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Abstract

From Controlled Data-Center Environments to Open Distributed Environments:

Scalable, Efficient, and Robust Systems with Extended Functionality

by

Victor I. F. Zakhary

The past two decades have witnessed several paradigm shifts in computing environments.

Starting from cloud computing which offers on-demand allocation of storage, network,

compute, and memory resources, as well as other services, in a pay-as-you-go billing

model. Ending with the rise of permissionless blockchain technology, a decentralized

computing paradigm with lower trust assumptions and limitless number of participants.

Unlike in the cloud, where all the computing resources are owned by some trusted cloud

provider, permissionless blockchains allow computing resources owned by possibly ma-

licious parties to join and leave their network without obtaining permission from some

centralized trusted authority. Still, in the presence of malicious parties, permissionless

blockchain networks can perform general computations and make progress. Cloud com-

puting is powered by geographically distributed data-centers controlled and managed by

trusted cloud service providers and promises theoretically infinite computing resources.

On the other hand, permissionless blockchains are powered by open networks of geograph-

ically distributed computing nodes owned by entities that are not necessarily known or

trusted. This paradigm shift requires a reconsideration of distributed data management

protocols and distributed system designs that assume low latency across system compo-

nents, inelastic computing resources, or fully trusted computing resources.

In this dissertation, we propose new system designs and optimizations that address

scalability and efficiency of distributed data management systems in cloud environments.
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We also propose several protocols and new programming paradigms to extend the func-

tionality and enhance the robustness of permissionless blockchains. The work presented

spans global-scale transaction processing, large-scale stream processing, atomic transac-

tion processing across permissionless blockchains, and extending the functionality and the

use-cases of permissionless blockchains. In all these directions, the focus is on rethinking

system and protocol designs to account for novel cloud and permissionless blockchain

assumptions. For global-scale transaction processing, we propose GPlacer, a placement

optimization framework that decides replica placement of fully and partial geo-replicated

databases. For large-scale stream processing, we propose Cache-on-Track (CoT) an adap-

tive and elastic client-side cache that addresses server-side load-imbalances that occur in

large-scale distributed storage layers. In permissionless blockchain transaction processing,

we propose AC3WN, the first correct cross-chain commitment protocol that guarantees

atomicity of cross-chain transactions. Also, we propose TXSC, a transactional smart

contract programming framework. TXSC provides smart contract developers with trans-

action primitives. These primitives allow developers to write smart contracts without

the need to reason about the anomalies that can arise due to concurrent smart contract

function executions. In addition, we propose a forward-looking architecture that unifies

both permissioned and permissionless blockchains and exploits the running infrastructure

of permissionless blockchains to build global asset management systems.

viii



Contents

Abstract vii

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Paradigm Shifts in Global Data Management . . . . . . . . . . . . . . . . 1
1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Part I Building Scalable and Efficient Cloud Data Manage-
ment Systems 17

2 GPlacer: Global-Scale Placement of Transactional Data Stores 18
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 DB-Risk: The Game of Global Database Placement . . . . . . . . . . . . 23
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Framework formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Surprising Placement Lessons . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 GPlacer Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 GPlacer Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 GPlacer Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 CoT: Decentralized Elastic Caches for Cloud Environments 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 System and Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Front-end Cache Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Cache on Track (CoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 CoT Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



3.7 CoT Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Express Your Online Persona without Revealing Your Sensitive At-
tributes 102
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 Multifaceted Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4 Aegis System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Aegis Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 124
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.7 Aegis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.8 Aegis Future Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Part II Robustness and Extending the Functionality of Permission-
less Blockchains 139

5 Atomic Commitment Across Blockchains 140
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.2 Open Blockchain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3 Atomic Cross-Chain Transaction Model . . . . . . . . . . . . . . . . . . . 148
5.4 AC3: Atomic Cross-Chain Commitment . . . . . . . . . . . . . . . . . . 154
5.5 AC3WN Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.6 AC3WN Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.7 AC3WN Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Towards Global Asset Management in Blockchain Systems 178
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2 Permissionless Blockchains . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.4 Permissioned Blockchains . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.5 Global Asset Management System . . . . . . . . . . . . . . . . . . . . . . 194
6.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7 Transactional Smart Contracts in Blockchain Systems 211
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 Concurrency Anomalies in Smart Contracts . . . . . . . . . . . . . . . . 214
7.3 Data and Transaction Models . . . . . . . . . . . . . . . . . . . . . . . . 219
7.4 Transactional Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . 222
7.5 TXSC Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 228

x



Part III Conclusion 229

8 Concluding Remarks and Future Directions 230
8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xi



List of Figures

1.1 Latency of Wide-Area Network Round-Trip Time communication (WAN
RTT) compared to memory access latency [181] and network latency within
a datacenter (local RTT). . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Open Blockchain Architecture Overview . . . . . . . . . . . . . . . . . . 6
1.3 Overview of the system and protocol solutions proposed in this dissertation. 10

2.1 Latency of Wide-Area Network Round-Trip Time communication (WAN
RTT) compared to memory access latency [181] and network latency within
a datacenter (local RTT). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The average latency, of all the clients in 9 datacenters, to reach the closest
quorum (2 out 3) for all the possible

(
9
3

)
= 84 different placements sorted

by latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 A screenshot of the DB-Risk game. . . . . . . . . . . . . . . . . . . . . . 25
2.4 A placement scenario that shows the importance of considering different

optimization aspects to minimize the average transaction latency. . . . . 27
2.5 The state-transition diagram of a distributed transaction adopted from [111]. 29
2.6 Five replicas of the database are deployed in datacenters I, V , SP , O, and

C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 An example to illustrate how overlay network paths can be used to reduce

big data transfer time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8 Transaction latency as number of clients increases. Figures 2.8a, 2.8b, 2.8c,

and 2.8d share one plotting legend. . . . . . . . . . . . . . . . . . . . . . 47
2.9 Overall average commit latency as number of clients increases. . . . . . . 48
2.10 Throughput as number of clients increases. Figures 2.10a, 2.10b, and 2.10c

share one plotting legend. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11 Overall abort rate as number of clients increases. . . . . . . . . . . . . . 50
2.12 The running time (seconds), in log scale, of exhaustive search and place-

ment heuristics as number of datacenters increases. Figures 2.12a and 2.12b
show the running time when 5 replicas and 7 replicas are chosen respec-
tively. Both figures share one plotting legend. . . . . . . . . . . . . . . . 53

xii



2.13 A comparison of the resulting commit latency of placements by exhaustive
search and placement heuristics as number of datacenters increases. Fig-
ures 2.13a and 2.13b compare the estimated latency when 5 replicas and
7 replicas are chosen respectively. Both figures share one plotting legend. 53

2.14 Comparison of the expected commit latency of the resulting leader place-
ments of heuristic 1 |DCdb| = 1 , heuristic 2 |DCdb| = 10, and heuristic 3
when |DCdb| = 3, |DCdb| = 5, and |DCdb| = 7 while varying the percentage
of distributed transactions. . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.15 The effect of varying the distance d among partition leaders of distributed
transactions while varying the percentage of multi-partition transactions. 59

3.1 Overview of the system architecture. . . . . . . . . . . . . . . . . . . . . 69
3.2 CoT: a key is inserted to the cache if its hotness exceeds the minimum

hotness of the cached keys. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Reduction in relative server load and load-imbalance among caching servers

as front-end cache size increases. . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Comparison of LRU, LFU, ARC, LRU-2, CoT and TPC’s hit rates using

Zipfian access distribution with different skew parameter values (s= 0.90,
0.99, 1.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 The effect of front-end caching on the end-to-end overall running time of
1M lookups using different workload distributions. . . . . . . . . . . . . . 92

3.6 The effect of front-end caching on the end-to-end overall running time of
50K lookups using different workload distributions sent by only one client
thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 CoT adaptively expands tracker and cache sizes to achieve a target load-
imbalance It = 1.1 for a Zipfian 1.2 workload. . . . . . . . . . . . . . . . 96

3.8 CoT adaptively shrinks tracker and cache sizes in response to changing
the workload to uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 The dichotomy of multifaceted privacy: persona vs. privacy. . . . . . . . 106
4.2 Illustrating k-attribute-indistinguishability . . . . . . . . . . . . . . . . . 114
4.3 Each attribute forms an independent hierarchy . . . . . . . . . . . . . . . 117
4.4 A dependent topic tree where public attributes are at the top while private

attributes are at the bottom . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5 Aegis System Design and User Interaction Flow . . . . . . . . . . . . . . 121
4.6 Examples of negligible, weak, and strong connection distribution topics

for top-20 personas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.7 Illustrative Gender Obfuscation Example. . . . . . . . . . . . . . . . . . 128
4.8 Effect of obfuscation posts on location and user persona given weak, mild

and strong connected topics to locations . . . . . . . . . . . . . . . . . . 128
4.9 Change in δ as obfuscation posts are added . . . . . . . . . . . . . . . . . 132
4.10 The effect of obfuscation posts on gender inference for strong connected

topics to gender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xiii



5.1 An atomic cross-chain transaction graph to swap X bitcoins for Y ethers
between Alice (A) and Bob (B). . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 How miners of one blockchain could validate transactions in another block-
chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3 Coordinating AC2T s using a permissionless witness network. . . . . . . . 159
5.4 Examples of complex graphs handled by the AC3WN protocol: (a) cyclic

and (b) disconnected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.5 The overall transaction latency of 2 ·∆ ·Diam(D) when the single leader

atomic swap protocol in [117] is used. . . . . . . . . . . . . . . . . . . . . 170
5.6 The overall transaction latency of 4 · ∆ when the AC3WN protocol in

Section 5.4.2 is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.7 The overall AC2T latency in ∆s as the graph diameter, Diam(D), increases.172

6.1 Permissionless Blockchain Architecture Overview . . . . . . . . . . . . . 182
6.2 Transactions input and output in blockchain . . . . . . . . . . . . . . . . 185
6.3 Smart contract state can span multiple blocks in the blockchain. . . . . . 188
6.4 Permissioned Blockchain Architecture Overview . . . . . . . . . . . . . . 192
6.5 Architecture overview of the permissioned and permissionless blockchain

unification proposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.6 Permissioned blockchains use validators key rotation to limit the damage

that results from validator identity theft. . . . . . . . . . . . . . . . . . . 205

xiv



List of Tables

2.1 The average RTT latencies between different datacenters in milliseconds
and the standard deviation inside parentheses. . . . . . . . . . . . . . . 20

2.2 Summary of GPlacer notation. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Summary of notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 The minimum required number of cache-lines for different replacement

policies to achieve a back-end load-imbalance target It = 1.1 for different
workload distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Topic to persona connection strength categories and their corresponding
δ ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Topic Analysis By Persona . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 The throughput in tps of the top-4 permissionless cryptocurrencies sorted
by their market cap [170]. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xv



Chapter 1

Introduction

1.1 Paradigm Shifts in Global Data Management

Social networks, the web, and mobile applications have attracted hundreds of mil-

lions of end-users [29, 39]. These users share their relationships and exchange images

and videos in timely personalized experiences [59]. To enable this real-time experience,

the underlying data management systems have to provide efficient, scalable, and highly

available access to big data. Social networks, the web, and mobile applications are ex-

amples of Global-Scale Data Management (GSDM) systems that aim to provide efficient

and scalable big data access to hundreds of millions of end-users around the globe. The

good news is that cloud computing provides the infrastructure needed to power GSDM

systems. Cloud computing, a term that was initially coined by Compaq Computer [182]

and popularized upon Amazon’s release of Elastic Compute Cloud (EC2) [1], offers the-

oretically infinite infrastructure-as-a-service resources in a pay-as-you-go billing model.

Cloud computing is powered by geographically distributed core data-centers and edge

data-centers that offer elastic compute, memory, storage, network, and several services

to GSDM systems. The unfortunate news is that moving GSDM systems to cloud in-

1



Introduction Chapter 1

frastructures raises several challenges.

First, cloud applications strive for high-performance 24/7 service to clients dispersed

around the world. Achieving this is threatened by complete datacenter scale outages;

either planned or unplanned. Second, GSDM systems such as social networks aim to

serve hundreds of millions of end-users with sub-second response latency. Social network

users consume several orders of magnitude more data than they produce [51]. In addi-

tion, a single page load requires hundreds of data object lookups that need to be served

in a fraction of a second [59]. Therefore, traditional disk-based storage systems are not

suitable to handle requests at this scale due to the high access latency of disks and I/O

throughput bounds [222]. Third, moving end-user data to the cloud and allowing social

network giants to have control over massive amounts of end-user personal data introduce

several data privacy threats. Microtargeting (e.g., the Cambridge Analytica scandal [25]),

surveillance, and discriminating ads are examples of threats to user privacy caused by

social network end-user data mining. These three challenges, namely availability, scala-

bility, and end-user data privacy require rethinking and building GSDM systems in novel

ways that address these challenges while leveraging cloud infrastructure.

1us 10us 1ms100us 10ms 100ms

Main-memory SSD Disk
Local RTT

WAN RTT

0.1us 1s

Figure 1.1: Latency of Wide-Area Network Round-Trip Time communication (WAN
RTT) compared to memory access latency [181] and network latency within a datacenter
(local RTT).

To address the availability challenge, several GSDM systems and their backend databases

are increasingly being deployed on multiple datacenters spanning large geographic regions

(geo-replication). F1 [195], Spanner [79], and Tao [59] are examples of deployed systems

that are geographically replicated for fault-tolerance and performance reasons. Geo-

2



Introduction Chapter 1

replication serves two important goals. First, it brings data copies closer to end-users to

serve data lookup requests with low latency. Second, it allows applications to serve end-

user requests even in the presence of datacenter scale outage. However, geo-replication

raises the important question of replica placement: at which datacenters should data

be placed?. Current cloud providers offer hundreds of datacenters and thousands of edge

datacenters that are globally distributed all over the world. Unlike networks within a

datacenter, the topology of the Wide-Area Network (WAN) is asymmetric and diverse—

the latency connecting a pair of datacenters can be an order of magnitude larger than

the latency connecting another pair. This makes placement a significant factor in per-

formance. Figure 1.1 illustrates the latency difference between communication messages

that occur within the same machine, among different machines in one datacenter, or in

multiple datacenters in different geographical regions. This large communication latency

of the WAN motivates systems like Yahoo’s PNUTS [77], Facebook’s Tao [59] and oth-

ers [138, 167] to trade off replica consistency and/or multi-row transaction support with

high availability and scalability. However, enterprise applications and applications with

complex and evolving schemas have more interest in data management systems that pro-

vide transactional ACID properties [196, 79, 53]. Application developers spend significant

time to build transaction semantics and complex mechanisms, which are error-prone, on

top of eventually consistent datastores in order to handle stale data items and reason

about inconsistency [195, 79]. Therefore, the first question we ask in this dissertation

is: ”Can we optimize the placement of geo-replicated databases to minimize transaction

latency while achieving the ACID transaction guarantees and the required availability

level?”.

To address the scalability challenge, distributed caching services have been widely de-

ployed on top of persistent storage in order to efficiently serve user requests at scale [211].

Distributed caching systems such as Memcached [32] and Redis [35] are widely adopted

3



Introduction Chapter 1

by cloud service providers such as Amazon ElastiCache [20] and Azure Redis Cache [22].

These caching services offer significant latency and throughput improvements to systems

that directly access the persistent storage layer. Redis and Memcached use consistent

hashing [128] to distribute keys among several caching servers. Although consistent hash-

ing ensures a fair distribution of the number of keys assigned to each caching shard, it

does not consider the workload per key in the assignment process. Real-world workloads

are typically skewed with few keys being significantly hotter than other keys [122]. This

skew causes load-imbalance among caching servers. Load imbalance in the caching layer

can have significant impact on the overall application performance. In particular, it may

cause drastic increases in the latency of operations at the tail end of the access frequency

distribution [121]. In addition, the average throughput decreases and the average latency

increases when the workload skew increases [71]. This increase in the average and tail la-

tency is amplified for real workloads when operations are executed in chains of dependent

data objects [150]. A single Facebook page-load results in retrieving hundreds of objects

in multiple rounds of data fetching operations [167, 59]. Finally, solutions that equally

overprovision the caching layer resources to handle the most loaded caching server suffer

from resource under-utilization in the least loaded caching servers. Therefore, the second

question we ask in this dissertation is: ”Can we exploit the geo-distribution and elasticity

of edge data-centers to design adaptive and decentralized load-balancing solutions for

GSDM imbalanced distributed storage layers?”.

The third challenge of preserving social networks and web end-user data privacy

raises complicated tension between user utility and user data privacy. On one hand, end-

users share their data and postings with social network and web giants. On the other

hand, end-user data privacy must be preserved. Social network users develop, over time,

online persona [220] that reflect their overall interests, activism, and diverse orientations.

Users have numerous followers that are specifically interested in their personas and their
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postings which are aligned with these personas. Due to the rise of machine learning

and deep learning techniques, user posts and social network interactions can be used to

accurately and automatically infer many user persona attributes such as gender, ethnicity,

age, political interest, and location [133, 177, 225, 223, 72, 68]. Although social networks

use end-user attributes to provide personalised services, recent news about the Cambridge

Analytica scandal [25] and similar data breaches [34] suggest that users cannot depend

on the social network providers to preserve their privacy. User sensitive attributes such

as gender, ethnicity, and location have been widely misused in illegally discriminating

ads, microtargeting, and surveillance. Privacy risks vary from discrimination in job [19]

and housing [31] ads, election manipulation [16, 17], activists of color targeting [11], to

becoming a danger for our democracy [97]. To protect end-user data privacy, recent

legislation like GDPR [12] and CCPA [24] have been proposed and passed to limit the

usage of end-user personal data by social network and web giants. Although we believe

that protecting end-user personal data by laws is the ideal path to follow, the legislation

path is long and time-consuming. Until social network and web giants are forced to

protect end-user personal data privacy, we believe that end-users should have fine control

over which personal attributes to make public and which ones to keep private. Therefore,

the third question we ask in this dissertation is: ”Can we develop decentralized, user-

centric, and trust-free systems that allow end-users to have fine control of the privacy of

their persona attributes?”

In 2008, the mysterious Nakamoto came up with a novel decentralized peer-to-peer

computation model that enabled Bitcoin [164], the first successful global scale peer-

to-peer cash system or cryptocurrency. The Bitcoin original protocol allows financial

transactions to be transacted among participants without the need for a trusted third

party, e.g., banks, credit card companies, or PayPal. Bitcoin eliminates the need for such

a trusted third party by replacing it with a distributed ledger that is fully replicated
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among a decentralized open network of computing nodes in the cryptocurrency system.

This distributed ledger is referred to as blockchain and the open network is usually referred

to as permissionless blockchain.

Figure 1.2: Open Blockchain Architecture Overview

An open permissionless blockchain system [155] (e.g., Bitcoin, Ethereum [205]) typ-

ically consists of two layers: a storage layer and an application layer as illustrated in

Figure 1.2. The storage layer comprises a decentralized distributed ledger managed

by an open network of computing nodes. A blockchain system is permissionless if com-

puting nodes can join or leave the network of its storage layer at any moment without

obtaining a permission from a centralized authority. Each computing node, also called a

miner, maintains a copy of the ledger. The ledger is a tamper-proof chain of blocks, hence

named blockchain. Each block contains a set of valid transactions that transfer assets

among end-users. The application layer comprises end-users who communicate with

the storage layer via message passing through a client library. End-users have identities,

defined by their public keys, and signatures, generated using their private keys. Digital

signatures are the end-users’ way to generate transactions. End-users submit their trans-

actions to the storage layer through a client library. Transactions are used to transfer

assets from one identity to another. End-users multicast their transaction messages to
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mining nodes in the storage layer. A mining node validates the transactions it receives

and valid transactions are added to the current block of a mining node. Miners run a

consensus protocol through mining to agree on the next block to be added to the chain.

A miner who mines a block gets the right to add their block to the chain and multicasts

it to other miners. To make progress, miners accept the first received mined block after

verifying it and start mining the next block.

Since the publishing of the Bitcoin paper, many efforts have been developed to trans-

fer the usage of permissionless blockchains from a cryptocurrency management system to

the new public cloud [205, 64]. Instead of using the blockchain distributed ledger to store

cryptocurrency transactions, end-users can store generic data and code within the dis-

tributed ledger through smart contracts [200]. Smart contracts extend the simple abstract

data type notion of blockchain transactions to include complex data type classes with

end-user defined variables and functions. Also, instead of using the mining node to verify

and validate cryptocurrency transactions, the compute power of the mining nodes can be

used to process generic logic expressed in smart contract functions. Seeing permissionless

blockchains as the new public cloud introduces several challenges and interesting prob-

lems that need to be addressed. First, there is the trust issue. Most cloud data manage-

ment protocols assume trusted infrastructure owned by a known cloud service provider.

Also, cloud replication and transaction management protocols assume that all protocol

participants are known and their number is fixed. On the other hand, permissionless

blockchains run on top of an open network with unknown number of untrusted comput-

ing nodes. This requires the redevelopment of common cloud data management protocols

such as 2-Phase Commit (2PC) [112, 57] for atomic distributed transaction commitment

and Paxos [140] for replication. Second, there is a lack of abstraction in smart contract

programming languages. Modern programming languages provide application developers

with many abstractions such as transaction abstractions. This allows application devel-
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opers to leverage ACID transaction properties without rewriting the transaction manage-

ment logic in each application. Currently, the transaction abstraction is not supported

in smart contract languages like solidity [38]. This requires smart contract developers to

reason about transaction semantics, concurrency, and isolation in every smart contract

they write. The distributed database literature [79, 195] has shown that putting the

burden of implementing transaction logic in the application layer is problematic. This is

no simple task and serious smart contract concurrency bugs have been highlighted in the

blockchain literature [132, 151, 193, 86]. In fact, from a financial point-of-view, two such

famous anomalies in the context of blockchains, TheDAO [4, 62] and the BlockKing [9]

have resulted in the loss of tens of millions of investors’ dollars [151]. Third, there is

a disconnection between tangible assets and intangible assets in blockchain systems. In

a cloud setting, a trusted third party can be leveraged to trade tangible assets such as

houses and cars. The responsibility of verifying the existence of such assets is put on

this trusted third party. However, in the absence of trust in permissionless blockchains,

neither mining nodes nor end-users can be trusted to verify the existence of tangible

assets. This requires the development of novel protocols and systems that leverage the

infrastructure of permissionless blockchains to trade tangible assets. Finally, there is the

issue of user data privacy. Since permissionless blockchains are built on transparency

and all end-user transaction information are public, permissionless blockchains introduce

several end-user privacy challenges that need to be addressed.

These challenges motivated us to ask several questions in this dissertation. First,

Can we develop atomic blockchain-based distributed transaction management protocols,

like 2PC, that do not assume a trusted coordinator?. Second, Can the ACID transaction

abstraction be supported in smart contract programming languages?. Finally, Can we

design protocols and systems that leverage permissionless blockchain infrastructures to

trade tangible assets?.
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This dissertation addresses several of the aforementioned questions. Given the as-

sumptions of cloud computing and permissionless blockchains as the new public cloud,

Can we develop decentralized systems and protocols that provide ACID transaction

guarantees for scalable, fault-tolerant, and privacy preserving data management systems?.

All the solutions explained in this dissertation focus on one or two of the following as-

pects: decentralization and ACID transaction support on different environments and

under different assumptions. In Section 1.2, we provide an overview of the works and

solutions explained in this dissertation and which aspects are the focus of each solution.

Section 1.3 provides an organization of the rest of this dissertation.

1.2 Dissertation Overview

Cloud computing and permissionless blockchains are two computing paradigm shifts

that have shaken many traditional distributed system design assumptions. On one hand,

the elasticity and the asymmetric and diverse Wide-Area-Network (WAN) latency across

cloud data-centers require rethinking traditional transactional and stream processing

system designs. On another hand, open permissionless blockchains powered by a highly

decentralized, untrusted, and limitless open network of compute nodes require rethinking

transaction management protocols that either assume trust among protocol participants

or centralization of a protocol coordinator. The research in this dissertation leverages

cloud and permissionless blockchain infrastructures to build scalable, efficient, and robust

GSDM systems with extended functionality.

Figure 1.3 summarized the system and protocol solutions proposed in this disserta-

tion. As shown, solutions in this dissertation focus on decentralization and/or ACID

transaction support. These solutions provide answers to the questions raised in Sec-

tion 1.1. First, we present GPlacer [218], a placement framework that optimizes the
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Figure 1.3: Overview of the system and protocol solutions proposed in this dissertation.

placement of geo-replicated databases to minimize the transaction latency while achiev-

ing the ACID transaction guarantees and the required availability level. Then, we

propose CoT [213], a load-balancing solution for GSDM’s imbalanced distributed storage

layers. CoT is a decentralized system that leverages the geo-distribution and elas-

ticity of core and edge data-centers. Afterwards, we introduce Aegis [216]. Aegis is a

decentralized, user-centric, and trust-free system that allows social network and web

end-users to have fine control of the privacy of their persona attributes.

In permissionless blockchain environments, we present several decentralized primi-

tives, building blocks, and abstractions that support correct ACID transaction semantics

under the trust-free and the open network assumptions. First, we present AC3WN [212],

the first correct atomic cross blockchain commitment protocol. AC3WN is decentral-

ized and does not require a trusted coordinator to ensure the ACID guarantees of cross

blockchain transactions. Then, we propose TXSC [214], a framework that provide ACID

transaction support for smart contract programming languages. Finally, we present a for-

ward looking platform that enables global asset management in blockchain systems [215].

We summarize the aforementioned solutions in the following Sections.

1.2.1 GPlacer

Current cloud providers offer hundreds of datacenters and thousands of edge datacen-

ters that are globally distributed all over the world. Unlike networks within a datacenter,
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the topology of the Wide-Area Network (WAN) is asymmetric and diverse—the latency

connecting a pair of datacenters can be an order of magnitude larger than the latency

connecting another pair. This makes placement a significant factor in performance. How-

ever, it is not only placement. The specifics of the transaction management protocol play

a crucial role in deciding which placement is ideal. GPlacer is a placement optimization

framework that embeds the transaction protocol constraints into an optimization to de-

rive both the data placement and the transaction protocol configuration that minimize

the overall transaction latency. In developing GPlacer, we discover counter-intuitive

lessons about data placement and transaction execution practices. Our evaluation shows

that applying these lessons in addition to known best practices generate deployments

that reduce the average transaction latency by up to 68%. GPlacer optimizes the replica

placement and the transaction execution plan for both leader-based protocols and non-

leader-based protocols (e.g., quorum based protocols). In addition, GPlacer optimizes the

placement for multi-row transactional workloads with strong consistency requirements.

1.2.2 CoT

Cache-on-Track (CoT) is a decentralized, elastic, and predictive front-end

caching mechanism to address the load-imbalance across GSDM distributed storage lay-

ers. CoT uses a small front-end cache to solve back-end load-imbalance as introduced

in [96]. However, CoT does not assume perfect caching at the front-end as assumed

in [96]. CoT proposes a new cache replacement policy specifically tailored for small front-

end caches that serve skewed workloads. CoT uses the space saving algorithm [158] to

track the top-k heavy hitters. The tracking information allows CoT to cache the exact

top C hot-most keys out of the approximate top-k tracked keys preventing cold and noisy

keys from the long tail to replace hot keys in the cache. CoT is decentralized in the sense
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that each front-end independently determines its hot key set based on the key access

distribution served at this specific front-end. This allows CoT to address back-end load-

imbalance without introducing single points of failure or bottlenecks that typically come

with centralized solutions. In addition, this allows CoT to scale to thousands of front-end

servers, a common requirement of social network and modern web applications. CoT is

elastic in that each front-end uses its local load information to monitor its contribution

to the back-end load-imbalance. Each front-end elastically adjusts its tracker and cache

sizes to reduce the load-imbalance caused by this front-end. In the presence of workload

changes, CoT dynamically adjusts front-end tracker to cache ratio in addition to both

the tracker and cache sizes to eliminate any back-end load-imbalance.

1.2.3 Aegis

Aegis is a decentralized and user-centric system that allows social network and web

end-users to have fine control of the privacy of their persona attributes. First, we propose

multifaceted privacy, a novel privacy model that aims to obfuscate a user’s sensitive

attributes while revealing the user’s public persona attributes. Multifaceted privacy

allows users to freely express their online public personas without revealing any sensitive

attributes of their choice.

To achieve multifaceted privacy, we build Aegis, a prototype user-centric social net-

work stream processing system that enables social network users to take charge of pro-

tecting their own privacy, instead of depending on the social network providers. Our

philosophy in building Aegis is that social network users need to introduce some noisy

interactions and obfuscation posts to confuse content based attribute inferences.

Choosing this noise introduces a challenging dichotomy and tension between the utility

of the user persona and her privacy. Obfuscation posts need to be carefully chosen to
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achieve obfuscation of private attributes without damaging the user’s public persona. The

main goal of Aegis is to automatically find and suggest the noise (obfuscation) postings

that achieve the multifaceted privacy.

1.2.4 AC3WN

An Atomic Cross-Chain Transaction, AC2T, is a distributed transaction that spans

multiple blockchains. This distributed transaction consists of sub-transactions and each

sub-transaction is executed on some blockchain. An Atomic Cross-Chain Commitment,

AC3, protocol is required to execute AC2Ts. This protocol is a variation of traditional

distributed atomic commitment protocols (e.g., 2PC [112, 57]). This protocol should

guarantee both atomicity and commitment of AC2Ts. Atomicity ensures the all-or-

nothing property where either all sub-transactions take place or none of them is exe-

cuted. Commitment guarantees that any changes caused by a cross-chain transaction

must eventually take place if the transaction is decided to commit. Unlike in 2PC and

other traditional distributed atomic commitment protocols, atomic cross-chain commit-

ment protocols are also trust-free and therefore must tolerate maliciousness [117].

We propose AC3WN, the first correct and decentralized all-or-nothing Atomic Cross-

Chain Commitment protocol that uses an open Witness Network. The commit and the

abort decision of all sub-transactions in AC2T are modeled as conflicting decisions. A

decentralized open network of witnesses is used to coordinate AC2T. The witness network

guarantees that conflicting decision must never simultaneously take place and either all

sub-transactions in an AC2T commit or all of them abort.
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1.2.5 TXSC

Smart contracts have their own variables and multiple functions that may be ex-

ecuted by different end-users results in transactions which might be incorporated in

different blocks by different miners. This clearly results in complex concurrency chal-

lenges which need to be handled by smart contract developers. We advocate leveraging

the traditional transactional approach to address the concurrency violations in the con-

text of smart contract executions in large scale blockchain systems. In particular, we

propose Transactional Smart Contracts (TXSC) as a framework that allows developers

to write smart contracts with correct transaction isolation semantics. Unlike previous

works [132, 151, 193] that propose smart contract analysis tools to detect concurrency

bugs in smart contracts, TXSC aims to free smart contract developers from the burden of

implementing correct concurrency control semantics for each smart contract. Instead, de-

velopers can focus on the smart contract application semantics and leave the concurrency

semantics to TXSC.

TXSC addresses concurrency challenges in smart contract development. In particular,

1. We model smart contract concurrency anomalies as transaction isolation problems.

Examples illustrate how different smart contract concurrency anomalies can be

mapped to the problem of transaction isolation of either single domain or dis-

tributed cross-domain transactions.

2. TXSC is the first framework to provide smart contract developers with transactional

primitives start transaction and end transaction. TXSC takes a smart contract that

contains these primitives as an input and translates it to a transactionally correct

smart contract using the smart contract native language.
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1.2.6 Asset Management in Blockchain Systems

Permissionless blockchains (e.g., Bitcoin) have shown a wide success in implement-

ing global scale peer-to-peer cryptocurrency systems. In such blockchains, new currency

units are generated through the mining process and are used in addition to transaction

fees to incentivize miners to maintain the blockchain. Although it is clear how currency

units are generated and transacted on, it is unclear how to use the infrastructure of

permissionless blockchains to manage other assets than the blockchain’s currency units

(e.g., cars, houses, etc.). We propose a global asset management system that leverages

the infrastructure of permissionless blockchains as a marketplace for global assets. This

proposal unifies both permissioned (trusted) and permissionless blockchains in order to

build generic asset management system. A governmental permissioned blockchain au-

thenticates the registration of end-user assets through smart contract deployments on a

permissionless blockchain. Afterwards, end-users can transact on their assets through

smart contract function calls (e.g., sell a car, rent a room in a house, etc). In return,

end-users get paid in currency units of the same blockchain or other blockchains through

atomic cross-chain transactions and governmental offices receive taxes on these transac-

tions in cryptocurrency units.

