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Abstract Self-organization is a property of dissipative nonlinear processes that are gov-
erned by a global driving force and a local positive feedback mechanism, which creates
regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to
random processes. Here we investigate for the first time a comprehensive number of (17)
self-organization processes that operate in planetary physics, solar physics, stellar physics,
galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of
randomness”, during the evolution from an initially disordered system to an ordered quasi-
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stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (me-
chanical or gyromagnetic) resonances. The global driving force can be due to gravity, elec-
tromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pres-
sure, or acceleration of nonthermal particles, while the positive feedback mechanism is of-
ten an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective
(Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma
condensation, or a loss-cone instability. Physical models of astrophysical self-organization
processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simu-
lations. Analytical formulations of self-organizing systems generally involve coupled differ-
ential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

Keywords Astrophysics · Planetary physics · Stellar physics · Solar physics · Self ·
Organization · Limit cycle dynamics · Instabilities · Lotka · Volterra systems · Hopf
bifurcation

1 Introduction

Self-organization is the spontaneous often seemingly purposeful formation of spatial, tem-
poral, spatio-temporal structures or functions in systems composed of few or many compo-
nents. In physics, chemistry, and biology, self-organization occurs in open systems driven
away from thermal equilibrium. The process of self-organization can be found in many
other fields also, such as economy, sociology, medicine, technology (Haken 2008). Self-
organization creates “order out of randomness” that is opposite to random processes with
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increasing entropy. Self-organization is a spontaneous process that does not need any con-
trol by an external force. It is often initiated by random fluctuations where the local reaction
is amplified by a positive feedback mechanism. It can evolve into a stationary cyclic dy-
namics governed by a (strange) attractor, and develops, as a result of many microscopic
interactions, a macroscopic regular geometric spatial pattern (Nicolis and Prigogine 1977;
Kaufman 1993, 1996). In this review we compile for the first time a comprehensive set of
self-organizing systems observed or inferred in astrophysics. For each astrophysical self-
organizing system we discuss a physical model, generally in terms of a system-wide driving
force and a positive feedback mechanism, which by mutual interactions evolve into a self-
organized quasi-stationary pattern that is different from a random structure. Note that the
term “self-organization” should not be confused with the term “self-organized criticality”
(Bak et al. 1987; Pruessner 2012; Aschwanden et al. 2016), which is just one (of many)
self-organizing complex systems, producing power law-like size distributions of scale-free
avalanche events, whereas self-organizing systems usually evolve into a specific quantized
(spatial or temporal) scale that is not scale-free.

Physical models of self-organization involve non-equilibrium processes, mechanical res-
onances, magneto-convection, plasma turbulence, superconductivity, phase transitions, or
chemical reactions. In planetary physics, the principle of self-organization has been applied
to harmonic orbit resonances (Aschwanden 2018; Aschwanden and Scholkmann 2017),
Jupiter’s or Saturn’s rings and moons (Peale 1976), protoplanetary disks (Kunz and Lesur
2013; Béthune et al. 2016), Jupiter’s Red Spot (Marcus 1993), and the planetary entropy
balance (Izakov 1997). In solar physics, it was applied to photospheric granulation (Krishan
1991, 1992), solar magnetic fields (Vlahos and Georgoulis 2004; Kitiashvili et al. 2010), the
magnetic solar cycle (Hale 1908; Consolini et al. 2009), the evaporation-condensation cy-
cle of flares (Krall and Antiochos 1980; Kuin and Martens 1982), and to quasi-periodic
solar radio bursts (Zaitsev 1971; Aschwanden and Benz 1988). In astrophysics, it was
applied to galaxy and star formation (Bodifee 1986; Cen 2014). An overview of 17 self-
organization processes operating in astrophysical environments is given in Table 1, which
lists also the underlying physical driving forces and feedback mechanisms. Besides the as-
trophysical applications, the process of self-organization can be found in many other fields,
such as magnetic reconnection in laboratory physics (Yamada 2007; Yamada et al. 2010;
Zweibel and Yamada 2009; http://cmso.uchicago.edu), plasma turbulence (Hasegawa 1985),
magnetospheric physics (Valdivia et al. 2003; Yoshida et al. 2010), ionospheric physics
(Leyser 2001), solid state physics and material science (Müller and Parisi 2015), chemistry
(Lehn 2002), sociology (Leydesdorff 1993), cybernetics and learning algorithms (Kohonen
1989; Geach 2012), or biology (Camazine et al. 2001). A more specific overview of self-
organization processes in non-astrophysical fields is provided in Table 2.

In this review we discuss 17 different astrophysical processes that exhibit self-organiz-
ation. For the definition of the term “self-organization” we proceed pragmatically. A non-
linear dissipative process qualifies to be called a “self-organization” process if it fulfills at
least one of the following six criteria: (S) a spatially ordered pattern that is significantly

11 Astrobiology and Space Science Division, NASA Ames Research Center, Moffett Field, CA
94035, USA
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Table 1 Self-organization processes in astrophysics: The symbols in the last column indicate the following
system characteristics: LC = nonlinear systems with limit cycle(s), I = instabilities, R = resonances, E =
entropy, S = regular spatial pattern, T = regular temporal pattern, ? = conjectural. The stellar QPOs include
also accretion disks and “coronas” of compact objects and supermassive black holes

Observed phenomenon Driver mechanism Feedback mechanism Characteristics

Planetary spacing gravity harmonic orbit resonances R, S, T

Saturn rings and moons gravity harmonic orbit resonances R, S, T

Protoplanetary disks rotation Hall-shear instability I, S

Jupiter’s red spot temperature gradient inverse MHD turbulent
cascade

I, S

Saturn’s hexagon circumpolar jet-stream diocotron instability I, S

Planetary entropy solar radiation planetary infrared
emission

E

Solar photospheric
granulation

temperature gradient Rayleigh-Bénard
instability

I, S

Solar magnetic fields solar dynamo, rotation buoyancy, kink instability I(?), S

Solar magnetic Hale cycle differential rotation twisted magnetic field
relaxation

LC, I(?), S, T

Solar flare loops chromospheric
evaporation

coronal condensation I, LC[?], T(?)

Solar radio pulsations nonthermal particles loss-cone instability LC, I[?], T

Solar zebra radio bursts nonthermal particles double plasma resonance R, S, IT[?]

nonthermal particles Langmuir-whistler
coalescence

R, S, IT[?]

Star formation gravity radiation and
recombination

I, S, T

Stellar quasi-periodic
oscillations

rotation magneto-rotational
instability

LC, I(?), T

Pulsar superfluid
unpinning

rotation Magnus force I(?), S[?]

Galaxy formation gravity, rotation density waves,
reaction-diffusion

S, I(?)

Cosmology Big Bang expansion inflationary �CDM model I(?), LC(?], S[?], T[?]

different from a random pattern; (T) a temporally ordered (e.g., quasi-periodic) structure
that is significantly different from random time intervals; (E) a system with negative entropy
change (dS < 0); (LC) a nonlinear dissipative system with limit-cycle behavior (which by
definition produces quasi-periodic temporal oscillations); (R) a nonlinear dissipative system
with resonances; and (I) a nonlinear dissipative system that is driven by an external force
and counter-acted by a positive feedback force, triggered by an instability or turbulence. We
classify the 17 analyzed self-organization processes with these defining criteria (S, T, E, LC,
R, I) in Table 1.

The structure of this review is organized by the various subfields in astrophysics, such as
planetary physics (Sect. 2), solar physics (Sect. 3), stellar physics (Sect. 4), galactic physics
(Sect. 5), and cosmology (Sect. 6). A discussion of randomness, self-organization, and self-
organized criticality processes (Sect. 7) and a summary of the conclusions (Sect. 8) is given
at the end. Each description of the 17 self-organization processes is annotated with a critical
assessment at the end of each Section. The selected 17 cases are all explicitly addressed as
self-organization processes by the authors of the cited studies, but we are aware that there are
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Table 2 Non-astrophysical self-organization processes

Field Phenomenon Reference

Ionosphere Stimulation of electromagnetic emission Leyser (2001)
Internal gravity waves Aburjania et al. (2013)
Acoustic gravity waves Kaladze et al. (2008)

Magnetosphere Substorm dynamics Sharma et al. (2001)
Substorm current sheet model Valdivia et al. (2003)
Magnetospheric vortex formation Yoshida et al. (2010)
2D MHD transverse Kelvin-Helmholtz instability Miura (1999)
Turbulent relaxation of magnetic fields Tetreault (1992a, 1992b)

Plasma physics Superconducting ring magnet vortex Yoshida et al. 2010
Magnetic reconnection in laboratory Yamada et al. (2010)
Magnetic reconnection in laboratory Zweibel and Yamada (2009)

Physics Coupled pendulums Tanaka et al. (1997)
Spontaneous magnetization Boesiger et al. (1978)
Laser Zeiger and Kelley (1991)
Superconductivity Vazifeh and Franz (2013)
Bose-Einstein condensation Nagy et al. (2008)

Chemistry Molecular self-assembly Lehn (2002)
Supramolecular soft matter Müller and Parisi (2015)
Reaction-diffusion systems Kolmogorov et al. (1937)
Oscillating reactions Bray (1921)
Oscillating catalytic reaction Cox et al. (1985)
Liquid crystals Rego et al. (2010)
Self-assembled monolayers Love et al. (2005)
Langmuir-Blodgett films Ritu (2016)
Growth of SiGe nanostructures Aqua et al. (2013)

Biology Biological systems Camazine et al. (2001)
Pattern formation in slime molds and bacteria Camazine et al. (2001)
Feeding aggregations of bark beetles Camazine et al. (2001)
Synchronized flashing among fireflies Camazine et al. (2001)
Fish schooling Camazine et al. (2001)
Nectar source selection by honey bees Camazine et al. (2001)
Trail formation in ants Camazine et al. (2001)
Swarm raids of army ants Camazine et al. (2001)
Colony thermoregulation in honey bees Camazine et al. (2001)
Comb patterns in honey bee colonies Camazine et al. (2001)
Wall building by ants Camazine et al. (2001)
Termite mound building Camazine et al. (2001)
Construction algorithms in wasps Camazine et al. (2001)
Dominance hierarchies in paper wasps Camazine et al. (2001)

Social science Social evolutionary systems Leydesdorff (1993)
Learning algorithms Geach (2012)
Coevolution in interdependent networks Wang et al. (2014)

Computer science Cybernetics Ashby (1947)
Cellular automata Gacs (2000)
Random graphs Brooks (2009)
Multi-agent systems Kernbach (2008)
Small-world networks Watts and Strogatz (1998)
Power grid network simulations Rohden et al. (2012)
Self-organizing maps Kohonen (1989)
Cloud computing systems Zhang et al. (2010)
Moore’s Law Georgiev et al. (2016)
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many more phenomena in astrophysics that implicitly qualify as self-organization processes,
although they are often not labeled as such in the original literature. As a caveat, our review
thus contains some bias towards citations with author-identified self-organization processes.

2 Planetary Physics

2.1 Planetary Spacing

Our solar system exhibits planet distances Ri, i = 1, . . . , n from the Sun that are not ran-
domly distributed, but rather follow a regular pattern that has been quantified with the
Titius-Bode law, known since 250 years. The original Titius-Bode law approximated the
planet distance ratios by a factor of two, i.e., Ri+1/Ri ≈ 2, while a generalized Titius-Bode
law specified the relationship with a logarithmic spacing and a constant geometric progres-
sion factor Q, i.e., Ri+1/Ri = Q (Blagg 1913). According to Kepler’s third law, a distance
ratio Q corresponds to a period ratio q = Ti+1/Ti = Q(3/2) of the orbital time periods T .
However, both the original and the generalized Titius-Bode law represent empirical laws
without a physical model.

Planet spacing with low harmonic ratios q of their orbital time periods T , such as
q=(m:n), with n = 1,2,3 and m ≥ n + 1, have been interpreted as harmonic (mechanical)
orbit resonances and are expected to occur in a self-organizing system with stable long-
lived orbits (Laplace 1829; Peale 1976), especially in systems with resonant chains (e.g.,
Mills et al. 2016). One of the main heuristic understandings of chaos and instability is that a
planet system is generated by overlapping resonances (Wisdom 1980), which explains why
not all (or even the majority of) planet systems have exact (2-body) harmonic resonances
(Daniel Fabrycky, private communication).

Recently, the planet spacing has been fitted with 5 low-harmonic ratios (Aschwanden
2018), or with 7 low-harmonic ratios q = (2 : 1), (3 : 1), (3 : 2), (4 : 3), (5 : 2), (5 : 3), (5 : 4)

that were found to fit 648 pairs of exo-planet distances (Aschwanden and Scholkmann 2017),
using observations of the KEPLER mission. A distribution of the 7 best-fit harmonic ra-
tios of orbital periods is shown for detected and (interpolated) missing exo-planet pairs in
Fig. 1. In other studies with Kepler data, resonances with low-harmonic ratios were found
to be uncommon among small planets with periods shorter than a few years (Fabrycky et al.
2014; Winn and Fabrycky 2015). Gaps with ratios q > 3 were interpreted as missing planets
and interpolated with low-harmonic ratios in the analysis of Aschwanden and Scholkmann
(2017).

Most recently, the Laplacian 3-body resonances have been studied in great detail in the
TRAPPIST-1 exo-planet system (e.g., Luger et al. 2017; Scholkmann 2017), which con-
tains 7 planets and is continuously monitored by the Kepler mission. The 6 planet spacings
of TRAPPIST-1 closely match the low-harmonic ratios q = (4 : 3), (3 : 2), (5 : 3) within
an accuracy of �1% (Luger et al. 2017; Scholkmann 2017; Aschwanden and Scholkmann
2017).

Harmonic planet orbits represent a special solution of the general N-body problem in
celestial mechanics, which can be expressed by n second-order differential equations,

mi

d2Ri

dt2
= G

n∑

j=1

mimj

r3
ij

rij i = 1, . . . , n, i �= j, (1)

where G is the Newton gravitational constant, mi and mj are two different masses, Ri and
Rj are their spatial vectors in a Cartesian coordinate system, and rij = (Rj − Ri ) are the
vectors between two bodies, with rij = −rj i .
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Fig. 1 Top: The distribution of
orbital period ratios in 932 pairs
of exo-planets observed with the
KEPLER mission. Middle: The
distribution of 310 orbital period
ratios in gap-free sequences of
exo-planets. Bottom: Quantized
distribution of best-fit harmonic
period ratios, including
interpolation in “gappy
sequences” [adapted from
Aschwanden and Scholkmann
2017]

The dynamics of two planets orbiting the Sun can be formulated with a N -body problem
(with N = 3),

ẍ1 = −Gm2
(x1 − x2)

|x1 − x2|3 − Gm3
(x1 − x3)

|x1 − x3|3 , (2)

ẍ2 = −Gm3
(x2 − x3)

|x2 − x3|3 − Gm1
(x2 − x1)

|x2 − x1|3 , (3)

ẍ3 = −Gm1
(x3 − x1)

|x3 − x1|3 − Gm2
(x3 − x2)

|x3 − x2|3 . (4)

The 3-body problem is treated in the textbook Solar System Dynamics by Murray and
Dermott (1999) and recently reviewed in Lissauer and Murray (2007) and Musielak and
Quarles (2015), building on the work of Isaac Newton, Jean le Rond d’Alembert, Alexis
Clairaut, Joseph-Louis Lagrange, Pierre-Simon Laplace, Heinrich Bruns, Henri Poincaré,
and Leonard Euler. Some restricted solutions yield stationary orbits in the Lagrangian points
L1 to L5. Numerical searches for periodic orbits and resonances based on approximations
to harmonic oscillators (similar to the physical model of coupled pendulums) yield the fol-
lowing nominal resonance location a3 for a third body that orbits between the primary and
secondary body (internal resonance) (Murray and Dermott 1999),

a3 =
(

k

k + l

)2/3(
m1

m1 + m2

)
a2, (5)
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Table 3 Observed orbital periods and distances of the planets from the Sun, and the nearest predicted har-
monic orbit resonances (H1:H2) or order of resonances (l, k), orbital periods T [yr], observed and best-fit
semi-major axes aobs and aharm , and ratios aharm/aobs

Planet Number l k H1 H2 Period
[yr]

aobs
[AU]

aharm
[AU]

Ratio
aharm/aobs

Mercury 1 3 2 5 2 0.241 0.39 0.391 1.002

Venus 2 2 3 5 3 0.615 0.72 0.711 0.988

Earth 3 1 1 2 1 1.000 1.00 0.958 0.957

Mars 4 3 2 5 2 1.881 1.52 1.504 0.989

Ceres 5 3 2 5 2 4.601 2.77 2.823 1.019

Jupiter 6 3 2 5 2 11.862 5.20 5.179 0.996

Saturn 7 2 1 3 1 29.457 9.54 9.225 0.967

Uranus 8 1 1 2 1 84.018 19.19 18.943 0.987

Neptune 9 1 2 3 2 164.78 30.07 30.129 1.002

Pluto 10 284.40 39.48 . . . . . .

Mean 0.99 ± 0.02

where m1 is the mass of the first body (e.g., the Sun), m2 the mass of the secondary body
(e.g., Venus), a2 is the semi-major axis of the secondary body, a3 the distance of the third
body (e.g., Mercury) that orbits between the first and second body, l is the order of the
resonance, and (k, l) are integer numbers. Since the planet masses are much smaller than
the solar mass, the relationship (Eq. (5)) simplifies to,

a3 ≈
(

k

k + l

)2/3

a2, (6)

where the exponent (2/3) results from Kepler’s third law, e.g., a ∝ T (2/3), with T the orbital
period, while orbital periods have harmonic integer ratios q = T2/T3 ∝ (k+ l)/k. This yields
the ratios q = (2:1), (3:2), (4:3), (3:1), (5:3), (4:1), (5:2) for the lowest orders l = 1,2,3. In
Table 3 we list the harmonic ratios (H1:H2) from our solar system, or the order of the res-
onances [l, k] that fit the observed orbital periods best, which includes the harmonic ratios
(2:1), (3:1), (3:2), (5:2), and (5:3). The resulting planet distance ratios agree with the ob-
served semi-major axis with an accuracy of about 2%, (aharm/aobs = 0.99 ± 0.02, i.e., see
mean and standard deviation of ratios in last column of Table 3), which clearly demon-
strates that the spacing of planets obeys a regular pattern that is not consistent with random
locations. In the terminology of self-organizing systems, the driver of the system is the grav-
itational force, while the feedback mechanism that creates order out of random is the orbit
stabilization that occurs at low harmonic ratios. Planets may have been formed initially at
“chaotic” distances from the Sun, but the long-term stable orbits survive in the end, which
apparently require gravitational resonances at low-harmonic orbital ratios.

The planetary spacing can be described in terms of two hierarchical self-organization
processes: (i) the Keplerian orbital motion, and (ii) the secular precession. The Keplerian
orbital motion is driven by the gravitational force, while the balance with the centrifugal
force represents the feedback mechanism, resulting into an ellipse trajectory with some ec-
centricity (Appendix A). This can be considered as a self-organizing system with a limit
cycle that corresponds to the orbital period. If the planet has a large eccentricity, the Sun-
planet distance varies around the equilibrium value, while a circular motion corresponds to
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Fig. 2 Phase-space diagram of
planet distances from Sun, r , and
planet velocity, v, for Keplerian
orbits. The Keplerian orbit is
marked with a dotted curve, the
planet positions in phase space
with diamonds, and the planet
motions in phase space with thick
curve segments. Note that
Mercury and Pluto, the two
planets with the largest orbit
eccentricity, have the largest
trajectories in phase space. The
mean planet locations (diamonds)
in phase space represent
attractors of a nonlinear system
with limit cycles

a fixed limit cycle with a constant distance from the Sun. We show a phase diagram of the
planet velocity v as a function of the distance R in Fig. 2. On top of the Keplerian motion
we have gravitational disturbances from other planets that vary the secular motion of the
planet. Gravitational disturbances are then the driving forces, while the low-harmonic reso-
nances represent the feedback mechanisms that self-organize multiple planet distances into
a quantized (non-random) spatial pattern. This is illustrated by the harmonic ratios of the
planet distances shown in Fig. 1. In essence, two self-organization mechanisms control the
orbits of planets.

