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ABSTRACT OF THE DISSERTATION

Sub-Index for Critical Points of Distance Functions

by

Barbara Christine Herzog

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Dr. Fred Wilhelm, Chairperson

Morse theory is based on the idea that a smooth function on a manifold yields

data about the topology of the manifold. In this way it provides a tool for visualizing

the shape of a space. Specifically, Morse’s Isotopy Lemma tells us that the homotopy

type of a manifold does not change in regions without critical points. The topology only

changes in the presence of a critical point. Morse’s Theorem states that the specific

topological change is determined by the index of the Hessian at each critical point. In

Morse Theory a smooth function is essential so that the differential and Hessian exist.

In Riemannian geometry, the distance function is not smooth everywhere. This

means the differential as well the Hessian do not exist and Morse Theory cannot be

applied. In order to generalize Morse Theory to this non-smooth function, an alternate

definition of critical point and index are required. Grove and Shiohama developed a

definition of critical point for the Riemannian distance function and used it to generalize

Morse’s Isotopy Lemma [9]. Their generalization had a profound impact on the study

of Riemannian geometry. Since no definition of index currently exists, Morse’s Theorem

has not been generalized.
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The purpose of this dissertation is to define a new notion, called sub-index, for

critical points of Riemannian distance functions. We show that Morse’s connectedness

corollary holds for the distance function when index is replaced by sub-index.
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Chapter 1

Background

1.1 Introduction

In order to determine the shape of a function or a space, it is of monumental

importance to find and classify critical points. In Euclidean space, calculus provides

us with the necessary tools for visualizing the shape of a smooth function. In this

case, shape can refer to such things as minimums and maximums. The critical points

occur where the gradient, given by the matrix of first partial derivatives, is the zero

matrix. To classify the critical points as minimums or maximums, we can use the

Hessian, represented by the matrix of second partial derivatives. Since the minimums

and maximums are determined using derivatives, a smooth function is required.

Morse Theory, which was created by Marston Morse in the 1920’s, allows us to

visualize the shape of an n-dimensional manifold M by analyzing the critical points of

a smooth function defined on it. In this case, shape can refer to minimums, maximums,

and even homotopy type. By definition, a point p in M is a critical point of a smooth

function h : M −→ R if the differential

h∗ : TpM −→ Th(p)R
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is zero. Morse Theory tells us, via the Isotopy Lemma, that the homotopy type of a

manifold does not change in a region that consists entirely of regular points, points that

are not critical [11]. The homotopy type only changes in the presence of a critical point.

Morse’s Theorem delineates the specific type of change by considering the index of the

critical point [11]. The index of a critical point is defined as follows but can be thought

of as the number of independent directions of decrease from the critical point.

Definition 1. For a smooth function, the index of a critical point is the dimension of

the largest subspace on which the Hessian is negative definite.

In order to utilize Morse Theory, a smooth function is required so that the differential

as well as the Hessian exists.

In Riemannian geometry, the study of Riemannian manifolds, the distance

between two points is an important function defined on a manifold. Unfortunately, the

distance function is not smooth everywhere, which means that Morse Theory cannot be

applied in order to analyze it. To extend Morse Theory to this non-smooth function, an

alternate definition of critical point and index, not related to the differential, is necessary.

In 1977, Grove and Shiohama developed a notion of critical point for the Riemannian

distance function and generalized the isotopy lemma to this case [9]. Their generalization

had a profound effect on the study of Riemannian manifolds. Applications of their result

include the Diameter Sphere Theorem [9], Gromov’s Betti Number Theorem [7], and

Grove and Petersen’s Homotopy Finiteness Theorem [8].

Currently, no definition of index exists for a critical point of the Riemannian

distance function. The main goal of this work has been to develop a notion of sub-index

and use it to generalize a consequence of Morse’s Theorem.
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1.2 Morse Theory

Morse theory is based on the idea that a smooth function on a manifold yields

data about the topology of the manifold. In this way it provides a tool for visualizing

the shape of a space. The two main results discussed in this section are Morse’s Isotopy

Lemma and Morse’s Theorem.

Throughout this chapter, let M be an n-dimensional manifold and h : M −→ R

be a smooth function. Define a sublevel set of M as follows.

Definition 2. For a real number a, the sublevel set is given by Ma := h−1(−∞, a].

Note that for a < b, the set Ma is a subset of M b. In fact, if a is not a critical value for

h, then by the Implicit Function Theorem, the sublevel set Ma is a smooth submanifold

with boundary.

Example 3. To motivate Morse’s Isotopy Lemma, let M be the 2-dimensional torus

shown in Figure 1.1.

x

w

y

z

h1

h2

h3

aaa

bbb

Figure 1.1: An interval that does not contain a critical value.

Let h : M −→ R be the height of each point on M . The critical points for h

occur at the points x, y, z and w on M since the tangent plane at each of these points
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is horizontal. The corresponding critical values occur at heights of 0, h1, h2, and h3

respectively. Note that there are no critical values in the interval [a, b]. Further, both

Ma and M b have the same homotopy type. In fact, Ma is a deformation retract of

M b. This illustrates Morse’s Isotopy Lemma which relates sublevel sets from an interval

without critical values.

Lemma 4. (Morse’s Isotopy Lemma [11]) Suppose there are no critical values in [a, b].

Then Ma is diffeomorphic to M b. Further, Ma is a deformation retract of M b, so that

the inclusion map Ma ↪→M b is a homotopy equivalence.

Morse’s Theorem, which describes how the homotopy type of a manifold changes

at a critical point, applies only to non-degenerate critical points. Non-degenerate critical

points are guaranteed to be isolated, while degenerate critical points can be isolated or

not isolated.

Definition 5. A critical point is called non-degenerate if the Hessian of h, represented

by the matrix of second partial derivatives evaluated at that point, has an inverse.

The index of the critical point determines the specific type of change. Infor-

mally, the index gives the number of independent directions of decrease as we move

away from the critical point. A critical point with index zero corresponds to a mini-

mum, since none of the independent directions from the critical point corresponds to a

decrease. Further, a critical point with index equal to the dimension of the manifold

represents a maximum, given that every independent direction from the critical point

corresponds to a decrease.

In Example 3, the index of w is two, since moving in either of the two inde-

pendent directions away from w causes the height to decrease. Both y and z have index
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one, since there is only one direction that causes a decrease in height. The index of x is

zero, since there are no directions of decrease possible.

Theorem 6. (Morse [11]) Let p be a nondegenerate critical point with h(p) = c and

index λ. Suppose h−1[c− ε, c+ ε] is compact and contains no critical points other than

p. Then M c+ε has the homotopy type of M c−ε with a λ-cell attached.

By definition, a λ-cell, where λ is a whole number, is a space homeomorphic

to a closed λ-dimensional ball. So a 0-cell is a point, a 1-cell is an interval, and a 2-cell

is a disk.

Example 7. Again consider the height function on the 2-dimensional torus.

x

w

y

z

c = h1

h2

h3

c+ εc+ εc+ ε

c− εc− εc− ε

Figure 1.2: An interval that contains no critical values other than c.

The interval [c− ε, c+ ε] contains no critical values other than c. The set M c−ε

is a bowl, as shown in Figure 1.3, and has the same homotopy type as a point. The set

M c+ε is a curved tube and has the same homotopy type as a circle. For the set M c−ε to

have the same homotopy type as M c+ε, it is necessary to attach a 1-cell, since the index

of y is one. After attaching an interval to M c−ε, the resulting space, depicted in Figure

1.3, will have the same homotopy type as M c+ε. In order to visualize this, note that we
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can shrink the M c−ε part of the space down to a point. The resulting space will be an

interval attached to a point, i.e. a circle, which has the same homotopy type as M c+ε.

M c−ε with a 1-cell attachedM c−ε M c+ε

Figure 1.3: An illustration of Morse’s Theorem

Morse’s Theorem implies the following corollary.

Corollary 8. Given the hypotheses in the theorem, for all i = 1, 2, . . . , (λ− 1)

πi(M
c+ε,M c−ε) = 0,

i.e. the pair (M c+ε,M c−ε) is (λ− 1)-connected.

This means a cell of dimension 1, 2, . . . , or (λ−1), within M c+ε whose bound-

ary lies in M c−ε, can be deformed into M c−ε. Currently, Morse’s Theorem has not been

generalized to the Riemannian distance function. However, our main result in Section

2.2 generalizes Corollary 8 to the Riemannian distance function given our new notion

of sub-index.

