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ABSTRACT OF THE DISSERTATION 

 
 
 

Allocation of Proteome Resources in E. coli 
 

by 

 

Sheng Hui 

Doctor of Philosophy in Physics (Biophysics) 

University of California, San Diego, 2014 

Professor Terence Hwa, Chair 

 
 

Protein mass is a major constituent of bacterial cell dry weight. An exponentially 

growing cell diverts most of its nutrient uptake to protein synthesis. The optimal 

allocation of a cell’s total proteins, or proteome, to various cellular functions is a major 

concern for the cell growing in different growth conditions. Obligatory relations between 

ribosomal proteome fraction and growth rate impose further constraints on proteome 

resources allocation. In this dissertation, I am interested in understanding the global 

strategy of proteome resources allocation and exploring its physiological consequences in 

E. coli.  

To understand the global strategy of proteome allocation, we apply a series of 

metabolic challenges to probe the responses of the proteome of exponentially growing E. 

coli using quantitative mass spectrometry. Despite the enormous complexity in the details 



 

xvii 

of the underlying regulatory network, the proteome partitions into several coarse-grained 

sectors whose total abundances exhibit linear relations with the growth rate. These 

growth-rate dependent proteome fractions comprise about half of the proteome by mass, 

and their mutual dependencies can be characterized quantitatively by a simple proteome-

based flux model involving only two effective parameters. The success and apparent 

generality of this simple model is due to the tight coordination between proteome 

partition and metabolism, suggesting a principle for resource-allocation in proteome 

economy. This general strategy of global gene regulation should serve as a basis for 

future studies on gene expression and constructing synthetic biological circuits.  

We also show that proteome resources allocation has important consequences in 

cell physiology. An important yet mysterious phenomenon in bacterial physiology is the 

overflow metabolism, where the cell excretes acetate in the case of E. coli. We observed 

a set linear relations between acetate excretion rate and growth rate under different modes 

of growth limitation. By including both the carbon and proteome resources in a simple 

resource allocation model, we can quantitatively describe the observed linear relations. 

Key model parameters of protein costs were determined directly using flux analysis and 

protein mass spectrometry measurements. These results suggest optimal allocation of 

carbon and proteome resources as a possible driving force for the occurrence of overflow 

metabolism.  

 
 
 



1 

Chapter 1  

Introduction 
 
 
 

1.1 Proteome and proteome fraction 

The proteome of a bacterium can refer to the total collection of different proteins 

of the bacteria, with each protein having a unique sequence. It can also refer to the total 

protein mass of a bacterial cell. In this dissertation, I use the latter definition for 

proteome. For an exponentially growing bacterial cell such as a E. coli cell, its proteome 

is the major component of the cell dry mass (Neidhardt et al., 1990). The process of 

protein synthesis also consumes most of the energy produced by the cell (Neidhardt et al. 

1990). The cell has to optimally allocate its proteome resources to various cellular 

functions in different growth environments, which is exemplified by the bacterial growth 

laws as the obligatory relations between proteome resources allocated to ribosomes and 

growth rate (Scott et al., 2010). Here we study the global strategy of the proteome 

resources allocation, and understand an important physiological phenomenon from the 

perspective of proteome resources allocation. 

One emerging view of cell physiology is based on the partitioning of the bacterial 

proteome into a set of functional sectors, which are groups of genes connected by their 

common purpose, such as carbon catabolism, amino acid synthesis, or translation (Scott 

et al., 2010; You et al., 2013). In this view, the size and composition of these sectors are 

mutually constrained by their codependence on the finite resources of the cell, in 
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particular proteome resources, as well as by their respective metabolic roles in utilizing 

those resources. The proteome fraction of a sector, the total mass of sector proteins 

relative to the total cell protein mass, naturally emerges as a quantity of central 

importance, which is further supported by the early studies of bacterial physiology 

(Bennett and Maaloe, 1974; Bremer and Dennis, 2009; Schaechter et al., 1958). The 

interdependent set of constraints on proteome sector size suggests that the cell is subject 

to a principle of proteome economy. Adjustments to the environment such as a shift in 

the abundance or quality of carbon and nitrogen sources, or the presence of drug, will 

change the demand for the functions of each proteome sector. The cell must adapt to such 

a shift in metabolic demands by changing the sector mass fractions, effectively 

remodeling the distribution of resources across the functional sectors of the proteome. 

 

1.2 The strategy of proteome resources allocation 

In Chapter 2, we describe the strategy of proteome resources allocation by E. coli 

in the exponential growth phase, where the cell produces a steady flux of matter from 

nutrient to biomass through the processes supported by each sector at steady state. Using 

two strains engineered with either titratable carbon uptake or titratable amino acid 

synthesis, and using the protein synthesis inhibitor chloramphenicol on wild type cells, 

three key metabolic sections are modulated directly by specifically limiting their flux 

capacity with respect to a common reference condition. The global coordination of gene 

expression was monitored across three series of growth limitation modes (carbon influx, 

nitrogen assimilation, translation rate) using quantitative mass spectrometry (Aebersold 

and Mann, 2003; Bantscheff et al., 2007; Chen et al., 2012; Han et al., 2008; Ong and 
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Mann, 2005) in conjunction with hierarchical clustering. Most of the ~1,000 observed 

proteins exhibit a linear change with growth rate in each of the three series. Proteins were 

grouped using a binary classifier into one of eight groups according to the observed 

increases or decreases in mass fraction under each growth limitation. Six distinct sectors 

of the proteome are readily identified, composed of several hundred proteins each. The 

proteome fraction of each functional sector exhibits a striking linear relationship 

parameterized by the growth rate of the cell. Here, the careful selection of limitation 

conditions and abundance of data allows for quantitative analysis to reveal such 

functional groups and capture their responses accurately by simple mathematics. As 

detailed in Chapter 3, using an abundance-based term enrichment to analyze the gene 

ontology descriptions of member proteins, the function of each proteome sector is found 

to be well described by just two or three descriptive terms, suggesting that the proteins of 

a particular sector are characterized by a uniformity of purpose. A simple proteome-based 

flux model is then formulated based on the mutual constraints and flux matching (Orth et 

al., 2010; Sauer, 2006; Varma and Palsson, 1994; Yuan et al., 2008), capturing the 

observed behavior of the sector mass fractions. The model is further validated by the 

successful prediction of sector behavior in additional test conditions involving multiple 

modes of growth limitation. 

The coordinated expression of ~1,000 observed proteins, which might be 

expected to exhibit an arbitrarily complex behavior, can be described by an incredibly 

simple linear strategy that coordinates the sectors to balance flux. For E. coli in balanced 

growth, the proteome fraction for each sector obeys the laws of supply and demand 

according to an orderly proteome economy. 
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1.3 A physiological consequence of proteome resources allocation 

In Chapter 4, we study the consequence of the proteome resources allocation in an 

important physiological phenomenon in E. coli. Under anaerobic conditions, organisms 

ranging from bacteria to mammalian cells excrete large quantities of fermentation 

products such as acetate or lactate. Strikingly, the excretion of these fermentation 

products occurs widely even in the presence of oxygen in fast-growing bacteria and fungi 

(De Deken, 1966; Wolfe, 2005), as well as mammalian cells including stem cells, 

immune cells, and cancerous cells (Vander Heiden et al., 2009; Weinberg, 2013). This 

seemingly wasteful phenomenon, in which fermentation is used instead of the more 

efficient respiration process for energy generation, is generally referred to as “overflow 

metabolism” (or the Warburg effect in the case of cancer (Vander Heiden et al., 2009; 

Weinberg, 2013)). Various rationalizations of overflow metabolism have been proposed 

over the years (Molenaar et al., 2009; Valgepea et al., 2010; Vander Heiden et al., 2009; 

Wolfe, 2005). However, experimental tests of the proposed hypotheses as well as 

systematic studies of the origin of overflow metabolism are lacking.  

In Chapter 4, we provide a quantitative, physiological study of overflow 

metabolism for the bacterium E. coli. We report an intriguing set of distinct linear 

relations between the rate of acetate excretion and the rate of steady state growth for E. 

coli in different nutrient environments and different degrees of induced stresses. These 

results suggest that overflow metabolism in these diverse settings arises from a common 

origin, namely from the coordination of carbon resources with proteome resources. A 

simple resources allocation model, based on a recently established proteome partition 
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model (Scott et al., 2010) can quantitatively account for all of the observed behavior, 

assuming only an increased protein cost of respiration relative to fermentation. As 

described in details in Chapter 5, this hypothesis is confirmed by direct measurements 

and analysis of metabolic fluxes and protein costs using protein mass spectrometry. Our 

findings suggest that incorporation of protein resources allocation may constitute a key 

ingredient for understanding metabolic phenomena and their regulation. 

 



6 

 

Chapter 2  

The responses of proteome to various growth 

limitations 
 
 
 
2.1 Introduction 

In this chapter, I describe a systems and quantitative approach to probe the 

responses of proteome to different modes of growth limitation, in order to grasp the 

global strategy the cell takes to manage its proteome. 

 

2.2 Systematic growth perturbation 

To probe responses of the proteome, cell growth was perturbed by imposing three 

different modes of growth limitation at crucial bottlenecks in the metabolic network. A 

coarse-grained metabolic flow diagram for protein production by E. coli growing in 

minimal medium is shown in Figure 2.1. Four metabolic sections act in concert to convert 

external carbon sources to proteins, incorporating nitrogen and sulfur elements during the 

process. Following the work of You et al. (You et al., 2013), growth limitation was 

imposed on three of the four metabolic sections. The limitation imposed on the catabolic 

section (C-limitation or C-lim) was implemented by titrating the expression of lactose 

permease for cells growing on lactose (Figure 2.2). The limitation on the anabolic section 

(A-limitation or A-lim) was realized by titrating a key enzyme (GOGAT) in the ammonia 
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assimilation pathway (Figure 2.3). To impose growth limitation on the polymerization 

sections, sub-lethal amounts of a translation inhibitor antibiotic, chloramphenicol, were 

supplied to the growth medium to inhibit translation by ribosomes (R-limitation or R-

lim). The collective response of the E. coli proteome to these applied growth limitations 

was monitored using quantitative mass spectroscopy. 

 

Figure 2.1.  Coarse-grained metabolic flow of protein production and the three modes of growth 
limitation. 

Through the (carbon) catabolic section the cells take up external carbon sources and break them 
down into the set of standard carbon skeletons (pyruvate, oxaloacetate, etc). The carbon 
skeletons are interconvertible through the central metabolism section. The anabolic section 
synthesizes amino acids from the carbon skeletons and other necessary elements such as 
ammonia and sulfur. The amino acids are then assembled into proteins by the polymerization 
section. The three modes of growth limitation were imposed on the metabolic sections as shown. 
The C-limitation (C-lim) and A-limitation (A-lim) were carried out with strains constructed for 
titrating the catabolic and anabolic flux, respectively. The R-limitation (R-lim) was realized for 
the WT strain by supplying the growth medium with various levels of an antibiotic, 
chloramphenicol. 
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Figure 2.2.  C-limitation by titrating lactose uptake. 

LacY (or lactose permease) is the only transporter that allows E. coli to grow on lactose as the 
sole carbon source. We therefore sought to control lactose uptake by titrating the expression of 
LacY using the strain NQ381. The strain was constructed by inserting a titratable Pu promoter 
from Pseudomonas putida between the lacZ stop codon and lacY start codon. The expression of 
the Pu promoter is activated by the regulator XylR upon induction by 3-methylbenzyl alcohol 
(3MBA). Strain NQ381 was grown in lactose minimal medium, supplemented with 1 mM IPTG 
and various levels of 3MBA (0-500 µM) to stimulate XylR and titrate the expression of LacY.  
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Figure 2.3.  A-limitation by titrating ammonia assimilation.  

To impose A-limitation, we constructed the strain NQ393 whose capacity to assimilate 
ammonium as the sole nitrogen source can be varied in graded manners.  

(A) and (B) illustrate the two known pathways for the assimilation of ammonium in E. coli. In 
pathway A, ammonium is fixed onto alpha-ketoglutarate (akg) via the enzyme glutamate 
dehydrogenase (GDH, purple diamond, encoded by gdhA) to form glutamate (glu), which 
subsequently trans-aminates (green diamond) one of many alpha-keto acids (light blue oval) to 
form amino acids (yellow oval), regenerating akg in the process. In pathway B, the overall 
process is the same except that GDH is replaced by two enzymes, glutamine synthetase (GS, red 
diamond, encoded by glnA) and glutamate synthase (GOGAT, blue diamond, encoded by the 
gltBD operon). In this pathway, ammonium is first assimilated into glutamine (gln) and then 
passed on to glu. Note that among the biosynthetic pathways of the 20 amino acids, only the 
tryptophan pathway does not involve transamination reaction. 

(C) In strain NQ393 the gene gdhA is deleted and the promoter of gltBD is replaced by the Plac 
promoter, so that pathway A is broken and ammonium assimilation must proceed by pathway B. 
Strain NQ393 was grown on glucose minimal medium, supplemented with various concentrations 
of IPTG (30-100 µM) to titrate the expression of GOGAT. See Experimental Procedures for 
details of strain construction. 

(D) The intracellular glu pool concentration ([Glu]) increases linearly with the growth rate. The 
data are for a strain that has the native lac promoter replaced with the glnA promoter but 
otherwise is identical to NQ393. It suggests that the growth reduction of this strain and also of 
NQ393 is due to limitation in glu, which presumably directly affects amino acid synthesis via 
trans-amination (A). The method for measuring the glu pool was described in Okano et al. 
(Okano et al., 2010). 
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2.3 Quantitative proteomic mass spectrometry 

Proteomic mass spectrometry is a powerful tool for quantifying changes in global 

protein expression patterns (Aebersold and Mann, 2003; Bantscheff et al., 2007; Han et 

al., 2008; Ong and Mann, 2005). The cellular content of each protein is directly 

measured, whereas inferences of protein levels based on mRNA transcripts obtained from 

the more commonly used transcriptomic approaches are complicated by complex growth-

rate dependent relations linking the mRNA and protein levels (Klumpp et al., 2009; 

Maier et al., 2009; 2011; Taniguchi et al., 2010; Vogel et al., 2010). As shown below, 

mass spectrometry also has the advantage of reliably detecting small changes in protein 

levels, with precision comparable to that of enzymatic assays. Metabolic labeling with 

15N (Oda et al., 1999) provides relative quantitation of unlabeled proteins with respect to 

labeled proteins across growth conditions of interest. Each experimental sample in a 

series is mixed in equal amount with a known labeled standard sample as reference, and 

the relative change of protein expression in the experimental sample is obtained for each 

protein.  

2.3.1 Accuracy and precision 

The accuracy and precision of quantifying relative protein expression levels was 

determined from a standard curve using samples of unlabeled and 15N-labeled purified 

ribosomes. The observed relative levels, measured by ratios of the labeled to the 

unlabeled ribosomal proteins (or 15N/14N), agree extremely well with the expected values 

over a range of about two orders of magnitude (Figure 2.4A). To assess the accuracy and 



 

 

11 

precision for a whole cell lysate with a much more complex proteome, labeled and 

unlabeled cells were mixed in fixed ratios and measured with quantitative mass 

spectrometry. The relative changes in protein levels can be precisely determined over the 

range of ratios from 0.1 to 10, as shown in Figure 2.4B. The effective precision of 

relative protein quantification is ±18%, based on analysis of the 1:1 sample (Figure 2.5). 

Thus, subtle changes in proteome composition that are much less than 2-fold can be 

precisely determined. Furthermore, the relative quantitation using quantitative mass 

spectrometry agrees extremely well with a traditional biochemical measurement of 

ribosome content (Figure 2.6A) and also with quantitation of LacZ using a !-

galactosidase assay (Figure 2.6B). 

 

Figure 2.4.  The accuracy of quantitative protein mass spectrometry.  

(A) Observed values versus real values for ratios of 15N ribosomal proteins to 14N ribosomal 
proteins. Black dots are the mean values, with error bars representing the range of the values for 
all ribosomal proteins. The dashed line represents perfect agreement between the observed 
values and real values.  

(B) Observed values versus real values for ratios of 15N proteins to 14N proteins from whole cell 
lysates. Black dots are the median values for more than 600 proteins. The error bar for each 
median value indicates the quartiles. The dashed line represents perfect agreement between the 
observed values and real values.  

Purified ribosome samples

0.1 1 10

0.1

1

10

Real 15N/14N

O
bs

er
ve

d 
15

N
/14

N

Data
Y = X

A! Whole cell lysates

0.1 1 10

0.1

1

10

Real 15N/14N

O
bs

er
ve

d 
15

N
/14

N

Data
Y = X

B!



 

 

12 

 

Figure 2.5.  The precision o quantitative protein mass spectrometry. 

To measure the precision of the relative protein quantification method using mass spectrometry, 
we focus on the control sample which consists of 1:1 mixture of 15N and 14N samples, where each 
protein has an expected 15N to 14N ratio of 1. Above is the distribution of the observed 14N over 15N 
ratios for 638 proteins in the control sample. The box includes data points between first quartile 
(0.906) and the third quartile (1.114), with the line in the center of the box representing the 
median value (0.998). The upper and low hinges represent the maximum and minimum data 
points, excluding 21 outliers. The outliers are shown in gray points and are defined as points that 
are at least 3!(3rd quartile – 1st quartile) away from either the 1st quartile or the 3rd quartile. 
The standard deviation for all the data points except the outliers is calculated to be 0.179, or 
about 18%, which is taken as the precision of the method. 
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Figure 2.6.  Comparison of the relative mass spectrometry method to traditional biochemical 
methods. 

(A) Comparison between mass spectrometry data and the measurements of the total RNA to total 
protein ratio (R/P). The ratio between total RNA and total protein is well established as a good 
proxy (with a constant converting factor) for ribosome content, and has a linear relation with 
growth rate for nutrient-limited growth (Maaloe, 1979; Schaechter et al., 1958; Scott et al. 
2010).  The red dots are R/P data for cells grown on various carbon sources. The blue circles are 
the relative change of ribosomal proteins under C-limitation as detected by mass spectrometry. 
The mass spectrometry values for the ribosomal proteins were taken as the medians of the 52 
ribosomal proteins detected. The error associated with each value was taken as the quartiles.  

(B) Comparison between mass spectrometry data (in blue) and the !-galactosidase assay data (in 
red), both under C-limitation (lactose-limited growth).  

 

2.3.2 Data sets and protein coverage 

For the C-, A-, and R- limitations, a series of cultures was prepared with varying 

growth rates. For the C-limitation series, controlled inducible expression of the lacY gene 

gave doubling times from 40-92 minutes (5 conditions), for the A-limitation series, 

controlled expression of GOGAT gave doubling times from 43-91 minutes (5 

conditions), and for the R-limitation series, inhibition of protein synthesis with 

chloramphenicol gave doubling times from 42-147 minutes (4 conditions), as detailed in 

Table 2.1. Samples from each of the fourteen cultures were collected, and the relative 

protein levels were determined using mass spectrometry, as described in the 

Experimental Procedures. For C-, A-, and R- limitations, the number of proteins with 
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reliable expression data are 856, 898, and 756, respectively. Most proteins present in one 

dataset are present in others, with 616 proteins shared in all three data sets and a total of 

1053 unique proteins in any dataset. The current protein coverage represents ~80% of the 

total proteome mass, due to a highly non-uniform distribution of protein abundance 

(Figure 2.7). For data analysis, the combined datasets were represented as a matrix of 

1053 proteins across the 14 growth conditions (Table 2.2), graphically shown in Figure 

2.8.  

 

Figure 2.7.  Estimation of coverage of total protein mass by mass spectrometry. 

To estimate the fraction of total protein mass covered by mass spectrometry, we rely on two 
pieces of information: 1) the highly non-uniform distribution of individual protein mass as given 
by the method of spectral counting (shown above); and 2) the absolute protein quantitation 
results from the 2D gel study by Pedersen et al. (Pedersen et al., 1978). The plot shows the 
cumulative distribution of protein mass detected in the standard condition (i.e., WT cells growing 
in glucose minimal medium), with the proteins ranked from high to low according to their masses 
as measured by spectral counts. The 2D gel study found that in glucose minimal medium the most 
abundant 190 proteins account for about 60% of the total protein mass. Recent 2D gel absolute 
protein quantitation study (private communication with Scott, et al.) found a similar number for 
the same medium, with the top 190 proteins accounting for about 64% of the total protein mass. 
Here the plot shows that top 190 proteins comprise 76% of the total spectral counts. Therefore, 
the total proteome mass detected by the mass spectrometry is estimated to be between 
60%/76%=79% and 64%/76%=84%. We thus take 80% as the estimated value for the coverage 
of total protein mass by mass spectrometry. 
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Figure 2.8.  The expression matrix and clustering results. 

The matrix is composed of 1053 proteins (rows) and 14 conditions (columns); see Table 2.2. The 
first five columns are for C-limitation, the next five columns for A-limitation, and the last four 
columns for R-limitation. For each mode of growth limitation, the growth rate increases from left 
to right. The matrix is log2-transformed, with expression values at the standard condition as zero 
(see Experimental Procedures), represented as black color. Red color indicates negative values, 
green color positive values, and gray color missing entries. A dendrogram generated by 
clustering analysis is shown on the left of the expression matrix (see Experimental Procedures), 
with the 5 major clusters shown on the right side of the matrix.  

 

2.3.3 Clustering analysis of protein expression trends 

A qualitative global analysis of the data was performed with hierarchical 

clustering using the Pearson correlation as a distance metric (Experimental Procedures), 

and the resulting dendrogram is shown on the expression matrix in Figure 2.8. Five major 
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clusters are apparent, characterized by different trends in the three limitation series. The 

cluster where protein levels increase as growth rate is reduced under C-limitation, but 

decrease under A- and R- limitations, represents proteins that specifically respond to C-

limitation, and is designated as the C-cluster. The A-cluster is defined by increased 

protein levels under A-limitation, but decreased levels under C- and R-limitations, 

responding specifically to A-limitation. Similarly, the cluster where proteins levels 

increase in response to R-limitation, but decrease under C- and A- limitations, 

specifically respond to R-limitation, and is designated as the R-cluster. The S-cluster is 

defined by protein levels that increase under both A- and C- limitations. Finally, the 

cluster for proteins that generally do not respond specifically to any of the three modes of 

growth limitation is designated as the U-cluster. 

The clustering analysis is useful for providing an overview of the trends in the 

proteomic data, and revealing the qualitative responses of proteins to the different modes 

of growth limitation: Most proteins respond specifically to a single mode of growth 

limitation with the exception of the S-cluster. These clusters suggest that proteome levels 

are strongly coordinated based on the environmental stress, and that the response of the 

proteome to the environment might be amenable to a quantitative coarse-graining 

analysis. 

 

2.4  Quantitative characterization of the proteome responses 

2.4.1 Linear growth-rate dependence of the relative protein levels 

Extensive analysis of a number of exemplary reporters of catabolic and 
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biosynthetic gene expression, revealed strikingly linear growth-rate dependence in the 

expression of these genes (You et al., 2013). The prevalence of linear growth-rate 

dependence has been described in –omics studies of both proteins (Pedersen et al., 1978) 

and mRNAs (Brauer et al., 2008). Inspection of the expression data in Figure 2.8 

suggested that many proteins exhibited a similar linear trend, and the coefficient of 

determination (R2) for the expression of each protein was calculated for each limitation 

series. The cumulative distribution of R2 for each mode of growth limitation is shown in 

Figure 2.9. Approximately half of the proteins in C-limitation and A-limitation data sets 

and about two thirds of the proteins in R-limitation data set exhibit R2 > 0.7. The slope 

and R2 of each linear fit are given in Table 2.2. As a comparison, the plot of the 

cumulative distribution of R2 for randomly permuted expression data of the A-limitation 

is shown, where less than one tenth of the proteins have R2 > 0.7. The widespread linear 

dependence on growth rate further supported a coarse-grained analysis of the proteome 

response to growth limitations. 
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Figure 2.9.  Cumulative distribution of R squared values (R2) of linear fits. 

