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Abstract 
 

Open and collaborative climate change mitigation planning for electric power grids 
 

by 
 

Josiah Lohse Johnston 
 

Doctor of Philosophy in Energy and Resources 
 

University of California, Berkeley 
 

Professor Daniel M Kammen, Chair 
 
 

Global warming is one of the most significant problems facing humanity, and reducing 
emissions from the electricity sector is critical for mitigating global warming impacts. 
My work here focuses on developing computational tools to plan cost effective mitigation 
pathways for the electricity sector and using them collaboratively. The complexity and 
scale of globally transitioning electrical power grids away from fossil fuels over the 
coming decades will require a large-scale collaborative effort with effective coordination 
of many actors trained in diverse disciplines. Historically, energy-modeling efforts have 
tended to be siloed and fragmented between and even within research groups. In my 
research I have attempted to provide an alternative to that status quo by improving an 
open source renewable planning model, Switch, increasing its usability and accessibility 
to interdisciplinary researchers, and collaboratively applying it to mitigation planning. 

We used the Switch model to conduct detailed research into cost effective mitigation 
pathways for the Western portion of North America, or the WECC power grid. We found 
that renewable portfolio standards were insufficient to meet climate stabilization goals, 
and more targeted policies were needed that specifically focused on emission reductions. 
We identified investment plans that could lead to dramatic decreases in emissions without 
significantly increasing electricity costs over the next twenty years by retiring coal and 
replacing it with natural gas and renewables while evolving the grid to better 
accommodate variable renewable energy. 

We found that meeting overall 2050 targets will require concerted action on many fronts, 
including aggressive efficiency programs, electrification of transportation and heating, 
and dramatically reducing emissions from the electricity sector. Meeting 2050 emission 
goals without significantly increasing energy costs also will require additional 
technological innovation. Two promising technological pathways for long-term cost 
containment are developing low cost solar in conjunction with low cost storage or 
demand response, and developing Biomass Energy with Carbon Capture and 
Sequestration (BECCS) to provide emission offsets during the last stages of emission 
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reductions. We found that the emissions offsets provided by BECCS were much more 
valuable than the energy, suggesting that other sequestration options such as improved 
land management that increases soil carbon deposition could be a particularly valuable 
part of an economy-wide portfolio. 

We started this research in the early days of the natural gas boom caused by widespread 
use of hydraulic fracturing. As data emerged on potentially high methane leakage rates in 
the natural gas supply chain, we investigated how leakage impacts roles Natural Gas (NG) 
can play in a low emission power grid. We found that leakage rates significantly reduce 
the use of NG as a direct substitute for coal, but have a smaller impact on the use of 
combustion turbines for reserves and peaking capacity. Higher leakage rates increase 
electricity costs in optimal solutions by an average of 1.3% ±0.068 and decrease NG 
consumption by 18% ±0.55 for each percentage point increase in the leakage rate in the 
next decade. 

Increased leakage can increase or decrease the use of NG to complement renewables, 
depending on the emissions cap context and technological alternatives. In the 2020 and 
2030 timeframes under moderate emission caps, higher leakage rates prompt the 
installation of more renewables and prompt NG Combined Cycle Gas Turbines (CCGT) 
to shift from baseload operation to running as-needed to complement renewables. In the 
2030 timeframe, higher leakage often prompts installation of new NG Combustion 
turbines with Compressed Air Energy Storage, which is used to complement variability 
from renewable resources within a day. Scenarios that include low-cost battery storage or 
low-emission baseload options of Coal CCS or Nuclear have less Compressed Air Energy 
Storage installed in the 2030 timeframe because these technologies provide alternate 
emission reduction paths. In the 2040 and 2050 timeframes with tighter emission caps, 
NG is already used primarily to complement renewables and higher leakage rates tend to 
decrease its use in any role. 

Throughout this process, I made significant advancements to Switch as an analytical tool 
for collaborative work by interdisciplinary research teams. I initially increased the 
usability and lowered the learning curve while training colleagues who lacked computer 
science backgrounds, as well as developing execution workflows to increase 
reproducibility and leverage high performance workstations and computing clusters. I 
played a crucial role in developing detailed databases to describe the WECC electricity 
grid and calculating renewable energy potential at a high geographic and temporal 
resolution over a large area. I developed new techniques for describing policies and 
tracking both the renewable fraction and emission intensity of electricity. I developed 
techniques for simulating grid dispatch of investment portfolios on ~100x as many 
timepoints to better estimate reliability, costs and emissions. I used that instrumentation 
ability to improve sampling methods and solution quality. Interviews with current and 
potential users indicated a need for a completely open source software stack, streamlined 
workflows for data ingestions and processing, as well as a graphical front-end to 



 
 

3 

complement the command line interface. These usability enhancements are the subject of 
ongoing and future work. 

Overall, this open collaborative approach has proven quite successful. We trained four 
other research teams on two campuses to develop versions of this model for China, Chile 
and Nicaragua and to conduct a detailed systems-level analysis of Carbon Capture and 
Sequestration technologies. Those efforts led to recognition by the United Nations during 
the 2014 Climate Summit. We have developed partnerships with a second academic 
campus, a consulting firm and Google who are all contributing to a new implementation 
of Switch in a completely open source software stack that supports stochastic 
programming and decomposition (Pyomo). We hope that the new version can serve as a 
open platform for evaluating and comparing research methodologies as well as 
supporting investment planning and policy analysis for consulting firms, government 
agencies, academics, utilities and NGOs.  
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Preface 
 

Electricity decarbonization is an extremely complex and important problem whose 
solution requires the coordinated efforts of many people. Effective contributions to this 
field require understanding and fitting into the larger social process of research, planning 
and implementation rather than working as an individual in relative isolation. Historically, 
most communication and coordination within academia has been mediated through 
journal publications, conferences and occasional exchanges of digital data. Many 
research contributions to this field have been based on individual researchers 
implementing analytic tools from descriptions in the literature. Individual researchers 
often reuse and extend their own work, but it is less common for these tools and models 
to be used by a larger research lab, or to be shared or reused by other research groups. 
This trend is in contrast to an open source strategy of preferentially reusing and extending 
prior work, and only implementing new work when necessary. 

My approach throughout my doctoral work has been to embrace the collaborative social 
process of science. This may have been easier for me than most because prior to graduate 
school, I worked in a computational biotech lab and learned to embrace open source 
culture and strategies. Part of this meant removing my ego attachment to “I wrote this 
entirely by myself”, and instead considering how I can most effectively contribute to 
larger goals and broader society. Near the beginning of my doctorate, I learned of a 
cutting-edge investment-planning model (Switch) that had been written by a graduating 
doctoral student. Switch was open source and had dramatically new functionality that 
was not offered by other energy planning models at that time; namely incorporating 
renewable integration requirements into grid investment optimization. Most studies at the 
time examined how renewables could be integrated on a marginal basis into a legacy grid, 
rather than looking forward to what kind of grid we could build to accommodate large 
shares of renewables. 

I joined a team of students that extended Switch to add new functionality, increase 
usability and expand geographic scope. I made significant contributions to modeling, 
training, implementing new features, analysis and providing all manner of computational 
support. We used Switch and other tools to develop decarbonization pathways for 
California and the western portion of North America and to conduct more targeted 
studies examining systems impacts of select technological advancements. We welcomed 
additional collaborators who expanded the model to several other countries and regions. 
Switch has been used as the basis of numerous publications as well as reports to state and 
national agencies, regional development banks and other stakeholders, and has received 
recognition from the UN. Going forward, we are working to increase the accessibility and 
usability of Switch to increase our collective contributions and impact even more.  
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1 Introduction 
 
1.1 Problem Statement 
 
Global warming is one of the most significant problems facing humanity. Destabilization 
of weather patterns will wreck havoc on food stability and ecosystem health. Water 
shortages will be caused by extreme drought as well as decreased glaciers and snow 
packs that feed rivers in summer months. In the long run, rising sea levels will force large 
migrations of human populations away from coastal areas, which can increase 
geopolitical tension and the likelihood of conflicts (Department of Defense, 2014). 
Global warming is already causing catastrophic consequences including increased storms, 
floods, droughts and fires, and we are are locked into a certain amount of continued 
effects. In the years ahead, both mitigation and adaptation will be important. My work 
focuses on mitigation through emissions reductions, or decarbonization, of the electricity 
sector. 

The electricity sector is the single largest source of global greenhouse emissions 
(Pachauri, Allen et al. 2014), the majority of which are carbon dioxide released from 
burning fossil fuels. Decarbonizing electricity is a vital step in economy-wide emission 
reductions. Transportation and heating are also significant consumers of fossil fuels, and 
one of the most viable paths to decarbonizing those sectors is shifting their energy 
demands to electricity. However, that strategy only works if electricity is decarbonized. 

Electric power grids are some of the most complex machines humans have built. Electric 
grids can span half a continent or more, and every generator in a grid must be kept 
synchronized with every other generator. Energy production and consumption must be 
balanced at every moment or the grid will shut down to avoid damaging expensive 
infrastructure. The flows of energy through large AC grids are so complex that no single 
individual fully understands them (Von Meier, 2006). We rely on computer simulations 
to approximate system behavior for planning and operations purposes, but our electricity 
systems are so complex that we cannot model all relevant parameters and contingencies 
with complete accuracy. Planning and operating electric grids reliably has always been a 
difficult task, and this task becomes even harder with decarbonization. 

Decarbonization poses new challenges to electric power system planning because it 
requires unprecedented amounts of intermittent renewable generation that introduces 
significant stochastic elements into grid operations. Technological developments could 
change this story, but for now the largest technologically accessible and culturally 
accepted sources of clean electricity are wind and solar. Alternative low emission sources 
tend to be unproven, controversial, or not available at large scale. Nuclear and Carbon 
Capture and Sequestration have low emissions, but both are controversial and CCS is 
somewhat experimental. Hydropower has low direct emissions, but generally creates 
tremendous environmental problems and displaces large populations when deployed at 
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large scale. Also, most hydropower potential has been developed in industrialized nations. 
Geothermal has low direct emissions and few environmental or human impacts, but its 
potential is strongly limited in most areas. Biomass energy has low direct emissions, but 
potentially high environmental and land use impacts if deployed at scale. The 
exploitation of biomass can dramatically disrupt the soil carbon cycle and otherwise 
cause large indirect emissions, depending on how it is deployed. While all of these 
options and others are on the table, wind and solar are the most proven and accepted low-
emission generators that can be deployed on a large scale. 

Historically, capacity expansion models could reasonably assume that the vast majority 
of generation units were baseload or dispatchable which could generally be modeled with 
deterministic methods. The variability and uncertainty associated with load was fairly 
small and could be modeled as deterministic reserve requirements. Outages are also 
random events with low probability and high impact, but these too can be approximated 
with various deterministic reserve requirements in planning models.  

Intermittent renewable generators increase the complexity of the planning process by 
introducing more uncertainty. The power output of an individual intermittent generator 
cannot be predicted with precision and has larger deviations than loads. However, 
renewable power output is not an independent random variable because weather 
influences the output of other intermittent generators as well as the system demand. For 
example, clouds can decrease solar panel output while increasing demand for lighting and 
potentially changing HVAC demand. Consequently, intermittent power is best modeled 
as a random variable with a complex joint probability distribution that is often 
approximated from time-synchronized historical records. Approximation methods used 
for contingency planning (i.e. various types of reserve requirements) can be adapted to 
deal with intermittent generation, but care needs to be taken in estimating reserve 
requirements. For example, a simple method that scales output of a single solar 
installation to approximate the output of a region-wide solar portfolio will significantly 
overestimate the variability of power output on several timescales (Mills, 2010).  

Integrating small amounts of renewable energy is relatively straightforward because the 
rest of the system can absorb its variability. Integrating large amounts of renewables is 
more difficult because the existing system was not built to accommodate large amounts 
of renewable energy. High penetrations of renewables also cause the economics of 
existing fossil plants to shift as their energy is displaced with renewable power. In 
general, the complexities of integrating large amounts of intermittent renewable 
generators requires a new class of planning models that provide high temporal and 
geographic resolution to endogenously consider integration requirements and invest in 
new assets that can accommodate larger amounts of renewable energy. Unfortunately, 
most renewable planning is still performed manually in an ad-hoc manner that does not 
optimize overall system costs and performance.  

Overall, the scale and complexity of a global transition to a cost effective, low-emission, 
and high-renewable electric power grid requires a large labor force. The scope is larger 
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than what an individual or small research team can effectively accomplish and scale. 
Global warming mitigation in the electricity sector will proceed most effectively if people 
adopt collaborative work practices that enable them to readily reuse and extend each 
other’s work. Open collaborative practices can reduce duplication of effort and allow 
innovations and best practices to spread quickly. 

Research Goals 

My overall research goals are to contribute to collaborative science by improving a state 
of the art open source electricity sector planning tool (Switch) and to use this tool to 
study mitigation pathways. Other more specific goals have arisen from these overarching 
themes, including: 

• Understanding how to practice and promote open collaborative research. 
• Identifying least-cost transition plans to drastically lower electricity-sector 

emissions in the western portion of North America. 
• Investigating implications of breakthrough technologies such as low cost solar 

and Biomass Energy with Carbon Capture and Sequestration. 
• Investigating the roles of natural gas in a low emissions grid and the implications 

of methane emissions in its supply chain. 
• Making the Switch model more accessible to more researchers. 
• Using significantly more data to evaluate the Switch model and address 

shortcomings such as capacity shortfalls and emission overruns. 

1.2 Energy models 
 

As increasing amounts of renewable generation is integrated into electrical power grids, 
there is an increasing need for system-level modeling that can account for interaction 
between components and trade-offs. Besides adding to the complexity of dispatch and 
adequacy planning, renewable power shifts how the rest of the system is used, generally 
lowering overall capacity factors of dispatchable fossil plants and increasing the 
frequency and magnitude of their ramping. This in turn changes the economics of fossil 
plants whose levelized costs are strongly driven by their capacity factors. Historically, 
most available capacity has been dispatchable to some degree, which makes planning a 
portfolio and assigning capacity factors a-priori without dispatch simulation relatively 
straightforward. With significant amounts of renewables in the system, it is not possible 
to accurately assign cost-effective capacity factors without performing a dispatch 
simulation. Traditionally, capacity planning models have not endogenously included 
dispatch simulations because it was unnecessary and added significant computational 
burden. 

Two leading energy investment planning models used in the United States are the 
National Energy Modeling System (NEMS) developed by the Energy and Information 
Administration and the Regional Energy Deployment System (ReEDS) developed at the 
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National Renewable Energy Laboratory (NREL). NEMS is a general equilibrium energy-
economic model that simulates U.S. energy markets with relatively low geographic 
resolution (15 regions for electricity markets) on a long time horizon. NEMS does not 
lend itself to renewable integration studies because its electricity module does not capture 
the temporal relationships between intermittent generation and load. ReEDS is an 
optimization model of the US electric power grid with relatively high geographic 
resolution (134 balancing areas) and a long time horizon. ReEDS uses time-synchronized 
estimates of intermittent generation and load, but has limited temporal resolution with 
only 34 time slices representing each investment period. ReEDS has two year long 
investment periods that are solved sequentially without foresight of future constraints 
such as carbon caps. Several detailed renewable integration models have been developed 
for small geographic areas or short time horizons, but these models tend not to scale to 
large geographic areas or planning over long time horizons. ReEDS was designed to 
support renewable energy planning requirements, however it is not open source or 
accessible to researchers outside of NREL so is incompatible with open collaborative 
research. 

Given this context, Switch was written to endogenously include sufficient dispatch details 
to approximate renewable integration requirements and the behavior of the rest of the 
system. This is an improvement over traditional methods as well as most current 
renewable integration studies because it simultaneously optimizes all parts of a grid 
rather than solely focusing on incremental renewable additions while leaving the rest of 
the grid as a given. Switch also can incorporate long time horizons, which better estimate 
the value of a durable grid asset that is installed in the near term. Studies that do not 
consider ratcheting carbon caps could over-invest in technologies that are incompatible 
with long-term emission goals but have marginally lower emissions than present day 
generators. For example, over-deployment of fossil-fuel combined heat and power 
generators would decrease emissions in the short term but result in stranded assets and 
overall higher grid costs in the long run compared to electrifying those heating loads and 
using renewable generators to provide electricity. Overall, these capabilities allow Switch 
to identify more cost-effective solutions than many other approaches. 

1.3 Switch Overview 
 

The SWITCH optimization model attempts to capture high levels of geographic and 
temporal detail in a single investment framework. SWITCH generates a multi-decadal 
investment plan for the power grid that minimizes the wholesale cost of electricity while 
meeting load, reliability and policy constraints (Nelson, Johnston et al., 2012). SWITCH 
and ReEDS are relatively unique among capacity expansion models because they both 
include a simplified model of day-to-day operations of a large, interconnected power grid. 
SWITCH was originally developed by Dr. Matthias Fripp to study renewable integration 
in California (Fripp, 2008). Collaborators and I subsequently expanded the model to the 
Western Electricity Coordinating Council and enhanced it by including additional 
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technologies, policy constraints and features (Nelson, Johnston et al., 2012; Mileva, 
Nelson et al., 2013; Wei, Nelson et al., 2013; Sanchez, Nelson et al., 2015). The version 
of SWITCH used for modeling the Western Electricity Coordinating Council has 50 load 
areas, about 7,000 intermittent renewable energy sites, and 144 time points per 
investment period. All load and intermittent generation data is drawn from time-
synchronized historical records to capture temporal and geographic relationships.  

SWITCH is formulated as a single large linear program with an objective function that 
minimizes the net present value of the costs associated with meeting electricity demand 
over its planning horizon. SWITCH includes investment decision variables for 
transmission, traditional generation and intermittent generation as well as dispatch 
decision variables representing day-to-day operations. The optimization is subject to a 
range of constraints including capacity reserves, ancillary services, resource availability, 
and policies. This type of long-term capacity expansion model can be a valuable tool in 
assessing the costs and dynamics associated with climate stabilization policies, and 
potentially informing actual investment decisions.  

In several ways SWITCH and ReEDS are comparable, but an important difference is 
SWITCH is open source while ReEDS is not publically available in any form. 
Improvements to the SWITCH model consequently can be more accessible to researchers 
and planners, resulting in a larger impact. SWITCH is also being used to model other 
power systems including China, Chile, Nicaragua, Hawaii and Japan, so improvements 
made to the core model can also be applied to other regions.  

How Switch can be used: 

1. Developing cost-effective emission reduction pathways 
2. Evaluating impact of different policies on technical optimums 
3. Understanding system dynamics, technology/policy interactions 
4. Informing near- and long-term policy 
5. Identifying what innovations are needed when to contain costs  

Some innovations can take a long time to develop, commercialize, and produce at scale 
so if we want to deploy them at scale in a few decades, we need to start working on them 
soon. For example, low- or zero-emission balancing assets such as storage or demand 
response have low value in the next few decades while weak carbon caps permit cheap 
natural gas to outcompete them, but become increasingly valuable in 2040 and 2050 
when tight carbon caps limit the use of natural gas. This tells us we need to start 
developing those technologies now so that we can deploy them at scale in a few decades, 
and that it will be uneconomical to deploy them at scale in the near term while lower cost 
alternatives remain available. 

1.4 Structure of the dissertation 
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The structure of this dissertation is as follows. Chapter one justifies the need for reducing 
emissions from the electricity sector and provides context for systems-level planning and 
collaborative efforts. Chapter two explores the need for open collaborative practices in 
this arena and describes what adjustments to the status quo could allow us to achieve 
more benefits from these practices. Chapter three describes results of using the Switch 
modeling tool to collaboratively develop emission reduction plans for California and the 
western portion of North America. Chapter four explores the potential of technological 
breakthroughs in solar, storage and Biomass Energy with Carbon Capture and 
Sequestration (BECCS). Chapter five examines the roles of natural gas in a low-emission 
power grid and the impacts of methane leakage upstream in the fuel supply chain. 
Chapter six describes various improvements to the Switch model that I led and includes 
reflections on the collaborative process of model development. Chapter seven concludes 
the dissertation with a discussion of what has been achieved so far and future work. 
Appendix A provides supporting information for the Natural Gas analysis. 
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2 Open collaborative practices can accelerate global 
warming mitigation in the electricity sector 

This is adapted from a publication being prepared by Josiah Johnston, Ana Mileva, 
Diego Ponce de Leon Barido, Matthias Fripp, and Daniel Kammen. 
 

Reducing global emissions from the electricity sector is vital for the long-
term health and prosperity of our societies and planet. Rapid action will 
reduce climate risks, while containing costs and avoiding unintended 
consequences are also important. Widespread adoption of open and 
collaborative practices will allow us to pursue these goals more effectively 
by removing barriers to developing mitigation plans, reducing duplication 
of effort, and enabling more actors to productively engage in public 
discourse. Open and collaborative practices have enabled transformative 
advances in other fields of science and technology but are not yet 
mainstream in energy planning. Federally sponsored research now has a 
mandate to provide basic open access for publications and data, which 
extends to energy-related research. This mandate represents significant 
progress, but more efforts are needed to fully realize potential benefits of 
open collaborative practices: improved data warehousing, opening analytic 
tools, and rewarding community contributions and collaborations. 

 
2.1 Background 

 
Our societies must transform our electricity systems over the coming decades to mitigate 
dire effects from climate change, transitioning from fossil power to lower-emission 
sources. Given currently available technology and societal preferences, renewable energy 
from wind and solar will play a significant role in this transformation. Wind and solar 
produce electricity on variable and uncertain schedules, which adds significant 
complexity and data requirements to the already-difficult process of planning and 
operating power grids. Lack of access to datasets, software and research publications can 
be a significant barrier to applied research, clean energy planning, training and public 
engagement that is essential to building consensus in an open society. We propose that 
widespread adoption of open and collaborative practices can accelerate climate change 
mitigation efforts by lowering those barriers and permitting more actors to productively 
engage in developing viable plans for a sustainable future. The process of planning low-
emission electric power grids in particular is a data- and computationally- intensive 
process that can benefit tremendously from open-source and open-science methodologies. 

There has been long-standing recognition that making medical and public health research 
publically available provides large benefits to society while reducing risks of epidemics 
that could impact us all. A similar case can be made for research on global warming 
mitigation - collective global action to reduce greenhouse gas emissions will help us all. 
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The open access movement is increasingly becoming mainstream and starting to shift the 
status quo, due to a combination of grassroots efforts by scientists and federal mandates 
stipulating that publications and datasets arising from federal funding be publically 
accessible. Even private funding agencies such as the Wellcome Trust and the Bill & 
Melinda Gates Foundation have mandated that researchers they fund make their work 
open access (Kaiser, 2014; Trust, 2015). While these policies represent a tremendous 
milestone, additional steps are needed to fully realize the benefits of open collaborative 
practices. 

2.2 Recommendations 
 
First, researchers need to provide software, documentation and a complete list of steps 
needed to replicate their work. In theory this is a cornerstone of scientific process, but in 
practice, the majority of published research provides insufficient information for 
experimental replication (Vasilevsky, Brush et al., 2013). Compiling those materials and 
providing adequate documentation can require significant work, and researchers may 
have concerns that releasing full information may cause them to lose a competitive edge 
in future research. However, in the long run, access those materials will reduce the work 
required for research by providing better starting points. In regards to the competition 
concern, there is also the possibility that providing those materials to others can increase 
citations and overall impact of one’s work. Some journals, such as Nature, require 
authors to supply complete datasets when submitting papers for review and strongly 
encourage releasing source code, basic documentation and input parameters if the paper 
is accepted. Nature Methods argues that, “The usefulness of computational methods can 
be improved by releasing code and designing software that supports reproducible 
research.” (Nature Methods, 2014) The global community would be well served if energy 
journals encouraged authors to adopt these practices. 

Second, policies should shift from “public access” that is read-only to “open access” that 
encourages the community to replicate, extend and redistribute research products. For 
research publications, this can enable translations and inclusion in classroom or training 
material. Free and open access is especially important for data and software so the 
research community can build upon prior work rather than replicating efforts. This will 
also enable practitioners such as energy consultants to directly apply research products to 
relevant problems. Open collaborative practices create many business opportunities for 
experts to apply complex state-of-the-art methods to real world problems and interpret 
results. This is a shift from traditional software/data business models that extract value 
from artificial scarcity of restricting access, and instead creates value from applying 
expert knowledge and training others. 

Third, institutions need to support structured and curated repositories for data and 
analytical tools that are easy to use, have support staff and invite community engagement. 
This type of repository is relatively new for renewable energy, so institutions should look 
at other mature scientific repositories to determine best-practices and avoid common 
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mistakes. In particular, there is a clear need for structured repositories for geographically 
and temporally resolved renewable energy potential, generator cost and performance 
characteristics, detailed load profiles, and maps of the existing grid that have sufficient 
resolution for planning purposes but avoid the level of detail that causes them to be a 
security concern. The status quo for publically accessible data is for it to be scattered 
across disparate websites with distinct interfaces and formats, often with scant 
documentation or quality control. Compiling and curating this data is a common and 
incredibly time-consuming task for most researchers, and there are currently few 
incentives or mechanisms for them to share their work products with a broader 
community. Managing a comprehensive and easy-to-use repository is a significant data 
science problem that is beyond the capabilities or job descriptions of individual 
researchers. Under these circumstances, institutional support for repositories can provide 
tremendous benefits, especially if researchers’ contributions are valued during job review 
and promotions. However, if an institution seeks to completely develop and maintain a 
repository without community input or review, the repository is unlikely to be scalable or 
serve as a platform for community discussion and consensus building. Emerging energy-
based repositories tend to pull unstructured data into a central location, which is an 
important first step but not ideal for the long term because similar data for different 
locations can be formatted in distinct idiosyncratic ways that reduces software reuse and 
slows the development of large-scale analysis.  

Fourth, researchers and repositories should use best practices from data science regarding 
interoperability, record keeping and replicability. Interoperability entails using standard 
formats for data so that researchers and policy analysts can focus more on asking relevant 
questions and less on reformatting data for a particular software tool. Interoperability also 
means that different software tools or models that accomplish distinct goals can be 
connected more readily to ask larger questions or conduct economy-wide mitigation 
planning. Record keeping and replication mean that every analytic step from inputs to 
results is fully recorded and archived. Part of this is enabled by software design that 
supports scripting and/or history tracking, and part is enabled by training researchers in 
best practices of scientific computing. 

2.3 Institutional context 
 
Fortunately, there is a growing recognition that open and collaborative practices are 
valuable and desirable. Beginning in 2005, the National Institutes of Health (NIH) 
spearheaded an public access policy mandating that all publications and data arising from 
research it sponsors be made publically available free of charge (National Institutes of 
Health, 2008). The NIH maintains a central archive of publications (PubMed), and 
numerous data archives that invite community contributions while providing staffing for 
curation, quality assurance, and server administration (GenBank, ChemBank, etc). A 
White House Directive in 2013 gave a similar public access mandate for all major 
federally funded scientific research (Holdren, 2013). The Department of Energy (DOE) 
chose to implement a weakened form of the NIH model (Department of Energy, 2014), 



10 

where they provide links to publishers’ websites rather than maintaining a central archive, 
an approach that the NIH believes offers fewer benefits (National Institutes of Health, 
2014). Neither agency has mandates for “Open Access” that would allow publications to 
be redistributed (e.g. in printed form for training or classroom materials) or used for 
derivative work such as translations, which can significantly hinder global impact of the 
research products. The DOE currently offers scant guidelines or coordination in regards 
to data, merely requiring that researchers somehow make their digital data publically 
available, but are actively taking steps to address this gap.  

2.4 Status Quo 
 
Identifying cost-effective and politically viable development pathways to sustainable 
energy systems requires basic research, applied research, planning efforts, and significant 
public discourse. At each stage, lack of access to data, computational tools and research 
findings can be a significant barrier to progress. Geographically resolved descriptions of 
existing infrastructure are typically proprietary and/or kept secret as part of an effort of 
“security by obscurity”. High resolution datasets of renewable energy availability and 
electricity demand are often only available through expensive proprietary sources that 
often prohibit researchers from sharing their datasets with others. Modeling platforms and 
optimization tools are generally both expensive and proprietary. The majority of research 
publications are still behind paywalls and are often inaccessible to practitioners, 
government agencies, nonprofits, and even many universities that cannot afford 
subscription fees. Collectively, these barriers significantly impede work of professionals 
and training of an expert labor force for the future. This is very problematic given an 
urgent need for collective action on climate change mitigation and energy security; any 
barriers to progress in these areas hurt us all. 

Individual institutions have constructed repositories of renewable energy potential from 
their own studies, such as the National Renewable Energy Lab’s datasets from renewable 
integration studies (Corbus, King et al., 2010; Lew, Piwko et al., 2010), or the Global 
Energy Atlas (International Renewable Energy Agency, 2015). These data repositories 
are still relatively weak at integrating community contributions while being easy-to-use, 
but IRENA appears to be making efforts to improve. The DOE’s Geothermal data 
repository focuses on collecting community contributions, but it currently is an 
unstructured collection that is difficult to browse or navigate. 

2.5 Discussion 
 
Open collaborative practices can provide many benefits to society, researchers, funding 
agencies and businesses. They can accelerate the speed and quality of innovation, 
research & implementation by enabling agile project management and reducing 
duplicated effort. Under agile methods, a new project often starts with a similar existing 
and validated work product then applies incremental changes to meet new goals. During 
this process people often work in pairs, which results in fewer errors, higher quality work 
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products and increased knowledge transfer between workers. Agile techniques have 
proven extremely effective in manufacturing, software development and research. If 
researchers are more intentional about making their work easily replicated and starting 
new projects from prior validated work, they can contribute to a more comprehensive, 
coherent and validated body of work. 

Open and collaborative practices can enable a smoother transition to a clean electric grid 
by removing information barriers, streamlining research efforts and providing materials 
for students and educators. This is particularly important for less wealthy countries, 
NGOs, small companies, and educational institutions. Streamlined research and training 
should create cost savings in the resulting power system from more innovations as well as 
engineering and economic insights. More importantly, open practices can increase the 
quality of public discourse by enabling stakeholders to be well informed. This could 
reduce public opposition to well-intentioned projects by reducing information asymmetry, 
enabling stakeholders to construct alternative candidate portfolios and understand the 
costs or environmental tradeoffs of their preferences. 

The benefits of open practices are broadly recognized, resulting in large amounts of open 
data, mostly from government sources. Most new cutting edge research involves large 
complex projects that are too large for any single person or small group to tackle 
individually. Global warming mitigation requires larger coordinated efforts, and strategic 
practices such as open access and open source can enable greater coordination. We argue 
that society would benefit from accelerating open collaborative practices, and that these 
practices are particularly valuable for the computationally intensive task of planning 
renewable power systems and designing candidate investment portfolios. 