Alternative mechanisms besides gravitational N-body resonance self-organization have
been proposed also, such as: (i) Hierarchical self-organization processes based on sequential
resonance accretion (starting with the accretion of massive objects first) and 2-body reso-
nance capture of planetesimals in the primordial solar nebula (Patterson 1987); (ii) plasma
self-organization driven by the development to minimum energy states of the generic so-
lar plasma during protostar formation (Wells 1989a, 1989b, 1990); (iii) subsequent mass
ejections into planetary rings around a central rotating body with magnetic field proper-
ties predicted by stochastic electrodynamics (Surdin 1980), (iv) retarded gravitational 2-
body resonance, i.e., macroscopic quantization of orbital parameters due to finite gravi-
tational propagation speed (Gine 2007); or (v) quantization of orbital periods in terms of
the quantum-mechanical Schrödinger equation (Perinova et al. 2007; De Neto et al. 2007;
Scardigli 2007; Chang 2013).

Critical Assessment The spacing of planets, moons, or exo-planets exhibit quantized val-
ues that correspond to low-harmonic ratios according to some studies, in which large pe-
riod ratios of planet pairs are interpreted as gaps with missing (un-detected or non-existing)
planets. A regular pattern of orbital periods (T), produced by low-harmonic ratios of orbital
resonances (R), causes then also a regular pattern in planetary spacings (S), via Kepler’s
third law. Other studies find that harmonic ratios are rare for exo-planets with orbital pe-
riods of less than a few years. The physical model of Lagrangian mean-motion resonances
predicts exact harmonic ratios (in resonant chains), but secular disturbances, planet mi-
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Fig. 3 First radio occultation
observation of Saturn’s rings on
2005 May 3 with the Cassini
spacecraft, using the radio bands
of 0.94, 3.6, 13 cm. The spatial
resolution is ≈10 km. The largest
gap is the Cassini division, and
the last outer (spatially resolved)
gap is the Encke division [Credit:
Cassini-Huygens mission,
NASA]

grations, and overlapping resonances (Wisdom 1980) may cause slowly-varying deviations.
Nevertheless, the fact that harmonic ratios fit the planet orbital periods in the order of a few
percents, strongly indicates the presence of a self-organizing system, opposed to randomness
(Table 1: qualifiers R, S, T).

2.2 Planetary Rings and Moons

Planetary systems with moons and rings can be considered as miniature versions of solar
(or stellar) systems, as noted by Galileo, and thus may have a similar formation process
and are governed by the same celestial mechanics. For instance, the mean motions of the
inner three Galilean satellites of Jupiter (Io, Europa, Ganymede) exhibit harmonic orbits
with a very high precision (by nine significant digits; Peale 1976), a property that has been
interpreted by Laplace (1829) as evidence for the high stability of resonant orbits. Besides
the Galilean satellites, further orbital resonance commensurabilities were found for Saturn
moons (Franklin et al. 1971; Sinclair 1972; Greenberg 1973; Colombo et al. 1974; Peale
1976), and for asteroids-Jupiter resonances such as the Trojans (Brown and Shook 1933;
Takenouchi 1962; Schubart 1968; Sinclair 1969; Marsden 1970; Lecar and Franklin 1973;
Franklin et al. 1975; Peale 1976). Planetary rings have been found for all giant planets
(Jupiter, Saturn, Uranus, and Neptune). A reconstruction of the Saturn ring system from
Cassini observations is shown in Fig. 3.

If we hypothesize that planets and moons are preferentially located at low-harmonic or-
bits, how do we explain the existence of gaps in a ring system, such as the Cassini division
or the Encke gap in Saturn’s ring system? If moons form by accretion of planetesimals that
orbit in close proximity to the accreting moon, a gap will result after sweeping over many
nearby orbits, with the growing moon sitting in the middle of the gap. Therefore, gaps and
moons are essentially cospatial in a long-term stable system. The most prominent “shep-
herding moon” in Saturn’s ring system is the satellite Mimas, which is responsible for the
strongest resonance, i.e., the Cassini Division, a 4700-km gap between Saturn’s A and B
rings (Porco and Hamilton 2000; McFadden et al. 1999, 2007). The two smaller moons
Janus and Epimetheus cause the sharp outer edge of the A ring. The 320-km Encke gap in
the outer A ring is believed to be controlled by the 20-km diameter satellite Pan. At Uranus,
Cordelia and Ophelia have the role of “shepherding moons”. The moon Galatea plays a
similar role in Neptune’s Adams ring.

The idea of self-organization in planetary rings has already been raised by Gor’kavyi and
Fridman (1991). Gravitational forces and collisional deflection represent the drivers, while
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harmonic orbit resonances produce a feedback mechanism to organize the flat planetary ring
plane into discrete rings, mostly because harmonic orbits tend to be more stable statistically.
If the phenomenon of harmonic orbit resonances would not exist, randomized collisions
only would determine the dynamics of ring particles, leading to a smooth and homogeneous
planetary disk (or an asteroid belt or Oort cloud), rather than to quantized rings. The spatial
pattern of rings with quantized ratios in their distance from the center of a planet (e.g.,
Saturn, Jupiter, Uranus, Neptune) thus is a manifestation of a self-organizing “ordered”
scheme beyond a random pattern.

Critical Assessment The argument to explain the harmonic structure of planetary rings is
identical to the previously discussed case of planetary distances, because both are believed
to be produced by the same stabilizing effect of orbital resonances with low-harmonic ra-
tios. The arrangement of rings in quantized distances reveals a regular pattern in space (S)
and time (T) that is beyond randomness, governed by mechanical resonances (R). These
properties (R, S, T) argue in favor of a self-organization system (Table 1: qualifiers R, S, T).

2.3 Protoplanetary Disks

The formation of planets can obviously be seen as a self-organizing process, creating “or-
der out of randomness”. The interstellar gas, initially randomly distributed in a molecular
cloud, collapses under its own gravity to form a young stellar object. Unless it loses its
angular momentum, the gas cannot directly fall onto the newly born star: its angular veloc-
ity would increase and matter would be centrifugally expelled at larger radii. In the frame
co-rotating with the gas, the effective gravitational potential is minimal in a plane, where
dissipative processes allow the protoplanetary (or circum-stellar) disk to form. Dozens of
such disks have now been observed over a range of wavelengths (McCaughrean and O’dell
1996), and their link to planet formation casts no doubt, since planets have been observed in
older “debris disks” (Kospal et al. 2009). The imaging of dust emission, whether thermal or
scattered, has revealed a number of large-scale structures in protoplanetary disks. Such fea-
tures include spiral arms (Muto et al. 2012; Benisty et al. 2015) or cavities in the innermost
regions of the disk (e.g., Andrews et al. 2011). The former are generally attributed to the
excitation of density waves by massive planets, while the latter could result from accretion
and/or photo-evaporation of the inner disk (Alexander et al. 2006; Koepferl et al. 2013).
Horseshoe-shaped dust concentrations have also been identified in several disks (Fukagawa
et al. 2013; van der Marel et al. 2013); it is commonly agreed that these could correspond to
large-scale anticyclonic vortices in the gas flow (Birnstiel et al. 2013).

The most puzzling structures remain the axisymmetric dust gaps and rings observed in
some disks, see Fig. 4. It is tempting to attribute them to gaps carved by protoplanets and
their gravitational resonances (Crida et al. 2006; Baruteau and Papaloizou 2013), but it is
unclear how several massive planetary bodies could already be formed in such young disks.
One class of mechanisms relies on the coupling between the gas and large-scale magnetic
fields. Magnetic fields are thought to drive the bipolar jets emitted perpendicularly to the
disk plane (Cabrit et al. 2011). The coupling of magnetic fields with the electrically neutral
gas in the outer disk is still possible via collisions with the few charged species (e.g., Wardle
and Ng 1999). Of particular relevance for this review, the magneto-hydrodynamic (MHD)
mechanism identified by Kunz and Lesur (2013) and further investigated by Béthune et al.
(2016) generates self-organized, regularly spaced axisymmetric structures in the gas flow.
Such structures would affect the migration of dust grains and could produce dust rings and
gaps. MHD processes have received an increasing interest after realizing that for perfectly
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Fig. 4 Thermal emission from
millimeter-sized dust grains
settled in the midplane of the HL
Tauri disk, featuring a series of
axisymmetric rings and gaps
(ALMA Partnership 2015)

ionized Keplerian disks, arbitrarily weak magnetic fields could trigger a linear instability, the
magneto-rotational instability (MRI) (Balbus and Hawley 1991), saturating in a turbulent
state. In this turbulent flow, angular momentum could be “viscously” transported outwards
(Shakura and Sunyaev 1973), thus allowing the observed accretion of gas onto the star. In
weakly ionized plasmas, this instability can be damped (Jin 1996; Kunz and Balbus 2004)
or modified in nature (Balbus and Terquem 2001; Kunz 2008). The transport of magnetic
field in weakly ionized disks can be described via a modified induction equation:

∂B

∂t
= ∇ × [

v × B − ηOJ − ηHJ × eB + ηA(J × eB) × eB

]
, (7)

where B is the magnetic field locally along eB , J = ∇ × B is the electric current density,
and ηO,H,A are the Ohmic, Hall and ambipolar diffusivities. Ohmic and ambipolar diffusions
are indeed dissipative terms, respectively caused by collisions of electrons and ions. The
Hall term is not a dissipative one: it describes the collisionless drift between electrons and
ions and can only transport magnetic energy via whistler waves. Retaining only the ideal
and Hall terms amounts to neglecting the ion dynamics, following the induction of magnetic
field by electrons only. In this limit, a linear instability remains that could sustain the tur-
bulent transport of angular momentum in accretion disks (Wardle 1999). Early simulations
including the Hall term showed that the Hall-MRI would still saturate in a turbulent state
(Sano and Stone 2002a,b), though with varying effective viscosities. However, the Hall term
might largely dominate the ideal induction term in the midplane of protoplanetary disks
(Kunz and Balbus 2004). In this regime, the Hall-shear instability still operates in Keplerian
disks, but with a different outcome (Kunz and Lesur 2013). After a phase of linear growth,
the instability breaks into a non-linear and disordered regime. From this turbulent phase,
high magnetic flux regions progressively merge together, ultimately separating contiguous
regions of strong magnetic field from regions devoid of magnetic flux.

This behavior can be understood as follows. The linear instability requires a magnetic
field that is sufficiently weak, such that the shear rate of the flow is larger than the whistler
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waves frequency at a given scale. Note, if the flow along vy is sheared in the x direction,
then the shear rate is defined as ∂xvy . Besides, the instability generates a magnetic stress
M = −B ⊗ B , i.e. a tension of the magnetic field lines that can exchange momentum with
the plasma. Retaining only the Hall term, Eq. (7) can be recast

∂B

∂t
= �H ∇ × [∇ ·M], (8)

where �H = ηH/vA, the effective Hall diffusivity divided by the Alfvén velocity, happens
to be independent of the magnetic field intensity (e.g., Lesur et al. 2014); this coefficient,
analogous to an ion skin depth, was assumed to be constant for simplicity. Projected on the
direction normal to the disk, this equation implies that magnetic flux is transported away
from stress maxima, and this opens a route to self-organization. In the limit of weak mag-
netic flux, the linear instability has accordingly small growth rates and does not generate
a significant stress. In the limit of strong magnetic flux, whistler waves can propagate de-
spite the strong shear, when the Keplerian flow becomes linearly stable. For intermediate
intensities of the magnetic flux, the instability generates a magnetic stress that effectively
pushes magnetic flux away. If the magnetic flux locally increases, the flow can be stabilized,
the magnetic stress becomes locally minimal, and therefore the stabilized region becomes
a sink for magnetic flux. Eventually, these magnetic concentrations grow and spread in the
azimuthal direction. If something tries to spread the magnetic flux radially, this will decrease
its intensity down to the point where the linear instability is triggered again; as a feedback,
the instability generates magnetic stress, thus confining magnetic flux again. Given the total
magnetic flux through the disk, the turbulent and ordered phases are two available outcomes
for the flow. The Hall effect, when strong enough, allows a spontaneous transition from the
turbulent phase to an ordered equilibrium featuring large-scale and long-lived structures.
Its relevance to astrophysical disks is uncertain though. The main caveat of these studies
is the neglect of vertical stratification, i.e. the transition from the dense disk to its dilute
and strongly magnetized corona. Results from numerical simulations (Fig. 5) including all
three non-ideal MHD terms in Eq. (7) suggest that self-organization is inhibited by the den-
sity stratification (Lesur et al. 2014; Bai 2015; Béthune et al. 2017). Still, striped structures
have been observed in stratified simulations of strongly magnetized disks (Moll 2012); ax-
isymmetric magnetic accumulations could be a generic feature of MHD turbulent disks (Bai
and Stone 2014; Ruge et al. 2016), most apparent in the presence of ambipolar diffusion
(Béthune et al. 2017; Simon et al. 2017). At the moment, this behavior lacks a robust expla-
nation.

Critical Assessment The argument of a self-organization process in the evolution of a
protoplanetary disk is mostly made in terms of the spatially emerging order (S), which
starts from random-like turbulent flows with a complex fine structure and ends up in almost
equidistantly ordered rings. From the 3-D MHD simulations it appears that the Hall-shear
instability (I) acts as a feedback mechanism to organize an initially “chaotic” disk into an
ordered system of axisymmetric bands. These properties (I, S) argue for a self-organization
process (Table 1: qualifiers I, S).

2.4 Jupiter’s Red Spot

Jupiter exhibits a stable Great Red Spot since 187 years (or possibly since 350 years), which
indicates a high-pressure zone of a persistent anticyclonic storm (Fig. 6). The vortex-like
velocity field in Jupiter’s Red Spot has been derived and rendered in Fig. 7 by Simon et al.
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Fig. 5 Axial magnetic field in
two non-stratified simulations of
protoplanetary disks. Bottom:
MRI-driven turbulence in
ideal MHD; Top: Ordered phase
displaying axisymmetric rings of
magnetic flux in Hall-MHD
(Béthune et al. 2016)

Fig. 6 False-color image of the
Great Red Spot of Jupiter,
observed with Voyager [credit:
NASA, Caltech/JPL—
http://www.jpl.nasa.gov/releases/
2002/release_2002_166.html]

(2014). The temperature of Jupiter’s atmospheres above the Great Red Spot is measured to
be hundreds of degrees warmer than simulations based on solar heating alone can explain
(O’Donoghue et al. 2016). The Great Red Spot has a width of ≈16,000 km and rotates
counter-clockwise with a period of ≈ 3 days. The longitude of the Great Red Spot oscillated

http://www.jpl.nasa.gov/releases/2002/release_2002_166.html
http://www.jpl.nasa.gov/releases/2002/release_2002_166.html
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Fig. 7 Top: Great Red Spot
rendered in true colors recently
obtained by the Juno spacecraft
in 2017 [Image credit:
NASA/JPL-Caltech/Space
Science Institute, SwRI/MSSS,
Björn Jonsson]. Right:
Visualization of the velocity field
(Simon et al. 2014)

with a 90-day period (Link 1975; Reese and Beebe 1977). Why can such an ordered, stable,
long-lived structure exist in the (randomly) turbulent atmosphere of a gas giant? Why would
it not decay into similar turbulent structures as observed in the surroundings? There exists a
similar feature in Neptune’s atmosphere, visible during 1989–1994, called the Great Dark
Spot.

Early interpretations associated Jupiter’s Great Spot with a Korteweg-de Vries soliton
solution (Maxworthy and Redekopp 1976), a solitary wave solution to the intermediate-
geostrophic equations (Nezlin et al. 1996), a Taylor column, a Rossby wave, or a hurricane
(Marcus 1993). A geostrophic wind or current results from the balance between pressure
gradients and Coriolis forces. One theoretical explanation that was put forward is the self-
organization of vorticity in turbulence: The Jovian vortices reflect the behavior of quasi-
geostrophic vortices embedded in an east-west wind with bands of uniform potential vor-
ticity (Marcus 1993). Numerical simulations based on the quasi-geostrophic equations for
a Boussinesq fluid in a uniformly rotating and stably stratified environment indicated the
self-organization of the flow into a large population of coherent vortices (McWilliams et al.
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1994). This scenario suggests an evolution from initial turbulent (random) to coherent (or-
dered) large-scale structures.

The vortex-solution of the Rossby wave equation gives not only a solution resembling of
the Great Red Spot but is also similar to a drift soliton in plasma where the Coriolis force
(in a rotating atmosphere) is replaced by the Lorenz force (in a magnetized plasma) (Petvi-
ashvili 1980). The similarity of these phenomena not only indicates similar self-organizing
principle behind them, but also may hint that the Great Dark Spot is the result of a MHD
process.

Critical Assessment The argument of Jupiter’s Great Red Spot being a self-organizing
structure is mostly based on the emergence of a stable ordered large-scale structure (S),
which is opposite to random-like turbulent small-scale structures. It is also the longevity
of this large-scale structure that sets the Great Red Spot apart from short-lived small-scale
turbulent structures. The physical process has been modeled with MHD simulations, es-
sentially showing an inverse MHD turbulent cascade (from small to large scales), as it is
known in 2-D turbulence (I). Thus, self-organization is established based on the properties
I, S (Table 1: qualifiers I, S).

2.5 Saturn’s Hexagon

Saturn’s north pole exhibits at 77◦ N a hexagonal cloud pattern that was first discovered in
the 1980s by the Voyager mission (Godfrey 1988), which was later imaged with high reso-
lution by the Cassini Orbiter (Baines et al. 2009). The images obtained by Cassini revealed
that the structure consists of two elements: a hexagonal circumpolar jet-stream and a North
Polar vortex (NPV), see Fig. 8. Recently, Rostami et al. (2017) showed by computational
simulations that the cloud pattern can be described as a coupled dynamical system consist-
ing of the hexagonal circumpolar jet-stream and the NPV, resulting in a self-organized stable
hexagonal pattern. The hexagonal shape is formed in a specific region of the turbulent flow
between the jet-stream and the NPV that rotate with different speeds; the hexagonal shape is
stabilized by the NPV. The concentric ring structure surrounding the vortices at the north and
south pole and their peculiar temperature distribution (Fletcher et al. 2008), the occurrence
of auroras at the poles (Dyudina et al. 2016), as well as an electrodynamic coupling of Sat-
urn with his moons, e.g. Enceladus (Pontius and Hill 2006; Tokar et al. 2006), indicate that
the cloud structures seem on the poles may be also related to plasma-physical and electrical
phenomena. Indeed, laboratory studies of plasma discharge showed structures occurring at
the diocotron instability (analogous to the Kelvin-Helmholtz instability in fluid mechanics)
that resemble structures (discharge and cloud formations) at planetary poles (Parett 2007).

Critical Assessment The argument of Saturn’s hexagon self-organizing structure is, as in
the case of Jupiter’s Great Spot, mostly based on the emergence of a stable ordered large-
scale structure (S), which is opposite to random-like turbulent small-scale structures. The
modeling of the cloud structures based on fluid dynamics or plasma physics shows that insta-
bilities (I) are involved in the organization process. The self-organization is thus established
by properties I and S.

