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Abstract

Things and Strings and More:

Improving Place Name Disambiguation from Short Texts by Combining Entity

Co-Occurrence, Topic Modeling, and Word Embedding

by

Yiting Ju

Place name disambiguation, i.e., toponym disambiguation or toponym resolution, is

the task of correctly identifying a place from a set of places sharing a common name.

It contributes to a variety of tasks such as knowledge extraction, query answering, geo-

graphic information retrieval, and automatic tagging. Disambiguation quality relies on

the ability to correctly identify and interpret contextual clues, complicating the task for

short texts. Here I propose a novel approach to the disambiguation of place names from

short texts that integrates three models: entity co-occurrence, topic modeling, and word

embedding. The first model uses Linked Data to identify related entities to improve dis-

ambiguation quality. The second model uses topic modeling to differentiate places based

on the terms used to describe them. The third model uses word embeddings to uncover

the semantic relatedness between places and contexts. I evaluate this approach using a

corpus of short texts collected through web scraping, determine the suitable weights for

the models, and demonstrate that the combined model, i.e., Things and Strings Model,

outperforms benchmark systems such as DBpedia Spotlight, TextRazor, and Open Calais

by up to 85% in F-score and 46% in Precision at 1. A web service is built to demonstrate

the proposed method and it can be a building block for those applications that need

place name recognition and disambiguation.
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Chapter 1

Introduction

Geographic knowledge extraction and management, geographic information retrieval,

question answering, and exploratory search hold great promise for various application

areas [1, 2, 3]. From intelligence and media analysis to socio-environmental studies and

disaster response, there is demonstrated need to be able to build computational systems

that can synthesize and understand human expressions of information about places and

events occurring around the world [4]. In today’s Big Data era, an enormous amount

of information is generated every second, most of which is composed of unstructured

plain texts. Being able to efficiently and correctly identify geographic references in the

abundance of such textual information now available on the Web, in social media, and

in other communication media is the first step to building tools for geographic analysis

and discovery on these data. Place name, i.e., toponym, disambiguation is key to the

comprehension of many texts as place names provide an important context required for

the successful interpretation of text [5].

Similar to other named entities, including persons, organizations, and events, place

names can be ambiguous. A single place name can be shared among multiple places. To

give a concrete example, Washington is a place name for more than 43 populated places

in the United States alone.1 Although most of these Washingtons can be accurately

1https://en.wikipedia.org/wiki/Washington
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Introduction Chapter 1

located by adding the proper state name or county name, they are all simply referred to

as Washington in daily conversations, (social) media, photo annotations, and so forth.

Figure 1.1 depicts the distribution of the most common place names for U.S. cities, towns,

villages, boroughs, and census-designated places. As shown on the map, these places are

distributed across the U.S., indicating that the ambiguity of place names is a widespread

phenomenon. It is worth noting that places which share a common name can be of

the same or a different type, e.g., the state of Washington and the city of Washington,

Pennsylvania. The situation is even more difficult on a global scale where place names

may appear more than 100 times. For example, it takes merely a 45min car ride to get

from Berlin to East London, both located in South Africa. Thus, it is important to devise

effective computational approaches to address the disambiguation problem.

Figure 1.1: Distribution of common place names in the US according to Wikipedia.
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Introduction Chapter 1

Given the wide availability of digital gazetteers, i.e., place name dictionaries, such as

GeoNames, the Getty Thesaurus of Geographic Names, the Alexandria Digital Library

Gazetteer, and Google Places, I assume that the places to be disambiguated are known,

i.e. that there is a candidate list of places for any given place name list. After all, unknown

places cannot be disambiguated. Thus, I define the task of place name disambiguation

as follows: given a short text which contains a place name and given a list of candidate

places that share this name, determine to which specific place the text refers.

Humans are very good at detecting and interpreting contextual clues in texts to dis-

ambiguate place names. Thus, as extension of named entity recognition, place name

disambiguation has been tackled using computational approaches that aim at utilizing

these contextual clues as well [6, 7]. This context typically stems from the terms sur-

rounding the place name under consideration. Typically, short texts from social media,

news headlines (and abstracts), captions, and so forth, offer less contextual clues and

thus negatively impact disambiguation quality. Consequently, new approaches have to

be develop that can extract and interpret other contextual clues.

One such approach is to focus on the detection of surrounding entities and use these as

contextual clues. Besides the place itself, these entities may include other places, actors,

objects, organizations, and events. Examples of such associated entities are landmarks,

sports teams, well known figures such as politicians or celebrities, and nearby places that

share a common administrative unit [8]. Intuitively, when a text mentions Washington

along with Redskins, an American football team based in Washington, D.C., it is very

likely that the Washington in the text refers to Washington, D.C., rather than the other

places called Washington. It has been shown that such a co-occurrence model increases

disambiguation quality [9, 10].

In addition to entities, implicit thematic information buried in the text can also

provide contextual evidence to disambiguate place names. Similar to entities, some par-

3



Introduction Chapter 1

ticular topics are more likely to be mentioned along with a place, which is characterized

by those topics. Topic modeling makes it possible to discover topics from the text and

match texts with similar topics. Thus, given topics learned from a corpus of texts about

candidate places and the topics discovered from the short text under consideration, com-

puting a similarity score between the topics representative for the text and for each of the

candidate places can provide additional contextual clues [11]. For example, when people

are talking about Washington, DC, political topics featuring terms such as conservative,

policy, and liberal are more likely to be mentioned than when talking about the (small)

city of Washington, Pennsylvania.

Besides topics, other implicit information embedded in the text can also carry useful

clues to facilitate place name disambiguation. Such implicit information can be further

exploited through word embedding models, a language model representing words in vec-

tors of real numbers, which capture both syntactic and semantic word relationships [12].

Through a trained word embedding model, vectors can be learned from those paragraphs

describing the candidate places. Meanwhile, another vector representation can be gen-

erated to represent the short text under consideration. The similarity scores between

the vector representation of the short text and the vector representation of each of the

candidates places can infer which candidate place is more likely to be the actual place

discussed in the short text.