2.6 Switch and Open Collaborative Practices 
 

The Switch model is a good example of how open collaborative research can accelerate 
research and enable greater progress than would otherwise be possible, especially in an 
academic environment. The ideas behind Switch and the model itself were developed 
over several years by a single PhD student, Matthias Fripp, who scrambled to assemble a 
useful model and datasets for California. Once completed, he shared it with our larger 
team of students who had the resources to assemble datasets for the entire Western 
Electrical Coordinating Council (WECC), update costs and descriptions of generation 
technologies, explore relevant policy perspectives and expand the model’s functionality 
to add realism. The expansion of the model into WECC would probably not have been 
possible for Matthias to complete by himself because the data and policy landscape 
would been changing faster than he could assemble datasets. A larger team is required to 
maintain an adequate research pace to assemble and analyze large-scale datasets in a 
dynamic and changing landscape. If our research team had attempted this type of analysis 
for WECC without basing it on prior work, it is unlikely we would have made adequate 
research progress with proof-of-concept goals to maintain funding that allowed us to 
complete the analysis. 
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Once we published a paper on Switch-WECC and developed relationships in the larger 
California energy research community, it was easier for us to secure additional funding to 
continue expanding the scope of the analysis and depth of the model to pursue research 
questions that emerged from our first rounds of research. As our expertise and reputation 
grew, it became easier to attract other talented researchers who wished to apply Switch to 
other countries. They also experienced similar bootstrapping dynamics where building 
off of our previous work enabled them to establish proof of concepts rapidly enough to 
secure funding to continue their research in a rigorous manner.  

Throughout this process we attempted to follow best practices of open collaborative 
practices but were not always able to meet gold standards. For example, we preferred to 
publish with open access options, but were not always able to afford the additional fees. 
As a work-around, we posted those publications on the lab’s website as well as other 
public repositories such as Research Gate in order to make our research findings 
accessible to others. In regards to source code and datasets, we also took a second-tier 
approach of providing complete examples on request to other researchers and attempting 
to provide technical support on a best-effort basis. It would have been more ideal to post 
them directly to public archives but at the time of our earlier publications, we were not 
aware of any available free archives that could handle our large volumes of data. That 
situation has changed, and I plan to post complete run directories of input data, source 
code and results to accompany an upcoming paper on the impacts of methane emissions 
in a low-emission power grid. Although our code and data from prior research was not 
posted publically, we have shared it when requested to other researchers, which resulted 
in two separate collaborations with research centers in Canada and Chile. These 
collaborations look promising and should result in publications within the next six to 
twelve months. 

Moving forward, we are taking large strides to make Switch more open and accessible. 
We are in the process of writing a new version of Switch that uses a completely  open 
source software stack, and are storing this code and example datasets in a public GitHub 
repository. This open version has already attracted interest from two additional outside 
organizations – an energy consulting firm and google – who are actively contributing 
code, documentation, and testing services to the project. I hope that this open version can 
expand into a platform for research, policy analysis, and consulting services. With luck, 
we will able to leverage successes to date to fund our efforts to make this more accessible 
and usable. Ideally, we could find an institutional home to support these efforts and 
partner with emerging data portals to make the process of assembling datasets for Switch 
much easier and faster. Publications and press releases describing this effort should be 
forthcoming this fall.  
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3 Planning Mitigation Pathways for California and 
Western North America 

Between 2008 and 2013, I worked with a team of researchers to expand the geographic 
scope and modeling capabilities of the Switch model and applied it to develop climate 
change mitigation plans for California and Western North America. This process was an 
important step in establishing the legitimacy of Switch as a robust and general planning 
platform, as well as ensuring that it can produce relevant and useful results. We expanded 
the geographic scope from California to the entire Western Electricity Coordinating 
Council to avoid a common modeling problem of reshuffling high-emission plants to 
outside the boundaries of the model and to enable integration of high quality renewable 
resources from the desert southwest and the great plains. We simultaneously expanded 
the modeling capabilities of Switch to more accurately reflect existing policies and 
technical requirements of electricity grids based on requests from technical and policy 
advisory committees. This chapter summarizes results from that body of research. It is 
largely based on our initial publication High-resolution modeling of the western North 
American power system demonstrates low-cost and low-carbon futures and also includes 
summaries from four follow-up studies: California’s Carbon Challenge Phase 1, Wei et al, 
2013, California’s Carbon Challenge  Phase 2 Vol 1 and Vol 2. 
 

Decarbonizing electricity production is central to reducing greenhouse gas 
emissions. Exploiting intermittent renewable energy resources demands 
power system planning models with high temporal and spatial resolution. 
We use a mixed-integer linear programming model – SWITCH – to 
analyze least-cost generation, storage, and transmission capacity 
expansion for western North America under various policy and cost 
scenarios. Current renewable portfolio standards are shown to be 
insufficient to meet emission reduction targets by 2030 without new policy. 
With stronger carbon policy consistent with a 450 ppm climate 
stabilization scenario, power sector emissions can be reduced to 54% of 
1990 levels by 2030 using different portfolios of existing generation 
technologies. Under a range of resource cost scenarios, most coal power 
plants would be replaced by solar, wind, gas, and/or nuclear generation, 
with intermittent renewable sources providing at least 17% and as much as 
29% of total power by 2030. The carbon price to induce these deep carbon 
emission reductions is high, but, assuming carbon price revenues are 
reinvested in the power sector, the cost of power is found to increase by at 
most 20% relative to business-as-usual projections. 

 
HIGHLIGHTS 

1. Intermittent generation necessitates high-resolution electric power system models. 
2. We apply the SWITCH planning model to the western North American grid. 
3. We explore carbon policy and resource cost scenarios through 2030. 
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4. Coal generation is replaced with solar, wind, gas, and/or nuclear generation. 
5. A 450 ppm climate stabilization target can be met at a 20% or lower cost increase. 

 
3.1 Introduction 

 
Decarbonization of the electric power sector is critical to achieving greenhouse gas 
reductions that are needed for a sustainable future. In the United States, for example, the 
electricity sector accounts for 41% of U.S. carbon emissions (U.S. Energy Information 
Administration, 2008). A number of low-carbon power generation technologies are 
available today, but many of them are less flexible than conventional generators. Nuclear 
and geothermal must be run in baseload mode (steady round-the-clock), while wind and 
photovoltaics have intermittent, site-specific output. Consequently, it is unclear how 
these resources should be combined in future power systems. The literature on the cost-
reduction potential of individual renewable technologies is extensive, but less research 
has explored cost and emission reductions achieved by leveraging synergies among a 
wide range of technologies. Such analyses are needed to aid climate policymaking and to 
preserve power system reliability while achieving emission reductions at the lowest 
possible cost. 

Existing electric power system models primarily address either day-to-day operation or 
long-term capacity planning, but not both. Multiple studies have been conducted 
examining the impact of higher levels of intermittent generation on grid operations (e.g. 
EnerNex Corp, 2006, GE Energy, 2010, and EnerNex Corp, 2010). These studies 
evaluate the daily grid operations and costs of specific, predefined deployment levels of 
renewable energy, but provide little information on how the grid should be developed to 
achieve policy objectives at the lowest cost. Economic dispatch models (Wood and 
Wollenberg, 1996) are used in these studies to simulate the operation and production 
costs of a predefined fleet of generators, transmission lines, and storage systems, but 
cannot plan optimal capacity additions. In contrast, specialized capacity-expansion 
models (Kagiannas et al., 2004, DeCarolis and Keith, 2006, U.S. Energy Information 
Administration, 2009, National Renewable Energy Laboratory, 2010a, Chen et al., 2010) 
are used to inform long-term planning of generation, storage, and transmission projects, 
but these models have limited operational resolution. Many models use statistical 
methods to represent intermittent generators, but are unable to evaluate the dynamic 
interplay between wind power, solar power, and load. Others are limited in their 
geographic scope, geographic resolution, or the range of technological options they 
consider. As long-term grid planning increasingly looks to intermittent generation 
sources such as solar and wind, the need increases for large-scale, high-resolution 
modeling that merges the capabilities of capacity expansion and economic dispatch 
models. 
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3.2 SWITCH model 
 
Model Introduction 
The SWITCH model – a loose acronym for Solar, Wind, Hydro and Conventional 
generation and Transmission Investment – uses an unprecedented combination of spatial 
and temporal detail to design realistic power systems and plan capacity expansion to meet 
policy goals and carbon emission reduction targets at minimal cost (Fripp, 2008; Fripp, 
2012). SWITCH is a planning tool for the electric power system (Fig. 3.1, 3.2) that 
optimizes capacity expansion of renewable and conventional generation technologies, 
storage technologies, and the transmission system, while explicitly accounting for the 
hourly variability of intermittent renewables and electricity loads. SWITCH improves on 
other capacity expansion models by incorporating elements of the day-to-day operation 
and dispatch of a large, interconnected electric power grid. For this paper, we use 
SWITCH to investigate decarbonization options for the synchronous region of the 
Western Electricity Coordinating Council (WECC).  WECC includes 11 western U.S. 
States, Northern Baja Mexico, and the Canadian provinces of British Columbia and 
Alberta. WECC provides an ideal case to examine system dynamics in a complex, 
interconnected region with significant greenhouse gas emissions and many low-carbon 
generation resources.  

SWITCH is a mixed-integer linear program whose objective function (Fig. 3.2) is to 
minimize the societal cost of meeting projected electricity demand with generation, 
storage, and transmission between present day and 2030. The optimization is subject to 
reliability, operational, and resource-availability constraints, as well as both existing and 
possible future climate policies. SWITCH was originally developed to study the cost of 
achieving high renewable energy targets in California (Fripp, 2008; Fripp, 2012), using 
existing facilities along with new wind, solar, and natural gas plants. For this study, we 
have extended SWITCH to include more generation and storage technologies, 
incorporated a state-based renewable portfolio standard (RPS) requirement, and 
implemented a post-optimization reliability assessment. The updated model is applied to 
the entire WECC power system. A description of the version of SWITCH used for this 
paper is provided below; the complete model formulation is available in the online 
supplemental information. 



16 

	  
Figure 3.1 Optimization and data framework of the western North American SWITCH 
model.   

Objective	  function:	  minimize	  the	  total	  cost	  of	  meeting	  load	  
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The	   capital	   cost	   incurred	   for	   installing	   a	   generator	   at	   plant	  g	   in	  
investment	  period	  i	  is	  calculated	  as	  the	  generator	  size	  in	  MW	  Gg,i	  
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The	   fixed	   operation	   and	   maintenance	   costs	   paid	   for	   plant	   g	   in	  
investment	   period	   i	   are	   calculated	   as	   the	   total	   generation	  
capacity	  of	  the	  plant	  in	  MW	  (the	  pre-‐existing	  capacity	  epg	  at	  plant	  
g	  plus	  the	  total	  capacity	  Gg,i	  installed	  through	  investment	  period	  i)	  
multiplied	  by	   the	   recurring	   fixed	  costs	  associated	  with	   that	   type	  
of	  generator	  in	  $2007	  /	  MW	  xg,i.	  
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The	  variable	  costs	  paid	   for	  plant	  g	  operating	   in	   study	  hour	   t	   are	  
calculated	  as	  the	  power	  output	  in	  MWh	  Og,t	  multiplied	  by	  the	  sum	  
of	   the	   variable	   costs	   associated	   with	   that	   type	   of	   generator	   in	  
$2007	  /	  MWh.	  The	  variable	  costs	  include	  per	  MWh	  maintenance	  
costs	  mg,t,	   fuel	   costs	   fg,t,	   and	  carbon	  costs	  cg,t,	   and	  are	  weighted	  
by	  the	  number	  of	  hours	  each	  study	  hour	  represents,	  hst.	  
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The	  cost	  of	  building	  or	  upgrading	  transmission	  lines	  between	  two	  
load	   areas	   a	   and	   a’	   in	   investment	   period	   i	   is	   calculated	   as	   the	  
product	   of	   the	   rated	   transfer	   capacity	   of	   the	   new	   lines	   in	   MW	  
Ta,a′,i	  ,	  the	  length	  of	  the	  new	  line	  la,a′,	  and	  the	  regionally	  adjusted	  
per-‐km	   cost	   of	   building	   new	   transmission	   in	   $2007	   /	  MW	   ·∙	   km,	  
ta,a′,i.	  Transmission	  can	  only	  be	  built	  between	  load	  areas	  that	  are	  
adjacent	  to	  each	  other	  or	  that	  are	  already	  connected.	  
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Sunk	  costs	   include	  ongoing	  capital	  payments	   incurred	  during	  the	  
study	   period	   for	   existing	   plants,	   existing	   transmission	   networks,	  
and	   existing	   distribution	  networks.	   The	   sunk	   costs	   do	  not	   affect	  
the	   optimization	   decision	   variables,	   but	   are	   taken	   into	   account	  
when	   calculating	   the	   cost	   of	   power	   at	   the	   end	   of	   the	  
optimization.	  

	  
Figure 3.2 Optimization objective function. Further information on the objective function 
and a full description of optimization constraints and state variables not present in the 
objective function can be found in the Online Supplemental Information. 

Geographic Resolution: Load Areas and Transmission 
For the purpose of identifying where power is generated and where it is used, we divide 
the synchronous WECC region into fifty “load areas.” These represent areas of the grid 
within which there is significant existing local transmission and distribution, but between 
which there may be limited long-range, high-voltage existing transmission. Consequently, 
load areas are regions between which transmission investment may be beneficial. Power 
flow between WECC and the Eastern and Texas interconnects is not considered, as less 
than 2 GW power transfer capacity currently exists between these regions (Ventyx Corp, 
2009), relative to WECC peak load of more than 150 GW.   

A total of 124 existing and new transmission corridors between pairs of load areas are 
included in each optimization. Existing transmission capacity is determined from Federal 
Energy Regulatory Commission (FERC) data on the thermal limits of individual power 
lines (Federal Energy Regulatory Commission, 2009). New high-voltage transfer 
capability can be built along existing transmission corridors at a cost of $1,000/MWŊkm. 
If no transmission exists between two adjacent load areas, new capacity can be installed 
at a cost of $1,500/MWŊkm. 

SWITCH does not currently model the electrical properties of the transmission network 
in detail and, as such, is not a power flow model based on Kirchhoff’s laws. Optimal 
power flow models identify the least expensive dispatch plan for existing generators to 
meet a pre-specified set of loads, while respecting the physical constraints on the flow of 
power on every line in the network (Bergen and Vijay, 2000). They become non-linear 
when investment choices or AC properties are included, making them computationally 
infeasible for optimizing the evolution of the power system, especially over a large area 
and many hours. Instead, SWITCH treats the electrical transmission system as a generic 
transportation network with maximum transfer capabilities equal to the sum of the 
thermal limits of individual transmission lines between each pair of load areas. SWITCH 
models the capabilities of the transmission network, and the cost of upgrading those 
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capabilities, rather than simulating the physical behavior of the transmission network 
directly. 

Temporal Resolution: Investment Periods and Dispatch Hours 
To simulate power system dynamics over the course of the next twenty years, SWITCH 
employs four levels of temporal resolution: investment periods, months, days, and study 
hours. For our analysis, there are four four-year-long investment periods: 2014-2017, 
2018-2021, 2022-2025, and 2026-2029, each of which contains historical data from 12 
months, two days per month, and six study hours per day. This results in (4 investment 
periods) x (12 months/investment period) x (2 days/month) x (6 hours/day) = 576 
sampled hours over which the system is dispatched.  The peak and median days from 
each historical month are sampled to represent a large range of possible load and weather 
conditions over the course of each investment period.  Each sampled day is assigned a 
weight: peak load days are given a weight of one day per month while median days are 
given a weight of the number of days in a given month minus one. This weighting 
scheme ensures that the total number of days simulated in each investment period is equal 
to the number of days between the start and end of that investment period, emphasizes the 
economics of dispatching the system under typical load conditions, and forces the system 
to plan for capacity availability at times of high grid stress (Fripp, 2008). 

Infrastructure Investment and Dispatch 
The SWITCH model includes two main sets of decision variables: capacity investment 
variables and dispatch variables. At the beginning of each of the model’s investment 
periods, capacity investment decision variables determine the amount of new capacity to 
install of each generator or storage type, the amount of transmission capacity to add along 
each transmission corridor, and whether to operate or retire each existing non-
hydroelectric power plant. The power output of baseload (coal, nuclear, geothermal, 
biomass, biogas, cogeneration) and intermittent (solar and wind) generation is specified 
through capacity investment decision variables. For baseload generators, the power 
produced in each hour is equal to the generator capacity de-rated for forced and 
scheduled outages. For intermittent generators, the power produced in each hour is equal 
to the generator capacity multiplied by an exogenously calculated capacity factor for that 
hour. 

In each study hour, dispatch variables control the amount of power to generate from each 
dispatchable (hydroelectric or natural gas) generator, the amount of power to store and 
release at each storage facility (pumped hydroelectric, compressed air energy storage, or 
sodium-sulfur battery), and the amount of power to transfer along each transmission 
corridor. Storage projects must meet an energy balance constraint over the course of each 
study day. Similarly, the dispatch of hydroelectric projects over the course of each study 
day is constrained to equal average historical monthly generation. Hydro projects must 
also meet a minimum flow requirement in each study hour. All dispatch decisions are 
subject to capacity constraints set by investment decision variables. However, the hourly 
dispatch of generation, transmission, and storage within each investment period is 
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optimized concurrently with investment decisions: in the SWITCH optimization 
framework, dispatch and investment decisions are made simultaneously rather than 
iteratively. 

Operational and Policy Constraints 
The model includes three main sets of constraints: those that ensure that projected 
demand is met, those that maintain the reserve margin, and those that enforce RPS. 

The first set of constraints requires that the available power system infrastructure is 
dispatched to meet load in every hour in every load area while providing the least 
expensive power based on expected generation, storage, and transmission availability. 
The nameplate capacity of grid assets is de-rated by their forced outage rates to represent 
the amount of power generation capacity that is available on average in each hour. 
Baseload generator output is further de-rated by the scheduled outage rate of each 
generator. 

To further address system risk, a second set of constraints requires that the power system 
maintain a planning reserve margin at all times, i.e. that it has sufficient capacity 
available to provide at least 15 percent extra power above load in every load area in every 
hour if all generators, storage projects and transmission lines are working properly. In 
calculating the reserve margin, the outputs of these grid assets are therefore not de-rated 
by forced outage rates. SWITCH determines the reserve margin schedule concurrently 
with the load-serving dispatch schedule. 

The set of RPS constraints ensures that a minimum fraction of load is met with renewable 
energy sources in each investment period in each load area. This fraction is consistent 
with current state RPS targets.  Procurement of renewable energy credits from areas 
outside WECC is not considered. 

Dispatch Verification 
While each optimization considers a large number of study hours, the proposed power 
system must also successfully meet load on many more possible states of load and 
renewable resource availability than are input into the core optimization. Consequently, 
the grid’s ability to meet load in hours other than the 576 study hours used in the 
optimization is assessed by fixing all investment decision variables, uploading new 
hourly datasets, and optimizing dispatch for lowest cost. In total, investment decisions 
made in each of the four investment periods are dispatched over 16,800 historic hours 
(almost two years) from 2004 and 2005, in batches of weeks.  

Similar to the investment optimization, dispatch verification does not include forecast 
error, unit commitment, generator ramping constraints, security constraints, or load flow 
transmission constraints. Flow on transmission corridors is constrained to not exceed 
their thermal limits, but power flow equations are not explicitly solved. Further work will 
investigate power system behavior under strict operational constraints.    
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Costs 
The present day capital cost of building each type of power plant or storage project is 
reduced via an exponential decay function using a capital cost declination rate (Fig. 3.3). 
The capital cost of each project is locked in at the first year of construction. Construction 
costs for power plants are tallied yearly, discounted to present value at the online year of 
the project, and then amortized over the operational lifetime of the project. Only those 
payments that occur during the study period are included in the objective function. The 
cost to connect new power plants to the grid is incurred in the year before operation 
begins. Operation and maintenance costs are incurred throughout each project’s 
operational lifetime. 

For optimization purposes, all costs during the study are discounted to a present day 
value using a real discount rate of 7%, so that costs incurred later in the study have less 
impact than those incurred earlier. The discount rate is based on the base case from the 
White House Office of Management and Budget’s Circular A-94, “Guidelines and 
Discount Rates for Benefit-Cost Analysis of Federal Programs” (White House Office of 
Management and Budget, 2010). All costs are specified in real terms, indexed to the 
reference year 2007. 

Coal and natural gas fuel prices are as specified in the reference case of the United States 
Energy Information Agency’s 2009 Annual Energy Outlook (U.S. Energy Information 
Administration, 2009), with coal and natural gas reaching average prices of 
$1.52/MMBtu and $8.13/MMBtu in $2007 respectively by 2030. Uranium price 
projections are taken from the California Energy Commission’s 2007 Cost of Generation 
Model (Klein and Rednam, 2007) and reach a price of $2.20/MMBtu by 2030. Solid 
biomass costs are included through a piecewise linear supply curve. Yearly fuel price 
projections are averaged over each investment period. Fuel price elasticity is not 
currently included. 
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Figure 3.3 Annual overnight cost declination rates and overnight capital costs by 
investment period in the Base Cost scenario for each generator and storage technology. 
Costs for technologies not available for installation in 2014 are not shown. CSP denotes 
concentrating solar power (solar thermal). Many of these values are varied in generator 
cost sensitivity scenarios described in Section 3.3. Overnight capital costs do not include 
regional capital cost multipliers, interest during construction, grid connection costs, local 
grid upgrade costs, and operations and maintenance costs, though these costs are included 
in each optimization. See the Online Supplemental Information for more information.  

Load and Resource Data 
Electricity demand and intermittent renewable output are both dependent on weather 
conditions. We use simulated historical hourly generation profiles from 2004-05 for a 
portfolio of 3,362 wind, 3,375 solar photovoltaic (PV), and 2,380 solar thermal parabolic 
trough systems (also known as concentrating solar power or CSP) sites as well as hourly 
load profiles that are time-synchronized to the renewable output data. Hourly load data is 
scaled to projected future demand, while resource availability is used directly from 
historical data. Using time-synchronized hourly load and generation profiles allows 
SWITCH to capture the temporal relationship between load and renewable power output 
levels. 
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Hourly loads are derived from the Federal Energy Regulatory Commission’s (FERC) 
Annual Electric Balancing Authority Area and Planning Area Report (Federal Energy 
Regulatory Commission, 2005) and apportioned to load areas. 

Hourly wind turbine output is obtained from the 3TIER wind power output dataset 
produced for the Western Wind and Solar Integration Study (WWSIS) (3TIER, 2010). 
Hourly solar generation output is derived by merging 10km-resolution gridded satellite 
insolation data from the State University of New York (SUNY) (Perez, Ineichen et al., 
2002; National Renewable Energy Laboratory, 2010a) and ~38km-resolution weather 
data from the National Center for Environmental Prediction’s (NCEP) Climate Forecast 
System Reanalysis (CFSR) (National Climatic Data Center, 2010; Saha, Moorthi et al., 
2010). The resultant weather files are used as inputs to the National Renewable Energy 
Laboratory’s Solar Advisor Model (National Renewable Energy Laboratory, 2010b) to 
calculate the simulated historical output of various types of solar projects. 

A broad range of generation options and their projected costs are input into each 
optimization (Fig. 3.1, 3.3). The model can select from nearly 10,000 possible wind, solar, 
geothermal, biomass, biogas, nuclear, coal, and natural gas power plants to install and 
operate in each investment period. 

Large existing thermal generators in WECC are included (Ventyx Corp, 2009), totaling 
578 power plants, each of which is given a binary decision variable to operate or not 
during each investment period. Once retired, an existing generator cannot be re-started. 
The hourly output of 232 existing wind farms is also included. Existing hydroelectric 
generators are aggregated to the load area level, operated subject to streamflow 
constraints, and cannot be retired. Existing pumped hydroelectric storage plants are 
included, as well as the option to install new compressed air energy storage (CAES) and 
sodium-sulfur (NaS) battery storage projects. 

Carbon capture and sequestration (CCS) is a low-carbon technology that may compete 
with nuclear and/or renewable power. This technology is still at a prototype phase, and its 
feasibility and future costs are uncertain (McKinsey & Company, 2008). Future work will 
include CCS as well as other early-phase technologies. 

Implementation 
SWITCH uses a layered architecture consisting of data stores, middleware, a high-level 
modeling language, and a Mixed Integer Program (MIP) solver. Non-spatial data are 
stored in MySQL while spatial data are stored in PostgreSQL/PostGIS. The SWITCH 
model is written in AMPL, a high level mathematical programming language. AMPL 
compiles a MIP for a particular set of inputs and policy options, which is passed to 
CPLEX for optimization. For this study, a typical cost optimization problem has a 
reduced MIP with approximately 800,000 constraints, 800,000 linear decision variables, 
and 2,000 binary variables. The middleware that reformats data and manages execution is 
a collection of BASH shell scripts. The optimizations run on a cluster of IBM Dataplex 
server nodes, each containing two 2.7 GHz quad-core processors and 24GB of RAM. 
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Future Model Development 
SWITCH captures many important dynamics of the electric power sector at high 
resolution but the inherent complexity of the electric power system necessitates even 
greater detail in many areas. Work is underway to integrate sub-hourly ancillary services 
such as regulation, spinning, and non-spinning reserves, which will provide additional 
assurance of grid reliability. The inclusion of additional hours during the investment 
optimization is also a near-term priority in order to develop more finely tuned investment 
plans. Further extensions will examine the large-scale deployment of electric vehicles, 
load response, and robustness of energy scenarios to climate impacts on the electricity 
system. 

3.3 Scenario Descriptions 
We use SWITCH to investigate the carbon emissions from and cost of power in the 
WECC power system under multiple realistic generator cost and fuel price scenarios 
(Table 3.1), and under varying carbon policy. In all scenarios investigated here, 
consistent with current policy, existing state RPS targets are met, and new nuclear and 
coal generation are prohibited from being built in California.  

Scenario	  Name	   Scenario	  Description	  

Base	  Cost	   Generator	  overnight	  capital	  costs	  and	  capital	  cost	  declination	  
rates	  are	  as	  shown	  in	  Figure	  3.	  Natural	  gas	  prices	  are	  as	  
described	  in	  Section	  2.7.	  

Low	  Nuclear	  
Cost	  

The	  overnight	  capital	  cost	  of	  new	  nuclear	  power	  plants	  is	  
lowered	  to	  $4/W	  from	  the	  base	  $5/W.	  

Low	  Gas	  Price	   The	  inter-‐annual	  percentage	  change	  in	  natural	  gas	  fuel	  prices	  is	  
calculated	  from	  the	  Base	  Cost	  scenario.	  These	  values	  are	  
increased	  by	  1%	  for	  the	  High	  Gas	  Price	  scenario	  and	  lowered	  
by	  1%	  for	  the	  Low	  Gas	  Price	  scenario,	  and	  then	  used	  to	  
recalculate	  natural	  gas	  fuel	  prices.	  

High	  Gas	  Price	  

High	  PV	  Cost	   PV	  costs	  are	  higher	  than	  in	  the	  Base	  Cost	  scenario	  in	  all	  
investment	  periods.	  This	  is	  achieved	  by	  reducing	  the	  
magnitude	  of	  the	  base	  PV	  capital	  cost	  declination	  rate	  (see	  Fig.	  
3)	  by	  1.5%	  percent	  per	  year.	  

Low	  CSP	  Cost/	  
High	  PV	  Cost	  

PV	  costs	  are	  higher	  and	  CSP	  costs	  are	  lower	  than	  in	  the	  Base	  
Cost	  scenario	  in	  all	  investment	  periods.	  This	  is	  achieved	  by	  
lowering	  the	  base	  PV	  capital	  cost	  declination	  rate	  (see	  Fig.	  3)	  by	  
1.5%	  per	  year	  and	  increasing	  the	  base	  CSP	  capital	  cost	  
declination	  rate	  by	  2.5%	  per	  year.	  

Table 3.1 Generator cost and fuel price scenarios investigated in this study. For scenarios 
other than the Base Cost scenario, the ‘Scenario Description’ column describes the only 
changes made relative to the Base Cost scenario. 
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The future costs of generation technologies are highly uncertain. For example, estimates 
of the capital cost of nuclear power range widely (Harding, 2007; Cooper, 2009). It is 
also unclear how much public opposition new nuclear plants would face, especially in 
light of the recent Fukushima Daiichi accident. Reflecting these issues, we model two 
nuclear capital cost scenarios. The Base Cost scenario assumes a capital cost of $5/W for 
nuclear plants in order to investigate low-carbon power systems that can be achieved 
without low-cost nuclear power. The Low Nuclear Cost scenario assumes that nuclear 
power is available at a capital cost of $4/W in order to explore optimal power system 
deployment with low-cost nuclear power. In both nuclear cost scenarios, the overnight 
capital cost of nuclear power is assumed to stay constant through 2030. 

Similarly, the rate of technological progress in the solar industry is uncertain, especially 
in the 2030 timeframe (Tidball, 2010). We model three solar capital cost scenarios. In the 
Base Cost scenario, the capital cost of PV systems decreases as shown in Figure 3. In the 
High PV Cost scenario, PV capital costs decline more slowly, reflecting the possibility 
that the PV industry may not meet future cost targets. Relative to cost assumptions in the 
Base Cost scenario, overnight capital costs for central station PV in the High PV Cost 
scenario are 28% higher in the 2026 investment period. In the Low CSP Cost/High PV 
Cost scenario, CSP costs outperform PV costs: CSP capital costs decline more quickly 
than in the Base Cost scenario and PV costs are kept as in the High PV Cost scenario. 
CSP overnight capital costs are 34% lower than in the Base Cost scenario in the 2026 
investment period.  

Natural gas is an important fuel due to its relatively low carbon intensity as well as its 
dispatchability and hence ability to compensate for variable renewable output. However, 
the delivered price of natural gas has historically been difficult to predict. We explore 
scenarios with a higher and a lower price trajectory for natural gas relative to the Base 
Cost scenario – the High Gas Price scenario and Low Gas Price scenario respectively – to 
determine the effect of long-term uncertainty in natural gas prices on the cost of power 
and the optimal power mix. Natural gas prices reach a WECC-wide average of 
$6.74/MMBtu in the Low Gas Price scenario and $9.76/MMBtu in the High Gas Price 
scenario in $2007 by 2030. 

