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ABSTRACT OF THE DISSERTATION

What not to do when your data is lost ?

by
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Professor Shachar Lovett, Chair
Professor Alex Vardy, Co-Chair

With ever increasing amount of digital data being generated everyday on various platforms

the need for data storage techniques has increased tremendously. A central component of all

data storage techniques are error correction codes. An ideal error correcting code is tolerant to

noise, minimally redundant and computationally inexpensive. Figuring out the optimal trade

offs between these properties forms the central theme of coding theory. In this thesis we will

formulate a central question that underlies the computational performance of all error correction

codes and answer this question in various contexts.
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Introduction

There is a ginormous amount of digital data being generated on the internet every day.

Here are the statistics from a Forbes survey [1] on this:

• Social media: 300 million new social media users each year

• Email use: 293 billion emails are sent daily

• Mobile device data: 21.9 billion text messages are sent daily

• Internet of Things: 2.5 quintillion bytes of data we create every day

• Data Generating Services: Amazon, Uber, Venmo,. . .

Every big tech company such as Amazon, Apple, Google, Facebook and Microsoft needs

to deal with this ever growing data. They handle this by building many data centers all across

the world. Every data center contains many servers that collectively store all the relevant data.

It is a very active research area and new architectures and various ways of organizing the data

are currently being explored. However the servers in such a data center could be unresponsive

or there could be failures which could result in loss of data and lead to inability to respond to

queries by the users.

To handle these issues error correcting codes are used and coding theory is the study of

theory of error correcting codes. A code is a way to encode messages to codewords such that few

errors introduced in the codeword could be corrected and the original message can be recovered.

Codes are very useful in various contexts like data storage, data transmission, probabilistically
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checkable proofs, etc. An ideal error correcting code is tolerant to noise, minimally redundant

and computationally inexpensive. Figuring out the optimal trade offs between these properties

forms the central theme of coding theory.

The computational cost of implementing an error correction code is directly related to

the underlying alphabet the code uses. So a central question that comes up in various contexts in

coding theory is whether a given code structure can be realized over a given alphabet size.

This is best understood in terms of the parity check matrix of the code. Every linear code

is completely characterized by its parity check matrix H. The parity check matrix is a matrix

whose rows span all the parity relations that the codewords in the linear code satisfy. In particular

an erasure pattern is correctable by a linear error correcting code if and only if the corresponding

columns of the parity check matrix are linearly independent.

So a typical application of coding theory in data storage would satisfy the following

template: At first one looks at the statistics of data failures and makes a note of the kind of

robustness we expect from the code in the needed data storage application. Then one comes up

with a code topology that can provide the needed robustness against these failures. Once the

code topology is fixed one tries to understand when does a code construction exist that meets

the needed topology and application robustness specifications. Then the natural question that

arises is to figure out the minimal field sizes needed for the existence of such a code. In order

to do so one typically uses the algebraic structure of the problem to construct a lower bound

on the alphabet size needed. The upper bounds are typically given with random and explicit

constructions. However unless there is a magical construction most typically there is a huge gap

between the upper and lower bounds. This has been a recurrent theme across many data storage

applications where coding theory has been used.

The goal of this thesis is to build a general framework that combines all these different

practical applications of coding theory and address the underlying issues in a systematic way and

develop new tools and approaches to attack these problems. We now define this framework and

see how various applications of coding theory fall into this framework and solve these problems

2



along the way.

So let’s consider general a parity check matrix H and picking the entries of this matrix

would correspond to construction the relevant codes. The topological constraints of the code

would force some of the entries of the matrix H to be 0 while we are freely allowed to pick the

other entries which correspond to the respective parity coefficients, let’s denote these positions

with *’s. Then the problem of seeking the minimum field size would reduce to finding the

smallest alphabet A from which the entries of the matrix H in the positions of *’s can be filled in

so that all the needed minors of the matrix H are non zero.

More concretely, given a k× n matrix with a given pattern of 0’s and ∗’s, what is the

optimal field size q so that there is a way to assign values to ∗’s from Fq such that a given set of

minors of the matrix are non zero. Note that this needed set of minors comes from the specific

coding application at hand. In the most optimistic framework like the maximally recoverable

codes one expects every non trivial minor not trivially killed by the 0’s to be non zero. However

as we shall see depending on the coding application needs this requirement could be different

and relaxed most of the times.

M =



∗ 0 ∗ · · · 0

0 ∗ ∗ · · · ∗
...

...
... . . . ...

∗ ∗ 0 · · · ∗


This 0/* question is in coding theory and exactly captures the difficulties arising in

effective data storage. For instance an all ∗ matrix would correspond to maximum distance

separable codes (MDS), an upper triangular ∗ matrix would correspond to optimal codes for

interactive communication (Tree codes), there would be a choice of ∗’s for maximally recoverable

codes for every topology. The constructions in these specific instances are rather hit or miss, for

instance a Reed Solomon code would give an MDS code with linear field size q = O(n) where

as a random construction would need q = Ω(nk) and there is no understanding as to why this

3



particular construction works.

For the specific pattern that corresponds to maximally recoverable codes for the grid

topology we characterized the field size needed exactly [24]. In particular we had an exponential

improvement over the best known lower bound. This was done by reducing the problem to

bounding the independence number of the Birkoff polytope and then using techniques from

representation theory of Sn. Our result is presented in detail in Chapter 1.

It would be very interesting to build an unified theory that can explain the field size

needed as we vary these patterns of 0’s and ∗’s. In particular we are working on understanding

the field size needed if the ∗’s and 0’s were generated randomly. As a first step towards this we

worked with codes over integers Z where in we fill the ∗’s with entries from {0,1, . . . ,m} ⊂ Z

and see how large m needs to be to facilitate an union bound.

This leads to beautiful questions in random matrix theory. In particular if an n×n matrix

is filled with random entries from {0,1, . . . ,m} what is the probability that its singular ? We will

present our results on this in chapter 2.

In chapter 3 we extend these probabilistic techniques to show the existence of rare

combinatorial structures and in particular prove the existence of large sets of designs.

4



Chapter 1

Maximally recoverable codes

Maximally recoverable codes are codes designed for distributed storage which combine

quick recovery from single node failure and optimal recovery from catastrophic failure. Gopalan

et al [SODA 2017] studied the alphabet size needed for such codes in grid topologies and gave a

combinatorial characterization for it.

Consider a labeling of the edges of the complete bipartite graph Kn,n with labels coming

from Fd
2 , that satisfies the following condition: for any simple cycle, the sum of the labels over

its edges is nonzero. The minimal d where this is possible controls the alphabet size needed for

maximally recoverable codes in n×n grid topologies.

Prior to the current work, it was known that d is between log(n)2 and n logn. We improve

both bounds and show that d is linear in n. The upper bound is a recursive construction which

beats the random construction. The lower bound follows by first relating the problem to the

independence number of the Birkhoff polytope graph, and then providing tight bounds for it

using the representation theory of the symmetric group.

1.1 Introduction

The Birkhoff polytope is the convex hull of n×n doubly stochastic matrices. The Birkhoff

polytope graph is the graph associated with its 1-skeleton. This graph is well studied as it plays

an important role in combinatorics and optimization, see for example the book of Barvinok [5].
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For us, this graph arose naturally in the study of certain maximally recoverable codes. Our main

technical results are tight bounds on the independence number of the Birkhoff polytope graph,

which translate to tight bounds on the alphabet size needed for maximally recoverable codes in

grid topologies.

We start by describing the coding theory question that motivated the current work.

1.1.1 Maximally recoverable codes

Maximally recoverable codes, first introduced by Gopalan, Huang, Jenkins and Yekhanin [19],

are codes designed for distributed storage which combine quick recovery from single node failure

and optimal recovery from catastrophic failure. More precisely, they are systematic linear codes

which combine two types of redundancy symbols: local parity symbols, which allow for fast re-

covery from single symbol erasure; and global parity symbols, which allow for recovery from the

maximal information theoretic number of erasures. This was further studied in [3, 32, 46, 59, 60].

The present paper is motivated by a recent work of Gopalan, Hu, Kopparty, Saraf, Wang

and Yekhanin [18], which studied the effect of the topology of the network on the code design.

Concretely, they studied grid like topologies. In the simplest setting, a codeword is viewed as an

n×n array, with entries in a finite field F2d , where there is a single parity constraint for each

row and each column, and an additional global parity constraint. More generally, a Tn×m(a,b,h)

maximally recoverable code has codewords viewed as an n×m matrix over Fd
2 , with a parity

constraints per row, b parity constraints per column, and h additional global parity constraints.

An important problem in this context is, how small can we choose the alphabet size 2d and still

achieve information theoretical optimal resiliency against erausers.

Gopalan et al. [18] gave a combinatorial characterization for this problem, in the simplest

setting of m = n and a = b = h = 1. Their characterization is in terms of labeling the edges of

the complete bipartite graph Kn,n by elements of Fd
2 , which satisfy the property that in every

simple cycle, the sum is nonzero.

Let [n] = {1, . . . ,n}. Let γ : [n]× [n]→ Fd
2 be a labeling of the edges of the complete

6



bipartite graph Kn,n by bit vectors of length d.

Definition 1.1.1. A labeling γ : [n]× [n]→ Fd
2 is simple cycle free if for any simple cycle C in

Kn,n it holds that

∑
e∈C

γ(e) 6= 0.

Gopalan et al. [18] showed that the question on the minimal alphabet size needed for

maximally recoverable codes, reduces to the question of how small can we take d = d(n) so that

a simple cycle free labeling exists. Concretely:

• The alphabet size needed for Tn×n(1,1,1) codes is 2d(n).

• The alphabet size needed for Tn×m(a,b,h) codes is at least 2min(d(n−a+1),d(m−b+1))/h.

Before the current work, there were large gaps between upper and lower bounds on

d(n). For upper bounds, as the number of simple cycles in Kn,n is nO(n), a random construction

with d = O(n logn) succeeds with high probability. There are also simple explicit constructions

matching the same bounds, see e.g. [19]. In terms of lower bounds, it is simple to see that

d ≥ logn is necessary. The main technical lemma of Gopalan et al. [18] in this context is that in

fact d ≥Ω(log2 n) is necessary. This implies a super-polynomial lower bound on the alphabet

size 2d in terms of n, which is one of their main results.

We improve on both upper and lower bounds and show that d is linear in n. We note that

our construction improves upon the random construction, which for us was somewhat surprising.

For convenience we describe it when n is a power of two, but note that it holds for any n with

minimal modifications.

Theorem 1.1.2 (Explicit construction). Let n be a power of two. There exists γ : [n]× [n]→ Fd
2

for d = 3n which is simple cycle free.

Our main technical result is a nearly matching lower bound.

Theorem 1.1.3 (Lower bound). Let γ : [n]× [n]→ Fd
2 be simple cycle free. Then d ≥ n/2−2.

7



1.1.2 Labeling by general Abelian groups

The definition of simple cycles free labeling can be extended to labeling by general

Abelian groups, not just Fd
2 . Let H be an Abelian group, and let γ : [n]× [n]→ H. We say that γ

is simple cycle free if for any simple cycle C,

∑
e∈C

sign(e)γ(e) 6= 0.

where sign(e) ∈ {−1,1} is an alternating sign assignment to the edges of C (these are sometimes

called circulations). We note that the analysis of Gopalan et al. [18] can be extended to non-binary

alphabets Fp, in which case their combinatorial characterization extends to the one above with

H = Fp.

Theorem 1.1.4. Let H be an Abelian group. Let γ : [n]× [n]→ H be simple cycle free. Then

|H| ≥ 2n/2−2.

As a side remark, we note that the study of graphs with nonzero circulations was

instrumental in the recent construction of a deterministic quasi-polynomial algorithm for perfect

matching in NC [17]. However, beyond some superficial similarities, the setup seems inherently

different than ours. For starters, they study general bipartite graphs, while we study the complete

graphs. Moreover, they need to handle certain families of cycles, not necessarily simple, while in

this work we focus on simple cycles.

The proofs of Theorem 1.1.3 and Theorem 1.1.4 rely on the study of a certain Cayley

graph of the permutation group, which encodes the property of simple cycle free labeling.

Surprisingly, the corresponding graph is the Birkhoff polytope graph.

1.1.3 The Birkhoff polytope graph

Let Sn denote the symmetric group of permutations on [n]. A permutation τ ∈ Sn

is said to be a cycle if, except for its fixed points, it contains a single non-trivial cycle (in
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particular, the identity is not a cycle). We denote by Cn ⊂ Sn the set of cycles. The Cayley graph

Bn = Cay(Sn,Cn) is a graph with vertex set Sn and edge set {(π,τπ) : π ∈ Sn,τ ∈ Cn}. Note

that this graph is undirected, as if τ ∈ Cn then also τ−1 ∈ Cn.

The graph Bn turns out to be widely studied: it is the graph of the Birkhoff polytope,

which is the convex hull of all n×n permutation matrices. See for example [6] for a proof. Our

analysis does not use this connection; we use the description of the graph as a Cayley graph.

The following claim shows that Theorem 1.1.4 reduces to bounding the size of the largest

independent set in the Birkhoff polytope graph.

Claim 1.1.5. Let H be an Abelian group. Assume that γ : [n]× [n]→ H is simple cycle free.

Then Bn contains an independent set of size ≥ n!/|H|.

Proof. Define

A =

{
π ∈ Sn :

n

∑
i=1

γ(i,π(i)) = h

}
,

where h ∈ H is chosen to maximize the size of A. Thus |A| ≥ n!/|H|. We claim that A is an

independent set in Bn.

Assume not. Then there are two permutations π,π ′ ∈ A such that τ = π(π ′)−1 ∈ Cn.

Let Mπ = {(i,π(i)) : i ∈ [n]} denote the matching in Kn,n associated with π , and define Mπ ′

analogously. Let C = Mπ ⊕Mπ ′ denote their symmetric difference. The fact that τ ∈ Cn has

exactly one cycle, is equivalent to C being a simple cycle. Let sign(·) be an alternating sign

assignment to the edges of C. Then

∑
e∈C

sign(e)γ(e) = ∑
e∈Mπ

γ(e)− ∑
e∈M

π′

γ(e) = h−h = 0.

This violates the assumption that γ is simple cycle free.

The construction of a simple cycle free labeling in Theorem 1.1.2, combined with

Claim 1.1.5, implies that the Birkhoff polytope graph contains a large independent set.
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Corollary 1.1.6. Let n be a power of two. Then Bn contains an independent set of size ≥ n!/9n.

We also give in the appendix a construction of a larger independent set in the Birkhoff

polytope graph, not based on a simple cycle free labeling.

Theorem 1.1.7. Let n be a power of two. Then Bn contains an independent set of size ≥ n!/4n.

The best previous bounds we are aware of are by Onn [45] who proved that Bn contains

an independent set of size ≥ nΩ(
√

n).

Our main technical result is an upper bound on the largest size of an independent set in

the Birkhoff polytope graph.

Theorem 1.1.8. The largest independent set in Bn has size ≤ n!/2(n−4)/2.

As a side remark, we note that general bounds on the independence number of graphs,

such as the Hoffman bound, give much weaker bounds. A standard application of the Hoffman

bound gives a much weaker bound for the independence number of Bn of O(n!); and if we restrict

all permutations to have the same sign, the bound improves to O((n−1)!). The reason is that

the Hoffman bounds (at least in its simplest form) directly relates to the minimal eigenvalues of

the graph. However, in our case the eigenvalues are controlled by the irreducible representations

of Sn, and the extreme eigenvalues are given by low dimensional representations. This prohibits

obtaining strong bounds on the independence number directly.

In order to overcome this barrier, our analysis circumvents the effect of the low dimen-

sional representations by appealing to a structure vs. randomness dichotomy specialized for

our setting. It allows us to either reduce the dimension of the ambient group, or restrict to

pseudo-random assumptions about the actions of the low dimensional representations.

Section outline

We prove Theorem 1.1.2 in Section 1.2 and Theorem 1.1.8 in Section 1.3. Theorem 1.1.7

is proved in Appendix 1.4.
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1.2 A construction of a simple cycle free labeling

We prove Theorem 1.1.2 in this section. We first introduce some notation. For x ∈ [n]

denote by en
x ∈ Fn

2 the unit vector with 1 in coordinate x and 0 in all other coordinates. We let

0n ∈ Fn
2 denote the all zero vector.

Let n be a power of two. We define recursively a labeling γn : [n]× [n]→ F3n
2 . For n = 2

set (for example)

γ2(0,0) = e6
1,γ2(0,1) = e6

2,γ2(1,0) = e6
3,γ2(1,1) = e6

4.

Assume n > 2. Let x′ = x mod (n/2) and y′ = y mod (n/2), where x′,y′ ∈ [n/2]. Define

γn(x,y) ∈ F3n
2 recursively as

(i) The first n bits of γn(x,y) are en
x if y≤ n/2, and otherwise they are 0n.