1.3 The Riemannian Distance Function

A Riemannian manifold is a smooth manifold M equipped with a metric g,

defined on the tangent space TM , that varies smoothly from point to point. The metric
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is a family of inner products

gp : TpM × TpM −→ R

depending on the point p in M . Varying smoothly means that for all vector fields X

and Y on M , the map

p 7−→ gp

(
X(p), Y (p)

)
is smooth.

The simplest example of a Riemannian manifold is Euclidean space whose

inner product is given by the dot product from multivariable calculus. Some formulas

involving the dot product are

‖v‖ = (v · v)
1
2 and v · w = ‖v‖‖w‖ cos θ

where v and w are vectors and θ is the angle between them. In Riemannian geometry,

the corresponding formulas are given by

‖v‖ = g(v, v)
1
2 and g(v, w) = ‖v‖‖w‖ cos θ.

For a Riemannian manifold, the distance between two points is defined by

considering the length of all curves that connect the points.

Definition 9. The length of a curve γ : [0, 1] −→M is given by

Len(γ) =

∫ 1

0
g
(
γ′(t), γ′(t)

) 1
2
dt.

Definition 10. A curve γ is parametrized by arc length if ‖γ′(t)‖ = 1, i.e. the curve

has unit speed.

Definition 11. A geodesic is a curve γv : [0, 1] −→M , with γ
′
v(0) = v, that satisfies

γ
′′
v (t) = 0.

7



In Riemannian geometry, a geodesic is the generalized notion of a line since

it is a constant speed curve. Geodesics are uniquely determined by their initial point

γv(0) and their initial direction v ∈ Tγv(0)M . Unlike Rn, it is possible for two points on

a manifold to be connected by multiple geodesics.

We can also define a geodesic using the exponential map.

Definition 12. Given a geodesic γv with γv(0) = p, the exponential map

expp : TpM −→M

is defined as expp(v) = γv(1).

In general, a geodesic γv : [0, 1] −→M can be written as γv(t) = expp(tv).

When r is smaller than the injectivity radius, the exponential map takes lines

in B(0p, r) ⊂ TpM starting at 0p to geodesics in B(p, r) starting at p.

Definition 13. The injectivity radius, given by injM , is the largest radius r such that

expp : B(0p, r) −→ B(p, r)

is a diffeomorphism for all p ∈M .

Definition 14. For a fixed point, p, the Riemannian distance function, distp : M → R,

is defined as

distpx := inf
{
Len(γ)

∣∣∣ γ is a unit speed curve from x to p
}
.

Definition 15. A segment is a geodesic between two points whose length equals its

distance.

So, a segment is the shortest geodesic between two points.
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Example 16. To illustrate geodesics compared to segments as well as length compared

to distance, let M be the unit circle centered at the origin O with p = (1, 0) and param-

eterization

x(t) = (cos t, sin t).

The curves in Figure 1.4 from p to x(3π2 ) moving either clockwise or counterclockwise are

both geodesics. However, the clockwise one is a segment since it represents the shortest

geodesic between the points.

O
p = (1, 0)x(π) = (−1, 0)

x(3π2 )

Figure 1.4: The unit circle with paramterization x(t) = (cos t, sin t).

The length of each geodesic from p to x(t) can be determined using the arc

length formula. On a circle, arc length is given by s = rθ where r is the radius and θ

is the non-negative angle formed by Op and Ox. Since the radius of this circle is one,

the length from p to x(t) is equal to the angle θ. So, the length of the geodesic from p

to x(3π2 ) moving counterclockwise is 3π
2 , while the length is π

2 when traveling clockwise.

Thus, the distance is π
2 , and only the geodesic associated with the clockwise path can be

called a segment.

On the other hand, the length of the semi-circle from p to x(π) is π regardless

of traveling on a geodesic counterclockwise or clockwise from p. The distance is also π,

and both of the geodesics described can be called segments from p to x(π).

9



In this example, the distance from p to x(t) can be written explicitly as

distpx(t) = π − |t− π|

on the interval [0, 2π], and its graph is given in Figure 1.5. Note that distp is not smooth

at the point x(π).

x(π) x(2π)

π

Figure 1.5: The graph of distpx(t) = π − |t− π|

In general, the Riemannian distance function is not smooth everywhere. It is

smooth, however, at all points before the cut locus, the set of points where geodesics

emanating from p stop being segments. For a geodesic γv : [0,∞) −→ M , define tv to

be the largest parameter time in [0,∞) such that γv : [0, tv] −→M is a segment.

In Example 16, a geodesic traveling from p counterclockwise will only be a

segment until the point tv = π. Beyond x(π), it would be shorter to travel along a

geodesic clockwise from p.

The set of points γv(tv) in M corresponding to the parameter times given by

tv, for all geodesics emanating from p, is called the cut locus.

Definition 17. For a point p, the cut locus is the set of points in M given by

Cut(p) :=
{
γv(tv)

∣∣∣ v ∈ TpM}.
In Example 16, x(π) is the only point in the cut locus. The point x(π) is also

important because it represents the maximum distance from p, meaning that it is a
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critical point. In general, the set of critical points (excluding p) forms a subset of the

cut locus. Although the Riemannian distance function distp is not smooth on the cut

locus, it is smooth on the set of points before the cut locus. This is given by

{
γv(t)

∣∣∣ t < tv, v ∈ TpM
}
.

Even though the Riemannian distance function is not smooth everywhere, it

is directionally differentiable. For x ∈ M , let Sx be the unit tangent sphere at x, i.e.

Sx ⊂ TxM and for all w ∈ Sx we have ‖w‖ = 1.

Definition 18. For each x ∈M , define the set

⇑px:=
{
w ∈ Sx

∣∣∣ w is tangent at x to a segment from x to p
}
.

By [13], the directional derivative of distp in the direction of v ∈ TxM is given by

Dv(distpx) = − cos^(v,⇑px).

Using this directional derivative, Grove and Shiohama created the definition of

regular point and critical point for distp as follows [9].

Definition 19. A point x in M is a regular point for distp if there exists a v in TxM

such that ^(v,⇑px) > π
2 .

vvv
xxx

Figure 1.6: Sample configuration of ⇑px when x is a regular point.
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Since the vectors in ⇑px form an angle greater than π
2 with v, the vectors in ⇑px

point in the same general direction from x as shown in Figure 1.6. When x is a regular

point, the directional derivative will be

Dv(distpx) > 0.

This means moving in the direction of v causes distp to increase. Thus, the vector v is

“gradient-like” for distp.

A critical point is defined to be a point that is not regular.

Definition 20. A point x in M is a critical point for distp if for all v in TxM we have

^(v,⇑px) ≤ π
2 .

xxx

Figure 1.7: Sample configuration of ⇑px when x is a critical point.

For a critical point, all vectors in the tangent space form an angle less than or

equal to π
2 with ⇑px, as illustrated in Figure 1.7. In this case, the vectors in ⇑px are fairly

spread out in the unit tangent sphere, meaning that no such v is possible. For a critical

point, Dv(distpx) ≤ 0 for all v in TxM .

Given these definitions, the generalized isotopy lemma is as follows.

Lemma 21. (Grove, Shiohama [9]) Suppose distp has no critical values in [a, b]. Then

Ma := dist−1p (−∞, a] is homeomorphic to M b := dist−1p (−∞, b].

Since Ma is not smooth, homeomorphism is the strongest condition possible.

12



Chapter 2

Results

In this chapter, we present our definition of sub-index for a critical point of the

Riemannian distance function. We also give our main results based on this definition.

2.1 Preliminaries

Throughout this chapter, let M be an n-dimensional compact Riemannian

manifold. For a fixed p in M , we assume the critical points for the Riemannian distance

function distp are isolated. This is a reasonable assumption since the non-degeneracy

requirement in Morse Theory implies isolated critical points.

The critical values can be made distinct by adding a smooth function f to distp.

Although distp+f is not a distance function, the definitions of critical and regular point

for distp can be extended to distp + f in a natural way. First, define

⇑̂py := {⇑py +∇f}.

A point y will be critical for distp + f if for all v in TyM we have

^
(
v, ⇑̂py

)
≤ π

2
.

13



On the other hand, a point y will be defined to be regular for distp + f if there exists a

v in TyM such that

^
(
v, ⇑̂py

)
>
π

2
.

Using these definitions, the following lemma shows that distp can be altered so that its

critical points remain the same but the critical values become distinct.

