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ABSTRACT OF THE DISSERTATION 

 

An Integrative Population and Landscape Genomic Approach to Conservation of a Threatened 

California Amphibian at Multiple Spatial Scales 

 

by 

 

Kevin Michael Neal 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2019 

Professor Howard Bradley Shaffer, Chair 

 

Amphibians are threatened world-wide, and due to the elusive, seasonal, and often nocturnal 

habits of adults, biological assessments of amphibian species are often best conducted via genetic 

analysis of easily-sampled pond-dwelling larvae. Genetic analysis of amphibian species can 

benefit their conservation in several ways, including identification of evolutionary lineages and 

subpopulations as fundamental units of conservation, genetic assessment of demography and 

diversity, and inference of patterns of gene flow among populations and how patterns are 

affected by environmental variation. In this dissertation I elucidated the evolutionary 

relationships and population genetic status of a threatened California amphibian (Spea 

hammondii) at multiple spatial scales using a combination of genetic, genomic, and 

environmental data. Chapter one utilized limited genetic data to determine phylogenetic 
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relationships of Spea species and used environmental niche modeling to examine ecological 

differentiation between two allopatric lineages identified within S. hammondii. Chapter two took 

advantage of a newer genomic-scale dataset of thousands of SNP markers to look at fine-scale 

patterns of genetic variation among natural and artificial S. hammondii ponds in a highly 

urbanized region of Southern California. Chapter three also made use of thousands of markers to 

validate species-level relationships in Spea and used the added genomic resolution to examine 

relationships within and among genetic clusters and quantified the potential impacts of 

urbanization on functional genetic connectivity. Broadly, I found that the nominal taxon S. 

hammondii likely comprises two species. Populations within each species were highly 

differentiated from one another and had exceptionally low effective population sizes, such that 

each species lacks sufficient adaptive potential to thrive without intervention. Overall, this 

dissertation applied a suite of phylogenetic, population genomic, and landscape genomic tools to 

analyze patterns of genetic variation in S. hammondii to guide ongoing and future conservation 

efforts. 
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Chapter 1: Genetic structure and environmental niche modeling confirm two 

evolutionary and conservation units within the western spadefoot (Spea 

hammondii) 

 

Full citation: 

Neal, K. M., Johnson, B. B., & Shaffer, H. B. (2018). Genetic structure and environmental niche 

modeling confirm two evolutionary and conservation units within the western spadefoot 

(Spea hammondii). Conservation Genetics, 19(4), 937–946. doi: 10.1007/s10592-018-

1066-7 

Abstract 

The western spadefoot (Spea hammondii) is a Species of Special Concern in California and is 

now under review by the U.S. Fish and Wildlife Service for listing under the Endangered Species 

Act. We delineated potential conservation units within S. hammondii by analyzing spatial genetic 

structure across the species’ range using five nuclear and one mitochondrial loci. For both 

nuclear and mitochondrial markers we found that S. hammondii consists of two genetically 

distinct, allopatric clusters divided by the Transverse Ranges. To corroborate the northern and 

southern genetic clusters as conservation units from an ecological perspective, we applied a 

niche identity test to environmental niche models of the two groups. We found that the niche 

models of the northern and southern clusters were significantly different, suggesting they may be 

ecologically non-exchangeable. Given our demonstration of significant genetic and ecological 
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differentiation between allopatric clusters of S. hammondii, we recommend that ongoing 

conservation efforts consider each as a separate unit with potentially unique management needs. 
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Introduction 

 Cataloging the Earth’s biodiversity is of critical importance in our era of increasing 

extinction rates and rapid global change. The concept of evolutionarily significant units (ESUs) 

was pioneered as a way to pragmatically describe and catalog independently-evolving lineages 

below the nominal species level that capture the important evolutionary processes and outcomes 

of a species’ history. Under the regulatory framework of the US Endangered Species Act, 

Distinct Population Segments (DPSs) often fulfill the same role and can be a powerful tool for 

protecting key elements of within-species vertebrate diversity. One of the limitations of both 

these approaches is that neutral genetic markers used in identifying ESUs fail to explicitly 

account for functional, environmental, or ecological differences among cryptic lineages, yet 

these facets of within-species diversity are of great consequence to evolution and conservation 

(Crandall et al. 2000; Fraser and Bernatchez 2001; Moritz et al. 2002; May et al. 2011). To 

incorporate these potential ecological differences into the identification of intraspecific 

conservation units, genetic analysis can be paired with environmental niche modeling (ENM) to 

identify genetically unique lineages that differ in ecological response to environmental variation 

and change (Rissler and Apodaca 2007; McCormack et al. 2010; May et al. 2011; Kalkvik et al. 

2012; Fontanella et al. 2012; Hoisington-Lopez et al. 2012; Gutiérrez-Tapia and Palma 2016; 

Castellanos-Morales et al. 2016; Ikeda et al. 2017).  

 North American spadefoots of the genus Spea are an appealing system for studies of 

cryptic genetic and ecological diversity. The four nominal Spea species have geographic 

distributions that cover vast regions of western North America (Fig. 1.1), despite their life 

histories tending toward philopatry of ephemeral breeding pools throughout often xeric ranges 

(Buseck et al. 2005). In addition, spadefoots are unique among North American amphibians in 
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their ability to dig their own underground retreats. Combined with their apparent philopatry for 

relatively limited breeding sites over much of their range, Spea would seemingly have a high 

potential for geographically localized lineage diversification that is at odds with their current 

range sizes and lack of recognized within-species taxonomic diversity. To date, two phylogenetic 

studies using allozymes (Wiens and Titus 1991) and mitochondrial DNA (Garcı́a-Parı́s et al. 

2003) each recovered apparent non-monophyly within nominal Spea species (S. intermontana 

and S. hammondii, respectively) based on limited sampling at distant points within the species’ 

ranges, but these taxa have yet to receive more thorough range-wide genetic examination. 

 Among Spea, the western spadefoot (S. hammondii) represents an immediate 

conservation concern. California has long identified S. hammondii as a Species of Special 

Concern (Jennings and Hayes 1994; Thomson et al. 2016). Recently, the U.S. Fish and Wildlife 

Service, after a preliminary review of evidence, initiated a formal review for listing under the 

Endangered Species Act. The bleak status of S. hammondii relative to its congeners is based 

largely on past and projected habitat loss (U.S. Fish and Wildlife Service 2005; Thomson et al. 

2016). The rapid increase in commercial, residential, and especially agricultural development in 

20th century California has led to an estimated 30% loss of S. hammondii native habitat in 

northern and central California and 80% in southern California (Fisher and Shaffer 1996; 

Thomson et al. 2016). In addition to ongoing habitat loss, climate change has significantly 

increased drought risk in the state (Diffenbaugh et al. 2015), leading to increased concern over 

the reliability of ephemeral vernal pool breeding habitat over much of the species’ range.   

The existence of two phylogeographic lineages within S. hammondii suggested by 

mitochondrial DNA (Garcı́a-Parı́s et al. 2003), is consistent with the frequent observation of such 

lineages in other California amphibians and reptiles (Rissler et al. 2006) and emphasizes the 
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importance of evaluating ESUs for appropriate, lineage-specific conservation of S. hammondii. 

To do so, it is critical to determine the primary units of conservation with more thorough 

geographic and genetic sampling than has been done previously (Wiens and Titus 1991; Garcı́a-

Parı́s et al. 2003). To address questions of intraspecific variation within S. hammondii, we 

analyzed nuclear and mitochondrial phylogenetic relationships within Spea and intraspecific 

genetic clustering within S. hammondii to answer three primary questions. First, is S. hammondii 

non-monophyletic as suggested by previous mtDNA (Garcı́a-Parı́s et al. 2003) analysis? Second, 

does S. hammondii show the genetic break into Northern and Southern California lineages across 

the Transverse Ranges that has been frequently recovered in other amphibians and reptiles 

(Rissler et al. 2006)? Third, are genetically recovered lineages of S. hammondii also distinct 

ecologically as might be predicted based on their different, isolated geographic ranges? We 

discuss and update the conservation status of S. hammondii based on the combined results from 

these genetic and environmental niche modeling analyses. 

 

Methods 

Taxon and genetic sampling 

 We targeted six genes for the four Spea species (S. hammondii, S. bombifrons, S. 

intermontana, and S. multiplicata), including five nuclear protein-coding (nuDNA: AKAP9, 

NTF3, RAG1, Rhod1, and SIA) and one mitochondrial (mtDNA: ND2) in this study. Tissue 

samples included whole tadpoles (from small individuals), tadpole tail snips (from larger 

individuals) and adult toe clips; most samples collected by us were immediately released at the 

point of capture. We extracted DNA using a salt extraction protocol and sequenced all PCR 

products in both directions on ABI 3730 sequencing platforms at the University of California, 
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Davis, Division of Biological Sciences sequencing facility. We aligned sequences using 

MUSCLE (Edgar 2004) in Geneious 6.1 (Kearse et al. 2012) and checked for nucleotide 

ambiguities. We used the implementation of PHASE (Stephens et al. 2001) in DnaSP 5.1 

(Librado and Rozas 2009) with default settings to generate haplotypes for the nuclear sequences. 

Raw sequences are available on GenBank (MG137482 – MG138150). Detailed sample locality 

information is available online in Supplementary Table 1.  

Before proceeding, we independently confirmed Spea as monophyletic (PP>0.994) in 

each of four gene trees (ND2, RAG1, Rhod1, and SIA – based on GenBank sequence availability 

for appropriate outgroups) (gene trees available in online supplement) generated with MrBayes 

3.2.6 (Ronquist et al. 2012) via CIPRES (Miller et al. 2010). We used outgroups from other 

genera in the superfamily Pelobatoidea (Scaphiopus [sister genus to Spea], Pelobates, and 

Pelodytes) and rooted using Leiopelma or Xenopus (based on GenBank sequence availability). In 

order to continue with a complete matrix of the five nuclear genes we targeted for Spea, and 

because S. hammondii was the primary focus of the present study, our further analyses included 

data only from Spea species. 

 

Phylogenetic Analyses of Spea taxon sets 

We generated sequences for the remaining Spea species (S. bombifrons, S. intermontana, 

and S. multiplicata) to assess the monophyly of S. hammondii and to test existing phylogenetic 

hypotheses among these four species (Titus and Wiens 1991, Garcia-Paris et al. 2003). We used 

jModelTest2 (Darriba et al. 2012) via CIPRES (Miller et al. 2010) to determine the appropriate 

substitution models for each gene in the phylogenetic analyses. We generated a mtDNA tree 

using MrBayes 3.2.6 (Ronquist et al. 2012) via CIPRES (Miller et al. 2010), using 10 million 
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MCMC generations of burn-in followed by 50 million MCMC generations. We checked for 

MCMC convergence using Tracer 1.6 (Rambaut and Drummond 2003).  

 For the nuDNA, we used the multispecies coalescent model implemented in StarBEAST2 

(Ogilvie et al. 2017) in BEAST 2.4.8 (Bouckaert et al. 2014) to generate individual gene trees 

and a species tree. StarBEAST requires that individuals be assigned a priori to “taxon sets” 

assumed to be monophyletic, and then estimates a species tree with those taxon sets as terminals. 

Because the monophyly of several Spea species has been questioned, we used gene trees from an 

initial StarBEAST run to identify potential taxon sets. We assigned S. hammondii samples to two 

monophyletic taxon sets based on Bayesian genetic clustering results (see STRUCTURE results, 

below) and on their individual monophyly in the mtDNA analysis. Spea intermontana and S. 

bombifrons were each non-monophyletic in the mtDNA tree and in some nuDNA gene trees 

(online supplement) in our preliminary StarBEAST run, and we assigned each monophyletic 

sub-lineage of these species to its own taxon set, resulting in two sets for S. bombifrons and three 

for S. intermontana. We ran StarBEAST2 for 1 billion generations with 200 million burn-in and 

assessed model convergence using Tracer 1.6.  

 To aid in comparing the topologies of the mtDNA and nuDNA phylogenetic trees, we 

used the cophylo function in the package phytools 0.6-44 (Revell 2017) in R 3.4.3 to create a 

tanglegram (i.e. a cophylogeny) between the StarBEAST nuDNA tree and the MrBayes mtDNA 

tree to more clearly visualize discordance in the position of clades between the two trees.  

 

Clustering of Spea hammondii 

 We used the Bayesian assignment algorithm implemented in STRUCTURE 2.3.4 (Falush 

et al. 2003) to estimate the number of genetic clusters (K) within S. hammondii, using an 
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admixture ancestry model with correlated allele frequencies and K values between 1 and 10 for 1 

million MCMC generations after 100,000 burn-in. We repeated this analysis independently five 

times and used the Evanno delta-K method (Evanno et al. 2005) in Structure Harvester (Earl and 

vonHoldt 2012) to determine the optimal value of K. To visualize cluster membership, we used 

CLUMPAK (Kopelman et al. 2015) to generate bar plots and ArcMap 10.4 to plot ancestry 

coefficients on a map. As an independent check of the Bayesian clustering results, we also used 

snapclust (Beugin et al. 2018) in the R package adegenet 2.1.1 (Jombart 2008; Jombart et al. 

2018). Snapclust assesses clustering based on a combination of modeling Hardy-Weinberg 

equilibrium and maximum likelihood estimation based on the Expectation-Maximization 

algorithm, and it utilizes goodness-of-fit criteria to determine the optimal number of genetic 

clusters. To determine genetic clusters for the mtDNA sequences, we used Spatial Analysis of 

Molecular Variance (SAMOVA) (Dupanloup et al. 2002) implemented in SPADS 1.0 (Dellicour 

and Mardulyn 2014). SAMOVA uses simulated annealing to determine optimal clustering by 

maximizing differentiation among clusters, based on ΦCT. We examined spatial distribution of 

SAMOVA ND2 clusters in ArcMap 10.4. 

 

Niche Modeling 

 While our phylogenetic and clustering methods analyzed genetic differentiation, we used 

environmental niche modeling (ENM) to quantify ecological differentiation that would be 

consistent with functional or physiological distinctness. We used Maxent 3.3.3k (Phillips and 

Dudík 2008) to produce ENMs for (1) all S. hammondii sampling localities and for (2) localities 

from each of the inferred “North” and “South” genetic clusters which are completely allopatric. 

For sample inputs for Maxent, we first compiled presence points downloaded from GBIF and 
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then included the localities for our genetic samples. We then used the gridSample function in the 

R package dismo (Hijmans et al. 2015) to reduce the presence points to one per 0.1-degree grid 

cell to reduce effects of spatial sampling bias (Boria et al. 2014; Varela et al. 2014). This 

subsampling procedure left us with 68 sample localities from the North cluster and 49 from the 

South. We used 10,000 background points randomly sampled over the area of the input raster 

maps, and 30 arcsecond resolution rasters of bioclimatic variables 1-19 from Worldclim 1.4 

(Hijmans et al. 2005) plus elevation and slope as predictors. We ran five replicates per run using 

cross-validation. 

 Given that the genetic data showed a clear difference between northern and southern S. 

hammondii, we used ENMTools (Warren 2017) in R 3.3.0 to conduct niche identity tests 

(Warren et al. 2008) to test the genetic results with ecological data. The niche identity test 

compares environmental conditions at presence points of the two clusters being tested while 

accounting for the environmental conditions available to the clusters in the vicinity of presence 

points (the “background”). For example, if the distribution of conditions at presence points of the 

two clusters do not overlap while their available background conditions do, the niche identity test 

takes this as evidence of niche differentiation and support for ecological distinctiveness that 

developed in allopatry. To determine significance for the niche identity test, we ran 100 

permutations in which sample labels were randomized to generate a null distribution of the 

identity statistics, Schoener’s D (Schoener 1968) and Warren’s I (Warren et al. 2008). If the 

empirical value of these statistics fell below the 95% confidence interval of the null distribution, 

we considered the niches of the two clusters to be significantly differentiated. 
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Results  

Taxon and genetic sampling 

We sequenced 95 individuals of S. hammondii (North) from 45 sites, 20 S. hammondii 

(South) from 12 sites, six S. intermontana from two sites, two S. bombifrons from two sites, and 

two S. multiplicata from one site. Sequence lengths in the final alignments were 850bp for 

AKAP9, 605bp for NTF3, 676bp for RAG1, 683bp for Rhod1, 406bp for SIA, and 967bp for 

ND2. For our initial phylogenetic runs, we included all individuals and used the resulting gene 

trees to identify taxon sets. For our final phylogenetic analyses, we retained 45 individuals that 

included all major clades (Table 1) and had sequence data for all five nuclear genes for the 

StarBEAST analyses, and we used the same 45 individuals for a final MrBayes analysis of the 

mtDNA (a MrBayes tree using all individuals with mtDNA data is available in the online 

supplement). For genetic analyses within S. hammondii alone, we retained 63 individuals with 

sequence data for all five nuclear genes and converted these sequences to haplotypes for 

clustering analysis. Across both analyses, our S. hammondii dataset includes representation of 

the species’ range-wide distribution except for Baja California, Mexico (Table 1, Fig. 1.1, and 

online supplement). 

 

Phylogenetic analyses 

Nuclear DNA phylogeny 

 The nuDNA gene trees (found in online supplement) from the StarBEAST run show 

generally high support for our chosen taxon sets, supporting these groups as operational 

taxonomic units. Across the five gene trees, the clades representing the taxon sets for the species 

tree all had posterior probability greater than 0.7 (median PP: S. hammondii North [0.7489]; S. 
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hammondii South [0.9969]; S. bombifrons [0.9985]; S. intermontana California [1.00]; S. 

intermontana Oregon [0.9816]; S. multiplicata [1.00]).  

 In the nuDNA species tree, StarBEAST returned S. hammondii, S. 

bombifrons, and S. intermontana as a monophyletic group to the exclusion of S. 

multiplicata (PP=0.8882). Spea hammondii North and South formed a monophyletic group 

(PP=0.9994), and S. intermontana was polyphyletic, with the Oregon clade placed sister to S. 

bombifrons (PP=0.9519) and the California clade recovered as sister to S. hammondii 

(PP=0.9638). Given the geographical locations of these S. intermontana samples (Fig. 1.1) we 

consider it extremely unlikely that these placements are the result of field misidentification. 

 

Mitochondrial DNA phylogeny 

 The majority rule consensus mtDNA (ND2) MrBayes phylogeny had high support at 

most nodes (Fig. 1.2B) and very high support for the same monophyletic taxon sets identified in 

the nuDNA analysis (mtDNA tree PP: S. hammondii North [1.00]; S. hammondii South [1.00]; S. 

intermontana California [1.00]; S. intermontana Oregon [0.995]; S. bombifrons [1.00]; S. 

multiplicata [1.00]; S. bombifrons [PP=1.00]; full mtDNA tree in online supplement).  The 

mtDNA tree recovered S. multiplicata as sister to all other Spea (PP=1.00). However, in sharp 

contrast to the nuDNA tree, the mtDNA recovered S. hammondii North as sister to all Spea 

except S. multiplicata (PP=1.00), including S. hammondii South. Within that group, Spea 

hammondii South and S. intermontana California were recovered as sister groups with modest 

support (PP=0.879), with S. intermontana Oregon and S. bombifrons recovered as sequential 

sister groups.  
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Cluster analysis 

Nuclear clusters 

 The delta-K method for the nuDNA haplotype STRUCTURE results recovered two 

clusters as the best supported partitioning of S. hammondii (Fig. 1.3A and online supplement). 