2.6 Planetary Entropy

Random processes increase the entropy according to the second thermodynamic law, while
self-organizing processes decrease the entropy, which is also expressed as an increase of
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Fig. 8 (a) Picture of Saturn’s hexagon at the north pole (view: 53◦ above the ringplane). Image taken by the
Cassini spacecraft, 2013. [Image credit: NASA/JPL-Caltech/Space Science Institute]. (b) and (c): Images of
the hexagon taken by Cassini in 2012 and 2016. [Image credit: NASA/JPL-Caltech/Space Science Institute.]
(d) Temperature distribution at the north and south plane (in the troposphere at 100 mbar) according to
Fletcher et al. (2008). (e) Aurora on Saturn [Image credit: NASA]. (f) and (g) Show discharge structures
of electron beam interactions with a fluorescence screen at 58 µA (f) or with a steel witness plate at 90 kA
(g) Parett (2007)

negentropy (negative entropy). The entropy of a nonequilibrium system can be defined by
the Gibbs formula,

dS = dE

T
+ pdV

T
, (9)

where dS is the entropy flux of an open system, E is the internal energy flux, T is the
temperature, p is the pressure, and V is the volume. For planets, volume changes dV can
be neglected. For energy balance one needs to include the solar radiation (or energy flux) Es
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Fig. 9 Comparison of different recent global annual mean energy balance estimates for present day con-
ditions as published by Wild et al. (2015) (upper left red values), L’Ecuyer et al. (2015) (upper right pink
values), Stephens et al. (2012) (lower left green values), and Trenberth et al. (2009) (lower right purple val-
ues). Units in W m−2 [Credit: Figure adapted from Wild 2017]

absorbed by the planet, and the infrared radiation (or energy flux) Ep emitted by the planet
(Izakov 1997),

dE = Es − Ep = fs(1 − A)πr2 − 4πr2fp, (10)

where fs is the incident solar radiation per unit area (or irradiance), Es is the incident energy
flux from the Sun, Ep is the outgoing energy flux from the planet, fp ≈ σBT 4

e is the infrared
radiation emitted from the unit area of the planet’s surface, Te is the equilibrium temperature,
A is the integral spherical albedo of the planet, and r is the radius of the planet. The average
energy flux imbalance dE of the Earth at the top of the atmosphere is a crucial number
characterizing the status of climate change. In practice, it is very difficult to measure the
imbalance accurately. For the approach here, it is sufficient to note that it is found to be
approximately zero. The energy flux balance of incoming and outgoing energy fluxes in the
Earth’s atmosphere is depicted in Fig. 9 (energy flux imbalance numbers at lower left).

An interesting consequence of the energy flux balance dE ≈ 0 is the amount of negen-
tropy flux that flows into a planet system. The difference of the entropy flux input from
the Sun and the entropy flux output from the planet, representing the amount that goes into
self-organization processes, can be estimated to be

dS = 4

3

(
Es

Ts

− Ep

Tp

)
, (11)

which is found to be negative (dS < 0) for energy flux balance Ep ≈ Es and blackbody
equilibrium temperatures Ts 	 Tp , since the Sun is much hotter than the planet. In the fol-
lowing estimates we adapt nominal solar and terrestrial quantities from Prša et al. (2016).
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Approximating with blackbody temperatures, we have Ts = 5772 K for the Sun, Tp = 255 K
for the temperature of the Earth’s thermal radiation, fs = 1361 W m−2 for the solar irradi-
ance, and A = 0.29 for the albedo, yielding a negentropy flux of −dS = 9 × 1014 W K−1.
The greenhouse effect, which yields a higher temperature of T0 = 288 K near the surface
than the equilibrium temperature Te = 255 K, ensures the existence of water and the bio-
sphere on the Earth. About 70% of the negentropy flux inflowing to Earth accounts for the
maintenance of the thermal regime on the planet. About 25% of the negentropy flux is spent
on the evaporation of water, mostly from the surface of the oceans, supplying clouds and
rainfall for the vegetation. Only a small fraction of about 5% goes into flows of mass and
heat, tsunamis, hurricanes, etc. On Venus, where no water is, a larger fraction of negen-
tropy flux goes into the dynamics of the atmosphere. Therefore, the greenhouse effect, the
hydrologic cycle of water, the global circulation of the atmosphere and oceans, are essen-
tially dissipative structures supported by the supply of negentropy and making up the global
self-organizing system whose characteristic is the climate on the Earth (Izakov 1997).

Global energy flux budgets and Trenberth diagrams for the climates of terrestrial and gas
giant planets are given in Read et al. (2016).

Critical Assessment Since the entropy flux is increasing in random processes, we can con-
clude that processes with decreasing entropy fluxes are non-random processes, which is one
of the definitions of self-organization here. The entropy flux calculation of the Earth’s atmo-
sphere is made by assuming energy flux balance between the incoming solar radiation and
the outgoing infrared emission from Earth. Based on this estimate of the entropy flux change
(E) we can conclude that the atmosphere including its weather and climate changes have
self-organizing capabilities (Table 1: qualifier E).

3 Solar Physics

3.1 Photospheric Granulation

The solar photosphere exhibits a pattern of “bubbling” cells (like boiling water in a frying
pan), which is called “photospheric granulation” (Fig. 10) and has been interpreted in terms
of hydrodynamic convection cells. The central part of a granulation cell is occupied with
upflowing plasma, which then cools down and descends in the surrounding edges, which
consequently appear to be darker than the center, because a cooler temperature corresponds
to fainter white-light emission. The photospheric temperature is Ts = 5780 K, the typical
size of a granule is w ≈ 1500 km, and the life time is about 8–20 min.

The underlying physical mechanism of convection has been studied in great detail in
terms of the Rayleigh-Bénard instability, known as Lorenz model (Lorenz 1963), described
also in the monographs of Chandrasekhar (1961) and Schuster (1988). The basic ingredients
of the (hydrodynamic) Lorenz model are the Navier-Stokes equation, the equation for heat
conduction, and the continuity equation,

ρ
dv
dt

= F − ∇p + μ∇2v, (12)

dT

dt
= κ∇2T , (13)

dρ

dt
= −∇ · (ρv), (14)
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Fig. 10 Closeup of photospheric
granulation pattern and a sunspot
near the center of the Sun. Note
that the average size of granules
has a typical size of
w ≈ 1500 km [credit: NSO,
NOAO, https://apod.nasa.gov/
apod/ap051106.html]

where ρ is the density of the fluid, μ is the viscosity, p is the pressure, κ is the thermal con-
ductivity, F = −ρgez is the external force in the ez direction due to gravity, and the boundary
conditions are T (x, y, z = 0, t) = T0 +
T and T (x, y, z = h) = T0 for a temperature gradi-
ent in vertical direction. For the special case of translational invariance in y-direction, using
the Boussinesq approximation, and retaining only the lowest order terms in the Fourier ex-
pansion, we obtain the much simpler form of the Lorenz model,

Ẋ = −σX + σY,

Ẏ = −XZ + rX − Y,

Ż = +XY − bZ,

(15)

which is a system of three coupled first-order differential equations, with X the circulatory
fluid flow velocity, Y the temperature difference between ascending and descending fluid
elements, Z the deviations of the vertical temperature profile from its equilibrium value, and
r is the control parameter measuring the magnitude of the temperature difference 
T . The
Lorenz model can describe the transition from heat conduction to convection rolls, where
Lorenz discovered the transition from deterministic to chaotic system dynamics.

Thus, the Lorenz model demonstrates that a temperature gradient (for instance below
the photosphere) transforms (a possibly turbulent) random motion into a highly-organized
rolling motion (due to the Rayleigh-Bénard instability) and this way organizes the plasma
into nearly equi-sized convection rolls that have a specific size (such as w ≈ 1500 km for
solar granules). The self-organization process thus creates order (of granules with a specific
size) out of randomness (of the initial turbulent spectrum).

Since convection is the main energy transport process inside the Sun down to 0.7R
,
larger convection rolls than the granulation pattern can be expected. Krishan (1991, 1992)
argues that the Kolmogorov turbulence spectrum N(k) ∝ k(−5/3) extends to larger scales

https://apod.nasa.gov/apod/ap051106.html
https://apod.nasa.gov/apod/ap051106.html
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Fig. 11 A TiO image of the
solar surface is shown,
containing normal granules and
mini-granules in a Quiet Sun
region, observed with the New
Solar Telescope (NST).
Mini-granules are outlined with
yellow contours, which show
granular-like features of sizes
below 600 km located in dark
intergranular lanes. Note that the
mini-granules do not coincide
with magnetic bright points
(Abramenko et al. 2012)

Fig. 12 The probability density function of the equivalent diameter of granules (in units of km) is shown,
observed in Quiet Sun regions with the New Solar Telescope (NST). The regular granules have a size of
w ≈ 500–2000 km, while the range of w ≈ 100–500 km exhibits the new phenomenon of “mini-granules”
Abramenko et al. (2012)

and possibly can explain the observed hierarchy of structures (granules, mesogranules, su-
pergranules, and giant cells) by the same self-organization process.

At smaller scales, a subpopulation of mini-granular structures has been discovered, in
the range of w≈100–600 km, (Fig. 11), predominantly confined to the wide dark lanes be-
tween regular granules, often forming chains and clusters, but being different from mag-
netic bright points (Abramenko et al. 2012). A set of TiO images of solar granulation ac-
quired with the 1.6 meter New Solar Telescope at Big Bear Solar Observatory was uti-
lized. The high-contrast speckle-reconstructed images of quiet-sun granulation (Fig. 11),
allowed to detect, besides the regular-size granules, the small granular-like features in dark
inter-granular lanes, named as mini-granules. Mini-granules are very mobile and short-lived.
They are predominantly located in places of enhanced turbulence and close to strong mag-
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netic fields in inter-granular lanes. The equivalent size of detected granules was estimated
from the circular diameter of the granula’s area. The resulting probability density functions
(PDF) for 36 independent snapshots are shown in gray on the left frame of Fig. 12. The av-
erage PDF (the red histogram) changes its slope in the scale range of ≈600–1300 km. This
varying power law PDF is suggestive that the observed ensemble of granules may consist of
two populations with distinct properties: regular granules and mini-granules. A decomposi-
tion of the observed PDF showed that the best fit is achieved with a combination of a power
law function (for mini-granules) and a Gaussian function (for granules). Their sum fits the
observational data. Mini-granules do not display any characteristic (“dominant”) scale. This
non-Gaussian distribution of sizes implies that a more sophisticated mechanism with more
degrees of freedom may be at work, where any small fluctuation in density, pressure, veloc-
ity and magnetic field may have significant impact and affect the resulting dynamics. It is
worth to note that a recent direct numerical simulation attempt (Van Kooten and Cranmer
2017) produced the PDF of granular size in agreement with the observed one in Fig. 12.
The authors concluded that the population of mini-granules is intrinsically related to non-
linear turbulent phenomena, whereas Gaussian-distributed regular granules originate from
near-surface convection.

Critical Assessment The size distribution of granulation cells in the solar photosphere does
not form a power law distribution, but clearly shows a preferred spatial scale of ≈ 1000 km,
which renders a regular spatial pattern (S), rather than a scale-free distribution. However,
a power law distribution has been found for the newly discovered “mini-granules” in a
size range of 100–600 km, which contradicts a self-organizing convective process that cre-
ates bubbles of equal sizes. The physical process of convection that is driven by a temper-
ature gradient and the Rayleigh-Bénard instability (I) is well-understood and known as the
Lorenz model. A caveat is how much the magnetic field plays a role in the solar convection
zone, requiring a model with magneto-convection and hydromagnetic (Parker and Kruskal-
Schwarzschild) instabilities. Anyway, a self-organization process is warranted based on the
preferred scale of convective rolls (Table 1: qualifiers I,S).

3.2 Magnetic Field Self-Organization

How is the solar magnetic field organized and how does the resulting magnetic field self-
organize into stable structures? It is said that sunspots and pores represent the basic stable
structures that are visible in the photosphere, but their sub-photospheric formation (driven
by the solar dynamo) and stability are long-standing problems. In the following we discuss
a few papers that explicitly use the term “self-organization” in this context.

Takamaru and Sato (1997) propose a self-organization system that evolves intermittently
and undergoes self-adaptively local maxima and minima of energy states. The nonlinear
interactions of twisting multiple flux tubes lead to local helical kink instabilities, resulting
in the formation of a knotted structure. Intermittent reconnection with neighbored flux tubes
in the knotted structure releases energy and restores the original configuration, a process that
exhibits self-organization in an open complex nonlinear system where energy is externally
and continuously supplied.

Vlahos and Georgoulis (2004) state that non-critical self-organization appears to be es-
sential for the formation and evolution of solar active regions, since it regulates the emer-
gence and evolution of solar active regions, perhaps characterized by a percolation pro-
cess (Schatten 2007, 2009), while the energy release process is governed by self-organized
criticality. Georgoulis (2005, 2012) explores various (scaling and multi-scaling, fractal and
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Fig. 13 Four snapshots of the simulated formation of magnetic field structures (pores and sunspots), showing
the surface distribution of the vertical magnetic field (color background), the horizontal flows (arrows), and
the vorticity magnitude (black contour lines), at 4 times (3, 10, 20, 60 min) from the moment of initiation of
a uniform magnetic field (Bz = 100 G) (Kitiashvili et al. 2010)

multi-fractal) image-processing techniques to measure the expected self-organization of tur-
bulence in solar magnetic fields. However, no difference was found in the turbulence spec-
trum between flaring and non-flaring active regions.

Chumak (2007) proposes a dynamic self-organization model of the active region evo-
lution in terms of a diffuse aggregation process of magnetic flux tubes in the upper levels
of the solar convection zone. The physical model is governed by hydrodynamics, magnetic
forces, and additional random forces.

Kitiashvili et al. (2010) describes the process of magnetic field generation as a self-
organization process: The simulations reveal two basic steps in the process of sponta-
neous formation of stable structures that are the key for understanding the magnetic
self-organization of the Sun and the formation of pores and sunspots: (1) formation of
small-scale filamentary magnetic structures associated with concentrations of vorticity and
whirlpool-type motions, and (2) merging of these structures due to the vortex attraction,
caused by converging downdrafts around magnetic concentration below the surface, reach-
ing magnetic field strengths of B ≈ 1500 G at the surface and B ≈ 6000 G in the interior.
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Fig. 14 Time evolution of the magnetic field strength |B| during magnetic flux emergence on a vertical cut
through the center of the domain along the x-axis. The first two snapshots show the subsurface field evolution
prior to the appearance of flux in the photosphere, the remaining six snapshots correspond to the photospheric
magnetograms (Rempel and Cheung 2014)

The structure was found to remain stable for at least several hours. Examples of the simu-
lated formation and evolution of magnetic structures are shown in Fig. 13.

Although the term “self-organization” is not explicitly mentioned in recent (realistic) ra-
diative 3-D MHD simulations of Abbett (2007), Cheung et al. (2007), Martinez-Sykora et al.
(2008, 2009, 2011), Tortosa-Andreu and Moreno-Insertis (2009), Stein et al. (2011), Stein
(2012), and Rempel and Cheung (2014), we can interpret the generation of stable coherent
magnetic structures in the turbulent convection zone as a manifestation of a self-organizing
process. Basically, these global MHD dynamo models generate coherent flux ropes that rise
towards the solar surface (Fig. 14). There is no need to insert sub-photospheric flux ropes in
the simulation box as done earlier, because recent 3-D MHD simulations added the evolution
of realistic magneto-convection as a time-dependent boundary to drive the flux emergence
process (Cheung and Isobe 2014; Cheung et al. 2017). The fact that sunspots always appear
within a time scale comparable to the flux emergence time of an active region, providing
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magnetic flux to the sunspot, indicates that coherent magnetic structures self-organize deep
in the convection zone. There the Rossby number is less than unity and convection is con-
strained by differential rotation and meridional flows.

As a disclaimer, we have to be aware that these 3-D MHD simulations capture a local
box only, rather than being global. A self-consistent generation of magnetic flux, simulated
on a global scale that includes the entire spherical convection zone of the Sun, is presented
in Miesch et al. (2000), which produces laminar and turbulent states, driven by the differen-
tial solar rotation. Related work describes convection and dynamo action in rapidly rotating
suns (Brown et al. 2010), or in large-scale dynamos with turbulent convection and shear
(Käpylä et al. 2012). In order to understand the basic mechanism of the formation of mag-
netic flux concentrations, numerical 3-D MHD simulations were performed that study the
turbulence contributions to the mean magnetic pressure in a strongly stratified isothermal
layer with a large plasma beta (Brandenburg et al. 2012). By applying a weak uniform hor-
izontal mean magnetic field, the negative effective magnetic pressure instability (NEMPI)
is activated, which reduces the turbulence and thus the turbulent pressure. If this reduc-
tion is more than the magnetic pressure, then the weakly magnetized region will have a
reduced total pressure, which leads to a collapse of the field into a stronger tube. Since this
mechanism generates order from turbulence, it can be considered to be a self-organization
process (Robert Cameron, private communication). In the global 3-D MHD simulations of
Hotta et al. (2014), an efficient small-scale dynamo generates the magnetic field, which has
a feedback on the poleward meridional flows, and thus displays the characteristic feedback
feature of a self-organizing process. A simulation of the convective dynamo in the solar con-
vective envelope has been conducted by Fan and Fang (2014), which is driven by the solar
radiative diffusive heat flux, exhibiting irregular cyclic behavior with oscillation time scales
ranging from about 5 to 15 yr and undergoes irregular polarity reversals, as it is typical for
self-organizing limit cycles far off a stationary equilibrium.

Critical Assessment Ideas of applying self-organization processes to generate the mag-
netic field in the solar convection zone or in the solar corona are mentioned only briefly
in the reviewed papers (or not at all), but no quantitative models or measurements are pre-
sented that would allow us to discriminate which magnetic structures have a random pattern
and which ones exhibit some ordered pattern. The magnetic flux on the solar surface was
found to have a power law size distribution (Parnell et al. 2009), which is rather consis-
tent with a self-organized criticality process. The envisioned feedback mechanisms include
the kink instability, the NEMPI instability, percolation, diffuse aggregation, and vortex at-
traction, but none of these processes has been characterized in emerging flux simulation in
terms of self-organization. So, we can observe spatial patterns of photospheric magnetic flux
patches (S), but are not sure which instability (I) enacts self-organization (Table 1: qualifiers
I(?), S).

3.3 The Hale Cycle

The global magnetic field of the Sun undergoes a cyclic transition from a global poloidal
field to a highly-stressed toroidal field in 11 years, switching the magnetic polarity during
this process, so that the original polarity is restored after two cycles, yielding a 22-yr cycle
that is called the (magnetic) “Hale cycle”. There exist over 2000 publications about the solar
magnetic activity cycle. A recent review can be found in Hathaway (2015).

A physical model of the Hale Cycle is the Babcock-Leighton dynamo model (Babcock
1961; for a review see Charbonneau 2014), which explains the winding-up of the highly-
stressed toroidal field as a consequence of the differential rotation (during the rise phase of
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Fig. 15 The solar dynamo action
obtained form a 3-D MHD
simulation is depicted in the
convection zone, showing the
time-averaged radial and
effective radial flow (top panels),
and the zonally averaged
latitudinal and effective
latitudinal flow (Warnecke et al.
2017)

the cycle), and is followed by a gradual decay with decreasing sunspot number and merid-
ional diffusion of the magnetic field, leading to a relaxed poloidal field during the solar cycle
minimum. An example of a 3-D MHD simulation of the solar convection zone is shown in
Fig. 15. The observed variation of the sunspot number between the years 1870 and 2017 is
shown in Fig. 16.

