise-‐invariant	  Neurons	  in	  the	  Avian	  
Auditory	  Cortex:	  Hearing	  the	  Song	  in	  
Noise.	  

Abstract	  
Robust neural representations of sounds are essential for generating invariant percepts of 
behaviorally relevant acoustical signals distorted by propagation or noise.  I found that a subset 
of neurons in a secondary area of the avian auditory cortex exhibit noise-invariant responses to 
bird song in the sense that they responded with similar spike patterns to song stimuli presented in 
silence and over a background of masking noise. By characterizing the neurons’ tuning in terms 
of their responses to modulations in the temporal and spectral envelope of the sound, I also show 
that noise-invariance is partly achieved by selectively responding to slow sound features with 
high spectral structure. 

Introduction	  
Invariant neural representations of behaviorally relevant objects are a hallmark of high-

level sensory regions and are interpreted as the outcome of a series of computations that would 
allow us to recognize and categorize objects in real life situations. For example, view-invariant 
face neurons have been found in the inferior temporal cortex (Freiwald & Tsao, 2010) and are 
thought to reflect our abilities to recognize the same face from different orientations and scales. 
The representation of auditory objects by the auditory system is less well understood although 
neurons in high-level auditory areas can be very selective for complex sounds and, in particular, 
communication signals (Mooney, 2001; Rauschecker, Tian, & Hauser, 1995). It has also been 
shown that auditory neurons can be sound level invariant (Billimoria, Kraus, Narayan, Maddox, 
& Sen, 2008; Sadagopan & Wang, 2008) or pitch sensitive (Bendor & Wang, 2005). As is the 
case for all neurons labeled as invariant, pitch sensitive neurons respond similarly to many 
different stimuli as long as these sounds yield the same pitch percept. In particular, they respond 
equally well to harmonic stacks with or without power in the fundamental frequency. Both sound 
level invariant and pitch sensitive neurons could therefore be building blocks in the computations 
required to produce invariant responses to particular auditory signals subject to distortions due to 
propagations or corruption by other auditory signals. However, the existence of “recorder” 
invariant (in analogy with “view” invariant in vision) auditory neurons remains unknown. 
Similarly, the neuronal computations required to recognized communication signals embedded in 
noise are not well understood although it is known that humans (Bronkhorst, 2000) and other 
animals (Bee & Micheyl, 2008) excel at this task. 
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Birds, like humans, communicate vocally. In general, however, these sounds do not occur 
against a silent background. Environmental noise may impinge, but in more gregarious species 
other simultaneous voices can pose an even larger problem. How, then, does one pick out a 
single speaker against a background of very similar sounds? This is precisely the cocktail party 
problem describedy by Cherry (Cherry, 1953). 

In this study, I examined how neurons in the secondary avian auditory cortical area NCM 
(CaudoMedial Nidopalium) responded to song signals embedded in background noise to test 
whether this region presents noise-invariant characteristics that could be involved in robust song 
recognition. I chose the avian model system because birds excel at recognizing individuals based 
on their communication calls (Stevenson, R. E. Hutchison, J. B. Hutchison, Bertram, & Thorpe, 
1970; Vignal, Mathevon, & Mottin, 2004b), often in very difficult situations (Aubin & 
Jouventin, 2002). Moreover, the avian auditory system is relatively well characterized and it is 
known that neurons in higher-level auditory regions can respond selectively to particular 
conspecific songs (Knudsen & Gentner, 2010). I focused my study on NCM because a series of 
neurophysiological (Phan, 2006; Stripling, Volman, & Clayton, 1997) and immediate early gene 
studies (Bolhuis, Zijlstra, Boer-Visser, & Van der Zee, 2000; Mello et al., 1995; Mello, 
Nottebohm, & Clayton, 1995) have implicated this secondary auditory area in the recognition of 
familiar songs. In addition, although neuronal responses in the primary auditory cortex regions 
are systematically degraded by noise (Narayan et al., 2007), Zenk expression suggested that 
NCM neural activity in response to conspecific song was relatively constant for a range of 
behaviorally relevant noise levels (Vignal, Attia, Mathevon, & Beauchaud, 2004a). 

Several computational modeling projects have examined the cocktail party problem from 
an explicitly neural perspective. Von der Malsburg and Schneider demonstrated that they could 
extract information from two streams from the output of a model of ensemble spiking neurons 
(Malsburg & Schneider, 1986). Following the literature on sparse independent neural 
representation (Olshausen, 2002; Olshausen & Field, 1996; Smith & Lewicki, 2006), Asari et. al. 
showed that decomposition of the spectrogram along those lines can help with sound source 
separation if the positions of the sources are known (Asari, Pearlmutter, & Zador, 2006). 
Projecting the spectrogram into a neural-ensemble-like space using a basis inspired by STRFs 
can similarly help with stream segregation (Elhilali & Shamma, 2008). A smaller number of 
experiments have found direct evidence that neurons in primary auditory cortex are involved in 
this sort of stream segregation (Narayan et al., 2007). 

Methods	  
I recorded neural responses from single neurons in the NCM of anesthetized adult male 

Zebra Finches. By carefully orienting the electrode angle, I was able to sample NCM along its 
entire dorsal to ventral extent (Fig. 1K). I obtained responses to 40 different unfamiliar 
conspecific songs played back at 70 dB SPL and to the same songs embedded in a synthetic 
naturalistic noise with a signal to noise ratio of 3 dB. The naturalistic noise was obtained by low-
pass filtering white noise is the space of temporal and spectral modulations to obtain modulation-
limited noise (ml-noise). I quantified the noise invariance of each neuron calculating a de-biased 
correlation coefficient between the post-stimulus time histograms (PSTHs) obtained for the song 
alone and song + ml-noise stimuli. I called this correlation coefficient the noise invariance. 
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Materials	  

Animals	  
I recorded from four urethane-anesthetized Zebra Finches. Animal rearing, surgical 

preparation, anaesthesia, euthanasia, and histological reconstruction were all performed as 
reported in my lab’s earlier work (Woolley, Gill, Fremouw, & Theunissen, 2009), as approved 
by the UC Berkeley Animal Care and Use Committee. 

Sound	  Stimuli	  
My stimuli were divided into three classes: zebra-finch songs, roughly 1.6-2.6 seconds in 

length; synthetic modulation-limited noise (ml-noise) sounds, each exactly four seconds long; 
and combinations of the two. I played four trials at each recording location, each consisting of a 
randomized sequence of 40 songs, 40 masking noise stimuli, and 40 combined stimuli. Stimuli 
were separated by a period of silence with a length uniformly and randomly distributed between 
five and seven seconds. 

Each of the combined stimuli consisted of one ml-noise sound, randomly paired with one 
of the songs. The noise stimulus began the standard five to seven seconds after the previous 
stimulus, and the song began after a random delay of 0.5 to 1.5 seconds. In these combined 
presentations, I attenuated the noise stimuli 3dB below their normal level. 

I created the ml-noise stimuli using Matlab by low-pass filtering Gaussian white noise in 
the modulation domain using the modulation filtering procedure described in Chapter 2. This 
modulation low-pass filter had cutoff frequencies of  ωf = 1.0 cycles/kHz and  ωt = 50 Hz and  
gain roll off of 10dB/(cycle/kHz) and 10dB/10Hz. The cutoff modulation frequencies were 
chosen in order to generate noisy sounds with similar range of modulation frequencies found in 
environmental noise. In addition, most of the modulations found in zebra finch song are well 
masked by this synthetic noise although it should be noted that song also includes sounds 
features with high spectral modulation frequencies (above 2 cycles/kHz) and high temporal 
modulation frequencies (above 60Hz). 

The frequency spectrum of the ml-noise was flat from 250 Hz to 8 kHz completely 
overlapping the entire range of the band-passed filtered songs I used in the experiments. Thus, 
although different results could be found with noise stimuli with different statistics, I carefully 
designed my masking noise stimulus to both capture the modulation found in natural 
environmental noise while at the same time completely overlapping the frequency spectrum of 
my signal. 

All stimuli were processed to equalize loudness using custom code in Matlab and 
presented using software and electronics (Tucker-Davis Technologies, Alachua, FL, 
www.tdt.com). Stimuli were stored and presented using two RP2 processors, amplified with an 
SA1 amplifier, and played over a speaker (Blaupunkt) at 72dB C-weighted average sound 
pressure level. 

Electrophysiology	  
Because I was looking for cells in NCM, I used more medial coordinates than in my lab’s 

previous experiments. With the bird’s beak fixed at a 55˚ angle to the vertical, electrodes were 
inserted roughly 1.2mm rostral and 0.5mm lateral to the Y-sinus. 

After preparatory stereotactic surgery, I positioned the bird 20cm in front of the 
loudspeaker inside a double-walled anechoic chamber (Acoustic Systems, Inc., now part of ETS 
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Lindgren, Cedar Park, TX, www.acousticsystems.com). All electronics were either grounded 
(microdrives) or shielded by a grounded enclosure (speaker). 

I made extracellular recordings from tungsten-parylene electrodes having impedance 
between 1 and 3 mega Ohms (A-M Systems, Sequim, WA www.a-msystems.com). Electrodes 
were advanced in 0.5µm steps with a microdrive (Newport, Irvine, CA, www.newport.com), and 
extracellular voltages were recorded with a system from Tucker-Davis Technologies. Signals 
were amplified with an RA4 headstage, digitized with an RA4PA Medusa four-channel preamp, 
and collected with an RA16BA Medusa Base Station. All data were saved asynchronously to a 
Dell computer running Windows XP (Microsoft) using OpenEx software (TDT). 

In all cases, the extracellular voltages were thresholded to collect candidate spikes. Each 
time the voltage crossed the threshold, the timestamp was saved along with a high-resolution 
waveform of the voltage around that time (0.29ms before and 0.86ms after for a total of 1.15ms). 
After the experiment, these waveforms were sorted using SpikePak (TDT) to assess unit quality. 

In each bird, I advanced the electrode until I found auditory responses, then recorded a 
full protocol as described in the previous section. When I no longer found auditory responses, I 
moved the electrode 300µm microns further, made an electrolytic lesion (2uA x 10s), advanced 
another 300µm, and made a second identical lesion. 

Data	  Analysis	  
I used custom code written in MATLAB and Python for all of these analyses, including 

TDT's OpenDev suite with Matlab to export data for processing; code in Matlab for most of the 
numerical analysis; and a MySQL database and code in Python using SQLAlchemy, NumPy, 
and SciPy for meta-analyses. 

Responsiveness	  
I assessed responsiveness using an average z-score metric for each stimulus class (Amin, 

Grace, & Theunissen, 2004). The z-score for the ith stimulus is 

	  

! 

zi =
˜ r i

1
ntrials "1 ˜ r ij " ˜ r i( )

j =1

n j

#
	  

	  

	  

! 

˜ r i " ˜ r ij # ˜ r ij 0( )
j =1

ntrials

$

	  

	  

	  

! 

˜ r ij " 1
nsamples tsample

rijk( )
k =1

nsamples

#

	  

(1.1) 	  

where 

! 

˜ r i is the background-subtracted mean rate for the ith stimulus; 

! 

n j  is the number of trials 
for the ith stimulus; 

! 

˜ r ij  is the raw mean rate and 

! 

˜ r ij 0  the background rate for the jth trial of the ith  
stimulus;

! 

rijk  the number of spikes in time bin k; 

! 

nk  the number of time bins; and 

! 

tk  the width of 
the bin. 
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The average z-score for that class of stimuli is then 

	  

! 

z = 1
nstims

zi
i=1

n

" 	   (1.2) 	  

Using a cutoff of 

! 

z "1.5  for either ml-noise or song stimuli, 32 of the 50 single units were 
responsive. 

Invariance	  
To measure invariance, I evaluated the similarity between the responses to masked and 

unmasked song by computing the correlation coefficient between the PSTH (Peri-Stimulus Time 
Histogram) for each response. Each PSTH was first smoothed using a 31 millisecond Hanning 
window. This method in many ways resembles the Rcorr method of Schreiber (Schreiber, 
Fellous, Whitmer, Tiesinga, & Sejnowski, 2003), except the pairing is done between two 
different sets of spike trains. 

Mean	  PSTH	  
I started with the average response from all trials for each stimulus, averaged across trials 

to produce a PSTH and smoothed: 

	  

! 

r i " 1
ntrials

w # rij
j
$  (1.3) 	  

where 

! 

r i  is the PSTH for the ith song stimulus,

! 

n  is the number of trials, 

! 

w  is the window, and 

! 

rij  is again the response to the jth trial of the ith song stimulus. 

Responses	  to	  masked	  stimuli	  

We can construct a similar PSTH 

! 

r i
m  for the responses to the masked stimuli by 

substituting the single-trial response to the jth masked presentation of the ith stimulus, 

! 

rij
m , for 

the unmasked single-trial responses 

! 

rij  in equation 1.3. I will extend the superscript ‘m’ notation 
to refer to variables collected from the masked trials. 