For each of the three limitation data sets, a line was fit for each protein and its R2 value was 
calculated (See Table 2.2 for the parameters of fits). The red symbols and line show the 
cumulative distribution of R2 for C-limitation, while the blue and green data are for A- and R- 
limitation, respectively. The black symbols and line are for the A-limitation data with the 
expression values for each protein randomly permuted.  

 

2.4.2 Strategy for a coarse-grained characterization of the proteome 

For a protein exhibiting linear growth-rate dependence, a negative slope 

corresponds to a higher expression level at slower growth rate, referred to as the 

“upward” response (!), while a positive slope corresponds to a lower expression level at 

slower growth rate, referred to as the “downward” response ("). 

Given that a protein has either upward or downward response under each of the 

three modes of growth limitation (C-, A-, and R- limitation), it has to belong to one of the 

23=8 groups: C!A"R", C!A!R", C"A!R", C"A!R!, C"A"R!, C!A"R!, C!A!R!, and 

C"A"R", where the group names are indicated by the upward or downward response 

under each of the three modes of growth limitation. For example, the C!A"R" group 

consists of proteins that have upward response under C-limitation and downward 
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responses under both the A- and R- limitation.  

The collective behavior of a protein group can be approximated by coarse 

graining, effectively summing the mass of proteins in the same group. The summed mass 

of proteins for a protein group, from one of the 8 groups defined above and normalized 

by total protein mass, is referred to as the “proteome fraction”. Due to the almost constant 

proportionality between the total protein mass and dry mass per cell, and the constancy of 

the cell’s density at different growth rates (Woldringh et al., 1981), proteome fraction is a 

proxy for protein concentration at all growth rates explored in this paper (Klumpp et al., 

2009) in contrast to other measures such as protein copy number per cell which do not 

track concentration due to the huge changes in cell size across growth conditions (Milo, 

2013; Schaechter et al., 1958). To carry out the coarse-graining approach on our data, the 

proteins first need to be placed into one of the 8 groups and then the proteome fraction 

needs to be estimated for each of the groups. The grouping is readily accomplished using 

the relative protein expression data. However, determining the proteome fraction requires 

an estimate of the absolute protein level for each protein. 

2.4.3 Defining the protein groups based on the relative expression data 

To partition proteins into one of the 8 groups, we calculated the slope of a linear 

fit to each gene under each limitation. The results of linear-fit of the relative protein 

expression data are given in Table 2.2, where positive slope corresponds to downward 

response and negative slope to upward response. Due to the sensitivity limitations of the 

method, proteins exhibiting < 25% change under each of the growth limitations were 

partitioned into a separate, growth-rate independent group (or I-group). The membership 
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of proteins in the resulting 9 groups is given in Table 2.2. The corresponding expression 

matrix (Figure 2.10) is seen to capture similar global expression patterns revealed by the 

clustering method at a qualitative level (Table 2.3). 

 
Figure 2.10.  Grouping proteins into 9 groups. 

In the expression matrix, the first five columns are for C-limitation, the next five columns for A-
limitation, and the last four columns for R-limitation. Within each limitation, the growth rate 
increases from left to right. Red color indicates negative values, green color indicates positive 
values, and black indicates zero values. Gray indicates missing entries. The right side of the 
expression matrix shows the 9 groups. From top to bottom, the groups are C!A"R", C!A!R", 
C"A!R", C"A!R!, C"A"R!, C!A"R!, C!A!R!, C"A"R", and I-group, where the upward arrow 
denotes expression values going up (specific response) as growth rate goes down in a limitation 
and down arrow means the opposite (general response). If a protein is missing (i.e., having no 
values) under a limitation, we treated its response as general response. 

 

2.4.4 Absolute quantitation estimates for protein groups from spectral counting 

Among the methods for quantifying absolute protein abundance from proteomic 

mass spectrometry data (Beynon et al., 2005; Ishihama et al., 2005; 2008; Lu et al., 2006; 
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Schmidt et al., 2011; Silva et al., 2006; Vogel and Marcotte, 2008), the method of 

spectral counting takes the number of peptides recorded for each protein as proxy for the 

absolute abundance of the protein (Malmstrom et al., 2009). While spectral counting 

provides a crude estimate of the absolute protein abundance for individual proteins 

(Bantscheff et al., 2007), it gives a much more reliable approximation for groups of 

proteins. For a protein group comprising more than ~5% of the total proteome, spectral 

counting produces estimates with < 20% error, as shown in Figure 2.11A. The 

comparison of spectral counting data for ribosomal proteins with the estimation based on 

biochemical measurements is in good agreement (Figure 2.11B). 
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Figure 2.11.  Absolute protein quantitation with spectral counting. 

(A) Spectral counting data from the whole cell series. 15N-labeled cell sample was mixed with 
unlabeled cell sample at different proportions. The estimated fractions of the 15N-labeled proteins 
based on spectral counting are plotted against the real fractions (red symbols and line). 
Discrepancy between the estimated value from spectral counting and the expected value is 
defined as the absolute value of the difference between the two values divided by the expected 
value (blue symbols). The discrepancy quickly goes down as the fraction goes up, with around 
20% for 5% of expected fraction and less than 10% for 7.5% of expected fraction.   

(B) Comparison of spectral counting data with the R/P data for the proteome fraction of 
ribosomal proteins. The red dots are estimated from R/P measurements (Experimental 
Procedures), with the formula: fraction of proteome = 0.52*R/P (See Eq. [S1] in (Scott et al., 
2010).  The blue squares and error bars are the mean values and standard deviations of spectral 
counting data from triplicate mass spectrometry runs.  

 

2.4.5 Absolute abundance of the coarse-grained proteome sectors 

The proteome fractions for the 9 protein groups defined in Table 2.2 were 
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determined for each of the 3 series of growth limitations by applying the spectral 

counting method (Figure 2.12). It is clear from Figure 2.12 that some groups occupy 

significant fractions of the proteome while others are minor constituents. The top three 

groups are C!A"R", C"A!R", and C"A"R!. These consist of proteins that only respond 

upward to the C-, A-, and R- limitation, and are referred to as the C-, A-, and R- sector, 

respectively (Figure 2.13A-C). The C"A"R" group includes proteins that are uninduced 

by any of the three applied limitations, and is referred to as the U-sector (Figure 2.13D). 

Another significant protein sector is the C!A!R" group, which is composed of proteins 

that have upward response to both the A- and C- limitations, and referred to as the S-

sector for general starvation; see Figure 2.13E. The three remaining groups (i.e., 

C!A!R!, C!A"R!, and C"A!R! groups) are small, with most of the data at or below 5% 

of the proteome, below the accuracy of the spectral counting method (Figure 2.11A). The 

three small groups and the I-group were placed together into the O-sector (Figure 2.13F). 

In summary, the proteome is coarse-grained into 6 “sectors”: C-, A-, R-, U-, S-, and O- 

sectors with distinct growth-rate dependences as shown in Figure 2.13, with complete 

data for all fractions shown in Table 2.4.  
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Figure 2.12.  Coarse-grained results for the 9 protein groups. 

The Y-axis of each of the plots is fraction of proteome and the X-axis is the growth rate (in units 
of per hour). The red symbols and lines are for C-limitation, blue for A-limitation, and green for 
R-limitation. The lines are the best linear fits to the data represented by symbols of the same 
colors. The title of a group indicates the types of response the group has to the three limitations, 
with an upward arrow (!) for a line with negative slope and downward arrow (") for a line with 
positive slope. The number in the title indicates the number of proteins in the group.  

The variation of the abundance for the triplicate runs is much larger for the C"A"R# group (or 
R-sector in Figure 2.13) than other sectors. This reflects the coarse-graining method we used for 
estimating the absolute abundance for proteome sectors. The method assumes a diverse 
representation of proteins with broad distributions of efficiencies in various steps of the 
experimental flow. The R-sector includes most of the r-proteins which together form one complex, 
ribosome. Similar behaviors of this large group of proteins in terms of noise could cause the 
observed large variation for the R-sector. 
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Figure 2.13.  The coarse-grained proteome sectors. 

Coarse-grained responses of the C-, A-, R-, U-, S-, and O- sectors to the three modes of growth 
limitation. As indicated in panel A, the red symbols in each panel are for C-limitation, the blue 
for A-limitation, and the green for R-limitation. The error bars indicate the standard deviation of 
triplicate mass spectrometry runs. Error bars smaller than the corresponding symbols are not 
shown. On each plot, the number in the title indicates the number of proteins in that sector, and 
colored lines are best linear fits of the data represented by symbols of the same colors; see Table 
2.4 for the data on proteome fraction and Table 2.5 for parameters of the fitted lines. 

 

2.4.6 Linear responses of proteome sectors 

The proteome fraction of a sector s under the l-mode of growth limitation is 
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denoted by $%,l with % being one of the 6 sectors (C,A,R,U,S,O) and l being C-, A-, or R- 

limitations. The data for each sector merge at the growth rate of ~1.0 hour-1, because the 

growth rate dependence of the proteome fraction was quantified relative to the proteome 

fractions under the “glucose standard condition”, which is the condition of WT cells 

growing on glucose minimal medium. These points define the set of reference proteome 

fractions !"
#  under the standard growth rate &". The growth rate dependences of the 

proteome sectors $%,l (&) shown in Figure 2.13 are well described by a linear relation: 

 !" ,l (#) = !" ,l ,0 +
!"

$ %!" ,l ,0

#*
# . [2.1] 

where $%,l,0 is the y-intercept of the line. The least squares fits to Eq. [2.1] are 

shown as the lines of corresponding colors in Figure 2.13, and the set of 4#6=24 fit 

parameters that describe the data are given in Table 2.5.  

Closer scrutiny of the data and the fits suggests additional simplicity in the 

structure of the responses. In particular, the downward responses in Figure 2.13 (positive 

slopes) are similar for each sector, and such responses are referred to as “general” 

responses as they are not distinguishable between at least two different modes of 

limitations. On the other hand, the upward response of each of the C-, A-, and R- sectors 

is specific to only the C-, A-, and R- limitation, respectively, and such a response is 

referred to as a “specific” response. The only exception is the S-sector, which has similar 

upward responses to both C- and A- limitations, and the O-sector, which is essentially 

growth-rate independent. These features suggest that there is a fundamental principle 

underlying the proteome response to environmental challenges as will be addressed 

below. 
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2.5  Biological functions of the proteome sectors 

To elucidate the biological functions for each proteome sector, a Gene Ontology 

(GO) analysis was carried out using an abundance-based GO term enrichment to identify 

a small number of GO terms that best represent the abundant proteins in a sector. Briefly, 

individual GO terms that accounted for a small mass fraction of a sector were removed, 

as were those terms (such as “metabolic process”) that are too general for distinguishing 

among the sector functions. GO terms that were not enriched in a sector compared to the 

entire proteome were also removed. The sector functions were identified based on the 

remaining GO terms accounting for a significant fraction of a sector with minimal 

overlap with other sectors, as described in Chapter 3.  

The results of the abundance-based GO analysis are summarized in Figure 2.14, 

with each bar graph describing the major proteome composition for each sector. The list 

of genes corresponding to each GO term and each sector is provided in Table 2.6. With 

the exception of the O-sector, between 1 and 3 terms accounted for more than 60% of the 

proteome in each sector, providing a simple interpretation of their biological functions 

and the nature of the sector responses. For example, a single GO term, “translation”, 

describes more than 70% of the proteins in the R-sector. Since the R-limitation inhibits 

translation rate, the term suggests a strategy by which the cell specifically counteract the 

applied growth limitation by increasing the abundance of “translational” proteins (Scott 

et al., 2010). 
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Figure 2.14.  Composition of proteome sectors. 

 Each bar graph shows the results of the abundance-based Gene Ontology analysis for each of 
the 6 sectors. Each bar indicates the mass fraction the corresponding GO term accounts for 
within a sector. The empty bar in each graph indicates the remaining fraction of the sector not 
accounted for by the GO terms listed. The results were calculated based on triplicate runs of all 
samples. Each bar height indicates the mean result and the standard deviation is shown as the 
error bar. See Chapter 3 for details of the method. 

 

The GO terms best describing the C-sector are “ion transport”, “tricarboxylic acid 

cycle”, and “locomotion”, pointing to a mode of carbon scavenging (by moving and 

increasing carbon uptake) and carbon saving (by increasing the efficiency of energy 

generation using the tricarboxylic acid cycle) to counteract the imposed carbon limitation. 

For the A-sector, the most abundant term is “organonitrogen compound biosynthetic 
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process”. A closer look reveals that most of the terms are related to biosynthesis of amino 

acids (Table 2.6). Again, similar to the responses to R- and C- limitations, the finding 

here suggests that the cell tries to counteract the imposed A-limitation, which specifically 

limits the biosynthesis of amino acids (Figure 2.3). Interestingly, “glycolysis” proteins 

also constitute a significant fraction (~15%) of the A-sector, possibly reflecting the 

important role of glycolysis in generating precursors for amino acid biosynthesis.  

The U-sector consists of proteins that are not up-regulated by any of the growth 

limitations. More than one third of the U-sector is accounted for by the term “cellular 

amino acid biosynthetic process”. The categories of proteins associated with this term are 

primarily related cysteine, methionine, and tryptophan biosynthesis (Table 2.6). This is 

not surprising for cysteine and methionine synthesis since sulfur is not limited in any of 

the growth limitations imposed here. The same logic applies to the case of tryptophan 

synthesis enzymes because tryptophan biosynthesis is not directly affected by the 

particular mode of A-limitation that was applied (Figure 2.3), nor by the other two 

limitations. The second abundant term of the U-sector is “purine ribonucleotide 

biosynthetic process”, which is again not targeted by any of the growth limitations. The 

third term is “regulation of translation”, where the proteins are mostly related to synthesis 

of tRNAs with the exception of one ribosomal protein (Table 2.6). In summary, the U-

sector is composed of enzymes for making a diverse group of building blocks including 

some amino acids, purine ribonucleotides, and some tRNAs.  

The major term of the S-sector is “carbohydrate metabolic process”, revealing the 

sector’s role in central metabolism and energy related activities. The other two terms are 

“response to stress” and “nitrogen compound transport”. These terms suggest the possible 
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“multiple-purpose” nature of the S-sector proteins that are mobilized in response to 

starvation conditions via either C- and A- limitations. This notion is best illustrated by the 

term ‘nitrogen compound transport”, consisting mostly of transporters for peptides and 

amino acids which can clearly be used to counteract both C- and A- limitations (Table 

2.6). The O-sector is more diverse, with the top three terms describing about 40% of the 

sector. The terms are “transcription, DNA-dependent”, “response to stress”, and 

“nucleotide biosynthetic process”, reflecting some house-keeping activities of proteins in 

this sector. 

In summary, the GO analysis reveals that the R-sector consists mostly of the 

translational machinery, the C-sector engages in carbon scavenging, the A-sector makes 

nitrogen-containing building blocks consisting mostly of amino acids, and the U-sector 

produces other building blocks including sulfur-containing amino acids and purine 

nucleotides. In exponentially growing cells, there coarse-grained enzyme functionalities 

correspond to steady fluxes of biomass. As illustrated in Figure 2.15, these four metabolic 

fluxes are denoted as JR, JC, JA, and JU, respectively, representing a coarse-grained 

metabolism. The S-sector shares functions with both the C- and A- sectors, thus carrying 

both JC and JA fluxes. The O-sector apparently corresponds to house-keeping functions 

that are carried out independently from any of the applied limitations. 
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Figure 2.15. Association between metabolic fluxes and proteome sectors. 

There are four fluxes JC, JA, JU, and JR, represented by the arrows, replenishing the pools of 
carbon precursors, amino acids, other building blocks, and macromolecules, respectively. The $s 
on top of the fluxes represent the corresponding proteome fractions that carry the fluxes. Note 
that the S-sector proteins contribute to both JC and JA.  

 

2.6   A proteome-based flux model 

As summarized in Figure 2.15, the GO analysis provides a strong motivation to 

construct a quantitative flux model for the growth rate dependence of the fluxes 

associated with each of the proteome sectors. Based on the analysis of the data in Figure 

2.13, the proteome is partitioned into six sectors, $%, each of which is comprised of a 

growth-rate independent component, $%,0, and a growth-rate dependent component, 

#$%(&), i.e.,  

 !" (#) = !" ,0 +!!" (#) . [2.2] 
In our flux model, we make the central assumption that the flux processed by a 

proteome sector %, J%, is proportional to the growth-rate dependent component of the 

corresponding proteome fraction, #$%, i.e.,  
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  J! = k! "#$!  [2.3] 
where k% is a coarse-grained kinetic coefficient describing the efficiency of the metabolic 

sector %. As shown below, the model comprising of Eqs. [2.2-2.3] can quantitatively 

account for all of the observations summarized in Figure 2.13.  

General Response: The “downward” general responses in Figure 2.13 can be 

exemplified by the R-sector, where the total protein synthesis flux through the ribosomes 

is given by JR. The R-sector fraction of the proteome ($R) is given by 

 JR = kR ! "#R , [2.4] 
where kR is the corresponding enzyme kinetic parameter (given by the peptide elongation 

rate. In combination with the stoichiometric requirement of the flux for cell growth, 

cR ! JR = " , where cR is the stoichiometric coefficient (Varma and Palsson, 1994), the 

growth rate dependent proteome fraction for the R-sector is given by  

 !"R(#) = # /$R , [2.5]  
where !R = kRcR  is an effective rate constant for the R-sector. Upon applying the 

C- or A- limitation, the peptide elongation is not affected, 'R is constant and Eq. [2.5] 

describes a linear relation between $R and &, which is the “general response”. Note that 

this model explicitly predicts identical general responses for the R-sector under C- and A- 

limitations (Eq. [2.S1] of Table 2.7), in good agreement with the data of Figure 2.13.  

Similarly, for the U-sector: 

 !"U (#) = # /$U . [2.6] 
The downward lines of the U-sector in Figure 2.13 is produced by Eq. [2.6] as 

long as none of the growth limitations affects the value of 'U, and none of the metabolic 

processes catalyzed by the U-sector is affected. Thus, the model predicts identical general 
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responses for the U-sector under C-, A- and R- limitations (Eq. [2.S2] of Table 2.7), 

which is consistent with the data in Figure 2.13.  

The responses of the C-, A-, and S- sectors are more complex since the S-sector is 

composed of proteins that provide both JC and JA fluxes (Figure 2.15). This effect is 

modeled by considering two lists of proteins, called   !C  and   !A , each responding 

specifically to C- and A- limitation, respectively. Then S-sector proteins is composed of 

those proteins that are common to both   !C  and   !A , while C- and A- sector proteins are 

those unique in   !C  and   !A , respectively (Figure 2.16). Applying the same linear relation 

between proteome fractions   ! !C ,  ! !A  and with the fluxes, i.e.,  

 
 

! !C (") = ! !C ,0 + " /#C

! !A(") = ! !A,0 + " /#A

, 

we obtain in the simplest case  

 

  

!"C (#) = (1$ f ) %# /&C ,
!"A(#) = (1$ f ) %# /& A ,
!"S (#) = f %[# /&C + # /& A],

 [2.7] 

with f being the fraction of   !C - and   !A - sector proteins that are in common (Figure 

2.16). These relations describe the general responses of the C-, A- and S- sectors (Eqs. 

[2.S3-2.S5] of Table 2.7), for growth limitations that do not affect 'C or 'A. Finally, we 

assume the existence of a growth-rate independent sector, and identify it with the O-

sector, i.e., 
  !O (") = !O ,0  (Eq. [2.S6] of Table 2.7) with 

   !"O (#) = 0 . [2.8] 
Specific response: A striking result of this flux model is that the “specific” 

upward responses of the C-, A-, R-, and S-sectors in Figure 2.13 can also be produced by 

Eqs. [2.5-2.8], without introducing any additional parameters. For example, under R-



 

 

34 

limitation the value of 'R changes in response to the limitation, and consequently, the 

growth-rate dependence of $R can no longer be obtained from Eq. [2.5]. However, #$R(&) 

can be obtained from the important constraint !" (#)
"
$ = 1 , or equivalently 

 !"# ($)
#
% = "max , [2.9] 

where !max " 1# !$ ,0
$
% . Since under R-limitation only 'R is reduced, all other sectors still 

follow the general responses. Using Eqs. [2.5-2.9], the expression for the specific 

response of the R-sector becomes: 

   !"R (#) = "max $ # /% R , [2.10] 
with   ! R

"1 #$C
"1 +$ A

"1 +$U
"1  (Eq. [2.S7] of Table 2.7). Note that both parameters 

appearing in Eq. [2.10] are determined completely in terms of the parameters already 

introduced, and an important feature of the flux model is that there is no additional 

parameter for the specific responses once the general responses are established. In a 

similar manner, the specific responses of the C-, A-, and S- sectors are obtained in terms 

of $max and the ' s, with no additional parameters; see Eqs. [2.S8-2.S10] of Table 2.7 

with derivation given in the following. 
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Figure 2.16.  S-sector proteins respond to both C- and A- limitations. 

(A) Illustration of two hypothetical lists of proteins,  !C  and  !A , responding to only C-limitation 
and only A-limitation, respectively. While the C- and A- sector proteins belong only to the  !C  and 

 !A  respectively, the “multi-purpose” S-sector proteins belong to both lists.  

(B) An illustrative mechanism generating the expression pattern of an S-sector protein: the 
corresponding gene is expressed by the activation of either the promoter Pc which responds to 
signals for C- limitation or the promoter PA which responds to signals for A- limitation.  

 

We first hypothesize that there are two lists of proteins,  !C  and  !A , responding to 

only C-limitation and only A-limitation, respectively (Figure 2.16A). While the C- and 

A- sector proteins belong only to the  !C  and  !A  respectively, the “multi-purpose” S-sector 

proteins belong to both lists. Figure 2.16B illustrates a mechanism generating the 

expression pattern of an S-sector protein: the corresponding gene is expressed by the 

activation of either the promoter Pc which responds to signals for C- limitation or the 

promoter PA which responds to signals for A- limitation. The growth-rate dependent 

components of  ! !C  and  ! !A  are denoted as  !! !C  and  !! !A , respectively. Similar to the R- 

and U- sectors (Eqs [2.5-2.6]), we have for  !C  proteins 
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  !! !C (") = " /#C , [2.11] 
and  

  !! !A(") = " /#A , [2.12] 
for  !A  proteins, with 'C and 'A being the respective rate constants. We assume that a 

constant fraction (fC) of  !! !C  belongs to #$S, the growth-rate dependent component of the 

S-sector. Similarly, we assume that a constant fraction (fA) of  !! !A  also belongs to #$S. 

We then have 

  !!S (") = fA #" /$A + fC #" /$C . [2.13] 
The remaining parts of  !! !C  and  !! !A  are respectively #$C and #$A, i.e., 

 !!C = (1" fC ) #$ /%C , [2.14] 
and 
 !!A = (1" fA ) #$ /%A . [2.15] 
Eqs. [2.13-2.15] describe the general responses of the S-, C-, and A- sectors. To derive 

the specific responses of the sectors, we use the constraint given by Eq. [2.9]. For 

example, under C-limitation where only 'C is changed, A-, R-, and U- sectors still follow 

the general responses. Using Eqs. [2.5-2.6], [v], and [2.9], we have 

 !!S +!!C = !max " # $(%R
"1 +%U

"1 + (1" fA ) $%A
"1) . [2.16] 

Using Eqs. [2.13-2.14], we have 

 (1! fC ) "!#S ! fC "!#C = (1! fC ) " fA "$ /%A . [2.17] 
Solving Eqs. [2.16] and [2.17] for #$S and #$C gives 

 
!!S (") = fC #!max $ " #( fC #(%R

$1 +%U
$1)+ ( fC $ fA ) #%A

$1)
!!C (") = (1$ fC ) #(!max $ " /& C )

, [2.18] 

where   ! C
"1 #$ A

"1 +$ R
"1 +$U

"1 .  