The variability of the solar cycle can be understood in terms of a weakly nonlinear limit
cycle affected by random noise (Cameron and Schüssler 2017), quantified in normal form in
terms of the Hopf bifurcation (Fig. 17, 18, Appendix C). The presence of a limit cycle is a
common property in coupled nonlinear dissipative systems, which is most easily understood
in terms of the Lotka-Volterra equation system (Haken 1983), known as the predator-prey
equation in ecology (Fig. 18 bottom; Appendix D),

Ẋ = k1X − k2XY,

Ẏ = −k3Y + k2XY.
(16)

This equation system has a periodic solution, which is called the limit cycle. Critical points
occur when dX/dt = 0 and dY/dt = 0, which yields a stationary point in phase space at
X = k3/k2 and Y = k1/k2. Applying the Lotka-Volterra equation system to the solar cycle,
X represents the poloidal field and Y the toroidal field, k1 the growth rate of the poloidal
field, k3 the growth rate of the toroidal field, and (k2) a nonlinear interaction term between
the two field components. The Lotka-Volterra equations describe the emergence and sus-
tained oscillation in an open system far from equilibrium, as well as emergence of spon-
taneous self-organization (Demirel 2007). An application of the Lotka-Volterra system to
the complex system of the solar cycle is discussed in Consolini et al. (2009), where a dou-
ble dynamo mechanism is envisioned, one at the base of the convection zone (tachocline),
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Fig. 16 The variation of the sunspot number from 1870 to 2020, showing the 11-year periodicity in the
average daily sunspot area (bottom panel) and in the latitude distribution (butterfly diagram in top panel).
[Credit: http://solarscience.msfc.nasa.gov/, David Hathaway, NASA/ARC]

Fig. 17 (A) Time series of the
observed sunspot numbers
(SSN); (B) Sunspot number
reconstructed from cosmogenic
isotopes (SSNrecon); (C, D)
Monte-Carlo simulations of a
weakly nonlinear, noisy limit
cycle (Hopf bifurcation
normal-form model);
(E, F) Results from
Babcock-Leighton dynamo
model with fluctuating sources
(Cameron and Schüssler 2017)

and a shallow subsurface dynamo. The deeper dynamo dominates the poloidal field, while
the shallower dynamo controls the toroidal field. Extended global 3-D MHD simulations
of magneto-convection, over a time span of 1650 years, were produced with the EULAG-

http://solarscience.msfc.nasa.gov/
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Fig. 18 The dynamic behavior near a limit cycle is shown for three different nonlinear systems: for coupled
oscillators (top), the Hopf bifurcation (middle), and the Lotka-Volterra equation system (bottom). For each
case the trajectories are shown in phase space Y (X) (right panels), and as a function of time, X(t) and Y (t)

(left panels), for the parameters indicated in the right panels. The system starts to oscillate far away from the
limit cycle, but gradually approaches the attractor at the fixed point (X0, Y0)

MHD code, which is currently the best example that produces a limit-cycle large-scale mag-
netic field (Passos and Charbonneau 2014). In summary, the limit cycle represents a highly-
ordered self-organizing 11-year (22-year) pattern of the solar magnetic activity, which can-
not be explained with a random process.

A chaotically modulated stellar dynamo was modeled also based on bifurcation theory,
where modulation of the basic magnetic cycle and chaos occur as a natural consequence of
a star that is in transition from a non-magnetic state to one with periodically reversing fields
(Tobias et al. 1995).

Critical Assessment The solar cycle is a very periodic phenomenon with little variation in
each cycle, which is a classic example of a nonlinear dissipative system with limit-cycle be-
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havior (LC), such as the Hopf bifurcation (Appendix C) or Lotka-Volterra equation system
(Appendix D). The limit cycle produces a regular temporal pattern (T), and the cycle varia-
tion modulates the magnetic flux and area on the solar surface like-wise (S). The physics of
the solar cycle is also well-understood in terms of the Babcock-Leighton model, where the
differential solar rotation is the driver, and a twisted magnetic field relaxation mechanism
acts as the feedback mechanism. The underlying instability still needs to be identified and
may depend on both the shallow dynamo or the deep dynamo in the tachocline at the bottom
of the convection zone (Table 1: qualifiers LC, I[?], S, T).

3.4 Evaporation-Condensation Cycles

Solar observations show that coronal loops routinely harbor flows that result from the com-
plex physics of the solar transition region (e.g., Peter et al. 2006). Upflows can generally
be understood as the result of heated plasma from the chromosphere ascending into coro-
nal loops (chromospheric evaporation), as modeled from EUV, soft X-ray, and hard X-ray
observations. These upflows frequently happen during solar flares, but equally occur as a
consequence of other coronal heating mechanisms also, in active regions, in Quiet Sun re-
gions (explosive events, EUV brightenings), and even in coronal holes (plumes, jets). At the
same time there is numerous evidence for downflows, also called “coronal rain” or “coro-
nal condensation”, mostly observed in Hα (first reported by Leroy 1972) and UV lines of
cooler temperatures (Schrijver 2001; De Groof et al. 2005). The combined pattern of up-
flows and downflows is also referred to as “evaporation-condensation cycle” (Krall and
Antiochos 1980), which we consider under the aspect of a self-organization process here.

The earliest physical interpretation of evaporation-condensation cycles has been mod-
eled in terms of the thermal instability, which constitutes a chromosphere-corona coupling
or feedback mechanism between the heating rate and the cooling rate in a coronal loop (Kuin
and Martens 1982). Such a system can exhibit a stable static equilibrium if the coupling be-
tween the chromosphere and the corona is sufficiently strong, but for typical coronal loop
conditions the system is expected not to be stable, resulting into a cyclic solution that corre-
sponds to the limit cycle of a coupled nonlinear system. The physical model predicts that a
temporal excess of heating leads to an excess conductive flow at the loop base, which results
into chromospheric evaporation with increasing pressure and density, and in turn amplifies
the radiative loss, leading to a thermal (or radiative) instability with subsequent condensa-
tion or downflow of cool material. Kuin and Martens (1982) use the following form of the
hydrodynamic equations for a 1D loop,

∂n

∂t
= − ∂

∂z
(nv), (17)

dv

dt
= − 2

mHn

∂p

∂z
− g‖, (18)

3

2

dp

dt
= −5

2
p

∂v

∂z
− ∂

∂z

[
κ0T

5/2 ∂T

∂z

]
+ EH − n2Ψ (T ), (19)

p = nkBT = μmHnc2
s , (20)

where p is the pressure, n the particle density, v the plasma velocity, T the electron tem-
perature, t the time, kB the Boltzmann constant, mH the hydrogen mass, g‖ the gravitational
acceleration along the loop, cs the isothermal sound speed, μ = 0.5 the molecular weight,
κ0 the Spitzer conductivity, EH the heating rate (assumed to be spatially constant), and
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Fig. 19 Solutions of the evaporation-condensation system (Eq. (21)–(23)) in the phase plane of dimension-
less (logarithmic) temperature log(X) = log(T /T0) and electron density log(n) = log(n/n0) Cases (a) and
(b) represent nonlinear oscillations near the limit cycle, case (c) is a stable static solution. A separatrix be-
tween stable and oscillatory solutions is indicated in (d) (Kuin and Martens 1982)

Ψ (T ) is the radiative loss function (approximated with a power law Ψ (T ) = Ψ0T
−γ ). Kuin

and Martens (1982) find static solutions for some parameters of the loop length L and heat-
ing rates EH . The time-dependent solutions can be approximated by the following coupled
equation system for the dimensionless temperature X = T/T0 and density Y = ne/n0 pa-
rameters,

dX

dt
= 1

Y

[
1 − Y 2Ψ (X) − α(X − 1)

]
, (21)

dY

dt
= f α

(
1 − X−1

)
. (22)

Similar to the Lotka-Volterra equation system (Eq. (16)), this rate equation system has a
limit cycle at the critical point dX/dt = 0 and dY/dt = 0, requiring f α(1 − X−1) = 0 and
[1 − Y 2Ψ (X) − α(X − 1)]/Y = 0, which yields the solution X = 1 and Y = 1/

√
Ψ (X = 1)

for the limit cycle at the attractor point. The X–Y phase diagram of some quasi-stationary
solutions is shown in Fig. 19.

Numerical 1-D hydrodynamic simulations of the condensation of plasma in loops of
wide ranges of lengths and temperatures (10 Mm ≤ L ≤ 300 Mm; 0.2 MK ≤ T ≤ 2 MK)
reproduce the cyclic pattern, starting with chromospheric evaporation, followed by coronal
condensation, then motion of the condensation region to either side of the loop, and finally
loop reheating with a period of 1 h to 4 days (Müller et al. 2003, 2004, 2005). It is found that
the radiatively-driven thermal instability occurs about an order of magnitude faster than the
Rayleigh-Taylor instability, which can occur in a loop with a density inversion at its apex
also (Müller et al. 2003). Simulations with different heating functions reveal that the process
of catastrophic cooling is not initiated by a drastic decrease of the total loop heating rate, but
rather results from a loss of equilibrium at the loop apex as a natural consequence of quasi-
steady footpoint heating (Müller et al. 2004; Peter et al. 2012). The same effect of a loss
of equilibrium can occur in the case of repetitive impulsive heating (e.g., Mendoza-Briceno
et al. 2005; Cargill and Bradshaw 2013).
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Fig. 20 Smoothed time profiles of the emission measure EM(t) (black in left panels) and the electron tem-
perature Te(t) (red in left panels), and phase diagram Te(EM) (right panels) of three loop episodes observed
in an active region with AIA/SDO. A moving average background has been subtracted in all time profiles, and
the amplitudes are normalized by their standard deviation from the means. A quasi-stationary time interval
with near-elliptical phase trajectories is colored with red. The quasi-periodicity and the phase delay indicate
a limit-cycle behavior of the evaporation-condensation cycle in solar flares (Froment et al. 2015)

EUV intensity pulsations with periods from 2 to 16 hrs have been discovered to be quite
common in the solar corona and especially in coronal loops (Auchère et al. 2016; Froment
et al. 2015). The three loop events shown in Fig. 20, studied in detail by Froment et al.
(2015), have time periods of 3.8, 5.0 and 9.0 hrs and are lasting over several days. They
were interpreted in terms of thermal non-equilibrium evaporation and condensation cycles
(Froment et al. 2015, 2017). In Fig. 20 the temperature and the total emission measure
are shown, extracted from a DEM analysis using the method developed by Guennou et al.
(2012a, 2012b, 2013). The temperature corresponds to the peak temperature of the DEM,
and the total emission measure is proportional to the squared density along the line-of-sight.

Uzdensky (2007a, 2007b) proposes a similar self-organization process for coronal heat-
ing. This self-regulating process keeps the coronal plasma roughly marginally collisionless.
The driver of the self-organization process is the magnetic reconnection in the collisional
Sweet-Parker regime. The feedback mechanism is the inhibition of magnetic reconnection
triggered by density increases due to chromospheric evaporation. After some time, the con-
ductive and radiative cooling lowers the density again below the critical value and fast re-
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connection sets in again. Thus, the self-organization process is made of repeating cycles of
fast reconnection, evaporation, plasma cooling, and re-building of magnetic stress. A similar
self-regulation mechanism controlled by marginal collisionality in magnetic reconnection is
explored in Cassak et al. (2008) and Imada and Zweibel (2012). The cyclic behavior has
been simulated with a 1-D hydrodynamic model that is driven by gravity and the density
dependence of the heating function (Imada and Zweibel 2012).

Critical Assessment The evaporation-condensation scenario of coronal loops predicts a
quasi-periodic time pattern, but not much is known about the degree of periodicity, and
whether this corresponds to a quasi-periodic self-organizing limit cycle. The quasi-periodic
patterns discovered by Froment et al. (2015, 2017), which exhibit phase-shifted oscillations
between the emission measures and temperatures in active regions, reveal large fluctuations
in the emission measure versus temperature diagram (Fig. 20), which may indicate strong
nonlinearities near the limit cycle or inadequate background subtraction in the differential
emission measure analysis. Although the physics of the evaporation-condensation cycle is
well understood, to deduce the time evolution of the heating rate, electron density, and tem-
perature from observational data, adequate background subtraction needs to be performed
in order to establish whether the observations are well described by a limit-cycle system
(Table 1: qualifiers I, LC[?], T[?]).

3.5 Quasi-Periodic Radio Bursts

We identify more than 150 publications that report or model periodic (oscillatory) or quasi-
periodic solar radio bursts. Many of these quasi-periodic solar radio emissions are believed
to be generated by various plasma instabilities (Benz 1993). The degree of periodicity was
found to vary from random to strictly periodic (e.g., Aschwanden et al. 1993). In an early re-
view, solar radio pulsations were classified into three different models: (1) MHD oscillation
eigenmodes; (2) cyclic self-organizing systems; and (3) modulation of magnetic reconnec-
tion, particle injection, or acceleration (Aschwanden 1987). Here we discuss only the second
group in terms of self-organization mechanisms, which observationally can be easily distin-
guished from the first group: MHD oscillations are strictly periodic, while limit cycles in
self-organizing systems produce less regular quasi-periodic pulse patterns. We have also to
be aware that the periodicity of solar radio bursts can only be inferred from time profiles
(Figs. 21, 22), while spatial fine structures mostly cannot be resolved by remote-sensing
observations with current radio instruments.

Self-organizing systems with limit cycles were initially applied to loss-cone instabilities
occurring in the aurora, where two types of waves (electrostatic and upper hybrid waves)
exchange energy in a limit cycle, driven by the loss-cone instability (Trakhtengerts 1968),
a concept that was then applied to solar radio pulsations also (Zaitsev 1971; Zaitsev and
Stepanov 1975; Kuijpers 1978; Bardakov and Stepanov 1979; Aschwanden and Benz 1988).
The two-component nonlinear systems of self-organization are controlled either by wave-
wave interactions, or by wave-particle interactions (also called a quasi-linear diffusion pro-
cess).

The process starts with the development of a nonthermal particle distribution (such as
electron beams, loss-cones, pancakes, or rings), which then become unstable and transform
kinetic energy into various waves (such as whistler waves, upper-hybrid waves, Langmuir
waves, or electron-cyclotron maser emission), relaxing the unstable particle distribution then
(in form of a plateau for beams or a filled loss-cone). After this feedback, when new particles
arrive, the relaxed particle distribution becomes unstable again and the entire nonlinear cycle
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Fig. 21 Three examples of solar radio burst oscillations: Top: Evidence for sub-harmonics (1:3) (Rosenberg
1970); Second row: Exponentially damped oscillation (McLean and Sheridan 1973); Third and bottom row:
Metric radio oscillations with a period of P ≈ 1.5 s (Trottet et al. 1981)

starts over. For the case of electron-cyclotron emission, for instance, the dynamics of the
wave-particle interaction can be described by the following system of coupled equations
(e.g., Aschwanden and Benz 1988),

∂N(k, t)

∂t
+ vg(k)

∂N(k, t)

∂r
= Γ (p,k, f )N(k, t) − γ (p,k, f )N(k, t), (23)
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Fig. 22 Dynamic spectra of solar radio pulsations (top two panels) and a series of type III bursts (bottom
two panels), observed with the IKARUS/Zurich spectrograph in the frequency range of 240–400 MHz. The
quasi-periodic pulsation pattern is characteristic for nonlinear systems with limit cycles, while the radio type
III bursts appear to be produced by a random process (Aschwanden et al. 1994)

∂f (p, t)

∂t
+ v(p)

∂f (p, t)

∂pj
= ∂

∂j
D̂ji(p,k,N)

∂f (p, t)

∂pi

+ ∂f (p, f )

∂t
|S-L, (24)

where the waves are represented by the photon number density N(k, t) in k-space, the par-
ticle system is described by its density distribution f (p, t) in momentum space, Γ (p,k, f )

is the wave growth rate, γ (p,k, f ) is the wave damping rate, vg(k) is the group velocity
of the emitted waves, D̂ji(p,k,N) is the quasi-linear diffusion tensor, and S–L indicates
a source (S) minus a loss term (L). Equation (23) is the wave equation that describes the
balance between emission and growth and damping rate, while Eq. (24) describes the evo-
lution of the particle distribution. The interaction between waves and particles is expressed
by the quasi-linear diffusion tensor. In addition, there is a source term S of particles (with
large pitch angles), as well as a loss term L (which quantifies the precipitating particles with
small pitch angles out of the loss-cone).

A complete analytical solution of this coupled integro-differential equation system is not
available, but a limit-cycle solution applied to the case of electron-cyclotron maser emission
has been calculated (Aschwanden and Benz 1988). The pulse period τlc of the limit cycle has
been found to be the geometric mean of the wave growth time τg and the particle diffusion
time τd ,

τlc = 2π
√

τg τd, (25)
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which is a close analogy to the limit cycle of the Lotka-Volterra equation system (Eq. (16)
and Appendix D) or a coupled differential equation system (Appendix B). In summary,
such a self-organizing system is driven by coherent wave growth stimulated by an unstable
(loss-cone) particle distribution via the relativistic (cyclotron or gyromagnetic Doppler res-
onance condition), while the feedback mechanism represents the back reaction that flattens
the unstable particle distribution (via quasi-linear diffusion), which in turn quenches coher-
ent wave growth until the loss-cone is filled again with new particles and the cyclic wave-
particle interaction starts over. The result is a stationary quasi-periodic pattern of coherent
radio emission, which is strictly periodic in the limit cycle only, but becomes aperiodic
depending on the inhomogeneity, anisotropy, time-dependence, and noise of the control pa-
rameters. Dabrowski and Benz (2009) find generally a good correlation between decimetric
pulsations and hard X-rays.

Critical Assessment The quasi-periodicity of solar radio bursts as observed in dynamic
spectra is the most convincing signature of a self-organizing process, in contrast to a time
series with random time intervals, as it would be expected for self-organized criticality mod-
els. The spatial counterpart (S) of the quasi-periodic temporal scales (T) is generally not
observed due to the lack of radio images with high spatial resolution. Nevertheless, quasi-
periodic time intervals are consistent with a limit cycle (LC) of a nonlinear dissipative sys-
tem, but there are many plasma instabilities that can operate as a positive feedback mecha-
nism, either in terms of wave-particle interactions (e.g., loss-cone or beam instabilities), or
wave-wave interactions. Thus, more data modeling, possibly with high-resolution imagery
and magnetic field modeling is required to identify the relevant instabilities that control a
self-organizing process in the generation of quasi-periodic radio bursts (Table 1: qualifiers
T, LC, I[?]).

3.6 Zebra Radio Bursts

While the existence of self-organizing systems observed in solar radio bursts is mostly in-
ferred from the quasi-periodicity of observed temporal patterns, there exists another category
of solar radio bursts that exhibits very regular periodic patterns in the frequency domain. The
most striking example is the so-called zebra burst (Fig. 23), which reveals drifting parallel
bands of quasi-stationary radio emission with harmonic frequency ratios. Theoretical inter-
pretations include (i) models with interactions between electrostatic waves and whistlers,
and (ii) radio emission at the double-plasma resonance (Kuijpers 1975, 1980; Zheleznyakov
and Zlotnik 1975a,b; Mollwo 1983; Winglee and Dulk 1986; Chernov 2006; Chen et al.
2011),

ωUH = (
ω2

Pe + ω2
Be

)1/2 = s ωBe, (26)

where ωUH are upper hybrid waves, ωPe is the electron plasma frequency, ωBe is the electron
cyclotron frequency, and s is the integer harmonic number, which introduces a periodic
pattern in the resonance frequency. If the magnetic field structure B(h) with altitude h is
known, the harmonic frequencies can be mapped onto a periodic spatial pattern (Fig. 23,
right panel). Either way, harmonic resonances (of the gyrofrequency) create order out of
randomness for this type of radio bursts, in analogy to mechanical resonances that produce
harmonic patterns of planet orbits.