These genetic clusters are geographically coherent and split by the Transverse Ranges in Central 

California (Fig. 1.3). The two clusters indicate essentially no admixture, with only one 

occurrence of a Northern haplotype of AKAP9 appearing in the South cluster, and none in the 

opposite direction. Using the Bayesian Information Criterion (Schwarz 1978), snapclust found 

K=3 as the most likely number of genetic clusters. At K=2, snapclust recovered the same 

partitioning as that found by STRUCTURE, and at K=3 the third cluster identified by snapclust 

is a split within the Northern cluster corresponding roughly to the Salinas Valley in Central 

California (online supplement). Given that 1) STRUCTURE and snapclust independently 

recovered the identical K=2 North/South clusters, 2) the BIC values for K values from 2-5 are 

very similar in snapclust (online supplement), 3) STRUCTURE supported K=2 clusters as the 

optimal K, and 4) our data set consists of relatively few nuclear genes, we favor the relatively 

conservative clustering of K=2 for our nuclear data set rather than K=3 identified in snapclust..  

 

Mitochondrial clusters 

 The differentiation (ΦCT) among S. hammondii clusters based on SAMOVA plateaus at 

K=3 (online supplement), with one cluster comprising all South individuals and two comprising 

the North individuals (Fig. 1.3B), with one of these North clusters identifying a unique cluster 

along the Central Coast of California in Santa Barbara and San Luis Obispo counties (off-white 

points in Fig. 1.3B), not seen in either nuDNA clustering analysis. The SAMOVA results at K=2 
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show the same South group as at K=3, indicating the two North clusters are mitochondrially-

identified subgroups of the North set of populations.  

 

Niche modeling 

 We ran three different S. hammondii Maxent models under present climate conditions: 

samples from the genetic North and South clusters each predicting their own ranges, and the 

combined North and South predicting the entire species. Based on the area under the curve 

(AUC) for the receiver operating characteristic (ROC), we found higher model fit for Maxent 

niche models generated for the North (Fig. 1.4A) (mean AUC for five-fold cross-validation: 

0.934 ± 0.008) and South (Fig. 1.4B) (mean AUC: 0.968 ± 0.012) S. hammondii clusters than 

when the two were modeled as a single unit (mean AUC: 0.913 ± 0.007) (map not shown). For 

North alone, Bio18 (precipitation of warmest quarter) had the highest percent contribution at 

54%, while Bio6 (minimum temperature of coldest month) had the highest permutation 

importance at 37%. For South alone, Bio11 (mean temperature of coldest quarter) had the 

highest percent contribution and permutation importance at 31% and 49%, respectively. For 

North and South combined, Bio15 (precipitation seasonality) had the highest percent 

contribution at 38%, while Bio9 (mean temperature of driest quarter) had the highest permutation 

importance at 14%. The niche identity test found that the niches of the North and South were 

more different than expected based on available habitat, suggesting ecological differentiation 

between the two groups (Schoener’s D, 0.263, p<0.05; Warren’s I, 0.57, p<0.05). 
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Discussion 

 In this study, our primary goal was to use genetic clustering and ecological differentiation 

as a combined means of determining potential taxonomic and conservation units within S. 

hammondii. Although we also included representatives of the other three nominal Spea taxa, our 

geographic sampling is sparse, and we primarily focus on our results for S. hammondii. 

However, despite our sparse sampling of the other Spea species, we observe and note that: 1) S. 

multiplicata is recovered as sister to the other Spea by both nuclear and mitochondrial DNA; and 

2) our current concepts of species boundaries in S. bombifrons and S. intermontana may require 

re-examination with range-wide sampling and genomic techniques.  

 With the demonstration that S. hammondii populations north and south of the Transverse 

Ranges are both genetically and ecologically distinct, we recommend that each cluster be 

considered its own conservation unit with potentially unique management needs. The strength of 

the genetic isolation suggests the two clusters may in fact represent distinct species. These 

findings also corroborate the mitochondrial non-monophyly of S. hammondii identified by 

García-Paris et al. (2003), although our nuclear genetic analyses indicate that S. hammondii, 

while genetically differentiated between north and south clusters, is a monophyletic entity.   

 

Phylogeography of Spea hammondii 

The identification of two distinct lineages within a nominal species, separated by the 

Transverse Ranges, follows a phylogeographic pattern seen in a number of taxa in California 

(Rissler et al. 2006; Feldman and Spicer 2006; Spinks et al. 2010; Gottscho 2016). The striking 

result when comparing our two genetic data sets is that the mitochondria of the southern lineage 

of S. hammondii are more closely related to those of California S. intermontana than they are to 
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the northern clade of S. hammondii, while northern and southern S. hammondii comprise a well-

supported monophyletic group based on nuclear evidence. Furthermore, no mitochondrial 

haplotypes of southern S. hammondii (south of the Transverse Ranges) appear north of the 

Transverse Ranges, and two methods of clustering of nuclear data strongly support this north-

south split. With the StarBEAST nuclear species tree and all five individual nuclear gene trees 

demonstrating a highly-supported monophyletic S. hammondii, we rule out incomplete lineage 

sorting as a reasonable explanation of the mitochondrial result. Rather, a relatively ancient 

admixture event between southern S. hammondii and California S. intermontana serves as the 

best explanation of the discordance, with a replacement of southern S. hammondii mitochondrial 

DNA by S. intermontana that occurred after northern and southern S. hammondii lineages were 

reproductively isolated. Such mitochondrial replacements between currently allopatric taxa have 

been documented in other species (Gompert et al. 2008; Spinks and Shaffer 2009; Marshall et al. 

2011; Zieliński et al. 2013; Good et al. 2015; Leavitt et al. 2017), reflecting past climatic 

conditions when sympatry and interbreeding presumably occurred.  

 Our present-time Maxent analyses further corroborate the results of the genetic analysis, 

with the occupation of unique climatic niches indicating ecological differentiation between the 

North and South clades of S. hammondii. Additionally, the niche models revealed the Transverse 

Ranges as a barrier of unsuitable habitat separating the north and south clades of S. hammondii 

(Fig. 1.4). Our genetic data indicate essentially no gene flow between these clades, and to our 

knowledge no Spea sample from the Transverse ranges has ever been documented. No 

morphological or call data comparisons between these two S. hammondii clades have been 

conducted, but the combination of genetic and ecological evidence pointing to pronounced 
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isolation makes morphological, and potentially mating call analyses (e.g. Feinberg et al. 2014) a 

logical next step in determining the species status of the two clades. 

  

Conservation of Spea hammondii 

 With S. hammondii being considered for listing under the Endangered Species Act, our 

results demonstrating two distinct lineages within the nominal species indicate that each lineage 

should be considered as an independent conservation unit. Spadefoots in each region face 

varying degrees of threats that likely merit lineage-specific conservation actions. For example, in 

densely populated coastal southern California, S. hammondii has lost a substantially greater 

proportion of its native habitat than in northern California (Jennings and Hayes 1994; Thomson 

et al. 2016), and depending on how climate change ultimately affects California, vernal pool 

duration may be more of an issue in the south as pools tend to be smaller and more isolated 

compared to the sometimes vast pools that occur in the grasslands of the Central Valley (Bauder 

and McMillan 1998; Morey 1998). Additionally, given that the two lineages having evolved in 

isolation and occupy distinct ecological environments, we strongly advise against translocations 

between North and South populations that could introduce genotypes poorly suited to survival in 

the other lineage’s environment or that may lead to reduced hybrid fitness. 

 

Cryptic species within Spea: Is Spea hammondii a single taxon?  

The four-species taxonomy of Spea has remained mostly stable since the mid-20th 

century based on a combination of morphology, calls, and distributions (Tanner 1939; Kluge 

1966). However, a molecular phylogenetic hypothesis based on allozymes (Wiens and Titus 

1991) suggested that S. intermontana may be non-monophyletic, while a mitochondrial 
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phylogeny by Garcı́a-Parı́s et al. (2003) indicated a similar result for S. hammondii. Currently 

recognized, nominal Spea species generally have relatively wide distributions: S. bombifrons, S. 

intermontana, and S. multiplicata all have distributions that cover substantial portions of the 

climatologically and topographically complex interior of western North America (Fig. 1.1). The 

current xeric conditions of much of this region, combined with a life history indicating generally 

strong philopatry (Buseck et al. 2005), suggests that the potential for cryptic diversity in Spea 

driven by reproductive isolation during climatic dry periods may be high. Although we do not 

recommend any taxonomic changes until additional, more informative nuclear data are available, 

our current results demonstrate that S. hammondii, although it has by far the smallest geographic 

range, likely comprises two lineages that may be defensible species under a metapopulation 

lineage species concept (de Queiroz 2007; Shaffer and Thomson 2007). The potential for 

additional cryptic species within the more widely-distributed Spea species seems even more 

likely. We view well-sampled, multi-locus phylogeographic analyses of these taxa as an 

important direction for future research. 
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Figures 

 

 

Fig. 1.1 Genetic sampling localities and species ranges (IUCN 2017) of the four nominal Spea 

species: Spea hammondii (shown as North [red] and South [purple]); Spea bombifrons (yellow); 

Spea intermontana (green); and Spea multiplicata (blue). Color figure available online 
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Fig. 1.2 Tanglegram or cophylogeny of nuclear species tree generated in StarBEAST2 (left, A) 

and mitochondrial tree generated in MrBayes 3.2.6 (right, B) for Spea, with Bayesian posterior 

probabilities at nodes 
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Fig. 1.3 STRUCTURE and SAMOVA genetic clusters for S. hammondii. A) Map of S. 

hammondii samples with pie charts displaying their STRUCTURE cluster membership 

proportions. Each pie chart shows proportions for a single individual, and pie charts are 

displaced from the actual geographic coordinate (connected by light gray lines) to allow display 

of all individuals at the same site. Inset shows STRUCTURE bar plots for K=2. B) Map of S. 

hammondii samples and their SAMOVA cluster membership; South mtDNA cluster corresponds 

to South nuDNA STRUCTURE cluster, and the two northern mtDNA clusters together 

correspond to the North nuDNA STRUCTURE cluster. Black dotted line on A) and B) shows 

phylogeographic break at the Transverse Ranges 
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Fig. 1.4 Maxent niche models for S. hammondii based on current values of Bioclim variables, 

elevation, and slope. A) Niche model for North genetic cluster. B) Niche model for South genetic 

cluster. Scale corresponds to probability of occurrence. In both cases, the Transverse ranges 

show very low probabilities 
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Tables  

 

Table 1 Summary table of individual and site representation in genetic analyses in this study 
  

Number of individuals included (Number of unique 

sites represented) 

Species Clade and 

Location 

Sequenced for  

any gene 

StarBEAST STRUCTURE 

Spea 

bombifrons 

Oklahoma 2 (2) 2 (2) NA 

Spea 

hammondii 

California_Sout

h 

20 (12) 10 (7) 11 (8) 

Spea 

hammondii 

California_Nort

h 

95 (45) 26 (18) 52 (30) 

Spea 

intermontana 

Oregon 2 (1) 2 (1) NA 

Spea 

intermontana 

California 4 (2) 3 (2) NA 

Spea 

multiplicata 

Mexico 2 (1) 2 (1) NA 
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Chapter 2: Genome-wide SNPs reveal fine-scale patterns of population structure 

and gene flow in a threatened Southern California amphibian 

 

Kevin Michael Neal 

 

Abstract 

 

Pond-breeding amphibians are under threat globally, with human-mediated habitat fragmentation 

as a leading factor in their declines. Patterns of fragmentation vary significantly at local scales, 

meaning assessment and management of these often-cryptic species require precise population 

and landscape genetic analysis specific to the species and populations in question. Populations of 

the western spadefoot (Spea hammondii) in Southern California bear the challenge of surviving 

in one of the most urbanized and fragmented landscapes on the planet and have lost up to 80% of 

their native habitat. In Orange County, ongoing restoration efforts targeting S. hammondii have 

involved the construction of artificial breeding ponds, but the performance of the introduced 

populations at these ponds relative to natural populations in the area has not been evaluated. 

Using thousands of genome-wide single-nucleotide polymorphisms in a landscape genetic 

framework, I characterized the population structure, genetic diversity, and functional 

connectivity of spadefoots in Orange County to guide ongoing and future management efforts. I 

identified two major genetic clusters with deeper substructure within clusters, with many 

individual ponds being genetically distinct. Estimates of historical gene flow and landscape 

resistance suggested ponds within and among genetic clusters were historically well-connected, 
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but the central low-resistance area has been largely destroyed by development, suggesting 

fragmentation has interrupted natural metapopulation dynamics. Resistance surfaces showed the 

existing artificial ponds were well-placed, being connected to natural populations by low-

resistance corridors. Artificial ponds had a moderate level of genetic diversity, typically below 

the values of inland ponds but higher than those of coastal ponds. All ponds (natural and 

artificial) had extremely low estimates of effective population size, possibly due to a bottleneck 

caused by a recent multi-year drought. Management efforts should focus on maintaining gene 

flow among natural and artificial ponds by both manual exchange of spadefoots among ponds 

and construction of new ponds to bolster the existing pond network in the region. 

 

 

 

  



33 

 

Introduction 

The decline of amphibians is a global crisis with habitat fragmentation as a major factor 

(Cushman, 2006; Hamer & McDonnell, 2008), but the degree of fragmentation and its effects on 

populations vary substantially at regional and local scales (Grant et al., 2016; Marsh & Trenham, 

2001). This variability limits generalizability for conservation and management of amphibians at 

finer scales and demonstrates the importance of determining optimal management units. 

Landscape genetics provides a useful framework for such fine-scale conservation efforts by 

elucidating historical isolation and functional connectivity among populations and the role of 

landscape features in shaping those patterns (Manel 2003, Storfer 2007). The role of 

environmental variables on the isolation and connectivity of populations can be inferred by 

comparing landscape resistance of environmental variables using spatially explicit models and 

data layers.  

Pond-breeding amphibians are particularly attractive targets for landscape genetic 

analysis. Breeding pools function as discrete subunits for analysis, and the typically fixed 

positioning of ponds lends itself to relatively stable spatial sampling, maximizing the potential of 

localized, spatially explicit genetic models to explain genetic subdivision. Although adults are 

often exclusively nocturnal and are only active during heavy rainfall, tadpoles and larvae are 

often concentrated in large numbers at breeding pools and are easy to sample non-destructively 

for genetic material. For the same reasons, pond-breeding amphibians are uniquely vulnerable to 

local habitat disruption: their reliance on often ephemeral aquatic breeding sites and generally 

limited dispersal abilities means the destruction or disconnection of only a few key ponds can 

reduce functional connectivity amidst an unsuitable habitat matrix with an absence of stepping 

stones (Unglaub, Steinfartz, Drechsler, & Schmidt, 2015; Willson & Hopkins, 2013; Zamberletti, 
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Zaffaroni, Accatino, Creed, & De Michele, 2018; see Gabrielsen et al 2013 and refs therein as 

well), potentially leading to a collapse of preexisting metapopulation dynamics as gene flow and 

recolonization are disrupted. Identifying, maintaining, and restoring those levels of connectivity 

is a key way in which landscape genetics can and should inform amphibian conservation 

biology, particularly at the fine-scale level where most conservation actions occur (McCartney-

Melstad, Vu and Shaffer, 2018).  

Southern California is host to a number of sensitive, threatened, and endangered 

amphibians. Among them, the western spadefoot Spea hammondii stands out as a key species for 

management. Vernal pools utilized by the species occur in grasslands, coastal sage scrub, oak 

woodlands, and chaparral, and these areas have been decimated by urban and agricultural 

development. The western spadefoot is now extirpated across much of its Southern California 

range (Thomson, Wright, & Shaffer, 2016). Noting this dramatic decline, the California 

Department of Fish and Wildlife identified the western spadefoot as a Species of Special 

Concern (SSC) in both its original 1994 (Jennings & Hayes, 1994) and its current 2016 

assessment (Thomson, Wright, & Shaffer, 2016). Additionally the species is currently under 

review by the U.S. Fish and Wildlife Service for listing under the Endangered Species Act (U.S. 

Fish and Wildlife Service, 2015). The western spadefoot is also a partially Covered Species 

under the Natural Community Conservation Plan (NCCP) and Habitat Conservation Plan (HCP) 

for Orange County (County of Orange, 1996), one of the primary strongholds for the species in 

Southern California: these conservation plans mandate active management of S. hammondii as if 

it were covered under the Federal and California Endangered Species Acts. However, 

management is complicated by the elusive life history of the species. As with other pond-

breeding amphibians, direct observation of adult S. hammondii is rare: like all spadefoot species, 
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S. hammondii dig burrows up to 1 meter deep using the keratinous spade on each hindfoot, and 

they aestivate in these burrows until seasonal rains trigger their emergence (). The few existing 

observations of S. hammondii movements indicate very strong philopatry of adults to their 

breeding pools, but these observations are extremely limited and may not represent the actual 

species movement dynamics. Genetic sampling of tadpoles from breeding ponds has been 

suggested as the best way to determine patterns of gene flow and migration among ponds, and 

genetic assessment has been highlighted as an important conservation need (Thomson, Wright 

and Shaffer 2016).  

My goal in this study was to provide a detailed landscape genomic analysis of S. 

hammondii that will simultaneously inform the basic landscape and molecular ecology of the 

species and help guide its management in a region with active and ongoing conservation efforts. 

The core of the study area is a roughly 38,000-acre open space co-managed for both wildlife 

protection and human recreation. The scale of the landscape presents a unique opportunity to 

focus landscape and population genomic inference at the spatial scale most appropriate for many 

amphibian species: within and among vernal pools separated by hundreds to a few thousand 

meters. To date, restoration efforts within Orange County targeting S. hammondii have included 

construction of several new seasonal pools in the northern portion of the county that were 

stocked with spadefoot tadpoles in 2005 and 2006, but genetic monitoring of these pools and 

surrounding, natural breeding sites has not yet occurred. I used restriction site-associated DNA 

sequencing (RAD-seq) to generate a large genome-wide dataset for essentially all Spea 

hammondii breeding sites in the region. RAD-seq is a reliable, widely-used, and inexpensive 

method of collecting genome-wide sequence data for population genomics (Andrews, Good, 

Miller, Luikart, & Hohenlohe, 2016). Given the fine spatial scale of this study and the inability 
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of a previous effort with only 6 genes to resolve population-level relationships in S. hammondii 

(Neal, Johnson, & Shaffer, 2018), I sequenced thousands of markers to maximize precision and 

resolution of my genetic assessment (McCartney‐Melstad, Vu, & Shaffer, 2018).  

