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Chapter 1

Introduction

1.1 Motivation

Current scientific research, especially in high-end fields, has been focusing on theoretical demon-

stration because the lack of proper platforms and techniques. Researchers usually prove their theory

through simulations. However, even the most perfect simulation may have some machenism that

cannot be completely simulated. This calls for experiment validation on physical robots. Based on

ARIA library which is written by the robot’s manufacturer, ready-to-use programs are written to

make experiments easy to carry out.

1.2 Literature Review

Improvement in wireless network techniques and expense reduction in individual sensing de-

vices have created a great foundation for Mobile Sensor Networks(MSNs). Mobile robots with all

kinds of sensors on it are utilized to validate various distributed control algorithm. In [1], distributed

consensus algorithm such as rendezvous and axial alignment are demonstrated with physical exper-

iments. In its platfrom, an overhead camera is used to serve as a pseudo-GPS which determines

the position and orientation of each robot. The research done in [2] doesn’t need overhead camera

because the robot they use has relatively high precise encoder and it can get position and orien-
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tation based on its data. Physical experiments has also been done to demonstrate algorithms like

distributed containment control for double-integrator dynamics in the presence of both stationary

and dynamic leader. An Amigobot and Pioneer 3-DX based multi-robot platform is used in [3]

for exploration of formation control strategy. Becasue only local information is used, this experi-

ment disallows the use of information obtained from certain number of groups to emulate limited

inner-robot information exchange.

Along with distributed control algorithms, there are other experiments that have been demon-

strated using physical experiments. [4] presents an experimental implementation and validation of

a localization system based on a heterogeneous sensor network. It demonstrates the combination

of ultrasound and web-camera is able to provide multitude of services with guaranteed quality with

intelligent sensor fushion scheme. [5] provides a Cooperative LOcalization with Quality of esti-

mation(CLOQ) algorithm which improved the localization performance for entire wireless sensor

network. It also experimentally validates the CLOQ algorithm based on Received Signal Strength

Indication(RSSI) measurement.

1.3 Main Contribution

This thesis studies the coverage problem in an unknown environment. It can be modelled as

one of the resource allocation problems which entails a collection of dispersed interacting com-

ponents seeking to optimize a global collective objective through local decision making. Limited

communication capabilities, local and dynamic information, faulty components, and an uncertain

environment make the problem very complicated. It is not feasible to pass all information to a

command center to process. Even if it were possible, the complexity of the overall system makes

the problem of constructing a centralized optimal policy intractable. Hence, a distributed control

algorithm of MSNs is designed in [6] .

The implementation of the above algorithm is the main contribution of this thesis. First, a

simulation will be conducted using MobileSim which makes debugging easier and faster. After

validated with simulation, experiments on physical robots will be performed. The communication
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structure of this system is client-server. Each robot will run a server program on its on-board PC

while multiple client programs will be initiated on peronal laptop. Clients and servers are connected

through TCP port of robots’ on-board PCs. The robot control system including robot manipulation

and network is developed using Advanced Robot Interface for Application(ARIA) which provides

various classes and funtions in C++ language.

1.4 Outline for Chapters

Chapter 2 covers the theoretical knowledge of the main algorithm this thesis wants to validate

from [6]. It goes through all the terms and explained how they are derived.

Chapter 3 covers the hardware and software used by the experiments. It includes everything

from actual part to the libraries used. In addition, the architecture of the brief control system is

explained in depth.

Chapter 4 presents the settings and results of both MobileSim simulations and physical experi-

ments. Experimental data is intepreted as well in this chapter.

Chapter 5 goes over several possible improvements to the experiment, potential future work and

a conclusion.
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Chapter 2

Game Theory Based Control Algorithm

for Sensor Coverage

This part is work of [6]. I include it for completeness.

2.1 Problem Definition

An MSN is established by a distributed collect of agents where each of them has sensing,

computation,communication and moving ability. In our problem, a limited number of agents are

randomly deployed in a task area. The ultimate goal is to cover the most worthy locations with

minimum energy consumption.

In reality, the worth of a place can be interpreted in many ways. For example, the probability

of finding a target by sensors on that location. However, sensors will not have prior knowledge

about the worth of each location and can only determine after sensing. To be more specific, we

will be solving a coverage optimization problem in an unknown environment. To tackle this, we

will formulate it as a non-cooperative game where each sensor communicates with neighbors within

sensing radius.