In recent models, the double-plasma resonance mechanism faces a number of difficulties
in explaining the dynamics of zebra stripes (i.e., sharp changes of the frequency-drift rate,
a large number of stripes, frequency splitting of stripes, super-fine millisecond structure),
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Fig. 23 Left: A zebra-pattern solar radio burst observed on 2006 December 14, 22:40 UT. Six successive
stripes with decreasing frequency are marked. Middle: A time-averaged flux profile as a function of the
frequency, averaged over the box shown in the left panel. Right: Simplified spatial model of the location of 6
different harmonics of the gyrofrequency (Chen et al. 2011)

because the magnetic field and density cannot change as rapidly. Improved models are in
progress (Karlicky et al. 2001; LaBelle et al. 2003; Kuznetsov and Tsap 2007; Karlicky and
Yasnov 2015). New calculations concern the increments of the upper-hybrid waves under
double-plasma resonance conditions, the ring distribution of high-speed electrons with rel-
ativistic corrections, different temperatures of the background plasma, and optimum wave
numbers (Benacek et al. 2017). It has been shown that the optimum increment for elec-
tron velocities is v ≈ 0.1 c, with a narrow dispersion. If the speed is ≈ 0.2 c, the increment
sharply decreases and the flux maxima are washed out in the continuum for several cyclotron
harmonic numbers s. Thus, these calculations show the inefficiency of the double-plasma
resonance mechanism. Under such conditions it becomes clear, that the double-plasma res-
onance mechanism cannot explain the majority of zebra stripes. An additional complication
is the simultaneous occurrence of decimetric millisecond spikes.

In the whistler model, all the aforementioned properties of zebra burst stripes have been
explained by physical processes that occur during the coalescence of Langmuir waves (l)

with whistler waves (w), producing transverse waves, l + w �→ t (Kuijpers 1975; Chernov
1976, 1990, 2006, 2011). Langmuir waves and whistlers can be generated by the same fast
particles trapped in magnetic islands (Berney and Benz 1978).

The spatial structure of zebra radio bursts is believed to originate in magnetic islands
after coronal mass ejections. Therefore the close connection of zebra bursts with fiber bursts
is simply explained by the acceleration of fast particles in magnetic reconnection regions in
the lower or upper part of magnetic islands.

A wavelike or saw-tooth frequency drift of stripes was explained by the switching of
the whistler instability from the normal Doppler-cyclotron resonance into the anomalous
one (Fig. 2b in Chernov 1990). Such switching should lead to a synchronous change of the
frequency drift of stripes and spatial drift of the radio source, since whistlers generated at
normal and anomalous resonances move in opposite directions. New injections of fast par-
ticles cause sharp changes in the frequency drift rate and oscillation pattern of zebra stripes.
Low frequency absorption (i.e., black stripes of zebra bursts) are explained by quenching of
the plasma wave instability due to diffusion of fast particles by whistler waves.

The superfine structure is generated by a pulsating regime of the whistler instability with
ion-sound waves (Chernov et al. 2003). Rope-like chains of fiber bursts are explained by a
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Fig. 24 This dynamic spectrum (frequency versus time) shows the evolution of zebra-type bursts during 46 s,
observed on 2004 December 1 with the Huairou radio station (Beijing). Initial fiber-type bursts transform into
zebra patterns, as well as into decimetric millisecond spikes in the lower frequency range of 1110–1160 MHz
(Chernov et al. 2017)

periodic whistler instability between two fast shock fronts in a magnetic reconnection region
(Chernov 2006). In the whistler model, zebra-stripes can be converted into fiber bursts and
back (Fig. 24), which exhibits morphological changes from chaos to order, and in reverse
direction. A comparative discussion of observations of zebra and fiber bursts and different
theoretical models can be found in the reviews of Chernov (2012, 2016).

Critical Assessment The most striking pattern that hints to a self-organization process is
the periodic appearance of bands in dynamic spectra of some solar radio bursts, which is
interpreted in terms of gyroharmonic resonances (R). In principle, a periodic pattern in ra-
dio frequency can be mapped to a periodic pattern in spatial structures (S), using the plasma
frequency relationship fp ∝ √

ne and a density model ne(h) as a function of the altitude h,
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Fig. 25 Star formation regions
in the Eagle nebula form spatial
structures in the shape of
towering pillars [credit: Hubble
Space Telescope (HST), NASA]

while there is no obvious periodic pattern of temporal structures (T) expected. The driver
mechanism that produces zebra bursts is likely to be a population of nonthermal particles,
while the counter-acting feedback mechanism has been modeled in terms of electrostatic
waves, whistler waves, or the double-plasma resonance. The observational verification of
any of these wave types is still very challenging with remote-sensing techniques (Table 1:
qualifiers R, S, I[?]). Note that the spatial pattern of a zebra skin has also been classified
as a self-organization process in biology (e.g., Camazine et al. 2001), where the light and
dark pigmentation is created by the diffusive interaction of chemical activation (driver) and
inhibition (feedback) during the embryonic development.

4 Stellar Physics

4.1 Star Formation

The spatial distribution of star formation in a galaxy is not uniform but is concentrated in
a number of small localized areas in galaxies. Young stellar associations with their H II re-
gions and molecular clouds (Fig. 25) are manifestations of the ordered distribution of matter
participating in the star formation processes, governed by self-organization in a nonequi-
librium system (Bodifee 1986). A star formation region can be modeled by the following
system of coupled equations (Bodifee 1986):

dA

dt
= K1S + K2S − K3M

2A, (27)

dM

dt
= K3M

2S − K4SMn, (28)

dS

dt
= K4SMnS − K1S − K2S, (29)

dR

dt
= K1S, (30)
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Fig. 26 The self-organizing
system of star formation amounts
globally to a transformation of
diffuse atomic gas (supply
reservoir) into “old” stars (waste
reservoir). The internal processes
consist of: (1) gas inflow,
(2) stellar evolution, (3) stellar
mass loss and recombination of
ionized gas; (4) production of
molecular gas, and (5) triggered
star formation (Bodifee 1986)

where A is the mass of the interstellar atomic gas, M is the mass of the interstellar molecular
gas (with dust), S is the mass of the stellar material (young stars with their associated H II
regions), R represents the total mass of “old” stars (stellar remnants and low-mass main-
sequence stars), and n is a stability parameter. (Stability is granted for n ≥ 2 for any [k1, k2]
pair, see Fig. 3 in Bodifee 1986). A graphic representation of the star formation process is
depicted in Fig. 26. This coupled system of differential equations, after elimination of S and
the introduction of dimensionless variables, can be simplified to

da

dτ
= 1 − a − m − k1m

2a (31)

dm

dτ
= k1m

2a − k2m
n + ksm

na + k2m
n+1, (32)

where a is the fractional mass of atomic gas, m is the fractional mass of molecular gas,
τ = (K1 + K)t is a dimensionless time variable, k1 is the efficiency of production of
molecules, and k2 is the efficiency of triggered star formation. It is found that this coupled
equation system has three stationary states, two of them trivial (all mass contained in either
atomic or molecular gas), and a non-trivial stationary solution (Bodifee 1986). The latter so-
lution is not necessarily stable against perturbations, but can evolve into a limit-cycle oscil-
lation, constrained by the conditions da/dτ = 0 and dm/dτ = 0 in Eqs. (31)–(32). Near the
limit cycle, the oscillation is maintained without an external periodic driving force, produc-
ing repetitive violent bursts of star formation, separated by long quiescent periods. Similar
limit-cycle solutions were found by Ikeuchi and Tormita (1983), where supernova remnants
control the hot, warm, and cold gas, and a diffusion transport term is added. The main spa-
tial manifestation of this self-organizing mechanism is the spiral structure of galaxies, in
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analogy to rotating spiral vortices formed in chemical auto-catalytic oscillations (Zaikin and
Zhabotinsky 1970; Winfree 1972, 1973; Cox et al. 1985).

Similar low-dimensional models were developed for the hot X-ray emitting gas of el-
liptical galaxies (Kritsuk 1992, 1993, 1996). The gas is described as an open system with
mass and energy sources determined by stellar mass loss, supernova explosions, and radia-
tive cooling. The gas condensation due to thermal instabilities is also accounted for with a
mass sink term. A study of the dynamics of this nonlinear closed-box system proved that the
steady states in the temperature–density plane are generally unstable. Numerical simulations
demonstrated the existence of stable periodic solutions, describing a cyclic process of gas ac-
cumulation and heating due to the stellar sources followed by gas cooling and dropping out
of the halo. The limit cycle emerges after a sequence of saddle-node and saddle-connection
bifurcations (also known as the fold bifurcation and the blue sky catastrophe) while the sys-
tem responds to the growth of condensation efficiency with a first-order phase transition
(Kritsuk 1996). The limit cycle disappears at a higher condensation efficiency, following a
Hopf bifurcation. The bifurcations occur naturally, due to the shape of the radiative cooling
function, and this behavior is preserved in a wide range of gas metallicities. Moving beyond
the one-zone model required multi-dimensional numerical simulations, which revealed an
instability resulting in the emergence of filamentary network of condensation waves propa-
gating in the hot gas (Kritsuk 1994). These condensation waves are similar in nature to the
“galactic drips” proposed by Mathews (1997) as an alternative explanation for the presence
of young (∼ 5–10 Gyrs) stellar populations observed in many elliptical galaxies.

Subsequent simulations of interstellar turbulence and star formation include isothermal
models of molecular clouds and larger-scale multi-phase models to simulate the formulation
of molecular clouds. They show how self-organization in highly compressible magnetized
turbulence in the multi-phase interstellar medium can be exploited to generate realistic ini-
tial conditions for star formation (Kritsuk et al. 2011, 2017; Padoan et al. 2016). Multiple
states of star-forming clouds have been identified in 3-D MHD simulations: gravity splits the
clouds into two populations, one low-density turbulent state, and one high-density collapse
state (Collins et al. 2012). However, it would be premature to say that we fully understand
the dynamics of self-gravitating turbulent ISM, despite the recent progress achieved (Baner-
jee and Kritsuk 2017).

Critical Assessment The evidence for self-organization in the star formation process is
the morphological change from an initial randomized molecular cloud to concentrations
in a number of small localized (H II) zones in galaxies, which represent spatially ordered
structures (S), in contrast to the initially uniform randomness of the interstellar gas. A size
distribution of ordered structures, however, has not been quantified yet. The corresponding
ordered time structures (T) are produced by repetitive violent bursts of star formation. The
physical process of self-organization in star formation is modeled in terms of highly com-
pressible magnetized turbulence, which can trigger instabilities ending with high-density
collapses (I) (Table 1: qualifiers I, S, T).

4.2 Stellar and other Quasi-Periodic Oscillations

The origins of quasi-periodic oscillations (QPO) observed from various stellar sources (pul-
sars, cataclysmic variable stars, neutron stars, binary stars, active galactic nuclei, etc.) are
largely not understood. Interpretations have focused on attributing the overall variability to
accretion fluctuations, with the QPO produced by modulation of the accretion, for example
by resonance-like interactions between natural rotational and orbital frequencies or—more
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germane to this article—nonlinear chaotic dynamics perhaps with modulated limit cycles,
which point to self-organizing systems.

A number of attempts to detect and characterize deterministic chaos from astronomical
time series data have been made. For example, the irregular X-ray variability of the neutron
star Her X-1 has been analyzed with the method of Procaccia (1985) and detection of a low-
dimensional attractor (D ≈ 2.3) and some higher-dimensional chaos was inferred for the
accretion disk (Voges et al. 1987). The light curves of three long-period cataclysmic variable
stars have been analyzed with the technique of Grassberger and Procaccia (1983a,b) in the
search of an attractor dimension, but the light curves could be modeled with a periodic and
a superimposed random component (Cannizzo et al. 1990). Evidence for a low-dimensional
attractor with a dimension of D ≈ 1.5 was found in the Vela pulsar with a correlation sum
technique (Harding et al. 1990).

However, much of this earlier work has proved to be questionable. For example the result
found by Voges et al. (1987) was disputed by Norris and Matilsky (1989), who concluded
that the insufficient signal-to-noise ratio does not allow to distinguish from an ordinary at-
tractor contaminated with noise. Since the attractor dimension is equivalent to the number
of coupled differential equations, we would expect a lowest attractor dimension of D = 2
for the Lotka-Volterra equation system, or D = 3 for the Lorenz model. Based on a careful
simulation study of non-chaotic random data Harding et al. (1990) questioned the signifi-
cance of their own result quoted above. They concluded “It appears that the correlation sum
estimator for dimension is unable to distinguish between chaotic and random processes.”

This important cautionary remark is reinforced by at least two key theoretical results.
Eckmann and Ruelle (1992) presented an elementary proof that the correlation dimension
estimated with the Grassberger-Procaccia algorithm cannot exceed the value 2 log10(N),
where N is the number of points in the time series. (One finds in the astronomical literature
a number of dimension estimates approximating this value, suggesting that they are entirely
spurious.) Eckmann and Ruelle (1992) disproved several then traditional views in this con-
text, showing that essentially any correlation dimension can be found for entirely random
(i.e. lacking any “deterministic chaos”) colored random data simply by choosing the appro-
priate index for the power-law power spectrum of the data. They concluded “These results
have implications on the experimental study of deterministic chaos as they indicate that
the sole observation of a finite fractal dimension from the analysis of a time series is not
sufficient to infer the presence of a strange attractor in the system dynamics.”

All in all, these theoretical limits and the realities of signal-to-noise and length of avail-
able time series cast a pall on the quest for evidence of nonlinear dynamics in astronomical
systems that continues to some extent today. However the landscape of time domain astron-
omy is improving with respect to time coverage, sampling cadence and signal-to-noise, and
perhaps prospects for more definitive characterization of underlying dynamics of variable
objects will improve accordingly.

Based on a more elaborate and physically motivated approach, a time series from the
R Scuti star, a RV Tau type star, was found to exhibit deterministic chaos (with an em-
bedding dimension of 4), because it was not multi-periodic and could not be generated by
a linear stochastic process (Buchler et al. 1996). The quasi-periodic light curve is shown
in Fig. 27 (top panel), along with a synthetic light curve generated with a corresponding
low-dimensional (strange) attractor (Fig. 27 middle and bottom). However, Mannattil et al.
(2016) offer a detailed criticism of this methodology, albeit in the different context of X-ray
variability.

On the other side of the theory-observation coin, two simple physical metaphors incor-
porating self-organization ideas have inspired independent quasi-stochastic models repro-
ducing some features of the observed variability of accretion sources. The dripping handrail
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Fig. 27 The smoothed light
curve observed from the RV
Tau-type star R Scuti (top) and
synthetically generated light
curves with a model of a
low-dimensional strange attractor
(middle and bottom) (Buchler
et al. 1996)

(Scargle et al. 1993) evokes an analogy between astrophysical accretion on the one hand
and the accumulation, flow, and dripping of moisture on a stairway’s handrail on the other
hand. These authors quantified the quasi-periodic oscillations (QPO) of the low-mass X-ray
binary star (LMXB) Scorpius X-1 with a wavelet based power spectrum that was found to
be consistent with the spectrum computed for a dripping handrail accretion model, a sim-
ple dynamical system that exhibits transient chaos (Scargle et al. 1993; Young and Scargle
1996). This highly oversimplified picture nevertheless explains the 1/f and QPO features—
typically though to be separate phenomena—as two aspects of a single physical process,
notably ascribing the variability as quasi-random due to non-linear dynamics in a constant
external accretion flow (and not due to a postulated random accretion).

The sandpile metaphor independently inspired a self organization model (Mineshige et al.
1994a,b; Mineshige and Negoro 1999), similar to the dripping handrail, physically some-
what more realistic in that its 2D geometry allowed treatment of angular momentum trans-
port within the accretion disk. On the other hand these authors postulated randomness for
accretion, although quasi-randomness is generated automatically by nonlinearities in their
model even with steady accretion, for the same reasons as with the dripping handrail model.

The fluctuation power spectra of accreting black holes, neutron stars, and white dwarfs
that are accreting gas from a stellar companion sometimes exhibit peaks at certain frequen-
cies (Remillard and McClintock 2006; van der Klis 2006). These are also seen from some
supermassive black holes powering active galactic nuclei (Smith et al. 2017). These peaks
are called “quasi-periodic oscillations” (QPOs), since they are usually not very narrow. The
frequencies observed in the neutron star and white dwarf sources are time-dependent, usu-
ally being positively correlated with the luminosity (proportional to the mass-accretion rate).
The black hole sources exhibit two classes of QPOs, separated in frequency by a factor of
at least 30. Only the high-frequency quasi-periodic oscillations (HFQPOs) have a fixed fre-
quency, which is slightly below that of the innermost stable orbit in the accretion disk (and
therefore inversely proportional to the mass of the black hole). However, these HFQPOs
have a relatively small duty cycle. A mysterious property of many of them is the 3:2 ratio of
the two highest frequencies (Wagoner 2008). There is no complete physical theory that can
explain this fact, and no numerical simulations reproduce the observed QPOs. The accretion
disks are very turbulent, driven by the conversion of the differential rotational energy via the
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magneto-rotational instability. In addition, they are subject to viscous and thermal instabili-
ties, on time scales greater than the orbital period at that radius. The hotter “corona” of the
neutron star and black hole disks appears to up scatter the cooler thermal photons from the
disk into X-rays, without seriously demodulating them.

Critical Assessment A number of oscillatory light curves from various types of stars have
been recorded, which clearly establish the presence of non-random ordered time struc-
tures (T). The spatial counterparts (S), of course, cannot be resolved in stellar distances.
The time evolution is generally quasi-periodic, which is typical for nonlinear dissipative
systems with limit cycles (LC), and low-dimensional attractors have been identified from
those time series. The physical mechanism or instability (I) that is responsible for stellar
quasi-periodic oscillations is less clear, but an accretion model (i.e., the dripping handrail
model) has been proposed (Table 1: qualifiers T, LC, I[?]).

4.3 Pulsar Superfluid Unpinning

In the crust of a neutron star or pulsar, the neutron superfluid coexists with a lattice of nuclei
(Fig. 28). The rotation in a superfluid occurs along quantized vortex lines only, which must
be able to move outward freely, in order that the superfluid can follow the observed, elec-
tromagnetically driven braking of the pulsar’s rotation. However, there are pinning centers
in the neutron star crust that inhibit free vortex motion. Therefore the vortex lines could be
pinned to the nuclei in certain layers of the crust (Anderson et al. 1981). An angular velocity
lag builds up between the crust and superfluid as a consequence. When the lag exceeds a
threshold, vortex lines unpin catastrophically and move outward, transferring angular mo-
mentum from the superfluid to the crust and producing an observable impulsive spin-up of
the star, known as a “pulsar glitch”.

Pulsar glitches are generally interpreted in terms of the self-organized criticality model,
due to the scale-invariant, power law-like distributions of sizes and exponential waiting time
distributions (Melatos et al. 2008; Espinoza et al. 2011). In this scenario, superfluid vor-
tices pin metastably in macroscopic domains and unpin collectively via nearest-neighbor
avalanches. Recent quantum mechanical simulations, in which the evolution of the pinned,
decelerating superfluid is described by the time-dependent Gross-Pitaevskii equation, have
identified two knock-on processes responsible for mediating vortex avalanches: local, hydro-
dynamic, nearest-neighbor repulsion and nonlocal, acoustic-wave unpinning (Warszawski
et al. 2012). The simulations also reproduce the size and waiting-time statistics in observa-
tional data, albeit over a relatively small dynamic range because computational limitations
restrict the simulated system to < 200 vortex lines at present (Warszawski and Melatos 2011;
Melatos and Warszawski 2015). Alternatively, Melatos and Warszawski (2009) propose a
noncritical self-organization process (which they call “coherent noise” according to Snep-
pen and Newman 1997), where the global Magnus force acts uniformly on vortices trapped
in a range of pinning potentials and undergoing thermal creep. In this scenario, Melatos
and Warszawski (2009) find that vortices again unpin collectively, without nearest-neighbor
avalanches, but still produce a scale-free size distribution as observed. The microscopic
self-organization processes of nuclear matter in neutron star crusts has also been simulated
in crystalline lattices, where the system organizes itself into exotic structures (Sebille et al.
2011; Caplan and Horowitz 2017). When the magnetic field in the superconducting stellar
interior is included, the vortex lines and magnetic flux tubes self-organize into a turbulent,
reconnecting tangle, sustained by stellar braking (Drummond and Melatos 2017). The flux
tubes act as pinning centers as well, widening the scope for vortex line avalanches to occur.
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Fig. 28 A cross-section of a neutron star shows the rich variety of emergent quantum matter expected in its
crust and core. [credit: Matthew H. Schneps, Science Media Group, Harvard-Smithsonian Center for Astro-
physics (CfA)]

In the pulsar glitch self-organization process, the driver is the electromagnetic braking of
the star, while the feedback mechanism is the local interplay between the superfluid Mag-
nus force and the pinning potentials, which regulate semi-coherent unpinning (Cheng et al.
1988). An alternative yet analogous scenario involving elastic stresses (star quakes) has also
been proposed (Middleditch et al. 2006). A promising theoretical framework that is appli-
cable to a wide variety of self-organizing systems of this kind is the mean-field model of
a state-dependent Poisson process, introduced originally in the context of forest fires (Daly
and Porporato 2006), and solar flares (Wheatland 2008), and generalized recently to neutron
stars (Fulgenzi et al. 2017) and biological applications (Miles and Keener 2017). The model
makes quantitative predictions of size and waiting time distributions and size-waiting time
correlations as a function of the driving rate, independent of the detailed microphysics.