1.3 Organization

The rest of the dissertation is organized as follows. Part I provides solutions to build

scalable and efficient cloud data management systems. First, GPlacer is presented in

Chapter 2. Chapter 3 describes the details of CoT. Afterwards, we propose multifaceted

privacy and Aegis in Chapter 4. Part II includes robust primitives and abstractions that

extend the functionality of permissionless blockchains. Chapter 5 presents the details

and the correctness proofs of the AC3WN protocol. Chapter 6 describes how to leverage
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the infrastructure of permissionless blockchains to build global asset managenment sys-

tem. Chapter 7 explains the details of the TXSC framework. Part III summarizes the

dissertation and discusses future directions in GSDM systems research in Chapter 8.
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Building Scalable and Efficient

Cloud Data Management Systems
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Chapter 2

GPlacer: Global-Scale Placement of

Transactional Data Stores

2.1 Overview

Internet applications strive for high-performance 24/7 service to clients dispersed

around the world. Achieving this is threatened by complete datacenter outages; either

planned or unplanned. To overcome these challenges, application services and their

backend databases are increasingly being deployed on multiple datacenters spanning large

geographic regions (geo-replication). F1 [195], Spanner [79], and Tao [59] are examples of

deployed systems that are geographically replicated for fault-tolerance and performance

reasons.

Moving to Global-Scale Data Management (GSDM), despite its benefits, raises many

challenges that are not faced by traditional deployments. The large WAN communi-

cation latency is orders of magnitude larger than the traditional LAN communication

latency. Figure 2.1 illustrates the latency difference between communication messages

that occur within the same machine, among different machines in one datacenter, or
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Figure 2.1: Latency of Wide-Area Network Round-Trip Time communication (WAN
RTT) compared to memory access latency [181] and network latency within a datacenter
(local RTT).

in multiple datacenters in different geographical regions. This large communication la-

tency of the WAN motivates systems like Yahoo’s PNUTS [77], Facebook’s Tao [59]

and others [138, 167] to trade off replica consistency and/or multi-row transaction sup-

port with high availability and scalability. However, enterprise applications and ap-

plications with complex and evolving schemas have more interest in data management

systems that provide transactional ACID properties [196, 79, 53]. Application devel-

opers spend significant time to build transaction semantics and complex mechanisms,

that are error-prone, on top of the eventual consistent datastores in order to handle

stale data items and reason about inconsistency [195, 79]. Therefore, in the past few

years, many solutions have emerged to provide strongly consistent transactions for geo-

replicated databases [79, 154, 134, 166, 165, 145]. These solutions use different replication

and isolation techniques in order to minimize the number of WAN messages required to

achieve strong ACID transactional guarantees for geo-replicated databases, hence reduc-

ing the transaction latency.

Data placement is the problem of deciding the subset of datacenters to host a full

or a partial replica of the data to achieve a certain objective such as minimizing the

transaction latency, minimizing the deployment monetary costs, and any combination of

these and other user-defined objective functions.

We propose GPlacer; an optimization framework that solves the data placement prob-

lem. GPlacer embeds the commit protocol constraints into an optimization framework to
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derive both the data placement and the commit protocol configurations that minimize the

overall transaction latency. In developing GPlacer, we discover counter-intuitive lessons

about data placement and transaction execution practices. These lessons exploit the

latency diversity and asymmetry of the WAN links and are widely applicable to Paxos-

based commitment protocols [111, 154] and leader-based commitment protocols [79, 53].

GPlacer incorporates these lessons, the commitment protocol constraints, and the appli-

cation requirements in an optimization framework to find the placement that minimizes

the average transaction latency.

C O V I Si T Se Sy SP

C 0(1) 22(2) 65(13) 136(5) 189(12) 113(5) 142(12) 159(2) 185(11)

O 22(2) 1(1) 88(14) 125(2) 166(13) 101(11) 131(13) 178(3) 182(11)

V 65(13) 88(14) 1(16) 73(13) 220(22) 156(16) 179(20) 219(13) 121(16)

I 136(5) 125(2) 73(13) 0(0) 180(18) 211(10) 233(14) 301(5) 185(12)

Si 189(11) 166(12) 220(22) 180(17) 1(9) 68(8) 97(13) 169(8) 329(21)

T 113(5) 101(11) 156(18) 211(10) 68(9) 0(3) 32(9) 104(2) 263(15)

Se 142(9) 131(13) 179(20) 233(13) 97(13) 32(10) 1(9) 133(8) 290(16)

Sy 159(2) 178(3) 219(12) 301(5) 169(10) 104(2) 133(8) 1(0) 338(11)

SP 185(13) 182(12) 121(17) 185(13) 329(23) 263(16) 290(18) 338(14) 1(11)

Table 2.1: The average RTT latencies between different datacenters in milliseconds and
the standard deviation inside parentheses.

WAN links are diverse and asymmetric; a link connecting a pair of datacenters can

be an order of magnitude larger than a link connecting another pair. Table 2.1 shows

the average measured Round-Trip Time (RTT ) between every pair of nine Amazon AWS

datacenters in California (C), Oregon (O), Virginia (V ), São Paulo (SP ), Ireland (I),

Sydney (Sy), Singapore (Si), Tokyo (T ), and Seoul (Se). As shown, the average RTT

between California and Oregon datacenters is 22ms while the average RTT between

Singapore and São Paulo datacenters is 329ms. Therefore, the number of required WAN

messages per transaction is not the only factor that dominates the transaction latency.

Transaction latency is a product of both the transaction commit protocol, which controls
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r0.6

Figure 2.2: The average latency, of all the clients in 9 datacenters, to reach the closest
quorum (2 out 3) for all the possible

(
9
3

)
= 84 different placements sorted by latency.

the number of required WAN messages per transaction, and the locations of the replicas,

hence the placement, which controls the latency per WAN message.

To illustrate the placement effect on the average obtained transaction latency, we

conduct the following experiment. We equally distribute clients among the nine AWS

datacenters. Three out of the nine datacenters are chosen to host a data replica. The

time to reach the closest quorum, two replicas out of these three, is measured for all the

clients for all the possible placements and the average latency is reported. Figure 2.2

shows the effect of only changing the placement on the average obtained latency for all

the clients while fixing the protocol. As seen in Figure 2.2, changing only the placement

while fixing all the other parameters (the protocol, the workload distribution, etc.) can

lead to a significant change of 1.75x between the minimum and the maximum reported

average latency. This latency difference amplifies for real workloads when transactions

are executed in chains [150].

Unlike GPlacer that optimizes the placement for multi-row transactional workload

with strong consistency requirements, many works focus on optimizing the placement

for weaker consistency levels and single-row operations. SPANStore [208] develops an

optimization framework to minimize the monetary cost of a geo-replicated key/value store
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deployment. This framework optimizes the total cost of processing, storage, bandwidth,

and I/O and finds the placement that achieves the minimum overall cost while meeting

the application requirements. Liu et al. [146], like SPANStore, optimize the monetary

cost of geo-replicated key/value store deployments. However, they consider cost savings

exploiting resource reservation payment model instead of the pay-as-you-go payment

model while avoiding over reservation. Ping et al. [178] propose the use of a utility

function to derive a placement that achieves a balance between the availability and the

speed of data access. Volley [44] analyzes data access logs and generates a migration plan

for data partitions to minimize the access latency.

Sharov et al. [194] optimize the placement for strong consistent transactions using

leader-based protocols. Sharov assumes that a database is sharded into multiple partitions

and each partition is independently replicated. Each partition has a leader replica

that serializes all the transactions that span this partition to achieve isolation. This

leader replicates the updates to a majority quorum of the partition replicas to achieve

fault tolerance. Although they provide placements for strong consistent transactional

workloads, their optimizations are tightly coupled with leader-based protocols and it does

not apply to the many non-leader-based protocols that are widely used such as [111, 176,

154, 134, 54]. Also, their resulting optimal placement allocates all the partition leaders

together in one datacenter. Placing all partition leaders in one datacenter introduces a

single point of failure. A datacenter outage can lead to a temporal loss of access to the

entire data until all partition leaders are re-elected. In addition, transactions that span

a single partition might incur higher latency than the latency observed when the leader

of each partition is placed closer to the clients that frequently access this partition.

The rest of the chapter is organized as follows. Section 2.2 builds the case for the

importance of replica placement frameworks by showing the common placement mistakes

committed by practitioners and theoreticians during our replica placement demonstration
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in [217]. Section 2.3 explains the transaction model, the client requests, and the assump-

tions and limitations of application requirements. Although GPlacer can optimize the

placement for different classes of commitment protocols, a Paxos-based protocol is used

to explain the details of GPlacer. Section 2.4 formalizes the placement problem into an

exhaustive search problem. Although the exhaustive search finds the optimal placement,

it does not efficiently scale with the number of datacenters. Therefore, we introduce sev-

eral placement heuristics that find sub-optimal placements while efficiently scale with the

number of datacenters. Section 2.5 describes the counter-intuitive lessons learned during

the development of GPlacer and their impact on the transaction latency. In Section 2.6,

we evaluate the effect of the placement lessons on the transaction latency and the abort

rate. We also evaluate the output and the performance of the proposed heuristics com-

pared to the exhaustive search. In Section 2.7, we explain the changes that need to be

done to extend GPlacer to optimize for other protocols. The chapter is concluded in

Section 2.8.

2.2 DB-Risk: The Game of Global Database Place-

ment

DB-Risk [217] is a game that is designed to motivate deeper understanding of the

challenges of data placement in geo-replicated environments. It also showcases the need

for optimization frameworks to optimize the placement of geo-replicated databases. The

game is designed to be played by the demo participants to introduce a competitive

element. A live version of the DB-Risk game can be found in [10].

DB-Risk System model. The DB-Risk model of geo-replication consists of a topol-

ogy of datacenters and clients executing transactional workload. Data is fully replicated
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to a subset of AWS datacenters. Users issue transactions that consist of read and write

operations. Each client executes transactions back-to-back. The execution of transac-

tions depends on the replication protocol. DB-Risk focuses on majority based replication

and commitment protocols explained as follows. A client executes a transaction by per-

forming the reads and buffering the writes. Read requests are sent to a majority of

datacenters. The highest version read is used. After executing reads and writes a vote

request is sent to datacenters. The vote request consists of the read versions and the

buffered write operations. Each datacenter, upon receiving a vote request, attempts to

lock all objects that are being written. Additionally, it verifies that the read versions

were not overwritten. If both are successful, the datacenter sends back a positive vote.

Otherwise, a negative vote is sent. The client commits the transaction if a majority

of positive votes is received and aborts the transaction otherwise. The client sends the

decision to all replicas. Once a majority acknowledges the receipt of the decision, the

transaction terminates. The transaction latency is the time from the beginning of ex-

ecuting operations until terminating the transaction. We define the commit latency as

the time spent committing the transaction, which is equivalent to the transaction latency

without the time spent reading the data values.

DB-Risk Game Details. In DB-Risk, players are asked to place replicas in dat-

acenters around the world with the aim of minimizing the transaction latency. Each

player gets a set of placement optimizations to choose from to enhance the transaction

latency. The winner is the player with a placement and set of optimizations that achieve

the lowest average transaction latency. Figure 2.3 shows a screenshot of the DB-Risk

game. Participants are shown a map of nine AWS datacenters in California, Oregon,

Virginia, Ireland, Sao Paulo, Singapore, Seoul, Tokyo, and Sydney. In addition, pairwise

average Round-Trip Time (RTT) among the nine datacenters is provided. The workload

at each datacenter is represented by the number of blue clients. Participants are asked
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Figure 2.3: A screenshot of the DB-Risk game.

to place five data replicas in the nine available datacenters. In addition, participants

are given the option to use some protocol optimizations like optimistic reads, passive

replica reads, and request handoff. Optimistic reads allow transaction clients to read data

values from any replica and validate the data version at commit time. Similarly, passive

replica reads permit transaction clients to read data values from local caches that are

asynchronously updated in each datacenter. Read versions must be validated at commit

time as well. Request handoff enables transaction clients to handoff transaction read

and commit operations to other datacenters aiming to reduce operation latency. Read

optimizations are formally explained in Section 2.3.2 and request handoff is formalized

in Section 2.5.1.

Data replica placement has twofold effect on transaction latency as follows:

• The distances between transaction clients and data replicas affect read and com-

mit latency as clients have to reach a replica or a set of replicas to execute each

operation.

• The distances among different data replicas significantly affect transaction latency
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as data replicas have to synchronously coordinate among each other to ensure

transaction strong consistency.

Currently, there are hundreds of core datacenters and thousands of edge datacen-

ters [13] distributed around the global and ready to host data replicas of different appli-

cations. Therefore, Db-Risk’s search space for the optimal placement is considered small.

However, many of the DB-Risk participants focused on one of the placement effects on

transaction latency and ignore the other. Participants choose to place replicas in data-

centers that have most of the clients ignoring the effect of coordination among replicas on

transaction latency. Although this strategy is intuitive and reduces the time for a client

to reach a replica, it does not find the optimal placement in many of DB-Risk’s scenarios.

This is because the datacenters that have larger number of clients happen to be far from

each other and the time to reach a quorum of replicas is maximized using this strategy.

We use the following DB-Risk scenario to point out the problems of placing replicas near

clients without considering the distance among different replicas.

Consider the DB-Risk scenario shown in Figure 2.4. Clients are located in Ireland,

Sao Paulo, Singapore, and Sydeny. However, the optimal placement of five replicas for

DB-Risk’s majority-base protocol is to place data replicas in California, Oregon, Vir-

ginia, Seoul, and Tokyo. This placement places quorums of replicas close to each other

(quorums are shown using the green and red dotted curves). Clients in both Ireland and

Sao Paulo handoff their commit requests to Virginia (green lines) and clients in both

Singapore and Sydney handoff their requests to Seoul (red lines). This placement allows

the replica in Virginia to quickly form a quorum (3 of 5 ) with the replicas in California

and Oregon. Also, the replica in Seoul can rapidly form a quorum with the replicas in

Tokyo and California. The intersection between the two quorums (in California) guar-

antees serializability. Surprisingly, in this example, none of the chosen replicas
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Figure 2.4: A placement scenario that shows the importance of considering different
optimization aspects to minimize the average transaction latency.

are placed in datacenters that have clients.

We summarize the placement lessons we learned during DB-Risk as follows:

• The placement search space is currently huge considering the number of core and

edge datacenters.

• Even with a restricted search spaces, manual approaches tend to use intuitive but

not optimal placement strategies that result in higher average transaction latency.

• Placement optimization frameworks are necessary to find the replica placement that

achieves the minimum average transaction latency

Hence, this chapter presents GPlacer, a placement optimization framework for multi-

row transactional workloads with strong consistency requirements.
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2.3 Background

Global-scale placement is the problem of deciding which datacenters should store a full

or a partial replica of an application’s data subject to a certain objective function. Objec-

tive functions can vary between minimizing the deployment monetary cost [208, 146] or

minimizing the data access latency for a defined set of client operations [194]. Objective

functions are always constrained by the application requirements (e.g., availability, upper

bound access time, or bandwidth usage). In this section, we present our storage model

and our assumptions about the workload distribution, the application requirements, and

the objective function.

The universe of datacenters, denoted by DC, is defined as all the datacenters that

can host an application1 instance and/or a replica2 of the database. We assume that the

application is deployed on a subset of the datacenters DCapp ⊆ DC. The clients of the

application are scattered around the globe and for simplicity, we assume that clients are

collocated with their closest datacenter. The application is deployed in all the datacenters

that have clients. However, these datacenters can be different from the datacenters that

host replicas. DCdb ⊆ DC is the subset of datacenters that host a database replica. We

assume that the database is partitioned and all the partitions are fully replicated in DCdb.

2.3.1 The Transaction Management Protocol

The clients of the application access the globally-distributed storage by issuing trans-

actions, which are collections of read and write operations followed by a commit or an

abort. GPlacer considers transactions with strong guarantees, i.e., serializability [57].

Strong consistent transactions on globally-distributed data require more coordination

than weaker forms of access like eventual consistency or single-key atomicity— thus mak-

1Application refers to the middle tier logic.
2Replica refers to a copy of the backend database.

28



GPlacer: Global-Scale Placement of Transactional Data Stores Chapter 2

ing strongly consistent transactions more expensive. A strong consistency transactional

interface is more natural to programmers and is required by many applications. Thus, we

adopt such strong access semantics for GSDM as others did from both academia [154, 134]

and industry [79].

Figure 2.5: The state-transition diagram of a dis-

tributed transaction adopted from [111].

We adopt the distributed

transaction model proposed by

Gray and Lamport [111]. Fig-

ure 2.5 shows the different states

of a transaction and the corre-

sponding execution phases. A

client drives the execution of a

transaction in three phases. The

details of these three phases dif-

fer across different transaction management protocols. However, the abstract semantics

behind these phases are the same for all the protocols that provide the same strong trans-

actional guarantees. The three phases of a transaction are: the execution phase, the vote

collection phase, and the apply phase.

During the execution phase, the transaction is in the working state when read and

write operations are processed. We assume that writes are locally buffered at the client

and the updates are sent to the data replicas in the second phase. This assumption

is widely used in many geo-replicated transaction management protocols [79, 154, 134].

For a read operation, clients communicate with their read coordinator, rc. rc processes

a read request and responds back to the client. The RTT between a client c and rc is

denoted by RTTc−to−rc and the time for rc to process the read request is denoted by Prc .

The total execution phase latency is denoted by Le = nr.(RTTc−to−rc + Prc) where nr

is the average number of read requests per transaction. The transaction management
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protocol determines the values of nr, RTTc−to−rc , and Prc . Some protocols assume that

the client is the read coordinator. In such case, RTTc−to−rc = 0. Also, some protocols

require that the client issues read requests one by one and others require that the client

should batch all the reads in one request. The processing time Prc depends on how many

replicas rc should communicate with to serve a read request. In our model protocol, rc

has to communicate with a majority quorum to serve each read (we also consider read

optimizations later in Section 2.3.2). As write requests are locally buffered, their effect

on the execution phase latency is negligible. During the execution phase, a client might

decide to abort the transaction by simply moving the transaction to the aborted state.

However, if the client decides to commit the transaction, the transaction is moved to the

prepared state and the vote collection phase starts.

During the vote collection phase, the client sends the transaction’s details to the

commit coordinator cc which is responsible for coordinating with the other replicas to

decide either to commit or to abort the transaction. Typically, the cc uses either two-

phase commit (2PC) with two-phase locking (2PL) [79] or quorum-based approaches

(e.g., Paxos) with 2PL [154]. The vote collection phase can be mapped to the first phase

of the 2PC or the first round of Paxos. The latency of the voting phase is denoted

by Lv = RTTc−to−cc
2

+ RTTcc−to−p where RTTc−to−cc is the RTT between c and cc and

RTTcc−to−p is the round-trip time between the cc and the furthest participant p included

in the voting process.

If the decision of the vote collection phase is to abort, the client is notified, the

transaction is moved to the aborted state, the other participants are asynchronously

updated, and the obtained locks are released. However, if the decision is to commit,

cc starts the apply phase by sending the apply message to all the participants. Upon

receiving the apply message, the participants commit the transaction, release the locks,

and respond back to the coordinator. cc notifies the client and the transaction is moved
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to the committed state. The latency of the apply phase is denoted by La = RTTcc−to−p+

RTTc−to−cc
2

as the apply phase takes a round of communication with the participants in

addition to the time to inform the client about the decision. A transaction commit latency

Lc is the time spent in the vote collection phase and the apply phase combined: Lc =

RTTc−to−cc+2·RTTcc−to−p. The transaction latency Lt is the time from the beginning till

the end of a transaction: Lt = Le+Lc = nr·(RTTc−to−rc+Prc)+RTTc−to−cc+2RTTcc−to−p.

GPlacer optimizes the average overall transaction latency over all the clients in differ-

ent datacenters. It is designed to optimize the placement for a wide class of transaction

commitment protocols.GPlacer focuses on optimizing for multi-master Paxos-based pro-

tocols [154, 111] and for leader-based protocols [79] both on partitioned fully replicated

databases. In multi-master Paxos, each replica can act as the commitment coordinator

role and uses the two rounds of Paxos for both transaction isolation and replication. How-

ever, in leader-based protocols, a transaction can fall into one of two categories: single-

partition transactions or multi-partition transactions. Single-partition transactions span

only one partition and the isolation between transactions that span this partition is man-

aged by the leader of this partition. Multi-partition transactions span multiple partitions

and typically 2PC is used between the leaders of the partitions involved in a transac-

tion to achieve isolation. In both categories, partition leaders replicate the updates of

committed transactions to a majority quorum of their partition replicas using only the

second round of Paxos.

In Section 2.4, we formalize GPlacer. We use Replicated Commit [154] as our protocol

model where reads are served from a majority of the replicas and commits are done using

the two rounds of Paxos for isolation and replication. In Section 2.3.2, we explain some

commonly used optimization to reduce the execution phase latency. In Section 2.7, we

explain how to extend GPlacer to optimize placement for leader-based protocols like

Spanner [79].
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2.3.2 Read optimizations

In this section, we present two widely-used read optimizations that are considered in

GPlacer. A read request latency Lr = (RTTc−to−rc + Prc). The first optimization, opti-

mistic read, aims to eliminate the read processing time Prc . The second optimization,

passive replica read aims to eliminate the time to reach the coordinator RTTc−to−rc

and the processing time Prc by bringing a copy of the data to the client’s datacenter.

We define two different types of replicas a datacenter can host: active replica or passive

replica. An active replica contributes synchronously in the vote collection and the apply

phases and can act the coordinator and the participant roles. However, a passive replica

is a read-only replica. It is asynchronously updated after the transactions are committed.

Optimistic read aims to eliminate the read request processing time by optimistically

reading data values from the closest active replica without any coordination with other

active replicas. This optimization has been introduced before as early as in Postgres-

R local reads [130] and as fast reads in Zookeeper [123]. Applying optimistic reads

require validating the value read in the commit phase to guarantee the freshness of the

optimistically read values in the execution phase. In Spanner [79], reads are served by the

leader of each partition. However, optimistic reads can be beneficial by reading from the

closest partition replica instead from the partition leader. In Replicated Commit [154], a

client is required to read from a quorum of the replicas. Applying optimistic read reduces

the read latency by reading from one replica instead of a quorum.

Passive replica read aims to completely eliminate the read latency by processing

read requests from a local read-only replica or a passive replica. The reason behind

this naming is that a passive replica does not participate actively in the commit decision.

Therefore, adding more passive replicas does not affect the commit latency. However,

these replicas need to be asynchronously updated which increases the bandwidth required
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per committed transaction. Also, having many passive replicas increases the deployment

cost. Data read from a passive replica needs to be validated in the commit phase to

guarantee freshness. If the data is frequently updated at the active replicas, the data

values read from a passive replica will be stale which increases the transaction abort rate.

The concept of passive replica read has also been introduced in [194] as weak reads.

GPlacer chooses the set of active replicas and the set of passive replicas. In addition,

it assigns rc and cc for clients in every datacenter. Application requirements are given

as inputs to the framework. GPlacer takes as an input the fault tolerance level f , the

total number of replicas t, and the workload distribution. f determines the number of

active replicas and t determines the number of passive replicas. The workload distribu-

tion determines which datacenters should have active replicas, which should have passive

replicas, and which should not have a replica at all. GPlacer finds placements that opti-

mize the overall average transaction latency for strongly consistent multi-row transaction

workloads. However, systems that require non-transactional or weakly consistent opera-

tions can easily be tuned in GPlacer’s prototype but we do not discuss them since they

were treated in previous works [44, 208].

2.3.3 Notation

Table 2.2 summarizes the notation used throughout the chapter.

2.4 Framework formulation

GPlacer finds the placement that minimizes the average transaction latency for parti-

tioned fully replicated databases. As explained in Section 2.3, Paxos-based protocols use

majority quorums for both transaction isolation and replication while leader-based pro-

tocols use majority quorums only for replication. Placement for Paxos-based protocols
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DC the set of all datacenters of size —DC—
DCapp DCapp ⊆ DC is the subset of datacenters that host an application
DCdb DCdb ⊆ DC is the subset of datacenters that host a database replica
c a client who submits transactions
rc a transaction read coordinator replica
Prc the time for rc to process a read request
nr the average number of read requests per transaction
cc a transaction commit coordinator replica
p the furthest participant replica in a transaction voting phase
RTTa−to−b the round-trip time from site a to site b
Le Le = nr.(RTTc−to−rc +Prc) is the latency of a transaction execution phase
Lc Lc = RTTc−to−cc + 2 · RTTcc−to−p is the latency of a transaction commit

phase
Lt Lt = Le + Lc is the overall transaction latency
Lp a request (either read or commit) processing time at a coordinator
f the number of datacenter scale outages that should be tolerated
ci the number of clients at datacenter i
Psp−txn percentage of single-partition transactions
Pmp−txn percentage of multi-partition transactions (Pmp−txn = 100− Psp−txn)

Table 2.2: Summary of GPlacer notation.

requires finding the subset of datacenters that should host replicas and the majority quo-

rums used by the protocol. Leader-based protocols requires an additional step of placing

the leaders of different database partitions on the replicas chosen in the first step. In

Section 2.4.1, we formulate the placement problem into an exhaustive search model for

Paxos-based protocols. This model evaluates all the possible placement combinations

and returns one placement that achieves the minimum average transaction latency for a

given workload. The model finds the placement DCdb ⊆ DC and the majority quorums

for each replica in this placement that optimizes the objective function. Although the

model finds the optimal placement, due to the model complexity, it does not scale with

the number of datacenters when multiple cloud providers and edge datacenters are con-

sidered. Therefore, in Section 2.4.2, we introduce two replica-placement heuristics to find

placements that are close to optimal among hundreds of datacenters. The performance
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and the resulting placements of these heuristics are evaluated in Section 2.6.

2.4.1 Model formulation

The inputs of GPlacer fall into two categories:

• Datacenter information: this includes the number of datacenters |DC| and the

average RTT between every pair of the datacenters.

• Application information: this includes the number of datacenter scale outages

f the deployment should tolerate and the application workload distribution. The

workload distribution is denoted by ci and represents the number of clients c at

datacenter i.

The outputs of GPlacer include:

• The list of datacenters that should host a database replica.

• The read and the commit coordinator of clients at each datacenter. Clients at one

datacenter share the same read and commit coordinators.

As the placement problem can be represented as an optimization model, we first im-

plemented the placement model as an integer program and used the open source GLPK

solver [14]. However, the solver could not efficiently scale with the number of datacenters.

Many of the optimization constraints are conditional and to convert them to linear con-

straints, multiple binary output variables are introduced. The binary outputs and their

related constraints are quadratic in the number of the datacenters O(|DC|2). In addition,

GLPK solver introduced performance overhead. Therefore, to conduct a fair comparison

with the replica-placement heuristics, we implement both the exhaustive search and the

heuristics in Java. The objective function of the placement model is to minimize the
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average transaction latency of all the clients in all the datacenters. Algorithm 1 shows

the details of the exhaustive search model.

Algorithm 1 Evaluates all the possible placement combinations and returns the one
that achieves the minimum average latency for given application requirements.

Input: f , |DC|, RTTij ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC} Output: DCdb,
DCrc, and DCcc

1: DCdb, DCrc, DCcc ← {}, minL←MaxInt
2: for each Set S ⊂ DC, |S| = 2f + 1 do
3: l, Src, Scc ← evalLat(S,RTT,C)
4: if l < minL then
5: minL← l, DCdb ← S
6: DCrc ← Src, DCcc ← Scc
7: end if
8: end for

Algorithm 1 evaluates all the possible subsets of the input datacenters of size 2f +

1 and returns the one that minimizes the average transaction latency. The function

evalLat, in line 3, has different implementations based on the enabled read optimizations.

When all the read optimizations are disabled, evalLat assumes that the read coordinator

and the commit coordinator are collocated with the client who issues a transaction and

reads are served from a majority quorum of replicas. However, if optimistic read is

enabled, the read latency is updated to the RTT to the closest chosen replica from the

client. Also, if passive replica read is enabled, the read latency is updated to zero as all

the clients perform read operations from a local replica.

2.4.2 Replica-placement heuristics

Although Algorithm 1 finds the optimal placement among all the possible placements,

it does not efficiently scale when the total number of the datacenters, |DC|, or the number

of the replicas, |DCdb|, increases. Our experiments show that choosing 7 replicas out of 60

datacenters
(
60
7

)
takes 2 hours while choosing 7 replicas out of hundreds of datacenters
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(which is the case when we consider edge datacenters) could take years. Therefore,

we present two replica-placement heuristics that efficiently find placements with sub-

optimal average transaction latency. These replica-placement heuristics consider the two

main aspects that affect the transaction latency; the latency between the clients and

the replicas and the latency between the replicas themselves. The running-time of these

heuristics is polynomial in the total number of the datacenters. The performance and

the resulting placements of these heuristics are compared to the exhaustive search results

in Section 2.6.2.

The first replica-placement heuristic is shown in Algorithm 2. It uses an iterative

greedy algorithm to choose the replicas. It starts with an empty set of chosen replicas

DCdb ← {}, line 1, and at each iteration, it adds one replica to DCdb until 2f +1 replicas

are chosen. The inner loop, lines 4-14, evaluates the effect of adding each unchosen replica

to DCdb on the average transaction latency and the replica that achieves the minimum

latency is added to DCdb, line 15. evalLat is the same evaluation function introduced in

Algorithm 1 line 3. The intuition behind this heuristic is that choosing the best candidate

at each step should lead to a solution that is optimal or close to the optimal.

The second replica-placement heuristic is presented in Algorithm 3. It is based on the

K-Means algorithm. It assigns weights to every datacenter, initially equals to the number

of clients in this datacenter; line 4. A datacenter weight is updated according to the

number of quorums it participates at; line 13. Datacenter weights are iteratively updated

and datacenters are sorted by their weights. The top 2f + 1 datacenters are chosen to

host replicas in lines 5 and 18. The algorithm evaluates the placement in every iteration

and stops when the average transaction latency converges. To avoid fast convergence to a

local minimum, a minimum iteration count is required before terminating the algorithm;

lines 1 and 7. The minimum evaluated placement is saved to make sure that the final

placement does not achieve higher transaction latency than any placement that has been
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Algorithm 2 Greedily adds one replica at a time achieving the minimum average latency
at each iteration.
Input: f , |DC|, RTTij ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC} Output: DCdb,
DCrc, and DCcc

1: DCdb, DCrc, DCcc ← {}
2: while |DCdb| < 2f + 1 do
3: S ← DCdb, minL←MaxInt, minDC ← φ
4: for all dc ∈ DC do
5: if dc /∈ S then
6: S ← S ∪ {dc}
7: l, Src, Scc ← evalLat(S,RTT,C)
8: if l < minL then
9: minL← l, minDC ← dc
10: DCrc ← Src, DCcc ← Scc
11: end if
12: S ← S \ {dc}
13: end if
14: end for
15: DCdb ← DCdb ∪ {minDC}
16: end while

evaluated before.

2.5 Surprising Placement Lessons

During the development of GPlacer, we learned some counter-intuitive lessons about

data placement that exploit the diversity and the asymmetry of the WAN links to decrease

the execution and the commit latencies, hence the transaction latency. (The transaction

latency Lt is sum of the execution latency Le and the commit latency Lc.) In this Section,

we explain the details of these placement lessons and their effect on transaction latency.

2.5.1 Request handoff as a Transaction Execution Optimization

A client executes either read or commit requests. The latency of these two requests

can be abstracted as the sum of: RTTc−to−rc or RTTc−to−cc , the round-trip time between
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Algorithm 3 Assigns weights to datacenters and iteratively chooses the top weighted
2f + 1 to host replicas.

Input: f , |DC|, RTTij ∀i, j ∈ DC, t and the Set C = {ci ∀i ∈ DC}
Output: DCdb, DCrc, and DCcc

1: minIter ← t, iter ← 0
2: DCdb, DCrc, DCcc ← {}
3: ln−1, ln ←MaxInt
4: Weights← {c0, c1, ..., c|DC|} // Initialize weights with the number of clients at each

datacenter.
5: DCdb ← top(sort(Weights), 2f + 1) // Sort on weights and choose a placement of

the top 2f + 1.
6: ln, DCrc, DCcc ← evalLat(DCdb, RTT,C)
7: while ln < ln−1 || iter + + < minIter do
8: ln−1 ← ln
9: NewW ← {0, 0, ..., 0} // New Weights
10: for all dc1 ∈ DC do
11: for all dc2 ∈ DC do
12: if dc2 ∈ nearestQuorum(dc1) then
13: NewW [dc2]+ = Weights[dc1]
14: end if
15: end for
16: end for
17: Weights← NewW
18: DCdb ← top(sort(Weights, 2f + 1)
19: ln, DCrc, DCcc ← evalLat(DCdb, RTT,C)
20: end while

the client and a read or a commit coordinator and Lp, the time for the coordinator to

process this request.

Therefore, the request latency is mainly affected by the distance between the client

and the coordinator, the distance between the coordinator and the participants, and

finally the number of communication rounds required between the coordinator and the

participants to serve the request. Different transaction management protocols choose the

coordinator based on some intuitive heuristics. In [154], Mahmoud et al. assume that

the client is the coordinator of a transaction. In Spanner [79], the 2PC coordinator is

randomly chosen from the leaders of the partitions involved in a multi-partition trans-
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action. In [166], Nawab et al. choose the coordinator to be the closest replica to the

client. However, the choice of the coordinator can drastically affect the request latency.