Jackknife	  bias-‐correction	  of	  invariance	  
To correct for bias introduced by the small number of trials used to compute each PSTH 

(four), I used leave-one jackknifing (Efron & Tibshirani, 1994; Quenouille, 1956; Tukey, 
1958)The single-stimulus results indicate a small but consistent negative bias in the four-trial 
estimates. I then computed the invariance as the mean of the individual bias-corrected  
correlations for each stimulus. This again diverges from Schreiber’s Rcorr in that I report a bias-
corrected estimate of the mean rather than the raw value. 
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Jackknife	  holdout	  sets	  
Following the notation of Efron, we can define leave-one a jackknife estimate of the 

PSTH, 

! 

r i( p ): 

	  

! 

r i (p) = 1
ntrials "1

w # rij
j$p
% 	   (1.4) 	  

As an extension, we can construct a delete-d jackknife PSTH 

€ 

r id : 

	  

€ 

r idk = 1
ntrials −d w ∗ rij

j∈qk

∑  (1.5) 	  

	     

! 

qk " 1,2,…,ntrials{ }, qk = ntrials # d
 

(1.6) 	  

! 

qk  is defined as the kth subset of the trial indices with d items removed. I will use Effron’s “dot” 
notation to mark the null holdout with no trials omitted, i.e., 

	  

€ 

r i0k ≡ r i(⋅)k ≡ r i ⋅( ) ≡ r i 	   	  

Correlation	  coefficients	  
We can now compute correlation coefficients between these sets: 

	  

€ 

cidk = corr ridk,ridk
m( ) 	   (1.7) 	  

where correlation is defined conventionally as 

	  

! 

corr(a,b) =
a" b

a" a( ) b" b( )
	   (1.8) 	  
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From this set of correlation estimates, we can use the jackknife to bias-correct the 
correlation coefficient, effectively estimating the infinite-trial correlation. This is done by 

regressing the estimates 
  

€ 

cipk{ }
p=0,1,…d

 against 

! 

1
ntrials " p

: 

	  

€ 

ˆ α d , ˆ β d = argmin
α ,β

ε ipk
2

k=1

nk p( )

∑
p=0

d

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
	  

(1.9) 	  

	  

€ 

ˆ c id = ˆ α id 	   (1.10) 	  

	  

€ 

ε ipk = cipk − βxp −α( ) 	   	  

	  

! 

xp =
1

ntrials " p
	   	  

	  

! 

nk p( ) =
d

ntrials " p
# 

$ 
% 

& 

' 
( 
	  

	  

The resulting y-axis intercept, 

€ 

ˆ α id  corresponding to 

! 

n = " , gives a bias-corrected estimate of 

€ 

c∞i, the expected correlation for an infinite number of trials. Here 

! 

" ipk  is the regression error for 
the jackknifed sample indexed by i, p, and k. 
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This method also gives an error bar, in the form of the standard error of the y-intercept, 
computed as 

	  

€ 

ˆ σ id =σ ˆ α id
=σ ˆ β id

1
m nk p( )xp2
p=0

d

∑ 	  
(1.11) 	  

	  

€ 

σ ˆ β id
=

1
m−2

ˆ ε ipk
2

k =1

nk p( )

∑
p =0

d

∑

nk p( ) xp − x ( )
2

p =0

d

∑
	  

	  

	  

€ 

m = nk
p=0

d

∑ p( ) 	   	  

	  

€ 

x = 1
m nk p( )xp

p =0

d

∑
	  

	  

where 

€ 

ˆ σ id , the standard error of our estimate, is the standard error of the intercept 

€ 

σ ˆ α id . 

€ 

σ ˆ β id  is 

the standard error of the slope, and m is the total number of samples. This defines a 

! 

1"#( )% 
confidence interval 

! 

"#  

	  

€ 

δα =
tα ˆ σ id
m
	   (1.12) 	  

	  

€ 

p ˆ c id −δα ≤ ci∞ ≤ ˆ c id +δα( ) =1−α
	  

	  

For this experiment, I have assumed that the error is normal and computed 

! 

t"  from the Student’s 
t distribution with 

! 

m "1 degrees of freedom. 
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We can compute a final estimate of the cell’s invariance 

€ 

ˆ c d  as the mean of the 

distribution of the single-stimulus correlation estimates 

€ 

ˆ c id{ } , and similarly a variance for this 
population 

€ 

ˆ σ d
2
: 

	  

€ 

ˆ c d = 1
nstims

ˆ c id
i=1

nstims

∑ 	   (1.13) 	  

	  

€ 

ˆ σ d
2 = 1

nstims −1 ˆ c id − ˆ c d( )2

i=1

nstims

∑
	  

(1.14) 	  

Spectrogram	  computation	  

All stimuli, denoted in the time domain by 

! 

s t( ) , were preprocessed using a short-time 
Fourier transform and then computing the log power. Before taking the Fourier transform, I 
applied a Gaussian window 

! 

w "( )  to the samples, with the length of the window chosen to give a 
125Hz bandwidth in the final spectrogram. For a set of stimuli, I computed linear power 
spectrogram as the squared amplitude of each Fourier coefficient: 

	  

! 

a f ,t( ) =STFT s t( ),w "( )( ) 	   	  

	  

! 

P f ,t( ) = a2 f ,t( ) 	   (1.15) 	  

Because I will ultimately be taking the log, it is important to avoid zero values in the 
linear spectrogram. The traditional engineer’s approach is simply to add a negligible quantity 

! 

"  
to each value before taking the log. Common values for the fudge factor 

! 

"  include 10-6, 10-9, etc., 
and machine epsilon. The modified power 

! 

" P  is then: 

	  

! 

" P f ,t( ) = P f ,t( ) + # 	   	  

	  

! 

" <<min
f ,t

P f ,t( )( )	   	  
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A more principled approach, though, is to set an explicit noise floor. To do this, one first 
normalizes the spectrograms by dividing by a constant 

! 

P0 . In this case I used the maximum 
power in any band across the entire set of stimuli being used for the regression. One can in 
principle use a different constant for each stimulus, although this eliminates any information 
about relative loudness between sounds. The normalized power is then

! 

" P f ,t( )# 0,1( ] : 

	  

! 

" P f ,t( ) =
P f ,t( )

P0
	   (1.16) 	  

	  

! 

P0 =max
f ,t

P f ,t( )( )
	  

	  

One can now take the log of this power without fear of zero values. Applying the noise floor 
requires choosing a value 

! 

", e.g. -80dB, and truncating 

! 

" P  below that value: 

	  

! 

S f ,t( ) =max 20log10 " P f ,t( )( ),#( )	   (1.17) 	  

Equivalently, one can add 

! 

" and then truncate at zero: 

	  

! 

S f ,t( ) =max 20log10 " P f ,t( )( ) +#,0( )	   	  
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Spectro-‐Temporal	  Receptive	  Fields	  (STRFs)	  
For each responsive single unit, I computed a linear STRF using STRFLAB 

(strflab.berkeley.edu) using ridge regression, a method very similar to the normalized reverse 
correlation method described by our lab previously (Theunissen et al., 2001). This method, 
available as the “directfit” method in STRFLAB, provides a least-squares solution to the linear 
regression between the stimulus represented as a log-power spectrogram and the response 
represented as a smoothed PSTH: 

	  

! 

ˆ h =CSS
"1CSR 	   (1.18) 	  

where 

! 

ˆ h 
 
is the STRF estimate, 

! 

CSS  is the stimulus cross-correlation, and 

! 

CSR  is the stimulus-
response cross correlation. 

This fit presumes zero-mean stimulus and response, requiring that we subtract (and save) 
the mean stimulus and mean response. In this case, I compute the mean stimulus per band. 
Though not strictly necessary, I also normalized the stimuli so that each band had not only zero 
mean but unit variance: 

	  

! 

" S f ,t( ) =
S f ,t( ) # S0 f( )

$S f( )
	   (1.19) 	  

	  

! 

S0 f( ) =mean
t

S f ,t( )( )

	  

	  

	  

! 

"S f( ) = std
t
S f ,t( )( )	   	  

The autocorrelation 

! 

CSS f ," t( )  is then computed from the Fourier transform of 

! 

" S f ,t( ) as 
described in (Theunissen et al., 2001). 

Similarly, the mean-subtracted response is 

	  

! 

" r t( ) = r t( ) # r0 	   (1.20) 	  

	  

! 

r0 =mean
t

r t( )( )
	  

	  

and the crosscorrelation 

! 

CSR f ," t( )  is computed from 

! 

R " t( ) , the Fourier transform of 

! 

" r t( ) , 
again as described in (Theunissen et al., 2001). 

In all of my calculations, I considered the mean values 

! 

S0 f( )  and 

! 

r0  and variances 

! 

"S f( )  to be 
static parameters (as opposed to ones to be optimized) and stored them as such. 

STRF	  performance	  
I assessed the performance of each STRF using coherence and the normal mutual information. 
First I compute the expected coherence between two single response trials; I then computed the 
coherence between the STRF prediction and the average response. I then compute the normal 
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mutual information for each (Hsu, Borst, & Theunissen, 2004a), calling the former the response 
information and the latter the predicted information. I call the ratio of the predicted information 
to the response information the performance ratio, and provides a measure of model 
performance that is independent of the variability of the neuron. In all of my receptive field 
analyses, I used only STRFs that predict sufficiently well, defined here as having predicted 
information of at least 1.2 bits/second and a performance ratio of at least 20%. 

STRF	  cross	  prediction	  
In order to assess how the linear model (i.e. the STRF) accounts for the observed invariance, I 
used the STRF to predict the response to noise-corrupted stimuli. Because the noise stimuli were 
prerecorded, I was able to compute the exact stimulus presented during the masker trials. 
Because the masker-stimulus combination varied by trial, these stimuli were trial-specific. 
I preprocessed the masked stimuli using the parameters from the original optimization. That is, I 

computed 

! 

Sm" and 

! 

rm" using 

! 

S0 , 

! 

r0 , and 

! 

"S  rather than computing new means 

! 

S0
m

 and 

! 

r0
m

 and 
variances

! 

"0
m

 from the masked stimuli 

! 

Sm  and corresponding responses 

! 

rm : 

	  

! 

Sm" f ,t( ) =
Sm f ,t( ) # S0 f( )

$0 f( )
	   (1.21) 	  

	  

! 

rm" t( ) = rm t( ) # r0

	  

(1.22) 	  

I then computed the prediction for each trial based on this new stimulus: 

	  

! 

ˆ r m t( ) = ˆ h f ,"( )#Sm$ f ,t( ) + r0 	   (1.23) 	  

Prediction power can be assessed again using the normal mutual information as described in the 
previous section. 

Linear	  model	  (STRF)	  invariance	  
I wanted to know how well the linear model captured the invariance of the cell. To that end, I 
computed a the cross-predicted response to song + noise for each trial using equation 1.23. To be 
consistent with the bias correction procedure used for the invariances, I computed jackknife 
samples for the predictions as well: 

	  

€ 

ˆ r idj
m = 1

ntrials −d w ∗ ˆ r ij
m

j∈qk

∑ 	   	  
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I then computed the jackknifed correlation estimates between the 

€ 

ˆ r idj
m  and 

€ 

r idj  using 

equations 1.7-1.14 to compute a bias-corrected correlation estimate 

! 

ˆ " c d  with its standard 
deviation 

€ 

ˆ ʹ′ σ d . To determine whether the model invariance differed from the measured invariance, 
I compared that distribution to the single-stimulus correlations 

€ 

ˆ c id  using Welch’s approximate 
two-sample, two-tailed t-test for distributions with different variances: 

	  

€ 

ʹ′ t s =
ˆ ʹ′ c d − ˆ c d

ʹ′ σ d +σ d
nstims

	   (1.24) 	  

Modulation	  Power	  Transfer	  Functions	  (MPTFs)	  
To interpret the STRFs, I computed the Modulation Power Transfer Function (MPTF) from each 
STRF by taking the 2D Fourier Transform, squaring to obtain the power, and truncating to the 
upper two quadrants (Hsu, Woolley, Fremouw, & Theunissen, 2004b). The MPTF expresses the 
power transmitted in terms of spectral and temporal modulations. I then computed the center of 
mass of each transfer function, yielding coordinates in spectro-temporal modulation space. I 
interpret these coordinates as the best spectral modulation frequency and best temporal 
modulation frequency for the cell. 

Spike	  waveforms	  
One crucial question that arose is whether invariance is a property of particular types of 

cells. In some cases, different types of neurons have different extracellular spike waveform 
shapes, so I used this as a proxy for type of cell. 

For each responsive, predictive single unit in the sample, I computed a representative 
waveform for that by averaging all of the spikes assigned to the unit. I then normalized that mean 
waveform for each unit by the maximum of its absolute value. 