(ii) The next n/2 bits of γn(x,y) are en/2
y′ if x≤ n/2, and otherwise they are 0n/2.

(iii) The last 3n/2 bits of γn(x,y) are defined recursively to be γn/2(x′,y′).

We claim that γn is indeed simple cycle free. For n = 2 it is simple to verify this directly,

so assume n > 2.

Let C be a simple cycle in Kn,n, and assume towards a contradiction that ∑e∈C γn(e) = 0.

Assume C has 2k nodes, for some 2 ≤ k ≤ n, and let these be C = (x1,y1,x2,y2, . . . ,xk,yk,x1).

We denote X = {x1, . . . ,xk} and Y = {y1, . . . ,yk}. Define furthermore L = {1, . . . ,n/2} and

U = {n/2+1, . . . ,n}.

Claim 1.2.1. Either Y ⊂ L or Y ⊂U.

Proof. Assume that both Y ∩L and Y ∩U are nonempty. Then there must exist i ∈ [k] with

yi ∈ L and yi+1 ∈U , where if i = k then we take the subscript modulo k. Recall that xi+1 is the

neighbour of yi,yi+1 in C. Its contribution to the first n bits of the sum is en
xi+1

, since yi ≤ n/2
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and yi+1 > n/2. Note that no other edge in C has a nonzero value in coordinate xi+1. Thus the

xi+1 coordinate in the sum over C is 1, which contradicts the assumption that the sum over C is

zero.

Thus we can assume from now on that either Y ⊂ L or Y ⊂U .

Claim 1.2.2. Either X ⊂ L or X ⊂U.

Proof. Assume that Y ⊂ L, and the case of Y ⊂U is identical. Assume that both X ∩L and X ∩U

are both nonempty. Then there must exist i ∈ [k] with xi ∈ L and xi+1 ∈U . Recall that yi is the

neighbour of xi,xi+1 in C. Its contribution to the 2nd batch (of n/2 bits) of the sum is en/2
y′i

, since

xi ≤ n/2 and xi+1 > n/2. Note that no other edge in C has a nonzero value in coordinate n+ y′i,

where we here we need the assumption that Y ⊂ L or Y ⊂U . Thus the n+ y′i coordinate in the

sum over C is 1, which contradicts the assumption that the sum over C is zero.

Thus we have that X ⊂U or X ⊂ L, and similarly Y ⊂U or Y ⊂ L. Thus, C is a simple

cycle in Kn/2,n/2 embedded in Kn,n in one of four disjoint ways: L×L, L×U , U×L or U×U .

Observe that in each of these copies, the last 3n/2 coordinates of the sum are precisely γn/2, so

by induction C cannot have zero sum.

1.3 The independence number of the Birkhoff polytope
graph

We prove Theorem 1.1.8 in this section. Let A be an independent set in Bn. We prove

an upper bound on the size of A. Concretely, we will show that |A| ≤ a
cn n! for some absolute

constants a,c > 1. As we will see at the end, the choice of a = 4,c =
√

2 works.

The proof relies on representation theory, in particular representation theory of the

symmetric group. We refer readers to the excellent book of Sagan [51], which provides a

thorough introduction to the topic. We will try to adhere to the notations in that book whenever

possible.
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Overall Strategy.

Our basic plan will be to break our analysis into two cases based on whether or not the

action of A on m-tuples is nearly uniform for all m. This will be in analogy with standard structure

vs. randomness arguments. If the action on m-tuples is highly non-uniform, this will allow us to

take advantage of this non-uniformity to reduce to a lower-dimensional case. On the other hand,

if A acts nearly uniformly on m-tuples, this suggests that it behaves somewhat randomly. This

intuition can be cashed out usefully by considering the Fourier-analytic considerations of this

condition, which will allow us to prove that some pair of elements of A differ by a simple cycle

using Fourier analysis on Sn.

Non-Uniform Action on Tuples.

Let [n]m = {(i1, . . . , im) : i1, . . . , im ∈ [n] distinct} denote the family of ordered m-tuples

of distinct elements of [n]. Its size is (n)m = n(n−1) · · ·(n−m+1). A permutation π ∈ Sn acts

on [n]m by sending I = (i1, . . . , im) to π(I) = (π(i1), . . . ,π(im)). Below when we write Prπ∈A[·]

we always mean the probability of an event under a uniform choice of π ∈ A.

Notice that if Prπ∈A[π(I) = J] ≥ cm/(n)m for some pair I,J ∈ [n]m, this will allow us

to reduce to a lower dimensional version of the problem. In particular, if we let A′ = {π ∈ A :

π(I) = J}, we note that |A| ≤ |A′|(n)m/cm. On the other hand, after multiplying on the left and

right by appropriate permutations (an operation which doesn’t impact our final problem), we can

assume that I = J = {n−m+1, . . . ,n}. Then, if A were an independent set for Bn, A′ would

correspond to an independent set for Cay(Sn−m,Cn−m). Then, if we could prove the bound that

|A′| ≤ a
cn−m (n−m)!, we could inductively prove that |A| ≤ a

cn n!.

Uniform Action on Tuples.

When the action of A on m-tuples is near uniform for all m, we will attempt to show that

two elements of A differ by a simple cycle using techniques from the Fourier analysis of Sn. In

fact, we will show the stronger statement that some pair of elements of A differ by a single cycle

of length n.
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Some slight complications arise here when parity of the permutations here is considered.

In particular, all n-cycles have the same parity. This is actually a problem for n even, as all such

cycles will be odd, and thus our statement will fail if A consists only of permutations with the

same parity. Thus, we will have to consider our statement only in the case of n odd. Even in

this case though, parity will still be relevant. In particular, note that the difference between two

permutations in A can be a cycle of length n only if the initial permutations had the same parity.

Thus, we lose very little by restricting our attention to only elements of A with the more common

parity. This will lose us a factor of 2 in the size of A, but will make our analysis somewhat easier.

We are now prepared to state our main technical proposition:

Proposition 1.3.1. Let n be an odd integer and let c > 1 be a sufficiently small constant. Let

A⊂ Sn be a set of permutations satisfying:

(i) All elements of A are of the same sign.

(ii) For any even m < n and any I,J ∈ [n]m, Prπ∈A[π(I) = J]< cm

(n)m
.

Then there exist two elements of A that differ by a cycle of length n. In particular, we can take

c =
√

2.

Remark.

In the second condition above, we consider only even m. This is because if this condition

fails, we are going to use our other analysis to recursively consider permutations of [n−m], and

would like n−m to also be odd.

We prove Proposition 1.3.1 below, and then show that it implies Theorem 1.1.8.

Proof. First, note that by replacing all π ∈ A by πσ for some odd permutation σ if necessary, it

suffices to assume that all π ∈ A are even. We will assume this henceforth.
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Rephrasing the problem using class functions.

Let C ′n denote the set of n-cycles in Sn. Define two class functions ϕ,ψ ∈ R[Sn] as

ϕ =
1

|Sn||A|2 ∑
σ∈Sn,π,π ′∈A

σπ(π ′)−1
σ
−1, ψ =

1
|C ′n|

∑
τ∈C ′n

τ.

It is easy to see that our conclusion is equivalent to showing that 〈ϕ,ψ〉> 0.

Let λ ` n denote a partition of n, namely λ = (λ1, . . . ,λk) where λ1 ≥ . . .≥ λk ≥ 1 and

∑λi = n. The irreducible representations of Sn are the Specht modules, which are indexed by

partitions {Sλ : λ ` n}. Let χλ : Sn→ R denote their corresponding characters. Their action

extends linearly to R[Sn]. Namely, if ζ ∈R[Sn] is given by ζ = ∑π∈Sn ζππ ∈R[Sn] where ζπ ∈R

then χλ (ζ ) = ∑π∈Sn ζπ χλ (π).

As ϕ,ψ ∈ R[Sn] are class functions, their inner product equals

〈ϕ,ψ〉= ∑
λ`n

χ
λ (ϕ)χλ (ψ). (1.1)

Let (n) ∈ C ′n be a fixed cycle of length n. As all elements in ψ are conjugate to (n), we have

χλ (ψ) = χλ ((n)) and we can simplify Equation (1.1) to

〈ϕ,ψ〉= ∑
λ`n

χ
λ (ϕ)χλ ((n)). (1.2)

Thus, we are lead to explore the action of the irreducible characters on the full cycle (n).

Characters action on the full cycle.

The Murnaghan-Nakayama rule is a combinatorial method to compute the value of a

character χλ on a conjugacy class, which in our case is (n). In this special case it is very

simple. It equals zero unless λ is a hook, e.g. its corresponding tableaux has only one row

and one column, and otherwise its either −1 or 1. Concretely, let hm = (n−m,1,1, . . . ,1) for
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0≤ m≤ n−1 denote the partition corresponding to a hook. Then

χ
λ ((n)) =

{
(−1)m if λ = hm

0 otherwise
. (1.3)

Thus we can simplify Equation (1.2) to

〈ϕ,ψ〉=
n−1

∑
m=0

(−1)m
χ

hm(ϕ). (1.4)

Bounding the characters on ϕ .

The character h0 corresponds to the trivial representation, and by our definition of ϕ it

equals χh0(ϕ) = 1. Observe that we can simplify χλ (ϕ) as

χ
λ (ϕ) =

1
|A|2|Sn| ∑

π,π ′∈A,σ∈Sn

χ
λ (σπ(π ′)−1

σ
−1) =

1
|A|2 ∑

π,π ′∈A
χ

λ (π(π ′)−1). (1.5)

First, we argue that the evaluation of characters on ϕ is always nonnegative.

Claim 1.3.2. χλ (ϕ)≥ 0 for all λ ` n.

Proof. Let ζ ∈ R[Sn] be given by ζ = 1
|A|∑π∈A π . Then

χ
λ (ϕ) =

1
|A|2 ∑

π,π ′∈A
Tr
(

Sλ (π)Sλ ((π ′)−1)
)
= Tr

(
Sλ (ζ )Sλ (ζ )T

)
= ‖Sλ (ζ )‖2

F ,

where for a matrix M its Frobenius norm is given by ‖M‖2
F = ∑ |Mi, j|2. In particular it is always

nonnegative.

The following lemma bounds χhm(ϕ). Observe that in particular for c = 1 it gives

χhm(ϕ) = 0. However, we would use it to obtain effective bounds when c > 1.

Lemma 1.3.3. Let m ∈ {1, . . . ,n−1}. For any even k ∈ {m, . . . ,n} it holds that χhm(ϕ)≤ ck−1
(k

m)
.
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Proof. Let Mµ denote the (not irreducible) Young module associated with a partition µ ` n.

In the case of µ = hk it corresponds to the action of Sn on [n]k. That is, for any π ∈ Sn we

have that Mhk(π) is a matrix whose rows and columns are indexed by I,J ∈ [n]k respectively,

where Mhk(π)I,J = 1π(I)=J . Observe that Mhk(π−1) =
(
Mhk(π)

)T . We extend this action to

R[Sn] linearly.

Recall that ζ = 1
|A|∑π∈A π ∈ R[Sn]. By assumption (ii) in Proposition 1.3.1 we have

(
Mhk(ζ )

)
I,J

= Pr
π∈A

[π(I) = J]≤ ck

(n)k
.

Thus, we can bound the Frobenius norm of Mhk(ζ ) by

‖Mhk(ζ )‖2
F = ∑

I,J
|
(

Mhk(ζ )
)

I,J
|2 ≤

(
ck

(n)k

)
∑
I,J
|
(

Mhk(ζ )
)

I,J
|= ck.

This is useful as

Tr(Mhk(ϕ)) = Tr
(

Mhk(ζ )
(

Mhk(ζ )
)T
)
= ‖Mhk(ζ )‖2

F ≤ ck.

The Kostka numbers Kλ ,µ denote the multiplicity of the Specht module Sλ in the Young

module Mµ . We can thus decompose

Tr(Mµ(ϕ)) = ∑
λ

Kλ ,µ χ
λ (ϕ).

We saw that χλ (ϕ) ≥ 0 for all λ . By Young’s rule, Kλ ,µ equals the number of semistandard

tableaux of shape λ and content µ . In particular, it is always a nonnegative integer. In the special

case of λ = hm and µ = hk for k ≥ m, Young’s rule is simple to compute and gives

Khm,hk =

(
k
m

)
.
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Recall that χh0 is the trivial representation, for which Kh0,hk = 1 and χh0(ϕ) = 1. Thus

1+
(

k
m

)
χ

hm(ϕ)≤∑
λ

Kλ ,hk
χ

λ (ϕ) = Tr(Mhk(ϕ))≤ ck.

We next apply Lemma 1.3.3 to bound χhm(ϕ) for all 1≤ m≤ n−1. If m≤ n/2 then we

can apply Lemma 1.3.3 for k = 2m and obtain the bound

χ
hm(ϕ)≤ c2m−1(2m

m

) .

For m > n/2 we need the following claim, relating χhm to χhn−1−m .

Claim 1.3.4. For any 1≤ m≤ n−1 it holds that χhm(ϕ) = χhn−1−m(ϕ).

Proof. For any partition λ let λ ′ denote the transpose (also known as conjugate) partition. It satis-

fies χλ ′(π) = χλ (π)sign(π) for all π ∈ Sn, where sign : Sn→{−1,1} is the sign representation.

As all elements in A are even permutations, it holds by the definition of ϕ that

χ
λ ′(ϕ) =

1
|A|2 ∑

π,π ′∈A
χ

λ ′(π(π ′)−1) =
1
|A|2 ∑

π,π ′∈A
χ

λ (π(π ′)−1) = χ
λ (ϕ).

In particular if λ = hm then λ ′ = hn−1−m.

Next, we lower bound 〈ϕ,ψ ′〉 as follows. The dominant terms are χh0(ϕ)= χhn−1(ϕ)= 1.

For any 1≤ m≤ (n−1)/2−1, the corresponding term in Equation (1.4) appears twice, once as

(−1)mχhm(ϕ) and once as (−1)n−1−mχhn−1−m(ϕ) = (−1)mχhm(ϕ). The term for m = (n−1)/2

appears once.

Furthermore, as χhm(ϕ)≥ 0 for all m by Claim 1.3.2, the only negative terms correspond
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to odd 1≤ m≤ (n−1)/2. Thus we can lower bound

1
2
〈ϕ,ψ ′〉 ≥ 1− ∑

m≥1, m odd

c2m−1(2m
m

) . (1.6)

It is not hard to show that this is positive if c > 1 is small enough. If we take c =
√

2, the

right hand side of Equation (1.6) is slightly negative for large enough m (the limit as m→ ∞ is

−0.02451...). However, when n≥ 8, the second term can be replaced by c8−1
(8

3)
rather than c6−1

(6
3)

,

making our lower bound on 1
2〈ϕ,ψ

′〉 at least 0.057. This completes our proof.

We are now prepared to prove Theorem 1.1.8.

Proof. We first prove that if n is odd and if all permutations in A have the same sign, then

|A| ≤ n!
2(n−1)/2 .

We proceed by induction on n. Firstly, we note that if n = 1, the bound follows trivially.

For odd n > 1, we note that unless there is some even m < n and some I,J ∈ [n]m

with Prπ∈A[π(I) = J]≥ 2m/2/(n)m, then our result follows immediately from Proposition 1.3.1.

Otherwise, we may assume without loss of generality that I = J = (n−m+ 1, . . . ,n). It then

follows that letting A′ = {π ∈ A : π(I) = J}, we can think of A′ as a set of permutations on

[n−m]. Also, note that A being an independent set for Bn, implies that A′ is an independent set

for Cay(Sn−m,Cn−m). Therefore, by the inductive hypothesis:

|A| ≤ (n)m2−m/2|A′| ≤ (n)m2−m/2(n−m)!/2(n−m−1)/2 = n!/2(n−1)/2.

We now need to reduce to the case of n odd and A consisting only of permutations of the

same sign. First, restricting A to only permutations of the most common sign, we can assume

that all permutations in A have the same sign, losing only a factor of 2 in |A|. Now, if n is odd,

we are done. otherwise, let j be the most likely value of π(n) for π taken from A. We have that
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Prπ∈A[π(n) = j]≥ 1/n. Without loss of generality, j = n and we can let A′ = {π ∈ A : π(n) = n}.

Since A′ is an independent set in Cay(Sn−1,Cn−1), and since n−1 is odd, we have

|A| ≤ n|A′| ≤ n(n−1)!/2(n−2)/2 = n!/2n/2−1.

1.4 A construction of a larger independent set

We prove Theorem 1.1.7 in this section. Assume that n = 2m. We construct A⊂ Sn of

size |A| ≥ n!/4n, such that A is an independent set in Bn.

Let Ti, j = {2m−i( j−1)+1, . . . ,2m−i j} for 0≤ i≤m,1≤ j≤ 2i. Note that {Ti, j : j ∈ [2i]}

is a partition of [n] for every i, that |Ti, j|= 2m−i and that Ti,2 j−1∪Ti,2 j is a partition of Ti−1, j.