To illustrate this effect, we provide two examples of 2PC and Paxos deployments to show

that carefully choosing the coordinator can save up to 48% of the average latency.

Two-phase commit: assume there are three data partitionsX, Y , and Z deployed in

three AWS datacenters in SP , V , and I respectively. Now, assume a client in datacenter

I wants to commit a transaction t that updates the elements x1 ∈ X, y1 ∈ Y , and

z1 ∈ Z. The commit latency at any coordinator equals to double the RTT between the

coordinator and the furthest involved partition leader. Therefore, if the client chooses

the leader of partition Z in datacenter I to be the commit coordinator, the resulting

commit latency is 2 · max(RTTIV , RTTISP ) = 2 ∗ 185 = 370ms. Although the time

between the client and the coordinator is reduced to zero, the latency is still high because

the coordinator is relatively far from SP . However, if the client chooses the leader of

partition Y in datacenter V to be the commit coordinator, the resulting commit latency

is RTTIV + 2 · max(RTTV I , RTTV SP ) = 73 + 2 ∗ 121 = 315ms saving around 15%

of the commit latency without modifying any constraint of the original 2PC protocol.

Also, when datacenter V is the 2PC coordinator, the participant at datacenter I will

be notified about the commit decision after RTTIV
2

+ max(RTTV I , RTTV SP ) + RTTIV
2

=

36.5+121+36.5 = 194ms. The participant at datacenter I can directly inform the client

with the decision saving around 48% of the latency obtained when I is chosen to be the

coordinator.

Paxos: assume there are five replicas of the database in datacenters I, V , SP , O,

and C as shown in Figure 2.6. A client in datacenter SP wants to commit a transaction

that requires to execute the two rounds of Paxos to reach a consensus about the commit

decision. The latency of the two rounds of Paxos equals to double the RTT between the

coordinator and the furthest replica in the closest majority to the coordinator. Therefore,
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if the client in SP chooses the replica in SP to be the coordinator, the resulting commit

latency equals to 2 ·max(RTTSPSP , RTTSPV , RTTSPO) = 2 ·max(1, 121, 182) = 2∗182 =

364ms. However, if the client in SP , delegates the coordination to the replica in V ,

the resulting commit latency will be RTTSPV + 2 · max(RTTV V , RTTV I , RTTV C) =

121 + 2 ∗ 73 = 267ms saving around 26.6% of the commit latency obtained when SP is

chosen to be the coordinator.

Figure 2.6: Five replicas of the database are

deployed in datacenters I, V , SP , O, and C.

We presented a primitive version of the

handoff idea in [217]. To generalize, for

any request R from a client at datacen-

ter A, it might be beneficial to handoff

this request to a replica at datacenter B if

the summation of RTTAB and the time for

datacenter B to serve this request LB are

less than LA, the time to serve this request

at datacenter A. In other words, request

handoff from datacenter A to datacenter

B is beneficial if LA > RTTAB +LB. This

optimization is widely applicable on different protocols and different request types.

2.5.2 Request Handoff for inter-datacenter Big Data Replica-

tion

In Section 2.5.1, we explain how request handoff leverages asymmetry and diversity

in network latency to reduce the latency of distributed transactions. In this section,

we explain how Zhang et al. [224] use request handoff to reduce the latency of inter-

datacenter big data replication. Finally, we explain how request handoff can be presented
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(a) Replication over direct links (b) Replication leveraging network over-
lay paths

Figure 2.7: An example to illustrate how overlay network paths can be used to reduce
big data transfer time.

as a general inter-datacenter network optimization.

Zhang et al. [224] show that inter-datacenter multicast forms 91% of the inter-

datacenter traffic in Baidu. Therefore, the authors present BDS, a centralized application-

level multicast service that leverages overlay network paths to accelerate large-scale inter-

datacenter big data replication. We use the following example shown in Figure 2.7

from [224] to illustrate the link between BDS’s overlay network paths and request hand-

off. Suppose datacenter DCA shown in Figure 2.7 wants to replicate a 3 GB file to both

datacenter DCB and datacenter DCC . Also, assume that the bandwidth capacity be-

tween any two datacenter pair is 1GB/s. As shown in Figure 2.7a, if DCA uses direct

links with both DCB and DCC to transfer the file, it takes 3 seconds to transfer the file

to both datacenters considering only transmission delays. However, if DCA uses overlay

network paths, the transmission time can be significantly reduced. Figure 2.7b shows an

example of how DCA can use overlay network paths to shorten the transmission latency.

First, DCA divides the file into three 1GB segments (shown in purple, red and green in

Figure 2.7b) . Then, DCA sends the first 1GB segment (purple) to DCB and the second

1GB segment (red) in parallel to DCC in 1 second. Now DCA can send the third 1GB
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segment (green) to both DCB and DCC while DCB and DCC exchange the first and the

second segments using overlay network paths in 1 additional second. Considering only

transmission time and assuming that the links between DCB and DCC are available and

free, DCA can leverage the overlay network paths to reduce the transmission time to 2

seconds saving 33% of the transmission time. In this example, DCA leverages the avail-

able links between DCB and DCC to hand off the transmission of the purple segment

from DCB to DCC instead of from DCA to DCC . Similarly, the transmission of the red

segment is handed off to DCC where DCC sends the red segment to DCB instead of

doing the sending from DCA to DCB.

It is important to highlight the differences between the handoff examples in Sec-

tion 2.5.1 and these examples in Section 2.5.2. In Section 2.5.1, both Paxos and 2PC

protocols exchange small sized messages over wide area inter-datacenter networks. There-

fore, propagation delays represented by the length of the links are the main bottleneck

while transmission delays represented by link bandwidth are neglected. Handoff reduces

the propagation latency by introducing little bandwidth overhead by the handoff mes-

sages. On the other hand, the examples in Section 2.5.2 mainly suffer from bandwidth

limitation and hence transmission delays are the main bottleneck while propagation de-

lays are neglected. In this case, handoff reduces the transmission latency by introduc-

ing little propagation delays on the overlay network paths. The examples in both Sec-

tion 2.5.1 and Section 2.5.2 show that request handoff can be leveraged to significantly

reduce the latency of an inter-datacenter network request. Request handoff is a network

optimization that leverages either diversity and asymmetry in inter-datacenter propaga-

tion latency or in inter-datacenter transmission latency to optimize the overall latency

of an inter-datacenter request.
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2.6 GPlacer Evaluation

A performance evaluation study of the request handoff, the read optimizations, and

the proposed heuristics is conducted in this section. In our study, we first evaluate the

effect of the read optimizations and the request handoff on execution and commit latencies

in Section 2.6.1. In Section 2.6.2, we evaluate the performance of the replica-placement

heuristics introduced in Section 2.4.2. We compare the running time and the resulting

placement latencies of these heuristics to the running time and the placement latencies

of the exhaustive search algorithm in Algorithm 1.

2.6.1 Placement optimizations

Experimental setup

We use the placement scenario in Figure 2.6 to evaluate the effect of read optimizations

and request handoff on the transaction latency. Request handoff exploits the diversity

of the WAN links to decrease the transaction latency and this scenario shows a good

example of this diversity, RTTSPC > 8RTTOC . Amazon EC2 machines in Ireland (I),

Virginia (V ), São Paulo (SP ), Oregon (O), and California (C) datacenters are leveraged

as infrastructure for our experiments. Larger machines are used in datacenters C and O

so that we can measure the handoff effect without causing throttling in datacenters C

and O. Compute optimized machines are used because computing is the main source of

contention in our experiments. We use one compute optimized (c4.large) machine with

2 vCPUs and 3.75 GB of RAM in datacenters V , I, and SP while we use one compute

optimized (c3.4xlarge) machine with 16 vCPUs and 30 GB of RAM in datacenters C and

O. We assign active replicas to servers in C, O, and V while we assign passive replicas

to servers in I and SP . These machines use HBase [15] as the underlying persistent data

store. The average RTTs observed between different datacenters are shown in Table 2.1.
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The observed RTTs are sampled over 48 hours using AWS nano machines pinging each

other. The data is fully replicated in all five datacenters and an optimistic Paxos-based

concurrency control protocol is used. A transaction requires two majority rounds to

commit and the read-set is validated at commit time. We implemented multiple versions

of the protocol based on how read requests are processed in the execution phase. Maj0

is conservative and requires read requests to be processed from a majority of the active

replicas. Maj1 implements the optimistic read optimization and requires read requests

to be processed from one active replica. Maj2 implements the optimistic read and

passive replica optimizations and processes read requests from either active or passive

replica. Transaction commitment is implemented the same way in all three versions. The

commit handoff optimization is applied on all three versions and it only changes the way

a commit coordinator is chosen. For this, we implemented Maj0h, Maj1h, and Maj2h

to apply the handoff optimization on the three protocol implementations. We compare

the average obtained commit and transaction latencies for all the three implementations

with and without applying the handoff optimization. In addition, we compare transaction

throughputs and abort rates for all three implementations.

Dedicated client machines in each datacenter generate client workloads. Each client

machine is configured with a read coordinator and a commit coordinator. Also, client

machines execute a workload thread per client. Clients are uniformly distributed among

the 5 datacenters in all the experiments unless otherwise stated. Client machines use

YCSB [78] to generate workloads. Since YCSB is not designed to generate multi-record

transactions, we use Transactional YCSB (T-YCSB) [84], an extended version of YCSB

that generates multi-record transactions, for this purpose. T-YCSB generates transac-

tions that consist of read and write operations on different data records followed by a

commit. Each transaction is configured to have five operations. The ratio of read to

write operations is 1:1 unless otherwise specified. Read and write operations choose a
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key from a pool of 50000 keys following a zipfian distribution. This small number of keys

enables us to observe the performance of the system under contention. Each client can

have only one outgoing transaction. Clients submit a new transaction as soon as they

receive a decision for their outgoing transaction. Each experiment runs for 10 minutes.

Experimental results

Transaction latency. Active replicas are placed in only three datacenters C, O,

and V . Therefore, a majority quorum consists of two active replicas. The Maj0 imple-

mentation assumes that clients at each datacenter drive their transactions(no handoff).

Also, it assumes that reads have to be processed from at least two active replicas and

commits have to be accepted by and applied to at least two active replicas. Maj0h allows

clients in SP to handoff their commit to O and clients in I to handoff their commits to

C. Maj1h and Maj2h allow the same handoff plans while enabling optimistic reads in

Maj1h and optimistic reads and passive replica reads in Maj2h.

Figure 2.8 shows the effect of increasing the number of clients from 10 to 200 on

transaction latency. As a transaction requires two round trips to a quorum of two active

replicas to commit, clients in C and O have their location as an advantage that they can

always achieve lower transaction latency and higher throughput than clients in other sites

as long as the number of clients is equal in all the datacenters. Therefore, to measure

the effect of the placement optimizations on transaction latency in isolation from the

throughput, we use the normalized transaction latency as a comparison metric between

different implementations. The normalized transaction latency Lnorm is the average of

the average transaction latency in all the datacenters Lnorm = LC+LO+LV +LI+LSP
5

where

Li is the average transaction latency at datacenter i. As shown in Figure 2.8a, applying

read optimizations in Maj2 significantly enhances Lnorm by 48% compared to Maj0.

Also, the handoff in Maj2h enhances Lnorm by 26% compared to Maj2 leading to a
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Figure 2.8: Transaction latency as number of clients increases. Figures 2.8a, 2.8b, 2.8c,
and 2.8d share one plotting legend.

total enhancement of 60% compared to Maj0. Increasing the number of clients beyond

100 (20 at each datacenter) causes throttling in server machines.

This throttling leads to an increase in the overall transaction latency and a decrease

in the benefit obtained from the applied optimizations. Figures 2.8b and 2.8c shows the

effect of applying read optimizations and handoff on transaction latencies at I and SP

respectively. As shown, read optimizations and handoff together in Maj2h enhances

transaction latency compared to Maj0 by 62% and 68% in I and SP respectively. Also,

handoff in Maj2h saves 30% and 38% of the transaction latency compared to Maj2

for clients in I and SP . Figure 2.8d presents the effect of the placement optimizations

on the transaction latency in C. As shown, read optimizations significantly reduce the

transaction latency in C by 49% as reads are served locally. This applies until throttling

happens. After throttling, the transaction latency in C increases for Maj2 because
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Figure 2.9: Overall average commit latency as number of clients increases.

serving reads locally in all the datacenters increases the frequency of the transactions

that are ready to commit in the system causing more contention in datacenters C and

O. The handoff slightly increases the transaction latency in C and its negative effect is

negligible before the throttling happens.

Commit latency. Figure 2.9 shows the effect of the placement optimizations on the

overall average commit latency. While the normalized transaction latency is significantly

enhanced by applying read optimizations, read optimizations negatively affect the overall

commit latency. By reducing the execution phase latency, the number of active transac-

tions that are ready to commit increases and leads to an increase in the commit latency.

However, applying handoff enhances the overall average commit latency by 10− 15% in

Maj0h, Maj1h, and Maj2h compared to Maj0, Maj1, and Maj2 respectively.

Throughput. The throughput, measured by number of operations per second, is

presented in Figure 2.10. Figure 2.10a shows that applying read optimizations in Maj1

and Maj2 achieves 2x the throughput in Maj0 until hitting the thrashing point(≥ 100

clients). After that, throughput is slightly higher in Maj1, Maj2, and Maj1h and

about 8% higher in Maj2h. Throughput results in I and SP are shown in Figures 2.10b
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Figure 2.10: Throughput as number of clients increases. Figures 2.10a, 2.10b, and 2.10c
share one plotting legend.
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Figure 2.11: Overall abort rate as number of clients increases.

and 2.10c. These figures show a significant increase of 100% between Maj0 and Maj2h

in I and 170% between the same implementations in SP . Applying handoff not only

significantly benefits I and SP but also benefits the overall throughput.

Abort rate. The abort rates are shown in Figure 2.11. The abort rate is a result of

many factors, such as the amount of contention, the number of concurrent transactions,

the lifetime of a transaction, among others. As shown, the overall abort rate is below

1% for all six different implementations. However, we observed two important patterns

that are worth analyzing. First, read optimizations increase the abort rate by 100% for

some experiment runs. Obtaining the read-set from a local copy increases the chances

of reading a stale value and hence increasing transaction aborts. However, these stale

values has a small life-time as all the passive replicas are asynchronously updated. Second,

handoff decreases the abort rate by 25−30% because a transaction’s lifetime is shortened

by reducing the overall transaction latency and specifically the high latency transactions

in I and SP .
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2.6.2 Replica-placement heuristics

We evaluate the replica-placement heuristics in this section. This evaluation tries to

answer two questions: How fast can these heuristics find a placement? and how good is

this placement compared to the optimal placement?. For that, we compare the perfor-

mance and the resulting placements of the proposed heuristics in Algorithms 2 and 3 to

the performance and the resulting placements of the exhaustive search in Algorithm 1 at

scale. We assume that optimistic reads and passive replica reads are enabled. Therefore,

we use commit latency as a comparison metric as the transaction execution latency is

negligible when reads and writes are served locally and none of the replicas are overloaded

with requests. The proposed heuristics and the exhaustive search programs are all im-

plemented in Java which allows us to conduct a fair comparison. The exhaustive search

algorithm evaluates all possible placement combinations and returns the placement that

achieves the minimum average commit latency for a certain workload. Algorithm 2 intro-

duces a greedy heuristic that adds one replica at a time achieving the minimum average

transaction latency at each iteration. Algorithm 3 is inspired by the K-Means algorithm

and it assigns initial weight to each datacenter equals to the number of clients at this

datacenter. Weights are updated based on the quorums a datacenter participates at and

based on handoff.

Finding the optimal placement of five replicas within ten datacenters can be efficiently

done. It requires the evaluation of only 252 different placements and the exhaustive search

is sufficient in this case. However, in a more realistic setting, the number of datacenters

around the globe, including edge datacenters, may easily exceed 4000 datacenters [13].

Also, it has been shown in [208] that it is economically efficient to deploy storage in

datacenters of different cloud providers as none of them provides cheaper storage in all

the deployment regions. To choose five datacenters out of 4000 datacenters requires to
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evaluate 8.5e+15 different placements. To get a sense of the space size and the run-

ning time, we evaluated the exhaustive search algorithm and the heuristics proposed in

Section 2.4.2 using different datasets.

First, we generate multiple datasets of datacenters DC distributed around the globe

with randomly chosen round-trip time 0 ≤ RTT ≤ 500 ms. We also make sure that

the triangle inequality holds among any three datacenters such that ∀A,B,C∈DC RTTAB +

RTTBC ≥ RTTAC . Second, we distribute the workload around the generated datacenters

with ratios between 0− 10. We use the generated data as inputs to both the exhaustive

search program and the placement heuristics. These experiments are run locally on an

Intel Core i5-3210M CPU 2.50GHz with 8GB of RAM.

Running time. In this part of the evaluation, we answer the first question, namely

How fast can these heuristics find a placement?. Figures 2.12a and 2.12b show a running

time comparison between the exhaustive search and the placement heuristics when the

number of replicas are 5 and 7 respectively. As shown, the running time of the exhaustive

search grows exponentially with the number of datacenters while the running time of both

heuristics are negligible(< 1 second). Also, the exponential power significantly increases

as the number of replicas required to be placed increases. This shows that it is infeasible

to use the exhaustive search when the datacenter set size exceeds few tens.

Resulting placements. The second part of the evaluation answers the second

question about the quality of the placements found by the proposed heuristics. We

compare the commit latency of the resulting placement to the optimal commit latency of

the resulting placement decided by the exhaustive search. Figures 2.13a and 2.13b show

the relative commit latency of the heuristics compared to the optimal commit latency

when the number of placed replicas are 5 and 7 respectively. In these figures, the optimal

commit latency is represented by 1.0. A relative comparison of the commit latency is

shown for both the placement heuristics and the best of the two heuristics as well. As
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Figure 2.12: The running time (seconds), in log scale, of exhaustive search and placement
heuristics as number of datacenters increases. Figures 2.12a and 2.12b show the running
time when 5 replicas and 7 replicas are chosen respectively. Both figures share one
plotting legend.
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Figure 2.13: A comparison of the resulting commit latency of placements by exhaus-
tive search and placement heuristics as number of datacenters increases. Figures 2.13a
and 2.13b compare the estimated latency when 5 replicas and 7 replicas are chosen re-
spectively. Both figures share one plotting legend.

shown, the best of the two heuristics is optimal in 70% of the cases and within 5%−11% of

the optimal in the rest of the cases. As the running times of both heuristics is negligible,

we can always run both the heuristics and choose the best placement out of the two

results. Figure 2.13 suggests that neither heuristics beats the other in all cases.

53



GPlacer: Global-Scale Placement of Transactional Data Stores Chapter 2

2.7 GPlacer Extensions

In this section, we discuss how GPlacer can be extended to optimize the placement

for leader-based protocols. In leader-based protocols, a transaction can fall into one

of two categories: single-partition transactions or multi-partition transactions. Single-

partition transactions span only one partition and the isolation between transactions

that span this partition is managed by the leader of this partition. Multi-partition

transactions span multiple partitions and typically 2PC is used between the leaders of

the partitions involved in a transaction to achieve isolation. In both categories, partition

leaders replicate the updates of committed transactions to a majority quorum of their

partition replicas using only the second round of Paxos.

The average transaction latency for leader-based protocols is affected by the following

factors:

• The distance between the client and the partition leader.

• The distance between the partition leader and its replicas.

• The distance between different partition leaders involved in multi-partition trans-

actions.

• The percentage of multi-partition transactions Pmp−txn (how often 2PC is required

to be executed).

The first two factors mainly affect single-partition transactions while the last two

factors mainly affect multi-partition transactions. Finding the optimal placement for

leader-based protocols can easily become impractical. Consider a database with p par-

titions and we want to place the leaders of these partitions on r replicas. There are rp

different placement combinations and finding the optimal placement by checking all the
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combinations is impractical. For example, if a database has 500 partitions and we want

to place these partitions among 5 replicas. To find the optimal leader placements, 5500

different combinations need to be evaluated. Therefore, different heuristics are usually

used to limit the search space.

2.7.1 Leader-placement heuristics

A solution that considers all the optimization aspects should adapt the placement

based on the percentage of the multi-partition transactions Pmp−txn, and the client dis-

tribution. Sharov et al. [194] place the leaders of all the partitions in one datacenter.

Algorithm 4 implements the leader-placement heuristic introduced in [194] (heuristic

1). It iterates over all the replicas, Lines 2 and 4, and evaluates the latency assuming

that all the partition leaders are placed in the currently evaluated replica (Line 5). The

replica that achieves the minimum latency (Line 8) is returned (Line 11). This heuristic

optimizes the placement when Pmp−txn is high. However, when Pmp−txn is low, placing

the leaders of all the partitions in one datacenter can hurt the performance in addition

to introducing a single point of failure.

The second heuristic (heuristic 2) is to independently place the leaders of different

partitions. For every partition, place its leader at the same datacenter where it is accessed

the most. This heuristic optimizes the placement when Pmp−txn is low and partitions are

mostly accessed from one datacenter.

Placing all the partition leaders in one datacenter favors multi-partition transactions

while independently placing them in multiple datacenters favors single-partition trans-

actions. When the workload is a mixture of both transaction categories, both heuristics

fail to optimize the placement. Therefore, we present a third heuristic (heuristic 3)

that optimizes the placement when the workload is divided between the two categories.
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Algorithm 4 Finds datacenter dcl ∈ DC that achieves the minimum average transaction
latency assuming all the partition leaders are put together in one datacenter.

Input: DC, RTTij ∀i, j ∈ DC, and ci ∀i ∈ DC
Output: dcl

1: dcl ← ∅, l←MaxInt
2: for all j ∈ DC do
3: tempL← 0
4: for all i ∈ DC do
5: tempL+ = ci · (RTTij + qj) // qj is the time for replica j to reach its closest

quorum q ⊂ DC.
6: end for
7: if tempL < l then
8: l← tempL, dcl ← j
9: end if
10: end for
11: return dcl

This heuristic uses GPlacer to find a set of 2f + 1 datacenters that should host a replica

DCdb according to the workload distribution. Heuristic 3’s idea is to place partition

leaders among a set of datacenters DCdb that are centered among all clients. After using

GPlacer to find DCdb, heuristic 3 runs Algorithm 5 to independently place the leaders of

each partition among the set DCdb. Although, heuristic 2 independently places partition

leaders in the universe of all datacenters DC, heuristic 3 limits the placement options to

the set DCdb chosen by GPlacer. In Section 2.7.2, we compare the resulting placements

of the three heuristics.

Algorithm 5 Places the leader of each partition among the chosen replicas and closer
to the clients who access this partition the most.

Input: DCdb, and pi ∀i ∈ DC and ∀p ∈ P // P is the set of all partitions and pi is the
percentage of access for partition p from datacenter i.
Output: ∀p∈P lp

1: for all p ∈ P do
2: i← max(∀j∈DC pj)
3: lp ← nearest(dc ∈ DCdb, i) // returns the nearest datacenter dc ∈ DCdb to

datacenter i.
4: end for
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2.7.2 Leader-placement heuristics evaluation

We compare the expected average commit latency of the resulting leader placements

using the three heuristics. The percentage of distributed multi-partition transactions is

varied and the expected commit latency is calculated for the three heuristics. Before

placing partition leaders in heuristic 3, we use GPlacer’s exhaustive search algorithm

to find DCdb, the set of datacenters that are allowed to host partition leaders. Then,

heuristic 3 uses Algorithm 5 to place partition leaders among the set DCdb.

The commit latency of a single partition transaction is estimated as the RTT from

the client datacenter to the partition leader datacenter plus the RTT from the partition

leader datacenter to a majority of this partition replicas. The commit latency of a

multi-partition transaction requires an additional 2PC among the involved partitions.

In our evaluation, the 2PC’s latency is neglected if all the involved partition leaders

are placed together in the same datacenter and two round-trips to the furthest involved

partition leader if partition leaders are not in the same datacenter. When heuristic 2 or

heuristic 3 are used to placed partition leaders, the resulting placement typically places

partition leaders in different datacenters. Heuristic 3 limits the placement of partition

leaders among the set DCdb found by GPlacer. As heuristic 1 places all partition leaders

in one datacenter, heuristic 1 is considered a special case of heuristic 3 where the set of

datacenters that can host partition leaders DCdb is of size |DCdb| = 1. On the other hand,

heuristic 2 allows the placement of partition leaders in any datacenter in DC. Therefore,

heuristic 2 is considered a special case of heuristic 3 where the set of datacenters that can

host partition leaders DCdb is of size |DCdb| = |DC|. We measure the effect of varying

the size of DCdb on heuristic 3’s placements. The results are compared to both heuristic

1’s and heuristic 2’s placements while varying the percentage of distributed transactions.

Figure 2.14 shows the expected commit latencies when the three heuristics are used
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Figure 2.14: Comparison of the expected commit latency of the resulting leader place-
ments of heuristic 1 |DCdb| = 1 , heuristic 2 |DCdb| = 10, and heuristic 3 when |DCdb| = 3,
|DCdb| = 5, and |DCdb| = 7 while varying the percentage of distributed transactions.

to place partition leaders. The expected commit latency is shown in a log scale in the

y-axis and the percentage of the multi-partition transaction is shown in the x-axis. In

this experiment, clients are distributed among 10 datacenters where the RTT among each

pair varies from 0ms to 500ms and each transaction has to be replicated to a quorum of

size 3 before it is committed. Figure 2.14 reports the expected commit latencies of both

heuristic 1 and heuristic 2 in addition to heuristic 3 when the size ofDCdb is set to 3, 5, and

7. This aims to show the effect of varying |DCdb| on heuristic 3’s placement while changing

the percentage of distributed transaction. As heuristic 1 places all partition leaders in one

datacenters, the average commit latency does not change with the percentage of multi-

partition transactions. Placing all partition leaders in one datacenter encounters the

same average commit latency for both single-partition and multi-partition transactions.

Therefore, the average estimated commit latency of heuristic 1 is shown in Figure 2.14 as
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a horizontal solid black line. However, for heuristics 2 and 3, increasing the percentage of

multi-partition transactions increases the average commit latency as the cost of the 2PC

between all the involved partition leaders increases. Figure 2.14 suggests that heuristic

2 has an advantage over both heuristic 1 and 3 when the percentage of distributed

transactions is low (Pmp−txn ≤ 9%). However, heuristic 3 withDCdb = 5 has an advantage

over other heuristics when 9% < Pmp−txn ≤ 29%. Heuristic 1 gains advantage over other

heuristics when the percentage of distributed transactions is high (Pmp−txn > 29%).

Typically, the percentage of multi-partition transactions is around 10% [201, 203].
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Figure 2.15: The effect of varying the distance d among partition leaders of distributed
transactions while varying the percentage of multi-partition transactions.

Also, Figure 2.14 suggests that limiting the number of datacenters to host partition

leaders hurts the latency of single-partition transactions. As shown, when the percentage

of distributed transactions is low, heuristic 2 (|DCdb| = 10) outperforms both heuristic
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1 (|DCdb| = 1) and heuristic 3 when |DCdb| = 3, |DCdb| = 5, and |DCdb| = 7. This

happens because in both heuristics 1 and 3, partition leaders cannot be hosted in ev-

ery available datacenter and hence many single-partition transactions have to travel to

their partition leaders in other datacenters. On the other hand, limiting the number of

datacenters to host partition leaders significantly benefits the average commit latency

when the percentage of multi-partition transactions is high. Hosting partition leaders in

one or few datacenters limits the cost of 2PC that needs to be paid for multi-partition

transactions.

Another parameter that affects multi-partition transactions’ 2PC latency is the dis-

tance among the involved partition leaders. For this, we introduce a distance parameter

d that determines how far a distributed transaction can span. d = 1 means that a dis-

tributed transaction coordinated by partition leader i can only span partition leader j

where j is the nearest partition leader to i. If d is set to |DC|, it means a distributed

transaction coordinated by partition leader i can span any other partition leader j ∈ DC.

d determines the locality of a distributed transaction. When d is low, it means that

distributed transactions only span nearby partition leaders and hence the cost of 2PC

among the involved partition leaders is low. We evaluate the effect of varying d only on

leader placement heuristics 2 and 3 as heuristic 1 places all partition leaders together

and therefore d has no effect on heuristic 1’s expected commit latency. Also, as heuris-

tic 3 places partition leaders in the set DCdb, the distance parameter has the limits

0 ≤ d ≤ |DCdb| − 1. d = 0 results in a single-partition transaction while d = |DCdb| − 1

results in a distributed transaction that spans all partition leaders in DCdb. As shown in

Figure 2.14, both heuristics 2 and 3 favor single-partition transactions and when d = 1,

distributed transactions observe low 2PC overhead and hence lower average commit la-

tency. On the other hand, the benefit of placing all partition leaders in one datacenter

is reduced when d is low. Figure 2.15 shows the effect of varying the distance d among
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partition leaders of distributed transactions. In this experiment, clients are distributed

among 10 datacenters where the RTT among each pair varies from 0ms to 500ms and

each transaction has to be replicated to a quorum of size 3 before it is committed. In

addition, heuristic 3 is configured with |DCdb| = 5. Figure 2.15a clearly demonstrates

that heuristic 1 obtains higher commit latency than both heuristics 2 and 3 when d = 1.

As d increases and distributed transactions are allowed to span more partition leaders,

the cost of 2PC among partition leaders increases. Therefore, the resulting commit la-

tency increases for both heuristic 2 and 3 as shown in Figures 2.15b for d = 3 , 2.15c for

d = 7, and 2.15d for d = 9. This result suggests to use heuristic 1 when the percentage of

multi-partition transactions is high and distributed transactions are allowed to span all

partition leaders. When distributed transactions are limited to local geographical regions

and the percentage of multi-partition transactions is low, it is preferable to use either

heuristic 2 or heuristic 3 for partition leaders placement.

It is important to mention that the reported results differ for different scenarios and

estimates should be calculated a priori to decide which leader placement achieves the

minimum commit latency for a given scenario. Our framework evaluates the outcomes

of the three heuristics and chooses the placement that achieves the minimum latency.

2.8 GPlacer Conclusion

In this chapter, we address the data placement problem of geo-replicated databases

with strong consistency guarantees. We present different placement optimizations to re-

duce transactions execution latency and commit latency. These placement optimizations

are widely applied on different distributed transaction management protocols. Our eval-

uation shows that applying the read optimizations and the request handoff optimization

could reduce transaction latency by 68% and increases throughput by 170%. To ad-
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dress the placement problem at scale, we propose different placement heuristics that can

efficiently find sub-optimal placements within 5 − 10% of the optimal placements. Ex-

periments show that these heuristics are able to scale without significantly reducing the

quality of the resulting placements from the optimal placement. Finally, we discuss three

partition leader placement heuristics to place partition leaders. Experiments show that

none of the three heuristics is superior when the percentage of multi-partition transactions

varies. Unlike in [194] which uses one heuristic to place partition leaders regardless of

the percentage of multi-partition transactions, our framework switches between different

heuristics when the percentage of multi-partition transactions varies.
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Chapter 3

CoT: Decentralized Elastic Caches

for Cloud Environments

3.1 Introduction

Social networks, the web, and mobile applications have attracted hundreds of millions

of users [29, 39]. These users share their relationships and exchange images and videos in

timely personalized experiences [59]. To enable this real-time experience, the underlying

storage systems have to provide efficient, scalable, and highly available access to big

data. Social network users consume several orders of magnitude more data than they

produce [51]. In addition, a single page load requires hundreds of object lookups that

need to be served in a fraction of a second [59]. Therefore, traditional disk-based storage

systems are not suitable to handle requests at this scale due to the high access latency

of disks and I/O throughput bounds [222].

To overcome these limitations, distributed caching services have been widely deployed

on top of persistent storage in order to efficiently serve user requests at scale [211].

Distributed caching systems such as Memcached [32] and Redis [35] are widely adopted
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by cloud service providers such as Amazon ElastiCache [20] and Azure Redis Cache [22].

These caching services offer significant latency and throughput improvements to systems

that directly access the persistent storage layer. Redis and Memcached use consistent

hashing [128] to distribute keys among several caching servers. Although consistent

hashing ensures a fair distribution of the number of keys assigned to each caching shard,

it does not consider the workload per key in the assignment process. Real-world workloads

are typically skewed with few keys being significantly hotter than other keys [122]. This

skew causes load-imbalance among caching servers.

Load imbalance in the caching layer can have significant impact on the overall ap-

plication performance. In particular, it may cause drastic increases in the latency of

operations at the tail end of the access frequency distribution [121]. In addition, the

average throughput decreases and the average latency increases when the workload skew

increases [71]. This increase in the average and tail latency is amplified for real work-

loads when operations are executed in chains of dependent data objects [150]. A single

Facebook page-load results in retrieving hundreds of objects in multiple rounds of data

fetching operations [167, 59]. Finally, solutions that equally overprovision the caching

layer resources to handle the most loaded caching server suffer from resource under-

utilization in the least loaded caching servers.