I analyzed the genomic data to address several questions: 1) Do spadefoot populations at 

this spatial scale segregate into distinct genetic clusters? 2) How do genetic diversity and 

effective population size vary among ponds and genetic clusters, and do they vary with pond 

surface area? 3) What are the genetic distances among ponds, and do genetic distances vary with 

geographic or environmental distance? 4) Are recently constructed artificial ponds performing 

adequately in preserving genetic diversity in the region? I then synthesize my findings to make 

specific recommendations for the management of the western spadefoot across this critical 

conservation landscape. 

 

Methods 

Study area and sampling 

 The study area comprises a roughly 38,000-acre open space in central Orange County, 

California including the eastern portion of the Los Angeles (LA) Basin, a relatively flat lowland 

region that includes western Orange County. Within the study region, the LA Basin is bounded 

by the coastal San Joaquin Hills to the southwest and the inland Santa Ana Mountains to the 

east/northeast. Historically spadefoots presumably occurred across the Los Angeles Basin, but 

the area is now urbanized to the extent that spadefoot localities occur almost exclusively on 

isolated upland ridgetops adjacent to the developed lowlands.  

I sampled tadpoles at 26 sites within Orange County (Fig. 2.1) between 2015 and 2017, 

with the majority collected in 2017. Except for the constructed ponds at Irvine Mesa (IM) and 
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Shoestring Canyon (SHOE), sampled ponds are assumed to have been colonized naturally, even 

if some sites are man-made reservoirs or stock ponds. I refer to IM and SHOE as “artificial” or 

“constructed”, and naturally-colonized sites as “natural” or “native.” Most localities sampled for 

this study are situated on protected lands collectively known as the Nature Reserve of Orange 

County, managed by a consortium of public and private landowners. Sampling targeted known 

localities plus potential new sites based on Google Earth satellite imagery. Tadpoles were 

sampled using dipnets at different locations along the perimeter of each pool. For large tadpoles, 

roughly 1 cm of the tail tip was taken and the tadpole released at point of capture; for smaller 

tadpoles, whole individuals were sacrificed. Tissues were stored in 95% ethanol in the field and 

then in -20°C freezers until DNA extraction. I also utilized toes, liver, or muscle tissue from 

adults collected serendipitously, dating back to 1994. All collections were conducted via 

IACUC-approved protocols.  

 

DNA extraction and sequencing 

 Genomic DNA was extracted using either a standard salt extraction protocol or the 

Kingfisher extraction protocol (Thermoscientific), followed by the 3RAD RAD-seq protocol 

(Bayona-Vásquez et al., 2019) to isolate genome-wide fragments of DNA for sequencing. 

Briefly, 3RAD adds a third enzyme to ddRAD (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) 

that cuts adapter dimers. I used Illumina iTru adapters as well as custom internal adapters 

(Integrated DNA Technologies) for multiplexing, and I used PstI-HF (dimer cutter), NsiI-HF 

(rare cutter), and MspI (common cutter) (New England BioLabs) for the three restriction 

enzymes. I pooled libraries with 200-300 ng of DNA per individual and used BluePippin (Sage 

Science) to size select 350-450 base pair fragments. Pooled libraries were sent to the Vincent J. 
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Coates Genomics Sequencing Laboratory at University of California, Berkeley, for sequencing 

on an Illumina HiSeq 4000 with either PE150, SR100, or SR150, although I used only the 

higher-quality first reads (R1’s) for downstream protocols.  

 

DNA post-processing 

 I first trimmed the internal adapters from the demultiplexed sequences using cutadapt 

(Martin, 2011). As an additional filtering step, I used fastp (Chen, Zhou, Chen, & Gu, 2018) to 

filter reads below 50% complexity (percentage of bases that are different from the next base in a 

sequence) and with a mean Phred quality score below Q30 (base call accuracy of 99.9%). To 

capture the highest-quality portions at the start of each read and because of differences of read 

lengths among SR100 and SR150/PE150 sequencing runs, I trimmed every read to 60 basepairs 

and removed reads less than 30 basepairs in length. I then used ipyrad 0.7.29 (D. Eaton, 

2015/2019; D. A. Eaton, 2014) to assemble the RAD loci. I ran ipyrad using a reference draft 

genome sequenced from a S. hammondii metamorph from Santa Barbara County, California; this 

individual is a part of the northern clade of S. hammondii, the sister clade of the southern S. 

hammondii in the current study (Neal, Johnson, & Shaffer, 2018). The genome was sequenced by 

10X Genomics, assembled using Supernova (10X Genomics) and analyzed using BUSCO 

(Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) to inspect the quality of the 

assembly (assembly results in Appendix 2-1).  

From the ipyrad VCF file output, I used vcftools 1.1.5 (Danecek et al., 2011) to produce 

several genetic datasets for Orange County spadefoots with different subsets of individuals. 

OC_all_208 is the complete dataset including a maximum of 10 individuals from all sampled 

ponds. OC_reduced_148 reduced the sampling of the 9 artificial ponds from 79 individuals to 19 
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(using 2-3 individuals from every artificial pond); given that the spadefoots in all artificial ponds 

were derived from salvaged tadpoles from a single cluster of donor ponds, this reduction was 

aimed at more equal sampling parity between native and artificial ponds. OC_native_129 

removed individuals from artificial ponds entirely to explore natural spatial connectivity as it 

occurred before the artificial ponds were created. For each dataset I removed singletons to filter 

noise from the dataset (Linck & Battey, 2019), included only biallelic SNPs, and retained only 

the first SNP in each RAD locus to reduce the effects of physical linkage among markers. I 

tested missing data thresholds from 20% to 75% but found no major differences in results, so I 

settled on allowing up to 75% missing data to maximize the size of the data matrices for pairwise 

and intrapopulation statistics. Parameters used in ipyrad and vcftools to produce each final VCF 

dataset can be found in the supplemental information. 

 

Data analysis 

Population structure 

 I evaluated population genetic structure of the OC_reduced_148 dataset using the 

Bayesian clustering method FastStructure 1.0 (Raj, Stephens, & Pritchard, 2014). I first 

converted the vcf to a structure file using PGDSpider (Lischer & Excoffier, 2012). I ran 

FastStructure using the simple prior with K values from 1 to 20, repeating each K value 10 times 

with different random seeds. I used the included chooseK.py or StructureSelector (Li & Liu, 

2018) and selected the optimal K value based on the value that maximizes the marginal 

likelihood. To identify hierarchical genetic structure, I split the dataset into its component 

clusters based on the optimal K and re-ran FastStructure using K from 1 to 10 and 10 random 

seeds, stopping when K=1 had the highest marginal likelihood or when K equaled the number of 
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sampling localities in the subset. I also ran FastStructure with 10 cross-validation iterations with 

K from 1 to 20 to examine structure at K values above the optimal value.  

To compare the model-based FastStructure against a non-model method, I ran a principle 

components analysis (PCA) in R 3.5.1 (R Core Team, 2018) using adegenet::glPca (Jombart, 

2008; Jombart & Ahmed, 2011; Jombart et al., 2018) to visualize genetic structure along the first 

eight principle components. I additionally ran fineRADstructure (Malinsky, Trucchi, Lawson, & 

Falush, 2018), an extension of finestructure (Lawson, Hellenthal, Myers, & Falush, 2012) for 

RAD-seq data, as an alternative examination of hierarchical genetic structure. FineRADstructure 

utilizes full haplotype sequence data in the alleles.loci file generated by ipyrad to create a matrix 

of individual pairwise coancestry. I ran fineRADstructure to assign individuals to populations 

with 1,000,000 Markov Chain Monte Carlo generations after 1,000,000 burn-in and constructed 

a population tree with 100,000 tree-building iterations. I calculated global F statistics with 

hierfstat::fstat (Goudet & Jombart, 2015) and conducted an analysis of molecular variance 

(AMOVA) in Arlequin 3.5 (Excoffier & Lischer, 2010) using default settings to partition genetic 

variation at hierarchical levels (individuals, breeding sites, FastStructure genetic clusters, and all 

samples combined). 

 

Genetic diversity and effective population size and their relationship to pond size 

 Pond size has been implicated as an important determinant of population size in pond 

breeding salamanders (McCartney‐Melstad, Vu, & Shaffer, 2018; Wang, Johnson, Johnson, & 

Shaffer, 2011), and I tested for this same potential effect at spadefoot breeding sites. I ran the 

OC_all_208 VCF in the “populations” module of Stacks 2.3d (Catchen, Hohenlohe, Bassham, 

Amores, & Cresko, 2013) to calculate pond-level and genetic cluster-level observed 
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heterozygosity (HO), expected heterozygosity (HE), nucleotide diversity (pi), and inbreeding 

coefficient (FIS), including invariant sites in the calculations. I required that loci be present in at 

least two populations, be present in at least 50% of individuals within a population and in 25% of 

all individuals, and minor allele count of >2 to remove singletons. In addition to these diversity 

measures, I used NeEstimator 2.1 (Do et al., 2014; Waples, Larson, & Waples, 2016) to calculate 

effective population size (Ne) for individual ponds using the linkage disequilibrium method (LD 

Ne) without singletons, and effective number of breeders (Neb) using the molecular coancestry 

method (Nomura, 2008). I used the R package radiator (Gosselin, 2017/2019) to convert the 

VCF to GENEPOP format as input for NeEstimator.  I used the ruler tool in Google Earth to 

estimate pond area and perimeter from historical satellite imagery and topography to make low- 

and high-end estimates for each pond. I then used corrplot::cor.mtest to calculate and test the 

significance of two non-parametric correlation coefficients (Spearman’s rho and Kendall’s tau) 

between measures of genetic diversity and Ne with pond area and perimeter. 

 

Genetic distance and gene flow 

I used hierfstat::genet.dist to calculate pairwise Nei’s Da (Nei, Tajima, & Tateno, 1983; 

Takezaki & Nei, 1996) between individuals, sites, and clusters; I also used 

hierfstat::pairwise.WCfst to calculate pairwise Weir and Cockerham’s FST  (Weir & Cockerham, 

1984) between sites and clusters, and mmod::pairwise_D (D. Winter, Green, Kamvar, & 

Gosselin, 2017; D. J. Winter, 2012) to calculate pairwise Jost’s D (Jost, 2008; Jost et al., 2018). I 

additionally used StAMPP::stamppPhylip (L. W. Pembleton, 2017; Luke W. Pembleton, Cogan, 

& Forster, 2013) to convert the Jost’s D and Nei’s Da distance matrices to phylip distance files, 
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and visualized these as NeighborNet networks (Bryant & Moulton, 2004) in SplitsTree 4.14.8 

(Huson & Bryant, 2006).  

 To examine relatively ancient admixture between sites, I used TreeMix 1.13 (Pickrell & 

Pritchard, 2012). TreeMix uses population allele frequencies to generate a tree and iteratively 

adds a given number of migration events as edges in the tree and tests for an increase in the 

model likelihood.  I pooled individuals by site (and pooled artificial pools into as a single site), 

and used dartR::gl2treemix to convert the data as a genlight object into the appropriate input for 

TreeMix. I ran TreeMix using 10 different random seeds with 0 to 20 migration edges, and the 

SiZer method (Chaudhuri & Marron, 1999; Sonderegger, 2018) in the R package OptM (Fitak, 

2019) to determine the optimal number of migration edges in the TreeMix results. 

 

Landscape resistance 

 To quantify the role of the environment in hindering or facilitating gene flow on the 

landscape, I used ResistanceGA (Peterman, 2018). I chose ResistanceGA over other landscape 

resistance methods because of its relatively straightforward approach to the problem of 

parameterization of resistance surfaces. ResistanceGA takes a pairwise genetic distance matrix 

and a series of environmental rasters or surfaces as input and uses a genetic algorithm to 

transform the surfaces into resistance surfaces, using a linear mixed effect model to iteratively 

optimize the fit of resistance distance to genetic distance. The program returns a ranking of the 

optimized resistance surfaces. Using ResistanceGA removes the subjectivity inherent in using 

expert opinion to determine resistance values of an environmental variable and allows for 

exploration of a wide range of parameter space (Peterman, 2018; Peterman, Connette, Semlitsch, 

& Eggert, 2014). I calculated resistance distance between sites using 
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gdistance::commuteDistance, which determines distance as an average of a number of random 

walks between points on the environmental surface. I used pairwise Nei’s Da between the natural 

sites (OC_native_129 dataset) for the genetic distance and ran ResistanceGA using two sets of 

environmental variables. The first set included roughly 1 km (or 0.00833 decimal degrees) 

resolution bioclimatic layers from CHELSA 1.2 (Karger et al., 2017) and additional climatic and 

topographic layers from ENVIREM (Title & Bemmels, 2018). The second set included several 

soil and landcover layers from the 2011 National Landcover Database (Homer, Fry, & Barnes, 

2012) and from SoilGrids (Hengl et al., 2017); these layers are much finer resolution (roughly 

250 m, or 0.0020833 decimal degrees) to facilitate a fine scale analysis within Orange County. 

To enable comparison among rasters of all resolutions, I favored using marginal R2 to rank 

surfaces as it provides a measure of absolute model fit across different datasets (Nakagawa & 

Schielzeth, 2013). I used Circuitscape (Shah & McRae, 2008) with the highest-ranked optimized 

resistance surface to visualize potential high-current corridors on the landscape.  

 

Results 

RAD-seq data assembly 

 The output of the OC_all_208 VCF file contained 6660 SNPs with up to 75% missing 

data per site. Per individual, the mean percent missingness was 34.28% (median 35.30%, range 

16.30% to 50.86%). Mean depth per individual was 23.27 (median: 21.11; range: 9.182 to 

59.93). The reduced dataset, OC_reduced_148, contained 6864 SNPs, with more SNPs than 

OC_all_208 presumably because I subsampled individuals from artificial sites based on those 

with the lowest individual missingness. OC_reduced_148 had a mean missingness per individual 
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of 35.24%, median of 35.50%, and range of 16.11% to 50.68%. Mean depth per individual in 

OC_reduced_148 was 21.06 (median of 19.41, range of 9.659 to 55.63). 

 

Genetic structure 

 Run on OC_reduced_148, all ten replicates of FastStructure returned a maximum 

marginal likelihood at K=2, splitting Coastal Orange County (“Coast” cluster) from “Inland” 

sites (Fig. 2.2). FastStructure also reported the number of model components used to explain the 

structure in the data as 2 at 7 out of 10 replicates, and 3 at 3 out of 10. There was little admixture 

at K=2 at most sites; however,individuals at Sand Canyon Reservoir (SANCAN) site showed a 

roughly even mix of the two genetic clusters. Tenaja Pond (TENAJA), a pond directly adjacent 

to the Sand Canyon Reservoir, grouped with Coast. Both SANCAN and TENAJA sites are 

located adjacent to the LA Basin on the northern edge of the San Joaquin Hills, roughly 10 km 

from the other Coast sites. At K=3 (non-hierarchical), TENAJA was split from the other Coast 

sites in all replicates. Running FastStructure separately on the Coast+SANCAN+TENAJA and 

Inland clusters, K=1 had the highest marginal likelihood for all ten replicates for the Inland 

cluster; K=2 has the highest for all ten replicates of the Coast+SANCAN+TENAJA cluster, 

splitting off TENAJA as with the non-hierarchical dataset at K=3. SANCAN remained admixed 

but the majority of admixture for most individuals came from TENAJA, and due to their 

proximity to one another (satellite imagery showed the ponds connected during high rain years) I 

considered TENAJA and SANCAN together as their own subcluster (“Santena”) with no further 

subdivision.  In the remaining Coast cluster, all ten replicates reported K=1 as the highest 

marginal likelihood, suggesting three major clusters: Inland, Santena, and Coast (Fig. 2.2). IM 

01-14 (8 total pools) and SHOE—the artificial ponds--clustered with Inland. Although 
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FastStructure reported that higher values of K explain the structure in the data in the Coast and 

Inland subsets (between 3 and 5 for all replicates), marginal likelihoods dropped steeply and the 

modes of these replicates varied substantially at the higher K values, with sites moving in and 

out of different clusters and often fewer than K clusters appearing in a given replicate (Fig. 

2.S3). 

 The PCA (Fig. 2.3) revealed additional structure than was indicated by the optimal 

FastStructure results. While discriminating between the three hierarchical FastStructure clusters 

on PC1, additional PCs indicated separation among individual sites. PC1 (6.42% of variance 

explained) separated Coast from Inland, with Santena falling in between the two and in particular 

SANCAN (the admixed site) stretched between the Coast and Inland clusters. PC2 (4.36% of 

variance) explains variation among the Inland sites, with STARR far removed from the rest. 

Inland sites SADDLE, LAUR, and THOM overlapped on PC1 and 2, corresponding to their 

geographic proximity to one another in southwestern Orange County. Northern Inland sites 

LOMA, LIME, GREAT, and FREM also overlapped, and the artificial ponds at IMSHOE 

clustered with these northern sites, corresponding to the geographic proximity of the IMSHOE 

source ponds to FREM, GREAT, and LOMA. PC3 (3.65% of variance) separated TENA, and 

PC4 (3.36%) further characterized genetic variation within the Inland cluster by distinguishing 

LOMA and LIME separately from the other sites. PCs 5-8 captured additional genetic variation 

within the Inland and Coast clusters;  PC5 (2.88%) separated IMSHOE and FREM from the 

remainder, PC6 (2.51%) separated BBEND and CCSP1 individually, PC7 distinguished THOM, 

LAUR, SANCAN, TORO, SADDLE, FREM, and GREAT, while PC8 separated THOM, 

LAUR, SANCAN, TORO, and SADDLE, as well as FREM and GREAT. Ultimately, most 
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breeding sites, even those in very close geographic proximity, showed some genetic isolation, 

suggesting relatively restricted movement among sites and strong breeding philopatry. 

 FastStructure (non-hierarchical) and fineRADstructure, like PCA, confirmed these 

results, and showed substructure beyond the optimal FastStructure results using marginal 

likelihoods. FastStructure using 10 cross-validation iterations again showed marginal likelihood 

highest at K=2 with Coast+Santena split from Inland. Cross-validation error was lowest at K=6, 

although only five clusters are visible: Coast remained undifferentiated; LIME, STARR, and 

TENA split out into their own individual clusters; and SANCAN was admixed between Coast 

and the remaining undifferentiated Inland sites, rather than sharing TENA admixture (Fig. 2.S3). 

FineRADstructure identified most Inland sites as unique, cohesive clusters, with individuals 

within the same pond sharing more coancestry than with individuals at other sites. IMSHOE and 

Coast each formed independent clusters, but ponds within both were not readily distinguishable 

from one another. The population tree generated by fineRADstructure first split Coast from 

Inland+Santena. Within Inland+Santena, IMSHOE split off first, then STARR, THOM, and 

LAUR split off together, followed by the separation of SANCAN and TENAJA together from 

GREAT, FREM, SADDLE, TORO, LOMA, and LIME (Fig. 2.S4). 