Similarly, under A-limitation, we obtain 
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!!S (") = fA #!max $ " #( fA #(%R

$1 +%U
$1)+ ( fA $ fC ) #%C

$1)
!!A(") = (1$ fA ) #(!max $ " /& A )

, [2.19] 

with   ! A
"1 #$C

"1 +$ R
"1 +$U

"1 . 

Eqs. [2.18-2.19] describe the specific responses of the three sectors. Inspired by 

the similar specific responses of the S-sector to both C- and A- limitations (see the two 

upward lines in Figure 2.13E), we simply used f = fA = fB  in Eqs. [2.18-2.19], yielding 

simpler equations for specific responses of the C-, A-, and S-sector (Eqs. [2.S8-2.S10] of 

Table 2.7). Similarly, Eqs. [2.S3-2.S5] of Table 2.7 are the results of applying this 

simplification to Eqs. [2.13-2.15]. This simplification still allows good quantitative 

description of the data (Figure 2.17; Table 2.8). 

In summary, the linear equations in Table 2.7 describe the prediction of the simple 

flux model (Eqs. [2.2-2.3]) on the partitioning of the proteome as a function of growth 

rate under the three different modes of growth limitation. Although the model contains 

only 10 adjustable parameters, the quality of the fit of the model to the data (lines in 

Figure 2.17; Table 2.8) is comparable to the 24-parameter fit for each individual response 

(Figure 2.13; Table 2.5). 
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Figure 2.17.  Performance of the proteome-based flux model. 

The data points are identical to those in Figure 2.13. The lines here are the result of a 
global fit to the predictions of the flux-based proteome model (Table 2.7). The growth-
rate independent component of each sector ($%,0) is represented as the height of the filled 
area in the corresponding plot. See Table 2.8 for parameters of the fitted lines. 
 

2.7 Simple responses of proteome 

The straightforward meanings of the remaining 10 parameters are illustrated by 

the cartoon in Figure 2.18. The top pie chart in Figure 2.18 represents the proteome 

fractions for the sectors under the glucose standard condition, with the growth-rate 
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independent fraction of the proteome, $Q (gray area in the top pie chart) being 

  
!Q = !" ,0 ="# 1$!max . The growth-rate dependent component includes the remainder of 

every sector, shown as colored wedges, whose proteome fractions make up the rest of the 

pie, $max.  

 

Figure 2.18.  Representation of the proteome responses under extreme growth limitations and 
interpretation of the model parameters. 

The growth-rate independent component of the protein is represented as $Q (the entire gray 
area), which is composed of the growth-rate independent components of the C-, A-, R-, U-, and S- 
sectors, and the O-sector. See Table 2.8 for their values. The growth-rate dependent part of a 
sector % is labeled as "$%, distinguished by the different colors. The colored wedges in the top pie 
chart shows the sizes of these sectors, "$%(&(), under the glucose standard condition (with growth 
rate &(). Their values are: "$C = 0.07, "$A = 0.06, "$R = 0.13, "$U = 0.07, and "$S = 0.06. The 
pie charts at the bottom show the sizes of these sectors under the three modes of growth 
limitations in the extreme limit & ) 0. Theses sizes are governed by two parameters, 
$max = 1 $ $Q  and f % 0.32.  

 

The bottom three pie charts in Figure 2.18 describe the responses of the proteome 
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to each of the three modes of growth limitation in the extreme case & & 0 according to 

the model. Under extreme R-limitation, the R-sector fraction #$R approaches $max, while 

under C-limitation, $max is partitioned into !!C ,max = (1" f ) #!max  and !!S ,max = f "!max , 

and under A-limitation $max is partitioned into !!A,max = (1" f ) #!max  and !!S ,max = f "!max

. Note that the growth-rate dependent responses #$%(&) are described effectively by only 

two parameters, $max and ƒ'$max provides a cap on the magnitude of the growth-rate 

dependent component of each sector. The best-fit value, $max % 40%, is in quantitative 

agreement with previous estimates based on the ribosomal content (Scott et al., 2010) and 

a few reporters (You et al, 2013). 

Among the 10 parameters of the model, the 4 values of '% s are dependent on the 

growth medium, while the $%,0 s as well as the constant ƒ % 0.32 are expected to be 

medium independent for a given strain. All of the data described so far (summarized in 

Figure 2.13) were obtained using glucose minimal medium as the standard condition 

(with the '% s taking on the values  !"
* ), with each mode of growth limitation 

corresponding to varying one of the '% s away from  !"
* . The proteome flux model also 

makes explicit predictions on the response of the proteome under combinatorial modes of 

growth limitation, corresponding to varying multiple '% s. The effect of varying multiple 

'% s can be treated as simply repeating the single mode of growth limitations for different 

standard conditions. This prediction was tested by repeating the proteomic experiments 

under C- and A- limitations using a different standard condition, for growth in the 

glycerol minimal medium (Table 2.9). Compared to the standard condition with glucose 
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minimal medium, the glycerol minimal medium should differ by only the value of 'C, 

which is fixed by the growth rate for the glycerol standard condition (Table 2.8). Using 

this new value of 'C, together with the values of the other 9 parameters obtained from the 

glucose data, the model describes the new data remarkably well (Figure 2.19; Table 

2.10). Thus, the model can describe experiments in different standard conditions, an 

important benchmark for its ability to capture proteome responses to combinatorial 

limitations.  
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Figure 2.19.  Proteome fractions under growth limitations with respect to the glycerol standard 
condition. 

Proteome fractions $% for C- and A- limitation under glycerol standard condition are shown as 
the red and blue circles respectively for each of the 6-sectors; see Table 2.10 for values. All thick 
lines are model predictions for responses under the glycerol standard condition. Thick solid lines 
describe responses which are predicted to be unchanged between the glucose and glycerol 
standard conditions, because these lines do not involve the parameter 'C, which has a new value 
for the new standard condition according to the model. Thick dashed lines describe responses 
which are predicted to be unique for the glycerol standard condition, due to their dependence on 
the value of parameter 'C. See Eqs. [2.S3], [2.S9], [2.S7], and [2.S5] describing the dashed lines 
for the C-, A-, R-, and S- sectors, respectively. For comparison, the four respective proteome 
responses under glucose standard condition are also shown as thin solid lines. All solid lines are 
from Figure 2.17. Note that the new value of 'C, is determined from the growth rate of cells in 
glycerol standard condition (Table 2.8). Thus, all predictions for the glycerol standard condition 
were generated with no adjustable parameters.     
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2.8   The economic allocation of proteome resources 

Understanding the fundamental principles governing gene expression across the 

proteome is a major goal of molecular systems biology. However, the enormous intricacy 

of regulatory processes makes this goal difficult to realize using purely bottom-up 

modeling approaches. Similarly, measuring the allocation of resources across the 

proteome is irreducibly dependent on global absolute abundance data, which makes 

proteome management difficult to study using global relative quantitation data in 

isolation.  

Performing a binary classification of relative protein responses to three basic 

modes of growth limitations for ~1,000 proteins in E. coli, measured using quantitative 

mass spectrometry, we identified six distinct sectors of the proteome. An abundance-

based GO term enrichment reveals a functional coherence across the enzymes of each 

sector that is largely orthogonal to the functions of the other sectors.  

During balanced exponential growth, a constant flux of matter from 

environmental nutrients flows through the metabolic network of the cell to form biomass. 

In contrast to bottom-up description of the metabolic network as an object of incredible 

complexity (e.g., the KEGG map), our results highlight an enzymatic network that is 

simply coarse-grained according to the functional grouping of the proteome sectors. The 

mass fractions of the various proteome sectors increase or decrease in a strikingly linear 

fashion with the growth rate, according to the nature of the applied limitation. For 

example, R-sector, consisting mostly of ribosomal proteins, increases in response to the 

limitation of protein translation.  
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The control of proteome partition is likely orchestrated by sophisticated 

regulatory networks that integrate information from multiple signaling molecules. Some 

of these signals are well known, e.g. ppGpp directs ribosome synthesis in accordance to 

the level of amino acid depletion (Ross et al., 2013), cAMP-Crp coordinates catabolic 

protein expression in accordance to the availability of alpha-keto acids (You et al., 2013) 

and the PII/NtrBC system determines the degree of nitrogen assimilation in accordance to 

the availability of glutamine (Reitzer, 2003). However, many mysteries remain, e.g., the 

coherent response of the expression of proteins in the anabolic sector is well beyond what 

is known to be controlled by nitrogen regulatory system, and yet the enzymes for amino 

acid synthesis and nucleic acid synthesis are clearly distinguished in their responses. 

Also, a substantial number of proteins are in the S-sector which respond to both C- and 

A- limitations; yet little similarity can be seen based on their promoter regions. It is 

possible that major pleiotropic regulators are yet to be discovered, or that the roles of 

some existing pleiotropic regulators are to be reappraised (as has been done recently for 

cAMP-Crp (You et al., 2013), a well-characterized regulator whose function was long 

thought to be understood). The simple behaviors of the proteome sectors revealed in this 

work are molecular phenotypes that can be relied upon in future studies to identify the 

coordinators of such coherent responses.  

Despite the lack of regulatory information, the simple character of coordinated 

sector behavior shows that the physiological rationale of proteome management follows 

basic economic principles of supply and demand that can be understood independent of 

the underlying mechanisms. A phenomenological model that stipulates flux matching in 

the flow of material between the sectors of the coarse-grained reaction network, along 
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with the mutual constraint of a finite proteome, is sufficient to capture the observed 

sector behavior quantitatively with a few parameters. These governing principles imply 

that the flux through each sector % is carried by a mass fraction $% whose size is 

determined by the cost of supplying flux through the given sector under the given mode 

of growth limitation, with the cost given by !"
#1 $ %&"

%'
. In this way, proteome 

management is analogous to the economic concept of “division of labor”, with finite 

capital allocated according to an effective pricing system given by the '% s (Lovell, 2004; 

Mankiw, 2011). When a sector is specifically challenged, such as the C-sector under 

carbon uptake limitation, the price to carry flux through the C-sector, !"C
!#

, is increased 

while the price to carry flux through the other sectors remains the same. This requires an 

increased investment of capital, e.g., proteome fraction, to carry the requisite flux JC. The 

predictions of the model in two series of test conditions with a different standard 

condition are in close agreement with measurements, demonstrating the robustness of 

these conclusions. 

While the growth-rate dependent components (#$% s) closely follow economic 

principles, much of the growth-rate independent component ($Q) comprises of offsets of 

the identified proteome sectors, i.e., $%,0 s as shown in Figure 2.13. It was shown 

previously that abundance in the growth-rate independent sector directly diminishes the 

growth rate. This seemingly wasteful allocation of proteome resources may serve a 

purpose that transcends the simple economics of steady-state growth. For example, 

keeping substantial offsets on hand may help bacteria adapt more quickly to varying 
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nutrient conditions (Dennis and Bremer, 1974; Kjeldgaard et al., 1958; Koch and Deppe, 

1971). Note that these offsets are the remaining components of proteome sectors 

extrapolated linearly to zero growth. This work examined cells kept at moderate growth 

rates; it is unclear when or if the observed linear relations cease to hold. Other competing 

considerations may well arise at very slow growth, or in starvation conditions, adding to 

the principles of proteome management revealed by this work. 

The quantitative approach described in this work, perhaps among the first to 

capture noisy -omics data by a simple mathematical model, relies on several key 

ingredients. As the majority of observed protein expression levels vary within a range of 

two fold in the observed growth rate range, effective binary classification depends 

crucially on the highly precise relative quantitation method used to measure individual 

protein level changes. Measuring the mass fraction of each sector would not have been 

possible without a method for absolute protein concentration. To overcome the 

unreliability and noise-dominated signal of individual peptide spectral counts, we 

developed a coarse-grained spectral counting method that enabled reproducible 

measurements of absolute abundance for the proteome sectors. In the case of the 

ribosome sector, the measurement of the R-sector absolute abundance using quantitative 

mass spectrometry and using a classic biochemical assay is in close agreement. Early 

works on proteome partition were, by necessity, based upon extrapolations from 

measurements on a representative set of genes. Here, leveraging a high coverage qMS 

platform, the rules governing proteome management could be determined using data from 

a vast majority (~80%) of the expressed proteins in E. coli, corresponding to ~1,000 

genes. The phenomenological coarse-graining modeling approach presented here is 
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readily extensible to dissecting global gene expression responses to other perturbations, 

and suggests a general path forward in the quantitative analysis of multivariate -omics 

data. 
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Tables 

Table 2.1.  Strains and growth conditions. 

Three strains were used in this study: the wild type NCM3722, NQ381, and NQ393. The latter 
two strains are based on NCM3722. The C-limitation was carried out by titrating the lactose 
uptake for the strain NQ381 growing on lactose minimal medium. Four growth rates were 
obtained for four different 3MBA levels. The fifth growth condition in the C-limitation series was 
WT NCM3722 growing on lactose minimal medium. The lactose minimal media were prepared 
with 1 mM IPTG. NQ393 was used for the A-limitation, with four growth rates corresponding to 
four different IPTG levels in the glucose minimal medium. Similarly, WT NCM3722 growing on 
glucose minimal medium was the fifth growth condition in the A-limitation series. WT NCM3722 
was used for the R-limitation, with four growth rates corresponding to four chloramphenicol 
levels in the glucose minimal medium. The fastest growth condition in both the A- and R- 
limitation series is the condition of WT cells growing on glucose minimal medium. We refer to 
this growth condition as the “glucose standard condition”, from which cell growth was A-limited 
or R-limited.   

Growth 
limitations Medium Strains, inducers/antibiotic amounts, and doubling times 

Titratable LacY 
NQ381 (attB::PLlac-O1-xylR, lacY::km-Pu-lacY ) 

WT 
NCM3722 

3MBA (uM) 0 25 5
0 

500  C-
limitation 

Lactose 
minimal 
medium 

Dbl (min) 92 72 6
2 

48 40 

Titratable GOGAT 
NQ393 (attB::Sp-lacIQ-tetR, #lacY, #gdhA,  
PLlac-O1-gltBD) 

WT 
NCM3722 

IPTG (uM) 30 40 5
0 

100  
A-
limitation 

Glucose 
minimal 
medium 

Dbl (min) 91 69 5
8 

47 43 

WT 
NCM3722 (wild type) 

Chloramphenic
ol (uM) 

8 4 2 0 R-
limitation 

Glucose 
minimal 
medium 

Dbl (min) 147 102 6
5 

42 
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Table 2.2. Relative protein expression data, parameters of linear fits, and membership in 
proteome sectors. 

See Supplemental file “Table2_2.xlsx” 

 
 
Table 2.3.  Comparison between the sectors and the clusters. 

The numbers inside the parentheses indicate the number of proteins included in the 
corresponding clusters or sectors. With the exception of the O-sector, each sector is 
overwhelmingly present in one of the 5 hierarchical clusters, with the bold number indicating the 
number of overlapping proteins between the corresponding sector and hierarchical cluster.  

Sector\Cluster 
C-cluster 
(160) 

A-cluster 
(266) 

R-cluster 
(325) 

U-cluster 
(137) 

S-cluster 
(165) 

C-sector (110) 80 2 6 4 17 
A-sector (209) 3 150 19 11 24 
R-sector (153) 0 0 144 8 0 
U-sector (113) 9 6 19 79 0 
S-sector (159) 33 34 5 0 86 
O-sector (309) 35 61 132 35 38 
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Table 2.4.  Proteome fractions for the 6 sectors under the three limitations. 

Proteome fraction data for the triplicate runs (the 4th-6th columns) and their means (the 7th 
column) are listed for each sector under each limitation. The means and the corresponding 
standard deviations are shown in Figure 2.13, with same color scheme for each of the three 
growth limitations. See Experimental Procedures for how the proteome fraction data were 
obtained. 

   
Doubling 
time (min) 

Replicate 
1 

Replicate 
2 

Replicate 
3 Mean 

92 0.203 0.221 0.244 0.223 
72 0.185 0.213 0.249 0.216 
62 0.190 0.203 0.226 0.206 
48 0.156 0.166 0.174 0.165 

C-lim • 

40 0.086 0.086 0.097 0.089 
91 0.073 0.080 0.077 0.077 
69 0.076 0.083 0.080 0.080 
58 0.090 0.089 0.090 0.090 
47 0.134 0.136 0.131 0.134 

A-lim • 

43 0.119 0.128 0.121 0.123 
147 0.042 0.036 0.035 0.038 
102 0.051 0.048 0.050 0.049 

65 0.079 0.079 0.077 0.078 

C-sector 

R-lim • 

42 0.126 0.122 0.127 0.125 
92 0.155 0.148 0.129 0.144 
72 0.166 0.156 0.127 0.150 
62 0.165 0.160 0.140 0.155 
48 0.187 0.182 0.176 0.182 

C-lim • 

40 0.219 0.218 0.213 0.217 
91 0.263 0.270 0.265 0.266 
69 0.259 0.265 0.264 0.263 
58 0.245 0.251 0.246 0.247 
47 0.197 0.199 0.190 0.195 

A-lim • 

43 0.199 0.196 0.184 0.193 
147 0.136 0.120 0.120 0.125 
102 0.150 0.138 0.131 0.140 

65 0.170 0.161 0.156 0.162 

A-sector 

R-lim • 

42 0.195 0.192 0.193 0.193 
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Table 2.4. Continued. 

   
Doubling 
time (min) 

Replicate 
1 

Replicate 
2 

Replicate 
3 Mean 

92 0.129 0.149 0.173 0.150 
72 0.141 0.159 0.200 0.167 
62 0.148 0.172 0.215 0.178 
48 0.160 0.183 0.240 0.194 

C-lim • 

40 0.189 0.226 0.270 0.228 
91 0.135 0.152 0.175 0.154 
69 0.145 0.164 0.191 0.167 
58 0.154 0.172 0.203 0.176 
47 0.175 0.197 0.227 0.199 

A-lim • 

43 0.178 0.204 0.253 0.212 
147 0.336 0.414 0.425 0.391 
102 0.303 0.382 0.391 0.358 

65 0.264 0.318 0.325 0.302 

R-sector 

R-lim • 

42 0.205 0.232 0.243 0.227 
92 0.098 0.091 0.073 0.087 
72 0.109 0.102 0.081 0.097 
62 0.114 0.109 0.089 0.104 
48 0.138 0.146 0.111 0.132 

C-lim • 

40 0.179 0.171 0.157 0.169 
91 0.099 0.103 0.094 0.099 
69 0.111 0.101 0.088 0.100 
58 0.125 0.118 0.100 0.114 
47 0.147 0.144 0.130 0.140 

A-lim • 

43 0.147 0.140 0.127 0.138 
147 0.117 0.101 0.109 0.109 
102 0.121 0.114 0.107 0.114 

65 0.137 0.131 0.127 0.132 

U-sector 

R-lim • 

42 0.153 0.158 0.146 0.152 
92 0.181 0.185 0.193 0.186 
72 0.167 0.164 0.166 0.166 
62 0.151 0.153 0.152 0.152 
48 0.127 0.121 0.120 0.122 

C-lim • 

40 0.108 0.106 0.101 0.105 
91 0.170 0.170 0.167 0.169 
69 0.157 0.160 0.158 0.158 
58 0.147 0.150 0.141 0.146 
47 0.125 0.123 0.127 0.125 

A-lim • 

43 0.123 0.123 0.122 0.122 
147 0.082 0.083 0.073 0.079 
102 0.093 0.082 0.086 0.087 

65 0.099 0.089 0.096 0.095 

S-sector 

R-lim • 

42 0.112 0.108 0.108 0.109 
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Table 2.4. Continued. 

   
Doubling 
time (min) 

Replicate 
1 

Replicate 
2 

Replicate 
3 Mean 

92 0.210 0.193 0.181 0.195 
72 0.215 0.197 0.174 0.195 
62 0.217 0.197 0.176 0.196 
48 0.220 0.196 0.179 0.198 

C-lim • 

40 0.208 0.185 0.161 0.185 
91 0.227 0.209 0.208 0.215 
69 0.229 0.213 0.210 0.217 
58 0.218 0.209 0.213 0.213 
47 0.208 0.196 0.192 0.198 

A-lim • 

43 0.216 0.202 0.189 0.202 
147 0.270 0.239 0.234 0.247 
102 0.270 0.229 0.230 0.243 

65 0.242 0.217 0.215 0.225 

O-sector 

R-lim • 

42 0.202 0.185 0.179 0.189 
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Table 2.5.  Parameters describing the linear growth-rate dependence of the 6 proteome sectors 
under the three growth limitations (Eq. [2.1]) 

For a sector %, 4 parameters are required to describe the responses to the three growth 
limitations, with 3 for the Y-intercepts ($%,l,0) and 1 for the proteome fraction at the glucose 
standard condition (!"

* ). The fitted lines are shown in Figure 2.13. The R2 of the fit measures the 
quality the overall fit (i.e., the 6!3=18 lines) with respect to the mean proteome fraction data (the 
last column in Table 2.4). This value of R2 is also useful for later comparison with the quality of 
fit by the flux model (Table 2.8). See Experimental Procedures for the definition of R2. 
 

$%,l,0 C-lim (l = C ) A-lim (l = A ) R-lim (l = R ) !"
*  

C-sector 
(% = C) 

0.33±0.01 0.03±0.01 -0.00±0.01 0.12±0.00 

A-sector 
(% = A) 

0.09±0.01 0.34±0.01 0.10±0.01 0.20±0.00 

R-sector 
(% = R) 

0.09±0.01 0.09±0.01 0.46±0.01 0.22±0.00 

U-sector 
(% = U) 

0.02±0.01 0.04±0.01 0.09±0.01 0.15±0.00 

S-sector 
(% = S) 

0.24±0.01 0.22±0.01 0.07±0.01 0.11±0.00 

O-sector 
(% = O) 

0.20±0.01 0.24±0.01 0.27±0.01 0.19±0.00 

R2 of the fit 0.99 
 

Table 2.6.  Lists of genes associated with each of the GO terms identified by the abundance-based 
GO analysis. 

See Supplemental file “Table2_6.xlsx”.  
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Table 2.7.  Flux model equations describing responses of the six sectors to the three growth 
limitations. 

The table lists equations describing all 18 responses, 6 sectors to 3 growth limitations. As 
developed in the text, the equations are the results of the proteome-based flux model. The 
equations contain 16 parameters,  four of which (*C, *A, *S, and *R) are expressed as functions of 
rest of the parameters (Eqs. 2.S8b], [2.S9b], [2.S10b], and [2.S7b]), reducing the number of free 
parameters to 12. Due to the definition !max " 1# !$ ,0

$
% , the number of free parameters is 

further reduced to 11. For a given condition, Eqs. [2.5-2.9] yields an expression of growth rate & 
as a function of the effective rate constants and $max, i.e., 

 ! = "max
#C

$1 +#A
$1 +#R

$1 +#U
$1 , [2.S11] 

which further eliminates one parameter if the growth rate of the condition is given. 
 

 C-lim A-lim R-lim 
C !C (" ) = !C ,0 +

(1# f ) $ (!max # " /% C )
 

[2.S8a] 

! C

"1 = # A

"1 +# R

"1 +#U

"1                            
[2.S8b] 

!C (" ) = !C ,0 + (1# f ) $ " /%C
              

[2.S3] 
!C (" ) = !C ,0 + (1# f ) $ " /%C

           
[2.S3] 

A !A (" ) = !A ,0 + (1# f ) $ " /% A
              

[2.S4] 
!A (" ) = !A ,0 +

(1# f ) $ (!max # " /% A )
  

[2.S9a] 

! A

"1 = #C

"1 +# R

"1 +#U

"1                              
[2.S9b] 

!A (" ) = !A ,0 + (1# f ) $ " /% A
            

[2.S4] 

R !R (" ) = !R ,0 + " /# R
                           

[2.S1] 
!R (" ) = !R ,0 + " /# R

                            
[2.S1] 

!R (" ) = !R ,0 +!max # " /$ R
               

[2.S7a] 

! R

"1 = #C

"1 +# A

"1 +#U

"1                           
[2.S7b] 

U !U (" ) = !U ,0 + " /#U
                          

[2.S2] 
!U (" ) = !U ,0 + " /#U

                            
[2.S2] 

!U (" ) = !U ,0 + " /#U
                         

[2.S2] 
S !S (" ) = !S ,0 + f # (!max $ " /% S )          

[2.S10a] 

! S

"1 = # R

"1 +#U

"1                                     
[2.S10b] 

!S (" ) = !S ,0 + f # (!max $ " /% S )            
[2.S10a] 

! S

"1 = # R

"1 +#U

"1                                       
[2.S10b] 

!S (" ) = !S ,0 +

f # " # (1 /$C + 1 /$ A )
  

[2.S5] 

O !O (" ) = !O ,0
                                        

[2.S6] 
!O (" ) = !O ,0

                                          
[2.S6] 

!O (" ) = !O ,0
                                      

[2.S6] 
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Table 2.8.  Parameters of the flux model. 

