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ABSTRACT OF THE DISSERTATION

Computational and Symbolic Models for Secure Computation

by

Bai Yu Li

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Daniele Micciancio, Chair

Formalization and modeling are important topics in cryptography. They are crucial for

precisely defining cryptographic problems and for rigorously deriving security analysis. In this

dissertation, we study some computational and symbolic models in secure computation, namely:

• Passive computational security model for homomorphic approximate encryptions. In this

part, we study homomorphic encryption schemes, as they can be used to construct secure

computation protocols. We identify the shortcomings of the classical passive security

model indistinguishability under chosen plaintext attacks when applied to approximate

encryption, and we propose and study new security definitions in a model that captures

the special properties of approximate encryption. As a concrete example showing the gap

x



between these two models, we present a passive key recovery attack against the popular

CKKS homomorphic approximate encryption scheme (Cheon et. al., Asiacrypt 2017) that

is IND-CPA secure. We implement our attack against several open-source libraries, and

we briefly discuss countermeasures to our attack.

• Symbolic security model for garbled circuits. In this part, we present the first computation-

ally sound symbolic security analysis of Yao’s garbled circuits. We extend the symbolic

framework of Micciancio (Eurocrypt 2010), and we prove Yao’s garbled circuit scheme

is (simulation-based) secure in a purely syntactic fashion, which implies concrete com-

putational security statements by the computational soundness theorem of the symbolic

model. We also implement our symbolic analysis in Haskell that can prove the security of

garbling large circuits within several seconds.

• Equational security model of oblivious transfer (OT) protocols. In this part, we analyze

some concrete OT protocols in the equational security framework (Micciancio and Tessaro,

ITCS 2013). Our analysis uncovers subtle timing issues in these protocols that are partly

caused by shortcomings in the typical OT definitions. We show that the OT length extension

protocol can be proved secure using a revised OT definition that adds an acknowledgment

bit to the sender output. Our analysis on the “simplest” OT protocol of Chou and Orlandi

(Latincrypt 2015) shows that this protocol cannot be proven secure in the equational

framework, even using the revised OT definition.
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Chapter 1

Introduction

Modern cryptography is a study of robust and secure systems that can provide crucial

functionalities and yet can withstand unintended uses or malicious attacks. Due to its critical

nature, cryptography must be built on a solid foundation. To do this, we must first define

cryptographic problems properly, in accurate mathematical languages. Such mathematical

modeling is perhaps the central theme in cryptography, as Avi Wigderson summarized in his

recent talk [69] that, “Computer Science is a modeling science, and Cryptography may be the

most prolific.” As cryptographic concepts can sometimes be counterintuitive, and cryptographic

constructions can sometimes be quite complex and tricky to get done right, good cryptographic

modeling is essential and can greatly benefit building good solutions to the cryptographic

problems that we study.

Generally, we want to achieve two goals with secure computation: correctness and

security. Correctness is straightforward to define such that the output of a secure computation

protocol should be the same as if the computation is carried out in clear. Security is relatively

harder to define: we must use a model to formally capture the capabilities of all feasible

attackers. Such model can be categorized into two flavors: either considering attackers as

arbitrary algorithms of a certain computational complexity class, or considering attackers as

abstract machines that can only perform certain actions on cryptographic constructs. The formal

is the computational model, and the latter is usually called the symbolic model. They come with
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their own advantages and limitations. The computational model is rooted from computational

complexity theories, and it can usually provide security guarantees in the form that, if security

is broken, then a hard computational problem can be efficiently solved; so security is tied to

inefficiency of solving the hard problems. The symbolic model is built on a certain logic system

that abstract cryptographic primitives as perfect objects or blackboxes, and it provides a way

to formally derive a rigorous argument that all such actions (including any combinations of

them) are prevented; so the security is tied to the impossbility of mounting conceivable attacks.

Comparing these two models, the computational model provides stronger security guarantees

but security analysis in this model is usually complicated such that informal arguments are

commonly used, and on the other hand, the symbolic model uses abstractions to provide higher

level analysis such that fully specified security arguments can be formally given. We remark that

both models have their own advantages, and one should consider the strategy of using them to

maximize security guarantees without compromising clarity and understandability.

We study computational and symbolic models for some primitives that are the core

components of secure computation protocols. One of such primitives is fully homomorphic

encryption (FHE), which enables arbitrary computation on encrypted data (without decrypting

them). Since the seminal work of Gentry [30], FHE has become a prominent and fruitful research

topic: it has been shown that the security of some FHE schemes can be based on hardness

assumptions about standard lattice problems [10, 12–14], and the efficiency and practicality of

FHE schemes have been greatly improved [11,31,67]. One of the efforts to making FHE practical

for more real world usages is the CKKS homomorphic encryption scheme on approximate

numbers [19–22, 46], which exploits the fact that data and their computation in many real

world applications are approximate, so the encryption noises that are inherent to lattice-based

encryptions can be treated as approximation errors in computation. In fact, it is observed in [22]

that such approximation errors are typically comparable to the floating-point arithmetic errors

that can already be tolerated by applications. Not eliminating encryption noises substantially

boosts the efficiency of the CKKS scheme, making it practical for many secure machine learning
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applications [3, 8, 9, 23, 26, 27, 36, 61]. Yet, the CKKS scheme is very different from normal FHE

schemes, namely, it does not guarantee correctness of the decrypted data. Due to this fact, the

widely used passive security model for encryption schemes, indistinguishability under chosen

plaintext attack (IND-CPA), does not capture the special property of approximate encryption.

Although the CKKS scheme has been proven to be secure in the IND-CPA model, it is still

subject to a passive key recovery attack. Such gap demonstrates the importance of precisely

defining security using a model that captures all the properties of a cryptographic system.

Good modeling not only means precise definitions, but also requires suitable formaliza-

tion frameworks. Modern cryptographic systems heavily rely on hard computational problems

and randomness, and their analysis typically uses various reductions and probabilistic arguments

to show that the claimed security property holds due to the lack of efficient solutions to the hard

problems. For more and more cryptographic constructions to accomplish sophisticated goals,

their security analysis are long and complicated such that they could easily exceed the usual

length limit of 30 pages in a typical conference. Definitions themselves are sometimes also quite

complex to address various aspects of a system, especially with cryptographic protocols that

deal with interactive computation. In order to save space and convey the main results, informal

specifications and arguments are often used, and sometimes certain steps in the analysis are

intuitively stated without formal justification. The lack of formality has drawn considerable

attention in recent years, calling for applying formal methods to identify potentially inaccurate

security statements in a mathematical sense. To make formal analysis more economical, it is

desirable to design concise yet expressive formalization frameworks. Such frameworks should

have a sufficient level of abstraction to provide rigorous and easy to understand mathematical

formulations and at the same time to reduce the complexity of security analysis. Moreover, they

can be the basis of computer aided security analysis.
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Figure 1.1. A passive attacker against a homomorphic encryption scheme may choose/know the
plaintext m and the homomorphic computation f (thick blue interfaces), and it can read from
black interfaces to learn the ciphertexts ct, ct′ and the decryption results m′. It is not allowed to
temper or inject ciphertexts.

1.1 Our Results

In this thesis, we study several computational and symbolic models for existing primitives

that are major building blocks in secure computation, in order to improve our understandings

about them.

Passive security model for homomorphic approximate encryption schemes. As we

mentioned earlier, the CKKS homomorphic approximate encryption scheme does not satisfy

the correctness requirement for encryption schemes, so its security in the passive attack model

should be carefully considered. Recall that, a passive attacker can influence honest users on their

choices of input to a cryptographic system, she can observe the output of the system given to the

users, but she cannot actively tamper or use the system in any unprescribed ways. Figure 1.1

contains an illustration of the capabilities of such an attacker. For proper encryption scheme

that meet correctness requirement, IND-CPA security is the standard model for passive attacks,

in which an adversary is given either a sequence of ciphertexts or the public key, and she is

challenged on a ciphertext to distinguish whether it encrypts the first or the second message

in a pair chosen by her. Decrypted messages are not considered in such model because they

are assumed to be known by the adversary due to the correctness of the encryption scheme.

For the CKKS scheme, although it has been proven to be secure in the IND-CPA model, such

assumption is not adequate, and hence we should consider its security in a different model.
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In Chapter 3, we propose a passive security model for (homomorphic) approximate

encryption schemes, called IND-CPA+, as a natural extension of IND-CPA. In the IND-CPA+

security definitions, an adversary can 1) influence honest users on the choices of plaintext

messages and homomorphic computations, 2) observe the resulting ciphertexts, and 3) observe

decryption results of well-formed, honestly generated ciphertexts. We stress that a passive

attack model should still allow the attacker to access plaintext messages decrypted from hon-

estly generated ciphertexts: as illustrated in Figure 1.1, such an attacker is only attempting to

gain information by passively observing a user’s behaviors through the output interfaces of a

system built from the homomorphic encryption scheme, without actively tampering or injecting

adversarily chosen ciphertexts. So this definition should be distinguished from the active security

notions such as indistinguishability under chosen ciphertext attacks (or IND-CCA/IND-CCA2).

In particular, as proper encryption schemes are special cases of approximate encryption schemes

with no approximation error, IND-CPA+ security also applies to proper encryption schemes, and

we show that IND-CPA+ is equivalent to IND-CPA security in this case. However, these two

notions are quite different in general, as we show that CKKS is subject to complete key recovery

under passive attacks, hence breaking the IND-CPA+ security.

In addition, we also propose a simulation-based model, called SIM-CPA+ security, as a

natural extension of the simulation-based semantic security, or SIM-CPA security, for proper

encryption schemes. Unlike proper encryption schemes for which IND-CPA is equivalent to

SIM-CPA security, we currently do not know if IND-CPA+ implies SIM-CPA+ security. More-

over, we propose variants of IND-CPA+ security, by either imposing restrictions or making

extensions: we parameterize IND-CPA+ security by the maximal numbers of ciphertexts and

decryptions accessible to the adversary; we consider different query models that release cipher-

texts and decryption results in different orders, in particular, we consider non-adaptive and fully

adaptive models; we also consider circuit privacy and functional decryption as extensions. For

some of these variants, we show separation results, which are unique and do not exist for the

IND-CPA model.
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We report on the implementation and experimental results of our attack against several

open-source libraries that implement the CKKS scheme. Our attack can successfully recover the

secret key for most of the parameter settings in libraries HEAAN, SEAL, HElib, and PALISADE,

on homomorphically computed ciphertexts from very common computations in secure machine

learning applications. We prove that if the CKKS scheme is modified by adding a large random

noise during decryption, then the resulting scheme is secure in the IND-CPA+ model.

Symbolic security model and proof for garbled circuits. Next, we move on to study

secure computation protocols. The problem of secure computation between distrust parties is

perhaps one of the most complex problems solved in cryptography. Among many solutions,

Yao’s garbled circuits [72, 73] (and its many variants) is the first, and in many situations to

minimize the computational complexity, are still the most powerful and preferred primitives that

enable secure function evaluation. Moreover, garbled circuits are the basic building blocks of

many cryptographic systems. Garbled circuit schemes provide a randomized encoding of a given

circuit C and its input x, and its security requires that the garbled encodings (C̃, x̃) reveal nothing

except the output of the computation C(x). Analyzing security of garbled circuits is not easy,

partly due to the complexity of the problem of secure function evaluation in general. The first

formal security analysis of a basic form of garbled circuit schemes [48] appears approximately

30 years after Yao proposed the protocol [72, 73], and analysis with improved security bounds in

stronger models [6, 39, 43], come years later. From the technical perspective, the major source of

complexity is perhaps due to the generality of secure computation problem: the details of the

garbled circuit construction depends on the specific computation that the parties want to perform,

so the hybrids in computational security proofs must be designed to put together many different

cases, resulting in a complex probabilistic analysis overall.

In Chapter 4, we analyze the security of garbled circuits in the computational sound

symbolic framework of Micciancio [58] (with minor and natural extensions). The symbolic

analysis of cryptographic constructions with computational soundness was initially proposed by
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Abadi and Rogaway [1], in the following paradigm:

• Setting up a symbolic model for expressing the cryptographic computations, by providing

a simple language to describe (and analyze) cryptographic protocols without all the details

and complications of concrete (complexity based) computational models.

• Proving a general computational soundness theorem, translating certain symbolic prop-

erties in this abstract model of computation into computational security of the concrete

systems instantiated from the symbolic descriptions with computational cryptographic

primitives satisfying standard (computational) notions of security.

• Prove that the symbolic decryption of the protocol satisfies certain purely syntactic security

properties, i.e., secure in a purely symbolic/syntactical way within the abstract model.

• Conclude, via the computational soundness theorem, that the standard implementation of

the protocol (using a concrete, computationally secure instantiations of the cryptographic

primitives) satisfies the computational security properties.

As a general purpose framework, the computational soundness theorem is proved only once for

all protocols that can be specified in this framework. So, for a specific protocol, its security

analysis is simplified to first establish a symbolic specification, and then to prove the symbolic

security properties. This approach abstracts away the complexity of probabilistic arguments in

computational security proofs, resulting in a simpler and cleaner security analysis that could

provide a concise and succinct “core security lemma” showing why the construction is secure.

Comparing to other formal cryptographic frameworks, the symbolic security proofs can typically

be done in a pen-and-paper fashion, and they are easier to understand for cryptographers who

are usually not familiar with concepts in formal methods and programming languages, lowering

the barriers for them to apply formal methods in cryptography.

We begin with the symbolic language of [57, 58] that allows to use (arbitrarily nested)

encryption and pseudorandom generators, and we extend it to include also randomly chosen bits
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and random permutations. Adversary’s view is expressed by patterns of symbolic expressions,

which is an extension of the symbolic language by including constructs specifying (computation-

ally) hidden information. The patterns are derived from symbolic expressions co-inductively, by

computing the greatest fixed point of a function that deduces information that are necessarily

hidden from an adversary if the symbolic system is instantiated using (computationally) secure

primitives. We show that the soundness of this extended framework follows easily from the

soundness theorem of [58].

Then, we formally specify in this symbolic model a generic variant of Yao’s garbled

circuit that uses the point-and-permute technique [4]. Along the way, we propose a modular,

algebraic way to specify arbitrary circuits in our symbolic model, similar to ideas used in modern

high level programming languages such as Hughes’ arrows [40, 41]. Our circuit specification is

inductive such that an arbitrary circuit can be built from smaller ones using combinators, starting

from the basic case of single gates. The benefit of using this algebraic circuit representation is

not only a succinct formal definition of circuits, but it also enables using structured induction in

the associated symbolic security analysis, resulting in a well organized proof.

We consider simulation-based security for garbled circuits, and we describe a symbolic

simulator. Using the symbolic language and the algebraic circuit representation, we are able to

give a detailed, formal proof showing that the output of Yao’s garbling procedure and the output

of the simulator are symbolically equivalent, i.e., they map to equivalent symbolic patterns.

According to the computational soundness theorem, we can automatically conclude that the

garbled circuits variant we analyzed is computationally secure. Note that the garbled circuit

scheme we considered is generic, and efficient constructions that use a fixed key cipher [5],

free-XOR [47], and half-gate [75] techniques can be adapted with small modifications to the

framework and the analysis.

We implemented our symbolic framework as well as the garbled circuit scheme and its

security analysis in Haskell. Our programs are short, can generate random circuits and perform

symbolic security analysis on them very efficiently.
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Equational security model for oblivious transfer protocols. We continue on the

study of secure computation protocols, and in Chapter 5, we study oblivious transfer protocols in

the equational security framework [59], which offers a formal mathematical model for specifying

and analyzing cryptographic protocols in a composable way. Oblivious transfer (OT), in its

most commonly used 1-out-of-2 formulation [28], is a two party protocol involving a sender

transmitting two messages m0, m1 and a receiver obtaining only one of them mb, in such a

way that the sender does not learn which message b ∈ {0, 1} was delivered and the receiver

does not learn anything about the other message m1−b. OT is a classic example of secure

computation [28, 63], and an important (in fact, complete) building block for secure function

evaluation protocols [25, 33, 42, 44, 49, 74] together with garbled circuits.

We examine a generic OT length extension protocol and a very efficient OT protocol [24]

in the random oracle model. Our analysis starts with the naive definition of an OT functionality,

often used in literature (including in the UC framework [16]) to describe an ideal OT, that the

sender has two inputs m0, m1 and no output, and the receiver has one input b and one output

mb. Using such a definition, we are able to show that the OT length extension protocol, often

considered as a folklore result in cryptography, does not satisfy the security requirement for OT.

What missing here is a critical timing information that must be given to the sender to indicate the

receipt of the receiver’s choice bit b. However, with a simple modification to the OT definitions

such that the sender outputs an acknowledgment a when the receiver’s input b is specified, the

OT length extension protocol is indeed provably secure using a simple equational proof.

For the efficient OT protocol, the so-called “simplest OT protocol” of [24], we give a

formal specification in the equational framework. We show that, if the naive OT definition is

used, then the protocol is insecure against both corrupted sender and corrupted receiver. For the

case of corrupted sender, the failure of simulation is due to the lack of the timing information

about the receipt of receiver’s choice bit b. So, we then modify the protocol using the revised OT

definition. This time, we show that the protocol is still insecure against a corrupted receiver, and

the problem is that in a real protocol execution the receiver can delay its random oracle query
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until after seeing the sender’s ciphertexts, but in the ideal protocol execution, if the simulator has

to output the ciphertexts before seeing the receiver’s random oracle query, then it must be able to

guess an external random bit correctly before seeing any inputs, which is impossible to achieve

with high probability.

With these case studies, we exemplify the use of equational framework in analyzing secure

computation protocols. In particular, we are able to specify important timing or dependency

relations among different communication channels and computation results, leading to a simple

revision of the ideal OT definition. The insecurity results we obtained should not be interpreted

as the evidence of concrete attacks to the protocols; rather, they show that some details (e.g., the

timing information, which is sometimes categorized into control signals in other frameworks)

that are usually omitted in the security analysis may be crucial for a complete security proof.

As we mentioned earlier, due to the complexity of maintaining composable security with the

traditional models of interactive computation (such as interactive Turing machines), giving a

full, detailed formal specification in composable security frameworks in such models is typically

considered too complicated to do, yet it can be crucial to obtain a precise mathematical proof

of security. Our findings show the usefulness of the highly abstract, algebraic model in the

equational framework for formulating and investigating secure computation protocols.

10



Chapter 2

Preliminaries

In this chapter, we present some common notations and definitions for later chapters. As

the topics of this thesis span over several different research areas of cryptography, definitions

that are only used by a specific chapter will be introduced as they are needed.

Notations. For a positive integer n, we write [n] = {1,… , n}. We use the notation

a = (a0,… , an−1) for column vectors, and at = [a0,… , an−1] for rows. Vector entries are indexed

starting from 0, and denoted by ai or a[i]. The dot product between two vectors (with entries

in a ring) is written ⟨a,b⟩ or at ⋅ b. Scalar functions f (a) = (f (a0),… , f (an−1)) are applied to

vectors componentwise.

For any finite set A, we write x← A for the operation of selecting x uniformly at random

from A. More generally, if � is a probability distribution over A, x ← � selects x according to

� , and we write �(a) = Prx←�{x = a} for any a ∈ A.

Standard Cryptographic Definitions. In all our definitions, we denote the security

parameter by �. A function f in � is negligible if f (�) = �−!(1). We use negl(�) to denote an

arbitrary negligible function in �. A function g in � is overwhelming if 1 − g(�) is negligible.

Let �1 and �2 be distributions over a finite set A. The statistical distance between �1 and

�2 is SD(�1, �2) =
1
2

∑

a∈A |�1(a) − �2(a)|.
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Chapter 3

Passive Security Model of Homomorphic
Approximate Encryption

In this chapter we present passive security definitions for (homomorphic) approximate

encryption schemes, and we study their relationship with exact encryption schemes. In particular,

we show that the CKKS scheme [22], a natural homomorphic approximate encryption scheme

that is secure in the IND-CPA model under the hardness assumptions of standard lattice problems,

is subject to a passive key-recovery attack, hence showing it is not secure in the passive security

model for approximate encryption schemes.

3.1 Security Definitions for Exact (Homomorphic) Encryp-
tion Schemes

We first recall the formal definitions for exact (homomorphic) encryption schemes: their

syntax, correctness, and the passive security definitions. These definitions serve as the basis for

our security model of approximate encryption schemes.

A public-key encryption scheme with a message space  is a tuple (KeyGen,Enc,Dec)

consisting of three algorithms:

• a randomized key generation algorithm KeyGen that takes the security parameter 1� and

outputs a secret key sk and a public key pk,

• a randomized encryption algorithm Enc that takes pk and a message m ∈ and outputs a
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ciphertext ct, and

• a deterministic decryption algorithm Dec that takes sk and a ciphertext ct and outputs a

message m′ or a special symbol ⊥ indicating decryption failure.

We usually parameterize Enc with pk and write Encpk(⋅) to denote the function Enc(pk, ⋅), and

similarly we write Decsk(⋅) for the function Dec(sk, ⋅). A public-key encryption scheme is correct

if for all m ∈  and keys (sk, pk) in the support of KeyGen(1�), Pr{Decsk(Encpk(m)) = m} =

1 − negl(�), where the probability is over the randomness of Enc.

A public-key homomorphic encryption scheme is a public-key encryption scheme with

an additional, possibly randomized, (homomorphic) evaluation algorithm Eval, and such that

KeyGen outputs an additional evaluation key ek besides sk and pk. The algorithm Eval takes

ek, a circuit g ∶ l →  for some l ≥ 1, and a sequence of l ciphertexts cti, and it outputs

a ciphertext ct′. The correctness of a homomorphic encryption scheme requires that, for all

keys (sk, pk, ek) in the support of KeyGen(1�), for all circuits g ∶l →  and for all mi ∈,

1 ≤ i ≤ l, it holds that

Pr

⎧

⎪

⎨

⎪

⎩

cti ← Encpk(mi) for 1 ≤ i ≤ l,

Decsk(Evalek(g, (cti)li=1)) = g((mi)
l
i=1)

⎫

⎪

⎬

⎪

⎭

= 1 − negl(�),

where the probability is over the randomness of Enc and Eval. We also require that the complexity

of Dec is independent (or a slow growing function) of the size of the circuit g.

In terms of security, we recall the standard security notion of indistinguishability under

chosen plaintext attack, or IND-CPA, for public-key (homomorphic) encryption schemes.

Definition 1 (IND-CPA Security). Let (KeyGen,Enc,Dec,Eval) be a homomorphic encryption

scheme. We define an experiment Exprcpab [] parameterized by a bit b ∈ {0, 1} and an efficient
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adversary :

Exprcpab [](1
�) ∶ (sk, pk, ek)← KeyGen(1�)

(x0, x1)← (1� , pk, ek)

ct ← Encpk(xb)

b′ ← (ct)

return(b′)

We say that the scheme is IND-CPA secure if for any efficient adversary , it holds that

Advcpa[](�) = |Pr{Exprcpa0 [](1
�) = 1} − Pr{Exprcpa1 [](1

�) = 1}| = negl(�).

3.2 Security Definitions for Homomorphic Approximate
Encryption Schemes

In this section we present general definitions that accurately capture passive attacks

against a (possibly approximate, homomorphic) encryption scheme. We recall that in a passive

attack the adversary may control which messages get encrypted, what homomorphic computa-

tions are performed on them, and may observe all ciphertexts produced in the process, as well as

the decrypted result of the computations.

We first present an indistinguishability-based definition (similar in spirit to the stan-

dard IND-CPA notion described in Definition 1). A simulation-based notion is presented in

Section 3.2.2. Then, we explore restricted and extended variants of these basic definitions.

3.2.1 Indistinguishability-Based Definition

Our first definition is indistinguishability-based: the adversary chooses a number of

pairs of plaintext messages, and its goal is to determine whether the ciphertexts it receives are
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encryptions of the first or the second plaintext in the pairs. In contrast to Definition 1, our new

definition allows an adversary to make multiple challenge queries (m0, m1), rather than a single

one. Our adversary can also issue homomorphic evaluation and decryption queries. We now give

the formal definition. For simplicity, and as common in homomorphic encryption schemes, we

assume all messages belong to a fixed message space . In particular, all messages have (or can

be padded to) the same length. We refer to our definition as IND-CPA+, as it includes IND-CPA

(see Definition 1) as a special case, where the adversary makes only one encryption query, and

no homomorphic evaluation or decryption queries.

Definition 2 (IND-CPA+ Security). Let  = (KeyGen,Enc,Dec,Eval) be a public-key homo-

morphic (possibly approximate) encryption scheme with plaintext space  and ciphertext space

. We define an experiment Exprindcpa
+

b [], parameterized by a bit b ∈ {0, 1} and involving

an efficient adversary  that is given access to the following oracles, sharing a common state

S ∈ ( × × )∗ consisting of a sequence of message-message-ciphertext triplets:

• An encryption oracle Epk(m0, m1) that, given a pair of plaintext messages m0, m1, computes

c ← Encpk(mb), extends the state

S ∶= [S; (m0, m1, c)]

with one more triplet, and returns the ciphertext c to the adversary.