 

Genetic distance and gene flow 

 Considering the three FastStructure clusters (Inland, Coastal, Santena) as genetic units in 

the OC_reduced_148 dataset hierfstat returned a global FST of 0.111, FIT of 0.278, and FIS of 

0.188. The OC_all_208 dataset, when individual pond breeding sites (including all artificial 

ponds) were treated populations, had a much higher FST and lower FIS: global FST was 0.247, FIT 

= 0.256, and FIS = 0.012, consistent with the subtle, but consistent differentiation among ponds 
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in PC 2-8 and in the fineRADstructure results. In pairwise comparisons (Fig. 2.S1), I found 

lower FST values among the three clusters than among individual breeding sites. Pairwise FST 

among the three clusters was between 0.0789 and 0.142. Within the Coast cluster, pairwise FST 

among breeding pond sites ranged from 0.049 to 0.244 (mean: 0.142; median: 0.163). Within 

Inland (excluding TORO and SADDLE sites which had only one sample) the range was 0.119 to 

0.37 (mean: 0.228; median: 0.218). Between the two sites of the Santena cluster, the pairwise FST 

was 0.214. Pairwise FST values among the artificial pools in IMSHOE range from 0.00453 

between IM06 and IM07, to 0.297 between IM06 and IM12.  

Hierarchical AMOVA results from Arlequin for OC_reduced_148 found FIS of 0.0472; 

FSC of 0.144; FCT of 0.0130; and FIT of 0.195. These AMOVA results indicated that a substantial 

amount of genetic variation occurred within individuals: 80.47% of variation occurred within 

individuals; 14.25% among sites within the three genetic clusters; 1.29% among clusters; and 

3.98% among individuals within sites; all p-values were less than 0.0001. 

NeighborNet networks of pairwise FST, Jost’s D, and Nei’s Da all revealed similar patterns of 

genetic distance among the methods (Fig. 2.4, S4, S5), showing clear separation between Inland 

and Coastal, with Santena falling in between except in FST where it appeared within Inland. 

Reticulations in the networks were common among sites within genetic clusters. Notably, 

according to pairwise Jost’s D and Nei’s Da, the artificial site SHOE appeared to share a high 

number of edges with natural Inland populations (Fig. 2.S5, S5), and SHOE is also the artificial 

site with the closest proximity to known natural sites. At higher values of K in FastStructure, 

SHOE also shows slight admixture with Inland sites, while the other artificial sites do not (Fig. 

2.S3). 
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 The topology of TreeMix trees was relatively unstable across replicates and number of 

migration edges. Considering the three FastStructure clusters, only Coast sites consistently form 

a monophyletic group. Although Inland is not always monophyletic, three groups within it 

consistently are: LIME+IMSHOE+FREM, STARR+THOM+LAUR, and 

SADDLE+TORO+GREAT. The SiZer method in OptM selected 8 as the optimal number of 

migration edges (Fig. 2.S7), but tree likelihood continued to increase through the maximum of 

20 edges tested, suggesting regular historical migration between sites in Orange County. 

 

Genetic diversity and effective population size 

 Among the three FastStructure genetic clusters, Inland (excluding artificial ponds) had 

the highest genetic diversity across measures, but also the highest FIS value (Table 1). Coast had 

the lowest measures of genetic diversity—even lower than the artificial ponds (IMSHOE) when 

considered as a group—but had a slightly lower FIS than IMSHOE (0.0213 versus 0.0257). At 

the site/pond level, natural sites within the Inland cluster tend to have higher values of genetic 

diversity (pi = 5.40E-4) than Coast (4.06E-4), Santena (4.36E-4), and artificial sites (4.20E-4).  

Eight out of 17 natural sites with two or more individuals had slightly negative FIS values, 

indicating that mild outbreeding may be taking place. Effective population size and effective 

number of breeders at sites were also generally low. Estimates of the effective number of 

breeders (Neb) at breeding ponds based on the molecular coancestry method ranged from 1.2 to 

12.2, while effective population size estimates based on the linkage disequilibrium method 

(LDNe) ranged from 1.4 to 19.8, with three outliers: 62 (SHOE, an artificial pool), 64 (THOM) 

and 167 (LOMA). Given that these populations did not have high numbers of effective breeders 

(1.4, 1.2, 3.5), I view these outliers as likely statistical artifacts rather than large populations.  
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 Across all sites combined, I found statistically significant correlations between genetic 

diversity and pond area, but no significant correlations with either Ne measure (Fig. 2.S2a). 

When I broke this down by breeding pool type, I found that among artificial sites, there was a 

strong and significant correlation between LDNe and high-end estimates of pond area and 

perimeter (Fig. 2.S2b). Across natural sites, I found strong correlations between genetic diversity 

and pond area (Fig. 2.S2c). Coast sites had significant correlations of varying strength between 

genetic diversity and pond area, and, unexpectedly, strongly negative correlations between Ne 

and pond area. (Fig. 2.S2d). At Inland sites (excluding artificial pools), I found strong and 

significant correlations between genetic diversity measures and area (Fig. 2.S2e). 

 

Landscape resistance 

 ResistanceGA results provided strong evidence of isolation by environment and distance. 

Using marginal R2 (R2m) as the rank measure, ResistanceGA identified a transformation of 

depth to bedrock and slope (Fig. 2.5a) ranked highest among the environmental surfaces, 

explaining 77.0% (R2
m=0.770) of the variance in pairwise genetic distance. Depth to bedrock 

alone (R2m=0.761) and landcover alone (R2
m=0.742) ranked second and third, respectively 

(Table S1). For environmental surfaces available at both high-resolution and low-resolution, the 

high-resolution version always outperformed the low. Interestingly, the signal from depth to 

bedrock was strong enough that the low-resolution version ranked just behind the high-resolution 

version with a R2
m of 0.741. Geographic distance alone ranked near the middle with a marginal 

R2 of 0.562 (0.493 at low resolution), suggesting that isolation by distance is an important 

component of Spea landscape resistence. The depth to bedrock + slope surface tended to show 

the lowest resistance in areas where the spadefoots are now largely extirpated in the highly 
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developed lowlands of Orange County. Running current through the optimized depth to bedrock 

+ slope resistance surface in Circuitscape confirmed low-lying valleys as generally the highest 

potential corridors between sample sites (Fig. 2.5b), consistent with the TreeMix and other 

results indicating historical gene flow across the flat, low-elevation central corridor separating 

Coastal and Inland populations.   

 

Discussion 

Although widely viewed as a key tool in the conservation biology toolkit, there is often a 

mismatch between the meaningful application of landscape genetic studies and the scale at which 

reasonable inferences can be drawn. The reason for this lies in the scale of most studies—

evolutionary processes that are most recoverable with genetic approaches frequently occur at 

large spatial scales and across evolutionary time, while conservation management and planning 

occur on kilometer-level landscapes over recent time scales. In this study, I push the spatial and 

temporal boundaries of landscape genomics, and in so doing join a small set of studies that apply 

genome-level data sets across a small, kilometer-level landscape to make demographic and 

ecological inferences (McCartney-Melstad, Vu and Shaffer, 2018; see McCartney-Melstad and 

Shaffer, 2015 and Shaffer et al. 2015 for recent reviews). Even at this very limited spatial scale, 

my work reveals the presence of discrete population clusters that should function as management 

units, and more subtle population structure consistent with strong philopatry to individual 

breeding sites. Combined with small effective population sizes and severe habitat loss across the 

LA Basin, my work suggests that Spea hammondii in its Orange County stronghold is both at 

risk and a strong candidate for active management. Fortunately, constructed vernal pool breeding 



51 

 

sites appear to support relatively healthy populations, and I advocate for additional pond 

construction and upland restoration as reasonable strategies for future conservation actions.  

 

Population structure 

 I identified two major genetic clusters in Orange County spadefoots, and these should 

comprise the primary management units for the species. A clear distinction exists between 

spadefoots in the coastal San Joaquin Hills of Orange County and those in the Los Angeles Basin 

and foothills of the Santa Ana Mountains. Based on marginal likelihood, the hierarchical 

FastStructure analyses revealed three clusters as the optimal clustering, but other methods, 

including FastStructure with higher values of K, PCA, fineRADstructure, and global and 

pairwise F-statistics all provided evidence of additional differentiation, sometimes among 

adjacent ponds.  

 Identifying pond-level structure is consistent with our understanding of spadefoot 

biology. Spadefoots are strongly philopatric, rarely moving more than a few hundred meters 

from their breeding pool (Baumberger, 2013). In contrast, a study of a congeneric spadefoot 

species, S. multiplicata, found it to have the lowest levels of genetic structure compared to two 

other pond-breeding amphibians in a floodplain in Arizona, suggesting spadefoots may actually 

be fairly vagile on flat, open terrain (Mims et al., 2014). The climate of Southern California tends 

to be more predictable and less extreme, however: while inland desert pools may be truly 

ephemeral, ponds in Southern California fill much more reliably in the rainy season and may 

select for spadefoot individuals that remain in place, while the substantial topographic and 

environmental complexity of the region produces strong resistance to gene flow. 
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Genetic diversity and effective population size 

I found very low effective population sizes and numbers of effective breeders in sampled 

ponds—among the lowest recorded for pond-breeding amphibians, including several California 

species: red-legged frogs (Rana draytonii) (Richmond, Barr, Backlin, Vandergast, & Fisher, 

2013), black toads (Bufo exsul) (Wang, 2009), and the federal- and state- listed California tiger 

salamanders (Ambystoma californiense) (Wang, Johnson, Johnson, & Shaffer, 2011)... I expected 

measures of genetic diversity and effective population size (LDNe, Neb) to be positively 

correlated with pond area. While I found significantly positive correlations with pond area for 

most measures of genetic diversity considered, I found no significant correlations between either 

measure of effective population size and pond area (Fig. 2.S2). I considered several possible 

reasons for this. First, even with thousands of SNPs, the Ne estimates are generally not very 

precise, especially for LD Ne. Parametric 95% confidence intervals for LDNe estimates were 

typically reasonable, but jackknife 95% confidence intervals were often very large, and had an 

infinite upper bound for most sites. Jackknife 95% confidence intervals for molecular 

coancestry-estimated effective number of breeders (Neb) were more reasonable, roughly 10% 

above and below the estimated values. Imprecision could potentially be driven by high 

relatedness among tadpoles in ponds, although removing putative siblings based on KING 

relatedness (Manichaikul et al., 2010) did not change the infinite upper bounds on jackknife 

confidence intervals, and removing putatitve siblings risks erasure of the true evolutionary signal 

of small populations (Waples & Anderson, 2017). Second, Ne may be better explained by other 

site characteristics such as age, hydroperiod, catchment/upland area, macroinvertebrates, or a 

wide variety of other hydrological or biological variables (e.g. Semlitsch, Peterman, Anderson, 

Drake, & Ousterhout, 2015). Third, California was recently in a multi-year drought from roughly 
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2011-2017 that likely reduced survival and fecundity for several consecutive breeding seasons 

(e.g. Fisher et al., 2018). In typical climate conditions, larger ponds should hold water longer and 

elongate the period before metamorphosis is necessary, leading to fitter metamorphs (Morey, 

1998; Morey & Reznick, 2004) and potentially higher effective population sizes. However, if the 

drought was devastating enough that even large ponds rarely held water for more than the three 

weeks necessary for spadefoots to reach metamorphosis, all ponds could have experienced a 

similar bottleneck leading to small effective population sizes regardless of pond area. To narrow 

down the causes of the observed low effective population sizes, I encourage follow-up sampling 

to study temporal changes in effective population size in relation to climate and landscape 

change. 

 

Landscape resistance and connectivity 

The highest-ranked resistance surface in ResistanceGA identified relatively flat basins 

and valleys to have the lowest resistance to gene flow for spadefoots, in areas where suitable 

habitat (and spadefoots) by and large no longer exist. TreeMix also recovered regular migration 

events occurring among populations across this low-lying region of the Los Angeles Basin. A 

study of the historical extent of vernal pools in neighboring San Diego County revealed a once-

extensive distribution of vernal pools and vernal pool complexes (Bauder & McMillan, 1998), 

and the same was likely true for the Los Angeles Basin (Mattoni, Longcore, George, & Rich, 

1997) given that it is in the same ecoregion. A Maxent environmental niche model (with no land 

use variables included) for all southern-clade S. hammondii also showed some of the highest 

habitat suitability for the entire lineage in the Los Angeles Basin, and relatively low suitability in 

the currently-occupied hills (Neal et al., 2018). Human development has impacted nearly the 
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entirety of the Los Angeles Basin, eliminating the natural landscape and disrupting genetic 

connectivity for most native species. Most sampled pools in this study are restricted to the lower-

suitability, higher-resistance uplands bordering the Basin, suggesting that most of the existing 

breeding pools in Orange County may represent refugial populations in marginal, but still intact, 

habitat spared from habitat destruction by land protections (County of Orange, 1996).  

  

Artificial ponds’ contribution to spadefoot conservation 

 The existing constructed breeding pools at Irvine Mesa (IM) and Shoestring Canyon 

(SHOE) were stocked with tadpoles from a single cluster of ponds within 1 km of one another 

(Glenn Lukos Associates, Inc., 2005 and 2006, unpublished reports). This source site shared 

similar characteristics with the natural ponds sampled in this study in that it was in hilly terrain at 

the edge of the Los Angeles Basin and isolated from other known breeding ponds by areas of 

high resistance. The placement of the constructed ponds is in generally low-resistance habitat 

that has the greatest potential for migration with nearby natural ponds, and in the 10 years since 

first tadpole introduction (2005-2006) and the current study’s sampling (2015-2017), SHOE 

already showed small amounts of admixture with natural Inland populations. With only natural 

sites as focal nodes, Circuitscape (Fig. 2.5) reconstructed a low-resistance corridor between 

natural and these artificial sites, validating the choice of location for the construction of these 

ponds.  

 Stocking all of the constructed pools with individuals from only a single population limits 

their potential for bolstering Orange County spadefoot populations as new nodes for gene flow 

within the overall metapopulation. Other biologists and I observed hundreds of tadpoles in the 

artificial ponds during sampling from 2015-2017, but I found low levels of genetic diversity and 
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small effective population sizes in these ponds, consistent with their initial founding from a 

single gene pool. When combined and considered as a single population, the group of 9 artificial 

pools still had lower genetic diversity than most natural inland ponds (but, notably, higher than 

Coast ponds). To take full advantage of the existing constructed ponds, or when considering the 

construction of any new ponds, I recommend stocking with tadpoles from sites throughout 

Orange County in an effort to recreate a genetically diverse population representative of the 

original, higher rates of gene flow that presumably existed before major human impacts in the 

LA Basin. Although I did find pond-level genetic isolation and structure, genetic distances 

among spadefoots in Orange County are probably low enough that outbreeding depression is 

probably much less a risk than inbreeding depression given the extremely low Ne estimates. I 

also found indications of natural admixture of Coast and Inland genotypes at SANCAN, 

suggesting that some additional admixture might replicate historical levels of movement and 

genetic mixing. A conservative step forward for the IM/SHOE ponds would be to first introduce 

tadpoles from more closely related Inland ponds and monitor the populations for outbreeding or 

other impacts. In addition to manual introduction of spadefoot tadpoles into constructed ponds, I 

strongly endorse the construction of new ponds to enhance natural metapopulation dynamics by 

establishing ponds or chains of ponds as stepping stones in low-resistance corridors within the 

migratory capacity of natural populations.   
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Figures 

 

 

 

 

 

Fig. 2.1 Map of study area with sample sites colored by FastStructure genetic cluster 

membership for three hierarchically-determined clusters. Dot-dash outlines mark the boundary of 

the Nature Reserve of Orange County. IM and SHOE ponds are artificial and were seeded with 
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individuals from donor ponds at the marked site. Inset shows broader context of study area in 

Southern California. Green-shaded areas are public lands
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Fig. 2.2 Hierarchical FastStructure barplots of 148 individuals using 6864 unlinked SNPs. Row 1 column 2 is K=2 for 148 Orange 

County samples. Row 2 column 1 is the Inland cluster (blue) at K=1. Row 2 column 2 is K=2 for Coast (Purple) + Santena (Green) 

samples. Row 3 shows Coast and Santena at K=1. 
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Fig. 2.3 Principle components analysis of 148 Orange County samples with 6864 unlinked SNPs 
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Fig. 2.4 NeighborNet distance network of Weir and Cockerham’s pairwise FST among 26 sites 

for OC_all_208 at up to 75% missing data per locus 

    

     

    

    

    

    

    

    

    

    

     

    

      

     

     

    
          

     

    

      

    

    

    

    

    

   



62 

 



63 

 

 

 

Fig. 2.5 A) ResistanceGA-optimized resistance parameterization of depth to bedrock + slope 

raster. Blue is lower resistance, green-yellow is higher. B) Circuitscape current run through 

optimized depth to bedrock + slope raster, using native localities as focal nodes. Highest current 

is in yellow/orange, lowest current in purple. 
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Tables 

Table 2.1 Genetic diversity values for individual ponds. Starred rows are values calculated on groupings of multiple ponds 

Pond Cluster n HO HE Pi.allsites FIS 

MolCoan 

Neb LDNe   

IM01 Inland-artif 10 0.07826 0.07717 3.737E-04 0.0073 2 8.2 

IM02 Inland-artif 8 0.07967 0.06579 3.268E-04 -0.01564 3.1 1.4 

IM03 Inland-artif 7 0.06927 0.05873 3.213E-04 -0.011 1.7 19.8 

IM06 Inland-artif 10 0.07798 0.06383 3.173E-04 -0.02134 2.2 6.1 

IM07 Inland-artif 10 0.07617 0.0656 3.397E-04 -0.01256 1.7 2.9 

IM09 Inland-artif 10 0.07297 0.07521 3.757E-04 0.02117 1.9 3 

IM12 Inland-artif 6 0.06051 0.05421 2.792E-04 0.00152 4.9 3 

IM14 Inland-artif 8 0.07426 0.06087 3.233E-04 -0.01898 2.1 8.7 

SHOE Inland-artif 10 0.09114 0.07622 3.532E-04 -0.01889 1.4 NA 

*Inland-artif-all Inland-artif 79 0.07624 0.09238 4.203E-04 0.09531 
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*Inland-artif-

sub Inland-artif 19 0.08095 0.08981 4.208E-04 0.0425 

  
FREM Inland-natural 2 0.07864 0.0555 3.347E-04 0.00783 

  
GREAT Inland-natural 10 0.1098 0.09804 4.685E-04 -0.01399 3.7 2 

LAUR Inland-natural 9 0.11 0.11396 5.298E-04 0.03452 1.4 9.1 

LIME Inland-natural 9 0.09991 0.087 3.805E-04 -0.00832 2.1 11.4 

LOMA Inland-natural 10 0.09861 0.09243 3.972E-04 0.00565 3.5 NA 

SADDLE Inland-natural 1 0.10761 0.0538 4.350E-04 

   
STARR Inland-natural 10 0.10897 0.08915 3.828E-04 -0.02632 4.4 2.2 

THOM Inland-natural 9 0.10429 0.10682 5.277E-04 0.02759 1.2 63.8 

TORO Inland-natural 1 0.12134 0.06067 5.150E-04 

   
*Inland-natural-

all Inland-natural 61 0.09935 0.12301 5.400E-04 0.14663 

  
BBEND Coast 10 0.07391 0.06515 2.990E-04 -0.00286 3.2 11 

CCSP1 Coast 9 0.08244 0.06979 3.267E-04 -0.01037 2.6 2.2 
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CCSP2 Coast 3 0.08748 0.06318 3.703E-04 -0.01516 

  
CCSP3 Coast 5 0.07735 0.05922 3.172E-04 -0.0184 12.2 NA 

LAGUN Coast 10 0.08403 0.0897 4.023E-04 0.03296 3 2.1 

MORO Coast 10 0.08974 0.09118 4.125E-04 0.02417 1.8 2 

*Coast-all Coast 48 0.07796 0.09164 4.060E-04 0.08156 

  
SANCAN Santena 10 0.09819 0.10168 4.550E-04 0.02698 4.2 2.6 

TENA Santena 10 0.07938 0.06709 3.087E-04 -0.01351 9 NA 

*Santena-all Santena 20 0.08382 0.09476 4.360E-04 0.05048 

  
*Natural-all 

 

129 0.08869 0.11671 5.093E-04 0.22937 

  
*All ponds 

 

208 0.08523 0.11616 5.015E-04 0.28096 
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Supplemental Figures and Tables 

 

 

 

Fig. 2.S1 Heatmap and histogram of pairwise Weir-Cockerham FST between sites using the 

OC_all_208 dataset, with darker colors representing lower FST values and lighter being higher 

FST. Populations clustered using "ward.D2" method in cluster::hclust() in R. Heatmap visualized 

using gplots::heatmap.2(). Populations with fewer than two samples are excluded 
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Fig. 2.S2 Spearman’s Rho (lower triangle) and Kendall’s tau (upper triangle) correlations 

between measures of genetic diversity, effective population size, and pond area and perimeter. 