List here are 12 parameters, including 6 growth-rate independent components of the sectors, 4 
effective rate constants, the constant f, and $max. Only 10 of them are free parameters due to two 
relations among the parameters. The first one is the definition !max " 1# !$ ,0

$
% . The second 

relation is Eq. [2.S11] given that the growth rate & is known for a condition. For the glucose 
standard condition, ! = !*  (corresponding to a doubling time of 42 min). The parameter values 
were determined by fitting the 10-parameter flux model (Table 2.7) to the proteome responses 
data with respect to the glucose standard condition (Table 2.4). The results of the fit are shown as 
lines in Figure 2.17. The quality of the fit is measured by the value of R2. See Experimental 
Procedures for its definition. For the glycerol standard condition, all parameters except 'C are 
expected to have these same values. The new 'C value (indicated in the table with “glycerol” next 
to it) was determined by Eq. [2.S11], using the growth rate ! †  (corresponding to a doubling time 
of 61 min) of the glycerol standard condition and parameter values from this table. This new 
value of 'C, together with the values of other parameters listed in this table, are used for the 
model (Table 2.7) to give the thick (both solid and dashed) lines in Figure 2.19. 

Parameters Determined values 
$C,0 0.05±0.01 
$A,0 0.12±0.01 
$R,0 0.09±0.01 
$U,0 0.08±0.01 
$S,0 0.06±0.01 

6 growth-rate 
independent 
components 

$O,0 0.21±0.00 
!C

"1  0.10±0.02 
0.28±0.04 (glycerol) 

!A
"1  0.10±0.02 

!R
"1  0.13±0.02 

4 effective rate 
constants 

!U
"1  0.07±0.02 

 f 0.32±0.04 
 $max 0.40±0.02 
R2 of the fit  0.94 
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Table 2.9.  Strains and growth conditions for the C- and A- limitations in the glycerol minimal 
medium. 

The glycerol C-limitation was carried out by titrating the glycerol uptake for the strain NQ399 
(You et al., 2013) growing on glycerol minimal medium. Three growth rates were obtained for 
three different 3MBA levels. The fourth growth condition in the glycerol C-limitation series was 
NCM3722 growing on glycerol minimal medium. The four glycerol C-limitation conditions all 
contained 1 mM IPTG. Strain NQ393 was used for the glycerol A-limitation, with the four growth 
rates corresponding to four different IPTG levels in the glycerol minimal medium. 

Growth 
limitations Medium Strains, inducers/antibiotic amounts, and doubling 

times 

NQ399 (attB::PLlac-O1-xylR, km-Pu-glpFK ) NCM3722 
(wild type) 

3MBA (uM) 25 100 500   

Glycerol 
C-
limitation 

Glycerol 
minimal 
medium 

Dbl (min) 147 99 74  69 

NQ393 (attB::Sp-lacIQ-tetR, #lacY, #gdhA,  
PLlac-O1-gltBD) 

 

IPTG (uM) 20 30 40 75  

Glycerol 
A-
limitation 

Glycerol 
minimal 
medium 

Dbl (min) 149 94 73 61  
 

 
Table 2.10.  Proteome fraction data for the 6 sectors under the growth limitations in glycerol 
medium. 

Proteome fraction data for the 6 proteome sectors are listed for each of the two growth 
limitations in glycerol medium. See Experimental procedures for how the proteome fraction data 
were obtained. 

  

Doubling 
time 
(min) 

C-
sector 

A-
sector 

R-
sector 

U-
sector 

S-
sector 

O-
sector 

147 0.219 0.148 0.125 0.086 0.202 0.193 
99 0.227 0.146 0.137 0.094 0.180 0.195 
74 0.217 0.157 0.148 0.102 0.165 0.194 

Gly C-
lim 

69 0.208 0.159 0.153 0.108 0.165 0.191 
149 0.111 0.233 0.117 0.068 0.207 0.225 
94 0.141 0.213 0.133 0.088 0.194 0.205 
73 0.159 0.178 0.141 0.103 0.195 0.204 

Gly A-
lim 

61 0.177 0.160 0.163 0.110 0.173 0.195 
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2.9   Experimental procedures used in Chapter 2 

2.9.1 Growth of bacterial culture 

Growth medium: All growth media used in this study were based on the MOPS-

buffered minimal medium used by Cayley et al. (Cayley et al., 1989) with slight 

modifications. The base medium contains 40 mM MOPS and 4 mM tricine (adjusted to 

pH 7.4 with KOH), 0.1 M NaCl, 10 mM NH4Cl, 1.32 mM KH2PO4, 0.523 mM MgCl2, 

0.276 Na2SO4, 0.1 mM FeSO4, and the trace micronutrients described in Neidhardt et al. 

(Neidhardt et al., 1974). For 15N-labeled media, 15NH4Cl was used in place of 14NH4Cl.  

The lactose minimal medium and the glucose minimal medium had 0.2% (w/v) 

lactose and 0.2% (w/v) glucose in addition to the base medium, respectively. For the C-

limitation growth, 1 mM Isopropyl !-D-1-thiogalactopyranoside (IPTG) and various 

concentrations (0-500 $M) of the inducer 3-Methylbenzyl alcohol (3MBA) were added to 

the lactose minimal medium. For the A-limitation growth, various concentrations of 

IPTG (30-100 $M) were added to the glucose minimal medium. Various concentrations 

of chloramphenicol (0-8 $M) were used for the glucose minimal medium for the R-

limitation growth. For the C-limitation growth with NQ399, 0.2% (w/v) glycerol was 

added to the MOPS base medium, in addition to 1 mM IPTG and various concentrations 

(0-500 $M) of 3MBA. The same glycerol minimal medium with no 3MBA and various 

amounts of IPTG was used for the A-limitation on glycerol.  

Growth measurements: All batch culture growth was performed in a 37°C water 

bath shaker shaking at 250 rpm. The culture volume was at most 10 ml in 25 mm # 150 

mm test tubes. Each growth experiment was carried out in three steps: “seed culture” in 



 

 

58 

LB broth, “pre-culture” and “experimental culture” in identical minimal medium. For 

seed culture, one colony from fresh LB agar plate was inoculated into liquid LB and 

cultured at 37°C with shaking. After 4-5 hrs, cells were centrifuged and washed once 

with desired minimal medium. Cells were then diluted into the minimal medium and 

cultured in 37°C water bath shaker overnight (pre-culture). The overnight pre-culture was 

allowed to grow for at least 3 doublings. Cells from the overnight pre-culture was then 

diluted to OD600 = 0.005-0.025 in identical pre-warmed minimal medium, and cultured 

in 37°C water bath shaker (experimental culture). 200 µl cell culture was collected in a 

Starna Sub-Micro Cuvette (Starna Cells, Atascadero, CA) for OD600 measurement using 

a Thermal GENESYSTM 20 Spectrophotometer around every half doubling of growth. 

About 5-7 OD600 data points within the range of ~0.05 and ~0.5 (Above OD600=~0.6 

the spectrophotometer was determined to be slightly nonlinear.) were used for calculating 

growth rate.  

2.9.2 Strain construction 

The strains used in this study are derived from E. coli K12 strain NCM3722 

(Lyons et al., 2011; Soupene et al., 2003) and summarized in Table 2.1 and Table 2.9. 

Construction of titratable lacY (NQ381) and titratable glpFK (NQ399) strains: 

DNA fragment containing the Pu promoter (-1 bp to -178 bp relative to the transcriptional 

start site) was amplified by PCR from a Pu promoter containing plasmid pEZ9, then 

inserted into the SalI and BamHI sites of plasmid pKD13, producing plasmid pKDPu. 

Using this plasmid as a template, the region containing the km gene and Pu promoter was 

PCR amplified and integrated into the chromosome of E. coli strain NQ351 between the 
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lacZ and lacY (from lacZ stop codon to lacY start codon), and in front of glpF (-1 bp to -

252 bp relative to the translational start point of glpF) respectively, by using the $ Red 

system (Datsenko and Wanner, 2000). Because the activation of Pu promoter needs the 

XylR protein, we constructed a strain NQ386 in which a synthetic lac promoter PLlac-O1 

(Lutz and Bugard, 1997) (a promoter that is repressed by LacI but does not need Crp-

cAMP for activation) driving xylR (xylR gene was cloned from pEZ6 (de Lorenzo et al., 

1991)) was inserted at the attB site. The kan-Pu-lacY and kan-Pu-glpFK constructs in 

NQ351 were transferred into strain NQ386 containing PLlac-O1-xylR by P1 transduction 

(Thomason et al, 2007), resulting in strains NQ381 and NQ399, respectively. 

Construction of titratable GOGAT strain (NQ393): Using the $ Red system, we 

replaced the promoter (+123 bp to -176 bp) of gltBDF operon by the synthetic lac 

promoter PLlac-O1 (a promoter that is repressed by LacI but does not need Crp-cAMP for 

activation) together with selection maker kan gene. The resulting kan-PLlac-O1-gltBDF 

construct was transferred to strain NCM3722 by P1 transduction. The km gene was then 

eliminated by using plasmid pCP20 (Cherepanov and Wackernagel, 1995). A sp-lacIQ-

tetR cassette providing constitutive expression of lacI to tightly repress PLlac-O1 activity 

was inserted at the attB site by P1 transduction. Lactose permease encoded by lacY can 

concentrate intracellular IPTG and will narrow the titration range, we inactivated lacY by 

P1 transduction using strain JW0334-1 from CGSC (E. coli Genetic Stock Center, Yale 

University) as #lacY donor following by kan gene elimination. The gdhA gene was 

knocked out by P1 transduction using strain JW1750-2 from CGSC as #gdhA donor 

following by kan gene elimination to obtain the final strain NQ393. 
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2.9.3 Total protein and total RNA Measurements, and !-Galactosidase Assay 

Total protein quantitation: The Biuret method was used for total protein 

quantitation (Herbert et al., 1971). Briefly, 1.8 ml of cell culture at around OD600=0.5 

during the exponential phase was collected by centrifugation. The cell pellet was washed 

with water and re-suspended in 0.2 ml water and fast frozen on dry ice. The cell pellet 

was then thawed in water bath at RT. 0.1 ml 3M NaOH was added to the cell pellet and 

samples were incubated at 100°C heat block for 5 min to hydrolyze proteins. Samples 

were then cooled in water bath at RT for 5 min. The biuret reactions are carried out by 

adding 0.1 ml 1.6% CuSO4 to above samples with thorough mixing at RT for 5 min. 

Samples were then centrifuged and the absorbance at 555 nm was measured by a 

spectrophotometer. Same biuret reaction was also applied to a series of BSA standards to 

get a standard curve. Protein amounts in the above samples were determined by the BSA 

standard curve. 

Total RNA quantitation: The RNA quantitation method is based on the method 

used by Benthin et al. (Benthin et al, 1991) with modifications. Briefly, 1.5 ml of cell 

culture at around OD600=0.5 during the exponential phase was collected by 

centrifugation and the cell pellet was fast frozen on dry ice. The cell pellet was thawed 

and washed twice with 0.6 ml cold 0.1 M HClO4, then digested with 0.3 ml 0.3 M KOH 

for 60 min at 37°C with constant shaking. The cell extracts were then neutralized with 0.1 

ml 3 M HClO4 and centrifuged at 13,000 rpm for 5 min. The supernatant was collected 

and the precipitate was washed twice with 0.55 ml 0.5 M HClO4. A final volume of 1.5 

ml of supernatant was then centrifuged and the supernatant was measured for its 

absorbance at 260 nm on a Bio-Rad spectrophotometer. The RNA concentration (µg/ml/ 
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OD600) was given by OD260 x 31/OD600, where we have used the converting factor of 

31 between the OD260 and RNA concentration. The converting factor of 31 is based on 

the molar extinction coefficient is 10.5 mmole-1cm-1 and the average molecular weight of 

an E. coli RNA nucleotide residue is 324. 

+-Galactosidase Assay: Samples (0.2 ml cell culture) were collected, fast frozen 

on dry ice and stored at -80°C prior to !-Galactosidase assay. Four samples were 

collected for each culture during exponential growth (for OD600 = 0.1~0.5). For each 

sample collected, b-Galactosidase activity was measured at 37°C by the traditional Miller 

method (Miller, 1972). The activities obtained (in unit of U/ml=OD420/min/ml) were 

plotted against the respective OD600, and the resulting slope from linear regression is 

taken to be the “LacZ expression level” (in unit of U/ml OD600, or “Miller Unit”). 

2.9.4 15N-labeled proteomic mass spectrometry 

Sample preparation: 1.8 ml of cell culture at OD600=0.4~0.5 during the 

exponential phase of the experimental culture (defined above) was collected by 

centrifugation. The cell pellet was re-suspended in 0.2 ml water and fast frozen on dry 

ice.  

Aliquot of the 15N reference cell sample (or labeled cell sample) was mixed with 

each of the 14N cell samples (or non-labeled cell samples), which contained the same 

amount of proteins. Each aliquot of the 15N samples contained about 100 $g of proteins. 

Each of the 14N cell samples also contained about 100 $g proteins. For each mode of 

growth limitation, a 15N reference cell sample was made in such a way that it contained 

cell samples from both the fastest and slowest growth conditions under that growth 
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limitation. The mixed reference is used to avoid the composition of proteins in the 

reference cell sample be biased by a particular growth medium.  

Proteins were precipitated by adding 100% (w/v) trichloroacetic acid (TCA) to 

25% final concentration. Samples were let stand on ice for a minimum of 1 hour. The 

protein precipitates were sped down by centifugation at 16000 g for 10 min at 4oC. The 

supernatant was removed and the pellets were washed with cold acetone. The pellets 

were dried in a Speed-Vac concentrator. 

The pellets were dissolved in 80 $l 100 mM NH4HCO3 with 5% acetonitrile 

(ACN). Then 8 $l of 50 mM dithiothreitol (DTT) was added to reduce the disulfide 

bonds before the samples were incubated at 65oC for 10 min. Cysteine residues were 

modified by the addition of 8 $l of 100 mM iodoacetamide (IAA) followed by incubation 

at 30oC for 30 min in the dark. The proteolytic digestion was carried out by the addition 

of 8 $l of 0.1 $g/$l trypsin (Sigma-Aldrich, St. Louis, MO) with incubation overnight at 

37oC. 

The peptide solutions were cleaned by using the PepClean® C-18 spin columns 

(Pierce, Rockford, IL). After drying in a Speed-Vac concentrator, the peptides were 

dissolved into 10 $L sample buffer (5% ACN and 0.1% formic acid).  

Mass spectrometry setttings: The peptide samples were analyzed on an AB 

SCIEX TripleTOF® 5600 system (AB SCIEX, Framingham, MA) coupled to an 

Eksigent NanoLC Ultra® system (Eksigent, Dublin, CA). The samples (2 $L) were 

injected using an autosampler. The samples were first loaded onto a Nano cHiPLC Trap 

column 200$m x 0.5mm ChromXP C18-CL 3$m 120Å (Eksigent) at a flow rate of 2 

$L/min for 10 minutes. The peptides were then separated on a Nano cHiPLC column 
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75$m x 15cm ChromXP C18-CL 3$m 120Å (Eksigent) using a 120-min linear gradient 

of 5-35% ACN in 0.1% formic acid at a flow rate of 300 nL/min. MS1 settings: mass 

range of m/z 400-1250 and accumulation time 0.5 seconds. MS2 settings: mass range of 

m/z 100-1800, accumulation time 0.05 seconds, high sensitivity mode, charge state 2 to 

5, selecting anything over 100 cps, maximal number of candidate/cycle 50, and excluding 

former targets for 12 seconds after each occurrence. 

Protein identification: The raw mass spectrometry data files generated by the AB 

SCIEX TripleTOF® 5600 system were converted to Mascot generic format (mgf) files, 

which were submitted to the Mascot database searching engine (Matrix Sciences, 

London, UK) against the E. coli SwissProt database to identify proteins. The following 

parameters were used in the Mascot searches: maximum of two missed trypsin cleavage, 

fixed carbamidomethyl modification, variable oxidation modification, peptide tolerance ± 

0.1 Da, MS/MS tolerance ± 0.1 Da, and 1+, 2+, and 3+ peptide charge. All peptides with 

scores less than the identity threshold (P=0.05) were discarded. 

Relative protein quantitation: The raw mass spectrometry data files were 

converted to the .mzML and .mgf formats using conversion tools provided by AB Sciex. 

The .mgf files were used to identify sequencing events against the Mascot database. 

Finally, spectra for peptides from the Mascot search were quantified using Least-Squares 

Fourier Transform Convolution implemented in house (Sperling et al., 2008). Briefly, 

data were extracted for each peak using a retention time and m/z window enclosing the 

envelope for both the light and heavy peaks. The data are summed over the retention 

time, and the light and heavy peaks amplitudes are obtained from a fit to the entire 

isotope distribution, yielding the relative intensity of the light and heavy species. The 
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ratio of the non-labeled to labeled peaks was obtained for each peptide in each sample. 

The relative protein quantitation data for each protein in each sample mixture was 

then obtained as a ratio by taking the median of the ratios of its peptides. No ratio (i.e., no 

data) was obtained if there was only one peptide for the protein. The uncertainty for each 

ratio was defined as the two quartiles associated with the median. To filter out data with 

poor quality, the ratio was removed for the protein in that sample if at least one of its 

quartiles lied outside of 50% range of its median; Furthermore, ratios were removed for a 

protein in all the sample mixtures in a growth limitation if at least one of the ratios has 

one of its quartiles lying outside of the 100% range of the median. 

Since the ratios are all defined relative to the same reference sample, they 

represent the relative change of the expression of the protein across all the non-labeled 

cell samples, and are referred as “relative expression data”.  

Absolute protein quantitation: The spectral counting data used for absolute 

protein quantitation were extracted from the Mascot search results. For our 15N and 14N 

mixture samples, only the 14N spectra were counted. As described in the main text, the 

absolute abundance of a protein was calculated by dividing the total number of spectra of 

all peptides for that protein by the total number of 14N spectra in the sample. 

2.9.5 Data analysis 

Expression matrices: For each of the growth limitation, the relative expression 

data can be represented in the form of an expression matrix. For example, under C-

limitation, the expression matrix is N # 5, where N is the number of proteins and 5 is the 

number of growth rates. To focus on proteins with high quality data, a protein entry (i.e., 
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a row in the matrix) is removed if the number of nonempty data elements for the protein 

is less than 3. As described in the main text, the sizes of the three final expression 

matrices are 856 % 5, 898 % 5, and 756 % 4, respectively for the C-, A-, and R- limitation.  

Scaling of the expression matrices: Because different 15N reference samples were 

used for different modes of growth limitation, it is convenient to rescale the relative 

expression data, so that for each protein the value is set to 1 under a “glucose standard 

condition”, which was the condition of WT NCM3722 cells growing in glucose minimal 

medium. Note that for both the A-limitation and R-limitation, the un-limited condition (or 

the fastest growth condition) was exactly the standard condition. For the C-limitation, 

however, the standard condition was not one of the growth conditions. The growth rate of 

the standard condition was between the fastest growth condition (with a doubling time of 

40 min) and the second fastest growth condition (with a doubling time of 48 min). 

Assuming protein expression follows a linear relation under C-limitation, the expression 

level for the standard condition was determined by extrapolating the expression levels for 

the two neighboring growth rates.  

Clustering analysis of the expression data: After scaling, the three expression 

matrices were merged into a 1053 % 14 expression matrix, with 14 (=5+5+4) for the total 

number of growth conditions and 1053 for the total number of unique proteins. The pair-

wise distance (d) used for clustering was defined as d = 1! " , where , is the Pearson 

correlation,  

 ! =
Xi "Yii#

Xi
2

i# " Yi
2

i#
,      

where Xi and Yi are the log2-transformed relative expression data for two proteins at same 
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growth condition i. The Matlab (The Mathworks, Natick, MA) function “linkage.m” was 

used to carry out a hierarchical clustering with the option of “unweighted average 

distance”. The results were written in the format for the cluster viewing software Java 

TreeView (Saldanha, 2004). 

Measure of the quality of a fit: We used the coefficient of determination R2 to 

measure how the quality of fit. Assuming a data set has values yi, and the predicted 

values fi based on the fit, R2 is defined as R2 ! 1"
(yi " fi )

2
i#
(yi " y )

2
i#

, where y is the mean of 

the values yi. The value of R2 ranges from 0 to 1, with larger number meaning high 

quality of fit. For a linear fit, R2 indicates the degree of linearity of the data. 

Determination of the resolution of the relative protein expression method: To 

decide whether a protein expression level change under a growth limitation is significant, 

we need to determine the resolution of our method. In our case, multiple (4 or 5) data 

points were obtained for the level of a protein under a growth limitation. The “fold 

change” for a protein under a particular mode of growth limitation is determined in the 

following way: First, the expression level data is fit to a linear function parameterized by 

the growth rate. Next, obtain the expression levels for the slowest and fastest growth rates 

(for this particular growth limitation) using the fitted line. Finally, calculate the ratio 

between the expression levels at the slowest and fastest growth rates. The ratio is taken as 

the fold change for this protein under the growth limitation. The change of the protein 

level is taken as significant only if the value of this fold change exceeds the resolution of 

the method.  

To determine the resolution of the method, we draw 4 or 5 random data values 
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from a normal distribution with mean of 1 and standard deviation of 0.179 (which is the 

precision of the method; see Figure 2.5), and then calculate the fold change as defined 

above. The procedure is repeated many times and the standard deviation of the values of 

fold change is defined the resolution of the method, which was determined to be 0.24 

while 5 data values were drawn (as in the case of C- and A- limitations), and 0.25 while 4 

data values were drawn (as in the case of R-limitation). We thus took 25% as the 

resolution of our method.  
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Chapter 3  

An abundance-based functional analysis of proteome 

sectors 
 

3.1 Introduction 

In this chapter, I describe our method for identifying the biological functions of 

each of the proteome sectors. The usual analysis of Gene Ontology (GO) terms identifies 

a list of terms that are enriched for a given set of genes compared to a background list of 

genes, e.g., the genome. Functions for the set of genes are then inferred from the GO 

terms identified. This approach is not well suited for our case due to the fact that 

proteome sectors occupy a mass fraction of the proteome, and individual proteins have 

vastly different abundance inside the cell. To take this fact into consideration, we carry 

out an abundance-based analysis, aiming to identify for each sector a list of GO terms 

that best reflect the functions of the sector. We refer to such a list as “best-representing 

list”.  

 

3.2 Data files 

3.2.1 Ontology and gene association files 

The ontology file and the gene association file of E. coli were downloaded from 

the Gene Ontology project website (http://geneontology.org). The “data-version” of the 
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ontology file is “2013-07-17” and the “date” is “16:07:2013 13:38”. The gene association 

file has a “submission date” of “6/5/2013” and a “GOC validation date” of “6/14/2013”. 

The ontology file contains information for the hierarchical relations between GO terms. 

In the gene association file, a gene is associated with GO terms that lie at the bottom of 

the hierarchy. The two files together provide full correspondence between genes and GO 

terms. For our purpose, we consider only the “biological process” GO terms. 