Various approaches have been proposed to solve the load-imbalance problem using

centralized load monitoring [43, 207], server side load monitoring [121], or front-end load

monitoring [96]. Adya et al. [43] propose Slicer that separates the data serving plane

from the control plane. The control plane is a centralized system component that collects

metadata about shard accesses and server workload. It periodically runs an optimization

algorithm that decides to redistribute, repartition, or replicate slices of the key space to

achieve better back-end load-balance. Hong et al. [121] use a distributed server side load

monitoring to solve the load-imbalance problem. Each back-end server independently
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tracks its hot keys and decides to distribute the workload of its hot keys among other

back-end servers. Solutions in [43, 207] and [121] require the back-end to change the key-

to-caching-server mapping and announce the new mapping to all the front-end servers.

Fan et al. [96] use a distributed front-end load-monitoring approach. This approach shows

that adding a small cache in the front-end servers has significant impact on solving the

back-end load-imbalance. Caching the heavy hitters at front-end servers reduces the skew

among the keys served from the caching servers and hence achieves better back-end load-

balance. Fan et al. theoretically show through analysis and simulation that a small perfect

cache at each front-end solves the back-end load-imbalance problem. However, perfect

caching is practically hard to achieve. Determining the cache size and the replacement

policy that achieve near perfect caching at the front-end for dynamically changing and

evolving workloads is challenging.

We propose Cache-on-Track (CoT); a decentralized, elastic, and predictive

heavy hitter caching at front-end servers. CoT proposes a new cache replacement policy

specifically tailored for small front-end caches that serve skewed workloads. CoT

uses a small front-end cache to solve back-end load-imbalance as introduced in [96].

However, CoT does not assume perfect caching at the front-end. CoT uses the space

saving algorithm [158] to track the top-k heavy hitters. The tracking information allows

CoT to cache the exact top C hot-most keys out of the approximate top-k tracked keys

preventing cold and noisy keys from the long tail to replace hot keys in the cache. CoT

is decentralized in the sense that each front-end independently determines its hot key

set based on the key access distribution served at this specific front-end. This allows

CoT to address back-end load-imbalance without introducing single points of failure

or bottlenecks that typically come with centralized solutions. In addition, this allows

CoT to scale to thousands of front-end servers, a common requirement of social network

and modern web applications. CoT is elastic in that each front-end uses its local load
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information to monitor its contribution to the back-end load-imbalance. Each front-end

elastically adjusts its tracker and cache sizes to reduce the load-imbalance caused by

this front-end. In the presence of workload changes, CoT dynamically adjusts front-end

tracker to cache ratio in addition to both the tracker and cache sizes to eliminate any

back-end load-imbalance.

In traditional architectures, memory sizes are static and caching algorithms strive to

achieve the best usage of all the available resources. However, in a cloud setting where

there are theoretically infinite memory and processing resources and cloud instance mi-

gration is the norm, cloud end-users aim to achieve their SLOs while reducing the required

cloud resources and thus decreasing their monetary deployment costs. CoT’s main goal

is to reduce the necessary front-end cache size at each front-end to eliminate server-side

load-imbalance. Reducing front-end cache size is crucial for the following reasons: 1) it

reduces the monetary cost of deploying front-end caches. For this, we quote David Lomet

in his recent works [149, 148, 147] where he shows that cost/performance is usually more

important than sheer performance: ”the argument here is not that there is insufficient

main memory to hold the data, but that there is a less costly way to manage data.”. 2)

In the presence of data updates and when data consistency is a requirement, increasing

front-end cache sizes significantly increases the cost of the data consistency management

technique. Note that social networks and modern web applications run on thousands

of front-end servers. Increasing front-end cache size not only multiplies the cost of de-

ploying bigger cache by the number of front-end servers, but also increases several costs

in the consistency management pipeline including a) the cost of tracking key incarna-

tions in different front-end servers and b) the network and processing costs to propagate

updates to front-end servers. 3) Since the workload is skewed, our experiments clearly

demonstrate that the relative benefit of adding more front-end cache-lines, measured by

the average cache-hits per cache-line and back-end load-imbalance reduction, drastically
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decreases as front-end cache sizes increase.

CoT’s resizing algorithm dynamically increases or decreases front-end allocated mem-

ory in response to dynamic workload changes. CoT’s dynamic resizing algorithm is

valuable in different cloud settings where 1) all front-end servers are deployed in the

same datacenter and obtain the same dynamically evolving workload distribution, 2) all

front-end servers are deployed in the same datacenter but obtain different dynamically

evolving workload distributions, and finally 3) front-end servers are deployed at differ-

ent edge-datacenters and obtain different dynamically evolving workload distributions.

In particular, CoT aims to capture local trends from each individual front-end server

perspective. In social network applications, front-end servers that serve different geo-

graphical regions might experience different key access distributions and different local

trends (e.g., #miami vs. #ny). Similarly, in large scale data processing pipelines, several

applications are deployed on top of a shared caching layer. Each application might be

interested in different partitions of the data and hence experience different key access

distributions and local trends. While CoT operates on a fine-grain key level at front-end

servers, solutions like Slicer [43] operate on coarser grain slices or shards at the caching

servers. Server side solutions are complementary to CoT. Although capturing local trends

alleviates the load and reduces load-imbalance among caching servers, other factors can

result in load-imbalance and hence using server-side load-balancing, e.g., Slicer, might

still be beneficial.

We summarize the contributions of CoT as follows.

• Cache-on-Track (CoT) is a decentralized, elastic, and predictive front-end caching

framework that reduces back-end load-imbalance and improves overall performance.

• CoT dynamically minimizes the required front-end cache size to achieve back-end

load-balance. CoT’s built-in elasticity is a key novel advantage over other replace-
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ment policies.

• Extensive experimental studies that compare CoT’s replacement policy to both

traditional as well as state-of-the-art replacement policies, namely, LFU, LRU,

ARC, and LRU-2. The experiments demonstrate that CoT achieves server size

load-balance for different workload with 50% to 93.75% less front-end cache in

comparison to other replacement policies.

• The experimental study demonstrates that CoT successfully auto-configures its

tracker and cache sizes to achieve back-end load-balance.

• In our experiments, we found a bug in YCSB’s [78] ScrambledZipfian workload

generator. This generator generates workloads that are significantly less-skewed

than the promised Zipfian distribution.

The rest of the chapter is organized as follows. In Section 3.2, the system and data

models are explained. In Section 3.3, we motivate CoT by presenting the main advantages

and limitations of using LRU, LFU, ARC, and LRU-k caches at the front-end. We present

the details of CoT in Section 3.4. In Section 3.5, we evaluate the performance and the

overhead of CoT. The related work is discussed in Section 3.6 and the chapter is concluded

in Section 3.7.

3.2 System and Data Models

This section introduces the system and data access models. Figure 3.1 presents the

system architecture where user-data is stored in a distributed back-end storage layer

in the cloud. The back-end storage layer consists of a distributed in-memory caching

layer deployed on top of a distributed persistent storage layer. The caching layer aims
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Figure 3.1: Overview of the system architecture.

to improve the request latency and system throughput and to alleviate the load on the

persistent storage layer. As shown in Figure 3.1, hundreds of millions of end-users send

streams of page-load and page-update requests to thousands of stateless front-end servers.

These front-end servers are either deployed in the same core datacenter as the back-end

storage layer or distributed among other core and edge datacenters near end-users. Each

end-user request results in hundreds of data object lookups and updates served from the

back-end storage layer. According to Facebook Tao [59], 99.8% of the accesses are reads

and 0.2% of them are writes. Therefore, the storage system has to be read optimized

to efficiently handle end-user requests at scale.

The front-end servers can be viewed as the clients of the back-end storage layer. We

assume a typical key/value store interface between the front-end servers and the storage

layer. The API consists of the following calls:

• v = get(k) retrieves value v corresponding to key k.

• set(k, v) assigns value v to key k.
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• delete(k) deletes the entry corresponding key k.

Front-end servers use consistent hashing [128] to locate keys in the caching layer. Con-

sistent hashing solves the key discovery problem and reduces key churn when a caching

server is added to or removed from the caching layer. We extend this model by adding

an additional layer in the cache hierarchy. As shown in Figure 3.1, each front-end server

maintains a small cache of its hot keys. This cache is populated according to the accesses

that are served by this front-end server.

We assume a client driven caching protocol similar to the protocol implemented by

Memcached [32]. A cache client library is deployed in the front-end servers. Get

requests are initially attempted to be served from the local cache. If the requested key is

in the local cache, the value is returned and the request is marked as served. Otherwise,

a null value is returned and the front-end has to request this key from the caching layer

at the back-end storage layer. If the key is cached in the caching layer, its value is

returned to the front-end. Otherwise, a null value is returned and the front-end has to

request this key from the persistent storage layer and upon receiving the corresponding

value, the front-end inserts the value in its front-end local cache and in the server-side

caching layer as well. As in [167], a set, or an update, request invalidates the key in both

the local cache and the caching layer. Updates are directly sent to the persistent storage,

local values are set to null, and delete requests are sent to the caching layer to invalidate

the updated keys. The Memcached client driven approach allows the deployment of a

stateless caching layer. As requests are driven by the client, a caching server does not

need to maintain the state of any request. This simplifies scaling and tolerating failures

at the caching layer. Although, we adopt the Memcached client driven request handling

protocol, our model works as well with write-through request handling protocols.

Our model is not tied to any replica consistency model. Each key can have multiple
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incarnations in the storage layer and the caching layer. Updates can be synchronously

propagated if strong consistency guarantees are needed or asynchronously propagated

if weak consistency guarantees suffice. Achieving strong consistency guarantees among

replicas of the same object has been widely studied in [71, 121]. Ghandeharizadeh et

al. [102, 103] propose several complementary techniques to CoT to deal with consistency

in the presence of updates and configuration changes. These techniques can easily be

adopted in our model according to the application requirements. We understand that

deploying an additional vertical layer of cache increases potential data inconsistencies and

hence increases update propagation and synchronization overheads. Therefore, our goal

in building CoT is to reduce the front-end cache size in order to limit the inconsistencies

and the synchronization overheads that result from deploying front-end caches, while

maximizing their benefits.

3.3 Front-end Cache Alternatives

Fan et al. [96] show that a small cache in the front-end servers has big impact on the

caching layer load-balance. Their analysis assumes perfect caching in front-end servers for

the hottest keys. A perfect cache of C cache-lines is defined such that accesses for the C

hot-most keys always hit the cache while other accesses always miss the cache. However,

the perfect caching assumption is impractical especially for dynamically changing and

evolving workloads. Different replacement policies have been developed to approximate

perfect caching for different workloads. In this section, we discuss the workload assump-

tions and various client caching objectives. This is followed by a discussion of the ad-

vantages and limitations of common caching replacement policies such as Least Recently

Used (LRU), Least Frequently Used (LFU), Adaptive Replacement Cache (ARC [157])

and LRU-k [171].
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Workload assumptions: Real-world workloads are typically skewed with few keys

being significantly hotter than other keys [122]. Zipfian distribution is a common example

of a key hotness distribution. However, key hotness can follow different distributions such

as Gaussian or different variations of Zipfian [58, 114]. In this work, we assume skewed

workloads with periods of stability (where hot keys remain hot during these periods).

Client caching objectives: Front-end servers construct their perspective of the key

hotness distribution based on the requests they serve. Front-end servers aim to achieve

the following caching objectives:

• The cache replacement policy should prevent cold keys from replacing hotter keys

in the cache.

• Front-end caches should adapt to the changes in the workload. In particular, front-

end servers should have a way to retire hot keys that are no longer accessed. In

addition, front-end caches should have a mechanism to expand or shrink their

local caches in response to changes in workload distribution. For example, front-

end servers that serve uniform access distributions should dynamically shrink their

cache size to zero since caching is of no value in this situation. On the other hand,

front-end servers that serve highly skewed Zipfian (e.g., s = 1.5) should dynamically

expand their cache size to capture all the hot keys that cause load-imbalance among

the back-end caching servers.

A popular policy for implementing client caching is the LRU replacement policy.

Least Recently Used (LRU) costs O(1) per access and caches keys based on their recency

of access. This may allow cold keys that are recently accessed to replace hotter cached

keys. Also, LRU cannot distinguish well between frequently and infrequently accessed

keys [141]. For example, this access sequence (A, B, C, D, A, B, C, E, A, B, C, F,

...) would always have a cache miss for an LRU cache of size 3. Alternatively, Least

72



CoT: Decentralized Elastic Caches for Cloud Environments Chapter 3

Frequently Used (LFU) can be used as a replacement policy. LFU costs O(log(C))

per access where C is the cache size. LFU is typically implemented using a min-heap

and allows cold keys to replace hotter keys at the root of the heap. Also, LFU cannot

distinguish between old references and recent ones. For example, this access sequence

(A, A, B, B, C, D, E, C, D, E, C, D, E ....) would always have a cache miss for an LFU

cache of size 3 except for the 2nd and 4th accesses. This means that LFU cannot adapt to

changes in workload. Both LRU and LFU are limited in their knowledge to the content of

the cache and cannot develop a wider perspective about the hotness distribution outside

of their static cache size. Our experiments in Section 3.5 show that replacement policies

that track more keys beyond their cache sizes (e.g., ARC, LRU-k, and CoT) beat the

hit-rates of replacement policies that have no access information of keys beyond their

cache size especially for periodically stable skewed workloads.

Adaptive Replacement Cache (ARC) [157] tries to realize the benefits of both LRU

and LFU policies by maintaining two caching lists: one for recency and one for frequency.

ARC dynamically changes the number of cache-lines allocated for each list to either favor

recency or frequency of access in response to workload changes. In addition, ARC uses

shadow queues to track more keys beyond the cache size. This helps ARC to maintain

a broader perspective of the access distribution beyond the cache size. ARC is designed

to find the fine balance between recent and frequent accesses. As a result, ARC pays

the cost of caching every new cold key in the recency list evicting a hot key from the

frequency list. This cost is significant especially when the cache size is much smaller than

the key space and the workload is skewed favoring frequency over recency.

LRU-k tracks the last k accesses for each key in the cache, in addition to a pre-

configured fixed size history that include the access information of the recently evicted

keys from the cache. New keys replace the key with the least recently kth access in the

cache. The evicted key is moved to the history, which is typically implemented using a
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LRU like queue. LRU-k is a suitable strategy to mock perfect caching of periodically

stable skewed workloads when its cache and history sizes are perfectly pre-configured

for this specific workload. However, due to the lack of LRU-k’s dynamic resizing and

elasticity of both its cache and history sizes, we choose to introduce CoT that is designed

with native resizing and elasticity functionality. This functionality allows CoT to adapt

its cache and tracker sizes in response to workload changes.

3.4 Cache on Track (CoT)

Front-end caches serve two main purposes: 1) decrease the load on the back-end

caching layer and 2) reduce the load-imbalance among the back-end caching servers.

CoT focuses on the latter goal and considers back-end load reduction a complementary

side effect. CoT’s design philosophy is to track more keys beyond the cache size. This

tracking serves as a filter that prevents cold keys from populating the small cache and

therefore, only hot keys can populate the cache. In addition, the tracker and the cache

are dynamically and adaptively resized to ensure that the load served by the back-end

layer follows a load-balance target.

The idea of tracking more keys beyond the cache size has been widely used in replace-

ment policies such as 2Q [127], MQ [226], LRU-k [171, 172], ARC [157], and in other

works like Cliffhanger [75] to solve other cache problems. Both 2Q and MQ use multiple

LRU queues to overcome the weaknesses of LRU of allowing cold keys to replace warmer

keys in the cache. Cliffhanger uses shadow queues to solve a different problem of mem-

ory allocation among cache blobs. All these policies are desgined for fixed memory size

environments. However, in a cloud environment where elastic resources can be requested

on-demand, a new cache replacement policy is needed to take advantage of this elasticity.

CoT presents a new cache replacement policy that uses a shadow heap to track more
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keys beyond the cache size. Previous works have established the efficiency of heaps in

tracking frequent items [158]. In this section, we explain how CoT uses tracking beyond

the cache size to achieve the caching objectives listed in Section 3.3. In particular, CoT

answers the following questions: 1) how to prevent cold keys from replacing hotter keys in

the cache?, 2) how to reduce the required front-end cache size that achieves lookup load-

balance?, 3) how to adaptively resize the cache in response to changes in the workload

distribution? and finally 4) how to dynamically retire old heavy hitters?.

First, we develop the notation in Section 3.4.1. Then, we explain the space saving

tracking algorithm [158] in Section 3.4.2. CoT uses the space saving algorithm to track the

approximate top-k keys in the lookup stream. In Section 3.4.3, we extend the space saving

algorithm to capture the exact top C keys out of the approximately tracked top-k keys.

CoT’s cache replacement policy dynamically captures and caches the exact top C keys

thus preventing cold keys from replacing hotter keys in the cache. CoT’s adaptive cache

resizing algorithm is presented in Section 3.4.4. CoT’s resizing algorithm exploits the

elasticity and the migration flexibility of the cloud and minimizes the required front-end

memory size to achieve back-end load-balance. Section 3.4.4 explains how CoT expands

and shrinks front-end tracker and cache sizes in response to changes in workload.

3.4.1 Notation

The key space, denoted by S, is assumed to be large in the scale of trillions of keys.

Each front-end server maintains a cache of size C <<< S. The set of cached keys is

denoted by Sc. To capture the hot-most C keys, each front-end server tracks K > C

keys. The set of tracked key is denoted by Sk. Front-end servers cache the hot-most

C keys where Sc ⊂ Sk. A key hotness hk is determined using the dual cost model

introduced in [85]. In this model, read accesses increase a key hotness by a read weight
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S key space
K number of tracked keys at the front-end
C number of cached keys at the front-end
hk hotness of a key k
k.rc read count of a key k
k.uc update count of a key k
rw the weight of a read operation
uw the weight of an update operation
hmin the minimum key hotness in the cache
Sk the set of all tracked keys
Sc the set of tracked and cached keys
Sk−c the set of tracked but not cached keys
Ic the current local lookup load-imbalance
It the target lookup load-imbalance
α the average hit-rate per cache-line

Table 3.1: Summary of notation.

rw while update accesses decrease it by an update weight uw. As update accesses cause

cache invalidations, frequently updated keys should not be cached and thus an update

access decreases key hotness. For each tracked key, the read count k.rc and the update

count k.uc are maintained to capture the number of read and update accesses of this key.

Equation 3.1 shows how the hotness of key k is calculated.

hk = k.rc × rw − k.uc × uw (3.1)

hmin refers to the minimum key hotness in the cache. hmin splits the tracked keys

into two subsets: 1) the set of tracked and cached keys Sc of size C and 2) the set of

tracked but not cached keys Sk−c of size K−C. The current local load-imbalance among

caching servers lookup load is denoted by Ic. Ic is a local variable at each front-end that

determines the current contribution of this front-end to the back-end load-imbalance. Ic

is defined as the workload ratio between the most loaded back-end server and the least

loaded back-end server as observed at a front-end server. For example, if a front-end
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server sends, during an epoch, a maximum of 5K key lookups to some back-end server

and, during the same epoch, a minimum of 1K key lookups to another back-end server

then Ic, at this front-end, equals 5. It is the target load-imbalance among the caching

servers. It is the only input parameter set by the system administrator and is used by

front-end servers to dynamically adjust their cache and tracker sizes. Ideally It should be

set close to 1. It = 1.1 means that back-end load-balance is achieved if the most loaded

server observe at most 10% more key lookups that the least loaded server. Finally, we

define another local auto-adjusted variable α. α is the average hits per cache-line and

it determines the quality of the cached keys. α helps detect changes in workload and

adjust the cache size accordingly. Note that CoT automatically infers the value of α

based on the observed workload. Hence, the system administrator does not need to set

the value of α. Table 3.1 summarizes the notation.

3.4.2 Space-Saving Hotness Tracking Algorithm

We use the space-saving algorithm introduced in [158] to track the key hotness at

front-end servers. Space-saving uses a min-heap to order keys based on their hotness and

a hashmap to lookup keys in the tracker in O(1). The space-saving algorithm is shown in

Algorithm 6. If the accessed key k is not in the tracker (Line 1), it replaces the key with

minimum hotness at the root of the min-heap (Lines 2, 3, and 4). The algorithm gives the

newly added key the benefit of doubt and assigns it the hotness of the replaced key. As a

result, the newly added key gets the opportunity to survive immediate replacement in the

tracker. Whether the accessed key k was in the tracker or is newly added to the tracker,

the hotness of the key is updated based on the access type according to Equation 3.1

(Line 6) and the heap is accordingly adjusted (Line 7).

77



CoT: Decentralized Elastic Caches for Cloud Environments Chapter 3

Algorithm 6 The space-saving algorithm: track key( key k, access type t).

State: Sk: keys in the tracker.
Input: (key k, access type t)

1: if k /∈ Sk then
2: let k

′
be the root of the min-heap

3: replace k
′

with k
4: hk := hk′

5: end if
6: hk := update hotness(k, t)
7: adjust heap(k)
8: return hk

3.4.3 CoT: Cache Replacement Policy

CoT’s tracker captures the approximate top K hot keys. Each front-end server should

cache the exact top C keys out of the tracked K keys where C < K. The exactness of the

top C cached keys is considered with respect to the approximation of the top K tracked

keys. Caching the exact top C keys prevents cold and noisy keys from replacing hotter

keys in the cache and achieves the first caching objective. To determine the exact top C

keys, CoT maintains a cache of size C in a min-heap structure. Cached keys are partially

ordered in the min-heap based on their hotness. The root of the cache min-heap gives

the minimum hotness, hmin, among the cached keys. hmin splits the tracked keys into

two unordered subsets Sc and Sk−c such that:

• |Sc| = C and ∀x∈Schx ≥ hmin

• |Sk−c| = K − C and ∀x∈Sk−chx < hmin

Figure 3.2: CoT: a key is inserted to the cache if its hotness exceeds the minimum hotness
of the cached keys.

For every key access, the hotness information of the accessed key is updated in the

tracker. If the accessed key is cached, its hotness information is updated in the cache as
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well. However, if the accessed key is not cached, its hotness is compared against hmin.

As shown in Figure 3.2, the accessed key is inserted into the cache only if its hotness

exceeds hmin. Algorithm 7 explains the details of CoT’s cache replacement algorithm.

Algorithm 7 CoT’s caching algorithm

State: Sk: keys in the tracker and Sc: keys in the cache.
Input: (key k, access type t)

1: hk = track key(k, t) as in Algorithm 6
2: if k ∈ Sc then
3: let v = access(Sc, k) // local cache access
4: else
5: let v = server access(k) // caching server access
6: if hk > hmin then
7: insert(Sc, k, v) // local cache insert
8: end if
9: end if
10: return v

For every key access, the track key function of Algorithm 6 is called (Line 1) to update

the tracking information and the hotness of the accessed key. Then, a key access is served

from the local cache only if the key is in the cache (Lines 3). Otherwise, the access is

served from the caching server (Line 5). Serving an access from the local cache implicitly

updates the accessed key hotness and location in the cache min-heap. If the accessed

key is not cached, its hotness is compared against hmin (Line 6). The accessed key is

inserted to the local cache if its hotness exceeds hmin (Line 7). This happens only if

there is a tracked but not cached key that is hotter than one of the cached keys. Keys

are inserted to the cache together with their tracked hotness information. Inserting keys

into the cache follows the LFU replacement policy. This implies that a local cache insert

(Line 7) would result in the replacement of the coldest key in the cache (the root of the

cache heap) if the local cache is full.
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3.4.4 CoT: Adaptive Cache Resizing

This section answers the following questions: how to reduce the necessary front-end

cache size that achieves front-end lookup load-balance? How to shrink the cache size

when the workload’s skew decreases? and How to detect changes in the set of hot keys?

As explained in Section 3.1, Reducing the front-end cache size decreases the front-end

cache monetary cost, limits the overheads of data consistency management techniques,

and maximizes the benefit of front-end caches measured by the average cache-hits per

cache-line and back-end load-imbalance reduction.
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Figure 3.3: Reduction in relative server load and load-imbalance among caching servers
as front-end cache size increases.

The Need for Cache Resizing:

Figure 3.3 experimentally shows the effect of increasing the front-end cache size on

both back-end load-imbalance reduction and decreasing the workload at the back-end.

In this experiment, 8 memcached shards are deployed to serve back-end lookups and 20

clients send lookup requests following a significantly skewed Zipfian distribution (s = 1.5).
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The size of the key space is 1 million and the total number of lookups is 10 millions. The

front-end cache size at each client is varied from 0 cachelines (no cache) to 2048 cachelines

(≈0.2% of the key space). Front-end caches use CoT’s replacement policy and a ratio of

4:1 is maintained between CoT’s tracker size and CoT’s cache size. We define back-end

load-imbalance as the workload ratio between the most loaded server and the least loaded

server. The target load-imbalance It is set to 1.5. As shown in Figure 3.3, processing

all the lookups from the back-end caching servers (front-end cache size = 0) leads to

a significant load-imbalance of 16.26 among the caching servers. This means that the

most loaded caching server receives 16.26 times the number of lookup requests received

by the least loaded caching server. As the front-end cache size increases, the server size

load-imbalance drastically decreases. As shown, a front-end cache of size 64 cache lines at

each client reduces the load-imbalance to 1.44 (an order of magnitude less load-imbalance

across the caching servers) achieving the target load-imbalance It = 1.5. Increasing the

front-end cache size beyond 64 cache lines only reduces the back-end aggregated load but

not the back-end load-imbalance. The relative server load is calculated by comparing the

server load for a given front-end cache size to the server load when there is no front-end

caching (cache size = 0). Figure 3.3 demonstrates the reduction in the relative server

load as the front-end cache size increases. However, the benefit of doubling the cache

size proportionally decays with the key hotness distribution. As shown in Figure 3.3, the

first 64 cachelines reduce the relative server load by 91% while the second 64 cachelines

reduce the relative server load by only 2% more.

The failure of the ”one size fits all” design strategy suggests that statically allocating

fixed cache and tracker sizes to all front-end servers is not ideal. Each front-end server

should independently and adaptively be configured according to the key access distribu-

tion it serves. Also, changes in workloads can alter the key access distribution, the skew

level, or the set of hot keys. For example, social networks and web front-end servers
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that serve different geographical regions might experience different key access distribu-

tions and different local trends (e.g., #miami vs. #ny). Similarly, in large scale data

processing pipelines, several applications are deployed on top of a shared caching layer.

Front-end servers of different applications serve accesses that might be interested in dif-

ferent partitions of the data and hence experience different key access distributions and

local trends. Therefore, CoT’s cache resizing algorithm learns the key access distribution

independently at each front-end and dynamically resizes the cache and the tracker to

achieve lookup load-imbalance target It. CoT is designed to reduce the front-end cache

size that achieves It. Any increase in the front-end cache size beyond CoT’s recommen-

dation mainly decreases back-end load and should consider other conflicting parameters

such as the additional cost of the memory cost, the cost of updates and maintaining the

additional cached keys, and the percentage of back-end load reduction that results from

allocating additional front-end caches.

CoT: Cache Resizing Algorithm:

Front-end servers use CoT to minimize the cache size that achieves a target load-

imbalance It. Initially, front-end servers are configured with no front-end caches. The

system administrator configures CoT by an input target load-imbalance parameter It that

determines the maximum tolerable imbalance between the most loaded and least loaded

back-end caching servers. Afterwards, CoT expands both tracker and cache sizes until

the current load-imbalance achieves the inequality Ic ≤ It.

Algorithm 8 describes CoT’s cache resizing algorithm. CoT divides the timeline into

epochs and each epoch consists of E accesses. Algorithm 8 is executed at the end of

each epoch. The epoch size E is proportional to the tracker size K and is dynamically

updated to guarantee that E ≥ K (Line 4). This inequality is required to guarantee

that CoT does not trigger consecutive resizes before the cache and the tracker are filled
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with keys. During each epoch, CoT tracks the number of lookups sent to every back-end

caching server. In addition, CoT tracks the total number of cache hits and tracker hits

during this epoch. At the end of each epoch, CoT calculates the current load-imbalance

Ic as the ratio between the highest and the lowest load on back-end servers during this

epoch. Also, CoT calculates the current average hit per cached key αc. αc equals the

total cache hits in the current epoch divided by the cache size. Similarly, CoT calculates

the current average hit per tracked but not cache key αk−c. CoT compares Ic to It and

decides on a resizing action as follows.

1. Ic > It (Line 1), this means that the target load-imbalance is not achieved. CoT

follows the binary search algorithm in searching for the front-end cache size that

achieves It. Therefore, CoT decides to double the front-end cache size (Line 2). As

a result, CoT doubles the tracker size as well to maintain a tracker to cache size

ratio of at least 2, K ≥ 2 ·C (Line 3). In addition, CoT uses a local variable αt to

capture the quality of the cached keys when It is first achieved. Initially, αt = 0.

CoT then sets αt to the average hits per cache-line αc during the current epoch

(Line 5). In subsequent epochs, αt is used to detect changes in workload.

2. Ic ≤ It (Line 6), this means that the target load-imbalance has been achieved.

However, changes in workload could alter the quality of the cached keys. Therefore,

CoT uses αt to detect and handle changes in workload in future epochs as explained

below.

αt is reset whenever the inequality Ic ≤ It is violated and Algorithm 8 expands cache

and tracker sizes. Ideally, when the inequality Ic ≤ It holds, keys in the cache (the set

Sc) achieve αt hits per cache-line during every epoch while keys in the tracker but not in

the cache (the set Sk−c) do not achieve αt. This happens because keys in the set Sk−c are

less hot than keys in the set Sc. αt represents a target hit-rate per cache-line for future
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Algorithm 8 CoT’s elastic resizing algorithm.

State: Sc: keys in the cache, Sk: keys in the tracker, C: cache capacity, K: tracker
capacity, αc: average hits per key in Sc in the current epoch, αk−c: average hits per key
in Sk−c in the current epoch, Ic: current load-imbalance, and αt: target average hit per
key
Input: It

1: if Ic > It then
2: resize(Sc, 2× C)
3: resize(Sk, 2×K)
4: E := max (E, K)
5: Let αt = αc
6: else
7: if αc < (1− ε).αt and αk−c < (1− ε).αt then
8: resize(Sc,

C
2

)
9: resize(Sk,

K
2

)
10: else if αc < (1− ε).αt and αk−c > (1− ε).αt then
11: half life time decay()
12: else
13: do nothing()
14: end if
15: end if

epochs. Therefore, if keys in the cache do not meet the target αt in a following epoch,

this indicates that the quality of the cached keys has changed and an action needs to be

taken as follows.

1. Case 1: keys in Sc, on the average, do not achieve αt hits per cacheline and keys

in Sk−c do not achieve αt hits as well (Line 7). This indicates that the quality

of the cached keys decreased. In response. CoT shrinks both the cache and the

tracker sizes (Lines 8 and 9). If shrinking both cache and tracker sizes results in

a violation of the inequality Ic < It, Algorithm 8 doubles both tracker and cache

sizes in the following epoch and αt is reset as a result. In Line 7, we compare the

average hits per key in both Sc and Sk−c to (1− ε) ·αt instead of αt. Note that ε is

a small constant <<< 1 that is used to avoid unnecessary resizing actions due to
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insignificant statistical variations.

2. Case 2: keys in Sc do not achieve αt while keys in Sk−c achieve αt (Line 10).

This signals that the set of hot keys is changing and keys in Sk−c are becoming

hotter than keys in Sc. For this, CoT triggers a half-life time decaying algorithm

that halves the hotness of all cached and tracked keys (Line 11). This decaying

algorithm aims to forget old trends that are no longer hot to be cached (e.g.,

Gangnam style song). Different decaying algorithms have been developed in the

literature [80, 81, 76]. Therefore, this chapter only focuses on the resizing algorithm

details without implementing a decaying algorithm.

3. Case 3: keys in Sc achieve αt while keys in Sk−c do not achieve αt. This means

that the quality of the cached keys has not changed and therefore, CoT does not

take any action. Similarly, if keys in both sets Sc and Sk−c achieve αt, CoT does

not take any action as long as the inequality Ic < It holds (Line 13).