Lemma 22. Suppose x is a critical point with distpx = c. Let N1 ⊂ N2 be neighborhoods

of x such that N1 ⊂ N2 and x is the only critical point in N2. Then for any ε > 0 there

is a function

Distp : M −→ R

with the following properties.

1) The set of critical points for Distp is the same as the set of critical points for distp.

2) The point x is the only critical point of Distp with critical value Distpx.

3) The difference function given by f ≡ Distp− distp is smooth, constant on N1, and

supported on N2.

4) The function f satisfies ‖f‖C1 < ε, i.e. all directional derivatives are smaller than ε.

Proof. By Urysohn’s Lemma, there is a function χ : M −→ R so that

χ :=


1 on N1

0 on M \N2

is smooth. The desired function Distp is obtained by setting

Distp := distp + δ · χ

for δ > 0 sufficiently small. It remains to show that Distp and distp have the same

critical and regular points throughout M .

14



On the set N1, we have f ≡ δ, which means that ∇f ≡ 0 and ⇑̂py =⇑py.

Similarly, f ≡ 0 on the set M \N2. So on N1
⋃

(M \N2), the critical and regular points

for Distp and distp will be the same.

Now consider the set N2 \ N1. Since x is the only critical point in N2, each

point y in N2 \N1 is a regular point for distp. This means there exists a v in TyM such

that ^(v, ⇑py) > π
2 . Choose δ0 > 0 small enough so that there exists v̂ ∈ TyM such that

^
(
v̂, ⇑̂px

)
= ^

(
v̂, ⇑py +δ0 · ∇χ

)
>
π

2
.

In fact, choose it small enough so that it is independent of the choice of y. As long as

δ < δ0, the points in N2 \N1 will be regular for Distp. Thus, Distp and distp will have

the same critical and regular points throughout M .

Finally, we ensure that the critical point x has a unique critical value Distpx.

Note that since x is in N1, its critical value is given by

Distpx = distpx+ δ.

Choose δ < min{δ0, ε} so that Distpx is distinct from other critical values of Distp.

Throughout the remainder of the chapter, let the critical points for distp be

denoted by xi where i = a, . . . ,−1, 0, 1, . . . , b. For simplicity, we assume that the corre-

sponding critical values distpxi = ci are distinct and ordered by their subscripts. This

means there is no need for ⇑̂pxi , and we can work exclusively with ⇑pxi . Define the sublevel

sets as

M ci := dist−1p [0, ci].
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2.2 The Definition of Sub-Index and Main Results

The set ⇑px0 plays an important role in defining x0 as a critical point. Specif-

ically, x0 is a critical point for distp if for all v in Tx0M , we have ^(v,⇑px0) ≤ π
2 .

Unfortunately, the set ⇑px0 is too unwieldy to be of further use on its own. Instead, we

consider the set given by

A(⇑px0) :=

{
v ∈ Sx0

∣∣∣∣ ^(v,⇑px0) ≥ π

2

}

where Sx0 is the unit tangent sphere at x0. The set A(⇑px0) is at maximal distance from

⇑px0 in the unit tangent sphere, and its structure is well understood.

If A(⇑px0) is not empty, then for each w in ⇑px0 the set of vectors v in the unit

tangent sphere at x0 such that ^(v, w) ≥ π
2 form a hemisphere. This means A(⇑px0)

is the intersection of overlapping hemispheres in Sx0 . So, A(⇑px0) is a convex, totally

geodesic submanifold of the unit tangent sphere. Being able to identify the structure of

A(⇑px0) is a crucial component in our definition of sub-index and the results that follow.

Example 23. Suppose ⇑px0 consists of two antipodal points w1 and w2 on the 2-sphere.

w1

{v ∈ Sx0 | ^(v, w1) ≥ π
2 }

w2

{v ∈ Sx0 | ^(v, w2) ≥ π
2 }

w1

w2

A(⇑px0)

Figure 2.1: A(⇑px0) is the intersection of hemispheres
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In Figure 2.1, the shaded area of the first sphere represents the set of vectors

in the unit tangent sphere of x0 that are at least π
2 away from w1. Similarly, the shaded

area of the second sphere represents the vectors that are at least π
2 away from w2. The

third sphere illustrates the set of vectors that are at least π
2 away from both w1 and w2,

i.e. A(⇑px0).

Based on this framework, we present our definition of sub-index.

Definition 24. If x0 is an isolated critical point of distp, its sub-index is given by

λ :=



n if A(⇑px0) = Ø

n− 1− dimA(⇑px0) if A(⇑px0) 6= Ø but ∂A(⇑px0) = Ø

n if ∂A(⇑px0) 6= Ø

Example 25. Let M be the flat 2-torus given by the rectangle in Figure 2.2 with opposite

sides identified.

M : Sxi :

u

−u

−w w

x3

x3 x3

x3

x2 x2

x1

x1

p

Figure 2.2: The flat 2-torus and its unit tangent space at xi for i = 1, 2, 3

With p as the center, we show that the points p, x1, x2, and x3 are critical for

distp. They correspond to the points x, y, z, and w, respectively, as shown in Example

7. We also show that the sub-index for critical points in Figure 2.2 is the same as the

index of the corresponding critical points in Example 7.
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First, consider p. Since there are no segments connecting p to itself, ⇑pp= Ø.

This implies that for all vectors v ∈ TpM we have ^(v,⇑pp) ≤ π
2 , i.e. p itself is a critical

point for distp. In this case, A(⇑pp) = Sp, which is a unit circle, and ∂A(⇑pp) = Ø. Thus,

p is a minimum since its sub-index is

λ = n− 1− dimA(⇑pp) = 2− 1− 1 = 0.

For the point x1, the set ⇑px1= {−u, u} as depicted on the unit tangent circle

in Figure 2.2. So, for all vectors v ∈ Tx1M we have ^(v,⇑px1) ≤ π
2 , which implies x1

is a critical point. Note that A(⇑px1) = {−w,w}, which means ∂A(⇑px1) = Ø. Thus, the

index is

λ = n− 1− dimA(⇑px1) = 2− 1− 0 = 1.

The situation for x2 is completely analogous to that of x1.

The point x3 is critical for distp since ⇑px3= {±w,±u} means that for all vectors

v ∈ Tx3M we have ^(v,⇑px3) ≤ π
2 . Then A(⇑px3) = Ø since there are no vectors in Sx3

at least π
2 away from ⇑px3. Thus, the index is λ = n = 2, and x3 is a maximum.

Therefore, the sub-index for critical points in Figure 2.2 matches the index of

the corresponding critical points in Example 7.

Our main theorems are as follows.

Theorem 26. (Connectedness Theorem) Let x0 be an isolated critical point for distp

with distp(x0) = c0 and sub-index λ. Then the inclusion M c0−ε ↪→ M c0+δ is (λ − 1)-

connected, where ε < c0 − c −1 and δ < c1 − c0. In other words,

πi(M
c0+δ,M c0−ε) = 0

for i = 0, 1, . . . , (λ− 1).
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Theorem 27. (Relative π1 Theorem) Let x0 be an isolated critical point for distp with

distp(x0) = c0. Suppose

π1(M
c0+δ,M c0−ε) 6= 0,

for ε < c0 − c −1 and δ < c1 − c0. Then ⇑px0 is a pair of antipodal points, i.e. there are

only two segments from p to x0 and they make angle π at x0. Moreover, the ends of

these segments are not conjugate along the segments.

The proof of Theorem 26 is divided into three cases based on the definition

of sub-index, meaning that the structure of A(⇑px0) plays a key role. The necessary

technical lemmas are presented in Section 2.3, and the proof is given in Section 2.4. For

the general idea of the proof note that if A(⇑px0) is empty, all vectors along segments

emanating from x0 point in a direction of decrease. This means x0 is a local maximum.

So, any cell of dimension less than n can be deformed into M c0 .

For the other two cases, A(⇑px0) is not empty, and we consider a k-dimensional

cell Ek, which is a subset of int(M c1 \M c −1 ) with its boundary in intM c0 . To prove the

theorem, we show that a flow can be created to move Ek, with k = 1, . . . , (λ− 1), into

intM c0 while leaving the boundary of Ek fixed. When the boundary of A(⇑px0) is empty,

A(⇑px0) is a great subsphere. In this case, the key idea is that transversality allows Ek

to be moved away from A(⇑px0).

If both A(⇑px0) and its boundary are not empty, A(⇑px0) contains a vector ws

such that

A(⇑px0) ⊂ B
(
ws,

π

2

)
.