All values displayed are statistically significant (p < 0.05, two-tailed test) 
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Fig. 2.S3 Ancestry barplots for OCreduced148 run in FastStructure with ten cross-validations for K=1-10. K=1-5 from upper left to 

lower left; K=6-10 from upper right to lower right. Note at higher K values, K clusters typically do not appear in the barplots
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Fig. 2.S4 fineRADstructure coancestry matrix of 148 spadefoots, from Orange County, 

California. Lighter/yellower colors are lower coancestry; darker/more purple colors are higher 

coancestry. Nodes in population tree are labeled with posterior population assignment 

probabilities 
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Fig. 2.S5 NeighborNet network of Jost’s D for OC_all_208 at up to 75% missing data per locus 
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Fig. 2.S6 NeighborNet network of Nei’s Da for OC_all_208 at up to 75% missing data per locus
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Fig. 2.S7 TreeMix tree of Orange County populations with migration parameter set to 8. The 8 

edges were CCSP3 to CCSP1; CCSP3 to MORO; GREAT to FREM; SANCAN to BBEND; 

SADDLE to LOMA; CCSP1 to FREM; GREAT to the ancestor of MORO and CCSP2; and 

CCSP1 to the ancestor of LIME, IMSHOE, and FREM. 
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Table 2.S1 ResistanceGA resistance surface optimization results using Nei’s Da as response 

variable 

 

Surface resolution (°) LL k AIC AICc R2m R2c 

depthtobedrock.slopedeg 0.0020833 320.049 7 -632.098 -603.698 0.7697 0.9713 

depthtobedrock 0.0020833 318.580 4 -629.160 -624.160 0.7613 0.9704 

landcover 0.0020833 317.793 15 -627.586 -765.586 0.7421 0.8948 

landcover.slopedeg 0.0020833 318.023 18 -628.046 -714.046 0.7079 0.9007 

bio12 0.00833 310.587 4 -613.174 -608.174 0.6672 0.9555 

bio19 0.00833 316.506 4 -625.013 -620.013 0.6479 0.9415 

maxentallOC 0.0020833 312.694 4 -617.388 -612.388 0.6363 0.8773 

TAXOUSDA 0.0020833 311.464 8 -614.928 -570.928 0.6260 0.8683 

terrainruggedness 0.00833 316.270 4 -624.540 -619.540 0.6255 0.9734 

bio13 0.00833 308.200 4 -608.400 -603.400 0.6254 0.9418 

claycontent 0.0020833 313.317 4 -618.634 -613.634 0.6247 0.9207 

bio18 0.00833 328.616 4 -649.233 -644.233 0.6212 0.9878 

slopedeg 0.0020833 310.751 4 -613.502 -608.502 0.6183 0.9188 

bio03 0.00833 320.002 4 -632.004 -627.004 0.6117 0.9948 

depthtobedrock.landcover 0.0020833 321.610 18 -635.220 -721.220 0.5824 0.9333 

impervious 0.0020833 310.120 4 -612.240 -607.240 0.5791 0.8760 
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bulkdensity 0.0020833 308.627 4 -609.254 -604.254 0.5635 0.8585 

bio17 0.00833 312.392 6 -616.784 -598.784 0.5620 0.9295 

Distance 0.0020833 308.622 2 -609.245 -612.045 0.5615 0.8485 

growingDegDays5 0.00833 302.778 4 -597.556 -592.556 0.5469 0.8259 

growingDegDays0 0.00833 302.780 4 -597.560 -592.560 0.5460 0.8262 

bpsprehumanvegmodel 0.0020833 313.466 13 -618.932 -964.932 0.5395 0.8842 

bio09 0.00833 303.410 4 -598.819 -593.819 0.5369 0.8283 

canopy 0.00833 302.744 4 -597.488 -592.488 0.5350 0.8494 

bio10 0.00833 302.799 4 -597.598 -592.598 0.5306 0.8386 

siltcontent 0.0020833 312.594 4 -617.188 -612.188 0.5253 0.9692 

depthtobedrock.landcover.slopedeg 0.0020833 320.692 21 -633.384 -702.051 0.5228 0.9538 

minTempWarmest 0.00833 302.142 4 -596.283 -591.283 0.5180 0.8387 

bio15 0.00833 324.359 4 -640.719 -635.719 0.5177 0.9355 

PETWettestQuarter 0.00833 302.129 4 -596.258 -591.258 0.5166 0.8363 

PETColdestQuarter 0.00833 302.232 4 -596.465 -591.465 0.5163 0.8362 

embergerQ 0.00833 302.250 4 -596.500 -591.500 0.5117 0.8409 

bio05 0.00833 301.953 4 -595.906 -590.906 0.4952 0.8491 

Distance 0.00833 301.652 2 -595.304 -598.104 0.4935 0.8440 

bio16 0.00833 301.656 4 -595.312 -590.312 0.4931 0.8441 

bio14 0.00833 301.613 4 -595.227 -590.227 0.4913 0.8290 

monthCountByTemp10 0.00833 302.545 5 -597.091 -586.519 0.4899 0.8499 

maxTempColdest 0.00833 303.242 4 -598.484 -593.484 0.4736 0.8494 
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climaticMoistureIndex 0.00833 303.719 4 -599.438 -594.438 0.4718 0.8577 

aridityIndexThornthwaite 0.00833 306.502 4 -605.003 -600.003 0.4674 0.8898 

bio08 0.00833 303.039 4 -598.078 -593.078 0.4562 0.8645 

bio01 0.00833 304.894 4 -601.788 -596.788 0.4539 0.8821 

bio07 0.00833 305.142 4 -602.284 -597.284 0.4522 0.9303 

bio02 0.00833 305.178 4 -602.356 -597.356 0.4512 0.9298 

PETseasonality 0.00833 304.397 4 -600.794 -595.794 0.4502 0.8780 

thermicityIndex 0.00833 303.702 4 -599.404 -594.404 0.4499 0.8638 

bio11 0.00833 303.372 4 -598.743 -593.743 0.4498 0.8699 

PETDriestQuarter 0.00833 304.474 4 -600.948 -595.948 0.4481 0.8831 

topoWet 0.00833 303.976 4 -599.952 -594.952 0.4472 0.8655 

PETWarmestQuarter 0.00833 304.396 4 -600.792 -595.792 0.4465 0.8854 

elevation 0.0020833 310.355 4 -612.710 -607.710 0.4459 0.8993 

bio06 0.00833 303.546 4 -599.092 -594.092 0.4440 0.8781 

continentality 0.00833 303.989 4 -599.977 -594.977 0.4438 0.8750 

bio04 0.00833 305.236 4 -602.472 -597.472 0.4374 0.9095 

annualPET 0.00833 304.995 4 -601.989 -596.989 0.4323 0.9098 

Null 0.00833 259.377 1 -512.755 -516.391 0.0000 0.3478 

Null 0.0020833 259.377 1 -512.755 -516.391 0.0000 0.3478 
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Appendix 2.1 

Data filtering/parameters for datasets used in Chapters 2 

 I first trimmed the internal adapters from the demultiplexed sequences using cutadapt 

(Martin, 2011). As an additional filtering step, I used fastp (Chen, Zhou, Chen, & Gu, 2018) to 

filter reads below 50% complexity (percentage of bases that are different from the next base in a 

sequence) and with a mean quality score below Q30. To capture the highest-quality portions at 

the start of each read and because of differences of read lengths among SR100 and SR150/PE150 

sequencing runs, I trimmed every read to 60 basepairs and removed reads less than 30 basepairs 

in length. I then used ipyrad 0.7.29 (Eaton, 2015/2019; Eaton, 2014) to assemble the RAD loci. I 

ran ipyrad using a reference draft genome that I sequenced in-house from a S. hammondii 

metamorph from Santa Barbara County, California; this individual is a part of the northern clade 

of S. hammondii, the sister clade of the southern S. hammondii in the current study (Neal, 

Johnson, & Shaffer, 2018). The genome was sequenced by 10X Genomics and assembled using 

Supernova (10X Genomics), and analyzed using BUSCO for quality (Simão et al., 2015) 

(assembly results in Appendix 2-1).  

From the ipyrad output, I used vcftools 1.1.5 (Danecek et al., 2011) to produce several 

data subsets for Orange County spadefoots and clusters identified therein (see clustering results) 

to maximize the size of data matrices when analyzing the different subsets separately. For each 

dataset, I removed singletons as recommended to filter noise from the dataset (Linck & Battey, 

2019); allowed only biallelic SNPs; and retained only the first SNP in each RAD locus to reduce 

effects of physical linkage among sites. I tested missing data thresholds from 20% to 75% but 

found no major differences in results, so I settled on allowing up to 75% missing data to 
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maximize the size of the data matrices for pairwise and intrapopulation statistics. Parameters 

used in ipyrad and vcftools 1.1.5 to produce each final dataset can be found in the supplemental 

information. 

 I ran the ipyrad pipeline on a dataset of 586 samples that includes members of all  species 

of the genus Spea (S. bombifrons, S. hammondii, S. intermontana, and S. multiplicata), using a 

clustering threshold of 0.85, minimum depth of 6, and including loci missing from up to 90% of 

individuals. Additional parameters were a mindepth of 6; phred Q score offset of 33; max N’s in 

consensus of 5; max heterozygotes in consensus of 8; max indels of 1; and max heterozygous 

sites per locus of 25%. After assessing individual missingness statistics from the multispecies 

ipyrad run, I removed individuals with >50% missing data unless they were one of two or fewer 

samples at a site. I branched the ipyrad pipeline at step 7 to include 267 individuals from across 

the range of S. hammondii (South), changing only the parameter to include loci missing from 

90% to 75% of individuals.  Using the vcf file output from ipyrad, I used vcftools 1.1.5 (Danecek 

et al., 2011) to subsample for only Orange County samples, plus additional data filtering. The 

Orange County subsample included 208 samples from 26 sites. I retained only the first SNP  in 

each RAD locus to reduce effects of physical linkage among sites (thin=200); filtered out 

singletons (mac=2) as recommended to filter noise from the dataset (Linck & Battey, 2019); and 

allowed only biallelic SNPs (max-alleles=2). I produced datasets with up to 75% missing data to 

maximize the size of the data matrix for use with pairwise and intrapopulation statistics. I also 

produced datasets with up to 20% and 50% missing data and report those results when they differ 

substantially from the 75% dataset. 

Following preliminary analyses on the full Orange County dataset of 208 individuals 

(OC_all_208), I used vcftools to produce several subsets of the 208 individuals. Because uneven 
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sampling can lead to inaccurate inference of genetic structure, and because the individuals in the 

artificial ponds in this study were derived from a single locality from 2005-2006, I produced a 

subset in which I retained only two or three individuals from each artificial pond, retaining those 

with the most complete genetic data based on percent missingness from vcftools. By 

subsampling individuals with the least amount of missing data from each artificial pond and 

recognizing that the resulting individuals were all derived from a single natural pond, my goal 

was to achieve better sampling parity with the ~10-20 individuals sampled from each native 

ponds. This reduced the total number of individuals from artificial ponds from 79 to 19, 

achieving much closer sampling parity with the native ponds, and the total number of individuals 

to 148 (OC_reduced_148). For explicitly spatial analyses where the goal was to explore natural 

connectivity, I also produced a subset of 129 individuals where I removed all individuals 

sampled from artificial ponds (OC_native_129). 

To generate the alleles.loci file for fineRADstructure, I created an additional ipyrad 

branch using the same 148 individuals with 75% missingness and converted the file to 

fineRADstructure format using fineRADstructure-tools (Ortiz, 2017/2019), with the final input 

file containing 3099 RAD loci.  

 

BUSCO parameters for S. hammondii draft genome assembly 

Sample information:  

Catalog number: HBS 132740 

Species: Spea hammondii 

Locality name: "Dominion Road" 

County: Santa Barbara 
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State: California 

Country: USA 

Latitude: 34.842069 

Longitude: -120.315529 

Collection date: 11 September 2017 

Remarks: "caught live 11Sept2017, maintained alive in captivity until sacrified on 29Sept2017 

for 10X genome tissue (liver and muscle)" 

 

BUSCO input: 

-   59.97  x = RAW COV          = raw coverage; ideal ~56 

-   36.03  x = EFFECTIVE COV    = effective read coverage; ideal ~42 for nominal 56x 

-   72.93  % = READ TWO Q30     = fraction of Q30 bases in read 2; ideal 75-85 

-    1.46 Gb = EST GENOME SIZE  = estimated genome size 

-   21.55  % = REPETITIVE FRAC  = estimated repetitive fraction 

-    7.08 Kb = MOLECULE LEN     = weighted mean molecule size; ideal 50-100 

-  364.00  b = HETDIST          = mean distance between heterozygous SNPs 

-   21.77 K  = LONG SCAFFOLDS   = number of scaffolds >= 10 kb 

-    6.54 Kb = EDGE N50         = N50 edge size 

-   29.66 Kb = CONTIG N50       = N50 contig size 

-    2.05 Kb = PHASEBLOCK N50   = N50 phase block size 

-   38.72 Kb = SCAFFOLD N50     = N50 scaffold size 

-   24.38  % = MISSING 10KB     = % of base assembly missing from scaffolds >= 10 kb 

-  662.81 Mb = ASSEMBLY SIZE 10K   = assembly size (only scaffolds >= 10 kb) 
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-  976.38 Mb = ASSEMBLY SIZE 1K = assembly size (only scaffolds >= 1kb) 

 

BUSCO results: 

INFO C:65.2%[S:61.6%,D:3.6%],F:21.9%,M:12.9%,n:3950 

INFO 2576 Complete BUSCOs (C) 

INFO 2435 Complete and single-copy BUSCOs (S) 

INFO 141 Complete and duplicated BUSCOs (D) 

INFO 866 Fragmented BUSCOs (F) 

INFO 508 Missing BUSCOs (M) 

INFO 3950 Total BUSCO groups searched 
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Chapter 3: Comparative population and landscape genomics of two cryptic, 

allopatric clades suggests novel conservation strategies in a threatened amphibian 

 

Kevin Michael Neal 

 

Abstract 

Proper identification of conservation units within cryptic species remains a challenge in 

biological conservation, and increasing levels of environmental change and population 

extirpation make it more important than ever to describe and understand biological diversity 

among species and populations before it is lost. The western spadefoot Spea hammondii 

(Anura:Scaphiopodidae) of California and Mexico was recently found to comprise two cryptic 

monophyletic lineages isolated by a strong phylogeographic barrier. However, that study was 

based on limited genetic data and lacked the resolution to make population-level inferences that 

would best support conservation status assessments and management. In this study I used 

thousands of genome-wide SNPs obtained via RADseq to examine evolutionary relationships of 

S. hammondii. I validated species-level relationships in the genus Spea using phylogenetic 

methods and PCA, and applied F-statistics, genetic clustering, and models of landscape 

resistance to characterize population differentiation and spatial genetic clustering. I confirmed 

two highly supported monophyletic clades within S. hammondii, and in both clades I found both 

subtle regional and strong pond-level structuring consistent with a pattern of isolation-by-

distance (IBD). All ponds had exceptionally low genetic effective population sizes. Landscape 

resistance models supported the importance of IBD but found a much stronger influence of 
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environmental variation on the observed genetic variation in both northern and southern clades. 

Based on modeled resistance, I examined the effects of urbanization on functional connectivity 

of populations and found that urbanization in the South clade has completely isolated several 

populations that once naturally experienced gene flow. The results revealed high levels of 

interpopulation genetic differentiation and low effective population sizes that limit the adaptive 

potential of both clades. Western spadefoots will likely require active management to maintain 

connectivity among populations, with a particularly dire need for efforts in the South clade due 

to the degree of population isolation from widespread urbanization.  

 

Introduction 

The identification of distinct, non-interacting phylogenetic lineages as units of 

conservation within species or species complexes is of critical importance to biological 

conservation. Recently diverged lineages separated by space and time may differ in their 

environmental niches and interactions with the environment, and accordingly are subjected to 

differing evolutionary forces that may merit independently-derived management strategies 

specific to each lineage. Identification of these conservation units is a challenge in nominal 

species with cryptic lineages given the lack of morphological distinctiveness between the 

lineages (Bickford et al., 2007), but dense geographic sampling with genetic data has proved 

useful for clarifying these evolutionary relationships and identifying appropriate conservation 

units.  