3.2.2 Abundance data file 

We use the spectral counting data for the glucose standard condition, which was 

obtained by merging the spectral counting data of the triplicate runs of the R-limitation 

sample with no chloramphenicol. As becomes clear later, we found it convenient to 

introduce the mathematical concept of set for representing spectra. We denote all the 

spectra in the data set as members in a set S0, so that the number of members in the set 

(or |S0|) is the spectral counts (e.g., the number of spectra) in the data set. Note that a 

spectrum in the data set is a recording of a peptide by the mass spectrometer. The same 

peptide can occur multiple times and each occurrence is counted as one spectrum.  

 

3.3 Filtering out GO terms 

We first filter out GO terms that are not enriched in any of the sectors, and are 

therefore not justified for inclusion in the best-representing list. For a proteome sector i, a 

GO term t can be assigned with a value of “fraction of sector” (-i,t), which is defined as 

the following, 
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 ! i,t "
St # Si
Si

,      

 

where Si is a set of spectra that belong to a proteome sector i, and St is a set of spectra that 

are associated with the GO term t. -i,t represents how much of the abundance of the 

sector i the GO term t can account for.  

Similarly, for the whole proteome, the GO term t can be assigned with a value of 

“fraction of proteome” ((t): 

 !t "
St
S0

.       

We first make a scatter plot of -i,t versus (t for all GO terms and for all sectors 

(Figure 3.1). 

 

Figure 3.1. Scatter plot of fraction of sector versus fraction of proteome for all GO terms. 

 

In Figure 3.1, we applied three criteria to define the “area of interest” indicated in 

the figure, outside of which the GO terms have been filtered out, i.e., they are not 
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qualified to be in the best-representing list and will not be considered in following 

analysis. The three criteria correspond to the three black lines in Fig. N1: 1) -i,t > 0.1; 2) 

(t < 0.4; and 3) -i,t > (t. The first criterion filters out GO terms that are small for a 

sector, i.e., accounting for less than 10% of the sector. The second criterion removes GO 

terms that are too general (see the list in Table 3.1). The third criterion is a measure of 

“enrichment”, e.g., terms above the line are more enriched in a sector, compared to their 

distribution in the whole proteome. 

Table 3.1.  The list of general GO terms. 

Fraction of 
proteome GO name GO ID 

0.95 biological_process GO:0008150 
0.83 cellular process GO:0009987 
0.81 metabolic process GO:0008152 
0.76 cellular metabolic process GO:0044237 
0.75 primary metabolic process GO:0044238 
0.75 organic substance metabolic process GO:0071704 
0.57 biosynthetic process GO:0009058 
0.57 organic substance biosynthetic process GO:1901576 
0.56 cellular biosynthetic process GO:0044249 
0.53 single-organism metabolic process GO:0044710 
0.48 nitrogen compound metabolic process GO:0006807 
0.46 small molecule metabolic process GO:0044281 
0.41 organonitrogen compound metabolic process GO:1901564 

 

The three filters reduce the number of GO terms from 1584 to less than 100 for 

each of the sectors (See the row of “After the three filters” in Table 3.2).  

Table 3.2. Number of GO terms for each sector after applying the three filters. 

Sector C A R U S O 
After the three filters 38 58 82 75 42 29 Number of remaining GO terms After the 4th filter  26 44 42 50 33 27 

 

Next focusing on the remaining GO terms for a sector i, we continue filtering out 
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a term t1 if there is another term t2 for which t1 is a parent term and has ! i,t1
=! i,t2

. t1 is a 

parent term to t2 if t2 has a relation of “is_a” with t1 according to the gene ontology file. 

This fourth filter is reasonable because t2 is more “specific” than t1 while both account for 

the same fraction of sector. Table 3.3 lists for the C-sector the terms that are filtered out 

in this way. For example, the GO term “taxis” is filtered out because the term “taxis” is a 

parent term to the term “chemotaxis” which accounts for the same fraction of the C-

sector. This fourth filter was applied to all of the sectors and further reduced the number 

of remaining GO terms (See the row of “After the 4th filter” in Table 3.2). We denote the 

remaining GO terms for a sector i as set Ti. 

Table 3.3. List of the GO terms that are filtered out from the C-sector by applying the 4th filter. 

  Terms filtered out Corresponding "specific" terms 
Fraction 
of sector GO name GO ID GO name GO ID 

0.21 biological regulation GO:0065007 regulation of biological process GO:0050789 

0.17 nucleoside metabolic process GO:0009116 purine nucleoside metabolic process GO:0042278 

0.17 
glycosyl compound metabolic 
process GO:1901657 nucleoside metabolic process GO:0009116 

0.17 
purine-containing compound 
metabolic process GO:0072521 purine nucleoside metabolic process GO:0042278 

0.16 
purine nucleotide metabolic 
process GO:0006163 

purine ribonucleotide metabolic 
process GO:0009150 

0.16 ribonucleoside metabolic process GO:0009119 
purine ribonucleoside metabolic 
process GO:0046128 

0.16 
nucleoside triphosphate 
metabolic process GO:0009141 

purine nucleoside triphosphate 
metabolic process GO:0009144 

0.16 
nucleoside triphosphate 
metabolic process GO:0009141 

ribonucleoside triphosphate metabolic 
process GO:0009199 

0.16 
purine nucleoside triphosphate 
metabolic process GO:0009144 

purine ribonucleoside triphosphate 
metabolic process GO:0009205 

0.16 ribonucleotide metabolic process GO:0009259 
purine ribonucleotide metabolic 
process GO:0009150 

0.16 
ribonucleoside triphosphate 
metabolic process GO:0009199 

purine ribonucleoside triphosphate 
metabolic process GO:0009205 

0.16 
ribose phosphate metabolic 
process GO:0019693 ribonucleotide metabolic process GO:0009259 

0.13 taxis GO:0042330 chemotaxis GO:0006935 
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3.4 Idnetification of the best-representing list of GO terms 

Our task now is to identify from Ti a list of GO terms l (denoted as set Tl) that best 

represents the sector. Note that Tl ) Ti and thus |Tl| (denoted as k) can be any integer from 

1 to n, where n * |Ti|. It is clear that k should not be too big for the best-representing list 

or else the GO terms in the list will overlap with one another. 

3.4.1 Lists with small degree of overlapping 

Two GO terms t1 and t2 overlap with each other in a sector i if 

(Si ! St1 )! (Si ! St2 ) > 0 . To quantify the extent of term overlap, we introduce a measure 

called the “degree of overlapping” (+i,l) for a list l and a sector i. To calculate +i,l, we 

first calculate for a GO term t in the list Tl (i.e., t ,Tl) the following quantity: 

 
 
!i,l ,t "

St # Si( )# Sj
j$t

k

!
%

&'
(

)*

St # Si
, 

where j ,Tl and k * |Tl|). We then take the minimal value of +i,l,t for t ,Tl to be the value 

of +i,l. According to this definition, +i,l = 0 for lists with single terms and for lists with 

non-overlapping terms. At the other extreme where one term of a list accounts for a 

subset of spectra that another term in the same list accounts for, the degree of overlapping 

is at its maximum, or +i,l = 1. Note that as k increases, the values of + of the lists tend to 

get bigger. Figure 3.2 shows for the C-sector the minimal value of +C,l for all l‘s plotted 

against the size of lists k. For k < 4, there exist lists with zero overlapping, or +C,l = 0, 

while for larger k the minimal value of +C,l quickly goes up. By choosing a cutoff value 
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for +, we can decide a maximum value for k. For example, a rather large (or loose) cutoff 

value of 0.3 for +C,l already allows us to only consider lists with k < 5.  

 

 

Figure 3.2.  The degree of overlapping for a list quickly goes up as the size of the list increases. 

 

To decide the cutoff value for +C,l, we focus on the region with +C,l  - 0.3 (Figure 

3.3). The histogram reveals a clear cutoff for +C,l at 0.05. 
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Figure 3.3.  Distribution of the degree of overlapping for lists of GO terms. 

 

3.4.2 Lists with large fraction 

The concept of “fraction of sector” can be extended to a list of GO terms (-i,l), 

 
 
! i,l "

Sj
j=1

k
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#

$%
&

'(
) Si

Si
,      

where j , Tl and k * |Tl|). 

It is clear that the best-representing list should have a large value of -. We choose 

-C,l > 0.6, i.e., the list l has to account for at least 60% of the C-sector.  

In summary, by requiring +C,l > 0.05 and -C,l > 0.6, we reached 75 lists for the C-

sector, from which we continue identifying the best-representing one for the sector. We 
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carried out the same procedure to the other sectors (Figure 3.3) and Table 3.4 shows the 

number of lists that satisfy the respective cutoff values for + and -. 

Table 3.4.  Cutoff values for the degree of overlapping and for the fraction of sector, and the 
number of remaining lists. 

Sector C A R U S O 
Cutoff value for + 0.05 0.05 0.05 0.05 0.05 0.05 
Cutoff value for - 0.6 0.6 0.6 0.6 0.6 0.4 
Number of lists 75 176 7 173 116 32 
 

3.4.3 Lists with large gene coverage 

There is another attribute for a list GO terms and it is what we refer to as “gene 

coverage”. A GO term t is associated with a number of genes in the genome, which is 

denoted as the set Gt. The set of genes included in a proteome sector i is denoted as set 

Gi. The “gene coverage” .i,t for the GO term in the proteome sector is defined as follows, 

 ! i,t "
Gt #Gi

Gt

.      

The definition can be generalized to a list of GO terms and is denoted as .i,l for 

the list l and for the sector i, 

  

 

! i,l "
Gj

j=1

k

!
#

$%
&

'(
)Gi

Gj
j=1

k

!
,      

where j ,Tl and k * |Tl|). 

Figure 3.4 shows the histogram of . for each of the sectors, with the total number 

of lists in each histogram given in Table 3.4.  
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Figure 3.4.  Distribution of the gene coverage for lists of GO terms. 
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3.5 Top lists of GO terms for each sector. 

In Figure 3.4, the histograms for the C-, A-, R-, and U- sectors have “long tails”, 

which means that the lists on the right side of the distribution are clearly better than the 

other lists. Table 3.5 shows a few lists with top . values for each of the four sectors. The 

best-representing list (highlighted in light orange color in Table 3.5) for each sector is 

then manually picked from these small number of choices. 

Table 3.5.  Top lists and the picked best-representing lists for the C-, A-, R-, and U- sectors. 

 -  +  .  GO name 
-  of individual GO 

terms 

0.75 0.002 0.10 
tricarboxylic acid 
cycle ion transport locomotion 0.21 0.33 0.22 

0.67 0.003 0.08 
tricarboxylic acid 
cycle ion transport chemotaxis 0.21 0.33 0.13 C 

  
  0.67 0.003 0.08 

tricarboxylic acid 
cycle ion transport 

response to external 
stimulus 0.21 0.33 0.14 

0.65 0.000 0.22 
glucose catabolic 
process 

cellular amino acid 
metabolic process   0.16 0.49   

0.64 0.000 0.22 
glucose catabolic 
process 

small molecule 
biosynthetic process   0.16 0.47   

0.60 0.000 0.25 
glucose catabolic 
process 

carboxylic acid 
biosynthetic process   0.16 0.44   

0.65 0.000 0.17 
glucose catabolic 
process 

organonitrogen 
compound 
biosynthetic process   0.16 0.49   

0.63 0.000 0.22 Glycolysis 
cellular amino acid 
metabolic process   0.14 0.49   

0.62 0.000 0.22 Glycolysis 
small molecule 
biosynthetic process   0.14 0.47   

0.63 0.000 0.17 glycolysis 

organonitrogen 
compound 
biosynthetic process   0.14 0.49   

0.65 0.000 0.18 
cellular amino acid 
metabolic process 

carbohydrate 
catabolic process   0.49 0.17   

0.65 0.000 0.22 
cellular amino acid 
metabolic process 

hexose catabolic 
process  0.49 0.17  

0.64 0.000 0.18 
carbohydrate 
catabolic process 

small molecule 
biosynthetic process  0.17 0.47  

0.60 0.000 0.19 
carbohydrate 
catabolic process 

carboxylic acid 
biosynthetic process  0.17 0.44  

0.64 0.000 0.22 
hexose catabolic 
process 

small molecule 
biosynthetic process  0.17 0.47  

0.60 0.000 0.24 
hexose catabolic 
process 

carboxylic acid 
biosynthetic process  0.17 0.44  

A 
  
  
  
  
  
  
  

0.65 0.000 0.17 
hexose catabolic 
process 

organonitrogen 
compound 
biosynthetic process  0.17 0.49  
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Table 3.5. Continued.  

 -  +  .  GO name 
-  of individual GO 

terms 

R 0.75 0.000 0.57 translation           

0.67 0.003 0.17 
regulation of 
translation 

purine ribonucleoside 
monophosphate 
biosynthetic process 

alpha-amino acid 
biosynthetic process 0.12 0.12 0.43 

0.68 0.002 0.16 

purine ribonucleoside 
monophosphate 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 

alpha-amino acid 
biosynthetic process 0.12 0.12 0.43 

0.69 0.003 0.16 
regulation of 
translation 

purine ribonucleotide 
biosynthetic process 

alpha-amino acid 
biosynthetic process 0.12 0.13 0.43 

0.69 0.002 0.15 
purine ribonucleotide 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 

alpha-amino acid 
biosynthetic process 0.13 0.12 0.43 

0.69 0.003 0.15 
regulation of 
translation 

purine-containing 
compound 
biosynthetic process 

alpha-amino acid 
biosynthetic process 0.12 0.14 0.43 

0.69 0.002 0.15 

posttranscriptional 
regulation of gene 
expression 

purine-containing 
compound 
biosynthetic process 

alpha-amino acid 
biosynthetic process 0.12 0.14 0.43 

0.68 0.003 0.15 
regulation of 
translation 

cellular amino acid 
biosynthetic process 

purine ribonucleoside 
monophosphate 
biosynthetic process 0.12 0.44 0.12 

0.68 0.002 0.15 
cellular amino acid 
biosynthetic process 

purine ribonucleoside 
monophosphate 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 0.44 0.12 0.12 

0.69 0.003 0.14 
regulation of 
translation 

cellular amino acid 
biosynthetic process 

purine ribonucleotide 
biosynthetic process 0.12 0.44 0.13 

0.70 0.002 0.14 
cellular amino acid 
biosynthetic process 

purine ribonucleotide 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 0.44 0.13 0.12 

0.70 0.003 0.14 
regulation of 
translation 

cellular amino acid 
biosynthetic process 

purine-containing 
compound 
biosynthetic process 0.12 0.44 0.14 

0.70 0.002 0.14 
cellular amino acid 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 

purine-containing 
compound 
biosynthetic process 0.44 0.12 0.14 

0.69 0.003 0.13 
regulation of 
translation 

purine ribonucleoside 
monophosphate 
biosynthetic process 

carboxylic acid 
biosynthetic process 0.12 0.12 0.45 

0.69 0.002 0.13 

purine ribonucleoside 
monophosphate 
biosynthetic process 

posttranscriptional 
regulation of gene 
expression 

carboxylic acid 
biosynthetic process 0.12 0.12 0.45 

U 
  
  
  
  
  
  
  
  
  
  
  
  
  
  0.65 0.000 0.12 

purine ribonucleoside 
monophosphate 
biosynthetic process 

negative regulation 
of cellular process 

alpha-amino acid 
biosynthetic process 0.12 0.10 0.43 

 

 

The histogram for the S-sector (Figure 3.4) does not show a clear tail. We list in 

Table 3.6 all the lists with .S,l > 0.04. The best-representing list is again highlighted in 

light orange color. 
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Table 3.6.  Top lists and the picked best-representing list for the S-sector. 

- + . GO name 
-  of individual GO 

terms 

0.63 0.020 0.056 

carbohydrate 
metabolic 
process 

response to 
chemical 
stimulus 

nitrogen 
compound 
transport   

0.4
0 

0.1
3 

0.1
0   

0.61 0.020 0.050 

carboxylic acid 
metabolic 
process 

response to 
chemical 
stimulus 

nitrogen 
compound 
transport   

0.3
8 

0.1
3 

0.1
0   

0.64 0.038 0.050 

carbohydrate 
metabolic 
process 

response to 
stress 

nitrogen 
compound 
transport   

0.4
0 

0.1
3 

0.1
0   

0.61 0.022 0.047 

glucose 
metabolic 
process glyoxylate cycle 

response to 
stress 

organic 
substance 
transport 

0.1
5 

0.1
8 

0.1
3 

0.1
4 

0.60 0.008 0.047 
electron 
transport chain 

response to 
chemical 
stimulus 

nitrogen 
compound 
transport 

organic 
substance 
catabolic 
process 

0.1
3 

0.1
3 

0.1
0 

0.2
5 

0.62 0.022 0.046 
response to 
stress 

carboxylic acid 
metabolic 
process 

nitrogen 
compound 
transport   

0.1
3 

0.3
8 

0.1
0   

0.61 0.019 0.046 

carbohydrate 
metabolic 
process 

cellular 
response to 
stimulus 

nitrogen 
compound 
transport   

0.4
0 

0.1
1 

0.1
0   

0.61 0.022 0.045 

monosaccharid
e metabolic 
process glyoxylate cycle 

response to 
stress 

organic 
substance 
transport 

0.1
5 

0.1
8 

0.1
3 

0.1
4 

0.67 0.038 0.044 

carbohydrate 
metabolic 
process 

response to 
stress 

organic 
substance 
transport   

0.4
0 

0.1
3 

0.1
4   

0.61 0.016 0.044 
response to 
stress 

electron 
transport chain 

nitrogen 
compound 
transport 

organic 
substance 
catabolic 
process 

0.1
3 

0.1
3 

0.1
0 

0.2
5 

0.62 0.022 0.044 glyoxylate cycle 
response to 
stress 

dicarboxylic 
acid metabolic 
process 

organic 
substance 
transport 

0.1
8 

0.1
3 

0.1
6 

0.1
4 

0.62 0.016 0.044 
tricarboxylic 
acid cycle 

response to 
stress 

organic 
substance 
transport   

0.3
4 

0.1
3 

0.1
4   

0.61 0.022 0.043 

glucose 
metabolic 
process 

response to 
stress 

monocarboxylic 
acid metabolic 
process 

organic 
substance 
transport 

0.1
5 

0.1
3 

0.1
9 

0.1
4 

0.61 0.028 0.042 glyoxylate cycle 
response to 
stress 

single-organism 
carbohydrate 
metabolic 
process 

organic 
substance 
transport 

0.1
8 

0.1
3 

0.1
6 

0.1
4 

0.61 0.022 0.042 

monosaccharid
e metabolic 
process 

response to 
stress 

monocarboxylic 
acid metabolic 
process 

organic 
substance 
transport 

0.1
5 

0.1
3 

0.1
9 

0.1
4 

0.66 0.022 0.041 
response to 
stress 

carboxylic acid 
metabolic 
process 

organic 
substance 
transport   

0.1
3 

0.3
8 

0.1
4   

0.62 0.044 0.041 

glucose 
metabolic 
process glyoxylate cycle 

response to 
stress 

single-organism 
transport 

0.1
5 

0.1
8 

0.1
3 

0.1
6 

0.65 0.019 0.041 

carbohydrate 
metabolic 
process 

cellular 
response to 
stimulus 

organic 
substance 
transport   

0.4
0 

0.1
1 

0.1
4   

0.62 0.022 0.040 
response to 
stress 

monocarboxylic 
acid metabolic 
process 

dicarboxylic 
acid metabolic 
process 

organic 
substance 
transport 

0.1
3 

0.1
9 

0.1
6 

0.1
4 

0.62 0.044 0.040 

monosaccharid
e metabolic 
process glyoxylate cycle 

response to 
stress 

single-organism 
transport 

0.1
5 

0.1
8 

0.1
3 

0.1
6 

 

The histogram for the O-sector (Figure 3.4) shows that all lists have similar values 

of .. We list all the lists of GO terms with .O,l > 0.08 in Table 3.7. Again, the best-

representing list is highlighted in light orange color. 
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Table 3.7. Top lists and the picked best-representing list for the O-sector. 

-  +  .  GO name 
-  of individual GO 

terms 

0.44 0.020 0.095 response to stress 
nucleotide 
biosynthetic process 

RNA biosynthetic 
process 0.17 0.10 0.17 

0.43 0.020 0.094 
transcription, DNA-
dependent response to stress 

nucleotide biosynthetic 
process 0.16 0.17 0.10 

0.45 0.027 0.093 response to stress 
RNA biosynthetic 
process 

carbohydrate 
derivative biosynthetic 
process 0.17 0.17 0.12 

0.46 0.020 0.093 response to stress 

cellular nitrogen 
compound 
biosynthetic process   0.17 0.29   

0.44 0.027 0.093 
transcription, DNA-
dependent response to stress 

carbohydrate 
derivative biosynthetic 
process 0.16 0.17 0.12 

0.44 0.027 0.093 response to stress 
RNA biosynthetic 
process 

organophosphate 
biosynthetic process 0.17 0.17 0.11 

0.44 0.027 0.092 
transcription, DNA-
dependent response to stress 

organophosphate 
biosynthetic process 0.16 0.17 0.11 

0.44 0.020 0.092 response to stress 

nucleobase-containing 
compound 
biosynthetic process   0.17 0.27   

0.46 0.020 0.092 response to stress 
heterocycle 
biosynthetic process   0.17 0.29   

0.46 0.020 0.091 response to stress 

organic cyclic 
compound 
biosynthetic process   0.17 0.29   

0.45 0.020 0.090 response to stress 
aromatic compound 
biosynthetic process   0.17 0.28   

0.42 0.000 0.089 

nucleobase-containing 
compound metabolic 
process           

0.45 0.000 0.088 
heterocycle metabolic 
process           

0.44 0.000 0.086 

cellular nitrogen 
compound metabolic 
process           

0.45 0.000 0.086 

organic cyclic 
compound metabolic 
process           

0.44 0.000 0.084 

cellular aromatic 
compound metabolic 
process           

0.45 0.020 0.080 ion transport response to stress 
RNA biosynthetic 
process 0.11 0.17 0.17 

 

See Table 2.6 of Chapter 2 for lists of genes for the best-representing GO term 

lists. 
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Chapter 4  

The overflow metabolism in E. coli 
 

 

4.1 Introduction 

In this chapter, I describe a quantitative, physiological study of the overflow 

metabolism, where the cell utilizes the less efficient fermentation pathway for energy 

production and excretes acetate as a result, even when oxygen is available. By taking the 

constraint of allocating proteome resources into consideration, we are able to provide 

understanding of this long-standing mysterious phenomenon.  

 

4.2 The acetate line 

In previous studies, a dependence of acetate excretion on dilution rates in carbon-

limited chemostats has been observed for various organisms (el-Mansi and Holms, 1989; 

Holms, 1996; Meyer et al, 1984; Nanchen et al., 2006; Renilla et al, 2011; Valgepea et 

al., 2010) (Figure 4.1).  
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Figure 4.1.  Acetate excretion data from previous chemostat studies.  

(A) Glucose-limited Chemostat data based on the figure 1 of the reference (Meyer et al., 1984). 
(B) Glucose-limited and pyruvate–limited Chemostat data from the table 7 of the reference 
(Holms, 1996). (C) Glucose-limited Chemostat data based on the the figure 3 of the reference 
(Nanchen et al., 2006). Only data with dilution rate less than the apparent washout dilution rate 
are plotted here. (D) Glucose-limited Chemostat data from the table 1 of the reference (Valgepea 
et al., 2010). (E) Glucose-limited Chemostat data based on the figure 4 of the reference (Renilla 
et al., 2012). 