The core distinction between these perspectives is that mentioned entities are explicit

information, while thematic information is usually implicit. Both explicit and implicit

information in the contexts is used as clues by humans to disambiguate place names. In

this thesis, I propose a novel approach which integrates things and strings, i.e., entity co-

occurrence, topic modeling and word embedding, thereby combining explicit and implicit

contextual clues. The contributions of this work are as follows:

4
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• I apply word embedding to place name disambiguation, an approach that has not

been taken before.

• I integrate a topic-based model and a word embedding model with a reworked

version of the entity-based co-occurrence model and learn the appropriate weights

for this integrated model.

• I compare the integrated model to three well known systems (TextRazor, DBpedia

Spotlight, and Open Calais) as benchmark systems and demonstrate that my model

outperforms all of them.

• I share the source code on GitHub2 and create a web service to make this work

reproducible and to provide a new benchmark for future studies

The remainder of this thesis is organized as follows. Chapter 2 reviews related work

on place name disambiguation. Chapter 3 describes the methodologies I apply to disam-

biguate place names. The evaluation and results are illustrated in Chapter 4. Finally,

Chapter 5 concludes the research and discusses the potential applications and limitations

of the proposed method.

2https://github.com/DajeRoma/Things and Strings
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Chapter 2

Related Work

In this section, I review existing research that involves place name disambiguation in

natural language.

As an extension of named entity disambiguation, place name disambiguation can be

conducted using the general approaches for named entity disambiguation. Generally,

named entity disambiguation is constructed as a ranking problem in which entities are

assigned to its most similar Wikipedia page. Wikipedia is also served as a valuable source

for grounding truth descriptions of named entities in a number of studies. Bunescu and

Pasca [6] trained a vector space model to host the contextual and categorical terms de-

rived from Wikipedia and employed TF-IDF to determine the importance of these terms.

The system defined a similarity threshold below which no place entity would be assigned.

Cucerzan [13] also applied the vector space model with Wikipedia. The author consid-

ered the other entity references in the same document as the context for each entity that

was being disambiguated, in addition to the surrounding words. The vector for the text

contained the categories of all possible referents for all entity references found in the

text and the occurrences of each references. Each referent had a binary feature vector

with all the categories and entity references found in the corresponding Wikipedia page.

The similarity was then measured while the feature values were not normalized, which

privileged important entities with long descriptions, more mentions, and more categories.

6



Related Work Chapter 2

Milne and Witten [14] described a method for augmenting unstructured text with links

to Wikipedia articles. For ambiguous links, the authors proposed a machine learning

approach and trained several models based on Wikipedia data. Two named entity dis-

ambiguation modules were introduced by Mihalcea and Csomai [15]. One measured the

overlaps between context and candidate descriptions and the other trained a supervised

learning model based on manually assigned links in the Wikipedia articles. Zheng et al.

[16] evaluated ranking methods for linking entities, which included point-wise, pair-wise,

and list-wise ranking algorithms. Eighteen features were employed, covering features

from surface names, features from contexts, and mentioned countries or cities in the

text.

For previous studies focusing on disambiguating place names, Leidner [17] had a sur-

vey of the related methods, finding most methods relied on heuristic rules, such as always

assigning the most important candidate locations (e.g., largest population) and gener-

ating a minimal bounding polygon to contain as many candidate locations as possible.

Jones and Purves [5] discussed using co-occurred places in the text to resolve place ambi-

guity. Machado et al. [18] proposed an ontological gazetteer which recorded the semantic

relations between places to help disambiguate place names based on related places and

alternative place names. In a similar approach, Spitz et al. [8] constructed a network of

place relatedness based on the English Wikipedia articles.

Machine learning approaches got increasing attention to tackle information retrieval

problems, same for place name disambiguation. Lieberman and Samet [19] trained a

binary random forest classifier for each candidate locations with a large set of features

called adaptive context features. It should be noted that they took geospatial proximity

and geographic hierarchy between place names into consideration. Speriosu et al. [20]

trained a couple of classifiers based on contextual information using geotagged Wikipedia

articles. Zhang and Gelernter [21] proposed a supervised machine learning approach to
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rank candidate places for ambiguous toponyms in Twitter messages that relied on the

metadata of tweets and context to a limited extent. De Bruijn et al. [22] took temporal

contexts into account for geotagging tweets.

In the previous work, Hu [9] leveraged the structured Linked Data in DBpedia for

place name disambiguation and demonstrated that a combination of Wikipedia and DB-

pedia data leads to generally better performance. This work is an extension of the

previous work of my colleagues and me [23], in which we introduced topic model and

integrated it with entity co-occurrence model to tackle place name disambiguation.

8



Chapter 3

Methodology

The work at hand differs from these previous studies. I apply topic modeling as well

as word embeddings to capture implicit semantic clues embedded in short texts, and

integrate them with an entity-based model which uncovers the co-occurrence relations

among entities. Thereby, I combine a strings-based perspective with a things-based

perspective.

Since the work focuses on disambiguating place names, I assume that the surface

forms of place names have been extracted prior to disambiguation, so the primary task

is to identify the place to which the surface form refers. To accomplish this, a list

of candidate entities, i.e., places, is selected. In prior work, knowledge bases, such as

Wikipedia, DBpedia, and WordNet have been used to obtain candidate entities [13,

24, 25], and here I use DBpedia as the source of candidate locations. Once a set of

candidate locations has been identified, the likelihood that the surface form refers to

each candidate location can be measured. The disambiguation result is returned if the

computed likelihood score exceeds a given threshold.

In the following sections, I describe each of the three models I employ to disambiguate

place names, followed by a depiction of how I integrate these models.