A convex two-dimentional mission space is considered. The whole space is discretized into

squared lattices. Each lattice has unit dimension and is labelled with the coordinate of its center

4



q = (qx, qy).The collection of all squares of the lattice is denoted by Q. A numerical variable

fq � 0 is assigend to the worth or the probability of the occurence of an event in each square. fq is

assumed to be stationary.

There are N mobile sensor agents deployed in the mission space and their locations can be

denoted by api (t) , (xi(t), yi(t)) 2 Q. The sensing region of agent i is modelled as a disc with

center api (t) and the radius ari (t), where ari (t) is chosen from a discrete set with the minimum and

the maximum equal to rmin and rmax. All agents are assumed to have the same rmin and rmax

while they can have different discrete sets. The squares covered by agent i, S(ai(t)), is a function

of the agent’s action ai(t) where ai(t) := (api (t), a
r
i (t)) 2 Ai and Ai is available action set for

agent i. The action profile of all agents is denoted by a(t) = (a1(t), .., aN (t)) 2 A :=

QN
i=1Ai.

At each time t, an agent can only move to the squares around it. We use Ci(ai(t � 1)) to denote

the available actions for agent i at time step t. Each agent is only able to communicate with its

neighbors to exchange information. The set of neighbors of agent i is given by N comm
i (a(t)) :=

{j = 1, ..., N |(xi � xj)2 + (yi � yj)2  (Rcomm
i )

2}, where Rcomm
i is the communication range of

agent i.

2.2 Game Design

In this section, a game will be designed to drive agents to better locations with larger total worth

while still considering the energy consumption.

2.2.1 Utility Design

In order to fully make use of energy spent on communication and sensing, we assume Rcomm
i =

2rmax which means whenever two agents have intersection in their sensing area, they can commu-

nicate with each other. In addition, the only information that will be shared with neighbors is its

own action ai(t) which further reduces energy consumption.

We then consider the energy consumption caused by sensing. There is a trade off between power
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usage and the size of covered area. Agent i’s energy consumption on sensing is defined

Esense
i = Ki(a

r
i (t))

2

where Ki > 0 is a coefficient. ari (t) is used as an optimization variable. In [7], a coverage algorithm

for vision-based sensors is proposed to turn off the sensors with overlapping fields of view. In our

proposed method, if we let rmin = 0, which means agent i can choose ari = 0 when the agent

cannot improve the sensing performance.

We finally consider the energy consumption caused by movement. This is defined as

Emove
i = K 0

i(|a
p
i (t)� zi(t)|)

where K 0
i > 0 is a coefficient and zi(t) , api (t � 1) is the previous location of agent i. Here

the agent’s previous location is its current state and we can see the energy consumption caused by

movement is a funtion of current state. This is the reason that a state-based potential game will be

designed for this game.

We now proceed to formulate our coverage optimization problem. A utility function Ui is

designed for each agent that aims to capture the trade off between the worth of covered area and the

energy consumption by agent i.

Ui(a(t), zi(t)) =F (ai(t), a�i(t))� F (a0i (t), a�i(t))

�Ki(a
r
i (t))

2 �K 0
i(|apo(t)� zi(t)|)

(2.1)

where

F (a(t)) =
X

q2
NS
i=1

S(ai(t))\Q

fq

denotes the worth of the covered area by the agents. a0i (t) is the null action for agent i and a�i(t) is

the action of all agents other than agent i. As a result, F (ai(t), a�i(t))� F (a0i (t), a�i(t)) is agent

i’s marginal contribution to sense the covered area. From eq. 2.1 , we can easily find out that the
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utility function of agent i only depends on the actions of {i} [N sens
i (a(t)), where N sens

i (a(t)) is

the set of all agents that have an intersection with that of agent i. Covered regions of agents that

have no intersection with agent i are eliminated. As a result, Ui is local.

After introducing all the ingredients, a state-based game will be intrduced in the following

lemma.

Lemma 2.1 The coverage state-based game � :=< N,A,Ucov >, where Ucov = {Uj , j =

1, ..., N} is an exact state-based potential game with the potential function

�(a(t), z(t)) =
j=1X

N

(F (aj(t), a�j(t))� F (a0j (t), a�j(t)))

�
NX

j=1

Kj(a
r
j(t))

2 �
NX

j=1

K 0
j(|a

p
j (t)� zj(t)|)

where z(t) = (z1(t), ..., zN (t)) is the current state of the game.