• An evaluation oracle Hek(g, J ) that, given a function g ∶ k →  and a sequence

of indices J = (j1,… , jk) ∈ {1,… , |S|}k, computes c ← Evalpk(g, S[j1].c,… , S[jk].c),

extends the state

S ∶= [S; (g(S[j1].m0,… , S[jk].m0), g(S[j1].m1,… , S[jk].m1), c)]

with one more triplet, and returns the ciphertext c to the adversary. Here and below |S|
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denotes the number of triplets in the sequence S, and S[j].m0, S[j].m1 and S[j].c denote

the three components of the jth element of S.

• A decryption oracle Dsk(j) that, given an index j ≤ |S|, checks that S[j].m0 = S[j].m1,

and, if so, returns Decsk(S[j].c) to the adversary. (If the check fails, a special error symbol

⊥ is returned.)

The experiment is defined as

Exprindcpa
+

b [](1�) ∶ (sk, pk, ek)← KeyGen(1�)

S ∶= [ ]

b′ ← Epk,Hek,Dsk(1� , pk, ek)

return(b′)

The advantage of adversary  against the IND-CPA+ security of the scheme is

Advindcpa
+
[](�) = |Pr{Exprindcpa

+

0 [](1�) = 1} − Pr{Exprindcpa
+

1 [](1�) = 1}|,

where the probability is over the randomness of  and the experiment. The scheme  is

IND-CPA+-secure if for any efficient (probabilistic polynomial time) , the Advindcpa
+
[] is

negligible in �.

As a standard convention, if at any point in an experiment the adversary makes an invalid

query (e.g., a circuit g not supported by the scheme, or indices out of range), the oracle simply

returns an error symbol ⊥.

We remark that, while the adversary in Definition 2 is given access to a decryption

oracle, this should not be confused with indistinguishability under a chosen ciphertext attack

(IND-CCA), which models active adversaries with the capability of tampering with (or injecting)

arbitrary ciphertexts. Definition 2 only allows for decryption queries on valid ciphertexts that have
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been honestly computed using the correct encryption and homomorphic evaluation algorithms.

Furthermore, the requirement that S[j].m0 = S[j].m1 is to eliminate trivial attacks where the

adversary can distinguish between two computations that lead to different results when computed

on exact values.

Exact encryption schemes can be seen as a special case of approximate encryption,

with the added correctness requirement. So, Definition 2 can be applied to exact as well as

approximate encryption schemes. As a sanity check, we compare our new definition with the

traditional formulation of IND-CPA security (Definition 1) modeling passive attacks against

exact encryption schemes. Perhaps not surprisingly, for the case of exact encryption schemes,

our new security definition coincides with the standard notion of IND-CPA security.

Lemma 1. Any exact homomorphic encryption scheme  is IND-CPA secure if and only if it is

IND-CPA+ secure.

Proof. It is easy to see that IND-CPA+ security implies IND-CPA security, as an adversary

making only one E query but no other queries in the IND-CPA+ experiment is also an IND-CPA

adversary. So we consider the reverse direction.

Assume  is IND-CPA secure. Let  be any adversary breaking the IND-CPA+ security

of  , and assume  makes at most l queries in total to E and H. We build adversaries (i), for

0 ≤ i < l, to break the IND-CPA security of  .

(i) takes input 1� , pk, ek, and it then runs (1� , pk, ek). It maintains a state S ∈

( × × )∗ just like Exprindcpa
+
, and it answers oracle queries made by  as follows:

• For each query (m0, m1) to E, if |S| < i, then let c ← Encpk(m1); if |S| > i, then let

c ← Encpk(m0); and if |S| = i, (i) sends (m0, m1) to Exprcpab and receives c. The state S is

extended by one more triplet (m0, m1, c), and c is returned to .

• For each query (g, J ) to H, where g ∶ k →  and J = (j1,… , jk), let c ←
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Evalek(g, S[j1].c,… , S[jk].c), extend S by one more triplet

(g(S[j1].m0, … , S[jk].m0), g(S[j1].m1,… , S[jk].m1), c),

and return c to .

• For each query j to D, if j ≤ |S| and S[j].m0 = S[j].m1, then return S[j].m0 to ;

otherwise return an error symbol ⊥.

Finally, when  halts with a bit b′, (i) output this bit.

Since (i) does not depend on the secret key sk to answer the D queries, it is a valid

adversary in the IND-CPA experiment. Now, let (i) = Exprcpa0 [
(i)] for 0 ≤ i < l, and

let (l) = Exprcpa1 [
(l−1)]. For 1 ≤ i < l, note that (i) is exactly the same distribution as

Exprcpa1 [
(i−1)]. Furthermore, by the correctness of exact homomorphic encryption schemes, the

D responses from (i) to  are indistinguishable from those in the IND-CPA+ experiment; so

(0) and Exprindcpa
+

0 [] are indistinguishable, and the same hold true for (l) and Exprindcpa
+

1 [].

So Advindcpa
+
[] ≤

∑

0≤i<l Adv
cpa[(i)] + negl(�), which is negligible since  is IND-CPA

secure.

Notice that the above lemma makes essential use of the correctness of exact encryp-

tion schemes, and the proof does not extend to approximate encryption schemes. In fact, for

approximate encryption schemes, the result of decryption is not a simple function of the en-

crypted messages (and the computations performed on them), and may potentially depend (in

an indirect, unspecified way) on the scheme’s secret key and encryption randomness. So the

information provided by decryption queries is not easily computed by the adversary on its own,

and, at least in principle, IND-CPA+ may be a stronger security notion than IND-CPA when

applied to approximate encryption schemes. We will make this intuition clear in the following

sections, proving formal separation results, and providing concrete attacks to actual approximate

encryption schemes.
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Also note that the above definition does not guarantee circuit privacy in the homomor-

phically evaluated ciphertexts, as the circuit to be evaluated in a query to oracle H does not

depend on the bit b of the IND-CPA+ experiment. In a later section we extend our definition

with circuit privacy. Here we focus on the basic definition (without circuit privacy) which is the

most common in cryptography.

3.2.2 Simulation-Based Definition

As standard in cryptography, secure encryption schemes are expected to hide all par-

tial information about plaintext messages. In the indistinguishability notion of security, this

is captured by the task of distinguishing between any two (adversarially chosen) messages.

Simulation-based security (also known as semantic security) offers a more direct way to express

that ciphertexts provide no useful information at all. We consider standalone simulation-based

security, following the “real vs ideal worlds” paradigm: the real world is implemented using the

cryptographic scheme to process real input, and the ideal world consists of a simulator which is

given a minimal amount of information and should produce an output essentially equivalent to a

real attack.

We propose the following simulation-based security definition for homomorphic approx-

imate encryption schemes. For simplicity, we consider a plaintext space with fixed message

length  = {0, 1}l. The definition is easily extended to variable-length message spaces.

Definition 3 (SIM-CPA+ Security). Let  = (KeyGen,Enc,Dec,Eval) be a public-key homo-

morphic (possibly approximate) encryption scheme with plaintext space  = {0, 1}l. Security

is defined with respect to an adversary  that is given a public/evalution key (pk, ek) and has

access to three (stateful) oracles:

• An encryption oracle E(m) that, given a plaintext messages m, returns a ciphertext c.

• An evaluation oracle H(g, J ) that, given a function g ∶k →  for some k ≥ 1 and a

sequence of indices J = (j1,… , jk) ∈ {1,… , |S|}k, returns a ciphertext c.
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• A decryption oracle D(j) that, given an index j returns a plaintext message m.

Oracle queries are answered in two different ways, defining a “real” and an “ideal” experiment.

The real experiment maintains a state consisting of a sequence T ∈ ( × )∗ of message-

ciphertext pairs, and the ideal experiment maintains a sequence of messages T ∈ ∗ as its

state. The indexes J and j in the evaluation and decryption queries are required to be in the

range {1,… , |T |}, where |T | is the current length of T .

The real world experiment Real begins by initializing T ∶= [ ] to the empty sequence, and

sampling a tuple of keys (sk, pk, ek)← KeyGen(1�) using the scheme’s key generation algorithm.

Then, the keys (pk, ek) are given to , which is run answering its oracle queries as follows:

• E(m): compute c ← Encpk(m), extend the state T ∶= [T ; (m, c)] with one more pair, and

return c to .

• H(g, J ): compute c ← Evalek(g, (T [j1].c,… , T [jk].c)), extend the state

T ∶= [T ; (g(T [j1].m,… , T [jk].m), c)]

with one more pair, and return c to .

• D(j): compute m′ = Decsk(T [j].c) and return it to .

The ideal world experiment Ideal answers the adversary’s queries using an efficient

(stateful) simulator  (see Fig. 3.1 for an illustration), which maintains its own state, in addition

(and without access) to T . The ideal experiment begins by initializing T ∶= [ ] to the empty

sequence, and starting the simulator  which produces a pair of keys (pk, ek) that are given to

the adversary . Then, it answers ’s oracle queries as follows:

• E(m): send the message E to the simulator,  , which replies with a ciphertext c. The state

T ∶= [T ;m] is extended with one more message m, and the ciphertext c is returned to the

adversary.
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• H(g, J ): send the message (H, g, J ) to the simulator  , which replies with a ciphertext c.

The state

T ∶= [T ; g(T [j1],… , T [jk])]

is extended with one more message g(T [j1],… , T [jk]), and c is returned to .

• D(j): send (D, j, T [j]) to the simulator  . The simulator is expected to reply with a

message m′ (possibly different from T [j]) which is returned to the adversary.

As usual, in both experiments, whenever  makes an invalid query, the oracle returns an

error symbol ⊥. The experiments terminate when  halts with an output bit b. This bit is the final

output of the experiment, and it is denoted by Real[](1�) or Ideal[ ,](1�). The advantage of

adversary  in breaking SIM-CPA+ security is

Advsimcpa
+
[](�) = |Pr{Ideal[ ,](1�) = 1} − Pr{Real[](1�) = 1}|.

We say that  is SIM-CPA+-secure if there exists an efficient (probabilistic polynomial time)

simulator  such that, for all efficient  the advantage Advsimcpa
+
[] is negligible in �.

Toutput

m′j

ci
ci

H(g, J )
E(m) E

D(j)

pk, ek

(H, g, J )
(D, j, T [j]) 

Figure 3.1. The ideal world experiment Ideal that involves a simulator  and an adversary .
The box between  and  indicates that oracle queries from  are processed (with the help of
the state T ) by the experiment before sending to  .

In the ideal world experiment, the input to the simulator describes information that

is not necessarily protected by the scheme  : the number of plaintexts to be encrypted, the
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homomorphic computation to be performed, and the exact computation results (which can be

derived from the input plaintexts). The simulator’s task, given these minimal information, is

to simulate any attack that can be mounted by a real world adversary. As we mentioned, our

definition makes an assumption that all plaintext messages, including plaintext computation

results corresponding to homomorphic evaluations, are of the same bit length l. The definition

can be extended to variable length messages by giving the length information |m| to the simulator.

Relations with IND-CPA+-security. For exact homomorphic encryption schemes,

it is well known [34, 54] that the simulation-based semantic security is equivalent to the

indistinguishability-based IND-CPA security. So naturally we want to extend such relation-

ship to homomorphic approximate encryption schemes. The following implication result is easy

to check.

Lemma 2. For any homomorphic approximate encryption scheme  , if  is SIM-CPA+-secure,

then it is IND-CPA+-secure. Moreover, the reduction between the two adversaries preserves the

number, type and order of queries.

Proof. Assume  is SIM-CPA+-secure, and fix an IND-CPA+ adversary . We build two

SIM-CPA+ adversaries 0 and 1: For b ∈ {0, 1}, b receives the public keys (pk, ek), maintains

a state M ∈ ( ×)∗, runs (1� , pk, ek) and handles its oracle queries as follows:

• For each E(m0, m1) query, b stores this message pair M ∶= [M ; (m0, m1)], queries its

oracle E(mb), and then it returns the oracle response c to .

• For each H(g, J ) query, where J = (j1,… , jk), b extends its state by a new message

pair M ∶= [M ; (g(M[j1].m0,… ,M[jk].m0), g(M[j1].m1,… ,M[jk].m1))], queries its

oracle H(g, J ), and it then returns the oracle response c to .

• For each D(j) query, if M[j].m0 = M[j].m1, b queries its oracle D(j) and returns the

oracle response m′ to ; otherwise b returns the error symbol ⊥ to .
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By SIM-CPA+-security, there exists a simulator  such that Real[0] ≈c Ideal[ ,0]

and Real[1] ≈c Ideal[ ,1]. Note that Real[b] and Exprindcpa
+

b [] are exactly the same

distribution for both b ∈ {0, 1}. Also note that, in both Ideal[ ,0] and Ideal[ ,1], if

M[j].m0 = M[j].m1 for a decryption query D(j) from , then the input given to  in these

two ideal world experiments are exactly the same; so Ideal[ ,0] = Ideal[ ,1]. Therefore

the scheme  is IND-CPA+-secure, and our reduction preserves the number, type, and order of

queries.

As exact homomorphic encryption schemes are special cases of homomorphic approx-

imate encryption schemes, we compare IND-CPA with SIM-CPA+ security. The following

lemma shows that (together with Lemma 1), for exact encryptions, SIM-CPA+ is also equivalent

to IND-CPA.

Lemma 3. Any exact homomorphic encryption scheme  is IND-CPA+ secure if and only if it is

SIM-CPA+ secure.

Proof. We first show that IND-CPA+ security implies SIM-CPA+. To do so, we build a simulator

 . On start up,  samples keys (sk, pk, ek) ← KeyGen(1�) honestly using the key generation

algorithm, and outputs (pk, ek). The simulator initializes a state C ∶= [ ] that is a sequence of

ciphertexts. Then, it handles oracle queries from an adversary as follows:

• For each E(m) query,  receives a message E, computes c ← Encpk(0), extends its state

C ∶= [C; c] by one more ciphertext, and returns c.

• For each H(g, J ) query,  receives (H, g, J ), computes c ← Evalek(g, C[j1],… , C[jk])

where J = (j1,… , jk), extends its state as C ∶= [C; c], and returns c.

• For each D(j) query,  receives (D, j, m), and it returns m.

Now, fix any SIM-CPA+ adversary , and we build an IND-CPA+ adversary : On

input (1� , pk, ek),  runs (1�) and sends (pk, ek) to . It also maintains a sequence M of

plaintexts as its state. For oracle queries from ,  does the following:
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• For each E(m) query,  extends M ∶= [M ; m] by one more message, sends (m, 0) to the

oracle Epk and receives c, and then it returns c to .

• For each H(g, J = (j1,… , jk)) query,  extends M ∶= [M ; g(M[j1],… ,M[jk])] by one

more message, sends (g, J ) to the oracle Hek and receives c, and then it returns c to .

• For each D(j) query,  returns M[j] to .

By the correctness of exact homomorphic encryption schemes, we see that Exprindcpa
+

0 []

is indistinguishable from the real world experiment Real[]. On the other hand, the ideal world

experiment Ideal[ ,] is exactly the same as Exprindcpa
+

1 []. Since  is IND-CPA+ secure, it is

also SIM-CPA+ secure.

For the reverse direction, we can directly apply Lemma 2.

For homomorphic approximate encryption schemes in general, we do not know if

IND-CPA+ security implies SIM-CPA+ security, and we leave it as an interesting open question.

3.2.3 Restricted Security Notions and Separations Between Them

We have observed that, for exact encryption schemes, {IND-CPA+,SIM-CPA+} secu-

rity is equivalent to the traditional IND-CPA security. (See Lemma 1.) We now show that

{IND-CPA+,SIM-CPA+} is strictly stronger than IND-CPA, i.e., there are approximate encryp-

tion schemes that are provably IND-CPA secure (under standard complexity assumptions) but

are not {IND-CPA+,SIM-CPA+} secure. In order to get a more refined understanding of the gap

between these notions, we introduce a natural parameterization of IND-CPA+ and SIM-CPA+

security, that smoothly interpolates between IND-CPA and {IND-CPA+,SIM-CPA+}. Then, we

define a number of restricted notions of security, and show separations between them, show-

ing that there is an infinite chain of (strictly) increasingly stronger definitions, ranging from

IND-CPA all the way to {IND-CPA+,SIM-CPA+}.
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Restricting the numbers of queries. We parameterize the definition by imposing a

bound on the number of queries that may be asked by the adversary.

Definition 4 ((q,l)-IND-CPA+ Security). For any two functions q(�) and l(�) of the security

parameter �, we say that a homomorphic encryption scheme is (q,l)-IND-CPA+ secure if it

satisfies Definition 2 for all adversaries  that make at most l(�) queries to oracles E,H, and at

most q(�) queries to oracle D.

We combined the encryption (E) and evaluation (H) queries into a single bound l(�)

for simplicity, and because both type of queries produce ciphertexts. The definition is easily

extended to more general formulations, but we will be primarily interested in the bound q on the

number of decryption queries, which are the distinguishing feature of approximate encryption

schemes. When l is an arbitrary polynomial, and only the number of decryption queries q(�) is

restricted, we say that a scheme is q-IND-CPA+ secure.

Now, we can think of IND-CPA security as a special case of (q,l)-IND-CPA+, for q = 0

and l = 1, as the only query to E∕H must be an encryption query. (Oracle E must be called at least

once before one can use H to homomorphically evaluate a function on a ciphertext.) So, bounding

the number of queries allows to smoothly transition from the traditional IND-CPA definition

(i.e., (0, 1)-IND-CPA+ security), to our IND-CPA+ (i.e., (poly, poly)-IND-CPA+ security).

Similar to IND-CPA+ security, we can also consider parameterizations of the SIM-CPA+

security using bounds on the numbers of queries that an adversary is allowed to ask. We say

that a homomorphic encryption scheme is (q,l)-SIM-CPA+ secure if it satisfies Definition 3

for all adversaries  that make at most l(�) queries to oracles E,H, and at most q(�) queries to

oracle D. When l is an arbitrary polynomial, and only the number of decryption queries q(�) is

restricted, then we say that a scheme is q-SIM-CPA+ secure.

Naturally, for proper (exact) encryption schemes, all these definitions are equivalent, and

it is only in the approximate encryption setting that the definitions can be separated.

In the following proposition we show that there exist some scheme that is secure for up
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to some fixed number q of decryption queries but insecure for just q + 1 decryption queries. We

remark that the encryption scheme described in the proof is presented for the sole purpose of

separating the two definitions. More natural examples that separate IND-CPA and IND-CPA+

will be described in Section 3.3, where we present attacks to approximate encryption schemes

from the literature.

Proposition 1. Assume there exist a pseudorandom function and an IND-CPA-secure exact

homomorphic encryption scheme. Then, for any fixed q ≥ 2, there exists a homomorphic

approximate encryption scheme that is (q,l)-SIM-CPA+-secure but not (q + 1,l)-IND-CPA+-

secure.

Proof. Let  = (KeyGen,Enc,Dec,Eval) be an exact homomorphic encryption scheme that is

IND-CPA secure. Let PRF ∶ {0, 1}� ×X → Y be a secure pseudorandom function, and without

loss of generality, we can assume that X = Y = {0, 1}k, where k = |sk| is the length of the

secret key of  . Let 0 < � < 1 be some small positive number, which will be the upper bound on

decryption errors, i.e., the approximation upper bound in  ′. Let (�, �−1) be an encoding scheme

from {0, 1}k to [0, �).

Build a homomorphic approximate encryption scheme  ′ = (KeyGen′,Enc′,Dec′,Eval′):

• The key generation algorithm KeyGen′(1�) samples (sk, pk, ek)← KeyGen(1�) and a PRF

key K ← {0, 1}� . Then it outputs (sk′, pk, ek), where sk′ = (sk, K).

• The encryption algorithm Enc′ and the evaluation algorithm Eval′ are identical to Enc and

Eval, respectively.

• The decryption algorithm Dec′(sk,K)(c) first decrypts the ciphertext c to m = Decsk(c). It

outputs m+�(PRFK(m mod (q+1))) if m (mod (q+1)) ≢ 0, and it outputs m+�(sk⊕r)

for r = ⊕q
i=1PRFK(i) otherwise.

When an adversary  makes at most q decryption queries, the resulting decryption errors

{Dec′
sk′
(ci)−mi ∣ ci ← Encpk(mi)} are computationally indistinguishable from random strings due
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to pseudorandomness of PRF. So one can show that the scheme  ′ is (q,l)-SIM-CPA+-secure

using a reduction to the IND-CPA security of  . However, if an adversary can make q + 1

decryption queries, then it can completely recover the secret key sk using the decryption errors

as secret shares of sk. So  ′ is not (q + 1,l)-IND-CPA+-secure.

Restricting the query ordering. In the definition of IND-CPA+ security, we did not

state any restriction on the relative order of queries made by the adversary. In particular, queries

can be made in many rounds, and a later query can depend on the responses from earlier queries.

Such notion is called security with adaptively chosen queries, or simply adaptive security.

There are several other natural query orderings that can be imposed on the adversary,

and enforced by an application. For example, it is often the case that input are encrypted and

collected in advance, before any homomorphic evaluation or decryption operation takes place.

As an extreme situation, one can consider a fully non-adaptive setting, where the adversary

specifies all its queries in advance after seeing the public/evaluation key. We call this the (fully)

non-adaptive model. Non-adaptive security is much easier to formulate, and we fully spell out

its definition now.

Definition 5 (Non-Adaptive (q,l)-IND-CPA+ Security). Let  be a homomorphic (possibly

approximate) encryption scheme  = (KeyGen,Enc,Dec,Eval). Let q and l be two polynomial

bounds in �. We say that  is non-adaptively (q,l)-IND-CPA+-secure if for all efficient adversary

 = (0,1) consisting of two steps such that

({m(i)0 }
k
i=1, {m

(i)
1 }

k
i=1, {(gi, Ji)}

l
i=k+1, {ji}

q
i=1, st)← 0(1� , pk, ek),

where (sk, pk, ek) ← KeyGen(1�), m(i)0 = gi(m
(Ji)
0 ), m(i)1 = gi(m

(Ji)
1 ) for i = k + 1,… ,l, and

all gi are valid circuits with indices Ji ∈ {1,… ,l}∗, the following two distributions are
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indistinguishable to 1(1� , st):

{ {ci ← Encpk(m
(i)
0 )}

k
i=1, {ci ← Evalek(gi, c(Ji))}

l
i=k+1, {Decsk(ci) ∣ m

ji
0 = m

ji
1 }

q
i=1 },

and

{ {ci ← Encpk(m
(i)
1 )}

k
i=1, {ci ← Evalek(gi, c(Ji))}

l
i=k+1, {Decsk(ci) ∣ m

ji
0 = m

ji
1 }

q
i=1 },

where the probability is over the randomness of  and in Enc and Eval.

We can also define a non-adaptive variant of SIM-CPA+ security in a way similar to

Definition 5 such that all queries must be specified by the adversary at once, after seeing the

public-key. Note that, the implication result of Lemma 2 applies to any query model, i.e., if

a scheme is SIM-CPA+-secure in some query model, then it is IND-CPA+-secure in the same

query model.

Typically the same security notion is weaker in the non-adaptive model than in the

adaptive model, as some attacks are only feasible in the latter model. We show that this is also

the case for homomorphic approximate encryption schemes. As before, the encryption scheme

described in the following proof is not intended to be used. It is just a theoretical construction,

provided simply for the purpose of showing that a scheme may satisfy one definition but not the

other.

Proposition 2. Assume there exist an IND-CPA-secure exact homomorphic encryption scheme

and a secure pseudorandom permutation. Then there exists a homomorphic approximate

encryption scheme that is non-adaptively SIM-CPA+-secure, but it is not adaptively (2, 2)-

IND-CPA+-secure.

Proof. Let  be an IND-CPA secure exact HE scheme, and let H ∶ {0, 1}� × X → X be a

pseudorandom permutation for some set X that contains the secret key space of  . We first
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define another pseudorandom permutation F ∶ {0, 1}� ×X → X:

∀x ∈ X. FK(x) = H−1
K (HK(x)⊕ 1).

Notice that FK(FK(x)) = x for all x ∈ X. Let (�, �−1) be an encoding scheme from X to [0, �)

for some small � < 1.

We now build a homomorphic approximate encryption scheme  ′.

• KeyGen′(1�) = (sk′, pk, ek): Sample (sk, pk, ek) ←  .KeyGen(1�), and also sample

K ← {0, 1}� for the pseudorandom permutation F . Then set sk′ = (sk, K), and return

(sk′, pk, ek).

• Enc′pk(⋅) and Eval′ek(⋅, ⋅) are exactly the same as  .Encpk and  .Evalek.

• Dec′sk,K(c) = m + �(r), where m =  .Decsk(c), r = FK(sk) if m = 0, and r = FK(m)

otherwise.