9
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3.1 Entity-based Co-Occurrence Model

In this section I describe the entity-based co-occurrence method. Wikipedia and

DBpedia are used as the sources to train my model. I define the entities from Wikipedia

as those words or phrases on a Wikipedia page of the candidate location which have

links to another page about these entities. The entities from DBpedia are either the

subjects or the objects of those RDF triples which contain the candidate entities. Not

all RDF triples are selected, but those that fall under the DBpedia namespace, i.e., with

prefix dbp1 and dbo.2 While dbo provides a cleaner and better structured mapping-based

dataset, it does not provide a complete coverage of the original properties and types

from the Wikipedia infoboxes. In order to avoid data bias, I use both dbo and dbp.

Literals were excluded. I treat the subject and the object of a triple as a whole, i.e.,

as an individual entity, instead of further tokenizing them into terms. The harvested

entities differ greatly. They include related places (of same or different types), time zone

information, known figures that were born or died at the given place, events that took

place there, companies, organizations,3 sports teams, as well as representative landmarks

such as buildings or other physical objects.

Table 3.1 shows several sample entities for Washington, Louisiana, derived from Wiki-

pedia and DBpedia. It should be noted that there is considerable overlap between place

data extracted from Wikipedia and DBpedia. Moreover, some properties such as pop-

ulation density in Wikipedia can occur for most or even all candidate locations. Such

entities which appear frequently but help less to uniquely identify a place will not play a

crucial rule in disambiguating the place names.

The entities are assigned weights according to their relative connectivity to the places

1http://dbpedia.org/resource/
2http://dbpedia.org/ontology/
3For example via dbr:FreedomWorks dbp:headquarters dbr:Washington, D.C. .
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Methodology Chapter 3

Washington, Louisiana
Wikipedia — St.Landry Parish; Opelousas; Eunice; population density;
medianhousehold income; American Civil War; Connecticut; cattle;
cow; corn...
DBpedia — United States; Central Time Zone; St. Landry Parish,
Louisiana; John M. Parker; KNEX-FM; Louisiana Highway 10...

Table 3.1: Sample entities for Washington, LA, from Wikipedia and DBpedia

by means of term frequency-inverse document frequency (TF-IDF). The term frequency

of an entity is the number of times the entity appears in Wikipedia and DBpedia, so in

this case, it could be 0, 1, and 2. I only count each entity’s appearance in a document

once, so the term frequency will not be inflated by those entities which are related to

many candidate entities while contribute less to uniquely identifying the place. The

formula of applying TF-IDF to assign weights to entities is defined in Eq. 3.1, 3.2, and

3.3.

tf(e) =


0 e is not in Wikipedia and DBpedia

1 e is either in Wikipedia or DBpedia

2 e is in both Wikipedia and DBpedia

(3.1)

idf(e) = 1 + log(
|E|+ 1

ne

) (3.2)

Weight(e) = TF -IDF (e) = tf(e)× idf(e) (3.3)

where tf(e) defines the term frequency of an entity e, and idf(e) defines the inverse

document frequency of e. |E| is the number of all potential candidate locations for a

surface form, and ne represents the number of candidates which contain the entity e.

Using TF-IDF, entities appearing in multiple candidates are given lower weights, while

11
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entities which are able to uniquely identify a place have higher weights. For example,

the fact that a place is within the United States becomes irrelevant as it holds for all of

them.

I then measure the likelihood that a surface form in a test sentence refers to a candi-

date location through an entity matching score. To compute the entity matching score, I

first find all the entities of the candidate which also appear in the short text. The weights

of matching entities are summed to produce an entity matching score of the candidate

location to the surface form in the test sentence. The score is calculated as given in Eq.

3.4.

SEC(p→ ci) =
m∑
j=1

(Weight(ej)× Ij) (3.4)

where m corresponds to the number of entities e for the candidate ci. Ij is either 1

or 0, referring to whether a matching entity is found in the test for the entity ej. The

candidate location with higher entity matching score is regarded to more likely be the

actual place p to which the surface form refers. The matching score is the final output

of the entity co-occurrence model.

3.2 Topic-based Model

In this section I introduce the topic-based model. It makes use of the fact that text

is geo-indicative [11] even without having any direct geographic references. Hence, even

everyday language should be able to provide additional evidence for place name disam-

biguation. For example, terms such as humid, hot, festival, poverty, and even American

Civil War are more likely to be uttered when referring to Washington, Louisiana than

Washington, Maine. The latter rarely experiences hot and humid weather, does not host

12



Methodology Chapter 3

a popular festival, has substantially less poverty problems compared to its namesake, and

did not play a notable role in the civil war.

Here I use Latent Dirichlet allocation (LDA) for topic modeling. LDA is a popular

unsupervised machine learning algorithm used to discover topics in a large document

collection [26]. Each document is modeled as a probability vector over a set of topics,

providing a dimensionally-reduced representation of the documents in the corpus.

I use the geo-referenced text from the English Wikipedia as the source material for

discovering these thematic patterns. I start with the idea that a collection of texts

that describe various features in a local region–such as museums, parks, mountains,

architectural landmarks, etc.–give us a foundation for differentiating places referenced

in other texts based on thematic, non-geographically specific, terms. For this I need

a systematic way to associate the training documents in Wikipedia with well-defined

regions. Because administrative regions vary widely in area, they do not provide a good

mechanism for aggregation. Instead, my solution is to aggregate the geo-referenced texts

in Wikipedia based on an equal area grid over the Earth. This solution means that articles

with point-based geo-references are binned together if they spatially intersect with a grid

cell, while text related to areal features (such as national parks) can be associated with

multiple grid cells.

There are several options for creating a discrete global grid based on an polyhedral

simplification of the Earth [27]. In this work I utilize the Fuller icosahedral Dymaxion

projection to create a hierarchical triangular mesh [28]. The triangular mesh can be

made successively more fine-grained by dividing each triangle into four internal triangles.

Therefore, the size of the grid cells can be relative to the other features on the map at

all zoom levels [3]. For place name disambiguation I need grid cells that are fine-grained

enough so that two possible places with the same name do not fall within one grid cell.