[6] provided proof of this game.

2.2.2 Reinforcement Learning

In order to converge to Nash equilibrium while maximize agent i’s own utility function, game

theoretic reinforcement learning is designed here[8][9].The binary log-linear learning method has

been analyzed in [10]. Theorum 5.1 in [10] shows that a potential game will converge to stochasti-

cally stable actions. These actions are set of potential maximizers if all agents adhere to the binary

log-linear learning where the following assumptions should be satified on the agents’ available sets.

1. Feasibility: For any agent i = 1, .., N and any action pair ai(0), ai(m) 2 Ai.There exists a

sequence of actions from ai(0) to ai(m) satisfying ai(t) 2 Ci(ai(t�1)) for all t 2 1, 2, ...,m.

2. Reversibility: For any agent i = 1, ..., N and any action pair a0i, a
00
i 2 Ai, a0i 2 Ci(a00i )  !

a00i 2 Ci(a0i).

It’s easy to check that these assumptions are satisfied. We will use binary log-linear learning

method to update each agent’s action.
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At each time t, only one agent will be randomly chosen and allowed to alter its action while

the others will repeat their actions. The chosen agent i will choose a trial action ai(t) uniformly

randomly from the available action set Ci(ai(t � 1)). It then calcultes the utility function for this

trial action and randomizes its action according to

P ai(t�1)
i (t) =

exp( 1⌧Ui(a(t� 1), z(t� 1)))

exp( 1⌧Ui(a(t� 1), z(t� 1))) + exp( 1⌧U(a0i(t), a�i(t� 1), z(t)))

P
a0i(t)
i (t) =

exp( 1⌧U(a0i(t), a�i(t� 1), z(t)))

exp( 1⌧Ui(a(t� 1), z(t� 1))) + exp( 1⌧U(a0i(t), a�i(t� 1), z(t)))

(2.2)

where P ai(t)
i (t) = 0, 8ai(t) 6= a0i(t), ai(t � 1). It denotes the probability of choosing action

ai(t) at time t. For ⌧ ! 1, the learning algorithm will choose the action ai(t � 1) or a0i(t) with

an equal probability while for ⌧ ! 0, it will choose the action which has the larger utility fuction

between ai(t� 1) or a0i(t). In other words, an agent is randomly chosen and it will choose between

alternative action a0i(t) and previous action ai(t � 1) randomly. The alternative action a0i(t) is

randomly selected from the set Ci(ai(t� 1)).

2.3 Gaussian Mixture Model Estimation

As stated in 2.2.2, agent i needs to decide whether to go to alternative action based on the utility

function values of both current action and alternative action. Since at that time, agent i hasn’t been

there, it needs to estimate the worth of alternative action’s covered area. We will use Gaussian

Mixture Model(GMM) as an estimation model of the worth of the area. In our setting, agents will

keep the worth of their sensed locations in their memories. The GMM is a parametric probability

density function represented as a weighted sum of Gaussian component densities defined as

MX

k=1

wkg(x|µk,�k)

and

g(x|µi,�i) =
1

2⇡|⌃i|
1
2

exp(�1

2

(x� µi)
T
⌃

�1
i (x� µi))
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where x is a 2-dimentional location data vector, M is the number of Gaussian components in

the GMM. wi is the ith weighting coefficient and g(x|µi,⌃i) is a 2-variate Gaussian distribution

with mean vector µi and covariance matrix ⌃i. The weights have to satisfy the constraint that
PM

k=1wk = 1. The reason to use GMM is it is one of the most frequently observed distributions

and is a starting point for modelling many natural processes.

In this paper, the GMM is parametrized by � = {wj , µj ,�j |j = 1, 2, ...,M} where wj , µj ,

and �j are the weighting coefficient, mean and covariance corresponding to the jth Gaussian of

GMM. One of the most accurate and well-established method is the ML estimation. Agent i has

the observation Oi
t at time step t.The sequence of these observations Oi

= {Oi
1, O

i
2, ..., O

i
T } can be

used as training vector with which we wish to find the estimate of �i that maximizes the probability

of the occurence of the observation sequence vector denoted by p(Oi|�i
). The ML estimation can

be written as

max

�̂i
p(Oi| ˆ�i

) = max

�̂i

TY

t=1

p(Oi
t|ˆ�i

)