We define a sequence of subsets of Sn. For 1≤ i≤ m let Mi =
(2m−i+1

2m−i

)
. For any set R of

size |R|= 2m−i+1 let indi(R, ·) be a bijection between subsets of R of size 2m−i and ZMi . Define

A0 = Sn and

Ai =

{
π ∈ Ai−1 :

2i−1

∑
j=1

indi(π(Ti−1, j),π(Ti,2 j−1))≡ 0 mod Mi

}
.

Since each value mod Mi occurs equally often as a indi(π(Ti−1, j),π(Ti,2 j−1)) for each j, and

since these values are independent of one another, |Ai| = |Ai−1|/Mi. Finally set A = Am. The

following claim (applied for i = m) shows that A is an independent set in Bn.

Claim 1.4.1. Let 1 ≤ i ≤ m. Let π,π ′ ∈ Ai be such that τ = π(π ′)−1 ∈ Cn. Then there exists

ji ∈ [2i] such that

1. τ(Ti, ji) = Ti, ji .

2. τ(x) = x for all x ∈ Ti, j, j 6= ji.
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Proof. We prove the claim by induction on i. The case of i = 1 follows from the definition of

A1. By assumption π,π ′ fix both T1,1 and T1,2. However, as τ = π(π ′)−1 is a cycle, it must be

contained in either T1,1 or T1,2. This implies that τ(x) = x for all x ∈ T1,1 or all x ∈ T1,2.

Consider next the case of i > 1. By induction π(Ti−1, j) = π ′(Ti−1, j) for all j ∈ [2i−1].

Moreover, there exists j′ = ji−1 such that π(x) = π ′(x) for all x ∈ Ti−1, j, j 6= j′. This implies

that π(Ti, j) = π ′(Ti, j) for all j 6∈ {2 j′−1,2 j′}.

Next, the assumption that π,π ′ ∈ Ai guarantees that

2i−1

∑
j=1

indi(π(Ti−1, j),π(Ti,2 j−1))≡
2i−1

∑
j=1

indi(π
′(Ti−1, j),π

′(Ti,2 j−1))≡ 0 mod Mi.

For any j 6= j′ we know that π(Ti−1, j) = π ′(Ti−1, j) and π(Ti,2 j−1) = π ′(Ti,2 j−1), so

indi(π(Ti−1, j),π(Ti,2 j−1)) = indi(π
′(Ti−1, j),π

′(Ti,2 j−1)).

Thus we obtain that also indi(π(Ti−1, j′),π(Ti,2 j′−1)) = indi(π
′(Ti−1, j′),π

′(Ti,2 j′−1)). Moreover,

as we also know that π(Ti−1, j′) = π ′(Ti−1, j′) and that indi(π(Ti−1, j′), ·) is a bijection to ZMi , it

must be the case that π(Ti,2 j′−1) = π ′(Ti,2 j′−1) and hence also π(Ti,2 j′) = π ′(Ti,2 j′). Thus we

conclude that π(Ti, j) = π ′(Ti, j) for all j ∈ [2i].

To conclude, as τ = π(π ′)−1 is a cycle, it must be contained in either Ti,2 j′−1 or Ti,2 j′ .

Thus, τ must fix all points in Ti,2 j′−1 or all points in Ti,2 j′ . We set ji ∈ {2 j′−1,2 j′} accordingly.

Finally, we compute the size of A. As |Ai|= |Ai−1|/Mi and Mi =
(2m−i+1

2m−i

)
≤ 22m−i+1

we

obtain that

|A| ≥ n!

∏
m
i=1 22i ≥

n!
22m+1 =

n!
4n .

Chapter 1, in full, is a reprint of the material as it appears in IEEE Foundations of

Computer Science FOCS 2017 and SIAM Journal on Computing SICOMP. Kane, Daniel; Lovett,
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Shachar; Karingula, Sankeerth Rao. The dissertation author was the primary investigator and

author of this paper.
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Chapter 2

Codes over integers, and the singularity of
random matrices with large entries

The prototypical construction of error correcting codes is based on linear codes over

finite fields. In this work, we make first steps in the study of codes defined over integers. We

focus on Maximally Distance Separable (MDS) codes, and show that MDS codes with linear rate

and distance can be realized over the integers with a constant alphabet size. This is in contrast to

the situation over finite fields, where a linear size finite field is needed.

At the core is a new result on the singularity probability of random matrices. We show

that a for a random n×n matrix with entries chosen independently from the range {−m, . . . ,m},

the probability that it is singular is at most m−cn for some absolute constant c > 0.

2.1 Introduction

Coding theory is the study of error correction schemes. Codes are widely used in many

applications, such as data storage, telecommunications and robust protocols. Algorithms for

codes perform arithmetic operations over an underlying alphabet, and hence their computational

complexity is constrained by this alphabet size. Thus, understanding the alphabet size needed to

support a given code structure is a central question in coding theory. By far, the most common

approach to design codes is to use linear codes over finite fields. The main focus of this paper is

to investigate the possibility of designing codes over integers. In particular, we study the alphabet
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size needed to support basic code structures, and focus on the most basic and well-studied family

of codes - Maximally Distance Separable (MDS) codes.

2.1.1 Alphabet size for MDS codes

An MDS code is a code with the best possible tradeoff between the message length,

codeword length and minimal distance. Concretely, an (n,k,d)-code is a code with message

length k, codeword length n and minimal distance d. The Singleton bound [57] gives that d ≤

n− k+1. MDS codes are codes achieving this bound, namely (n,k,d)-codes with d = n− k+1.

If we consider linear codes, then it is well-known that MDS codes are generated by the row span

of MDS matrices.

Definition 2.1.1 (MDS matrix). Let n ≥ k. A k× n matrix is called an MDS matrix if any k

columns in it are linearly independent. Equivalently, if any k× k minor of it is nonsingular.

Note that MDS matrices can be defined over finite fields or over the integers. If we define

them over a finite field Fq, then it is well-known that a linear field size is needed to support

MDS matrices. Concretely, if we assume n≥ k+2, then it is known that q≥max(k,n− k+1)

(see for example the introduction of [4] for a proof). In particular, this implies that q ≥ n/2.

Reed-Solomon codes can be constructed over fields of size q ≥ n− 1, which is tight up to a

factor of two. The MDS conjecture of Segre [56] speculates that this is indeed the best possible

(except for a few special cases), and Ball [4] proved this over prime finite fields. In summary,

over finite fields a linear field size q = Θ(n) is both necessary and sufficient.

We show that over the integers, MDS matrices exist over much smaller alphabet sizes.

Theorem 2.1.2 (MDS matrices over integers). Let n≥ k. There exist k×n MDS matrices over

integers whose entries are in {−m, . . . ,m}, where m≤ (cn/k)c for some absolute constant c > 0.

The typical regime in coding theory is that of linear rate and linear distance; namely,

where k = αn for some constant α ∈ (0,1). Note that in this regime Theorem 2.1.2 shows

that MDS codes over the integers exist with a constant alphabet size, which is in stark contrast
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with the case over finite fields. It is easy to see that Theorem 2.1.2 is best possible, up to the

unspecified constant c.

Claim 2.1.3. Let n≥ k ≥ 2. Let M be a k×n MDS matrix whose entries are in an alphabet Σ.

Then |Σ| ≥
√

n/k.

Proof. Let Pi = (M1,i,M2,i) ∈ Σ2 denote the first two elements in the i-th column of M. If

n > |Σ|2k, then there must be k distinct columns i1, . . . , ik ∈ [n] such that Pi1 = . . .= Pik . But then

M cannot be an MDS matrix, as the k× k minor formed by taking these columns has the first

two rows being a scalar multiple of each other, and hence cannot be nonsingular.

We prove Theorem 2.1.2 by choosing the matrix M randomly, and showing that with

high probability it will be an MDS matrix. This is another aspect in which codes over integers

seem to be different from codes over finite fields. Constructing MDS matrices over finite fields

seems to require algebraic constructions (such as Reed-Solomon codes), unless the field size

is exponential in n; whereas over the integers, random matrices work well even for very small

entries.

2.1.2 Singularity of random matrices

Our main result is a bound on the singularity probability of random n×n matrices with

uniform integer entries in {−m, . . . ,m}. Note that the probability that such a matrix is singular is

at least (2m+1)−n, which is the probability that its first two rows are the same. We show that

this bound is tight, up to polynomial factors.

Theorem 2.1.4 (Singularity of random matrices). Let n,m≥ 1. Let M be an n×n random matrix

with random integer entries chosen uniformly in {−m, . . . ,m}. Then for some absolute constant

c > 0,

Pr[M is singular]≤ m−cn.

Previous works studied this question in two regimes: fixed m and large n, or fixed n

and large m. Ours is the first work that can achieve good dependence on both n and m. Before
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discussing the connection of our result to previous works, we first show how Theorem 2.1.2

follows directly from Theorem 2.1.4.

Proof of Theorem 2.1.2. Let M be a random k×n matrix with entries chosen uniformly from

{−m, . . . ,m}. The number of k× k minors for M is
(n

k

)
, and the probability that each one is

singular is at most m−ck by Theorem 2.1.4. Thus

Pr[M is not MDS]≤
(

n
k

)
m−ck ≤

(en
k

)k
m−ck =

( en
kmc

)k
.

In particular, this probability is at most 2−k (say) whenever m≥ (2en/k)1/c.

Previous works in random matrix theory.

Most of the previous works in random matrix theory focused on the regime of fixed m

and large n. Specifically, on n×n random matrices whose entries are sampled independently

from distributions with bounded tail . The most studied case is that of random sign matrices,

namely {−1,1} entries. Komlós [30] proved that the probability that such a matrix is singular is

o(1) as n→ ∞, which already is a nontrivial result. It took nearly 30 years until Kahn, Komlós

and Szemerédi [23] improved the bound to cn for some constant c ∈ (0,1). A sequence of

works [7, 61, 62] improved the value of the constant c, and recently Tikhomirov [67] proved that

c = 1/2+o(1), which is best possible, as the probability that the first two rows of the matrix

are equal is 2−n. For more general distributions, Rudelson and Vershynin [49] proved that if the

entries of an n×n matrix are sampled from a sub-Gaussian distribution, then the probability it is

singular is at most cn for some c ∈ (0,1). See also [50] for a recent survey on these results.

The other regime, of large m and constant n, was less explored. The only work we are

aware of is by Katznelson [25] which gave a bound of the form cnm−n for some constant cn

depending on n. While having optimal dependence on m for constant n, it has a caveat - it only

applies in the regime where m is much larger than n (more precisely, for every fixed n, in the

limit of large m).
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Random matrices over integers vs over finite fields.

Note that if instead we chose M to be a random n×n matrix over a finite field Fq, then

the probability that M is singular would be about 1/q, independent of how large n is. This is

the main point of difference between random matrices over integers and over finite fields - the

singularity probability over integers decreases as the matrix becomes larger, whereas over finite

fields it stabilizes.

2.1.3 Discussion

We view Theorem 2.1.2 as a first step towards the study of codes over integers. There

are many intriguing questions that arise in coding theory, once we can show that random integer

matrices are MDS with high probability. There are also interesting conjectures on the singularity

probability of matrices with entries sampled from general distributions. We discuss both briefly

below.

Explicit constructions.

A natural question is to give an explicit construction of MDS matrices over integers with

small integer values. Concretely, when k = αn for some constant α ∈ (0,1), to give an explicit

construction of a k×n MDS matrix with a constant alphabet size (namely, independent of n).

Algorithms.

The next natural question, once there are explicit constructions, is to design efficient

decoding algorithms for such codes. In particular, it would be intriguing to see if the smaller

alphabet size can be utilized to obtain improved runtime (even by logarithmic factors).

General code designs.

In this paper, we focus on MDS codes and the alphabet size needed to realize them over

integers. Many other code designs have been studied, many of which have the following common

form. Let P be a pattern matrix whose entries are {0,∗}. A matrix M (over a finite field, or over
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the integers) of the same dimensions as P, is said to realize P if it satisfies the following two

conditions:

(i) If Pi, j = 0 then Mi, j = 0.

(ii) For any maximal minor in P, if it can be realized by some nonsingular matrix, then the

corresponding minor in M is nonsingular.

Questions of this form, for various patterns P, have been studied in coding theory. For example,

MDS matrices correspond to patterns P which are all ∗. In some applications, condition (ii) is

replaced with the following stronger condition (in which case we say that M strongly realizes P):

(ii)’ For any (maximal or not) minor in P, if it can be realized by some nonsingular matrix,

then the corresponding minor in M is nonsingular.

Some areas where these questions arise are: MDS codes with sparse generating matrices (also

known as GM-MDS) [14,21,22,34,68]; tree codes, used in coding for interactive communication

[8, 13, 42, 53, 54]; and maximally recoverable codes, used in coding for distributed storage (there

are too many results to list here, we refer to [2] for a recent survey).

Given a pattern P, it is not known when it can be realized (or strongly realized) over small

finite fields. Some works show that an exponential field size is needed in some cases [20, 24],

whereas other works show that in other cases, a polynomial field size is sufficient, using an

algebraic construction [34, 68]. However, a general understanding is currently lacking. In

contrast, we speculate that every pattern (except maybe some pathological cases) can be realized

over integers with small entries.

To pose a concrete conjecture, let Pn be the n× n pattern with ∗s on and below the

diagonal, and 0s above the diagonal. Such patterns underlie optimal tree codes. For example for
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n = 4:

P4 =



∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗


The best known construction (see [13]) of a matrix M realizing Pn is the binomial coefficients

matrix, namely Mi, j =
( i

j

)
, whose entries are integers of magnitude about 2n. We conjecture that

this cannot be improved much over finite fields, but can be reduced to poly(n) over the integers.

Conjecture 2.1.5. The following holds for the pattern Pn:

1. Any matrix M strongly realizing Pn over a finite field Fq requires exponential field size,

namely q≥ exp(Ω(n)).

2. There exist matrices M strongly realizing Pn over the integers, with the nonzero entries

in {−m, . . . ,m} for m = poly(n). In fact, random matrices of this form should work with

high probability.

Singularity of matrices over general distributions.

As we discussed above, most works on the singularity of random matrices give a bound

on the singularity of cn for some absolute constant c ∈ (0,1). Theorem 2.1.4 shows that if the

entries are uniformly sampled from {−m, . . . ,m}, we can take c = 1/poly(m). We speculate that

this is an instance of a much more general phenomena - the singularity probability is determined

by the anti-concentration of the underlying entries distribution. Given a distribution D over R,

define its max-probability as ‖D‖∞ = maxx D(x). For example, if D is the uniform distribution

over {−m, . . . ,m}, then ‖D‖∞ = 1/(2m+1).

Conjecture 2.1.6. Let D be a distribution over R and set p = ‖D‖∞. Let M be a random n×n

matrix with independent entries from D . Then for some absolute constant c > 0,

Pr[M is singular]≤ pcn.
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One can even speculate a more general conjecture, where each entry comes from a

different underlying distribution, as long as they all have bounded max-probability.

Chapter Outline.

We prove Theorem 2.1.4 in the remainder of the paper. We start with a high-level overview

of our framework in Section 2.2. We compute some preliminary estimates in Section 2.3, define

and study incompressible vectors in Section 2.4, define the LCD condition in Section 2.5, where

we also prove some properties of it, and bound the LCD of random vectors in Section 2.6. We

put all the ingredients together and complete the proof in Section 2.7.

2.2 General approach

We will follow the general approach of Rudelson [48] with several modifications needed

to handle the case of large m effectively.

Notation.

It will be convenient to scale the entries to be in [−1,1]; we denote by D the uniform

distribution over {a/m : a∈ {−m, . . . ,m}}. We denote by Dn the distribution over n-dimensional

vectors with independent entries from D , and by Dn×n the distribution over n×n matrices with

independent entries from D . We denote by Sn−1 the unit sphere in Rn, namely Sn−1 = {x ∈ Rn :

‖x‖2 = 1}. We will use the c,c′,c0, etc, to denote unspecified positive constants. Note that the

same letter (e.g. c) can mean different unspecified constants in different lemmas.

We may assume that n,m are large enough.

We will assume throughout the proof that n,m are large enough; concretely, for any

absolute constants n0,m0, we may assume that n≥ n0,m≥ m0, and this would only effect the

value of the constant c in Theorem 2.1.4.

To see why, consider first the regime of constant m and large n. The distribution D is
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symmetric and bounded in [−1,1]. The results of [49] show that in such a case,

Pr[M is singular]≤ cn

for some absolute constant c ∈ (0,1). This proves Theorem 2.1.4 for any constant m.

The other regime is that n is constant and m is large. While we may appeal to the result

of Katznelson [25] in this regime, which gives a sharp bound of cnm−n, there is a much simpler

argument that gives a bound of the form 1/m in this case, which is good enough to establish

Theorem 2.1.4 in this regime. As the determinant of an n×n matrix is a polynomial of degree n,

the Schwartz-Zippel lemma [55, 69] gives

Pr[M is singular] = Pr[det(M) = 0]≤ n
m
.