The Fuller projection at hierarchical level 7 (shown in Figure 3.1) provides a mesh over

13
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Figure 3.1: Level 7 triangular mesh discrete global grid built using Fuller icosahedral
Dymaxion projection, shown in U.S. Contiguous Albers projection.

the Earth with 327,680 cells with inter-cell distance of 31.81 km and cell area of 1,556.6

km2, sufficient to handle most place name disambiguation tasks for meso-scale features

like cities.

Once I identified all articles that have geo-references that spatially intersect with a

grid cell I can combine all the text to create a grid document. For the English Wikipedia

the geo-referenced articles intersect with 63,473 grid cells at Fuller level 7. The resulting

63,473 grid documents serve as the training data input for LDA topic modeling. I utilized

the MALLET implementation of LDA with hyperparameter optimization, which allows

for topics to vary in importance in the generated corpus [29, 30].

For this work, I trained the LDA topic model with 512 topics. Figure 3.2 shows four

sample topics, two of which are indicative of text from the grid cell containing the town

of Washington, Illinois, and the other two of high probability for Washington, Louisiana.

These topics demonstrate that not only do related place names help to disambiguate,

14
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Figure 3.2: Sample topics that help differentiate between the towns of Washington,
Illinois and Washington, Louisiana.

but also thematic words like ‘hurricane’ and geographic feature type terms like ‘parish’

help as well.

The MALLET toolkit generates an inferencer file for testing new documents against

a trained LDA model. For a new document or snippet of text, I use the trained topic

model to infer the most likely candidate location based on the inferred mixture of topics.

Given a set of candidate locations (i.e., point coordinates) I find the topic mixtures for

the grid cells that spatially intersect the locations and calculate the Jensen-Shannon

divergence (Eq.3.6) between probability vector representations of the topic mixtures for

each candidate and the topic mixture for the new document. The JS divergence is

a symmetric measure calculated from the average of the relative entropies (Kullback

Leibler divergence, shown in Eq. 3.5) between two probability vectors (P and Q) and

their average, M = 1
2
(P + Q). The JS divergence is a standard measure of similarity

between two probability vectors, and is commonly used for calculating similarity based

on topic model results [31]. A lower JS divergence result indicates greater thematic

similarity between the new text and the candidate location.

KL(P ‖ Q) =
∑
i

P (i) log2

P (i)

Q(i)
(3.5)
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JS(P ‖ Q) =
1

2
KL(P ‖M) +

1

2
KL(Q ‖M) (3.6)

Therefore, the matching score between a candidate location to the surface form can

be formalized as Eq. 3.7.

STM(p→ ci) = −JS(PV (ci) ‖ PV ′(t)) (3.7)

Where PV (i) refers to the probability vector associated to the grid cell where the

candidate ci is located and PV ′(t) is the probability vector inferred from the test sentence

where the surface form p is. This matching score is the final output of the topic model.

3.3 Word Embedding Model

In this section I introduce how I approach place name disambiguation using word

embedding models.

Word embeddings are a set of Natural Language Processing (NLP) feature learning

techniques to represent words and phrases with vectors of real numbers. In linguistics, it

belongs to the branch of distributional semantics, which studies methods of quantifying

semantic similarity between linguistic items based on the assumption that linguistic items

with similar distributions have similar semantics [32]. A better word embedding allows

the vectors to carry more precise syntactic and semantic word and phrase relationships.

The idea of representing words and phrases as continuous vectors was early discussed in

[33, 34]. An influential work by Bengio, et al. [35] tackled NLP tasks with distributed rep-

resentation of words which were learned through a neural probabilistic language model.

Word embedding models showed significant improvement and simplification in many

NLP applications such as sentiment analysis, image annotation, paraphrase detection,

16
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automatic speech recognition and machine translation [36, 37, 38, 39, 40, 41].

To generate high-quality word embeddings, there are basically two primary model

families, namely count-based methods and prediction-based methods. The count-based

methods, represented by well-known Latent Semantic Analysis (LSA), compute the statis-

tics of co-occurrence of a word with other words and map these statistics to a small dense

vector for each word using dimension reduction techniques such as Singular Value Decom-

position (SVD) [42]. The prediction-based methods, on the other hand, aim to predict a

word based on its surrounding words or predict surrounding words based on the central

word.

Despite the good performance of the word embedding models, they were too computa-

tionally expensive to be adopted widely until the recent introduction of word2vec [43, 12].

Word2vec is a word embedding framework composed of two major models, namely Con-

tinuous Bag-of-words Model (CBOW) and Continuous Skip-gram Model. Both models

are new members to the prediction-based methods. While CBOW predicts the current

word given the context, Skip-gram Model tries to predict the surrounding words given

the current word. Unlike the previous models involving dense matrix multiplications

and multiple layers of complex neural networks, both CBOW and Skip-gram model are

simpler with only two layers of neural networks but they are significantly more efficient

in learning high-quality word representations than former models.

The word2vec model outputs a set of vectors, each of which corresponds to a word

or a phrase. Interestingly, linear regularities are found in the word vectors learned

through word2vec. For example, the result of the vector calculation of vec(”Paris”)

- vec(”France”) + vec(”Italy”) is closer to vec(”Rome”) than to other word vectors.

In addition to word2vec, GloVe is another word embedding model which can also

generate high-quality vector representations [44]. It is an optimized combination of both

count-based and prediction-based methods. Linear regularities can also be found in the
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learned vectors from GloVe.

In order to better disambiguate place names, I utilize word embedding models (i.e.,

word2vec and GloVe) to capture the semantic relationship and relatedness embedded in

the context. Specifically, I generate a vector representation for a test sentence which

contains a surface form. For each candidate location of the surface form, I obtain vector

representations of its English Wikipedia textual content. Calculating the similarities

between these two vectors gives a clue of which candidate’s description is semantically

closer to the test sentence. Gensim, a Python framework for a number of semantic

modelings, is employed for manipulating word embedding models [45].