In order to gain a better understanding of this growth rate dependence, we 

measured acetate excretion and growth rates of a wild-type E. coli K-12 strain (Table 4.1) 

grown in minimal medium with a variety of glycolytic carbon sources (Table 4.2, black 

stars in Figure 4.2). Strikingly, we found that the rate of acetate excretion (in units of 

mM/OD600/hour), Jac, exhibits a simple linear dependence on the growth rate &, above a 
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characteristic growth rate (&0&0.76/hr, or 55 min per doubling) at which acetate excretion 

disappears. This relation can be expressed mathematically as 

 Jac =
s ! " # "0( ) for " $ "0

0 for " < "0

%
&
'

('
 [4.1] 

where s%10mM/OD600. This functional growth rate dependence is referred to as the 

“acetate line” (the red line in Figure 4.2). Exceptions to this rule are found for pyruvate 

and lactate, however these substrates are considered gluconeogenic, as the glycolysis 

pathway is reversed for growth on these substrates (Figure 4.3). Acetate excretion was 

observed for growth on gluconic acid, which is metabolized via the pentose phosphate 

pathway or the Entner-Doudoroff pathway (Figure 4.3). We did not observe acetate 

excretion for carbons metabolized via the tricarboxylic acid (TCA) cycle (Figure 4.3). 
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Figure 4.2.  The acetate line. 

Acetate excretion rate as a function of growth rate under carbon limitation for various carbons, 
uptake titration with Pu-ptsG and Pu-lacY, glpK mutants and with the addition of non-
metabolizable amino acids to the growth medium. Acetate excretion rates under different modes 
of carbon limitation exhibit the same functional dependence on growth rate.  

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5
Fit to Eq. [3.1]

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

Growth rate ! (hour-1)J A
c(

m
M

/O
D

60
0/

ho
ur

)
0.3 0.6 0.9 1.2 1.5

-1

0

1

2

3

4

5

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

 
Series Strain Description Carbon Supplement Symbol 
Various carbons NCM3722 WT Various   

NCM3722 WT Glucose   
Reducing 
glucose uptake NQ1243 Titratable 

PtsG Glucose 
Various 
inducer 
levels 

 

NCM3722 WT Lactose   
Reducing 
lactose uptake NQ381 Titratable 

LacY Lactose 
Various 
inducer 
levels 

 

NCM3722 WT Glycerol   
Increasing 
glycerol uptake 

NQ636 
NQ638 
NQ640 

glpK 
mutants Glycerol   

Reducing 
precursor 
demand 

NCM3722 WT Various 7 amino 
acids  
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Figure 4.3.  Acetate excretion for cells growing on media with non-glycolytic carbons. 

E. coli WT NCM3722 was grown on minimal medium with each of the five non-glycolytic 
carbons, which include two gluconeogenic carbons (i.e., pyruvate and lactate), one carbon 
metabolized via the pentose phosphate pathway (i.e., gluconic acid), and two carbons 
metabolized via the TCA pathway (i.e., succinate and fumarate). 

 

We next examined acetate excretion in strains with titratable glucose and lactose 

uptake systems (Table 4.1, Figure 4.4, Figure 2.2), grown in saturating amounts of 

glucose and lactose respectively. In both cases (Table 4.3, Table 4.4, red circles and blue 

triangles in Figure 4.2), acetate excretion follows the same acetate line as defined in Eq. 

[4.1]. These results suggest that acetate overflow is an innate response that depends on 

the degree of carbon influx and not specifically on the nature of carbon sources.  
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Figure 4.4.  Reducing glucose uptake by titrating the expression of PtsG, a subunit of the glucose 
PTS peamease.  

The glucose PTS peamease consists of two subunits, PtsG and Crr. The strain NQ1243 was 
constructed by replacing the ptsG promoter with a titratable Pu promoter from Pseudomonas 
putida. The expression of the Pu is activated by the regulator XylR upon induction by 3-
methylbenzyl alcohol (3MBA). Strain NQ1243 was grown in glucose minimal medium, 
supplemented with various 3MBA levels (0-800 µM) to stimulate XylR and titrate the expression 
of PtsG. 

A vivid demonstration of this effect is seen by the behavior of cells growing on 

glycerol: Wild type E. coli grow on glycerol minimal medium at a rate that is below &0, 

and do not excrete acetate (Table 4.2, black square in Figure 4.2) in accordance with 

Eq. [4.1]. Three isogenic strains expressing different mutant forms of Glycerol Kinase 

(glpK*, detailed in Figure 4.5) grew at rates faster than &0 on glycerol minimal medium. 

These mutant strains excrete acetate (Table 4.5, green squares in Figure 4.2), with rates 

dictated by their respective growth rates according to Eq. [4.1].  

glucose 
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titratable PtsG expression 
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Figure 4.5.  Mutants of glycerol kinase (glpK*)  

The glpK muants have weaker repression of GlpK by the metabolite fbp, leading to higher 
catabolism of glycerol (Applebee et al., 2011). 

 

Instead of changing the carbon influx, we also characterized the effect of reducing 

the metabolic demand for carbon on acetate excretion. This is done by supplementing 

minimal medium with different carbon sources by amino acids which do not support 

growth as sole carbon sources (Table 4.6). The addition of these non-metabolizable 

amino acids resulted in significantly enhanced growth rates, presumably by relieving the 

demand for carbon precursors needed to synthesize these amino acids. The corresponding 

acetate excretion rates again fall on the acetate line (Table 4.7, purple crosses in Figure 

4.2). Data for other amino acids and carbon combinations is shown in Figure 4.6.  

fbp glycerol 

GlpK 

!"#$%&'"()%*+,'"-.)(
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Figure 4.6. Acetate excretion for cells growing on media supplemented with various groups of 
amino acids.  

E. coli WT NCM3722 was grown on glucose or glycerol medium, supplemented with different 
groups of amino acids.  The group “Y8” refers to the mixture of 8 amino acids that have 
degradation pathways: Alanine (0.8 mM), Arginine (5.2 mM), Aspartate (0.4 mM), Glutamic acid 
(0.6 mM), Glycine (0.8 mM), Proline (0.4 mM), Serine (10.0 mM), and Threonine (0.4 mM). 
“N7” refers to the mixture of 7 amino acids that do not have degradation pathways: Histidine 
(0.2 mM), Isoleucine (0.4 mM), Leucine (0.8 mM), Lysine (0.4 mM), Methionine (0.2 mM), 
Phenylalanine (0.4 mM), and Valine (0.6 mM). The concentrations of amino acids are based on 
(Neidhardt et al., 1974). “CAA” is casamino acids. 

 

4.3 A qualitative picture 

4.3.1 Two energy-generating pathways 

The simple and robust relation described by Eq. [4.1] is reminiscent of other 

linear dependences of protein expression levels on the growth rate established in recent 

studies (Scott et al., 2010; You et al., 2013) and this work (Chapter 2). In this case, 

acetate excretion is a measure of the carbon flux directed towards energy generation (i.e., 

ATP molecules) by fermentation, mediated not only by glycolytic enzymes but also 

enzymes in the oxidative phosphorylation system (Figure 4.7). Let the proteome fraction 

of such enzymes used by the cells for fermentation (a certain portion of each of the 
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enzymes shown in Figure 4.7) be $f.  

 

Figure 4.7.  The fermentation pathway.  

The pathway is based on EcoCyc (Keseler et al., 2012). Green labels indicate metabolites and red 
labels are for enzymes catalyzing the biochemical reactions, which are represented as blue 
connecting lines. Highlighted in yellow are the end metabolites of the pathway. 

 

Similarly, respiration is carried out by portions of glycolytic enzymes, TCA 

enzymes, and also enzymes in the oxidative phosphorylation system (Figure 4.8) and let 
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their proteome fraction be $r.  

 

Figure 4.8.  The respiration pathway.  

The pathway is based on EcoCyc (Keseler et al., 2012). Green labels are for metabolites and red 
for enzymes catalyzing the biochemical reactions, which are represented as blue connecting lines. 
Highlighted in yellow are the end metabolites of the pathway. 

 

4.3.2 A picture with energy balance, carbon balance, and proteome constraint 

Both the fermentation and respiratory proteins draw carbon away from biomass 

synthesis, with fluxes JC,f and JC,r, respectively, to generate energy fluxes JE,f and JE,r.  
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Biomass synthesis itself is accomplished by the remaining part of the proteome, denoted 

by $x, which includes catabolism, anabolism, ribosomes as investigated previously. While 

biomass synthesis is not the subject of this study, it couples to energy generation since the 

proteome fractions must add up to unity, i.e.,  

 ! f +!r +!x = 1 . [4.2] 
The cell must choose how much of the proteome to allocate to each energy 

pathway such that the total energy flux generated satisfies the energy demand for cell 

growth (denoted by JE(&)), i.e.,  

 JE , f + JE ,r = JE (!) . [4.3] 
At the same time, not too much carbon should be diverted from the total influx 

JC,in to meet the demand for biomass synthesis (flux denoted by JC,bm(&)), i.e.,  

 JC ,in = JC , f + JC ,r + JC ,bm (!) . [4.4] 
To a large extent, this allocation depends on the efficiencies of the energy 

pathways. There are two very different efficiencies: It is well known that respiration has 

higher “carbon-efficiency” – the energy flux generated per carbon is larger for respiration 

than fermentation (Unden and Dunnwald, 2008). On the other hand, if respiration has 

higher protein cost, or lower “proteome-efficiency” than fermentation, i.e., if the energy 

flux generated per proteome fraction devoted to a pathway is much lower for respiration 

than fermentation (Figure 4.9A), then we have a scenario that may qualitatively explain 

the observed disappearance of acetate flux at slow growth rates. This is depicted in 

Figure 4.9: When carbon is readily available (large JC,in) and the cell has the potential to 

grow rapidly, it is advantageous to generate energy by the more proteome-efficient 

fermentation pathway, so that more of the proteome can be directed towards biosynthesis. 
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Conversely, when carbon availability is poor (small JC,in), it is more advantageous to 

generate energy by the more carbon-efficient respiration pathway. 

 

Figure 4.9.  Model illustration.  

A) Illustration of the properties of fermentation and respiration pathways for energy production. 
In order to produce the same flux of ATP, fermentation consumes a much larger glucose flux than 
respiration and a large part of the carbon flux is excreted as acetate. However, at the same time, 
in order to generate the same flux of energy, fermentation requires a smaller amount of protein 
investment as compared to respiration.  

B) Due to the smaller protein investment required for fermentation, utilization of this pathways 
frees up a larger fraction of the proteome for the production of biomass enabling a faster growth 
rate (right). However, this is only possible with a sufficient carbon supply to meet the demands of 
fermentation in addition to biomass production. Therefore, with limited carbon supply, the cell 
resorts to respiratory pathways, which have higher protein cost, but require less carbon. 

 

4.3.3 Perturbing proteome availability 

In the picture formulated above, acetate excretion is the result of the coordination 
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of energy demand with carbon influx given constrained proteomic resources. Therefore, 

we expect perturbations in proteome availability to have significant effects on the rates of 

acetate excretion. Constraints in proteome availability can be generated by expressing 

large quantities of useless proteins (Scott et al., 2010), and can be quantified by 

introducing another protein sector (z) of proteome fraction $z, with 

 ! f +!r +!x +!z = 1. [4.5]    [5] 
This additional protein load results in a smaller proteome sector available for 

energy production and therefore should lead to higher acetate excretion rates at a given 

growth rate.  

Experimentally, we implemented the expression of large amounts of the harmless 

lacZ protein using a plasmid system. For a number of glycolytic carbon sources, we 

characterized acetate excretion rate for varying degrees of LacZ expression. We observed 

it to decrease for increasing expression levels of LacZ, which appears to be contradictory 

to our expectation. However, useless protein expression also reduces cell growth. Plotting 

acetate excretion against growth rate for varying degrees of LacZ overexpression 

surprisingly leads to a simple proportionality relation for each carbon source (Table 4.8, 

Figure 4.10a). For a more systematic analysis, acetate excretion is plotted together with 

the corresponding LacZ levels and growth rates in a three dimensional graph (Figure 

4.10a). 



96 
 

 

 

 

Figure 4.10.  Protein overexpression.  

a) Acetate excretion rates as a function of growth rate for increasing lacZ expression levels. Fits 
assuming direct proportionality yield satisfactory agreement with the data. b) Acetate excretion 
rates, beta-galactosidase activity and corresponding growth rates for overexpression of large 
quantities of lacZ for G6P, glucose, lactose and mannitol. The plane is obtained from anchoring 
in the standard acetate line and a one-parameter model fit. For a constant growth rate, acetate 
excretion increases with increasing lacZ expression level (green lines). On the other hand, for a 
constant expression level of lacZ, the standard acetate line (red) is shifted parallel (red lines).  

 

 Remarkably, we found that the different data points lie on a single plane 

anchored by the acetate line (thick red line in Figure 4.10b). On this plane, acetate 

excretion increases linearly with LacZ overexpression at each fixed growth rate (green 

lines in Figure 4.10b). On the other hand, for each fixed LacZ level, the plane produces a 

series of parallel shifts of the standard acetate line (thin red lines in Figure 4.10b). These 

lines are still described by Eq. [4.1], but with a reduction of the threshold growth rate, &0, 

linear with increasing LacZ level (Z) (black line), i.e.  



97 
 

 

 
  !0 (Z ) = !0 " 1# Z Zmax( ) , [4.6] 

with   Zmax ! 2.9 "105  Miller Units.  

We also tested the effect of an opposite shift, to see whether a decrease in acetate 

excretion is possible as expected by our model. Using a mutant (.flhD), which does not 

express the large amount of motility proteins that are not important for growth in well-

shaken batch culture, we found that acetate excretion indeed disappears at a faster growth 

rate in this mutant (Table 4.9, Figure 4.11). The above observations are consistent with 

the qualitative expectations based on the proteome partition model (Figure 4.9) and 

furthermore, the simplicity of these results (i.e., the linearity) suggests simple systematic 

dependences underlying the coordination of acetate overflow with growth rate. 

 

Figure 4.11.  Acetate excretion for the flhD deletion strain. 

E. coli NQ1389 strain was grown on glucose minimal medium. Various concentrations of 3MBA 
were used to titrate the glucose uptake. 

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

Growth rate λ (hour-1)J A
c(

m
M

/O
D

60
0/

ho
ur

) Acetate line

0.3 0.6 0.9 1.2 1.5
-1

0

1

2

3

4

5

!flhD



98 
 

 

 
4.4 A quantitative model 

4.4.1 Quantitative assumptions 

The concepts represented by Eqs. [4.2-4.4] are transformed into a quantitative and 

predictive model by making several quantitative assumptions.  First, we assume simple 

proportionalities of energy fluxes to proteome sectors, i.e.,  

 
JE , f = ! f "# f

JE ,r = ! r "#r
 , [4.7] 

where /f and /r are the proteome efficiencies of the two energy pathways.  

The carbon efficiencies for the two pathways are denoted as ef and er, and relate the 

energy fluxes to the carbon fluxes as  

 
JE , f = ef ! JC , f
JE ,r = er ! JC ,r

. [4.8] 

Note that for a given carbon source, the values for ef and er are known from biochemical 

stoichiometry.  

Eqs. [4.7-4.8] give the expression of carbon fluxes in terms of proteome fractions, 

 
JC , f =

! f

ef
"# f

JC ,r =
! r
er
"#r

. [4.9] 

We then assume a linear growth-rate dependence of the remaining proteome 

sector $x responsible for biomass synthesis under carbon-limitation, 

 !x = !0 + b" , [4.10] 
which is consistent with previous findings (You et al., 2013) and results in Chapter 2, and 

furthermore, simple direct proportionalities of biomass carbon demand to growth rate, 
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 JC ,bm (!) = "! , [4.11] 
where the parameter + is known from the published flux data (Fischer and Sauer, 2003; 

Perrenoud and Sauer, 2005; Teixeira de Mattos and Neijssel, 1997; Usui et al., 2012). 

Finally, for the energy demand of the cell, we assume a linear functional 

dependence on growth rate given by  

 JE (!) ="! .  [4.12] 
 

With these assumptions, Eqs. [4.2-4.4] are then transformed into the following 

equations, respectively, 

 ! f +!r = 1"!0 " b #$ , [4.13] 
 ! f "# f + ! r "#r =$ "% , [4.14] 

and 

 
! f

ef
"# f +

! r
er
"#r = JC ,in $ % "& . [4.15] 

In the following sections, we explore the consequences of the simple model, as 

represented by Eqs. [4.13-4.15].  

4.4.2 Prediction of the acetate line 

This model can be solved to yield simple solutions for proteome fractions and 

growth rate, with $f and $r given respectively by 

 ! f =
(b "# r +$ ) "% &!E ,max "# r

# f & # r
, [4.16] 

and 

 !r =
"(b #$ f +% ) #& +!E ,max #$ f

$ f " $ r
, [4.17] 

where the expression for & is given by 
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 ! =
( 1
" r

# 1
" f

) $ JC ,in + (
1
ef

# 1
er
) $%E ,max

( 1
" r

# 1
" f

) $& + ( 1
ef

# 1
er
) $b + ( 1

" r $ef
# 1
" f $er

) $'
, [4.18] 

where !E ,max " 1#!0 . 
The carbon fluxes through fermentation (JC,f) and respiration (JC,r) pathways can 

be obtained from Eq. [4.16] and Eq. [4.17], respectively as, 

 JC , f =
! f

ef
"
(b "! r +# ) "$ %&E ,max "! r

! f % ! r
, [4.19] 

and 

 JC ,r =
! r
er
"
#(b "! f +$ ) "% +&E ,max "! f

! f # ! r
. [4.20] 

Using the stoichiometry relation Jac =
1
3
! JC , f (Keseler et al., 2012), acetate 

excretion rate is simply given by,  

 Jac =
1
3
!
" f

ef
!
(b !" r +# ) !$ %&E ,max !" r

" f % " r
, [4.21] 

which as a function of growth rate indeed takes the linear form we observe 

experimentally, i.e., Eq. [4.1]. The model yields the dependence of the acetate line on the 

available proteome fraction and the energy generation efficiencies /f and /r: 

!ac,0 =
"E ,max
b +# $ r

 and sac =
1
3
!
" f

ef
! b +# / " r
" f / " r $1

. Notably, according to this simple model, 

acetate excretion only occurs under the condition ! f > ! r , and therefore, the energy 

generation efficiency of fermentation /f must be higher than that of respiration /r.  

4.4.3 Prediction of the linear rise of respiration 

Furthermore, the model also yields a corresponding linear increase of respiration 

with decreasing growth rate (see Eq. [4.20]), which can be tested by determining the CO2 
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flux through the pathway (called respiratory CO2 flux JrCO2). Using the stoichiometry 

relation JrCO2 = JC ,r , from Eq. [4.20] the growth rate dependence of JrCO2 is simply given 

by 

 JrCO2 = srCO2 !("# + #rCO2,0 ) , [4.22] 

where srCO2 =
! r
er
"
b +# / ! f

1$ ! r / ! f

 and !rCO2,0 =
"E ,max

b +# / $ f

. 

Experimentally, JrCO2 was obtained by measuring the total CO2 production, 

acetate excretion, and growth rates for a series of points along the standard acetate line 

using the titratable lactose uptake system (Figure 2.2). Remarkably, JrCO2 exhibits a 

simple linear increase with decreasing growth rate (Table 4.10, Figure 4.12), in 

accordance with our expectations from the model. See Chapter 5 for details on the 

experimental procedures and analysis of CO2 fluxes. 

 

Figure 4.12.  The respiration CO2 flux (JrCO2) for cells with varying lactose uptake. 

E. coli WT NCM3722 and NQ381 strain were grown on lactose minimal medium in a bioreactor. 
3MBA was used to titrate the lactose uptake of NQ381.  
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4.4.4 Protein overexpression 

In the framework of the model, protein overexpression reduces the “available” 

proteome fraction for energy production, $E,max. Hence, from the model expression for 

Eq. [4.21], we see that this reduces the threshold growth rate &ac,0 of the acetate line, but 

leaves the slope sac unchanged. We therefore expect parallel shifts of the standard acetate 

excretion line for a constant level of protein overexpression. This prediction is in 

accordance with our experimental results (red lines in Figure 4.10b).  

4.4.5 Inhibiting peptide elongation 

In order to further test the quantitative model established above, we performed 

additional experimental perturbations. Translational limitation by sub-lethal doses of the 

antibiotic chloramphenicol (Cm) inhibits peptide elongation and makes the cell respond 

by allocating a larger proteome fraction to ribosomes. In the language of the model, 

chlorampenicol results in an increase of the biomass sector $x for an identical growth rate.  

Because the need for ribosomes is proportional to growth rate, the size of the increase in 

$x due to chloramphenicol is also proportional to growth rate and therefore corresponds 

to an increased parameter b. The model then predicts increased acetate excretion, with 

modified acetate lines terminating at reduced thresholds &ac,0 and steeper slopes sac such 

that the lines all extrapolate to the same vertical intercept Jac,0, i.e., 

  Jac,0 = sac !"ac,0 =
1
3
!
# f

ef
!

$E ,max
# f / # r %1

. [4.23] 

This expectation is in good agreement with the data presented in Figure 4.13 

(Table 4.11), as demonstrated by the one-parameter model fits. 
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Figure 4.13.  Acetate excretion for cells grown in media with chloramphenicol. 

E. coli NQ381 was grown on lactose minimal medium, with 2, 4, and 8 µM chloramphenicol. For 
each concentration of chloramphenicol, various concentrations of 3MBA were used to titrate 
lactose uptake. Each of the linear fits for the three concentrations of chloramphenicol was one-
parameters fit with the Y-axis fixed at Jac,0. 

 

4.4.6 Draining energy 

Instead of directly perturbing proteome allocation, we also investigated the effect 

of altering the cell’s energy balance. Intuitively, one might expect that an increased 

energy demand should lead to a larger fraction of carbon uptake being used for 

respiration and a corresponding decrease in acetate excretion, in order to produce more 

energy from the available carbon. However, in the framework of our model, we anticipate 

the opposite response:  At a given growth rate, the increased energy demand forces the 

cell to shift to the more proteome-efficient energy production pathway, i.e., fermentation, 

resulting in increased acetate excretion. More quantitatively an energy leakage flux can 

be added to the right hand side of Eq. [4.14] and (assuming the same growth rate 

dependence of the biomass sector !x = !0 + b" ) the model then predicts a parallel shift of 
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the acetate line to higher excretion rates (Eq. [4.21]). 

The effect of energy dissipation was tested by expressing a mutant lactose 

transporter (LacYVal177) known to leak protons across the inner membrane (Brooker, 

1991), which directly affects the energy budget of the cell. By titrating carbon uptake 

while keeping a constant expression level of LacYVal177, we obtained the modified 

acetate line (blue squares in Figure 4.14,  

Table 4.12) as anticipated, i.e., a simple parallel shift to higher acetate excretion 

rates. In contrast, the control strain with the same expression of wildtype LacY (magenta 

triangles in Figure 4.14, Table 4.12) closely follows the standard acetate line. 

 

Figure 4.14.  Acetate excretion for cells with leaky LacY.  

E. coli NQ1313 was grown on glucose minimal medium. Various concentrations of 3MBA were 
used to titrate the glucose uptake. The best linear fit (purple line) to the data has a slope of 11.0 
(compare to the slope of 10.0 of the acetate line). For control, the strain NQ1314 was used.  
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4.4.7 Experimental determination of proteome efficiencies 

 
Furthermore, our measurement of the CO2 production rate, in combination with 

growth, carbon uptake and acetate excretion rates allowed us to partition proteins 

measured by mass spectrometry into different proteome sectors, according to the sector’s 

contribution to the flux. Thereby, we were able to determine the proteome fractions of the 

different model sectors (see Chapter 5). The energy production fluxes of fermentation 

and respiration are plotted as a function of their determined proteome fractions in Figure 

4.15 (Table 4.10). The slopes of these curves directly represent the energy production 

efficiencies defined in our model and we obtain /f % 770 mM/OD600/hour, 

/r % 380 mM/OD600/hour. This directly validates our key hypothesis that ! f > ! r . 

 

Figure 4.15.  The proteome efficiencies of the two energy pathways. 
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rate when the status of carbon supply was varied, e.g., by using various carbon sources, 

titrating the expression of carbon uptake proteins, etc. Furthermore, distinct but still 

linear relations were obtained when the proteome availability was perturbed (e.g., by 

expressing useless proteins), and when energy demand was increased (e.g., by 

introducing a futile proton cycle). 