3.5 CoT Experimental Evaluation

In this section, we evaluate CoT’s caching algorithm and CoT’s adaptive resizing al-

gorithm. We choose to compare CoT to traditional and widely used replacement policies

like LRU and LFU. In addition, we compare CoT to both ARC [157] and LRU-k [171]. As

stated in [157], ARC, in its online auto-configuration setting, achieves comparable perfor-

mance to LRU-2 (which is the most responsive LRU-k ) [171, 172], 2Q [127], LRFU [141],

and LIRS [125] even when these policies are perfectly tuned offline. Also, ARC outper-

forms the online adaptive replacement policy MQ [226]. Therefore, we compare with ARC

and LRU-2 as representatives of these different polices. The experimental setup is ex-

plained in Section 3.5.1. First, we compare the hit rates of CoT’s cache algorithm to LRU,
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LFU, ARC, and LRU-2 hit rates for different front-end cache sizes in Section 3.5.2. Then,

we compare the required front-end cache size for each replacement policy to achieve a

target back-end load-imbalance It in Section 3.5.3. In Section 3.5.4, we provide an end-to-

end evaluation of front-end caches comparing the end-to-end performance of CoT, LRU,

LFU, ARC, and LRU-2 on different workloads with the configuration where no front-end

cache is deployed. Finally, CoT’s resizing algorithm is evaluated in Section 3.5.5.

3.5.1 Experiment Setup

We deploy 8 instances of memcached [32] on a small cluster of 4 caching servers (2

memcached instance per server). Each caching server has an Intel(R) Xeon(R) CPU

E31235 with 4GB RAM dedicated to each memcached instance.

Dedicated client machines are used to generate client workloads. Each client ma-

chine executes multiple client threads to submit workloads to caching servers. Client

threads use Spymemcached 2.11.4 [37], a Java-based memcached client, to communi-

cate with memcached cluster. Spymemcached provides communication abstractions that

distribute workload among caching servers using consistent hashing [128]. We slightly

modified Spymemcached to monitor the workload per back-end server at each front-end.

Client threads use Yahoo! Cloud Serving Benchmark (YCSB) [78] to generate workloads

for the experiments. YCSB is a standard key/value store benchmarking framework.

YCSB is used to generate key/value store requests such as Get, Set, and Insert. YCSB

enables configuring the ratio between read (Get) and write (Set) accesses. Also, YCSB

allows the generation of accesses that follow different access distributions. As YCSB

is CPU-intensive, client machines run at most 20 client threads per machine to avoid

contention among client threads. During our experiments, we realized that YCSB’s

ScrambledZipfian workload generator has a bug as it generates Zipfian workload distri-
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butions with significantly less skew than the skew level it is configured with. Therefore,

we use YCSB’s ZipfianGenerator instead of YCSB’s ScrambledZipfian.

Our experiments use different variations of YCSB core workloads. Workloads consist

of 1 million key/value pairs. Each key consists of a common prefix ”usertable:” and a

unique ID. We use a value size of 750 KB making a dataset of size 715GB. Experiments

use read intensive workloads that follow Tao’s [59] read-to-write ratio of 99.8% reads and

0.2% updates. Unless otherwise specified, experiments consist of 10 million key accesses

sampled from different access distributions such as Zipfian (s = 0.90, 0.99, or 1.2) and

uniform. Client threads submit access requests back-to-back. Each client thread can

have only one outgoing request. Clients submit a new request as soon as they receive an

acknowledgement for their outgoing request.

3.5.2 Hit Rate
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Figure 3.4: Comparison of LRU, LFU, ARC, LRU-2, CoT and TPC’s hit rates using
Zipfian access distribution with different skew parameter values (s= 0.90, 0.99, 1.20)

The first experiment compares CoT’s hit rate to LRU, LFU, ARC, and LRU-2 hit

rates using equal cache sizes for all replacement policies. 20 client threads are provisioned

on one client machine and each cache client maintains its own cache. The cache size is

varied from a very small cache of 2 cache-lines to 1024 cache-lines. The hit rate is

compared using different Zipfian access distributions with skew parameter values s =

0.90, 0.99, and 1.2 as shown in Figures 3.4a, 3.4b, and 3.4c respectively. CoT’s tracker to
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cache size ratio determines how many tracking nodes are used for every cache-line. CoT

automatically detects the ideal tracker to cache ratio for any workload by fixing the cache

size and doubling the tracker size until the observed hit-rate gains from increasing the

tracker size are insignificant i.e., the observed hit-rate saturates. The tracker to cache size

ratio decreases as the workload skew increases. A workload with high skew simplifies the

task of distinguishing hot keys from cold keys and hence, CoT requires a smaller tracker

size to successfully filter hot keys from cold keys. Note that LRU-2 is also configured

with the same history to cache size as CoT’s tracker to cache size. In this experiment,

for each skew level, CoT’s tracker to cache size ratio is varied as follows: 16:1 for Zipfian

0.9, 8:1 for Zipfian 0.99, and 4:1 for Zipfian 1.2. Note that CoT’s tracker maintains only

the meta-data of tracked keys. Each tracker node consists of a read counter and a write

counter with 8 bytes of memory overhead per tracking node. In real-world workloads,

value sizes vary from few hundreds KBs to few MBs. For example, Google’s Bigtable [69]

uses a value size of 64 MB. Therefore, a memory overhead of at most 1
8

KB (16 tracker

nodes * 8 bytes) per cache-line is negligible.

In Figures 3.4, the x-axis represents the cache size expressed as the number of cache-

lines. The y-axis represents the front-end cache hit rate (%) as a percentage of the

total workload size. At each cache size, the cache hit rates are reported for LRU, LFU,

ARC, LRU-2, and CoT cache replacement policies. In addition, TPC represents the

theoretically calculated hit-rate from the Zipfian distribution CDF if a perfect cache

with the same cache size is deployed. For example, a perfect cache of size 2 cache-lines

stores the hot most 2 keys and hence any access to these 2 keys results in a cache hit

while accesses to other keys result in cache misses.

As shown in Figure 3.4a, CoT surpasses LRU, LFU, ARC, and LRU-2 hit rates at

all cache sizes. In fact, CoT achieves almost similar hit-rate to the TPC hit-rate. In

Figure 3.4a, CoT outperforms TPC for some cache size which is counter intuitive. This
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happens as TPC is theoretically calculated using the Zipfian CDF while CoT’s hit-rate is

calculate out of YCSB’s sampled distributions which are approximate distributions. In

addition, CoT achieves higher hit-rates than both LRU and LFU with 75% less cache-

lines. As shown, CoT with 512 cache-lines achieves 10% more hits than both LRU and

LFU with 2048 cache-lines. Also, CoT achieves higher hit rate than ARC using 50%

less cache-lines. In fact, CoT configured with 512 cache-lines achieves 2% more hits

than ARC with 1024 cache-lines. Taking tracking memory overhead into account, CoT

maintains a tracker to cache size ratio of 16:1 for this workload (Zipfian 0.9). This means

that CoT adds an overhead of 128 bytes (16 tracking nodes * 8 bytes each) per cache-

line. The percentage of CoT’s tracking memory overhead decreases as the cache-line size

increases. For example, CoT introduces a tracking overhead of 0.02% when the cache-

line size is 750KB. Finally, CoT consistently achieves 8-10% higher hit-rate than LRU-2

configured with the same history and cache sizes as CoT’s tracker and cache sizes.

Similarly, as illustrated in Figures 3.4b and 3.4c, CoT outpaces LRU, LFU, ARC,

and LRU-2 hit rates at all different cache sizes. Figure 3.4b shows that a configuration

of CoT using 512 cache-lines achieves 3% more hits than both configurations of LRU

and LFU with 2048 cache-lines. Also, CoT consistently outperforms ARC’s hit rate with

50% less cache-lines. Finally, CoT achieves 3-7% higher hit-rate than LRU-2 configured

with the same history and cache sizes. Figures 3.4b and 3.4c highlight that increasing

workload skew decreases the advantage of CoT. As workload skew increases, the ability

of LRU, LFU, ARC, LRU-2 to distinguish between hot and cold keys increases and hence

CoT’s preeminence decreases.
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3.5.3 Back-End Load-Imbalance

In this section, we compare the required front-end cache sizes for different replacement

policies to achieve a back-end load-imbalance target It. Different skewed workloads are

used, namely, Zipfian s = 0.9, s = 0.99, and s = 1.2. For each distribution, we first

measure the back-end load-imbalance when no front-end cache is used. A back-end load-

imbalance target It is set to It = 1.1. This means that the back-end is load balanced

if the most loaded back-end server processes at most 10% more lookups than the least

loaded back-end server. We evaluate the back-end load-imbalance while increasing the

front-end cache size using different cache replacement policies, namely, LRU, LFU, ARC,

LRU-2, and CoT. In this experiment, CoT uses the same tracker-to-cache size ratio as

in Section 3.5.2. For each replacement policy, we report the minimum required number

of cache-lines to achieve It.

Dist.
Load-
imbalance
No cache

Number of cache-lines
to achieve It = 1.1
LRU LFU ARC LRU-2 CoT

Zipf 0.9 1.35 64 16 16 8 8
Zipf 0.99 1.73 128 16 16 16 8
Zipf 1.20 4.18 2048 2048 1024 1024 512

Table 3.2: The minimum required number of cache-lines for different replacement policies
to achieve a back-end load-imbalance target It = 1.1 for different workload distributions.

Table 3.2 summarizes the reported results for different distributions using LRU, LFU,

ARC, LRU-2, and CoT replacement policies. For each distribution, the initial back-

end load-imbalance is measured using no front-end cache. As shown, the initial load-

imbalances for Zipf 0.9, Zipf 0.99, and Zipf 1.20 are 1.35, 1.73, and 4.18 respectively. For

each distribution, the minimum required number of cache-lines for LRU, LFU, ARC, and

CoT to achieve a target load-imbalance of It = 1.1 is reported. As shown, CoT requires

50% to 93.75% less cache-lines than other replacement policies to achieve It. Since
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LRU-2 is configured with a history size equals to CoT’s tracker size, LRU-2 requires the

second least number of cache-lines to achieve It.

3.5.4 End-to-End Evaluation

In this section, we evaluate the effect of front-end caches using LRU, LFU, ARC, LRU-

2, and CoT replacement policies on the overall running time of different workloads. This

experiment also demonstrates the overhead of front-end caches on the overall running

time. In this experiment, we use 3 different workload distributions, namely, uniform,

Zipfian (s = 0.99), and Zipfian (s = 1.2) distributions as shown in Figure 3.5. For all

the three workloads, each replacement policy is configured with 512 cache-lines. Also,

CoT and LRU-2 maintains a tracker (history) to cache size ratio of 8:1 for Zipfian 0.99

and 4:1 for both Zipfian 1.2 and uniform distributions. In this experiment, a total of

1M accesses are sent to the caching servers by 20 client threads running on one client

machine. Each experiment is executed 10 times and the average overall running time

with 95% confidence intervals are reported in Figure 3.5.

In this experiment, the front-end servers are allocated in the same cluster as the

back-end servers. The average Round-Trip Time (RTT) between front-end machines and

back-end machines is 244µs. This small RTT allows us to fairly measure the overhead of

front-end caches by minimizing the performance advantages achieved by front-end cache

hits. In real-world deployments where front-end servers are deployed in edge-datacenters

and the RTT between front-end servers and back-end servers is in order of 10s of ms,

front-end caches achieve more significant performance gains.

The uniform workload is used to measure the overhead of front-end caches. In a

uniform workload, all keys in the key space are equally hot and front-end caches cannot

take any advantage of workload skew to benefit some keys over others. Therefore, front-
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Figure 3.5: The effect of front-end caching on the end-to-end overall running time of 1M
lookups using different workload distributions.

end caches only introduce the overhead of maintaining the cache without achieving any

significant performance gains. As shown in Figure 3.5, there is no significant statistical

difference between the overall running time when there is no front-end cache and when

there is a small front-end cache with different replacement policies. Adding a small front-

end cache does not incur running time overhead even for replacement policies that use a

heap (e.g., LFU, LRU-2, and CoT).

The workloads Zipfian 0.99 and Zipfian 1.2 are used to show the advantage of front-

end caches even when the network delays between front-end servers and back-end servers

are minimal. As shown in Figure 3.5, workload skew results in significant overall run-

ning time overhead in the absence of front-end caches. This happens because the most

loaded server introduces a performance bottleneck especially under thrashing (managing

20 connections, one from each client thread). As the load-imbalance increases, the ef-

fect of this bottleneck is worsen. Specifically, in Figure 3.5, the overall running time of
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Zipfian 0.99 and Zipfian 1.2 workloads are respectively 8.9x and 12.27x of the uniform

workload when no front-end cache is deployed. Deploying a small front-end cache of

512 cachelines significantly reduces the effect of back-end bottlenecks. Deploying a CoT

small cache in the front-end results in 70% running time reduction for Zipfian 0.99 and

88% running time reduction for Zipfian 1.2 in comparison to having no front-end cache.

Other replacement policies achieve running time reductions of 52% to 67% for Zipfian

0.99 and 80% to 88% for Zipfian 1.2. LRU-2 achieves the second best average overall

running time after CoT with no significant statistical difference between the two policies.

Since both policies use the same tracker (history) size, this again suggests that having a

bigger tracker helps separate cold and noisy keys from hot keys. Since the ideal tracker to

cache size ratio differs from one workload to another, having an automatic and dynamic

way to configure this ratio at run-time while serving workload gives CoT a big leap over

statically configured replacement policies.
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Figure 3.6: The effect of front-end caching on the end-to-end overall running time of 50K
lookups using different workload distributions sent by only one client thread.
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To isolate the effect of both front-end and back-end thrashing on the overall run-

ning time, we run the same experiment with only one client thread that executes 50K

lookups (1M/20) and we report the results of this experiment in Figure 3.6. The first

interesting observation of this experiment is that the overall running time of Zipfian 0.99

and Zipfian 1.2 workloads are respectively 3.2x and 4.5x of the uniform workload when

no front-end cache is deployed. These numbers are proportional to the load-imbalance

factors of these two distributions (1.73 for Zipfian 0.99 and 4.18 for Zipfian 1.2). These

factors are significantly worsen under thrashing as shown in the previous experiment.

The second interesting observation is that deploying a small front-end cache in a non-

thrashing environment results in a lower overall running time for skewed workload (e.g.,

Zipfian 0.99 and Zipfian 1.2) than for a uniform workload. This occurs because front-end

caches eliminate back-end load-imbalance and locally serve lookups as well.

3.5.5 Adaptive Resizing

This section evaluates CoT’s auto-configure and resizing algorithms. First, we con-

figure a front-end client that serves a Zipfian 1.2 workload with a tiny cache of size two

cachelines and a tracker of size of four tracking entries. This experiment aims to show

how CoT expands cache and tracker sizes to achieve a target load-imbalance It as shown

in Figure 3.7. After CoT reaches the cache size that achieves It, the average hit per

cache-line αt is recorded as explained in Algorithm 8. Second, we alter the workload

distribution to uniform and monitors how CoT shrinks tracker and cache sizes in re-

sponse to workload changes without violating the load-imbalance target It in Figure 3.8.

In both experiments, It is set to 1.1 and the epoch size is 5000 accesses. In both Fig-

ures 3.7a and 3.8a, the x-axis represents the epoch number, the left y-axis represents the

number of tracker and cache lines, and the right y-axis represents the load-imbalance.
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The black and red lines represent cache and tracker sizes respectively with respect to

the left y-axis. The blue and green lines represent the current load-imbalance and the

target load-imbalance respectively with respect to the right y-axis. Same axis descrip-

tion applies for both Figures 3.7b and 3.8b except that the right y-axis represents the

average hit per cache-line during each epoch. Also, the light blue and the dark blue lines

represent the current average hit per cache-line and the target hit per cache-line at each

epoch with respect to the right y-axis.

In Figure 3.7a, CoT is initially configured with a cache of size 2 and a tracker of

size 4. CoT’s resizing algorithm runs in 2 phases. In the first phase, CoT discovers the

ideal tracker-to-cache size ratio that maximizes the hit rate for a fixed cache size for the

current workload. For this, CoT fixes the cache size and doubles the tracker size until

doubling the tracker size achieves no significant benefit on the hit rate. This is shown in

Figure 3.7b in the first 15 epochs. CoT allows a warm up period of 5 epochs after each

tracker or cache resizing decision. Notice that increasing the tracker size while fixing the

cache size reduces the current load-imbalance Ic (shown in Figure 3.7a) and increases the

current observed hit per cache-line αc (shown in Figure 3.7b). Figure 3.7b shows that

CoT first expands the tracker size to 16 and during the warm up epochs (epochs 10-15),

CoT observes no significant benefit in terms of αc when compared to a tracker size of

8. In response, CoT therefore shrinks the tracker size to 8 as shown in the dip in the

red line in Figure 3.7b at epoch 16. Afterwards, CoT starts phase 2 searching for the

smallest cache size that achieves It. For this, CoT doubles the tracker and caches sizes

until the target load-imbalance is achieved and the inequality Ic ≤ It holds as shown

in Figure 3.7a. CoT captures αt when It is first achieved. αt determines the quality of

the cached keys when It is reached for the first time. In this experiment, CoT does not

trigger resizing if Ic is within 2% of It. Also, as the cache size increases, αc decreases

as the skew of the additionally cached keys decreases. For a Zipfian 1.2 workload and
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(a) Changes in cache and tracker sizes and the current load-imbalance Ic over epochs.
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(b) Changes in cache and tracker sizes and the current hit rate per cacheline αc over
epochs.

Figure 3.7: CoT adaptively expands tracker and cache sizes to achieve a target load-
imbalance It = 1.1 for a Zipfian 1.2 workload.

to achieve It = 1.1, CoT requires 512 cache-lines and 2048 tracker lines and achieves an

average hit per cache-line of αt = 7.8 per epoch.

Figure 3.8 shows how CoT successfully shrinks tracker and cache sizes in response to
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Figure 3.8: CoT adaptively shrinks tracker and cache sizes in response to changing the
workload to uniform.

workload skew drop without violating It. After running the experiment in Figure 3.7, we

alter the workload to uniform. Therefore, CoT detects a drop in the current average hit

per cache-line as shown in Figure 3.8b. At the same time, CoT observe that the current
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load-imbalance Ic achieves the inequality Ic ≤ It = 1.1. Therefore, CoT decides to shrink

both the tracker and cache sizes until either αc ≈ αt = 7.8 or It is violated or until

cache and tracker sizes are negligible. First, CoT resets the tracker to cache size ratio to

2:1 and then searches for the right tracker to cache size ratio for the current workload.

Since the workload is uniform, expanding the tracker size beyond double the cache size

achieves no hit-rate gains as shown in Figure 3.8b. Therefore, CoT moves to the second

phase of shrinking both tracker and cache sizes as long αt is not achieved and It is not

violated. As shown, in Figure 3.8, CoT shrinks both the tracker and the cache sizes until

front-end cache size becomes negligible. As shown in Figure 3.8a, CoT shrinks cache and

tracker sizes while ensuring that the target load-imbalance is not violated.

3.6 Related Work

Distributed caches are widely deployed to serve social networks and the web at

scale [59, 167, 211]. Real-world workloads are typically skewed with few keys that are

significantly hotter than other keys [122]. This skew can cause load-imbalance among

the caching servers. Load-imbalancing negatively affects the overall performance of the

caching layer. Therefore, many works in the literature have addressed the load-imbalacing

problem from different angles. Solutions use different load-monitoring techniques (e.g.,

centralized tracking [43, 124, 42, 207], server-side tracking [121, 71], and client-side track-

ing [96, 126]). Based on the load-monitoring, different solutions redistribute keys among

caching servers at different granularities. The following paragraphs summarize the related

works under different categories.

Centralized load-monitoring: Slicer [43] separates the data serving plane from the

control plane. The key space is divided into slices where each slice is assigned to one or

more servers. The control plane is a centralized system component that collects the access
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information of each slice and the workload per server. The control plane periodically runs

an optimization that generates a new slice assignment. This assignment might result in

redistributing, repartitioning, or replicating slices among servers to achieve better load-

balancing. Unlike in Centrifuge [42], Slicer does not use consistent hashing to map keys

to servers. Instead, Slicer distributes the generated assignments to the front-end servers

to allow them to locate keys. Also, Slicer highly replicates the centralized control plane to

achieve high availability and to solve the fault-tolerance problem in both Centrifuge [42]

and in [71]. CoT is complementary to systems like Slicer. Our goal is to cache heavy

hitters at front-end servers to reduce key skew at back-end caching servers and hence,

reduce Slicer’s initiated re-configurations. Our focus is on developing a replacement

policy and an adaptive cache resizing algorithm to enhance the performance of front-end

caches. Also, our approach is distributed and front-end driven that does not require any

system component to develop a global view of the workload. This allows CoT to scale

to thousands of front-end servers without introducing any centralized bottlenecks.

Server side load-monitoring: Another approach to load-monitoring is to distribute

the load-monitoring among the caching shard servers. In [121], each caching server tracks

its own hot-spots. When the hotness of a key surpasses a certain threshold, this key is

replicated to γ caching servers and the replication decision is broadcast to all the front-

end servers. Any further accesses on this hot key shall be equally distributed among these

γ servers. This approach aims to distribute the workload of the hot keys among multiple

caching servers to achieve better load balancing. Cheng et al. [71] extend the work in [121]

to allow moving coarse-grain key cachelets (shards) among threads and caching servers.

Our approach reduces the need for server side load-monitoring. Instead, load-monitoring

happens at the edge. This allows individual front-end servers to independently identify

their local trends.

Client side load-monitoring: Fan et al. [96] theoretically show through analysis
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and simulation that a small cache in the client side can provide load balancing to n

caching servers by caching only O(n log(n)) entries. Their result provides the theoretical

foundations for our work. Unlike in [96], our approach does not assume perfect caching

nor a priori knowledge of the workload access distribution. Gavrielatos et al. [99] propose

symmetric caching to track and cache the hot-most items at every front-end server.

Symmetric caching assumes that all front-end servers obtain the same access distribution

and hence allocates the same cache size to all front-end servers. However, different front-

end servers might serve different geographical regions and therefore observe different

access distributions. CoT discovers the workload access distribution independently at

each front-end server and adjusts the cache size to achieve a target load-imbalance It.

NetCache [126] uses programmable switches to implement heavy hitter tracking and

caching at the network level. Like symmetric caching, NetCache assumes a fixed cache

size for different access distributions. To the best of our knowledge, CoT is the first front-

end caching algorithm that exploits the cloud elasticity allowing each front-end server to

independently reduce the necessary required front-end cache memory to achieve back-end

load-balance.

Other works in the literature focus on maximizing cache hit rates for fixed mem-

ory sizes. Cidon et al. [74, 75] redistribute available memory among memory slabs to

maximize memory utilization and reduce cache miss rates. Fan et al. [95] use cuckoo

hashing [174] to increase memory utilization. Lim et al. [144] increase memory locality

by assigning requests that access the same data item to the same CPU. Bechmann et

al. [56] propose Least Hit Density (LHD), a new cache replacement policy. LHD predicts

the expected hit density of each object and evicts the object with the lowest hit density.

LHD aims to evict objects that contribute low hit rates with respect to the cache space

they occupy. Unlike these works, CoT does not assume a static cache size. In contrast,

CoT maximizes the hit rate of the available cache and exploits the cloud elasticity al-
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lowing front-end servers to independently expand or shrink their cache memory sizes as

needed.

3.7 CoT Concluding Remarks

This chapter presents Cache on Track (CoT), a decentralized, elastic, and predictive

cache at the edge of a distributed cloud-based caching infrastructure. CoT proposes a new

cache replacement policy specifically tailored for small front-end caches that serve skewed

workloads. Using CoT, system administrators do not need to statically specify cache size

at each front-end in-advance. Instead, they specify a target back-end load-imbalance

It and CoT dynamically adjusts front-end cache sizes to achieve It. Our experiments

show that CoT’s replacement policy outperforms the hit-rates of LRU, LFU, ARC, and

LRU-2 for the same cache size on different skewed workloads. CoT achieves a target

server size load-imbalance with 50% to 93.75% less front-end cache in comparison to

other replacement policies. Finally, our experiments show that CoT’s resizing algorithm

successfully auto-configures front-end tracker and cache sizes to achieve the back-end

target load-imbalance It in the presence of workload distribution changes.
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Chapter 4

Express Your Online Persona

without Revealing Your Sensitive

Attributes

4.1 Overview

Over the past decade, social network platforms such as Facebook, Twitter, and In-

stagram have attracted hundreds of millions of users [29, 39, 33]. These platforms are

widely and pervasively used to communicate, create online communities [100], and social-

ize. Social media users develop, over time, online persona [220] that reflect their overall

interests, activism, and diverse orientations. Users have numerous followers that are

specifically interested in their personas and their postings which are aligned with these

personas. However, due to the rise of machine learning and deep learning techniques,

user posts and social network interactions can be used to accurately and automatically

infer many user persona attributes such as gender, ethnicity, age, political interest, and

location [133, 177, 225, 223]. Recent works show that it is possible to predict an individ-
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ual user’s location solely using content-based analysis of the user’s posts [72, 68]. Zhang

et al. [223] show that hashtags in user posts can alone be used to precisely infer a user’s

location with accuracy of 70% to 76%. Also, Facebook likes analysis has been successfully

used to distinguish between Democrats and Republicans with 85% accuracy [133].

Social network giants have widely used attribute inference to serve personalized trend-

ing topics, to suggest pages to like and accounts to follow, and to notify users about

hyper-local events. In addition, social networks such as Facebook use tracking [30] and

inference techniques to classify users into categories (e.g. Expats, Away from hometown,

Politically Liberal, etc.). These categories are used by advertisers and small businesses

to enhance directed advertising campaigns. However, recent news about the Cambridge

Analytica scandal [25] and similar data breaches [34] suggest that users cannot depend on

the social network providers to preserve their privacy. User sensitive attributes such as

gender, ethnicity, and location have been widely misused in illegally discriminating

ads, microtargeting, and surveillance. A recent ACLU report [19] shows that Facebook

illegally allowed employers to exclude women from receiving their job ads on Facebook.

Also, several reports have shown that Facebook allows discrimination against some eth-

nic groups in housing ads [31]. News about the Russian-linked Facebook Ads during

the 2016 election suggests that the campaign targeted voters in swing states [16] and

specifically in Michigan and Wisconsin [17]. In addition, location data collected from

Facebook, Twitter, and Instagram has been used to target activists of color [11].

An online-persona can be thought of as the set of user attributes that can be inferred

about a user from their online postings and interactions. These attributes fall into two

categories: public and private persona attributes. Users should decide which attributes

fall in each category. Some attributes (e.g., political orientation and ethnicity) should

be publicly revealed as a user’s followers might follow her because of her public persona

attributes. Other attributes (e.g., gender and location) are private and sensitive, and the
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user would not like them to be revealed. However, with the above mentioned inference

methods, the social media providers, as well as any adversary receiving the user posting

can reveal a user’s sensitive attributes.

To remedy this situation, we propose multifaceted privacy, a novel privacy model that

aims to obfuscate a user’s sensitive attributes while revealing the user’s public persona

attributes. Multifaceted privacy allows users to freely express their online public per-

sonas without revealing any sensitive attributes of their choice. For example, a #BLM

activist might want to hide her location from the police and from discriminating adver-

tisers while continuing to post about topics specifically related to her political movement.

This activist can try to hide her location by disabling the geo-tagging feature of her posts

and hiding her IP address using an IP obfuscation browser like Tor [18]. However, recent

works have shown that content-based location inferences can successfully and accurately

predict a user’s location solely based on the content of her posts [72, 68, 223]. If this

activist frequently posts about topics that discuss BLM events in Montpelier, Vermont,

she is most probably a resident of Montpelier (Montpelier has a low African American

population).

To achieve multifaceted privacy, we build Aegis1, a prototype client-centric social

network stream processing system that enables social network users to take charge of

protecting their own privacy, instead of depending on the social network providers. Our

philosophy in building Aegis is that social network users need to introduce some noisy

interactions and obfuscation posts to confuse content based attribute inferences.

This idea is inspired from Rivest’s chaffing and winnowing privacy model in [185]. Unlike

in [185] where the sender and receiver exchange a secret that allows the receiver to easily

distinguish the chaff from the wheat, in social networks, a user (sender) posts to an

open world of followers (receivers) and it is not feasible to exchange a secret with every

1Aegis: a shield in the Greek mythology.
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recipient to distinguish real posts from the obfuscation ones. In addition, a subset of the

recipients could be adversaries who try to infer the user’s sensitive attributes from their

postings. In fact, our approach, and unlike other approaches in [185, 204] is designed to

hide private attributes from all recipients of a user’s postings, irrespective whether they

are humans who follow the user for their writing reflecting their public on-line persona

attributes, which are preserved, or automated profiling systems trying to discern the

user’s private attributes.

Choosing this noise introduces a challenging dichotomy and tension between the util-

ity of the user persona and her privacy. Similar notions of dichotomy between sensitive

and non sensitive personal attributes have been explored in sociology and are referred to

as contextual integrity [168]. Obfuscation posts need to be carefully chosen to achieve

obfuscation of private attributes without damaging the user’s public persona. For exam-

ple, a #NoBanNoWall activist loses persona utility if she writes about #BuildTheWall

to hide her location. Multifaceted privacy represents a continuum between privacy and

persona utility. Figure 4.1 captures this continuum. Both the x-axis and the y-axis

represent the same persona attributes that can be derived from a user’s posting. The

particular example in Figure 4.1 only considers the location, the gender, the ethnicity,

and the political interest attributes of a user (as shown in the x-axis left to right or on the

y-axis top to bottom). The user needs to pick which attributes, among the four consid-

ered attributes, should be revealed and which should be hidden. This is represented by

the diagonal line, which explicitly captures this trade-off. In Figure 1, the x-axis repre-

sents the attributes the user would like to hide, while the y-axis represents the attributes

the user wants to reveal. Clearly they must be mutually exclusive. In this particular

example, the user wants to obfuscate and hide her location and gender, while at the same

time revealing her political interest and ethnicity. Figure 4.1 shows that privacy is the

reciprocal of the persona utility. Any attribute that needs to be kept private cannot be
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preserved in the public persona. As illustrated, the more persona attributes are kept

private, the more obfuscation overhead is needed to achieve the privacy of these persona

attributes. A user who chooses to publicly reveal all her persona attributes achieves no

attribute privacy and hence requires no obfuscation posting overhead. Note that users

can reorder the attributes on the axes of Figure 4.1 in order to achieve their intended

public/private attribute separation. The main goal of Aegis is to automatically find and

suggest the noise (obfuscation) postings that achieve the multifaceted privacy to this

user.

Figure 4.1: The dichotomy of multifaceted privacy: persona vs. privacy.

Unlike previous approaches that require users to change their posts and hashtags [223]

to hide their sensitive attributes, Aegis allows users to publish their original posts without
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changing their content. Our experiments show that adding obfuscation posts successfully

preserves multifaceted privacy. Aegis considers the added noise as the cost to pay for

achieving multifaceted privacy. Therefore, Aegis targets users who are willing to write

additional posts to hide their sensitive attributes.

Aegis is user-centric, as we believe that users need to take control of their own privacy

concerns and cannot depend on the social media providers. This is challenging as it

requires direct user engagement and certain sacrifices. However, we believe Aegis will help

better understand the complexity of privacy as well as the role for individual engagement

and responsibility. Aegis represents a first step in the long path to better understanding

the tensions between user privacy, the utility of social media, and trust in public social

media providers. This is an overdue discussion that needs to be discussed by the scientific

community, and we believe Aegis will help provide the medium for this discussion.

Our contributions are summarized as follows:

• We propose multifaceted privacy, a novel privacy model that represents a continuum

between the privacy of sensitive private attributes and public persona attributes.

• We build Aegis, a prototype user-centric social network stream processing sys-

tem that preserves multifaceted privacy. Aegis continuously analyzes social media

streams to suggest topics to post that are aligned with the user’s public persona

but hide their sensitive attributes.

• We conduct an extensive experimental study to show that Aegis can successfully

achieve multifaceted privacy.

The rest of the chapter is organized as follows. We explain the models of user,

topic, and security in Section 4.2. Topic classification algorithms and data structures

that achieve multifaceted privacy are described in Section 4.3 and Aegis’s system design
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is explained in Section 4.4. Afterwards, an experimental evaluation is conducted in

Section 4.5 to evaluate the effectiveness of Aegis in achieving the multifaceted privacy.

The related work is presented in Section 4.6 and the chapter is concluded in Section 4.7.

Future extensions are presented in Section 4.8.

4.2 Models

In this section, we present the user, topic, and security models. The user and topic

models explain how users and topics are represented in the system. The security model

presents both the privacy and the adversary models.

4.2.1 User Model

Our user model is similar to the user model presented in [101]. The set U is the

set of social network users where U = {u1, u2, ...}. A user ui is represented by a vector

of attributes Vui (e.g., gender Vui [g], ethnicity Vui [e], age Vui [a], political interest Vui [p],

location Vui [l], etc). Each attribute a has a domain a.d and the attribute values are picked

from this domain. For example, the gender attribute g has domain g.d = {male, female}2

and ∀ui∈UVui [g] ∈ g.d. An example user ux is represented by the vector Vux where Vux =

(g: female, e: African American, a: 23, p: Democrat, l: New York). Attribute domains

can form a hierarchy (e.g., location: city→ county→ state→ country) and an attribute

can be generalized by climbing up this hierarchy. A user who lives in Los Angeles is also

a resident of Orange County, California, and the United States. Other attributes can

form trivial hierarchies (e.g., gender: male or female → * (no knowledge)).