Provided that in this case I am dealing with natural language items, i.e., normal

words and phrases, and there are abundant word2vec and GloVe models which have

been well trained on gigantic corpus of natural language, I directly employ those trained

models for this study. The trained models are varied in the corpus, in the dimension of the

trained vectors, and in the training methods (CBOW versus skip-gram versus GloVe). No

research has shown which pre-trained model outperforms the others, though empirically

high-dimension models contains richer semantics, and the corpus can also play a crucial

role on the performance, especially for those tasks in a certain domain. To pick the word

embedding model that is most suitable to this task, I compared five widely used models,

namely a word2vec model trained on Google News in English of 3 million unique words

or phrases with 300 dimensions by the Google Brain group developing word2vec, and

four GloVe models trained on English Wikipedia and English Gigaword Fifth Edition

with 50, 100, 200, 300 dimensions respectively by the Stanford team developing GloVe.

I decide to use the first model based on the comparison.

Word embedding models generate a vector for each word or each phrase. To have a

vector representation for a sentence which composes of a couple of words, one commonly

used approach is adding up all the vectors of the words and divide the sum vector by
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the count of words as a scaler. The similarity between two vectors can be calculated

using cosine similarity. Another approach is to apply Word Movers’ Distance [46], which

computes the distance (dissimilarity) between two sets of vectors directly. After testing

both approaches, I find the Word Movers’ Distance is a better choice with much less com-

putational demands. The Word Movers’ Distance is computed through an optimization

function as shown in Eq. 3.8.

wmd(s1, s2) = min
T>=0

m∑
i=1

n∑
j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = di ∀i ∈ 1, ...,m

m∑
i=1

Tij = di
′ ∀j ∈ 1, ..., n

(3.8)

where c(i, j) is the travel cost (distance) from word i to word j, which can be an

Euclidean distance between their vectors. Tij is a flow matrix denoting how many i in

d flow into j in d′. The first constraint guarantees the total outflow from i equals di.

The second constraint, similarly, ensures the entire inflow to j sums to di
′. As a larger

distance score implies lower similarity, to have the similarity score of two sentences, I

simply take the negative of the distance score, as shown in Eq. 3.9.

Sim(s1, s2) = −wmd(s1, s2) (3.9)

A Wikipedia page of a candidate location carries richer and more diverse information

than what a much shorter test sentence has. Thus, the similarity between the Wikipedia

content and the test sentence tends to be diluted if I directly compare the whole Wikipedia

content to the test sentence. Therefore, I split the paragraphs into sentences before
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computing the similarity score between every sentence of each candidate’s Wikipedia

page content to the test sentence. The highest similarity score is taken as the matching

score of a candidate location to the surface form in a test sentence. The formula is shown

in Eq. 3.10.

SWE(p→ ci) = max
∀s∈Si

Sim(s, t) (3.10)

where Si refers to a set of sentences in the Wikipedia content for a candidate location

ci. Sim(s, t) computes the similarity score between a sentence s and the sentence t where

the surface form p is. A higher matching score is considered as a higher probability that

the candidate is the actual place the surface form refers to. This matching score is the

final output of the word embedding model.

3.4 Things & Strings Model (TSM)

The entity co-occurrence model makes use of the co-occurrence of entities as contex-

tual clue to disambiguate place names, while the topic model puts emphasis on thematic

aspects, namely co-occurring topics. Moreover, the Word embedding model comprehen-

sively capture semantics embedded in the texts, filling the semantic gap between entities

and topics in the context. As argued in the introduction, applying a single model, which

extracts partial contextual clues, is often not sufficient to differentiate place names from

short texts. Thus, I combine the entity-based co-occurrence model with the string-based

topic model and word embedding models to an integrated approach called Things &

Strings Model (TSM).

The entity co-occurrence model, the topic model, and the word embedding model

all return a score when comparing each candidate location with each ambiguous place
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name in a sample text. The scores from these three models are, however, not directly

comparable. To combine the models, since the scores involve relative probabilistic mea-

sures, I must first standardize those scores. This results in setting the standardized mean

to zero. Scores originally higher than the mean will be positive, while scores originally

lower than the mean will be negative. For each candidate, the standardized scores from

the entity co-occurrence model are then combined with the standardized scores from the

topic-based model and the standardized scores from the word embedding model along

with three weighting parameters, as shown in Eq. 3.11 and 3.12.

SETM(p→ ci) = αSECM(p→ ci) + βSTM(p→ ci) + γSWE(p→ ci) (3.11)

α + β + γ = 1 (3.12)

where weighting parameters α, β, and γ are all within the range of [0, 1], and they

determine how much each model contributes in the combined approach. I enumerate

every combination of α, β, and γ with an interval of 0.01 to find the optimal combination

of the weights for the integrated model (details are discussed in Results section). SECM is

the standardized score computed from the entity co-occurrence model for the candidate

location ci with respect to the surface form p. STM is the standardized score from the

topic model, namely the JS divergence. SWE is the standardized score from the the word

embedding model. The sum of the weighted standardized scores of these three models

is SETM , the score of the TSM model. Provided that SETM score has been standardized

and it gives a sense of relative likelihood that a candidate to be what the surface form

actually refers to, the percentile, instead of an arbitrary number, is used as the threshold
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over which candidates are returned as the disambiguation result.
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Evaluation

In this section, I evaluate the performance of the entity co-occurrence model, the topic

model, the word embedding model, and the combined TSM. I first describe the methods

through which I gathered the testing corpus, and the metrics employed for evaluation,

followed by those well recognized named entity disambiguation systems as baselines for

comparison. The evaluation results are then displayed and analyzed.

4.1 Preparing the Test Corpus

I constructed a text corpus specifically for the evaluation of my place name disam-

biguation models, since there is no such corpus available. The corpus is used to evaluate

the performance of the proposed models and to compare them to existing systems acting

as baselines.