 A recent study (Neal, Johnson, & Shaffer, 2018) confirmed two previously-identified 

cryptic, reciprocally monophyletic clades in the western spadefoot, Spea hammondii (Garcı́a-

Parı́s, Buchholz, & Parra-Olea, 2003), with each clade separated by an uninhabited geographic 
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barrier with extremely low predicted habitat suitability (Fig. 3.1). The Tehachapi Mountains and 

Transverse Ranges, a known phylogeographic barrier for other California herpetofauna (Rissler, 

Hijmans, Graham, Moritz, & Wake, 2006), have never produced a museum specimen of S. 

hammondii and may represent a barrier to gene flow sufficient for allopatric speciation. Although 

Neal et al. (2018) identified these clades as distinct based on high phylogenetic support values, 

clustering analyses, and niche differentiation, that analysis was based on limited genetic 

sampling that could have resulted in a false signal and painted an erroneous picture of the 

evolutionary history of S. hammondii. Robust identification of genetic conservation units within 

S. hammondii is of pressing importance, given that the nominal species is currently being 

considered for listing under the U.S. Endangered Species Act (ESA). If the nominal species as a 

whole can is found to warrant listing, distinct lineages within it may constitute the recovery units 

that guide management. If those units are considered separate species, then each may be at even 

greater risk of extinction due to their necessarily smaller ranges and numbers of populations  

(Bickford et al., 2007; Schönrogge et al., 2002). Regardless of their taxonomic status, each 

presumptive clade may be subject to unique combinations and levels of threats. Indeed, North 

and South clades of S. hammondii (referred to as "SPHA-NORTH" and "SPHA-SOUTH", 

respectively, through the rest of the manuscript) currently face differing threat levels in the form 

of habitat loss and fragmentation: Jennings and Hayes (1994) found a 30% loss of suiTable 

3.habitat in the range of the SPHA-NORTH and an 80% loss in the range of SPHA-SOUTH. At 

about the same time, a summary of available field studies confirmed widespread extirpation of S. 

hammondii from several historically-occupied sites in the range of SPHA-NORTH (Fisher & 

Shaffer, 1996), although no published data on population trends existed for SPHA-SOUTH. 

Habitat loss certainly is ongoing as the human population of California continues to grow, from 
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an estimate of 31.3 million people in 1994 to 39.9 million in 2019 (California Department of 

Finance, 2019), , and comparative studies of the species across the Central Valley and Southern 

California populations has been called out as a particularly important research need for effective 

management (Thomson, Wright, & Shaffer, 2016). 

Given the extent of habitat loss and population extirpation in both clades of S. 

hammondii, it is crucial to examine patterns of genetic variation within each clade to make 

optimal management recommendations and provide reliable results for the evaluation of S. 

hammondii as a candidate species for listing under the ESA. In this study I used restriction site-

associated DNA sequencing (RAD-seq) to generate a large genome-wide dataset for S. 

hammondii. RAD-seq is a reliable, widely-used, and inexpensive method of collecting genome-

wide sequence data with demonstrated utility for studying intraspecific genetic variation 

(Andrews, Good, Miller, Luikart, & Hohenlohe, 2016; Catchen et al., 2017). The use of 

thousands of genome-wide markers enables accurate identification of cryptic lineages and 

structure (Linck et al., 2019; McCartney-Melstad, Gidiş, & Shaffer, 2018; Reyes-Velasco, 

Manthey, Bourgeois, Freilich, & Boissinot, 2018; Spinks, Thomson, & Shaffer, 2014) and 

detection of fine-scale, recent divergence among individual populations (Bryson, Savary, 

Zellmer, Bury, & McCormack, 2016; McCartney‐Melstad, Vu, & Shaffer, 2018; Sánchez-

Ramírez et al., 2018) at resolutions unobtainable with the previous range-wide analysis of S. 

hammondii using only five nuclear genes and one mitochondrial gene (Neal et al., 2018). Using 

this much larger genomic dataset, I address several questions: 1) How is S. hammondii related to 

other Spea species, and what are the major phylogenetic units and their interrelationships within 

S. hammondii? 2) What further genetic structuring emerges within clades of S. hammondii? 3) 

What environmental variables best explain that within-clade genetic variation? 4) How do 
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measures of genetic diversity and distance compare between clades? 5) Assuming that the effects 

of modern urbanization are not reflected in the assessments of interpopulation genetic distance, 

what effect can we expect urbanization to have on functional connectivity of populations? 

 

Methods 

DNA extraction and sequencing 

 I obtained tissue samples from all four nominal Spea species: from S. hammondii 

throughout California (localities in Fig. 3.1) and one location in Mexico; Spea intermontana 

from California and Oregon; Spea bombifrons from Wyoming and Oklahoma; and Spea 

multiplicata from Oklahoma. As an outgroup for phylogenetic analysis, I also obtained tissues 

from two of the three species in the sister genus Scaphiopus (Chen, Bever, Yi, & Norell, 2016; 

Pyron & Wiens, 2011; Zeng, Gomez-Mestre, & Wiens, 2014), with one sample of Scaphiopus 

couchii from Mexico and two Scaphiopus holbrookii from New York. Genomic DNA was 

extracted using either a standard salt extraction protocol or the Kingfisher extraction protocol 

(Thermoscientific), followed by the 3RAD RAD-seq protocol (Bayona-Vásquez et al., 2019) to 

isolate genome-wide fragments of DNA for sequencing. 3RAD adds a third enzyme to ddRAD 

(Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) that cuts adapter dimers, increasing on-target 

sequencing efficiency (Bayona-Vásquez et al., 2019). I used Illumina iTru adapters as well as 

custom internal adapters (Integrated DNA Technologies) for multiplexing, and I used PstI-HF 

(dimer cutter), NsiI-HF (rare cutter), and MspI (common cutter) (New England BioLabs) for the 

three restriction enzymes. Libraries were pooled with 200-300 ng of DNA per individual and 

BluePippin (Sage Science) was used to size select 350-450 base pair fragments. Pooled libraries 

were sent to the Vincent J. Coates Genomics Sequencing Laboratory at University of California, 
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Berkeley, for sequencing on an Illumina HiSeq 4000 with either PE150, SR100, or SR150, 

although only the higher-quality first reads (R1’s) were used for downstream protocols.  

 

DNA post-processing 

Internal adapters were trimmed from the demultiplexed sequences using cutadapt 

(Martin, 2011). As an additional filtering step, fastp (Chen, Zhou, Chen, & Gu, 2018) was used 

to filter reads below 50% complexity (percentage of bases that are different from the next base in 

a sequence) and with a mean phred quality score below Q30. To capture the highest-quality 

portions at the start of each read and because of differences of read lengths among SR100 and 

SR150/PE150 sequencing runs, every read was trimmed to a maximum of 60 basepairs and reads 

less than 30 basepairs in length were removed. I then used ipyrad 0.7.29 (Eaton, 2014, 2019) to 

assemble the RAD loci. I ran ipyrad using a reference draft genome that was sequenced from a 

North S. hammondii metamorph from Santa Barbara County, California. The genome was 

sequenced by 10X Genomics and assembled using Supernova (10X Genomics) and analyzed 

using BUSCO to inspect the quality of the assembly (Simão, Waterhouse, Ioannidis, 

Kriventseva, & Zdobnov, 2015). BUSCO results can be found in the Appendix. 

I ran ipyrad from steps 1 through 6 using all available sequences and created several 

branches at step 7 with different subsets of individuals specific to my analyses. After preliminary 

phylogenetic and genetic clustering analyses on the full dataset, I identified major clusters and 

subsampled individuals from those to create a reduced dataset of Spea and Scaphiopus samples 

to allow for faster and more evenly sampled phylogenetic analysis while still having 

representation of all major clusters. For North and South S. hammondii analyses, after 

preliminary clustering analyses on each clade, I subsampled sites within clusters when sites were 
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both well-sampled and in very proximal geographic groups in order to limit effects of spatial 

autocorrelation (Bradburd, Coop, & Ralph, 2018; Meirmans, 2012) and to limit the potential bias 

of uneven sampling in clustering analyses (Puechmaille, 2016). Loci missing in more than 50% 

of individuals were filtered from each dataset. 

From the ipyrad-generated VCF files, I used either vcftools 1.1.5 (Danecek et al., 2011) 

or filter_rad() in radiator 1.1.0 (Gosselin, 2019) in R 3.5.1 (R Core Team, 2018) for additional 

filtering for SNP-based analyses (everything except fineRADstructure). Either with vcftools or 

radiator, all datasets were filtered to one SNP per locus, removed monomorphic loci, removed 

SNPs with a minor allele count less than three to ensure every SNP was found in at least two 

individuals, and removed SNPs with greater than 50% missing data. For phylogenetic analyses I 

then converted the VCF file to a PHYLIP using a python3 script (Ortiz, 2019). For population 

genetic analyses within clades, I used radiator for SNP filtering because of its easier integration 

into more elements of this study's mostly R-based population genetic pipeline and its superior 

data exploration and manipulation. Also, while vcftools selected the first SNP in each locus, I 

used radiator to select the SNP with the highest minor allele count in each locus.  

 

Data analysis 

Phylogeny 

 To examine the phylogenetic relationships of Spea species and to identify lineages for 

further downstream analysis, I ran a maximum likelihood analysis on concatenated SNPs (using 

one SNP per locus) with up to 20% missing data per locus in IQ-TREE 1.6.9 (Nguyen, Schmidt, 

von Haeseler, & Minh, 2015), a program with accuracy comparable to RAxML (Nguyen et al., 

2015; Zhou, Shen, Hittinger, & Rokas, 2018). I ran IQ-TREE using the built-in ModelFinder 
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(Kalyaanamoorthy, Minh, Wong, von Haeseler, & Jermiin, 2017) to select the optimal 

substitution model based on the Bayesian Information Criterion (BIC); applied ascertainment 

bias correction (Lewis, 2001); used ultrafast bootstrapping (Minh, Nguyen, & von Haeseler, 

2013) with 1000 replicates; optimized bootstrap trees using nearest-neighbor interchange; and 

applied a second test of node support using 1000 replicates of the Shimodaira–Hasegawa-like 

approximate likelihood ratio test (SH-aLRT) (Guindon et al., 2010). I included Scaphiopus 

holbrookii and Scaphiopus couchii as outgroups. With higher level relationships established with 

100% bootstrap support, I conducted another maximum likelihood analysis in IQ-TREE with up 

to 50% missing data per locus with representative individuals from all sampled S. hammondii 

ponds (SPHA-NORTH and SPHA-SOUTH together), with S. intermontana as the designated 

outgroup. To visualize the species-level distinctiveness found in the phylogenetic analyses, I also 

conducted principle components analyses (PCA) using pcadapt 4.1.0 (Luu, Bazin, & Blum, 

2017), using the same dataset with SPHA-NORTH, SPHA-SOUTH, and S. intermontana, 

followed by a second PCA with only SPHA-NORTH and SPHA-SOUTH. 

 In SPHA-SOUTH, the single sample from Mexico emerged as the sister lineage to all 

other SPHA-SOUTH samples. Because of the extremely high genetic and geographic distance 

from all other samples and the fact it is only one individual, I removed this sample from the final 

population-level analyses and note the caveat that the population-level results apply specifically 

to S. hammondii within the boundaries of the United States. 

 

Population structure 

 Following confirmation of two highly supported, reciprocally monophyletic clades in S. 

hammondii (Fig. 3.2), I used several complementary approaches to assess population genetic 
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structure within each. I used radiator::fst_WC84() to calculate global FST and FIS values using the 

method of Weir and Cockerham (1984), as well as pairwise FST values among sites. Individual 

ancestry coefficients on the SNP data were calculated using the sparse non-negative matrix 

factorization (sNMF) method (Frichot, Mathieu, Trouillon, Bouchard, & François, 2014) 

implemented in the R package LEA (Frichot & François, 2015). sNMF has been shown to 

perform as well as Structure and ADMIXTURE with a much faster run-time for use with 

genomic datasets, and sNMF is robust to deviations from Hardy-Weinberg equilibrium, having 

no a priori population genetic assumptions (Frichot et al., 2014). TESS3 (Caye, Deist, Martins, 

Michel, & François, 2016) in the R package tess3r was then used to assess population genetic 

structure, treating geographic coordinates as priors using an alternating projected least squares 

algorithm (Caye, Jay, Michel, & François, 2018). I used tess3r::plot.tess3Q() and fields::Krig() to 

map and interpolate the dominant genetic clusters for all values of K assessed. I ran both sNMF 

and TESS3 for K values from 1 to 20, with 10 repetitions for each K, a maximum of 200 

iterations per run, and masked 10% of genotypes per run to compute the cross-entropy criterion. 

I selected the repetition for each K with the lowest cross-entropy to generate ancestry barcharts 

and maps. In addition to examining cross-entropy, I ran adegenet::snapclust.choose.k in adegenet 

2.1.1 (Jombart, 2008) on the same genetic data input for sNMF and TESS3 to determine optimal 

K values using the Bayesian Information Criteria. 

 

Landscape resistance 

 I used ResistanceGA 4.0-14 (Peterman, 2018, 2019) in R to determine relative 

contributions of geographic distance and environmental variation to genetic differentiation 

within both S. hammondii clades. While landscape genetic analyses have often used expert 
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opinion or trial and error to determine resistance values for environmental layers within a limited 

parameter space, ResistanceGA uses a genetic algorithm and linear mixed effect models to 

determine the optimal transformation of an environmental surface into a resistance surface, based 

on iterative improvements in the correlation of the genetic distance (response variable) between 

two sites with the resistance distance (predictor variable) between those sites. ResistanceGA then 

ranks the optimized resistance surfaces and returns the surfaces as raster maps. For the input 

environmental surfaces, I began with a set of 0.00833 decimal degree resolution variables from 

CHELSA 1.2 (Karger et al., 2017), ENVIREM (Title & Bemmels, 2018), the 2011 National 

Landcover Database (Homer et al., 2015),select SoilGrids (Hengl et al., 2017) layers. I went 

through a number of steps to reduce the number of variables due to prohibitively long 

computation times. I first ran ResistanceGA on all the layerswith only two optimization 

iterations and used log-likelihood (LL) to select the top five or six best-fit layers in the final 

ResistanceGA run. I then used RStoolbox::rasterPCA() (Leutner, Horning, Schwalb-Willmann, 

& Hijmans, 2019) to reduce all of the continuous (i.e. excluding all categorical) layers to their 

principle components and retained the first five PCs for ResistanceGA. I also included habitat 

suitability layers generated individually for each clade in Maxent 3.4.1 (Phillips, Anderson, 

Dudík, Schapire, & Blair, 2017). In Maxent I included all CHELSA, ENVIREM, and SoilGrids 

layers, excluding layers related to human development (landcover and impervious surface) to 

better reflect pre-human habitat suitability. I ran Maxent with ten cross-validation replicates and 

applied a complementary log-log (cloglog) transform to produce an estimate of occurrence 

probability as a proxy for habitat suitability, and I used the mean of all cross-validation replicates 

as the final surface for ResistanceGA. For Maxent inputs, I combined GBIF (GBIF.org, 2017) 

localities with the current study's sample localities and used spThin::spThin() (Aiello-Lammens, 
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Boria, Radosavljevic, Vilela, & Anderson, 2015) to spatially subsample them to one site per 10 

km radius. To reduce computation time for the large North layers, I reduced the resolution of the 

North layers using raster::aggregate(fac=2) to a resolution of 0.01667 decimal degrees for final 

ResistanceGA runs. Final Maxent habitat suitability models and the presence points for both 

clades are shown in Fig. 3.1. 

In ResistanceGA, I calculated resistance distance using gdistance::commuteDistance() 

(Etten, 2017, 2018) , which determines distance as an average of  random walks between points 

on the environmental surface. I used hierfstat::genet.dist() (Goudet & Jombart, 2015) to calculate 

pairwise Nei's Da between the sample sites for the genetic distance. ResistanceGA was run for a 

maximum of 200 iterations per surface, with the optimization ending if it failed to improve 

model log-likelihood for 50 consecutive iterations.  

 

Comparative population and landscape genomics 

 In dividing S. hammondii into two reciprocally monophyletic clades, each clade merits 

unique conservation consideration given their independent evolutionary histories and exposure to 

different suites of environmental conditions (Neal et al., 2018). To optimize conservation and 

management decisions, I compared population-level (i.e. pond-level) genetic diversity, genetic 

distance, and landscape resistance within each clade. I used hierfstat::basic.stats() and 

base::colMeans() to calculate observed heterozygosity (Ho), expected heterozygosity or gene 

diversity (He), and FIS for each pond. I used NeEstimator 2.1 to calculate effective number of 

breeders (Neb) at each locality. I used radiator::pi() to calculate individual- and population-level 

nucleotide diversity (pi), and I calculated the median individual pi per population as a second 

measure of nucleotide diversity. For the calculation of pi specifically, I created a separate dataset 
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in radiator that retained all SNPs in each locus (whereas for all others I retained one SNP per 

locus), with up to six SNPs per locus. I used radiator::ibdg_fh to calculate individual-level 

estimates of inbreeding (FH) based on excess SNP homozygosity (Kardos, Luikart, & Allendorf, 

2015; Keller, Visscher, & Goddard, 2011; Purcell et al., 2007), and I calculated the median 

individual FH per population. Additionally, I calculated the median Maxent suitability, median 

elevation, and maximum percent impervious surface within a 2 km radius of each sample site, 

using raster::extract() in R. With these population-level values for each clade, I used ggplot2 to 

generate boxplots for each variable for each clade, and I used ggpubr::stat_compare_means with 

stats::wilcox.test to perform a Wilcoxon rank sum test for a significant difference in the values 

between the North and South.  

 I used the top-ranked resistance surface for each clade to look at the potential impacts of 

recent urbanization and development on functional connectivity in each region. To do this I used 

a National Land Cover Database (Homer et al., 2015) raster of percent impervious surface, 

ranging from 0 to 100%. I derived two rasters to represent urbanized areas as impassable terrain, 

assigning either >20% or >50% impervious surface with infinite resistance by setting these 

pixels to NA using the raster package in R 3.5.1. These thresholded impervious surface rasters 

were used to mask ResistanceGA-optimized resistance surfaces for each clade, and masked 

pixels on the resistance surfaces were assigned a resistance value of 10,000 – roughly 10 times 

higher than the highest value in all resistance surfaces assessed. Resistance surfaces were also 

masked with the clade-specific Maxent habitat suitability rasters (Fig. 3.1), setting any pixels 

below 0.1 suitability to a resistance value of 10,000 (intended to discourage highly unlikely 

alternate commute paths through biologically impassable areas like high mountains). I used 

gdistance::commuteDistance() to calculate commute distances among sites for the three levels of 
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urbanization and used ggpubr::ggpaired() to generate boxplots of the distances to visualize what 

effect urbanization had on functional connectivity. Paired Wilcoxon signed rank tests were used 

to test for significant differences between resistance distances with and without the impervious 

surface masks. 