Extending −ws to a vector field near x0 produces a local flow. The local flow can be

glued to a global flow that will ultimately move Ek, with k = 1, . . . , (n−1), into intM c0 .
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2.3 Technical Lemmas for the Connectedness Theorem

For the critical point x0, the following lemma shows that for a short time the

distance along a geodesic in any direction from x0 has a linear approximation. It will

be used to determine when points of M are in a particular sublevel set.

Lemma 28. Given ε > 0, there exists ρ > 0 such that for all v ∈ Sx0

c0 − t · cos^(v,⇑px0)− ε · t ≤ distp
(
expx0 (tv)

)
≤ c0 − t · cos^(v,⇑px0) + ε · t

for all t ∈ [0, ρ].

Proof. Let ε > 0. Suppose v ∈ Sx0 and γv(t) is the segment from x0 to expx0(tv) such

that γ
′
v(0) = v. Since distp is directionally differentiable,

Dv(distpx0) = − cos^(v,⇑px0).

So, the Taylor polynomial representation of distp

(
expx0(tv)

)
is given by

distp

(
expx0(tv)

)
= c0 − t · cos^(v,⇑px0) + o(t).

Choose ρv > 0, depending on v, such that for all t ∈ [0, ρv] we have

c0 − t · cos^(v,⇑px0)− ε · t ≤ distp
(
expx0(tv)

)
≤ c0 − t · cos^(v,⇑px0) + ε · t. (2.1)

By continuity there exists a neighborhood Wv of v, on which the inequalities

in (2.1) are valid. In fact, we can find such a neighborhood for each v in Sx0 . So, the set

of such neighborhoods forms an open cover of Sx0 . Since Sx0 is compact, there exists a

finite subcover, say {Wvi}ki=1. Define ρ to be the minimum of {ρvi}ki=1. Thus, for all v

in Sx0 the inequalities (2.1) will hold on the interval [0, ρ].

The next lemma establishes a set of points, given by N , that lie in intM c0 .

Only part (1) is used in the remainder of this work.
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Lemma 29. Given δ sufficiently small and Uδ, the δ-neighborhood of A(⇑px0), there

exists R > 0 such that:

1) for N := expx0

(
t(Sx0 \ Uδ)

)
with t ∈ (0, 2R] we have N ⊂ intM c0 and

2)
(
B(x0, 2r) \B(x0, r)

)
∩M c0− 9

10
r ⊂ N for r ∈ (0, R].

Proof. Choose δ ∈ (0, π2 ) such that 9
20 − cos(π2 − δ) > 0. Since the distance from ⇑px0

is a continuous function on the compact set Sx0 \ Uδ, a maximum angle exists, say α1.

Choose ε1 < cosα1. Then by Lemma 28 there exists ρ1 > 0 such that

distp

(
expx0(tv)

)
≤ c0 − t · cos^(v,⇑px0) + ε1 · t

on the set N1 :=
{
expx0(tv)

∣∣∣ v ∈ Sx0 \Uδ, t ∈ [0, ρ1]
}
. Now we show that N1 ⊂ intM c0 .

Since α1 = max
{
^(v,⇑px0)

}
over all v in Sx0 \ Uδ and ε1 < cosα1 on N1, we have

distp

(
expx0(tv)

)
≤ c0 − t · cos^(v,⇑px0) + ε1 · t

≤ c0 − t · cosα1 + ε1 · t

< c0

Thus, N1 ⊂ intM c0 .

Similarly, since the distance from ⇑px0 is a continuous function on the compact

set U δ, a minimum angle exists, say α2. Choose ε2 <
9
20 − cosα2. Then by Lemma 28

there exists ρ2 > 0 such that on the set N2 :=
{
expx0(tv)

∣∣∣ v ∈ U δ, t ∈ [0, ρ2]
}

c0 − t · cos^(v,⇑px0)− ε2 · t ≤ distp
(
expx0(tv)

)
.

Using α2 and ε2, on N2 we have

distp

(
expx0(tv)

)
≥ c0 − t · cosα2 − ε2 · t

> c0 − t · cosα2 − t
( 9

20
− cosα2

)
= c0 −

9

20
t.
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Define R := 1
2 min{ρ1, ρ2} and for r ≤ R

N :=
{
expx0(tv)

∣∣∣ v ∈ Sx0 \ Uδ, t ∈ (0, 2r]
}
.

Since N ⊂ N1, the first part of the lemma has been satisfied. It remains to show the

second part.

Consider the points expx0(tv) that are in the annulus
(
B(x0, 2r) \ B(x0, r)

)
but are not in N , i.e. the points in

N3 :=
{
expx0(tv)

∣∣∣ v ∈ U δ, t ∈ [r, 2r)
}
.

Using contrapositive, we need to show that N3 is not in M c0− 9
10
r. Since t < 2r ≤ ρ2, we

have N3 ⊂ N2. So on N3,

distp

(
expx0(tv)

)
> c0 −

9

20
t > c0 −

9

10
r.

Thus, the points in N3 are not in M c0− 9
10
R.

Lemma 30. (Local Reduction Lemma) Suppose for R > 0, B(x0, 2R) is contained in

int(M c1 \M c −1 ). Then M c0− 9
10
R∪B(x0, R) is a strong deformation retract of int(M c1).

c0x0

c0 − 9
10R

c −1

c1

Figure 2.3: The sets involved in Lemma 30
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Proof. Since intM c1 \ (M c −1 ∪ {x0}) consists only of regular points, we can define a

negative gradient-like vector field X on it. Then X defines a local flow ψ(y, t). In order

to create a deformation retraction, we need to consider how long it takes each point y

in intM c1 \ (M c −1 ∪ {x0}) to end up in M c0− 9
10
R ∪B(x0, R). Define the function

τ : intM c1 \ (M c −1 ∪ {x0}) −→ R

to be the minimum amount of time that it takes y to arrive in M c0− 9
10
R ∪B(x0, R) as it

flows with ψ. Since each y in M c0− 9
10
R ∪B(x0, R) is already in the desired set, we have

τ(y) = 0.

Now we create a strong deformation retraction of the set intM c1 into the set

M c0− 9
10
R ∪B(x0, R). Define φ : intM c1 × [0, 1] −→ intM c1 by

φ(y, t) :=


ψ
(
y, τ(y) · t

)
if y ∈ intM c1 \ (M c −1 ∪ {x0})

y if y ∈M c −1 ∪ {x0}

At t = 0, the points in M c −1 ∪ {x0} remain fixed, and for

y ∈ intM c1 \ (M c −1 ∪ {x0}),

we have φ(y, 0) = ψ(y, 0) = y. For t = 1, the points in M c −1 ∪ {x0} remain fixed in

M c0− 9
10
R ∪B(x0, R), and for the points y in intM c1 \ (M c −1 ∪ {x0}), we have

φ(y, 1) = ψ(y, τ(y)) ∈M c0− 9
10
R ∪B(x0, R).

Further, for all y in M c0− 9
10
R ∪ B(x0, R), we either have φ(y, t) = y when y is in

M c −1 ∪ {x0} or for y ∈ intM c1 \ (M c −1 ∪ {x0}) we know τ(y) = 0 and

φ(y, t) = ψ
(
y, τ(y) · t

)
= ψ(y, 0) = y.

Therefore, φ is a strong deformation retraction of intM c1 into M c0− 9
10
R ∪B(x0, R).
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2.4 Proof of the Connectedness Theorem

In this section, we restate Theorem 26 and present its proof.

Theorem. Let x0 be an isolated critical point for distp with distp(x0) = c0 and sub-

index λ. Then the inclusion M c0−ε ↪→ M c0+δ is (λ− 1)-connected, where ε < c0 − c −1

and δ < c1 − c0. In other words,

πi(M
c0+δ,M c0−ε) = 0

for i = 0, 1, . . . , (λ− 1).

Proof. Case 1: Suppose A(⇑px0) = Ø. Then there are no vectors v ∈ Sx0 such that

^(v,⇑px0) ≥ π

2
.

Since x0 is a critical point, we know that ^(v,⇑px0) ≤ π
2 for all tangent vectors v. So

for all v ∈ Sx0 , we must have ^(v,⇑px0) < π
2 . From this, the directional derivative tells

us that Dv(distpx0) < 0 for all v ∈ Tx0M , meaning that the distance between x0 and p

decreases regardless of the direction we travel away from x0. Thus, the point x0 must be

a maximum. This means a cell of dimension 1, 2, . . . , or (n−1) within int(M c1 \M c −1 )

with boundary in intM c0 can be deformed into intM c0 . Therefore, πi(M
c1 ,M c0) = 0

for i = 0, 1, . . . , (n− 1).

