
UC Irvine
Software / Platform Studies

Title
Programming and Fold

Permalink
https://escholarship.org/uc/item/4x13q653

Author
Evens, Aden

Publication Date
2009-12-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x13q653
https://escholarship.org
http://www.cdlib.org/

Programming and the Fold

Aden Evens

Dartmouth College
HB 6032, Department of English

Hanover, NH 03755 USA
603 646 9115

aden@who.net

ABSTRACT

Programming offers arguably the greatest opportunity for creative

investment in the computer. But, given the mechanistic

relationship between source code and executable and the highly

constrained formalisms of programming, it is hard to see where

creativity would find a place within the rigor and determinism of

code. This paper places this question of creativity in the context of

a broader problem of creativity in the digital generally, then

identifies an ontological structure, called a fold or edge, that

marks the creative moment of digital interaction. In programming,

the edge appears in the object, recognizable in object-oriented

programming but common to every creative innovation in coding

technique.

Categories and Subject Descriptors

F.3.3 [Logics and Meaning of Programs]: Studies of Program

Constructs – Object-oriented constructs; D.2.3 [Software

Engineering]: Coding Tools and Techniques – Object-oriented

programming, structured programming; K.2 [Computing

Milieux]: History of Computing – software; F.4.1 [Mathematical

Logic and Formal Languages]: Mathematical Logic – Lambda

calculus and related systems.

General Terms

Languages, Theory.

Keywords

fold, edge, creativity, object, binary, digital, ontology, Deleuze,

abstraction

1. NOTE
First, a note about the title, “Programming and the Fold.” I have

never been entirely comfortable with my appropriation of the term

fold in the context of the digital. My choice of this term was

initially motivated by a certain topological image of the digital:

the digital, I propose, is a flat surface and my research aims to

discover how we fold this flat surface to bring it into contact with

its outside, the actual, material world. While this motive remains

valid for me, the term fold itself is overdetermined, favored by

Deleuzians and other philosophers. Though I believe that my

usage points roughly in the same direction as Gilles Deleuze’s, I

don’t really mean to recall his fold, in part because I don’t

understand it well. Rather than educating myself, I have chosen to

adopt a different term, one possibly freer of philosophical

baggage. While retaining your associations to the original title,

“Programming and the Fold,” I invite you to think of this talk with

an alternate title, “Programming at the Edge.” The edge, also

topological, has the advantage for my purposes of pushing more

firmly against the binarity that the fold suggests: versus . Edge

and fold are both asymmetrical, but the fold also admits a

symmetry and so invites the binary. Programming at the edge…

2. PREFACE
My argument is motivated by what must be a Deleuzian premise,

a claim about fundamental ontology: that the actual, the material,

the human, the real all are creative. Reality, the world happens, it

generates itself, its things, its meanings, its values all the time,

inventing, always again offering up the new. To me this suggests

something problematic about the relationship between digital and

actual. For it is hard to see where we might discover a similarly

creative principle at work in the arithmetic of 0s and 1s. Once

digitized, information operates deterministically, and even

allowing for something like chance does not introduce much

contingency into the mix. More 0s and 1s, a different order of 0s

and 1s. It isn’t the most colorful palette for a painting.

I am relying implicitly on another premise, really a definition. The

definitive characteristic of the digital, what makes a digital

technology digital, is the prominence of these 0s and 1s, the use of

a discrete code. Whatever is digital is digital because at some

point it passes through this binary code, captured by 0s and 1s,

evaluated using 0s and 1s, output in 0s and 1s. I mean, digital

technologies encode not only their objects using 0s and 1s but also

the behaviors of these objects, the actions they suffer, the

possibilities of their interactions. Digital technologies are many

things besides 0s and 1s; they are material, cultural, historical, and

otherwise human. But what distinguishes them from other

technologies is the essential role of the binary code. Restating my

Deleuzian intuition: there is something difficult, perplexing about

the relationship between this code and the world. How do 0s and

1s, at the heart of the digital, make sense of the world and in the

world? What part of the human, the material meets this code, what

can it encode? If the digital is, as is evidently the case, the site of a

great deal of creative investment and creative production, how

does the digital encounter this creativity? Or one might ask even

more basically, What does the digital do?