In particular, for constant n and large m, this probability scales like 1/m, which is consistent

with the claimed bound of Theorem 2.1.4 (taking c < 1/n).

General approach.

Let M ∼Dn×n, and let X1, . . . ,Xn denote its rows. If M is singular, then one of the rows

belongs to the span of the other rows. By symmetry we have

Pr[M is singular]≤ n ·Pr[Xn ∈ Span(X1, . . . ,Xn−1)].

Let X∗ be any unit vector orthogonal to X1, . . . ,Xn−1 (if there are multiple ones, choose

one in some deterministic way). We call it a random normal vector. We will shorthand X = Xn.

Observe that X ,X∗ are independent. Thus we can bound

Pr[M is singular]≤ n ·Pr[〈X∗,X〉= 0].

To do so, we will show that unless X∗ belongs to a set of “bad” vectors, then the above probability
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is at most m−cn, and that the probability that X∗ is bad is also at most m−cn.

2.3 Preliminary estimates

We establish some preliminary estimates in this section, which will be needed later in the

proof.

Maximal eigenvalues of random matrices.

The first ingredient is bounding the spectral norm of M. In fact, we would need this

bound for rectangular matrices. Given an n× k matrix R we denote its spectral norm as ‖R‖=

max{‖Rx‖2 : x ∈ Sk−1}. Note that ‖R‖= ‖RT‖ since ‖R‖= maxx∈Sk−1,y∈Sn−1 yT Rx.

The following claim is a special case of [48, proposition 4.4], who showed that it holds

for any symmetric distribution D supported in [−1,1].

Claim 2.3.1. Let R∼Dn×k for n≥ k. Then for any λ > 0,

Pr[‖R‖ ≥ λ
√

n]≤ 2−cλ 2k.

Anti-concentration of projections.

Next, we need anti-concentration results for projections of Dn. To begin with we consider

projections of the uniform distribution over the solid cube [−1,1]n.

Claim 2.3.2. Let U ∼ [−1,1]n be uniformly distributed. Then for every x ∈ Sn−1 and ε > 0,

Pr
u
[|〈U,x〉| ≤ ε]≤ cε.

Proof. The uniform distribution U ∼ [−1,1]n is a log-concave distribution. Let S = 〈U,x〉 and

note that S is a projection of U along the direction x. The Prékopa–Leindler inequality [33, 47]

states that projections of log-concave distributions are log-concave, and so S is a log-concave

distribution. Carbery and Wright [9, Theorem 8] show that the required anti-concentration bound

holds for any log-concave distribution.
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We extend this anti-concentration to the discrete case using a coupling argument. Here

and throughout, we denote by log(·) logarithm in base 2.

Claim 2.3.3. Let X ∼Dn and set ε0 =
√

logm
m . Then for every x ∈ Sn−1 and ε ≥ ε0,

Pr [|〈X ,x〉| ≤ ε]≤ cε.

Proof. We apply a coupling argument between the uniform distribution in [−1,1]n and Dn.

Sample X ∼Dn, Y ∼ [−1,1]n and set Z = X +Y/2m. Observe that Z is uniform in the solid cube

[−1−1/2m,1+1/2m]n. Next, fix ε > 0 and observe that 〈X ,x〉= 〈Z,x〉−〈Y,x〉/2m. Thus we

can bound

Pr[|〈X ,x〉| ≤ ε]≤ Pr[|〈Z,x〉| ≤ 2ε]+Pr[|〈Y,x〉| ≥ 2εm].

For the first term, Claim 2.3.2 bounds its probability by c1ε . For the second term, the Chernoff

bound bounds its probability for ε ≥ ε0 by 1/m. As we have 1/m≤ ε , the claim follows.

Tensorization lemma.

We also need the following “tensorization lemma” (Lemma 6.5 in [48]).

Claim 2.3.4. Let Y1, . . . ,Yn be independent real-valued random variables. Assume for some

K,ε0 > 0 that

Pr[|Yi| ≤ ε]≤ Kε for all ε ≥ ε0.

Then

Pr

[
n

∑
i=1

Y 2
i ≤ ε

2n

]
≤ (cKε)n for all ε ≥ ε0.

Nets.

A set of unit vectors N ⊂ Sn−1 is called an ε-net, for ε > 0, if it satisfies:

∀x ∈ Sn−1 ∃y ∈N ‖x− y‖2 ≤ ε.

33



The following claim bounds the size of such a net. For a proof see [41, Lemma 2.6].

Claim 2.3.5. For any ε > 0, there exists a ε-net N ⊂ Sn−1 of size |N | ≤ (3/ε)n.

Integer points in ball.

We need a bound on the number of integer vectors in a ball of a given radius. Let

Bn(r) = {x ∈ Rn : ‖x‖2 ≤ r} denote the ball of radius r in Rn.

Claim 2.3.6. The number of integer vectors in Bn(r) is at most
(

1+ 3r√
n

)n
.

2.4 Compressible vectors

The first set of “bad” vectors that we want to rule out are vectors which are close to

sparse. A vector u ∈ Rn is k-sparse if it has at most k nonzero coordinates.

Definition 2.4.1 (Compressible vectors). Let α,β ∈ (0,1). A unit vector x ∈ Sn−1 is called

(α,β )-compressible if it can be expressed as x = u+ v, where u is (αn)-sparse and ‖v‖2 ≤ β .

Otherwise, we say that x is (α,β )-incompressible.

We will later choose α,β , but we note here that α will be a small enough absolute

constant and β a small polynomial in 1/m. Concrete values that work are α = 1/50,β = 1/
√

m.

We will implicitly assume that both n,m are large enough; concretely, at various places we

assume that αn≥ 2.

The main lemma we prove in this section is the following.

Lemma 2.4.2. Let α ∈ (0,1/8),β ∈ (ε0,1/2) where ε0 =
√

logm
m . Then

Pr [X∗ is (α,β )-compressible]≤ (cβ )n/8.

We need a bound on the smallest singular value of a rectangular matrix.

Claim 2.4.3. Let R∼Dn×k for n≥ k. Then for every x ∈ Sk−1 and ε ≥ ε0,

Pr
[
‖Rx‖2 ≤ ε

√
n
]
≤ (cε)n/2.
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Proof. Assume ‖Rx‖2 < ε
√

n. This implies that |(Rx)i| ≤ 2ε for at least n/2 coordinates i ∈ [n].

Note that for each fixed i, the value (Rx)i is distributed as 〈X ,x〉 for some X ∼ Dk. Applying

Claim 2.3.3 and the union bound over the choice of the n/2 coordinates gives

Pr
[
‖Rx‖2 ≤ ε

√
n
]
≤ 2n(c1ε)n/2 = (cε)n/2.

Claim 2.4.4. Let R∼Dn×k for n≥ 8k. Then for every ε ≥ ε0,

Pr
[

min
x∈Sk−1

‖Rx‖2 ≤ ε
√

n
]
≤ (cε)n/4 .

Proof. We may assume that ε ≤ 1 by taking c ≥ 1. Let N be an (ε2)-net in Sk−1 of size

|N | ≤ (3/ε2)k, as given by Claim 2.3.5. Let E1 denote the event that there exists y ∈N for

which ‖Ry‖2 ≤ 2ε
√

n. Applying Claim 2.4.3 and a union bound gives

Pr [E1]≤ (3/ε
2)k · (c1ε)n/2 ≤ (c2ε)n/4,

where we used the assumption n ≥ 8k. Let E2 denote the event that ‖R‖ ≥ λ
√

n for λ =√
log(1/ε). Claim 2.3.1 shows that Pr[E2]≤ (c3ε)n. We next show that if E1,E2 don’t hold then

the condition of the claim also doesn’t hold, namely that ‖Rx‖2 > ε
√

n for all x ∈ Sk−1.

Let x ∈ Sk−1 be arbitrary and let y ∈N be such that ‖x− y‖2 ≤ ε2. Then

‖Rx‖2 ≥ ‖Ry‖2−‖R‖ · ‖x− y‖2 ≥ (2ε− ε
2
λ )
√

n.

It can be verified that for ε ≤ 1 we have ελ ≤ 1, which implies that ‖Rx‖2 ≥ ε
√

n.

We will now use these two claims to prove Lemma 2.4.2.

Proof of Lemma 2.4.2. Let M′ be the (n− 1)× n matrix with rows X1, . . . ,Xn−1. Assume that
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there exists an (α,β )-compressible vector x ∈ Sn−1 in the kernel of M′. By definition, x = u+ v

where u is (αn)-sparse and ‖v‖2 ≤ β . In particular, M′(u+ v) = 0 and hence ‖M′u‖2 = ‖M′v‖2.

In addition, ‖u‖2 ≥ ‖x‖2−‖v‖2 ≥ 1/2 since x is a unit vector and ‖v‖2 ≤ β ≤ 1/2.

Let E denote the event that ‖M′‖ ≥ λ
√

n for λ = c1
√

log(1/β ), where we choose c1 ≥ 1

large enough so that by Claim 2.3.1, Pr[E] ≤ β n. Note that as we assume β ≤ 1/2 we have

λ ≥ c1 ≥ 1. Assuming that E doesn’t hold, we have

‖M′u‖2 = ‖M′v‖2 ≤ ‖M′‖ · ‖v‖2 ≤ λβ
√

n.

In particular, y = u/‖u‖ is an (αn)-sparse unit vector that satisfies ‖M′y‖2 ≤ 2λβ
√

n. We next

bound the probability that such a vector exists.

Let ε = 2λβ , and note that ε ≥ ε0 since β ≥ ε0 and λ ≥ 1. There are
( n

αn

)
options for the

support of y. Let I = {i : yi 6= 0} denote a possible support, set k = |I| and let R be an (n−1)×k

matrix with columns (Yi : i ∈ I). As α < 1/8 we have n−1≥ 8k. Thus we can apply Claim 2.4.4

and obtain that

Pr
[
¬E ∧ ∃y ∈ Sk−1, ‖Ry‖2 ≤ ε

√
n
]
≤ (c2ε)n/4 =

(
c3β
√

log1/β

)n/4
.

Note that for β ≤ 1 we have β log(1/β )≤ 1 and hence the above bound is at most (c4β )n/8.

To conclude, we union bound over the choices for I, the number of which is
( n

αn

)
≤ 2n.

Thus we can bound the total probability by 2n(c4β )n/8 = (c5β )n/8.

2.5 The LCD condition

Given x∈Rn let x= [x]+{x} be its decomposition into integer and fractional parts, where

[x] ∈ Zn and {x} ∈ [−1/2,1/2]n. The following definition is a variant of the LCD definition

of [48].

Definition 2.5.1 (Least common denominator (LCD)). Let α,β ∈ (0,1). Given a unit vector
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x ∈ Sn−1, its least common denominator (LCD), denoted LCDα,β (x), is the infimum of D > 0

such that we can decompose {Dx}= u+ v, where u is (αn)-sparse and ‖v‖2 ≤ β min(D,
√

n).

Claim 2.5.2. Assume x ∈ Sn−1 is (5α,β )-incompressible. Then LCDα,β (x)>
√

αn.

Proof. Let D = LCDα,β (x) and assume towards a contradiction that D≤
√

αn. Let y = Dx. As

‖y‖2
2 ≤ αn there are at most 4αn coordinates i ∈ [n] where |yi| ≥ 1/2. In all other coordinates

{yi} = yi, and hence y−{y} is (4αn)-sparse. By assumption we can decompose {y} = u+ v

where u is (αn)-sparse and ‖v‖2 ≤ βD. This implies that we can decompose y = u′+ v where

u′ is (5αn)-sparse. Thus, we can decompose x = y/D as x = u′′+ v′′, where u′′ = u/D is

(5αn)-sparse and v′′ = v/D satisfies ‖v′′‖2 ≤ β . This violates the assumption that x is (5α,β )-

incompressible.

Our main goal in this section is to prove the following lemma, which extends Claim 2.3.3

assuming x has large LCD. To get intuition, we note that the lemma below is useful as long as

β � γ � 1. We will later set γ =
√

β to be such a choice. In particular, if we set β = m−1/2

then we have γ = m−1/4.

Lemma 2.5.3. Let X ∼ Dn. Let α,β ,γ ∈ (0,1/2), x ∈ Sn−1 be (α,γ)-incompressible and set

D = LCDα,β (x). Then for every ε ≥ 1/2πmD, it holds that

Pr [|〈X ,x〉| ≤ ε]≤ c
(

ε

γ
+

1
(αβm)αn

)
.

The proof of Lemma 2.5.3 relies on Esseen’s lemma [15].

Lemma 2.5.4 (Esseen’s Lemma). Let Y be a real-valued random variable. Let φY (t) = E[eitY ]

denote the characteristic function of Y . Then for any ε > 0, it holds that

Pr[|Y | ≤ ε]≤ cε

∫ 1/ε

−1/ε

|φY (t)|dt.
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Before proving Lemma 2.5.3, we need some auxiliary claims. Fix some x ∈ Sn−1, let

X ∼Dn and let Y = 〈X ,x〉. In order to apply Lemma 2.5.4, we need to compute the characteristic

function of Y .

Claim 2.5.5. Let X ∼Dn, x ∈ Sn−1 and set Y = 〈X ,x〉. For t ∈ R it holds that

|φY (t)|=
n

∏
k=1

F
( xkt

2πm

)

where F : R→ R is defined as follows:

F(y) =
∣∣∣∣sin((2m+1)πy)
(2m+1)sin(πy)

∣∣∣∣ .
Proof. We have Y = ∑xiξi where ξ1, . . . ,ξn ∼D are independent. Hence

φY (t) =
n

∏
k=1

E[eixkξkt ].

Next we compute

E[eixkξkt ] =
1

2m+1

m

∑
`=−m

eixk(`/m)t =
1

2m+1
·

sin(2m+1
2m xkt)

sin( 1
2mxkt)

.

Hence ∣∣∣E[eitxkξk ]
∣∣∣= F

( xkt
2πm

)
.

The next claim proves some basic properties of the function F .

Claim 2.5.6. The function F satisfies the following properties:

1. F is symmetric: F(y) = F(−y) for all y ∈ R.

2. F is invariant to shifts by integers: F(y) = F({y}) for y ∈ R.
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3. F is bounded: F(y) ∈ [0,1] for all y ∈ R.

4. F(y)≤ G(my) for y ∈ [0,1/2], where G : R+→ [0,1] is defined as follows:

G(y) =


e−ηy2

if y ∈ [0,1]

e−η

y if y≥ 1

Here, η > 0 is an absolute constant. Note that G is decreasing.

Proof. The first three claims follow immediately from the definition of F in Claim 2.5.5. In order

to prove the last claim, we will prove that F(y)≤ c1
my for y ∈ [1/m,1/2] for some c1 ∈ (0,1); and

that F(y)≤ exp(−c2(my)2) for y ∈ [0,1/m] for some c2 > 0. The claim then follows by taking

η = min(ln(1/c1),c2).

First, note that F(y)≤ 1
(2m+1)|sin(πy)| . Using Taylor expansion at 0, we get for y∈ [0,1/2]

that

sin(πy)≥ πy− π3y3

6
≥ πy

2
.

In particular, F(y)≤ 1
πmy , which gives the desired bound for c1 = 1/π .

Next, note that F(y) = 1
2m+1 |sin((2m+ 1)πy) · csc(πy)|. The Laurent series of csc(x)

at x 6= 0 is csc(x) = 1
x +

x
6 +

7x3

360 +
31x5

15120 +Θ(x7) and the Taylor series for sin(x) is sin(x) =

x− x3

3! +
x5

5! +Θ(x7). So for y ∈ [0,1/m] we have F(y)≤ 1− c2(my)2 ≤ exp(−c2(my)2).

We also need the following claim, which shows that incompressible vectors retain a large

fraction of their norm when restricted to small coordinates. We use the following notation: given

x ∈ Rn and a set of coordinates J ⊂ [n], we denote by x|J ∈ RJ the restriction of x to coordinates

in J.

Claim 2.5.7. Let x ∈ Sn−1 be (α,γ)-incompressible. Let J =
{

i : xi ≤ 1√
αn−1

}
. Then

‖x|J‖2
2 ≥ ‖x|J‖2

∞ + γ
2.
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Proof. Let Jc = [n] \ J. Since x is a unit vector, we have |Jc| ≤ αn− 1. Let j ∈ J be such

that |x j| is maximal and take K = J \ { j}. Then |Kc| ≤ αn, and since we assume that x is

(α,γ)-incompressible, we have ‖x|K‖2 ≥ γ . This completes the proof, since

‖x|J‖2
2−‖x|J‖2

∞ = ‖x|J‖2
2− x2

j = ‖x|K‖2
2 ≥ γ

2.