Within each cost scenario, we vary an exogenous “carbon price adder” in order to force 
SWITCH to redesign the power system to achieve a range of CO2 emissions. For each 
cost scenario, we vary the carbon price adder from $0/tCO2 to $100/tCO2. This adder is 
held constant through all investment periods for each carbon price adder. The carbon 
price adder could correspond to a carbon tax or the cost of permits under a cap and trade 
policy. The revenue from this carbon adder is assumed to be re-invested in the electricity 
sector and re-distributed to electricity consumers, and as such it does not directly affect 
the average cost of power (transaction costs are assumed to be negligible). Rather, it does 
so indirectly, by changing the relative costs of power generating technologies. As the 
carbon adder is increased, generation from previously inexpensive but carbon-intensive 
power plants becomes less economically attractive relative to other generation options. 
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At the end of the optimization, we calculate carbon emissions from the resultant power 
system for each carbon price adder. In order to stabilize the climate at or below an 
atmospheric concentration of 450 ppm CO2, the International Energy Agency finds that 
annual power sector emissions should drop to 54% of 1990 levels by 2030 for 
Organization for Economic Co-operation and Development (OECD) countries, with 
further declines thereafter (International Energy Agency, 2008). Below, we discuss 
power systems that are consistent with this 450 ppm CO2 climate stabilization target, 
assuming a proportional contribution of the WECC power system, which is part of the 
OECD, to global emission targets.   

3.4 Results 
	  
Base Cost Scenario 
In the Base Cost scenario, if no carbon policy is implemented (a carbon price adder of 
$0/tCO2), the least-cost system would obtain 47% of its power from coal in 2026–29, as 
shown at the far left side of Figure 4B. This system is similar to present day power 
systems, and, owing to load growth, emits 194% of the 1990 baseline CO2 level by 2030 
(Fig. 3.4A). In the Base Cost scenario, as the carbon adder is increased above $0/tCO2, a 
combination of solar, wind, biomass, biogas, geothermal, and natural gas displaces coal 
generation (Fig. 3.4B). New coal is not installed at carbon adders above $40/tCO2 and, at 
$70/tCO2, almost all existing coal plants are retired. Existing nuclear capacity continues 
operation under all carbon adders, but new nuclear generation appears in this power 
system only at carbon adders of $70/tCO2 and above in the Base Cost scenario. 
Geothermal and biogas renewable baseload capacity are installed under all carbon adders 
to help satisfy RPS requirements. 

Power system carbon emission levels equal 54% of 1990 emissions by 2030 in the Base 
Cost scenario at a carbon adder of $70/tCO2. These emission levels are consistent with 
the 450 ppm climate stabilization target. In this low-carbon power system, new natural 
gas generation is installed as early as 2014 to replace retiring capacity (Fig 3.5A). The 
available geothermal and biogas resources are brought on early as an inexpensive way to 
help meet RPS targets. Wind generation is the primary technology that helps to meet 
increasing RPS requirements between 2018 and 2022, but generation from solid biomass 
also makes a contribution to RPS and decreased CO2 emissions in this timeframe. 

Investment in solar does not begin until 2026 when falling PV costs and rising RPS 
demand make central station solar PV attractive. Solar PV comprises almost all capacity 
additions in the final investment period of 2026-2029. It should be noted that should solar 
PV costs decline faster than modeled in this scenario, this technology would be deployed 
more quickly and at a larger scale. Such cost trajectories have been proposed by the 
United States Department of Energy SunShot Initiative, which has the goal of reaching an 
installed overnight solar PV capital cost of $1/Wp by 2020. 
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At a carbon adder of $70/tCO2, non-baseload generation dominates the generation mix 
by 2030, with solar, wind, hydroelectric, and gas providing 11%, 15%, 18%, and 35% of 
generation respectively (Fig. 3.4B). While gas fuel costs increase between the third and 
fourth investment periods, the total amount spent on gas fuel decreases in the fourth 
period relative to earlier periods because solar displaces peaking natural gas generation 
(Fig. 3.5B). This power system contains 44 GW of central station PV capacity, which 
provides power during peak load hours, and 52 GW of onshore wind capacity, which 
provides power mostly during the winter, spring, and fall. In addition, 68 GW of 
hydroelectric and 100 GW of natural gas plants meet the remaining load and provide 
reserve capacity for the system. A plot of hourly power system operation is shown in 
Figure 3.6. Note that this power system contains substantially less baseload generation 
than is found in the present day WECC power system.  
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Figure 3.4 Base Cost scenario CO2 emissions relative to 1990 emission levels (A) and 
yearly power generation by fuel (B) in 2026-2029 as a function of carbon price adder. As 
shown in panel A, the climate stabilization target of 450 ppm is reached at a carbon price 
adder of $70/tCO2. 

0%!

50%!

100%!

150%!

200%!

$0! $10! $20! $30! $40! $50! $60! $70! $80! $90! $100!

C
O

2
 E

m
is

s
io

n
s

 (
v

s
 1

9
9

0
) 
!

Carbon Price Adder ($2007/tCO2)!

A!

450 ppm!



28 

 
Figure 3.5. Base Cost scenario cumulative new capacity additions (A) and yearly 
average system costs (B) by investment period at $70/tCO2 carbon price adder. 
Nonfuel costs include capital, operations, and maintenance costs. 

 
Figure 3.6 Base Cost scenario hourly power system dispatch at 54% of 1990 emissions 
in 2026-2029. This scenario corresponds to a $70/tCO2 carbon price adder. The plot 
depicts six hours per day, two days per month, and twelve months. Each vertical line 
divides different simulated days. Optimizations are offset eight hours from Pacific 
Standard Time (PST) and consequently start at hour 16 of each day. Total generation 
exceeds load due to distribution, transmission, and storage losses. Hydroelectric 
generation includes pumped storage when storing and releasing. 

Figure 7 shows the geographic distribution of power production in 2026-2029. Solar and 
gas generation, which complement each other temporally as dispatched by the 
optimization (Fig. 3.6), are co-located in the Desert Southwest. Wind generation is 
largely sited in the Rocky Mountains. While the existing transmission network is used 
extensively, 9800 GW-km of new long-distance high-voltage transmission is also built, 
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mainly to enable delivery of power from high-quality Rocky Mountain wind sites to load 
centers (Fig. 3.7). Installation of PV in 2026-2029 does not spur much new transmission 
investment, except for a new 1 GW transmission line to bring solar power from northern 
Nevada to the San Francisco Bay Area. 

 
Figure 3.7 Average generation by fuel within each load area and average transmission 
flow between load areas in 2026-2029 at 54% of 1990 emissions for the Base Cost 
scenario. This scenario corresponds to a $70/tCO2 carbon price adder. Transmission lines 
are modeled along existing transmission paths, but are depicted here as straight lines for 
clarity. The Rocky Mountains run along the eastern edge of the map, whereas the Desert 
Southwest is located in the south of the map. 
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Figure 3.8 Yearly generation by fuel in 2026-2029 for all scenarios discussed in this 
paper at an emission level consistent with the 450 ppm climate stabilization target (54% 
of 1990 carbon emission levels by 2030). The carbon price adder, cost of power, and 
cumulative new transmission built at the 450 ppm climate stabilization target are also 
tabulated for each scenario in 2026-2029. Results in this figure are obtained by varying 
the carbon price adder for each scenario until the target emission level is reached. 

Low Nuclear Cost Scenario 
With carbon policy that reduces emissions below 1990 levels (285 MtCO2/yr) by 2030, 
the optimal power system design is highly responsive to the capital cost of nuclear. At 
carbon price adders of less than or equal to $50/tCO2, the Low Nuclear Cost and Base 
Cost scenarios are identical because no new nuclear is built under weak carbon policy in 
either scenario. As the carbon price adder is increased, the least-cost strategy for reducing 
CO2 emissions in the Low Nuclear Cost scenario relies on fuel-switching from coal to 
nuclear power. 

Above $50/tCO2, new nuclear power appears in the Low Nuclear Cost scenario. In this 
scenario, the 450 ppm climate stabilization target of 54% of 1990 carbon emissions by 
2030 is reached at a carbon price adder of $59/tCO2. A considerably different power 
system is designed relative to the Base Cost scenario due to the inclusion of large 
amounts of new nuclear capacity. The energy generated by nuclear in 2026-2029 is 25% 
of the total (Fig. 3.8), with an installed capacity of 37 GW – four times the current 
WECC-wide capacity of 9 GW. Solar, wind, hydroelectric, and gas plants provide the 
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remaining generation above baseload, at 6%, 11%, 18%, and 21% of total electricity, 
respectively. 

Of the six scenarios explored here, the Low Nuclear Cost scenario results in the smallest 
transmission build-out.  A total of 6000 GW-km of new transmission capacity is installed, 
which is considerably less than the 9800 GW-km found in the Base Cost scenario. New 
nuclear plants are built at key junctions where existing transmission capacity is present 
but is underutilized due to the retirement of existing coal power plants. Hourly system 
operation is similar to that in present day, except with nuclear in the place of coal. In this 
scenario, nuclear and coal are found to be suitable substitutes. The strength of carbon 
policy determines which of these two large-scale baseload generation options should be 
installed on an economic basis.  

Low Price Gas Scenario 
Recent projections (U.S. Energy Information Administration, 2011b) suggest that natural 
gas prices may remain low in the future, a possibility that we explore in the Low Gas 
Price scenario.  In this scenario, at the 450 ppm climate stabilization target, the 2030 
optimal power system is very similar to that in the Base Cost scenario. In both scenarios, 
virtually all emissions originate from natural gas, with the share of generation from this 
fuel effectively constrained by the 450 ppm target. Due to the lower cost of natural gas in 
the Low Gas Price scenario, it takes a carbon price adder of $87/tCO2 to reach the 450 
ppm target in the Low Gas Price scenario, whereas in the Base Cost scenario only 
$70/tCO2 is necessary. The difference in cost of natural gas generation resulting from the 
two natural gas price levels is roughly equivalent to that induced by a $17/tCO2 
difference in carbon price adder.  As a result, similar generation fleets are deployed in the 
Base Cost and Low Gas Price scenarios.  

High Gas Price Scenario 
The High Gas Price scenario demonstrates that many other generation sources can 
substitute for natural gas if gas prices become high in the 2030 timeframe. To reach the 
450 ppm climate stabilization target in this scenario, the reliance of the optimal power 
system on gas-fired generation is substantially decreased. Only 21% of power in the High 
Gas Price scenario is generated from gas, a 40% reduction relative to the Base Cost 
scenario. Low-carbon generation from new nuclear, biomass solid, wind, and solar 
displaces gas generation. In addition, instead of retiring virtually all existing coal plants 
as in the Base Cost scenario, some existing coal is kept online in the High Gas Price 
scenario, generating 5% of electricity and producing 31% of carbon emissions. The 
carbon price adder at which the target is reached in the High Gas Price scenario is 
$66/tCO2, which is $4/tCO2 lower than is found in the Base Cost scenario. In 
combination with the reduced overall emissions resulting from lower natural gas 
deployment, a lower carbon adder allows for the retention of existing coal in the optimal 
power mix in the High Gas Price scenario.  
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Solar Cost Scenarios 
In all scenarios above, solar PV deployment is an important driver of lowering emissions 
by 2026-2029. The capital costs of this technology are assumed to decline substantially 
between present day and 2030 at a rate of 3.7%/yr, resulting in large-scale deployment in 
the last investment period. To explore the dynamics of a low-carbon power system 
without the availability of low-cost solar PV, we explore a scenario with a higher PV cost. 

Despite continued capital cost reduction in the High PV Cost scenario (2.2%/yr), multi-
GW-scale solar PV investment does not occur at 54% of 1990 carbon emissions by 2030, 
with just over 1 GW of capacity installed. Natural gas and solar are both peaking 
resources and are generally considered substitutes, but the 450 ppm target limits the total 
amount of gas generation in both the Base Cost and High PV Cost scenarios, effecting 
deployment of other types of generation instead. Relative to the Base Cost scenario, solar 
PV is replaced by a combination of nuclear, biomass solid, and wind power rather than 
natural gas.  

In the Low CSP Cost/High PV Cost scenario, 9 GW of CSP parabolic trough systems 
without thermal storage are deployed in the Desert Southwest by 2030, generating 2% of 
WECC-wide electricity. These CSP plants preclude installation of PV generation, as the 
economics of CSP are favorable relative to those of central station PV in this scenario. 
CSP technology with thermal energy storage is not deployed. The Low CSP Cost/High 
PV Cost scenario is very similar to the High PV Cost scenario because the amount of 
CSP generation deployed in the former is small relative to system load.  

In both of the solar cost scenarios, the 450 ppm target occurs at a power cost of 
$114/MWh, $1/MWh higher than is found in the Base Cost scenario. However, the 
carbon adder that makes the power system reach the target is found to be much higher at 
$84-$86/tCO2 relative to $70/tCO2 in the Base Cost scenario.  

Post-Optimization Dispatch Results  
To ensure reliability, after each cost optimization, the performance of the proposed power 
system is tested using 16,800 distinct hours of data for each investment period. This 
check ensures that enough capacity has been built to serve load under conditions that 
were not included in the optimization stage. For this paper, a total of more than 4 million 
hours were simulated under all cost and carbon price adder scenarios discussed. Among 
these, no combination of cost scenarios and carbon price adders results in power 
shortages, even for a single hour or a single load area. The success of the dispatch check 
adds validity to the model’s method of sampling median and peak load study hours to 
plan an electric power system with intermediate levels of intermittent renewable 
generation.  

3.5 Discussion 
To build an electricity sector consistent with a 450 ppm climate stabilization target, our 
results indicate that the RPS might be a logical first step that guarantees that renewable 
capacity is added in the near term. In advance of national or regional carbon-reduction 
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policies, RPS targets establish a policy environment that begins to decarbonize the energy 
mix. In our simulations, RPS policies effect reductions in emission levels primarily by 
promoting cost-effective baseload renewable technologies such as geothermal, biomass, 
and biogas in the near term. However, in a scenario with existing RPS and a carbon price 
adder of $0/tCO2 – a business-as-usual case – emissions from the lowest-cost western 
North American electric power system would be roughly double the 1990 levels by 2030 
(Fig. 3.4B). Current RPS targets in western North America are not set high enough to put 
electric power sector emissions on track to stabilize the climate at or below 450 ppm (i.e. 
allow no more than 54% of 1990 emissions in 2030). To reduce emissions below 1990 
levels by 2030, optimal power systems determined via SWITCH include more renewable 
electricity generation than is mandated by RPS targets.  

We demonstrate that the ambitious 450 ppm climate stabilization trajectory can be 
achieved using a fleet of existing generation technologies. Across the scenarios 
investigated here, the composition of the fleet varies substantially but the resulting power 
systems also exhibit a number of commonalities. In all 450 ppm scenarios, no new coal-
fired generation is added to the power mix as investment in carbon-intensive generation 
isn’t consistent with long-term climate targets. Some existing coal is still operated until 
2030 in scenarios with a carbon price adder below $70/tCO2, as its economics remain 
favorable relative to gas generation below this carbon price.  

 In most 450 ppm scenarios, virtually all emissions originate from gas-fired generation, 
with this fuel accounting for between 21% and 36% of total generation. At the upper 
bound of 36%, the amount of gas generation is effectively constrained by the 450 ppm 
target. Despite this upper bound on gas generation, the system appears to have sufficient 
flexibility to integrate between 17% and 29% of electricity from intermittent renewable 
generation cost-effectively in all scenarios using natural gas and hydroelectric resources. 
This is evident from the High Gas Price scenario in which the share of natural gas is the 
smallest, but the share of intermittent renewables is the largest of any 450 ppm scenario 
investigated (Fig. 3.8). 

Electricity storage is not used extensively due to round-trip efficiency losses and high 
costs. For these reasons, battery storage, compressed air energy storage, and solar thermal 
systems with thermal energy storage are not installed at any carbon price adder in the 
scenarios discussed here. Existing pumped hydroelectric storage provides hourly 
arbitrage sparingly as there is sufficient lower-cost dispatchable generation already 
present. The inclusion of ancillary services to compensate for contingencies such as 
uncertain solar, wind, and load forecasts may add enough value to enable the addition of 
new storage projects to the optimal electric power system.  

Given the large amount of system flexibility discussed above, wind and solar combined 
with natural gas and hydroelectric act as substitutes for baseload generation from biomass 
solid and nuclear. In this study of western North America, these technologies are 
acceptable substitutes on an operational basis within the levels of intermittent renewable 
penetration and carbon emissions explored. They are also substitutes on an economic 
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basis as can be seen by their levels of deployment within the SWITCH cost optimization 
framework. 

We find that achieving the 450 ppm target by 2030 has similar costs across the scenarios 
we investigate (Fig. 3.8). In the scenarios presented here, WECC-wide average power 
costs are between $110/MWh and $114/MWh. While the system receives modest cost 
benefits from low-cost nuclear or low-cost PV generation, neither of these technologies 
alone is integral to meeting the 2030 emissions target. The cost of achieving deeper 
emission reductions without nuclear in the Base Cost scenario would be only slightly 
higher relative to the Low Nuclear Cost scenario: about 3% higher to reach 54% of 1990 
levels by 2030 (Fig. 3.8). This suggests that it is possible to build a reliable, low-carbon 
power system without nuclear power for similar costs to a nuclear-centered system. We 
also show that even if PV capital costs or natural gas prices are higher than projections in 
the Base Cost scenario, it is possible to achieve significant de-carbonization at only a 
slight cost premium. In both the High PV Cost and High Gas Price scenarios, at 54% of 
1990 emissions by 2030, the increase in power cost is $1/MWh or 1% relative to the 
same emission levels in the Base Cost scenario.  

In the scenarios presented here, the lowest-cost power system designed for a 450 ppm 
target occurs at a carbon price adder of between $59/tCO2 and $87/tCO2. While the 
carbon price adder in these scenarios may appear high, the actual cost increase to 
redesign the grid in order to achieve these deep emissions reductions is relatively low 
(Fig. 3.9), with a power cost increase of between 16% and 20% relative to scenarios 
without any carbon price adder (i.e. business-as-usual).  

In addition to comparing scenarios consistent with a 450 ppm target, we investigate the 
cost of power in all six cost scenarios at different levels of carbon emissions. At all 
carbon emission levels above 40% of 1990 levels by 2030, the projected cost of power is 
found to differ by at most 5% between any pair of scenarios achieving similar 
decarbonization (Fig. 3.9). Further decarbonization beyond this point could be realized by 
replacing all the remaining coal power and much of the natural gas with renewables 
and/or nuclear power, but is not investigated in this study. 
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Figure 3.9 Average cost of power in 2026-2029 as a function of carbon emissions for all 
scenarios. Each point represents an optimization performed at a distinct carbon price 
adder, with the rightmost and leftmost points on each line representing optimizations at 
$0/tCO2 and $100/tCO2 respectively. Intermediate points range between these values in 
steps of $10/tCO2. The broken y-axis allows for ease of comparison of the cost of power 
between scenarios but visually overstates the magnitude of power cost differences. For 
example, the Base Cost scenario power cost increases by only 18% when moving from 
the far right of this plot to the 450 ppm target line. 

By optimizing capacity expansion and hourly generation dispatch simultaneously, 
SWITCH is uniquely suited to explore both the value of and synergies among various 
power system technology options, providing policymakers and industry leaders with 
important information about the optimal development of the electricity grid. Integrating 
long-term, coordinated generation, storage, and transmission planning improves the 
ability of the electric power sector to meet economic and climate goals. Analyses like this 
can help identify the least-expensive response to climate change, but concerted action 
will be needed to develop this system, such as ensuring that the cost of renewable 
technologies continues to decrease, securing low-cost financing for renewable power, and 
developing market structures that can accommodate changes in grid operation that will 
result from the deployment of low-carbon technologies. 

3.6 Conclusions 
This study illustrates realistic future grid scenarios with baseload, dispatchable and 
intermittent generation, transmission, and storage at minimal cost, taking into account the 
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variability of renewable technologies. The least expensive power system studied, which 
implements current RPS policies but no further carbon policy, would deliver power at an 
average cost of $95/MWh, but would have roughly double the 1990 emission levels by 
2030. Achieving emission levels of 54% of 1990 levels is shown to be possible by 2030 
under a range of possible future costs and with many different combinations of low-
carbon and conventional generation technologies. We find that intermittent renewable 
technologies can make an important contribution to emission reductions, comprising 
between 17% and 29% of total electricity generated by 2030 in scenarios consistent with 
the 450 ppm target. Despite differences in power mix due to the range of cost 
assumptions investigated in this study, the resultant power systems deliver power at 
similar costs. The carbon price to induce these deep carbon emission reductions is high, 
but the delivered cost of power increases by at most 20% over business-as-usual. High-
resolution models like SWITCH make it possible to find low-cost solutions that challenge 
the assumption that the deployment of the low-carbon grid is very expensive.  

3.7 Epilogue 
We extended this work in California’s Carbon Challenge Phase 1 (Wei, Nelson et al., 
2012) to integrate Switch’s electricity supply analysis with demand-side electrification 
and efficiency along with the transportation sector look at what it would take to meet 
2050 goals. This was the first major demonstration of coupling the Switch model with 
external analysis and modeling efforts to develop a broader mitigation plan. Expanding 
the scope of analysis to other sectors was important because they have strong two-way 
interactions with central electricity planning via aggregate load, electricity prices and 
emission factors. Extending the timeframe to 2050 was important because many 
infrastructure components have lifetimes that extended beyond the end of the 2030 
analysis. A 25-year analysis would not be able to fully assess the value of those 
investments and avoid stranded assets. For example, it was clear that a transition from 
coal to natural gas can meet near-term emission reduction goals, but it was unclear 
whether large amounts of natural gas infrastructure would be compatible with long-term 
goals or if it would become stranded assets. The same reasoning applies to distributed 
generation with combined heat and power plants that rely on fossil fuels, or transitioning 
the transportation fleet to natural gas. 

Increasing the time duration of the study also enabled us to examine the impacts of 
prospective technologies to help us prioritize research, development and deployment 
goals. This type of study also lets us determine the time frame in which new technologies 
would become valuable and be deployed - for example, low- or zero-emission balancing 
assets such as storage or demand response have low value in the next few decades while 
weak carbon caps permit cheap natural gas to outcompete them, but become increasingly 
valuable in 2040 and 2050 when tight carbon caps limit the use of natural gas. This tells 
us we need to start developing those technologies now so that we can deploy them at 
scale in a few decades. 
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A major finding from that study was that no single course action was sufficient to meet 
emission targets; climate stabilization requires strong action on multiple fronts. Core 
action items were reducing supply-side emissions, deploying demand-side efficiency, and 
transitioning vehicles and heating from fossil fuels to electricity and biofuels. Beyond the 
core action items, we identified other action items that provided multiple pathways to 
achieve emission goals: behavioral changes for greater conservation, sequestration 
options to offset emissions or pushing harder on the core action items. 

In California’s Carbon Challenge Phase 2, Volume 1 (Wei, Greenblatt et al., 2013), 
summarized in (Wei, Nelson et al., 2013), we significantly extended the depth and 
breadth of the analysis, including a wider range of future scenarios, improved 
methodologies and datasets, options of deploying enough Biomass Energy with Carbon 
Capture and Sequestration to result in a net carbon negative power system, demand 
response, a more detailed examination of industry, etc. This produced qualitatively 
similar results that were more robust and specific than Phase 1. Volume 2 (Nelson, 
Mileva et al., 2014) provided additional detailed interpretation and documentation of the 
electricity supply side results. 

These studies included detailed bottom-up projections of electricity demand that included 
various efficiency scenarios and added demand from electrifying vehicles and heating 
loads. An unanticipated finding was that increased efficiency and electrification shifts 
system peak from summer afternoons to winter nights, which shifts the relative value of 
solar and wind (Fig 3.10). Overall, we found multiple pathways that lead to a low-GHG 
future, all involving increased efficiency, electrification, and a dramatic shift from fossil 
fuels to low-GHG energy. We found the electric system had a diverse, cost-effective set 
of options, even with additional demand from electrification (Fig 3.11). 
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Figure 3.10 From Wei et.al. 2013. (a) Drastic shifts in load profile are seen from the 
implementation of efficiency ('post efficiency' scenario) and subsequent addition of loads 
from electric vehicles and heating. The compliant case ('Base Case') represents the load 
profile used as an input to the SWITCH model. One peak and one median demand day 
per season are shown in the figure for clarity, though the SWITCH model uses six days 
per season for each decadal time step. (b) WECC-wide electricity generation in 2050 as 
dispatched by SWITCH for the frozen efficiency load profile (c) WECC-wide electricity 
generation in 2050 as dispatched by SWITCH for the compliant case from figures 1(b) 
and 3(a). Note the shift from solar to wind power as the amount of efficiency and vehicle 
and heating electrification is increased from the frozen efficiency load profile. 
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Figure 3.11 From Wei et.al. (2013). The projected delivered price of electricity in 2050 
varies little across carbon-constrained scenarios, with the exception of a BAU scenario 
without emission constraints that uses large amounts of coal and a scenario that prohibits 
CCS and new Nuclear.  
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4 Evaluating value and impacts of green technologies 
 
While planning low-carbon pathways and considering drivers of system costs in 2040 and 
2050, we came to appreciate the need for developing new technologies now that can be 
deployed at scale in that timeframe to reduce costs and reduce risks. The following two 
collaborative studies provide detailed evaluations of low-cost solar (Mileva, Nelson et al., 
2013) and Biomass Energy with Carbon Capture and Sequestration (Sanchez, Nelson et 
al., 2015). 

Low-cost solar is an emerging reality as module costs have fallen dramatically since we 
began these studies. System integration requirements for solar are still challenging, 
especially if considering all of the investment decisions that could permit larger or 
smaller penetrations of solar. Switch is especially well-suited for this type of analysis 
because it develops a transitional pathway to a portfolio that allows our desired amounts 
of renewables and emission reductions. In low-cost solar study, we evaluated system-
wide impacts and cost-effective solar penetration levels if SunShot cost targets are 
achieved. We also explored interactions with complementary technologies including 
demand response and cost breakthroughs in storage. 

Biomass Energy with Carbon Capture and Sequestration (BECCS) is interesting because 
it provides electricity while withdrawing carbon from the atmosphere. The emission 
credits generated by this process could be extremely valuable after all lower-cost 
emission reduction methods are exhausted and we hit an inflection point on the carbon 
reduction supply curve. The emission story of BECCS is that most of the carbon that is 
withdrawn from the atmosphere by plants when they are growing is sequestered 
underground after they are combusted. As long cultivating and harvesting the biomass 
does not degrade ecosystem productivity or soil carbon cycles, the net emissions are 
negative. This work demonstrated that BECCS provides interesting and valuable 
opportunities that are worth investigating further, and that most of the value of BECCS in 
most situations comes from sequestration rather than energy. This also indicates that 
other sequestration strategies such as improved land management, biochar, or ecosystem 
restoration could be quite valuable, assuming we can work out the science. 

 
4.1 SunShot solar power reduces costs and uncertainty in future low-carbon 

electricity systems 
 

The United States Department of Energy’s SunShot Initiative has set cost-
reduction targets of $1/watt for central-station solar technologies. We use 
SWITCH, a high-resolution electricity system planning model, to study 
the implications of achieving these targets for technology deployment and 
electricity costs in western North America, focusing on scenarios limiting 
carbon emissions to 80% below 1990 levels by 2050. We find that 
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achieving the SunShot target for solar photovoltaics would allow this 
technology to provide more than a third of electric power in the region, 
displacing natural gas in the medium term and reducing the need for 
nuclear and carbon capture and sequestration (CCS) technologies, which 
face technological and cost uncertainties, by 2050. We demonstrate that a 
diverse portfolio of technological options can help integrate high levels of 
solar generation successfully and cost-effectively. The deployment of 
GW-scale storage plays a central role in facilitating solar deployment and 
the availability of flexible loads could increase the solar penetration level 
further. In the scenarios investigated, achieving the SunShot target can 
substantially mitigate the cost of implementing a carbon cap, decreasing 
power costs by up to 14% and saving up to $20 billion ($2010) annually 
by 2050 relative to scenarios with Reference solar costs. 

Introduction 
The high cost of solar electricity technologies relative to conventional fossil fuel 
generation has been a barrier to their deployment at large scale. In 2011, solar generation 
provided less than 1% of electricity in the United States (U.S. Energy Information 
Administration, 2011a) and 3% in Germany(Fraunhofer Institute for Solar Energy 
Systems ISE, 2012). The solar photovoltaic (PV) industry has experienced fast-paced 
expansion in recent years, with annual growth rates in PV production of at least 40% 
since 2000 (Jäger-Waldau, 2012).  Installed costs for PV declined by 43% between 1998 
and 2010 (Barbose, Darghouth et al., 2011), but future cost and performance projections 
vary widely. In 2011, the United States Department of Energy (DOE) launched the 
SunShot Initiative, a comprehensive lab-to-market program that seeks to drive innovation 
and lower the cost of solar technologies, including PV and concentrating solar power 
(CSP). The cost target for PV is $1/W for central-station systems and $1.5/W for 
residential installations by 2020 ($2010) (US Department of Energy, 2012a).   

The SunShot Vision Study(US Department of Energy, 2012b) provides an extensive 
analysis of the pathway to reaching the SunShot targets and implications for solar 
deployment in the United States. Similarly, we explore power system dynamics with 
SunShot solar costs, but, building on the SunShot Vision Study, we focus on scenarios 
with a carbon cap requiring the electricity sector to reduce its emissions to 80% below 
1990 levels by 2050. This target is consistent with the Intergovernmental Panel on 
Climate Change’s (IPCC) 450 parts per million (ppm) stabilization target for atmospheric 
concentration of carbon dioxide equivalent (CO2-e), which would limit planetary 
warming to 2°C above preindustrial levels (Intergovernmental Panel on Climate Change. 
Working Group 3, 2007).  Several countries and states already have equivalent policy 
goals in place. The State of California has put into law a requirement to reduce 
greenhouse gas emissions (GHG) to 1990 levels by 2020 with Assembly Bill 32 (AB32) 
(California Air Resources Board, 2012).  In addition, Executive Order S-3-05 calls for a 
further decline in the state’s emissions to 80% below 1990 levels by 2050 (US 
Department of State, 2010). At the federal level, President Obama’s administration 
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supports the implementation of a cap-and-trade program to reduce GHG emissions to 83 
percent below 2005 levels by 2050.  In this work, we explore how the Western Electricity 
Coordinating Council (WECC) can achieve deep GHG emission reductions in the 2050 
timeframe. WECC encompasses fourteen Western states, the Canadian provinces of 
Alberta and British Columbia, and the northern portion of Baja California, Mexico. 