Results	  
I find that three things contribute substantially to invariance. First, cells in more dorsal 

areas, probably secondary auditory regions, are more invariant. Second, cells with certain 
receptive field properties are more invariant. Third, processing nonlinearities only contribute to 
invariance in a few cells; for the bulk, nonlinearity makes the cell less invariant. 

Invariance	  and	  anatomy	  
As illustrated on the left panels in ure 1 (A-E), responses of some neurons to song signal 

were almost completely masked by the addition of noise. In these situations, the PSTH obtained 
for song only (panel C) is very different than the one obtained for song + noise (panel E) yielding 
small values of noise invariance (close to 0). However, some neurons also showed a striking 
robustness to noise degradation as illustrated in panels F-J. Those neurons had similar PSTHs for 
both conditions and high values of noise invariance (close to the maximum value of 1). Neurons 
with different degrees of invariance were found throughout NCM but the neurons in the ventral 
region tended to have highest degrees of invariance (panel L). NCM also exhibits some degree of 
frequency tonotopy along this dimension with higher frequency tuning found in more ventral 
regions (Ribeiro, Cecchi, Magnasco, & Mello, 1998; Terleph, Mello, & Vicario, 2006) but this 
cannot explain the organization for noise invariance since the song and ml-noise stimuli had 
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similar spectra. NCM neurons have also been shown to respond differentially to natural and 
synthetic sounds and to familiar and non-familiar sounds but this is the first demonstration of 

Figure 1.1: Noise-invariant Responses in the Avian NCM. A, F. Spectrograms showing the same zebra finch song stimulus used in 
two separate recordings. Song starts at 0s.  The spectrogram of the song+ml-noise stimuli is not shown. B-C, G-H. Raster plots (B, G) 
and corresponding smoothed PSTH (C, H) showing the response of each neuron to the song alone. Clear temporal synchrony across the 
four trials can be seen for both cells, illustrative of an equally robust response to song stimuli. D-E, I-J. Raster plots (D, I) and 
corresponding smoothed PSTH (E, J) showing the responses to song+ml-noise. The pink highlights show the time when a different noise 
was present on each trial.  This addition of noise destroys the cross-trial synchrony in the response for the neuron shown on the left column 
but not for the neuron shown in the right column.  For this neuron, the response to song+ml-noise is very similar to the response of song 
alone, resulting in high noise invariance). K. Photomicrograph of Nissl-stained brain slice in one bird showing the typical trajectory of 
the electrode penetration. Electrode track, scale bar, and stereotactic axes are marked. L. Scatter plot of noise invariance against 
stereotactic depth of neural recordings. Noise invariance and recording depth were significantly correlated (slope = 0.15/mm, r = 0.38, p = 
0.040): cells further along the electrode track are more invariant to masking noise. The example neurons have noise invariance values of 0.2 
(left column) and 0.7 (right column) 
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noise-invariant neurophysiological responses in this region and of a potential gradient along the 
dorsal/ventral axis. 

Linear	  model	  invariance	  
To begin to understand how this system achieves noise invariance, I estimated the spetro-

temporal receptive fields (STRFs) of each neuron from their responses to song (Theunissen et al., 
2001). The STRF describes how acoustical patterns in time-frequency are correlated with a 
neuron’s response. The STRF can also be as a model of the neuron to provide estimated neural 
responses for arbitrary sound stimuli. The STRF model is often described as “linear” but one 
should be aware that both static input (as the sound pressure waveform is transformed into a log 
spectrogram (Gill, Zhang, Woolley, Fremouw, & Theunissen, 2006)) and output non-linearities 
(a rectification) are part of this framework. To determine whether the STRF could explain noise-
invariance, I performed a regression analysis between the mean noise-invariance 

€ 

ˆ c d  that I 
measured directly from the neurons response and the mean noise-invariance 

€ 

ˆ ʹ′ c d  obtained from 
the predictions of STRF model (Fig. 1.2A). Two results come out of this analysis. First, the 
actual invariance and the model invariance are positively correlated showing that the neurons’ 
STRFs could in part explain the observed noise-invariance. Second, I found that for most 
neurons, the degree of invariance predicted by the STRF model was actually greater than the one 
found in actual neurons. In other words, for a majority of neurons, additional non-linearities not 
captured in the STRF model make neurons less invariant. Although this result might seem 
surprising for an auditory region believed to be important for song recognition, it has a simple 
explanation. Many high-level neurons show adapting responses to sound intensity levels (Dean, 
Harper, & McAlpine, 2005) and this common non-linear response property is not captured in the 
simple STRF model.  Intensity adapting neurons would exhibit a decrease in response to the song 
in noise relative to the song alone due to the adaptive changes in gain.  The predicted response 
from the STRF does not incorporate this gain change yielding more similar responses for song 
and song+ml-noise stimuli than observed in the actual data. 

Therefore, for the task of extracting the song from noise, the most effective neurons are 
those that are the most “linear” (the ones closest to the x=y line in Fig. 1.2A) or the few for 
which the non-linearity boost invariance (n=3/31). Although the specific non-linearities that 
could be beneficial for preserving signal in noise still need to be described, previous research 
have characterized higher-order non-linearities response that could play an important role: 
neurons in NCM exhibit stimulus specific adaptation (Stripling et al., 1997) and neurons in 
another avian secondary auditory area, CM (Caudal Mesopallium), respond preferentially to 
surprising stimuli (Gill, Woolley, Fremouw, & Theunissen, 2008). These non-linearities could 
facilitate noise invariance responses since they tend to de-emphasize the current or expected 
stimulus (in this case noise like sounds) without decreasing the gain of the neuron to sound at the 
same frequency. 

Linear	  receptive	  field	  features	  
 Since the STRF could for the large part explain the observed noise-invariance, I could 

then ask what feature of the neurons spectro-temporal tuning was important for this computation. 
A correlation analysis of the neurons’ invariance with the neurons’ average spectral and temporal 
modulation gain estimated from their STRFs showed that invariant neurons tend to preferentially 
respond to high spectral modulations and low temporal modulations (Fig. 2B-C). The ensemble 
modulation transfer functions estimated for different subsets of neurons further illustrate how the 
spectral and temporal modulation tuning co-vary along the noise-invariance dimension (Fig 
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1.2D-F).  Thus, noise invariant neurons exhibit the combination of longer integration times and 
sharp spectral tuning. In addition, the sharp excitatory spectral tuning was often combined with 
sharp inhibitory spectral tuning as well. These properties make noise-invariant neurons 
particularly sensitive to the longer harmonic stacks present in song (and other communication 
signals) even when these are embedded in noise as illustrated in the example neuron in fig 1 (F-
J). Modeling studies (see Chapter 3) suggest, not surprisingly, that different set of invariant 
neurons would be found for different types of signal and noise but, at the same time, that similar 
tuning properties provide an efficient filtering of unwanted natural-like noise (e.g. colony noise) 
when processing a biologically relevant signal such as song. 

Spike	  waveforms	  
I performed PCA on the normalized mean waveforms for the predictive, responsive 

neurons. I found two major clusters, and separated them with a linear discriminant on the first 
two principle components. Visual inspection shows that these clusters correspond to the two 
most common stereotypical waveforms immediately recognizable to any electrophysiologist 
(Fig. 1.3A). The slower waveforms (group 2) are significantly less invariant than the faster ones 
(group 1), and in fact no neuron in group 2 has an invariance higher than 0.5 (Fig. 1.3C). The 
model invariance is the same (Fig. 1.3D), meaning that the model improvement is not related to 

 
Figure 1.2: Spectro-temporal tuning and invariance.  Vertical axis for A-C is the same and shows the noise invariance of the neural 
response. Each neuron (each point on the scatterplots) is represented by its STRF (0.25 – 8kHz on the vertical axis, 0-60ms on the 
horizontal). A. Invariance vs STRF Model Invariance. The solid line has slope 1.0, showing equal performance between the STRF model 
and the neural response. Neurons with significantly different performance (p<0.05, two-tailed t-test) have their receptive fields outlined. 
Dashed line shows regression fit (slope = 0.40, r = 0.38, p = 0.034), indicating the positive correlation between the invariance predicted by 
the STRF and the actual invariance on the neuron. B. Invariance vs Spectral Modulation Tuning. Neurons sensitive to higher spectral 
modulations are more invariant (r = 0.47, p = 0.007). The best spectral and temporal modulation frequency for each neuron was obtained 
from the center of mass of the modulation transfer function obtained from its STRF (SOM). C. Invariance vs Temporal Modulation Tuning. 
Neurons sensitive to lower temporal modulations are more invariant (r = -0.43, p = 0.015). D-F. Ensemble modulation transfer functions 
(SOM) for neurons grouped by invariance. Low invariance neurons (D, invariance<0.3, n=11) respond to high temporal frequency and low 
spectral frequency modulations. Neurons with moderate invariance (E, 0.3<invariance<0.4, n=11) transmit faster, sharper modulations. 
Neurons with high invariance (F, invariance>0.2, n=10) respond mostly to slower and spectrally sharp sounds 
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which class of neuron is present. Unfortunately the distribution of model prediction invariances 
is somewhat skewed towards large values of 

€ 

ˆ ʹ′ c d , making the use of the Welch approximation less 
ideal, but the sample size is too small for the Mann-Whitney test. 

 
Figure 1.3. Spike waveforms.  A: Average spike waveform for each single unit in the population. Colors by PCA sort group: blue is group 1, 
red group 2. Group 1 has faster timescale, and has nearly equal positive and negative voltage deviations. Group 2 is slower and has a lower 
positive peak relative to the negative one. B: Improvement due to the linear model, shown as d-prime. The distribution of values is the same 
for both spike shape groups (p=0.663, Welch’s two-tailed t-test approximation), meaning that both groups suffer similarly from the 
nonlinearities. C: Group 2 is less invariant than group 1 (p=.034, Welch’s two-tailed t-test approximation). The most invariant neurons are 
all in group 1, while no neuron in group 2 has invariance > 0.5. D: Model invariances are similar for the two groups (p=0.161, Welch’s two-
tailed t-test approximation) again confirming that whatever differences exist between the two groups are not represented by the linear model. 
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I also compared the discrepancies between the invariance of the linear model and the 
invariance of the neuron for each cluster. To quantify the improvement for the model, I 
computed a 

€ 

ʹ′ d  value between the measured invariance and linear model invariance for each unit: 

	  

€ 

ʹ′ d =
ˆ ʹ′ c d − ˆ c d
ˆ ʹ′ σ d

2 + ˆ σ d
2
	   (1.25) 	  

The values for 

€ 

ʹ′ d  are also the same between the two clusters (Fig. 1.3B), confirming that the 
linear model improves the prediction just as much for the two groups. The distributions are 
somewhat skewed, though less so than for the model predictions alone; the extremely high p-
value makes it highly unlikely that the means differ. 

Discussion	  
The generation of neurons with invariant responses is not a trivial task since most 

neurons in lower auditory areas have much shorter integration times and lack the sharp excitation 
and inhibition along the spectral dimension that I observed here. From comprehensive surveys of 
tuning properties from neurons in the avian primary auditory cortex (Field L) (Nagel & Doupe, 
2008; Woolley et al., 2009), we know that a small number of neurons with similar characteristics 
exist in these pre-synaptic areas (the slow narrow-band neurons in (Woolley et al., 2009)). 
Similarly, in the mammalian system, neurons in A1 have been shown to have a range of spectro-
temporal tuning similar to that seen in birds but few with the sharp spectral tuning seen here 
(Depireux, Simon, Klein, & Shamma, 2001; Miller, Escabi, Read, & Schreiner, 2002). Thus it is 
reasonable to postulate that noise-invariance in NCM (and putatively in mammalian secondary 
auditory cortical regions) is the result of a series of computations that are occurring along the 
auditory processing stream. However, it is also known that NCM possesses a complex network 
of inhibitory neurons and that these play an important role in shaping spectral and temporal 
response properties (Pinaud et al., 2008). Thus both upstream and local circuitry are almost 
certainly involved in the creation of noise-invariant neural representations. If neurons in spike 
shape group 2 represent inputs from other areas, this would indicate that invariant representations 
are being built up in NCM. 

Such an invariant representation could help solve the cocktail party problem. Elhilali et. 
al. have shown that a neurally-inspired spectrotemporal basis can achieve stream separation 
(Elhilali & Shamma, 2008). Smaragdis found a similar result using a basis found by 
decomposing the spectrogram using non-negative matrix factorization (Smaragdis, 2007). 
Elhilali’s work makes very explicit reference to the scales of the spectrotemporal modulations 
represented in the basis, and refers to a “rate-scale” space. That space is, except for the log-
transformation of the frequency scale, identical to the modulation power domain as I have 
defined it. As I discussed in the introduction, the characteristic features of speech are well 
constrained in this domain by the physical form of the vocal apparatus. 