We would need the following lemma in the computations later on.

Lemma 2.5.8. Let γ,δ > 0. Let x ∈ Rn be a vector such that ‖x‖∞ ≤ δ and ‖x‖2
2 ≥ ‖x‖2

∞ + γ2.

Let T = πm/δ . Then

I =
∫ T

0

n

∏
i=1

F
( xit

2πm

)
dt ≤ c

γ
.

Proof. To simplify the proof, we may assume by Claim 2.5.6(1) that xi ≥ 0 for all i. Reorder the

coordinates of x so that x1≥ x2≥ . . .≥ xn≥ 0. Observe that for xi ∈ [0,T ] we have xit
2πm ∈ [0,1/2]

and hence we can apply Claim 2.5.6(4) and bound each term by F
( xit

2πm

)
≤ G

( xit
2π

)
. Thus

I ≤
∫ T

0

n

∏
i=1

G
( xit

2π

)
dt = 2π

∫ T/2π

0

n

∏
i=1

G(xit)dt ≤ 2π

∫
∞

0

n

∏
i=1

G(xit)dt.

We bound this last integral. Let ti = 1/xi so that t1 ≤ t2 ≤ . . . ≤ tn. For simplicity of

notation set t0 = 0, tn+1 = ∞. We break the computation of the integral to intervals [tk, tk+1) for

k = 0, . . . ,n, and denote by Ik the integral in each interval:

Ik =
∫ tk+1

tk

n

∏
i=1

G(xit)dt =
∫ tk+1

tk

k

∏
i=1

e−η

xit
·

n

∏
i=k+1

e−ηt2x2
i dt = e−ηk

∫ tk+1

tk

e−ηt2
∑

n
i=k+1 x2

i

tk ∏
k
i=1 xi

dt.

Fix k and consider first the case that ∑
n
i=k+1 x2

i ≥ γ2/2. In this case, using the fact that

xit ≥ 1 for i ∈ [k] and t ∈ [tk, tk+1], we can bound Ik by

Ik ≤ e−ηk
∫ tk+1

tk
e−ηγ2t2/2dt ≤ e−ηk

∫
∞

0
e−ηγ2t2/2dt ≤ c1e−ηk

γ
.
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Next, consider the case that ∑
n
i=k+1 x2

i < γ2/2, which means that ∑
k
i=1 x2

i > ‖x‖2
2−γ2/2≥

‖x‖2
∞+γ2/2. Observe that this is impossible for k = 0 or k = 1, and hence we may assume k≥ 2.

In this case we bound

Ik ≤ e−ηk
∫ tk+1

tk

1
tk ∏

k
i=1 xi

dt ≤ e−ηk
∫

∞

tk

1
tk ∏

k
i=1 xi

dt =
e−ηkxk−1

k

(k−1)∏
k
i=1 xi

≤ e−ηk

(k−1)x1
.

By our assumption, ∑
k
i=1 x2

i ≥ γ2/2 and hence x2
1 ≥ γ2/2k. Thus we can bound

Ik ≤
e−ηk

(k−1)γ/
√

2k
≤ c2e−ηk

γ
.

Overall, we bounded the integral by

I ≤ 2π

n

∑
k=0

Ik ≤ 2π max(c1,c2)
n

∑
k=0

e−ηk

γ
≤ c

γ
,

where we used the fact that c1,c2,η > 0 are all absolute constants.

Now we have all the ingredients to complete proof of Lemma 2.5.3.

Proof of Lemma 2.5.3. Let Y = 〈X ,x〉. Lemma 2.5.4 and Claim 2.5.5 give the bound

Pr[|Y | ≤ ε]≤ c1εI,

where I is the following integral:

I =
∫ 1/ε

0

n

∏
i=1

F
( xit

2πm

)
dt.

Let T = πm
√

αn−1. We will bound the integral in the regime [0,T ] and [T,1/ε], and denote

the corresponding integrals by I1, I2.

Consider first the integral I1 in [0,T ]. Let δ = 1/
√

αn−1 and take J = {i : xi ≤ δ}.
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Observe that by Claim 2.5.6(3), we can bound F
( xit

2πm

)
≤ 1 for i /∈ J. Thus

I1 =
∫ T

0

n

∏
i=1

F
( xit

2πm

)
dt ≤

∫ T

0
∏
i∈J

F
( xit

2πm

)
dt.

Next, as we assume that x is (α,γ)-incompressible, Claim 2.5.7 gives that ‖x|J‖2
2 ≥ ‖x|J‖2

∞ + γ2.

Applying Lemma 2.5.8 to x|J , we bound the first integral by

I1 ≤
c2

γ
.

Next, consider the second integral I2 in [T,1/ε]. We will apply the LCD assumption to

uniformly bound the integrand in this range. Given t ∈ [T,1/ε], let y(t) =
{ xt

2πm

}
∈ [−1/2,1/2]n,

β (t) = β min(t/
√

n,1) and J(t) = {i ∈ [n] : |y(t)i| ≥ β (t)}. As t ≤ 1/ε ≤ 2πmD, we have that

t
2πm ≤ D = LCDα,β (x), and hence |J(t)| ≥ αn. Applying Claim 2.5.6, we bound the integrand

by

n

∏
i=1

F
( xit

2πm

)
=

n

∏
i=1

F(yi)≤ ∏
i∈J(t)

F(yi)≤ ∏
i∈J(t)

G(myi)≤ ∏
i∈J(t)

G(mβ (t))≤ G(mβ (t))αn.

Following up on this, we have

β (t)≥ β (T ) = β

√
αn−1√

n
≥ β

√
α/2≥ αβ ,

where we used the assumptions that αn ≥ 2 and α ≤ 1/2. We may assume that αβm ≥ 1,

otherwise the conclusion of the lemma is trivial. In that case we have by Claim 2.5.6(4) that

G(mβ (t))≤ G(αβm)≤ 1
αβm

.
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Thus we can bound the integral I2 by

I2 =
∫ 1/ε

T

n

∏
i=1

F
( xit

2πm

)
dt ≤ 1/ε

(αβm)αn .

Overall, we get

Pr[|Y | ≤ ε]≤ c1εI = c1ε(I1 + I2)≤
c1c2ε

γ
+

c1

(αβm)αn .

2.6 Bounding the LCD

Our main goal in this section is to prove that a random normal vector X∗ has large

LCD with high probability. Let M′ denote the (n−1)×n matrix with rows X1, . . . ,Xn−1. Let

D0 =
√

αn and D1 = β (αβm)αn in this section.

Lemma 2.6.1. Let α ∈ (0,1/40), β ∈ (0,1/2) and take 1≤ D≤ D1. Then

Pr[LCDα,β (X
∗)≤ D]≤ D2 (1/αc)n

β
cn

for some absolute constant c ∈ (0,1).

We set γ =
√

β throughout the section. We first condition on a number of bad events not

holding. Define:

E1 =
[
‖M‖ ≥

√
n log(1/β )

]
E2 = [X∗ is (5α,β ) -compressible]

E3 = [X∗ is (α,γ) -compressible]
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Applying Claim 2.3.1 for E1, and Lemma 2.4.2 for E2,E3, we get that

Pr[E1 or E2 or E3]≤ β
cn.

Thus, we will assume in this section that non of E1,E2,E3 hold. Assuming ¬E2, Claim 2.5.2

yield that LCDα,β (X∗)≥ D0. For D≥ D0 define

SD =
{

x ∈ Sn−1 : LCDα,β (x) ∈ [D,2D] and x is (α,γ) -incompressible
}
.

The following is an analog of Lemma 7.2 in [48].

Claim 2.6.2. Let D≥ D0 and set ν = 6β
√

n/D. There exists a ν-net ND ⊂SD of size

|ND| ≤ (D/β )

(
26D√

αn

)n

(1/β )αn.

Namely, for each x ∈SD there exists y ∈ND that satisfies ‖x− y‖2 ≤ ν .

Proof. Let x ∈ SD and shorthand D(x) = LCDα,β (x). By definition, we can decompose

{D(x)x}= u+ v where u is (αn)-sparse and ‖v‖2 ≤ β min(D,
√

n)≤ β
√

n.

Let W denote the set of (αn)-sparse vectors w ∈ [−1/2,1/2]n such that each wi is an

integer multiple of β . Then |W | ≤
( n

αn

)
(1/β )αn, and there exists w ∈W such that ‖u−w‖∞ ≤ β ,

which implies ‖u−w‖2 ≤ β
√

n. This implies that

‖{D(x)x}−w‖2 ≤ 2β
√

n.

Next, consider [D(x)x] ∈ Zn. As |[a]| ≤ 2|a| for all a ∈ Z, we have ‖[D(x)x]‖2 ≤

2D(x)‖x‖2 ≤ 4D. Let Z = {z ∈ Zn : ‖z‖2 ≤ 4D}. Then [D(x)x] ∈ Z, and Claim 2.3.6 bounds

|Z| ≤
(

1+ 12D√
n

)n
. So there is z ∈ Z such that

‖D(x)x− z−w‖2 ≤ 2β
√

n.
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Next, let R be set of integer multiples of β in the range [D,2D], so that |R| ≤ D/β and

there exists r ∈ R with |D(x)− r| ≤ β . As ‖x‖2 = 1 we have

‖rx− z−w‖2 ≤ 2β
√

n+β ≤ 3β
√

n.

Finally, define the set

Y = {(z+w)/r : z ∈ Z,w ∈W,r ∈ R}.

Then there exists y ∈ Y such that

‖x− y‖2 ≤ 3β
√

n/D = ν/2.

Take a maximal set ND ⊂ SD which is ν-separated. That is, for any x′,x′′ ∈ ND we have

‖x′− x′′‖2 > ν . Note that by maximality, ND is a ν-net in SD. Next, note that |ND| ≤ |Y |, as

any point x ∈ND must be (ν/2)-close to a distinct point in Y . To conclude, we need to bound

|Y |. We have

|Y | ≤ |W ||Z||R| ≤
(

n
αn

)
(1/β )αn ·

(
1+

12D√
n

)n

· (D/β ).

As D≥ D0 =
√

αn we can simplify 1+ 12D√
n ≤

13D√
αn . We can trivially bound

( n
αn

)
≤ 2n. Hence

|ND| ≤ |Y | ≤ (D/β )

(
26D√

αn

)n

(1/β )αn.

Claim 2.6.3. For any D ∈ [D0,D1] we have

Pr [X∗ ∈SD and ¬E1]≤ D2 (c/α)n
β

n/8.

Proof. First, note that we may assume β ≤ β0 for any absolute constant β0 ∈ (0,1), by choosing
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the constant c > 0 large enough to compensate for that (namely, taking c≥ 1/β0). In particular,

setting β0 = 2−20 works.

If X∗ ∈SD then there exists y ∈ND such that ‖X∗− y‖2 ≤ ν for ν = 6β
√

n/D. By

definition of X∗ we have M′X∗ = 0, and as we assume that ¬E1 hold, we have

‖M′y‖2 ≤ ‖M′‖‖X∗− y‖2 ≤ ν
√

n log(1/β ).

Set β1 = 6β
√

log(1/β ). The assumption β ≤ β0 implies that β1 ≤ β 3/4. Set δ = β 3/4√n/D.

We will bound the probability that there exists y ∈ND such that ‖M′y‖2 ≤ δ
√

n.

Fix y ∈ND, let X ∼Dn, and define p(ε) = Pr[|〈X ,y〉|]≤ ε . As y ∈ND ⊂SD we have

that y is (α,γ)-incompressible, and hence we can apply Lemma 2.5.3, which gives

p(ε)≤ c1

(
ε

γ
+

1
(αβm)αn

)
for all ε ≥ 1/2πmD.

Next, we restrict attention to only ε ≥ δ , and note that in this regime the first term is dominant

(since D≤ D1 we have δ ≥ β 3/4√n/D1 ≥ 1/(αβm)αn). We can then simplify the bound as

p(ε)≤ c2ε

γ
for all ε ≥ δ .

Applying Claim 2.3.4, and recalling that we set γ =
√

β , gives

Pr
[
‖M′y‖2 ≤ δ

√
n
]
≤
(

c3δ

γ

)n−1

=

(
c4β 1/4√n

D

)n−1

.

Union bounding over all y ∈ND, using Claim 2.6.2 to bound its size, gives

Pr[∃y ∈ND,‖M′y‖2 ≤ δ
√

n]≤ (D/β )

(
26D√

αn

)n

(1/β )αn ·

(
c4β 1/4√n

D

)n−1

≤ D2 (c5/
√

α
)n

β
n/4−αn−2.
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Our assumption α < 1/40 and the implicit assumption αn≥ 2 imply that αn+2≤ n/8, which

simplifies the above bound to the claimed bound.

We are now in place to prove Lemma 2.6.1.

Proof of Lemma 2.6.1. We may assume that non of E1,E2,E3 hold, as the probability that any of

them hold is at most β c1n for some absolute constant c1 ∈ (0,1). This in particular implies that

LCDα,β (X∗)≥ D0. Fix D ∈ [D0,D1]. As D≤ D1 we can applying Claim 2.6.3 to Di = 2iD0 as

long as Di ≤ D/2. Summing the results we get

Pr
[
LCDα,β (X

∗)≤ D and ¬E1,¬E2,¬E3
]
≤ (2D)2(c2/α)n

β
n/8.

Thus overall we have

Pr
[
LCDα,β (X

∗)≤ D
]
≤ β

c1n +(2D)2(c2/α)n
β

n/8.

The lemma follows by taking c ∈ (0,1) small enough.

2.7 Completing the proof

We now prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Fix α = 1/50,β = 1/
√

m and assume m ≥ m0 for a large enough

constant m0 to be determined soon. Let D to be determined soon. Lemma 2.6.1 gives

Pr[LCDα,β (X
∗)≤ D]≤ D2(1/αc1)

n
β

c1n.

As α is constant, and using the choice β = 1/
√

m, we can simplify the bound as follows. For a

small enough constant c ∈ (0,1), setting D = mcn and c2 = 1/αc1, we have

Pr[LCDα,β (X
∗)≤ mcn]≤ m2cncn

2m−(c1/2)n ≤ cn
2m−(c1/2−2c)n ≤ cn

2m−cn.
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Assuming m≥ m0 for a large enough constant m0, we can simplify this bound further as

Pr[LCDα,β (X
∗)≤ mcn]≤ m−(c/2)n.

Next, assume D = LCDα,β (X∗)≥mcn. In this case, Lemma 2.5.3 for ε = 1/2πmD gives

that

Pr[〈X∗,X〉= 0]≤ Pr[|〈X∗,X〉| ≤ ε]≤ c3

(
ε

γ
+

1
(αβm)αn

)
≤ m−c′n

for some c′ ∈ (0,1). Overall we obtain the desired bound.

Chapter 2, in full, is currently under review for publication of the material. Karingula,

Sankeerth Rao; Lovett, Shachar. The dissertation author was the primary investigator and author

of this material.
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Chapter 3

Combinatorial designs

A new probabilistic technique for establishing the existence of certain regular combinato-

rial structures has been introduced by Kuperberg, Lovett, and Peled (STOC 2012). Using this

technique, it can be shown that under certain conditions, a randomly chosen structure has the

required properties of a t-(n,k,λ ) combinatorial design with tiny, yet positive, probability.

Herein, we strengthen both the method and the result of Kuperberg, Lovett, and Peled as

follows. We modify the random choice and the analysis to show that, under the same conditions,

not only does a t-(n,k,λ ) design exist but, in fact, with positive probability there exists a large

set of such designs — that is, a partition of the set of k-subsets of [n] into t-(n,k,λ ) designs.

Specifically, using the probabilistic approach derived herein, we prove that for all sufficiently

large n, large sets of t-(n,k,λ ) designs exist whenever k > 9t and the necessary divisibility

conditions are satisfied. This resolves the existence conjecture for large sets of designs for all

k > 9t.

3.1 Introduction

Let [n] = {1,2, . . . ,n}. A k-set is a subset of [n] of size k. A t-(n,k,λ ) combinatorial

design is a collection D of distinct k-sets of [n], called blocks, such that every t-set of [n] is

contained in exactly λ blocks. A large set of designs of size l, denoted LS(l; t,k,n), is a set of l

disjoint t-(n,k,λ ) designs D1,D2, . . . ,Dl such that D1∪D2∪·· ·∪Dl is the set of all k-sets of
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[n]. That is, LS(l; t,k,n) is a partition of the set of k-sets of [n] into t-(n,k,λ ) designs, where

necessarily λ =
(n−t

k−t

)
/l.

The existence problem for large sets of designs can be phrased as follows: for which

values of l, t,k,n do LS(l; t,k,n) large sets exist? The existence conjecture for large sets,

formulated for example in [66, Con-jecture 1.4], asserts that for every fixed l, t,k with k ≥ t +1,

a large set LS(l; t,k,n) exists for all sufficiently large n that satisfy the obvious divisibility

constraints (see Section 3.1.2). However, according to [66, p. 564] as well as more recent surveys,

“not many results about LS(l; t,k,n) with k > t +1 are known.” One of our main results herein

is a proof of the foregoing existence conjecture for all k > 9t.