We use SWITCH, a capacity-planning model whose goal is to determine the most cost-
effective investments in electric power grid infrastructure (Fripp, 2008; Fripp, 2012).  
SWITCH is a linear program (LP) whose objective is to minimize the cost of delivering 
power to load on an hourly basis subject to operational and policy constraints. The model 
uses time-synchronized hourly load and intermittent renewable generation data to 
determine optimal investment in and hourly dispatch of generation, transmission, and 
storage. We use a version of SWITCH developed for the electricity system of the entire 
WECC (Nelson, Johnston et al., 2012; Wei, Nelson et al., 2013).  We choose to study the 
WECC power system because of its high-quality renewable resources that would likely 
make it a prime region for deployment of solar power. The WECC grid would also 
experience relatively high operational impacts associated with intermittent generation. 
This work investigates how the cost of solar technologies might affect both the ability of 
the WECC electricity sector to de-carbonize and the costs associated with reducing 
carbon emissions to the 2050 target. 

Scenarios 
All scenarios assume a WECC-wide carbon cap requiring the electricity sector to 
gradually decrease emissions each year to 80 percent below 1990 levels by 2050 (no 
banking or borrowing of emissions is allowed). In the Base Technology Scenario, we 
make nuclear and carbon capture and sequestration (CCS) technologies available to the 
SWITCH optimization. In the Limited Technology Scenario, we exclude nuclear and 
CCS from the potential generator fleet as technological availability in the 2050 timeframe 
is uncertain. 

Within each of these scenarios, we explore two solar cost trajectories (Table 4.1.1) and 
compare the resulting power systems. In the SunShot cases, solar technologies achieve 
the targeted cost reductions by 2020 and then remain at these cost levels through 2050. In 
the Reference cases, solar generation remains more expensive, with costs decreasing 
gradually between present day and 2050. Finally, we investigate the role of flexible loads 
in the future WECC grid in the Flexible Load Scenario, which is based on the Limited 
Technology SunShot Scenario, but also allows a fraction of load in each hour to be 
shiftable, starting with 1 percent of load in the 2020 timeframe and reaching 10 percent of 
load by 2050. 

Solar	  Technology	  

	  

Year	  

	  

Reference	  

2010$/W	  

SunShot	  

2010$/W	  

Central	  PV	   2020	   2.51	   1.00	  
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2030	   2.40	   1.00	  

2040	   2.20	   1.00	  

2050	   2.10	   1.00	  

Commercial	  PV	  

2020	   3.36	   1.25	  

2030	   3.21	   1.25	  

2040	   2.95	   1.25	  

2050	   2.81	   1.25	  

Residential	  PV	  

2020	   3.78	   1.50	  

2030	   3.61	   1.50	  

2040	   3.31	   1.50	  

2050	   3.16	   1.50	  

CSP	  6	  Hours	  of	  Storage1	  

2020	   6.64	   3.07	  

2030	   5.23	   3.07	  

2040	   4.61	   3.07	  

2050	   4.61	   3.07	  

CSP	  No	  Storage	  

2020	   4.60	   2.50	  

2030	   4.20	   2.50	  

2040	   3.90	   2.50	  

2050	   3.50	   2.50	  

Table 4.1.1 SunShot and Reference case costs by solar technology. 
 
Costs for other technologies are based on Black and Veatch estimates and projections 
(Black & Veatch, 2012), and can be found in the Supporting Information. Natural gas and 
coal prices are based on the U.S. Energy Information Administration’s Annual Energy 

                                                
1	  In	  the	  SunShot	  Vision	  Study,	  CSP	  is	  modeled	  as	  having	  14	  hours	  of	  storage	  in	  the	  
SunShot	  scenario.	  Currently,	  SWITCH	  only	  includes	  CSP	  with	  6	  hours	  of	  thermal	  
storage,	  so	  the	  cost	  for	  CSP	  with	  6	  hours	  of	  storage	  in	  SWITCH	  is	  calculated	  based	  on	  
the	  difference	  between	  CSP	  with	  14	  hours	  of	  storage	  and	  CSP	  with	  11	  hours	  of	  
storage	  in	  the	  SunShot	  Vision	  Study,	  assuming	  costs	  increase	  linearly	  for	  each	  
additional	  hours	  of	  storage.	  The	  cost	  for	  CSP	  with	  no	  storage	  is	  then	  calculated	  by	  
assuming	  the	  same	  yearly	  cost-‐declination	  rate	  from	  present-‐day	  costs	  as	  for	  CSP	  
with	  6	  hours	  of	  storage.	  



44 

Outlook (US EIA AEO) 2011 Reference Case projections (US Energy Information 
Administration, 2011) 

Model Description 
The version of SWITCH used here minimizes the cost of producing and delivering 
electricity using a combination of existing grid assets and new generation, transmission, 
and storage. New capacity can be built at the start of each of four “investment periods,” 
representing 2015-2025, 2025-2035, 2035-2045, and 2045-2055. Throughout this 
manuscript, we also refer to the four investment periods as 2020, 2030, 2040, and 2050 
respectively. The investment decisions determine the availability of power infrastructure 
to be dispatched in each “study hour,” sampled from a year of hourly data for each period. 
Investment and dispatch decisions are optimized simultaneously.  

Study hours are initially sub-sampled from the peak and median load day of every month. 
Every fourth hour is selected, and dispatch decisions are initially made for ( 4 periods ) x 
( 12 months/period ) x ( 2 days/month ) x ( 6 hours/day ) = 576 study hours for the entire 
study. As the main SWITCH optimization uses a limited number of sampled hours over 
which to dispatch the electric power system, dispatch verification is performed at the end 
of each optimization to ensure that the model has designed a power system that can meet 
load reliably. In this verification, investment decisions are held fixed and new hourly data 
for two full years are tested in batches of one day at a time. For the scenarios investigated 
here, several optimization iterations were performed until capacity shortfalls were 
eliminated from the dispatch verification, each iteration including the hour with the 
largest capacity shortfall from the previous iteration as well as five more hours for that 
day, spaced evenly four hours apart. Like the main SWITCH optimization, the dispatch 
verification enforces transmission constraints as a transportation network only rather than 
power flow, and does not include generator ramping constraints, and security constraints. 

We use time-synchronized hourly profiles for load and renewable output to account for 
correlation between demand and renewable generation.  Building on our prior work,12 
for this study we have implemented a series of enhancements to SWITCH’s treatment of 
generator types in order to simulate system operations as realistically as possible, at an 
unprecedented resolution for a capacity-expansion model of a large geographic area. Six 
categories of generators are operated: baseload, flexible baseload, intermediate, peaker, 
intermittent, and storage. For this work, we have implemented 1) flexible baseload 
operation for coal plants, which run around the clock but are allowed to ramp up and 
down on a daily basis, incurring a heat rate penalty when operating below full load, 2) 
intermediate operation for combined cycle gas generator turbines (CCGTs), which can 
vary output hourly, but incur costs and emission penalties when new capacity is started 
up and heat rate penalties when operating below full load, and 3) startup costs for peaker 
plants, which have flexible output restricted only by installed capacity. Additional model 
capabilities implemented as part of this study include: operating reserve requirements 
(spinning and quickstart), flexible loads, a carbon cap constraint, state distributed 
generation policy goals, and natural gas price elasticity. 
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A complete formulation of the version of SWITCH used in this study is available in the 
Supporting Information and at http://rael.berkeley.edu/switch/. 

Results 
Base Technology Scenario 
In the Base Technology Scenario, we allow SWITCH to build new nuclear capacity as 
well as coal- and gas-fired plants equipped with CCS. 

With Reference solar costs (Figure 4.1.1A), natural gas generation constitutes most 
capacity additions in the near term and begins to displace coal as the carbon cap becomes 
more stringent over time. If natural gas prices were to remain as currently projected and 
carbon policies were implemented, this fuel would likely play a dominant role in the 
WECC power system in the next two decades. By 2030, natural gas plants generate 46% 
of the total WECC energy, while wind and PV produce 12% and 7% of generation 
respectively. Geothermal (5%) and a small amount of biogas (1%) help meet the 
renewable portfolio standards (RPS) in WECC states with such policies in place. 

In the SunShot case (Figure 4.1.1B), the availability of low-cost solar delays the 
deployment of low-carbon baseload capacity. In the Reference case, new geothermal 
installations provide 5% of energy in the 2030 timeframe to help meet the RPS and 
carbon cap requirements. By contrast, the SunShot case sees geothermal energy use at 
levels less than 1% before 2040. Similarly, CCS deployment is deferred: with Reference 
solar costs, coal CCS first appears in the power mix as early as 2030, providing 2% of 
energy in that timeframe; in the SunShot case, CCS installations are negligible through 
2050. Delaying the need to deploy these technologies would allow for additional time to 
gauge their feasibility and costs, and to improve their performance. 

By displacing natural gas and the associated emissions, large-scale solar deployment 
could allow the system to remain within the cap even without other low-carbon resources. 
Relative to the Base Technology Reference Scenario, the share of solar energy increases 
from 7% to 24% in the 2030 timeframe. Instead of intermediate and peaker gas 
generation, PV, whose output exhibits a positive correlation with the WECC demand 
profile, helps meet the daily peak load. 

By 2050, the carbon cap induces transformative changes in the power mix. The need to 
reduce emissions limits the amount of natural gas in the system, lowering its energy share 
to 11% in the Base Technology Reference Scenario. Instead, a combination of low-carbon 
resources helps to meet load. Solar and wind provide 15% and 29% of energy 
respectively. Nuclear, geothermal, biopower, and coal CCS make up the balance of 
generation at 21%, 7%, 1%, and 2%, providing low-carbon baseload power. Hydro 
generates 15% of energy, and storage also plays a role with 5 gigawatts (GW) of new 
capacity in the WECC. 
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In the Base Technology SunShot Scenario, the penetration of intermittent renewable 
energy is even higher. Solar generates 31% of energy and wind’s share is 24% in the 
2050 timeframe. Natural gas provides 9% of energy and is an important source of 
flexibility. Hydro also helps balance renewables and generates 15% of energy. In addition, 
27 GW of storage are installed throughout the WECC, about 5% of total system capacity 
and more than five times the new storage capacity in the Reference case. Geothermal 
provides 6% of electricity, and the share of nuclear is 13%. Relative to the 2030 
dynamics, the trade-off between solar and natural gas is less prominent in the 2050 
timeframe because the amount of natural gas is limited by the carbon cap rather than by 
fuel costs. Instead, the solar resource in the SunShot case displaces mostly nuclear energy 
relative to the case with Reference solar costs. 

Limited Technology Scenario 
In addition to technical issues around waste disposal and reactor safety, nuclear power 
today faces cost and public acceptance challenges. To date, CCS has not been deployed at 
scale and many CCS system components are still in the research, development, and 
demonstration phase. To explore a future in which low-carbon baseload power like 
nuclear and CCS is not readily available in a carbon-constrained system, we remove these 
technologies from the set of investment options in the Limited Technology Scenario and 
re-run the optimization with both Reference (Figure 4.1.1C) and SunShot (Figure 4.1.1D) 
solar costs. 

In this scenario, the power mix remains similar to that in the Base Technology Scenario 
until the last investment period. However, as the carbon cap becomes more stringent over 
time leading up to the 2050 goal, the system changes substantially between the two. 
Without nuclear power and CCS technology – and with solar costs remaining high in the 
Limited Technology Reference Scenario – the power system relies on large-scale 
deployment of wind energy in order to meet the cap. Wind deployment expands in the 
last investment period: more than 200 GW of wind power are in operation by 2050, 
providing 42% of energy in the 2050 timeframe. The share of solar energy is 20%. About 
11 GW of storage are also installed.  

When SunShot targets are reached, both solar and wind generation increase relative to the 
Base Technology SunShot Scenario to make up for the lack of nuclear and CCS, reaching 
34% and 30% respectively by 2050. The balance of generation remains similar across 
scenarios: geothermal provides low-carbon baseload energy while hydropower and gas 
generation contribute to both the energy and flexibility needs of the power system. 
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Figure 4.1.1 Energy mix by fuel and investment period. 

Cost of Power 
The cost of power increases over time across scenarios (Figure 4.1.2). However, SunShot 
solar availability contributes to a decline in cost relative to the Reference solar cost cases. 
In the last investment period in the Base Technology Scenario, the cost of power is 
$123/MWh with Reference solar costs and $112/MWh with SunShot solar costs. The 
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difference is even more pronounced when nuclear and CCS technologies are unavailable 
to help meet stringent carbon targets in the 2050 timeframe. In the Limited Technology 
Scenario, the average cost of power rises to $129/MWh by 2050 with Reference solar 
costs. If the SunShot target is reached, the cost of power is $114/MWh. 

Achieving SunShot targets mitigates the cost of carbon reductions in the WECC. While 
meeting the 2050 carbon cap appears possible with or without SunShot technology, when 
solar costs remain as in the Reference case, the cost premium for reaching the carbon 
target is 10% in the Base Technology Scenario and 14% in the Limited Technology 
Scenario in the 2050 timeframe. In the Base Technology Scenario, SunShot solar costs 
contribute to a decline in power costs in the medium-term timeframe. Only in the final 
decade of the simulation does the cost of power begin to rise relative to costs in the first 
investment period. 

If SunShot solar is unavailable in the 2050 timeframe, the lack of nuclear and CCS in the 
Limited Technology Scenario increases the power cost by an additional 5% above the 
cost in the Base Technology Scenario. In contrast, when the SunShot targets are achieved, 
removing low-carbon baseload from the set of investment options increases power cost 
by only 1%, thus mitigating the risk associated with nuclear and CCS. 

 
Figure 4.1.2 Yearly total cost of power (columns, left axis) and average cost of power 
(points, right axis) in the WECC in each of the four investment periods in the Base 
Technology Scenario and Limited Technology Scenario with and without SunShot solar 
costs. All costs are specified in real terms indexed to the reference year 2010. During the 
optimization, a real discount rate of 7% is used, so that costs incurred earlier in the study 
are weighed more heavily. 
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Realizing the benefits of SunShot would require large build-out of solar capacity and new 
transmission in western North America (Figure 4.1.3). In the Limited Technology 
SunShot Scenario, PV is installed throughout the WECC, with large capacities built in the 
Desert Southwest but also in places with lower solar insolation including Alberta, 
Montana, Oregon, and Wyoming, among others. Transmission expansion is also 
necessary to bring the solar resources to the load centers. In the Limited Technology 
SunShot Scenario, 28,000 GW-km of new high-voltage, long-distance transmission are 
installed by 2050. However, the most new transmission – more than 50,000 GW-km – is 
built in the Limited Technology Reference Scenario, largely due to higher levels of wind 
power deployment in Montana, Wyoming, and Colorado, requiring long transmission 
lines to bring the wind energy to the load centers. For comparison, the existing 
transmission capacity input into SWITCH is approximately 71,000 GW-km. 

 
Figure 4.1.3 Map of generation and transmission in the Limited Technology SunShot 
Scenario. 

PV capacity increases gradually over time, reaching 96 GW of central-station 
installations in 2030 and 185 GW in 2050 in the Limited Technology SunShot Scenario. 
Assuming PV array power density of 48 WDC/m2 for 1-axis tracking systems, (Denholm 
and Margolis, 2008) this would require close to 400,000 hectares (ha) or roughly 0.08% 
of the land area of the WECC. Central-station solar and wind power plants face 
permitting, environmental, and transmission-access challenges, which may be a barrier to 

10# 5 2 1 
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GW-scale deployment of these technologies. Renewable generation sites should be 
selected to minimize impacts on environmentally or culturally sensitive areas. The 
availability of multiple low-cost and low-carbon technologies could mitigate the siting 
risk associated with any one of them. 

In the 2050 timeframe, 5 GW of CSP with 6 hours of storage are also installed, largely in 
California. As SWITCH does not yet model CSP with longer storage duration nor does it 
have decision variables for CSP storage dispatch2, these results likely underestimate the 
economic potential of CSP were it to reach the SunShot cost targets. CSP with 12 to 14 
hours of storage could provide dispatchable power around the clock, increasing system 
flexibility and providing important value not captured here (Denholm, Wan et al., 2013).  
However, the water requirements of CSP plants using evaporative cooling may be a 
limiting factor in its deployment as water is scarce in the WECC region. 

More than 6 GW of distributed PV capacity are also deployed in the WECC in the 
Limited Technology Scenario. This deployment is driven by local incentives already in 
place such as the California Solar Initiative, which SWITCH enforces. Beyond existing 
subsidies, distributed PV is outcompeted by less expensive central-station PV in the 
model’s cost-optimization framework. Distributed PV may have net benefits for the 
distribution network not captured by SWITCH (Piccolo and Siano, 2009).  As a large-
scale capacity-planning model, SWITCH also does not capture the set of decisions and 
market dynamics that may drive distributed PV adoption regardless of cost, including a 
complicated and geographically varied range of policies, incentives, retail rate structures, 
and individual preferences3.  

The scenarios presented above assume annual load growth of 1% as projected by the 
Energy Information Administration (US Energy Information Administration, 2010).  
Implementing additional energy efficiency measures and reducing the amount of load 
that needs to be served could greatly decrease the capacity build-out required to serve 
load reliably. For example, if technology assumptions were as in the Limited Technology 
SunShot Scenario but load were to remain at current levels (0% annual load growth), 
wind and solar capacity requirements would be cut in half and annual power system costs 
would be reduced by close to $60 billion annually or more than 40% by 2050. The value 
of energy efficiency will vary depending on the cost of generation available to meet load. 
Estimating the energy efficiency potential and costs is an important area of research 

                                                
2 The dispatch pattern for each CSP project is parameterized and input into the optimization ahead of time 
as an hourly capacity factor. 
3 Other capacity-expansion models, including the Energy Information Administration’s National Energy 
Modeling System (NEMS) (see http://www.eia.doe.gov/oiaf/aeo/overview/) and the Regional Energy 
Deployment System (ReEDS) at the National Renewable Energy Laboratory (NREL) (see 
http://www.nrel.gov/analysis/reeds	  ) have similar limitations. The Solar Deployment System (SolarDS) 
model was specifically developed at NREL to project distributed PV adoption rates and has been used to 
create inputs to planning models. The SunShot Vision Study used SolarDS to estimate distributed PV 
penetration and input these levels into ReEDS before simulating the rest of the electric power system. 
SolarDS estimated 121 GW of distributed solar deployment in the United States by 2030 and 240 GW by 
2050 with SunShot solar costs. 
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because investing in efficiency may be a cost-effective alternative to deploying 
generation capacity. 

System Dispatch 
	  
With intermittent renewable penetration reaching 64% in the Limited Technology 
SunShot Scenario, the power system faces operational challenges, which are evident from 
the aggregate dispatch of the WECC power system in 2050 as optimized by SWITCH 
(Figure 4.1.4A). Significant system flexibility is required in the early evenings when 
solar generation ramps down earlier than load, resulting in a need for a steep up-ramp to 
follow the net load (load minus intermittent generation). In SWITCH’s simulations, these 
net-load ramps are handled by a combination of hydro, storage, and intermediate and 
peaker gas generation. Combined-cycle gas plants are frequently operated at part load, 
gas combustion turbines are started up and cycled down as needed, and the existing 
flexibility from hydropower as well as pumped hydro storage is used extensively. In 
addition, multi-GW-scale deployment of new storage occurs by the last investment period, 
comprising 6% of system capacity in the 2050 timeframe. 

As the least expensive storage option in SWITCH, almost all of the new storage is 
compressed air energy storage (CAES), with more than 29 GW installed throughout the 
WECC4.  About 3 GW of battery capacity are also deployed. Storage deployment occurs 
in wind regions such as Colorado and Wyoming (~ 1 GW deployed in each), but most is 
built in the Desert Southwest to help handle the evening solar down-ramp. This is 
apparent from the dispatch pattern of storage (Figure 4.1.4A), which tends to charge 
during the peak load hours in the middle of the day – when solar generation is also 
peaking and net load is low – and discharge in the evening when the sun goes down but 
load does not decline as rapidly and net load is high. Storage dispatch is different from 
present-day patterns of charging during the night when demand and prices are low and 
discharging at peak when prices increase. Notably, storage is less active during the times 
when the most energy is spilled (the median load day in March in this simulation) as 
prices stay low throughout the day and little opportunity for arbitrage exists (SWITCH 
does not currently model seasonal storage). Energy is spilled in the spring and early 
summer when both the solar and wind resource are abundant while load is low 
throughout the day. 

Like storage, load flexibility could contribute to system reliability and lower system costs. 
We investigate system dynamics in one additional scenario – the Flexible Load Scenario 
– that has the same technological availability assumptions as the Limited Technology 
SunShot Scenario, but includes the ability to shift loads within each day of the 
optimization. Specifically, we assume that 1% of load in each hour will be shiftable in 
2020, 4% in 2030, 7% in 2040, and 10% in 2050. We give SWITCH the option to shift 
load to any hour within the day without cost or efficiency penalty. 
                                                
4 CAES is a hybrid gas-storage technology as it combines underground reservoirs to store compressed air 
with a gas turbine. CAES is assumed to be sited in aquifer geology and widely available. 
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Flexible loads are shifted toward the solar peak when an abundant low-cost and low-
emission resource is available, and away from the evening net-load peak (Figure 4.1.4B). 
The share of solar in the energy mix rises to 37% while storage deployment is reduced to 
18 GW (from 34% and 29 GW respectively). The average cost of power in 2050 is 
$108/MWh, 5% lower than in the Limited Technology SunShot Scenario. This benefit 
would have to be compared against the cost of load flexibility programs. 

SWITCH does not yet model a number of power system services such as automatic 
generation control (AGC), sub-hourly load following, inertial response, or primary 
contingency reserve (frequency response), currently incorporating only secondary 
contingency reserves (spinning and quickstart). In the results presented here, very little 
thermal generation is dispatched during certain times of the year, e.g. almost no gas 
generation is operated in May and June. The ability of the power system to maintain 
frequency after a contingency without traditional synchronous generators is a current 
research topic. While wind (Miller, Clark et al., 2011), solar (Zarina, Mishra et al., 2012), 
high-power storage technologies (Delille, Francois et al., 2012) and flexible load 
(Callaway and Hiskens, 2011) may be able to provide similar response, additional 
constraints may have to be incorporated into capacity-planning models such as SWITCH 
to ensure that the simulated system can operate reliably.  

 
Figure 4.1.4 System dispatch in 2050 in the (A) Limited Technology SunShot Scenario 
and (B) Flexible Load Scenario. Total generation exceeds system load because of 
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transmission, distribution, and storage losses as well as curtailment of generation on 
resources. 

Discussion 
Achieving the SunShot target could make it cost-effective for solar power to provide 
more than a third of electricity in the WECC by 2050, aiding the ability of the WECC 
power system to reduce emissions while meeting load. Flexible load availability could 
increase this penetration level by moving additional load to the solar peak. While not 
included here, changes in the load profile such as from energy efficiency measures, 
inflexible nighttime charging of electric vehicles, or heating electrification could have the 
opposite effect (Wei, Nelson et al., 2013).  

Without low-cost solar energy, the WECC power system relies on low-carbon baseload 
technologies to achieve the 2050 emission goals: in the Reference Base Technology 
Scenario, 27 GW of new nuclear and 4 GW of coal CCS capacity are built. If low-carbon 
baseload technologies are available, the cost to meet the 2050 carbon cap increases by 10% 
if the SunShot targets are not reached, a cost premium of $14 billion annually in the 2050 
timeframe. If nuclear and CCS are not available, SunShot solar can substantially mitigate 
the cost increase from implementing a strict carbon cap, saving 14% or more than $20 
billion annually by 2050. By comparison, the proposed budget for the SunShot program 
is $310 million for FY2013 (Department of Energy, 2012).  Achieving the SunShot target 
could decrease electricity prices in the medium term and provide key benefits by 
containing power costs even as stringent de-carbonization of the power sector is 
implemented, potentially facilitating the passage of climate policy. While not included 
here, possible further cost declines beyond the SunShot target would imply even larger 
savings. 

When SunShot solar is available, removing nuclear and CCS from the investment 
portfolio does not result in a sharp increase in costs. Achieving the SunShot target might 
therefore have the additional benefit of serving as insurance against the risk associated 
with relying on nuclear power and CCS for emission reductions. Delaying the need to 
deploy those technologies would also allow time for the R&D, innovation, and 
technological progress to make them a viable, cost-effective alternative for climate 
change mitigation. 

We find that the 2050 emissions target can be achieved in the WECC electricity sector 
with or without SunShot solar power. Even if SunShot-level technological improvement 
is not achieved, however, it may still be cost-effective for solar as well as wind 
generation to make a significant contribution to energy supply in future low-carbon 
systems. Of the scenarios presented here, the lowest combined energy penetration level 
for these two intermittent technologies in 2050 is 44% (29% for wind and 15% for solar 
in the Base Technology Reference Scenario), a deployment level that will likely require 
changes to system operations and additional system flexibility resources. 
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SWITCH incorporates many elements of system dispatch in a capacity-expansion 
modeling framework and offers some of the most detailed treatment to date of day-to-day 
operations in an investment model. The SWITCH results presented here indicate that a 
range of system flexibility resources, including flexible gas-fired generation, 
hydroelectric generation, storage, and load response, can help to integrate large amounts 
of intermittent energy resources into the WECC power system. While technology 
availability may not be a limiting factor in achieving deep emission reductions with wind 
and solar, well-designed market mechanisms and policy structures may need to be put in 
place – in addition to long-term policy support for climate goals – to ensure coordinated 
investment in R&D and infrastructure, and efficient deployment of enabling technologies 
such as storage, demand response, flexible transmission, and active controls. It is 
important to continue investigating how to design a comprehensive strategy to create a 
least-cost, low-carbon electricity supply system. 

Technological breakthroughs such as SunShot could potentially transform the WECC 
power system and mitigate the cost of emission reductions and the risk of failing to meet 
the 2050 climate goals. Achieving SunShot costs for solar technologies would require 
significant technological progress and a supporting policy framework: an increase in the 
solar industry’s manufacturing capacity, streamlined permitting and siting for new plants 
and transmission lines as well as appropriate markets, policy, and operational practices. 
Provided strategic long-term planning is put in place, SunShot solar power appears 
poised to play a crucial role in containing electricity costs even as aggressive carbon 
emission reduction goals are achieved. 

4.2 Biomass Enables the Transition to a Carbon-Negative Power System 
Across Western North America 

	  
Sustainable biomass can play a transformative role in the transition to a decarbonized 
economy, with potential applications in electricity, heat, chemicals, and transportation 
fuels (Demirbaş, 2003; Farrell and Gopal, 2008; Liu, Larson et al., 2011). Deploying 
bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in 
atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative 
opportunities available should anthropogenic climate change be worse than anticipated or 
emissions reductions in other sectors prove particularly difficult (Read and Lermit, 2005; 
Hansen, Sato et al., 2008). Previous work, primarily using Integrated Assessment Models 
(IAMs), has identified the critical role of BECCS in long-term (pre- or post-2100 
timeframes) climate change mitigation, but has not investigated the role of BECCS in 
power systems in detail, or in aggressive timeframes (Milne and Field, 2013; Smith, 
Bustamante et al., 2014), even though commercial-scale facilities are starting to be 
deployed in the transportation sector (Gollakota and McDonald, 2012). Here, we explore 
the economic and deployment implications for BECCS in the electricity system of 
Western North America under aggressive (pre-2050) timeframes and carbon emissions 
limitations, with rich technology representation and physical constraints. We show that 
BECCS, combined with aggressive renewable deployment and fossil emission reductions, 
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can enable a carbon-negative power system in Western North America by 2050 with up 
to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by 
BECCS are found to be more valuable to the power system than the electricity it provides. 
Advanced biomass power generation employs similar system design to advanced coal 
technology, enabling a transition strategy to low-carbon energy. 

An assessment of BECCS deployment as part of a suite of low-carbon technologies is a 
critical research need (Benson, 2014). Such an analysis requires detailed spatial and 
temporal assessment of distributed biomass supply, electricity demand, deployment of 
intermittent renewables, and electricity dispatch capabilities. We employ the SWITCH 
optimization model for long-term strategic planning of the electric system (Mileva, 
Nelson et al., 2013; Wei, Nelson et al., 2013). SWITCH leverages a unique combination 
of spatial and temporal detail to design realistic power systems that meet policy goals and 
carbon emission reduction targets at minimal cost (Nelson, Johnston et al., 2012). The 
version of the SWITCH model used here encompasses the region of the Western 
Electricity Coordinating Council (WECC), which includes the Western United States, 
two Canadian provinces, and a small portion of Mexico. WECC contains high quality 
wind and solar resources, but relatively limited bioenergy resources: the Eastern United 
States, for example, has a larger absolute resource (United States Department of Energy, 
2011). Existing studies of low-carbon transitions in Western North America have 
generally reserved biomass for biofuels production, rather than for electricity (Long, John 
et al., 2011; Wei, Nelson et al., 2013). 

Western North America contains biomass resources from forestry, wastes, agricultural 
residues, and dedicated energy crops, though supply is limited by land and sustainability 
practices (Fig. 4.B.1) (United States Department of Energy, 2011).  In total, we identify 
1.9x109 MMBtu (2000 PJ) of economically recoverable bioenergy available annually 
from solid biomass by the year 2030, sufficient for ~7-9% of modeled demand for 
electricity in 2050. Our estimates for availability in California are smaller than other 
studies, which tend to focus on ‘technical potential’ rather than ‘economically 
recoverable’ resources (Long, John et al., 2011; Williams, DeBenedictis et al., 2012). 
While barriers to biomass recovery exist even for economically recoverable resources, we 
choose these resources as a reasonable approximation of biomass potential. We model 
solid biomass fuel costs as a piecewise linear supply curve disaggregated for 50 regions 
across Western North America. Biomass supply from dedicated energy crops represents 
only 7% of the total supply, so direct land use impacts from the biomass feedstocks used 
in this study would be minimal. Dedicated feedstocks, such as switchgrass and pulpwood, 
tend to have higher prices than wastes and residues. 
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Figure 4.2.1 Supply curve of available solid biomass post-2030. Biomass can provide up 
to 2,000 PJ per yr of energy in 2030 for the electricity system, from a number of waste 
and dedicated sources. Labels on the supply curve represent the principal price region of 
a given biomass source. Feedstocks are classified as wastes (W), residues (R) or 
dedicated feedstocks (D). Dedicated feedstocks tend to be the most expensive. 