One possible improvement for future work would be to extend the invariance 
computation. The PSTH similarity measure of invariance accords well with visual comparison of 
the spike trains. A more thorough version could extend the metric to use coherence rather than 
just the correlation, again jackknifing across trials to obtain an error bar. Because the signals are 
relatively short, the problem is well-suited to the use of the multitaper coherence (Thomson, 
1982). 
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This study also points a way forward in thinking about cortical/forebrain auditory 
processing. In vision, many higher areas have been shown to hold invariant representations of 
high-level information, including identity (Quiroga, Reddy, Kreiman, Koch, & Fried, 2005), 
motion (Priebe, Cassanello, & Lisberger, 2003), and faces (Freiwald & Tsao, 2010). Higher 
auditory areas, beyond A1, are often seen by physiologists as being unknown territory. Several 
strong invariance are documented in the behavioral and psychophysical literature, among them 
speaker identity, pitch, level, and semantic content. Explicit investigation of such features at a 
neural level could help to shine a light on the function of these areas. 

In summary, I have shown that noise-invariant neurons exist in secondary auditory areas 
and have explained how this invariance can to a large part be explained by the neurons’ spectro-
temporal modulation tuning and simple non-linearities. I return to this line of reasoning in 
Chapter 3, where I develop a speech processing system based on these principles.
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Figure 1.4: Comparison of STRF predictions for two cells. A: STRF for a low noise-invariant cell (invariance = 0.25). The STRF predicts an 
average of 14.6 bits/second of mutual information with the response, 56% of the maximum (defined by the expected mutual information between 
two trials). B: MPTF for the STRF in A. Modulation power is concentrated on the temporal axis near ±35 Hz and 0.1 cycles/kHz, indicating 
sensitivity to fast, broadband modulations. C: STRF for a high noise-invariant cell (invariance = 0.65). The STRF predicts an average of 14.4 
bits/second of mutual information with the response, 53% of the maximum possible. D: MPTF for the STRF in C. Energy is clustered along the 
spectral axis between 1.5 and 3 cycles/kHz and less than 20Hz, indicating high spectral modulations and slow temporal ones. E: Spectrogram of 
one ZF song stimulus. F: Spike raster for cell from A. G: Response of low noise-invariant cell to unmasked song. PSTH shown in blue, 
prediction of STRF from A shown in red. H: Spike raster for response of low noise-invariant cell to masked song. Regions of each trial where 
masker was present are indicated in pink. I: Response of low noise-invariant cell to masked song. PSTH shown in blue, prediction of STRF from 
A to same stimulus shown in red. Here, both the actual response and the prediction contain significantly less information, indicating a reduction 
both in rate and in trial-to-trial reliability. The STRF predicts 6.5 bits/second, 71% of the possible mutual information. J: Spectrogram of same 
ZF song stimulus, shown again for clarity. K: Spike raster for the high noise-invariant cell shown in C. L: Response of high noise-invariant cell 
to unmasked song. PSTH shown in blue, prediction of STRF from C shown in red. M: Spike raster for response of high noise-invariant cell to 
masked song. Regions of each trial where masker was present are indicated in pink. N: Response of cell C to masked song. PSTH shown in blue, 
prediction of STRF shown in A to same stimulus. The neuron’s response is relatively unchanged by the presence of masking noise, although the 
STRF does not predict as well. This is one of the three cells for which the measured invariance exceeded that of the STRF model. 
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Chapter	  2	  

Response	  to	  Spectrotemporal	  Modulation	  
Filtering	  in	  Avian	  Auditory	  Cortex	  

Abstract	  
Communication sounds in vocal animals are characterized by spectral and temporal 

modulations. Psychophysical studies have determined the ranges of modulations that are 
perceptible by humans, and the subset within this range that are essential for speech 
comprehension. Here, I examine the neural representation of the vocalization-specific 
modulations in the songbird model. To determine whether neural responses are tuned to specific 
modulations, I use two complimentary approaches. First, I estimate the spectro-temporal (STRF) 
receptive field of each neuron from responses to vocalizations signals.  The modulation tuning 
can then be derived from the STRF by examining the gain of this filter in the Fourier domain. 
Second, neural responses are obtained to versions of the same vocalizations that have been 
systematically degraded by removing particular spectral or temporal modulations. This signal 
degradation is obtained by a novel-filtering method that allows us to perform filtering operations 
in the modulation domain. If the STRF is a good characterization of the modulation tuning of the 
neurons, it can be used to predict responses to the degraded signals. Differences between the 
predictions and the actual responses reveal additional sensitivity for these modulations. I find 
that the response to spectrotemporal degradation is largely predicted by the features of a linear 
STRF fit for each neuron. 
 

Introduction	  
One of the primary physical models to explain sound production in vocal animals is the 

source-filter model (Gold	  &	  Morgan,	  2000;	  Taylor	  &	  Reby,	  2010). As I discuss in the 
introduction, the computation of the modulation power spectrum effectively separates generative 
parameters of speech, the spectral profiles of the source and filter, by performing deconvolution. 
In the previous chapter, I investigated how these parameters contribute to a noise-invariant 
representation of vocalizations post hoc, by inferring which parameters of the MTF contribute to 
noise invariance. 

In this chapter, I instead modify the modulation-domain characteristics of the stimuli 
beforehand, and then examine how this processing changes the responses. Because of the 
deconvolution shown in equation i.4 and the different spectral modulation scales of the source 
and filter, modulation filtering in the spectral domain can have the effect of changing the source 
or filter. 

Changes in the modulation domain are perceptible to humans. With white noise carriers, 
slight temporal amplitude modulations up to 16Hz are easily noticeable, with thresholds of -
25dB or about 5% of the amplitude. Higher temporal AM frequencies are more difficult to 
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detect: above 16Hz, thresholds increase to a plateau of roughly -5dB, or about 50% of the 
amplitude, at 2kHz. Pure-tone carriers have similar behavior at 10kHz, with higher thresholds (-
15dB) but a similar plateau out to 16Hz. Detection thresholds rise, becoming less sensitive, and 
higher modulation frequencies become less detectable, as carrier frequency decreases 
(Viemeister,	  1979).  

For some more spectrally complex carriers, detection performance falls off—i.e., 
thresholds rise—above about 10Hz (Yost,	  1987). Combined spectrotemporal modulations are 
perceptible throughout a region from at least 0-128Hz and 0-8 cycles/octave, and generally 
comport with the time-domain studies mentioned above as well as frequency-modulation-only 
studies (Chi,	  Gao,	  Guyton,	  Ru,	  &	  Shamma,	  1999). 

With speech sounds, modulations can also be characterized by their importance for 
intelligibility. Modulations below roughly 10Hz are required for understanding or recognition of 
individual phonemes when either spectral (Drullman,	  Festen,	  &	  Plomp,	  1994) or cepstral (Arai,	  
Pavel,	  Hermansky,	  &	  Avendano,	  1999) quantities are modulated. Modulations above roughly 
16Hz can be attenuated without substantial impact on intelligibility. Spectral smearing up to ½ 
octave, corresponding to roughly 0.5 cycles/kHz for a 1kHz fundamental, can be performed 
without degrading comprehension. 

In this experiment, I characterize the sensitivity of neurons to spectral and temporal 
modulation degradations much like the ones reported for the human speech listening experiments 
mentioned above. By sampling from throughout avian auditory forebrain using a multichannel 
electrode, I am able to construct a picture of how these modulations are processed throughout the 
auditory pathway. 

Methods	  

Modulation	  filtering	  
To perform modulation filtering, I used code written in our lab and described previously 

(Elliott	  &	  Theunissen,	  2009).The filtering consists of five steps. First, we compute the 
spectrogram (STFT) of the signal per equation 1.17, separating the amplitude and phase 
components. Second, we compute the complex modulation spectrum by taking the 2D Fourier 
Transform of the spectrogram amplitude per equation i.6. Third, we apply a gain between 0 and 
1 to the modulation spectrum, with 1 for the bands we want to preserve and 0 for the bands we 
want to attenuate. Fourth, we invert the filtered complex modulation spectrum to produce a 
filtered spectrogram amplitude. Fifth and finally, we invert the spectrogram, using the filtered 
amplitudes and the original phase as a first guess for the iterative algorithm described in (Griffin	  
&	  Lim,	  1984). 

Stimulus	  protocol	  
In these experiments a search protocol (consisting of search stimuli) was not used as 

recordings were obtained in a systematic fashion with a 16-microelectrode array at depths 
separated by 100 microns (see below for more details). At each recording location two 
conspecific songs and two 2s samples of white noise were then used to set voltage thresholds for 
each electrode for on-line spike discrimination. 

After setting the threshold, I played a stimulus protocol designed for STRF estimation 
and invariance computation. This protocol consisted of a total of 40 sounds: 10, two-second 
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modulation-limited noise stimuli, generated using the procedure described in Chapter 1; 10 
conspecific songs; and two modulation-filtered versions of each song. At each recording 
position, I used one of two different sets of ten songs. 

One modulation filtered version, which I will refer to as “sfilt,” was lowpass filtered in 
the spectral domain below 0.6 cycles/kHz, with a 0.1 cycle/kHz ramp from 0 gain to 1 (Fig 
2.1A). Compared to the MPS of the original songs (Fig. 2.1B), these stimuli show the 
characteristic triangular shape near the origin but are missing the power in the songs that extends 
along the spectral modulation axis. They are also missing the concentration of power around 1.5 
cycles/kHz that corresponds to the harmonic stacks. 

 The spectrograms for these stimuli (Fig. 2.4A top panel) show temporally sharp features 
that are smeared in the spectral domain. This preserves the region of modulation power space 
containing the formants and the syllable edges (Elliott	  &	  Theunissen,	  2009). Harmonic features 
are removed, replaced by broadband noise. The perceptual quality of these sounds is similar to 
those obtained with a noise vocoder or whispered speech (Gold	  &	  Morgan,	  2000). 

The other modulation-filtered version, which I will refer to as “tfilt,” was lowpass filtered 
in the temporal domain below 7 Hz, with a ramp of 1 Hz (Fig. 2.1C). In this case, the only 
energy is close to the spectral modulation axis, preserving only very slowly varying features. I 
chose the frequency of  7 Hz to blend information across syllables, based primarily on the 
temporal statistics of the stimulus. The spectrograms of these stimuli (Fig. 2.4C top panel) show 
slow features, with some sharp spectral components present where they appear in several 
syllables in sequence. 

I used custom TDT software, mostly the same as what is described in Chapter 1, to play 
the stimuli in random order. I played ten trials; each trial had each sound played once in random 
order, with a 5-7 second random delay between stimuli.  

Physiology	  
For this experiment, I recorded 101 single units from 3 birds using a 16-channel tungsten 

microwire electrode fabricated to order by Tucker Davis Technologies. Each array comprises 16 
individual 30µm tungsten wires coated in parylene. The wires are arranged in rows of 8, spaced 
250µm apart, for a total width of 1.75mm. 

The two rows are mounted on a Printed Circuit Board (PCB) so that they are 375µm 
apart. The wires in some cases extended as much as 15mm from the edge of the PCB, but in all 
cases they were potted together with epoxy every 5mm by the manufacturer to prevent buckling. 
Some electrodes only extended 5mm from the board edge, in which case they were only potted 
to the board. I added epoxy between the board and the last epoxy land on the 15mm electrodes to 
improve stiffness. 

The individual wires are laser-cut to length with a 45° bevel after being mounted on the 
PCB. The PCB is connected mechanically and electrically to the headstage by an 18-channel 
micro connector. For one of the three birds, bird BlaW0603, I used an electrode with tips 
staggered by 500µm. Within each row, the wires alternated between 4.5 and 5.0mm from the 
edge of the board. 

The electrode also has a reference/ground wire (connected on the PCB to both the ADC 
reference and the signal ground). To make electrical contact with the CSF, I wrapped this wire 
around the shank of the screw that fixed the pin to the stereotax and then tightened the screw 
head down onto the loop. 
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Surgery	  
I performed preparatory surgeries quite similar to the ones described in Chapter 1 for pin 

placement. I removed a substantially larger region of the outer skull over the left hemisphere to 
make room for the additional size of the 16-channel array. The craniotomy measured roughly 
2.5-3.0mm lateral of the midline on the left, across the midline on the right far enough to expose 
the central sinus, and 1.5-2.0mm rostro-caudal. On one bird, GrayGray1516, I removed a larger 
region of outer skull (and subsequently of inner skull, dura, and pia), extending the craniotomy 
roughly 1mm more rostral to allow for a second electrode penetration. 

Because the aperture crossed the midline, I placed the pin laterally offset to the right of 
the craniotomy. With the top layer of skull removed, I marked two fiducial dots: both 0.5mm 
lateral of the Y-sinus, and 1.0 and 1.2mm rostral of the same. 

On the day of recording, I administered the same sequence of urethane injections 
described in Chapter 1. 30 minutes after the final injection, I placed the bird in the stereotax and 
fixed the pin in place. I mounted the electrode and microdrive onto the stereotax, and used the 
coarse vertical adjustment to bring the electrode array near the surface of the inner skull. Under a 
stereomicroscope, I aligned the array with the fiducial dots on the inner skull and then used the 
microdrive to move the array up and away from the skull. I then used a scalpel to remove the 
inner skull as close to the edges of the craniotomy as possible. 