These linear relations under different modes of growth limitation can be 

quantitatively described by the extension of a coarse-grained resource allocation model 

(Scott et al., 2010) explicitly including proteome fraction for energy generation. The 

model invokes a single unknown parameter that describes the difference in protein cost 

for fermentation and respiration. Using flux analysis and protein mass spectrometry 

measurements (Chapter 2), we were able to determine directly the protein costs of the 

two energy-generating pathways and validated quantitatively the key hypothesis of the 

model. 

These results establish that acetate overflow in E. coli results from the tradeoff 

between efficient utilization of carbon resources by respiration and efficient utilization of 

proteome resources by fermentation, and suggest optimal allocation of carbon and 

proteome resources as a possible driving force for the occurrence of overflow metabolism 

in other organisms. 



107 
 

 

 
4.6 Tables 

Table 4.1.  Strains used in this study.  

All the strains used are derived from the E. coli K12 strain NCM3722.  

Strain Genotype Description 

NCM3722 wild-type E. coli K12 strain parent strain for all strains used 
here. 

NQ381 attB::PLlac-O1-xylR, lacY::km-Pu-lacY titratable LacY 
NQ636 glpK g184t Glpk mutant 

NQ638 glpK a218t Glpk mutant 

NQ640 glpK g692a Glpk mutant 

NQ1243 ycaD::FRT:Ptet:xylR PptsG::kan:Pu:ptsG Titratable PtsG 

NQ1313 ycaD::FRT:Ptet:xylR PptsG::kan:Pu:ptsG; Ptet-
leaky_lacY on pZA31 Leaky LacY 

NQ1314 ycaD::FRT:Ptet:xylR PptsG::kan:Pu:ptsG; Ptet-
_lacY on pZA31 LacY control 

NQ1388 ycaD::FRT:Ptet:xylR Pu:ptsG; #flhD-kan flhD deletion 

NQ1389 Ptet-tetR on pZA31; Ptetstab-lacZ on pZE1 LacZ over-expressing strain 

 

Table 4.2.  The acetate excretion for cells grown in various carbon sources. 

E. coli NCM3722 strain was grown in minimal medium supplied with each of the above carbon 
sources. These data are shown as black stars (!) in Figure 4.2, except that glucose data point is 
shown as black circle (!), lactose as black triangle (!), and glycerol as black square (").  

Carbon source Growth rate &  
(hour-1) 

Acetate excretion JAc 
(mM/OD600/hour) 

0.2% (w/v) glucose 1.01 2.32 
0.2% (w/v) lactose 1.03 2.84 

0.2% (w/v) glycerol 0.72 0.07 
0.2% (w/v) arabinose 0.99 2.67 
0.2% (w/v) sorbitol 0.55 -0.01 

0.2% (w/v) galactose 0.56 -0.01 
0.2% (w/v) melibiose 0.69 0.00 
0.2% (w/v) maltose 0.78 -0.09 
0.2% (w/v) fructose 0.72 0.00 
0.2% (w/v) mannitol 0.93 1.44 
0.2% (w/v) mannose 0.45 0.00 

20 mM Glucose 6-phosphate disodium 1.14 4.07 
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Table 4.3.  The acetate excretion for cells with reduced glucose uptake by titrating the expression 
of PtsG.  

E. coli NQ1243 (Titratable ptsG; Figure 4.4) strain was grown in minimal medium supplied with 
0.2% glucose (w/v) and each of the 3MBA levels. 3MBA was used to titrate the expression of 
PtsG. These data are shown as red circles (!) in Figure 4.2. 

3MBA (µM) Growth rate &  (h-1) Acetate excretion JAc 
(mM/OD600/hour) 

0 0.58 0.00 
20 0.64 0.02 

300 0.82 0.62 
800 0.95 2.06 

 

Table 4.4.  The acetate excretion for cells with reduced lactose uptake by titrating the expression 
of LacY.  

E. coli NQ381 (Titratable lacY; Figure 2.2) strain was grown in minimal medium supplied with 
0.2% lactose (w/v) and each of the 3MBA levels. 3MBA was used to titrate the expression of 
LacY. These data are shown as blue triangles (!) in Figure 4.2. 

3MBA (µM) Growth rate &  (h-1) Acetate excretion JAc 
(mM/OD600/hour) 

0 0.35 -0.01 
25 0.55 -0.01 
50 0.65 -0.01 

100 0.76 -0.01 
400 0.87 0.96 
800 0.92 2.30 

 

Table 4.5.  The acetate excretion for cells with increased glycerol uptake. 

E. coli NQ636, NQ638, and NQ640 (Figure 4.5) strains were grown in minimal medium supplied 
with 0.2% glycerol (w/v). These data are shown as green squares (") in Figure 4.2. 

Strain Growth rate &  (h-1) Acetate excretion JAc 
(mM/OD600/hour) 

NQ636 0.97 1.98 
NQ638 0.90 1.38 
NQ640 0.95 1.76 
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Table 4.6.  The existence of degradation pathways for amino acids according to EcoCyc.  

“Y” indicates there exists at least one degradation pathways for an amino acid, while “N” 
indicates there is no degradation pathway for an amino acid. Among the 20 amino acids, 8 have 
no degradation pathways. The 7 non-degradable amino acids we used are highlighted in red. We 
did not use Tyrosine due to its low solubility.  

Amino acid 
Existence of degradation 

pathway (Y/N) 
Alanine Y 
Arginine Y 

Asparagine Y 
Aspartic acid Y 

Cysteine Y 
Glutamic acid Y 

Glutamine Y 
Glycine Y 

Histidine N 
Isoleucine N 
Leucine N 
Lysine N 

Methionine N 
Phenylalanine N 

Proline Y 
Serine Y 

Threonine Y 
Tryptophan Y 

Tyrosine N 
Valine N 
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Table 4.7.  The acetate excretion for cells growing in media supplemented with 7 amino acids.  

E. coli NCM3722 strain was grown in minimal media with various carbon sources, supplemented 
with 7 non-degradable amino acids with concentration specified in the reference (Neidhardt et 
al., 1974): Histidine (0.2 mM), Isoleucine (0.4 mM), Leucine (0.8 mM), Lysine (0.4 mM), 
Methionine (0.2 mM), Phenylalanine (0.4 mM), and Valine (0.6 mM). These data are shown as 
purple crosses (#) in Figure 4.2. 

Carbon source Growth rate &  
(hour-1) 

Acetate excretion JAc 
(mM/OD600/hour) 

0.2% (w/v) glucose 1.09 3.78 
0.2% (w/v) lactose 1.16 4.15 

0.2% (w/v) mannitol 1.04 3.06 
0.2% (w/v) maltose 0.78 0.58 
0.2% (w/v) glycerol 0.8 -0.01 

20 mM Glucose 6-phosphate disodium 1.26 4.18 
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Table 4.8.  The acetate excretion for cells with LacZ overexpression.  

E. coli NQ1389 strain was grown on minimal media with various carbon sources and 
concentrations of cTc. cTc was used to induce the expression of LacZ protein. These data are 
shown in Figure 4.10. 

Carbon 
cTc 
(!g/ml) 

Growth rate 
&  (hour-1) 

Acetate excretion 
rate Jac 
(mM/OD600/hour) 

LacZ 
activity 
(Miller 
Unit) 

Glucose-6-Phosphate 0 0.93 3.02  
Glucose-6-Phosphate 2.5 0.82 3.04  
Glucose-6-Phosphate 3.75 0.70 2.37  
Glucose-6-Phosphate 5 0.64 2.26  
Glucose-6-Phosphate 6.25 0.53 2.05  
Glucose-6-Phosphate 7.5 0.48 1.83  
Glucose-6-Phosphate 0 1.03 2.77 21320 
Glucose-6-Phosphate 1.25 0.99 2.91 35161 
Glucose-6-Phosphate 2.5 0.94 2.84 44172 
Glucose-6-Phosphate 3.75 0.88 2.90 64339 
Glucose-6-Phosphate 5 0.84 2.53 85293 
Glucose-6-Phosphate 6.25 0.78 2.39 74023 
Glucose-6-Phosphate 0 1.06 3.54  
Glucose-6-Phosphate 1.25 1.00 3.36  
Glucose-6-Phosphate 2.5 0.96 3.17  
Glucose-6-Phosphate 3.75 0.92 2.98  
Glucose-6-Phosphate 5 0.90 3.00  
Glucose-6-Phosphate 6.25 0.86 2.96  
Glucose 0 0.88 1.34  
Glucose 2.5 0.76 1.37  
Glucose 5 0.60 0.94  
Glucose 10 0.43 0.79  
Glucose 15 0.26 0.62  
Glucose 20 0.23 0.40  
Glucose 0 0.90 1.56 23495 
Glucose 1.25 0.85 1.49 32749 
Glucose 2.5 0.80 1.00 52745 
Glucose 3.75 0.72 1.06 67055 
Glucose 5 0.66 1.02 83115 
Glucose 6.25 0.62 0.95 102929 
Glucose 0 0.89 1.54 17636 
Glucose 2.5 0.81 1.30 46593 
Glucose 5 0.72 1.25 61979 
Glucose 7.5 0.69 1.38 77435 
Glucose 10 0.53 1.02 84828 
Glucose 12.5 0.44 0.91 143783 
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Table 4.8. Continued. 

Carbon 
cTc 
(!g/ml) 

Growth rate 
&  (hour-1) 

Acetate excretion 
rate Jac 
(mM/OD600/hour) 

LacZ 
activity 
(Miller 
Unit) 

Lactose 0 0.80 0.69  
Lactose 2.5 0.65 0.64  
Lactose 3.75 0.55 0.59  
Lactose 5 0.47 0.52  
Lactose 6.25 0.39 0.57  
Lactose 7.5 0.33 0.68  
Lactose 0 0.80 0.67 24133 
Lactose 1.25 0.75 0.69 36266 
Lactose 2.5 0.67 0.69 50908 
Lactose 3.75 0.60 0.49 76551 
Lactose 5 0.53 0.51 115731 
Lactose 6.25 0.48 0.38 117256 
Mannitol 0 0.85 0.93  
Mannitol 2.5 0.73 0.66  
Mannitol 5 0.57 0.47  
Mannitol 10 0.35 0.23  
Mannitol 15 0.21 0.08  
Mannitol 20 0.16 0.05  
Mannitol 0 0.85 0.82 19353 
Mannitol 1.25 0.81 0.85 34446 
Mannitol 2.5 0.76 0.74 50693 
Mannitol 3.75 0.70 0.57 56365 
Mannitol 5 0.64 0.59 68975 
Mannitol 6.25 0.60 0.50 78773 
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Table 4.9.  The acetate excretion for cells with flhD deletion.  

E. coli NQ1388 strain was grown on glucose minimal medium with various 3MBA concentraions. 
3MBA was used to titrate the expression of PtsG, thus to control the glucose uptake. These data 
are shown in Figure 4.11. 

3MBA 
(µM) 

Growth 
rate &  (h-1) 

Acetate excretion JAc 
(mM/OD600/hour) 

800 1.00 1.53 
400 0.97 0.32 
200 0.90 0.00 
100 0.82 0.00 

50 0.77 0.00 
0 0.60 0.00 

1000 1.00 2.82 
900 0.97 2.29 
800 0.98 2.18 
700 0.96 2.62 
600 0.96 1.44 
500 0.94 1.31 
600 1.02 2.47 
500 1.01 2.31 
400 0.98 0.85 
300 0.93 0.22 
200 0.89 -0.26 
100 0.86 -0.09 

 

Table 4.10.  Flux and proteome fraction data.  

Strain 
3MBA 
(!M) &  Jac  JrCO2 JATP,f JATP,r JATP $ f $ r $ f + $ r 

NCM3722 0 0.97 3.24 3.47 19.44 15.05 34.49 2.42% 4.66% 7.08% 

NQ381 800 0.91 3.06 4.90 18.36 21.22 39.58 2.36% 5.87% 8.23% 

NQ381 500 0.82 1.35 6.90 8.1 29.88 37.98 1.20% 7.79% 9.00% 

NQ381 400 0.77 0.44 8.49 2.64 36.78 39.42 0.54% 9.10% 9.65% 
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Table 4.11.  The acetate excretion for cells with chloramphenicol.  

E. coli NQ381 cells were grown on lactose minimal medium with various 3MBA concentrations. 
3MBA was used to induce the expression of LacY. These data are shown in Figure 4.13. 

Chloramphenicol 
(!M) 

3MBA 
(µM) 

Growth rate &  
(h-1) 

Acetate excretion JAc 
(mM/OD600/hour) 

2 50 0.49 -0.02 
2 100 0.55 -0.01 
2 200 0.60 0.12 
2 400 0.68 1.35 
2 600 0.70 1.61 
2 800 0.74 2.25 
4 100 0.45 -0.17 
4 200 0.50 0.70 
4 400 0.58 1.58 
4 600 0.61 2.05 
4 800 0.62 2.18 
8 100 0.27 0.00 
8 200 0.31 0.76 
8 400 0.36 1.44 
8 600 0.39 1.60 
8 800 0.40 1.86 

 

Table 4.12.  The acetate excretion for cells with leaky lacY.  

E. coli NQ1313 strain was grown on lactose minimal medium with various concentrations of 
3MBA. These data are shown in Figure 4.14. 

Strain 
3MBA 
(µM) 

Growth 
rate &  (h-1) 

Acetate excretion JAc 
(mM/OD600/hour) 

NQ1313 0 0.40 -0.13 
NQ1313 50 0.49 0.77 
NQ1313 100 0.56 1.86 
NQ1313 200 0.63 2.24 
NQ1313 400 0.67 2.91 
NQ1313 800 0.66 2.71 
Control 0 0.52 -0.08 
Control 50 0.66 0.01 
Control 100 0.70 -0.05 
Control 200 0.77 0.60 
Control 400 0.87 1.49 
Control 800 0.94 1.95 
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Table 4.13.  Primers used in this chapter. 

Primer Plasmid/Construct Use/ Digestion Sites 
ptetstab-F pZE1 Ptetstab-lacZ Forward amplification Ptetstab, XhoI 

ptetstab-R pZE1 Ptetstab-lacZ Reverse amplification Ptetstab, 
BamHI 

ptet-F pZE1 Ptetstab-lacZ, pZA31-lacY, 
pZA31-lacY Val177 Ptet forward amplification, XhoI 

lacY-R pZA31-lacY, pZA31-lacYVal177 Reverse amplification of lacY, BamHI 

lacYfusion-F pZA31-lacYVal177 Forward amplification of DNA 
fragment for fusion PCR with lacY-R 

lacYfusion-R pZA31-lacYVal177 Reverse amplification of DNA 
fragment for fusion PCR with ptet-F 

 

 

4.7 Experimental procedures for Chapter 4 

4.7.1 Growth of bacterial culture 

All growth media used in this study were based on the MOPS-buffered minimal 

medium used by Cayley et al. (Cayley et al., 1989) with slight modifications. See Chapter 

2 for the composition of the base medium. The concentrations of carbon sources are 

indicated in the relevant tables. Also see Chapter 2 for the protocol for growth 

measurements in water bath shaker. 

4.7.2 Growth in bioreactor and CO2 measurement 

To measure CO2 production from the bacterial growth, cells were grown in a 

Multifors bioreactor (Infors HT, Switzerland). Around 400 ml of medium was used in a 

750 ml vessel, which has an inlet for compressed air and out outlet for the exhaust gas. 

The vessel is otherwise closed except during brief period of sample collection. Samples 

of the cell culture (for reading OD600, assaying lactose and acetate, etc) can be taken by 

using a syringe connected to the vessel. 
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The air flow rate to the inlet was controlled by a mass flow controller (Cole-

Parmer, Model #: 32907-67) and maintained at 400 ml/min. The outlet was connected to 

a BlueInOne Cell sensor unit (BlueSens, Germany) for measuring CO2 concentration. 

The stir rate in the growth vessel was set as 800 rpm and temperature was maintained at 

37oC.  

4.7.3 Strain construction 

Construction of Pu-ptsG strain (NQ1243): The #ptsG468::/(kan:Pu) allele in 

which ptsG promoter is replaced by Pu promoter was made as follows. The region 

containing the kan gene and Pu promoter was PCR amplified by primers SDY158 and 

SDY159 from NQ381 and integrated at ptsG locus, resulting in the replacement of 342 

base before the open reading frame with a tandem array of kan gene and Pu promoter by 

using the $ Red system (Datsenko and Wanner, 2000), which results in the replacement 

of ptsG promoter with Pu promoter. 

Construction of lacZ overexpression strain (NQ1389): The lacZ structural gene 

region was amplified from MG1655 chromosomal DNA with upstream and downstream 

primers including the digestion sites XhoI and BamHI respectively. The PCR products 

were gel purified, digested with XhoI and BamHI, then inserted into the same sites 

immediately downstream of Ptet in the pZE11 plasmid (Lutz and Bujard, 1997), yielding 

pZE11-lacZ. To improve the stability of Ptet with respect to homologous recombination, 

we later replaced the promoter sequence with the following modified Ptet promoter 

sequence (the underlined bases are changed as compared to the original Ptet): 
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CTCGAGTCCCTATCAGTGATAGCTCTTGACAGATCTATCAATGATAGAGATAC

TGAGCACATATGCAGCAGGACGCACTGACCGAATTCATTAAAGAGGAGAAA

GGTACC 

 

To do this, we first synthesized a single DNA fragment (CTCTTGACAGATCTATCAA 

TGATAGAGATACTGAGCACATATGCAGCAGGACGCACTGAC) that served as 

template for PCR amplification of the modified stable Ptet (Ptetstab) using primers 

ptetstab-F and ptetstab-R. The products were purified, digested with XhoI and KpnI and 

subsitituted for Ptet in pZE11-lacZ. This yielded pZE1 Ptetstab-lacZ. We then 

transformed this plasmid into NCM3722 in combination with the auto-regulated TetR 

plasmid pZA31 Ptet-tetR (Klumpp et al., 2009), creating a stable, titratable system 

capable of high levels of lacZ expression. The primers are listed in Table 4.13. 

Construction of lacY/leaky-lacY strains (NQ1313, NQ1314): The Ptet-lacY region 

was amplified from the pZE12 Ptet-lacY plasmid (Kuhlman et al., 2007) with upstream 

and downstream primers including the digestion sites XhoI and BamHI respectively using 

the primers ptet-F and lacY-R. The resulting DNA fragment was substituted for Ptet-gfp 

in pZA31-gfp (Levine et al., 2007), yielding pZA31-lacY. The same procedure was 

employed to generate the leak- lacY mutant, but fusion PCR was used to introduce a point 

mutation Val177 into the lacY sequence (Brooker, 1991). For this, two overlapping parts 

of the Ptet-lacY region were PCR amplified with the primers ptet-F, lacYfusion-R and 

lacYfusion-F, lacY-R, where the point substitution leading to the Val177 mutation from 

was included in the primers lacYfusion-F and lacYfusion-R. These two overlapping DNA 

fragments were fused together by PCR using primers ptet-F and lacY-R. The resulting 
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Ptet-lacY fragment that carries the desired mutation was inserted into pZA31, yielding 

pZA31-lacYVal177. The resulting plasmids were transformed into NQ1243. The primers 

are listed in Table 4.13. 

Construction of flhD deletion strain (NQ1388):  The flhD deletion allele in strain 

JW1881-1 (E. coli Genetic Stock Center, Yale Univ.), in which a kan gene is substituted 

for the flhD gene, was transferred to NQ1243 (deleted of kan) by phage P1 vir mediated 

transduction. 

4.7.4 Lactose assay, acetate assay, and !-Galactosidase assay with plate reader 

Lactose assay and acetate assay: 500 $L samples were taken at 3 or 4 different 

times during exponential growth (typically at OD600 between 0.1 and 0.5) by 

centrifugation at maximum (15000 rpm) for 1 min. The supernatant was transferred on to 

ice.   

To assay lactose, ~10 $L of the supernatant was first digested by !-galactosidase 

(Sigma-Aldrich) in Z-buffer at 37°C for 20 min. The released glucose was then assayed 

enzymatically by the kit commercially available (Glucose Assay Kit, GAHK20; Sigma-

Aldrich). As a control, the sample was treated in the same way without !-galactosidase. 

Little glucose was detected in the control.  

About 100 $L of supernatant was used to measure acetate concentration using the 

Acetate Assay kit (Catalog #: 10148261035, R-Biopharm).   

+-Galactosidase Assay with plate reader: The assay was performed following a 

similar protocol as detailed in a previous study (Scott et al., 2010). 100 $L samples were 

taken for at least 4 different times during exponential growth (typically at OD600 
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between 0.1 and 0.6). LacZ samples were immediately added to 0.9 mL of freshly 

prepared Z-buffer (in 1 L: 8.52g Na2HPO4, 5.5g NaH2PO4

 

!
H2O, 0.75g KCl and 0.25g 

MgSO4

 

!
7H2O, with 0.004%(w/v) SDS and 40mM !-mercaptoethanol) with 100 $L 

chloroform. Cells were disrupted by vortexing and stored at 4 oC until all samples were 

collected. After all samples were collected, they were briefly vortexed a second time. 

After 5-10 minutes at room temperature to settle the chloroform, the lysates were diluted 

(typically 1:4) in Z-buffer. 200 $L was then added to a 96-well plate (Sarstedt). 

Immediately prior to reading in GENiosPro (Tecan) plate reader, 40 $L of of 4 mg/mL 

ortho-Nitrophenyl-!-galactoside (Sigma) in 0.1 M phosphate buffer (pH=7.0) was added 

to each well. The plate reader was set to read absorbance at a wavelength of 420 nm 

every minute for 60 to 120 minutes at 28 oC.  

The slope of the plot of OD420 vs. time (in minutes) for all replicates was used to 

calculate the !-galactosidase activity (Units/mL) in the original sample via the following 

conversion: 

!-galactosidase activity (U/mL)=1000 ! OD420

min
"
#$

%
&'
! (fold dilution)'2.66. 

The factor 2.66 converts the plate-reader data to the activity obtained using the original 

assay protocol by Miller (Miller, 1972) and is specific to the path-length through the 

sample (i.e. 240 $L in a 96-well plate). The slope of the plot of activity (U/mL) versus 

the sample OD600 yields the activity in Miller units (U/mL/ OD600). The enzyme 

activity was expressed in $g of !-galactosidase (1082 U/mL/$g of !-galactosidase) 

calibrated with pure enzyme (Sigma), and normalized to total protein content. 
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4.7.5 Proteomic mass spectrometry 

See the Experimental procedure section in Chapter 2. 
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Chapter 5  

Measurements and analysis of metabolic fluxes and 

protein mass 

 

5.1 Introduction 

In this chapter, I describe the experimental procedures and analysis for 

determining the metabolic fluxes and protein mass of the two energy pathways, which are 

necessary for testing the model in Chapter 4. 

 

5.2 Flux measurements and analysis 

5.2.1 Flux balance 

The carbon flux through respiration (JC,r) can be deduced using carbon balance, as 

shown in Eq. [4.4]: The toal carbon influx (JC,in) is equal to the sum of three carbon 

fluxes, the carbon flux through fermentation (JC,f), the carbon flux going to biomass 

production (JC,bm), and JC,r. (For convenience, we refer ‘carbon flux’ as ‘single carbon 

flux’. For example, for one unit of glucose influx, JC,f is equal to 6 because one glucose 

molecule contains 6 carbon atoms.) JC,f is given by the acetate flux (Jac) as JC , f = 3! Jac

(Keseler et al., 2012). Using Eq. [4.11], JC,bm is readily obtained by just measuring 

growth rate. And finally since JC,in can be directly measured, JC,r can be calculated 

according to Eq. [4.4]. In practice, however, the resulting JC,r would have large 
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uncertainty because JC,bm is much larger than JC,r. A small noise for JC,bm would translate 

into a huge noise for JC,r. To avoid this problem, we turn to the flux balance equation for 

CO2, 

 JCO2, f + JCO2,r + JCO2,bm = JCO2 , [5.1] 
where JCO2,f, JCO2,r, and JCO2,bm refer to the CO2 fluxes produced by the fermentation, 

respiration, and biomass production, respectively, and JCO2 is the total CO2 production 

rate by the cell. Note that in the notation JrCO2 in Chapter 4 is identical to JCO2,r here. As 

we will show below, the CO2 fluxes by the three pathways have similar magnitude and 

therefore noises in measurements or estimates of JCO2,f, JCO2,bm, and JCO2 do not result in 

magnified noise in the estimate of JC,r.  