Critical Assessment One manifestation of self-organization is the lattice grid of nuclei in
the neutron superfluid zone of a neutron star, which is a highly ordered spatial (S) structure
(like a crystal), opposed to a random-like thermodynamic fluid in normal stars. The physical
model involves the rapid rotation of a pulsar (driver), and a feedback mechanism is given
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by the inhibition of vortex motion in the superfluid unpinning potentials (I). The feedback
mechanism maintains a semi-coherent unpinning, which represents a spatial ordered struc-
ture (S) also. A caveat of this model is that observations of neutron star glitches exhibit
scale-free power law distributions, which are typical for self-organized criticality models
(Table 1: qualifiers S[?], I[?]).

5 Galactic Physics

Observable galaxies arise when gas (“baryons”) flows into concentrations (“halos”) of dark
matter and forms stars, which themselves radiate and excite residual gas to radiate in a num-
ber of ways. The morphologies of the galaxies we now see is a time-slice of ongoing pro-
cesses that include: (i) build-up of halos massive enough to retain gas within a framework
of intersecting cell-walls and filaments; (ii) continuing gas inflow (only about half of the
baryons are currently within star-forming halos); (iii) outflow of gas (and some recycling)
driven by winds and jets from bursts of star formation, supernovae, and central supermassive
black holes; (iv) gravitationally driven encounters between halos, described as major merg-
ers (when the masses are comparable), producing spiral arms and disks), and minor mergers
or captures of little galaxies by large ones (which can make star streams, rings, disks, and
central bulges, and in the process initiate driving of spiral arms). The starting point is a
random distribution of small (≈10−5) density fluctuations in the distribution of dark matter
through the universe, with the spectrum of those fluctuations described by N(δρ) ∝ (δρ)−1

(the Harrison-Zeldovich spectrum). A constraint throughout is that the mass of central black
holes is close to ≈0.8 × 10−3 of the mass of stars through much of the cosmic history.

Over several decades now, many groups have modeled this scenario of a universe with
N-body simulations (with N gradually increasing from 106 to 1010 and more), and a brief
summary of the results is “Any correct description of our universe must look very much
like ΛCDM on large scales, seeded by a nearly scale-invariant fluctuations spectrum that is
dominated by dark energy” (Bullock and Boylan-Kolchin 2017). That is, theory and obser-
vations agree well for length scales of a megaparsec and more. The situation on small scales
is very much less satisfactory (Bullock and Boylan-Kolchin 2017; Naab and Ostriker 2017;
Freeman 2017; Concelice 2014). One approach has been the “zoom simulation” (Springel
et al. 2005) that switches from large scale considerations to something like the size of a
galaxy and includes gas processes, star formation, and dust attenuation within either an adap-
tive mesh refinement or a smoothed particle hydrodynamic code. Naab and Ostriker (2017)
show results (2011–2015) from six groups. Each resembles some real galaxy (e.g., see fig-
ures in Concelice 2014), but resemble all to the scenario called “flocculent” (Elmegreen
and Elmegreen 1987), rather than the “grand design” (Elmegreen 2011). In addition, it is
a general principle that a theoretical process that mimics the real world, does not prove its
correctness (an argument often used in discussions of biological evolution).

The next question is what physical model can produce spirals (at least numerically cal-
culated), and which scenario can be described in terms of self-organization? Binney and
Merrifield (1998) state that the arms nearly always trail; they are bright because the young
stars have formed there, but there is some enhanced density of old stars as well (≈ 40%).
Gas is needed to sustain the process, so galaxies of the Hubble type S0 generally do not
show arms, and bars and companions can be drivers. However Binney and Merrifield (1998)
consider spiral arms, although appearing as prominent features, not to be very important in
the great scheme.
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First, it is necessary to understand how some galaxies develop disks. Jeans (1915), start-
ing with methods due to Boltzmann and treating stars as the gas particles, concluded that
a non-spherical system with stellar motions describable as gas streams could not be static.
Lindblad (1927, 1925, 1926) recognized that the Milky Way, or at least the parts of it he
could study, is rotating, that spiral arms seen in the newly-recognized extragalactic nebulae
would wind up fairly quickly, and that a pattern of higher density in the arms, rotating more
slowly than matter, could be more stable. Lindblad describes his mathematical methods as
deriving from work by Poincare, also applied to gases.

Sufficient angular momentum produces disks. Lindblad thought the rotation might arise
from galaxy encounters or mergers, though we now associate mergers with destruction of
disks and formation of ellipticals. Instabilities tend to form warps and bars (which the Milky
Way has both) (Bland-Hawthorn and Gerhard 2016), and it is true that while 2/3 of S-type
galaxies now have bars, they were rare at z = 1, but disks still survive. Ostriker and Peebles
(1973) proposed in their highly-cited paper that an extended, dark, spheroidal halo would
permit survival. Bland-Hawthorn and Gerhard (2016) show NGC 3 spirals rectified to face-
on might be confused with the Milky Way if we could see it face-on from outside. None
has two dominant arms of the type of M51 galaxy, but none shows the complexity as the
products of “Zoom-in simulations” (Springel et al. 2005). It is perhaps significant that the
Milky Way also belongs to the rare “green valley” category of galaxies that are neither blue,
vigorous star formers, nor red and dead.

Comments specific to the Milky Way include that it reached its mostly 2-armed state
about 9 Gyrs ago (Francis and Anderson 2009), that its present conditions was probably
triggered by a first encounter with the Sagittarius dwarf spheroidal galaxy (Purcell et al.
2011). M31 incidentally also has a “driving companion” and both galaxies have their dwarf
spheroidal companions largely organized in a planar thin structure that is also not under-
stood.

According to Freeman (2017) true bulges come from mergers, while instabilities in disks
provide bars and pseudo bulges as in the Milky Way. Our thick disk (which does not have
arms, nor do other thick disks (they are nearly but not quite ubiquitous)) formed 11–12 Gyrs
ago, at z = 2–2.5 equivalent time, which is very close to the peak of the star formation
rate for the local universe as a whole (Madau and Dickinson 2014) and probably also for
the Milky Way (though we expect to know more about this topic when the Gaia data are
fully in and analyzed), but it is likely that the Milky Way spiral pattern requires more than
one mechanism. The oldest spiral reported so far (in a sea of dwarf irregular structures
imaged by HST in its deep field) is labeled as Q2343-BX442 (Law et al. 2015) and is of the
“companion driven” variety, being seen at a redshift that corresponds to an age near 11 Gyrs,
and evolution tends to move galaxies from flocculent to grand design (Francis and Anderson
2009).

There are also many galaxy-evolution issues that do not obviously interact with spiral
structure, for instance the correlation of stellar masses with central Super Massive Black
Hole masses (Heckman and Best 2014) and deciding whether they radiate enough ultravio-
let to re-ionize the universe at z ≈ 6 (Stark 2016). Locally first, if not temporally first, come
perturbations exerted on disks by a companion galaxy or bar. The former, with a swing am-
plifier, undoubtedly makes things to start as tidal distortions and end up looking like grand
design spirals (Toomre 1981). And an ensemble of molecular clouds in the potential of a
barred galaxy comes to trace out a spiral type S with their star formation (energy dissipa-
tion) (Combes and Gerin 1985). But see Toomre (1977) for how far the purely gravitational
processes had come 40 years ago. Woltjer (1965), on the other hand, was certain (and has
been since at least Woltjer 1959) that magnetic fields had to be part of the answer, since
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the energy densities in the Galactic plane in field, cosmic rays, and random gas motions are
roughly equal, and both field lines and gas motions seemed to be at least partially along the
arms.

This brings us to the density wave theory of Lin and Shu (1964) and Shu (2016). They
decided to tackle the problem for the middle, that is, to impose pitched arms on the disk
density structure and gravitational potential and see what happened. The short answer was
“Not much”; That is the pattern persisted, soliton-like, for several times the rotation period
of the model galaxy, and the pitch-angles of real galaxies look like the calculated ones
(Pour-Imani et al. 2016). The modern version naturally looks a good deal more complex
than the 1964 original, but also has some applicability to the rings of Saturn and hot-Jupiter
formation around other stars (Shu 2016).

The chief competing theory for some years, applicable particularly to spiral in the past
and to flocculent ones in Stochastic Self-Propagating Star Formation (SSPSF), but forward
by Mueller and Arnett (1976) and further developed by Gerola and Seiden (1978). The idea
is that a random fluctuation in gas density yields a small burst or star formation; winds
from the stars and supernovae move outward, compressing gas, which, in turn, forms stars.
Differential rotation in the disk, which will eventually wind up and spoil arms, in the short
term (≈108 years), so the galactic rotation period stretches out those regions of propagating
star formation into arc-shaped features. Thus SSPSF is a possible “starter” to establish S-
shaped perturbations to the Lin and Shu (1964) process started. Auer (1999) combined the
processes in roughly this fashion and regarded the result as a good way of looking at the
initiation, development, and eventual washing out of spiral structure. Since all processes
(Naab and Ostriker gas outflows, Lin and Shu magnetic confinement, SSPSF, and event
companion driving) require the presence of gas to form new stars and make the arms visible
spiral arms necessarily transient, on time scale from 108 to 1010 years.

In summary, the structure of our Milky Way was triggered when the Sagittarius dwarf
first passed through the disk about 9 Gyrs ago (Purcell et al. 2011). The arms have been
preserved by a density wave (Lin and Shu 1964) with a swing amplifier (Toomre 1981,
1977), but an image reconstructed from HI data and starcluster information suggests with
the bar as a likely additional driver (Combes and Gerin 1985), but an image reconstructed
from HI and starclusters data (Bland-Hawthorn and Gerhard 2016; Elmegreen 2011) that we
also have transient, flocculent spurs and other structures (Elmegreen and Elmegreen 1987).
Gas inflow, which continues along the filaments that connect galaxies (Faucher-Giguere
and Angles-Alcazar 2017), tends to make the disk larger and less dense and capable of
continuing star formation (Naab and Ostriker 2017).

We turn now to the four cases of spiral formation or preservation that appear to be most
closely connected with self-organization.

The spiral pattern of differentially rotating galactic disks represents a self-organization
process (Fig. 29). Nozakura and Ikeuchi (1988) model irregular and regular spiral pat-
terns of the interstellar medium with a reaction-diffusion process (Fig. 30), which is a self-
organization process known in chemistry (e.g., Bray 1921; Cox et al. 1985).

The physical model of a differentially rotating galactic disk of Nozakura and Ikeuchi
(1988) contains the following assumptions: (i) The interstellar medium has two components
ρ1(r, t) and ρ2(r, t); (ii) The interstellar medium exhibits a limit-cycle behavior around a
steady point (ρ10, ρ20) in the ρ1–ρ2 phase space; (iii) the galactic disk is 2-dimensional and
infinitely extended; (iv) the rotation curve of the galactic disk is flat, V (r) = const = V0

throughout the disk (0 ≤ r < ∞); and (v) the propagation of the local interstellar medium
is expressed by the scalar diffusion matrix D = diag(D,D), where D > 0 is a diffusion
coefficient. The model with the following reaction-diffusion equations with advective terms
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Fig. 29 The Hubble galaxy
classification reflects the
morphology from random-like
clusters (E0) to spiral-structured
ordering (Sc, SBc) [credit:
www.physast.uga.edu]

Fig. 30 Left: Spiral galaxy NGC 1232 [Credit: European Southern Observatory (ESO)]; Right: Spiral pattern
in two-component reaction-diffusion system of Fitzhugh-Nagumo type [Credit: Wikipedia—Reaction-diffu-
sion system]

satisfies these 5 conditions:
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where ρ ′
i (r, t) = ρi(r, t) − ρ10, i = 1,2 are the deviations of ρ1 and ρ2 from their steady

values ρ10 and ρ20, λ(ρ ′) and ω(ρ ′) are the nonlinear reaction terms concerning mainly
with the stability and the oscillation frequency of the system, and D is the diffusion matrix.
Nozakura and Ikeuchi (1988) found nonlinear rigidly-rotating spiral wave solutions for this
analytical model, which is designed to have limit-cycle solutions. In this model, rigidly-
rotating spiral structures are a consequence of the balance between the winding effect of
differential rotation and the straightening effect of diffusive propagation.

More complex galactic models with chaotic orbits and massive central masses (possibly
attributed to a central black hole) were investigated by Kalapotharakos et al. (2004). Small
central masses with a ratio of m < 0.005 were found to organize chaotic orbits with Lya-

http://www.physast.uga.edu
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punov exponents too small to develop chaotic diffusion during a Hubble time. Large central
masses (m � 0.004), produce about the same amount of chaotic orbits, but the Lyapunov
exponents are larger, so that the secular evolution evolves into a new equilibrium. The un-
derlying self-organization mechanism converts chaotic orbits into ordered orbits of the Short
Axis Tube type (Kalapotharakos et al. 2004).

A spatio-temporal self-organization in galaxy formation has been found from a rela-
tionship between the number of star formation peaks (per unit time) and the size of the
temporal smoothing window function (used to define the peaks), holding over a range of

t = 10–1000 Myr (Cen 2014). This finding reveals that the superficially chaotic process
of galaxy formation is underlined by temporal self-organization up to at least one Gyr (Cen
2014).

The observed hierarchy of galactic structures, from giant cellular voids to enormous su-
perclusters, with galaxies distributed within intricate networks of arcs and cells, clearly in-
dicates some self-organizing process that is not consistent with a random distribution (Kr-
ishan 1991, 1992). Two different scenarios are usually considered: (i) the hot dark matter
(HDM) scenario with initial large-scale structures that fragment into smaller ones, and (ii)
the cold dark matter (CDM) scenario where the smaller structures form first, coalescing
then to larger galactic structures. However, besides the self-organization of structures seen
in luminous matter, the existence of dark matter (Trimble 1987) may have its own “dark self-
organization”. Related self-organization processes may drive gravitational clustering and/or
turbulent cascading (Krishan 1991, 1992).

Critical Assessment According to the Hubble galaxy classification, galaxies can be formed
in different morphologies, from ellipticals (type E0-E7) to normal spirals (type Sa-Sc) and
barred spirals (SBa-SBc), which all represent a spatial pattern (S) observed in our present
time-slice. The evolution from an initial random-like state to a well-ordered spatial structure
(S) with a spiral pattern reveals the action of a self-organization process. Physical models
of galaxy formation include at least three scenarios that are more or less consistent with
the ΛCDM cosmology: (i) Interaction with a nearby companion, (ii) the Lin-Shu density
wave theory, or (iii) flocculent bursts of star formation that get dragged out by differential
rotation. Thus, a combination of gravity and rotation is a most likely driving force, while the
feedback force or self-organizing instability is still open and is currently investigated with
large-scale numerical N-body simulations. (Table 1: qualifiers S, I[?]).

6 Cosmology

Self-organization inherently involves regulated change. That is, it must be dynamical, in-
volving driver forces and positive feedback mechanisms. Each of these features has an asso-
ciated scale. When looking for the self-organizational aspects of cosmology, relevant scale
sizes run from (at least) as small as the Planck scale (≈10−33 cm) to the size of the ob-
servable Universe (≈1028 cm), spanning over 60 orders of magnitude. Perhaps even more
challenging, modern science has yet to reveal exactly whether and how one may correctly
separate our understanding of particles and fields from that of the space-time in which they
exist, especially at scales near to and less than the Planck scale. For the purposes of this
review, we will simply focus on the organizational aspects of mainstream cosmology.
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6.1 Einstein-de Sitter and ΛCDM Models

The first goal of cosmology is to understand how space changes with time. Einstein “inter-
preted gravity as a manifestation of geometry” (Misner et al. 1973). He showed us that a
“4-D space-time” formed by merging 3-D space and the time dimension into one continuum
(space-time), can respond to any form of energy. Einstein’s equation couples the curvature
of space-time, i.e. gravity, to the stress-energy inside it. Therefore, placing energy sources
inside a well-chosen unified 4-D space-time geometry is the best way to quantify how they
coevolve. To examine how order developed, we recognize that the expansion dynamics of
space-time sensitively depends upon the amount(s) of each energy component inside it, and
the evolving organization of those energy components depends upon the expansion dynam-
ics. Such coupling or “feedback” can lead to an evolution that “self-organizes”. Thus, when
space-time contains matter and/or vacuum energy, interesting processes can emerge.

Einstein’s first solution to his equation assumed that space-time contained uniformly
distributed normal matter, but was static; however, quickly realizing that space-time con-
taining only matter would collapse, unless another component was included to resist it, he
added a positive “cosmological constant term”. This is the equivalent of a uniform vacuum
energy that counter-balances the curvature-producing effect of matter. Soon thereafter de
Sitter produced a model envisioning a maximally symmetric space whose “metric” (curva-
ture) is the same at all times and all places, which also included both uniformly distributed
matter and a cosmological term to balance it. For such a space-time (de Sitter model 1), one
may chose a time coordinate and its associated family of space like coordinates (“slicings”)
that correspond to specific values of that time coordinate, to thereby represent geometrically
flat (Euclidean), positively-curved, or negatively-curved 3-D spaces. However, the de Sitter
(model 1) space does not restrict this choice, so it does not select a specific cosmology, per
se. In other words, maximally symmetric de Sitter (model 1) space may just rest! However,
maximally symmetric space-times are . . . not reasonable models of the real world (Carroll
2004). Then, de Sitter found that in a space-time with only a cosmological constant and no
matter, test particles would accelerate away from one another! It is this second version (de
Sitter model 2) with accelerating expansion that is normally associated with the “de Sitter
space”. This was progress.

In the 1920s, Alexander Friedman and Georges LeMaitre further studied how the inclu-
sion of matter in Einstein’s Equation could affect things, but this time their independently
derived solutions narrowed down the space-time symmetries to yield a cosmological model
of a universe that can undergo smooth expansion (Fig. 31). More importantly, if one assumes
that space-time contains a homogeneous and isotropic cosmic fluid composed of given mat-
ter, radiation and/or vacuum energy densities, the Friedman-LeMaitre solutions will: (i) limit
its geometrical possibilities by selecting slicings from among the flat, positively, and nega-
tive curvature options for the 3-D spatial part of the metric, and (ii) determine its expansion
dynamics! Matter and radiation resist or slow down the expansion rate, while vacuum energy
does the opposite. In addition, initial densities of radiation and matter decrease with volume,
while vacuum energy normally stays constant, all the while remaining isotropic and homo-
geneous. Their model is reflected in the following two equations known as the “Friedman
Equations”:
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Fig. 31 Four scenarios of the
expansion or contraction of the
universe: the closed, high-density
universe (orange), the
critical-density universe, the
Einstein-de Sitter model (green),
the open, low-density universe
(blue), and the universe in which
a large fraction of the matter is in
a form of “dark energy” (the
�CDM model; red), which is
causing the expansion of the
universe to accelerate
[NASA/WMAP Science Team]

where changes in the scale factor a are related to total energy density ρ (which can in-
clude matter, radiation, and vacuum), the overall geometrical curvature k (can be positive,
negative, or zero), and pressure p. Note that the term in parentheses in Eq. (34) is the “Hub-
ble parameter”. These equations were derived by inserting the “Robertson-Walker metric”
into Einstein’s Equation, which then expresses how the scale factor (size) of 3-D space
changes with time. This combination successfully related the scale factor to the evolving
stress-energy of the Universe.