I used two custom-formed tungsten minuten pins to remove the dura and pia. The first is 
a simple 90° turn, the second a 180° hook. The dura has a fine fibrous structure much like 
muscle, making it relatively easy to tear it along the grain in a rostro-caudal direction. Once I had 
made a sufficiently long tear, I was able to retract the dura using one of the pins, or to cut away 
additional portions by holding it with a pin and cutting with a pair of iridectomy shears. As with 
the inner skull, retracting the dura as close to the edges of the craniotomy as possible made 
subsequent operations easier. Removal of the pia was somewhat difficult under the 12X 
magnification of the stereomicroscope. The pia itself is too transparent and too thin to be seen 
even under these conditions, but the smoothness and the presence of blood vessels are useful 
indicators. By contrast, the brain surface below appears white and waxy, and the blood vessels 
are larger and farther between. 

After removing the pia, I placed saline over the craniotomy to keep the tissue from drying 
out. I then used a small forceps to brush crystals of DiI (Invitrogen, catalog #D3911, CAS 
41085-99-8) onto the tip of each electrode wire for postmortem histological reconstruction. I 
advanced the electrode array into the saline using the microdrive and advanced it towards the 
surface of the brain, then removed the saline to clearly see when the electrodes touched the 
surface. When they did, I reset the microdrive depth counter to zero, then continued to advance 
the electrode. 

Once all of the electrode wires had entered brain, I advanced the microdrive roughly 
300µm further before placing electrode gel onto the craniotomy. I spread the gel out to contact 
both the exposed metal of the pin and the brain surface, then added a small amount of saline to 
cover the brain. At this point I moved the stereotax into the sound booth and connected the wires 
for the microdrive and grounding wires through the port. I adjusted the stereotax so that the 
bird’s head was roughly 20cm from the loudspeaker. I then closed the door to the booth. 

When recording with the 16-channel electrode, there is a good chance of getting a single 
unit on at least one of the channels regardless of where the electrode is positioned, making it 
unnecessary to move the electrode to find cells or optimize recording quality. At the beginning of 
the experiment, I moved the electrode down until I saw stimulus-evoked activity on at least one 
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channel. I then waited at least five minutes before beginning to record. After each site, I 
advanced the electrode 100µm and waited another five minutes for the electrode to settle. 

Analysis	  
I performed much of the basic analysis for this experiment in the same manner described 

in Chapter 1, including spike sorting, assessment of responsiveness, and STRF fitting. Spike sort 
quality was generally not as good, most likely because of the lower impedance of the electrodes. 
I computed per-class zscores from equation 1.2 and used a cutoff of  to identify 
potentially responsive units. For each potentially responsive unit, I fit a STRF for each stimulus 
class using STRFLAB’s direct fit algorithm to solve equation 1.18. I assessed predictive power 
in the same way as in Chapter 1: I considered STRFs which predicted at least 1.2 bits/second and 
at least 20% of the response information to be predictive. 

Jackknife-‐bias-‐corrected	  invariance	  calculation	  
Following the method described in Chapter 1, I calculated two invariance metrics for 

each unit. For each of the 10 song stimuli in the protocol, I compared the response to the control 
stimulus 

€ 

rij{ }  with the response to the sfilt or tfilt version of the stimulus, denoted as 

€ 

rij
s{ }  and 

€ 

rij
t{ } , respectively. I will extend this superscript notation, with ‘s’ denoting sfilt stimuli and ‘t’ 

denoting tfilt stimuli, throughout this chapter. The mean PSTH 

€ 

r i  for the control stimulus is 
constructed according to equation 1.3, and the mean responses 

€ 

r i
s  and 

€ 

r i
t  can be calculated in a 

similar fashion. In analogy to equation 1.5 we can similarly construct set of delete-d jackknife 
PSTHs for the sfilt and tfilt responses 
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r idk
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∑  (2.1) 	  
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where 

€ 

qk  is again defined per equation 1.6. 
We can construct jackknife estimates of the correlation coefficients in analogy to 

equation 1.7: 
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(2.3) 	  
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cidk
t = corr ridk,ridk

t( )  (2.4) 	  

Finally, we can compute the estimates 

€ 

ˆ c d
s  and 

€ 

ˆ c d
t , errors   

€ 

 
σ d , and confidence intervals 

€ 

δa  from 
equations 1.12-1.14. 

Modulation	  passband	  power	  ratio	  
To estimate how much degradation of the neuron we should expect, I computed the 

Modulation Transfer Function (MTF) of each STRF (see Chapter 1) and compared it to the 
modulation-domain filtering function used for temporal and spectral degradation. The ratio of the 
power in the passband of the modulation lowpass filter to the total power of the MTF gives a 

! 

z "1.5
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sense of how much the filter should be affected if the linear model is accurate. I called this the 
Modulation Passband Power Ratio, MPPR, denoted by 

€ 

ρ : 

	  

€ 

ρ =

m ω s,ω t( )
ω s ,ω t

∑ M ω s,ω t( )

M ω s,ω t( )
ω s ,ω t

∑
 (2.5) 	  

where 

€ 

m ω s,ω t( )  is the modulation domain filtering function, and  

€ 

M ω s,ω t( ) = FT h f ,t( )( )  is the 
modulation transfer function. 

Results	  
Of the 100 single units, 55 were responsive and had predictive STRFs. Many units were 

substantially unaffected by the spectral (sfilt) filtering. Invariance  ranged roughly from 0.25 
to 0.9. At the high end, units appear to be largely unaffected by the filtering. There is a 
significant, negative relationship between spectral modulation frequency and invariance to 
spectral modulation filtering (Fig. 2.2A). This means that units that are sensitive to high spectral 
modulations are more likely to be affected by the removal of those modulations. The relationship 
is not absolute, though: some cells with sharp spectral modulation qualities are still quite 
invariant to the removal of such modulations. 

Invariance to spectral modulation filtering is also significantly negatively correlated with 
increasing temporal modulation frequency (Fig. 2.2B). Cells with long integration times are 
much more likely to be invariant to spectral modulation filtering. There are substantial 
populations of units with very slow MTFs, all of which have invariance above 0.5. Similarly, the 
cells with temporal frequencies above 70 Hz all have invariance below 0.5. 

In contrast to the spectral results, I see much less invariance to temporal modulation 
filtering: values for invariance  are between 0 and 0.5. Even the very slow cells did not have 
high invariance; in fact, the most invariant cells have temporal modulation frequencies between 
30 and 60Hz (Fig. 2.2D). The temporal invariance is not significantly correlated with either the 
spectral modulation frequency (Fig. 2.2C) or the temporal modulation frequency (Fig. 2.2D). 

Passband	  power	  
The linear STRF model does predict the degree of invariance to modulation filtering. 

STRFs having all of their power in the modulation passband, i.e. with 

€ 

ρ =1, should predict 
exactly the same response with filtering and without, resulting in an invariance 

€ 

ˆ c d =1. STRFs 
having all of their power in the stopband (

€ 

ρ = 0) should predict no response at all and thus an 
invariance 

€ 

ˆ c d = 0 . 
To visualize this, I compared the invariance to spectral and temporal modulation filtering 

for each unit with the spectral and temporal modulation passband power ratio, respectively. The 
results should be quite similar, because the MPPR and the center of mass should be highly 
correlated. This is nearly true for the spectral case, where the MPPR is correlated with the 
spectral modulation center of mass with r=-0.95. The MPPR for temporal filtering is less well 
correlated with the temporal center of mass, r=-0.73. This lower number is may be due to the fact 
that the temporal MPPRs are all so low: if none of the STRFs have much power in the 
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modulation passband, then the MPPR is relatively constant, while the centers of mass have a 
wide range. 

Because of the correlation between the spectral modulation and the spectral MPPR, 
plotting the sfilt invariance against the two gives nearly the same picture (compare Fig. 2.2A 
with Fig. 2.3A). The spectral MPPR correlates roughly as well with the spectral invariance as the 
spectral modulation frequency does: r=0.32 vs. r=0.31. 

With the temporal invariance, however, the arrangement of the corresponding plots is 
somewhat different. As with temporal modulation frequency, there is no correlation between 
temporal MPPR and tfilt invariance, but the relationship between the temporal MPPR and the 
invariance (Fig. 2.3B) is qualitatively different than the relationship between the temporal 
modulation frequency and the invariance (Fig. 2.2D). This difference arises from the imperfect 
correlation between the MPPR and the temporal center of mass. 

Low	  temporal	  invariance	  units	  
The units that had low invariance to temporal modulation filtering have some interesting 

differences. Some neurons, like unit 1497 (Fig. 2.4, middle row), retain substantial 
responsiveness to filtered songs, but have that response smeared out in time. Others, unit 3018 
(Fig. 2.4, bottom row), have their responses virtually abolished by the temporal filtering and 
retain only an onset response. Both of these neurons have low invariance, 0.13 and 0.06, 
respectively. 

Discussion	  
We found that many neurons had substantial invariance to spectral degradation, and that 

this was correlated with the spectral MPPR. For temporal degradation, most neurons were 
significantly degraded, either by having their response abolished, or by having it smeared in 
time. While the correlation between spectral center or MPPR and sfilt invariance is expected, it 
leaves some questions. For one, the trend towards lower invariance with higher modulations or 
lower MPPRs is not absolute: a significant number of units have low invariance despite having 
very broad spectral tuning and very high MPPRs. 

Additionally, the correlation between the temporal modulations and the spectral 
invariance is surprising. This could represent a number of things. It could mean that cells with 
slow integration times are doing computations similar to those covered in Chapter 1, extracting 
slow pitch features. This poses problems, though, because many of these cells exhibit precisely 
the type of sharp spectral tuning that we expect to be degraded by the lowpass modulation 
filtering. Further examination of the exact timing of the responses, and comparison with the 
model predictions, could provide better answers about this. 

The presence of so much invariance to spectral filtering at all is also somewhat 
surprising. In the case of the temporal degradation, the MPPR is entirely equivalent to the linear 
model: the STRF is convolutional in time (LTI), meaning that the Fourier transform is 
multiplicative and thus that absolute temporal modulation phase does not matter, only relative 
phase. In the spectral domain, on the other hand, the STRF is stationary, meaning that the Fourier 
transform does not decompose so neatly. In the spectral domain, that is, the absolute spectral 
phase matters, even though the MTF and MPPR do not account for it. One might expect this 
approximation to cause a deviation from the model in the spectral domain, but in fact the results 
show the opposite, that the temporal domain behaves more strangely. 
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For the spectral domain, one possible explanation would be the absence of out-of-phase 
harmonic stacks. The stacks that we do see are all in cosine phase in the modulation domain, i.e., 
the power peaks at integer multiples of the fundamental. The presence of only one single 
absolute spectral phase could explain why the MPPR, which disregards absolute FM phase, still 
matches the invariance for higher frequency spectral modulations. For lower frequency 
modulations, the phase spectrum is more complicated, because unlike the pitch peaks, the 
formant peaks that these modulations represent are not constrained to have any particular phase. 

Low	  frequency	  temporal	  modulations	  
I chose the spectral and temporal lowpass cutoffs based on the features of the ensemble 

modulation power spectrum (eMPS) for song (Fig. 2.1B). In fact, while the ensemble modulation 
transfer function (eMTF) for the STRFs to song matches the eMPS in many ways, it differs in a 
few crucial ones. Despite the considerable power in the eMPS below 10Hz and extending from 
the origin to 2 cycles/kHz, the eMTFs for areas L, MLD, and CM show very little tuning in this 
region of very slow modulations. 

Accordingly, the measured temporal MPPRs are quite low, roughly between zero and 0.2. 
This low range means that the temporal degradations should, in theory, have affected all cells 
equally: if no modulations in any neuron’s preferred range are present, all neurons will have the 
same nil response. In fact while the range of invariances for the temporal degradation is 0.0-0.5. 
That is, the temporal degradation did affect all of the cells substantially, but the wide range of 
invariances means that it did not affect them all equally. 

While some cells showed more invariance to temporal modulation filtering, there were 
also substantial differences among the responses of cells with low temporal invariance, as show 
in Fig. 2.4. The cell in the bottom row has low invariance because it has its response largely 
abolished. The cell in the middle row still responds, but because the temporal scale is 
substantially changed, the invariance is still low. It is possible that a coherence-based invariance 
metric would capture some similarity between low-frequency response modulations. There could 
be a high correlation between a low-passed version of the spike trains obtained to the unfiltered 
stimulus and the response obtained to the tfilt stimulus. 

In summary, this experiment shows that the linear STRF partially predicts the response of 
cells to spectral modulation filtering, and that many auditory neurons are very resilient to this 
type of processing. Many cells are invariant to spectral degradation, and that performance is well 
predicted by the linear model. In contrast, the effects of filtering in the temporal domain remain 
less clear, and some neurons appear to be more invariant than expected. 