One can check that F is a pseudorandom permutation against non-adaptive adversaries,

i.e., those adversaries who submit their queries all at once. So in the non-adaptive model, the real

world approximate decryption result m+ �(r) obtained from decryption queries can be simulated

knowing just m and the bound �, without using the secret key sk. Since  is IND-CPA secure,

we see that  ′ is non-adaptively SIM-CPA+-secure.

But, the noises in decryption results are no longer pseudorandom in the adaptive model.

In fact, an adaptive adversary  against IND-CPA+ security experiment can first query the

encryption oracle on 0, and then ask to decrypt the corresponding ciphertext to get e = �(FK(sk)).

Next,  asks to encrypt �−1(e) = FK(sk) and then asks to decrypt its ciphertext. At this point

 gets the decryption result �−1(e) + �(sk), and  can fully recover sk. So  ′ is not adaptively

(2, 2)-IND-CPA+-secure.
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3.2.4 Extensions to Circuit Privacy and Functional Decryption Queries

In this section we consider extensions of our definitions that may be interesting in

applications. The extensions capture settings where the honest users want to hide the computation

performed on the ciphertexts, or can enforce the secure postprocessing of decrypted messages,

before any information about them is provided to the intended application. Circuit privacy has

already been considered in the standard (exact) FHE setting. Postprocessing with functional

decryption queries is a new issue, specific to the setting of approximate encryption schemes. We

only provide definitions here, leaving further study of these notions to future work.

Circuit privacy. Homomorphic encryption schemes that hide the computaton per-

formed on the encrypted inputs are called circuit private, because the computation is often

represented as a circuit. Most homomorphic encryption schemes (in their basic form) are not

circuit private. Accordingly, we did not include any circuit privacy requirement to any of our

definitions. However, all definitions are easily extended to achieve that property as follows.

For SIM-CPA+ security, one changes the information that the oracle H gives to  when

replying to evaluation queries: instead of sending (H, g, J ) to the simulator, H sends E to  .

This informs the simulator to produce something, without knowing the computation (g, J ),

that should be indistinguishable from the ciphertext produced by homomorphic evaluation

Evalek(g, T [j1].c,… , T [jk].c) in the real world experiment, where J = {j1,… , jk}.

For IND-CPA+ security, homomorphic evaluation queries specify not one g, but two

circuits g0, g1, possibly with different index sets J0, J1.1 Then the state S is extended with a

tuple (m0, m1, c)wherem0 = g0(S[j0,1].m0,… , S[j0,k0].m0),m1 = g1(S[j1,1].m1,… , S[j1,k1].m1),

c ← Evalek(gb, S[jb,1].mb,… , S[jb,kb].mb), J0 = {j0,1,… , j0,k0}, J1 = {j1,1,… , j1,k1}, and the

ciphertext c is returned to the adversary.

1One may consider weaker definitions, with only one J , which reveal the “topology” of the circuit, but not the
value of its “gates”.
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Functional Decryption Extension. We also consider the possiblity that the homomor-

phic encryption scheme is used in a controlled environment where the result of decryption (of a

homomorphic computation) is securely post-processed using some function f , which reveals

only some information about the (approximate) result of the homomorphic computation. This

function f should be thought of as part of the decryption algorithm (or library implementing the

approximate homomorphic encryption scheme), as it is essential for security that the adversay

does not get to see the result of decryption m, but only f (m). By restricting the choice of f to

some class of allowed functions , one can limit the amount of information that the adversary

can extract from the output of a computation.

Formally, we can extend our definitions of (q,l)-{IND-CPA+,SIM-CPA+} to include

another parameter, an class  of efficiently computable post-processing functions, and we

expand the decryption queries to include a function f ∈ . We call such queries the functional

decryption queries, with the following specification:

• In IND-CPA+ definition, the decryption oracle D accepts queries of the form (j, f ), where

j ≤ |S| is an index and f ∈  is a post-processing function. If f (S[j].m0) = f (S[j].m1),

then the oracle D returns f (Decsk(S[j].c)). Otherwise, the D returns the error symbol ⊥.

• In SIM-CPA+ definition, functional decryption queries have the form D(j, f ). For each

functional decryption query, the simulator is given (D, j, f , f (T [j])).

These extended security definitions are called (, q,l)-{IND-CPA+,SIM-CPA+})-security. Our

earlier definitions are the special case where  = {id} only contains the identity function

id(x) = x, and the adversary can see the full result of decryption.

For IND-CPA+ security, the requirement that f (S[j].m0) = f (S[j].m1) is to eliminate

trivial attacks where the adversary can distinguish between two computations that lead to different

results when computed on exact values. For SIM-CPA+ security, we let the simulator see the

post-processing function and the post-processed result derived from the exact values, which

captures the maximal information could be gained by an attacker if the scheme were to be secure.
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When considering circuit privacy for IND-CPA+-security, we may also expand functional

decryption queries by replacing f with a pair of possibly different post-processing functions

f0, f1. Still, we require that f0(S[j].m0) = f1(S[j].m1) to eliminate the trivial attack.

3.3 Case Study: The CKKS Homomorphic Encryption
Scheme on Approximate Numbers

In this section we examine the CKKS homomorphic approximate encryption scheme [22].

We introduce relevant background and briefly present the definition of the CKKS scheme, and

then we show a key-recovery attack in the IND-CPA+ model. We will also discuss potential

countermeasures to such attack.

3.3.1 Lattice Cryptography Background

We first present necessary background in lattice cryptography and the CKKS scheme.

Lattices and Rings. A lattice is a (typically full rank) discrete subgroup of ℝn. Lattices

L ⊂ ℝn can be represented by a basis, i.e., a matrix B ∈ ℝn×k with linearly independent columns

such that L = Bℤk. The length of the shortest nonzero vector in a lattice L is denoted by �(L).

The Shortest Vector Problem, given a lattice L, asks to find a lattice vector of length �(L). The

Approximate SVP relaxes this condition to finding a nonzero lattice vector of length at most


 ⋅ �(L), where the approximation factor 
 ≥ 1 may be a function of the dimension n or other

lattice parameters.

We write ℤ,ℚ,ℝ,ℂ for the sets of integer, rational, real and complex numbers. For any

positive q > 0, we write ℝq = ℝ∕(qℤ) for the set of reals modulo q (as a quotient of additive

groups), uniquely represented as values in the centered interval [−q∕2, q∕2). Similarly, for any

positive integer q > 0, we write ℤq = ℤ∕(qℤ) for the ring of integers modulo q, uniquely

represented as values in [−q∕2, q∕2) ∩ ℤ =
{

−
⌈

q−1
2

⌉

,… ,
⌊

q−1
2

⌋}

.

Let N = 2k be a power of 2, �2N = e�{∕N the principal (2N)th complex root of unity. We
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write (2N) = ℚ[X]∕(XN+1) for the cyclotomic field of order 2N , and (2N) = ℤ[X]∕(XN+1)

for its ring of integers. The primitive roots of unity �2j+12N , for j = 0,… , N − 1, are precisely the

roots of the cyclotomic polynomial XN + 1. We omit the index 2N and simply write , and �

when the value of N is clear from the context. Elements of  (and ) are uniquely represented

as polynomials a(X) = a0 + a1 ⋅ X +… + aN−1 ⋅ XN−1 of degree less than N , and identified

with their vectors of coefficients a = (a0,… , aN−1) ∈ ℚN (and ℤN). For any positive integer

q > 0, we write q = ∕(q) ≡ ℚN
q for the set of vectors/polynomials with entries/coefficients

reduced modulo q. Similarly for  ≡ ℤN and q ≡ ℤN
q .

LWE and Homomorphic Encryption. The (Ring) Learning With Errors (LWE) dis-

tribution RLWEs(N, q, �) with secret s ∈ (2N) and error distribution � (over (2N)), produces

pairs (a, b) ∈ (2N)
q where a← (2N)

q is chosen uniformly at random, and b = s ⋅ a+ e for e← � .

The (decisional) Ring LWE assumption over (2N) with error distribution � and secret distribu-

tion � ′ and m samples, states that when s ← � ′, the product distribution RLWEs(N, q, �)m is

pseudorandom, i.e., it is computationally indistinguishable from the uniform distribution over

(q × q)m.

For appropriate choices of �, � ′ and q, the Ring LWE problem is known to be com-

putationally hard, based on (by now) standard assumptions on the worst-case complexity of

computing approximately shortest vectors in ideal lattices. Theoretical work supports setting

the error distribution � to a discrete gaussian of standard deviation O(
√

N), and setting the

secret distribution � ′ to either the uniform distribution over q, or the same distribution as the

errors � . For the sake of efficiency, the Ring LWE problem is often employed by homomorphic

encryption schemes also for narrower secret and error distributions, that lack the same theoretical

justifications, but for which no efficient attack is known, e.g., distributions over vectors with

binary {0, 1} or ternary {−1, 0, 1} coefficients.

The raw (Ring) LWE encryption scheme works as follows:

• The key generation algorithm picks s ← � ′, e ← � , a ← q, and outputs secret key
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sk = (−s, 1) ∈ 2
q and public key pk = (a, b) ∈ 2

q where b = s ⋅ a + e follows the LWE

distribution.

• The encryption algorithm, Encpk(m) picks random u ← {0, 1}N and e = (e0, e1) ← �2,

and outputs ct = u ⋅ pk + e + (0, m) ∈ 2
q

• The raw decryption algorithm Decsk(ct) outputs ⟨sk, ct⟩ mod q.

The secret and public keys satisfy the property that ⟨sk, pk⟩ = e equals the short error vector

chosen during key generation. We qualified this scheme and the decryption algorithm as “raw”

because applying the encryption algorithm, and subsequently decrypting the result (with a

matching pair of public and secret keys) does not recover the original message, but only a value

close to it. In fact, for any (sk, pk) produced by the key generation algorithm, we have

Decsk(Encpk(m)) = u ⋅ ⟨sk, pk⟩ + ⟨sk, e⟩ + m = m + (ue − se0 + e1) (mod q)

where the perturbation ẽ = (ue − se0 + e1) is small because it is a combination of short vectors

u, e, s, e0, e1. (The size of these vectors is best quantified with respect to the message encoding

used by the application, and it is discussed below.) In order to obtain a proper encryption scheme

that meets the correctness requirement, the message m must be preprocessed, by encoding it with

an appropriate error correcting code, which allows to recover from the error ẽ. For example, if m

has binary entries, one can multiply m by a scaling factor ⌊q∕2⌉, and then round (each coefficient

of) the output of the raw decryption algorithm to the closest multiple of ⌊q∕2⌉. For the sake

of improving the efficiency of homomorphic computations, the CKKS encryption scheme [22]

gets away without applying error correction, and directly using the raw decryption algorithm

to produce “approximate” decryptions of the ciphertexts. So, in the following we focus on the

“raw” LWE scheme, and postpone the discussion of error correction to later.

By linearity of Enc, LWE encryption directly supports (bounded) addition of ciphertexts:

if ct0 = (a0, b0) and ct1 = (a1, b1) are encryptions of m0 and m1 with noise e0 and e1 respectively,
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then the vector sum

ct0 + ct1 = (a0 + a1, b0 + b1) mod q

is an encryption of m0 + m1 with noise e0 + e1.

There are several ways to perform homomorphic multiplication on LWE ciphertexts.

As in [22], here we focus on the “tensoring” technique of [12] implemented using the “raising

the modulus” multiplication method of [32]. This multiplication method uses an appropriate

multiple pq of the ciphertext modulus q, and requires an “evaluation key”, produced during key

generation, which is computed and used as follows:

• ek = (a, b) ∈ 2
pq where a ← pq, e← �e and b = as + e + ps2 (mod pq).

• Using ek, the product of two ciphertexts ct0 = (a0, b0), ct1 = (a1, b1) is computed as

ct0 × ct1 = (a0b1 + a1b0, b0b1) + ⌊(a0a1 mod q) ⋅ ek∕p⌉ .

In order to approximately evaluate deep arithmetic circuits, the CKKS scheme combines

these addition and multiplication procedures with a rescaling operation RS, implemented using

the key switching technique of [12]. Rescaling requires the use of a sequence of moduli ql,

which for simplicity we assume to be of the form ql = q0 ⋅ pl for some base p, e.g., p = 2.

Ciphertexts may live at different levels, with level l ciphertexts encrypted using modulus ql. The

key generation algorithm takes as auxiliary input the highest number of desired levels L, and

produces public and evaluation keys with respect to the largest modulus qL. CKKS directly

supports addition and multiplication only between ciphertexts at the same level. Rescaling is

used to map ciphertexts ct ∈ 2
ql+l′

to a lower level l with the operation

RSl′(ct) =
⌊

ct∕pl′
⌉

∈ 2
ql

where the division and rounding are performed componentwise.
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The CKKS message encoding. The CKKS scheme considers a vectors of complex

numbers (or Gaussian integers) ã as the set of evaluation points ãj = a(xj) of a real (in fact,

integer) polynomial a(X) ∈ ℤ[X]. This allows to perform pointwise addition and multipli-

cation of vectors (SIMD style) by means of addition and multiplication of polynomials as

(a(X)◦b(X))(xj) = a(xj)◦b(xj) for any xj , where ◦ ∈ {+,×}. The evaluation points are chosen

among the primitive (2N)th roots of unity �2j+1, so that the cyclotomic polynomial XN + 1

evaluates to zero at all those points, and reduction modulo XN + 1 does not affect the value

of a(xj). This allows to operate on the polynomials modulo XN + 1, i.e., as elements of the

cyclotomic ring . Since a(X) has real coefficients and primitive roots come in complex con-

jugate pairs �2j+1, �2(N−j)−1, the value of a(X) can be freely chosen only for half of the roots,

with the value of a(�2(N−j)−1)) uniquely determined as the complex conjugate of a(�2j+1). So,

a(X) is used to represent a vector ã of N∕2 complex values. Setting the evaluation points to

xj = �4j+1 (for j = 0,… , N∕2 − 1), and using the fact that these points are primitive roots of

unity, interpolation and evaluation can be efficiently computed (in O(N logN) time) using the

Fast Fourier Transform.

Let '∶  → ℂN∕2 be the transformation mapping a(X) ∈  ≡ ℤN to '(a) = ã =

(a(�4j+1))N∕2−1j=0 ∈ ℂN∕2, and its extension '∶  → ℂN∕2 to arbitrary real polynomials, where

 = ℝ[X]∕(XN + 1) ≡ ℝN . We can identify any polynomial a ∈  by its coefficient vector

(a0, a1,… , aN−1), and we set ‖a‖2 = ‖(a0, a1,… , aN−1)‖2. Similarly we can define ‖a‖1 and

‖a‖∞ as the corresponding norms on the coefficient vector. So the transformation '∶  → ℂN∕2

is a scaled isometry, satisfying ‖'(a)‖2 =
√

N‖a‖2 and ‖'(a)‖∞ ≤ ‖a‖1. In what follows,

we assume, as a message space, the set of complex vectors ã ∈ '() ⊂ ℂN∕2 which are the

evaluation of polynomials a(X) ∈  with integer coefficients much smaller than the ciphertext

modulus q. Arbitrary vectors z ∈ ℂN∕2 can be encrypted (approximately) by taking the inverse

transform '−1 on a scaled vector Δ ⋅z, for some scaling factor Δ ∈ ℝ, such that ‖'−1(Δ ⋅z)‖≪ q

and rounding '−1(Δ ⋅ z) to a nearby point of the form '(a) for some a(X) ∈ .

The complete message encoding and decoding functions in CKKS are defined as

36



• Encode(z ∈ ℂN∕2; Δ) =
⌊

Δ ⋅ '−1(z)
⌉

∈ .

• Decode(a ∈ ; Δ) = '(Δ−1 ⋅ a) ∈ ℂN∕2.

Once encoded, the scaling factor Δ is usually implicitly tied to a plaintext polynomial, so we

sometimes omit it when its value is clear from the context.

Since these encoding and decoding operations can be performed without any knowledge

of the secret or public keys, sometimes we assume they are performed at the outset, at the

application level, before invoking the encryption or decryption algorithms. More specifically,

we may assume messages '(Δ−1 ⋅ m) ∈ ℂN∕2 are provided to the encryption algorithm by

specifying the integer polynomial m ∈ , and the decryption algorithm returns a message

m̃′ = Decode(m′; Δ) represented as the underlying polynomial m′ ∈  that is an approximation

of m. All this is only for the sake of theoretical analysis, and all concrete implementations (of the

scheme and our attacks to it) include encoding and decoding procedures as part of the encryption

and decryption algorithms. Message encoding can be quite relevant to quantify the amount of

noise in a ciphertext. We say that a ciphertext ct approximately encrypts message m̃ with scaling

factor Δ and noise ẽ if Decode(Decsk(ct); Δ) = m̃ + ẽ.

3.3.2 Key-Recovery Attack to CKKS in IND-CPA+ Model

In this section we describe a key recovery attack against the CKKS scheme, including

both theoretical and practical analysis. Based on such attack, we can conclude that the CKKS

scheme is not IND-CPA+ secure.

3.3.3 Theoretical Outline

The technical idea behind the attack is easily explained by exemplifying it on a symmetric

key version of LWE encryption. (Breaking the CKKS scheme involves additional complications

due to the details of the encoding/decoding functions discussed below.) We recall that in a

passive attack (against a symmetric key encryption scheme Es(m)), the adversary can observe the
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encryption Es(m) of any message m of its choice. In LWE encryption, the key is a random vector

s ∈ ℤn
q, and a (possibly encoded) message m ∈ ℤq is encrypted as Es(m) = (a, b) where a ∈ ℤn

q

is chosen at random, and b = ⟨s, a⟩ + m + e (mod q) for a small random integer perturbation

e ∈ ℤ. If the encryption scheme works on “approximate numbers”, (m + e) is treated as an

approximation of m, and the decryption algorithm outputs Ds(a, b) = b − ⟨s, a⟩ = m + e.

Our most basic attack involves an adversary that asks for an encryption of m = 0, so to

obtain a ciphertext ct = (a, b) where b = ⟨s, a⟩+ e (mod q). The adversary then asks to compute

the identity function id(x) = x on it. (This is the same as performing no computation at all.)

Finally, it asks for an approximate decryption of the result, and computes

c = b − Decs(ct) = (⟨s, a⟩ + e) − (m + e) = ⟨s, a⟩ (mod q). (3.1)

This provides a linear equation ⟨s, a⟩ = c (mod q) in the secret key. Collecting n such linear

equations and solving the resulting system (e.g., by gaussian elimination) recovers the secret

key s.

It is easy to see that there is nothing special about the message 0, or the fact that no

computation is performed: as long as the adversary knows the ciphertext ct (possibly the result of

a homomorphic computation) and gets to see the approximate decryption of ct, the same attack

goes through. However, the actual scheme described in [22] and subsequent papers, and their

open source implementations include several modifications of the above scheme, introduced to

make the scheme more useful in practice, but which also make the attack less straightforward.

We briefly describe each of these modifications, and how the attack is adapted. In the most

general case, our attack requires not just the solution of a linear system of equations, but the use

of lattice reduction for the (polynomial time solution) of a lattice approximation problem.

Public Key. First, CKKS is a public key encryption scheme, where, as standard in

lattice based encryption, the public key can be seen as a collection of encryptions of 0 values.
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This makes no difference in the attack, as the ciphertexts still have the same structure with respect

to the secret key, and the (approximate) decryption algorithm is unmodified. Switching to a

public key system has the only effect of producing larger noise vectors e in ciphertexts.

Ring Lattices. In order to achieve practical performance, all instantiations of the CKKS

scheme make use of cyclic/ideal lattices [55] and the Ring LWE problem [52,53]. Specifically, the

vectors a, s are interpreted as (coefficients of) polynomials a, s in the power-of-two cyclotomic

rings (2N) popularized by the SWIFFT hash function [50, 51, 62] and widely used in the

implementation of lattice cryptography since then. In a sense, switching to ideal lattices makes

the attack only more efficient: the linear equation ⟨s, a⟩ = c (mod q) becomes an equation

a ⋅ s = c ∈ (2N)
q in the cyclotomic ring modulo q, which can be solved (even using a single

ciphertext) by computing the (ring) inverse of a, and recovering s as

s′ = a−1 ⋅ c ∈ q. (3.2)

A little difficulty arises due to the choice of q. The first implementation of CKKS,

the HEAAN library [37] sets q to a power of 2 to simplify the treatment of floating point

numbers. Subsequent instantiations of CKKS also use a prime (or square-free) q of the form

ℎ ⋅ 2n + 1 together with the Number Theoretic Transform for very fast ring operations [51]. For

a (sufficiently large) prime q, the probability of a random element a being invertible is very

close to 1, but this is not the case when q is a power of two. If a is not invertible, we can still

recover partial information about the secret key s, and completely recover s by using multiple

ciphertexts.

Euclidean Embedding. In order to conveniently apply the CKKS scheme on practical

problems, the input message space is set to ℂN∕2 for some N that is a power of 2, the set of

vectors with complex entries, or, more precisely, their floating point approximations. A message

z ∈ ℂk, for some integer 1 ≤ k ≤ N∕2, can be considered as a vector in ℂN∕2 (by padding it
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with 0 entries), and it is then encoded to

m = Encode(z; Δ) =
⌊

Δ ⋅ '−1(z)
⌉

∈ ℤN ≡ ,

where Δ is some precision factor. The “decode” operation Decode ∶  → ℂk sends an integer

polynomial m to

Decode(m; Δ) = '(Δ−1 ⋅ m) ∈ ℂk,

where the entries corresponding to the 0-paddings are dropped. Decode is an approximate inverse

of Encode as z′ = Decode(Encode(z; Δ); Δ) is close (but not exactly equal) to z.

This is slightly more problematic for our attack, because a passive adversary only gets

to see the result of final decryption z′ ∈ ℂk, rather than the ring element m′ = a ⋅ s + b ∈

 that is required by our attack, in addition to the ciphertext ct = (a, b). Moreover, given

the approximate nature of the encoding/decoding process, Decode(m′) is not even the exact

(mathematical) transformation '(Δ−1 ⋅ m′), but only the result of an approximate floating point

computation. We address this by setting k = N∕2 (so, at least the vector Decode(m′) has the

right dimension over ℂ), and re-encoding the message output by the decryption algorithm to

obtain Encode(Decode(m′)).

At this point, depending on the concrete choice of parameters of the scheme, we may

have Encode(Decode(m′)) = m′, in which case we can carry out the above attack by setting up a

system of linear equations or computing inverses in the cyclotomic ring. We summarize this case

in the following theorem.

Theorem 1 (Linear Key-Recovery Attack against CKKS). Fix a particular instantiation of the

CKKS scheme under the Ring-LWE assumption of dimension N and modulus q, and fix a key

tuple (sk, pk, ek)← KeyGen(1�). Given k = O(N) ciphertext cti for 1 ≤ i ≤ k, that are the either

encryptions under pk or homomorphic evaluations under ek, and given their approximate decryp-

tion results z′i = Decode(Decsk(cti); Δ) with a scaling factor Δ, if Encode(z′i; Δ) = Decsk(cti) for
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all 1 ≤ i ≤ k, then we can efficiently recover the secret key sk with high probability.

Moreover, if the ciphertext modulus q is a prime or a product of distinct primes, then the

above holds for all k ≥ 1.

3.3.4 Analysis of Encoding/Decoding Errors

To see for what concrete parameters the linear attack can be applied, we take a closer

look at the error introduced by the encoding and decoding computation. In practice, since N is a

power of 2, the classical Cooley-Tukey FFT algorithm is used to implement the transformation '

and its inverse '−1, and the computation is done using floating-point arithmetic that could cause

round-off errors.

Fix a ciphertext ct, and let m′ = Decsk(ct) ∈  be its approximate decryption (before

decoding) with a scaling factor Δ. Let ẑ′ = Decode(m′; Δ) be the computed value of z′ =

'(Δ−1 ⋅ m′). To carry out the attack, we compute the encoding of ẑ′ with the scaling factor Δ:

first we apply inverse FFT to compute u = Δ ⋅ '−1(ẑ′), and then we round its computed value û

to m′′ = ⌊û⌉ ∈ . Let " = û −m′ be the encoding error, where m′ is the coefficient vector of

m′. We see that Encode(Decode(m′; Δ); Δ) = m′ if and only if ‖"‖∞ = ‖û −m′
‖∞ <

1
2
.

Assume the relative error in computing the Cooley-Tukey FFT in dimension N is at

most � in l2 norm. Then ‖ẑ′ − z′‖2 ≤ � ⋅
√

N
Δ
‖m′

‖2, ‖û − u‖2 ≤ �(1 + �) ⋅ ‖m′
‖2, and

‖u −m′
‖2 ≤ � ⋅ ‖m′

‖2. It follows that

‖"‖∞ = ‖û −m′
‖∞ ≤ ‖û −m′

‖2 ≤ (2� + �2)‖m′
‖2.