To construct the text corpus, I first derive ambiguous place names from a list of the

most common U.S. place names on Wikipedia.1 As the list also presents the full place

names (the state and county names) which could be used to uniquely identify the place

of interest, I feed the full place names into the Bing Search API,2 which returns a set

1https://en.wikipedia.org/wiki/List of the most common U.S. place names
2https://datamarket.azure.com/dataset/bing/search
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Oxford, Wisconsin — Located in Marquette County in south-central
Wisconsin, just minutes west of Interstate 39, Oxford invites you to
experience our small town charm along with the area’s many year-
round outdoor attractions.
Jackson, Montana — The tiny town of Jackson, Montana has made
a name for itself as a winter sports destination for the adventurous.
Dayton, Nevada — Since the Native-American tribes in the area were
nomadic, this made Dayton the first and oldest permanent non-native
settlement in Nevada.

Table 4.1: Three example records of the test corpus extracted from websites.

of websites related to the place along with URLs. URLs containing “Wikipedia” are

filtered out, since my models are trained on the Wikipedia text. I visit those websites

and extract those sentences which contain the full place name. The auxiliary part of the

full place name (state or county name) is then removed, so the remaining place name is

ambiguous. The result of this approach is a set of real-world, i.e., not synthetic, sentences

containing ambiguous place names. These sentences comprise the ground truth data.

Sample ground truth sentences are shown in Table 4.1. The full place name and test

sentence are separated by an em-dash, and the auxiliary part of the full place name is

removed (shown as striken for example purposes). It should be noted that the resulting

corpus for testing contains noise. Some sentences, for instance, contain no meaningful

entities or terms that can be categorized into topics, while others seem to be automatically

generated from templates. This noise, however, can help evaluate the robustness of my

models. In total, the testing corpus consists of 5,340 sentences, covering 662 unique place

entities of 32 ambiguous place names. The average length of a test sentence is 22.5 words

with a median of 19. Note that stop words count towards these statistics, while auxiliary

parts of the place name do not.
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4.2 Metrics

Precision, recall, F-score, precision at 1, and mean reciprocal rank are used as the

metrics for the performance evaluation of the place name disambiguation models.

The F-score, or sometimes called F1 score, is defined as the harmonic mean of precision

and recall [47]. In the task of place name disambiguation, precision is a fraction of the

count of correctly identified place names and the count of predicting candidate place

names in the disambiguation result, and recall is a fraction of the count of correctly

identified place names and count of surface forms. Precision and recall are always a

trade-off for the task of information retrieval [48]. Both metrics are taken into account

when the F-score is computed. The F-score (See Eq. 4.1) reaches its best value at 1 and

worst at 0.

F 1 = 2 · Precision ·Recall
Precision+Recall

(4.1)

For many applications of geographic information retrieval, only one predicting place,

if available, is used. Therefore, I also use the metric precision at 1 (also written as P@1 ),

in which only the first predictive location (candidate location with the highest score) is

considered.

Although precision, recall, and F-score are widely used for evaluating the performance

of information retrieval systems, they fail to capture the order of the results. The mean

reciprocal rank (MRR), by comparison, takes the order of the results into account. The

reciprocal rank of a test sentence is the inverse of the rank of the correctly identified

place name ranki for a surface form. It can be formalized as in Eq. 4.2, where Q is the
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set of the predicting candidate place names in the disambiguation result.

MRR =
1

|Q|

|Q|∑
r=1

1

ranki
(4.2)

4.3 Benchmark systems

DBpedia Spotlight3, TextRazor4, and Open Calais5 were selected as benchmark sys-

tems to be compared to the proposed Things & Strings Model.

DBpedia Spotlight is based on DBpedia’s rich knowledge base of structured data [24],

which is also employed by the proposed model. I implemented a local instance of DBpedia

Spotlight Web Service of version 0.7. Annotate and Candidates are two endpoints of

this web service relating to place entity recognition and place name disambiguation.

Candidates endpoint returns a ranked list of candidates for each recognized entity and

concept, while Annotate simply returns the best candidate according to the context.

TextRazor and Open Calais are two commercial Web services for named entity recog-

nition and named entity disambiguation. Both services offer application programming

interfaces (APIs). The TextRazor API returns only one candidate for each entity rec-

ognized from the test sentence. Experiments were conducted [51] to compare several

named entity disambiguation systems which included DBpedia Spotlight (V. 0.6, confi-

dence=0, support=0) and TextRazor. In the experiments, TextRazor demonstrates the

best performance in terms of F-score.

The Open Calais (Calais - Tagging - RESTful API) web service extracts semantic

information from unstructured text developed by Thomson Reuters. Given a text, Open

Calais tags text strings with entities of predefined types, including companies, people,

3https://github.com/dbpedia-spotlight/dbpedia-spotlight
4https://www.textrazor.com/
5http://www.opencalais.com/
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deals, geographical locations, industries, physical assets, organizations, products, and

events. Those tagged entities are meanwhile mapped to Thomson Reuters unique IDs for

disambiguation. For the task of place name disambiguation, I only look at those extracted

entities whose types are city, provinceOrState, or place. It should be noted that Open

Calais API only returns one resolution for each recognized place entities. The API, in

addition to tagging entities, assigns multiple soical, topic, and industry tags to each text,

describing the content of the text as a whole from different perspectives. The social tags

contain the resolution of recognized place names. Thus, I include those social tags which

mention the ambiguous place name in Open Calais’ place name disambiguation result.

4.4 Results

In this section, I present the results of evaluation with comparing the proposed model

to the benchmark systems. To differentiate the Things & Strings Model proposed in

this thesis which integrates three models from the previously proposed model[23] which

integrates two models, I call the new integrated model TSM3 and the former one TSM2

in this section.