The user attribute vector Vui is divided into two main categories: 1) the set of public

2Due to the limitation of the inference models, the gender attribute is considered only binary. How-
ever, better models can be used to infer non binary gender attribute values.
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persona attributes V p
ui

and 2) the set of private sensitive attributes V s
ui

. Multifaceted

privacy aims to publicly reveal all persona attributes in V p
ui

while hiding all sensitive

attributes in V s
ui

. Each user defines her V s
ui

and V p
ui

a priori. As shown in Figure 4.1,

attributes in V p
ui

are the complement of the attributes in V s
ui

. Therefore, each attribute

either belongs to V p
ui

or V s
ui

.

4.2.2 Topic Model

The set T represents the set of all topics that are discussed by all the social network

users in U . T τi ⊂ T represents the set of all the topics posted by user ui’s upto time

τ where T τi = {t1i , t2i , ..., tni }. A topics is identified by a hashtag or a keyword. Each

topic is characterized by a set of attributes, which are identical to user attributes, e.g.,

ethnicity, location, gender, and political interest. Topic attributes captures the attribute

distributions of the users who post about this particular topic. Hence, the attributes of

a topic are collectively interfered from the attributes of the users who write posts that

include the topic’s hashtag or keyword. For example, an analysis of the ethnicity of

the users who post about the topic #BLM can result in the distribution 10% Asian, 25%

White, 15% Hispanic, and 50% Black for the ethnicity attribute of the topic #BLM. This

distribution means that Asians, Whites, Hispanics, and Blacks post about the topic #BLM

and 50% of the users who post about this topic are Black. A topic ti is represented by a

vector of attribute distributions Vti where Vti [g], Vti [e], Vti [p], and Vti [l] are respectively

the gender, the ethnicity, the political interest, and the location distributions of the users

who post about ti.
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4.2.3 Security Model

An approach that is commonly used for attribute obfuscation is generalization. The

idea behind attribute generalization is to report a generalized value of a user’s sensitive

attribute in order to hide the actual attribute value within. Consider location as a

sensitive attribute example. Many works [163, 223] have used location generalization in

different contexts. Mokbel et al. [163] use location generalization to hide a user’s exact

location from Location Based Services (LBS). A query that asks ”what is the nearest

gas station to my exact location in Stanford, CA?” should be altered to ”list all gas

stations in California”. Notice that the returned result of the altered query has to be

filtered at the client side to find the answer of the original query. Similarly, Andres et

al. [48] propose geo-indistinguishability, a location privacy model that uses differential

privacy to hide a user’s exact location in a circle of radius r from LBS providers. The

wider the generalization range, the more privacy achieved, and the more network and

processing overhead are incurred at the client side. Similarly, in the context of social

networks, Zhang et al. [223] require Twitter users to generalize their location revealing

hashtags in order to hide their exact location. For example, a user whose post includes

”#WillisTower” should be generalized to ”#Chicago” to hide a user’s exact location.

Notice that generalization requires users to alter their original posts or queries.

Rather than generalization, we adopt the notion of k-indisting-uishability, where the

values of a user’s sensitive attributes are indistinguishable among k other values chosen

from the sensitive attribute domain. When the user posts about a topic that reveals

the value of one of her sensitive attributes, she can hide this post among other posts

that reveal another k− 1 values of the same sensitive attributes thus significantly reduce

the probability of inferring the user’s actual sensitive attribute values. The purpose

of the obfuscation posts is to equalize the probability of inferring a sensitive attribute
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value among the k attribute values and hence achieving k-indistinguishability. We adopt

k-indistinguishability rather than generalization as it allows end-users to discuss topics

that could reveal their sensitive attributes at a fine-grain level while hiding their actual

sensitive attribute values at this fine-grain level. For example, generalization hides a

user’s city level location by requiring the user to write topics that are connected to a

state or a country level locations but not connected to a specific city. On the other hand,

k-indistinguishability allows a user to post topics that reveal a specific city location.

Still, the actual city location of the user is hidden among k − 1 other city locations.

K-indistinguishability allows end-users to have more fine control over their attribute

privacy.

For every sensitive attribute s ∈ V s
ui

, the user defines an indistinguishability parameter

ks. ks determines the number of attribute values among which the real value of parame-

ter s is hidden. For example, a user who lives in LA can set kl = 3 in order to hide her

original city location, LA, among 3 different cities (e.g., LA, SF, and NYC). This means

that a content-based inference attack should not be able to distinguish the user’s real city

location among the set {LA, SF, NYC}. As explained in 4.2.1, attribute domains either

form multi-level hierarchies (e.g., location) or trivial hierarchies (e.g., gender and ethnic-

ity). Unlike in attribute generalization where a user’s attribute value is generalized by

climbing up the attribute hierarchy, k-attribute-indistinguishability achieves the privacy

of an attribute value by hiding it among k − 1 attribute values chosen from the siblings

of the actual attribute value in the same hierarchy level (e.g., a user’s city level location

is hidden among k − 1 other cities instead of generalizing it to the state or the country

levels). The following inference attack explains when k-attribute-indistinguishability is

achieved or violated.

The adversary assumptions: the adversary model and the inference attacks are

similar to the ones presented in [223]. However, unlike in [223], our inference attack is
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not only limit to the location attribute but can be extended to infer every user sensitive

attribute in V s
ui

. The adversary has access to the set of all topics T and all the public

posts related to each topic. This assumption covers any adversary who can crawl or

get access to the public posts of every topic in the social network. As proposed in

Section 4.1, the target user ui does not reveal her sensitive attribute values to the public

(e.g., a user who wants to hide her location must obfuscates her IP address and disable

the geo-tagging feature for her posts). Therefore, the adversary can only see the content

of the public posts published by ui. The adversary uses their knowledge about the set

of all topics T and the set of topics T τi discussed by ui to infer her sensitive attributes.

Multifaceted privacy protects users against an adversary who performs content-based

inference attacks. Therefore, multifaceted privacy assumes that the adversary does not

have any side channel knowledge that can be used to reveal a user’s sensitive attribute

value (e.g., another online profile that is directly linked to the user ui where sensitive

attributes such as gender, ethnicity, or location are revealed).

Inference attack: the adversary’s ultimate goal is to reveal or at least have high

confidence in the knowledge of the sensitive attribute values of the target user ui. For

this, the adversary runs a content-based attack as follows. First, the adversary crawls

the set of topics T τi that user ui wrote about. For each topic, the adversary infers the

demographics of the users who wrote about this topic. Then, the adversary aggregates the

demographics of all the topics in T τi . The adversary uses the aggregated demographics

to estimate the sensitive attributes of user ui. The details of the inference attack is

explained as follows.

For each topic tj ∈ T τi , an adversary crawls the set of posts Ptj that discusses topic tj

and for each post pi ∈ Ptj , the adversary uses some models to infer the gender, ethnicity,

political interest, and location of the user who wrote this post. Then, the adversary uses

the inferred attributes of each post in topic tj to populate tj’s distribution vector Vtj . For
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example, Vtj [g] is the gender distribution of all users who wrote about topic tj. Similarly,

Vtj [e], Vtj [p], and Vtj [l] are the ethnicity, political interest, and location distributions of

the users who posted about topic tj. We define V ∗ui as a vector of attribute distributions

that is used to estimate the attributes of user ui. V ∗ui is the result of aggregating the

normalized Vtj for every topic tj ∈ T τi as shown in Equation 4.1.

V ∗ui =

∑
tj∈T τi

Vtj
|Ptj |

|T τi |
(4.1)

Equation 4.1 shows that the topic’s attribute distribution vector Vtj is first normalized

by dividing Vtj by the number of posts in topic tj. This normalization equalizes the effect

of every topic tj ∈ T τi on the user’s attribute estimations in V ∗ui . V
∗
ui

is the summation

of the normalized Vtj for every topic tj ∈ T τi divided by the number of topics in T τi .

V ∗ui [a] is the distribution of attribute a for user ui. For example, a user might have a

gender distribution V ∗ui [g] = {female:0.8, male:0.2}. This means that the inference attack

using ui’s posted topics suggests that the probability ui is a female is 80% while ui is a

male is only 20%. For every attribute a, an attacker uses the maximum attribute value

max(V ∗ui [a]) as an estimation of the actual value Vui [a]. In the previous example, an

attacker would infer V ∗ui [g] = female as an estimate of the gender of user ui. An inference

attack succeeds in estimating an attribute a if the attacker can have sufficient confidence

in estimating the actual value Vui [a]. This confidence is achieved if the difference between

the maximum estimated attribute value of a and the top-kth estimated attribute value

of a is greater than ∆a. For example, if ∆g = 0.1 and kg = 2 (assuming gender is a

binary attribute and it needs to be hidden among the 2 gender attribute values), then

an attacker successfully estimates ui’s gender if the max(V ∗ui [g]) is distinguishable from

the 2nd highest value in V ∗ui [g] by more than 10%. In the previous example where V ∗ui [g]

= {female:0.8, male:0.2}, an attacker succeeds to estimate ui’s gender = female as the
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difference between V ∗ui [g].female− V ∗ui [g].male ≥ ∆g.

Figure 4.2: Illustrating k-attribute-indistinguishability

Figure 4.2 show an example of a successful inference attack and another of a failed

inference attack on attribute a of user ui. In this example, the domain of attribute a has

at least 6 values (e.g., ethnicity or location). As shown in Figure 4.2.a, the maximum

estimated attribute value V ∗ui [a]1 is distinguishable from the top-kth (ka for attribute a)

attribute values in V ∗ui [a] by more than ∆a. In this scenario, an attacker can conclude

with high confidence that V ∗ui [a]1 is a good estimate for Vui [a]. However, in Figure 4.2.b,

V ∗ui [a]1 is indistinguishable from the top-kth attribute values in V ∗ui [a]. In this scenario,

the attack is marked failed and k-attribute-indistinguishability is achieved.

The parameter k is used to determine the number of attribute values within which the

user’s actual attribute value is hidden. The bigger the k, the less the attacker’s confidence

about the user’s actual attribute value. As a result, increasing k introduces uncertainty

in the attacker’s inference and hence boosts the adversary cost to micro-target users who

hide their actual attribute values among k different attribute values. For example, an

adversary who wants to target a user in location CA has to pay 3 times the advertisement

cost to reach the same user if the user equally hides her state location among 3 other
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state locations (e.g., CA, IL, and NY).

We understand that the requirement to determine the sensitive attributes and an

indistinguishability parameter value ks for every sensitive attribute s ∈ V s
ui

could be

challenging for many users. Users might not have a sense of the number of attribute

values to obfuscate the actual value of a particular attribute. One possible solution to

address this usability challenge is to design a questionnaire for Aegis’s first time users.

This questionnaire could help Aegis understand which persona attributes are sensitive

and how critical the privacy of every sensitive attribute is to each specific user. This

allows Aegis to auto-configure ks of every sensitive attribute s of this specific user. The

details of such an approach is out of the scope of this work. This work assumes that

Aegis is preconfigured with the set V s
ui

and for every attribute s ∈ V s
ui

, the value of ks is

determined.

4.3 Multifaceted Privacy

Multifaceted privacy aims to obfuscate a user’s sensitive attributes for every attribute

in V s
ui

. This has to be done while publicly revealing every attribute in the user’s pub-

lic persona in V p
ui

. Various approaches have been used to obfuscate specific sensitive

attributes, in particular, Tagvisor [223] protects users against content-based inference

attacks by requiring users to alter their posts by changing or replacing hashtags that

reveal their sensitive attributes, in their case location. Our approach is different, as it

is paramount to not only preserving the privacy of the sensitive attributes, but also to

preserve the on-line persona of the user, and hence reveal their public attributes. It is

critical for a user to post their posting in their own words that reflect their persona.

We therefore preserve multifaceted privacy by hiding a specific post among other ob-

fuscation posts. Our approach needs to suggest posts that are aligned with the user’s
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public persona but linked to alternative attribute values of their sensitive attributes in

order to obfuscate them. This requires a topic classification model that simplifies the

process of suggesting obfuscation posts. For example, consider state level location as a

sensitive attribute. To achieve k-location indistinguishability, a user’s exact state should

be hidden among k−1 other states. This requires suggesting obfuscation postings about

topics that are mainly discussed in these other k − 1 states. Users in NY state can use

topics that are mainly discussed in IL to obfuscate their location among NY and IL. To

discover such potential topics, all topics that are discussed on a social network need to

be classified by the sensitive attributes that need to be obfuscated, state level location

in this example. A topic is linked to some state if the maximum estimated state location

of this topic, max(Vti [l]), is distinguishable from other state location estimates in Vti [l]

by more than ∆l. For example, if ∆l = 10%, a topic that has a state location distribu-

tion of {NY=0.6, IL=0.2, CA=0.1, Others=0.1} is linked to NY state while a topic that

does not have a distinguishable state location inference by more than ∆l is not linked

to any state. In this section, we first explain a simple but incorrect topic classification

model that successfully suggests obfuscation posts that hide a user’s sensitive attributes

but does not preserve her public persona. Then, we explain how to modify the topic

classification model to suggest obfuscation posts that do achieve multifaceted privacy.

A simple incorrect proposal: in this proposal, topics are classified indepen-

dently by every sensitive attribute. As shown in Figure 4.3, each attribute forms an

independent hierarchy. The root of the hierarchy has the topics that are not linked to

a specific attribute value. Topics that are strongly linked to some attribute value fall

down in the hierarchy node that represents this attribute value. For example, state level

location attribute forms a hierarchy of two levels. The first level, the root, has all the

topics that do not belong to a specific state. A topic like #Trump is widely discussed

in all the states and therefore it resides on the root of the location attribute. However,
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Figure 4.3: Each attribute forms an independent hierarchy

#cowboy is mainly discussed in TX and therefore it falls down in the hierarchy to the

TX node. To obfuscate a user’s state location, topics need to be selected from the sibling

nodes of the user’s state in the state level location hierarchy. These topics belong to

other locations and can be used to achieve k-location-indistinguishability privacy. Al-

though this proposal successfully achieves location privacy, the suggested posts are not

necessarily aligned with the user’s public online persona. For example, this obfuscation

technique could suggest the topic #BuildTheWall (from TX) to an activist (from NY)

who frequently posts about #NoBanNoWall in order to hide her location. This misalign-

ment between the suggested obfuscation posts and the user’s public persona discourages

users from seeking privacy fearing the damage to their public online persona.

A persona preserving proposal: To overcome the independent classification

shortcomings, obfuscation postings need to be suggested from a tree hierarchy that cap-

tures relevant dependencies among the specific user’s attributes including both public

persona and private sensitive attributes. Public attributes need to reside on the upper
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Figure 4.4: A dependent topic tree where public attributes are at the top while private
attributes are at the bottom

levels of the classification tree while private ones reside on the bottom levels of the tree

as shown in Figure 4.4. To achieve k-attribute-indistinguishability, sibling values of the

sensitive attributes are used to hide the actual value of these sensitive attributes. By

placing the public attributes higher up in the hierarchy, we ensure that the suggest topics

adhere to the public persona. Finally, multifaceted privacy only requires all the public

attributes, regardless of their order, to reside on the upper levels of the hierarchy while

all the private attributes, regardless of their order, to reside on the lower levels of the

hierarchy.

Social network topics are dependently classified in the tree by the attribute domain

values at each level. For example, if the top most level of the tree is the political party

attribute, topics that are mainly discussed by Democrats are placed in the left green child

while topics that are mainly discussed by Republicans are place in the right green child.

Note that topics that have no inference reside in the root of the hierarchy. Now, if the

second public persona attribute is ethnicity (shown as blue nodes in Figure 4.4), topics
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in both the Democratic and Republican nodes are classified by the ethnicity domain

attribute values. For example, topics that are mainly discussed by White Democrats

are placed under the Democratic node in the White ethnicity node while topics that

are mainly discussed by Asian Republicans are put under the Republican node in the

Asian ethnicity node. This classification is applied at every tree level for every attribute.

Now, assume a user is White, Female, Democrat, who lives in CA and wants to hide

her location (shown as red nodes in Figure 4.4) while publicly revealing her ethnicity,

gender, and political party. In this case, topics that reside in the sibling nodes of the leaf

of her persona path, e.g., topics that are mainly discussed by White Female Democrats

who live in locations other than CA (e.g., NY and IL) can be suggested as obfuscation

topics. This dependent classification guarantees that the suggested topics are aligned

with the user’s public persona but belong to other sensitive attribute values (different

locations in this example). Note that this technique is generic enough to obfuscate any

attribute and any number of attributes. Each user defines her sensitive attribute(s) and

the classification hierarchy would be constructed with these attributes to the bottom

thus guaranteeing that the suggested posts do not violate multifaceted privacy.

4.4 Aegis System Design

This section presents Aegis, a prototype social network stream processing system that

implements multifaceted privacy and overcomes the adversarial content-based attribute

inference attacks discussed in Section 4.2.3. Aegis achieves k-attribute-indistinguish-

ability by suggesting topics to post that are aligned with the social network user’s public

persona while hiding the user’s sensitive attributes among their other domain values. To

achieve this, Aegis uses the classification and suggestion models discussed in Section 4.3.

Aegis is designed in a user-centric manner which is configured on the user’s local machine.
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In fact, Aegis can be developed as a browser extension where all the user interactions with

the social network are handled through this extension. Every local deployment of Aegis

only needs to construct a partition of the attribute-based topic classification hierarchy

developed in Figure 4.4. This partition (or sub-hierarchy) include the user’s attribute

path from the root to a leaf in addition to the sibling nodes of the user’s sensitive

attribute nodes. For example, a user whose attributes are Female, White, Democrat,

and CA and wants to obfuscate her state location only requires Aegis to construct the

Female, White, Democrat, CA path in addition to k − 1 other paths with the shared

prefix Female, White, Democrat but linked to k − 1 other states. Aegis chooses these

k − 1 states with the most Female, White, Democrat user presence. This is important

for Aegis to be able to find enough obfuscation topics to suggest that are aligned with

the original user’s public persona attributes. These k − 1 states are used to hide the

user’s true state in order to achieve k-location-indistinguishability. Note that if another

user’s public persona is specifically associated with their location while they consider

their ethnicity to be sensitive, then the hierarchy needs to be reordered to reflect this

criterion.

Although Aegis can be integrated with different online social network platforms, our

prototype implementation of Aegis only supports Twitter to illustrate Aegis’s functional-

ity. Twitter provides developers with several public APIs [28] that allow them to stream

tweets that discuss certain topics. In addition, Twitter streaming APIs allow developers

to sample 1% of all the tweets posted on Twitter. In Twitter, a topic is represented by

either a hashtag or a keyword. Aegis is built to work for new Twitter profiles in order to

continuously confuse an adversary about a profile’s true sensitive attribute values from

the genesis of this profile. Aegis is not designed to work with existing old profiles as an

adversary could have already used their existing posts to reveal their sensitive attribute

values. Even though Aegis suggests obfuscation posts, an adversary can distinguish the
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old original posts from the newly added original posts accompanied by their obfuscation

posts and hence reveals the user’s sensitive attributes true values.

Aegis is designed to achieve the following goals:

1. to automate the process of streaming and classifying Twitter topics according to

their attributes,

2. to construct and continuously maintain the topic classification sub-hierarchy,

3. and finally to use the topic classification sub-hierarchy to suggest topics to the user

that achieve multifaceted privacy.

To achieve these goals, Aegis consists of two main processes:

• a Twitter analyzer Process TP and

• a topic Suggestion Process SP .

Figure 4.5: Aegis System Design and User Interaction Flow

TP continuously analyzes the topics that are being discussed on Twitter and for each

topic ti, TP uses the topic attribute inference models to infer ti’s attribute distribution

vector Vti . The accuracy of the topic attribute inference increases as the number of posts

that discuss topic tj, |Ptj |, increases. TP uses a local key-value store as a topic repository

where the key is the topic id tj ∈ T and the value is the topic attribute distribution vector
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Vti . In addition, TP constructs and continuously maintains the topic classification sub-

hierarchy that classifies the topics based on their attributes. This topic classification

sub-hierarchy is used for suggesting obfuscation topics. For this, the user provides TP

with both their attribute vector values Vui and their sensitive attribute vector V s
ui

. Vui

and V s
ui

determine the sub-hierarchy that TP needs to maintain in order to obfuscate the

attributes in V s
ui

. Figure 4.5 shows the interactions among the user, Aegis, and the social

network. As shown, step 0 represents the continuous Twitter stream analysis performed

by TP . As TP analyzes Twitter streams, it continuously updates the topic repository

and the classification sub-hierarchy.

The topic suggestion process SP mainly handles user interactions with Twitter. SP

uses the topic classification sub-hierarchy constructed and maintained by TP to suggest

obfuscation topics. For every sensitive attribute s ∈ V s
ui

, the user provides the indistin-

guishability parameter ks that determines how many attribute values from the domain

of s should be used to hide the true value of s. Aegis allows users to configure the pri-

vacy parameter ∆s for every attribute s. However, to enhance usability, Aegis maintains

a default value for the privacy parameter ∆s = 10%. This means that the privacy of

attribute s is achieved if the inference attack cannot distinguish the maximum inferred

attribute value from the kths inferred attribute value by more than 10%.

SP uses ks, and ∆s for every attribute s ∈ V s
ui

to generate the topic suggestion set

Si. Note that SP is locally deployed at the user’s machine. Therefore, the user does not

have to trust any service outside of her machine. Aegis is designed to transfer user trust

from the social network providers to the local machine. For every sensitive attribute s,

SP selects a fix set of ks − 1 attribute domain values. These ks − 1 attribute values are

used to obfuscate the true value of attribute s, Vui [s].

As shown in Figure 4.5, in Step 1, the user writes a post to publish on Twitter. SP

receives this post and queries TP about the attributes of all the topics mentioned in
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this post. SP uses these topic attributes to simulate the adversarial attack. If TP ’s

topic inference indicates that k-attribute-indistinguishability is violated for any attribute

s ∈ V s
ui

, SP queries TP for topics with public persona V p
ui

but linked to the other attribute

values of s in the set of ks − 1 attribute values. For every returned topic, SP ensures

that writing about this topic enhances the aggregated inference of the original post and

the obfuscation posts towards ks-attribute-indistinguishability. SP adds these topics to

the set Si and returns them to the user (Step 2). The user selects a few topics from Si to

post in Step 3 and submits the posts to SP . Note that users are required to write the

obfuscation posts using their personal writing styles to ensure that the original posts and

the obfuscation posts are indistinguishable [108, 47]. Afterwards, SP ensures that the

aggregated inference of submitted obfuscation posts in addition to the original post lead

to k-attribute-indistinguishability. Otherwise, SP keeps suggesting more topics. As every

original post along with its obfuscation posts achieve k-attribute-indistinguishability, the

aggregated inference over the whole user’s posts achieve k-attribute-indistinguishability.

In Step 4, SP queues the original and the obfuscation posts and publishes them on

the user’s behalf in random order and intervals to prevent timing attacks (Step 5). An

adversary can perform a timing attack if the original posts and the obfuscation posts

are distinguishable. Queuing and randomly publishing the posts prevents the adversary

from distinguishing original posts from the obfuscation posts and hence prevents timing

attacks.

We understand that the obfuscation writing overhead might alienate users from Aegis.

As a future extension, Aegis can exploit deep neural network language models to learn

the user’s writing style [89]. Aegis can use such a models to generate [109] full posts

instead of hashtags and users can either directly publish these posts or edit them before

publishing.
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4.5 Aegis Experimental Evaluation

In this section, we experimentally evaluate the effectiveness of Aegis in achieving mul-

tifaceted privacy. We first present the experimental setup and analyze some properties

of the used dataset in Section 4.5.1. Then, Sections 4.5.2 and 4.5.3 present illustra-

tive inference and obfuscation examples that show the functionality of Aegis using real

Twitter topics. We experimentally show how Aegis can be used to hide user location in

Section 4.5.4 and measure the effect of changing the indistinguishability parameter k on

the obfuscation overhead in Section 4.5.5. Finally, Section 4.5.6 illustrates the efficiency

of Aegis on hiding the user gender while preserving other persona attributes.

4.5.1 Experimental Setup
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Figure 4.6: Examples of negligible, weak, and strong connection distribution topics for
top-20 personas

For our experiments, we use the 1% random sampling of the Twitter stream during

the year 2017. The attributes gender, ethnicity, and location are used to build a three

level topic classification hierarchy that classifies all topics according to their attribute

distribution. For simplicity and without loss of generality, we use the language models

in [192] to infer both gender and ethnicity attributes of a post writer. In addition, we

infer the location distribution of different topics using the explicitly geo-tagged posts

about these topics. In the 1% of Twitter’s 2017 postings, our models were able to extract
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2,126,791 unique topics. Our classification hierarchy suggests that 66% of the dataset

tweets are posted by males. This analysis is consistent with the statistics published

in [27]. In addition, the dataset has 6,864,300 geo-tagged posts, 15% of which originated

in California. Finally, the predominant ethnicity extracted from the dataset is White.

As the classification hierarchy is built using only gender, ethnicity, and state location

attributes, this results in a hierarchy of 500 different paths from the root to a leaf of the

hierarchy. These 500 paths result from all the possible combinations of gender (male,

female), ethnicity (White, Black, Asian, Hispanic, Native American), and state location

(50 States). The 500 paths represent the different 500 personas considered in our exper-

iments. Our topic classification hierarchy suggests that topics vary significantly in their

connection to a specific persona path (a gender, ethnicity, and location combination). For

example, #GiveAway is widely discussed among the 500 personas across the 50 States

with very little skew towards specific personas over others. For topics that are widely

discussed across all different persona, their skew is usually proportional to the population

density of different States. For example, the top five highly populated states (CA, TX,

FL, NY, and PA) usually appear as the top locations where widely discussed topics are

posted. On the other hand, other topics show strong connection to specific personas.

For example, 33.93% of the personas who write about #Disney are Male, Asian, and live

in Florida where Disney World is located. Figure 4.6 shows 3 examples of topics that

have trivial, weak, and strong connection to specific personas. In Figure 4.6, the x-axis

represents the top-20 personas who post about a topic and the y-axis represents the per-

centage of postings for each persona. As shown in Figure 4.6a, #GiveAway has slight

skew (negligible connection) towards some personas over other personas. Also, the top

most persona who post about #GiveAway represent only 3.94% of the overall postings

about the topic. On the other hand, Figure 4.6b shows that the persona distribution for

#2a (refers to the second amendment) has more skew (weak connection) towards some
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personas over others. As shown, the top posting persona on the topic #2a contributes

14.03% of the overall postings of this topic. Finally, a topic like #Disney has remarkable

skew (strong connection) towards some personas over others. As shown in Figure 4.6c,

the top posting persona on the topic #Disney contributes 33.93% of the overall postings

of this topic.

Strength Minimum δ Maximum δ
Negligible 0% 10%
Weak 10% 20%
Mild 20% 30%
Strong 30% 100%

Table 4.1: Topic to persona connection strength categories and their corresponding δ
ranges

Topic Freq M W CA F W CA M W TX F W TX
#teen 7094 7 1 15 4
#hot 7478 5 1 13 3
#etsy 2739 6 5 27 1
#diy 1987 3 7 11 1
#actor 725 1 2 9 11
#cowboys 797 5 16 1 2

Table 4.2: Topic Analysis By Persona

We define a topic to persona connection strength parameter δ. δ is defined as the

difference in posting percentage between the top-1 posting persona and the top-k posting

persona. For #2a and k = 3, δ = 14.03 − 3.45 = 10.6 while for #Disney and for

k=3, δ = 33.93 − 6.19 = 27.74. We categorize topics into 4 categories according to

their δ value. As shown in Table 4.1, a topic to persona connection that ranges from

0% to 10% represents a negligible connection and hence this topic does not reveal the

persona attributes of the users who write about it. As the topic to persona connection

increases, the potential of revealing the attributes of the users who write about this topic

increases. In our experiments, we measure the overhead of obfuscation for three different
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distributions with weak, mild and strong connections having a topic to persona strength

connection ranges that are shown in Table 4.1

4.5.2 Illustrative Inference Example

Using our hierarchical data structure we can infer interesting information about dif-

ferent topics on Twitter in our dataset, specifically regarding correlations between per-

sona and topics. In Table 4.2 we analyze 7 topics and their connection to 4 of the most

prominent personas in our dataset (Male-White-CA, Female-White-CA, Male-White-TX,

Female-White-TX). Frequency denotes the number of times the topic was observed and

the number under a persona for a particular topic denotes the order or rank in which a

persona discusses this topic most. For example, among all the persona we analyze in our

dataset, #actor is most discussed by White Male Californians (rank 1) closely followed

by White Female also from California (rank 2). This is followed by other persona out

of the focus of Table 4.2, until White Female Texans are reached at rank 9 and White

Male Texans at rank 11. Also, Table 4.2 shows that both #teen and #hot are discussed

the most by Female White Californians and that overall Females (in both CA and TX)

who discuss this topic are more than Males in both CA and TX. We can also observe

correlations across topics that have semantic connections like #etsy and #diy. Etsy is

an online platform for users to sell DIY (Do It Yourself) projects. Female White Texans

are much more interested in such DIY specific topics than any other of the personas.

Lastly, high correlations of certain topics can be observed with specific locations such as

#actor with California and #cowboys with Texas. As Table 4.2 reveals, the topics you

post on social media significantly reveal your attributes, even private sensitive attributes

you are unwilling to share. As such, we need a tool like Aegis to prevent adversaries from

inferring private attributes while preserving others.
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4.5.3 Illustrative Obfuscation Example
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Figure 4.7: Illustrative Gender Obfuscation Example.
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(b) Location (Mild)
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Figure 4.8: Effect of obfuscation posts on location and user persona given weak, mild
and strong connected topics to locations

In this section, we provide an illustrative obfuscation example that shows how Aegis
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achieves multifaceted privacy. This example begins with a newly created Twitter profile

of a Male, White user who lives in California. The user wants to obfuscate his gender

among the gender domain values {male, female} achieving 2-gender-indistinguishably.

For this, Aegis constructs a hierarchy with ethnicity at the top level, then location at

the second level, and finally gender (the sensitive attribute) at the bottom level of the

hirarchy. Indistinguishability holds if the privacy parameter ∆g = 0.1 is achieved. ∆g is

set to 0.1 (or 10%) to ensure that users who write topics with only negligible topic to

persona strength connection do not have to add any obfuscation posts to their timelines

as the topics they post do not reveal their sensitive attributes. In addition, the user wants

to preserve his ethnicity and location attributes as his public persona. Now, assume that

the user tweets #gowarriors to show his support for his favorite Californian basketball

team, the Golden State Warriors.

Unfortunately, as shown in Figure 4.7, #gowarriors has a strong connection to the

male gender attribute value. In Figure 4.7, the x-axis represents the posted hashtags one

after the other and the y-axis represents the aggregated gender inferences for both male

and female attribute values over all the posted hashtags. In addition, δ represents the

difference of the aggregated gender inference between male and female attribute values.

As shown, initially, δ = 43% which indicates a strong link between the user’s gender and

the male attribute value. As δ ≥ ∆g, this indicates that 2-gender-indistinguishably is

violated.

Therefore, Aegis suggests to post topics that are mainly discussed by White people

who live in California but linked to the female gender attribute value. Figure 4.7 shows

the effect of posting subsequent topics on the aggregated gender inference. The topic

#womenintech helps to reduce the aggregate inference difference to 19%. #organicfood

brings the difference down to 11% and #bodybuilding reduces it to 7%. Notice that

δ = 7% achieves δ ≤ ∆g and hence 2-gender-indistinguishably is achieved. Notice that
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the same example holds if the user’s true gender is female. The goal of Aegis is not

to invert the gender attribute value but to achieve inference indistinguishability among

kg = 2 different gender attribute values.

4.5.4 User Location Obfuscation

The number of obfuscation topics largely depend on the topic to persona connection

strength of the original posts. In this experiment, we show how Aegis is used to hide user

location while preserving their gender and ethnicity. To hide location, Aegis constructs

a hierarchy with gender at the top level, ethnicity at the second level, and location (the

sensitive attribute) at the bottom level. In this experiment, we set kl = 3 where user

location is hidden among three locations. ∆l is set to 0.1 to indicate that 3-location-

indistinguishability is achieved if the difference between the highest (top-1) aggregated

location inference and the 3rd (top-3) aggregated location inference is less than 10%. The

number of obfuscation posts needed and their effect on the user persona are reported.