In [15], Brisebarre et. al. presented tight bounds on the relative error � in applying the

Cooley-Tukey FFT algorithm on IEEE-754 floating-point numbers. According to their estimate,

� ≈ 53 ⋅ 2−53 for N = 216 and double-precision floating-point numbers. So, in such setting, we

expect to see Encode(Decode(m′; Δ); Δ) ≠ m′, i.e., ‖"‖∞ > 1
2
, when ‖m′‖2 > 245. (As we will

see in the next section, our experimental results using existing CKKS implementations suggest
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this is a very conservative estimation.) The rescaling operation can be used to reduce the size of

the approximate plaintext m′, which is already used to maximize the capacity of homomorphic

computation in CKKS.

Lattice attack. In case Encode(Decode(m′)) ≈ m′ is only an approximation of what we

want for the linear key recovery attack, it is still possible to recover sk by solving a (polynomial

time) lattice approximation problem.

Theorem 2 (Lattice Attack against CKKS). Fix a particular instantiation of the CKKS scheme

under the Ring-LWE assumption of dimensionN and modulus q, and fix a key tuple (sk, pk, ek)←

KeyGen(1�). Given a ciphertext ct ∈ 2
q with a scaling factor Δ, and given an approximate

decryption z′ = Decode(Decsk(ct); Δ) of ct, if the encoding error " = Δ ⋅ '−1(z′) − Decsk(ct)

satisfies ‖"‖2 ≤ 2
−N
2 ⋅ q

√

N , then the secret key sk can be efficiently recovered.

Proof (sketch). Let ct = (a, b) for some a, b ∈ q. We consider to the following approximate

CVP instance. Let A = �(a) ∈ ℤN×N be the negacyclic matrix representation of a. Consider the

following matrix

B =
⎛

⎜

⎜

⎝

A qIN

1t 0t

⎞

⎟

⎟

⎠

∈ ℤ(N+1)×(2N),

where 1t = [1,… , 1] is a N-dimensional row vector of all 1 entries. Let  = (B) be the integer

lattice generated by B, let u = Δ ⋅ '−1(z′) ∈ ℝN , and let t = (u − b, 0)t ∈ ℤN+1, where b is the

coefficient vector of b. Our CVP instance asks to find v ∈  such that ‖v − t‖2 ≤ � for some

� > 0.

To set the parameter �, notice that v0 = (m′ − b, ⟨1, s⟩) is a lattice point, and ‖v0 −

t‖22 = ‖u − m′
‖

2
2 ≤ ‖"‖22 + ⟨1, s⟩2. On the other hand, if m′′ − b = Ar + qw for some

r,w ∈ ℤN , then v1 = (m′′ − b, ⟨1, r⟩) ∈  is also a lattice point. The distance from v1 to

t is | ⟨1, r⟩ |. Note that r = A−1(m′ − b) + A−1 ⌊"⌉ (mod q) = s + A−1 ⌊"⌉ (mod q). So

| ⟨1, r⟩ | ≥ | ⟨1, s⟩ |+ |

⟨

1, A−1"
⟩

|. We can assume that ⌊"⌉ is independent of m′ − b, so A−1 ⌊"⌉
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(mod q) is close to uniform, and so it holds with high probability that |
⟨

1, A−1"
⟩

| ≤ 2
√

3⋅q
√

N .

When ‖"‖2 ≤ 2
−N
2 ⋅ q

√

N , we can set � = 2
√

3 ⋅ q
√

N and obtain m′ − b with high probability

by solving such CVP instance in polynomial time. Then, we can mount the linear attack as in

Theorem 1.

3.3.5 Experimental Results

The basic idea of our linear attack is so simple that it requires no validation. However,

as described in the previous section, a concrete instantiation of the CKKS scheme may include

a number of details that make the attack more difficult in practice. Given the simplicity of our

attack, we also considered the possibility that the implementations of CKKS may not correspond

too closely to the theoretical scheme described in the papers, and included some additional

countermeasures to defend against the attack.

To put our linear attack to a definitive test, we implemented it against publicly available

libraries HEAAN [37], PALISADE [60], SEAL [66], and HElib [38] that implement the CKKS

scheme, and we ran our attack over some homomorphic computations that are commonly used

in real world privacy-preserving machine-learning applications. Our experimental results against

the libraries are summarized in Tables 3.1 and 3.2. For most of the parameter settings, our attack

can successfully and quite efficiently recover the secret key, showing it is widely applicable to

these CKKS implementations. In the following, we discuss our experiment and the relevant

implementation details of these libraries, and we briefly analyze the results. We also consider

RNS-HEAAN [64], an alternative implementation similar to HEAAN that includes RNS (residue

number system) optimizations, obtaining similar results.

We did not implement the lattice based attack. The main difficulty in running the lattice

attack in our experiment is that it requires lattice reduction in very large dimension, beyond what

is currently supported by state of the art lattice reduction libraries. However, the theoretical

running time of the attack is polynomial, and the corresponding parameter settings should still

be considered insecure. In the following, we refer to our linear attack as the attack.
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Algorithm 1: The pseudocode outlining our key recovery experiments.
Input: Lattice parameters (N, log q), initial scaling factor Δ0, plaintext bound B,

and circuit g.
1 Sample (sk, pk, ek)← KeyGen(N, log q,Δ0), where (1, s) = sk
2 Sample z ← ℂN∕2 such that |zi| ≤ B for all 1 ≤ i ≤ N∕2
3 Encrypt ctinput ← Encpk(Encode(z; Δ0))
4 Evaluate ctoutput ← Evalek(g, ctinput)
5 Decrypt z′ ← Decode(Decsk(ctoutput); Δ), where Δ is the scaling factor in ctoutput
6 Encode m′′ ← Encode(z′; Δ)
7 Compute s′ ← a−1 ⋅ (m′′ − b) ∈ q, where (b, a) = ctoutput
8 return s′ = s

3.3.6 Implementation of Our Attack and Experiments

A pseudocode outline of our experiment programs is presented in Algorithm 1. Such

programs model the situations where an attacker can influence an honest user to perform

certain homomorphic computations and can obtain both the final ciphertexts and the decrypted

approximate numbers. A successful run indicates that the target CKKS implementation is not

IND-CPA+-secure.

For concrete homomorphic computations, we choose to compute the variance of a

wide range of input data to exemplify how our attack may be affected by large underlying

plaintexts in extreme cases. We also compute the logistic function (1 + e−x)−1 and exponential

functions ex using their Maclaurin series up to a degree d, to check whether our attack may

be affected by the bigger noises and the possibly adjusted scaling factors due to multi-level

homomorphic computations. We remark that all these homomorphic computations are very

common in applications of the CKKS scheme.

In our programs, we use the data structures and public APIs provided by each library to

carry out the key recovery computation2. Note that an attacker is free to use any method, not

necessarily these public interfaces, to carry out the attack.

2The source code of our attack implementations are available at https://github.com/ucsd-crypto/
CKKSKeyRecovery.
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Table 3.1. The results of applying our attack on homomorphically computed variance of
N∕2 = 215 random complex numbers of magnitude 1 ≤ B ≤ 29. We carried out the attack
against all main open source implementations of CKKS, obtaining similar results. Numbers are
packed into all slots, and are encoded using various initial scaling factors Δ0. For each parameter
combination (Δ0, B), we ran our programs 100 times against each library. A “✓” indicates that,
for all these libraries with the particular parameters, the attack always succeeded to recover sk.
A few cells where a number is shown, correspond to extreme parameters where some runs failed
to recover sk, and the number is the maximum (over all libraries) of the average l∞ norms of
the encoding error ". These settings are still subject to attacks based on lattice reduction, see
Sections 3.3.4 and 3.3.8 for details.

Attack applied to HEAAN, PALISADE, SEAL, HElib
B 1 2 22 23 24 25 26 27 28 29

Variance
logΔ0 = 30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

logΔ0 = 40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

logΔ0 = 50 ✓ ✓ ✓ ✓ ✓ ✓ 1.21 5.41 20.7 80.2

3.3.7 Details on Different Implementations of CKKS

We considered the latest versions of all these libraries: HEAAN version 2.1 [37], PAL-

ISADE version 1.10.4 [60], SEAL version 3.5 [66], and HElib version 1.1.0 [38] and RNS-

HEAAN [64]. All these libraries implement the transformation ' and its inverse using the

classical Cooley-Tukey FFT algorithm on double-precision floating-point numbers. Still, they

contain several distinct implementation details relevant to our attack.

Multi-precision integers vs. double-CRT representation. All versions of HEAAN

(version 1.0 as in [22], version 1.1 as in [20], and the most recent version 2.1) use multi-precision

integers to represent key materials and ciphertexts. Consequently, HEAAN achieves very good

accuracy in approximate decryption, but at the same time it rarely introduces any encoding error,

resulting in a great success rate in our key recovery experiment.

To improve efficiency, the residual number system, aka double-CRT representation, is

adopted to the CKKS scheme in [21], and it is implemented in RNS-HEAAN. Other libraries

also implement the RNS variant of CKKS, with some different details:
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Table 3.2. The results of applying our attack to homomorphically computed logistic and
exponential functions on random real numbers of magnitude B ∈ {1, 2, 8} packed into full
N∕2 = 215 slots, evaluated using their Maclaurin series of degree d ∈ {5, 10}. For each
parameter setting, we ran our experimental program 100 times for each library, and here “✓”
indicates sk was recovered in all these runs against a particular library. A few cells where a
number is shown, correspond to extreme parameters when some runs failed to recover sk, and the
number is the average l∞ norm of the encoding error " in these runs. For HElib, “n/a” indicates
the parameters are not supported by the library.

Attack applied to HEAAN, PALISADE, SEAL, HElib
HEAAN PALISADE SEAL HElib

Δ0 B d = 5 d =
10

d = 5 d =
10

d = 5 d =
10

d = 5 d =
10

Logistic
230 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

240 1 ✓ ✓ ✓ ✓ ✓ ✓ 3.1 6.7
250 1 ✓ ✓ ✓ ✓ ✓ ✓ 8.2 8.2

Exponential

230
1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓ n/a n/a
8 ✓ ✓ ✓ ✓ ✓ ✓ n/a n/a

240
1 ✓ ✓ ✓ ✓ ✓ ✓ 1.9 8.2
2 ✓ ✓ ✓ ✓ ✓ ✓ n/a n/a
8 ✓ ✓ ✓ ✓ ✓ ✓ n/a n/a

250
1 ✓ ✓ ✓ ✓ ✓ ✓ 8.1 8.2
2 ✓ ✓ ✓ ✓ ✓ ✓ n/a n/a
8 7.6 15.2 8.1 18.2 2.2 4.3 n/a n/a

• During decryption, RNS-HEAAN uses only the first RNS tower of ciphertexts; so it

expects the scaled plaintext to be much smaller than the 60-bit prime modulus in the first

tower. Other libraries convert the double-CRT format to multi-precision integers before

applying the canonical embedding; so they support a larger plaintext space and are more

accurate.

• During rescaling, RNS-HEAAN uses a power-of-2 rescaling factor, while the other

libraries’ rescaling factors are the primes or close to primes in the moduli chain. In

particular, PALISADE optimizes the rescaling factors to reduce the errors and precision

loss in many homomorphic operations [45].

As observed in our experiment, among the RNS implementations of CKKS, our attack was more
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successful against the libraries using more accurate element representations and scaling factors.

PALISADE. In addition, PALISADE uses extended precision floating-point arithmetic

in Decode, which has 64-bit precision on X86 CPUs. This further improves the accuracy of

approximate decryption, but perhaps unintentionally making our attack more successful by a

tiny margin (comparing to other libraries).

HElib. Unlike other libraries, HElib adjusts the scaling factor used in Encode and

many homomorphic operations according to the estimated noise size and the magnitude of the

plaintext. It expects the input numbers to have magnitude at most 1 for optimal precisions. So

our experiment with HElib chooses random input only within the unit circle.

RNS-HEAAN. Looking back to RNS-HEAAN, its implementation of Decode intro-

duces a small round-off error in a conversion from uint64_t to double. As a result, such

(seemingly unexpected) implementation choice may lead to reduced precision (by only a few

bits), but it also results in more failed runs in our experiment. Still, when our attack fails, the

encoding errors are quite small, and so RNS-HEAAN is still subject to the lattice reduction

attack. We tried to “fix” this by more carefully converting between number systems, and we

immediately see a much better success rate for our attack.

3.3.8 Experiment Results

We set up all libraries with the highest supported lattice dimension N = 216, which also

corresponds to the highest security level. By the analysis in Section 3.3.4 (and also observed in

our experiment), the larger the dimension is, the higher the chance an encoding error may show

up (leading to failed attack runs). On the other hand, since the claimed security decreases with

larger values of the modulus q, we set it to around 350 bit, which is a secure, yet realistic value

for FHE schemes. According to common evaluation methodologies [2], the associated LWE
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problem provides a level of security well above 256 bits. (Specifically, in dimension N = 216, it

is estimated that 256-bits of security are achieved even for moduli q with over 700 bits.)

In all our experiments, we use the full packing mode with N∕2 slots. For the variance

computation, we generate random input numbers with magnitude B ≤ 29. For the experiment on

the logistic and the exponential functions, we set the maximal degree of their Maclaurin series to

d ≤ 10, which provides good approximation for inputs smaller than 1.

Our experiments are executed in a 64-bit Linux environment running on an Intel i7-4790

CPU. The attack is very efficient, especially for the RNS-CKKS implementations, as the key

recovery computation can benefit from using NTT and parallelization. Each individual run in

our experiment finishes within several seconds to just one minute, with most of the running time

taken by the key generation and encryption/homomorphic evaluation operations, rather than

the attack itself. For each homomorphic computation task, for each parameter setting, and for

each library, we run our attack 100 times to record the success rate and the encoding error ".

The results of the experiments with HEAAN, PALISADE, SEAL, and HElib are presented in

Tables 3.1 and 3.2. As shown in these tables, our attack always succeeded to recover the secret

key in most parameter settings against all the libraries, especially for typical input sizes and

scaling factors. The failed cases in both tables correspond to the extreme parameters where

the l2 norm of the underlying plaintext exceeds 252, showing better practical performance than

the worse case analysis in Section 3.3.4. (There are more failed cases with HElib because its

adjusted scaling factors are typically larger and so are the plaintexts.) Comparing the results

on the logistic and the exponential functions, we conclude that a deeper level of homomorphic

computation has no significant effect on our attack, and the runs in the last row of Table 3.2

failed due to larger plaintext sizes. In particular, the encoding error " with SEAL is smaller than

other libraries because its Decode implementation incurs less round-off errors in scaling by Δ−1.

We did a limited number of experiment with RNS-HEAAN because it has a small

plaintext space. Nonetheless, we see a consistent but small encoding error of size ‖"‖∞ ≤ 27 in

our RNS-HEAAN experiments when B2Δ0 ≈ 250.
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3.3.9 A Provably Secure Countermeasure

We propose a concrete countermeasure to our attacks. The main idea is to add a pseudo-

random polynomial with coefficients from [−B,B] to the approximate decryption result, where

the ratio B∕|e| must be superpolynomial to guarantee security. Such technique is called noise

flooding in the literature. To make decryption deterministic, we apply a PRF to generate the

randomness needed for sampling the noise.

Assume there exists a pseudorandom function PRF ∶ {0, 1}� × {0, 1}∗ → {0, 1}∗.

For an integer B such that 0 < B < qL, we can convert PRF into a pseudorandom function

PRF[B] ∶ {0, 1}� → 2
qL

→ (ℤ ∩ [−B,B])N . In addition to CKKS’s parameters, we include an

integer t = t(�) and B as public parameters. We modify the CKKS scheme by incorporating PRF

and its variants PRF[B] as follows.

• KeyGen′(1�) = (sk′ = (sk, K), pk, ek): Sample (sk, pk, ek) ← KeyGen(1�) as in CKKS,

and also sample K ← {0, 1}� as a PRF key.

• Enc′pk(m) = Encpk(m), Eval
′
ek(g, {cti}i) = Evalek(g, {cti}i): The encryption and homomor-

phic evaluation algorithms stay the same as in CKKS.

• Dec′
sk′
(ct) = m′ + PRF[B]K(ct): First we decrypt ct as in CKKS to get m′ = Decsk(ct).

Suppose � is the l∞ upper bound of the error in m′, which is available in the tagged infor-

mation in ct. Then we apply PRF[B] to add a pseudorandom polynomial u = PRF[B]K(ct)

to m′, where ‖u‖∞ ≤ B.

From a high level, the modified scheme is IND-CPA+-secure because that the decryption

oracle can be simulated knowing only the exact plaintext encrypted in a ciphertext. To prove

security, we first recall the definition of pseudorandom functions.

Definition 6 (Pseudorandom Functions). Let PRF ∶ {0, 1}�×X → Y be an efficiently computable

deterministic function. We say PRF is a pseudorandom function with domain X and range Y if
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for any efficient distinguisher ,

|

|

|

|

Pr
K←{0,1}�

{PRFK (⋅)(1�) = 1} − Pr
f
{f (⋅)(1�) = 1}

|

|

|

|

≤ negl(�),

where f is taken uniformly at random from the space of all functions X → Y .

Theorem 3 (Naive noise flooding). Let (KeyGen′,Enc′,Eval′,Dec′) be the approximate HE

scheme defined as above. Assume the CKKS scheme is IND-CPA secure, and assume t = Ω(�)

and B = 2k�. Then the modified approximate HE scheme is IND-CPA+ secure.

Proof. Fix some polynomials q and l. Since the leakage function class contains only the identity

function, we omit the function parameter in decryption oracle queries and write D(j) instead to

denote a query for decrypting the j’th ciphertext. Let b ∈ {0, 1} be a bit. We proceed by using

the following hybrids.

• (0)
b : This hybrid is exactly the same as the experiment Exprappb with the modified scheme.

In particular, the keys are sampled as (sk, pk, ek) ← KeyGen(1�) and K ← {0, 1}�; an

encryption oracle query E(m0, m1) is answered with a ciphertext ct ← Enc′pk(mb); if (mj0, m
j
1)

is the j’th plaintext pair and mj0 = m
j
1, and if ctj is the corresponding ciphertext with error

upper bound �j , then the decryption oracle query D(j) is answered with Decsk(ctj) +

PRF[B]K(ctj), i.e., the same as in Dec′
sk′
(ctj).

• (1)
b : This hybrid is the same as (0)

b , except that a random function f ∶ 2
qL

→ qL is

sampled at the beginning, and that for each decryption query D(j) such that mj0 = m
j
1, we

deterministically convert f into a random function f [B] ∶ 2
qL

→ (ℤ ∩ [−B,B])N , and we

send m′j + f [B](ctj) to the adversary, where m′j = Decsk(ctj).

• (2)
b : This hybrid is the same as (1)

b , except that for each decryption query D(j) such that

mj0 = m
j
1, we send to the adversary mjb + f [B](ctj).
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Notice that the PRF key K is not used in (1)
b , so for any adversary , the hybrids (0)

b

and (1)
b are indistinguishable due to the security of the pseudorandom function PRF.

To show that the hybrids (1)
b and (2)

b are indistinguishable, consider each decryption

oracle query D(j) such that mj0 = mj1. Let ej = Decsk(ctj) − m
j
b be the encryption noise in the

ciphertext ctj; then we have ‖ej‖∞ ≤ �j . Also let ℎ ∶  →  be the function ℎ(a) = a + u

where u ← (ℤ ∩ [−B,B])N . For each decryption query D(j) such that mj0 = m
j
1, an adversary

receives m′j = m
j
b + ℎ(ej) in (1)

b , and it receives m′′j = m
j
b + ℎ(0) in (2)

b . The statistical distance

between ℎ(0) and ℎ(ej) is bounded by

SD(ℎ(0), ℎ(ej)) ≤
1
2
( B
2�j

+ B
2�j

) = 1
2�
.

So the adversary’s views 1 in (1)
b and 2 in (2)

b have a statistical distance bounded by

SD((1),(2)) ≤ q2−� ,

which is negligible.

Finally, notice that the hybrids (2)
b for b ∈ {0, 1} do not use the secret key sk, and

the decryption oracle queries are answered with the same distribution in these two hybrids.

So they are indistinguishable due to IND-CPA security. Therefore the modified scheme is

IND-CPA+-secure.
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Chapter 4

Symbolic Security Model of Yao’s Garbled
Circuits

In this chapter we present our results on symbolic cryptography. Specifically, we extend

the previous symbolic framework [57, 58] to analyze complex protocols such as garbled circuits

and secret sharing schemes. Along the way, we also present a structured, algebraic notation of

circuits.

4.1 Symbolic Cryptography

In this section we introduce basic notations used by symbolic cryptography. We use the

bit 0 for the Boolean value false, and 1 for true. For n ≥ 1, {0, 1}n is the set of all Boolean

vectors of length n. We can concatenate two Boolean vectors x ∈ {0, 1}n and y ∈ {0, 1}m

to obtain xy ∈ {0, 1}n+m. For any x ∈ {0, 1}n, we can think x as a concatenation of n bits,

written as x = x1⋯ xn, where x1,… , xn ∈ {0, 1}. For any x, y ∈ {0, 1}, the NAND function

x ↑ y = ¬(x ∧ y) maps x and y to 0 if and only if both x and y are 1.

Our symbolic cryptographic expressions extend those defined in [56] with random bits

and a swap operation, which we need to model garbled circuits. Informally, symbolic expressions

are built from random keys and (possibly random) bits, using a symmetric encryption scheme, a

(length doubling) pseudorandom generator, a pairing (concatenation) operation, and the (random)

permutation of pairs. Just as in computational cryptography it is convenient to group bit-strings
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according to their length, in symbolic cryptography it is customary to classify expressions

according to their shape, which captures the expression size in a representation independent way.

The set of possible shapes for a symbolic expression is defined by the grammar:

Shape → B ∣ K ∣ LShape,ShapeM ∣ ⦃Shape⦄

representing the shapes of bits, keys, pairs (of two sub-expressions of arbitrary shape), and

encryptions (of messages of arbitrary shape), respectively. For example LK,⦃B⦄M is the shape of

a pair consisting of a key and the encryption of a single bit message. Let B = {Bi ∣ i = 1, 2,…} be

a set of atomic bit symbols, and K = {Ki ∣ i = 1, 2,…} a set of atomic key symbols, representing

independent uniformly random bits and independent uniformly random keys, respectively. For

any shape s ∈ Shape, we define a corresponding set of expressions of shape s (denoted Exp(s))

according to the grammar rules:

Exp(B) → 0 ∣ 1 ∣ Bi ∣ ¬Exp(B)

Exp(K) → Ki ∣ G0(Exp(K)) ∣ G1(Exp(K))

Exp(⦃s⦄) → ⦃Exp(s)⦄Exp(K)

Exp(Ls, tM) → (Exp(s),Exp(t))

Exp(Ls, sM) → �[Exp(B)](Exp(s),Exp(s)).

where s, t range over Shape, Bi ranges over B, and Ki ranges over K. Most symbols are self

explanatory: ¬b represents the logical negation of bit b, (G0(k),G1(k)) represents the output of

a length doubling pseudorandom generator on seed k (with G0(k) the first half of the output,

and G1(k) the second half,) ⦃e⦄k is the encryption of e under key k, (e0, e1) is the ordered

pair with sub-expressions e0 and e1, and for any bit b and expressions e0, e1 of the same shape,

�[b](e0, e1) represents the pair (e0, e1) with the two components swapped if b = 1. For example,

⦃G0(K1)⦄G1(K1) represents the encryption of the first half G0(K1) of a pseudorandom string
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(obtained by applying the pseudorandom generator on seed K1,) encrypted under the second

half of the pseudorandom string, while �[B1](G0(K1),G1(K1)) represents a pseudorandom string

(output by the pseudorandom generator on seed K1), with the first and second half of the string

permuted (swapped) at random depending on the value of the (random) bit B1.

Note that we can iteratively apply the pseudorandom generator on a key expression k

to obtain expressions such as Gb1(Gb2(⋯ (Gbn(k)))) for n ≥ 0 and b1, b2,… , bn ∈ {0, 1}. Such

expressions are abbreviated as Gb1b2…bn(k). Let " denote the empty bit-string, and let {0, 1}∗

denote the set of all bit-strings. For any set S ⊆ Exp(K), we define the sets

G∗(S) = {Gw(k) ∣ k ∈ S,w ∈ {0, 1}∗}

G+(S) = {Gw(k) ∣ k ∈ S,w ∈ {0, 1}∗, w ≠ "}

obtained by applying the (first or second half of the) pseudorandom generator zero (resp. one)

or more times to a key in S. So, for example, G∗(K) = Exp(K) is the set of all (random or

pseudorandom) keys. For convenience, we write K∗ for G∗(K) and K+ for G+(K). If S = {k} is

a singleton set, we usually write G+(k) and G∗(k) instead of G+({k}) and G∗({k}).

Patterns are extensions of expressions that include the construct ⦃s⦄Exp(K) to represent the

encryption of an unknown expression of shape s. The pattern ⦃s⦄Exp(K) has shape ⦃s⦄. Formally,

patterns are defined by a grammar with variables Pat(s) indexed by s ∈ Shape, and the same set

of rules as those given for Exp(s), with the addition of one more rule

Pat(⦃s⦄)→ ⦃s⦄Exp(K).