It was eventually recognized that our actual Universe (i) is geometrically flat (k = 0),
(ii) has been expanding for almost 14 billion years, (iii) its cosmic fluid has passed through
stages where its dominant component was radiation, then matter, and then vacuum energy,
and (iv) we have been in a quasi-de Sitter accelerating expansion stage for the last 6 billion
years! (Fig. 31). There is compelling evidence that the cosmic fluid is made up of normal
matter and radiation, a form of matter that does not emit or absorb electromagnetic radiation
(Cold Dark Matter or “CDM”), and vacuum energy (“Dark Energy”). It is then no surprise
that the current cosmological model (“ΛCDM”) is based upon the Friedman Equations,
although it is still undecided whether the vacuum energy component has a constant value
(�) or is changing with time (Fig. 31).

6.2 Evolution of Matterless Space-Time

The self-organizational concepts have been applied to the creation of de Sitter (model 2)
space-time (only vacuum energy) and to the more relevant Friedman-LeMaitre space-time
that obeys the Friedman equation. Creation of de Sitter (model 2) space-time from quantum
fluctuations, combining causality and gravity with quantum theory, was discussed by Am-
bjorn et al. (2008). Viewed as a self-organization process, many microscopic constituents
exhibit a collective behavior and give rise to a unified, smooth space-time macrostructure in
this model. However, one must keep in mind that this pure de Sitter (model 2) space-time,
without matter, is maximally symmetric and too broad to reflect the real Universe.

In another approach quantum gravity is described as a network that self-organizes into a
discrete 4-D universe, in analogy to the ferro-magnetic Ising model for space-time vertices
with an anti-ferromagnetic Ising model for the links. The ground state self-organizes as a
new type of low-clustering graph with finite Hausdorff dimension 4 (Trugenberger 2015).
Once again, this work does not appear to directly lead to the ΛCDM model.
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6.3 Evolution of Space-Time with Matter and Radiation

The largest order out of random process in astrophysics today is the production of the ob-
served large scale structure of galaxies and clusters of galaxies throughout the cosmos. The
ΛCDM model, together with the theory of cosmic inflation, lay the foundation (i) for gen-
erating the initial conditions for structure formation, (ii) for creating matter and radiation,
and (iii) for the subsequent hierarchical growth of the structure of matter via gravitational
instability.

Because Einstein’s Equation relates space-time curvature (i.e., gravity) to the stress-
energy of its contents, fluctuations of energy density will generate fluctuations of curvature.
“Inflation theory” envisions a very early burst of quasi-de Sitter (model 2) expansion during
near-Planck scale stochastic quantum fluctuations of the inflation-driving scalar energy field
(“inflaton”) generates the corresponding space-time curvature fluctuations that expand su-
perluminally to semi-classical scales. As inflation ends, the inflaton transfers its remaining
energy into radiation and particles that, during the first few minutes of the Big Bang, evolve
through a nucleosynthesis stage into a plasma of “normal matter” (comprised primarily of
hydrogen and helium atoms and electrons) and gravitationally-interacting-only Dark Mat-
ter. As the continuing expansion further cools the cosmic fluid (plasma) further, the theory
goes, it is attracted by the curvature fluctuations (gravitational potentials) originating from
the inflaton field, and ultimately collapses into the structure we see today.

In a very recent paper, Ge and Wang (2017) set forth an approach to derive cosmological
dynamics starting with the physics of quantum entanglement. Building upon earlier ideas
that space-time geometry could be the result of the entanglement of macroscopic quan-
tum states, together with recent work by Jakobson hypothesizing a relationship between
Einstein’s equation for gravity and vacuum entanglement of quantum states, Ge and Wang
(2017) were able to derive the flat-Universe Friedman equations (34) and (35) above. It will
be interesting to see if further work exploiting the apparent deep connection between quan-
tum information theory and the emergence of space-time will successfully be applied to the
entire ΛCDM Universe paradigm with its inflaton field, dark matter, and dark energy.

6.4 The Cosmic Microwave Background

Measurements of the Cosmic Microwave Background (CMB) over the past 25 years strongly
support the idea that at about 400,000 years into the Big Bang the temperature of the H/He
plasma dropped to around 3000 degrees K, allowing the electrically charged free electrons
and nuclei to then combine into neutral atoms. At this point, known as “recombination”,
electromagnetic radiation (photons) that had previously enabled the plasma to resist, gravi-
tational collapse was released, carrying the image of the last surface from which it scattered.
Continued expansion of the Universe then caused the wavelengths of the released photons
to stretch from visible to microwave values.

The revolutionary and Nobel Prize winning (Smoot and Mather) Cosmic Background
Explorere (COBE) satellite work (Mather et al. 1991; Boggess et al. 1992), followed by the
Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett et al. 2013; Hinshaw et al. 2013),
and Planck satellites Planck Collaboration (2016), with increasing sensitivity and resolution,
precisely mapped that 13.8-billion-year-old microwave image of the celestial sphere of the
cosmos which encoded much of the physics of the early Universe (Fig. 32).

The CMB revealed that the H/He plasma had begun to form slight over densities and
under densities (anisotropies), i.e., clouds, of a range of sizes that reflected a Gaussian ran-
dom distribution, just as predicted by inflation theory. The CMB analysis also revealed the
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Fig. 32 Measurements of the
spatial distribution and
anisotropy of the cosmological
microwave background radiation
at 3 K with the Cosmic
Background Explorer (COBE) in
1992, the Wilkinson Microwave
Anisotropy Probe (WMAP)
satellite in 2003, and the Planck
satellite in 2013 [Credit:
COBE/NASA, Mather et al.
1991; Boggess et al. 1992;
WMAP/NASA, Bennett et al.
2013; Hinshaw et al. 2013; and
Planck/ESA; Planck
Collaboration 2016]

Fig. 33 A representation of the evolution of the universe over 13.77 billion years. The far left depicts the
earliest moment we can now probe, when a period of “inflation” produced a burst of exponential growth in the
universe. (Size is depicted by the vertical extent of the grid). For the next several billion years, the expansion
of the universe gradually slowed down as the matter in the universe pulled on itself via gravity. More recently,
the expansion has begun to speed up again as the repulsive effects of dark energy have come to dominate the
expansion of the universe. The afterglow light seen by WMAP was emitted about 375,000 years after inflation
and has traversed the universe largely unimpeded since then. The conditions of earlier times are imprinted
on this light; it also forms a backlight for later developments of the universe [Credit: NASA/WMAP Science
Team]

relative amounts of normal matter, dark matter, and vacuum energy contained in the “cosmic
fluid” at that time, and therefore the geometry and age of the currently observable Universe.
This information combined with the distance-marking capability, demonstrated for Type Ia
supernovae in Nobel Prize winning work (Riess et al. 1998; Perlmutter 1999), together with
other measures of the expansion history of the Universe, provided the initial and continuing
conditions that determined large scale structure. Figure 33 depicts the overall evolution.

Interestingly, when the inflaton field transfers its energy into radiation and particles and
the Universe then re-heats to thermal equilibrium to continue the hot Big Bang, the cosmic
fluid may be treated as a perfect fluid undergoing an adiabatic expansion. As the temperature
drops with expansion and matter is created, the big picture is still isotropic and homoge-
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Fig. 34 Sloan Digital Sky
Survey (SDSS) galaxy map:
A slice of the universe showing
the large-scale structure of
galaxies. Each dot is a galaxy:
the color is the green-red color of
that galaxy [Credit: M. Blanton
and Sloan Digital Sky Survey,
www.sdss.org]

neous. At the time of the CMB release, the curvature fluctuations had caused anisotropies
in the matter distribution on the order of one part in 100,000. Long before resolution of the
CMB image, astronomers knew from observation that anisotropies at least this large were
needed to “make structure on time”. Thereafter these wispy but critically important over-
densities of matter underwent rapid local amplification via linear fluctuations, and then col-
lapsed by non-linear gravitational forces into structures. So here, the inflaton field served to
generate both the driving force of the process as well as the primordial quantum fluctuations
that seeded the gravitational feedback needed for structure formation from the thermally
equilibrated and cooling cosmic fluid. Recent galaxy surveys clearly show a distribution
pattern (Fig. 34).

6.5 Formation of Large Scale Structure

N-body simulations of the post-CMB evolution of dark matter into large scale structure were
carried out by the Virgo Consortium (Millennium Simulation or MS) in 2005 (Springel et al.
2005). The basic simulation, including only dark matter, successfully reproduced the “cos-
mic web” topology (Libeskind et al. 2017) of a ΛCDM Universe, with its known clusters
and filaments of size ≈100 Mpc and its essentially isotropic homogenous matter distribu-
tion on larger scales (Fig. 35 bottom to top). The formation of galaxies and quasars was then
separately accounted for by adding semi-analytic modeling to test the importance of “bary-
onic effects”, such as gas cooling, star formation, feedback, etc., within the simulated dark
matter substructures. Then, the group examined galaxy clustering, luminosities and colors
(star formation rate and age) and compared these with observations.

More recently, the Illustris Simulation (IS) carried out a series of large-scale simulations
of galaxy formation that included both gravity and hydrodynamics to directly account for
the baryonic component (gas, stars, supermassive black holes, etc.). The ΛCDM model and
recent CMB derived cosmological parameters were again used to set the initial conditions

http://www.sdss.org
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Fig. 35 Numerical simulations
of the dark matter density field on
various scales. Each individual
image shows the projected dark
matter density field in a slab of
thickness 15 h−1 Mpc (sliced
from the periodic simulation
volume at an angle chosen to
avoid replicating structures in the
lower two images), color-coded
by density and local dark matter
velocity dispersion. The zoom
sequence displays consecutive
enlargements by factors of four,
centered on one of the many
galaxy cluster halos present in the
simulations [Credit: Millennium
Simulation, Virgo Consortium,
Max-Planck-Institute for
Astrophysics; Springel et al.
2005]

of the simulation, which began 12 million years after the Big Bang and ran forward for
about 14 billion years. As seen in Fig. 36 from bottom to top, the IS depicts the evolution
of dark and baryonic matter from the linear through the non-linear collapse stages, and
beautifully reproduces the growth of structure that favorably compares with observations.
Using short time steps, the IS was also able to show the time evolution of baryon parameters
(gas temperature, density and metallicity) associated with simulated Active Galactic Nuclei
explosions (Fig. 37 from left to right).

So how do the MS and IS relate to the theme of this review? They show that the ΛCDM
model, including inflation, well describes the initial conditions for the physical evolution of
the large-scale structure of the Universe to the present time. The most interesting feature of
the underlying cosmological model is that a period of exponential inflation can temporarily
remove all disorder within the causal speck of space-time that then grows into our current
observable Universe. At the end of inflation, the matter content of the cosmic fluid is created
from the remaining inflaton energy and re-heats to a temperature at or above that envisioned
by grand unified particle theories. Then, the “Big Bang” ensues. This model ensures that the
post-inflation evolution of the Universe is basically isotropic and homogenous, as the Fried-
man Equation assumes. However, it is most fortunate for us that the large-scale structure
is not perfectly isotropic and homogeneous, but exhibits a definite ordering into filaments,
cluster nodes and voids on scales smaller than ≈100 Mpc where galaxies and stars, heavier
elements, and life came to be.
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Fig. 36 Illustris Simulation (IS) of the galaxy formation in our universe. In the �CDM model, galaxies
build up their mass hierarchically through the mergers of smaller galaxies to larger ones in a cold dark
matter-dominated universe. The time axis is from bottom to top, and the 4 columns contain the dark matter
density (left), the gas density, the gas temperature, and the gas metallicity (right column) [Credit: Illustris
Collaboration, Illustris Simulation; Vogelsberger et al. 2014]

6.6 Self-Organization and Logistic Growth

The topology of the large-scale structures of our Universe can be characterized by fractal
geometry (Murdzek and Iftimie 2008). Using the recently completed redshift surveys (e.g.,
Fig. 34), which provide galactic right ascension (l), declination (b), and redshift (z), one
can transform the redshift z into a distance r ,

r = c

H

∫ z

0

dz√
ΩM(1 + z)3

, (36)

where c is the speed of light, H is the Hubble constant, H = 70 km s−1 Mpc−1, and ΩM = 1
is the Einstein-de Sitter model, which then yields the 3-D space coordinates (l, b, r), from
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Fig. 37 Short-time evolution of baryonic parameters (gas temperature, gas density, gas metallicity, Dark
Matter density, each one shown in a row, while the columns contain 4 different time steps). The time resolution
is less than 3 Myr. The more massive halo in the upper right shows strong AGN activity leading to heating
and expansion of large amounts of gas [Credit: Illustris Collaboration, Illustris Simulation; Vogelsberger et al.
2014]

which the fractal (Haussdorf) dimension D can be obtained, which defines a fractal vol-
ume Vfractal ∝ rD that is smaller than the Euclidean volume V ≤ r3, since D ≤ 3. Murdzek
and Iftimie (2008) find this way a lowest fractal dimension of D ≈ 1.3 for nearby galax-
ies (r = 25 Mpc), which monotonously grows and saturates at a value of D � 2.0 at the
largest distances (r � 250 Mpc). They interpret the distance-dependent fractal dimension
function D(r) as a radial (or temporal) evolution that can be modeled with a logistic curve
(or Verhulst equation),

dD(r)

dr
= Γ D(r)

(
1 − D(r)

D∞

)
, (37)

where Γ is the exponential growth rate, and D∞ = D(r = r∞) is the asymptotic limit at
an infinite distance, also known as carrying capacity (or maximum amount of resource) in
ecological models. The authors argue that the logistic growth model (Verhulst law), which
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describes nonlinear growth phenomena in a closed system with a limited total resource quan-
tity (D∞), is a concept that agrees with the nonlinear theory of structure formation, and thus
indicates a self-organized universe. The self-organizational aspect is the predicted feedback
that the growth rate dD(r)/dr of the fractal dimension D is decreasing to zero (in the
asymptotic limit) when the scale is increased r �→ ∞ (in Eq. (37)). Interestingly, this model
predicts an almost finite universe, where the mass or energy asymptotically vanishes at large
distances (r � 250 Mpc). It also predicts 2-D galactic structures at large distances, and 1-D
structures (filaments or curvi-linear threads) at nearby galactic distances of r � 25 Mpc.

6.7 Self-Organization of Interacting Cosmic Fluid Components

Self-organization of components of the cosmic fluid into stars and galaxies was covered
earlier in this review where dark and baryonic matter are assumed to only interact grav-
itationally. However, non-gravitational interactions of dark matter and dark energy have
also been studied in a cosmological model with diffusion (Szydlowski and Stachowski
2016). The state variables of the density parameter for matter (dark and visible) and of
the rate of growth of energy transfer between the dark sectors can be coupled using the
Lotka-Volterra framework, from which it was demonstrated that the de Sitter solution is a
global attractor for all trajectories in the phase space (Szydlowski and Stachowski 2016).
In a related approach, called the “Jungle Universe”, the dynamics of homogeneous and
isotropic Friedman-Lemaitre universes are considered as a special case of a generalized
Lotka-Volterra system, where the competitive species are the barotropic fluids that fill the
universe (Perez et al. 2014).

Critical Assessment The large-scale structure of the Universe is seen to have resulted from
a combination of quantum-fluctuation-seeded gravitational collapse and more complex par-
ticle physics, all the way back to the Big Bang. Self-organization concepts applied to cos-
mology are extremely scanty in literature (amounting to a few sentences in a few cosmology
papers) and appear not to relate to the ΛCDM model. Quantitative measurements of spatial
(S) or temporal structures (T) that discriminate against random patterns, identification of
nonlinear dissipative systems with driver and positive feedback mechanisms, critical insta-
bilities (I), and possible limit-cycle (LC) equilibria need to be identified. In conclusion, there
is a lot of room for modeling of cosmological models in terms of self-organization (Table 1:
qualifiers S[?], T[?], [I?], LC[?]).

7 Discussion

In this interdisciplinary review we aim to point out some universal properties of nonlinear
systems governed by self-organization. We discussed 6 cases in planetary physics, 6 cases
in solar physics, 3 cases in stellar physics, one case in galactic physics, and some tentative
ideas in cosmology, amounting to 17 systems in the field of astronomy and astrophysics
(Table 1). Self-organizing systems, however, have been found in many more scientific dis-
ciplines, such as in ionospheric physics, magnetospheric physics, plasma physics, physics,
chemistry, biology, social science, and computer science, as the 51 examples compiled in
Table 2 demonstrate.

In Table 4 we juxtapose the system characteristics of self-organizing systems to random
systems, as well as to self-organized criticality systems. The three different dynamic system
types are visualized also for the same medium, such as sand, in Fig. 38. In the following we
characterize each system in turn.
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Table 4 Characteristics of randomness, self-organization, and self-organized criticality systems or processes

Parameter Randomness
process

Self-
organizing
process

Self-
organized
criticality
process

Dynamics: events limit cycle avalanches

Temporal structure: intermittent quasi-periodic intermittent, scale-free

Temporal size distribution: exponential quantized power law

Spatial structure: random ordered fractal, scale-free

Spatial size distribution: Gaussian quantized power law

Entropy evolution: increasing decreasing invariant

Physical condition: independency positive feedback critical threshold

7.1 Characteristics of Random Processes

Random or stochastic processes can be characterized with the statistics of independent
events. The mathematical distribution of independent events can be derived from rolling
dices, which leads to a binomial distribution and can be approximated by a Gaussian func-
tion (also called normal distribution) in the limit of an infinite number of dices, or with a
Poisson distribution or exponential distribution in the limit of rare events. A time series of
random events consists of irregular, intermittent events and the resulting power spectrum is
characterized by white noise (i.e., a flat power spectrum f (ν) = const). We can consider
random processes in time or in space. If spatial structures are produced by a random pro-
cess, their size distribution is theoretically a Gaussian function, with a well-defined mean
and standard deviation, where the mean defines a specific preferred spatial scale. From the
thermodynamic or information (theory) point of view, the entropy is increasing with time in
random processes. Examples of random processes are Brownian motion of gas molecules,
diffusion processes, the detected photons from a star, electrical current fluctuations due to
thermal noise, or patterns of sand at the beach (Fig. 38a). (For a concise summary of the
statistics of random processes see Sect. 4 in Aschwanden 2011).