As discussed in the previous paragraph, the three individual models and the integrated

TSM3 all generate scores which give a sense of relative likelihood that a candidate to be

what the surface form actually refers to, so percentile is used as a threshold to determine

which candidate locations are included in the final disambiguation result. Generally

speaking, with a high threshold, few results are selected, which would lead to a high

precision but a low recall; while with a low threshold, many results are returned, which

would cause a high recall but a low precision. Such a trade-off between precision and recall

can hardly be avoided, so a threshold should be picked wisely. Figure 4.1 demonstrates

how precision and recall change along percentiles for the three individual models and
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the integrated TSM3 (with the optimal weight combination; details are discussed below).

The typical precision and recall trade-off is clearly shown for all models, except for the

entity co-occurrence model, whose curve stays in the range of relatively high recall. This

is due to the fact that in over 1000 test sentences, no matched entities is found for any

candidate place.

Figure 4.1: Precision and recall curve of entity co-occurrence model, topic model,
word embedding model, and TSM3

Given that TextRazor and Open Calais do not provide controls on how many candi-

date places are returned and DBpedia Spotlight relies on Confidence and Support which

are not comparable to the percentiles I used as the threshold, I choose the best perfor-

mance each baseline systems can reach to compare it to my models. To give an example,

for DBpedia Spotlight, I picked Confidence = 0.2 and Support = 0 since this combina-

tion of parameters leads to the best overall performance for this setting. From Figure

4.2, I can see that Open Calais can obtain relatively higher F-score than TextRazor and
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DBpedia Spotlight on the test corpus. The overall performance of those baseline systems

including TSM2 on the testing dataset is summarized in Table 4.2.

Figure 4.2: F-score for DBpedia Spotlight, TextRazor, Open Calais, entity co-occur-
rence model, topic model, and word embedding model

Figure 4.2 also shows how F-score of the individual models changes along percentiles.

Note that the 90 at the x-axis refers to the 90th percentile, which means that the can-

didate places with top 10 percentage of scores are selected as the disambiguation result.

As shown in the plot, when percentile increases, the F-score of the individual models

increases slightly until the 70th percentile when it starts increasing faster. Compared

to these baseline systems, the individual performance of the entity co-occurrence model

and topic model does not show a significant improvement, while the F-score of word

embedding model achieves an enhancement, reaching 0.194.

TSM3, which combines the entity-based co-occurrence model with the topic-based

model and word embedding model, employs weighting parameters α, β, and γ to de-
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Systems Parameters Prec Recall F-score
DBpedia Spotlight Confidence = 0.2; Support = 0 0.065 0.072 0.069
TextRazor N/A 0.067 0.15 0.093
Open Calais N/A 0.105 0.144 0.122
Entity Co-occurrence 97th pctl 0.031 0.771 0.112
Topic Model 97th pctl 0.113 0.113 0.113
Word Embedding 97th pctl 0.155 0.257 0.194
TSM2 α=0.52 β=0.48 γ=0; 93th pctl 0.132 0.268 0.177
TSM3 α=0.31 β=0.22 γ=0.47; 97th pctl 0.226 0.226 0.226

Table 4.2: Performance comparison of systems at best performance in terms of Preci-
sion, Recall, and F-Score

termine how much each individual model contributes to disambiguation. I test every

combination of α, β, and γ, each of which values from 0 to 1 with an interval of 0.01 and

meanwhile adheres to the constraint that the weights should always sum to 1. Figure 4.3

shows the highest obtainable F-score with each combination of the weights. I find that

when α = 0.31, β = 0.22, and γ = 0.47, the integrated model yields the highest F-score

on the test corpus. This indicates that all three models play essential roles in TSM3 for

disambiguating place name; the word-embedding model contributes fairly more than the

other two models. At the 97th percentile, the F-score reaches at 0.226. Out of 5,430 test

sentences, ambiguous place names in 1,207 sentences are correctly identified, given the

disambiguation result of 5,343 places. It should be noted that F-score, precision and re-

call of the topic model and TSM3 are different values though they happen to be rounded

to the same values. Figure 4.4 demonstrates how the F-score of TSM3 (α = 0.31, β =

0.22, and γ = 0.47) changes along percentile and its comparison to the baseline systems.

Although the word embedding model individually outperforms the benchmarks, with the

support of entity co-occurrence model and topic model, the integrated TSM3 is able to

achieve even higher F-score, which almost double the topmost F-score the benchmark

systems can obtain.

In many cases, only one candidate location (if available) is picked as the disambigua-
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Figure 4.3: F-score of TSM3 across the combinations of α, β, and γ

tion result, so I also compute Precision at 1 to evaluate the models. Figure 4.5 shows

P@1 of TSM3 with every combination of the weights. The peak value of P@1 is 0.226,

found at the point where α = 0.31, β = 0.22, and γ = 0.47, is exactly the same peak

point as in Figure 4.3. Comparing to Figure 4.3, it demonstrates similar pattern with

higher values concentrating around the peak point, and when entity co-occurrence model

holds more weight, the precision tends to decrease.

As stated in the previous paragraph, TextRazor only outputs at most one result, so

does the DBpedia Spotlight Web Service in the Annotation mode. For Open Calais, the

disambiguation result is ranked, so the first returned result is taken for this evaluation.
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Figure 4.4: F-score of DBpedia Spotlight, TextRazor, Open Calais, and Things &
Strings Model (TSM3)

Table 4.3 lists P@1, true positives, and estimated positives of TSM3, TSM2, the individual

models and the benchmark systems when only one candidate location is taken in each

test sentence’s disambiguation result. True positives (TF) refers to the count of correctly

identified place names, and estimated positives (p̂) is the count of the predicting candidate

locations in disambiguation result. The division of true positives by estimated positives

is the precision.

For Mean Reciprocal Rank (MRR), TSM3, with α=0.31, β=0.22, γ=0.47, tops 0.373,

beating DBpedia Spotlight and TextRazor, and TSM2 which get 0.054, 0.076, and 0.310

respectively.