Pat(s) is the set of all patterns of shape s, and Pat is the set of all patterns (of any shape). Notice

that Pat(B) = Exp(B) and Pat(K) = Exp(K) because only encryption gives raise to nontrivial

patterns.
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Computational evaluation Let � be the security parameter for cryptographic primi-

tives in the computational setting. For simplicity, all keys are assumed to have length �. To

instantiate our symbolic framework, we assume the existence of a length-doubling pseudorandom

generator  and an IND-CPA secure symmetric encryption scheme ( ,) with keys of length �.

Definition 7 (Pseudorandom generator). A deterministic function  ∶ {0, 1}� → {0, 1}2� is a

secure length-doubling pseudorandom generator if it can be computed in polynomial time and,

for any PPT distinguisher  we have

|

|

|

|

Pr
s←{0,1}2�

{(s) = 1} − Pr
r←{0,1}�

{(G(r)) = 1}
|

|

|

|

≤ negl(�).

For any symmetric encryption scheme ( ,) and b ∈ {0, 1}, the left-right encryption

oracle  ,b first samples a uniformly random key k← {0, 1}� , and then it answers any encryption

query of the form (m0, m1) with a ciphertext (k, mb), where m0 and m1 are of the same length.

Definition 8 (IND-CPA secure symmetric encryption scheme). A pair of PPT algorithms ( ,)

is an IND-CPA secure symmetric encryption scheme with key length � if the followings hold:

• Correctness: For any k ∈ {0, 1}� and m ∈ {0, 1}∗, Pr{(k, (k, m)) = m} = 1;

• Security: For any PPT distinguisher ,

|

|

Pr{ ,0(1�) = 1} − Pr{ ,1(1�) = 1}|
|

≤ negl(�),

where the probability is over the random choices of .

We assume that the size of a cipher-text (k, m) is a function of the size of the input m,

i.e., if two messages have the same length, then their encryption also have the same length. We

do not make any special assumption on the encoding of pairs (e0, e1), except that e0 and e1 can

be recovered from (e0, e1), and that the size of (e0, e1) depends only on the size of e0 and the size

of e1. For any x ∈ {0, 1}� , let 0(x) and 1(x) be the first and second halves of the bit-string
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(x), so that (x) = 0(x)1(x). Let � be a function mapping B to {0, 1}, and K to {0, 1}� . We

can extend � to map any symbolic expression to a distribution on bit-strings as follows:

�(0) = 0, �(1) = 1,

�(G0(k)) = 0(�(k)), �(¬b) = 1 − (�(b)),

�(G1(k)) = 1(�(k)), �(⦃e⦄k) = (�(k), �(e)),

�((e0, e1)) = (�(e0), �(e1)), �(�[b](e0, e1)) =

⎧

⎪

⎨

⎪

⎩

(�(e0), �(e1)) if �(b) = 0

(�(e1), �(e0)) if �(b) = 1

where k ∈ Exp(K), and b ∈ Exp(B). The computational evaluation JeK of an expression e is

defined as the probability distribution obtained by first choosing a uniformly random key and bit

assignment �, and then picking a sample from �(e).1 It is easy to check (by induction) that any

two expressions of the same shape evaluate to bit-strings of the same length.

Lemma 4. For any shape s, all strings in JExp(s)K have the same bit-length.

Using this property, we can associate a bit-length to any shape s as the bit-length |s| of

any string in the set JExp(s)K, and extend the evaluation of expressions to evaluation of patterns

by defining

�(⦃s⦄k) = (�(k), 0|s|).

Independence of pseudorandom keys The following definitions are given in [56] to

provide a (computationally sound) treatment of symbolic pseudorandom generators. For any

two keys k1, k2 ∈ K∗, if k2 ∈ G∗(k1) then we say that k1 yields k2, and denote this as k1 ⪯ k2,

meaning that k2 can be obtained from k1 by repeated application of the pseudorandom generator.

By k1 ≺ k2 we mean that k1 ⪯ k2 and k1 ≠ k2. We say that k1 and k2 are independent if neither

k1 ⪯ k2 nor k2 ⪯ k1. The keys {k1,… , kn} form an independent set if ki and kj are independent

1Notice that, even for fixed � and e, the image �(e) is a probability distribution because it involves the use of a
probabilistic encryption scheme  .
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for all i ≠ j. The root of any set of keys S is Roots(S) = S ⧵ G+(S). Thus S is independent

if and only if S = Roots(S). We recall the following theorem from [56] which shows that

independent symbolic keys correspond to (computational) pseudorandom bit-strings.

Theorem 4 ( [56, Theorem 1]). Let k1,… , kn ∈ K∗ be a sequence of symbolic keys. Then

for any secure length-doubling pseudorandom generator , the following two conditions are

equivalent:

1. The keys k1,… , kn are symbolically independent (i.e., ki ⪯ kj if and only if i = j).

2. The distribution Jk1,… , knK is computationally indistinguishable from Jr1,… , rnK where

r1,… , rn ∈ K are distinct atomic key symbols.

Equivalence and Renaming of patterns We consider patterns up to simple operations

that do not change the probability distributions associated to them. First, let ≡ be the smallest

congruence relation on Pat such that

¬0 ≡ 1 �[0](e0, e1) ≡ (e0, e1)

¬1 ≡ 0 �[1](e0, e1) ≡ (e1, e0)

¬(¬b) ≡ b �[¬b](e0, e1) ≡ �[b](e1, e0)

for all e0, e1 ∈ Pat(s), and b ∈ Pat(B). It should be clear from the computational interpretation

of �[b] and ¬b that for any two equivalent patterns e0 ≡ e1 and any assignment �, the probability

distributions �(e0) and �(e1) are identical. Similarly, we define a random bit renaming as a

function �B ∶ B → {b,¬b ∣ b ∈ B} such that its projection �′B ∶ B → B (defined by the

condition �B(b) ∈ {�′B(b),¬�
′
B(b)}) is a bijection on B. Random bit renamings are extended to

patterns �B ∶ Pat(s) → Pat(s) in the obvious way, and it is easy to check that for any pattern

e ∈ Pat(s) and assignment �, the distributions �(e) and �(�B(e)) are identical.

For keys, we consider a form of renaming that may change the distribution associated to
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an expression or pattern, but in a computationally indistinguishable way. Following [56], we

define a pseudorandom key renaming as a mapping �K ∶ S → K∗ on S ⊆ K∗ that preserves G,

i.e.,

Gw(k1) = k2 ⇐⇒ Gw(�K(k1)) = �K(k2)

for all w ∈ {0, 1}∗ and k1, k2 ∈ S. We restate some useful properties of key renamings proved

in [56]:

1. [56, Lemma 1] Any pseudorandom key renaming �K ∶ S → K∗ is a bijection from S to

�K(S). Moreover, S is independent if and only if �K(S) is independent.

2. [56, Lemma 2] Any pseudorandom key renaming �K with domain S can be uniquely

extended to a pseudorandom key renaming �̄K with domain G∗(S). In particular, any

pseudorandom key renaming can be uniquely specified as an extension �̄K of a bijection

�K ∶ A→ B between independent sets A = Roots(S) and B = �K(A).

3. [56, Lemma 5] For any pseudorandom key renaming �K ∶ S → K∗ and set of keys A ⊆ S,

�K(Roots(A)) = Roots(�K(A)).

Pseudorandom key renamings �K can also be extended to patterns �K ∶ Pat(s)→ Pat(s)

in the obvious way, and while the distributions �(e) and �(�K(e)) may, in general be different,

they are always computationally indistinguishable.

The following lemma is an easy consequence of Theorem 4, and, despite the fact that we

use a larger class of expressions, the proof is virtually identical to that of [56, Corollary 1]. For

completeness, a formal proof can be found in the appendix.

Lemma 5. For any pattern e and pseudorandom key renaming �K , the distributions JeK and

J�K(e)K are computationally indistinguishable.

We refer to a pair of mappings � = (�B, �K) (consisting of a random bit renaming �B and

a pseudorandom key renaming �K) as a pseudorandom renaming, or simply a renaming. For
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p(b, S) = b p((e0, e1), S) = (p(e0, S),p(e1, S))
p(k, S) = k p(�[b](e, e0), S) = �[b](p(e, S),p(e0, S))

p(⦃s⦄k, S) = ⦃s⦄k p(⦃e⦄k, S) =
{

⦃p(e, S)⦄k if k ∈ S
⦃s⦄k if k ∉ S

Figure 4.1. The pattern function p ∶ Pat × ℘(Pat(K)) → Pat, defined for all b ∈ Exp(B),
k ∈ Exp(K), e, e0 ∈ Exp(s), e1 ∈ Exp(t)

any pattern e ∈ Pat(s), we write �(e) = �K(�B(e)) = �B(�K(e)) for the result of applying the

renamings to the pattern e.2 Two patterns e0 and e1 are equivalent up to renaming, denoted as

e0 ≈ e1, if there exists a renaming � = (�B, �K) such that e0 ≡ �(e1). When we want to emphasize

the renaming �, we write e0 ≈� e1. It follows from the previous statements that patterns that

are equivalent up to renaming evaluate to probability distributions that are computationally

indistinguishable.

Pattern computation Following [57], the mapping from expressions to patterns is

defined by two functions:

• A function p(e, S) mapping an expression (or pattern) e and set of keys S ⊆ K∗ to the

pattern representing the view of e to an adversary that can decrypt under (all and only) the

keys in S.

• A function r(p) mapping a pattern p to a corresponding set of keys, which may be

recoverable by an adversary that sees all the parts of p.

The definition of these functions is virtually identical to the one given in [56] for expressions

with pseudorandom keys, extended with an additional case for our “controlled swap” expressions.

Informally, p(e, S) replaces all subexpressions of e of the form ⦃e′⦄k for some k ∉ S and

e′ ∈ Pat(s), with the pattern ⦃s⦄k. The formal definition is given in Fig. 4.1.

2Notice that the mappings �B and �K commute, so they can be applied in any order.
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Keys(b) = ∅ Keys(k) = {k}
Keys(⦃e⦄k) = {k} ∪Keys(e) Keys(⦃s⦄k) = {k}

Keys((e0, e1)) = Keys(e0) ∪Keys(e1)
Keys(�[b](e0, e1)) = Keys(e0) ∪Keys(e1)

Parts(b) = {b} Parts(k) = {k}
Parts(⦃e⦄k) = {⦃e⦄k} ∪ Parts(e) Parts(⦃s⦄k) = {⦃s⦄k}

Parts((e0, e1)) = {(e0, e1)} ∪ Parts(e0) ∪ Parts(e1)
Parts(�[b](e0, e1)) = {�[b](e0, e1)} ∪ Parts((e0, e1))

Figure 4.2. The definition of the keys and parts of a sub-expression. As usual b ∈ Exp(B),
k ∈ Exp(K).

The formal definition of r is more technical, and uses the auxiliary functions Keys and

Parts describing the keys and parts of an expression given in Fig. 4.2. As a matter of notation,

for any two expressions e′ and e, we say that e′ is a sub-expression of e, denoted as e′ ⋐ e, if

e′ ∈ Parts(e). Notice that encryption keys k are not considered sub-expressions of ⦃e⦄k, as,

even an adversary with unlimited decryption capabilities cannot, in general, recover k from

⦃e⦄k. Informally, r(e) is defined as the set of all keys that can be potentially recovered from

Parts(e). In [56], this is defined using a general framework to model partial information in

symbolic security analysis. For simplicity, here we only give the definition specialized to our

class of expressions.

Definition 9. For any e ∈ Pat, we define the key recovery function r ∶ Pat → ℘(Pat(K)) as

follows:

r(e) = G∗
(

{k ∈ Keys(e) ∣ (k ⋐ e) ∨ (∃k′ ∈ Keys(e).k ≺ k′)}
)

Informally, r(e) contains all keys k from Keys(e) (and pseudorandom keys that can be

derived from k) such that either k appears in e as a sub-expression, or k is related to some other

key in Keys(e). The intuition behind this definition is that the adversary can learn a key k either

by reading it directly from the parts of e, or by combining different pieces of partial information

about k. We refer the reader to [56] for further discussion and justification of this definition.
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One can check by induction that the following commutative properties hold for p and

r: For any pattern e ∈ Pat, set of keys S ⊆ K∗, and pseudorandom renaming �, we have

�(p(e, S)) = p(�(e), �(S)), and �(r(e)) = r(�(e)).

Computational soundness We can now return to the framework of [57] to associate

computationally sound symbolic patterns to cryptographic expressions. The functions p and r

are used to define, for any e ∈ Pat, a key recovery operator

e(S) = r(p(e, S))

mapping any set of keys S ⊆ G∗(K), to the set of keys potentially recoverable by an adversary

that is capable of decrypting under the keys in S. This operator is used in [57] to prove the

following general computational soundness result.

Theorem 5 ( [57, Theorem 1]). Assume the functions p, r satisfy the following properties:

1. p(e,K∗) = e

2. p(p(e, S), T ) = p(e, S ∩ T ) for all S, T ⊆ K∗

3. r(p(e, T )) ⊆ r(e) for all T ⊆ K∗

4. The distributions JeK and Jp(e, r(e))K are computationally indistinguishable.

Then, the key recovery operator e has a (unique) greatest fixed point Fix(e) = ∩i>0 (i)
e (K

∗),

and the pattern

Pattern(e) = p(e,Fix(e))

is computationally sound, in the sense that JPattern(e)K and JeK are computationally indistin-

guishable distributions.

One can check that the functions p and r satisfy all the conditions 1 to 3 in Theorem 5.

For the last condition, the following lemma shows that JeK and Jp(e, r(e))K are indistinguishable
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for all patterns e. The proof is omitted due to space constraint. Using the soundness theorem of

the general symbolic framework of [57] we can then conclude that our symbolic semantics is

computationally sound.

Lemma 6. For any e ∈ Pat, the probability distributions JeK and Jp(e, r(e))K are computation-

ally indistinguishable.

Recall that renamings commute with the pattern function p, i.e., for any expression e

and for any set of keys S ⊆ K∗, p(�(e), �(S)) = �(p(e, S)). It follows that Pattern(�(e)) =

�(Pattern(e)), and therefore we can extend the computational soundness theorem to pattern

equivalence up to renaming. That is, for any two expressions e1 and e2, symbolic equivalence

(up to pseudorandom renaming) of their patterns Pattern(e1) and Pattern(e2) implies that the

two probability distributions Je1K and Je2K are computationally indistinguishable.

Theorem 6. For any two symbolic expressions e0, e1, if Pattern(e0) ≈ Pattern(e1), then Je0K

and Je1K are computationally indistinguishable.

4.2 Inductive Circuit Representation

Traditionally, boolean circuits are described by two sets of gates {gi}
q
i=1 and wires {wi}

p
i=1

and a description of how they are connected together. Each wire carries a boolean value, that is

either given as part of the input to the circuit, or is computed by a gate. Each gate is associated to

a number of input and output wires, and sets the value of the output wires to some fixed function

of the values of the input wires. For simplicity, we consider circuits using just two types of gates:

• a NAND gate that on input two boolean values x0, x1, computes the output y = x0 ↑ x1,

and

• a DUP gate, which duplicates the value on its single input wire x to its two output wires

y0 = y1 = x.
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The NAND function itself is complete for the set of all boolean functions, and the DUP gate can

be used to implement arbitrary fan-out. So any boolean circuit can be converted to this notation. A

circuit with n input wires and m output wires computes a boolean function f ∶ {0, 1}n → {0, 1}m.

This traditional formalization of circuits is completely unstructured, making it inconve-

nient to use in symbolic constructions and proofs of security. Below we present an alternative

way to describe boolean circuits, which is inductive (larger circuits are built from smaller ones),

and supports definitions and proofs by structural induction.

We begin by putting some structure on the set of input and output wires of a circuit, by

defining the notion of a wire bundle. Informally, the shape of a wire bundle is defined by a well

parenthesized expression like (◦, (◦, ◦)). Formally, we can define bundle to be either a single

wire (represented by the symbol ◦), or an ordered pair (u, v) where u and v are wire bundles. The

size of a bundle is simply the number of wires in it, i.e., the number of ◦ subexpressions. Each

wire ◦ carries a bit b ∈ {0, 1}, and a bundle of n wires naturally carries a bit vector in {0, 1}n,

but the additional bundle structure will give us easier access to individual bits, without having to

index them. We remark that the grouping of wires is not associative, i.e., ((u, v), w) is different

from (u, (v,w)).

We define circuits inductively, specifying a number of basic circuits, and some general

operations to combine them together. Each circuit takes as input a bundle of wires, and produces

as output another bundle. The set of circuits with input shape s and output shape t is denoted

by Circuit(s, t). Circuits, their inputs and outputs, and the functions they compute, are formally

specified in the following definition, with the base and inductive cases illustrated in Fig. 4.3

and 4.4.

Definition 10. A circuit is either a basic circuit from {Swap,Assoc,Unassoc,Dup,NAnd}, or

it is a composite circuit built using operations ⋙ and First. The semantics of basic circuits are:

• Swap consumes wires (u, v) and produces wires (v, u).

• Assoc consumes wires (u, (v,w)) and produces wires ((u, v), w).
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S

Swap

A

Assoc

U

Unassoc

D

Dup

↑
N

NAnd

Figure 4.3. The atomic circuits Swap, Assoc, Unassoc, Dup, and NAnd. The dotted lines
indicate how values are transferred from input wires to output wires. For Swap, Assoc, and
Unassoc, an arrow may represent a bundle of more than one wires.

• Unassoc consumes wires ((u, v), w) and produces wires (u, (v,w)).

• Dup consumes a single wire w and produces wires (w,w).

• NAnd consumes wires (u, v), where u and v are single wires carrying bits x and y, and its

output is a single wire that carries the bit x ↑ y.

For composite circuits, assume C0 is a circuit that takes u as input wires and produces

output wires w, and C1 a circuit that takes w as input wires and produces output wires v. Then

• C0⋙ C1 is a circuit that takes input u and produces output v, obtained by first applying

C0 on u to get an intermediate result w, and then applying C1 on w to get v.

• First(C0) is a circuit that takes input wires (u, u′) and produces output wires (w, u′) for

any wires u′, where w is the output of C0 on input u, and u′ is left unchanged by the circuit.

To evaluate a circuit, we define the function Ev(C,w) that takes a circuitC ∈ Circuit(s, t)

and a wire bundle w of shape s, and return a bundle of shape t according to the above semantics.

For simplicity, we usually just write C(x) for the boolean value carried on the wires u = Ev(C,w)

where x is the value carried on w.

We remark that the circuit concatenation operation⋙ is associative, i.e., (C0⋙C1)⋙C2

and C0⋙ (C1⋙ C2) produce the same circuit. So, we may omit the parentheses when writing

a sequence of concatenations C0⋙ C1⋙ C2.

For a circuit C , we say that C ′ is a sub-circuit of C if one of the following holds:
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C0 C1

C0⋙ C1

C

First(C)

Figure 4.4. Composite circuits C0⋙C1 and First(C) using operations⋙ and First on circuits
C0, C1, C . Dotted lines draw the boundaries of composite circuits.

• C ′ = C , or

• C = C0⋙ C1 and C ′ is a sub-circuit of C0 or C1, or

• C = First(C0) and C ′ is a sub-circuit of C0.

Example 1. To illustrate our circuit notation, consider the function f ((x, y), z) = (x ∧ y, y→ z),

where y → z ≡ ¬y ∨ z is the logical implication operation. First we define an operation Second

on circuits such that Second(C) is a circuit that takes as input a wire bundle (u, v) and produces

as output a bundle (u,w), where v is the input of C and w is the output of C:

Second(C) = Swap⋙ First(C)⋙ Swap

Since x ↑ x = ¬x, the circuit Not = Dup⋙ NAnd computes the negation of an input

bit, and the circuit And = NAnd⋙ Not = NAnd⋙ Dup⋙ NAnd computes the function

(x, y) → (x ∧ y). Since y → z = (¬y) ∨ z = y ↑ (¬z), the circuit Imp = Second(Not)⋙NAnd

computes the function (y, z) → (y → z). Putting them together, we obtain a circuit

C = First(Second(Dup)⋙ Assoc)⋙ Unassoc

⋙ First(And)⋙ Second(Imp)

for the function f ((x, y), z) = (x ∧ y, y→ z), illustrated graphically in Fig. 4.5. Notice how the

first part of the computation consisting of the Dup, Assoc and Unassoc gates is used to route the
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input wires to the appropriate subcircuit.

x

y

z

D

A

U

↑ D ↑

D ↑
↑

(x ∧ y)

(y → z)

And

Imp

Figure 4.5. The circuit that computes the function f ((x, y), z) = (x ∧ y, y→ z).

Remark 1. With our circuit notation, a circuit with q gates and p wires can be represented using

a string of size O(qd log q), where d is the depth of the circuit. We can convert the traditional

DAG-like circuit notation to our inductive circuit representation by organizing gates into layers

according to their depth. For a layer with qi gates, the computation of these gates can be described

using qi log qi many First and Second operations together with qi basic circuits. To rearrange

wires after a layer of qi gates, we can add O(qi log qi) many Swap, Assoc, and Unassoc gates.

The entire circuit can be concatenated from layers using ⋙ operations. So the size of such

representation is O(qd log q).

4.3 Symbolic Garbled Circuits

We recall the definition of circuit garbling schemes in the computational setting [6, 48].

Definition 11 (Syntax). A garbling scheme is a pair of PPT algorithms (Garble, GEval)3 where

• Garble(C, x) = (C̃, x̃): The circuit garbling algorithm takes a circuit C and a boolean

vector x as input, and it produces a garbled circuit C̃ and a garbled input x̃.

3Usually a garbling scheme consists of three algorithms (GCircuit, GInput, GEval) such that GCircuit(C) =
(C̃, L) produces a garbled circuit C̃ and labels L for the input wires, and GInput(L, x) = x̃ produces garbled input
x̃ using the labels. Such a syntax is useful to define adaptive security. However, we choose a simplified syntax of
two algorithms that is sufficient to define selective security and convenient for our analysis.
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• GEval(C̃, x̃) = y: The garbled circuit evaluation algorithm takes a garbled circuit C̃ and

a garbled input x̃ as input, and it produces a boolean vector y as output.

Definition 12 (Correctness and security). For a garbling scheme (Garble, GEval), we say that

• it is correct if GEval(Garble(C, x)) = C(x) for all circuits C and boolean vectors x;

• it is (selectively) secure if there exists a PPT simulator Simulate(⋅, ⋅) such that for

any circuit C and input x, the distributions Simulate(C,C(x)) and Garble(C, x) are

computationally indistinguishable.

Strictly speaking, a simulator should not gain access to a circuit, and instead, it should

take the topology of a circuit as input. To simplify discussion, we use the actual circuit as its

topology representation rather than introducing new notations. This can be justified by the facts

that 1) there is only one primitive gate in our circuit notation, namely the NAND gate, and 2) our

simulator (defined later) does not exploit the function computed by the NAND gate.

Symbolic garbled circuit We consider garbling schemes where the output of all al-

gorithms Garble, GEval, and Simulate are expressions in our symbolic language Exp. This

will allow us to analyze both the correctness and security properties of the scheme in a purely

symbolic manner, without resorting to the power (and complications) of the full computational

model of cryptography. The circuit garbling construction described here is essentially the one

with the point-and-permute technique as described in [4]. In this section we present Garble and

GEval, and we will define Simulate and prove security in the next section.

Let � denote a special symbolic expression whose computational evaluation is the empty

string. We slightly change the notation of atomic key symbols by using both subscripts and

superscripts to index them: an atomic key is a symbol Kji where i ∈ {1, 2,…} and j ∈ {0, 1}.

With this notation, the set of atomic keys is now K = {K01,K
1
1,K

0
2,K

1
2,…}. To hide the input of a

circuit, the garbling algorithm encodes values carried on wires using labels of shape LB, LK,KMM,

one for each wire. We call a bundle of labels a label expression.
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Formally, we first define a function Label that on input a bundle shape s, outputs a

collection of wire labels:

Label(◦) = (Bℎ, (K0ℎ,K
1
ℎ)) where

ℎ← new

Label((s, t)) = (Label(s), Label(t))

The instruction ℎ ← new picks a fresh index ℎ (e.g., using a counter), used to define a new

symbolic label (Bℎ, (K0ℎ,K
1
ℎ)).