These questions will no doubt seem somewhat forced or overly

abstract. The binary may well be a key component of digital

technologies, but after all it’s only one part of the complex and

varied devices that we call digital. However, the binary is more

than a necessary element of the digital, not just an essential

© Digital Arts and Culture, 2009.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission from the author.
Digital Arts and Culture, December 12–15, 2009, Irvine, California, USA.

resource for the operation of digital technologies. Rather, the

binary is the essence of the digital, driving digital technology,

determining to a large extent digital materiality, appearance,

behavior, history, culture, the digital’s distinctive way of being a

part of our world. Not just an arcane abstraction known only to

those engineers who design microchips or compilers, the binary

logic reaches well outside of the microchip, encoding much of the

material in and around the computer. Computing materials are

chosen for their most efficient, least resistant capacity to store

and/or logically manipulate tokens for 0 and 1. 0 and 1 direct the

form of the computer, keyboard, mouse, monitor, hard drive. We

shape our computers, their peripherals, their interface components

to afford ready data entry, click or no click, keypress or no

keypress, pixel red or pixel black or pixel green. The mouse and

monitor show their complementary design around 0 and 1, mouse

allowing linear motion in a bounded Cartesian plane, monitor

mirroring that plane on its surface and assigning a Cartesian

coordinate system that identifies each pixel by a series of 0s and

1s.

Evidence of the reach of the binary could be no balder than the

mouse button, which offers the most direct material analog of 0

and 1. The mouse button is thus the simplest digital interface, up

or down, click or not. Each key on the keyboard is similarly a

binary device, either engaged or disengaged. And these materials-

made-digital of the human-computer interface point toward the

many ways in which users also are reshaped according to the

binary logic. The interface itself positions our bodies, hands in

front, eyes forward, minimal motion except for the crucial

deployment of our own digits. The interface allows each finger to

express 0 and 1 with the least effort.

The mouse button lets you say this, here, and now. On one side it

is the element of the digital, the bit extruded into the material. On

the other, it reaches for the general form of deictic specification,

the human potential to interrupt the flow of time and the

underlying continuity of space to assert a unique point or place or

moment, an edge.

This is to say nothing of the way that the binary code imposes

itself on the user’s habits of thought in relation to the computer.

Each step at the computer is a choice from preestablished options,

one menu item or another, this filter or that one, click here or here

or here. To express oneself or to satisfy one’s desires at a

computer is to represent that desire or expression as already

digitized, as already made of 0s and 1s. Each desire is discrete,

each goal specifiable in advance, each key pressed for a particular

purpose. This habit of digital thinking and action is both

challenged and confirmed by programmers. Programmers are

uniquely positioned to expand the possibilities of expression at the

computer, to find new uses for those 0s and 1s and new

expressions that take advantage of the computer’s powers. But

programmers know more acutely than anyone the rigid constraint

of a binary logic, as they confront this binarity while working with

code. From the most sophisticated actions to the most

rudimentary, to program a computer is to represent one’s desire as

a discrete sequence of definitive steps.

To insist on 0 and 1 as the essence of the digital is not to deny its

irreducible materiality. Undoubtedly, the digital is material. It

enjoys histories and cultures. Artists invent digital materiality,

theorists plot it, programmers leverage it. But materiality, history,

and culture do not make the digital digital. Rather the digital

encodes history and culture, rendering material difference as 0 and

1. The digital’s technique is abstraction. Abs-tract, from Latin to

draw away, draws off difference, captures specificities of space

and time in the generality of a code.

Though I am hinting at a worry I harbor about the reduction of the

world to a string of 0s and 1s, I shouldn’t overlook the

extraordinary power of this technique of abstraction. Abstracting

from the specificity of content, from the weight of time and place

that anchors the ordinary events and artifacts that we encounter in

the world, the digital reduces material resistance to a vanishing

point. The same abstraction that threatens its creative capacities

also enables the digital’s unprecedented capability. Only because

it lacks contingency and admits no accident can the digital

function with nearly total accuracy and consistency. Only due to

the rarefied purity of its logical foundation does it reduce material

resistance to a vanishing point, so that it can be stored in any

medium, executed across various machines, transmitted over any

carrier. Only the radical agnosticism of the binary code allows the

universal capture, the treatment of any information whatsoever

using the same hardware and software. Miniaturization, rapidity,

standardization, random access, precision, simulation, selection

and manipulation of incomprehensibly large data sets, these are

the unparalleled powers of the digital, advantages won by a

zealous application of the power of abstraction.