Set up for cases 2 and 3: For the remaining two cases choose δ ∈ (0, π2 )

such that

9

20
− cos

(π
2
− δ
)
> 0. (2.2)

Let Uδ be the δ-neighborhood of A(⇑px0). Then by Lemma 29 there exists R > 0 such

that N ⊂ intM c0 where

N := expx0

(
t(Sx0 \ Uδ)

)
for t ∈ (0, 2R].
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Let Ek be a k-cell with k = 0, 1, . . . , (λ− 1) such that Ek ⊂ int(M c1 \M c −1 )

and ∂Ek ⊂ intM c0 . Since c0 − distp is a continuous function on the compact set ∂Ek,

there exists a minimum, say m. Then

distp(∂E
k) ≤ c0 −m.

Choose r < min
{

2R, 12m
}

so that B(x0, 2r) is contained in int(M c1 \M c −1 )

and 2r is smaller than the injectivity radius at x0. Then B(x0, r) is a ball around x0 in

int(M c1 \M c −1 ), and by the Local Reduction Lemma M c0− 9
20
r ∪B

(
x0,

1
2r
)

is a strong

deformation retract of intM c1 . Since r < 1
2m we have

distpB(x0, 2r) > c0 − 2r > c0 −m.

This means ∂Ek is outside the 2r-ball. So the strong deformation retract moves Ek into

M c0− 9
20
r ∪B

(
x0,

1
2r
)

while keeping ∂Ek fixed. Since r < 2R, we know from Lemma 29

that

Nr :=

{
expx0

(
t(Sx0 \ Uδ)

) ∣∣∣∣ t ∈ (0, r]

}
⊂ intM c0 .

It remains to show that we can create a homotopy that fixes ∂Ek and moves Ek
⋂
B
(
x0,

1
2r
)

into Nr, which we know is a subset of intM c0 .

Case 2: Suppose A(⇑px0) 6= Ø but ∂A(⇑px0) = Ø. Define

CrA(⇑px0) :=

{
expx0

(
tA(⇑px0)

)∣∣∣∣ t ∈ [0, r]

}
.

Note that the sum of the dimension of the cell and the dimension of CrA(⇑px0) yields:

dimEk + dimCrA(⇑px0) ≤
(
λ− 1

)
+
(

dimA(⇑px0) + 1
)

= λ+ dimA(⇑px0)

=
(
n− 1− dimA(⇑px0)

)
+ dimA(⇑px0)

= n− 1

< n.
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This means by transversality we can apply a small homotopy so that

{
Ek ∩B

(
x0,

1

2
r
)}⋂

CrA(⇑px0) = Ø

and the points outside B
(
x0,

1
2r
)

remained fixed. Since

{
Ek ∩B

(
x0,

1

2
r
)}
⊂ B(x0, r) \ CrA(⇑px0),

the following lemma shows that Ek ∩ B
(
x0,

1
2r
)

can be moved into Nr

∖
B
(
x0,

1
2r
)

, a

subset of intM c0 , while keeping the boundary of the cell fixed. This will complete the

proof.

Lemma 31. There exists an isotopy of M \CrA(⇑px0) that fixes M \B(x0, r) and restricts

to a strong deformation retract of B(x0, r) \ CrA(⇑px0) onto Nr

∖
B
(
x0,

1
2r
)

.

Proof. First, use radial geodesics from x0 to deform B(x0, r) \ {x0} onto

B(x0, r)
∖
B
(
x0,

1

2
r
)
.

Since CrA (⇑px0) is a union of these radial geodesics, this restricts to an isotopy of

B(x0, r) \ CrA(⇑px0) to

B(x0, r)
∖{

B
(
x0,

1

2
r
)⋃

CrA(⇑px0)

}
.

Now we move the points into Nr

∖
B
(
x0,

1
2r
)

. For any δ ∈ (0, π2 ) the set

Sx0 \ Uδ is a strong deformation retract of Sx0 \ A(⇑px0). Exponentiating this retract

gives an isotopy of B(x0, r)\CrA(⇑px0) that leaves the metric spheres around x0 invariant.

Thus, it carriesB(x0, r)
∖{

B
(
x0,

1
2r
)⋃

CrA(⇑px0)

}
intoNr

∖
B
(
x0,

1
2r
)

without moving

points in Nr

∖
B
(
x0,

1
2r
)

. Since the strong deformation retract can be given by a vector

field, we can use a partition of unity to glue it to the zero vector field on M \ B(x0, r)

so that the result will be an isotopy of M \ CrA(⇑px0) that fixes M \B(x0, r).
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Case 3: Suppose that both A(⇑px0) and its boundary are not empty. By

definition, A(⇑px0) consists of unit tangent vectors at least π
2 away from ⇑px0 . So, A(⇑px0)

is a subset of a π
2 -ball in the unit tangent sphere. This means we can choose a vector

ws in A(⇑px0) such that

A(⇑px0) ⊂ B
(
ws,

π

2

)
. (2.3)

Given that A(⇑px0) is a positively curved manifold with boundary, it can be shown that

the soul satisfies this condition.

Using a partition of unity, define a vector field W on M to be dexpx0(−ws) on

B
(
x0,

3
2r
)

and supported on B(x0, 2r). Let ψ(y, t) be the flow defined from W . Define

τ : M −→ R

to be the shortest time it takes for a point to either arrive in Nr or leave B(x0, 2r) as it

flows with ψ. Then the desired homotopy Ψ : M × [0, 1] −→M is given by

Ψ(y, t) = ψ
(
y, τ(y) · t

)
.

Note that for y ∈ Ek \ B(x0, 2r) we have τ(y) = 0 so Ψ(y, t) = y for all t. This means

the boundary of the cell remains fixed during the homotopy.

Since the cell is in M c0− 9
20
r ∪ B

(
x0,

1
2r
)

, it is enough to show that points in

B
(
x0,

1
2r
)

flow into Nr before they leave B(x0, 2r). In order to verify this, it is more

convenient to work in Sx0 . However, the field dexpx0(−ws) may not be of unit length,

thereby causing a distortion. To compensate for this, we further restrict r so that the

flow will take at least 7
5r to move each y ∈ B

(
x0,

1
2r
)

out of B(x0, 2r). By the triangle

inequality, we have ∥∥∥exp−1x0 (y)− rws
∥∥∥ ≤ 7

5
r <

3

2
r. (2.4)
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For y ∈ B
(
x0,

1
2r
)

we now claim that

θ := ^
(
exp−1x0 (y)− rws, ws

)
>
π

2
+ δ.

By (2.3), the claim implies that exp−1x0 (y)− rws ∈ Sx0 \ Uδ, so

Ψ(y, r) ⊂
(
Nr ∩B(x0, 2r)

)
.

To prove the claim, first note that

cos θ =
g
(
exp−1x0 (y)− rws, ws

)
‖exp−1x0 (y)− rws‖

=
g
(
exp−1x0 (y), ws

)
− r

‖exp−1x0 (y)− rws‖

≤
‖exp−1x0 (y)‖ − r
‖exp−1x0 (y)− rws‖

by the Cauchy-Schwarz inequality

≤ − r

2‖exp−1x0 (y)− rws‖
since y ∈ B

(
x0,

1

2
r
)

< −1

3
. (2.5)

The last inequality is due to (2.4). By (2.2), δ ∈ (0, π2 ) must satisfy 9
20 − cos(π2 − δ) > 0,

which means 1
3 − cos(π2 − δ) > 0. This implies

−1

3
< − cos

(π
2
− δ
)

= − sin δ = cos
(π

2
+ δ
)
. (2.6)

Combining inequalities (2.5) and (2.6), we have

cos θ < −1

3
< cos

(π
2

+ δ
)

which means θ > π
2 + δ as claimed.
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2.5 Lemmas Related to Conjugate Points

For the Relative π1 Theorem, we use a proof by contradiction to show that p is

not conjugate to x0 along the two segments between them. In this section, we give the

definition of conjugate point as well as lemmas related to both the presence of conjugate

points and the lack of conjugate points.

Throughout this section, suppose x0 is a critical point for distp and v ∈⇑px0 .

Let γv : [0, 1] −→M be the geodesic from γv(0) = x0 to γv(1) = p with γ′v(0) = v.

Definition 32. The point p is conjugate to x0 along γv(t) = expp(tv) if there exists a

nonzero Jacobi field J along γv with J(0) = 0 and J(1) = 0.