3.1.1 Large sets of designs

Combinatorial design theory can be traced back to the work of Euler, who introduced

the famous “36 officers problem” in 1782. Euler’s ideas were further developed in the mid-

19th century by Cayley, Kirkman, and Steiner. In particular, the existence problem for large

sets of designs was first considered in 1850 by Cayley [10], who found two disjoint 2-(7,3,1)

designs and showed that no more exist. The first nontrivial large set, namely LS(7; 2,3,9), was

constructed by Kirkman [29] in the same year. Following these results, the existence problem

for large sets of type LS(n−2; 2,3,n) — that is, large sets of Steiner triple systems — attracted

considerable research attention. Nevertheless, this problem remained open until the 1980s,

when it was settled by Lu [35, 36] and Teirlinck [65]. Specifically, it is shown in [35, 36, 65]

that LS(n−2; 2,3,n) exist for all n ≥ 9 with n ≡ 1,3 (mod 6). In 1987, came the celebrated

work of Teirlinck [63], who proved that nontrivial t-(n,k,λ ) designs exist for all values of t. In

fact, Teirlinck’s proof of this theorem in [63] proceeds by constructing for all t ≥ 1, a large set

LS(l; t, t+1,n), where l = (n− t)/(t+1)!(2t+1). His results in [63, 64] further imply that for all

fixed t,k with k ≥ t+1, nontrivial large sets LS(l; t,k,n) exist for infinitely many values of n.

However, as mentioned earlier, it is unknown whether such large sets exist for all sufficiently

large values of n that satisfy the necessary divisibility constraints. For much more on the history
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of the problem and the current state of knowledge, see the surveys [27, 28, 66] and references

therein.

There are numerous applications of large sets of designs in discrete mathematics and

computer science. For example, large sets of Steiner systems were used to construct perfect

secret-sharing schemes by Stinson and Vanstone [58], and others [16, 52]. An application of

general large sets of designs to threshold secret-sharing schemes was proposed by Chee [11]. As

another example, Chee and Ling [12] showed how large sets can be used to construct infinite

families of optimal constant weight codes. As yet another example, large sets of 1-designs (also

known as one-factorizations) have been used extensively in various kinds of scheduling problems

— see [40, pp. 51–53] and references therein.

3.1.2 Divisibility constraints and our existence theorem

Consider a t-(n,k,λ ) design with N blocks. It is very easy to see that every such design

must satisfy certain natural divisibility constraints. For instance, every k-set of [n] contains

exactly
(k

t

)
many t-sets, and since every t-set is covered exactly λ times by the N blocks, we

have N
(k

t

)
= λ

(n
t

)
. In particular, this implies that

(k
t

)
should divide λ

(n
t

)
. Now let us fix a

positive integer s≤ t−1 and restrict our attention only to those N′ blocks that contain a specific

s-set of [n]. Since the fixed s-set can be extended to a t-set in
(n−s

t−s

)
ways and each of these

t-sets is covered λ times by the N′ blocks, a similar argument yields N′
(k−s

t−s

)
= λ

(n−s
t−s

)
. Thus(k−s

t−s

)
should divide λ

(n−s
t−s

)
. Altogether, this simple counting argument produces t divisibility

constraints: (
k− s
t− s

) ∣∣∣∣∣ λ

(
n− s
t− s

)
for all s = 0,1 . . . , t−1. (3.1)

The above leads to the following natural question. Are these t divisibility conditions

also sufficient for the existence of t-(n,k,λ ) designs, at least when n is large enough? This

is one of the central questions in combinatorial design theory. In a remarkable achievement,

Keevash [26] was able to answer this question positively, thereby settling the existence conjecture
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for combinatorial designs. Specifically, Keevash proved that for any k > t ≥ 1 and λ ≥ 1, there is

a sufficiently large n0 = n0(t,k,λ ) such that the following holds: for all n≥ n0 such that n, t,k,λ

satisfy the divisibility conditions in (3.1), there exists a t-(n,k,λ ) design.

Let us now consider the divisibility conditions for large sets. A large set LS(l; t,k,n) is

a partition of all k-sets of [n] into t-(n,k,λ ) designs. Clearly, each of these designs consists of

N =
(n

k

)
/l = λ

(n
t

)
/
(k

t

)
blocks. This can be used to specify λ in terms of n, t,k, l as follows:

λ =

(
n
k

)(
k
t

)
l
(

n
t

) =
1
l

(
n− t
k− t

)
(3.2)

With this, the divisibility constraints (3.1) for the l component designs of a large set LS(l; t,k,n)

can be re-written in terms of n, t,k, l. Altogether, we conclude that the parameters of a large set

LS(l; t,k,n) must satisfy the following t +1 divisibility constraints:

l
(

k− s
t− s

) ∣∣∣∣∣
(

n− t
k− t

)(
n− s
t− s

)
for all s = 0,1 . . . , t. (3.3)

Note that the constraint for s = t simply refers to the condition that l must divide
(n−t

k−t

)
, which

is clearly necessary in view of (3.2). Once again, this leads to the following natural question.

Are these t +1 divisibility conditions also sufficient for the existence of LS(l; t,k,n) large sets,

at least when n is large enough?

One of our main results in this paper is a positive answer to this question for all k > 9t,

which settles the existence conjecture for large sets for such values of k. We formulate this result

as the following theorem.

Theorem 3.1.1. For any t ≥ 1,k > 9t and l ≥ 1, there is an n0 = n0(t,k, l) such that the following

holds: for all n≥ n0 such that n, t,k, l satisfy the divisibility conditions in (3.3), there exists an

LS(l; t,k,n) large set.

In fact, Theorem 3.1.1 follows as a special case of a more general statement — namely,
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Theorem 3.1.9 of Section 3.1.4. Theorem 3.1.9 itself follows by extending and strengthening

the probabilistic argument of Kuperberg, Lovett, and Peled [31]. We begin by describing the

general framework for this probabilistic argument below.

3.1.3 General framework

Throughout this work, we will use the notation of the Kuperberg, Lovett, and Peled

paper [31], which we shorthand as KLP. Let B,A be finite sets and let φ : B→ ZA be a vector

valued function. One can think of φ as described by a |B|×|A|matrix where the rows correspond

to the evaluation of the function φ on the elements in B. In this setting [31] gives sufficient

conditions for the existence of a small set T ⊂ B such that

1
|T | ∑t∈T

φ(t) =
1
|B| ∑b∈B

φ(b). (3.4)

In the context of designs we can think of B as all the k-sets of [n] and A as all the t-sets of [n]. φ

denotes the inclusion function, that is φ(b)a = 1a⊂b where b is a k-set of [n] and a is a t-set of

[n]. Equation (3.4) is then equivalent to T being a t-(n,k,λ ) design for an appropriate λ .

Next, we present the conditions under which KLP showed that there is a solution for (3.4).

We start with a few useful notations. For a ∈ A we denote by φa ∈ ZB the a-column of the matrix

described by φ , namely (φa)b = φ(b)a. Let V ⊂QB be the vector space spanned by the columns

of this matrix {φa : a ∈ A}. Observe that (3.4) depends only on V and not on {φa : a ∈ A}, which

is a specific choice of basis for V . We identify f ∈V with a function f : B→Q. Thus, we may

reformulate (3.4) as
1
|T | ∑t∈T

f (t) =
1
|B| ∑b∈B

f (b) ∀ f ∈V. (3.5)

In particular, we may assume without loss of generality that dim(V ) = |A|.

The conditions and results outlined below will depend only on the subspace V . However,

it will be easier to present some of them with a specific choice of basis. We may assume this to
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be an integer basis. Thus, we assume throughout that φ : B→ ZA is a map whose coordinate

projections φa : B→ Z are a basis for V .

Divisibility conditions

For T to be a valid set for (3.5) with |T |= N, we must have

∑
t∈T

f (t) =
N
|B| ∑b∈B

f (b) ∀ f ∈V.

In particular there must exist γ ∈ ZB such that

∑
b∈B

γb f (b) =
N
|B| ∑b∈B

f (b) ∀ f ∈V. (3.6)

The set of integers N satisfying (3.6) for some γ ∈ ZB consists of all integer multiples of some

minimal positive integer c1. This is because if N1 and N2 are solutions then so is N1−N2. Thus

it follows that |T | must be an integer multiple of c1. This is the divisibility condition and c1 is

the divisibility parameter of V .

We can rephrase (3.6) as N
|B|∑b∈B φ(b) belongs to the lattice spanned by {φ(b) : b ∈ B}.

Definition 3.1.2 (Lattice spanned by φ ). We define L(φ) to be the lattice spanned by {φ(b) : b ∈

B}.

L(φ) =
{

∑
b∈B

nb ·φ(b) : nb ∈ Z
}
⊂ ZA.

Note that since we assume that dim(V ) = |A| we have that L(φ) is a full rank lattice.

Definition 3.1.3 (Divisibility parameter c1). The divisibility parameter of V is the minimal

integer c1 ≥ 1 that satisfies c1
|B|∑b∈B φ(b) ∈ L(φ). Note that it does not depend on the choice of

basis for V which defines φ .

Boundedness conditions

The second condition is about boundedness conditions for integer vectors which span V

and its orthogonal dual. We start with some general definitions. Let 1≤ p≤ ∞. The `p norm of
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a vector γ ∈ ZB is ‖γ‖p = (∑b∈B |γb|p)1/p. Below we restrict our attention to ‖γ‖1 = ∑b∈B |γb|

and ‖γ‖∞ = maxb∈B |γb|.

Definition 3.1.4 (Bounded integer basis). Let W ⊂ QB be a vector space. For 1 ≤ p ≤ ∞, we

say that W has a c-bounded integer basis in `p if W is spanned by integer vectors whose `p norm

is at most c. That is, if

Span({γ ∈W ∩ZB : ‖γ‖p ≤ c}) =W.

Recall that V ⊂QB is the vector space spanned by {φa : a ∈ A}. We denote by V⊥ the

orthogonal complement of V in QB, that is,

V⊥ := {g ∈QB : ∑
b∈B

f (b)g(b) = 0 ∀ f ∈V}.

Definition 3.1.5 (Boundedness parameters c2,c3). We impose two boundedness conditions:

• Let c2 ≥ 1 be such that V has a c2-bounded integer basis in `∞.

• Let c3 ≥ 1 be such that V⊥ has a c3-bounded integer basis in `1.

Symmetry conditions

Next we require some symmetry conditions from the space V . Given a permutation

π ∈ SB and a vector f ∈ QB, we denote by π( f ) ∈ QB the vector obtained by permuting the

coordinates of f , namely π( f )b = fπ(b).

Definition 3.1.6 (Symmetry group of V ). The symmetry group of V , denoted Sym(V ), is the set

of all permutations π ∈ SB which satisfy that π( f ) ∈V for all f ∈V .

It is easy to verify that Sym(V ) is a subgroup of SB, the symmetric group of permutations

on B. Note that the condition π ∈ Sym(V ) can be equivalently case as the existence of an

invertible linear map τ : QA→QA such that

φ(π(b)) = τ(φ(b)) ∀ b ∈ B.
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Definition 3.1.7 (Transitive symmetry group). The symmetry group of V is said to be transitive

if it acts transitively on B. That is, for every b1,b2 ∈ B there is π ∈ Sym(V ) such that π(b1) = b2.

Constant functions condition

The last condition is very simple: we require that the constant functions belong to V .

Main theorem of KLP

We are now at a position to state the main theorem of KLP [31].

Theorem 3.1.8 (KLP Theorem). Let B be a finite set and let V ⊂QB be the subspace of functions.

Assume that the following holds for some integers c1,c2,c3 ≥ 1:

• Divisibility: c1 is the divisibility parameter of V .

• Boundedness of V : V has a c2-bounded integer basis in `∞.

• Boundedness of V⊥: V⊥ has a c3-bounded integer basis in `1.

• Symmetry: The symmetry group of V is transitive.

• Constant functions: The constant functions belong to V.

Let N is an integer multiple of c1 satisfying

min(N, |B|−N)≥C · c2c2
3dim(V )6 log(2c3dim(V ))6,

where C > 0 is an absolute constant. Then there exists a subset T ⊂ B of size |T |= N satisfying

1
|T | ∑t∈T

φ(t) =
1
|B| ∑b∈B

φ(b).
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3.1.4 Our main theorem

Our main result is an extension of the KLP theorem (Theorem 3.1.8) to large sets. It will

have many of the same conditions, except that we need to update the divisibility condition to

require the size of each design to be N = |B|/`. Thus the new divisibility condition is

1
l ∑

b∈B
φ(b) ∈ L(φ).

Note that as before, this condition depends only on V ; it does not depend on the choice of basis

for V which defines φ .

Theorem 3.1.9 (Main theorem). Let B be a finite set and let V ⊂QB be the subspace of functions.

Let also l ≥ 1 be an integer. Assume that the following holds for some integers c2,c3 ≥ 1:

• Divisibility: 1
l ∑b∈B φ(b) ∈ L(φ).

• Boundedness of V : V has a c2-bounded integer basis in `∞.

• Boundedness of V⊥: V⊥ has a c3-bounded integer basis in `1.

• Symmetry: The symmetry group of V is transitive.

• Constant functions: The constant functions belong to V.

Assume furthermore that

|B| ≥C dim(V )6l6c3
3 log3(dim(V )c2c3l),

for some absolute constant C > 0. Then there exists a partition of B to T1, . . . ,Tl , each of size

|Ti|= |B|/l such that

∑
t∈Ti

φ(t) =
1
l ∑

b∈B
φ(b) for all i = 1, . . . , l.
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Theorem 3.1.1 follows as a special case of Theorem 3.1.9.

Proof of Theorem 3.1.1. To recall, in this setting we have B the set of all k-sets of [n], A the set

of all t-sets of [n], φ : B→{0,1}A given by inclusion φ(b)a = 1a⊂b for a ∈ A,b ∈ B and V the

subspace spanned by {φa : a ∈ A}.

KLP [31] showed (see Section 3.3 in the arxiv version) that in this setting, the subspace

V has a transitive symmetric group, it contains the constant functions, and it has boundedness

parameters c2 = 1,c3 ≤ (4en/t)t . Furthermore, the condition that the vector λ̄ = (λ , . . . ,λ ) ∈

L(φ) is equivalent to the set of conditions

(
k− s
t− s

)∣∣∣∣λ(n− s
t− s

)
for all s = 0, . . . , t.

(see Theorem 3.7 in [31]). In particular in our case λ =
(n−t

k−t

)
/l and hence the divisibility

conditions in Theorem 3.1.9 are equivalent to the necessary divisibility conditions given in

(3.3). To obtain the lower bound on |B|, lets fix k, t, l and let n be large enough. Then |B| ≈ nk,

dim(V )≈ nt and c3 ≈ nt . Then if k > 9t and n is large enough the lower bound on B holds.

3.1.5 Proof overview

The high level idea, similar to [31], is to analyze the natural random process and show

that with positive (yet exponentially small) probability a desired event occurs.

Say that a subset T ⊂ B is “uniform” if

1
|T | ∑b∈T

φ(b) =
1
|B| ∑b∈B

φ(b).

Equivalently, the “tests” defined by V cannot distinguish the uniform distribution over T from

the uniform distribution over B.

Let τ : B→ [l] be a uniform partition of B into l sets. Let Ti = τ−1(i) be the induced

partition for i = 1, . . . , l. We would like to analyze the event that each part is uniform. That is,
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we would like to show that

Pr[T1, . . . ,Tl are uniform]> 0. (3.7)

Notice that under the same notations, the main result of [31] can be formulated as

Pr[T1 is uniform]> 0.

The random process can be modeled as a random walk on a lattice. For i = 1, . . . , l let

Xi = ∑b∈Ti φ(b) be random variables taking values in ZA. Let λ = E[X1] = . . .= E[Xl] ∈Q|A|.

Note that if X1 = . . .= Xl−1 = λ then also Xl = λ . Let X = (X1, . . . ,Xl−1) ∈ Z(l−1)|A|. Thus we

can reformulate (3.7) as

Pr[X = E[X ]]> 0. (3.8)

Recall that each random variable Xi takes values in a full-dimensional sub-lattice of ZA which

we denoted L(φ). One can show that X takes values in the lattice L(φ)⊗(l−1), which is a

full dimensional lattice in Q(l−1)|A|. In order to study the distribution of X , we apply a local

central limit theorem. The same approach was applied in [31] in order to analyze the individual

distribution of each Xi. Here, we extend the method to analyze their joint distribution, namely

the distribution of X . This is accomplished by a careful analysis of the Fourier coefficients of X ,

which in turn relies on “coding theoretic” properties of the space V . Given this coding theoretic

properties, we show that Pr[X = E[X ]] can be approximated by the density of a gaussian process

with the same first and second moment as X at the point E[X ]. In particular, it is positive, which

establishes the existence result.