This experiment uses 4707 weak topics, 1984 mild topics, and 1106 strong topics collected

from Twitter over several weeks. This experiment assumes a newly created twitter profile

simulated with one of the 4 most prominent personas in our data set, namely M W CA,

F W CA, M W TX, and F W TX as presented in Table 4.2. First, a post with a topic to

location connection strength (weak, mild, or strong) is added to the user profile. Then,

we add the suggested obfuscation posts one at a time to the user’s timeline. After every

added obfuscation post, the location and persona inference are reported. The reported

numbers are aggregated and averaged for every topic to location connection strength

category. Figure 4.8 shows the effect of adding obfuscation posts on both the location

inference and the persona inference for weak, mild, and strong topics. As shown in Fig-

ure 4.8a, the 4707 weak topics on average need just one obfuscation suggestion to achieve
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3-location-indistinguishability when ∆l = 0.1. Note that adding more obfuscation posts

achieves 3-location-indistinguishability for smaller ∆ls (e.g., ∆l = 0.05 (4 suggestions),

∆l = 0.04 (5 suggestions)). Also, adding one suggestion post achieves 26.5% reduction

in δ. The same experiment is repeated for mild and strong topics and the results are

reported in Figures 4.8b and 4.8c respectively. Notice that strong topics requires four

suggestions on average to achieve 3-location-indistinguishability when ∆ = 0.1. Also, in

Figures 4.8c, adding a single suggestion post achieves 49.8% reduction in δ.

Figures 4.8d, 4.8e, and 4.8f show the effect on user persona after adding obfuscation

posts to weak, mild, and strong posts respectively. User persona is represented by gender

and ethnicity. As obfuscation posts are carefully chosen to align with the user persona,

we observe negligible changes on the average gender and ethnicity inferences after adding

obfuscation posts.

4.5.5 The Effect of Changing kl

In this experiment, we measure the effect of changing the parameter kl on the number

of obfuscation posts required to achieve k-location-indistinguishability. kl determines the

number of locations within which user ui wants to hide her true location. Increasing kl

increases the achieved privacy and boosts the required obfuscation overhead to achieve k-

location-indistinguishability. Assume users in Texas hide their State level location among

3 States: Texas, Alabama, and Arizona. A malicious advertiser who wants to target users

in Texas is uncertain about their location and now has to pay 3 times the cost of the

original advertisement campaign to reach the same target audience. Therefore, increasing

k inflates the cost of micro-targeting.

This experiment uses 621 strong topics collected from Twitter over several weeks.

The average δ = Vui [l]1 − Vui [l]kl is reported for all topics. In addition, the effect of
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Figure 4.9: Change in δ as obfuscation posts are added

adding obfuscation posts on the average δ for different values of kl = 3, 5, and 7 is

reported. Figure 4.9 shows the effect of adding obfuscation posts on the aggregated

location inference for different values of kl. The privacy parameter ∆l is set to ∆l = 0.1.

As shown in Figure 4.9, achieving 3-location indistinguishability for strong topics

requires 4 obfuscation posts on the average for ∆l = 0.1. On the other hand, 7-location

indistinguishability requires more than 5 obfuscation posts for the same value of ∆l.

This result highlights the trade-off between privacy and obfuscation overhead. Achieving

higher privacy levels by increasing kl or lowering ∆l requires more obfuscation posts

and hence more overhead. Obfuscation posts are carefully chosen to align with the user

persona. Therefore, we observe negligible changes on the average gender and ethnicity

inferences after adding obfuscation posts for different values of kl.
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Figure 4.10: The effect of obfuscation posts on gender inference for strong connected
topics to gender.

4.5.6 User Gender Obfuscation

This experiment shows how Aegis is used to hide user gender while preserving their

ethnicity and location. In this experiment, we set kg = 2 where user gender should be

hidden among male and female gender domain values. ∆g is set to ∆g = 0.1 to indicate

that 2-gender-indistinguishability is achieved if the difference between the highest (top-

1) aggregated gender inference and the 2nd (top-2) aggregated gender inference is less

than 10%. This experiment was executed on 40 gender strongly connected topics. The

aggregated gender inference is reported when adding the original strong post to the

user’s timeline and after adding every obfuscation post one at a time. In addition, δ, the

difference between the male gender inference and the female gender inference is reported.

2-gender-indistinguishability is achieved if δ ≤ 10%. As shown in Figure 4.10, gender

strongly connected topics result in high δ that violates the 2-gender-indistinguishability
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privacy target. Therefore, Aegis suggests obfuscation posts that results in δ reduction.

Figure 4.10 shows that strong topics need on the average 3 obfuscation posts to achieve

the gender privacy target. This result is quite consistent with the location obfuscation

experiments in Section 4.5.4. This shows Aegis’s obfuscation mechanism is quite generic

and can be efficiently used to hide different user sensitive attributes. Finally, as the

obfuscation posts are carefully chosen to align with the user’s public persona attributes,

we observed negligible changes on the average location and ethnicity inferences after

adding obfuscation posts.

4.6 Related Work

The problem of sensitive attribute privacy of social network users has been exten-

sively studied in the literature from different angles. k-anonymity [190, 198, 197] and its

successors l-diversity [153] and t-closeness [143] are well-known and widely used privacy

models in publishing dataset to hide user information among a set of indistinguishable

users in the dataset. Also, differential privacy [90, 91, 92] has been widely used in the

context of dataset publishing to hide the identity of a user in a published dataset. These

models focus on hiding user identity among other users in the published dataset. Another

variation of differential privacy is pan-privacy [93]. Pan-privacy is designed to work for

data streams and hence it is more suitable for social network streams privacy. However,

these models are service centric and assume trusted service providers. This work tack-

les the privacy problem from the end-user angle where the user identity is known and

all their online social network postings are public and connected to their identity. Our

goal is to confuse content-based sensitive attribute inference attacks by hiding the user’s

original public posts among other obfuscation posts. Our multifaceted privacy achieves

the privacy of user sensitive attributes without altering their public persona.
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In the context of social networks privacy, earlier works focus on sensitive attribute

inferences due to the structure of social networks. In [225], Zhelava and Getoor attempt

to infer the user’s sensitive attributes using public and private user profiles. However,

the authors do not provide a solution to prevent such inference attacks. Georgiou et al.

[101, 100] study the inference of sensitive attributes in the presence of community-aware

trending topic reports. An attacker can increase their inference confidence by consuming

these reports and the corresponding community characteristics of the involved users.

In [101], a mechanism is proposed to prevent social network services from publishing

trending topics that reveal information about individual users. However, this mechanism

is service centric and it is not suitable for hiding a user’s sensitive attributes against

content-based inference attacks. Ahmad et al.[45] introduce a client-centered obfuscation

solution for protecting user privacy in personalized web searches. The privacy of a search

query is achieved by hiding it among other obfuscation search queries. Although this

work is client-centered, it is not suitable for social networks privacy where the user online

persona has to be preserved.

Recent works have focused on the privacy of some sensitive attributes such as loca-

tion of social network users. Ghufran et al. [104] show that social graph analysis can

reveal user location from friends and followers locations. Although, it is important to

protect user sensitive attributes like location against this attack, Aegis focuses only on

content-based inference attacks. Yakout et al. [210] proposed a system called Privome-

ter, which measures how much privacy leaks from certain user actions (or from their

friends’ actions) and creates a set of suggestions that could reduce the risk of a sensitive

attribute being successfully inferred. Similar to Privometer, [116] proposes sanitation

techniques to the structure of the social graph by introducing noise, and obfuscating

edges in the social graphs to prevent sensitive information inference. Andres et al. [48]

propose geo-indistinguishability, a location privacy model that uses differential privacy to
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hide a user’s exact location in a circle of radius r from locaction based service providers.

In a recent work, Zhang et al. [223] introduce Tagvisor, a system to protect users against

content-based inference attacks. However, Tagvisor requires users to alter their posts

by changing or replacing hashtags that reveal their location. Other works [107, 60] de-

pend on user collaboration to hide an individual’s exact location among the location of

the collaboration group. This approach requires group members to collaborate and syn-

chronously change their identities to confuse adversaries. However, these techniques are

prone to content-based inference attacks and collaboration between users might be hard

to achieve in the social network context. For location based services, Mokbel et al. [163]

use location generalization and k-anonymity to hide the exact location of a query. These

works do not preserve the user online persona while achieving location privacy. In addi-

tion, these works do not provide a generic mechanism to hide other sensitive attributes

such as user gender and ethnicity.

Viejo et al. [204] propose a similar solution to Aegis that automatically generates

fake posts in order to alter the attribute distribution of a user’s sensitive attributes to a

uniform distribution. This solution differs from Aegis in many folds. First, this solution

only targets automatic profiling systems and assumes that a user’s human followers are

not adversaries who might also try to infer a user’s actual sensitive attribute values.

Therefore, the generated fake posts are meaningless to human followers but confuses

automatic profiling systems. Although, meaningless posts are easy to generate, they

might hurt the utility of a user’s profile as followers might unfollow accounts that post

random meaningless posts. Finally, fake posts are not generated in a way that preserves

a user’s public personality.

This chapter presents Aegis, the first persona friendly system that enables users to

hide their sensitive attributes while preserving their online persona. Aegis is a client-

centric solution that can be used to hide any user specified sensitive attribute. Aegis
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does not require users to alter their original posts or topics. Instead, Aegis hides the

user’s original posts among other obfuscation posts that are aligned with their persona

but linked to other sensitive attribute values achieving k-attribute-indistinguishability.

4.7 Aegis Conclusion

This work proposes multifaceted privacy, a novel privacy model that obfuscates a

user’s sensitive attributes while publicly revealing their public online persona. To achieve

the multifaceted privacy, we build Aegis, a prototype client-centric social network stream

processing system that achieves multifaceted privacy. Aegis is user-centric and allows

social network users to control which persona attributes should be publicly revealed and

which should be kept private. Aegis is designed to transfer user trust from the social

network providers to her local machine. For this, Aegis continuously suggests topics and

hashtags to social network users to post in order to obfuscate their sensitive attributes

and hence confuse content-based sensitive attribute inferences. The suggested topics are

carefully chosen to preserve the user’s publicly revealed persona attributes while hiding

their private sensitive persona attributes. Our experiments show that Aegis is able to

achieve sensitive attributes privacy such as location and gender. Adding as few as 0 to 4

obfuscation posts (depending on how strongly connected the original post is to a persona)

successfully hides the user specified sensitive attributes without altering the user’s public

persona attributes.

4.8 Aegis Future Extensions

Research in the social network privacy has focused on dataset publishing and obfus-

cating user information among other users. Such focus is service centric and assumes
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that service providers are trusted. However, Aegis is user centric and aims to give the

users control over their own privacy. This control comes with a cost represented by the

obfuscation posts that need to be posted by users. The role of Aegis is to automate the

topic suggestion process and to ensure that k-attribute-indistinguishability holds against

content-base inference attacks. There are several directions where these obfuscation and

privacy models can evolve.

Obfuscation Post Generation. Aegis suggests topics as keywords or hashtags and

requires users to write the obfuscation posts using their personal writing styles to ensure

that the original posts and the obfuscation posts are indistinguishable. However, the

obfuscation writing overhead might alienate users from Aegis. Instead, Aegis can exploit

deep neural network language models to learn the user’s writing style. Aegis can use such

a model to suggest full posts instead of hashtags and users can either directly publish

these posts or edit them before publishing. This extension aims to reduce the overhead

on the users by automating the obfuscation post generation.

Social Graph Attack Prevention. Aegis is mainly designed to obfuscate the user sen-

sitive attributes against content-based inference attacks. An orthogonal attack is to use

the attribute values of friends and followers to infer a user’s real sensitive attribute value.

Take location as a sensitive attribute example. Ghufran et al., [104] show that user lo-

cation can be inferred from the locations of followers and friends. A user whose friends

are mostly from NYC is highly probable to be from NYC. Aegis can be extended to

prevent this attack. Users of similar persona but different locations can create an in-

distinguishability network where users in this network have followers and friends from

different locations. Similar to the obfuscation topics, Aegis could suggest users to follow

with similar persona but different locations.
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Chapter 5

Atomic Commitment Across

Blockchains

5.1 Overview

The wide adoption of permissionless open blockchain networks by both industry (e.g.,

Bitcoin [164], Ethereum [205], etc) and academia (e.g., Bzycoin [131], Elastico [152],

BitcoinNG [94], Algorand [160], etc) suggests the importance of developing protocols

and infrastructures that support peer-to-peer atomic cross-chain transactions. Users,

who usually do not trust each other, should be able to directly exchange their tokens

and assets that are stored on different blockchains (e.g., Bitcoin and Ethereum) with-

out depending on trusted third party intermidiaries. Decentralized permissionless [155]

blockchain ecosystems require infrastructure enablers and protocols that allow users to

atomically exchange tokens without giving up trust-free decentralization, the main reason

behind using permissionless blockchain. We motivate the problem of atomic cross-chain

transactions and discuss the current available solutions and their limitations through the

following example.
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Suppose Alice owns X bitcoins and she wants to exchange them for Y ethers. Luckily,

Bob owns ether and he is willing to exchange his Y ethers for X bitcoins. In this example,

Alice and Bob want to atomically exchange assets that reside in different blockchains.

In addition, both Alice and Bob do not trust each other and in many scenarios, they

might not be co-located to do this atomic exchange in person. Current infrastructures

do not support these direct peer-to-peer transactions. Instead, both Alice and Bob need

to independently exchange their tokens through a trusted centralized exchange, Trent

(e.g., Coinbase [26] and Robinhood [36]) either through fiat currency or directly. Using

Fiat, both Alice and Bob first exchange their tokens with Trent for a fiat currency (e.g.,

USD) and then use the earned fiat currency to buy the other token also from Trent

or from another trusted exchange. Alternatively, some exchanges (e.g., Coinbase) allow

their customers to directly exchange tokens (ether for bitcoin or bitcoin for ether) without

going through fiat currencies.

These solutions have many drawbacks that make them unacceptable solutions for

atomic peer-to-peer cross-chain transactions. First, both solutions require both Alice

and Bob to trust Trent. This centralized trust requirement risks to derail the whole idea

of blockchain’s trust-free decentralization [164]. Second, both solutions require Trent to

trade in all involved resources (e.g., bitcoin and ether). This requirement is unrealistic

especially if Alice and Bob want to exchange commodity resources (e.g., transfer a car

ownership for bitcoin assuming car titles are stored in a blockchain [117]). Third, both

solutions do not achieve atomicity of the transaction among the involved participants.

Alice might trade her bitcoin directly for ether or through a fiat currency while Bob has

no obligation to execute his part of the swap. Finally, both solutions significantly increase

the number of required transactions to achieve the intended cross-chain transaction, and

hence drastically increases the imposed fees. One cross-chain transaction between Alice

and Bob results in either four transactions (two between Alice and Trent and two between
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Bob and Trent) if fiat is used or at best two transactions (one between Alice and Trent

and one between Bob and Trent) if assets are directly swapped.

An Atomic Cross-Chain Transaction , AC2T, is a distributed transaction that spans

multiple blockchains. This distributed transaction consists of sub-transactions and each

sub-transaction is executed on some blockchain. An Atomic Cross-Chain Commitment,

AC3, protocol is required to execute AC2Ts. This protocol is a variation of traditional

distributed atomic commitment protocols (e.g., 2PC [112, 57]). This protocol should

guarantee both atomicity and commitment of AC2Ts. Atomicity ensures the all-or-

nothing property where either all sub-transactions take place or none of them is exe-

cuted. Commitment guarantees that any changes caused by a cross-chain transaction

must eventually take place if the transaction is decided to commit. Unlike in 2PC and

other traditional distributed atomic commitment protocols, atomic cross-chain commit-

ment protocols are also trust-free and therefore must tolerate maliciousness [117].

A two-party atomic cross-chain commitment protocol was originally proposed by

Nolan [169, 21] and generalized by Herlihy [117] to process multi-party atomic cross-

chain transactions, or swaps. Both Nolan’s protocol and its generalization by Herlihy use

smart contracts, hashlocks, and timelocks to execute atomic cross-chain transactions.

A smart contract is a self executing contract (or a program) that gets executed in a

blockchain once all the terms of the contract are satisfied. A hashlock is a cryptographic

one-way hash function h = H(s) that locks assets in a smart contract until a hash secret

s is provided. A timelock is a time bounded lock that triggers the execution of a smart

contract function after a pre-specified time period.

The atomic swap between Alice and Bob, explained in the earlier example, is executed

using Nolan’s protocol as follows. Let a participant be the leader of the swap, say Alice.

Alice creates a secret s, only known to Alice, and a hashlock h = H(s). Alice uses h

to lock X bitcoins in a smart contract SC1 and publishes SC1 in the Bitcoin network.
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SC1 states to transfer X bitcoins to Bob if Bob provides the secret s to SC1 such that

h = H(s). In addition, SC1 is locked with a timelock t1 that refunds the X bitcoins

to Alice if Bob fails to provide s to SC1 before t1 expires. As SC1 is published in the

Bitcoin network and made public to everyone, Bob can verify that SC1 indeed transfers

X bitcoins to the public address of him if he provides s to SC1. In addition, Bob learns h

from SC1. Using h, Bob publishes a smart contract SC2 in the Ethereum network that

locks Y ethers in SC2 using h. SC2 states to transfer Y ethers to Alice if Alice provides

the secret s to SC2. In addition, SC2 is locked with a timelock t2 < t1 that refunds the

Y ethers to Bob if Alice fails to provide s to SC2 before t2 expires.

Now, if Alice wants to redeem her Y ethers from SC2, Alice must reveal s to SC2

before t2 expires. Once s is provided to SC2, Alice redeems the Y ethers and s gets

revealed to Bob. Now, Bob can use s to redeem his X bitcoins from SC1 before t1

expires. Notice that t1 > t2 is a necessary condition to ensure that Bob has enough time

to redeem his X bitcoins from SC1 after Alice provides s to SC2 and before t1 expires.

If Bob provides s to SC1 before t1 expires, Bob successfully redeems his X bitcoins and

the atomic swap is marked completed.

The case against the current proposals: If Bob fails to provide s to SC1 before

t1 expires due to a crash failure or a network denial of service attack at Bob’s site,

Bob loses his X bitcoins and SC1 refunds the X bitcoins to Alice. This violation of the

atomicity property of the protocol penalizes Bob for a failure that happens out of his

control. Although a crashed participant is the only participant who ends up being worse

off (Bob in this example), this protocol does not guarantee the atomicity of AC2Ts in

asynchronous environments where crash failures, network delays, and network denial of

service attacks are the norm.

Another important drawback in Nolan’s and Herlihy’s protocols is the requirement to

sequentially deploy the smart contracts in an atomic swap before the leader (Alice in our
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example) reveals the secret s. This requirement is necessary to ensure that the deploy-

ment events of all the smart contracts in the atomic swap happen before the redemption

of any of the smart contracts. This causality requirement ensures that any malicious

participant who declines to deploy her payment smart contract cannot take advantage of

the protocol. However, the sequential publishing of smart contracts, especially in atomic

swaps that include many participants, proportionally increases the latency of the swap

to the number of sequentially published contracts.

This chapter proposes AC3WN, the first decentralized all-or-nothing Atomic Cross-

Chain Commitment protocol that uses an open Witness Network. The redemption

and the refund events of smart contracts in AC2T are modeled as conflicting events. A

decentralized open network of witnesses is used to guarantee that conflicting events must

never simultaneously take place and either all smart contracts in an AC2T are redeemed

or all of them are refunded. Recent and concurrent work by Herlihy et al. [119] proposes

the CBC protocol, a protocol that uses an additional blockchain to coordinate cross-chain

deals. Although, this additional network performs a similar role to the witness network

in AC3WN, the CBC protocol focuses on cross-chain deals that do not require the all-or-

nothing atomicity property. Unlike in Nolan’s and Herlihy’s protocols [169, 117], AC3WN

allows all participants to concurrently publish their contracts in a swap resulting in a

drastic decrease in an atomic swap’s latency. Our contribution is summarized as follows:

• We present AC3WN, the first all-or-nothing atomic cross-chain commitment pro-

tocol. AC3WN is decentralized and does not require to trust any centralized inter-

mediary.

• We prove the correctness of AC3WN showing that AC3WN achieves both atomicity

and commitment of AC2Ts.

• Finally, we analytically evaluate AC3WN in comparison to Herlihy’s protocol in [117].
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Unlike in Herlihy’s protocol where the latency of an atomic swap proportionally in-

creases as the number of the sequentially published smart contracts in the atomic

swap increases, our analysis shows that the latency of an atomic swap in AC3WN

is constant irrespective of the number of smart contracts involved.

The rest of the chapter is organized as follows. In Section 5.2, we discuss the open

blockchain data and transactional models. Section 5.3 explains the cross-chain distributed

transaction model and Section 5.4 presents our atomic cross-chain commitment protocol.

An analysis of the atomic cross-chain commitment protocol is presented in Section 5.5.

The protocol is evaluated in Section 5.6 and the chapter is concluded in Section 5.7.

5.2 Open Blockchain Models

5.2.1 Architecture Overview

An open permissionless blockchain system [155] (e.g., Bitcoin and Ethereum) typi-

cally consists of two layers: a storage layer and an application layer. The storage layer

comprises a decentralized distributed ledger managed by an open network of computing

nodes. A blockchain system is permissionless if computing nodes can join or leave the

network of its storage layer at any moment without obtaining a permission from a cen-

tralized authority. Each computing node, also called a miner, maintains a copy of the

ledger. The ledger is a tamper-proof chain of blocks, hence named blockchain. Each block

contains a set of valid transactions that transfer assets among end-users. The appli-

cation layer comprises end-users who communicate with the storage layer via message

passing through a client library. End-users have identities, defined by their public keys,

and signatures, generated using their private keys. Digital signatures are the end-users’

way to generate transactions as explained later in Section 5.2.3. End-users submit their
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transactions to the storage layer through a client library. Transactions are used to trans-

fer assets from one identity to another. End-users multicast their transaction messages

to mining nodes in the storage layer.

A mining node validates the transactions it receives and valid transactions are added

to the current block of a mining node. Miners run a consensus protocol through mining

to agree on the next block to be added to the chain. A miner who mines a block gets the

right to add its block to the chain and multicasts it to other miners. To make progress,

miners accept the first received mined block after verifying it and start mining the next

block1. Sections 5.2.2 and 5.2.3 explain the data model and the transactional model of

open blockchain systems respectively.

5.2.2 Data Model

The storage layer stores the ownership information of assets in the system in the

blockchain. The ownership is determined through identities and identities are typically

implemented using public keys. In addition, the blockchain stores transactions that

transfer the ownership of an asset from one identity to another. Therefore, an asset

can be tracked from its registration in the blockchain, the first owner, to its last owner

in the blockchain. For example, the Bitcoin blockchain stores the information of the

most recent owner of every bitcoin in the Bitcoin blockchain. A bitcoin that is linked

to Alice’s public key is owned by Alice. Also, new bitcoins are generated and registered

in the Bitcoin blockchain through mining. Asset ownership transfers are implemented

through transactions.

1Forks and fork resolutions are discussed in later Sections.
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5.2.3 Transaction Model

A transaction is a digital signature that transfers the ownership of assets from one

identity to another. End-users, in the application layer, use their private keys [186] to

digitally sign assets linked to their identity to transfer these assets to other identities,

identified by their public keys. These digital signatures are submitted to the storage

layer via message passing through a client library. It is the responsibility of the miners

to validate that end-users can transact only on their own assets. If an end-user digitally

signs an asset that is not owned by this end-user, the resulting transaction is not valid

and is rejected by the miners. In addition, miners validate that an asset cannot be spent

twice and hence prevent double spending of assets.

Another way to perform transactions in blockchain systems is through smart con-

tracts. A smart contract is a program written in some scripting language (e.g., Solidity

for Ethereum smart contracts [38]) that allows general program executions on a block-

chain’s mining nodes. End-users publish a smart contract in a blockchain through a

deployment message, msg, that is sent to the mining nodes in the storage layer. The

deployment message includes the smart contract code in addition to some implicit param-

eters that are accessible to the smart contract code once the smart contract is deployed.

These parameters include the sender public key, accessed through msg.sender, and an

optional asset value, accessed through msg.val. This optional asset value allows end-users

to send some of their blockchain assets to a deployed smart contract. Like transactions,

a smart contract is published in a blockchain if it is included in a mined block in this

blockchain. We adopt Herlihy’s notion of a smart contract as an object in programming

languages [118, 86]. A smart contract has a state, a constructor that is called when a

smart contract is first deployed in the blockchain, and a set of functions that could alter

the state of the smart contract. The constructor initializes the smart contract’s state and
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uses the implicit parameters to initialize the owner of the smart contract and the assets

value sent to this smart contract. Miners verify that the end-user who deploys a smart

contract indeed owns these assets. Once assets are sent to a smart contract, the owner-

ship of these assets is moved to the smart contract itself. Smart contract assets can only

be transacted on within the smart contract logic until these assets are unlocked from the

smart contract as a result of a smart contract function call. To execute a smart contract

function, end-users submit their function call accompanied by the function parameters

through messages to miners. These messages could include implicit parameters as well

(e.g., msg.sender). Miners execute2 the function on the current state of the contract and

record any contract state changes in their current block in the blockchain. Therefore,

a smart contract object state might span many blocks after the block where the smart

contract is first deployed.

5.3 Atomic Cross-Chain Transaction Model

Figure 5.1: An atomic cross-chain transaction graph to swap X bitcoins for Y ethers
between Alice (A) and Bob (B).

An Atomic Cross-Chain Transaction, AC2T, is a distributed transaction to trans-

2End-users pay to miners a smart contract deployment fee plus a function invocation fee for every
function call.
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fer the ownership of assets stored in multiple blockchains among two or more partici-

pants. This distributed transaction consists of sub-transactions and each sub-transaction

transfers an asset on some blockchain. An AC2T is modeled using a directed graph

D = (V , E) [117] where V is the set of vertexes and E is the set of edges in D. V repre-

sents the participants in AC2T and E represents the sub-transactions in AC2T. A directed

edge e = (u, v) ∈ E represents a sub-transaction that transfers an asset e.a from a source

participant u ∈ V to a recipient participant v ∈ V in some blockchain e.BC. Figure 5.1

shows an example of an AC2T graph between Alice (A) and Bob (B). As shown, the edge

(A, B) represents the sub-transaction AC2T1 that transfers X bitcoins from A to B while

the edge (B, A) represents the sub-transaction AC2T2 that transfers Y ethers from B to

A.

An atomic cross-chain commitment protocol is required in order to correctly execute

an AC2T. This protocol must ensure the atomicity and the commitment of all sub-

transactions in AC2T as follows.

• Atomicity: either all asset transfers of all sub-transactions in the AC2T take place

or none of them do.

• Commitment: once the atomic cross-chain commitment protocol decides the com-

mitment of an AC2T, all asset transfers of all sub-transactions in this AC2T must

eventually take place.

An atomic cross-chain commitment protocol is a variation of the two phase commit

protocol (2PC) [112, 57]. Therefore, we use the analogy of 2PC to explain an abstraction

of an atomic cross-chain commitment protocols. In 2PC, a distributed transaction spans

multiple data partitions and each partition is responsible for executing a sub-transaction.

A coordinator sends a vote request to all involved data partitions. Upon receiving a vote

request, a data partition votes back yes only if it succeeds in executing all the operations
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of its sub-transaction on the involved data objects. Otherwise, a data partition votes

no to the coordinator. A coordinator decides to commit a distributed transaction if all

involved data partitions vote yes, otherwise it decides to abort the distributed transac-

tion. If a commit decision is reached, all data partitions commit their sub-transactions.

However, if an abort is decided, data partitions abort their sub-transactions. 2PC as-

sumes that the coordinator and the data partitions are trusted. The main challenge in

blockchain systems is how to design a trust-free variation of 2PC where participants do

not trust each other and a protocol cannot depend on a centralized trusted coordinator.

An atomic cross-chain commitment protocol requires that for every edge e = (u, v) ∈

E , the source participant u to lock an asset e.a in Blockchain e.BC. This asset locking

is necessary to temporarily prevent the participant u from spending e.a through other

transactions in e.BC. If every source participant u locks e.a in e.BC, the atomic cross-

chain commitment protocol can decide to commit the AC2T. Once the protocol decides

to commit the AC2T, every recipient participant v should be able to redeem the asset e.a.

However, if the protocol decides to abort the AC2T because some participants do not

comply to the protocol or a participant requests the transaction to abort, every source

participant u should be able to get a refund of their locked assets e.a.

In blockchain systems, smart contracts are used to implement this logic. Participant

u deploys a smart contract SCe in Blockchain e.BC to lock an asset e.a owned by u

in SCe. SCe ascertains to conditionally transfer e.a to v if a commitment decision is

reached, otherwise e.a is refunded to u. A smart contract SCe exists in one of three

states: published (P ), redeemed (RD), or refunded (RF ). A smart contract SCe is

published if it gets deployed to e.BC by u. Publishing the smart contract SCe serves

two important goals towards the atomic execution of an AC2T. First, it represents a

yes vote on the sub-transaction corresponding to the edge e. Second, it locks the asset

e.a in blockchain e.BC. A smart contract SCe is redeemed if participant v successfully
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redeems the asset e.a from SCe. Finally, a smart contract SCe is refunded if the asset

e.a is refunded to participant u.

Now, if for every edge e = (u, v) ∈ E , the participant u publishes a smart contract

SCe in e.BC, it means that all participants vote yes on AC2T, lock their involved assets

in AC2T, and hence the AC2T can be committed. However, if some participants decline

to publish their smart contracts, the AC2T has to be aborted. The commitment of AC2T

requires the redemption of every smart contract SCe in AC2T. On the other hand, if

the AC2T aborts, this requires the refund of every smart contract SCe in AC2T.

To implement conditional smart contract redemption and refund, a cryptographic

commitment scheme primitive based on [105] is used. A commitment scheme allows a

user to commit to some chosen value without revealing this value. Once this hidden value

is revealed, other users can verify that the revealed value is indeed the one that is used

in the commitment. A hashlock is an example of a commitment scheme. A hashlock is a

cryptographic one-way hash function h = H(s) that is used to conditionally lock assets

in a smart contract using h, the lock, until a hash secret s, the key, is revealed. Once

s is revealed, everyone can verify that the lock h equals to H(s) and hence unlocks the

assets locked in the smart contract.

An atomic cross-chain commitment protocol should ensure that smart contracts in

AC2T are either all redeemed or all refunded. For this, a protocol uses two mutually

exclusive commitment scheme instances: a redemption commitment scheme and a re-

fund commitment scheme. All smart contracts in AC2T commit their redemption action

to the redemption commitment scheme instance and their refund action to the refund

commitment scheme instance. If the protocol decides to commit the AC2T, the protocol

must publish the redemption commitment scheme secret. This allows all participants in

AC2T to redeem their assets. However, if the protocol reaches an abort decision, the

protocol must publish the refund commitment scheme secret. This allows participants
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in AC2T to refund the locked assets in every published smart contract. A protocol must

ensure that once the secret of one commitment scheme instance is revealed, the secret

of the other instance cannot be revealed. This guarantees the atomic execution of an

AC2T.

Algorithm 9 illustrates a smart contract template that can be used in implementing

an atomic cross-chain commitment protocol. Each smart contract has a sender s and

recipient r (Line 2), an asset a (Line 3) to be transferred from s to r through the contract,

a state (Line 4), and a redemption and refund commitment scheme instances rd and rf

(Lines 5 and 6). A smart contract is published in a blockchain through a deployment

message. When published, its constructor (Line 7) is executed to initialize the contract.

The deployment message of a smart contract typically includes some implicit parameters

like the sender’s address (msg.sender, Line 8) and the asset value (msg.value, Line 9) to

be locked in the contract. The constructor initializes the addresses, the asset value, the

refund and redemption commitment schemes, and sets the contract state to P (Line 11).

In addition, each smart contract has a redeem function (Line 13) and a refund function

(Line 17). A redeem function takes evidence parameter. This evidence parameter proves

that the AC2T is decided to commit. The redeem function requires the smart contract to

be in state P and that the provided evidence is a valid redemption commitment scheme

secret (Line 14). If all these requirements hold, the asset a is transferred from the contract

to the recipient and the contract state is changed to RD. However, if any requirement is

violated, the redeem function fails and the smart contract state remains unchanged.

Similarly, the refund function requires the smart contract to be in state P and that

the provided evidence is a valid refund commitment scheme secret (Line 18). If all these

requirements hold, the asset a is refunded from the contract to the sender and the contract

state is changed to RF.

The redeem and the refund functions use two helper functions: IsRedeemable (Line 21)
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Algorithm 9 An atomic swap smart contract template

abstract class AtomicSwapSC

1: enum State {Published (P), Redeemed (RD), Refunded (RF)}
2: Address s, r // Sender and recipient public keys.
3: Asset a
4: State state
5: CS rd // Redemption commitment scheme
6: CS rf // Refund commitment scheme
7: procedure Constructor(Address r, CS rd, CS rf)
8: this.s = msg.sender, this.r = r
9: this.a = msg.value
10: this.rd = rd, this.rf = rf
11: state = P
12: end procedure
13: procedure Redeem(Evidence erd)
14: requires(state == P and IsRedeemable(erd))
15: transfer a to r, state = RD
16: end procedure
17: procedure Refund(Evidence erf )
18: requires(state == P and IsRefundable(erf ))
19: transfer a to s, state = RF
20: end procedure
21: procedure IsRedeemable(Evidence erd)
22: return verify(rd, erd)
23: end procedure
24: procedure IsRefundable(Evidence erf )
25: return verify(rf, erf )
26: end procedure

and IsRefundable (Line 24). IsRedeemable verifies that the provided evidence is a valid

redemption commitment scheme secret and hence the smart contract can be redeemed.