0 and 1, the lingua franca of the digital domain, are thus best

thought not as the source of the digital’s vast reach but as the

ultimate symptom, the telos of abstraction. If the digital renders

time, space, and much else besides using an abstract logic of 0s

and 1s guiding other 0s and 1s, this is because the binary

approaches degree zero of abstraction. 0 and 1, operative in the

digital, are not the tokens that you might type or write, 0 and 1,

nor the tokens that you might utter, “zero” and “one.” Nor are

they the numbers those tokens typically represent (the first two

numbers we count with, perhaps). They aren’t on and off, or plus

and minus, or true and false, or yes and no, or anything so specific

as to retain the semantic richness of these conjoined pairs. 0 and 1

are definitely not nothing versus something.

Rather, the bit, 0 and 1, is the difference whose posit is difference

itself, an apotheosis of abstraction. The bit is an indifferent marker

of difference. The meaning of the bit 0 is only that it is not (but

might be or might have been) 1. A bit means that it is not its

other. The number 0 is filled with significances, historical, lexical,

symbolic, arithmetic, nominal, etc. But a bit, 0 or 1, is only the

fact of not being its other, its value is nothing more than the

negation of something which is similarly without positive value.

Its specific meaning reduced to a minimum, the claim to be its

other’s other, the bit is ready to accept any interpretation, any

structure made of positive difference, which is to say, any

structure at all.

3. FOR PROGRAMMING
To summarize my project… The binary code is the essential

technology that makes the digital what it is and gives it its

particular way of operating, producing digital aesthetics, digital

culture, digital ontology. Everything digital is digital because it

passes through this binary code; the rich input of human

expression and the rich output of sense phenomena are joined or

jointed at this wasp waist of the binary, the narrow passage that

admits only a stream of 0s and 1s, the universal solvent of the

digital.

But 0 and 1 can’t account, I say, for the creativity that the digital

so patently manifests. If every difference in the digital were

between 0 and 1, the digital would never make any real

difference, would never reach the actual, the human world. If the

digital operates by abstraction, how does this operation grasp the

concrete, and what does it return to the concrete to make a

difference there?

Thus we must search for that mechanism, that edge where the

digital meets the actual, where the binary code encounters the

creative in order to matter in the world. My contention is that this

edge, along which the digital adjoins the creative, has its own

recognizable character. Creativity takes a particular form in the

digital domain, and that is the primary object of my research.

You may note that it’s something of a straw man argument. Only

because I define the digital as effectively barren does its evident

productivity become unlikely or paradoxical, motivating my

research. This objection would carry more weight were the binary

code operating only behind the scenes as an invisible engine of

digital technologies. But the sterility of the binary threatens to

reach out into the human world as well, for the binary code

materially determines the sorts of expressions that the computer

can accept. It thus makes all the difference that the abstraction of

the binary code structures even the material of the machine, the

body of the user, and the habits of the culture that surrounds

digital technology. Which is to say, my worry about the binary is

not solely a matter of metaphysics or engineering. The digital

sucks the world into its code, demands conformity. Only through

an adequate understanding of how to safeguard the creative

potential of this technology, only by ensuring that the sterility of

the code does not sterilize the imaginations of those who use it

can we leverage the extraordinary power of the digital without

succumbing finally to its universal and totalizing encoding.

Programming therefore enters the picture at a crucial juncture:

programmers are uniquely equipped to advance the leading edge

of the digital, holding open its potential. Where do we find the

edge of programming? Or maybe the question is, Along what

edge does the programmer insert her desire, her creative

investment into the computer?