The implications of BECCS for the economics and carbon emissions of regional power 
systems through 2050 have not been previously investigated in detail. To address this gap, 
we explore scenarios for the electricity sector that are consistent with economy-wide 
decarbonization, but vary the allocation of biomass across sectors of the economy. We 
explore scenarios with WECC-wide power sector CO2 emissions reductions from 1990 
levels by 2050 ranging from 105% to 145%, which previous work has found would be 
consistent with economy-wide goals should biomass be used for electricity (Wei, 
Greenblatt et al., 2013). Our case without biopower mandates an 86% reduction in CO2 
emissions from 1990 levels by 2050 (-86% No Biomass). We vary this scenario by 
disallowing CCS technologies (-86% No CCS No Biomass) and allowing biomass (-
86%). To understand biomass deployment in carbon-neutral and carbon-negative power 
systems, we mandate a 105% reduction (-105%), 120% reduction (-120%), and 145% 
reduction (-145%) in CO2 emissions by 2050. These scenarios require aggressive R&D 
on CCS and BECCS over the coming decades. We continue operation of some existing 
nuclear plants, but do not allow new nuclear power. We do not conduct a complete 
economy-wide assessment of CO2 emissions across WECC or optimal biomass 
allocation among sectors. 

Without biomass technologies (-86% No Biomass), the resource mix is reliant on other 
renewable energy technologies including wind, solar, hydro and geothermal for 86% of 
total electricity generated in 2050 (Fig. 4.2.2a). Low carbon power systems employ gas 
technologies (with and without CCS), storage, and transmission to compensate for 
renewable intermittency. Coal (with and without CCS) plays little to no role in energy 
generation because of its relatively high level of CO2 emissions (Fig. 4.2.2b). While CCS 
technology reduces CO2 emissions from coal, coal CCS still has higher emissions than 
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gas CCS. Without CCS technologies (-86% No CCS No Biomass), the resource mix is 
even more reliant on renewable energy, up to 94% in 2050. 

Biomass CCS technologies enable a power system more reliant on baseload and fossil 
technologies in 2050 at moderate power sector emission caps (between -86% and -105%). 
In the -86% case, coal CCS, biomass cofiring, and BECCS cumulatively provide 20% of 
electricity generated, enabling lower-cost gas resources to generate 22% of electricity 
while still meeting CO2 emission constraints. 43 GW of coal and biomass technologies 
are installed throughout western North America in 2050 (Fig. B5a). Due to the dispersed 
nature of the fuel resource, biomass deployment is distributed across the WECC. In the 
context of the electric power sector, if the cap on carbon emissions is held constant, the 
introduction of bioenergy for BECCS reduces power system costs, carbon abatement 
costs, and the need for electrical energy storage for intermittent renewable energy (Fig. 
B2a and Appendix B Text). 
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Figure 4.2.2 (a) Generation (105 GWh, gross), and cost of electricity (2013$/MWh) in 
2050. Fossil fuel use is phased out as the power system becomes carbon-negative, 
transitioning from coal CCS and gas, to gas combined with CCS. ‘Other’ includes 
generation from coal, biogas, and bioliquid inputs. Total generation exceeds system load 
because of transmission, distribution, and storage losses as well as curtailment of 
generation on resources. (b) Yearly carbon emissions (MtCO2/yr) in 2050. Biomass CCS 
and biomass cofiring CCS on coal CCS plants provide negative CO2 emissions. As 
emissions limits are reduced, fossil CO2 emissions shift from coal and CCGT to CCGT 
with CCS. BECCS can sequester ~165 MtCO2/yr. 

0!

5!

10!

15!

20!

-86% No 
Biomass!

-86% No CCS 
No Biomass!

-86%! -105%! -120%! -145%!

G
en

er
at

io
n 

in
 2

05
0 

(x
10

5  G
W

h/
yr

)! Wind!
Solar!
Gas!
Gas CCS!
Coal!
Coal CCS!
Solid Biomass!
Biomass CCS!
Liquid Biomass!
Biogas!
Hydro!
Geothermal!
Nuclear!

$184/MWh! $219/MWh! $138/MWh!$134/MWh! $160/MWh! $188/MWh!

-86% Carbon Cap Scenarios! Carbon-negative Scenarios!

Power Cost 
(2013$)!

(a)!

-200!

-150!

-100!

-50!

0!

50!

100!

150!

200!

-86% No 
Biomass!

-86% No 
CCS No 
Biomass!

-86%! -105%! -120%! -145%!

CO
2 E

m
is

si
on

s 
in

 2
05

0 
(M

TC
O

2/y
r)!

Coal!
Coal CCS!
CCGT CCS!
CCGT!
Gas Combustion Turbine!
Compressed Air Energy Storage!
Biomass Cofiring!
Biomass CCS!

-86% Carbon Cap Scenarios! Carbon-negative Scenarios!

(b)!



59 

As the carbon cap becomes more stringent between the -105% and -145% case, we see 
CO2 emissions from combined-cycle gas turbine (CCGT) technology shrink before being 
captured via CCS, as well as increased renewable generation from wind and solar (Fig. 
4.1.2). Coal CCS and biomass cofiring CCS play a significant role in the -105% case 
(~13% of average 2050 electricity generated), a smaller role in the -120% case (2%), and 
no role (0%) in the resource mix under the -145% case given the severity of the CO2 
emissions constraint (Fig. B5b). Gas turbines are installed across all scenarios to provide 
flexibility, dispatchability, and system reserves.  

Our -145% scenario demonstrates a power system that generates almost all electricity 
from renewable resources, representing how the power sector might be configured if 
climate change is severe, or emission reductions in non-electricity sectors are more 
expensive than the electricity sector. In our -145% case, biomass CCS plants provide 
carbon-negative baseload power in 2050, resulting in overall emissions of -135 
MtCO2/yr in the WECC (Figs. 4.1.2). Generation, electricity costs, (Fig. 4.1.2a) and 
dispatch (Fig. 4.1.3 and Fig. B9) are similar between the -86% No Biomass and -145% 
cases, with the exception of BECCS technology deployment. Low-carbon scenarios 
without BECCS and carbon-negative scenarios with BECCS ultimately result in 
qualitatively similar deployment of gas and renewable generation. 

 
Figure 4.2.3 Hourly dispatch in 2050 in the -145% case. Power system dispatch is shown 
in sampled hours from two days (peak and median day) each month between January-
December. With the exception of BECCS, dispatch is similar between the -86% No 
Biomass and -145% case (Fig. S9). Low-carbon scenarios without BECCS and carbon-
negative scenarios with BECCS ultimately result in similar deployment of gas and 
renewable generation. “Other Biomass” includes both liquid and gaseous biomass 
supplies. 

In all cases where biomass is allowed, the power system employs between 90-98% of all 
biomass supply available in 2050, regardless of the extent of CO2 reduction or 
availability of low-carbon flexible assets. This indicates that biomass systems are cost-
effective in the context of low carbon power systems in Western North America, 
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especially due to negative CO2 emissions from BECCS. Given the very small amount of 
net CO2 emitting infrastructure in the -145% case, we do not expect that that emissions 
could fall well below a 145% reduction with projected levels of biomass availability. 
While technology cost, lifecycle CO2 emissions, and performance assumptions in 
carbon-negative power systems alter the relative deployment of coal CCS and 
intermittent renewables, they have little effect on biomass deployment. 

We find that the value of BECCS lies primarily in the sequestration of carbon from 
biomass, rather than electricity production. This result reconfirms previous results found 
using IAMs (Klein, Luderer et al., 2014). To illustrate this point, we explore cases in 
which BECCS plants capture CO2 emissions but do not produce electricity. The average 
cost of electricity when BECCS is used exclusively for carbon sequestration is only 
slightly higher (~6%) than when BECCS provides both sequestration and electricity (Fig. 
B6). Carbon sequestration from biomass, regardless of the technology employed or 
capital cost, could be a key driver of climate change mitigation pathways in the 2050 
timeframe. 

Our analysis has several implications for CO2 reduction, technology development, and 
biomass allocation. Negative emissions from BECCS can offset CO2 emissions from 
fossil energy across the economy. The amount of biomass resource available limits the 
level of fossil CO2 emissions that can still satisfy carbon emissions caps. Efforts to 
expand biomass supply can increase demand for water, land, and fertilizer, or other 
ecosystem impacts (Abbasi and Abbasi, 2010; Solomon, 2010). Given the level of 
projected biomass availability in WECC, it would appear that there is little room for coal 
CCS technology to play a role in an energy system consistent with economy-wide 
emissions reductions goals. Gas CCS, however, can contribute moderately to economy-
wide decarbonization due to its operational flexibility.  

Our analysis suggests that installation of up to 10 GW of BECCS capacity between 2030 
and 2040, with additional capacity additions thereafter, could be a key part of meeting 
stringent climate goals in the WECC. Such a goal would require a concentrated effort in 
finance, site selection, biomass sourcing, geological characterization, permitting, site-
specific environmental impact assessments and community consultation. Biomass 
harvesting, drying, and transportation present logistical challenges to rapid deployment. 
However, we find necessary capacity deployment rates for BECCS to be smaller than that 
for other intermittent renewables or gas.  

Advanced biomass power generation technology employs similar system design to 
advanced coal technology, including CCS and integrated gasification combined cycle 
(IGCC) systems (Corti and Lombardi, 2004). Such systems boast higher efficiency and 
more easily capture CO2 emissions than conventional steam turbines; these 
characteristics become even more desirable in light of biomass’ lower energy density, 
higher feedstock cost, and distributed geographic nature. Research needs include systems 
integration and technology advancement in gasification, air separation, gas cleaning, shift 
catalysis, and gas turbines that operate on H2-rich syngas (Farrell and Gopal, 2008; 
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Maxson, Holt et al., 2011)2 21. Moving forward, the fossil fuel industry could embrace 
higher and more efficient levels of biomass utilization combined with CCS technology 
development as a transition strategy to low-carbon energy.  BECCS could enable some of 
the world’s largest carbon emitting entities to instead become some of the world’s largest 
carbon sequestering entities. 

Biomass could enable CO2 reduction not only in the electricity sector, but also the 
transportation and industrial sectors for fuels, heat, and chemicals. We estimate that 
cellulosic biofuel production from available biomass in WECC can reduce emissions by 
75 MtCO2/yr by displacing gasoline, based on literature conversion efficiency and near-
term carbon intensity values (Farrell, Plevin et al., 2006). In contrast, if biomass is made 
available to the power sector, BECCS can sequester 165 MtCO2/yr and also displace 
fossil electricity. At the conversion efficiencies assumed in this study, bioelectricity 
contains 28-45% of the net energy of candidate cellulosic ethanol conversion pathways, 
but can provide as much as 41% more transportation miles because of the high efficiency 
of battery electric drive vehicles  (Farrell, Plevin et al., 2006; Campbell, Lobell et al., 
2009). 

Our analysis indicates that while valuable to the power sector, carbon sequestration from 
biomass may be more cost-effective in other sectors. We find BECCS technology 
deployment at abatement costs as low as $74/tCO2 in the -86% case, with more stringent 
emission caps incurring higher abatement costs. Such costs are slightly higher than 
afforestation schemes (~$5 – 40/tCO2), biochar projects in North America ($30 – 
40/tCO2), and cellulosic biofuel production ($35/tCO2), but are far lower than projected 
abatement costs for direct air capture of CO2, which has been assessed as high as 
$1000/tCO2 (Intergovernmental Panel on Climate Change. Working Group 3, 2007; 
Lutsey and Sperling, 2009; Pratt and Moran, 2010; House, Baclig et al., 2011). Should 
carbon sequestration be more effective via alternative abatement methods, the electric 
power sector would find it economical to purchase those offsets. A roadmap of economy-
wide biomass policy focused on CO2 reduction should account for both the technical 
potential and economic costs of biomass deployment across sectors. Increasing efficiency, 
reducing costs, and commercializing carbon-negative biomass technologies could make 
such a roadmap possible. 

Materials and Methods 

 
Biomass Technologies. SWITCH inputs include technology cost profiles, construction 
timeframes, outage rates, generation flexibility, retrofit ability, heat rate, and cycling 
penalties for a broad range of existing and new conventional and renewable energy 
generation technologies. Technical performance metrics and evolution of capital and 
operations and maintenance costs are drawn primarily from Black and Veatch (Black & 
Veatch, 2012). We assume that future biomass plants will use IGCC technology, while 
existing plants use steam turbines. CCS technologies are modeled with a default capture 
efficiency of 85%, and are available for installation on biomass IGCC, coal, and natural 
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gas technologies after 2025. We do not explicitly model criteria pollutants, which may 
require additional control technology to be installed on coal and biopower technologies. 

While Black and Veatch estimates capital and operating costs for biomass IGCC plants, 
their dataset does not include similar values for BECCS plants. As assumptions between 
cost datasets can differ substantially, we choose to estimate cost and efficiency 
parameters for BECCS plants from other similar plant types. We derive the capital cost of 
CCS equipment, the efficiency penalty of performing CCS, and increase in non-fuel 
variable operations and maintenance costs for BECCS from coal IGCC and coal IGCC 
CCS systems. Our BECCS capital cost estimates are within 5% of those by the National 
Energy Technology Laboratory (NETL) for biomass IGCC-CCS facilities (Matuszewski, 
Black et al., 2012). Increasing the capital cost of BECCS would likely not lower 
deployment due to the high value of carbon sequestration. As a large amount of the 
biomass resource is already deployed in our scenarios, lowering the capital cost would 
also be unlikely to affect deployment. 

Biomass Supply. Fuel costs for solid biomass are input into the SWITCH model as a 
piecewise linear supply curve for each load area. This piecewise linear supply curve is 
adjusted to include producer surplus from the solid biomass cost supply curve in order to 
represent market equilibrium of biomass prices in the electric power sector. As no single 
data source is exhaustive in the types of biomass considered, solid biomass feedstock 
recovery costs and corresponding energy availability at each cost level originate from a 
variety of sources. We consider two scenarios for biomass life-cycle assessment (LCA): 1) 
carbon-neutrality, as feedstocks are primarily wastes or low-input crops grown on 
marginal lands, and 2) a sensitivity scenario with solid biomass penalized at 10% of its 
biogenic carbon content. In the carbon-neutral cases, we assume that direct emissions 
from harvesting and transport—a small source of emissions—will be minimized as the 
entire economy is decarbonized (Rhodes and Keith, 2005). The sensitivity case represents 
increased emissions such as those from transportation, fertilizer, or soil organic carbon 
(SOC) from residue collection, which recent empirical work suggests may be larger than 
previously thought (Liska, Yang et al., 2014). 

Biomass Cofiring and Modeled Scenarios. Cofiring is allowed up to 15% of total 
output from a single coal plant. When cofiring is installed on a plant with CCS 
technology, we assume that the heat rate increases by the same percentage when 
sequestering carbon as does coal IGCC relative to coal IGCC CCS.  

CCS Reservoirs and Transportation. Large-scale deployment of CCS pipelines would 
require pipeline networks from CO2 sources to CO2 sinks. We require CCS generators 
that are not near a CO2 sink to build longer pipelines, thereby incurring extra capital cost. 
If a load area does not does not contain an adequate CO2 sink within its boundaries, a 
pipeline between the largest substation in that load area and the nearest CO2 sink is built. 
We derive pipeline costs from existing literature. CCS plants must send all of their CO2 
output to their closest reservoir.  
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Scenario Development. All scenarios enforce a carbon cap and existing Renewable 
Portfolio Standard (RPS) laws. We disallow new nuclear generation. Electricity demand 
profiles include extensive energy efficiency, electric heating, and electric vehicle 
penetration consistent with economy-wide decarbonization. We sample hourly demand 
for each of 50 areas within WECC for six hours of each of 12 representative days in the 
decades 2020–2050. Investment decisions are made in four periods between 2016-2055; 
these periods are 2016-2025 (“2020”), 2026-2035 (“2030”), 2036-2045 (“2040”) and 
2046-2055 (“2050”). In each modeled hour, demand must be met by the optimization, as 
well as capacity and operational reserve margin constraints to ensure system reliability. 
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5 Natural Gas leakage increases electricity costs and 
reduces consumption under carbon caps 

We started working on Switch-WECC in the early days of the Natural Gas boom 
prompted by hydraulic fracturing. The low prices of NG, high efficiency of Combined 
Cycle Gas Turbines, and low emissions relative to led to coal pointed to a mitigation 
pathway of replacing coal with natural gas in the next few decades. Over time, data 
emerged describing potentially high methane leakage rates in the natural gas supply chain, 
which threw the earlier result into question. In this chapter, I led an investigation into 
how methane emissions in the Natural Gas supply chain impacts roles natural gas (NG) 
can play in a low emission power grid. We found that leakage rates significantly reduce 
the use of NG as a direct substitute for coal, but have a smaller impact on the use of 
combustion turbines for reserves and peaking capacity. These results indicate that current 
industry and policy trends of seeking emission reductions through large amounts of new 
natural gas are useful in the near-to-mid term, but have a clear expiration date that will be 
hastened if we continue methane emissions. This chapter is being prepared for journal 
submission in collaboration with Ana Mileva, Jimmy Nelson, Jalel Sager, Matthias Fripp, 
and Daniel Kammen. 
 

A growing body of literature indicates that official methane emissions or 
“leakage” values underestimate true rates in the Natural Gas (NG) supply 
chain. Several publications have assessed leakage impacts on greenhouse 
gas emissions of individual generators, but none have examined impacts 
on a larger portfolio that uses NG to complement renewables. This study 
uses a power system investment optimization model, SWITCH, to 
examine the roles of NG in a low-carbon grid and the impacts of leakage 
in Western North America. Here we show that leakage rates significantly 
reduce NG as a direct substitute for coal, but has a smaller impact on the 
use of combustion turbines for reserves and peaking capacity. Higher 
leakage rates increase electricity costs in the optimal solutions by an 
average of 1.3% ±0.068 and decrease NG consumption by 18% ±0.55 for 
each percentage point increase in the leakage rate in the next decade. 
Increased leakage can increase the role NG plays to complement 
renewables during 2020-2030 under moderate emission caps by reducing 
its capacity factors as well as increasing the deployment of NG 
Combustion Turbines with Compressed Air Energy Storage in 2030 
provided that alternate technologies such as low cost batteries do not 
outcompete it. In the 2040 and 2050 timeframes with tighter emission caps, 
NG is already used primarily to complement renewables and higher 
leakage rates tend to decrease its use in any role. 
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5.1 Introduction 
 
Reducing greenhouse gas emissions from the electricity sector is critical to mitigate 
climate change and secure sustainable future. Many national plans consider Natural Gas 
(NG) a bridge fuel for electricity decarbonization because new efficient NG plants have 
half the carbon intensity of old coal plants, NG gas costs are competitive with coal due to 
hydraulic fracturing, and NG ramping capabilities can compensate for renewable 
variability. Broadly speaking, NG can play two distinct roles for decarbonization. The 
first role is to directly replace old “baseload” coal plants with new efficient NG 
Combined Cycle Gas Turbines (CCGT) and operate the new plants in “baseload” 
mode.  The second role is run a diverse fleet of NG generators as needed to compensate 
for the variability of renewable wind and solar power. 

The majority of “bridge fuel” discussions have focused on using NG to replace coal for 
baseload power. This prompted some controversy and concern that building a NG plant 
implies a commitment to run it constantly at full capacity for its operational life, which is 
incompatible with long-term emission reduction targets. Most international discussions 
agree that industrialized nations need to reduce greenhouse gas emissions to at least 80% 
below 1990 levels by 2050 to have a reasonable chance at avoiding the most catastrophic 
risks of global warming (Intergovernmental Panel on Climate Change. Working Group 3, 
2007). If the entire emission budget for WECC (the electricity grid for the western 
portion of North America) was allocated to high-efficiency NG plants, they could supply 
about 96% of 2020 demand, but only 8% of 2050 demand. This represents a 91% 
reduction of the amount of NG consumed in 2013 by the electricity sector. Clearly, the 
first role of NG as baseload has an expiration date, but there is no technical reason why 
NG infrastructure cannot transition into the second role of complementing renewables on 
an hourly or seasonal basis. Some people may have economic concerns about recovering 
costs if energy sales drop, concerns which could be addressed by capacity markets that 
pay for the option of purchasing energy as needed and ensure a cash flow that can cover 
fixed costs.  

The overall Greenhouse Gas (GHG) intensity of NG electricity is highly dependent on 
methane emissions, or “leakage” in the fuel supply chain. Methane (the principal 
component of NG) is a greenhouse gas that is 86 and 34 times more potent than CO2 in 
20- and 100-year timeframes (Stocker, Dahe et al., 2013). Leakage is extremely diverse 
in its sources and magnitudes, and less than one percent of equipment can be responsible 
for the majority of facilities and pipelines leaks (National Gas Machinery Laboratory, 
Clearstone Engineering et al., 2006). Large intentional venting have been routine in the 
past to clean liquid or debris from wells, but those are expected to decline in the US due 
to recent EPA regulations (EPA, 2012; EPA, 2014b). National average leakage rates are 
not known with precision and is the subject of active research efforts. Bottom-up studies 
that directly measure equipment in the supply chain poorly estimate leakage because 
emission rates can vary significantly over time, and voluntary study participation often 
results in a sampling bias where companies only allow access their best performing 
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facilities. Top-down studies that measure overall atmospheric methane levels have 
various difficulties in measuring precise levels of the trace gas over a large area, 
differentiating fossil methane from biogenic methane, and isolating the portion of fossil 
methane that originates upstream of electricity generators. Methane emissions that occur 
in residential NG distribution systems, coal mining, or oil fields are bad for global 
warming, but are largely tangential to the bridge fuel debate. A recent review paper found 
that official methane emission inventories systematically underestimate actual leakage 
rates across scales (Brandt, Heath et al., 2014) (Fig 5.1).  

 
Figure 5.1 Leakage estimates for Natural Gas supplies to the electricity sector from 
current EPA Greenhouse Gas Emission Inventories are 1.5 to 8.6 times smaller than non-
voluntary third-party measurements. 17 years of EPA inventories are depicted with lines. 
Third-party studies are depicted as points with their time span as a horizontal bar and 
their reported range of possible values as a vertical bar on a log scale. The point’s style 
indicates the type of research methods used to estimate leakage rates. 

EPA national inventories of historical methane emissions have undergone three major 
revisions since their inception in 1998, but consistently fall below measurements 
published in peer-reviewed journals. EPA inventories mostly rely on a dated 1996 report 
jointly written by an industry group and the EPA, plus data streams of industry statistics 
and self-reports (EPA, 2015). In 2011, the EPA retroactively increased inventories based 
on engineering estimates of removing liquids and debris from wells during normal 
operations and hydraulic fracturing. New regulations in late 2012 prompted a rapid 
industry response in the form of a report and stakeholder input which led to the EPA 
lowering inventory estimates in 2013 (EPA, 2013b). Meanwhile, Kort and Miller 
rigorously documented higher leakage levels across North America (Kort, Eluszkiewicz 
et al., 2008; Miller, Wofsy et al., 2013). Numerous other authors documented 
logarithmically higher leakage in high-growth NG fields using less geographically 
representative datasets (Howarth, Santoro et al., 2011; Pétron, Frost et al., 2012; Karion, 
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Sweeney et al., 2013; Schneising, Burrows et al., 2014). The lowest documented levels 
were based on detailed voluntary equipment-level measurements and show what is 
technically achievable (Allen, Torres et al., 2013), although a recent paper raised 
concerns that sensor malfunctions may have underreported leakage rates in that study 
(Howard, 2015).  

Current EPA estimates do not reflect expected emission increases from historical events 
of less-regulated regional hydraulic fracturing activities, nor do they adequately represent 
reporting bias from small facilities being excluded or fallacious reporting. In the 2013 
national greenhouse gas emission inventory, the EPA expressed an awareness of 
emissions inventory being lower than recent studies and requested feedback for 
integrating scientific findings (EPA, 2013a). However, the 2014 inventory failed to 
integrate peer-reviewed datasets and instead reduced methane emissions inventories by 
an additional 10%. Ironically, this report cited five studies documenting a need for 
increasing estimates of methane emissions and summarized many suggestions from 
commenters for incorporating that research (EPA, 2014a). The 2015 inventory did not 
significantly revise methane emissions estimations and failed to integrate peer-reviewed 
datasets or follow up on suggestions received in 2014 (EPA, 2015). This prolonged and 
systematic bias that favors industry self-reporting to scientific peer-reviewed 
observations and comments is troubling, particularly since it directly opposes their stated 
intents. Overall, the gap between voluntary measurements and third-party measurements 
suggests a need for more pervasive monitoring or random inspections to identify high-
emitting equipment and facilities. 

5.2 Results 
 

To assess the impacts of leakage on the roles of Natural Gas in an integrated portfolio 
that includes large amounts of renewable power, we ran a series of scenarios within the 
SWITCH-WECC model. SWITCH is a grid investment optimization model that includes 
a simplified formulation of dispatch operations in order to endogenously account for 
renewable integration requirements (Fripp, 2012; Nelson, Johnston et al., 2012; Mileva, 
Nelson et al., 2013). The objective function of SWITCH minimizes the levelized cost of 
providing electricity subject to reliability constraints and policy goals. SWITCH 
identifies least-cost portfolios that are optimal points on the efficiency frontier of 
technical feasibility. The results from SWITCH do not predict what portfolio will 
actually be built, but indicate what is technically achievable. SWITCH-WECC includes a 
detailed representation of existing generators, storage facilities and transmission lines in 
the Western Electricity Coordinating Council that roughly spans the western portion of 
North America. This model does not include NG wells, processing facilities, pipelines or 
storage sites. This geographical region provides a useful lens into this issue because the 
United States is the largest global consumer of NG, and has recently been setting policy 
goals to reduce leakage as well as overall greenhouse gas emissions. 
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Given the inherent uncertainty about actual leakage rates, we performed a sensitivity 
analysis to assess impacts at leakage rates ranging from 0 to 8%. We chose to use a 20-
year Global Warming Potential of 86 for methane as a simple linear proxy for the 
complex and non-linear time dynamics of global warming and the potential for near-term 
emissions to trigger climactic “tipping points”. In all of our scenarios, we treated leakage 
rate as an exogenous factor that remained constant over time and imposed an indirect 
emissions penalty for the consumption of gas by the electricity sector (see Methods). That 
is, methane emissions scale linearly with total consumption in each decadal investment 
period in this study. In reality, emissions will depend on how much infrastructure is 
installed and pressurized, how much it is used, and how much effort is applied to 
minimizing leaks. We based emissions on aggregate long-term consumption because it is 
a proxy for both how much infrastructure is installed to support the electricity sector and 
how much it is used. We did not model how the NG sector could reduce leakage because 
we lack accurate data on current methane emissions and the emission abatement supply 
curve. Consequently, these results should not be interpreted as a simulation of two-way 
interactions between the natural gas and electricity sectors. These results can be 
interpreted as quantitative estimates of the value of reducing leakage and how various 
levels of leakage could impact deployment and use of generation technologies in 
optimized portfolios. 

The base scenario conservatively assumes little technological advancements will be 
available to deploy at scale over the next 40 years. This prohibits new Nuclear as well as 
Carbon Capture and Sequestration (CCS) technologies, but allows Sodium-Sulfur 
Batteries as well as Compressed Air Energy Storage which adds a storage component to 
NG combustion turbines (Gas CT + storage, or CAES). The base scenario operated under 
a carbon cap of 86% below 1990 levels by 2050 based on the presumption that the 
electricity sector may be called on to decarbonize more extensively than the rest of the 
economy. 

Other scenarios adjusted one or more assumptions from the base scenario. Two low-
emission baseload scenarios allowed CCS, with or without Nuclear. Three green 
technology scenarios dramatically reduced the cost of solar, storage, or solar & storage.  
and storage, individually and together. Four carbon cap sensitivity scenarios evaluated 
2050 targets of 35, 70, 90 and 95% below 1990 levels. The 35% Carbon Cap scenario 
represented the 2030 emission goals of the Clean Air Act Section 111, also known as the 
Clean Power Plan (EPA, 2014c). One extreme climate impact scenario reduced the 
availability of water for Hydropower electricity by 50% in all seasons and future periods. 
Overall, these 11 scenarios required 99 distinct runs that took roughly 15,000 cpu-hours 
to complete on a high performance computing cluster. We chose these scenarios to 
explore overall tradeoffs and interactions. Including additional scenarios and 
permutations would have improved the rigor of this study, but we were limited by time 
and computing resource. 
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Increased rates of leakage caused increases in the cost of supplying electricity while 
meeting a carbon cap (Fig 5.2) by placing greater pressure on emissions budgets (Fig 5.3), 
causing the system to install more expensive alternatives (Fig 5.4). The cost impacts were 
relatively consistent across scenarios in 2020, after which they increased in magnitude 
and diverged across scenarios. Increased rates of leakage caused overall decreases in NG 
consumption by the electricity sector. The impacts were generally consistent across 
scenarios and tended to decrease in 2040 and 2050 as tight carbon caps limit NG 
consumption regardless of leakage. Paradoxically, NG consumption increases slightly in 
2020 between 0 and 1% leakage rate. This can be interpreted as methane emissions 
putting pressure on the carbon budget and the cheapest way of relieving that pressure is 
to substitute Coal baseload capacity with Gas CCGT plants, plus some renewables. This 
situation is found in all scenarios except the Cheap Solar and Cheap Solar & Storage 
scenarios which increase Solar instead of replacing Coal with Gas.  

 

Figure 5.2 Changes in electricity cost and Natural Gas consumption in response to 
leakage. Each grey line depicts the change in output of each scenario relative to no 
leakage in that scenario. The black line and blue confidence interval depict the average 
changes across scenarios and leakage rates. Numerical values provide average impact per 
percentage point increase in leakage rate; these are also given in units of system costs and 
percentage change in the response variable for added context. ** p<10-3 *** p<10-5 

Overall, the more dependence a system has on natural gas, the larger response it has to 
leakage rates. Leakage rates have the large cost impacts in the Reduced Hydro scenario in 
2020-2040 because that system relies more heavily on flexible CCGT capacity to replace 
Hydropower. In 2050, Reduced Hydro’s cost impacts fall to the middle of the pack, 
possibly because it was already forced to make infrastructure investments compatible 
with very low emissions. The availability of alternatives to gas also plays a role in 
mitigating cost impacts. The cheap solar scenarios (with or without cheap storage) have 
the lowest cost responsiveness to leakage rate in 2020-2030 when system flexibility is not 
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a major driver of cost, and the Cheap Solar and Storage scenario has some of the lowest 
cost responsiveness in 2040-2050 when low-emission flexibility becomes a major driver. 
See supplemental text for more discussion of drivers of 2040 and 2050 cost responses. 