This is a non-linear function of parameter ˆ�i and direct maximization is not possible, the ex-

pectation maximization (EM) has been introduced in [11] to obtain an iterative solution. Using the

same EM approach, the GMM parameters can be estimated as

ŵi
j =

1

T

TX

t=1

Pri(j|Oi
t, ˆ�

i
)

µ̂i
j =

PT
t=1 Pri(j|Oi

t, ˆ�
i
)Oi

tPT
t=1 Pri(j|Oi

t, ˆ�
i
)

�̂i
j
2
=

PT
t=1 Pri(j|Oi

t, ˆ�
i
)(Oi

t � µ̂i
j)(O

i
t � µ̂i

j)
T

PT
t=1 Pri(j|Oi

t, ˆ�
i
)

Pri(j|Oi
t, ˆ�

i
) =

ŵi
jg(O

i
t|µ̂i

j , �̂
i
j)PM

k=1 ŵ
i
kg(O

i
t|µ̂i

j , �̂
i
j)

(2.3)

where Pri(j|Oi
t, ˆ�

i
) is a posteriori probability of the observation Oi

t for the jth Gaussian of agent i.

One problem of this algorithm is that the EM method optimizes the likelihood of the parameters

given the observed location without taking the worth of that location into account. The same prob-

lem has been pointed out in the image processing literature [12]. We use a modified version of the
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solution introduced in [12] to repeat the ML algorithm m times in worthy locations with m chosen

as

m =

8
>><

>>:

1 + � ⇤ round( fq
fmode

) fq � fmode

1 otherwise

(2.4)

where fmode and � are a threshold and a correction factor. It is apparent that if the correction

factor,�, is increased, a region with a higher worth will be repeated more often.

In our solution, the agents use the estimated parameter ˆ�i to calculate the estimation of fq at

each iteration which is used to evaluate the utility function. Although fq is asumed to be stationary,

the estimate of fq is no longer stationary. However, a standard assumption in game theory is that

the game parameters are stationary. In [13],the case of slow variations of the game parameters is

investigated. Corollary 4 in [13] shows that using the binary log-linear learning the probability of

converging to Nash equilibrium will be greater than 1� �1 if the following is satisfied:

|�(t+ 1)� �(t)| < �2

|ˆ�i � �(t)| < �3

where �2 and �3 are the bound on the changing rate of � and the bound on estimation error of

�. Under the assumption of a stationary environment in Section II we will have �2 = 0. In addition,

the agents’ estimated parameters ˆ�i
(t) converge to �(t), which implies that the estimation error

decreases. Hence there exists a bound �3 on the estimation error. Thus the conditions are satisfied

and the agents will converge to a Nash equilirium stochatically.

2.4 Mutual Information

In this section, we add a mutual information term to each agent’s utility function in order to

find an action and its observation is more informative. In order to select informative observation,

the entropy criterion has been used in information theory and applied mathematics contexts [14].

In information theory, the conditional entropy quantifies the amount of information needed to de-
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scribe the outcome of a random variable Y given the value of another variable X , which is written

as H(Y |X). Here our goal is to reduce the uncertainty of the unobserved area by finding more

informative locations for future observations. In [15], the mutual information criterion has been

proposed for observation selections. It is shown that maximizing the mutual information which

represents independence between an observed and an unobserved area is more effective than the

conditional entropy to reduce the uncertainty.

The objective function can be written as

I(XOi : XQ\Oi) = H(XQ\Oi)�H(XQ\Oi |XOi),

where I , XOi and XQ\Oi are the mutual information, and the observed and unobserved variables

corresponding to agent i, respectively. Fortunately, for Gaussian processes there exists a closed form

to compute the conditional entropy which is given by

H(XQ\Oi |XOi) =
1

2

log(2⇡e�2
XQ\Oi |XOi

),

where e is the Euler number and �2
XQ\Oi |XOi

is the covariance of the conditional distribution of

XQ\Oi given XOi . The covariance �2
XQ\Oi |XOi

is calculated as

�2
XQ\Oi |XOi

= K(XQ\Oi , XQ\Oi)