A garbled input has two parts: an encoded input expression that is a bundle of shape

(B,K), and an output mask expression that is a bundle of bits. The function GEnc encodes a

boolean vector using bits and keys in a label expression:

GEnc((B, (K0,K1)), 0) = (B,K0)

GEnc((B, (K0,K1)), 1) = (¬B,K1)

GEnc((L0, L1), (x0, x1)) = (GEnc(L0, x0), GEnc(L1, x1))

The output masks are used to decode an encoded expression. It is formed by the bits in a label

expression:

GMask((B, (K0,K1))) = B

GMask((L0, L1)) = (GMask(L0), GMask(L1))

The core of the garbling algorithm is a recursive function Gb, which takes as input a

circuit and a label expression for the input wires, and outputs a symbolic expression of the

garbled circuit and a label expression for the output wires.
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Gb :: Circuit(s, t) × Exp→ Exp × Exp

Gb(Swap, (u, v)) = �, (v, u)

Gb(Assoc, (u, (v,w))) = �, ((u, v), w)

Gb(Unassoc, ((u, v), w)) = �, (u, (v,w))

Gb(C0⋙ C1, u) = (C̃0, C̃1), v where

C̃0, w = Gb(C0, u)

C̃1, v = Gb(C1, w)

Gb(First(C), (u,w)) = C̃, (v,w) where

C̃, v = Gb(C, u)

Gb(Dup, (b, (k0, k1))) = �,w where

w = ((b,G0(k0),G0(k1)), (b,G1(k0),G1(k1)))

Gb(NAnd, ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j )))) = C̃, w where

ℎ← new

C̃ = �[bi](�[bj](⦃⦃(¬Bℎ,K1ℎ)⦄k0j⦄k0i ,⦃⦃(¬Bℎ,K
1
ℎ)⦄k1j⦄k0i ),

�[bj](⦃⦃(¬Bℎ,K1ℎ)⦄k0j⦄k1i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k1i ))

w = (Bℎ, (K0ℎ,K
1
ℎ))

The full garbling procedure can be obtained by composing the above functions. On input

a circuit C and a boolean vector x, it picks random labels for the input wires using Label, calls

Gb to generate a garbled circuit C̃ and output labels, and then calls GEnc and GMask to produce a

garbled input x̃. Note that the second parameter of GEnc is a bundle of bits rather than a boolean

vector. In the definition of Garble below we slightly abuse notation and use x to denote a bundle

of bits x1,… , xn of a suitable shape, which can be efficiently constructed from x and s.
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Garble :: Circuit(s, t) × {0, 1}n → Exp

Garble(C, x) = (C̃, x̃) where

u ← Label(s)

C̃, v = Gb(C, u)

x̃ = (GEnc(u, x), GMask(v))

Next, we consider the garbled circuit evaluation algorithm GEval. The core part of

GEval is a recursive function GEv that takes a garbled circuit and an encoded input expression,

producing an encoded output expression. Any encoded output is also an encoded input for

evaluating subsequent garbled circuits. We include a circuit as another input of GEv, which is

used to determine the shapes of output wires. Ideally we can use the circuit’s topology instead,

but for simplicity we just use the circuit itself and we do not exploit the function computed by a

circuit.

GEv ∶∶ Circuit(s, t) × Exp × Exp → Exp

GEv(Swap, �, (u, v)) = (v, u)

GEv(Assoc, �, (u, (v,w)) = ((u, v), w)

GEv(Unassoc, �, (u, (v,w)) = ((u, v), w)

GEv(Dup, �, (b, k) = ((b,G0(k)), (b,G1(k)))

GEv(NAnd, C̃, ((b′0, k0), (b
′
1, k1))) = (b, k) where

�[b0](r0, r1) = C̃

�[b1](e0, e1) = if b′0 ≡ b0 then r0 else r1

⦃⦃(b, k)⦄k1⦄k0 = if b′1 ≡ b1 then e0 else e1

GEv(C0⋙ C1, (C̃0, C̃1), u) = GEv(C1, C̃1, w) where

w = GEv(C0, C̃0, u)

GEv(First(C), C̃, (u,w)) = (v,w) where

v = GEv(C, C̃, u)

We briefly explain how GEv works. For the basic circuits Swap, Assoc, Unassoc, and

Dup whose corresponding garbled circuits are �, it simply rearranges the bits and keys in the
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encoded input to form an encoded output, except for Dup where it generates and then splits

a pseudo-random key in the encoded output. For NAnd, it parses the corresponding garbled

circuit as permutations controlled by atomic bits b0, b1, and it selects the entry corresponding

to the bits b′0, b
′
1. In the above definition, we use pattern matching syntax that is usually found

in functional programming languages to parse C̃ and select the subexpression ⦃⦃(b, k)⦄k1⦄k0 .

One can verify that, if (b′i, ki) is in the encoded input to NAnd for i ∈ {0, 1}, then b′i ∈ {bi,¬bi}

and the entry selected using bits b′0, b
′
1 are doubly encrypted under keys k0,k1. So the expression

(b, k) extracted by GEv is well-defined. For the composite circuits C0⋙ C1 and First(C), GEv

produces an encoded output expression recursively in a way similar to how Ev evaluates these

circuits.

Notice that the output of GEv are bit symbols rather than boolean values. The function

Decode uses the output masks to decode a garbled output into a boolean vector:

Decode((b, k), b′) = if b ≡ b′ then 0 else 1

Decode((u0, u1), (d0, d1)) = (Decode(u0, d0), Decode(u1, d1))

Finally, the full evaluation algorithm GEval is defined as4:

GEval ∶∶ Circuit(s, t) × Exp × Exp → {0, 1}n

GEval(C, C̃, x̃) = Decode(GEv(C, C̃, u), d) where

(u, d) = x̃

The following theorem shows that our garbling scheme is correct. Briefly speaking,

the encoded input expressions contain the sufficient bits and keys to obtain the encoded output

from the garbled circuit expression, and the output masks provide information for decoding the

encoded output.

Theorem 7. For any circuit C ∈ Circuit(s, t) and any boolean vector x of shape s, we have

GEval(C, Garble(C, x)) = C(x).

4Notice that Decode outputs a bundle of bits. Here we slightly abuse notation and assume a boolean vector can
be extracted from a bundle of bits.
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4.4 Symbolic Simulation of Garbled Circuits

In this section we define a simulator Simulate(⋅, ⋅), and we present our proof that, for

any circuit C and any boolean vector x, the expressions Garble(C, x) and Simulate(C,C(x))

are equivalent up to renaming. Together with the computational soundness theorem of our

symbolic framework, such proof implies that the garbled circuit scheme of the previous section

is computationally secure.

Symbolic simulator Recall that a simulator must output a symbolic expression that

represents a garbled circuit and a garbled input, and a garbled input consists of an encoded input

and output masks. The simulator has no access to the circuit input values, so it picks the random

bit and the first random key from each label to form the encoded input:

SEnc((B, (K0,K1))) = (B,K0)

SEnc((L0, L1)) = (SEnc(L0), SEnc(L1))

In order to correctly evaluate the simulated garbled circuit on the simulated garbled input, we

adjust the output masks according to the circuit output value. Given a label expression and a

boolean vector representing the circuit output value, the function SMask computes the output

masks:

SMask((B, (K0,K1)), 0) = B

SMask((B, (K0,K1)), 1) = ¬B

SMask((L0, L1), (y0, y1)) = (SMask(L0, y0), SMask(L1, y1))

The core of our simulator is a recursive function Sim that consumes a circuit and a label

expression for input wires, and produces a symbolic expression of the simulated garbled circuit

and a label expression for output wires:
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Sim :: Circuit(s, t) × Exp → Exp × Exp

Sim(Swap, (u, v)) = �, (v, u)

Sim(Assoc, (u, (v,w))) = �, ((u, v), w)

Sim(Unassoc, ((u, v), w)) = �, (u, (v,w))

Sim(C0⋙ C1, u) = (Ĉ0, Ĉ1), v where

Ĉ0, w = Sim(C0, u)

Ĉ1, v = Sim(C1, w)

Sim(First(C), (u,w)) = Ĉ, (v,w) where Ĉ, v = Sim(C, u)

Sim(Dup, (b, (k0, k1))) = �,w where

w = ((b, (G0(k0),G0(k1))), (b, (G1(k0),G1(k1))))

Sim(NAnd, ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j )))) = Ĉ, w where

ℎ← new

Ĉ = �[Bi](�[Bj](⦃⦃(Bℎ,K0ℎ)⦄k0j⦄k0i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k0i ),

�[Bj](⦃⦃(Bℎ,K0ℎ)⦄k0j⦄k1i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k1i ))

w = (Bℎ, (K0ℎ,K
1
ℎ))

Notice that, for any circuit C and any label expression u, if C̃, v = Gb(C, u) and Ĉ, w =

Sim(C, u), then the subscript ℎ of any atomic key symbol Kiℎ that appears in (C̃, v) and (Ĉ, w)

follows the same ordering.

Our simulator is composed of the above functions. It takes a circuit C and a boolean

vector y as input, and it generates a simulated garbled circuit using Sim and a simulated garbled

input using SEnc and SMask:

Simulate :: Circuit(s, t) × {0, 1}m → Exp

Simulate(C, y) = (Ĉ, x̂) where

u ← Label(s)

Ĉ, v = Sim(C, u)

x̂ = (SEnc(u), SMask(v, y))
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Symbolic proof of security For this paper we present a pen-and-paper symbolic secu-

rity proof, which can also be adapted to a machine-checked proof using verification tools. For

any bit expression b ∈ Pat(B) and any x ∈ {0, 1}, we introduce the notation b⊕x to shorten our

proofs:

b⊕x =

⎧

⎪

⎨

⎪

⎩

b if x = 0

¬b if x = 1

We say that a label expression w is strongly independent if Keys(w) is a set of independent keys

and, if w = (b, (k0, k1)) is a single label then k0 ≠ k1, and if w = (u, v) where u and v are label

expressions, then u and v are both strongly independent and Keys(u) ∩Keys(v) = ∅.

Let us start with some technical lemmas that are helpful to derive our main result. The

first lemma can be easily verified by induction on the definition of Gb.

Lemma 7. For any circuit C and label expression u, if C̃, v = Gb(C, u) and k ∈ Keys(C̃) ∩

Parts(C̃), then k ∈ K is an atomic key symbol.

Our next lemma shows that Gb produces strongly independent output labels from strongly

independent input labels. Furthermore, any key in the output label expression is yielded from

either a new atomic key introduced in the garbled circuit or a key in the input labels, and it does

not yield any other key in the garbled circuit. The formal proof is done using structural induction

on circuits, and it is omitted due to space constraint.

Lemma 8. For any circuit C and any strongly independent label expression u such that C̃, v =

Gb(C, u), v is strongly independent, and the following hold for all k ∈ Keys(v):

1. G+(k) ∩Keys((C̃, u)) = ∅;

2. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.

A quick observation on Gb is that, for any circuit C , if k ∈ Pat(K) appears in C̃ , then

either k is in a plaintext message and so k ∈ Parts(C̃), or k is used as an encryption key. The

74



former case has been considered in Lemma 7. The following lemma characterizes the latter case,

and it can be proved using structural induction on circuits.

Lemma 9. For any circuit C and any label expression u such that u is strongly independent and

C̃, v = Gb(C, u), if ⦃e⦄k ∈ Parts(C̃) for some expression e and some key k ∈ Pat(K), then the

following hold:

1. G+(k) ∩Keys(C̃) = ∅;

2. G∗(k) ∩Keys(v) = ∅;

3. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.

For the rest of paper, let us fix a circuit C ∈ Circuit(s, t) and a boolean vector x ∈ {0, 1}n,

where s is a shape of n wires and t is a shape of m wires. Let e = (C̃, x̃) = Garble(C, x) be

the symbolic expression of the garbled circuit and the garbled input of C on input x. Since

e is monotone, the greatest fixed point of e exists and it can be computed in polynomially

many steps. Let S = Fix(e) and e′ = p(e, S). Then Roots(S) ⊆ Keys(e) and S = e(S) =

r(p(e, S)) = r(e′). For any label (b, (k0, k1)), we say that it satisfies the label invariant if

b ∈ B,∃z ∈ {0, 1} such that kz ∈ S, k1−z ∉ S, (4.1)

and we call z the actual value of the label (b, (k0, k1)).

Lemma 10. For any sub-circuit C ′ of C , and for any label expression u, if C̃ ′, v = Gb(C ′, u) and

all labels (b, (k0, k1)) ⋐ u satisfy the label invariant, then all labels (b̄, (k̄0, k̄1)) ⋐ v satisfy the

label invariant.

Proof. We use induction on the structure of circuit C ′. For the base case, C ′ is an atomic circuit:

• C ′ = Swap, Assoc, or Unassoc: Any label (b̄, (k̄0, k̄1)) ⋐ v is also a sub-expression of u.

So the lemma holds.
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• C ′ = Dup: Suppose u = (b, (k0, k1)) satisfies the label invariant with an actual value

z. If (b̄, (k̄0, k̄1)) ⋐ v, then b̄ = b, k̄0 = Gℎ(k0), and k̄1 = Gℎ(k1) for some ℎ ∈ {0, 1}.

So b̄ ∈ B. Let z̄ = z. Then k̄z̄ = Gℎ(kz) ∈ S. Assume towards a contradiction that

k̄1−z̄ ∈ S. Then Gℎ(k1−z) = k̄1−z̄ ∈ G∗(k′) for some k′ ∈ Keys(e′) where k′ ∈ Parts(e′)

or ∃k′′ ∈ Keys(e′) such that k′ ≺ k′′. Notice that e′ = p((C̃, x̃), S) = (p(C̃, S),p(x̃, S)),

and x̃ contains only atomic keys. So k′′ ∈ Keys(C̃ ′) ⊆ Keys(C̃). We have two cases:

– Gℎ(k1−z) ≠ k′: k1−z ∈ G∗(k′) ⊆ S, a contradiction.

– Gℎ(k1−z) = k′: Now k′ ∉ Parts(e′), and thus ⦃g′⦄k′ ∈ Parts(e′) for some pattern

g′. So ⦃g′⦄k′ ∈ Parts(p(C̃, S)) and ⦃g⦄k′ ∈ Parts(C̃) for some expression g such

that g′ = p(g, S). By Lemma 9, G+(k′) ∩Keys(C̃) = ∅ and hence k′′ ∉ Keys(C̃), a

contradiction.

Therefore (b̄, (k̄0, k̄1)) satisfies the label invariant.

• C ′ = NAnd: The only label in v is (Bℎ, (K0ℎ,K
1
ℎ)). Notice that the expressions in Parts(e)

that contain K0ℎ,K
1
ℎ are the following and their sub-expressions:

⦃⦃(¬Bℎ,K1ℎ)⦄k0j⦄k0i ,⦃⦃(¬Bℎ,K
1
ℎ)⦄k0j⦄k1i ,

⦃⦃(¬Bℎ,K1ℎ)⦄k1j⦄k0i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k1i ,

where ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j ))) = u. Observe that these four expressions can be gener-

ated as

⦃⦃(B⊕(xi↑xj )ℎ ,Kxi↑xjℎ )⦄kxjj ⦄k
xi
i

for xi, xj ∈ {0, 1}.

Let z̄ = zi ↑zj . By assumption, we have kzii , k
zj
j ∈ S and k1−zii , k1−zjj ∉ S, so kz̄ = Kz̄ℎ ∈ S

and k1−z̄ = K1−z̄ℎ ∉ S, and Condition 4.1 holds for (Bℎ, (K0ℎ,K
1
ℎ)).

Next, consider composite circuits. Assume the lemma holds for all sub-circuits of C ′.

Then we have these cases:
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• C ′ = C ′
0⋙ C ′

1: Suppose C̃ = (C̃ ′
0, C̃

′
1) where C̃ ′

0, w = Gb(C ′
0, u) and C̃ ′

1, v = Gb(C ′
1, w).

Since C ′
0 and C ′

1 are both sub-circuits of C ′, by assumption we see that Condition 4.1 holds

for all labels in u and consequently, for all labels in w, and so it holds for all labels in v.

• C ′ = First(C ′′): Suppose u = (u′′, w) and v = (v′′, w) such that C̃, v′′ = Gb(C ′′, u′′). For

any label (b̄, (k̄0, k̄1)) ⋐ v, it is either a sub-expression of v′′ or it is a sub-expression of w.

For the former case, since C ′′ is a sub-circuit of C ′, Condition 4.1 holds for (b̄, (k̄0, k̄1)) by

induction hypothesis. For the latter case, since w ⋐ u, Condition 4.1 holds for this label by

assumption.

Therefore the lemma holds for any circuit C .

Let f = (Ĉ, x̂) = Simulate(C,C(x)) be the symbolic expression of simulated garbled

circuit of C on output C(x). Let T = Fix(f ), which satisfies f (T ) = r(p(f, T )) = T . The

following lemma shows that, for each key pair k0, k1 in f , exactly one of k0 and k1 is in T .

Lemma 11. For any sub-circuit C ′ of C and any label expression u such that Ĉ ′, v = Sim(C ′, u),

if all labels (b, (k0, k1)) ⋐ u satisfy the label invariant with actual value 0, then all labels

(b̄, (k̄0, k̄1)) ⋐ v satisfy the label invariant with actual value 0.

Proof. We can directly apply the proof of Lemma 10 except for the base case when C ′ = NAnd:

• C ′ = NAnd: The label in v is (Bℎ, (K0ℎ,K
1
ℎ)). The expressions in Parts(f ) that contain

K0ℎ,K
1
ℎ are the following and their sub-expressions:

⦃⦃(Bℎ,K0ℎ)⦄k0j⦄k0i ,⦃⦃(Bℎ,K
0
ℎ)⦄k0j⦄k1i ,

⦃⦃(Bℎ,K0ℎ)⦄k1j⦄k0i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k1i ,

where ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j ))) = u. Let z̄ = 0. By assumption, k0i , k

0
j ∈ T and

k1i , k
1
j ∉ T . So kz̄ = K0ℎ ∈ T and k1−z̄ = K1ℎ ∉ T , and Condition 4.1 holds for (Bℎ, (K0ℎ,K

1
ℎ))

with actual value 0.
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For the rest of the cases, the proof of Lemma 10 applies with actual value 0.

Now we are ready to prove our main result that the patterns of the real garbled circuit

and the simulated garbled circuit are equivalent up to renaming.

Theorem 8. For any circuit C ∈ Circuit(s, t) and any boolean vector x ∈ {0, 1}n, where s is a

shape of n wires, Pattern(Garble(C, x)) ≈ Pattern(Simulate(C,C(x))).

Proof. Let u = ((B1, (K01,K
1
1)),… , (Bn, (K0n,K

1
n))) be the label expression in Garble. Let C̃, v =

Gb(C, u). One can check that, for any sub-circuit C ′ of C , if C̃ ′, v′ = Gb(C ′, u′) and Ĉ ′, w′ =

Sim(C ′, u′) for any label expression u′ of an appropriate shape, then v′ = w′. Since Sim is also

applied on C and u in Simulate, we can write Ĉ, v = Sim(C, u).

Let e = (C̃, x̃) = Garble(C, x), f = (Ĉ, x̂) = Simulate(C,C(x)), S = Fix(e), and

T = Fix(f ). We can write C̃ = (C̃1,… , C̃q) and Ĉ = (Ĉ1,… , Ĉq), where C̃i, vi = Gb(Ci, ui)

and Ĉi, vi = Sim(Ci, ui) for some atomic sub-circuit Ci of C and some label expression ui. To

show Pattern(e) = p(e, S) ≈ p(f, T ) = Pattern(f ), we first show (p(C̃1, S),… ,p(C̃q, S)) ≈

(p(Ĉ1, T ),… ,p(Ĉq, T )) with respect to a pseudorandom renaming � = (�B, �K), and then we

show p(x̃, S) ≈� p(x̂, T ).

For the first part, let �B be the random bit renaming �B(Bi) = B
⊕zi
i for all Bi ∈ B, where

zi is the actual value of the label that contains Bi. Let �K be the bijection on K such that

�K(K
zi
i ) = K0i and �K(K

1−zi
i ) = K1i for each K0i ,K

1
i . We claim that, for any sub-circuit C ′ of C and

for any label expression u′, if C̃ ′, v′ = Gb(C ′, u′) and Ĉ ′, v′ = Sim(C ′, u′), then Condition 4.1

holds for all labels in v′ and p(C̃ ′, S) ≈� p(Ĉ ′, T ).

Proof of claim: Notice that all labels in u satisfy Condition 4.1. By Lemma 10, all labels

in v′ also satisfy Condition 4.1. We use induction on the structure of C ′ to show p(C̃ ′, S) ≈�

p(Ĉ ′, T ). For the base case, C ′ is an atomic circuit:

• C ′ = Swap, Assoc, Unassoc, or Dup: Both C̃ ′ and Ĉ ′ are the empty garbled circuit �, so

p(C̃ ′, S) = p(Ĉ ′, T ).
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• C ′ = NAnd: Suppose u′ = ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j ))) and v′ = (Bℎ, (K0ℎ,K

1
ℎ)). Let zi,

zj and zℎ be the actual values of the labels (bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j )) and (Bℎ, (K0ℎ,K

1
ℎ)),

respectively. We know from the proof of Lemma 10 that zℎ = zi ↑ zj . So we can apply �K

and get

C̃ ′= �[Bi](�[Bj](⦃⦃(B
⊕(0↑0)
ℎ ,K0↑0ℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕(0↑1)ℎ ,K0↑1ℎ )⦄k1j⦄k0i ),

�[Bj](⦃⦃(B
⊕(1↑0)
ℎ ,K1↑0ℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕(1↑1)ℎ ,K1↑1ℎ )⦄k1j⦄k1i ))

≈� �[B
⊕zi
i ](�[B⊕zj

j ](⦃⦃(B⊕(0↑0)⊕zℎℎ ,K(0↑0)⊕zℎℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕(0↑1)⊕zℎℎ ,K(0↑1)⊕zℎℎ )⦄k1j⦄k0i ),

�[B⊕zj
j ](⦃⦃(B⊕(1↑0)⊕zℎℎ ,K(1↑0)⊕zℎℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕(1↑1)⊕zℎℎ ,K(1↑1)⊕zℎℎ )⦄k1j⦄k1i ))

≡ �[Bi](�[Bj](⦃⦃(B
⊕�(zi,zj )
ℎ ,K⊕�(zi,zj )ℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕�(zi,1−zj )ℎ ,K⊕�(zi,1−zj )ℎ )⦄k1j⦄k0i ),

�[Bj](⦃⦃(B
⊕�(1−zi,zj )
ℎ ,K⊕�(1−zi,zj )ℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕�(1−zi,1−zj )ℎ ,K⊕�(1−zi,1−zj )ℎ )⦄k1j⦄k1i )),

where �(di, dj) = (di ↑ dj)⊕ zℎ for di, dj ∈ {0, 1}. In particular, �(zi, zj) = 0. By Con-

dition 4.1, kzii , k
zj
j ,K

zℎ
ℎ ∈ S, k1−zii , k1−zjj ,K1−zℎℎ ∉ S, and b⊕zii , b⊕zjj ∈ Parts(p(e, S)). So

k0i , k
0
j ∈ �(S), k

1
i , k

1
j ∉ �(S), and the pattern �(p(C̃ ′, S)) = p(�(C̃ ′), �(S)) is equivalent

to

�[Bi](�[Bj](⦃⦃(Bℎ,K0ℎ)⦄k0j⦄k0i ,⦃⦃LB,KM⦄k1j⦄k0i ),

�[Bj](⦃⦃LB,KM⦄⦄k1i ,⦃⦃LB,KM⦄⦄k1i ))

On the other hand, by Lemma 11, k0i , k
0
j ,K

0
ℎ ∈ T and k1i , k

1
j ,K

1
ℎ ∉ T . So the pattern

p(Ĉ ′, S) of Ĉ ′ is
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�[Bi](�[Bj](⦃⦃(Bℎ,K0ℎ)⦄k0j⦄k0i ,⦃⦃LB,KM⦄k1j⦄k0i ,

�[Bj](⦃⦃LB,KM⦄⦄k1j ),⦃⦃LB,KM⦄⦄k1j ))

Thus p(C̃ ′, S) ≈� p(Ĉ ′, T ).

For the induction step, assuming the claim holds for sub-circuits C ′
0 and C ′

1 of C , it is easy

to check that the claim also holds for the cases C ′ = First(C ′
0) and C ′ = C ′

0⋙ C ′
1. Therefore

our claim follows.

For the second part, let y = C(x). Then for any i ∈ [m], yi is the actual value of the

corresponding output wire. Since x̃ = ((Kx11 ,B
⊕x1
1 ),… , (Kxnn ,B

⊕xn
n ), (b1,… , bm)),we can calculate

�(x̃) = ((K01,B1),… , (K0n,Bn), (b
⊕yi
1 ,… , b⊕ymm )) = x̂.

So x̃ ≈� x̂, and thus p(x̃, S) ≈� p(x̂, T ).

Therefore the theorem holds.

As a corollary of Theorem 6 and 8, we can now conclude that our garbled circuit scheme

is computationally secure.

Corollary 1. For any circuit C ∈ Circuit(s, t) and any x ∈ {0, 1}n where s is a shape of n wires,

the probability distributions JGarble(C, x)K and JSimulate(C,C(x))K are computationally

indistinguishable.