The temporal result is interesting in light of the psychophysics, because the neurons 
appear to be very sensitive to the loss of modulations above 7Hz, well within the range for which 
they are easily detectable for humans (Viemeister, 1979). The timescale for Zebra Finch song is 
somewhat faster, though in theory this should only push the range of easily-detectable 
modulations higher. The relative insensitivity to spectral degradations is somewhat at odds with 
the fine spectral sensitivity shown in behavioral experiments (Cynx, Williams, & Nottebohm, 
1990). 
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Figure 2.1: Modulation Power Spectra of Stimuli. All MPS are computed from spectrogram samples windowed with a 1 second Gaussian 
window. Color axis is log scale. A: MPS of song after lowpass spectral modulation filtering. Ensemble modulation power spectrum (eMPS) 
for 20 zebra finch songs that have been lowpass filtered below 0.6 cycles/kHz. Lowpass cutoff is clearly visible, although some leakage at low 
temporal frequencies is apparent, most likely as a result of the iterative spectrogram inversion process. The high power region between -20 and 
20Hz and 0 and 0.5 cycles/kHz contains formant and syllable transitions, and is well preserved in this case. B: MPS of unfiltered song. eMPS 
for the same 20 zebra finch songs before processing. The formant/syllable region in A is apparent, as is the additional concentration of pitch 
energy around 1.5 cycles/kHz, representing harmonic complexes with a fundamental near 666Hz. There is energy in this region extending past 
10Hz, corresponding to chirped syllables around this pitch. Energy is also present above and below the region, but is restricted to be closer to the 
spectral modulation axis and corresponds to steady notes at other pitches. C: MPS of song after lowpass temporal modulation filtering. eMPS 
for the same 20 zebra finch songs having been lowpass filtered below 7Hz. All of the formant and syllable transitions have been removed, leaving 
a profile in this region corresponding to the average formant across all 20 songs. 
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Figure 2.2: Spectral Modulation Center Frequencies for Single Units Predict Modulation Filtering Invariance. For all four plots, units are 
represented by a small image of their STRF. Modulation center frequencies are computed as the coordinates of the center of mass of the neuron’s 
modulation transfer function. A: Neurons sensitive to high spectral modulation frequencies are less invariant to lowpass spectral filtering. 
The response of neurons with sharp spectral tuning changes when stimuli are filtered to remove sharp spectral features (r=-0.31, p = 0.021). B: 
Neurons sensitive to high temporal modulations are less invariant to lowpass spectral filtering. This result is unexpected: neurons with long 
integration times are significantly more resilient to spectral modulation filtering (r=-0.50, p < 0.001). C: Changes in neural response to lowpass 
temporal filtering are unrelated to the spectral modulation characteristics of the cell. All neurons have their responses degraded by severe 
temporal modulation lowpass filtering, regardless of their spectral characteristics (r=0.192, p=0.16). As mentioned in the results, the temporal 
modulation filtering cutoff of 7Hz is below the response range of the neural ensemble. Despite this, some neurons do retain some information, D: 
Temporal center frequencies do not predict degradation by severe temporal modulation filtering. As in C, the remaining temporal 
modulations fall outside the range of any of the neurons, and the invariance is entirely uncorrelated with the center frequency (r=0.042, p=0.762). 
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Figure 2.3: Spectral MPPR Predicts Modulation Filtering Invariance. A: Neurons with high MPPR to lowpass spectral filtering are more 
invariant. Invariance to spectral filtering is correlated with spectral MPPR (r=.321, p = 0.017). Units are distributed in a very similar fashion to 
Fig. 2.2A. B: MPPR to lowpass temporal filtering is uncorrelated with invariance. Invariance to temporal filtering is uncorrelated with 
temporal MPPR (r=.068, p=0.623). Because temporal MPPR is only partially correlated with temporal modulation frequency for these stimuli, 
the arrangement of the units differs somewhat from Fig. 2.2D. 
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Figure 2.4: Two Single-Units Show Differing Responses to Temporally Filtered Stimuli. Top row: log-power spectrograms of three sounds. 
Middle row: response of unit 1497 to the sounds in the top row, shown as a PSTH. Bottom row: response of unit 3018 to same sounds. A: 
Response to sfilt stimulus. Spectral features of the sounds are smeared, but sharp temporal features are preserved. Both units respond robustly to 
the stimulus with a high degree of phase-locking. B: Response to unfiltered song. No processing was done for this stimulus, and the 
spectrogram shows the full range of spectotemporal features. Both units respond similarly to the sfilt stimulus, with similar spike rates and similar 
phase-locking. C: Response to sfilt stimulus. The spectrogram shows the high degree of temporal smearing, but a few strong, narrowband 
spectral features are visible. Unit 1497 responds much less strongly to this stimulus, but does respond throughout the presentation. Unit 3018, in 
contrast, shows the onset excitation that characterizes most of the units in this study. 
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Chapter	  3	  

Modulation-‐Domain	  Noise	  Reduction	  Using	  
a	  STRF	  Basis.	  

Abstract	  
Individual neurons and ensembles of neurons can create representations of behaviorally relevant 
acoustical signals that are invariant to distortions from propagation or noise. Here, we describe a 
biologically inspired noise-filtering algorithm that can be used to separate song or speech from 
noise. Because the algorithm uses spectrotemporal receptive fields as a bank of model neurons, 
we have demonstrated that the computations performed by (STRFs) can indeed explain noise 
invariance. 

Introduction	  
In this chapter, I will lay out a framework for quasi-real-time noise reduction that 

combines the findings on invariance from Chapter 1 with a broader knowledge of the statistics of 
vocalizations. The modeling work was a collaboration with Tyler Lee, who helped code and test 
the algorithm. 

To show that noise invariance and thus noise filtering can be obtained from a modeling 
implementation of the observed data, we engineered a noise filtering algorithm based on a 
decomposition of the sound by an ensemble of “artificial” neurons described by realistic STRFs. 
This ensemble of artificial neurons can be thought of as a modulation filter bank because the 
response of each neuron quantifies the presence and absence of particular spectro-temporal 
patterns as observed in a spectrogram and, contrary to a frequency filter bank, not necessarily the 
presence or absence of energy at a particular frequency band. A similar decomposition has been 
proposed and used for the efficient processing of speech and other complex signals (Chi,	  Ru,	  &	  
Shamma,	  2005;	  Mesgarani,	  David,	  Fritz,	  &	  Shamma,	  2008;	  Shamma,	  2001). To implement 
noise filtering, we weighted the response of the model neurons to emphasize the representation 
obtained from the synthetic neurons that were most noise-invariant or, equivalently that provided 
the best representation to extract the signal from the noise. These weighted model neural 
responses could then be used to recover the signal from noise by generating a set of time-varying 
frequency gains. 

In creating a noise-reduction algorithm, we are seeking to extract noise-invariant features 
of the vocalizations and use them to perform a reconstruction with improved SNR. In the context 
of invariance, we seek a reconstruction that is invariant to background noise. In other words, the 
goal for constructing a noise-reduction system should simply be that, for inputs consisting of 
signal plus noise, the output should reproduce the signal. 
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Implementation	  

Framework	  
The basic algorithm comprises three pieces: an analysis filter bank, a gain computation stage, 
and finally a synthesis of the final waveform. The system is diagrammed in figure 3.1. 

Analysis	  stage	  

The analysis stage is simply a filter bank. It decomposes the noisy input signal 

€ 

x t( ) , 
sampled at frequency

€ 

fs , into N separate bands 

€ 

y j t( ) , each also sampled at frequency 

€ 

fs . In our 
reference implementation, we use 62 Hz band spacing with a Gaussian frequency profile. This 
profile allows for exact reconstruction of the input signal by adding the bands together. 

Gain	  stage	  
The gain stage is by far the most complicated. The algorithm computes a time-varying 

gain between 0 and 1 for each of the N bands. The exact form of this algorithm is described in 
the next section, but the gain for each band is based on the recent history of the signals in all of 
the bands. The computed gains are then applied to their respective bands, attenuating the signal 
at certain frequencies. 

Synthesis	  stage	  
The synthesis stage combines these N gain-modified time-domain band signals to create 

the output waveform sampled at frequency 

€ 

fs . In our reference implementation, we use simple 
additive mixing, which, as previously mentioned, exactly reconstructs the original signal when 
the bands are Gaussian and all of the gains are set to 1. 

Gain	  stage	  (details)	  
The framework described above is relatively simple, and only differs in small part from 

previous algorithms. The primary difference is the algorithm used to compute the gains. 

STRF-‐based	  gains	  
Our algorithm starts with a time-frequency representation of the signal. For prototyping 

we have used existing routines to compute a log-power spectrogram 

€ 

S f ,t( ) sampled at 

€ 

fs =1000Hz , per equations 1.15-17. In practice, we could also compute an equivalent 
representation directly from the N band signals. This would involve squaring each signal, low-
pass filtering below 

€ 

ft
2 , downsampling to 

€ 

ft , and taking the log. This latter method is likely to be 
the best choice for an real-time/on-line implementation. 
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We then convolve this time-frequency representation separately along the time axis with 
M STRFs 

€ 

hi f ,τ( ) , that is, time-frequency filters: 

	  

€ 

ai t( ) = hi f ,τ( )∗S f ,t( )	   (3.1) 	  

	  

€ 

a t( ) = ai t( )[ ]	   	  

	  

€ 

i∈ 1,M[ ] 	   	  

Each STRF has N bands, P time delays, and is sampled in time at 

€ 

ft . The output from this stage, 
called the “activations” 

€ 

a t( ), has M channels and is sampled at 

€ 

ft . This vector represents the 
projection of the time-frequency stimulus into a “STRF domain”, which is intended to 
approximate the neural representation of sounds. 

In this experiment, we used STRFs constructed as the product of two Gabor functions: 

	  

€ 

h f ,τ( ) =G f( )⋅ H τ( )

	  

(3.2) 	  

	  

€ 

G( f ) = Af e
−0.5 f − f0( ) /σ f[ ] 2 ⋅ cos(2π⋅ Ω f ( f − f0) + φ f )

	  

	  

	  

€ 

H(τ) = Ate
−0.5 τ −τ 0( ) /σ t[ ] 2 ⋅ cos(2π⋅ Ωt (τ −τ 0) + φt ) 	   	  

The parameters of these Gabor functions (e.g. for time: 

€ 

τ0, the temporal latency; , the 
temporal bandwidth; t! , the best temporal modulation frequency; and 

€ 

φt , the temporal phase) 
were randomly chosen using a uniform distribution over the range of those found in area NCM 
(Chapter 1) and Field L (Woolley,	  Gill,	  Fremouw,	  &	  Theunissen,	  2009). The number of model 
neurons, M, was not found to be critical as long as the population of STRFs sufficiently tiled the 
relevant modulation space. M was set to be 140 for the results shown. 

For each of the N STRFs, we use a constant weight 

€ 

di , representing an estimate of how 
important the ith STRF is, represented by a vector 

€ 

d = di[ ] . For the purposes of reconstruction, 
the weights are constant and fixed beforehand. The computation of the weights is covered in the 
next section. 

We then construct the time-varying gains 

€ 

g t( ) = g j t( )[ ] by first multiplying the activation 

€ 

ai t( ) by the importance 

€ 

di , then projecting back into the frequency domain using a time-
frequency kernel 

€ 

ψ i f ,τ( ) : 

	  

€ 

g j t( ) = f diai t + P( )∗ψ i f j ,τ( )
i=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

	  

(3.3) 	  

The offset term P is the number of STRF delays, and enforces a causality constraint on the 
system.The function f was chosen to be the logistic function in order to limit the gains to values 
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between 0 and 1. For our reference implementation, we have chosen the form of the 

€ 

ψ i to be 
frequency-domain only, and to further be the frequency marginals of the STRFs: 
	  

€ 

ψ i f ,τ( ) =ψ i f( ) = 1
P hi f ,t( )

ʹ′ τ =1

P

∑

	  

(3.4) 	  

Using these gains 

€ 

g j t( ), we then synthesized a processed signal 

€ 

ˆ x (t) : 

	  

€ 

ˆ x (t) = g j (t)⋅ y j (t)
j =1

N

∑

	  

(3.5) 	  

where yj (t) is the narrow-band signal from the frequency filter j obtained in the time-frequency 
decomposition of the song + noise stimulus, x(t) .  

We learned the weights 

€ 

di , was by minimizing the squared error 

€ 

e2(t) = (x(t) − ˆ x (t))2  
through gradient descent. We generated training stimuli x(t)  by summing together a 1.5 s song 
clip s(t)  and a randomly selected chunk n(t)  of either ml-noise or zebra finch colony noise of 
the same duration. To match the experimental results, both the song s(t) , and the noise n(t) , 
were first high-pass filtered above 250 Hz and low-pass filtered below 8 kHz, and then 
resampled to a sampling rate of 16 kHz. The song and noise were weighted to obtain a SNR of 3 
dB, although similar results were found with lower SNR's.  