� ⌃XQ\OiXOi⌃
�1
XOiXOi

⌃XOiXQ\Oi

where ⌃XQ\OiXOi is a covariance matrix each of whose entries is a function of the kernel func-

tion K(a, b) for a 2 XQ\Oi , b 2 XOi , and ⌃XQ\OiXOi = ⌃

T
XQ\OiXOi

. The kernel function deter-

mines the correlation of the observations and can be defined using different functions. One of the

most frequently used kernel functions is K(a, b) = exp(�ka�bk22
h2 ), where ka � bk2 is the distance

between the locations a and b and h is a constant. As can be seen, the covariance does not depend

on the observed values, so the mutual information can be calculated ahead of an agent’s new action.
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This is important because we want to compare the utility value of current and trial action. The latter

one happens before agent’s actual movement. By adding the mutual inforamtion term to the utility

function, we get a modified game which was proved to be a state-based potential game as in [6]. We

then define a new utility function

Ui(a(t), z(t)) = F (ai(t), a�i(t))� F (a0i (t), a�i(t))

�Ki(a
r
i (t))

2 �K 0
i(|a

p
i (t)� zi(t)|)

+ ⌘(t)(H(XQ\Oi)�H(XQ\Oi |XOi)).

(2.5)

where ⌘(t) is a time varying coefficient which adjusts the importance of the mutual information

term in comparison with the sensing optimization part. The selection of ⌘(t) follows the following

principle. Starting the search, the agents do not have a good estimate of the area. Gathering proper

data serves as an important role. However, by having a more accurate estimate, the weight of the

sensing part needs to be increased in order to put more effort on finding the best configuration of

the MSN.
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Chapter 3

Hardware and Software

3.1 Pioneer 3-AT

Pioneer 3-AT is a versatile mobile robot designed by The Adept MobileRobots. It has an on-board

computer which opens the way for Ethernet-based communication, laser, vision processing and

other autonomous functions. Its precise encoder is the main reason to choose it as this experiment’s

platform. Differential drive kinematics is used in Pioneer 3-AT. There are serval ways to drive it

with the help of ARIA library. Setting linear and angular velocity, setting velocities of two sides

of wheels respectively or setting the goal position in global frame directly. Among all three ways,

I used the first way to keep the compatibility with iRobot Create Roomba, as we may need to do

experiments with heterogeneous robots later.

3.1.1 Configurations

Pioneer 3-AT:

• 44.2368MHZ Renesas SH2 32-bit RISC microprocessor.

This handles low level details of mobile robotics, including maintaining the robot’s drive

speed and heading, as well as acquiring and pre-processing sensor readings.

• On-board computer
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– 2x Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz

– 2021MB DDR3 Memory

This runs a server on Windows 7 home edition. It communicates with the robot’s mi-

crocontroller through its HOST serial port and the dedicated serial port COM1 under

Windows.

3.1.2 Specifications

• Velocity range: -1200 to 1200 mm/s

• Rotational velocity range: -300 to 300 degree/s

3.2 Camera

The camera is only used to take videos of this experiment. Because Pioneer 3-AT has relatively

high precise encoder, it’s unnecessary to utilize camera data to correct poses of robots.

3.2.1 Configurations

• Samsung Galaxy Note 5 front camera

– 5.0 megapixel sensor

– 1920x1080 resolution

3.3 Router

This is the pivot of communication. No special configuration is needed. The only thing we need

to do is to connect all the devices to it. It will automatically assign IP addresses through which we

can establish connections between laptop computer and on-board PCs.

• Linksys N300 WIFI Rounter E1200
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3.4 Computer

This is the central ”brain” of the experiment. It will collect all the data including current postions

and sening radius of robots and store worth of sensed locations. Based on these data, it will calculate

next goal postion of selected robot. Control command then will be sent to that robot’s server.

3.4.1 Configurations

• CPU: Intel Core i5-5257U 2.7GHz

• RAM: 8GB

3.5 Softwares

The central computer runs on Windows 7 professional 64-bit, trial version.

3.5.1 Programs

• MobileSim - A simulator using the model of physical robot. This program is linked with

ARIA and the simulation is conducted using C++ code.

• MATLAB - Used to extract data from output files and plot trajectories of all robots.

• Microsoft Visual Studio 2013 professional - Used to edit and compile codes.

• Parrallel Desktop - Used to boot Windows 7 on OS X 10.11

3.5.2 Libraries

• Advanced Robot Interface for Applications(ARIA) - Provides functions to build up network

and to drive Pioneers.

• Eigen - Library which defines Matrix types and performs linear algebraic oprations with ease.