 

Results 

RAD-seq data 

 For the phylogenetic dataset with all Spea and Scaphiopus as outgroup ("SCAPH22" 

dataset), ipyrad returned 295,584 loci across 22 individuals after filtering for duplicate sequences 

and maximum number of indels, SNPs, and heterozygous sites in a locus. After filtering for loci 

found in at least 50% of individuals and a maximum of two alleles per site, ipyrad returned 

42,549 loci. Using vcftools 1.1.5 to filter for only the first SNP in a locus, variable sites, and and 

SNPs with minor allele count (MAC) of at least 3 returned 28,198 SNPs for the final 

phylogenetic dataset of all Spea species run in IQ-TREE. For the S. hammondii (SPHA-NORTH 

+ SPHA-SOUTH) + S. intermontana dataset ("SPHASPIN188"), ipyrad returned 547,625 loci 

across 188 individuals (29,352 in at least 50% of individuals) and vcftools returned 21,747 SNPs 

(one SNP per locus, variable sites only, MAC>=3).  

Ipyrad returned 543,590 loci in 124 individuals for SPHA-NORTH alone, dropping to 

29,762 after filtering for loci found across at least 50% of individuals and maximum two alleles 

per SNP. Filtering in radiator for the SNP with the highest allele frequency in each locus and 

MAC of at least 3 yielded 13,524 SNPs with 16.54% total missing data. For SPHA-SOUTH, 

ipyrad returned 545,431 loci across 178 individuals, dropping to 37,956 after filtering for loci 

found in at least 50% of individuals and maximum two alleles per SNP. Filtering in radiator for 
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the SNP with the highest allele frequency in each locus and a minimum minor allele count of 3 

yielded 5,309 SNPs with 16.07% total missing data. 

 

Phylogenetic analysis 

In the SCAPH22 dataset, the highest-likelihood IQ-TREE identified all nominal species 

as monophyletic (although only 1 sample of S. multiplicata was available), all with maximum 

bootstrap support (100) and SH-aLRT support (100). The topology of this tree was the same as 

the nuclear gene topology recovered in Neal et al. (2018), with S. multiplicata sister to S. 

bombifrons + S. intermontana + S. hammondii, and S. bombifrons sister to S. intermontana + S. 

hammondii (Fig. 3.2). Spea. hammondii split into Northern (SPHA-NORTH) and Southern 

(SPHA-SOUTH) clades (bootstrap and SH-aLRT support = 100 for each), with the two S. 

hammondii clades representing geographically coherent entities divided by the Transverse 

Ranges and Tehachapi Mountains in California (Fig. 3.1); these distinctions are reinforced by S. 

intermontana, SPHA-NORTH, and SPHA-SOUTH all forming tightly-clustered groups in the 

PCAs (Fig. 3.3). 

In the SPHASPIN188 tree (Fig. 3.4), S. intermontana, S. hammondii, SPHA-NORTH, 

and SPHA-SOUTH again formed reciprocally monophyletic clades with maximal support (100% 

bootstrap/100% SH-aLRT). SPHA-NORTH had high support values for most groups of 

individuals within ponds and for geographic clusters of nearby ponds, but poor resolution for the 

relationships among clusters. Two populations north of the Sacramento-San Joaquin River Delta 

(SSJRD), a phylogeographic break that has been observed in many California species 

(McCartney-Melstad et al., 2018; Rissler et al., 2006), formed a highly-supported clade (100% 

bootstrap/100% SH-aLRT support); although they appear highly divergent in the SPHA-
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NORTH+SPHA-SOUTH PCA (Fig. 3.3B) and in clustering analyses (see below in Results), in 

the tree they are nested within a group of ponds at the northern end of the Central Valley (but 

south of the SSJRD phylogeographic break). These northern Central Valley populations with the 

north-of-SSJRD populations appeared as sister to the rest of SPHA-NORTH in the tree, but this 

relationship had very low support (43% bootstrap/33.8% SH-aLRT).  

Like SPHA-NORTH, internal support values in SPHA-SOUTH had mostly high support 

values for groups of individuals within ponds and for geographic clusters of nearby ponds, but 

poor resolution in the relationships among clusters. The single sample from Mexico 

(UABC1148) emerged as sister to all other SPHA-SOUTH individuals and appeared distinct in 

the PCA. SPHA-SOUTH without the single Mexican sample had 100% bootstrap and 100% SH-

aLRT support in both the SCAPH22 and SPHASPIN188 trees. Orange County, Los Angeles, 

Ventura, and Riverside County populations together formed a well-supported monophyletic 

group (95% bootstrap and 99.9% SH-aLRT support) nested within paraphyletic San Diego 

populations. Nested within the Orange/Los Angeles/Ventura/Riverside clade, Orange County 

Coastal populations formed a well-supported clade (95% bootstrap and 95.9% SH-aLRT 

support). 

  

Analyses of Spea hammondii - North clade 

Population structure 

 The global FST calculated from the SNPs was 0.358 (95% bootstrap confidence interval: 

0.354-0.362), indicating high levels of structure in the northern clade of S. hammondii, and 

global FIS was 0.0616. Pairwise FST and Nei's Da among ponds were generally high, with the 

mean of all pairwise FST values being 0.334 (median = 0.331, 95% quantile: 0.0917 – 0.608) and 
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the mean of all pairwise Nei's Da being 0.0785 (median = 0.0757, 95% quantile: 0.0488 – 0.122). 

Results of both sNMF and TESS3 clustering analyses pointed to similar patterns (Fig. 3.5, 6), 

and I here focus on results from sNMF, with TESS3 used to visualize clustering geographically. 

sNMF and TESS3 cross-entropy values consistently decreased with K, suggesting a pattern of 

isolation by distance (Fig. 3.S1A, B). The lowest cross-entropy value at K=15 nearly coincided 

with the number of ponds with three or more individuals sampled (N=20 such ponds), although 

sNMF cross-entropy plateaued around K=10. Values of K above 10 tended to split single ponds 

into clusters with little or no decrease in cross-entropy. Pond-level isolation is consistent with the 

philopatric life history exhibited by spadefoot species and may be exacerbated by the relatively 

discontinuous geographic sampling in this study. Lower values of K still showed relatively little 

admixture among identified clusters. In SPHA-NORTH, there is an arguable elbow in the cross-

entropy curve at K=3 (Fig. 3.S1A), and BIC also selects K=3 as the optimum K value (Fig. 

3.S1C). Additional clusters from K=4 and up typically identified single ponds. Combined, these 

results point to K=3 as the optimum. At K=3, clusters appeared at the northern and southern 

edges of the North clade range (Fig. 3.5, 6), with clusters separated from the core Central Valley 

cluster by known physiographic features. These features—the San Joaquin-Sacramento River 

Delta in the north portion of the range and the Coast Ranges in the southwest—have been 

observed as strong genetic barriers in other species as well (McCartney-Melstad et al., 2018; 

Rissler et al., 2006; Shaffer, Pauly, Oliver, & Trenham, 2004).  

 

Landscape resistance 

 Results from ResistanceGA showed a strong effect of isolation by environment, with 

every included environmental variable ranking higher than geographic distance alone in 
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explaining variance in genetic distance. The transformed Maxent habitat suitability layer (Fig. 

3.7) was the best fit model based on log-likelihood (LL), with LL = 1408.8 and marginal R2 

(R2
m) of 0.872, indicating that the transformed Maxent surface was able to explain 87.2% of the 

variance in genetic distance among SPHA-NORTH populations (Nakagawa & Schielzeth, 2013). 

Values of suitability were transformed to resistance using an inverse monomolecular transform, 

such that the lowest suitability values had the highest resistance. Resistance exponentially 

decreased as suitability increased, suggesting that higher Maxent suitability facilitates gene flow. 

Climatic moisture index was the second-best model (LL = 1385.5, R2
m = 0.771). Geographic 

distance (LL = 1240.3) explained only 26.8% (R2
m = 0.268) of the variance among SPHA-

NORTH populations. 

 

Analyses of Spea hammondii - South clade 

Population structure 

The global FST calculated from the SNPs was 0.275 (95% confidence intervals: 0.269-

0.281), indicating lower, but still substantial, levels of structure in SPHA-SOUTH compared 

with SPHA-NORTH, and global FIS was near zero at -0.0288. Pairwise FST and Nei's Da among 

ponds are generally high, with the mean of all pairs of FST being 0.280 (median = 0.288, 95% 

quantile: 0.0553 – 0.470) and the mean of all pairs of Nei's Da being 0.0619 (median = 0.0626, 

95% quantile: 0.0321 – 0.0872). As with SPHA-NORTH, results of both sNMF and TESS3 

clustering analyses pointed to similar patterns (Fig. 3.8, 9), and I again focus on results from 

sNMF, with TESS3 used to visualize clustering geographically. sNMF and TESS3 cross-entropy 

values consistently decreased with K, suggesting a pattern of isolation by distance (Frichot et al., 

2014) (Fig. 3.S1D,E). The lowest cross-entropy value was at K=16, nearly coinciding with the 
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number of ponds with three or more individuals sampled (19), Although not the lowest cross-

entropy value, sNMF cross-entropy plateaued at K=7 (before forming another plateau at K=10). 

Values of K above 10 tended to split single ponds into clusters with little or no decrease in cross-

entropy.  Before plateauing, sNMF cross-entropy showed a subtle elbow at K=2, and BIC also 

supported K=2 as the highest level of clustering in the SPHA-SOUTH (Fig. 3.S1F). sNMF and 

TESS3 results at K=2 indicated a northern and southern cluster, with strong admixture at ponds 

located at the interface of the ranges of the two clusters in Riverside County (BOXSPR) and far 

northern San Diego County (FLORESRD, PENDLETONBRAVO2, and 

PENDLETONJULIETT). At K=3, the sites of the Orange County Coast emerged as a cluster, 

corroborating the distinctiveness of Orange County Coastal populations identified in Chapter 2. 

At K=4, sites in Riverside County formed a cluster. From K=5 and up, individual sites tended to 

be pulled out as clusters. The ponds in Los Angeles and Ventura Counties (BOUQ, HCC, and 

CAST), which are geographically very distant from the next closest sampled ponds in Orange 

County and separated by both the entire Los Angeles metropolitan area and the Santa Monica 

Mountains, remained clustered with inland Orange County populations until K=6. 

 

Landscape resistance 

 ResistanceGA showed a strong effect of isolation by environment in SPHA-SOUTH. 

Whereas geographic distance alone explained only 26.8% of the variance in genetic distance in 

the northern clade, in the southern clade it explained 66.9%, despite being ranked at the bottom 

among surfaces tested (R2
m = 0.669, LL = 1763.8) (Table 3.S2). Most environmental variables 

ranked higher than geographic distance, however, with a transformed climatic moisture index 

surface being the best fit landscape resistance model (LL = 1800.4, R2
m = 0.732) (Fig. 3.10), 
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although topographic wetness actually had a higher marginal R2(R2
m = 0.798, LL = 1796.1). The 

transform applied to the climatic moisture index surface (and to topographic wetness) was an 

inverse monomolecular transformation, with the lowest values of climatic moisture having the 

highest resistance. Resistance values exponentially decaying as climatic moisture increased, 

suggesting that higher climatic moisture facilitates gene flow. The transformed Maxent habitat 

suitability surface for SPHA-SOUTH ranked near the bottom in terms of model fit (LL = 

1764.8), just above geographic distance, but still explained 63% of the variance (R2
m

 = 0.630) in 

genetic distance among SPHA-SOUTH ponds. 

 

Comparative population and landscape genomics 

 The individual inbreeding coefficient FH, population pi, median individual pi, median 

Nei’s Da, and percent impervious surface within 2 km were significantly different between 

SPHA-NORTH and SPHA-SOUTH (p<0.05). Median Nei's Da was significantly lower in 

SPHA-SOUTH, while the other significant variables were higher in SPHA-SOUTH (Fig. 3.11). 

Effective number of breeders (Neb) did not differ significantly between SPHA-NORTH and 

SPHA-SOUTH, but Neb estimates for ponds in both clades were extraordinarily low, with a 

median of 5.25 (range: 2.3–18.3) in SPHA-NORTH and 4 (range: 1.4–20.7) in SPHA-SOUTH.  

 I found that percent impervious surface, as a proxy for urbanization, has a small but 

significant effect on functional connectivity in SPHA-NORTH (Fig. 3.12, 13A), with the median 

distance decreasing 0.5% (the decrease can be attributed to the random walks used to calculate 

commute distance) when masking >20% impervious surface pixels and a paired Wilcoxon test 

showing a small but significant difference between unmasked and impervious-masked surfaces 

("none" versus "impervious50": p = 0.013; "none" versus "impervious20": p = 0.152; 
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"impervious50" versus "impervious20": p = 0.013). In SPHA-SOUTH, urbanization has a stark 

impact on range-wide functional connectivity (Fig. 3.12, 13B), with the median resistance 

distance increasing more than 3100% when masking pixels with more than 20% impervious 

surface. Paired Wilcoxon tests showed highly significant differences among unmasked and 

masked resistance distances ("none" versus "impervious20": p < 2E-16). The distribution of 

distances on the masked surfaces are highly skewed as some populations are effectively cut off 

from the others while closer populations tend to see little to no impact. 

 

Discussion 

The US Fish and Wildlife Service recently determined that listing S. hammondii as a 

federally threatened or endangered species may be warranted due to habitat destruction and 

fragmentation from urban and agricultural development (Davidson, Shaffer, & Jennings, 2002; 

Fisher & Shaffer, 1996; Morey, 1998; Morey & Guinn, 1992), vehicle-related mortality (Morey 

& Guinn, 1992), and the introduction of exotic species (Fisher & Shaffer, 1996). However, many 

of these earlier studies were based on relatively limited data, and there has been a general call for 

additional information to conduct a thorough status review (U.S. Fish and Wildlife Service, 

2015). This study provides much-needed information for that status review, as well as results 

relevant to the life history and evolution of this cryptic and poorly-studied amphibian. Results of 

the current study, supported by those from Neal et al. (2018), indicate that nominal S. hammondii 

likely comprises two species. Adaptive potential of both clades appears to be limited, with ponds 

in both clades having exceptionally low effective population sizes, high global and pairwise FST, 

and high genetic distances among them. Currently the SPHA-SOUTH clade appears to be in 

more dire need of conservation actions: while the SPHA-NORTH and SPHA-SOUTH do not 
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appear to be significantly different in many population genetic parameters, functional 

connectivity among many populations in SPHA-SOUTH is essentially destroyed by the existing 

urbanization in Southern California. It stands to reason that the SPHA-NORTH will be similarly 

affected if urbanization or agricultural development lead to fragmentation levels found on the 

Southern California Coast. 

  

Phylogeny, population structure, and landscape resistance 

 The phylogenomic analysis of Spea confirmed two distinct, reciprocally monophyletic 

clades within S. hammondii with 100% bootstrap and 100% SH-aLRT support, confirming the 

results of the five-gene nuclear tree of Neal et al. (2018). In addition, within both clades I found 

strong evidence of deeper population genetic structure. In the SPHA-NORTH, the sNMF 

clustering model returned a minimum of 3 clusters, consistent with known phylogeographic 

barriers for other California herpetofauna (McCartney-Melstad et al., 2018; Rissler et al., 2006; 

Shaffer et al., 2004). Glenn/Yolo County populations (RD2RD86 and DFG18) formed a cluster 

at the far north end of the Central Valley, separated from the core Central Valley cluster by the 

Sacramento-San Joaquin River Delta (SSJRD). Santa Barbara County populations (GUAD2, 

ZACR4) on the southern end of the Central Coast also formed a distinct cluster, mirroring the 

biogeographic uniqueness of the endangered California tiger salamanders (Ambystoma 

californiense) found in the same pools (Shaffer et al., 2004). Ponds in the Central Valley in close 

proximity to the peripheral clusters do show admixture with the peripheral clusters (e.g. GILL 

with the northern cluster; SITE213 and BITTER224 with the southern). The best model of 

landscape resistance confirmed this model of three SPHA-NORTH clusters, with the SSJRD, 

Transverse Ranges, and Coast Ranges standing out as high resistance barriers. The resistance 
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surface identified narrow, low-resistance corridors among the clusters that prevent complete 

isolation, consistent with observed admixture. 

The South clade (United States only) showed a minimum of two clusters based on cross-

entropy and BIC, but here the distinction appears to be driven by isolation-by-distance. The 

clusters are geographically separated, but they are do not align with known or obvious candidate 

phylogeographic barriers. The best model of landscape resistance shows only narrow bands of 

slightly elevated resistance separating the populations. While the climatic moisture index was the 

highest ranked resistance surface, distance alone was able to explain a high proportion of the 

variance in genetic distance in SPHA-SOUTH. Ponds sampled along the interface of these two 

apparent clusters (e.g. BOXSPR, FLORESRD, PENDLETONBRAVO2) also showed 

consistently high admixture between both clusters. Phylogenetically, branch lengths and 

bootstrap support values within SPHA-SOUTH tend to be very low, consistent with relatively 

shallow divergence among putative groups. The Los Angeles/Ventura/Orange/Riverside cluster 

did however emerge as monophyletic with high support, nested within a paraphyletic San Diego 

cluster, possibly indicating a recent recolonization of these northerly counties from southern 

refugia. The single Mexican specimen appeared in the phylogeny as sister to all other individuals 

in the SPHA-SOUTH with 100% bootstrap support, but given the geographic separation and the 

strength of IBD in the rest of the clade, I am hesitant to draw conclusions concerning its genetic 

(or taxonomic) uniqueness. Rather, I strongly encourage additional analysis with more samples 

from Mexico that fill in the substantial sampling gap. 

 

Conservation of Spea hammondii in a highly urbanized landscape 
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 Given the strong philopatry of spadefoots and recency of mega-urbanization in 

California, the models of landscape resistance in this study should largely reflect historical gene 

flow with only a weak signal of the effects of modern human development. In both North and 

South, models showed ample low resistance corridors connecting most populations, and 

particularly in the South very few ponds appear to be isolated by resistance. Urbanization in 

Southern California is far more extensive than in areas north of the Transverse Ranges (Fig. 

3.12), and it comes as no surprise that species with distributions with more urbanization will be 

more susceptible to habitat fragmentation and its effects. My attempt to explore the impact of 

current urbanization used resistance surface masking to quantify the potential effects of existing 

urbanization on functional connectivity for both SPHA-NORTH and SPHA-SOUTH and 

emphasizes the extent to which urbanization in SPHA-SOUTH has already fragmented many 

populations. Existing urbanization in Northern and Central California leaves open much more 

space for corridors, with only a slightly significant effect when masking out >20% impervious 

surfaces in SPHA-NORTH. In SPHA-SOUTH, several populations become completely isolated. 