3.1.6 Broader perspective

The current work falls into the regime of “rare events” in probabilistic analysis. It is

very common that the probabilistic method, when applied to show that certain combinatorial

objects exist (such as expander graphs, error correcting codes, etc) shows that a random sample
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succeeds with high probability. The challenge then shifts to obtaining explicit constructions of

such objects, with efficient algorithmic procedures whenever relevant (e.g. efficient decoding

algorithms for codes).

However, there are several scenarios where the “vanilla” probabilistic method fails, and

one is forced to develop much more fine tuned techniques to prove existence of the desired

combinatorial objects. The current work falls into the regime where the random process is the

natural one, but the analysis is much more delicate. Other examples of similar instances are

the constructive proof of the Lovász local lemma (see e.g. [43, 44]), the works on interlacing

families of polynomials (see e.g. [37, 38]), and the entire field of discrepancy theory (see e.g.

the book [39]). In each such instance, new methods were developed to prove existence of the

relevant objects, that go beyond simple probabilistic analysis.

There are several families of problems in combinatroics, for which the only known

constructions are explicit and of algebraic or combinatorial nature. For example, this is the

case for all types of local codes (such as locally testable, decodable, or correctable codes; PIR

schemes; batch codes, and so on). It is also the case for Zarenkiewicz-type Ramsey problems in

graph theory, about maximal bipartite graphs without certain induced subgraphs. Another well

known example is the existence of Hadamard matrices. The lack of a probabilistic model for a

solution may be seen as the reason why the existential results known for these problems are very

sparse and ad-hoc.

In the current work, we show that for the problem of existence of large sets, one can

move beyond explicit ad-hoc constructions, such as the one of Teirlinck [65], to a more rigorous

understanding of when existence of large sets is possible. Of course, the next step in this line

of research, after existence has been established, is to find explicit constructions. We leave this

question for future research. Another question is whether the existence result can be established

to the full spectrum of parameters, namely k ≥ t +1 and any `≥ 1 (recall that our result requires

that k > 9t). This seems to be possible by replacing the gaussian estimate by an estimate which

uses higher moments of the distribution of the random variable being analyzed. We leave this
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also for future research.

3.2 Preliminaries

Recall that φ : B→ ZA is a map, whose coordinate projections are φa : B→ Z. We

defined V to be the subspace of QB spanned by {φa : a ∈ A}. We may assume that that these

form a basis for V , and hence dim(V ) = |A|.

Let τ : B→ [l] be a mapping that partitions B into l bins. Let Ti := {b ∈ B : τ(b) = i} for

i ∈ [`] be the induced partition of B. In order to prove Theorem 3.1.9 we are looking for a τ for

which

∑
b∈Ti

φ(b) =
1
l ∑

b∈B
φ(b) for all i = 1, . . . , l. (3.9)

Note that it suffices to require that (3.9) holds for i = 1, . . . , l−1, as then it automatically also

holds for i = l. So from now on we only require that (3.9) holds for the first l−1 bins. We will

choose a uniformly random mapping τ , and show that (3.9) holds with a positive probability.

We start with some definitions. Let Φ : B× [l]→Z(l−1)|A| be defined as follows. Φ(b, i) =

(x1, . . . ,xl−1), where x1, . . . ,xl−1 ∈ ZA are given by x j = φ(b) · 1i= j. Note that in particular

Φ(b, l) = 0. Next, define a random variable X ∈ Z(l−1)|A| as

X := ∑
b∈B

Φ(b,τ(b)).

The mean of X is

E[X ] =

(
1
l ∑

b∈B
φ(b), ...,

1
l ∑

b∈B
φ(b)

)
∈Q(l−1)|A|.

Thus, proving Theorem 3.1.9 is equivalent to showing that

Pr
τ
[X = E[X ]]> 0. (3.10)

We start by computing the covariance matrix of X .
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Claim 3.2.1. The covariance matrix of X is the (l−1)|A|× (l−1)|A| matrix

Σ[X ] = R⊗M

where R is the |A|× |A| matrix

Ra,a′ = ∑
b∈B

φ(b)aφ(b)a′

and M is the (l−1)× (l−1) matrix

M =
1
l2



(l−1) −1 . . . −1

−1 (l−1) . . . −1
...

... . . . ...

−1 −1 . . . (l−1)


.

Proof. The random variables {Φ(b,τ(b)) : b ∈ B} are independent, thus their contribution to the

covariance matrix of X is additive. Fix b ∈ B. We compute the contribution of Φ(b,τ(b)) to the

(a, i),(a′, i′) entry of Σ[X ], where a,a′ ∈ A and i, i′ ∈ [l−1]. The second moment is

Eτ [Φ(b,τ(b))a,i ·Φ(b,τ(b))a′,i′] =
1
l

φ(b)aφ(b)a′ ·1i=i′.

The expectation product is

Eτ [Φ(b,τ(b))a,i] ·Eτ [Φ(b,τ(b))a′,i′] =
1
l2 φ(b)aφ(b)a′.

Thus

Σ[X ](a,i),(a′,i′) = ∑
b∈B

φ(b)aφ(b)a′

(
1
l
·1i=i′−

1
l2

)
= Ra,a′ ·Mi,i′ = (R⊗M)(a,i),(a′,i′).
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Similar to the proof in KLP we would be interested in the lattice in which X resides.

Recall that L(φ) is the lattice in Z|A| spanned by the image of φ . We similarly define L(Φ).

Definition 3.2.2 (Lattice spanned by Φ). We define L(Φ) to be the lattice spanned by {Φ(b, i) :

b ∈ B, i ∈ [l]}. Namely,

L(Φ) :=

{(
∑

b1∈B
nb1 ·φ(b1), .., ∑

b j∈B
nb j ·φ(b j), .., ∑

bl−1∈B
nbl−1 ·φ(bl−1)

)
: nb j ∈ Z, j ∈ [l−1]

}
.

Note that since dim(V ) = |A| then L(φ) is a full rank lattice in Z|A|. Hence L(Φ) =

L(φ)⊗(l−1) is a full rank lattice in Z(l−1)|A|.

Similar to KLP we use Fourier analysis to study the distribution of X . The Fourier

transform of X is the function X̂ : R(l−1)|A|→ C defined by

X̂(Θ) = EX [e2πi〈X ,Θ〉].

Note that X̂ is periodic. Concretely, let L(Φ) denote the dual lattice to L(Φ),

L(Φ) :=
{

Θ ∈ R(l−1)A : 〈Λ,Θ〉 ∈ Z ∀Λ ∈ L(Φ)
}
.

Note that if Θ ∈ L(Φ) then X̂(Θ+Θ′) = X̂(Θ′) for all Θ′ ∈ R(l−1)|A|, and X̂(Θ) = 1 iff Θ ∈

L(Φ). As L(Φ) is a full rank lattice it follows that L(Φ) is also be a full rank lattice and

det(L(Φ))det(L(Φ)) = 1. Thus studying X̂ on any fundamental domain of L(Φ) would be

sufficient to study the behavior of X̂ on R(l−1)|A|. Similar to KLP we work with a natural

fundamental domain defined by a norm related to the covariance matrix of X .

Definition 3.2.3 (R-norm). For Θ = (θ1, ...,θl−1) ∈ R(l−1)A we define the norm ‖ · ‖R as

‖Θ‖R := max
j∈[l−1]

(
1
|B|

θ
t
jRθ j

)1/2

= max
j∈[l−1]

(
1
|B| ∑b∈B

〈φ(b),θ j〉2
)1/2

.
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We define two related notions. Balls around zero in the R-norm are defined as

BR(ε) := {Θ ∈ R(l−1)A : ‖Θ‖R ≤ ε}.

The Voronoi cell of 0 in the R-norm, with respect to the dual lattice L(Φ), is

D :=
{

Θ ∈ R(l−1)A : ‖Θ‖R < ‖Θ−α‖R ∀α ∈ L(Φ)\{0}
}
.

Observe that D is a fundamental domain of L(Φ) up to a set of measure zero (its boundary),

which we can ignore in our calculations. Then we have the following Fourier inversion formula

over lattices: for every Γ ∈ L(Φ) it holds that

Pr[X = Γ] =
1

vol(D)

∫
D

X̂(Θ)e−2πi〈Γ,Θ〉dΘ = det(L(Φ))
∫

D
X̂(Θ)e−2πi〈Γ,Θ〉dΘ. (3.11)

Note that this formula holds true for any fundamental region of L(Φ) but we chose it to be the

Voronoi cell D arising from the norm ‖ · ‖R because it would help in the computations later on.

In order to prove (3.10), we specialize (3.11) to Γ = E[X ] and obtain

Pr[X = E[X ]] = det(L(Φ))
∫

D
X̂(Θ)e−2πi〈E[X ],Θ〉dΘ. (3.12)

In the next section, we approximate this by a Gaussian estimate.

3.3 Gaussian estimate

In order to estimate (3.12), let Y be a Gaussian random variable in R(l−1)|A| with the

same mean and covariance as X . The density fY of Y is given by

fY (x) =
exp(−1

2(x−E[X ])tΣ[X ]−1(x−E[X ]))

(2π)
(l−1)|A|

2
√

det(Σ[X ])
. (3.13)
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The Fourier transform of Y equals

Ŷ (Θ) := E[e2πi〈Y,Θ〉] = e2πi〈E[X ],Θ〉−2π2ΘtΣ[X ]Θ. (3.14)

The inverse Fourier transform applied to Y yields

fY (x) =
∫
R(l−1)A

Ŷ (Θ)e−2πi〈x,Θ〉dΘ ∀x ∈ R(l−1)A. (3.15)

We show that Pr[X = E[X ]] can be approximated by an appropriate scaling of fY (E[X ]). By

(3.12) we have

Pr[X = E[X ]]

det(L(Φ))
− fY (E[X ]) =

∫
D

X̂(Θ)e−2πi〈E[X ],Θ〉dΘ−
∫
R(l−1)A

Ŷ (Θ)e−2πi〈E[X ],Θ〉dΘ.

Note that by plugging x = E[X ] in (3.13) we obtain that

fY (E[X ]) =
1

(2π)
(l−1)|A|

2
√

det(Σ[X ])
. (3.16)

We will show that |Pr[X=E[X ]]
det(L(Φ)) − fY (E[X ])| � fY (E[X ]). For ε > 0 to be chosen later, we will

bound it by

∣∣∣∣Pr[X = E[X ]]

det(L(Φ))
− fY (E[X ])

∣∣∣∣≤∫
BR(ε)

|X̂(Θ)− Ŷ (Θ)|dΘ︸ ︷︷ ︸
=I1

+
∫

D\BR(ε)
|X̂(Θ)|dΘ︸ ︷︷ ︸
=I2

+
∫
R(l−1)A\BR(ε)

|Ŷ (Θ)|dΘ︸ ︷︷ ︸
=I3

. (3.17)

At a high level, the upper bound is obtained by comparing X̂(Θ) and Ŷ (Θ) in a small enough

ball; and upper bounding their absolute value outside this ball. Observe that we need ε to be

small enough so that BR(ε)⊂ D.
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3.3.1 Norms on R|A| induced by φ

The following key technical lemmas from [31] are very useful in bounding the integrals.

We begin with defining few norms which are all functions of φ .

Definition 3.3.1 (Norms on R|A| induced by φ ). For θ ∈ R|A| define the following norms:

• ‖θ‖φ ,∞ = maxb∈B |〈φ(b),θ〉|.

• ‖θ‖φ ,2 =
(

1
|B|∑b∈B |〈φ(b),θ〉|2

)1/2
.

Furthermore, for b ∈ B let 〈φ(b),θ〉= nb + rb where nb ∈ Z and rb ∈ [−1/2,1/2). Define

• ‖|θ‖|φ ,∞ = maxb∈B |rb|.

• ‖θ‖φ ,2 =
(

1
|B|∑b∈B |rb|2

)1/2
.

Note that if θ ′ ∈ L(φ) then 〈φ(b),θ +θ ′〉− 〈φ(b),θ〉 ∈ Z for all b ∈ B. In particular,

‖θ +θ ′‖φ ,∞ = ‖θ‖φ ,∞ and ‖θ +θ ′‖φ ,2 = ‖θ‖φ ,2. The following lemmas from [31] relates the

above norms.

Lemma 3.3.2 (Lemma 4.4 in [31]). For every θ ∈ RA it holds that

‖θ‖φ ,∞ ≤M‖θ‖φ ,2

and

‖θ‖φ ,∞ ≤M‖θ‖φ ,2.

Here, M :=C (|A| log(2c2|A|))3/2 for some absolute constant C > 0.

Lemma 3.3.3 (Claim 4.12 in [31]). Assume that for θ ∈ RA it holds that

‖θ‖φ ,∞ ≤
1
c3
.
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Then there exists θ ′ ∈ L(φ) such that 〈θ −θ ′,φ(b)〉 ∈ [−1/2,1/2] for all b ∈ B. In particular

‖θ −θ
′‖φ ,2 = ‖θ‖φ ,2.

3.3.2 Norms on R(l−1)|A| induced by Φ

We extend the previous definitions to norms on R(l−1)|A| induced by Φ, and prove related

lemmas relating the different norms.

Definition 3.3.4 (Generalizing the norms to R(l−1)|A|). For Θ = (θ1, . . . ,θl−1) ∈R(l−1)|A| define

the following norms:

• ‖Θ‖Φ,∞ = max j∈[l−1] ‖θ j‖φ ,∞

• ‖Θ‖Φ,2 = max j∈[l−1] ‖θ j‖φ ,2

• ‖Θ‖Φ,∞ = max j∈[l−1] ‖θ j‖φ ,∞

• ‖Θ‖Φ,2 = max j∈[l−1] ‖θ j‖φ ,2

Observe that ‖ ·‖Φ,2 is the same as the R-norm ‖ ·‖R we defined before. Similar to before,

if Θ′ ∈ L(Φ) then ‖Θ+Θ′‖Φ,∞ = ‖Θ‖Φ,∞ and ‖Θ+Θ′‖Φ,2 = ‖Θ‖Φ,2.

The following extends Lemma 3.3.2 and Lemma 3.3.3 to the norms induced by Φ.

Lemma 3.3.5. For the same M defined in Lemma 3.3.2, for every Θ ∈ R(l−1)|A| it holds that

‖Θ‖Φ,∞ ≤M‖Θ‖Φ,2

and

‖Θ‖Φ,∞ ≤M‖Θ‖Φ,2.

Proof. Let Θ = (θ1, . . . ,θl−1). Then using Lemma 3.3.2 we have

‖Θ‖Φ,∞ = max
j∈[l−1]

‖θ j‖φ ,∞ ≤ max
j∈[l−1]

M‖θ j‖φ ,2 = M‖Θ‖Φ,2
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and

‖Θ‖Φ,∞ = max
j∈[l−1]

‖θ j‖φ ,∞ ≤ max
j∈[l−1]

M‖θ j‖φ ,2 = M‖Θ‖Φ,2.

Lemma 3.3.6. Assume that for Θ ∈ R(l−1)A it holds that

‖Θ‖Φ,∞ ≤
1
c3
.

Then there exists Θ′ ∈ L(Φ) such that 〈Θ−Θ′,Φ(b, j)〉 ∈ [−1/2,1/2] for all b ∈ B, j ∈ [l−1].

In particular

‖Θ−Θ
′‖Φ,2 = ‖Θ‖Φ,2.

Proof. Let Θ = (θ1, . . . ,θl−1). We have ‖θ j‖φ ,∞≤ 1
c3

for all j ∈ [l−1]. Then using Lemma 3.3.3

we get that there exist θ ′1, . . . ,θ
′
l−1 ∈ L(φ) such that 〈θ j−θ ′j,φ(b)〉 ∈ [−1/2,1/2] for all b ∈ B.

The lemma follows for Θ′ = (θ ′1, . . . ,θ
′
l−1) ∈ L(Φ).

3.3.3 Estimates for balls in the Voronoi cell

To recall, we need ε > 0 to be small enough so that BR(ε) is contained in the Voronoi

cell D. The following Lemma utilizes Lemma 3.3.5 to achieve that.

Lemma 3.3.7. If ε < 1
2M then BR(ε)⊂ D.

Proof. Let Θ = (θ1, . . . ,θl−1)∈ L(Φ)\{0}. By definition 〈φ(b),θ j〉 ∈Z for all b∈ B, j ∈ [l−1].

Since L(φ) is of full rank and Θ 6= 0, there exists some b∈B, j ∈ [l−1] for which |〈φ(b),θ j〉| ≥ 1.

Thus

‖Θ‖Φ,∞ ≥ 1.