7.2 Characteristics of Self-Organized Criticality

Self-organized criticality systems (Bak et al. 1987; Pruessner 2012; Aschwanden et al. 2016)
are completely different from random processes, which is experimentally and observation-
ally demonstrated by the appearance of scale-free power law distributions of spatial and
temporal sizes. Avalanches in self-organized criticality systems represent coherent struc-
tures in the time domain (1/f-noise), in contrast to incoherent noise in random systems.
Quantitatively, a size distribution of avalanches in a self-organized criticality system can
be simulated from chain reactions of nearest-neighbor interactions in a lattice grid, where
a critical threshold of the gradient (or curvature radius) between next-neighbor interactions
has to be exceeded, before an avalanche can start. The avalanches occur intermittently in
such a complex system, and the intervening time intervals (waiting times) obey an expo-
nential random distribution function. The spatial structure of the avalanches is fractal (or
multi-fractal), which corresponds to a power law distribution also. The reason why such a
dissipative nonlinear system is called “self-organizing”, (e.g., the critical slope of a sandpile)
is the fact that the system automatically maintains the critical state of avalanching without
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Fig. 38 The same medium (for
instance sand) can be subject of
three different dynamical
processes, such as (a) random
processes (sand beach),
(b) self-organization (sand
dunes), or (c) self-organized
criticality (sand piles) [Credit:
Google]

external control, as long as the energy input into this open system is steady and stochastic.
The microscopic structure of a self-organizing system is maintained in the time average,
and thus the entropy of the system is invariant when averaged over many avalanches. Ex-
amples of self-organizing systems are sand piles (Fig. 38c), earthquakes, solar flares, forest
fires, stock market fluctuations, etc. (see a representative list of phenomena in Sect. 1 of
Aschwanden 2011).
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7.3 Characteristics of Self-Organization

Although the two terms “self-organization” and “self-organized criticality” sound confus-
ingly similar, they characterize two completely different types of dissipative nonlinear sys-
tems, to which terminology we will adhere for historical reasons. The only commonality
between the two systems is that both are open nonlinear dissipative systems with external
energy input, and that both maintain some system property in an automated way without
external control. A self-organizing system has always a primary driving force, and a sec-
ondary counter-acting force that acts as a stabilizing feedback reaction to the driving force,
in order to ensure long-term stability of the resulting quasi-equilibrium state. A system can
only be called to be a self-organization process, when the feedback mechanism leads to a
quasi-stationary stabilization of the combined system. Otherwise, a system with a negative
feedback (or none) will evolve away from a stationary state and end in a catastrophic way.

What sets a self-organizing system apart from a random system is the ability to cre-
ate “order out of chaos”, or better “order out of randomness”, since the term “chaos” is
already used in nonlinear physics to characterize a particular type of nonlinear system be-
havior that is non-deterministic. Therefore, the property of self-organization is also called
spontaneous order, a process where some form of overall order arises from local interactions
between parts of an initially disordered system. In principle, every ordered structure that is
significantly different from randomized distributions requires an ordering mechanism, or a
self-organizing process. We have seen in this review that every self-organizing mechanism
observed in astrophysics can be modeled by a system of coupled differential equations,
among which the type of a Lotka-Volterra system is most prominent. These differential
equations describe the interaction between a driving force and a secondary feedback force,
which generally have a limit-cycle solution, and therefore can sustain a quasi-stationary os-
cillation near the limit cycle, which is also called attractor (or strange attractor if it has a
fractal structure). The quasi-stationary, quasi-periodic system dynamics near a limit cycle is
the essential characteristic of self-organization processes.

What are the size distributions of a self-organizing system? Since the limit cycle rep-
resents a fixed value of a time period (which often corresponds also to a fixed value of a
spatial structure), the size distribution is expected to be peaked or quantized at this particu-
lar value. For instance, the solar granulation exhibits a fixed spatial scale of w ≈ 1500 km
for convection cells (granules), and a temporal scale (or life time) of τ ≈ 8–10 min. In the
case of planetary systems, each planet has its own attractor and limit-cycle dynamics, which
are moreover weakly coupled by harmonic ratios in a N-body system. Since the limit-cycle
solution often contains some random noise, the size distribution is generally not sharply
quantized like a delta-function, but rather broadened to a single or multiple Gaussian func-
tions, see Gaussian distribution of granules in Fig. 12, right panel.

Since self-organizing systems create “order out of randomness”, the entropy is decreas-
ing during the evolution from an initially disordered system to a self-organized limit-cycle
behavior. It is also said that self-organizing systems evolve into a dynamics far away from
thermal equilibrium. A limit cycle is defined by a critical point (in phase space) around
which the quasi-stationary oscillation dynamics occurs, where the amplitude of the oscilla-
tion is a measure how far off the system evolves from a system equilibrium solution. The
thermal equilibrium therefore corresponds to the asymptotic limit of a vanishing limit-cycle
amplitude, where every dynamic system variable becomes constant.

In Fig. 38b we show the pattern of sand dunes, which self-organized in an interplay
between gravity and wind, forming ripple patterns with a fixed ripple separation scale, which
is distinctly different from sand piles generated by self-organized criticality avalanching
(Fig. 38c), or from a sand beach shaped by random processes.
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7.4 The Physics of Self-Organization Systems

It should be clear by know that the term “self-organization” merely expresses a category
of a nonlinear dissipative system behavior, which is a general property of complex system
behavior, but does not define a specific physical model for an observed phenomenon. The
choice of a particular physical model that is applied to an observed phenomenon is a mat-
ter of interpretation. We can study the dynamic system behavior with purely mathematical
models (of coupled differential equation systems) without specifying a physical applica-
tion (e.g., see examples in textbook by Strogatz (1994, Chap. 7)). However, since we are
most interested in obtaining physical insights from the observed phenomena, we identified
the underlying driving forces and positive feedback mechanisms for each of the 17 studied
astrophysical phenomena (Table 1).

A summary of observed astrophysical phenomena and the self-organizing driver forces
and feedback mechanisms is given in Table 1, based on the concepts offered in the reviewed
publications. Drivers can be the gravitational force, the centrifugal force (from rotation),
differential rotation, solar radiation, temperature gradients, convection, magnetic stressing,
plasma evaporation, acceleration of nonthermal particles, or the cosmic expansion. Feed-
back mechanisms involve mostly instabilities (i.e., the magneto-rotational or Balbus-Hawley
instability, the Rayleigh-Bénard instability, turbulence, vortex attraction, magnetic recon-
nection, plasma condensation, loss-cone instability), but also resonances (mechanical orbit
resonance, double plasma resonance). While instabilities mostly evolve into limit-cycle be-
havior, which constrains one specific time scale, resonances can produce ordered structures
at multiple quantized values (such as harmonic orbit resonances of planets, or magnetic
harmonics in upper hybrid waves of solar radio bursts).

We described the underlying physical models with systems of coupled differential equa-
tions in this review. Very few equation systems can be analytically solved, if at all. For
instance, even the basic Lotka-Volterra equation system has a transcendental (implicit) so-
lution (Appendix D). Consequently, the more complex cases that involve a hydrodynamic
approach (photospheric granulation, chromospheric evaporation, star formation, galaxy for-
mation), an MHD approach (protoplanetary disks, solar magnetic fields, the Hale cycle),
or N-body problems (planetary spacing, planetary rings and moons), have to be studied by
numerical simulations. Numerical solutions of coupled differential equation systems can
now easily be obtained with numerical minimization algorithms (in form of time profiles
X(t), Y (t), or phase diagrams Y (X), see Fig. 18).

8 Conclusions

In this multi-disciplinary review we provide, for the first time, a compilation of 17 astrophys-
ical phenomena that have been associated with self-organization mechanisms. The conclu-
sions of this study are:

1. Self-organization is a very multi-disciplinary subject that has been applied in planetary
physics, solar physics, stellar physics, galactic physics, cosmology, ionospheric physics,
magnetospheric physics, laboratory plasma physics, condensed matter physics, chem-
istry, biology, social science, and computer science.

2. Self-organizing systems in astrophysics create spontaneous order out of randomness,
during the evolution from an initially disordered system to an ordered and more regular
quasi-stationary system, via: (i) quasi-periodic limit-cycle dynamics, and/or (ii) reso-
nances (i.e., harmonic mechanical resonances, or harmonics of the gyrofrequency).
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3. Self-organizing processes are not controlled from outside, but are driven by global forces
(inside an open dissipative system), such as gravity, rotation, thermal pressure, or accel-
eration of nonthermal particles, in the case of astrophysical applications.

4. The limit-cycle behavior of astrophysical self-organization processes occurs due to a pos-
itive feedback mechanism that couples with the primary driver. This feedback mechanism
is often an instability, such as the magneto-rotational instability, the Rayleigh-Bénard
convection instability, turbulence, vortex attraction, magnetic reconnection, plasma con-
densation, or a loss-cone instability.

5. Physical models of an astrophysical self-organization process require a hydrodynamic
approach (photospheric granulation, chromospheric evaporation, star formation, galaxy
formation), an MHD approach (protoplanetary disks, solar magnetic field, Hale cycle),
or N-body simulations (planetary spacing, planetary rings and moons).

6. The entropy in self-organization processes is decreasing during the evolution from an
initially disordered system to a self-organized limit-cycle behavior, in contrast to random
processes where the entropy increases, or to self-organized criticality systems where the
entropy remains invariant in the long-term time average.

7. The Lotka-Volterra equation system represents a useful tool to study the dynamical be-
havior of nonlinear dissipative systems, which are likely to evolve into a limit-cycle be-
havior for long-lived quasi-stationary phenomena.

While the modeling of systems with self-organization was severely hampered in the
past, due to the mathematical difficulty of finding analytical solutions for coupled integro-
differential equation systems, it is expected that the use of numerical computer simulations
will be capable to produce realistic models in the future, for hydrodynamic, MHD, and N-
body problems.
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Appendix A: Keplerian Orbits

In principle, the Keplerian orbits of planets can be understood as a limit cycle of a self-
organizing system. The dynamics of two planets can be written in a Hamiltonian form
(Nesvorny and Vokrouhlick 2016),

H = HK + Hper =
2∑

j=1

(
p2

j

2μj

− G
μjMj

rj

)
+ Hper, (38)

where H is the total Hamiltonian, HK is the Keplerian part, Hper is the perturbation part,
M∗ is the solar mass, Mj = mj +M∗ and μj = mjM∗/Mj the reduced masses. If we neglect
the perturbations, the Hamiltonian form is equivalent to the conservation of kinetic and
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gravitational potential energy, Ekin + Egrav = (1/2)mv2 − GM∗m/r = 0, from which the
following relationship between the distance r and velocity v results,

v(r) =
√

2GM

r
. (39)

We show this relationship between the planet distance r and the planet velocity v(r) in
the phase space [r, v] in Fig. 2 dotted curve. For each of the 10 planets (including Ceres
and Pluto), there is a fixed point [ri, vi], i = 1, . . . ,10 that represents an attractor for the
planet motion in phase space. For planets that have a circular orbit with no eccentricity, the
Keplerian planet motion is confined to a constant single fixed point in phase space (ri =
const, vi = const). However, all planet orbits move on ellipses with some eccentricity e, in
the cartesian space [x, y]. The minimum rmin and maximum distance rmax are given by the
eccentricity e = c/a,

rmin = a(1 − e),

rmax = a(1 + e),
(40)

where a is the major axis of the ellipse, b is the minor axis, c = √
a2 − b2 is the distance of

one ellipse focal point (where the Sun is) from the center of the ellipse, and e = c/a is the
eccentricity. Defining the mean distance with a and the orbital period with T , we retrieve
Kepler’s third law, a3 ∝ T 2, using v = 2πR/T and Eq. (39).

We show the planet motion in phase space [ri, vi] in Fig. 2 thick curve segments, which
cover the range of rmin ≤ r ≤ rmax for each planet. We see that only Mercury and Pluto
cover an appreciable distance in phase space, because they have the largest eccentricities of
emercury = 0.2056 and epluto = 0.2488. Therefore, every planet performs an oscillatory motion
around their mean distance (from the Sun) with an orbital period T that can be considered
as a limit cycle. Gravitational perturbations will alter the Keplerian orbits slightly, which
we neglected here. The orbital period T marks the temporal scale that is self-organized in
this system. In addition, the system self-organizes low harmonic ratios between adjacent
planet pairs, which is necessary to warrant long term stability of the planet system. These
quantized harmonic ratios mark the spatial scales. Therefore, a planet system self-organizes
both temporal and spatial scales.

Appendix B: Coupled Differential Equations

A basic analytical system that exhibits oscillatory limit-cycle behavior can be described by
the following non-homogeneous linear differential equation system (Aschwanden and Benz
1988),

dX/dt = b1 + a11X + a12Y,

dY/dt = b2 + a21X + a22Y.
(41)

This equation system contains linear terms only (in X(t) and Y (t)), which is appropriate
for the dynamic system behavior under the influence of small perturbations. The general
(complex) solution depends on the value of the discriminant D and trace S of the non-
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homogeneous equation,

S = 1

2
(a11 + a22),

D = (a11a22 − a12a21).

(42)

The general complex solution of the non-homogeneous differential equation system for
(S2 − D) �= 0 is given by,

X(t) = X1 expzi t +X0,

Y (t) = Y1 expzi t +Y0,
(43)

where the exponential coefficient has two solutions,

z1 = S + [(
S2 − D

)]1/2
,

z2 = S − [(
S2 − D

)]1/2
.

(44)

For the linearly dependent case of (S2 − D) = 0 the general solution is given by

X(t) = (X2t + X1) expSt +X0,

Y (t) = (Y2t + Y1) expSt +Y0.
(45)

The non-homogeneous coefficients are,

X0 = (b2a12 − b1a22)/D,

Y0 = (b1a21 − b2a11)/D.
(46)

Using X1 and X2 as free parameters, the coefficients Y1 and Y2 are,

Y1 = 1

a12

(
a22 − a11

2

)
X1,

Y2 = 1

a12

(
a22 − a11

2

)
X2 + 1

a12
X1.

(47)

Since the exponential coefficient zi is a complex number, one an split it into a real part ρi

and an imaginary part ωi ,

zi = ρi + iωi,

ρi = Re
[
S ± (

S2 − D
)1/2]

,

ωi = Im
[
S ± (

S2 − D
)1/2]

.

(48)

Physically, ωi describes the frequency of the oscillations, and ρi denotes the growth (or neg-
ative damping) rate of the perturbation. Using these variables, the time-dependent solution
is the classical solution of two coupled oscillators:

X(t) = X1 expρi t cos(ωit) + X0,

Y (t) = Y1 expρi t cos(ωit − δ)

[
(ρi − a11)

2 + ω2
i

a
1/2
12

]1/2

+ Y0.
(49)
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The phase difference δ is

tan (δ) = −ωi

ρi − a11
. (50)

The special case of an undamped oscillation (ρi = 0) requires S = 0 and D > 0. The tem-
poral functions X(t) and Y (t) of the two coupled oscillators is then

X(t) = X1 cos(ωit) + X0,

Y (t) = X1 cos(ωit − δ)

(−a21

a12

)1/2

+ Y0,

ωi = ±√
D = ±(a11a22 − a12a21)

1/2,

tan (δ) = ωi/a11,

(51)

which corresponds to a limit cycle with period ωi , fixed point (X0, Y0), and phase delay δ.

Appendix C: The Hopf Bifurcation

Another nonlinear system that predicts limit-cycle behavior is the so-called Hopf bifurcation
Hopf (1942), which is described in many textbooks (e.g., Schuster 1988). A simple Hopf
bifurcation generates a limit cycle starting from a fixed point. A differential equation of the
Hopf bifurcation can be written in polar coordinates [r, θ ],

dr/dt = −(
ρr + r3

)
,

dθ/dt = ω,
(52)

which has the following analytical solution,

r2(t) = ρr2
0 exp (−2ρt)

r2
0 [1 − exp (−2ρt)] + ρ

,

θ(t) = ωt,

(53)

for the initial conditions r0 = r(t = 0) and θ(t = 0) = 0. For ρ ≥ 0, the trajectory approaches
the origin at the fixed point r∞ = 0 and becomes stationary.

For negative values, ρ < 0, it converges to a limit cycle r∞ = r(t = ∞) = √|ρ| > 0.
The differential equation system in polar coordinates [r, θ ] can be transformed into Carte-

sian coordinates [X,Y ] by using

X = r cos (ωt),

Y = r sin (ωt),
(54)

which yields

dX/dt = −[
ρ + (

X2 + Y 2
)]

X − Yω,

dY/dt = −[
ρ + (

X2 + Y 2
)]

Y + Xω.
(55)
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Linearizing with respect to the origin yields,

df

dt
= Af, (56)

with f = [
X,
Y ] and the A the matrix

A =
(−ρ −ω

ω −ρ

)
(57)

which has the eigenvalues,

λ = −ρ ± iω. (58)

Appendix D: The Lotka-Volterra Equation System

The Lotka-Volterra equation system (Lotka 1925; Volterra 1931) is a paradigm of a non-
linear dissipation process, with cyclic (oscillatory) behavior in some parameter space. In
the simplest terms it can be written as a coupled first-order, nonlinear, differential equation
system containing the time-dependent variables X(t) and Y (t), and coefficients k1, k2, k3,

dX/dt = k1X − k2XY,

dY/dt = k2XY − k3Y,
(59)

with k1, k2, k3 being positive coefficients. The rate of change in the first variable X(t) is
specified by a growth rate k1, while the (negative) dissipation rate k2 is coupled to the product
of both variables, X(t)Y (t). The rate of change in the second variable Y (t) is specified by a
decay rate k3, while the (positive) dissipation rate k2 has the opposite sign. In ecology (e.g.,
May 1974), the two variables were designated to some predator and prey populations that
compete for life, such as foxes and rabbits.

This equation system has a periodic solution, which is called the limit cycle, also called
a critical point or attractor. Critical points occur when dX/dt = 0 and dY/dt = 0, which
yields a stationary point in phase space at (X0, Y0), representing a non-vanishing stationary
solution,

X0 = (k3/k2),

Y0 = (k1/k2).
(60)

For small perturbations not too far off the limit cycle, we can describe the cyclic dynamics
with,

X(t) = X0 + x exp (ωt)

Y (t) = Y0 + y exp (ωt − δ)
(61)

where the small amplitudes obey |x/X0| � 1 and |y Y0| � 1, and δ represents a phase delay.
One can then derive the following dispersion relation,

ω2 + k1k3 = 0. (62)
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The real part of the frequency is zero, Re(ωn) = 0, while the imaginary part characterizes an
oscillation, Im(ω) = ±√

k1k3. The dynamics is essentially a circular motion in phase space
Y (X), which corresponds to X(t) = X0 + x sinωt and Y (t) = Y0 + y sinω(t − t0).

Many nonlinear systems, however, are far off an equilibrium state. In order to study the
nonlinear behavior of the Lotka-Volterra equation system, we can transform the variables in
terms of the limit-cycle fixed point (X0, Y0),

X = X0x = (k3/k2)x,

Y = Y0x = (k1/k2)y.
(63)

Inserting this parameterization (63) into the original Lotka-Volterra equation system (59),
multiplying them with (y −1) and (x −1), and subtracting them from each other yields then

[
(x − 1)

dy

dt
− (y − 1)

dx

dt

]
= k3(x − 1)2y + k1(y − 1)2x. (64)

Substituting the variables (x, y) with polar coordinates (ρ,ω) according to,

(x − 1) = ρ cosω

(y − 1) = ρ sinω
(65)

yields then the function,

Φ(ω) := dω

dt
= k1x sin2 ω + k3y cos2 ω (66)

which can be integrated to obtain the time dependence of the polar coordinate ω(t)

ω(t) =
∫ t ′

0
Φ(ω)dt ′. (67)

The (x, y) coordinates are found by the transcendental solution of the Lotka-Volterra equa-
tion,

x−k3ek3x = C yk1e−k1y . (68)

We show a typical dynamic solution in Fig. 18 bottom, computed by a numerical code
that obtains solutions for X(t) and Y (t) directly by minimizing the coupled first-order, non-
linear, differential equation system given in Eq. (59), for the coefficient k1 = 0.5, k2 = 2.0,
k3 = 0.5. The time-dependent solutions X(t) and Y (t) are shown in the bottom left panel of
Fig. 18, and a phase plot Y (X) is shown in the top right panel of Fig. 18. We see that the
trajectory in phase space is convergent towards the limit-cycle solution, starting from highly
nonlinear amplitude oscillations far off the equilibrium, while the system asymptotically
converges towards the attractor (X0, Y0), with gradually diminishing amplitude.
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