5.2.2 Measurement of total CO2 production rate 

To measure the CO2 production rate, we have a bioreactor setup. The system has 

an air-inlet and an outlet for exhaust gas. A constant rate of the air-flow (f) to the inlet is 

maintained by a mass flow controller. The exhaust gas line is connected to a CO2 sensor 

and the concentration of CO2 at time t, c(t), in the exhaust gas is constantly measured. 

The OD600 of the bacterial culture (with volume V) is measured between every half-

doubling time and one doubling time and the OD600 at the time t, OD(t), can be deduced 

from the growth curve. At steady state, the CO2 production rate is equal to the CO2 flow, 

or 

 OD(t) !V ! JCO2 = k ! f !(c(t)" c0 ) , [5.2] 
where k = 39.3$mol/ml is a constant converting gas volume and amount of gas under the 

condition of 1 atm and 37oC. Re-arranging Eq. [5.2] gives 
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 c(t) = JCO2 !
V
k ! f

!OD(t)+ c0 . [5.3] 

The slope (s) of the c(t) versus OD(t) plot can be obtained by fitting the data with a line 

(Figure 5.1). Subsequently, JCO2 is given by 

 JCO2 =
k ! f
V

! s . [5.4] 

Using a culture of NCM3722 grown on lactose minimal medium, where ƒ = 400 ml/min, 

V = 410ml, and s = 0.0046OD-1 (Figure 5.1), we have JCO2 = 10.57mM/OD/hr. 

 

Figure 5.1.  CO2 concentration versus OD600. 

The concentration (%) of CO2 in the exhaust gas is plotted a function of the OD600 of the cell 
culture.  

 

5.2.3 CO2 production associated with biomass production 

We assume that 

 JCO2,bm = ! "#CO2 , [5.5]      [2] 
where +CO2 (in unit of mmol/g) represents the amount of CO2 produced for making 1 g of 

cell dry weight.  

In cases where we can deduce JCO2, f and JCO2,r from measured flux distribution, 

we can use Eq. [5.1] to get JCO2,bm if JCO2 has also been measured. With given growth rate 
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! , we can obtain +CO2 from Eq. [4.5]. 

In the reference(Fischer and Sauer, 2003), we get JCO2, f = 7.2 mmol/g/hr, 

JCO2,r = 6.3mmol/g/hr, and JCO2 = 19.6mmol/g/hr. We thus have JCO2,bm = 6.1mmol/g/hr 

(based on Eq. [5.1]), which leads to !CO2 = 7.18  mmol/g given that ! = 0.85 /hr (based 

on Eq. [5.5]).  

Another way to estimate +CO2 is to start from biomass composition and deduce 

from biochemical stoichiometry the amount of CO2 involved for making each of the 

biomass constituent. 

Using the latest E. coli reconstruction model iAF1260 (Feist et al., 2007), we ran 

a Flux Balance Analysis (FBA) to maximize biomass production rate under the constraint 

of limited glucose uptake rate. From the resulting CO2 production flux, we obtained 

!CO2 = 6.32  mmol/g. This number is the theoretical minimum for a given biomass 

composition. To see how sensitive this number depends on biomass composition, we next 

vary the composition to see how +CO2 changes accordingly.  

In the original iAF1260 model, protein and RNA account for about 56% and 21% 

of the dry weight, respectively, while the rest includes about 9% lipid, 2.5% murein, 3% 

DNA, 2.5% glycogen, 3% outer membrane materials, and 3% soluble metabolites. 

Assuming this rest 23% is constant, we vary the mass fraction of protein from 40% to 

70% (meaning that RNA mass fraction is varied from 37% to 7%). See Figure 5.2 for the 

corresponding values of +CO2. 
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Figure 5.2.  +CO2 as a function of mass fraction of protein. 

 

We also vary the total mass fraction of protein and RNA, from 70% to 90%, 

assuming the relative composition of the rest mass fraction is fixed. See Figure 5.3 for 

values of +CO2. 

 

Figure 5.3.  +CO2 as a function of mass fraction of protein and RNA. 

 

The results above show that +CO2 does not have strong dependence on biomass 

composition, with ~10% deviation from the value of !CO2 = 6.32  even for the extreme 

biomass compositions. 
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Note that the value of !CO2 = 6.32  is a theoretical minimum. We thus take the 

above estimate from the reference (Fischer and Sauer, 2003), i.e., !CO2 = 7.18  with 10% 

of error.  

5.2.4 CO2 flux by respiration 

Since JCO2, f = Jac , we now have 

 JCO2,r = JCO2 ! Jac ! "CO2 #$ . [5.6] 
For cultures with different lactose uptake rates (using WT NCM3722 and the 

strain NQ381), we have measured total CO2 production rate (JCO2), acetate excretion rate 

(Jac), and growth rate (&). The results for the CO2 flux by respiration JCO2,r (or 

equivalently, JrCO2) deduced based on Eq. [5.6] are shown in Figure 4.12. 

5.2.5 Energy fluxes 

Once one type of metabolic flux is known for a pathway, it is simple biochemical 

stoichiometry that determines the other fluxes through the pathway. In table below we list 

the stoichiometry among the various fluxes through the two energy pathways. 

Table 5.1.  The stoichiometry for various metabolic fluxes for the two energy pathways. 

JATP,sub refers to the ATP flux produced by the substrate phosphorylation, while JATP refers to the 
total ATP flux assuming some converting factors between the redox molecules and the ATP 
molecule, i.e., NADH = 2 ATP, NADPH = 2 ATP, and FADH2 = 1 ATP (Unden and Dunnwald, 
2008). 

 J6C JC Jac JCO2 JNADH JNADPH JFADH2 JATP,sub JATP 

Fermentation 1 6 2 2 4 0 0 4 12 

Respiration 1 6 0 6 8 2 2 4 26 
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It is clear from Table 5.1 that we have the carbon efficiencies as ef =
JATP, f
JC , f

= 2  

and er =
JATP,r
JC ,r

= 13 / 3 . 

 

5.3 Estimate of protein mass of the energy pathways 

As demonstrated in Chapter 4, the proteome efficiencies of the energy pathways 

(i.e., $f, $r) are crucial parameters in our understanding of the acetate overflow problem. 

To experimentally determine their values, we need to estimate the protein mass for each 

of the energy pathways. In this chapter, I describe our approach for achieving this goal.  

In Chapter 2, we have shown that spectral counting data can be used for 

estimating absolute protein abundance. This method, however, is limited for obtaining 

coarse-grained abundance for a large group of proteins whose summed proteome fraction 

is above ~10% (Figure 2.11). As we will show later in this chapter, the proteome fraction 

of either of the two energy pathways is well below this threshold. Thus, we need to 

develop a new method of absolute protein quantitation. 

5.3.1 Absolute protein quantitation using mass spectrometry 

As demonstrated in Chapter 2, the relative protein quantitation using mass 

spectrometry is accurate and precise (Figure 2.4, Figure 2.5). To infer the absolute 

protein abundance from relative protein abundance, we need a standard for which the 

absolute protein abundance is known. This usually means a practically daunting task of 

purifying all the proteins of interest. Recent work by Li et al. (Li et al., 2014), however, 

shows that ribosome profiling can reliably quantify absolute protein abundance. The 
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work has quantified a WT E. coli MG1655 strain (denoted as EQ383 by us) grown on 

three different conditions. Below in Table 5.2 lists the absolute protein abundance for 

proteins in the two energy pathways for the strain grown on the glucose minimal medium 

(Li et al., 2014).  
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Table 5.2.  Absolute protein abundance for the proteins in the two energy pathways, as 
determined by the reference (Li et al., 2014) for EQ383 grown on glucose minimal medium. 

Note Gene 
Protein 
abundance 

lacY 0.000% 
lacZ 0.001% 
glk 0.013% 
pgm 0.051% 
galM 0.027% 
galK 0.007% 
galT 0.004% 

Lactose degradation 

galE 0.019% 
pgi 0.149% 
pfkA 0.069% 
pfkB 0.029% 
fbaA 0.382% 
fbaB 0.073% 
tpiA 0.148% 
gapA 1.467% 
pgk 0.351% 
gpmA 0.220% 
gpmI 0.111% 
eno 0.678% 
pykF 0.219% 
pykA 0.058% 
aceE 0.407% 

Glycolysis 

aceF 0.241% 
 lpdA 0.374% 
 pta 0.066% 
 ackA 0.036% 

gltA 0.286% 
acnA 0.059% 
acnB 0.503% 
icd 1.244% 
sucA 0.156% 
sucB 0.175% 
lpdA 0.374% 

TCA 

sucC 0.185% 
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Table 5.2. Continued. 

Note Gene 
Protein 
abundance 

sucD 0.133% 
sdhA 0.154% 
sdhB 0.075% 
sdhC 0.036% 
sdhD 0.023% 
fumA 0.083% 
fumB 0.001% 
fumC 0.015% 

TCA 

mdh 0.365% 
 ppc 0.308% 

nuoA 0.012% 
nuoB 0.028% 
nuoC 0.053% 
nuoE 0.021% 
nuoF 0.036% 
nuoG 0.082% 
nuoH 0.016% 
nuoI 0.013% 
nuoJ 0.007% 
nuoK 0.005% 
nuoL 0.024% 
nuoM 0.023% 

NADH:ubiquinone oxidoreductase I 
(NDH-1) 

nuoN 0.025% 
NADH:ubiquinone oxidoreductase II 

(NDH-2) ndh 0.029% 
cyoA 0.083% 
cyoB 0.113% 
cyoC 0.043% 

cytochrome bo oxidase (CyoABCD) 

cyoD 0.037% 
cydA 0.025% 
cydB 0.013% cytochrome bd-I oxidase (CydABX) 

cydX 0.004% 
appC 0.001% cytochrome bd-II oxidase (AppCB) 
appB 0.000% 
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Table 5.2. Continued. 

Note Gene 
Protein 
abundance 

atpA 0.369% 
atpC 0.038% 
atpD 0.289% 
atpG 0.069% 

F1 complex of ATP synthase 

atpH 0.036% 
atpB 0.074% 
atpE 0.136% F0 complex of ATP synthase 

atpF 0.054% 
 

 

Thanks to Gene-Wei Li for kindly providing the strain. We grew the strain EQ383 

on the same glucose minimal medium as used in Li et al. (Li et al., 2014). The collected 

sample from the culture was spiked with the same 15N reference sample as our samples of 

various lactose uptake rates. Table 5.3 lists the relative protein levels as determined by 

mass spectrometry. The absolute protein abundance in our samples can then be inferred 

from the relative protein abundance data.  
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Table 5.3.  Relative protein abundance data as determined by mass spectrometry.  

To have a series with varying lactose uptake rates, WT NCM3722 and NQ381 with three different 
concentrations of 3MBA were used. The numbers inside the parenthesis in the header row of the 
table indicate the concentrations of 3MBA. To infer absolute protein abundance, EQ383 was also 
included as one of the mass spectrometry samples.  

 

Gene EQ383 
NQ381 
(400) 

NQ381 
(500) 

NQ381 
(800) NCM3722 

lacZ  1.05 1.09 1.10 0.96 
glk 0.67 0.87 1.08 0.92 0.87 
galM 0.31 0.89 0.84 0.87 0.88 
galK  0.96 1.08 1.09 0.92 
galE  0.73 0.75 0.99 1.11 
pgi 1.63 0.95 0.97 1.08 1.16 
pfkA 1.13 1.00 1.02 1.02 1.03 
fbaA 1.31 1.08 1.19 1.20 1.34 
tpiA 1.08 0.88 1.13 0.98 1.34 
gapA 1.27 1.03 1.12 1.15 1.28 
pgk 1.16 0.99 1.02 1.05 1.19 
gpmA 1.52 1.07 1.05 1.06 1.12 
gpmI 1.44 1.04 1.08 1.26 1.42 
eno 1.10 1.03 1.14 1.21 1.35 
pykF 1.42 0.96 1.00 1.17 1.37 
pykA  1.17 1.09 0.97 0.97 
aceE 1.21 0.91 0.96 1.01 1.22 
aceF 1.12 0.97 1.11 1.13 1.15 
lpdA 0.68 1.16 1.12 1.02 0.96 
pta 0.73 1.08 1.11 1.09 1.06 
gltA 0.45 1.39 1.26 0.96 0.75 
acnB 0.69 1.26 1.16 0.91 0.78 
icd 0.89 1.11 1.11 0.93 0.99 
sucA 0.50 1.07 1.17 0.94 0.82 
sucB 0.50 1.08 1.11 1.00 0.86 
lpdA 0.68 1.16 1.12 1.02 0.96 
sucC 0.43 1.23 1.16 0.89 0.71 
sucD 0.45 1.23 1.19 0.96 0.73 
sdhA 0.54 1.15 1.05 0.99 0.83 
sdhB 0.52 1.10 1.06 0.92 0.78 
fumA 0.45 1.28 1.11 0.90 0.70 
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Table 5.3. Continued. 

Gene EQ383 
NQ381 
(400) 

NQ381 
(500) 

NQ381 
(800) NCM3722 

mdh 1.05 1.29 1.29 1.18 1.12 
ppc 1.83 0.93 1.07 1.07 1.14 
nuoC 0.76 1.10 1.07 0.93 0.81 
atpA 0.81 1.12 1.11 1.04 0.99 
atpD 0.86 1.18 1.12 1.10 0.97 
atpG 0.83 1.21 1.11 0.96 0.85 
atpH 0.89 1.01 1.15 1.21 0.98 
atpF 1.02 1.11 1.11 1.12 1.12 

 

Only about half of the proteins have reliable data. This limited protein coverage, 

however, does not prevent us from obtaining useful estimate. For the 34 proteins that are 

present in the mass spectrometry data for EQ383, the total protein abundance is 9.46%, 

which represents 88% of the total protein abundance for the 74 proteins listed in the table. 

Among the remaining 40 proteins, LacZ could have significant protein mass, as reflected 

by 0.8-0.9% of proteome fraction by spectral counting data. To obtain accurate estimate 

for this abundant protein, we have assayed the b-galactosidase activity of one of the 

conditions (i.e., NCM3722 cells growing on lactose minimal medium). With a Miller 

Unit of 4700 and a conversion factor of 1.7% proteome fraction for 10,000 MU (You et 

al. 2013), we got 0.78% of proteome fraction for LacZ in this condition, which leads to 

proteome fraction of LacZ for other conditions given the relative protein abundance in 

the table. For the remaining 39 proteins, we used spectral counting data. The results are 

summarized in Table 5.4.  
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Table 5.4.  Absolute protein abundance for the proteins in the two energy pathways. 

Gene 
NQ381 
(400) 

NQ381 
(500) 

NQ381 
(800) NCM3722 

lacY 0.000% 0.000% 0.000% 0.000% 
lacZ 0.851% 0.885% 0.893% 0.780% 
glk 0.017% 0.021% 0.018% 0.017% 
pgm 0.030% 0.000% 0.000% 0.000% 
galM 0.077% 0.072% 0.075% 0.076% 
galK 0.179% 0.195% 0.224% 0.128% 
galT 0.030% 0.033% 0.032% 0.064% 
galE 0.149% 0.163% 0.289% 0.257% 
pgi 0.087% 0.089% 0.099% 0.106% 
pfkA 0.061% 0.062% 0.062% 0.063% 
pfkB 0.000% 0.000% 0.000% 0.000% 
fbaA 0.316% 0.348% 0.351% 0.390% 
fbaB 0.000% 0.000% 0.000% 0.000% 
tpiA 0.120% 0.155% 0.134% 0.183% 
gapA 1.191% 1.292% 1.328% 1.474% 
pgk 0.300% 0.308% 0.318% 0.361% 
gpmA 0.154% 0.153% 0.153% 0.162% 
gpmI 0.080% 0.083% 0.097% 0.109% 
eno 0.634% 0.702% 0.747% 0.832% 
pykF 0.148% 0.155% 0.181% 0.212% 
pykA 0.179% 0.130% 0.064% 0.064% 
aceE 0.305% 0.322% 0.340% 0.410% 
aceF 0.210% 0.238% 0.243% 0.247% 
lpdA 0.635% 0.614% 0.561% 0.524% 
pta 0.097% 0.100% 0.098% 0.095% 
ackA 0.060% 0.065% 0.064% 0.000% 
gltA 0.885% 0.805% 0.615% 0.477% 
acnA 0.030% 0.000% 0.000% 0.000% 
acnB 0.919% 0.844% 0.662% 0.567% 
icd 1.553% 1.555% 1.309% 1.393% 
sucA 0.331% 0.362% 0.290% 0.254% 
sucB 0.378% 0.389% 0.353% 0.301% 
lpdA 0.635% 0.614% 0.561% 0.524% 
sucC 0.523% 0.495% 0.376% 0.301% 
sucD 0.364% 0.352% 0.284% 0.217% 
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Table 5.4. Continued. 

Gene 
NQ381 
(400) 

NQ381 
(500) 

NQ381 
(800) NCM3722 

sdhA 0.331% 0.302% 0.285% 0.238% 
sdhB 0.160% 0.154% 0.133% 0.114% 
sdhC 0.000% 0.000% 0.000% 0.000% 
sdhD 0.000% 0.000% 0.000% 0.000% 
fumA 0.236% 0.205% 0.165% 0.128% 
fumB 0.000% 0.000% 0.000% 0.000% 
fumC 0.000% 0.000% 0.000% 0.000% 
mdh 0.450% 0.449% 0.410% 0.390% 
ppc 0.156% 0.181% 0.180% 0.192% 
nuoA 0.000% 0.000% 0.000% 0.000% 
nuoB 0.000% 0.000% 0.000% 0.000% 
nuoC 0.077% 0.074% 0.065% 0.057% 
nuoE 0.000% 0.000% 0.000% 0.000% 
nuoF 0.060% 0.065% 0.032% 0.000% 
nuoG 0.060% 0.130% 0.032% 0.000% 
nuoH 0.000% 0.000% 0.000% 0.000% 
nuoI 0.000% 0.033% 0.000% 0.000% 
nuoJ 0.000% 0.000% 0.000% 0.000% 
nuoK 0.000% 0.000% 0.000% 0.000% 
nuoL 0.000% 0.000% 0.000% 0.000% 
nuoM 0.000% 0.000% 0.000% 0.000% 
nuoN 0.000% 0.000% 0.000% 0.000% 
ndh 0.000% 0.000% 0.032% 0.000% 
cyoA 0.000% 0.033% 0.032% 0.032% 
cyoB 0.000% 0.000% 0.000% 0.000% 
cyoC 0.000% 0.000% 0.000% 0.000% 
cyoD 0.000% 0.000% 0.000% 0.000% 
cydA 0.000% 0.000% 0.000% 0.000% 
cydB 0.000% 0.000% 0.000% 0.000% 
cydX 0.000% 0.000% 0.000% 0.000% 
appC 0.000% 0.000% 0.000% 0.000% 
appB 0.000% 0.000% 0.000% 0.000% 
atpA 0.514% 0.508% 0.474% 0.451% 
atpC 0.000% 0.000% 0.000% 0.000% 
atpD 0.395% 0.378% 0.371% 0.326% 
atpG 0.101% 0.093% 0.080% 0.071% 
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Table 5.4. Continued. 

Gene 
NQ381 
(400) 

NQ381 
(500) 

NQ381 
(800) NCM3722 

atpH 0.041% 0.047% 0.049% 0.040% 
atpB 0.000% 0.000% 0.000% 0.000% 
atpE 0.030% 0.000% 0.032% 0.000% 
atpF 0.059% 0.059% 0.059% 0.059% 

 

5.3.2 Partitioning mass of individual enzymes based on fluxes 

Most of the proteins in Table 5.2 are shared among the two energy pathways and 

the biomass production pathway. To determine the protein mass for each of the energy 

pathways, it is necessary to partition the share proteins according to the fluxes they carry. 

For example, for a protein p whose mass is $p, if the carbon fluxes it carries are the 

fermentation flux (Jp,f), respiration flux (Jp,r), and biomass flux (Jp,bm), then protein p 

contributes 

 !p, f = !p "
Jp, f
J p

 [5.7] 

to the fermentation pathway, and  

 !p,r = !p "
Jp,r
J p

 [5.8] 

to the respiration pathway, where Jp = Jp, f + Jp,r + Jp,bm . 

The total proteome fractions for the fermentation and respiration pathways are 

then simply  

 ! f = !p, fp"  [5.9] 

and 

 !r = !p,rp" , [5.10] 

respectively.  



137 
 

 

Within each of the energy pathways or the biomass pathway, the stoichiometry 

between the fluxes of different proteins is fixed. The stoichiometry is shown in Table 5.5 

for the three pathways. With the stoichiometry Sp,i, for protein p and pathway i, given that 

the carbon flux feeding to the pathway is JC,i, the flux for the protein is simply 

  Jp,i = Sp,i ! JC ,i . [5.11] 
Eqs. [5.7-5.11], together with Table 5.4 (for providing values for $p) and Table 

5.5 (for providing values for SC,i) enable the estimates for the protein mass (i.e., $f, $r) of 

the two energy pathways. The results are shown in Figure 4.15. 
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Table 5.5.  Stoichiometry for the two energy pathways and the biomass production pathway.  

The stoichiometry for the biomass pathway is based on (Neidhardt et al., 1990). 

Gene Biomass Fermentation Respiration 
lacY 1 1 1 
lacZ 1 1 1 
glk 1 1 1 
pgm 1 1 1 
galM 1 1 1 
galK 1 1 1 
galT 1 1 1 
galE 1 1 1 
pgi 1.628 2 2 
pfkA 1.61 2 2 
pfkB 1.61 2 2 
fbaA 1.61 2 2 
fbaB 1.61 2 2 
tpiA 1.61 2 2 
gapA 3.188 4 4 
pgk 3.188 4 4 
gpmA 2.808 4 4 
gpmI 2.808 4 4 
eno 2.808 4 4 
pykF 1.948 4 4 
pykA 1.948 4 4 
aceE 1.228 4 4 
aceF 1.228 4 4 
lpdA 1.228 4 4 
pta 0 4 0 
ackA 0 4 0 
gltA 0.274 0 4 
acnA 0.274 0 4 
acnB 0.274 0 4 
icd 0.274 0 4 
sucA 0 0 4 
sucB 0 0 4 
lpdA 0 0 4 
sucC 0 0 4 
sucD 0 0 4 
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Table 5.5. Continued. 

Gene Biomass Fermentation Respiration 
sdhA 0 0 4 
sdhB 0 0 4 
sdhC 0 0 4 
sdhD 0 0 4 
fumA 0 0 4 
fumB 0 0 4 
fumC 0 0 4 
mdh 0 0 4 
ppc 0.728 0 0 
nuoA 1.678 8 22 
nuoB 1.678 8 22 
nuoC 1.678 8 22 
nuoE 1.678 8 22 
nuoF 1.678 8 22 
nuoG 1.678 8 22 
nuoH 1.678 8 22 
nuoI 1.678 8 22 
nuoJ 1.678 8 22 
nuoK 1.678 8 22 
nuoL 1.678 8 22 
nuoM 1.678 8 22 
nuoN 1.678 8 22 
ndh 1.678 8 22 
cyoA 1.678 8 22 
cyoB 1.678 8 22 
cyoC 1.678 8 22 
cyoD 1.678 8 22 
cydA 1.678 8 22 
cydB 1.678 8 22 
cydX 1.678 8 22 
appC 1.678 8 22 
appB 1.678 8 22 
atpA 1.678 8 22 
atpC 1.678 8 22 
atpD 1.678 8 22 
atpG 1.678 8 22 
atpH 1.678 8 22 
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Table 5.5. Continued. 

Gene Biomass Fermentation Respiration 
atpB 1.678 8 22 
atpE 1.678 8 22 
atpF 1.678 8 22 
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