4.5 Implementation

As a proof of concept, we have implemented our symbolic framework as well as the

garbling scheme and the simulator in Haskell. 5 In our implementation, we added a normalization

5The source code can be found at https://github.com/b5li/SymGC.
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operation norm on patterns, such that:

norm (Not (Bit False)) = Bit True norm (� (Bit False) p q) = Pair (norm q) (norm p)

norm (Not (Bit True)) = Bit False norm (� (Bit True) p q) = Pair (norm p) (norm q)

norm (Not (Not e)) = norm e norm (� (Not b) p q) = norm (� b q p)

The equivalence relation ≡ on patternsis checked using syntactic equality on normalized patterns.

Random bit renaming and pseudo-random key renaming are implemented using maps on nor-

malized bit and key patterns. Thus we can check equivalence up to renaming by first applying

renaming maps to normalized patterns and then checking for equivalence.

To build symbolic expressions of the real and the simulated garbled circuits, the pseudo-

code definitions of the garbling scheme and the simulator in Sections 4.3 and 4.4 were directly

translated into Haskell code. The bit and key renamings �B and �K were constructed recursively

as in the proof of Lemma 8.

So far, given a circuit and a boolean vector of an appropriate shape, our programs are able

to produce symbolic expressions of the real and the simulated garbled circuits, compute their

patterns, and check if these patterns are equivalent up to renaming. The whole implementation

consists of about 500 lines of Haskell code, and its performance is fairly good: For example, with

a randomly generated circuit that contains about 10000 NAND subcircuits and a 112-dimension

boolean vector, the entire process of generating the real and the simulated garbled circuits,

computing their patterns, and checking for symbolic equivalence runs in about 1.3 second on a

Linux desktop with an Intel I7-4790 CPU running at 3.60GHz. Notice that the number of NAND

subcircuits and the dimension of the input vector together determine the number of atomic keys

in the garbled circuit expression, which affects how fast the greatest fixed point of the recoverable

key set can be reached. Further optimization is possible, for example, we could expand our

circuit notation by adding AND and XOR as basic circuits. As a reference, an AES encryption

circuit usually consists of about 5k AND and 20k XOR gates, which can be implemented using
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Figure 4.6. Running times of proving symbolic security of the garbling scheme using our
implementation. Experiments were run on a Linux desktop with an Intel I7-4790 CPU running
at 3.60GHz. Each point corresponds to a randomly generated test case, where the circuit may
contain up to 250k NAnd subcircuits and the input vector may have up to 128 components. For
each test case we measure the total time spent on generating the real and the simulated garbled
circuit expressions, computing their patterns, and then checking for symbolic equivalence on
patterns. The horizontal axis measures the number of NAnd subcircuits in a circuit, and the
vertical axis measures the time in seconds.

about 90k NAnd inductively.

We conducted automated tests using the QuickCheck test framework to perform symbolic

security analysis on randomly generated circuits and boolean vectors, and the performance

results are shown in Fig. 4.6.

We remark that our automated tests run on a circuit-by-circuit basis, that is, given a

circuit and a boolean vector, the test ensures that the resulting garbled circuit is computationally

secure. In fact, our program can check that, for any cryptographic system that is built using

primitives in our symbolic framework, an instance for a given input is computationally secure. It

is also interesting to translate our proofs into a machine-checked flavor using verification tools,

but such work is out of the scope of the current paper, and we would like to explore it in the

future.
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Chapter 5

Equational Security Model of Oblivious
Transfer Protocols

In this chapter we present our results on formalizing oblivious transfer protocols in the

equational security framework and their security analysis. Our analysis shows that the equational

framework provides a concise and clean approach to regiously analyze secure computation

protocols.

5.1 Equational Security Framework

In this section we review the equational framework of [59], and define the notation used

in this chapter. For completeness, we will first recall some background on the (standard) theory

that gives a precise meaning to systems of equations as used in [59] and in this chapter. This

material is important to give a solid mathematical foundation to the equational framework, but

is not essential to follow the rest of the chapter, and the reader may want to skip directly to the

following paragraph describing our computational models and notational conventions.

Domain theoretical background. The mathematical foundation of the equational

framework is provided by domain theory. Here we give just enough background to describe

the systems studied in this chapter, and refer the reader to [35, 65, 68] for a detailed treatment.

Recall that a partially ordered set (or poset) is a set X equipped with a reflexive, transitive
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and antisymmetric relation ≤. All posets in this chapter are complete partial orders (CPOs),

i.e., any (possibly empty) chain x1 < x2 < … has a least upper bound supi xi in X. The

Cartesian product X × Y of two CPOs is also a CPO with the component-wise partial order

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 ∧ y1 ≤ y2. These posets are endowed with the Scott topology,

where a subset C ⊆ X is closed if for all x ∈ C , y ≤ x implies y ∈ C , and any chain in C has

a least upper bound in C . A set is open if its complement is closed. The standard topological

definition of continuous function still applies here, and continuous functions (with respect to the

Scott topology) are exactly the functions that preserve limits f (supi xi) = supi f (xi). The set of

all continuous functions from CPOs X to Y is denoted by [X → Y ]. Any (Scott) continuous

function is necessarily monotone, i.e., for all x, y ∈ X, if x ≤ y then f (x) ≤ f (y). All CPOs X

have a minimal element ⊥ = sup ∅, called the bottom, which satisfies ⊥ ≤ x for all x ∈ X.

For any set A, we can always construct a flat CPO A⊥ = A ∪ {⊥} by including a unique

bottom element ⊥. The partial order in A⊥ consists of ⊥ ≤ x for all x ∈ A. It should be easy to

see that all nonempty closed sets in A⊥ contain ⊥, and open sets in A⊥ are exactly the subsets

of A and the whole A⊥. Functions f ∶ A → B between sets can be lifted to strict functions

f ∶ A⊥ → B⊥ between the corresponding flat CPOs by setting f (⊥) = ⊥. The bottom element

usually designates the situation where no (real) input or output is given yet.

For any CPO X, every continuous functions f ∶ X → X admits a least fixed point,

denoted as f ix(f ), which is the minimal x ∈ X such that f (x) = x. The least fixed point can be

obtained by taking the limit of the sequence ⊥, f (⊥), f 2(⊥),…. A system of mutually recursive

equations can be solved via least fixed point computation. Such a solution describes the final out-

puts of interactive computations between nodes in a network. By Bekič’s theorem [71], the least

fixed point of such a system can be computed one component at a time: For example, the system

(x, y) = (f (x, y), g(x, y)) can be solved by computing first x̂ = fix(�x.f (x, f ix(�y.g(x, y)))) and

then ŷ = fix(�y.g(x̂, y)), and the least fixed point of the system is (x̂, ŷ).

We can also model probabilistic behaviors in equational framework. A probability
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distribution on a CPO X is a function p∶ X → [0, 1] such that1 p(A) + p(B) = p(A ∪ B) for

all disjoint A,B ⊆ X and p(X) = 1. As usual, we say that a probability p is negligible if for

all x ∈ X, p(x) < n−c for any constant c > 1, where n is a security parameter.2 Similarly, p

is overwhelming if 1 − p is negligible. If X is a CPO, then the set of probability distributions

over X, denoted by D(X), is also a CPO, where for any two distributions p ≤ q (in D(X)) if and

only if p(A) ≤ q(A) for any open subset A ⊆ X. Probabilistic functions are just (continuous)

functions between sets of distributions with respect to this ordering relation.

Computational model. We recall that the execution model of [59] consists of a net-

work, with nodes representing computational units, and (directed) edges modeling communi-

cation channels. (See below for details.) Each channel is associated with a partially ordered

set of channel “histories” or “behaviors”, representing all possible messages or sequences of

messages that may be transmitted on the channel over time. The partial order represents temporal

evolution, so for any two histories ℎ1 ≤ ℎ2 means that ℎ2 is a possible extension (or future) of

ℎ1. The standard example is that of finite sequences M∗ = {(m1,… , mk) ∶ k ≥ 0,∀i.mi ∈M}

of messages from a ground set M , ordered according to the prefix partial order. By combining

the set M∞ of infinite sequences of messages from M , we get a CPO M!. Another common

example, modeling a channel capable of delivering only a single message, is the flat partial

order M⊥, consisting of all messages in M and a special bottom element ⊥ denoting the fact

that no message has been transmitted yet. Different incoming and outgoing channels (incident

to a single node) are combined taking Cartesian products, so that each node can be thought

as having just one input and one output. The computational units at the nodes are modeled as

functions F∶ X → Y from the incoming channels to the outgoing channels, satisfying the natural

monotonicity requirement that for any ℎ1 ≤ ℎ2 in X, we have F(ℎ1) ≤ F(ℎ2) in Y . Informally,

1In general we should consider the Borel algebra on X when defining probability distributions on X. Here we
simply use X instead since we work on finite sets and discrete probabilities.

2In the asymptotic setting, cryptographic protocols are parameterized by a security parameter n. For notational
simplicity, we consider this security parameter n as fixed throughout the chapter.
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monotonicity captures the intuition that once a party transmits a message, it cannot go back

in time and take it back. A probabilistic computational unit can be modeled as a function of

type X → (Y ), where  is the probability monad. We may also consider units with limited

computational power in the monadic approach, which is an important extension to the equational

framework. However, as all the protocols considered in this chapter run in constant time, for

simplicity we do not formalize computational cost (e.g. running time, space, etc) in our analysis.

Computation units can be connected to a communication network N to form a system,

where N is also a monotone function. Such a system is again a monotone function mapping

external input channels to external output channels of all the units, and it is modeled as a

composition of functions describing all the units and the network. Syntactically, function

compositions can be simplified by substitution and variable elimination, and, when recursive

definition is involved, by using fixed point operations. In general, we use the notation (F|G)

to denote the system composed by functions F and G, where the composition operator “|” is

associative. The main advantage of the equational framework is that it has a mathematically

clean and well defined semantics, where functions can be completely described by mathematical

equations (specifying the relation between the input and the output of the units), and composition

simply combines equations together. The equational approach also provides a simple and precise

way to reason about relations between systems. For example, equivalent components (in the

sense of having equivalent equations) can be replaced by each other, and when considering

probabilistic behaviors, if a component is indistinguishable from another component, then they

can be used interchangeably with negligible impact on the behavior of the entire system.

Security. The definition of security in the equational framework follows the well-

accepted simulation-based security paradigm. In this chapter we consider only OT protocols,

which are two-party protocols between a sender program and a receiver program. An ideal

functionality F is a function from X = X0 × X1 to Y = Y0 × Y1, where Xi (Yi) is the external

input (output) of party Pi. An environment is a function Env ∶ Y ! → X! × {⊤}⊥ such that
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it takes as input the output history (as a sequence of evolving messages) of a system, and it

produces a sequence of evolving inputs to the system and a decision bit t. Here a sequence of

messages x0x1… over X is evolving if xi ≤X xi+1 for all i, where xi ∈ X and ≤X is the partial

order of X. An experiment between an environment Env and a system S, is executed as follows:

Env generates an evolving sequence of input x0x1… to S such that S outputs yi = S(xi) for

each xi, Env takes as input the sequence y0y1…, and it eventually produces an external decision

bit t. We write Env[S] for the output (distribution) t of this experiment. When all parties are

honest, the real system is a composition of the network N and two parties P0 and P1, denoted as

(P0|P1|N), and it must be equivalent to the ideal functionality F. When a party Pi is corrupted,

the real system is composed by the remaining honest party and the network, and the ideal system

is composed by F and a monotone simulator Sim. We say that a protocol is secure against

the corruption of Pi if there exists a simulator Sim as a computation unit such that the systems

(N|P(1−i)) and (Sim|F) are indistinguishable by any environment that produces a decision bit in

polynomial time in the output length of the system and the security parameter.

A distinctive feature of the equational framework is the ability to specify fully asyn-

chronous systems. An environment might not provide a complete input to a system at once,

that is, the input to certain channels might be ⊥. So we must consider such asynchronous

environments when analyzing the security of a protocol.

It is an very interesting and important open question to compare the equational framework

(with the full extension of computational security) with the UC model and its variants (for

example, the simplified models of [17, 70].)

Notations. Now we briefly mention our notational conventions. In this chapter we

mainly use flat CPOs, i.e., partially ordered sets X with a bottom element ⊥ ∈ X such that

x1 ≤ x2 iff x1 = ⊥ or x1 = x2. These are used to model simple communication channels that can

transmit a single message from X ⧵ {⊥}, with ⊥ representing the state of the channel before the

transmission of the message. For any CPO X, we write X×2 = {(x, y)∶ x, y ∈ X, x ≠ ⊥, y ≠ ⊥}⊥
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for the CPO of strict pairs over X and ⊥. The elements of a pair z ∈ X×2 are denoted z[0] and

z[1], with z[i] = ⊥ when z = ⊥ or i = ⊥. The operation of combining two elements into a strict

pair is written ⟨x, y⟩. Notice that ⟨x, ⊥⟩ = ⟨⊥, y⟩ = ⊥, and therefore ⟨x, ⊥⟩[0] = ⟨⊥, y⟩[1] = ⊥

even when x, y ≠ ⊥. For any set A, we write x ← A⊥ for the operation of selecting an element

x ≠ ⊥ uniformly at random from A.

It is easily verified that for any pairs z, ⟨x0, x1⟩, ⟨y0, y1⟩, strict function f and strict binary

operation ⊙,

z = ⟨z[0], z[1]⟩ (5.1)

f (⟨x0, x1⟩[i]) = ⟨f (x0), f (x1)⟩[i] (5.2)

⟨x0, x1⟩[i]⊙ ⟨y0, y1⟩[i] = ⟨x0 ⊙ y0, x1 ⊙ y1⟩[i] (5.3)

The followings are common CPOs and operations:

• The CPO T = {⊤}⊥, representing signals, i.e., messages with no information content.

• The CPO B = {0, 1}⊥ of single bit messages, often used to select an element from a pair.

• The CPO Mn = {0, 1}n⊥ of bit-strings of length n.

• x!y = ⟨x, y⟩[1], the operation of guarding an expression y by some other expression x.

Notice that x!y = y, except when x = ⊥, and can be used to “delay” the transmission of y

until after x is received.

• x! = x!⊤, testing that x > ⊥.

As an example, using the notation introduced so far, we can describe the ideal (1-out-of-2)

OT functionality by the equations in Fig. 5.1. (Notice that this functionality is parameterized by

a message space M.) The first line specifies the names of the functionality (OT), input channels

(m2, b) and output channel(s) m. This is followed by a specification of the type of each channel:
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the input interface includes a message pair m2 = ⟨m0, m1⟩ ∈ M×2 from a sender and a selection

bit b ∈ B from a receiver. The output interface is a single message m ∈ M sent to the receiver

while the sender does not get any information from the functionality. The last line m = m2[b] is

an equation specifying the value of the output channel(s) as a function of the input channels. The

functionality is illustrated by a diagram showing the names of the function and the input/output

channels.

OTM(m2, b) = m
m2 ∶ M×2

b ∶ B
m ∶ M
m = m2[b]

m2
m

b

OTM

Figure 5.1. A naive OT functionality: the receiver gets the selected message m = m2[b], and the
sender does not get anything at all.

In the rest of this chapter, equational variables usually belong to unique domains (e.g.,

m2 ∶ M×2
n .) So from now on, we will omit such type specifications when defining functions using

equations, and we will follow the convention listed in Table 5.1 for naming variables.

Table 5.1. Frequently used variables and their domains.

Variable name Domain Variable name Domain
m Mn m′ Ml

m2 M×2
n m′2 M×2

l
c0,c1 Ml c2 M×2

n
a,a′ T b,b′ B
i,o Mn i2,o2 M×2

l
k Kn k2 K×2

n
q (G2 × G)⊥ q2 (G2 × G)×2⊥

X,Y G⊥
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5.2 Formalizations of Oblivious Transfer Extension

As an abbreviation, when the message space M = {0, 1}n⊥ is the set of all bitstrings of

length n, we write OTn instead of OTM . Consider the following OT length extension problem:

given an OTn channel for messages of some (sufficiently large) length n, build an OT functionality

OTl for messages of length l > n. The goal is to implement OTl making a single use of

the basic OTn functionality, possibly with the help of an auxiliary (unidirectional, one-time)

communication channel for the transmission of messages from the sender to the receiver. For

simplicity,3 we model the communication channel as a functionality Netl that copies its input of

length l to the output of the same length:

Netl(i) = o

o = i

oi Netl

The OT length extension protocol is specified by a pair of Sender and Receiver pro-

grams, which are interconnected (using the OTn and Net2l functionalities) as shown in Fig. 5.2.

Notice how the external input/output interface of the system corresponding to a real execution

of the protocol in Fig. 5.2 is the same as that of the ideal functionality OTl(m′2, b
′) = m′ the

protocol is trying to implement.

o2

m′2
m2

m′
m

i2

b′b

Sender Receiver

Real(m′2, b
′) = m′

OTn

Net2l

Figure 5.2. A real execution of a candidate OT length extension protocol. The protocol consists
of a Sender and a Receiver programs that communicate using OTn and Net2l functionalities.

A natural approach to design an OT length extension protocol is to make use of a

3This corresponds to a perfectly secure communication channel. More complex/realistic communication channels
are discussed at the end of this section.
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pseudorandom generator  ∶ Mn → Ml that stretches a short random seed of length n into a

long pseudorandom string of length l. Using such pseudorandom generator, one may define

candidate Sender and Receiver programs as follows:

Sender(m′2) = (m2, i2)

m2 ← M×2
n

i2[0] = m′2[0]⊕ (m2[0])

i2[1] = m′2[1]⊕ (m2[1])

Receiver(m, o2, b′) = (b, m′)

b = b′

m′ = o2[b′]⊕ (m)

m′2
m2

i2Sender
o2 m′
m

b′b

Receiver

In words, these programs work as follows:

• The sender picks a pair m2 of two random seeds, and passes (one of) them to the receiver

using the OTn functionality. It then stretches the two seeds using the pseudorandom

generator , and uses the generator’s output as a one-time pad to “mask” the actual

messages before they are transmitted to the receiver over the communication channel

Net2l.

• The receiver selects one of the two seeds from the OTn functionality, expands it using the

pseudorandom generator, and uses the result to “unmask” the corresponding message from

Net2l.

It is easy to show that the protocol is correct, in the sense that combining the equations of

OTn, Net2l, Sender and Receiver as shown in Fig. 5.2 results in a system Real(m′2, b
′) = m′

that is perfectly equivalent to the defining equation m′ = m′2[b
′] of the ideal functionality OTl.

Intuitively, the protocol also seems secure because only one of the two seeds can be recovered by

the receiver, and the unselected message is protected by an unpredictable pseudorandom pad.
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But security of cryptographic protocols is a notoriously tricky business, and deserves a closer

look.

We first consider the security of the protocol when the sender is corrupted. The attack

scenario corresponds to the real system obtained by removing the Sender program from the

protocol execution in Fig. 5.2. Following the simulation paradigm, security requires exhibiting

an efficient simulator program SimS (interacting, as a sender, with the ideal functionality OTl)

such that the following real and ideal systems are computationally indistinguishable:

o2

m′2
m2 m2

m′ m′
m

i2
i2

b′ b′
b

SimSReceiver

RealS(m2, i2, b′) = m′

OTl
OTn

Net2l
IdealS(m2, i2, b′) = m′

Security is easily proved by defining the following simulator:

SimS(m2, i2) = m′2
m′2[0] = i2[0]⊕ (m2[0])

m′2[1] = i2[1]⊕ (m2[1])

m′2

m2

i2
SimS

We observe that RealS and IdealS are perfectly equivalent because they both simplify to

m′ = i2[b′]⊕ (m2[b′]). So, the protocol is perfectly secure against corrupted senders.

We now turn to analyzing security against a corrupted receiver. This time we need to

come up with a simulator SimR such that the following real and ideal executions are equivalent:

o2 o2
m′2 m′2

m2

m′
m m

i2

b′
b b

SimRSender

RealR(m′2, b) = (m, o2)

OTl
OTn

Net2l

IdealR(m′2, b) = (m, o2)

Of course, this time we can only aim at proving computational security, i.e., coming up with

a simulator such that RealR and IdealR are computationally indistinguishable. We begin by
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writing down explicitly the equations that define the real system execution. Combining the

equations for Sender, OTn and Net2l, we obtain the following system:

RealR(m′2, b) = (m, o2)

m2 ← M×2
n

o2[0] = m′2[0]⊕ (m2[0])

o2[1] = m′2[1]⊕ (m2[1])

m = m2[b]

So, the simulator may proceed by picking m0, m1 at random on its own, and set m = m2[b] just as

in the real execution. However, the simulator cannot compute o2 as in RealR because it does not

know m′2. This is addressed by using the same message m′ twice, counting on the pseudorandom

masking to hide this deviation from a real protocol execution. Formally, the simulator SimR is

defined as follows:

SimR(m′, b) = (b′, m, o2)

b′ = b

m2 ← M×2
n

m = m2[b]

o2[0] = m′ ⊕ (m2[0])

o2[1] = m′ ⊕ (m2[1])

o2m′
m

b′ b

SimR

Combining SimR with OTl results in the ideal system:

IdealR(m′2, b) = (m, o2)

m2 ← M×2
n

o2[0] = m′2[b]⊕ (m2[0])

o2[1] = m′2[b]⊕ (m2[1])

m = m2[b]

As expected, the two systems IdealR, RealR are indistinguishable for both b = 0 and b = 1. For

example, RealR(m′2, 0) and IdealR(m′2, 0) are equivalent because they are both computationally
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indistinguishable from the process that chooses m ← Mn and c ← Ml at random and sets

o2 = ⟨m′2[0]⊕ (m), c⟩. The case when b = 1 is similar. At this point it would be very

tempting to conclude that RealR and IdealR are equivalent, but they are not: they can be easily

distinguished by an environment that sets m′2 ≠ ⊥ and b = ⊥. In fact, IdealR(m′2, ⊥) = (⊥,⊥),

but RealR(m′2, ⊥) = (⊥, o2), where o2 ≠ ⊥. So, IdealR and RealR are not equivalent, and the

simulator SimR is not valid.

Insecurity in general. By generalizing the above idea, we can show that, for any

simulator SimR there is an environment Env that can distinguish the two systems RealR and

IdealR with nonnegligible probability. We build Env that works in two stages:

Env0(m, o2) = (b, m′2, t) where

b = ⊥, m′2 ← M×2
n , t = (o2 > ⊥)

Env1(m, o2) = (b, m′2, t) where

b← {0, 1}, m′2 ← M×2
n , t = ((m) + o2[b] = m′2[b])

Notice that the output of the ideal system IdealR(m′2, b) = (m, o2) is (b′, m, o2) ←

SimR(m′2[b
′], b), where b′ is an internal channel. Since b′ ranges over a flat CPO, and m′2[⊥] = ⊥,

the value of b′ resulting from a least fixed point computation is given by (b′, _, _) = SimR(⊥, b).

In particular, b′ may depend only on the external input b. We denote using SimR(b)b′ the random

variable b′ computed on input b.

Let p = Pr{SimR(⊥)b′ = ⊥} and q = Pr{SimR(⊥,⊥)o2 = ⊥}. We have Pr{Envi[RealR] =

⊤} = 1 for all i ∈ {1, 2}. For the ideal system, we have

Pr{Env0[IdealR] = ⊤} =Pr{SimR(⊥,⊥)o2 > ⊥} ⋅ p

+ Pr{SimR(⊥,m′2[b
′])o2 > ⊥} ⋅ (1 − p)

= (1 − q)p + Pr{SimR(⊥,m′2[b
′])o2 > ⊥} ⋅ (1 − p).
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Since Pr{Env0[RealR] = ⊤} = 1, Pr{Env0[IdealR] = ⊤} must be overwhelming; and since

Pr{SimR(⊥,⊥)o2 > ⊥} ≤ Pr{SimR(⊥,m′2[b
′])o2 > ⊥}, p must be negligible. Finally, notice that

Pr{Env1[IdealR] = ⊤} =Pr{(m) + o2[b] = m′2[b] ∣ SimR(⊥)b′ = ⊥} ⋅ p

+ Pr{(m) + o2[b] = m′2[b] ∣ SimR(⊥)b′ > ⊥} ⋅ (1 − p).

If SimR(⊥)b′ > ⊥, then Pr{b′ = b} = 1
2

and so

Pr{(m) + o2[b] = m′2[b] | SimR(⊥)b′ > ⊥} = 1
2
(1 + 1

2l
).

This implies that Pr{Env2[IdealR] = ⊤} = 1
2
+ � for some negligible � > 0, and so Env can

distinguish the two systems.

The discrepancy between the two systems as shown above highlights a subtle timing bug

in the protocol: in order to carry out the simulation, the transmission of i2 should be delayed until

after the receiver has selected her bit b. However, this information is not available to the sender,

and fixing the protocol requires revising the definition of OT, as we will do in the next section.

Other communication channels. We conclude this section with a discussion of other

possible communication channels and weaker OT variants that leak some information to the

environment. For example, one may replace the perfectly secure communication channel NetM

with an authenticated channel AuthNetM(i, ei) = (o, eo) that also takes an input ei ∶ T and

provides an output eo ∶ M to the environment. The environment output eo = i is used to leak the

transmitted message as well as the timing information about when the message is transmitted.