• GNU Scientific Library 1.8 - Library used to generate random number and to simulate bivari-

ate normal distribution.
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Figure 3.1: A picture of Pioneers

3.5.3 Robot Control System and Architecture

The physical robot experiments are based on three Pioneer 3-ATs from Adept Mobilerobots that

are shown in Fig. 3.1. A top level diagram of the multi-agent control system architecture is shown

in Fig. 3.2. Each robot is equipped with an on-board PC on which a server program is running. The

on-board PC is connected to the robot internally. Three client programs run on one laptop, which

makes the communication between clients easier. Although information of all actions is accessible,

we emulate the distributed control scheme by using limited inner-robot information exchange. As

it is shown by dashed arrows in Fig. 3.2, the robots are not allowed to use the actions of the robots

that are not in their communication neighbor set. This means client i does not have access to the

action of client j, if the distance between robots i and j is larger than Rcomm. This enables us to test

distributed control algorithms that involve only local information. The laptop and all three robots

join the same WIFI network, where the communication between clients and servers is based on

TCP.

A client program runs on the laptop, which keeps requesting a robot’s action (see appendix A.2

Line 9-18, 25-36) and calculating the new action (see appendix A.3 Line185-363) which implements

(2.2), (2.3) and (2.4). The on-board PC is responsible for high-level control. It runs a server that

keeps monitoring on a specified TCP port. According to the received command, it will choose to

send the robot’s position to a client or to receive a new action from the client(see appendix B.2

Line 7-17) . The Pioneer 3-AT also has a microcontroller which is designed to perform low-level

control. It maintains support for all sensing and actuation features of the robots. A high-precision
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Figure 3.2: The architecture of platform

encoder/decoder will be utilized where there is no need for correction on the calculation of the

distance traveled nor angle turned. Each server periodically receives the current pose, (position and

orientation), from the microcontroller. We set the delay of server at 100 ms deliberately since the

pose of robot stored in server will be out of date if the delay is larger and there is no need for it to

be zero delay as the client spends some time to calculate. By using a feedback control(see appendix

B.3 Line 120-180), the server generates a new command and sends it to the microcontroller in order

to move the robot into its desired position. A deadband of 2 degrees and 2.236 cm are incorporated

to prevent oscillation.
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Chapter 4

Tests and Results

Before real experiments, simulations are usually done first. Because all processes are simu-

lated on computer, each trial costs less time and it’s easier to make changes to configuration and

parameters. A Matlab simulation has been done in [6]. In this thesis, MobileSim simulation is

carried out first and after it works well, physical experiments with Pioneer 3-AT are conducted.

Both MobileSim simulation and physical experiments implement C++ code. The only difference

between MobileSim simulations and physical experiments is that three simulated robots will be

connect through local TCP ports while real robots are connected through TCP port of its own.

4.1 Results of MobileSim

The algorithm stated in chapter 2 is first simulated using MobileSim. A 5 ⇥ 5 meters area

is created, which is discretized into a 10 ⇥ 10 squared lattice. Fig. 4.2 shows the distribution

of the worth, where a worthy area is assumed on the diagonal. We also deliberately introduce

a worthy area on the corner. This will illustrate the advantage of using the mutual information

term to escape the suboptimal equilibria. To show how the proposed algorithms perform in real

applications, an obstacle is also introduced in the coverage area, where the obstacle is shown by

red squares in Fig. 4.2. A group of three robots (N = 3) are deployed in this area. The robots

18



are initialized at

0

B@
1

3

1

CA ,

0

B@
1

9

1

CA, and

0

B@
10

3

1

CA, respectively, where their initial positions are shown

by green squares in Fig. 4.2. Each robot can choose its ari from the set {0, 1, 2}, which means

rmin = 0, rmax = 2, and Rcomm
= 2rmax = 4. We let M = 1 and use the Gaussian distribution

as an estimation model. The agents employ the proposed approach using (2.2), (2.3) and (2.4)

with the utility function (2.5). The experiment parameters are chosen as Ki = 2 ⇥ 10

�4,K 0
i =

2.5 ⇥ 10

�2, i = 1, 2, .., N, ⌧ = 5 ⇥ 10

�3, fmode = 10

�3, and � = 1. After running 400 steps

for both cases(with and without mutual information), we get Fig. 4.1a and Fig. 4.1b, showing

the trajectories of three robots as red prints. Different percentage of opacity indicates different

worth of each location. As can be inferred from Fig. 4.2, the lighter it is, the less worth it bears.