First I should note that I employ a very broad conception of

programming, likely far too broad. Programming, I propose, is the

act of directing the computer according to one’s will, the act of

expressing desire in or through a digital device. The breadth of

this definition has the advantage of incorporating all of those

many actions that constitute programming, which is not a uniform

behavior but a motley: not just entering lines of code but testing,

debugging, compiling, sketching, learning, designing,

commenting, decoding, and more are all part of the normal

activity of the programmer. (When I worked as a programmer, I

spent about half my time in meetings.) Moreover my expansive

definition includes as programming an action as unsophisticated

as setting preferences in your browser, for this too directs the

computer according to one’s will. In fact, the most mundane end

user activities all count as programming: entering text into a word

processor, sending someone an e-mail, first-person shooting. I am

open to restricting this loose definition, but I have yet to hear a

convincing criterion that would distinguish fundamentally

between the guild of programmers, with their pizza boxes and

their acronyms and their nerdy jokes, and ordinary folks who use

computers to see pictures of their grandkids and check the stock

reports.

Programming as the act of imposing one’s will upon the digital.

This image suggests a particular aim, a horizon that impels the

progress of programming. The programmer wishes to be able to

impose her will, express her will with the least effort, the greatest

immediacy. The ultimate programming system (the “silver

bullet”) would be one in which the will of the programmer were

immediately concretized into a program. We could feed the

computer the spec and the computer would create the software

whose perfection was determined by the precision of the spec. But

note that this fantasy implies the elimination of programming per

se, the equivalence, at the limit, of programming and any other

use of the computer. One always wishes to impose one’s desire on

the machine, so if a programming language existed that made this

easy or natural, every user would be a programmer and

programmers would be users like anyone else.

Part of the intuition that drives this fantasy of programming’s

telos is that the labor of coding feels always peculiarly

superfluous, prompting noted computer scientist Fred Brooks [1]

to quash the fantasy, declaring that there is “no silver bullet,” that

programming will always be laborious. Nevertheless, the

development of computer languages, archives of code libraries,

handbooks for design patterns, syntactically intelligent editing

environments, these are all designed to reduce the gap between

the spec and the software, to ease the programmer’s clerical work

and allow her instead to focus on the creative dimension of her

task. In other words, the ultimate desire of programming, forever

out of reach, is to erase itself, to make programming akin to any

other activity at the computer.

I wish to restate my general concern about the digital now with

respect to the activity of programming. Programming marks a

crucial transition point between actual and digital, an expression

of human desire packaged into a set of symbolic forms. The

programmer more than other users must consciously submit his

thoughts, his methods to the digital, represent his aims in terms of

a formal logic. To program is to effect a translation of desire into

a language of logic, and in this sense even high level

programming languages are only a step or two shy of the 0s and

1s at the core of the computer.

4. THE OBJECT
Given that programming presents perspicuously the fundamental

ontological dilemma of the digital, it is instructive to inquire after

its edge. The question is surely naïve, for programming is rife

with edges. If the edge marks every meeting between the binary

code and creativity, then we should expect to find edges

throughout the activities of programming, from the proliferation

of paradigms and languages, to the development of sophisticated

editing and planning environments, to the complex interventions

of compilers, linkers, assemblers and other programs that mediate

between source code and object code. Nevertheless, I designate

one particular structure as the archetype of the edge in

programming, a structure so fundamental to programming that

they are almost coextensive. I have in mind the object, as made

explicit in object-oriented programming (OOP).

My point is not to say that code reaches its pinnacle in object-

oriented programming. On the contrary, the object has inhabited

the activity of programming since the origins of software, rising to

a point of particular visibility in OOP. Analyzing the

characteristics of the object that determine it as an edge of code,

we can also see how the object represents the key innovation of

programming, like the monolith in 2001 that shows up alongside

evolutionary advance.

Proposition: An edge has four characteristics, (1) an increase in

the number of dimensions, (2) hierarchical distinction, (3) inside-

outside distinction, and (4) an enfolding of disparate spaces,

times, and logics. These four symptoms operate more and less

clearly at every edge, but the object presents them with a forceful

intensity. I’ll deal with them in sequence.