Although I only tested explicitly for the effects of urbanization, analysis of the effects of 

agricultural development—a much bigger concern in the range of SPHA-NORTH—and more 

explicit testing of the effects of different types of urban development (e.g. roads) is critical for 

determining impacts to the functional connectivity of these clades and for guiding conservation 

efforts focusing on maintaining natural migration among ponds. Between the observed 

interpopulation genetic differentiation, exceptionally low pond effective population sizes, and 

threat of a rapidly-growing human population to functional connectivity, active management will 

be key in sustaining S. hammondii into the future. 
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Figures 

 

 

Fig. 3.1 Habitat suitability (measured as probability of occurrence) for SPHA-NORTH and 

SPHA-SOUTH (U.S.) modeled using Maxent 3.4.1, using the map extent of the state of 
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California. Maxent models were run individually for both clades. Suitability surfaces were added 

together and rescaled to a maximum suitability value of 1 to form the combined suitability 

surface. Black areas show areas of zero suitability. Beige circles are presence points used in the 

Maxent models, compiled with a combination of this study's sampling locations and GBIF 

localities. Blue (SPHA-NORTH) and red (SPHA-SOUTH) points are the current study's genetic 

sample locations. Note the band of extremely low suitability separating SPHA-NORTH and 

SPHA-SOUTH, representing the Transverse Ranges and Tehachapi Mountains 
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Fig. 3.2 IQ-TREE maximum likelihood phylogeny of 19 Spea individuals, rooted using 3 

Scaphiopus individuals, with up to 50% missing data per locus, one SNP per locus, and using 

optimal model fit (TVMe+ASC+R2) determined by internal ModelFinder using Bayesian 

Information Criterion. Values at nodes are percent bootstrap support and percent SH-aLRT 

support, respectively 
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Fig. 3.3 Principle components analysis. A) S. intermontana ("SPIN", green dots), SPHA-

NORTH ("SPHAN", blue), and SPHA-SOUTH ("SPHAS", red). The individual separated from 

the rest of the SPHA-SOUTH cluster is the sample from Mexico. B) SPHA-NORTH and SPHA-

SOUTH only. PC2 splits SPHA-NORTH into two clusters north and south of the Sacramento-

San Joaquin River Delta phylogeographic barrier 
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Fig. 3.4 IQ-TREE maximum likelihood phylogeny of 188 S. hammondii (SPHA-NORTH + 

SPHA-SOUTH) and S. intermontana individuals, with up to 50% missing data per locus, one 

SNP per locus, and using optimal model fit (GTR+F+ASC+R2) determined by internal 

ModelFinder using Bayesian Information Criterion. Values at nodes are percent bootstrap 

support and percent SH-aLRT support, respectively. Individuals with "SPHAN", "SPHAS", or 

"SPIN" in sample name refer to membership in SPHA-NORTH, SPHA-SOUTH, or S. 

intermontana, respectively 

  



125 

 

 

 

Fig. 3.5 sNMF ancestry coefficient barcharts for SPHA-NORTH, K= 2, 3, and 10 
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Fig. 3.6 TESS3 maps of interpolated cluster membership for K=3 clusters of SPHA-NORTH. 

Blue, red, and green indicate estimates of cluster membership for that particular cluster found in 

a given location. More saturated color implies greater proportion of ancestry of that cluster in 

individuals at that location. Lower right map is a union of the ancestry maps for each cluster, 

indicating areas where each cluster is dominant. Black dots are genetic sample sites 
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Fig. 3.7 Best ResistanceGA-optimized landscape resistance surface (maxent suitability) for 

northern SPHA. Yellow is higher resistance; blue is lower. Genetic sample sites are labeled on 

map 
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Fig. 3.8 sNMF ancestry coefficient barcharts for SPHA-SOUTH, K=2, 3, and 7 
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Fig. 3.9 TESS3 maps of interpolated cluster membership for K=3 clusters of SPHA-SOUTH. 

Blue, red, and green indicate estimates of cluster membership for that particular cluster found in 

a given location. More saturated color implies greater proportion of ancestry of that cluster in 

individuals at that location. Lower right map is a union of the ancestry maps for each cluster, 

indicating areas where each cluster is dominant. Black dots are genetic sample sites 
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Fig. 3.10 Best ResistanceGA-optimized landscape resistance surface (climatic moisture index) 

for southern SPHA. Yellow is higher resistance; blue is lower. Genetic sample sites are labeled 

on map 
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Fig. 3.11 Boxplots of several population genetic parameters for the North and South clades of S. 

hammondii. P-value on each plot was calculated using a Wilcoxon rank sum test. Ho: observed 

heterozygosity; He: expected heterozygosity; FIS: inbreeding coefficient; IBDg.FH: individual-

level estimate of inbreeding based on expected homozygosity; Neb: effective number of breeders; 

pi.pop: pond-level nucleotide diversity; pi.indiv.median: median individual nucleotide diversity 

within each pond; Da.median: median Nei’s Da for each pond; wcfst.median: median pairwise 

Weir-Cockerham FST for each pond; maxentmedian.2km, elev.median.2km: median Maxent 

suitability and elevation (respectively) within a 2 km buffer of each pond; imperv.max.2km: 

maximum % impervious surface within a 2 km buffer of each pond 
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Fig. 3.12 Maps of the best model of landscape resistance for each clade, with impervious surface 

masks applied. Black areas in each surface have been modeled as extremely high resistance, 

reflecting levels of urbanization. Black areas on the perimeters have also been masked due to 

extremely low Maxent habitat suitability (<0.1) to prevent unlikely alternative corridors when 

impervious surface masks are applied. Top three panels are the North clade of S. hammondii. 

Bottom three are the South clade  
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Fig. 3.13 Paired boxplots showing change in pairwise resistance distances with different % 

impervious surface masks applied. "impervious50" surfaces were masked such that pixels in the 

resistance surface with impervious surface greater than 50% were assigned a resistance value of 

10,000; in "impervious20," this threshold was 20%. No impervious surface mask was applied in 

the "none" surface. Each point in a boxplot represents the resistance distance between two 

localities, with lines connecting the same locality pair across boxplots. Y-axis is in logarithmic 

scale 
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Supplemental Figures and Tables 

 

Fig. 3.S1 Choice of optimal number of clusters (K). Cross-entropy scores for SPHA-NORTH in 

A) aspatial sNMF clustering, B) spatial TESS3 clustering, C) snapclust BIC. Cross-entropy 

scores for SPHA-SOUTH in D) aspatial sNMF clustering, E) spatial TESS3 clustering, F) 

snapclust BIC. 
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Table 3.S1 Population coordinates and summary statistics (further summarized in Fig. 3.11) 

clade pop Longitude Latitude n Ho He Fis IBDg.FH Neb 

SPHA-NORTH BITTER224 -120.15213 35.597775 3 0.07033 0.08723 0.0856 2.13E-06 NA 

SPHA-NORTH CHALOME -120.355393 35.807266 3 0.07545 0.07321 -0.10182 2.27E-06 NA 

SPHA-NORTH CIENEGE -121.32698 36.707153 3 0.06344 0.05416 -0.20786 -1.07E-08 9 

SPHA-NORTH CORRAL -121.574083 37.63837 8 0.0826 0.07078 -0.1751 2.27E-06 7.9 

SPHA-NORTH DRYLAKE -121.049458 36.454872 9 0.08015 0.09585 0.11908 4.07E-06 4.9 

SPHA-NORTH GILL -121.10063 38.40042 4 0.10212 0.08463 -0.22002 3.37E-06 12.7 

SPHA-NORTH GRASS -120.873109 37.286801 7 0.10051 0.11481 0.06351 6.76E-06 3.7 

SPHA-NORTH GUAD2 -120.510367 34.880424 9 0.06833 0.07562 0.05523 3.52E-06 3.9 

SPHA-NORTH HICKMAN -120.635 37.558 4 0.0941 0.11501 0.08883 6.05E-06 8.8 

SPHA-NORTH HWY58BERM -118.807 35.332 3 0.08394 0.10362 0.08585 4.62E-06 NA 

SPHA-NORTH JASPER -121.043079 37.006403 7 0.08767 0.10787 0.12534 5.33E-06 7.7 

SPHA-NORTH LAZYK -120.153702 37.170502 9 0.12267 0.12521 -0.00508 7.60E-06 2.3 

SPHA-NORTH MUELLER -121.15 37.45 4 0.09349 0.12262 0.13414 5.93E-06 3.4 

SPHA-NORTH PUMP -118.927778 34.945394 4 0.09131 0.07955 -0.17666 3.73E-06 18.3 
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SPHA-NORTH RD2RD86 -122.022862 38.911533 9 0.05787 0.06396 0.05636 -1.59E-06 3.7 

SPHA-NORTH SITE213 -120.624853 35.416697 3 0.07238 0.07281 -0.06354 2.05E-06 6.1 

SPHA-NORTH TEJON -118.719436 35.038524 7 0.09086 0.10658 0.09477 5.10E-06 5.6 

SPHA-NORTH URRUTIA -119.754186 36.99044 8 0.10185 0.09539 -0.07649 5.35E-06 2.5 

SPHA-NORTH WILLOW -119.39975 35.405107 3 0.08784 0.09803 0.01543 4.38E-06 NA 

SPHA-NORTH ZACR4 -120.23106 34.71991 9 0.06335 0.06393 -0.01206 1.59E-06 3.2 

SPHA-SOUTH BBEND -117.769774 33.568042 9 0.06246 0.05622 -0.10575 6.72E-06 5.5 

SPHA-SOUTH BOXSPR -117.283333 33.950001 9 0.09027 0.09546 0.02212 1.35E-05 4.2 

SPHA-SOUTH CAST -118.641941 34.539786 4 0.05502 0.05532 -0.05312 2.89E-06 12.1 

SPHA-SOUTH CCSP1 -117.807412 33.563498 10 0.07195 0.06126 -0.12326 9.00E-06 1.4 

SPHA-SOUTH FLORESRD -117.411 33.284 6 0.10824 0.11791 0.02867 1.83E-05 3.9 

SPHA-SOUTH GREAT -117.691 33.67822 10 0.08635 0.08004 -0.08247 1.38E-05 4 

SPHA-SOUTH HCC -118.865715 34.320768 7 0.06881 0.06776 -0.00947 6.65E-06 4 

SPHA-SOUTH LAGUN -117.78134 33.558171 10 0.06656 0.07256 0.04879 9.95E-06 3.4 

SPHA-SOUTH LAUR -117.622406 33.553285 9 0.08999 0.09751 0.03986 1.68E-05 5.6 
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SPHA-SOUTH LIME -117.659055 33.715315 9 0.07831 0.07046 -0.10283 9.88E-06 2.2 

SPHA-SOUTH LOMA -117.709481 33.745564 10 0.07647 0.07228 -0.04761 1.15E-05 1.6 

SPHA-SOUTH MORO -117.794304 33.576053 10 0.07441 0.07801 0.01797 1.21E-05 3.6 

SPHA-SOUTH PENDLETON 

BRAVO2 

-117.541 33.4364 5 0.08212 0.07009 -0.16542 7.49E-06 20.7 

SPHA-SOUTH RNF801 

FANITA 

-116.98962 32.89526 9 0.11728 0.12085 0.00679 2.05E-05 3.8 

SPHA-SOUTH SANCAN -117.796639 33.64281 10 0.0778 0.08337 0.02965 1.35E-05 3.9 

SPHA-SOUTH STARR -117.559973 33.603068 10 0.08427 0.06804 -0.2247 1.00E-05 7.5 

SPHA-SOUTH TENA -117.794122 33.647421 10 0.06682 0.05604 -0.18779 7.29E-06 8.8 

SPHA-SOUTH THOM -117.600762 33.575703 9 0.08173 0.08791 0.03537 1.47E-05 3.7 

SPHA-SOUTH TIERRA -116.32 32.62 7 0.11853 0.11619 -0.03738 1.42E-05 4.6 

 

Table 3.S1 cont. 

clade pop Population Median  Da FST Maxent Elevation Impervious  
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pi individual pi median median Median 

2km 

Median 

2km 

Surface Max 

2km 

SPHA-NORTH BITTER224 0.00059359 0.000898 0.075753 0.28053 0.70816 634 6 

SPHA-NORTH CHALOME 0.00025171 0.0010507 0.074095 0.35624 0.9272 381 19 

SPHA-NORTH CIENEGE 0.00032413 0.000882 0.082283 0.47228 0.75852 296 3 

SPHA-NORTH CORRAL 0.00049831 0.0011374 0.08426 0.46037 0.5711 354 0 

SPHA-NORTH DRYLAKE 0.00047518 0.001102 0.065125 0.2878 0.66358 514.5 0 

SPHA-NORTH GILL 0.00027349 0.0014086 0.081202 0.38111 0.52243 65 1 

SPHA-NORTH GRASS 0.0003547 0.0014119 0.065486 0.21242 0.78665 26 0 

SPHA-NORTH GUAD2 0.00028298 0.0009458 0.069762 0.35392 0.68726 72 12 

SPHA-NORTH HICKMAN 0.00044403 0.0013152 0.06702 0.2007 0.81013 83 19 

SPHA-NORTH HWY58BERM 0.00027323 0.0011458 0.069264 0.2303 0.70851 251 14 

SPHA-NORTH JASPER 0.00039484 0.0011905 0.071038 0.25293 0.84786 282.5 1 

SPHA-NORTH LAZYK 0.00043399 0.0014672 0.067014 0.21188 0.90892 96 1 

SPHA-NORTH MUELLER 0.00047921 0.0012906 0.06781 0.20451 0.78765 46.5 61 
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SPHA-NORTH PUMP 0.0005852 0.0012576 0.075179 0.35799 0.76684 449 33 

SPHA-NORTH RD2RD86 0.00067305 0.0008069 0.11041 0.55668 0.57186 58 0 

SPHA-NORTH SITE213 0.00038142 0.0010044 0.073675 0.35236 0.72341 309.5 22 

SPHA-NORTH TEJON 0.00079054 0.0012607 0.066877 0.24705 0.75705 475 1 

SPHA-NORTH URRUTIA 0.00043203 0.0014069 0.072807 0.31604 0.89106 146 1 

SPHA-NORTH WILLOW 0.00021822 0.0012281 0.069666 0.25338 0.65471 92 71 

SPHA-NORTH ZACR4 0.00026032 0.0008777 0.078434 0.45866 0.55126 280 0 

SPHA-SOUTH BBEND 0.00043046 0.0009829 0.061077 0.38691 0.76611 194 60 

SPHA-SOUTH BOXSPR 0.00071067 0.0015316 0.058444 0.25378 0.7019 530.5 75 

SPHA-SOUTH CAST 0.00035227 0.0009225 0.065722 0.40162 0.57383 567.5 1 

SPHA-SOUTH CCSP1 0.00047098 0.0011612 0.057724 0.35906 0.8617 140.5 60 

SPHA-SOUTH FLORESRD 0.00082333 0.001812 0.055827 0.15969 0.87876 83 7 

SPHA-SOUTH GREAT 0.0005675 0.0014267 0.052928 0.27075 0.86466 191 77 

SPHA-SOUTH HCC 0.00049401 0.0011339 0.062943 0.36893 0.38359 317 5 

SPHA-SOUTH LAGUN 0.00056017 0.0011037 0.054596 0.30034 0.79247 161 60 
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SPHA-SOUTH LAUR 0.00073529 0.0014661 0.048437 0.17745 0.77229 178 71 

SPHA-SOUTH LIME 0.00054281 0.0012753 0.058776 0.35294 0.65606 385.5 26 

SPHA-SOUTH LOMA 0.00055539 0.0012668 0.054091 0.30715 0.71282 299 18 

SPHA-SOUTH MORO 0.00060019 0.001213 0.052726 0.2632 0.75375 191 0 

SPHA-SOUTH PENDLETON 

BRAVO2 

0.00050774 0.0013469 0.064071 0.37294 0.78883 129.5 3 

SPHA-SOUTH RNF801 

FANITA 

0.00088643 0.0019662 0.061223 0.18775 0.86969 239.5 0 

SPHA-SOUTH SANCAN 0.00063412 0.0012701 0.051303 0.23177 0.65667 85 73 

SPHA-SOUTH STARR 0.00053628 0.0014134 0.059474 0.37315 0.7595 269 61 

SPHA-SOUTH TENA 0.00042597 0.0010797 0.060805 0.38844 0.71012 72 73 

SPHA-SOUTH THOM 0.0006602 0.0013744 0.051149 0.22013 0.76521 200.5 79 

SPHA-SOUTH TIERRA 0.00086989 0.0019874 0.077923 0.30072 0.34075 1133 1 
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Table 3.S2 ResistanceGA model results for northern SPHA 

Surface k AIC AICc R2m R2c LL 

maxentcloglog 4 -2810 -2808 0.8717 0.9766 1408.8 

climaticMoistureIndex 4 -2763 -2761 0.7712 0.993 1385.5 

PC1ofrasters 4 -2635 -2633 0.7234 0.9758 1321.5 

PC4ofrasters 4 -2565 -2563 0.7169 0.9353 1286.6 

aridityIndexThornthwaite 4 -2535 -2533 0.7092 0.9513 1271.4 

PC3ofrasters 4 -2795 -2794 0.6885 0.9961 1401.7 

PC5ofrasters 4 -2531 -2529 0.6803 0.9752 1269.5 

continentality 4 -2610 -2609 0.6793 0.9697 1309.2 

PC6ofrasters 4 -2557 -2556 0.6588 0.9137 1282.7 

PC2ofrasters 4 -2493 -2491 0.57 0.7743 1250.6 

terrainruggedness 4 -2520 -2518 0.5687 0.8996 1264.1 

topoWet 4 -2520 -2519 0.5484 0.9121 1264.2 

landcover 16 -2553 -2475 0.533 0.8516 1280.6 

Distance 2 -2473 -2476 0.2684 0.676 1240.3 

Null 1 -2356 -2360 0 0.6097 1181.1 
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Table 3.S3 ResistanceGA model results for southern SPHA 

Surface k AIC AICc R2m R2c LL 

topoWet 4 -3584 -3583 0.7978 0.9373 1796.1 

continentality 4 -3535 -3534 0.7628 0.932 1771.6 

terrainruggedness 4 -3571 -3569 0.7591 0.9349 1789.5 

PC2ofrasters 4 -3523 -3522 0.7325 0.9287 1765.6 

climaticMoistureIndex 4 -3593 -3591 0.7323 0.9488 1800.4 

PC5ofrasters 4 -3535 -3533 0.7046 0.9182 1771.4 

landcover 16 -3544 -3478 0.6856 0.9294 1776 

PC1ofrasters 4 -3529 -3528 0.6824 0.9251 1768.7 

taxousda 13 -3536 -3495 0.671 0.9257 1772 

Distance 2 -3520 -3523 0.6688 0.9226 1763.8 

PC4ofrasters 4 -3578 -3577 0.6647 0.9627 1793.1 

PC3ofrasters 4 -3520 -3518 0.6415 0.9182 1763.9 

maxentcloglog 4 -3522 -3520 0.6301 0.9197 1764.8 

Null 1 -2962 -2966 0 0.5549 1483.8 
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