Some explanations are more understandable when we look at the matlab plot based on physical

experiments’ data and we will present them in the next section. What is worth mentioning here

is the choice of ⌘, the weight of mutual information term. As stated in chapter 2, the portion

of mutual information among utility function should decrease as agents need to put more effort on

optimization of their deployment rather than gathering information. The speed of decreasing matters

as well. Compared with 0.01t+5
t+10 , if ⌘ decreases faster, robot 3 which is initialized at the corner will

never move out of the corner. If ⌘ is large and decreases too slow, the system will move a lot which

obviously violates our original intension.

4.2 Results of Physical Experiments

The experiment area is prepared as shown in Fig. 4.3. A coordination is marked on the ground.

Because the radius of Pioneer 3-AT is approximate 0.5 meter, the unit is chosen as 500 millimeters.

Different percentage of opacity of green sqaures and red squares are also added to Fig.4.3.

In our first experiment the utility function (2.5) has been used with ⌘ = 0, where the robots

maximize the worth of the covered area while considering the energy consumption. Fig. 4.4 shows

the initial positions, the trajectories and the final positions of the robots. Explanation of green

colored squares remains the same and the obstacles are shown by red squares. As we can see,
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(a) Trajectories of robots using the utility
function (2.5) and for ⌘ = 0 (without
mutual information)

(b) Trajectories of robots using the utility
function (2.5) and for ⌘ =

0.01t+5
t+10 (with

mutual information).

Figure 4.1: MobileSim results

robots 1 and 2 move toward better locations, which can cover more worthy areas. After 400 steps,

their final sensing regions are indicated by yellow circles. Robot 3 is initialized at the corner, where

it can sense some worthy areas. As it is shown in Fig. 4.4, robot 3 decides to stay there because the

neighborhood areas have lower worth than its current position and the robot has no knowledge of

more worthy areas far from its initial position.

In our next experiment, the utility function (2.5) has been used with ⌘ =

0.01t+5
t+10 . Here the

mutual information term in the utility function helps the robots to choose more informative actions.

Fig. 4.5 shows the initial positions, the trajectories and the final positions of the robots. Unlike Fig.

4.4, robot 3, does not stay at the corner in Fig. 4.5. Mutual information makes the robots to move

and gather more information, where robot 3 find a better action to sense a more worthy area.

In Fig. 4.6, the worth of the covered area by three robots are compared for our two experiments.

Fig. 4.6 shows that without the mutual information term the robots sense 84% of the worth of

the area at about step 250. Using mutual information the robots move frequently, gather more

information, and converge to the Nash equilibrium faster. Here the robots can sense 84% of the

worth of the area before the 100th step. This shows the faster convergence rate using the mutual

information in our utility function.
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Figure 4.2: The worth of the area used for experimental validation. The initial positions of the
robots and the obstacles are shown by green and red squares, respectively.

Figure 4.3: The initialization of physical experiment
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Figure 4.4: The trajectories and the final positions of the robots using the utility function (2.5) and
for ⌘ = 0 (without mutual information).

Figure 4.5: The trajectories and the final positions of the robots using the utility function (2.5) and
for ⌘ =

0.01t+5
t+10 (with mutual information).
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Figure 4.6: The worth of the covered area for two cases ⌘(t) = 0 and ⌘ =

0.01t+5
t+10 .
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has two major parts. The first part is establishing a brief robot control system which

can drive multiple robots to certain positions. As is shown in simulation and physical experiments,

it works well.

The second part is implementing the game theory based algorithm on MobileSim and physical

robots. The results demonstrate that this algorithm can drive robots to the configuration that covers

most worthy area in an unknown environment eventually. For the case without mutual information,

robot 3 has never left the corner which has relatively high worth. For the one with mutual informa-

tion, robots move more often to collect more information as expected. Once robot 3 is ”forced” to

leave, it will not go back because areas on the diagnoal have much more worth than the corner.

5.2 Future Work

There are many possible improvements that can be added to this thesis. For one, change the

way to drive. Instead of changing linear and angular velocity periodically, we can make use of

built-in classes such as ArActionGoTo. These classes are written by the developers of Pioneer.

They may have better understanding of control on bottom layer which results in higher accuracy.
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Another option is to add collision avoidence function because Pioneer is powerful and it may cause

serious damage if they collide. Since the bottom layer control of Pioneer 3-AT will not change, a

graphic user interface(GUI) may be developed to make it easier to control. Last but not least, we

can get accurate amount of energy consumption by reading the values of robot’s battery while in

our experiment, we used estimated model instead.
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