4.1 Increase in Dimensions
The most basic operation of an object is to aggregate diverse data

and subroutines under a single name. (I am somewhat sloppy with

my terminology. I often say object when I mean to be talking

about an object class.) Conceptually, an object is like a set, not

another element but the possibility of a group of individuals,

which introduces a new dimension. Data and subroutines remain,

now organized by the object at a new scale. The object does not

exist on the same plane as its parts; its invention is a matter of

seeing its parts from outside of them, rising above the plane of

data and algorithms to generate a supervenient organization.

(Formally, some object-oriented languages or environments do

place the object on the same level as its parts, making both objects

and their parts just types that can be imposed on any data. In such

a case, the very notion of typing evinces the additional dimension;

a type is a pattern that informs data from without, a named or

measured structure.)

This increase in dimensions may seem abstract when described

this way, more of a way of looking at the program than a fact

about it. But the augmented dimension has concrete, material

ramifications. Object-oriented programming tools allow the

programmer to switch dimensions easily, providing a typical

coding environment for the linear generation and editing of data

structures and subroutines but also providing the opportunity to

work directly at the level of program structure. The programmer

works in the higher and lower dimensions, outlining the structure

of object classes in the higher dimension and filling in the details

of algorithmic content in the lower. Declarations define this

structure, and are both placeholders for future content but also

already the substance of the program, employed by the compiler

to establish variable names and scope. Even the compiler

recognizes the distinction between dimensions, dedicating

different passes or phases of the compile process to the different

dimensions, an initial pass that builds an image of the higher-level

structure of the object classes and another pass to draw in the

details of actual sequential operation.

4.2 Hierarchy
As for hierarchy, to some extent it is implicit in the dimensional

augmentation: the object stands over the data and subroutines it

comprises. The programmer frequently works from the object as a

basis, considering the appropriate behavior of the object and

programming subroutines accordingly. That is, the object is not

only a formal grouping of code text, it is also a guiding principle

of the code and of the coding. Objects must be organized to make

a program, but in turn they organize much of the programming,

determining what gets coded and where and how. (Popular

philosophies of object-oriented coding promote the idea that the

choice and definition of object classes are the substantive acts of

OOP, while the implementation of particular methods is,

relatively speaking, a mere formality.)

But hierarchy appears even more explicitly in the overarching

organization of objects along filial or genetic lines. Inheritance

makes one object class the parent of another, bequeathing by a

kind of administrative shortcut all of the data and behaviors of the

parent to the child, and allowing the selective alteration of these

data and behaviors plus the addition of more data and behaviors to

accommodate the child’s special role in the program. This

organization is biunivocal, as most OOP systems provide tools to

allow either parent or child to take precedence in a given instance.

That is, it is possible for the parent to defer to the child (by

declaring a given function as virtual for instance), and it is

possible for the child to defer to the parent, by not overriding a

procedure or even by explicitly invoking the parent procedure

when appropriate. Hierarchy is thus asymmetrical but not one-

sided, allowing for considerable flexibility.

4.3 Inside-Outside
The firmest criterion marking the inside of an object is its scope.

Using scoping, the object hides its inside, controls access,

presenting an interface, a surface of exchange between inside and

outside. According to rules enforced at compile time, only an

object may directly alter its own data. Other objects may request

information or propose an alteration, but a response is screened by

the object itself.

Scoping is not confined to object-oriented programming but

circumscribes plenty of other insides, the inside of a procedure, of

a data structure, a DO WHILE loop, etc. Scoping is often the

foundation of encapsulation, which demarcates an inside and

tends to institute hierarchy and dimensional increase as well. The

foundational role of scoping hints at the universality of the object,

whose apotheosis in OOP recapitulates a long history of objects in

code. The object, the finest edge of programming, haunts code’s

every advance, driving the progress of programming.

Given its centrality to code, scoping also holds an essential

position in modeling calculi for code, including the -calculus and

-calculus. As the -calculus models linear algorithmic

processing, it uses primarily order of operations and other

orthography (such as parentheses) to indicate the inside of a

operation, and scoping is a secondary if still basic feature of the

calculus. But the -calculus models communicating processes,

where each statement in the calculus is implicitly surrounded by a

context of other statements, which makes the demarcation of an

inside fundamental to the operation of the calculus. The -calculus

thus provides two different means to impose a scope on a variable,

including one symbol () whose sole purpose is to limit a

variable’s scope. The manipulation of scope in the -calculus

gives it its significant advantage over other calculi for modeling

mobile processes, such as the Calculus of Communicating

Systems. By providing the opportunity to extrude the scope of a

private variable into a broader context, the -calculus makes it

possible for the inside of a process to expand its territory, to bring

its outside in.