Overall, based on the evaluation, the proposed TSM3 substantially outperforms ex-

isting named entity disambiguation systems in terms of F-score, P@1, and MRR. The

word embedding model alone performs better than all the benchmark systems, while a
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Figure 4.5: P@1 of TSM3 across the combinations of α, β, and γ

combination of the entity co-occurrence model, the topic model, and the word embed-

ding model, namely the TSM3, can achieve even better performance. In terms of F-score,

TSM3 outperforms the benchmark systems by up to 85%, and in terms of P@1, the inte-

grated model exceeds them by up to 46%. The fact that all F-scores are relatively low is

an important reminder for the facts that place name disambiguation from short texts is a

difficult task and that some test sentences did not contain no or only minimal contextual

clues.
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Systems Parameters TP P̂ P@1
DBpedia Spotlight Conf = 0.2; Sup = 0 232 3741 0.062
TextRazor N/A 147 4755 0.031
Open Calais N/A 463 2959 0.156
Entity Co-occurrence N/A 630 5340 0.118
Topic Model N/A 605 5340 0.113
Word Embedding N/A 1087 5340 0.204
TSM2 α=0.47, β=0.53, γ=0 848 5340 0.159
TSM3 α=0.31, β=0.22, γ=0.47 1207 5340 0.227

Table 4.3: Performance comparison of systems when only one candidate location is
taken in each test sentence’s disambiguation result in terms of True Positives (TP),
Estimated Positives (p̂), and P@1
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Discussion and Conclusions

To conclude, I propose a novel approach to tackle the challenging task of disambiguating

place names from short texts. Place name disambiguation is an important part of knowl-

edge extraction and a core component of geographic information retrieval systems. I have

presented three individual models that are driven by different perspectives, namely an

entity-based co-occurrence model, a topic-based model, and a word embedding model.

The first model focuses on the semantic connections between entities and thereby on

things, while the other two models work on the linguistic level by investigating topics

and semantics embedded in the text associated with places and thereby strings. The

integration of these three models, the Things & Strings Model (TSM), demonstrates

a substantially better performance than the used benchmark systems with respect to

F-score, precision at 1, and MRR.

The place name, or toponym, is an essential component of a text, specifying the

location where the things or events discussed in the text take place. It also helps with

identifying other entities in the text, so it is key for machines to “understand” the text.

Wikipedia and DBpedia are used as the training data for the models I build, providing

the ground truth descriptions for places. Formating its rich knowledge as linked data,

DBpedia allows us to readily make use of a place entity’s properties and its related

entities. However, DBpedia lacks descriptive sentences where richer semantics are hidden,
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which are also useful for place name disambiguation. Wikipedia filled the gap, rendering

more abundant and complex knowledge in the human language. However, the natural

language representation of Wikipedia articles is a mixture of various perspectives of a

place. The noise information irrelevant to a place could also be found in Wikipedia. My

approach takes advantage of the merits of both sources and alleviate the influence from

their shortcomings.

The improvement of place name disambiguation could facilitate more research, espe-

cially in the field of Geographic Information Science. Being able to accurately identifying

place names, geographic information buried in the text could be uncovered. To give a

simple example, in the past, I only knew the location of a Twitter tweet if it was attached

with coordinates, but now I can map the places the tweets are talking about. It would be

interesting to see how people in one city mention other cities in the tweets. Moreover, It

could also expedite spatial data sharing in the community, which is key to the researchers

and users of GIS. A good spatial data sharing platform would rely on the performance

of its data searching/query function [52, 53]. The current query function is merely about

word or phrase matching, but if a user is looking for census block data of Isla Vista, most

likely few results would be returned. However, with name recognition of Isla Vista and

knowing Isla Vista is a subregion of Santa Barbara county based on a knowledge graph,

like DBpedia, the user is able to find census block data for Santa Barbara county which

includes the target Isla Vista census block data. Additionally, this research could bridge

place-based GIS and space-based GIS.

A more accurate place name resolver can benefit many applications, improving user

experience. The proposed method could be applied to many location-based service ap-

plications. In a navigation application, an accurate place name resolver allows users to

input a common name of a place, instead of the full name of the place. The users’ meta-

data, such as the users’ current location, history of previous queries, and recent posts on
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social media, could be utilized as the context to help disambiguate the place name.

Nonetheless, there is space for future improvements. For the entity co-occurrence

model, properties other than those with the namespaces of dbo and dbp have been filtered

out. The same is true for literals. Both of them could be added to a future version of

TSM, although they would require more work on the used similarity functions in case of

the literals and a better alignment to ensure that properties from different namespaces are

not mere duplicates. I have used LDA for topic modeling but this is not the only choice

that can be used to learn a topic model so other approaches will be tested in the future.

As for the word embedding, doc2vec [54] could be tried out to see if it can performance

better than the combination of word2vec and Word’s Mover Distance. Moreover, TSM

is realized as a relatively simple convex combination of three individual models. Other

approaches could be investigated as well.

Similar to many other machine learning based models, there is no formal explanation

of why the word2vec model leads to good word representations and has better perfor-

mance for many tasks [55]. For this research, I think word2vec does well in capturing

the semantic and relationship between words in the texts more comprehensively than the

other models. However, which semantic and which relationship are captured is unknown,

and what is missed by word embedding model but gets caught by the entity co-occurrence

model and topic model is also not clear.

The performance of my proposed method relies on the comprehensiveness of candidate

locations and the availability of DBpedia descirption of the candidate locations. In other

word, if a place is not covered by DBpedia or there is no Wikipedia article about it, the

model will wrongly pick another candidate location. This could be solved by a more well-

designed mechanism to set thresholds, so if all scores of candidate locations are below

the threshold, “not found” would be returned, instead of accepting an answer close

to the threshold. Additionally, in digital humanity, many ancient place name should
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be identified, the proposed model cannot perform without a list of candidate ancient

locations and a description of them.

As for the experiment, although place entities in my testing corpus have highly am-

biguous place names, those places are all some kind of administrative divisions (i.e.,

cities, towns, villages, etc.) and located within the United States. A potential improve-

ment could be seeking more ambiguous place names from other types of places which are

outside of the United States.
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