We trained the system on all instances of x(t) , and determined weights 

€ 

di  by averaging 
across values obtained through jack-knifing across this data set ten times with 10% of the data 
held out as an early stopping set. 

We assessed noise reduction performance with by validating on a novel song in novel 
noise. We computed the cross-correlation between the estimate and the clean signal in the log 
spectrogram domain. We then took the ratio of this cross-correlation and the value obtained prior 
to attempting to de-noise the stimulus to obtain a performance ratio, providing a lower bound of 
1. We then compared our algorithm to three other spectral subtraction noise algorithms: the 
optimal Wiener filter (OWF), a variable gain algorithm patented by Sonic Innovations (SINR) 
and the ideal binary mask (IBM). The optimal Wiener filter is a frequency filter whose static 
gain depends solely of the ratio of the power spectrum of the signal and signal + noise. 

In our implementation, the Wiener filter was constructed using the frequency power 
spectrum of signal and noise from the training set and then applied to a stimulus from the testing 
set (of the same class). 

The spectral subtraction algorithm for Sonic Innovations uses a time variable gain just as 
in our implementation. Also, as in our implementation, the analysis step for estimating this gain 
was based on the log of the amplitude of the Fourier components. However, the gain function 
itself was estimated not from a modulation filter bank but estimating the statistical properties of 
the envelope of the signal and noise in each frequency band (US Patent 6,357,395 B1). We used 
a Matlab implementation of the SINR algorithm provided to us by Dr. William Woods of 
Starkey Hearing Research Center, Berkeley, CA. Optimal parameters for the level of noise 
reduction and the estimation of the noise envelope for that algorithm were also obtained on the 
training signal and noise stimuli and the performance was cross-validated with the test stimuli. 
The IBM procedure used a zero-one mask applied to the sounds in the spectrogram domain. The 
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mask is adapted to specific signals by setting an amplitude threshold. Binary masks require prior 
knowledge of the desired signal and thus should be seen as an approximate upper bound on the 
potential performance of general noise reduction algorithms. Although these simulations are far 
from comprehensive, they allowed us to compare our algorithm to a lower bound (the noisy 
stimulus), to optimal classical approaches for Gaussian distributed signals (OWF), to a very 
recent state-of-the-art algorithm (SINR), and to an upper bound (IBM). 

Results	  

Noise	  reduction	  performance	  
We assessed the performance of our algorithm by comparing it to 3 other noise reduction 

schemes: the optimal classical Wiener filter for stationary Gaussian signals (OWF), a state-of-
the-art spectral subtraction algorithm (SINR), and the upper bound obtained by an ideal binary 
mask (IBM). For all cases, we used recordings of undirected zebra finch song as the foreground 
signal. For the background noise, we used either ml noise, or recordings made in our breeding 
colony room. 

We measured the performance of each algorithm using crosscorrelation (Pearson’s r) in 
the log-power spectrogram domain. As a baseline, we computed the correlation between the 
signal and the signal + noise. Our presumption is that no noise filtering algorithm should do 
worse than the noisy signal. 

The optimal Wiener filter is a frequency filter whose static gain depends solely of the 
ratio of the power spectrum of the signal and signal + noise. In a similar approach to ours, the 
SINR method involves varying the gain in the spectrographic domain while taking into account 
the structure of noise and signal envelope. In the SINR, the estimation of this variable gain, 
however, is not based on a biologically inspired analysis of the sounds but instead on engineering 
and statistical principles. The IBM procedure uses a zero-one mask applied to the sounds in the 
spectrogram domain. Because the binary mask requires prior knowledge of the desired signal, it 
is useful only as an upper limit of performance. 

In all cases, our algorithm gave significant improvement over the noisy signal 
(performance ratios greater than 1, Fig.3.2A). Qualitative listening to the reconstructed signals, 
we verified that the algorithm introduced minimal distortion. Although it was not explicitly a 
goal, the algorithm also did an excellent job of removing broadband, low-frequency noise from 
the ventilation system in our colony room recordings. 

For the case of song embedded in ml noise, our algorithm performed significantly better 
than either the classical Wiener filter or the SINR (Fig. 3.2A). Thus, for some background 
signals, our simple implementation outperforms the state-of-the-art. Listening to the 
reconstructed songs, we verified that the algorithm does remove much of the background noise, 
while keeping good sound quality. 

When the song was embedded in colony noise, our algorithm performed similarly to the 
SINR algorithm but worse than the OWF (Fig 3.2A). From listening to the reconstructed signals, 
the quality is still good, but we found that some vocalizations are present in the gaps in the 
foreground song. The OWF has static spectral gain, while our algorithm has static modulation 
domain gains once trained. This may mean that, because the modulation statistics of the vocal 
background are identical to the foreground song, our algorithm applies less attenuation to them 
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than the OWF. Explicit detection of silences could improve this, as could a level-dependent gain 
like the one present in the SINR algorithm. 

While our algorithm does not perform nearly as well as the IBM, visual inspection shows 
that we obtained a spectrographic filtering that is similar to the one that one would obtain from a 
preset binary mask algorithm (Fig 3.2C bottom). 

Discussion	  
We have shown that a spectro-temporal basis can be used to remove background noise 

from speech signals, but we are not the first to suggest either a time-frequency or a modulation 
spectrum basis for speech identification and processing or for noise reduction. 

Comparison	  with	  other	  algorithms	  
All of the noise-reduction models we will treat here fall into the category of spectral 

subtraction algorithms (Boll,	  1979). As defined by Boll, this involves computing an 
approximate noise spectrum and then subtracting it from the noisy speech spectrum. All spectral 
subtraction/analysis-synthesis methods use a gain computation stage. The crucial difference in 
ours is in the gain compuatation. 

The simplest form of this sort of stream separation is a binary mask, with ones and zeros 
representing signal and noise, respectively. This can be performed in the time domain alone, but 
it is commonly extended to the time-frequency domain as well (Brown	  &	  Cooke,	  1994). The 
basic challenge involves detecting which temporal and spectral regions should be masked and 
which should be unmasked. Wang et. al. used a pitch tracker to perform this task, detecting 
temporal regions of signal from the presence of harmonic pitch and spectral regions from the 
harmonics of the fundamental (Hu	  &	  Wang,	  2004). Our noise reduction algorithm does not 
compute an explicit harmonic pitch or pitch contour, but pitch contours fall within the 
spectrotemporal modulation space tiled by our receptive fields. Wang et. al. have remarked in 
their work that detection of non-pitchy vocalization sounds still presents a significant challenge 
when constructing this sort of algorithm; our approach in principle detects a wider variety of 
speech sounds, including pitch but also including broad spectral modulations corresponding to 
formants and sharp, broadband features involved in syllable boundaries and consonants. 

One particularly successful speech denoising algorithm is implemented in hearing aids by 
Sonic Innovations, Inc. (Sonic	  Innovations,	  Inc.,	  2000). The primary advance is that rather than 
use binary spectrotemporal masking, it explicitly estimates the SNR and uses this to compute a 
variable gain. This performs two tasks simultaneously. First, it accounts for uncertainty about the 
actual presence of speech, smoothly lowering the gain in a band according to the amount of noise 
it contains. The second important task is that it leaves some of the original signal intact even 
when noise is present; the presence of even pure white noise in spectral gaps has been shown to 
improve speech intelligibility over the presence of silence. Our noise rejection algorithm 
resembles the Sonic Innovations algorithm in many ways, employing a similar analysis-gain-
synthesis cascade. The primary difference in principle, however, is that we use information from 
all bands to compute the individual band gains. 

Perhaps the most similar algorithm to ours is the basis-decomposition method of 
Smaragdis et. al. (Smaragdis,	  2007). Using NMF to perform blind source separation, the author 
found features in human speech that closely resemble the modulation features we have 
previously observed. Unlike Smaragdis’ algorithm, we use a basis set that tiles the observed 
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space of neural tuning rather than using features learned from a limited sample of utterances. In 
principle, though, our algorithm performs a very similar computation in a way that is feasible for 
real-time systems. 

Although it explicitly performs noise reduction based on the spectrogram, our method 
implicitly works in the modulation power domain, by means of the de-facto reduced modulation 
power space spanned by the STRFs. As such, it draws on this group’s work on modulations but 
also on the extensive work done by Shamma’s group, both on the importance of spectrotemporal 
modulations and the use of the STRF basis {Elhilali:2008eo}. 

Performance	  measurement	  
In order to assess the performance of any noise reduction algorithm, one first needs to 

determine what sort of errors are important. For the initial work, we have used the correlation in 
the spectrogram domain, but this is by no means the only option.	  

Pyschophysical	  assessment	  
The gold standard for testing performance of any speech noise reduction algorithm is to 

have human subjects listen to noise-corrupted sounds and compare some metric of their 
comprehension with and without the algorithm. The drawback is that this process is extremely 
time-consuming and expensive compared to automated metrics. Additionally, while this lab is set 
up to perform this sort of psychophysical experiment, many signal processing labs are not, 
meaning that only very promising algorithms are ever tested with human listeners, and then only 
long after they are originally described. 

Automatic	  speech	  recognition	  
A faster, cheaper, more accessible alternative to a full psychophysical test is to replace 

the human listener with an automatic speech recognition (ASR) system. Because it takes 
linguistic factors into account, an ASR method can provide a better model of comprehension. 
This method also has the advantage of being easy to standardize across many different 
experimenters. At the same time, this method is more than merely a poor-man’s psychophysical 
test: improved preprocessing for ASRs is an important application for noise reduction algorithms 
in its own right.  

Ad	  hoc	  metrics	  
Besides the two previous metrics, there are a number of simpler ways to measure 

performance. I am calling these methods ad hoc, because while they are sensible from a signal 
processing perspective, there is no guarantee that they represent the actual quality for human or 
machine listeners. A reasonable compromise for using any of these ad hoc metrics is to calibrate 
them against the gold standard of psychophysics. Whatever metric gives best accordance with 
the psychophysics could then be used for fast training and validation of new routines. 

There are two decisions involved in choosing an ad hoc metric: the domain of the signal, 
and the form of the error. By domain, I simply mean the representation of the signals, e.g. time-
domain, spectrogram, cochleogram, etc. 

The simplest choice for the stimulus representation is the time domain, i.e., the sound-
pressure waveform. This has the advantage that it is guaranteed to contain all of the information 
in the waveform. It will, however, represent some features that are imperceptible to listeners 
(EHMER,	  1959) and some that are perceptible but irrelevant to intelligibility (Elliott	  &	  
Theunissen,	  2009). 



	   	   51 

One solution to the issues with the time domain is to compute a perceptual representation 
of the various sounds. A spectrogram, or log spectrogram, is a reasonable first approximation. 
Further transformations, for instance a representation of the auditory nerve fiber bandwidths like 
the mel or Bark transformations of the frequency scale, could also be useful. Spectral loudness 
correction, like the equal loudness correction found in Hermansky’s PLP framework 
(Hermansky,	  1990), may also help: high-frequency bands have very low absolute power, but 
can still have reasonable SNR and are important to listener performance. Besides spectrographic 
representations, explicitly neural models of perception, such as a cochleogram (Lyon,	  1982) or 
model of auditory nerve responses (Patterson	  et	  al.,	  1992), would fall under this rubric. 

All perceptual representations address the primary problem with the time-domain 
representation, because they emphasize the perceptible features of the sound. The forms differ in 
how much imperceptible and irrelevant information is suppressed. They may also represent 
features in terms of perceptual salience rather than simple power, as mentioned for the equal 
loudness curve above, or in terms of cross-band masking, as represented in the MP3 compression 
algorithm. 

The primary problem with any of the perceptual metrics is that they may eliminate 
perceptible features. Nearly all of the aforementioned transformations, for instance, immediately 
take spectral amplitude and discard phase; only cochleograms or neurograms retain any phase 
information. Other features could also, in principle, be lost. 

Having chosen a domain for the signal, the next task is to choose a form for the error. The 
advantages and drawbacks of each are not as clear as for our choice of the signal domain. Any 
decision would best be handled by comparing the performance to a standard like human listener 
comprehension. 

Far and away the simplest error form is the correlation coefficient (Pearson’s r). By 
extension, we could also use the coherence. Perhaps the most tractable metric is the mean 
squared error. This metric is easy to implement for fitting weights by gradient descent. The most 
subtle form is a computation of the SNR. A priori this seems likely to be the best fit to the 
perceptual data, but could make computation of a gradient difficult. 

Human	  speech	  
For our initial tests, we have used zebra finch song and either synthetic background noise 

(ML noise), or recordings of colony noise. Regardless of what error metric we choose, creating a 
system that performs well on human speech requires realistic recordings both of speech and of 
background noise both for training and for testing. 