Leakage also has a striking impact on the emission budget. As leakage rates increase 
from 0, methane emissions rapidly take over the carbon budget (Fig 5.3). The fact that 
methane emissions can account for the majority of the emissions budget under high 
leakage rate scenarios in 2030 and beyond indicates that NG is valuable to the electrical 
system, especially as emission cap decline and the shares of intermittent renewable power 
increases. These trends are consistent across scenarios (Fig A2), with the exception of 
scenarios that allow CCS where Coal CCS tends to dominate the carbon budget at 
leakage rates of 3% or above in 2050. It is worth noting that extremely high leakage rates 
are inconsistent with carbon caps in 2040 or 2050 because the cost of emission permits 
would strongly incentivize methane emission reductions in that timeframe. 

 

Figure 5.3 Carbon budget allocations for the base scenario based on least-cost portfolios. 
Methane rapidly displaces CO2 emissions in the carbon budget under non-zero leakage 
rates, occupying the majority of the carbon budget under high leakage scenarios in 2030 
and beyond. Coal is the single largest emitter in 2020, but is mostly retired as the carbon 
budget tightens over time. Coal can displace natural gas Combined Cycle Gas Turbines in 
the carbon budget if leakage increases beyond thresholds values in any time frame. NG 
Combustion Turbines (CTs) are never allocated significant portions of the carbon budget. 
Under a tight carbon cap in 2050, the value of NG is stretched by augmenting CTs with 
Compressed Air Energy Storage to balance renewable energy on a daily basis. 

The overall impact of leakage on portfolio composition is to decrease NG CCGT and CT 
capacity while increasing installations of other generation technologies, especially 
renewables. The average portfolio response is relatively consistent between scenarios in 
2020 and shows greater variation in later periods (Fig 5.4, left). In the 2020 and 2030, an 
average of 41 and 59% of CCGT capacity is dispatched as baseload power at a leakage 
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rate of 0, but the role of NG as baseload is highly sensitive to leakage rate and essentially 
disappears when leakage rates exceed 4%, the point at which the carbon intensity of 
CCGT exceeds that of Coal (Fig A1). Gas CT capacity decreases with leakage in 2020, 
but its power output shows little response. Overall, the role of CTs as peaking capacity 
with low capacity factors remains constant across time periods, leakage rates and 
scenarios. Although the overall portfolio varies between scenarios, the impact of leakage 
on the roles of natural gas were extremely robust. The notable exception is that cheap 
battery storage could replace NG-CAES storage in later periods. 

 
Figure 5.4 Left Impacts of leakage on portfolio composition is shown as a grey line for 
each scenario. Technologies are ordered by maximum change in capacity in any scenario 
or period. Average impacts across scenarios and leakage rates are shown as black trend 
lines with blue confidence intervals. New CCS technologies and Nuclear are only 
installed in the two scenarios where they are allowed. The Nuclear trend line appears flat 
because all scenarios have legacy Nuclear plants that stay online regardless of leakage 
rate. Technologies with a maximum response of less than 15 MW are excluded for clarity 
(Geothermal, Hydropower, Biomass, and Distributed Solar). Right Average impacts of 
leakage on installed capacity and average power output in 2020 across all scenarios and 
leakage rates. Technologies ordered by average capacity impacts in 2020. Blue points 
depict change in GW capacity per percentage point increase in leakage for each 
technology in 2020, averaged across scenarios with lines indicating 95% confidence 
intervals. Red points depict change in GW average power output per percentage point 
increase in leakage rate. For wind and solar projects, capacity increases faster than power 
due to their dependence on weather. For Combined Cycle Gas Turbines (Gas CCGT), 
leakage impacts average power dispatched more than average capacity installed. 
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The portfolio changes in 2020 are non-linear between 0 and 2%, but roughly stabilize at 3% 
and higher leakage rates. As leakage increases from 0 to 1% and stresses the carbon 
budget, the system responds by directly replacing Coal baseload electricity with CCGT 
while adding Wind. As leakage rates climbs to 2%, additional coal is retired, more Wind 
is installed and CCGT shifts to complement it by adding capacity and reducing its 
capacity factors. At leakage rates of 3% or higher, Coal baseload comes back along with 
a small amount of Geothermal (subject to resource constraints). More wind and solar are 
added, and CCGT increasingly shifts to complement them with lower capacity factors 
and reduced capacity (Fig 5.4, right).  

As carbon caps become tighter in 2030 and beyond, the system increasingly looks to 
Compressed Air Energy Storage (CAES or Gas CT + Storage) for energy balancing and 
within-day arbitrage. In a standard gas combustion turbine, roughly 75 percent of the 
gross electricity output operates a pump to pressurize the fuel-air mixture for the turbine. 
In a CAES system, an air pump uses grid energy to store high-pressure air in either 
underground formations or aboveground tanks, which is later used by a gas turbine. This 
enables the turbine to increase its net power output by roughly a factor of 4 at the cost of 
storage energy losses. In theory this technology could be applied to more efficient 
CCGTs as well, and could even be retrofitted to existing plants. It is worth noting that 
CCGT capacity could likely have a longer useful life and higher capacity factors in these 
scenarios – regardless of upstream emission rates - by incorporating CAES. This analysis 
only considers CAES with CTs because it has demonstration projects and is the only 
version of the technology under active discussion. The version of CAES modeled here 
can move energy between different hours in a single day, but not from day to day.  

On average, higher leakage rates increase the installed capacity of CAES in the 2030-
2040 timeframes when CAES and increased renewables displace energy from CCGT. 
Under the tighter carbon cap of the 2050 timeframe, methane leakage causes CAES 
capacity to be replaced by lower-emission battery storage. On average, increased leakage 
prompts an increase in CAES dispatch in 2030 and a decrease in 2040-2050. The 
dispatch of CAES is less responsive to leakage rate than CCGT in all timeframes because 
of it has superior ability to complement variations of renewable power over the course of 
a day.  

The responses of Solar [PV] and Wind capacity vary significantly by scenario and 
leakage rate in 2040 and 2050, with installed capacity decreasing in response to leakage 
rate for some scenarios. In many scenarios (including the base case), increasing leakage 
rates in 2050 initially prompt Solar capacity to be replaced by Solar Thermal capacity 
with 6 hour energy storage that can be dispatched at night and have less intermittency 
from passing clouds. The ability of a system to incorporate large amounts of Solar 
Photovoltaics is dependent on ramping abilities of dispatchable generators such as NG. 
This trend is most pronounced for the Reduced Hydro scenario, which has more limited 
flexibility to complement Solar. Solar capacity also tends to fall if low emission baseload 
technologies such as Coal CCS or Nuclear are available because those systems have 
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overall less flexibility. In contrast, scenarios with low-cost battery storage dramatically 
increase solar capacity as leakage rates increase while simultaneously reducing wind 
capacity which has stronger seasonal variation. 

Certain technologies show little response to leakage for various reasons. Higher leakage 
rates prompt earlier installation of Geothermal and Biomass capacity, but these responses 
are limited impact on the overall system due to relatively small potential capacity in these 
scenarios. If more geothermal sites are mapped, or if more Biomass is allocated to the 
electricity sector, the system would likely respond in similar ways as other low-carbon 
baseload options. Distributed Solar is not installed beyond policy requirements in these 
least-cost portfolios because Central Solar with tracking has lower costs and higher 
capacity factors. Should those cost dynamics change or other incentives be modeled, 
Distributed Solar would likely have similar response dynamics as Central Solar. 
Hydropower has no new potential capacity available so shows little response to leakage. 

Many portfolios developed by these scenarios were susceptible to modest amounts of 
excess emissions in 2040-2050 when system dispatch was simulated on a complete year 
of hourly data per period. These emission overruns were caused by overfitting to the 
sampled timepoints used to optimize each portfolio which led to overestimating 
renewable energy production. In these situations, spare natural gas capacity was 
dispatched more heavily to compensate, which meant that emission overruns increased 
with higher leakage rates. This illustrates that methane leakage limits the role of Natural 
Gas generators for capacity reserves because its dispatch will be limited by an emissions 
cap. If high leakage rates persist, we may need to look for lower emission alternatives for 
capacity reserves. For these scenarios, the excess emissions from high leakage rates is not 
a major concern because economic pressures in a future with emission regulations would 
incentivize adoption of leakage-reducing equipment and operating procedures. 

5.3 Discussion 
 

This study was performed on the western portion of North America that has abundant 
high-potential solar and wind resources than can substitute for natural gas. Cost impacts 
of leakage in other regions of the world would also depend on substitution options. For 
example, cost impacts would likely be higher in the Eastern portion of North America 
due to less abundant solar and wind resources. Russia, the second-largest consumer of 
NG, may see smaller cost impacts than Japan due to large differences in undeveloped 
renewable energy potential and hydropower available for balancing. Emission policies 
and appropriate accounting of leakage would also play a large role in cost impacts. In the 
United States in the early days of the hydraulic fracturing boom, leakage rates appeared 
to increase through use of sloppy practices, though this is not comprehensively 
documented. Currently, the US NG industry is still expanding but is making greater 
efforts to reduce leakage, largely in response to public and regulatory pressure. In a cost-
effective future under emission caps, the US NG industry will need to reduce both 
leakage rate and production levels. If other countries expand their use of NG as part of a 
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larger emission reduction plan, they would benefit from training their NG industry in best 
practices and enacting regulation and monitoring programs to minimize leakage. 

Compressed Air Energy Storage has the highest growth potential of any NG technology 
examined, and CAES potential would likely grow if applied to combined cycle plants. 
Adding Carbon Capture and Sequestration (CCS) with post-combustion amine capture 
does not look promising and could be counter-productive under high leakage rates 
because energy demands of amine capture would require more fuel consumption and 
large upstream emissions. The alternative CCS technology of oxygen combustion that 
could provide near 100% capture rates and demand response during oxygen production 
could extend the role of NG if leakage rates are low, capital costs and energy 
requirements are reasonable, and carbon sequestration is proven to be stable and low-risk. 

In this study, we modeled methane emissions attributable to the electricity sector based 
on the consumption of NG by the electricity sector. An alternative approach would be to 
scale emissions linearly with the infrastructure capacity of the NG sector: number of 
wells and processing facilities, miles of pressurized pipeline, etc. If we had taken the 
latter approach, then the optimization would tend to decrease infrastructure capacity 
while increasing its utilization and installing more NG storage near generators to 
decouple peak consumption from peak pipeline flow. If NG storage were unavailable, the 
optimization would likely reduce peak consumption and/or NG generation capacity in 
efforts to reduce methane emissions.  

Leakage will dominate a dwindling carbon budget to the extent it persists, but leakage 
rates are being reduced. In 2012, the EPA began mandating gradual installation of cost 
effective leakage control equipment and more stringent reporting requirements for NG 
(EPA, 2014b). These measures are expected to decrease leakage, especially during 
completion of hydraulically fractured wells, but these improvements have not yet been 
documented in peer-reviewed literature. To permanently reduce leakage, we need more 
comprehensive monitoring programs and improved accounting practices to rectify 
observations with emission inventories. Comprehensive monitoring can alleviate 
concerns about sampling bias underestimating leakage rates and ensure that the small 
number of equipment malfunctions that dominate supply chain leakage are identified. We 
can expect more room in the carbon budget for NG if regulations include mandates for 
ongoing improvements that incentivize development and deployment of additional 
emission control technologies. 

5.4 Methods 
 

Methane leakage can be described in two ways: as the mass of methane released over a 
period of time (MtCH4/yr), or as the proportion of produced NG is lost to the atmosphere 
before delivery (% leakage). The latter ratio unit is more convenient for monitoring, but 
converting from absolute to proportional terms can be challenging and controversial 
because it requires attributing emissions to the NG industry as well as dividing early 
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emissions from well completion over the estimated lifetime production of a well. A 
simple method of conversion is to allocate measured methane emissions to the electricity 
sector using ratios from official inventories, then divide annual emissions by gross 
production values from the same year. This rough estimate will overestimate lifetime 
leakage rates in years with a large number of new wells (such as in 2008), but is tractable 
and yields a useful estimation. 

To convert absolute levels from top-down studies that measure overall atmospheric levels 
of methane, we first divide that into fossil sources versus biogenic sources such as cows 
or anaerobic decomposition. Miller estimated that 45% of overall 2008 methane flux in 
North America originated with the natural gas industry with a range of uncertainty of 32-
58% (Miller, Wofsy et al., 2013). Next the fossil portion of emissions needs to be divided 
further by fossil industry. The 2013 EPA inventory of 2011 emissions estimates 60% of 
fossil CH4 emissions come from the natural gas industry, with the remainder divided 
between coal (26%) and oil (13%) (EPA, 2013b). Of the NG industry methane emissions, 
the EPA estimates 20% of those come from distribution infrastructure in urban areas with 
the remaining 80% coming from field production, processing, transmission and storage. 
If we combine these ranges of uncertainty, then 15 – 28% of methane emissions originate 
with the natural gas industry upstream of electric generators, with an expected value of 
22%. 

All methane emissions were modeled as a variable aspect of NG consumption, that is: 
𝑚𝑒𝑡ℎ𝑎𝑛𝑒𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = !"#$#%"&#'"

!!!"#$#%"&#'"
𝑁𝐺𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛. This formulation would not be 

appropriate for a micro-level study where initial plumes of methane during well 
completion are not uniformly distributed over the well’s production. However, this is a 
reasonable approximation for a macro-level study over a long time frame because new 
wells are a function of long-term aggregate consumption, and their construction will be 
spread out over time. From a long-term planning perspective that makes investment 
decisions rather than evaluating a fixed investment portfolio, all emissions become 
variable rather than being divided into fixed and variable components. 

We used the SWITCH model to identify least-cost electricity grid investment trajectories 
that could meet an emissions cap and provide reliable electricity. SWITCH was originally 
written at the University of California Berkeley by Matthias Fripp (Fripp, 2012) then 
expanded by a larger team into the version used here (Nelson, Johnston et al., 2012; 
Mileva, Nelson et al., 2013). This version of SWITCH is formulated as a linear program 
that minimizes the net present value of costs of delivering electricity over the entire 
planning horizon. It includes a detailed representation of every power plant currently 
online in WECC, as well as detailed geographic and temporal representations of 6940 
potential renewable sites, the large majority of which are wind and solar. Its investment 
choices include all major types of traditional thermal power plants as well as renewable 
plants, storage, and transmission. In this study, we imposed an additional emissions adder 
for natural gas consumed by the electricity sector based on assumed leakage rate and 
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methane’s 20 year global warming potential. See supplemental for a more detailed 
description of the model and data sources. 

The electricity load profiles used here include a large amount of efficiency measures as 
well as electrification of fuel-based heating and vehicles, and are based off prior work on 
economy-wide pathways to meet emission targets (Wei, Nelson et al., 2013). These 
scenarios do not include demand response because we don’t have cost projections for 
implementing them. However, demand response would have similar impacts as battery 
storage because the both effectively move energy between times of day without 
producing emissions. 

In the base scenario, central station solar costs $2.42 / W in 2016 and falls roughly 
linearly to $1.89 / W in 2050. In the cheap solar scenario, central station solar costs 
follow SunShot trajectories starting at $1.69 / W in 2016, falling to $0.95 / W by 2020 
then holding steady (US Department of Energy, 2012b).  

In this version of SWITCH, the power and energy capacity of batteries are independent 
decision variables which allows the model to optimize the duration of storage. In the base 
scenario, battery storage costs $0.94 / W and $0.33 / Wh in 2016 and decline linearly to 
$0.77 / W and $0.27 / Wh in 2050. In the cheap storage scenario, battery storage costs 
$0.66 / W and $0.16 / Wh in 2016, decline linearly to $0.46 / W and $0.045 / Wh in 2020 
and remain constant through 2050. In both of these scenarios, CAES costs $0.76 / W and 
$0.019 / Wh in all years. 

In most of these scenarios, the lifetime of all gas plants was 20 years. This is based on a 
California state figure (Klein, 2010), but many other sources estimate 30 year lifetimes. 
An additional sensitivity extended the lifetime of all gas plants to 30 years, which 
imperceptibly changed the base case results. 

5.5 Epilogue 
 

This research project updated the results from Chapter 3 by placing limits on the extent to 
which replacing coal with natural gas can achieve emission reductions in the 2020-2030 
timeframes. If methane leakage rates are between 2 and 3% as most national-level studies 
have suggested, the use of Gas CCGT generation as baseload drops by 24-55% in 2020 
and 46-67% in 2030 in the base case scenario, relative to no leakage. If the NG industry 
takes greater action and achieves leakage rates in the range of 1% by 2020, the use of Gas 
CCGT generation as replacement for coal can actually grow by 7%, relative to no leakage.  

The broad conclusions from Chapter 4 were not affected by leakage. Under leakage, 
cheap solar still reduces costs and increases solar deployment. Unsurprisingly, cheap 
solar also mitigates the cost impacts of leakage, especially if accompanied by cheap 
storage. The primary benefit of BECCS was to providing carbon offsets, which 
effectively relax the emissions cap and reduce system costs. This primary result holds 
true when leakage is considered. If a modest amount of carbon offsets were obtained 



77 

from BECCS, resulting in a gross emissions cap of 70%, there is little interaction with 
leakage. If large amounts of carbon offsets are obtained from BECCS, resulting in a gross 
emissions cap of 35%, the cost impacts of leakage will be more pronounced in 2040 and 
2050 because the weak cap enables a larger amount of NG under zero leakage relative to 
other scenarios. However, the availability of carbon offsets still reduces overall system 
costs in most timeframes.  
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6 Extending Switch 
The	  preceding	  chapters	  primarily	  focused	  on	  results	  we	  obtained	  from	  using	  Switch-‐
WECC	  to	  study	  mitigation	  pathways.	  This	  chapter	  discusses	  the	  process	  of	  reproducing	  
and	  extending	  the	  Switch	  model	  and	  highlights	  some	  methodological	  advancements	  
that	  I	  led.	  
	  
When we first obtained a copy of Switch, it was a rough collection of code, notes, a small 
database, and some example run directories. It comprised the code, datasets and lab 
notebooks that accompanied a fresh dissertation. Several key steps were written as 
snippets of code written in multiple languages that users needed to read, understand, then 
paste into the appropriate environment. This ad-hoc format had been useful for Matthias 
as he had finished his dissertation, but it was not ideal for a small team of 
interdisciplinary graduate students who wished to reproduce and extend cutting-edge 
research. This model could be extremely valuable, but using it effectively required broad 
and deep skillsets, while the scope of work necessitated a scalable team rather than a 
single individual.  

Over the course of several years, we automated and streamlined the code and databases, 
added functionality and scaled up the geographic scope. Reducing the manual steps 
required for reproducing research reduced the learning curve for many collaborators 
without prohibiting them from gradually mastering more skills over time. While there is 
still significant room for improvement and standing issues of usability and a steep 
learning curve, we reduced the magnitude of those problems. I led the following 
methodological advancements to Switch during this process. 

1. Improved usability, reproducibility and data management 
2. Modeled Renewable Portfolio Standards 
3. Tracked carbon intensity of electricity 
4. Improved the temporal resolution of dispatch by a factor of 122 in a secondary 

validation stage 
5. Improved timepoint sampling methodology 
6. Improved feasibility of solutions 
7. Assessed impact of imperfect foresight 

Throughout this process, I attempted to employ an agile development approach where we 
started with a minimal working version that we iteratively add features to, testing 
functionality at each step. Agile methods generally have lower debugging complexity 
than a monolithic approach where a significant amount of work is performed in between 
test or evaluation cycles. Other key goals were reproducibility, computational tractability, 
accessibility to collaborators, and ability to produce robust and meaningful results that 
provide technical or policy insights. 
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6.1 Usability, Reproducibility and Data Management 
 

To start this endeavor, I first learned as much as I could about the model’s formulation 
from Matthias (the original author) while we were at Berkeley together for two months. 
This interactive handoff period was crucial because it would have been quite difficult to 
reproduce his work from his notes alone. The software architecture consisted of three 
main layers: a database, a model defining an optimization problem, and an optimizer. 

A structured database contained descriptions of the existing grid, projected loads, 
projected renewable energy potential, costs, and new projects that could be built. This 
had been manually compiled from diverse information sources and involved many steps 
of calculations and transformations which were relatively well recorded. Separate 
databases were constructed to store the results from each run, and were not linked to each 
other or the original inputs database. All databases were implemented with Free and 
Open Source Software (MySQL). Getting data into or out of the databases required 
opening mysql and bash command prompts and pasting a series of commands from a 
notes file. 

The model defined input parameters, decision variables, constraints, an objective function 
in terms of mathematical relationships. The model consisted of a set of AMPL files that 
translated a series of input files into a linear program written in a standard machine-
readable file format for the optimizer to solve. The optimizer read the linear program 
compiled by AMPL, identified an optimal solution, and wrote a solution file. The 
optimizer (CPLEX) was also proprietary software, and included binary code for 
interfacing with AMPL. The model also read the optimizer’s solutions and exported them 
into human-readable results. Execution involved opening AMPL in a working directory 
and pasting a series of commands into the prompt. The files that comprised the model 
were licensed as open source, but the language it was written in (AMPL) was proprietary 
software with an expensive license.  
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Figure 6.1 Software layers of Switch depicting workflows of data processing after I 
streamlined the model. 

My second stage of Switch work transitioned from understanding what was present to 
improving its usability. After I replicated runs manually from Matthias’s notes, I rewrote 
his notes into self-contained scripts whose execution could be easily reproduced or 
automated. A particular run would include a snapshot of the entire codebase, inputs and 
results to ensure reproducibility of that run. The shell scripts get_inputs.sh and 
import_results.sh formed “glue code” between the database and model layers and 
included features to establish a secure database connection. The shell script run_switch.sh 
would manage all the tasks needed to convert inputs to results: compiling an optimization 
problem in a standard machine-readable .nl format, optimizing the problem with CPLEX 
and monitoring the process, and exporting the machine-readable solution into human-
readable results. This script was written to work either on a stand-alone computer or with 
a job scheduler on a high-performance cluster environment and included features to exit 
AMPL before calling CPLEX to free up memory, and to monitor system resources used 
by CPLEX during optimization. 

The overall model required users to interact with a minimum of three computer languages 
(SQL, Bash and AMPL), plus a working knowledge of linear programming, electric 
power systems, climate policy, economics and financing, as well as Geographic 
Information Systems. While Bash was not my ideal automation language from a technical 
capabilities standpoint, more collaborators understood this language better than 
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technically superior alternatives such as Perl or Python because they needed a minimal 
understanding of Bash to navigate the Linux command line. While most collaborators 
had difficulty understanding the entirety of these bash scripts, they could readily use them 
and could successfully edit them most of the time. 

The separation of database interaction from model execution allowed researchers to 
conduct analyses by manipulating files and not even interacting with databases. This 
proved useful to reduce the learning curve and made it easier to put together quick 
sensitivity runs that only involved changing a few parameters in input files. This 
separation helped mitigate the tension between fully documenting experimental steps and 
rapidly conducting exploratory experiments, a tension that is common in scientific 
software development. 

As we began editing and improved the code, I led the team to use a code repository to 
track our changes. A code repository is essentially a specialized advanced backup system 
that keeps a full history, with a clear record of every major edit that includes timestamp, 
contributor name and commit message. This allowed us to track the development of the 
code, revert to earlier versions if we found we introduced a bug or discover that we made 
a wrong turn. When we had difficulty understanding some portion of code, we could 
review the history to learn who wrote it so we could ask them for an explanation. Initially 
we used subversion for this, but eventually migrated to git which made forking and 
merging easier. 

As we scaled up the geographic scope and increased the diversity of scenarios and 
experiments, the database layer grew increasingly important. As the volume and 
complexity of the databases grew and more people contributed, it became important to 
optimize database performance via indexing and add integrity checks such as unique key 
constraints to help maintain quality control and reduce errors. Defining primary keys 
using a small number of columns (ideally stored as unsigned integers) increased speed 
significantly, as did insuring that tables that needed to be joined stored their keys in 
identical formats. To reduce the risk of human errors, we set up automated backups and 
used database privileges on user accounts to limit access for new collaborators so they 
could read everything, but could only create or modify tables in a sandbox database. 
After they grew comfortable with basic commands and were less likely to make mistakes, 
we gave them full permissions, and encouraged them to backup individual tables before 
they edit them, and always stage and test their work before applying it to the production 
database. Adding additional unique constraints ensured that contributors could not add 
duplicate records by mistake. More integrity checks would have been useful but at the 
time, mysql did not support foreign key constraints and had limited support for other 
sanity checks. As we worked with the model and made mistakes in data integrity that led 
to bad outcomes, we inserted additional checks into the core switch model to detect and 
report common errors early in the process to simplify diagnostics.  

We also had several versions of inputs that were often mutually exclusive, but we 
couldn’t just overwrite old data without harming our ability to reproduce existing runs. 
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The existing ad-hoc solution of defining a new table or database for each new set of 
assumptions or scenario was not scalable because it required editing interface code for 
each version, a step that often led to human errors of overwriting results or using the 
wrong inputs. Also, duplicating entire databases for each variation would have required 
constantly buying and maintaining new hard drives and disk arrays to keep up with new 
scenarios and code developments.  

To deal with conflicting sets of data such as two estimations of generator costs, I added 
an extra index column such as gen_cost_scenario_id to each relevant table, so that 
different cost estimates could co-exist in different rows, as long as they had distinct 
values for gen_cost_scenario_id. I repeated this pattern for other tables such as load 
scenario, timepoints sampled, generator availability, fuel costs, etc. A master scenario 
table would specify particular *_scenario_id values for each table, uniquely identifying 
which combinations of inputs to use for the overall scenario. I adapted this solution to 
unify the results databases by adding a master_scenario_id column to each table in the 
results database. Merging all of the results into a single database allowed us to perform 
data mining, and directly compare and contrast diverse scenario to gain new insights. 
Overall, extra indexing columns largely addressed the problem of naming proliferation 
and its impact on code maintenance and query complexity. 

As we generalized and expanded the model from California to the entire Western 
Interconnection, we encountered difficulties in using legacy tables to store new data or 
support new features. We needed to adapt our database schema while preserving 
backwards compatibility to ensure we could reproduce our earlier work. Our code 
repository let us keep snapshots of code from every point in time, but there was no 
corresponding functionality for databases, aside from duplicating the database. I 
addressed these issues using a hybrid approach of escalating impact. First, I considered 
whether adding new data columns to existing tables could support new requirements. 
New index columns could have changed how old code retrieves data, but new data 
columns would be ignored by old code as long as it specified each column by name, 
rather than using an asterisk * to select all columns. Sometimes new functionality 
required more extensive restructuring – changing index columns, deleting columns, or 
changing data values. In those cases, I recommended defining a new table with the suffix 
_v1, _v2, etc and updating the entire database to use the new table. When the number of 
changes got too large or unwieldy, we would duplicate and rename the database to have a 
suffix reflecting the version number. Over time our schema stabilized and the need for 
new versions slowed so that in the end our input database was named switch_wecc_v2_2. 

While these practices mitigated some scalability and version problems, they did little to 
address difficulties of data ingestion and processing. I encouraged all collaborators to use 
best practices of reproducibility with good record keeping, archiving and scripting when 
they imported and processed data. In ideal circumstances, we would have scripts that 
recorded every step from downloading data from public websites, to importing it, 
performing Quality Assurance / Quality Control (QA/QC), processing it, and combining 
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it with other data to fit Switch requirements. Under ideal conditions, it would be easy for 
other labs to independently replicate our work, review our data processing steps, or adapt 
them to use newer datasets or improved methodologies. Unfortunately, most of the data 
we retrieved was messy and required significant manual steps of QA/QC. Errors included 
typos in plant names, mistakes about when daylight savings time takes effect, rare 
numerical instabilities in solar calculations as the sun approached the horizon, and many 
others. We kept notes about corrections as best we could, but overall, the QA/QC process 
could not be fully automated. Some corrections of individual rows could be scripted if we 
had already imported raw data into the database, but some steps were often easier to 
perform using more interactive tools such as spreadsheet or Google Refine. Additionally, 
several steps of data ingestion and georeferencing generation plants, loads and 
transmission lines relative to load zones could most expediently be completed using 
manual interactive techniques. Sometimes this involved two people reading off plant 
codes and inspecting printed maps, sometimes it involved one person working for hours 
interactively in ArcGIS which did not support recording workflows. As much as possible, 
we performed geospatial processing in PostGIS (an open source GIS database) which 
fully supported scripting and reproducible workflows. In the future, we would ideally 
exclusively use PostGIS and automated workflows so that load zones boundaries could 
be redrawn easily and new data could be readily incorporated as it becomes available.  

Other parts of data processing could at best be semi-automated. For example, calculating 
solar electric potential for thousands of sites across WECC using multiple photovoltaic 
and solar thermal technologies required scraping an insolation database of historical 
gridded solar radiation data for North America from the State University of New York 
and combining it with a separate dataset of historical weather from NOAH that used a 
different grid and an entirely different file format. The combined data had to be written 
into a third file format that could be read by SAM, a simulation engine for evaluating 
solar potential. SAM is interactive software designed by NREL that has limited scripting 
capability in its own unique language. Compiling our entire solar database required 
running on the order of 40,000 SAM simulations. Parallelizing and automating this task 
was essential for completing it in a timely manner. In theory all of that could have been 
automated with SAM’s scripting language, but in practice the SAM was not stable 
enough to reliably complete more than 50 simulations without crashing, and SAM was 
not available for a Linux command line that could be spread over a cluster or fully 
automated. This necessitated writing a layer of code in AppleScript that could initiate, 
monitor and restart SAM instances. I ultimately deployed about 10 instances of this 
across half a dozen computers in headless mode, and babysat it over the course of several 
weeks. I managed to make that task semi-automated, but until the SAM developers make 
their model available via batch processing or headless API’s, those calculations cannot be 
fully automated in a robust manner. Realistically, the best we can hope for is semi-
automated workflows. 

Finding quality data sources for the entire region we wished to model proved difficult. 
We initially used whatever sources were most convenient or were of highest quality, but 
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these data sources were often specific to individual utility service territories or states. We 
rapidly realized that heterogeneous data sources were not scalable to the larger region we 
wished to model, and modeling the entire interconnect with its diversity of renewable 
energy potential and loads was important to identify cost-effective renewable energy 
portfolios, enable resource sharing and to avoid reshuffling problems where high-
polluting plants are built just outside of the model’s boundaries. We sought federal 
datasets as much as we could, relying heavily on Federal Energy Regulatory Commission 
(FERC) filings and Energy Information Agency reports. Ultimately both of these sources 
proved insufficient and we were forced to subscribe to commercial services that provided 
geolocations for generators and transmission lines. These proprietary datasets were quite 
expensive, and came with extensive restrictions on how we used and redistributed the 
data. After extensive negotiations, the vendor allowed us to graduate from using their 
interactive website to providing us with GIS shape files that we could programmatically 
access, and they allowed us to redistribute aggregated views of the data to accompany 
publications. Access to some datasets also required filing formal requests with FERC to 
get security clearances, a process that took over six months to complete. Overall, the data 
we could obtain was rarely in the format or granularity we required, and making it usable 
required extensive processing and/or estimation. The DOE currently has an initiative to 
make data more accessible and support community repositories to archive curated 
datasets, so these difficulties may decline in the future. 