By Lemma 3.3.5 if follows that

‖Θ‖R = ‖Θ‖Φ,2 ≥ 1/M.
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Thus, if Θ′ ∈BR(ε) for ε < 1/2M then

‖Θ−Θ
′‖R ≥ ‖Θ‖R−‖Θ′‖R ≥ 1/M− ε > 1/2M ≥ ‖Θ′‖R.

Hence BR(ε)⊂ D for any ε < 1
2M .

Let Θ ∈ D\BR(ε). Clearly, its ‖ · ‖Φ,2 norm is noticeable (at least ε). We show that also

its ‖ · ‖Φ,2 norm is noticeable. This will later be useful in bounding X̂(Θ) in D\BR(ε).

Lemma 3.3.8. Assume that c3 ≥ 2 and ε < 1/c3M. Let Θ ∈ D\BR(ε). Then ‖Θ‖Φ,2 > ε .

Proof. Note that the conditions of Lemma 3.3.7 hold, and so BR(ε) ⊂ D. Assume towards

contradiction that ‖Θ‖Φ,2 ≤ ε . Applying Lemma 3.3.5 gives ‖Θ‖Φ,∞ ≤ εM ≤ 1
c3

. Applying

Lemma 3.3.6, this implies that there exists Θ′ ∈ L(Φ) for which ‖Θ−Θ′‖Φ,2 = ‖Θ‖Φ,2 ≤

ε . However, as Θ ∈ D we have ‖Θ‖Φ,2 ≤ ‖Θ−Θ′‖Φ,2 ≤ ε , which gives that Θ ∈BR(ε), a

contradiction.

3.3.4 Bounding the integrals

The following lemmas provide the necessary bounds on the integrals I1, I2, I3, as defined

in (3.17). The proofs are deferred to Section 3.4.

Lemma 3.3.9. Assume that ε ≤ (CM|B|)−1/3. Then

I1 ≤
Cl3M|A|3/2

|B|1/2 · fY (E[X ]).

Here C > 0 is some large enough absolute constant.

Lemma 3.3.10. Assume that c3 ≥ 2 and ε ≤ 1/c3M. Then

I2 ≤
1

det(L(Φ))
exp
(
−|B|ε

2

l2

)
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Lemma 3.3.11. For any ε > 0 it holds that

I3 ≤ fY (E[X ]) · (l−1)2|A|/2 exp
(
−π2|B|ε2

l2

)
.

3.3.5 Putting it all together

Let C1,C2, . . . be unspecified absolute constants below. By choosing an appropriate basis

for V which is c2-bounded in `∞, we may assume that φ : B→ ZA where |φ(b)|a ≤ c2 for all

a ∈ A,b ∈ B.

Set ε = (C1MB)−1/3 so that we may apply Lemma 3.3.9, and assume that ε ≤ 1/c3M so

that we may apply Lemma 3.3.10. We thus have

Pr[X = E[X ]] = det(L(Φ)) fY (E[X ])(1+α1 +α3)+α2,

where

|α1|=
C1l3M|A|3/2

|B|1/2 ,

|α2|= exp
(
−|B|ε

2

l2

)
= exp

(
−C2

|B|1/3

l2M2/3

)
,

|α3|= (l−1)2|A|/2 exp
(
−π2|B|ε2

l2

)
≤ l2|A| exp

(
−C3

|B|1/3

l2M2/3

)
.

We would like that |α1|, |α3| ≤ 1/4, which requires that

|B| ≥C4|A|3M2l6c3
3

Thus

Pr[X = E[X ]]≥ 1
2

det(L(Φ)) fY (E[X ])+α2.

We assume that φ : B→ ZA, so L(Φ) is an integer lattice and hence det(L(Φ)) ≥ 1. We next
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lower bound fY (E[X ]). We have by (3.16) that

fY (E[X ]) =
1

(2π)
(l−1)|A|

2
√

det(Σ[X ])
.

We assume that φ is spanned by integer vectors of maximum entry c2, so we can bound each

entry of Σ[X ] by

|Σ[X ](a,i),(a′,i′)| ≤ ∑
b∈B
|φ(b)aφ(b)a′| ≤ |B|c2

2.

Thus

det(Σ[X ])≤ (|A||B|c2
2)
|A|.

In order to require α2 ≤ (1/4) fY (E[X ]), say, we need to require that

|B| ≥C5|A|3M2l6 log(|A|Ml).

Putting it all together, and plugging in the value of M from Lemma 3.3.2, as long as

|B| ≥C|A|6l6c3
3 log3(|A|c2c3l),

we have that

Pr[X = E[X ]]≥ 1
4

det(L(Φ)) fY (E[X ])> 0.

3.4 Bounding the integrals

3.4.1 Bounding I1

Recall that I1 =
∫
BR(ε)

|X̂(Θ)− Ŷ (Θ)|dΘ. We will bound it by bounding pointwise the

difference |X̂(Θ)− Ŷ (Θ)| and integrating it.

We first compute an exact formula for X̂(Θ). Recall that X = ∑b∈B Φ(b,τ(b)) where
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τ(b) ∈ [l] are independently chosen. Thus

X̂(Θ) = EX

[
e2πi〈X ,Θ〉

]
= ∏

b∈B

[
1
l

(
1+

l−1

∑
j=1

e2πi〈φ(b),θ j〉

)]
. (3.18)

Fix Θ=(θ1, . . . ,θl−1). To simplify notations, let xb, j = 2π〈φ(b),θ j〉 and xb =(xb,1 . . .xb,l−1)∈

Rl−1. Define the function f :Rl−1→C given by f (x) = 1
l

(
1+∑

l−1
j=1 eix j

)
. Then we can simplify

(3.18) as

X̂(Θ) = ∏
b∈B

f (xb). (3.19)

We next approximate log f (x). We use the shorthand O(z) to denote a (possible complex)

value, whose absolute value is bounded by Cz for some unspecified absolute constant C > 0. For

x = (x1, . . . ,xl−1) we denote |x|= max j |x j|.

Claim 3.4.1. Let x = (x1, . . . ,xl−1) ∈ Rl−1 with |x| ≤ 1. Then

f (x) = exp

(
i
1
l ∑

j
x j−

1
2l

(
1− 1

l

)
∑

j
x2

j +
1

2l2 ∑
j 6= j′

x jx j′+O
(
|x|3
))

.

Proof. Let y = 1
l ∑

l−1
j=1(e

ix j − 1) so that f (x) = 1+ y. The condition |x| ≤ 1 guarantees that

|y|< 1, so the Taylor expansion for log(1+ y) converges and gives

log( f (x)) = log(1+ y) = y− y2

2
+O(|y|3).

One can verify that |y| ≤ O(|x|), that

y = i
1
l ∑

j
x j−

1
2l ∑

j
x2

j +O
(
|x|3
)
.

and that

y2 =− 1
l2

(
∑

j
x j

)2

+O
(
|x|3
)
.

Combining these gives the required result.
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Applying Claim 3.4.1 to (3.19) allows us to approximate X̂(Θ) as equal to

exp

2πi
l ∑

b∈B
j∈[l−1]

〈φ(b),θ j〉−
2π2(l−1)

l2 ∑
b∈B

j∈[l−1]

〈φ(b),θ j〉2 +
2π2

l2 ∑
b∈B
j 6= j′

〈φ(b),θ j〉〈φ(b),θ j′〉+δ (Θ)


which can be rephrased as

X̂(θ) = exp
(
2πi〈E[X ],Θ〉−2π

2
Θ

t
Σ[X ]Θ+δ (Θ)

)
. (3.20)

The error term δ (Θ) is bounded by

δ (Θ)≤ O

(
∑
b∈B
|xb|3

)
= O

(
∑
b∈B

max
j∈[l−1]

|〈φ(b),θ j〉|3
)

≤
(

max
b∈B, j∈[l−1]

|〈φ(b),θ j〉|
)(

∑
b∈B

max
j∈[l−1]

|〈φ(b),θ j〉|2
)

= ‖Θ‖Φ,∞ · |B|‖Θ‖2
Φ,2.

By Lemma 3.3.5 we have ‖Θ‖Φ,∞ ≤M‖Θ‖Φ,2, and hence as ‖Θ‖Φ,2 = ‖Θ‖R we conclude that

δ (Θ)≤C1M|B|‖Θ‖3
R, (3.21)

where C1 > 0 is some absolute constant.

Next, we apply these estimates to bound the integral I1. Recall that by (3.14) we have

Ŷ (Θ) := exp(2πi〈E[X ],Θ〉−2π
2
Θ

t
Σ[X ]Θ).

Thus we can bound I1 by

I1 =
∫
BR(ε)

|X̂(Θ)− Ŷ (Θ)|dΘ≤
∫
BR(ε)

e−2π2ΘtΣ[X ]Θ|eδ (Θ)−1|dΘ.
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We assume that ε > 0 is small enough so that C1M|B|ε3 ≤ 1, so that for all for Θ ∈BR(ε) we

have

|eδ (Θ)−1| ≤ 2δ (Θ)≤ 2C1M|B|‖Θ‖3
R.

Thus

I1 ≤ 2C1M|B|
∫
BR(ε)

e−2π2ΘtΣ[X ]Θ‖Θ‖3
RdΘ≤ 2C1M|B|

∫
R(l−1)A

e−2π2ΘtΣ[X ]Θ‖Θ‖3
RdΘ.

Next, we evaluate the integral on the right. Let Z be a Gaussian random variable in R(l−1)|A| with

mean zero and covariance matrix 1
4π2 Σ[X ]−1. Then the density of Z is

fZ(Θ) = (2π)
(l−1)|A|

2
√

det(Σ)e−2π2ΘtΣ[X ]Θ =
1

fY (E[X ])
e−2π2ΘtΣ[X ]Θ,

where we have used (3.16). Hence

∫
R(l−1)A

e−2π2ΘtΣ[X ]Θ‖Θ‖3
RdΘ = fY (E[X ]) ·E[‖Z‖3

R].

Let G ∈ R(l−1)|A| be standard multivariate Gaussian with mean zero and identity covari-

ance matrix. Recall that by Claim 3.2.1 we have Σ[X ] = R⊗M. In particular, Σ[X ] is positive

definite, so its root exists. So we may take Z = 1
2π

Σ[X ]−1/2G. We have

Σ[X ] = R⊗M = R⊗ (U tDU)

where D is a diagonal matrix with diagonal (1/l2,1/l, . . . ,1/l) and U is an orthogonal matrix.

Thus

Σ[X ]−1/2 = R−1/2⊗ (U tD−1/2U).

Note that D−1/2 is a diagonal matrix with diagonal (l,
√

l, . . . ,
√

l).

Let G = (G1, . . . ,Gl−1) with Gi ∈ R|A| and similarly Z = (Z1, . . . ,Zl−1) with Zi ∈ R|A|.
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We can express Z1, . . . ,Zl−1 as

Z1 =
l

2π
R−1/2

l−1

∑
k=1

U1,kGk

Z j =

√
l

2π
R−1/2

l−1

∑
k=1

U j,kGk j = 2, . . . , l−1.

Let G j = ∑
l−1
k=1U j,kGk. Since U is an orthogonal matrix, we have that (G1, . . . ,Gl−1) is also a

standard multivariate Gaussian R(l−1)|A| with mean zero and identity covarince matrix. Thus we

have

Z1 =
l

2π
R−1/2G1

Z j =

√
l

2π
R−1/2G j j = 2, . . . , l−1.

That is, Z1, . . . ,Zl−1 are independent Gaussian random variables with mean zero, where

Z1 has covariance matrix l2

4π2 R−1 and for j = 2, . . . , l−1 we have that Z j has covariance matrix

l
4π2 R−1. We may thus bound

EZ
[
‖Z‖3

R
]
= EZ

[
max

j

(
1
|B|

Zt
jRZ j

)3/2
]

≤ EZ

[
∑

j

(
1
|B|

Zt
jRZ j

)3/2
]
= ∑

j
EZ

[(
1
|B|

Zt
jRZ j

)3/2
]

=

( l2

4π2|B|

) 3
2

+(l−2)
(

l
4π2|B|

) 3
2

E
[
‖G′‖3

2
]

≤ 2l3

(4π2)3/2|B|3/2E
[
‖G′‖3

2
]

where G′ is a standard multivariate Gaussian random vector in RA with mean zero and identity

covariance matrix. Note that by Jensen’s inequality E[‖G′‖3
2]≤ E[‖G′‖4

2]
3/4 ≤ 43/4|A|3/2. Thus
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we can summarize that

I1 ≤ O

(
l3M|A|3/2

|B|1/2

)
· fY (E[X ]).

3.4.2 Bounding I2

Recall that I2 =
∫

D\BR(ε)
|X̂(Θ)|dΘ. We upper bound I2 by proving an upper bound on

|X̂(Θ)| in D\BR(ε).

Fix Θ = (θ1, . . . ,θl−1) ∈ D where we assume ‖Θ‖Φ,2 = ‖Θ‖R ≥ ε . Our goal is to upper

bound X̂(Θ). Let 〈φ(b),θ j〉 = nb, j + rb, j where nb, j ∈ Z and rb ∈ [−1/2,1/2). By (3.19) we

have

X̂(Θ) = ∏
b∈B

[
1
l

(
1+

l−1

∑
j=1

e2πi〈θ j,φ(b)〉

)]
= ∏

b∈B

[
1
l

(
1+

l−1

∑
j=1

e2πi·rb, j

)]
= ∏

b∈B
f (2π · rb),

where f (x) = 1
l

(
1+∑

l−1
j=1 eix j

)
and rb = (rb,1, . . . ,rb,l−1). Recall that |x|= max j |x j|.

Claim 3.4.2. Let x ∈ Rl−1 be with |x| ≤ π . Then | f (x)| ≤ exp(−|x|2/8l).

Proof. Let x j = |x|. Then | f (x)| ≤ l−2
l + 2

l |
1+eix j

2 |. If z ∈ [−π,π] then |1+eiz

2 | ≤ e−z2/8. One can

verify that

log | f (x)| ≤ log
(

1− 2
l

(
e−|x|

2/8−1
))
≤−|x|

2

8l
.

Thus we have

log |X̂(Θ)| ≤ −4π2

8l ∑
b∈B
|rb|2 ≤−

1
l2 ∑

b∈B, j∈[l−1]
r2

b, j =−
|B|
l2 ‖Θ‖

2
Φ,2.

Next, assume that ε ≤ 1/c3M. By Lemma 3.3.8 we have that ‖Θ‖Φ,2 ≥ ε . Thus

|X̂(Θ)| ≤ exp(−|B|ε2/l2).
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Thus we may bound

I2 ≤ vol(D)exp(−|B|ε2/l2) =
1

det(L(Φ))
exp(−|B|ε2/l2).

3.4.3 Bounding I3

Recall that

I3 =
∫
R(l−1)A\BR(ε)

|Ŷ (Θ)|dΘ =
∫
R(l−1)A\BR(ε)

e−2π2ΘtΣ[X ]ΘdΘ.

As in the calculation of the bound for I1, let Z ∈ R(l−1)|A| be Gaussian random variable with

mean zero and covariance matrix 1
4π2 Σ[X ]−1. Then

I3 = fY (E[X ]) ·Pr [‖Z‖R > ε] .

Recall that we showed that if we set Z = (Z1, . . . ,Zl−1), then Z1, . . . ,Zl−1 ∈ RA are

independent Gaussian random variables in with mean zero, where Z1 has covariance matrix

l2

4π2 R−1 and Z j has covariance matrix l
4π2 R−1 for j = 2, . . . , l−1. We may thus bound

Pr [‖Z‖R > ε] = Pr
Z

[
max

j

(
1
|B|

Zt
jRZ j

)
> ε

2
]
≤∑

j
Pr
Z j

[(
1
|B|

Zt
jRZ j

)
> ε

2
]

= Pr
G′

[
‖G′‖2

2 >
4π2|B|ε2

l2

]
+(l−2)Pr

G′

[
‖G′‖2

2 >
4π2|B|ε2

l

]
≤ (l−1)Pr

G′

[
‖G′‖2

2 >
4π2|B|ε2

l2

]
,

where G′ ∈ RA is a Gaussian random variable with mean zero and identity covariance matrix.

In order to bound PrG′
[
‖G′‖2

2 > ρ
]

we note that for any t < 1/2, it holds that E
[
et‖G′‖2

2

]
=
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(1−2t)−|A|/2. Fixing t = 1/4 and apply the Markov inequality gives

Pr
G′

[
‖G′‖2

2 > ρ
]
≤

E
[
e‖G

′‖2
2/4
]

eρ/4 = 2|A|/2e−ρ/4.

So

I3 ≤ fY (E[X ]) · (l−1)2|A|/2e−
π2|B|ε2

l2 .

Chapter 3, in full, is a reprint of the material as it appears in SIAM Symposium on

Discrete Algorithms SODA 2018 and Journal of Combinatorial Theory Series A JCTA. Karingula,

Sankeerth Rao; Lovett, Shachar; Vardy, Alexander. The dissertation author was the primary

investigator and author of this paper.
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