Many corpora of speech sounds are available for testing and training speech recognition 
systems and for performing psychophysical tasks. Most focus either on general recognition of 
natural speech (TIMIT), on simplified speech (Iowa corpus), or on specific tasks like recognition 
of spoken numbers (TIDIGITS). As such, these corpora do not address background noise at all, 
and many, like the Iowa corpus, do not represent natural speech accents or prosody. 

Two corpora, however, show special promise for this application. The most applicable is 
COSINE, COnversational Speech In Noisy Environments, and is more explicitly tailored for 
measuring speech-in-noise performance. This corpus contains multiple simultaneous microphone 
recordings of quasi-natural conversations in a variety of noisy natural environments. It is 
available free from the University of Washington’s website: http://ssli.ee.washington.edu/cosine/ 

The COSINE corpus would be especially useful because it contains clear recordings, 
noisy recordings, and transcripts of the same recordings from multiple positions. Specifically, 
each talker wore both a throat mic and a “close-talking” headset mic, the combination of which 
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provide recordings with a high gain for the talker relative to the background. Additionally, each 
talker wore a shoulder-mounted mic and a four-microphone array on their chest, the former 
giving omnidirecitonal recordings and the second giving directional recordings for positional 
recordings. 

The second major corpus for this purpose is the ICSI Meeting Recorder project corpus, a 
high-quality corpus from a major speech-processing group: 
http://www.icsi.berkeley.edu/Speech/mr/ 

The Meeting Recorder corpus is the available via subscription to the UPenn Language 
Data Consortium, http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004T04 

Like COSINE, The Meeting Recorder corpus contains simultaneous, multi-microphone 
recordings of multiple talkers, with transcription. Recordings were made from headset mics and 
from ambient, tabletop mics. The corpus also contains measurements of the room acoustics. 
Unlike the COSINE project, though, the context is specifically meetings, is indoors and from 
only one room. 

System	  modifications	  
We have a number of avenues available to improve the system. 

Choice	  of	  STRF	  basis	  
A crucial question here is what STRF basis should be used to perform reconstruction/de-

noising. For the tests so far, we have used synthetic, time-frequency-separable Gabor filters, but 
a number of other options present themselves. Many of these are in fact explicitly nonseparable, 
which could improve noise reduction. Slow FM sweeps are a major component both of birdsong 
and human speech, and the decomposition of (Smaragdis,	  2007) clearly shows a number of this 
sort of feature. 

Because our lab has a large corpus of STRFs computed from birdsong, we could use this 
exact set as the basis for the decomposition when working with song. The main issue here is 
completeness: there is no guarantee that this corpus samples the space efficiently enough to give 
optimal reconstruction. We also cannot easily extend it to process human speech because of the 
quantitative differences in the modulation power spectrum of those two classes of sound. 
Although all animal vocalizations can be expected to show the qualitative segregation of features 
to the regions near the spectral and temporal modulation axes, their exact positions will differ. 
Zebra finch pitch, for instance, tends to fall in the 400Hz range (

€ 

Ω f ≈ 2.2 /kHz ), while human 
males often have fundamental pitch well below 200Hz (

€ 

Ω f > 5 /kHz). The formants, too, are 
heavily influenced by vocal tract length (Taylor	  &	  Reby,	  2010). As vocal tract length is more 
than an order of magnitude different between the two species, somewhat different resonances can 
be expected. Syllable rate, too, differs: finch syllables tend to come at a rate of roughly 10/s, 
while that rate in human speech is more akin to formant transitions, with syllables coming at 2-
3/s. 

A solution to this problem comes from the use of a set of synthetic STRFs with similar 
properties. For instance, we could define a region of the modulation power domain and 
synthesize STRFs that tile it. If we define a scaling transformation between the average MPS of 
human speech and ZF song, we could simply scale the tilling found in finches. We could also 
simply evenly tile this analogous region of modulation power space. 

One can also choose a STRF basis based on the statistical structure of the desired 
stimulus. For instance, the STRFs could be synthetic but, instead of reproducing the modulation 
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transfer functions of realistic neurons, they could instead be tuned to the portions of the 
modulation spectrum where the stimulus has power. 

Finally, we do not have to choose a subspace for the STRFs a priori. If our STRF basis 
tiles the entirety of some space, again e.g. the allowed region of modulation power space, then 
training the importance weights  indicate what region of said space is important for 
reconstruction. We expect that the weights for some combined domain and form of the error 
should reflect the observed physiological tuning, although that is in itself an experiment.  

Finally, we can view the STRFs as a basis set for the stimulus, and choose them based on 
some optimal reconstruction constraint. For instance, the basis set used by Smaragdis would fall 
in this category. Another possible choice would be to train a convolutional basis set, with a 
generative formulation identical to Smaragdis or to the convolutional movie basis of Olshausen 
(Olshausen,	  2002), and train the fields based on a sparsity constraint. The most extreme version 
of this approach would involve training the STRF set in conjunction with the importance 
weighting. 

All of the above methods rely on predetermined STRF kernels. In principle, however, it 
may be possible to fit the STRFs as part of the optimization procedure. The feasibility of this 
depends heavily upon the changes that this makes to the calculation of the gradient; our current 
system has the gradient available in closed-form, but this change could break that condition. 

Choice	  of	  output	  kernel	  
Our current system performs reconstruction by projecting back into the gain space 

through the use of frequency-only kernels. As is represented in equation 3.2, the kernel can in 
principle also have a temporal component. An obvious choice then is to simply use the STRFs 
themselves, whether separable or not. 

Silence	  detection	  
We may also be able to improve our algorithm by incorporating an explicit silence 

detector. The performance measures in figure 3.2A indicate that while our algorithm outperforms 
both the Sonic Innovations algorithm and the optimal Weiner filter when the background noise is 
ml noise, the OWF performs better with a background of colony noise and the Sonic Innovations 
algorithm is the same. Although we would need to replicate this finding for human speech, it is 
not entirely surprising: ml noise, although it overlaps with zebra finch song in the modulation 
domain, is less similar to it than the colony background. With the colony noise, our system is 
effectively faced with a poorly-determined problem: provided that it identifies a sound as a 
vocalization, does that sound come from the foreground or the background? 

Creating an explicit representation of the gaps in the foreground signal, and reducing all 
of the gains during them, would help with this issue. Close examination of the bottom (gain) 
panels of Figure 3.2C and D suggests that this is indeed one of the problems for our algorithm 
when dealing with background voices. 

Implications	  
Our demonstration of the noise-invariance of spectrotemporal feature responses has 

allowed us to improve upon the state of the art in noise reduction. Background noise, especially 
from many voices, is a major problem for hearing aid wearers: intrusion of the background can 
interfere with intelligibility, and worse, many wearers find the output to be so unpleasant in 
noisy surroundings that they find it preferable to turn off the hearing aid. Clearly, improving 
intelligibility is a major goal for such systems, but even failing that, improving the pleasantness 
of the signal would improve the intelligibility in practice. 

! 

d
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The main roadblock for hearing aids is the speed at which our algorithm can work. 
Delays above 80ms are unacceptable in practice, and our STRF basis alone requires 100ms 
delays. Filter delays and other computational overhead mean that practical feature detection 
needs to closer to 10ms. Our most invariant STRFs for finch song (Chapter 1) look for 
modulations in the range 

€ 

50Hz <Ωt < 80Hz . Human syllable and formant transitions are much 
slower, though pitch transitions are faster than the formants. 

One possible use for a spectrotemporal basis in fast computation, then, is to compute a 
slower state variable for the faster system. For instance, power detected by slow pitchy STRF 
features could indicate simply the presence or absence of human speech. Fast features could still 
be used for processing, effectively suppressing fast transitions that are not broadband. 

These stringent speed requirements in hearing aids are somewhat relaxed with 
telecommunications systems, where delays greater than one second are acceptable. Used in a 
cellular handset, this technology could perform background noise reduction, resulting in better 
call quality in a noisy environment. 

Another appealing potential application is in improving the preprocessing stage in ASR 
systems. Current algorithms are almost exclusively based on the cepstrum. As discussed in the 
introduction, the cepstrum does a very good job of taking the spectral modulations into account, 
but does not represent the interdependency of spectral and temporal modulations. Much of the 
success of such systems lies in the combination of the cepstral features with an explicit 
representation of the sequential structure inherent in the language (Gold	  &	  Morgan,	  2000). 
Modern ASR systems do take temporal dependencies into account, but without taking the 
nonseparability of modulation power into account. 

Two primary types of temporal information are commonly used in these ASRs. The first 
is the delta cepstrum, which takes low-order differences among the series of cepstral coefficients 
(Gold	  &	  Morgan,	  2000;	  2000). This yields a representation of the high-frequency temporal 
information in the signal, which is only important for the lowest cepstral coefficients. The other 
temporal representation is the modulation spectrogram concept (Kingsbury,	  1998), which is 
incorporated into the more recent RASTA-based algorithms. This causes an error in the opposite 
direction, smoothing out the high-frequency information for all frequencies. Low-frequency 
information is important at all frequencies, and it is important in all cepstral coefficients; but 
information about fast transitions present in consonants will be lost by this low-pass temporal 
filtering. 

Because our algorithm accounts for the interdependence of spectral and temporal 
modulations, it is possible that using it as a preprocessor would separate out two different 
sources of temporal variability. If applied as a preprocessing step, it could account for acoustic 
dependencies that are intrinsic to vocal production. This might remove variability in the input 
signal, allowing the linguistic model to fill in regions where the acoustic information is more 
uncertain. 

In conclusion, our work shows promise for a number of fields. Both in the model and in 
the biological system, given a complete modulation filter bank, the importance weights for a 
given signal and noise could be learned quickly through supervised learning. Moreover, after 
learning, the algorithm can easily be implemented in real-time with minimal delay.  We therefore 
propose that this noise filtering approach could be feasible both in engineering and clinical 
applications.
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Figure 
3.1. Invariant Representations and Noise Reduction. We implemented a biologically inspired noise-filtering algorithm using an 
analysis/synthesis paradigm (top row) where the synthesis step is based on a STRF filter bank decomposition. The bottom row shows the model 
neural responses obtained from a sound (spectrogram of noise-corrupted song) using the filter bank of biologically realistic STRFs. These 
responses are then weighed optimally with weights d1,..,dM to select the combination of responses that are most noise-invariant. The weighted 
responses are then transformed into frequency space by multiplying the weighted responses by the frequency marginal of the corresponding 
STRF (color-matched on the figure) to obtain gains as a function of frequency. The top row illustrates how these time-varying frequency gains 
can then be applied to a decomposition of the sound into frequency channels allowing for the synthesis step and an estimate of the clean signal. 
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Figure 3.2. Noise filtering with a modulation filter bank. A. Performance of three noise reduction algorithms (STRF, OWF, SINR) and lower 
and upper bounds (Stim, IBM). The performance ratio (y-axis) depicts the improvement in noise levels over the noise-corrupted signal, as 
measured by the cross-correlation in the log spectrogram domain. On the x-axis are the models we have tested, where “Stim” is the noise-
corrupted signal, “STRF” is the model presented here, “OWF” is the optimal Wiener filter, “SINR” is a spectral subtraction algorithm similar to 
STRF but based on engineering constructs, and “IBM” is an ideal binary mask. B) The 8 most heavily weighted STRFs. C) Spectrograms of the 
signal masked with noise from the zebra finch colony, the clean zebra finch song, and our signal reconstruction, followed by the time-frequency 
gains. D) Same as C but for modulation-limited noise. 
 



	   	   57 

Epilogue	  
Given that the cepstrum is the mainstay of modern speech processing and that the MPS 

augments it with important information, my research in neurosciences and signal processing  
shows that it is possible to improve our speech processing algorithms. The spectrogram and the 
cepstrum are important because they represent intrinsic statistical dependencies in the vocal 
signal. The modulation power spectrums captures additional dependencies in natural acoustical 
objects that improve this type of processing in a simple, powerful manner. 

The MPS (and the underlying time-frequency representation of sounds by the 
spectrogram) is of course, not the be-all and end-all of perception. We know that this 
representation, although complete, encodes particular acoustical features potentially very 
important for perception in a dense and non-linear fashion.. For instance, the timbre of a 
synthetic harmonic structure depends upon the relative temporal phase of the constituent tones 
(PATTERSON, 1987). While this information is recoverable in the spectrogram (and the 
complete complex MPS), it is in a form that is not easily interpretable or, equivalently, linearly 
related to perception or neural properties.  Thus alternative time-frequency representations that 
more explicitly represent such phase information might be used in the future to further 
understand our perception of auditory objects and its neural correlate.  For example Gardner and 
colleagues (Gardner & Magnasco, 2005) have proposed a Hilbert-transform-based which 
represents amplitude and phase more explicitly. Future work might thus also investigate how 
perceptual invariance and neural invariance are affected by filtering (or other forms of 
transformations) in other representations of sounds. 
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