A secondary data processing problem emerged as we delved deeper into geospatial 
processing. The MySQL database software that was a legacy from Matthias’s prototype 
had very limited support for storing or processing GIS data, and we needed extensive 
support. PostgreSQL (aka psql) was another open-source database with extensive GIS 
support with its PostGIS extensions. Although both platforms are based on the SQL 
language, they have enough idiosyncratic differences that most MySQL scripts need to 
rewritten to run on PostgreSQL and vice-versa. By the time we realized this, we had 
invested extensive efforts into MySQL databases and supporting scripts; porting them to 
PostgreSQL would be a significant undertaking that we could not justify in the short term, 
given the pressure we had to produce results and publish. As a work-around, we 
developed patterns of importing all GIS data into PostGIS, exporting data from MySQL 
to PostGIS through files for processing or aggregation, then passing data back to MySQL 
through another series of files. Each transfer and processing step required manual 
intervention, so fairly little of the geo-processing could be fully automated or easily 
reproduced. This break between our primary results and our GIS information was also a 
significant impediment to generating maps of our results, which were an important 
communication tool. Towards the end of our major group collaboration, Jimmy Nelson 
made significant strides in compiling a dataset of the entire US and Canada into 
PostgreSQL, but he was unable to finish this before he graduated. If we had to do this 
over again, we would exclusively use PostgreSQL for its GIS support, international 
language support, stability, data integrity features and overall scalability. MySQL scaled 
very poorly as we increased the volume of data and number of scenarios, eventually 
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forcing us to transition to a fork of that project (MariaDB) that could provide stability and 
reasonable speed with large datasets. 

6.2 Modeling Renewable Portfolio Standards 
 

Renewable Portfolio Standards (RPS) have been one of the most widespread policy 
devices for supporting clean energy in the United States, so representing them in Switch 
was quite important. I developed a method of modeling RPS within Switch in a general 
manner that can accommodate a diversity of RPS definitions and requirements – even 
different jurisdictions disagreeing on a definition of “renewable”. This method tracks 
renewable electricity as it moves through transmission and storage systems on its journey 
from generators to loads, a requirement for “bundled renewable energy credits” (more 
below). This method assumes that electricity flows can be perfectly managed to 
distinguish renewable and non-renewable power via use of a transportation model rather 
than an AC power flow model where energy mixes thoroughly and it becomes much 
more difficult to attribute which generators actually provided electricity for a particular 
load. A transportation model is often a useful approximation because current policies 
typically allow the use of non-renewable generation to help move or reshape renewable 
energy before it reaches load. To support cases where mixing is relevant for analysis, I 
also developed a post-facto method for tracking the carbon intensity of energy across the 
network assuming complete mixing at each node. This second method could also be used 
to track the “actual” renewable energy fraction at each node rather than the contractual 
renewable energy fraction. 

A Renewable Portfolio Standard is legislation that requires a certain amount of electrical 
energy to be produced by renewable generators. In the United States where the validity of 
global warming has been publically debated, RPS policies have been adopted more 
widely and earlier than emission targets that are specifically designed to mitigate global 
warming. RPS appeals to more perspectives (energy independence and economic 
development, not just global warming), and has consequently garnered a broad base of 
political support. RPS policies by themselves do not ensure low-emissions because they 
can co-exist with large amounts of coal, but they are still important as an initial transition 
to a sustainable electricity system. 

In the US, most RPS standards have been set at the level of states and use a variety of 
language and eligibility criteria. For example, northeastern states chose to define large 
hydropower as renewable while western states chose to define it as non-renewable. 
There’s the occasional oddball like Nevada’s inclusion of “waste tires” as a renewable 
energy source (Nevada Legislature, 2009), but the large majority of newly built 
renewable facilities are wind and solar. States also frequently have carve-outs for specific 
technologies, distributed generation, or limits on out-of-state generation.  

RPS accounting typically works like so: When a qualifying renewable generator produces 
1 MWh of electricity, it is issued a Renewable Energy Certificate (REC). The REC is 
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distinct from the underlying electricity. If the REC is sold separately from the underlying 
electricity, this is called an Unbundled REC. If the REC and electricity are sold together, 
it is called a Bundled REC. Each utility that is obligated to meet an RPS ultimately 
provides a certain amount of RECs to their regulatory agency. Most states require that 
most RECs be bundled, ensuring that their energy supply actually shifts to more 
renewables and their policy doesn’t just subsidize renewable generators elsewhere. 

Bundled RECs are more difficult to model than unbundled RECs because of the added 
complexity of tracking energy as it moves through transmission networks and 
differentiating it from non-renewable energy. As electricity portion of a bundled REC 
moves through the transmission network, it suffers energy losses so that 1MWh of 
produced energy may only serve 0.92MWh of load. If the electricity took a longer path 
through the transmission network or passed through storage, then the amount of load 
served would decrease further due to transmission losses. However, the REC associated 
with that electricity is not de-rated to reflect transmission losses according to typical RPS 
accounting practices. This inconsistency is potentially problematic because the goal is set 
relative to load served, while credits are awarded based on gross production, and if 
transmission losses are significant, the goal won’t be necessarily be met in a meaningful 
way. 

The basic methodology is as follows: Two or more categories of energy are defined, and 
each generator is assigned a category. In this simple case, this will just be “renewable” 
and “non-renewable”. Each generator injects energy into the network at a bus, and the 
amount of each category of energy at each bus is tracked. Separate transmission decisions 
are made for each category, with the constraint that the sum of all energy types traveling 
on a transmission line not exceed the line’s installed capacity. Each load has separate 
decision variables for consuming electricity and consuming RECs. A constraint forces the 
sum of REC consumption for a load within an investment period be greater than or equal 
to the RPS requirement. Storage can also be included, if desired, using a similar method 
where separate accounts are kept for each category to track incoming energy, energy in 
storage, and outgoing energy. However, existing RPS policies typically do not allow 
bundled RECs to pass through storage, so storage tracking is not included in the current 
implementation in Switch.  
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Figure 6.2 Simple illustration of Renewable Portfolio Standard tracking. 

In this simple illustration, bus 1 receives renewable and non-renewable energy from local 
generators. Some energy is transmitted to bus 2, and some energy is consumed by local 
load. Most of the energy sent through transmission is delivered to Bus 2, but some of it is 
lost along the way. Bus 2 receives both categories of energy via transmission as well as 
non-renewable energy from local generators. All of Bus 2’s incoming energy goes 
towards serving load. Each bus’s load is served by some renewable and some non-
renewable energy.  

Mathematical model simply requires keeping separate thermodynamic accounts for 
renewable and non-renewable energy on each bus, transmission line, and consumption 
for each point in time. To prevent energy from being reclassified as it moves through the 
network, I defined a conservation of energy constraint separately for each energy 
category at each bus and timepoint. 
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Transmission capacity limit is enforced via a constraint defined for each transmission line 
and timepoint that forces the overall energy transmitted in all categories to be less than or 
equal to installed capacity: 
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RPS goals are enforced with a constraint defined for each bus and categorical goal: 
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Load requirements are enforced with a constraint defined for each bus and timepoint: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝐸𝑛𝑒𝑟𝑔𝑦!,!
!
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This simple formulation is easy to understand and implement, but it does not reflect how 
RPS accounting ignores transmission losses for bundled RECs. This simple formulation 
can be used if you can assume that policies will be updated eventually to address this 
inconsistency/loophole or if you can claim transmission losses are relatively negligible. 
In the general case, more categories of energy can be defined to represent generators such 
as hydro or used tires, which will be considered as renewable by some states and non-
renewable by others. Each category of energy would be tracked separately, and each load 
can specify which categories count towards their RPS targets – which can be used to 
generate constraints that only sum across permitted categories. This method also can 
describe technology-specific carveouts by defining secondary constraints that require a 
certain amount of RECs come from specific categories.  

For several years, we found the simple formulation acceptable and we used it extensively 
in our research. We found that RPS policies alone were insufficient to meet climate 
stabilization goals because least-cost RPS systems led to large amounts of renewables 
and coal. Our analysis indicated that either a carbon tax or price was necessary to push 
coal out of least-cost solutions. When we included a carbon cap policy in our models, we 
saw that RPS became irrelevant in the long term because renewables were the least-cost 
zero-emission energy source. In the near-term, RPS could be a binding constraint that 
kept gas from completely taking over the system, but in the long-term, the RPS became a 
non-binding constraint. 

As a policy mechanism, RPSs are valuable for appealing to a wide political base, for 
boot-strapping renewable markets, and starting to shift to a sustainable trajectory. If 
extreme RPS goals are used, like Hawaii’s recent goal of 100% renewables by 2040 
(Representatives, 2015), RPS mechanisms could remain a valuable mitigation tool for 
decades to come. However, the tracking requirements associated with bundled RPS add a 
significant computational burden to optimization, and if other stronger policies cause 
bundled REC targets to become non-binding constraints, then dropping them can greatly 
simplify optimizations. 

Tracking and differentiating energy through the transmission network significantly 
increases computational complexity by effectively doubling the linkage decisions in the 
network. Other policy tools add little direct computational burden (unbundled RPS goals, 
installation goals, other production targets and even emission caps) because they do not 
require the same level of tracking. Completely ignoring transmission losses for RECs in 
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this linear programming framework would be difficult without either increasing 
ambiguity or adding significant computational complexity. 

You could tracks RECs as separate decision variables that are linked to the underlying 
energy, but this would increase ambiguity as the energy moves through the network and 
accumulates transmission losses, causing the relationship between energy and REC to 
become less straightforward. Say the energy sent over transmission is described as 
𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑!→!,! = 𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗   𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!→!,! where 
𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑!→!,! is used for calculating 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐼𝑛! in the conservation of 
energy equations. The movement of RECs could be described as 𝑅𝐸𝐶!"#$"%"!!→!,! =
𝑅𝐸𝐶!"#!!→!,! = 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!→!,!. Assuming that all energy and RECs are produced at 
bus 1, then the limits on energy ad RECs available are well defined as 
𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑!,! ≤ 𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗   𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!→!,! and 𝑅𝐸𝐶𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑!,! ≤
𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!→!,!. The two consumption variables can be linked as 𝑅𝐸𝐶𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑!,! ∗
  𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑!,! in this case. The problem arises when RECs 
and energy arrive through different paths and accumulate different line losses along the 
way because a single 𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 cannot adequately describe their relationship as 
their values diverge and become more varied. You could lift the requirements of joint 
consumption, but then the RECs would not remain strictly bundled. Also, if the 
transmission decisions remain tightly coupled to energy, then the full value of RECs will 
not be able to make multiple hops through the network because the maximum amount of 
energy available at the second node for transmission will be less than the RECs available. 

Another approach is to track each energy transfer directly from source to ultimate 
destination as a single decision, but that would greatly increase computational complexity. 
Since the above approach works with a single hop, you could reformulate the 
transmission module to directly track energy from origin to ultimate destination by 
defining every possible acyclic path and setting up a decision variable for each path. The 
transmission limit constraints for each segment would need to consider all paths that use 
that segment, along with the line efficiency of every segment upstream on a given path. 
Writing this is do-able, but the computational impact of adding so many linkages to the 
transmission network would be quite significant. 

After several years, my colleagues led a reformulation of the RPS module to be 
computationally faster, less accurate, and to avoid imposing transmission losses on RECs 
within an RPS compliance region and between adjacent RPS compliance regions. Their 
method used a hybrid of the above approaches, choosing to track REC consumption 
separately from energy consumption and to keep separate conservation equations for 
RECs and underlying energy. In transmission and generation, renewable energy is used 
as a direct proxy for RECs. Their approach lacks a constraint to force REC consumption 
to stay synchronized with energy consumption. This effectively unbundles RECs when 
they arrive close to their ultimate destination. This could be problematic in theory, but in 
practice, the method produced reasonable results. They only differentiated transmitted 
energy source category if it crosses RPS compliance regions; otherwise it is aggregated to 
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reduce linkages. Their conservation of REC constraint considers REC consumption and 
generation within a compliance region, as well as transmission between compliance 
regions, without applying transmission losses to any terms. This allows RECs produced 
locally or in neighboring regions to be consumed without incurring transmission losses, 
but RECs produced beyond adjacent regions will incur transmission losses up to the point 
where they enter adjacent regions. Key equations of this alternate formulation follow. 

Conservation of REC is defined for each REC compliance region r, timepoint t and 
energy category c. The RECs consumed in a compliance region need to be less than the 
sum of local generation of that energy category across all buses within the compliance 
region, plus the sum of that category of energy sent into the compliance region (ignoring 
transmission losses), minus the sum of that category of energy exported from the 
compliance region: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑅𝐸𝐶!,!,!
≤ 𝐿𝑜𝑐𝑎𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛!,!,!

!∈!

+ 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!!→!,!
!!  !"#  !"  !

− 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!→!!,!
!!  !"#  !"  !

 

The three energy terms on the right hand side of the equation serve as proxies for RECs, 
which are not explicitly tracked. The term 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡 is only indexed by energy 
category c for transmission lines that span RPS compliance regions to reduce linkages in 
the transmission network; transmission lines within an RPS region lack the index c. 
Similarly, the ConsumeEnergy variable is no longer indexed by energy category, and the 
conservation of energy equations sum across all energy categories rather than being 
specified separately for each category. The RPS enforcement equation relies on the 
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑅𝐸𝐶!,!,! variable since ConsumeEnergy is no longer indexed by energy 
category. In this formulation, RECs are only sent along with energy, so the portion of 
RECs associated with transmission losses are not available for export and must be either 
consumed locally or lost. This formulation allows RECs to be consumed locally while the 
underlying energy is exported, but this event is unlikely to occur in most circumstances 
because the energy exported would no longer be classified as renewable and would not 
have that added value. This event could happen in timepoints where local renewable 
energy production is in excess of local load, but those sorts of errors would be likely 
restricted to individual timepoints; the annual REC and renewable energy consumption 
would likely be reasonable if that much renewable energy was being produced. Overall 
this method provides approximations that are generally reasonable and result in 
substantial decreases in runtime and memory requirements.  

6.3 Tracking carbon intensity in a well-mixed network 
 

Tracking energy as it moves through a transmission network is a modeling convenience 
that can be useful for establishing contracts or policy. But in reality, tracking energy in a 
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network is as difficult as tracking a drop of water in an ocean, and some analyses need to 
reflect that reality where energy tends to be well-mixed. For example, some people are 
quite interested in locational carbon intensity of electricity indexed by time, and people 
could be interested in understanding the fraction of electricity that is renewable in each 
timepoint and location. To support those types of cases, you may calculate those values 
for a given dispatch plan with the assumption of well mixing. I will describe the basic 
method for carbon intensity calculations, but it is readily adaptable to other metrics such 
as renewable energy fraction. 

The basic method requires a complete dispatch plan for every point in time that includes 
the energy generated at each bus, the emissions associated with that generation, the 
consumption at each bus, and the transmission decisions that move energy between 
busses. For a given point in time, you start by topologically sorting a graph representation 
of the transmission network so that each bus that has no imports is assigned to level 0, 
each bus that only imports from level 0 buses are on level 1, each bus that only imports 
from level 1 or level 0 buses are on level 2, and so on until each bus is assigned a 
topological level. The carbon intensity at each level 0 bus is readily calculated by 
dividing its local emissions by its local generation 
𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! =

!"#$%&"'$%()*++*",!!
!"#$%&"'$%()*)+$#,"!!

  ∀  𝑏   ∈ 𝐿𝑒𝑣𝑒𝑙!. All electricity exported from 

level 0 buses are assigned this carbon intensity and have a known amount of embedded 
emissions  

𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠!!→!! = 𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!! ∙ 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑒𝑛𝑡!!→!!. When 
calculating embedded emissions, it is important to use the energy sent rather than the 
energy received which has transmission losses deducted. The carbon intensity at level 1 
buses is readily calculated from their local generation and embedded emissions 
𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! =

!"#$%&"'$%()*++*",!!! !"#$%%$%!"&''&()'∗→!
!"#$%&"'$%()*)+$#,!!!! !"#$%&'#()#*#+∗→!

  ∀  𝑏   ∈ 𝐿𝑒𝑣𝑒𝑙!. This 

procedure is repeated for each subsequent level. It is worth noting that the net emissions 
at any bus should subtract the embedded emissions that are exported to other buses. 
Overall, this method is very computationally tractable and requires two passes through 
the dataset: first to topological sort the transmission graph, second to assign carbon 
intensities. It is relatively simple to explain and should be accurate as long as 
transmission dispatch forms a Directed Acyclic Graph (DAG) and the impact of storage 
is not significant. 

If storage becomes a significant part of the system, it will effectively shift emissions 
between timepoints. If dispatch is strictly linear with a beginning and end, this problem 
can be treated in the same manner as described above, but with storage deposits and 
withdrawals forming links in the graph that connect different timepoints. As long as each 
timepoint’s transmission dispatch forms a DAG, their linear time series will also form a 
DAG. Problems with this simple approach may arise if either transmission forms cycles 
or if dispatch time series are treated in a circular manner, where the last timepoint in a 
time series is treated as preceding the first timepoint in that time series. A circular 
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treatment is used by Switch to avoid edge effects when accounting for storage or ramping, 
with the assumption that a time series describing a representative day will likely have 
similar days on either side, so that energy stored in one evening can be released the next 
morning. Switch also does not require that transmission dispatch form a DAG, and cycles 
in transmission graphs are not uncommon especially in hours with excess renewable 
generation. Since transmission lacks a variable cost in the Switch model, many inefficient 
transmission plans are equally optimal when excess energy is available. A general 
solution for this is to use an iterative method to estimate net emissions at each node, then 
propagate estimated emissions through transmission and storage arcs to update emission 
estimates for the subsequent iteration. This method is described in more detail below. 

Carbon intensity of electricity is calculated with an iterative method that propagates 
embedded emissions along transmission lines according to a given dispatch schedule. 
Emissions are repeatedly propagated until an additional iteration alters the net emissions 
less than one percent. The diagram below illustrates a simplified dispatch schedule where 
storage’s energy balance occurs over two timepoints. Notice that energy can flow through 
storage from timepoints 1 to 2 (node A) and can flow backwards from timepoints 2 to 1 
(node E). Storage conducts an energy balance over a typical day that repeats, so E’s 
storage schedule can be interpreted storing energy in the evening and releasing it the next 
morning.  

Our RPS implementation divides power into renewable and non-renewable stocks that 
remain distinct from generation source, through transmission, storage and intermediate 
load areas to its final destination. For purposes of tracking the stocks of power and 
embedded emissions, we can consider dispatch of non-RPS power completely separately 
from RPS power. The diagram illustrates the dispatch of non-RPS power.  

The following terms are used in these calculations:  

Pgross : The total power available to a node that can be consumed or sent out. For nodes 
representing a load area in a given hour, Pgross is calculated as the sum of locally 
generated power, power received from transmission, and power received from storage. 
For nodes representing a storage project over a day, Pgross is calculated as the total power 
released in a day. Because of inefficiencies, this will be less than the power received in 
the same day.  

Pnet    : The power available to an hourly load area node after some power is sent out.  
This term is not relevant to daily storage nodes.  

Px->y : Power sent from node X to node Y in a given hour.  

Egen  : Direct emissions from generators in a load area in a given hour.  This term is not 
relevant to daily storage nodes.  

Ex->y : Embedded emissions sent from node X to node Y along with power in a given 
hour.  
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Egross  : The sum of direct emissions from generators and embedded emissions received 
by a node.  

Enet  : A load area’s net emissions in a given hour (gross emissions minus all exported 
embedded emissions). This can be calculated as Egross • Pnet / Pgross This term is not 
relevant to daily storage nodes.  

With this formulation, Egross and Ex->y are defined in terms of each other. The embedded 
emissions Ex->y is calculated as a percentage of the gross emissions of the source node: 
Ex->y = Egross,src • Px->y / Pgross,src  Conversely, gross emissions are calculated as the sum of 
direct emissions and all embedded emissions received. We sidestep this circular 
dependency by making initial estimates, then iteratively recalculating each term with the 
prior round’s estimates. Initially Egross is Egen for hourly load area nodes and 0 for daily 
storage nodes. Similarly, Ex->y is initially set to 0. At each round, we also calculate the 
difference in Enet and look for convergence. We do not let the process cycle through more 
than 100 rounds and will exit early if the sum of the differences in all of the nodes’ Enet 

between rounds is less than 1% of the total emissions for the day’s graph:  !!"#!!!"#!

!!"#
<

0.01. In practice, most scenarios reached convergence in 10 rounds, and the slowest 
convergence required 19 rounds.  

The final carbon intensity of electricity in a load area is calculated as the sum of the net 
emissions across RPS and non-RPS categories divided by the sum of the net power across 
the same categories.  
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Figure 6.3 Example dispatch graph of non-RPS power over a day. The top panel shows 
initial estimates and the bottom panel shows final estimates after 5 rounds. Gross, net, 
and exported emissions may not add up in the diagram due to rounding the values in the 
labels (e.g. Load area D, Timepoint 1 in round 5).  

Legend

Timepoint 1, Round 0 Timepoint 2, Round 0

Timepoint 1 - Round 5 Timepoint 2 - Round 5

Nodes are shaded according to their relative level of emissions.
Edges are labelled with power sent and embedded emissions.

Load Area Name
Gross Power, Net Power

Gross Emissions, Net Emissions

Storage
Total power in, Total power out

Gross (Total) Emissions

E Storage
45 MW out

3 t

E
200 MW, 200 MW

13 t, 13 t

45 MW, 3 t

A
400 MW, 200 MW

40 t, 20 t

A
380 MW, 290 MW

20 t, 15 t

B
390 MW, 200 MW

20 t, 10 t

100 MW, 0 t

A Storage
90 MW out

0 t

100 MW, 0 t

B
150 MW, 100 MW

5 t, 5 t

100 MW, 0 t

C
1.8 GW, 0 MW

0 t, 0 t

100 MW, 0 t

C
195 MW, 100 MW

0 t, 0 t

100 MW, 0 t

D
250 MW, 100 MW

0 t, 0 t

95 MW, 0 t

100 MW, 0 t

E
200 MW, 200 MW

10 t, 10 t

50 MW, 0 t

D
190 MW, 100 MW

0 t, 0 t

95 MW, 0 t

E
200 MW, 150 MW

10 t, 10 t

90 MW, 0 t

E Storage
45 MW out

0 t

50 MW, 0 t

90 MW, 0 t

45 MW, 0 t

A
400 MW, 200 MW

40 t, 20 t

A
380 MW, 290 MW

30 t, 23 t

B
390 MW, 200 MW

32 t, 16 t

100 MW, 10 t

A Storage
90 MW out

10 t

100 MW, 10 t

B
150 MW, 100 MW

13 t, 13 t

100 MW, 8 t

C
1.8 GW, 0 MW

8 t, 4 t

100 MW, 8 t

C
195 MW, 100 MW

8 t, 4 t

100 MW, 8 t

D
250 MW, 100 MW

4 t, 2 t

95 MW, 4 t

100 MW, 2 t

50 MW, 1 t

D
190 MW, 100 MW

4 t, 2 t

95 MW, 4 t

E
200 MW, 150 MW

12 t, 9 t

90 MW, 2 t

50 MW, 3 t

90 MW, 10 t
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6.4 Dispatch verification 
 

The Switch-WECC model estimates the costs and feasibility of day-to-day operations 
using a relatively small number of timepoints (144 per investment period). These 
timepoints were selected to include dates with median energy demand and dates with 
peak power demand. However, this sampling method could not guarantee these 
timepoints would include peak net demand (load minus intermittent generation) because 
the build-out of renewable generation and their resulting contribution to net load was not 
known before the optimization is run. Also, the timepoints for a given date are sampled at 
4-hour intervals which tends to underestimate the hour-to-hour variability of net load. 
Increasing the sample size improves the estimate of operational costs and feasibility, but 
it also greatly increases the size of the optimization problem. The size of the problem was 
roughly proportional to the square of the number of timepoints because additional 
timepoints would increase the number of decision variables (columns in the constraint 
matrix) and the number of constraints (rows in the constraint matrix). We gradually 
increased our sample size until we hit computational limits where our jobs on high 
performance computing clusters would time out after one week and/or the commercial 
solver we use (CPLEX) would crash. Further increasing the size of a single large problem 
is not a feasible or scalable approach.  

Some point after I began working on Switch, I realized we were merely reporting results 
for the subset of timepoints that we optimized against, rather than using a distinct set of 
timepoints. In the vocabulary of machine learning, this amounts to reporting performance 
with a training set instead of a test set, a practice that can lead to overfitting and 
overoptimistic results. Computational limitations forced us to sample just 576 timepoints 
out of a dataset of almost 70,000 timepoints. It was entirely possible that certain 
renewable projects could appear to produce more power during the sampled timepoints 
than their annual average, and that the optimization was biased towards projects with that 
sort of sampling error. Without a secondary evaluation, we had no idea what costs, 
reliability or emissions would results from dispatching an optimized portfolio on a larger 
time series.  

To address this, I wrote a “dispatch verification” module to tests an investment plan 
against all available timepoints that include unanticipated combinations of load and 
renewable energy output. This module revealed capacity shortfalls that could be large, 
and that these capacity shortfalls could be addressed without significantly changing costs. 
We also found that overall energy costs were quite robust against a larger time series, but 
that emissions tended to be underestimated. I used the instrumentation provided by this 
module to improve our sampling method to reduce systematic bias, to reduce capacity 
shortfalls, to evaluate the impacts of imperfect foresight, and to reduce emission overruns. 
More detailed descriptions of those improvements are provided in subsequent sections. 
The remainder of this section describes the dispatch verification module and problems 
that it revealed. 



96 

The primary optimization incorporates a modest amount of operational detail to 
endogenously reflect integration requirements as well as the capacity factors (and 
economics) of fossil plants. This resolution is relatively unique for a capacity planning 
model, but is quite important for rationally planning high-renewable systems so we can 
understand how the grid needs to be built to accommodate large shares of renewable 
generation. In an ideal world, this operational modeling would be extremely detailed and 
represent all of the timescales that might present challenges for a high-renewable system. 
In practice, computing hardware limits the amount of detail we can include in a model 
while maintaining tractability. After we compiled all of the datasets for WECC and ran 
simulations, we found that 576 timepoints evenly spaced across the study were about as 
many as we could include in the investment optimization and while reliably maintaining 
computability. 

The dispatch verification module operates after the primary investment optimization is 
complete. This module altered the primary model to only focus on dispatch decisions by 
fixing investment decisions, a standard operation in mathematical programming 
languages. The module would load investment decisions from the primary optimization, 
then load a fresh time series of electricity demand and renewable energy production data, 
and finally optimize a dispatch-only problem using the same formulation for operations 
as the primary model. In cases where installed capacity is insufficient to meet load and 
the optimization problem is infeasible, I enabled a recourse decision of installing 
additional peaker plants of simple cycle natural gas combustion turbines, then compile 
and optimize the new problem. To reduce total computational time and take advantage of 
parallel computing in a cluster environment, I divided the dispatch time series by 
historical date, so each day of dispatch can be compiled and solved independently. To 
combine recourse decisions into a coherent feasible solution, I took the maximum 
installed capacity of new peakers plants across dates, grouping by load zone and period. 
This will not guarantee an optimal solution, but the costs we examined do not shift 
significantly from the original solution so it is close enough to optimal to be useful. 

The first working version of the dispatch module that we used for our first two peer-
reviewed publication (Nelson, Johnston et al., 2012; Wei, Nelson et al., 2013) could 
detect and address capacity shortfalls, but would not produce meaningful costs or 
emissions. I eventually traced those bugs to problems in the weighting of timepoints in 
dispatch that was causing large errors in the relative weight of variable and fixed costs. 
Once I corrected the timepoint weighting, the electricity costs and emissions from the 
dispatch module passed our quality control tests.  

Figure 3 below shows two net load duration curves in the 2050 period of a control run: 
one is made of the 144 sampled timepoints seen by the primary optimization and the 
other is made all 17,376 timepoints that we have historical records for. The sampled 
dataset has a smaller range of net loads and is blockier, but has a generally similar shape. 
This net load duration curve is inspired by a load duration curve, but timepoints are 
ranked by net load (system load minus intermittent renewable output) rather than load.  
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Figure 6.4 Net load duration curves as seen by the primary optimization and the dispatch 
verification. The net load is shown as a blue bar at the bottom of the stack, and the 
contribution of wind and solar are stacked above it. The width of each bar reflects the 
weight of that timepoint. This depiction shows that timepoints from median days are 



98 

weighted approximately 30 times greater than timepoints from peak days. The primary 
optimization uses 144 timepoints with varying weights while the post-optimization 
dispatch check uses 17,376 timepoints with equal weights. The contributions of wind and 
solar are difficult to discern in the lower panel due to Excel’s rendering of a dense 
dataset. The right side of each figure shows the distribution of net loads as a bar-and-
whiskers plot based on quartiles and as a histogram. Negative values of net load seen in a 
few hours in the lower figure indicate that renewable energy supply occasionally exceeds 
load and would need to be curtailed.  

The higher value of net load in the complete set of timepoints resulted in a maximum 
capacity shortfall 13.9 GW in the 2040 investment period for this control run (data not 
shown). These infeasibilities almost exclusively occurred just after sunset in late July and 
August in later investment periods that have high solar penetration: air conditioning loads 
are still relatively high, but solar energy is unavailable. These infeasibilities can largely 
be attributed to insufficient sampling. Our standard method of sampling every 4 hours 
usually does not capture the hour after sunset that has the peak net load.  

Most investment plans generated by the current version of SWITCH-WECC had capacity 
shortfalls on the order of 15 GW in later periods - around 6% of peak load. Cost 
projections were generally within 2-3% of the expected value, even after installing 
additional gas turbine peaker plants to avoid capacity shortfalls. Emissions in the last two 
periods are generally 20-30% above the emissions target, which is mostly due to 
increased consumption of natural gas. We are still examining results to better understand 
the emission story. It could be that the primary optimization overestimates the total 
amount of renewable energy produced, underestimates hour-to-hour variability of net 
load and emissions that come with starting up additional units or running some units at 
partial load, or that significant amounts of renewable energy has to be curtailed because it 
exceeds local demand and transmission to other areas is constrained. Answering these 
questions is part of my ongoing work.  