Note that if p is conjugate to x0 along γv, then ker
(
d expx0

)
v

is not zero. The

next lemma is a special case of a result in [4] but is presented with a different proof.

Lemma 33. Suppose w ∈ Sx0 is orthogonal to ker
(
d expx0

)
v
. Then there is a unique

Jacobi field Jw along γv so that

Jw (0) = w and Jw (1) = 0.

Proof. Let N be the familly of nonzero Jacobi fields N so that

N (0) = N (1) = 0.

Let P be the family of Jacobi fields P so that

P (1) = 0 and P
′(

1
)
⊥ N ′

(
1
)

for all N ∈ N .

We have

ker
(
d expx0

)
v

=
{
N
′
(0) |N ∈ N

}
.
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Since the Riccati operator on N ⊕P is self adjoint we know that for all P ∈ P and all

N ∈ N

g
(
P,N

′
) ∣∣∣

0
= g

(
P
′
, N
) ∣∣∣

0
= 0.

We conclude that the set {P (0) | P ∈ P} is precisely the orthogonal complement of

ker
(
d expx0

)
v
. So given any w⊥ ker

(
d expx0

)
v
, choose Jw to be the unique P ∈ P with

P (0) = w.

Given w ∈ Sx0 let cw(t) be the geodesic such that c′w(0) = w and cw(0) = x0.

For H ∈ R, define

T x0,w2,H (t) := distpx0 − t · cos^(w,⇑px0) +
1

2
H · t2.

Lemma 34. Let H be:

(1) −g
(
J ′w(0), Jw(0)

)
if w ∈ Sx0 is orthogonal to ker(dexpx0)v,

(2) any number if w ∈ Sx0 is not orthogonal to ker(dexpx0)v.

Then there exists an interval [0,m], depending on w, for which

distp

(
cw(t)

)
≤ T x0,w2,H (t) + o(t2).

Proof. Given v ∈⇑px0 and w ∈ Sx0 , it suffices to find a vector field V along γv with

V (0) = w and V (1) = 0 so that I(V, V ) ≤ H. This is because given a vector field

V along γv, there is a variation γ̃ whose variation field is V . By the first and second

variation formulas, we know

dLen(γ̃)

ds

∣∣∣∣
s=0

= − cos^(w, v) and
d2Len(γ̃)

ds2

∣∣∣∣
s=0

= I(V, V ).

So the Taylor polynomial gives us

Len(γ̃) ≤ Len(γv)− t · cos^(w, v) +
1

2
t2 · I(V, V ) + o(t2).
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Since distance is the minimum of length, there is an interval on which

distp(cw(t)) ≤ distpx0 − t · cos^(w,⇑px0) +
1

2
t2 · I(V, V ) + o(t2).

Suppose w is orthogonal to ker(dexpx0)v. By Lemma 33, there is a Jacobi field

Jw along γv with Jw(0) = w and Jw(1) = 0. So for H = I(Jw, Jw) = −g
(
J ′w(0), Jw(0)

)
,

the result holds.

Now suppose w is not orthogonal to ker(dexpx0)v. First, we consider the

special case when w is in ker(dexpx0)v. By lemma 33, there exists a nonzero Jacobi field

J along γ such that J(0) = J(1) = 0 and J ′(0) = w. From this we create a vector field

that does not vanish at both ends. Specifically, define a vector field Vε by

Vε(t) :=


J(t) ·

(
‖J(ε)‖

)−1
if t ∈ (ε, 1]

Wε(t) if t ∈ [0, ε]

where Wε is the Jacobi field with Wε(ε) = J(ε)
|J(ε)| and Wε(0) = J ′(0) = w. Then the index

form is given by

I(Vε, Vε) = g

(
J ′(1)

‖J(ε)‖
,
J(1)

‖J(ε)‖

)
− g
(
J ′(ε)

‖J(ε)‖
,
J(ε)

‖J(ε)‖

)
+ g
(
W ′ε(ε),Wε(ε)

)
− g
(
W ′ε(0),Wε(0)

)

= − 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ g

(
W ′ε(ε),

J(ε)

‖J(ε)‖

)
− g
(
W ′ε(0), J ′(0)

)
.

Note that the limit of the first term gives us

lim
ε→0

−g
(
J ′(ε), J(ε)

)
‖J(ε)‖2

= lim
ε→0

−g
(
J ′(ε), J(ε)

)
g
(
J(ε), J(ε)

)

= − lim
ε→0

g
(
J ′′(ε), J(ε)

)
+ g
(
J ′(ε), J ′(ε)

)
2g
(
J ′(ε), J(ε)

)
= −∞
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since J ′(0) 6= 0. So for an upper bound on I(Vε, Vε), it suffices to bound

g
(
W ′ε(0), J ′(0)

)
and g

(
W ′ε(ε),

J(ε)

‖J(ε)‖

)

independent of ε.

Let {Ei}n−1i=1 be an orthonormal parallel frame for the normal space of γv with

E1(0) = J ′(0). Write J =
∑n−1

i=1 fiEi where each fi is a smooth function. Now we

approximate each fi. Since J(0) = 0, fi(0) = 0 for all i. Given that E1(0) = J ′(0),

we know f ′1(0) = 1 and f ′i(0) = 0 for all i = 2, ..., n − 1. Since J is a Jacobi field with

J(0) = 0,

J ′′(0) =
n−1∑
i=1

f ′′i (0)Ei(0) = −R
(
J(0), γ′(0)

)
γ′(0) = 0.

So f ′′i (0) = 0 for all i. Using Taylor’s Theorem, there exists an interval on which

f1(t) = t+O(t3) and fi(t) = O(t3) for i = 2, . . . , n− 1.

We use this to approximate J(t)
‖J(t)‖ . First, note that

‖J(t)‖2 =
n−1∑
i=1

f2i (t) = t2 +O(t4) = t2
(

1 +O(t2)
)
.

Taking the square root, we have

‖J(t)‖ =
√
t2(1 +O(t2)) = t

(
1 +O(t2)

)
= t+O(t3).

Combining gives us

J(t)

‖J(t)‖
=

∑n−1
i=1 fi(t)Ei(t)

t+O(t3)
, (2.7)

f1(t)

t+O(t3)
=
t+O(t3)

t+O(t3)
= 1 +O(t2),

and for i ≥ 2

fi(t)

t+O(t3)
=
O(t3)

t+O(t3)
= O(t2).
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In order to approximate W ′ε, we write Wε =
∑n−1

i=1 gε,iEi, where each gε,i is a

smooth function depending on ε. Since the space of Jacobi fields with bounded endpoints

is compact, there is a bound B on [0, ε], independent of ε, so that

‖g′′ε,i‖ = ‖R(Wε, γ
′, γ′, Ei)‖ ≤ B. (2.8)

Then

‖W ′′ε ‖ =
∥∥∥ n−1∑
i=1

g′′ε,iEi

∥∥∥ ≤ B.
Since Wε(0) = J ′(0) = w and E1(0) = J ′(0), we have gε,1(0) = 1 and gε,i(0) = 0 for

i = 2, . . . , n − 1. Using Taylor’s Theorem and (2.8), there exists an interval [0,m],

independent of ε, on which

gε,1(t) = 1 + g′ε,1(0)t+O(t2)

and

gε,i(t) = g′ε,i(0)t+O(t2) for i = 2, . . . , n− 1.

Given that Wε(ε) = J(ε)
‖J(ε)‖ and (2.7), we have

gε,1(ε) = 1 + g′ε,1(0)ε+O(ε2) =
f1(ε)

ε+O(ε3)
= 1 +O(ε2) and

gε,i(ε) = g′ε,i(0)ε+O(ε2) =
fi(ε)

ε+O(ε3)
= O(ε2) for i ≥ 2.

So, g′ε,i(0) = O(ε) for all i. Since W ′ε(0) =
∑n−1

i=1 g
′
ε,i(0)Ei(0), we have

∥∥∥g(W ′ε(0), J ′(0)
)∥∥∥ =

∥∥∥g(W ′ε(0), w
)∥∥∥ ≤ ‖O(ε)‖. (2.9)

To estimate W ′ε(ε) =
∑n−1

i=1 g
′
ε,i(ε)Ei(ε) we need to bound g′ε,i(ε). Note that by

the Fundamental Theorem of Calculus and the fact that g′ε,i(0) = O(ε), we have

‖g′ε,i(ε)‖ =

∥∥∥∥g′ε,i(0) +

∫ ε

0
g′′ε,i(t)dt

∥∥∥∥ ≤ ‖O(ε)‖.
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This means by the Cauchy-Schwarz inequality∥∥∥∥g(W ′ε(ε), J(ε)

‖J(ε)‖

)∥∥∥∥ ≤ ‖W ′ε(ε)‖ ≤ ‖O(ε)‖. (2.10)

Thus from (2.9) and (2.10) we have

I(Vε, Vε) = − 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ g

(
W ′ε(ε),

J(ε)

‖J(ε)‖

)
− g
(
W ′ε(0), J ′(0)

)

≤ − 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ ‖O(ε)‖ −→ −∞ as ε→ 0.