The environment input ei is used to allow the environment to delay the transmission of the

message o = ei!i to the receiver.

Similarly, one may consider the OT variants that leak the input timing information eo =

(m2!⊤, b!⊤) to the environment, and allow the environment to delay the OT output m = ei!m2[b].
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This idea is similar to the “message header” in the UC models proposed in [17, 70].

We remark that none of these modifications affect the analysis presented in this section. In

particular, considering a perfectly secure communication channel Net only makes our insecurity

result stronger. Also, leaking the signal b!⊤ to the environment does not solve the timing bug in

the protocol: in order to fix the bug, the sender needs to delay the transmission of i2 until b > ⊥.

So, it is not enough to provide this information to the environment. The timing signal b!⊤ needs

to be provided as an input to the honest sender.

5.2.1 Revised Definitions

We have seen that the “standard” OT definition is inadequate even to model and analyze

a simple OT length-extension protocol. In Fig. 5.3 we provide a revised definition of oblivious

transfer that includes an acknowledgment informing the sender of when the receiver has provided

her selection bit.

OT′M(m2, b) = (a, m)
m = m2[b]
a = (b > ⊥)

m2

m

b

a OT′M

Figure 5.3. A revised OT functionality.

We use this revised definition to build and analyze a secure OT length-extension protocol,

similar to the one described in the previous section. The OT length extension uses the same

Receiver program as defined in the previous subsection, but modifies Sender by using the

signal a to delay the transmission of the message i2. The new Sender′ also forwards the signal

a to the environment to match the new OT′ definition:

Sender′(m′2, a) = (a
′, m2, i2)

(m2, i′2) ← Sender(m′2)

a′ = a

i2 = a!i′2

m′2
m2

i2a′
a

Sender′
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o2

m′2
m2

m′

m

i2

b′
b

a′

a
ReceiverSender′

Real(m′2, b
′) = (a′, m′)

OTn

Net2l

Figure 5.4. A normal execution of the OT Length Extension protocol.

The Sender and Receiver programs are interconnected using OT′n and Net2l as shown

in Fig. 5.4. As in the previous section, it is easy to check that the protocol is correct, i.e.,

combining and simplifying all the equations from the real system in Fig. 5.4 produces a set

of equations identical to the revised definition of the ideal functionality OT′(m′2, b
′) = (a′, m′).

Security when the sender is corrupted is also similar to before. The real and ideal systems in this

case are given by

o2

m′2
m2 m2

m′ m′
m

i2 i2

b′ b′
b

a′
a aReceiver SimS′

RealS(m2, i2, b′) = (m′, a)

OT′l
OT′n

Net2l

IdealS(m2, i2, b′) = (m′, a)

We see that this time SimS′ has an additional input a′ and output a. We adapt the simulator from

the previous section simply by adding an equation that forwards the a′ signal from OT′ to the

external environment:

SimS′(m2, i2, a′) = (a, m′2)

m′2 = SimS(m2, i2)

a = a′

m′2
m2

i2 a′
a

SimS′

RealS(m2, i2, b′) and Ideal(m2, i2, b′) are equivalent because they both output m′ =

o2[b′]⊕ (m2[b′]) and a = (b′ > ⊥). So, the protocol is still perfectly secure against corrupted

senders according to the revised OT′ definition.
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We now go back to the analysis of security against corrupted receivers. The real and

ideal systems are:

o2 o2

m′2 m′2
m2

m′
m m

i2

b′
b b

a′ a′
a

SimRSender′

RealR(m′2, b) = (a
′, m, o2)

OTn
OT′l

Net2l

IdealR(m′2, b) = (a
′, m, o2)

No change to the simulator are required: we use exactly the same “candidate” simulator

SimR as defined in the previous subsection. Combining and simplifying the equations, gives the

following real and ideal systems:

RealR(m′2, b) = (a
′, m, o2)

m2 ← M×2
n

c0 = m′2[0]⊕ (m2[0])

c1 = m′2[1]⊕ (m2[1])

o2 = b!⟨c0, c1⟩

m = m2[b]

a′ = (b > ⊥)

IdealR(m′2, b) = (a
′, m, o2)

m2 ← M×2
n

c0 = m′2[b]⊕ (m2[0])

c1 = m′2[b]⊕ (m2[1])

o2 = ⟨c0, c1⟩

m = m2[b]

a′ = (b > ⊥)

Now, when b = ⊥, we have RealR(m′2, ⊥) = IdealR(m′2, ⊥) = (⊥,⊥, ⊥). So, no

adversary can distinguish the two systems by not setting b. On the other hand, when b ≠

⊥, RealR and IdealR are identical to the real and ideal systems from the previous section,

augmented with the auxiliary output a′ = (b > ⊥) = ⊤. As we already observed in the previous

subsection, these two distributions are computationally indistinguishable, proving that the length

extension protocol is secure against corrupted receivers.

5.3 Formalizations of the Simplest OT Protocol

In this section we consider the OT protocol proposed by Chou and Orlandi in [24]. In

the original paper, this is described as a protocol to execute l instances of 1-out-of-m OT, in
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parallel, i.e., the sender provides an l-dimensional vector of m-tuples of messages, and the

receiver (non-adaptively) selects one message from each tuple. For simplicity, we consider the

most basic case where l = 1 and m = 2, i.e., a single OT execution of a basic OT protocol

as defined in the previous sections. This is without loss of generality because our results are

ultimately negative. So, fixing l = 1 and m = 2 only makes our results stronger. Our goal is

to show that this protocol is not provably secure in the equational framework according to a

fully asynchronous simulation-based security definition. In order to formally analyze security,

we begin by giving a mathematical description of the protocol and model of [24] using the

equational framework.

The Random Oracle model The protocol of [24] is designed and analyzed in the

random oracle model [7]. So, both parties have access to an ideal functionality RO implementing

a random function with appropriately chosen domainQ and rangeK . Queries from the sender and

receiver are answered consistently, and, in general, RO can receive multiple (adaptively chosen)

queries from both parties. Formally, the random oracle is modeled by the following functionality,

where f ∗(x1, x2,… , ) = (f (x1), f (x2),…) is the standard extension of f to sequences:

ROQ,K(qs, qr) = (ks, kr)

qs, qr ∶ Q∗

ks, kr ∶ K∗

f ← [Q→ K]

ks = f ∗(qs)

kr = f ∗(qr)

qs qr

ks krRO

The random oracle starts by picking a function f ∶ Q → K uniformly at random, and

then it uses f to answer any sequence of queries qs, qr ∈ Q∗ from each party. We give separate

channels to access RO to the sender (qs) and receiver (qr) to model the fact that random oracle
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queries are implemented as local computations, and each party is not aware of if/when other

players access the oracle. The Sender and Receiver programs from the protocol of [24] only

make a small number of queries (two and one respectively.) Moreover, the two sender queries

are chosen simultaneously, non-adaptively. So, for simplicity, we restrict RO(q2, q) = (k2, k)

to an oracle that receives just a pair of queries q2 = ⟨q0, q1⟩ ∈ Q×2
⊥ from the sender and one

query q ∈ Q⊥ from the receiver. We remark that in order to prove security, one should consider

an arbitrary (still polynomial) number of (sequential, adaptively chosen) queries to model the

adversary/environment ability to compute the RO function locally an arbitrary number of times.4

However, since our results are negative, fixing the number of queries only makes our result

stronger: we show that the protocol is not provably secure even against the restricted class of

adversaries that make only this very limited number of random oracle queries.

It has been observed, for example in [18], that a protocol analyzed stand-alone in the

traditional random oracle model might lose its security when composed with other instances of

protocols in the same random oracle model: either each instance uses an independent random

oracle such that the real composed system cannot assume a single hash function, or the composed

system suffers from transferability attack. A modified notion called global random oracle was

proposed in [18] to allow a composed system achieving UC security when all protocols can

access a single global random oracle. With respect to this issue, the OT protocol of [24] cannot

be claimed UC secure and it should be re-defined in the global random oracle model or an

equivalent notion. However, such issue is independent of the negative result we are going to

present. Since our motivation is to illustrate the use of equational framework, for simplicity, we

still consider the traditional random oracle model as used in [24].

The protocol In order to facilitate a comparison with the original paper, we use as far as

possible the same notation as [24]. Let G = ⟨B⟩ be a group generated by an element B of prime

4This can be modeled by letting qs and qr range over the set of sequences of queries Q∗, partially ordered
according to the prefix ordering relation.
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order p. Following [24], we use additive group notation, so that the group elements are written

as xB for x = 0,… , p − 1.5 In [24] it is assumed that group elements have unique, canonical

representations (which allows for equality testing), and group membership can be efficiently

checked. Here, for simplicity, we assume that all messages representing group elements are

syntactically valid, i.e., whenever a program expects a group element from G as input, it will

always receive the valid representation of a such a group element (or ⊥ if the no message has

been sent), even when this value is adversarially chosen. This is easily enforced by testing

for group membership, and mapping invalid strings to some standard element, e.g., the group

generator B.

The protocol uses a random oracle RO(q2, q) = (k2, k) for functions with domain Q =

G2 × G and range K = {0, 1}n, which receives two (parallel) queries q2 = ⟨q0, q1⟩ ∈ Q×2
⊥ from

the sender and one query q ∈ Q⊥ from the receiver.

The protocol also uses a symmetric encryption scheme (E,D), with the same message

space Mn as the OT functionality, and key and ciphertext space Kn = {0, 1}n⊥ equal to the range

of the random oracle. In addition, the scheme is assumed to satisfy the following properties:

1. Non-committing: There exist PPT 1,2 such that, for all m ∈ Mn, the following distribu-

tions are identical:6

{(e, k) ∶ k← K, e← E(k, m)}

{(e, k) ∶ e← 1, k← 2(e, m)}

2. Robustness: Let S be a set of keys chosen independently and uniformly at random from

Kn. For any PPT algorithms , if e← (S), then the set VS,e = {k ∈ S ∣ D(k, e) ≠ ⊥} of

keys under which e can be successfully decrypted has size at most 1 with overwhelming

5Chou and Orlandi use additive notation to match their efficient implementation based on elliptical curve groups.
Here we are not concerned with any specific implementation, but retain the additive notation to match [24] and
facilitate the comparison with the original protocol description.

6In fact, computational indistinguishability is enough, but it is easy to achieve perfect security.
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probability (over the choice of S and the randomness of .)

A simple encryption scheme satisfying these property is given by E(m, k) = (m, 0n) ⊕ k, i.e.,

padding the message with a string of zeros for redundancy, and masking the result with a one-time

pad.

The protocol of [24] can be described by the equations in Fig. 5.5, and its execution is

depicted in Fig. 5.6. We briefly explain the normal protocol execution: Sender first samples

a random group element X and sends it to Receiver; once it receives Y from Receiver, it

submits a pair of queries q2 to RO; and once it receives random keys k2 from RO, it encrypts

messages m2 under the keys k2, and it sends the ciphertext pair c2 to Receiver. On the other

hand, Receiver first samples a random group element yB, and upon receiving X from Sender

it computes Y = bX + yB and sends it to Sender; it then submits a query q to RO, and once the

random key k and the ciphertexts c2 are all received, it decrypts c2[b] using k to get the desired

message m.

Sender(m2, k2, Y ) = (q2, X, c2)
x ← ℤ∗

p
X = xB
q2[0] = ((X, Y ), xY )
q2[1] = ((X, Y ), xY − xX)
c2[0] ← E(k2[0], m2[0])
c2[1] ← E(k2[1], m2[1])

Receiver(k,X, c2, b) = (q, Y , m)
y ← ℤ∗

p
Y = bX + yB
q = ((X, Y ), yX)
m = D(k, c2[b])

Figure 5.5. The OT protocol of Chau and Orlandi.

q2 q

m2

m

k2 k

c2

b

Y

XSender Receiver

RO

Figure 5.6. A normal execution of the OT protocol of Chou and Orlandi.
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In the following subsections, we show that this protocol is insecure, both according

to the classic OT definition given in Fig. 5.1, and according to our revised OT′ definition of

Fig. 5.3 that includes the signal a = (b > ⊥) to the sender. Specifically, first, in Subsections 5.3.1

and 5.3.2 we show that if the definition from Fig. 5.1 is used, then the protocol is insecure against

corrupted senders and corrupted receivers. The sender insecurity is for reasons very similar to

those leading to the failure simulation in Section 5.2. Unlike the case of OT length extension,

when considering the revised OT′ definition and modifying the sender program accordingly, we

show in Subsection 5.3.3 that the modified protocol is still insecure against corrupted senders

and corrupted receivers.

5.3.1 Corrupted sender

We begin our analysis of the OT protocol with respect to the standard OT functionality,

and we first consider the case when the sender is corrupted. The corresponding real and ideal

systems are shown in the following diagrams:

q2 q2q

m2

m m

k2 k2k

c2 c2

b b

Y Y
X X SimSReceiver

RO

OT

RealS(q2, X, c2, b) = (k2, Y , m) IdealS(q2, X, c2, b) = (k2, Y , m)

For the protocol to be secure, the two systems should be computationally indistinguishable

(for some simulator program SimS.) Just like the case of OT length extension, there exists an

environment that can distinguish the two systems. We now describe an environment Env that

works in two stages Env0 and Env1, and show that for any SimS, at least one of Env0 and

Env1 distinguishes the real and ideal systems with nonnegligible advantage. We recall that a

distinguishing environment connects to all input and output channels of the system, and produces
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one external output t ∈ {⊥,⊤}. The distinguishing advantage of Envi is given by

Adv[Envi] = |

|

Pr{Envi[RealS] = ⊤} − Pr{Envi[IdealS] = ⊤}|| .

The two stages of the distinguisher work as follows:

• Env0(k2, Y , m) = (q2, X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = ⊥, and outputs

t = (Y > ⊥).

• Env1(k2, Y , m) = (q2, X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = 0, and outputs

t = (Y > ⊥).

Notice that the only difference between these two stages is in the value of b. Using the equations

for the Receiver, we see that in the real system Y > ⊥ if and only if b > ⊥. In particular, we

have Pr{Env0[RealS] = ⊤} = 0 and Pr{Env1[RealS] = ⊤} = 1. On the other hand, we have

Pr{Env0[IdealS] = ⊤} = Pr{Env1[IdealS] = ⊤} (5.4)

because when interacting with IdealS, the output value t is independent of b. So, if we let p be the

probability in (5.4), the two stages of Env have advantage Adv[Env0] = p and Adv[Env1] = 1−p.

It follows that either Env0 or Env1 has distinguishing advantage at least 1∕2.

Intuitively, this environment can distinguish the real and the ideal systems because a

corrupted sender (interacting with the real system RealS), learns when the receiver sets b > ⊥

by observing the incoming message Y > ⊥, but in the ideal system this timing information is not

passed to the simulator.

5.3.2 Corrupted receiver

We have seen that when using the standard OT definition, the protocol is not secure

against corrupted senders. Now we turn to analyzing the protocol against corrupted receivers

105



q2 q q

m2 m2

m

k2 k k

c2 c2

b

Y Y
X XSimR

RO

Sender

RealR(m2, q, Y ) = (a, k,X, c2)

OT

IdealR(m2, q, Y ) = (a, k,X, c2)

Figure 5.7. The real and ideal systems when receiver is corrupted.

with respect to the standard OT definition. The real and ideal system in this case are shown in

Fig. 5.7.

Security requires that the real and the ideal systems are indistinguishable for some

simulator program SimR. Unfortunately, as we are about to show, no such simulator exists.

Proposition 3. For the OT protocol in Fig. 5.5, when the receiver is corrupted, for any receiver

simulator SimR, there is an environment that distinguishes the two systems with nonnegligible

probability.

Proof. We build an environment that works in three stages, denoted by Envi for i ∈ {0, 1, 2}:

Env0(k,X, c2) = (m2, q, Y , t) where

d ← {0, 1}, y ← ℤ∗
p, m2 = ⊥, Y = dX + yB, q = ⊥, t = (c2 = ⊥)

Env1(k,X, c2) = (m2, q, Y , t) where

d ← {0, 1}, y ← ℤ∗
p, m2 ← M×2

n , Y = dX + yB, q = ⊥, t = (c2 > ⊥)

Env2(k,X, c2) = (m2, q, Y , t) where

d ← {0, 1}, y← ℤ∗
p, m2 ← M×2

n , Y = dX + yB, q = ((X, Y ), yX),

t = (D(k, c2[d]) = m2[d])

Assume there exists a receiver simulator SimR. With the real system, Envi outputs t = ⊤

with probability 1 for all i ∈ {0, 1, 2}. So Pr{Envi[(OT|SimR)] = ⊤} must be overwhelming for

all i ∈ {0, 1, 2}.
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Notice that in the ideal system both b and m are internal channels such that m = m2[b],

and we can simplify the output of the ideal system as (k,X, c2) ← SimR(m2[b], q, Y ). For

i = 0, 1, 2, let ui denote the (random variable of) the input to SimR when working with Envi, and

let SimR(ui)b denote the (random variable of) the value of b given input ui. The external input

channels to SimR are q and Y , and their values are ⊥ in both Env0 and Env1. If SimR sets b = ⊥

when q = ⊥ and Y = ⊥, then it cannot tell the difference between Env0 and Env1, and thus at least

one of Env0 and Env1 has a nonnegligible distinguishing advantage. So Pr{SimR(u0)b > ⊥} must

be overwhelming. Since SimR is a monotone function, Pr{SimR(ui)b > ⊥} is also overwhelming

for i ∈ {1, 2}. In particular, let � = 1
2
Pr{SimR(u1)b = ⊥}, then � is negligible.

Now consider Env1, which sets q = ⊥ and samples Y from the distribution {dX + yB ∣

y ← ℤ∗
p} ≡ {yB ∣ y ← ℤ∗

p}. So q and Y are independent of d, and thus Pr{SimR(u1)b = d} =

Pr{SimR(u1)b = 1 − d} =
1
2
− �.

Finally, when working with Env2 we have

Pr{Env2[(OT|SimR)] = ⊤} = Pr{D(k, c2[d]) = m2[d]}

= Pr{D(k, c2[d]) = m2[d] ∣ SimR(u2)b = d} Pr{SimR(u2)b = d}

+ Pr{D(k, c2[d]) = m2[d] ∣ SimR(u2)b = 1 − d} Pr{SimR(u2)b = 1 − d}

+ Pr{D(k, c2[d]) = m2[d] ∣ SimR(u2)b = ⊥} Pr{SimR(u2)b = ⊥}

Since SimR is monotone, 1
2
− � = Pr{SimR(u1)b = 1 − d} ≤ Pr{SimR(u2)b = 1 − d}, and

thus Pr{SimR(u2)b = d} ≤ 1
2
+ �. On the other hand, when SimR(u2)b = 1 − d, it holds that

SimR(ui)b ∈ {1 − d}⊥ for i ∈ {0, 1} and thus SimR has no access to m2[d], and since m2[d] is

independently sampled from Mn, SimR cannot guess it correctly with probability more than 1
2n

.

So we can bound the probability

Pr{Env2[(OT|SimR)] = ⊤} ≤ 1
2
+ � + 1

2n
+ 2�,
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which is close to 1
2
. Therefore the environment can distinguish the real and the ideal systems

with nonnegligible probability.

5.3.3 Revised OT definition

The timing issue with a corrupted sender is similar to the one for OT length extension that

is fixed by adding an acknowledgment signal. So it is natural to ask if the insecurity problems

can be resolved by modifying the protocol according to the revised functionality OT′. Clearly,

changing the definition requires also modifying the sender program to output a signal a in order

to match OT′. Since the sender receives only one message (Y ) from the receiver, there is only

one sensible way to modify the protocol to produce this additional output: setting a = (Y > ⊥).

Formally, we consider the following modified sender program:

Sender′(m2, k2, Y ) = (a, q2, X, c2)

(q2, X, c2)← Sender(m2, k2, Y )

a = (Y > ⊥)

It is easy to verify that a real protocol execution (Sender′ ∣ RO ∣ Receiver)∶ (m2, b) → (a, m) is

equivalent to the ideal functionality OT′∶ (m2, b) → (a, m).

For security, we start with the case when the receiver is corrupted. The real and ideal

systems are depicted in Fig. 5.8. Notice that the additional bit a is not provided to the simulator

but is instead given to the environment. So any receiver simulator SimR that connects to OT′ to

form the ideal system in the revised OT definition has the same interface as a receiver simulator in

the standard OT definition. Thus we obtain the same result as in Proposition 3 that the modified

protocol is insecure against corrupted receivers.

When the sender is corrupted, the sender simulator is now provided with an additional

bit a = (b > ⊥), as shown in Fig. 5.9. This small modification is the key to prove security for the

OT length extension protocol, so one might speculate, as we did in the previous version of this

paper, that security could also hold for the current protocol in the case of sender corruption. On

the contrary, this modification is not enough. As we are exploring the useability of the equational
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q2 q q
m2 m2

m

k2 k k

c2 c2

b

a aY Y
X XSimR

RO

Sender′

RealR(m2, q, Y ) = (a, k,X, c2)

OT′

IdealR(m2, q, Y ) = (a, k,X, c2)

Figure 5.8. The real and ideal systems when receiver is corrupted, under revised OT definition.

q2 q2q
m2

m m

k2 k2k

c2 c2

b b

aY Y
X X SimS

RO

Receiver′

RealS(q2, X, c2, b) = (k2, Y , m)

OT′

IdealS(q2, X, c2, b) = (k2, Y , m)

Figure 5.9. The real and ideal systems when sender is corrupted, under revised OT definition.

framework, we show in the following why the natural simulation strategy that takes advantage of

the signal a fails at proving security.

The speculated simulator is shown below. As we are presenting negative results, we limit

the power of a corrupted sender such that it can send at most one pair of RO queries q2 and it

obtains at most one pair of keys k2.

SimS(q2, X, a, c2) = (k2, Y , m2)

f ← [(G2 × G)→ K]

k2 = f ∗(q2)

y ← ℤ∗
p

Y = X!a!yB

m2[0] = if (∃i.q2[i] = ((X, Y ),…)) then D(k2[i], c2[0])

m2[1] = if (∃i.q2[i] = ((X, Y ),…)) then D(k2[i], c2[1])
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Let us derive an equation for m. In the real system RealS, the message m satisfies the

equation

m = D(f ((X, bX + yB), yX), c2[b]), (5.5)

where y is sampled uniformly at random from ℤ∗
p by the honest receiver. In the ideal system

IdealS = (SimS|OT′), notice that a = (b > ⊥), and so

m = D(f ((X,X!b!yB),W ), c2[b]), (5.6)

where y is sampled uniformly at random from ℤ∗
p by the simulator and W is some element of

G chosen by the environment. In both equations (5.5) and (5.6), c2[b] is an input to the system

given by the environment. By a careful examination, we can see that the value of m as computed

in these two equations could be different if the environment sets W to be distinct from yX. We

follow this idea to construct the following environment:

Env(k2, Y , m) = (q2, X, c2, b, t) where

x ← ℤ∗
p, X = xB, w← ℤ∗

p, W = wB, b← {0, 1},

For i ∈ {0, 1}:

q2[i] = ((X, Y ),W ), c2[i]← E(k2[i], 0),

t = (m > ⊥)

In the real system, Env outputs t = ⊤ only in two cases: either the key k = f ((X, Y ), yX)

obtained by the receiver is same as the key k2[b] = f ((X, Y ),W ) used by Env to encrypt m2[b]

in the ciphertext c2[b], where f is a random function sampled by RO, or the decryption succeeds

when k ≠ k2[b]. For a sufficiently large key space Kn, since yX = yxB and W = wB are

independently sampled and uniformly distributed, the probability � that k = k2[b] is negligible.

Since (E, D) is a robust encryption scheme, when k ≠ k2[b] the decryption can succeed with only

a negligible probability �. So Env outputs t = ⊤ with a negligible probability � + (1 − �)�. But

in the ideal system, the decryption always succeeds and thus we get m = 0 > ⊥, which implies
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that Env outputs t = ⊤ with probability 1. Therefore Env has a nonnegligible distinguishing

advantage.

We remark that, if the above simulator SimS has access to a DDH oracle O that answers

on input (X, Y ,W ) whether W = yxB for X = xB and Y = yB, then we can modify the

equations for m2 in SimS to prove sender security with respect to the revised OT definition:

m2[0] = if (∃i.q2[i] = ((X, Y ),W ) and O(X, Y ,W ) = ⊤) then D(k2[i], c2[0])

m2[1] = if (∃i.q2[i] = ((X, Y ),W ) and O(X, Y ,W ) = ⊤) then D(k2[i], c2[1])

That is, if a RO query contains a triple of group elements satisfying the DDH condition, then

SimS uses the corresponding key to decrypt both c2[0] and c2[1] and assigns the resulting

plaintext to m2[0] and m2[1], respectively. As already noted by Genç, Iovino, and Rial [29],

sender security holds with certain gap-DH groups in which the CDH problem is hard but the

DDH problem is easy to solve.
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