We have used a simple iterative approach to deal with these capacity shortfalls, where we 
identify the future timepoint that has the largest capacity shortfall in the complete 
dispatch check, update the investment problem to include the extreme conditions, then re-
solve the investment optimization. We encountered these capacity shortfalls in scenarios 
that we needed to finish a paper (Mileva, Nelson et al., 2013) and were looking for a 
quick fix that was also defensible. The capacity shortfalls vanished within 3 or 4 
iterations for all of the scenarios we applied this method to, and scenarios with lesser 
projections of solar penetrations required fewer iterations. With the exception of one 
problematic scenario, the small increase in problem size did not create computational 
infeasibilities. As a standard solution, this method is far from perfect. It increased the 
total runtime from around one week to three or four weeks. We could have potentially 
bootstrapped this process by including timepoints that were known to create 
infeasibilities in prior scenarios, but some team members were uncomfortable with that 
approach because it gave no guarantee of capturing peak net load and they believed it 
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would be hard to defend. Moving forward, it would be valuable to have a method to 
include more timepoints and ideally reduce total runtime.  

6.5 Reducing emission overruns 
 

The problem of emission overruns proved more difficult to address than capacity 
shortfalls. Our initial approach to emissions overruns were to set a more stringent cap in 
the investment optimization so that the overall emissions from dispatch would be close to 
the actual emission cap we wanted. This allowed us to complete a few more research 
projects, but overall was unsatisfying for several reasons. It required iterating through 
several carbon caps, and different scenarios in the same study often required different 
starting caps, which made them harder to directly compare. The emission overruns tended 
to arise from renewable energy shortfalls that prompted a higher capacity factor for spare 
gas capacity (including peaker plants). An optimized portfolio that could actually meet 
the cap would presumably install more renewables to avoid the need for extra gas, or at 
least install a larger amount of combined cycle gas plants that would have a lower 
emissions factor than simple cycle peaker plants. These emission overruns were 
particularly troubling for the natural gas leakage study because the extra use of gas 
capacity could double the overall emissions when leakage rates were high. I studied this 
problem and evaluated several methods over the years, and eventually managed to reduce 
the magnitude of this problem significantly. 

One of our first theories was that the dispatch verification might be choosing the wrong 
loading order for fossil plants. One problem of dividing the dispatch problem into 
individual days is that annual constraints such as carbon caps cannot be directly 
represented. The lack of such a constraint could adjust the loading order of plants to 
dispatch more coal and less gas, which could explain some of the emission overruns. To 
ensure the proper loading order was used, I dualized the annual emission cap constraint 
so that I could represent it in each decomposed dispatch problem. I accomplished this by 
exporting the dual value of the emission cap constraint from the primary problem and 
applying unit conversions to convert it into a carbon cost that varied by period. I rewrote 
the carbon cost formulation to vary by period, imported these values into the dispatch 
problems, and disabled the carbon cap constraint. I verified that additional emissions 
costs produced correct loading order of fossil generators, but this reduced the magnitude 
of the emissions overrun by an insignificant amount. 

The next promising theory focused on the discrepancy in total renewable energy between 
the primary optimization and the dispatch verification. I thought if we understood the 
sampling error in the primary optimization, we might be able to reduce it by changing out 
sampling method. Towards this end, I calculated the sample error mean annual energy for 
each renewable project – that is, the mean energy for sampled timepoints minus the mean 
energy for all timepoints – then normalized this value to a z-score by dividing by the 
standard error of the mean that accounts for sample weighting using a standard statistical 



100 

formula (Cochran, 1977). The equation for the normalized sample error was !!!
!"#

. I 
evaluated this using a weighted SEM and a non-weighted SEM and obtained qualitatively 
similar results. This normalized form allowed me to readily compare sample errors across 
projects of different sizes and technologies. Figure 6.5 shows the un-smoothed 
probability distributions of these standardized sample errors for all 13,444 utility-scale 
renewable projects in our master database. This shows that the sample error had a 
systematic positive bias for central PV, but the sample errors for other technologies is 
unbiased. 

 
Figure 6.5 Distribution of the initial sample error of mean annual energy produced by 
utility-scale renewable energy projects. Overall, renewable projects showed a positive 
bias, but this was almost exclusively due to the bias of central station solar. 

Having isolated the systematic bias to central station solar PV, I investigated the impact 
of sampling methodology on this bias. By convention, we had sampled median days at 
four-hour intervals starting at midnight GMT. This starting time was arbitrary and could 
result in the inclusion of greater or fewer daylight hours over the course of a year across 
the roughly 7500 central PV sites in WECC. I created three additional sampled sets that 
started at 1, 2, and 3am to determine if another time was better. The results indicated that 
a 12am GMT start time resulted in the largest bias and a 2am start time effectively 
removed this bias (Fig 6.6). Updating the sampling methodology to reflect this improved 
the emissions problem by a few percent, but failed to address the bulk of the problem. 
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Figure 6.6 Bias in sample error of Central PV energy production is dependent on which 
hour of day sampling starts. Starting at 2am GMT effectively eliminates this bias, while 
the initial approach of starting at 12am GMT resulted in the largest bias. 

To explore this issue further, I recalculated a normalized sample error for projects that the 
model chose to install, and overlaid sample error of installed projects with sample error 
of all potential projects (Fig 6.7). I found the optimization preferentially built projects 
where the sample error overestimated the renewable energy. For this particular run, this 
preference resulted in a 6% shortfall in renewable energy. It makes sense that the 
optimization would tend to choose a renewable site with a positive sample error over a 
site with a negative sample error, all else being equal. And given the large number of 
renewable sites to choose from, this preference added up to a significant problem. The 
simple solution would be increasing the number of data points to reduce sample error, but 
that was not computationally tractable.  
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Figure 6.7 After removing initial sample bias from all available projects, the 
optimization is biased towards projects whose sample error overestimates their annual 
energy production.  

My next step was to drill down further in the data to identify when these renewable 
energy shortfalls were happening and which technologies were contributing to them. I 
thought if I had a better understanding of the problem, I might be able to think of a 
targeted solution. A colleague who had examined dispatch data in detail for her own 
research (Ana Mileva) had anecdotally noticed some large capacity shortages in August 
when the primary optimization tended to over-estimate wind power in scenarios where 
wind dominated renewable generation. She thought I might be able to address the 
problem by including an additional high-stress day and giving it more relative weight. I 
was intrigued by this idea, but wanted to have a better understanding of the data before I 
went forward. 
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Figure 6.8 Comparing differences in average hourly renewable power and emissions 
between the primary optimization and dispatch verification of a control run in 2050, the 
period with the highest emission overruns, revealed that wind power was significantly 
underestimated in winter and spring and overestimated in summer while solar tended to 
be slightly overestimated over most of the year. Emission overruns were correlated with 
renewable energy shortages, but were also determined by other factors. 

Directly comparing grid operations between primary optimization and dispatch 
verification proved to be a challenging and tedious informatics exercise, but eventually I 
obtained the requisite view (Fig 6.8). During the process, I realized that renewable energy 
shortfalls were an indirect proxy for emission overruns because overall emissions 
depended strongly on the emission intensity of the capacity available when the shortfall 
was happening. For example, if combined cycle gas turbine capacity is available to meet 
the energy gap, that will yield much lower emissions than if simple-cycle gas combustion 
turbines is the only available capacity. The results supported this theory. I found that the 
renewable energy shortages had a rough correlation with emission overruns, but emission 
overruns also occurred in three months where renewable energy was underestimated 
(May, November and December). This suggested that focusing more directly on 
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emissions rather than renewable energy shortages could yield a more targeted solution to 
emission overruns. The data also revealed that while emission overruns peaked in August, 
they were pervasive throughout the year and an adjustment to August sampling was 
likely to have limited impacts. 

When I compared daily emission profiles between the primary optimization and dispatch, 
I found that the peak days from the primary optimization had emission profiles much 
more similar to dispatch than the median days. As you may recall, timepoint sampling is 
performed in a stratified manner to select two days per month based on projections of 
load. A month’s peak day is selected on the basis of maximum system-wide load in any 
hour, and the starting hour is chosen to ensure that timepoint with the peak load is 
included. A month’s median day is selected on the basis of daily energy demand being 
very close to the median daily energy demand of that month. The selection is adjusted to 
ensure that the same historical date that is used to project demand and renewable power is 
not selected more than once. This median day is given a weight of roughly 30 times the 
peak day – actually the number of days in the month minus 1. This strategy results in 
sampled annual demand that is typically within 0.2% of the annual demand of the 
complete dataset.  

While the peak day had emissions that were similar to or greater than the average 
dispatch emissions, the daily energy demands of the peak and median days were similar 
for most months. This suggested a solution where I could increase the weight of the peak 
day enough for the month to have representative emissions without significantly altering 
the overall load requirements. This could be written as an optimization for each month 
whose objective function is to minimize the emission discrepancy. The decision variable 
is the amount of weight to shift from median to peak day. Constraints are that the 
resultant sampled load cannot exceed dispatch load by more than 5%, that all final 
weights remain positive, and that the weight adjustment cannot be greater than the initial 
difference in weights. For expediency, I implemented this semi-manually in a spreadsheet 
using an exported database view rather than formally writing it as an optimization. In my 
initial experiment, I limited this weight adjustment to the five months with the highest 
emission overruns in 2040 and 2050. I limited the changes because small alterations to an 
optimization problem have greater chances of success than large alterations, in my 
experience, and the choice of five months was subjective based on manual inspection of 
data.  

I made a few versions of adjusted problems, some with adjusted weights, some with a 
few additional dates that had the largest capacity shortfalls in dispatch verification, some 
with both. Normally these optimizations would finish in 12 hours, but none of these 
finished in 72 hours, and all progressed at similar rates according to their log files. I let 
one version run for over 2 months on the lab’s fastest server before cancelling it. These 
results were disheartening and made me thing that decomposition and increased sample 
size may be the only viable strategy for addressing emission overruns. While working on 
a near-final revision of the natural gas paper and grappling with finding language to 



105 

address the large discrepancies without invalidating the results, I decided to budget 
another 10 hours of my time on a last-ditch effort, and one of the ideas I tried worked 
well. The viable solution was to limit the secondary optimization to just 2040 and 2050. 
This entailed loading the initial problem and solution from the primary optimization, 
updating the timepoint weights, freezing decisions for 2020-2030, compiling a new 
smaller problem and optimizing it. For the natural gas leakage scenarios, this resulted in a 
significant improvement. The original formulation resulted in dispatch emissions 
overruns of 100% under a 0% leakage assumption, while the reweighted formulation only 
had overruns of 20% (Fig 6.9).  

  
Figure 6.9 Adjusting timepoints weights in 2040-2050 and re-optimizing greatly reduced 
the problem of emission overruns for the natural gas leakage study. 

6.6 Assessing impacts of imperfect foresight 
 

The core SWITCH model assumes perfect foresight even though several key parameters 
would be better represented as random variables. An “optimal” investment plan with this 
assumption can result in outages, lower reliability as well as cost and emission overruns 
if predictions are incorrect. In studies conducted to date, we addressed uncertainty in cost 
and technology projections by running simulations of several scenarios. This approach 
generates a set of specialized investment plans (one for each scenario), but does not tell 
us how well an investment plan would perform under alternate scenarios. Without further 
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work, we do not know if a given investment plan is relatively robust to unexpected 
situations or not. This approach also does not give us recommendations of what to build 
today, given the range of possibilities we think tomorrow might bring.  

A robust solution to this problem would be to utilize stochastic programming to model all 
possible scenarios and to develop a portfolio that performs robustly in all scenarios. 
Unfortunately, this approach greatly increases the computational complexity and would 
require some form of decomposition to be tractable. Past attempts to implement 
decomposition within the AMPL implementation of Switch via Benders decomposition 
and Lagrangian relaxation proved unsuccessful. In retrospect, any decomposition method 
that is implemented within the primary codebase is bad from a project management 
perspective. Decomposition is complicated and relies on specialized mathematical 
techniques that most people are unfamiliar with. Switch already requires a number of 
diverse specialized skillsets. Adding additional requirements would greatly reduce the 
number of people that could understand and contribute to the model. Part of ongoing 
research is re-implementing Switch in Pyomo, an open-source platform that has libraries 
to automate decomposition associated with stochastic programming and does not impose 
that complexity on people who are contributing to the core deterministic model.  

Still, there are alternate approaches to this issue that are tractable within the AMPL 
implementation of Switch. It is possible to develop an optimization plan specialized to 
one scenario and use the dispatch verification module to assess its performance using 
assumptions from an alternate scenario. In this way, you can assess the robustness of an 
optimized investment plan. Accomplishing this is relatively straightforward and requires 
copying input files describing an investment plan from one scenario’s directory and input 
files describing everything else – costs, loads, renewable output, hydro availability, or 
other assumptions – from a different scenario’s directory. Once all of the files are 
assembled in the dispatch input directory, the dispatch module can assess the portfolio’s 
performance using standard workflows. This methodology is best suited for assessing 
alternate values of a continuous numeric parameter, and will break down if inputs are 
qualitatively different, like whether or not new nuclear or CCS can be built. 

I used this functionality to assess the sensitivity of the optimization to the choice of 
discount and finance rates. By finance rate, I mean the interest rate paid on a loan. 
Initially Switch used the same parameter to describe finance and discount rates, which 
was consistent with the investment perspective of discount rate as opportunity cost of 
capital, and assumptions of equilibrium in financial markets such that finance rates on 
loans would be equal to the average return on investment across a wide portfolio. 
However, equilibrium conditions are rarely met in the real world and other perspectives 
on discount rates based on consumer-welfare or intergenerational equity are equally valid 
and suggest that a smaller discount rate is more reasonable, perhaps even 0. My 
colleagues conducted an exploratory run where they lowered the finance/discount rate 
from its default of 7% and got significantly lower energy prices in the later periods. In 
most scenarios we observe that energy costs increase significantly between 2040 and 
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2050, and I was curious if this was due to the choice of discount rate. A discount rate of 7% 
corresponds roughly to a doubling in value every decade, which implies an increased 
ability to pay. While this can be justified from an investor’s perspective that has 
significant capital and enjoys opportunities for large economic growth, it is ridiculous 
from most consumers’ perspectives and inconsistent with the flat rate of growth in 
median income over the past four decades in the United States. If the price increases in 
2050 were primarily due to the choice of discount rate, we would need to adjust the 
choice of discount rate and thoroughly explore this issue and the ethical implications.  

I rewrote the model to use distinct values for finance and discount rate, then conducted 
sensitivities on both values. I found that the discount rate had virtually no impact on the 
electricity costs in any period, but the finance rate had a significant impact in every 
period (Fig 6.10, 6.11). I used the methodology described above to assess how robust the 
solution was to the finance rate used in the primary optimization. I found that investment 
plans were quite robust to the finance rate used in the primary optimization (Fig 6.12). 
This methodology can readily be extended to other parameters, and should be used if this 
version of Switch is used as a decision support tool for large capital investments. 

 

Figure 6.10 A series of sensitivity runs indicate that the choice of discount rate used in 
planning has very little impact on electricity costs, even over 40 years of discounting. 
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Figure 6.11 A series of sensitivity runs indicate that the finance rate paid on loans has a 
significant impact on the cost of electricity in all periods. 
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Figure 6.12 A series of robustness tests indicate that an investment plan optimized with a 
7% finance rate results in costs very similar to investment plans optimized to alternate 
finance rates. Each dashed line shows the costs resulting from evaluating an investment 
plan optimized to a 7% finance rate using an alternate finance rate. The gap between the 
dashed and solid lines indicate the cost savings from reoptimizing the investment plan to 
a different finance rate. The fact that the gap is small for small adjustments in finance 
rates indicates that most of the savings results from lower interest payments rather than a 
different investment decisions. 
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7 Discussion  
 
Switch has been successful used as a modeling tool for collaboratively developing 
emission reduction plans for electric power grids in California, the western US and 
Canada (WECC), China, Chile, Nicaragua, and Hawaii. It has been used in numerous 
research publications as well as reports to government bodies and development banks. 
These efforts have been recognized by the UN during the 2014 Climate Summit (United 
Nations, 2014). I worked most extensively with the WECC version, and have supported 
other graduate students develop versions for other countries. This model of open 
collaborative development of regional models and open source software tools is taking 
root in Chile (largely due to the efforts of Juan Pablo Carvallo), where the government is 
sponsoring capacity building and research exchange programs to promote the 
development and use of Switch-Chile.  

Moving forward, there is a need to make Switch more accessible and scalable. Even 
though Switch itself is open source, it is currently written in a proprietary language and 
uses a proprietary solver, access to which can cost $10-20k for non-academic users. 
These costs can be a significant entry barrier to potential users. Switch also currently has 
a steep learning curve, where ingesting data for a region or setting up a scenario requires 
extensive database programming, and running Switch requires using a command line 
interface on a Linux or similar system. Computationally, Switch currently has poor 
scaling capabilities and has difficulty taking full advantage of high performance 
computing clusters. To address these problems, I have started porting Switch from AMPL 
to Pyomo/Pysp, an open source software stack that supports automated decomposition for 
stochastic programming. This should address the cost and scaling issues. The Pyomo 
version of Switch is part of my ongoing research, and I am hoping to publish a paper on it 
this fall. 

I am also intending to start a consortium with colleagues and other interested parties to 
support ongoing development, training and deployment. At this moment, we are 
receiving code contributions from Berkeley students and alumni, an energy consulting 
firm and Google. Over the next two years, I am hoping that we can expand our 
contributor and user base to include additional academics, established energy consulting 
firms, NGOs, as well as renewable energy institutes from Chile and the United States. 
There is a growing recognition and institutional support for open collaborative practices 
for data and software, and Switch is well positioned to flourish in this environment.  
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Appendix A. Supplemental material on impacts of 
methane emissions 
 

Detailed discussion of inventories and emission studies 

Official US inventories rely on aggregated emission factors, infrastructure and production 
statistics, and self-reporting by large industrial emitters. The primary basis of all official 
inventories is 1996 study conducted by the gas industry and the EPA. Inventories 
between 1998 and 2010 showed flat methane emissions from the NG sector over time 
with a modest decline starting around 2003 (Fig 5.1). In 2011, EPA leakage estimates 
increased by 66% to reflect operational events where the top of a well is essentially 
opened to allow high-pressure gas at the bottom of the well to push liquids out of the well 
shaft. These updates were applied retroactively to emission inventories and attempted to 
reflect changing industry practices during the early stages of the fracking boom. Most of 
the increase reflected routine liquid unloading in traditional wells to remove groundwater 
that seeps into wells and restricts gas flow. A smaller portion of the increased emissions 
reflected the end-stages of hydraulic fracturing when hydraulic fluids and sand are 
removed from the well shaft. Howarth’s bottom-up estimates of leakage rates from a 
small number of wells range from 1.7-6% for traditional wells, and 3.6-7.9% for shale 
gas wells, values that include emissions from urban distribution pipelines (Howarth, 
Santoro et al., 2011).  

In August 2012 the EPA enacted new mandates for reducing emissions associated with 
completing hydraulic fracturing and for additional self-reporting of emissions, 
infrastructure and production statistics (EPA, 2012). Within a month, an industry group 
released a report based on a voluntary survey that said liquid unloading emissions were 
not 22 times larger than the old values as the 2011 report had claimed, but only 1.6 times 
as large. The official 2013 inventory cited this industry report, significant stakeholder 
engagement and larger self-reporting through the Greenhouse Gas Reporting Program as 
motivation for reducing NG-sector methane emissions by 20% and retroactively updating 
old estimates. The updated estimates do not show any increases in emissions 
corresponding to the initial fracking boom indicating errors in its data or methodology. 
The 2013 inventory stated an awareness that peer reviewed studies indicated a need for 
higher inventory values and requested feedback for integrating that data. “Finally, 
Several recent ambient measurement studies (e.g. Petron et al. 2012) have implied higher 
methane emissions from natural gas systems in certain areas than would be expected 
based on bottom-up estimates. EPA is aware of such studies and is interested in feedback 
on how information from atmospheric measurement studies can be used to improve U.S. 
GHG Inventory estimates.” (EPA, 2013a) However, the 2014 inventory failed to integrate 
peer-reviewed datasets and instead reduced methane emissions by an additional 10%. 
Ironically, this report cited five studies documenting a need for increasing estimates of 
methane emissions and summarized many suggestions from commenters for 
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incorporating that research (EPA, 2014a). The 2015 inventory did not significantly revise 
methane emissions estimations and failed to integrate peer-reviewed datasets or follow up 
on suggestions received in 2014 (EPA, 2015). This prolonged and systematic bias that 
favors industry self-reporting to scientific peer-reviewed observations and comments is 
troubling, particularly since it directly opposes their stated intents.  

The official 2015 EPA GHG inventory for has a leakage rate of 0.9% for 2011, with a 
possible range of 0.7-1.1% (EPA, 2015). Miller estimated those values to be 1.3-2.4% in 
2008, a significant increase over EPA values (Miller, Wofsy et al., 2013). Kort estimated 
2003 values at 1.4-2.5% with a probable value of 1.9% (Kort, Eluszkiewicz et al., 2008). 
Howarth bottom-up estimates from a small number of wells range from 1.7-6% for 
traditional wells, and 3.6-7.9% for shale gas wells, values which include distribution 
emissions (Howarth, Santoro et al., 2011). Allen compiled data from companies that 
voluntarily allowed them to measure emissions at their facilities and obtained lower 
emission rates than EPA inventories, this downward trend could be due to selection bias, 
but does represent what is achievable through current technologies and management 
practices (Allen, Torres et al., 2013). Allen’s findings have recently been called into 
question due to concerns about sensor malfunctions raised by an inventor of the sensors 
used in the study (Howard, 2015). Comprehensive atmospheric measurements from areas 
with active hydraulic fracturing of shale formations for oil and gas production often yield 
higher values while neglecting emission from transmission, storage and distribution. 
Pétron estimated pre-transmission emission rates in the range of 2.3 – 7.7% based on 
2008 atmospheric methane measurements over active shale fields in Colorado (Pétron, 
Frost et al., 2012).  Schneising used satellite observations to estimate methane emissions 
at 10.1+-7.3% and 9.1+-6.2% from two high growth regions in the northern and southern 
US for the years of 2006-2008 and 2009-2011 (Schneising, Burrows et al., 2014). Karion 
measured leakage rates in the range of of 6.2 - 11.7% over a production field in Utah in 
one day in February of 2012 using a detector mounted on an airplane (Karion, Sweeney 
et al., 2013). There is clearly a large degree of uncertainty in our understanding of these 
emissions and a need for greater clarity. 

Emission intensity of fossil generators 

To understand the underlying emission tradeoffs of various fossil technologies, it is 
useful to consider the emission intensity of various fossil generation technologies (Fig 
A1). Three types of coal technologies are included as reference points: Steam Turbines 
(ST) that represent older coal generation, Integrated Gasification with Combined Cycle 
(IGCC) that represent more thermally efficient modern coal generation and IGCC with 
Carbon Capture and Sequestration (IGCC-CCS) which represent a potential future 
technology. Three types of NG technologies are considered: Combustion Turbines (CT) 
that represents “peaking” power plants with low capital costs and relatively poor thermal 
efficiency, Combined Cycle Gas Turbines (CCGT) that represent more costly and 
efficient units that could directly replace coal, and CCGT with CCS which represent a 
potential future technology.  
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Figure A1 Emission rates of six fossil fuel technologies as a function of natural gas 
leakage rates illustrate underlying tradeoffs for the direct substitution of coal and natural 
gas. A secondary x-axis is provided to help visualize the linear relationship in a simple 
emissions budget between 20-year and 100-year GWP. 

At leakage rates less than 4%, CCGT with or without CCS can provide electricity with 
lower emissions than coal at all examined GWP timescales. This threshold around 4% is 
consistent with other estimates from literature. The direct emissions benefit of CCS 
comes with a cost of having to burn more fuel to provide energy for capturing carbon 
from the smokestack. If leakage surpasses 4%, the upstream CH4 emissions from CCS’s 
additional fuel consumption overwhelm the benefits of reducing smokestack CO2 
emissions. Also, CCGT with CCS only has lower emission intensity than Coal IGCC 
with CCS at very low emission rates. NG CCS has a comparative disadvantage to Coal 
CCS, due to the lower concentration of CO2 in the exhaust gases. Both CCS technologies 
were post-combustion amine capture, which has significant energy requirements and an 
upper limit of 85-90% capture efficiency with diminishing returns at higher capture 
efficiencies. NG may have better relative performance than coal with other CCS 
technologies such as pre-combustion water-gas shift capture or combustion in a pure 
oxygen environment that does not require separating CO2 from atmospheric nitrogen in 
the exhaust gases. Alternative CCS technologies are not examined in this paper. Methane 
emissions from coal extraction were also not considered in this study; if included the 
emission intensity of coal generation would increase, especially for Coal-CCS. 
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Modeling contribution of Leakage to a carbon cap 

In this model, all natural gas consumed by the electricity sector has direct emissions of 
CO2 and indirect upstream emissions of methane, both of which contribute towards the 
emissions cap. To convert methane to CO2-e for the emissions cap, we used a factor of 
86 based on the 20-year Global Warming Potential from the 2013 IPCC report. The 20-
year GWP was more appropriate for this timeframe in order to avoid climatic tipping 
points such as highly reflective ice melting from the polar regions or massive CO2 and 
methane releases from decomposing biomass that had been kept stable by permafrost. A 
20 year global warming potential served as a simple linear proxy for the complex and 
non-linear time dynamics of global warming. The linear nature of GWP allow a simple 
translation between timeframes; to interpret these results in the context of a 100-year 
GWP of 34, the reader may multiply a given leakage rate by a factor of 2.5. Thus a 
leakage rate of 2% in a 20-year GWP analysis is equivalent to a leakage rate of 5% in a 
100-year GWP analysis. 

Carbon Budget Allocations 
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Figure A2 Top: Comparison of emission budget allocations by source between scenarios. 
Source budget for each scenarios shown as grey lines. Central tendency shown as strong 
black line with blue confidence interval. Scenarios have similar budget breakdowns in 
most cases. Bottom: Comparison of emission budget allocations by source within each 
scenario. Methane leaks can account for the majority of the emissions budget in 2030-
2050 for many scenarios when leakage rates exceed 3-4%.  

Materials availability 

Summary tables of my results along with R scripts for loading data, running regressions, 
displaying summary statistics, and drawing a variety of exploratory figures is available at 
either of these urls: 
https://drive.google.com/folderview?id=0B5QpaS5J0GuDfnFSNUNxTk1ac1NDMFNZU
DZENnFpMnhQSl94RXFTLVBXSng1YTMwTEJoWlk or 
http://rael.berkeley.edu/ng_leakage/ This folder includes 947 exploratory figures from the 
published results in the figures directory, which I found invaluable for performing 
quality control and for identifying trends in the data worth exploring in a more targeted 
and quantitative manner. If you wish you explore the results in more detail and are 
comfortable working with R, I encourage you to use the code I wrote as a starting point 
for your explorations.  

To reproduce statistical analysis and figures, run R scripts inside the directory 
ng_leakage using a recent version of Rstudio after setting the working path to that 
directory. If you have trouble with understanding the data or using these scripts, email me 
for assistance: siah@berkeley.edu and I will try to help you on a best-effort basis.  

All of my code, model input data and results are available on request. They are too large 
to readily share on a free cloud service at the moment, plus the model requires proprietary 
software to run and most people need technical support to set up or use the model, so you 
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might as well email me if you want to run things. I plan to post these on an open and 
publically accessible scientific archive to coincide with the publication of the paper, so if 
you are reading this in the future, you can probably find a direct download with an online 
search. The code is freely available under a GPL license. The data and results are freely 
available under a Creative Commons Attribution 4.0 International License.  

Drivers of Cost Response to Methane Leakage 

The Reduced Hydro scenario has the largest increase in costs and decrease in NG 
consumption in 2020-2030 because under zero leakage, it relies more on CCGT to 
replace Hydro while it can retire Coal to make room in the carbon budget for CCGT. 
Reduced Hydro also has the largest cost increase in 2040 because the lack of energy and 
flexibility from hydro cause it to build relatively larger portions of renewables and accept 
larger amounts of curtailment. In 2050, Reduced Hydro’s cost impacts fall to the middle 
of the pack, possibly because it was already forced to make infrastructure investments 
compatible with very low emissions. 

The CCS scenario shows the most dramatic increase in cost and decrease in NG 
consumption in 2050 as leakage increases above 0 as all CCGT+CCS capacity that is 
deployed under zero leakage is phased out at 1% leakage and replaced with an assortment 
of renewables, batteries, CCGT and Gas CT + storage. Further increases in leakage 
prompt a different response as increasing amounts of Coal CCS are brought online, 
causing Wind, CCGT and Gas CT + storage to decline as Batteries increase and Solar 
Photovoltaics and Solar Thermal fluctuate up and down with a non-linear response. In 
both CCS scenarios, Coal CCS is only installed at leakage rates at 2% or above, and is 
only used in pure baseload mode in 2030. In 2040 and 2050, Coal CCS capacity will 
ramp down to the range of 40-50% power output during seasons or weeks with more 
renewable availability to save its emissions budget for higher stress periods. It is worth 
noting that the methane emissions associated with coal extraction were not considered in 
this analysis and would decrease the deployment of Coal CCS if they were considered. 

The 35% carbon cap scenario shows the largest total decline in NG consumption in 2040-
2050 and increase in costs in 2050 because the relatively weak carbon cap permits the 
largest amounts of NG in both decades relative to other scenarios. Leakage has less 
impact on that scenario’s costs in 2040 relative to 2050 because it has a relatively larger 
selection of lower-cost options under the weaker carbon cap of 2040. The 70% carbon 
cap scenario has similar dynamics and shows the next-largest responses in those 
timeframes.  

The 95% carbon cap scenario shows the least response in costs and consumption in 2050 
because it has very low dependence on NG due to the tight carbon cap. The 90% carbon 
cap scenario shows a similar low response to consumption but a relatively higher 
response to cost, suggesting a threshold in the transition to low emission grids over which 
NG becomes less valuable. The availability of alternatives to gas also plays a role in 
mitigating cost impacts. The cheap solar scenario has some of the lowest cost 



125 

responsiveness to leakage rate in 2020-2030 while the carbon cap allows enough 
sufficient natural gas at all leakage rates so that system flexibility is not a major driver of 
cost. Similarly, the Cheap Solar & Storage scenario has the lowest cost responses in 
2020-2040 and the third-lowest cost responses in 2050. Under the relatively tight carbon 
caps of 2040-2050, the CCS & Nuclear scenario has the second lowest cost 
responsiveness as the system gradually becomes dominated by Nuclear power in the 2040 
and 2050 timeframes. 