So choose any number for H. Then choose 0 < ε < m such that

− 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ ‖O(ε)‖ ≤ H.

Now suppose w is not orthogonal to ker(dexpx0)v and w is not in ker(dexpx0)v.

Write w = wtang + w⊥ with respect to ker(dexpx0)v. Then there exists a Jacobi field

Uw along γv with Uw(0) = w⊥ and Uw(1) = 0, and there exists a Jacobi field J such

that J(0) = J(1) = 0 and J ′(0) = wtang. Define the vector field Vε as in the proof of the

special case previously discussed, and let Vε,1 := J
‖J(ε)‖ . Then

I(Uw, Uw) = −g
(
U ′w(0), Uw(0)

)
(2.11)

and

I(Vε, Vε) ≤ −
1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ ‖O(ε)‖ −→ −∞ as ε→ 0. (2.12)

So Uw + Vε is a vector field along γv with (Uw + Vε)(0) = w and (Uw + Vε)(1) = 0. Now

consider

I(Uw + Vε, Uw + Vε) = I(Uw, Uw) + 2I(Uw, Vε) + I(Vε, Vε). (2.13)

Based on (2.11) and (2.12), it remains to show that we have a bound on

I(Uw, Vε) = g
(
V ′ε,1(1), Uw(1)

)
− g
(
V ′ε,1(ε), Uw(ε)

)
+ g
(
W ′ε(ε), Uw(ε)

)
− g
(
W ′ε(0), Uw(0)

)
= −g

(
V ′ε,1(ε), Uw(ε)

)
+ g
(
W ′ε(ε), Uw(ε)

)
− g
(
W ′ε(0), Uw(0)

)
.
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From the proof of the special case when w is in ker(dexpx0)v, we know that

‖W ′ε(ε)‖ ≤ ‖O(ε)‖ and ‖W ′ε(0)‖ ≤ ‖O(ε)‖. So

∥∥∥g(W ′ε(ε), Uw(ε)
)∥∥∥ ≤ ‖W ′ε(ε)‖ · ‖Uw(ε)‖ ≤ ‖O(ε)‖ · ‖Uw(ε)‖

and ∥∥∥g(W ′ε(0), w⊥

)∥∥∥ ≤ ‖W ′ε(0)‖ · ‖w⊥‖ ≤ ‖O(ε)‖.

To estimate g
(
V ′ε,1(ε), Uw(ε)

)
, we also write J =

∑n−1
i=1 fiEi as in the proof of the special

case. Then there exists a uniform interval on which

f1(t) = ‖wtang‖ · t+O(t3) and fi(t) = O(t3) for i ≥ 2.

Now write Uw =
∑n−1

i=1 hiEi, where each hi is a smooth function. Since Uw(0)⊥J ′(0),

we have h1(0) = 0. So, h1(t) = O(t) and hi(t) = hi(0) + O(t) for i ≥ 2 on a uniform

interval. Then

∥∥∥g(V ′ε,1(ε), Uw(ε)
)∥∥∥ =

1

‖J(ε)‖

n−1∑
i=1

f ′i(ε)hi(ε)

=
1

‖J(ε)‖

[(
‖wtang‖+O(ε2)

)
O(ε) +

n−1∑
i=2

O(ε2)
(
hi(0) +O(ε)

)]
=

O(ε)

‖J(ε)‖

Therefore,

I(Uw, Vε) = −g
(
J ′(ε)

‖J(ε)‖
, Uw(ε)

)
+
(
W ′ε(ε), Uw(ε)

)
− g
(
W ′ε(0), w⊥

)
≤ − O(ε)

‖J(ε)‖
+ ‖O(ε)‖ · ‖Uw(ε)‖ − ‖O(ε)‖ (2.14)

which is smaller than a constant K that is independent of ε.

Thus using (2.11), (2.12), and (2.14), equation (2.13) becomes

I(Uw + Vε, Uw + Vε) ≤ −g
(
U ′w(0), Uw(0)

)
+ 2K − 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ ‖O(ε)‖.
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So for a given H, choose ε such that

−g
(
U ′w(0), Uw(0)

)
+ 2K − 1

‖J(ε)‖2
g
(
J ′(ε), J(ε)

)
+ ‖O(ε)‖ ≤ H.

The following lemma provides an explicit formula for distp when p and x0 are

not conjugate along any γv for v ∈⇑px0 . In this case, ker(dexpx0)v is zero for all v ∈⇑px0 .

Although the lemma is not used in our current work, it may be useful in the future.

Lemma 35. Suppose p and x0 are not conjugate along any γv for v ∈⇑px0. Given

w ∈ Sx0 we set

w(⇑px0) :=
{
v ∈⇑px0

∣∣∣ ^(w, v) = ^(w,⇑px0)
}
.

Then there exists an interval [0,m] on which

distp

(
cw(t)

)
= min

v∈w(⇑px0 )

{
distpx0 − t · cos^(w, v) +

1

2
H · t2

}
+ o(t2)

where H = −g
(
J ′w (0) , Jw (0)

)
.

Proof. Fix w ∈ Sx0 . Let {si} be a sequence with si → 0, and {σsi} be a sequence of

segments from cw(si) to p. Then
{

(σ−1si )′(1)
}

, the sequence of tangent vectors at p, has

a subsequence that converges to a vector u. Let σ be the segment from x0 to p with

(σ−1)′(1) = u.

By the Inverse Function Theorem there exists a neighborhood U of u such that

expp|U is one-to-one. So there exists a lift c̃w of cw with c̃w(1) = u and

expp

(
c̃w(t)

)
= cw(t)

for all t ∈ U . Using cw(t), we can produce a variation of σ by geodesics, called α, so

that the variation field Jw is a Jacobi field with Jw(0) = w and Jw(1) = 0. By the first
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and second variation formulas,

dLen(α)

dt

∣∣∣∣
t=0

= − cos^
(
w, σ′(0)

)
and

d2Len(α)

dt2

∣∣∣∣
t=0

= −g
(
J ′w(0), Jw(0)

)
.

So,

distp

(
cw(t)

)
= Len(σsi)

= distpx0 − t · cos^
(
w, σ′(0)

)
− t2 · g

(
J ′w(0), Jw(0)

)
+ o(t2).

On the other hand, distp is directionally differentiable, and each σsi is a segment

from x0 to p. So, σ′(0) ∈⇑px0 which means

^
(
w, σ′(0)

)
≥ ^(w,⇑px0) = min

v∈w(⇑px0 )
^(w, v).

Thus, for H = −g
(
J ′w(0), Jw(0)

)
distp

(
cw(t)

)
≥ min

v∈w(⇑px0 )

{
distpx0 − t · cos^(w, v) +

1

2
H · t2

}
+ o(t2). (2.15)

By Lemma 34, there exists an interval on which

distp

(
cw(t)

)
≤ T x0,w2,H (t) + o(t2)

= min
v∈w(⇑px0 )

{
distpx0 − t · cos^(w, v) +

1

2
H · t2

}
+ o(t2) (2.16)

for H = −g
(
J ′w(0), Jw(0)

)
. Combining inequalities (2.15) and (2.16), we have

distp

(
cw(t)

)
= min

v∈w(⇑px0 )

{
distpx0 − t · cos^(w, v) +

1

2
H · t2

}
+ o(t2)

on an interval [0,m] with H = −g
(
J ′w (0) , Jw (0)

)
.
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2.6 Proof of the Relative π1 Theorem

We now restate Theorem 27 and present its proof.

Theorem. Let x0 be an isolated critical point for distp with distp(x0) = c0. Suppose

π1(M
c0+δ,M c0−ε) 6= 0,

for ε < c0 − c −1 and δ < c1 − c0. Then ⇑px0 is a pair of antipodal points, i.e. there are

only two segments from p to x0 and they make angle π at x0. Moreover, the ends of

these segments are not conjugate along the segments.