4.4 Enfolding of Spaces, Times, and Logics
A commonplace in the study of programming is the notion that

programming involves a deferral of expression. The programmer

exercises her will in the computer, but her will operates from a

temporal distance, influencing an unspecified future, willing

something in relation to the eventual user. The programmer’s will

is deferred, captured by the executable, and reexpressed,

represented by the running program. Compile time and runtime

are not only arbitrarily separated from each other but are largely

independent. Notably, the programmer’s relationship to the

machine is radically different from the user’s relationship. A

painter stands in largely the same relationship to her painting as

does the (eventual) viewer of the painting, and even a composer is

also a virtual audience of his work in progress. Certainly a

programmer needs to act as user in order to test and evaluate a

program she is working on, and her judgments rely on an ability

to stand in the user’s shoes, anticipate her level of understanding

and her needs. But the programmer when coding does not relate to

the program as a running executable. She does not sculpt an

application out of its visible parts; she does not write first and

foremost for an audience but for the computer, offering it

instructions to be carried out in a different context and for a user

radically unlike herself. This is the strongest sense in which

programming adjoins or abuts disparate times, spaces, and logics,

the heterogeneity of programmer and user.

This fourth characteristic of the edge is not yet specific to objects,

for my comments apply to programming in general. But the object

amplifies the enfolding of space, time, and logic. In a sense, the

object extends the programming environment into the user’s

environment, coinciding runtime and compile time. While the

programmer creates object classes, the user’s actions cause the

instantiation of actual objects, as though she is working in the

code in retrospect. Her actions as the program is running are

directed at entities encapsulated in objects and therefore referable

to structures recognizable as such by the programmer during the

coding process. Elsewhere I discuss how the object, through the

self or this keyword, allows a deictic gesture from the user to

point back into the code, narrowing the gap between the

programmer and her deferred expression in the program. More

accurately, these self-referential keywords allow the programmer

to leverage an ambiguity in the code, so that the object referred to

by self or this is not determined until runtime, the

programmer’s will directed at the unknown.

5. AT THE EDGE
I have insisted on but not supported the claim that edges are

everywhere, that the object can be glimpsed at each moment of

code’s progress throughout the history of computing. I would

offer briefly one further example intended to suggest the

pervasive role of the object in programming. The foundational

moment of software, the implicit separation of digital instructions

from the hardware in which they are inscribed, already outlines an

object. Software itself constitutes an additional dimension, a

dimension of abstraction that has a reality independent of the bug-

ridden or otherwise unpredictable materiality of the hardware. The

asymmetry of hardware and software generates numerous

hierarchies, as the hardware maintains a kind of absolute or final

say over any actual operation, while the software comes to direct

the hardware that serves it. Software invites a dangerous but

tempting image of an inside, which persists today in the common

conception of the computer as a “giant brain” with software

playing the role of the mind. Finally, the invention of software

moves the scene of programming outside of the hardware of the

machine and divorces programming time from running time.

This model of the edge of the digital, appearing as the object in

programming, allows theorists of software and codework to

distinguish mundane from extraordinary programming activities,

and to locate the moment of creative investment in the digital

more generally. Programming presents a vexing milieu, seemingly

hemmed in by its mechanism, it is nevertheless experienced by

practitioners as an art. The edge and the analysis of which it forms

a part demonstrate the extent to which programming is indeed

mechanistic but also the places where it exceeds mechanism,

prompting a creative intervention from the programmer. Careful

study of the edge should lead not only to a better understanding of

digital culture and artifacts but should help generate richer

programming habits and better models for learning to program.

6. REFERENCES
[1] Brooks, F. 1986. No silver bullet: essence and accidents of

software engineering. In Information Processing, H.J.

Kugler, Ed. Elsevier Science, Amsterdam, 1069–1076.