Proof. Since π1(M
c0+δ,M c0−ε) 6= 0, Theorem 26 implies that λ = 1. If n = 1, the

manifold M must be a circle since this is the only one-dimensional Riemannian manifold

with critical points. Thus, x0 and p must be antipodal points, and the result holds.

For n > 1, the definition of sub-index implies that A(⇑px0) is not empty but its

boundary is. This means A(⇑px0) must be a sub-sphere of Sx0 . Also,

λ = 1 = n− 1− dimA(⇑px0)

which means dimA(⇑px0) = n− 2. So, ⇑px0 is the set of vectors in an (n− 1)-dimensional

space that make an angle greater than or equal to π
2 with an (n − 2)-dimensional sub-

sphere. Thus, ⇑px0 consists of two antipodal points, say v and −v.

It remains to show that x0 and p are not conjugate along the segments γv

and γ −v. Assume there is a non-zero Jacobi field along γv that vanishes at x0 and p.

This means ker(dexpx0)v is not zero. Let K := ker(dexpx0)v and K⊥ be the orthogonal

complement of K. Since K is a non-zero subspace, its dimension must be greater than

or equal to one. So, dimK⊥ < n− 2.

In order to obtain a contradiction, we show that a 1-cell E1, in int(M c1\M c −1 )

with its boundary in intM c0 , can be moved into intM c0 . Using Lemma 30, we can move
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the cell into the union of a small r-ball around x0 and a sublevel set in intM c0 , while

keeping the boundary of the cell fixed outside of the ball. Define

CrK⊥ :=

{
expx0

(
tK⊥

)∣∣∣∣ t ∈ [0, r]

}
.

Note that the sum of the dimension of the cell and the dimension of CrK⊥ gives us

dimE1 + dimCrK⊥ = 1 + (dimK⊥ + 1)

= dimK⊥ + 2

< (n− 2) + 2

= n.

By transversality, we can apply a small homotopy so that E1 ∩ CrK⊥ = Ø inside the

r-ball. Using Lemma 34, there exists an interval on which distp

(
cw(t)

)
decreases as

long as w is in a small neighborhood of CrK⊥. Thus, a small homotopy can be used to

move E1 into intM c0 while keeping the boundary fixed. This contradicts the fact that

π1(M
c1 ,M c0) 6= 0.

2.7 The Generalized Butterfly Lemma

The next two lemmas are called butterfly lemmas because of the technique

used to prove them. Essentially, the proof entails considering the union of a ball and

two cones that give the appearance of a butterfly. The lemmas are used to prove the

finiteness theorems stated after them.
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Lemma 36. (Cheeger [2]) Given n ∈ N, v > 0, D,K ∈ R, and an n-dimensional

manifold M with

diamM ≤ D, volM ≥ v and secM ≥ K,

there exist cn > 0 (depending on v,D and K) such that every smooth closed geodesic on

M has length greater than cn.

Theorem 37. (Cheeger [12]) Given n ≥ 2, v,D,K ∈ (0,∞), the class of closed Rie-

mannian n-manifolds with

diamM ≤ D, volM ≥ v, and |secM | ≤ K

contains only finitely many diffeomorphism types.

Lemma 38. (Grove, Petersen [12]) Given n ≥ 2, v,D ∈ (0,∞), and K ∈ R, let M be

an n-manifold with

diamM ≤ D, volM ≥ v, and secM ≥ −K2.

Then there exists α ∈ (0, π2 ) and δ > 0 (both depending on n, v,D,K) such that if

p, q ∈M satisfy distpq ≤ δ, then either p is α-regular for q or q is α-regular for p.

By definition, a point x ∈ M is α-regular for distp, with α ∈ [0, π2 ], if there

exists a v ∈ TxM such that

^(v,⇑px) > π − α.

A regular point for distp can be called π
2 -regular.

Theorem 39. (Grove, Petersen [8]) Given n ≥ 2, v,D ∈ (0,∞), and K ∈ R, the class

of Riemannian n-manifolds with

diamM ≤ D, volM ≥ v, and secM ≥ −K2

contains only finitely many homotopy types.
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Our generalized butterfly lemma is presented below. We consider a sequence

{Mi} of n-manifolds that are said to collapse. This means when using Gromov-Hausdorff

convergence, the limit space X has dimension strictly smaller that n. For the proof, we

show that the pre-limit spaces Mi consist of two overlapping balls and two wings.

Lemma 40. (Generalized Butterfly Lemma) Given k ≥ 0 and D > 0, let {Mi} be a

sequence of closed Riemannian n–manifolds with

diam Mi ≤ D and secMi ≥ k.

Suppose

Mi
G−H−→ X

with dimX = n−m, where 1 ≤ m ≤ n− 1. Let pi, qi ∈Mi be mutually critical, i.e. pi

is critical for distqi and qi is critical for distpi. Define

w(pi, θi) := exppi

(
D ·B

(
A(⇑qipi), θi

))
and w(qi, θi) := expqi

(
D ·B

(
A(⇑piqi ), θi

))
.

If

distpiqi −→ 0,

then either dimw(pi, 0) or dimw(qi, 0) is greater than or equal to n−m.

Note that dimw(pi, 0) = dimA(⇑px0) + 1.

Proof. First we claim there exist sequences {ri} and {θi} converging to zero such that

Mi = B(pi, ri) ∪B(qi, ri) ∪ w(pi, θi) ∪ w(qi, θi). (2.17)

Without loss of generality say distpiqi = 1
i . Set

ri :=
(1

i

) 1
4
.
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Then for each mi ∈Mi not contained in B(pi, ri)∪B(qi, ri), consider the triangle formed

by pi, qi, and mi. Define ai := distqimi, bi := distpimi, ci := distpiqi = 1
i , and αi to

be the interior angle at pi. Note that ai, bi ≥ ri =
(
1
i

) 1
4
.

Without loss of generality, suppose ai ≥ bi. To prove the claim we need to

produce a sequence {θi} converging to zero such that αi ≥ π
2 − θi, since this means mi

is in w(pi, θi). Since pi is critical for distqi , we can choose a segment from pi to qi such

that αi ≤ π
2 . By the triangle version of Toponogov’s Theorem, αi ≥ αi where αi is the

angle at pi in the space form Snk . By the Law of Cosines with k = 0, we have

a2i = b2i +
1

i2
− 2

i
bi cosαi. (2.18)

Since ai ≥ bi ≥
(
1
i

) 1
4
, we know

0 ≥ b2i − a2i

=
2

i
bi cosαi −

1

i2
by equation (2.18)

≥ 2

i

(1

i

) 1
4

cosαi −
1

i2

=
2

i
5
4

cosαi −
1

i2
.

Since π
2 ≥ αi ≥ αi,

0 ≤ cosαi ≤ cosαi ≤
1

2

(1

i

) 3
4
.

Thus, as i approaches infinity (1

i

) 3
4 −→ 0

which means cosαi converges to zero. Since αi ≤ π
2 , there must exist θi −→ 0 such that

αi ≥ π
2 − θi. Therefore, mi is in w(pi, θi) and the claim has been established.

Assume dimw(pi, 0) and dimw(qi, 0) are both less than or equal to n−m− 1.

Let

j := max
{

dimw(pi, 0), dimw(qi, 0)
}
.
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Then j < n−m. Let βX(ε) be the maximal number of ε-separated points in X. Based

on Theorem 5.4 in [1], there exists a constant c0 and 0 < ε0 < 1 so that for ε ∈ (0, ε0]

we have

βX(ε) ≥ c0ε−(n−m).

For any fixed ε < ε0, we can choose a natural number N so that for all i ≥ N , we

have ri, θi <
ε
2 . Then for i ≥ N the maximal number of ε-separated points in the

set B(pi, ri) ∪ B(qi, ri) is one. By Corollary 8.4 in [1], there exists a constant c1 and

0 < ε1 < 1 so that for ε ∈ (0, ε1] the number of ε-separated points in w(pi, θi)∪w(qi, θi)

is less than or equal to c1ε
−j . So, using (2.17), the maximal number of ε-separated

points in Mi is

βMi(ε) ≤ 1 + c1ε
−j .

Now choose ε2 ≤ min{ε0, ε1} so that

1 + c1

(ε2
2

)−j
< c0ε

−(n−m)
2 . (2.19)

By Gromov-Hausdorff convergence, we know

βMi

(ε2
2

)
≥ βX(ε2)

for all i sufficiently large. Thus,

1 + c1

(ε2
2

)−j
≥ βMi

(ε2
2

)
≥ βX(ε2) ≥ c0ε−(n−m)

2

which contradicts (2.19).
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