Similarly, IsRefundable verifies that the provided evidence is a valid refund commitment

scheme secret and hence the smart contract can be refunded.
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5.4 AC3: Atomic Cross-Chain Commitment

This section presents an Atomic Cross-Chain Commitment, AC3, protocol, AC3WN,

that achieves both atomicity and commitment of an AC2T. First, we present an

important building block on how miners of one blockchain validate the publishing of a

transaction or a smart contract in another blockchain in Section 5.4.1. Then, we present

AC3WN, an AC3 protocol that uses a permissionless Witness Network to coordinate

AC2Ts in 5.4.2. Using a permissionless network of witnesses does not require more trust

in the witness network than the required trust in the blockchains used to exchange the

assets in an AC2T. Furthermore, the AC3WN protocol overcomes the vulnerability of

centralized solutions that are subject to failures and denial of service attacks.

5.4.1 Cross-Chain Validation

This section explains different techniques of how the miners of one blockchain, the

validators, can validate the publishing and verify the state of a smart contract deployed

in another blockchain, the validated blockchain. A simple but impractical solution is

to require all the miners of every blockchain to serve as validators to all other blockchains.

A blockchain validator maintains a copy of the validated blockchain and for every new

mined block, a validator validates the mined block and adds it to its local copy of the

validated blockchain. If all mining nodes mine one blockchain and validate all other

blockchains, mining nodes can consult their local copies of these blockchains to validate

the publishing and hence verify the state of any smart contract in any blockchain. If

a participant needs the miners of the validator blockchain to validate the publishing

of a smart contract in the validated blockchain, this participant submits evidence that

comprises a block id and a transaction id of the smart contract in the validated blockchain

to the miners of the validator blockchain. This evidence is easily verified by the mining
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node of the validator blockchain by consulting their copy of the validated blockchain.

However, this full replication of all the blockchains in all the mining nodes is impractical.

Not only does it require massive processing power to validate all blockchains, but also it

requires significant storage and network capabilities at each mining node.

Alternatively, miners of one blockchain, the validators, can run light nodes [64] of

other blockchains, the validated blockchains. A light node, as defined in [64], is a node

that downloads only block headers of the validated blockchain, verifies the proof of work

of these block headers, and downloads only the blockchain branches that associate with

transactions of interest to this node. This solution requires the validators to mine for

one blockchain and run light nodes for every validated blockchains. The validators can

consult their local light node copy of the validated blockchain to validate the publishing

and hence verify the state of a smart contract in the validated blockchain. Although

the cost of maintaining a light node is much cheaper than maintaining a blockchain full

copy, running a light node for all blockchains does not scale as the number of blockchains

increases.

The previous two techniques put the onus of validating one blockchain on the miners

of another blockchain. In addition, they require changes in the current infrastructure by

requiring the miners of one blockchain to either maintain a full copy or a light node of

other blockchains.

Our proposal: Another way to allow miners of one blockchain, the validators, to

validate the publishing and verify the state of a smart contract in another blockchain,

the validated, is to push the validation logic into the code of a smart contract in the

validator blockchain. A smart contract in the validator blockchain is deployed and stores

the header of a stable block in the validated blockchain. A stable block is a block at

depth d from the current head of the validated blockchain such that the probability of

forking the blockchain at this block is negligible (i.e., a block at depth ≥ 6 in the Bitcoin
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Figure 5.2: How miners of one blockchain could validate transactions in another block-
chain.

blockchain [23]). A participant who deploys the smart contract in the validator blockchain

stores the block header of a stable block of the validated blockchain as an attribute in

the smart contract object in the validator blockchain. When the transaction or the smart

contract of interest takes place in a block in the validated blockchain and after this block

becomes a stable block, at depth d, a participant can submit evidence of the transaction

occurrence in the validated blockchain to the miners of the validator blockchain. This

evidence comprises the headers of all the blocks that follow the stored stable block in the

smart contract of the validator blockchain in addition to the block where the transaction

of interest took place. The evidence is submitted to the validator smart contract via

a function call. This smart contract function validates that the passed headers follow
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the header of the stable block previously stored in the smart contract object and that

the proof of work of each header is valid. In addition, the function verifies that the

transaction of interest indeed took place and that the block of this transaction is stable

and buried under d blocks in the validated blockchain.

Figure 5.2 shows an example of a validator blockchain, blockchain2, that validates

the occurrence of transaction TX1 in the validated blockchain, blockchain1. In this

example, there exists a smart contract SC that gets deployed in the current head block

of blockchain2 (labeled by number 2 in Figure 5.2). SC has an initial state S1 and stores

the header of a stable block, at depth d, in blockchain1 (labeled by number 1). This

header is represented by a red rectangle inside SC. SC’s state is altered from S1 to

S2 if evidence is submitted to miners of blockchain2 that proves that TX1 took place in

blockchain1 in some block after the stored stable block in SC. When TX1 takes place

in blockchain1 (labeled by number 3) and its block becomes a stable block at depth

≥ d (labeled by number 4), a participant submits the evidence (labeled by number 5)

to the miners of blockchain2 through SC’s function call (labeled by number 6). This

function takes the evidence as a parameter and verifies that the submitted blocks took

place after the stored stable block in SC. This verification ensures that the header of

each submitted block includes the hash of the header of the previous block starting from

the stored stable block in SC. In addition, this function verifies the proof of work of

each submitted block header. Finally, the function validates that TX1 took place in

some block in the submitted blocks and that this block has already become a stable

block. If this verification succeeds, the state of SC is altered from S1 to S2. This

technique allows miners of one blockchain to verify transactions and smart contracts

in another blockchain without maintaining a copy of this blockchain. In addition, this

technique puts the evidence validation responsibility on the developer of the validator

smart contract.
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5.4.2 AC3WN: Permissionless Witness Network

This section presents AC3WN, an AC3 protocol that uses a permissionless block-

chain network of witnesses to decide whether an AC2T should be committed or aborted.

Miners of this blockchain are collectively the witnesses on AC2T s. The main design

challenge of the AC3WN protocol is how to use a permissionless network of witnesses

to implement the redemption and refund commitment scheme instances used by every

smart contract in AC2T. In addition, how to ensure that the two instances are mutually

exclusive.

When a set of participants want to execute an AC2T, they deploy a smart contract

SCw in the witness network where SCw is used to coordinate the AC2T. SCw has a state

that determines the state of the AC2T. SCw exists in one of three states: Published (P ),

Redeem Authorized (RDauth), or Refund Authorized (RFauth). Once SCw is deployed,

SCw is initialized to the state P . If the witness network decides to commit the AC2T,

the witnesses set SCw’s state to RDauth. However, if the witness network decides to abort

the AC2T, the witnesses set SCw’s state to RFauth.

Figure 5.3 shows an AC2T that exchanges assets among blockchains, blockchain1, ...,

blockchainn and uses a witness blockchain for coordination. Also, it illustrates the

AC3WN protocol steps. For every AC2T, a directed graph D = (V , E) is constructed

at some timestamp t and multisigned by all the participants in the set V generating a

graph multisignature ms(D) as shown in Equation 5.1. The timestamp t is important

to distinguish between identical AC2T s among the same participants. The order of par-

ticipant signatures in ms(D) is not important. Any signature order indicates that all

participants in the AC2T agree on the graph D at some timestamp t.

ms(D) = sig(..., sig((D, t), p1), ..., p|V|) (5.1)
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Figure 5.3: Coordinating AC2T s using a permissionless witness network.

A participant registers ms(D) in a smart contract SCw in the witness network where

SCw’s state is initialized to P . The state P indicates that participants of the AC2T

agreed on D. In addition, participants agree to conditionally link the redeem and the

refund actions of their smart contracts in the AC2T to SCw’s states RDauth and RFauth

respectively. Afterwards, the participants parallelly deploy their smart contracts in the

blockchains, blockchain1, ..., blockchainn, as shown in Figure 5.3. After all the partici-

pants deploy their smart contracts in the AC2T, a participant may submit a state change

request to the witness network miners to alter SCw’s state from P to RDauth. This re-

quest is accompanied by evidence that all smart contracts in the AC2T are deployed and

correct. Upon receiving this request, witness network miners verify that SCw’s state is

P and that participants of the AC2T have indeed deployed their smart contracts in the

AC2T in their corresponding blockchains. In addition, miners verify that all these smart

contracts are in state P and that the redemption and the refund of these smart contracts

are conditioned on SCw’s states RDauth and RFauth respectively. If this verification suc-
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ceeds, witness network miners record SCw state change to RDauth in their current block.

Once a block that reflects the state change of SCw to RDauth is mined in the witness

network, the commitment of the AC2T is decided and participants can use this block as

a commitment evidence to redeem their assets in the smart contracts of the AC2T. The

commit decision is illustrated in Figure 5.3 using the vertical dotted line.

Similarly, if some participants decline to deploy their smart contracts in the AC2T

or a participant changes her mind before the commitment of the AC2T, a participant

can submit a state change request to the witness network miners to alter SCw’s state

from P to RFauth. The miners of the witness network only verify that SCw’s state is

P . If this verification succeeds, the miners of the witness network record SCw’s state

change to RFauth in their current block. Once a block that reflects the state change

of SCw to RFauth is mined in the witness network, the AC2T is decided to abort and

the participants can use this block as evidence of the abort to refund their assets in the

deployed smart contracts of the AC2T. Note that SCw is programmed to ensure that

SCw’s state can only be changed either from P to RDauth or from P to RFauth but no

other state transition is allowed. This ensures that SCw’s states RDauth and RFauth are

mutually exclusive. Miners use the cross-chain evidence validation techniques presented

in Section 5.4.1 to validate smart contracts in other blockchains.

Algorithm 10 presents the details of SCw. SCw consists of four functions: Constructor

(Line 5), AuthorizeRedeem (Line 10), AuthorizeRefund (Line 14), and VerifyContracts

(Line 18). The Constructor initializes SCw with the participants public keys and the mul-

tisigned graph of the AC2T. This information is necessary to the witness network miners

to later verify the publishing of all smart contracts in the AC2T. AuthorizeRedeem alters

SCw’s state from P to RDauth. To call AuthorizeRedeem, a participant provides evidence

that shows where the smart contracts of the AC2T are published (Line 10). AuthorizeRe-

deem first verifies that SCw’s state is currently P . In addition, AuthorizeRedeem verifies
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that all smart contract in the AC2T are published and correct through a VerifyContracts

function call (Line 11). If this verification succeeds, SCw’s state is altered to RDauth

(Line 12). On the other hand, AuthorizeRefund verifies only that the state of SCw is P

(Line 15). If true, SCw’s state is altered to RFauth (Line 16).

Algorithm 10 Witness network smart contract as an AC2T Coordinator.

class WitnessSmartContract

1: enum State {Published (P), Redeem Authorized (RDauth), Refund Authorized
(RFauth)}

2: Address [] pk // Addresses of all participants in AC2T
3: Mutlisignature ms // The multisigned graph D
4: State state
5: procedure Constructor(Address[] pk, MS ms(D))
6: this.pk = pk
7: this.ms = ms(D)
8: this.state = P
9: end procedure
10: procedure AuthorizeRedeem(Evidence e )
11: requires (state == P and VerifyContracts(e))
12: this.state = RDauth

13: end procedure
14: procedure AuthorizeRefund
15: requires (state == P)
16: this.state = RFauth
17: end procedure
18: procedure VerifyContracts(Evidence e)
19: if e validates all the smart contracts in AC2T (Check Section 5.4.1 for details)

then
20: return true
21: end if
22: return false
23: end procedure

VerifyContracts validates that all smart contracts in the AC2T are published and

correct. For every edge e = (u, v) ∈ D.E , VerifyContracts finds a matching smart

contract SCe in the participant evidence. VerifyContracts ensures that SCe matches

its description in the edge e. If any parameter in SCe does not match its description
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in e, VerifyContracts fails and returns false (Line 22). However, if all smart contracts

in the provided list are correct, VerifyContracts returns true (Line 20). VerifyContracts

ensures that AuthorizeRedeem cannot be executed unless all smart contract in the AC2T

are published and correct and hence a commit decision can be reached.

Algorithm 11 Smart contract for permissionless AC3.

class PermissionlessSC extends AtomicSwapSC

1: procedure Constructor(Address r, SC SCw, Depth d)
2: this.rd = this.rf = (SCw, d)
3: super(r, this.rd, this.rf) // parent constructor
4: end procedure
5: procedure isRedeemable(Evidence e)
6: if e validates that SCw’s state is RDauth and and that SCw’s state update is at

depth ≥ d then
7: return true
8: end if
9: return false
10: end procedure
11: procedure isRefundable(Evidence e)
12: if e validates that SCw’s state is RFauth and that SCw’s state update is at depth
≥ d then

13: return true
14: end if
15: return false
16: end procedure

Algorithm 11 presents a smart contract class inherited from the smart contract tem-

plate in Algorithm 9 in order to use SCw’s state as redemption and refund commitment

scheme secrets. IsRedeemable returns true if SCw’s state is RDauth (Line 6), while Is-

Refundable returns true if SCw’s state is RFauth (Line 12). As the witness network

is permissionless, forks could possibly happen resulting in two concurrent blocks where

SCw’s state is RDauth in the first block and SCw’s state is RFauth in the second block.

To avoid atomicity violations, participants cannot use a witness network block where

SCw’s state is RDauth or RFauth in their smart contract redemption and refund respec-
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tively unless this block is buried under at least d blocks in the witness network. As the

probability of a fork of depth d (e.g., 6 blocks in the Bitcoin network [23]) is negligible,

SCw’s state eventually converges to either RDauth or RFauth.

The following steps summarizes the AC3WN protocol steps to execute the AC2T

shown in Figure 5.1:

1. Alice and Bob construct the AC2T ’s graph D and multisign (D, t) to generate

ms(D).

2. Either Alice or Bob registers ms(D) in a smart contract SCw and publishes SCw

in the witness network setting SCw’s state is P . SCw follows Algorithm 10.

3. Afterwards, Alice publishes a smart contract SC1 using Algorithm 11 to the Bitcoin

network that states the following:

• Move X bitcoins from Alice to Bob if Bob provides evidence that SCw’s state

is RDauth.

• Refund X bitcoins from SC1 to Alice if Alice provides evidence that SCw’s

state is RFauth.

4. Concurrently, Bob publishes a smart contract SC2 to the Ethereum network using

Algorithm 11 stating the following:

• Move Y ethers from Bob to Alice if Alice provides evidence that SCw’s state

is RDauth.

• Refund Y ethers from SC2 to Bob if Bob provides evidence that SCw’s state

is RFauth.

5. After both SC1 and SC2 are published, any participant can submit a state change

request of SCw from P to RDauth to the witness network miners. This request
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is accompanied by evidence that SC1 and SC2 are published in the Bitcoin and

the Ethereum blockchains respectively. The witness network miners first verify that

SCw’s state is currently P . Then, they verify that both SC1 and SC2 are published

and correct in their corresponding blockchains. If these verifications succeed, the

miners of the witness network record SCw’s state change to RDauth in their current

block. Once a block that reflects the state change of SCw to RDauth is mined and

gets buried under d blocks in the witness network, Alice and Bob can use this block

as evidence to redeem their assets from SC2 and SC1 respectively.

6. If a participant declines to publish a smart contract, the other participant can

submit a state change request of SCw from P to RFauth to the witness network

miners. The witness network miners verify that SCw’s state is currently P . If true,

miners record SCw’s state change to RFauth in their current block. Once a block

that reflects the state change of SCw to RFauth is mined and gets buried under

d blocks in the witness network, Alice and Bob can use this block as evidence to

refund their assets from SC1 and SC2 respectively.

This protocol uses two blockchain techniques to ensure that SCw’s states RDauth and

RFauth are mutually exclusive. First, it uses the smart contract programmable logic to

ensure that SCw’s state can only be altered from P to RDauth or from P to RFauth.

Second, it uses the longest chain fork resolving technique to resolve forks in the witness

network blockchain. This ensures that in the rare case of forking where one fork chain

has SCw’s state of RDauth and another fork chain has SCw’s state of RFauth, the fork is

eventually resolved resulting in either SCw’s state is RDauth or SCw’s state is RFauth but

not both.
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5.5 AC3WN Analysis

This section analyzes the AC3WN protocol introduced in Section 5.4.2. First, we

establish that the proposed protocol ensures atomicity. Then we analyze the scalability

of the witness network and how it affects the scalability of the commitment protocol.

Finally, we explain how this protocol extends the functionality of previous proposals

in [169, 117].

5.5.1 AC3WN: Atomicity Correctness Proof

Lemma 5.5.1 Assume no forks in the witness network, then the AC3WN protocol is

atomic.

Proof: Assume an AC2T executed by the AC3WN protocol and the atomicity

of this transaction is violated. This atomicity violation implies that there exists two

smart contract SCi and SCj in AC2T where SCi is redeemed and SCj is refunded. The

redemption of SCi implies that there exists a block in the witness network where SCw’s

state is RDauth while the refund of SCj implies that there exists a block in the witness

network where SCw’s state is RFauth. Since SCw is programmed to allow only the state

transitions either from P to RDauth or from P to RFauth, the two function calls to alter

SCw’s state from P to RDauth and from P to RFauth cannot take effect in one block.

Miners of the witness network shall accept one and reject the other. Therefore, these

two state changes must be recorded in two separate blocks. As there exists no forks in

the witness network, one of these two blocks must happen before the other. This implies

that either SCw’s state is altered from RDauth in one block to RFauth in a following block

or altered from RFauth in one block to RDauth in a following block. However, only the

state transitions from P to RDauth or from P to RFauth are allowed and no other state

transition is permitted leading to a contradiction.
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Lemma 5.5.2 Let ε be a negligible probability of forks in the permissionless witness

network, then AC3WN protocol is atomic with a probability 1− ε.

Proof: Assume an AC2T executed by the AC3WN protocol and the atomicity of

this transaction is violated with a probability p >>> ε. This atomicity violation implies

that there exists two smart contract SCi and SCj in AC2T where SCi is redeemed and

SCj is refunded. The redemption of SCi implies that there exists a block in the witness

network where SCw’s state is RDauth while the refund of SCj implies that there exists a

block in the witness network where SCw’s state is RFauth. As SCw’s states RDauth and

RFauth are conflicting states, this implies that the block where SCw’s state update to

RDauth occurs must exist in a fork from the block where SCw’s state update to RFauth

occurs. The atomicity violation of the AC2T with a probability p implies that the fork

probability in the witness network must be p leading to a contradiction.

5.5.2 The Scalability of AC3WN

One important aspect of AC3 protocols is scalability. Does using a permissionless

network of witnesses to coordinate AC2Ts limit the scalability of the AC3WN protocol?

In this section, we argue that the answer is no. To explain this argument, we first develop

an understanding of the properties of executing AC2Ts and the role of the witness network

in executing AC2Ts.

An AC2T is a distributed transaction that consists of sub-transactions. Each sub-

transaction is executed in a blockchain. An AC3 protocol coordinates the atomic execu-

tion of these sub-transactions across several blockchains. An AC3 protocol must ensure

an atomic execution of the distributed transaction. This atomic execution of a distributed

transaction requires the ACID [110, 115] execution of every sub-transaction in this dis-

tributed transaction in addition to the atomic execution of the distributed transaction
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itself. The ACID execution of a sub-transaction executed within a single blockchain

is guaranteed by the miners of this blockchain. Miners use many techniques including

mining, verification, and the miner’s rationale to join the longest chain in order to imple-

ment ACID executions of transactions within a single blockchain. The atomicity of the

distributed transaction is the responsibility of the distributed transaction coordinator.

Therefore, the main role of the witness network in the AC3WN protocol is to ensure

the atomicity of the AC2T. Since the atomicity coordination of AC2Ts is embarrassingly

parallel, different witness network can be used to coordinate different AC2Ts.

Assume two concurrent AC2Ts, t1 and t2. The atomic execution of t1 does not require

any coordination with the atomic execution of t2. Each AC2T requires its witness network

to ensure that either all sub-transactions in the AC2T are executed or none of them is

executed. Therefore, t1 and t2 do not have to be coordinated by the same witness

network. t1 can be coordinated by one witness network while t2 can be coordinated by

another witness network. If t1 and t2 conflict at the sub-transaction level, this conflict

is resolved by the miners of the blockchain where these sub-transactions are executed.

Therefore, using a permissionless witness network to coordinate AC2Ts does not limit

the scalability of the AC3WN protocol. Different permissionless networks are used to

coordinate different AC2Ts. For example, the Bitcoin network can be used to coordinate

t1 while the Ethereum network can be used to coordinate t2.

5.5.3 Handling Complex AC2T Graphs

One main improvement of the AC3WN protocol over the state-of-the-art AC3 proto-

cols in [117, 169] is its ability to coordinate the atomic execution of AC2Ts with complex

graphs. This improvement is achieved because the AC3WN protocol does not depend

on the rational behavior of the participants in the AC2T to ensure atomicity. Instead,
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Figure 5.4: Examples of complex graphs handled by the AC3WN protocol: (a) cyclic and
(b) disconnected.

the protocol depends on a permissionless network of witnesses to coordinate the atomic

execution of AC2Ts. Once the participants agree on the AC2T graph and register it in

the smart contract SCw in the witness network, participants cannot violate atomicity as

the commit and the abort decisions are decided by the state of SCw. The state transi-

tions of SCw are witnessed and verified by the miners of the witness network. Therefore,

the publishing order of the smart contracts in the AC2T cannot result in an advantage

to any coalition among the participants. Participants can concurrently publish their

smart contracts in the AC2T, both in Figures 5.1 and 5.4, without worrying about the

maliciousness of any participant.

Figure 5.4 illustrates two complex graph examples that either cannot be atomically

executed by the protocols in [169, 117] or require additional mechanisms and protocol

modifications to be atomically executed. These graphs appear in supply-chain applica-

tions. Both Nolan’s and Herlihy’s single leader protocol require the AC2T graph to be

acyclic once the leader node is removed. Therefore, both protocols fail to execute the

transaction graph shown in Figure 5.4a. Removing any node from the graph in Fig-

ure 5.4a still results in a cyclic graph. Herlihy presents a multi-leader protocol in [117]
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to handle cyclic graphs. However, both Nolan’s and Herlihy’s protocols fail to handle

disconnected graphs similar to the graph shown in Figure 5.4b. On the other hand,

the AC3WN protocol ensures the atomic execution of AC2Ts irrespective of the AC2T’s

graph structure.

5.6 AC3WN Evaluation

This section analytically compares the performance and the overhead of the AC3WN

protocol to the state-of-the-art atomic swap protocol presented by Herilhy in [117]. First,

we compare the latency of AC2Ts as the diameter of the transaction graph D increases

in Section 5.6.1. Then, the monetary cost overhead of using a permissionless network of

witnesses to coordinate the AC2T is analyzed in Section 5.6.2. Afterwards, an analysis

on how to choose the witness network is developed in Section 5.6.3. Finally, an analysis

of the AC2T throughput as the witness network is chosen from the top-4 permissionless

cryptocurrencies, sorted by market cap, is presented in Section 5.6.4.

5.6.1 Latency

The AC2T latency is defined as the difference between the timestamp ts when an

AC2T is started and the timestamp tc when the AC2T is completed. ts marks the

moment when participants in the AC2T start to agree on the AC2T graph D. tc marks

the completion of all the asset transfers in the AC2T by redeeming all the smart contracts

in AC2T.

Let ∆ be enough time for any participant to publish a smart contract in any permission-

less blockchain, or to change a smart contract state through a function call of this smart

contract, and for this change to be publicly recognized [117]. Also, let Diam(D) be the

AC2T graph diameter. The Diam(D) is the length of the longest path from any vertex
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in D to any other vertex in D including itself.

The single leader atomic swap protocol presented in [117] has two phases: the AC2T

smart contract sequential deployment phase and the AC2T smart contract sequential

redemption phase. The deployment phase requires the deployment of all smart contracts

in the AC2T, N , where exactly Diam(D) ≤ N smart contracts are sequentially deployed

resulting in a latency of ∆ · Diam(D). Similarly, the redemption phase requires the

redemption of all smart contracts in the AC2T, N , where exactly Diam(D) ≤ N smart

contracts are sequentially redeemed resulting in a latency of ∆ ·Diam(D). The overall

latency of an AC2T that uses this protocol equals to the latency summation of these two

phases 2 ·∆ ·Diam(D). Figure 5.5 visualizes the two phases of the protocol where time

advances from left to right. As shown, some smart contracts (e.g., SC2, SC3, and SC4)

could be deployed and redeemed in parallel but there are exactly Diam(D) sequentially

deployed and Diam(D) sequentially redeemed smart contracts resulting in an overall

latency of 2 · ∆ · Diam(D). Note that the protocol allows the parallel deployment and

redemption of some smart contracts as long as they do not lead to an advantage to either

a participant or a coalition in the AC2T.

Figure 5.5: The overall transaction latency of 2 · ∆ · Diam(D) when the single leader
atomic swap protocol in [117] is used.
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Figure 5.6: The overall transaction latency of 4 · ∆ when the AC3WN protocol in Sec-
tion 5.4.2 is used.

On the other hand, the protocol presented in Section 5.4.2 has four phases: the

witness network smart contract deployment phase, the AC2T smart contract parallel de-

ployment phase, the witness network smart contract state change phase, and the AC2T

smart contract parallel redemption phase. The witness network smart contract deploy-

ment requires the deployment of the smart contract SCw in the witness network resulting

in a latency of ∆. The AC2T smart contract parallel deployment requires the parallel

deployment of all smart contracts, N, in the AC2T resulting in a latency of ∆. The wit-

ness network smart contract state change requires a state change in SCw either from P

to RDauth or from P to RFauth through SCw’s Redeem or Refund function calls resulting

in a latency of ∆. Finally, the AC2T smart contract parallel redemption requires the

parallel redemption of all smart contracts, N, in the AC2T resulting in a latency of ∆.

The overall latency of an AC2T that uses this protocol equals to the latency summation

of these four phases 4 ·∆. Figure 5.6 visualizes the four phases of the protocol where time
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advances from left to right. As shown, all smart contracts in the AC2T are parallelly

deployed and parallelly redeemed resulting in an overall latency of 4 ·∆.

Figure 5.7: The overall AC2T latency in ∆s as the graph diameter, Diam(D), increases.

Figure 5.7 compares the overall AC2T latency in ∆s resulting from Herlihy’s protocol

in [117] and our protocol in Section 5.4.2 as the transaction graph diameter, Diam(D)

increases. As shown, our protocol achieves a constant latency of 4 · ∆ irrespective of

the transaction diagram value while Herlihy’s protocol achieves a linearly increasingly

latency the transaction diagram value increases. Note that the smallest transaction

graph consists of two nodes and two edges and hence the graph diameter in Figure 5.7

starts at 2.
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5.6.2 Cost Overhead

This section analyzes the monetary cost overhead of the AC3WN protocol in compari-

son to Herlihy’s atomic swap protocol in [117]. As explained in Section 5.2, miners charge

end-users a fee for every smart contract deployment and every smart contract function

call that results in a smart contract state change. This fee is necessary to incentives

miners to add smart contracts and append smart contract state changes to their mined

blocks. As shown in Figures 5.5 and 5.6, both protocols deploy a smart contract for every

edge e ∈ E where E is the edge set of the AC2T graph D. This results in the deployment

of N = |E| smart contracts in the smart contract deployment phase of both protocols. In

addition, both protocols invoke a redemption or a refund function call for every deployed

smart contract in the AC2T resulting in N function calls. However, the AC3WN protocol

requires to deploy an additional smart contract SCw in the witness network in addition

to an additional function call to change SCw’s state either from P to RDauth or from P

to RFauth. The cost of SCw deployment and SCw state transition function call comprises

the monetary cost overhead of our protocol. Let fd be the deployment fee of any smart

contract SCi ∈ AC2T and ffc be the function call fee of any smart contract function call.

Then, the overall AC2T fee of Herlihy’s protocol is N · (fd + ffc) while the overall AC2T

fee of the AC3WN protocol is (N + 1) · (fd + ffc). This analysis shows that AC3WN

imposes a monetary cost overhead of 1
N

the transaction fee of Herilhy’s protocol assuming

equal deployment and functional call fees for all the smart contracts in the AC2T.

But, How much does it cost in dollars to deploy a smart contract and make a smart

contract function call? The answer is, it depends. Many factors affect a smart contract

fee such as the length of the smart contract and the average transaction fee in the smart

contract’s blockchain [188, 40]. Ryan [188] shows that the cost of deploying a smart

contract with a similar logic to SCw’s logic in the Ethereum network costs approximately

173



Atomic Commitment Across Blockchains Chapter 5

$4 when the ether to USD rate is $300. Currently, this costs approximately $2 assuming

the current ether to USD rate of $140.

5.6.3 Choosing the Witness Network

This section develops some insights on how to choose the witness network for an

AC2T. This choice has to consider the risk of choosing different permissionless blockchain

networks as the witness of an AC2T and the relationship between this risk and the value

of the assets exchanged in this AC2T. As the state of the witness smart contract SCw

determines the state of an AC2T, forks in the witness network present a risk to the

atomicity of the AC2T. A fork in the witness network where one block has SCw’s state

of RDauth and another block has SCw’s state of RFauth might result in an atomicity

violation leading to an asset loss of some participants in the AC2T. To overcome possible

violation, our AC3WN protocol does not consider a block where SCw’s state is either

RDauth or RFauth as a commit or an abort evidence until this block is buried under d

blocks in the witness network. This technique of resolving forks by waiting is presented

in [164] and used by Pass and Shi in [175] to eliminate uncertainty of recently mined

blocks. This fork resolution technique is efficient as that the probability of eliminating a

fork within d blocks is sufficiently high.

However, a malicious participant in an AC2T could fork the witness blockchain for

d blocks in order to steal the assets of other participants in the AC2T. To execute this

attack, a malicious participant rents computing resources to execute a 51% attack on

the witness network. The cost of an hour of 51% attack for different cryptocurrency

blockchains is presented in [41]. If the cost of running this attack for d blocks is less

than the expected gains from running the attack, a malicious participant is incentivized

to act maliciously.
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To prevent possible maliciousness, the cost of running a 51% attack on the witness

network for d blocks must be set to exceed the potential gains of running the attack. Let

Va be the value of the potentially stolen assets if the attack succeeds. Also, let Ch be

the hourly cost of a 51% attack on the witness network. Finally, let dh be the expected

number of mined blocks per hour for the witness blockchain (e.g., dh = 6 blocks / hour

for the Bitcoin blockchain). The value d must be set to ensure that Va is less than the

cost of running the attack for d blocks d·Ch
dh

. Therefore d must be set to achieve the

inequality d > Va·dh
Ch

in order to disincentivize maliciousness. For example, let Va be $1M

and assume that the Bitcoin network is used to coordinate this transaction. The cost per

hour of a 51% attack on the Bitcoin network is approximately Ch = $300K. Therefore,

d must be set to be > $1M ·6
$300K

= 20.

5.6.4 Throughput

The throughput of the AC2Ts is the number of transactions per second (tps) that

could be processed assuming that every AC2T spans a fixed set of blockchains and is

witnessed by a fixed witness blockchain. For an AC2T that spans multiple blockchains,

the throughput is bounded by the slowest involved blockchain in the AC2T including the

witness network. Let tpsi be the throughput of blockchain i. The throughput of the

AC2Ts that span blockchains i, j, .., n and are witnessed by the blockchain w equals to

min(tpsi, tpsj.., tpsn, tpsw).

Blockchain tps Blockchain tps
1) Bitcoin 7 3) Litecoin 56
2) Ethereum 25 4) Bitcoin Cash 61

Table 5.1: The throughput in tps of the top-4 permissionless cryptocurrencies sorted by
their market cap [170].
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Table 5.1 shows the transaction throughput of the top-4 permissionless cryptocurren-

cies sorted by their market cap. An example AC2T that exchange assets among Ethereum

and Litecoin blockchains and are witnessed by the Bitcoin network achieves a throughput

of 7. The witness network should be chosen from the set of involved blockchains (Litecoin

and Ethereum in this example) to avoid limiting the transaction throughput.

5.7 AC3WN Concluding Remarks

This chapter presents AC3WN, the first decentralized Atomic Cross-Chain Commitment

protocol that ensures the all-or-nothing atomicity semantics even in the presence of par-

ticipant crash failures and network denial of service attacks. Unlike in [169, 117] where

the protocol correctness mainly relies on participants rational behaviour, AC3WN sepa-

rates the coordination of an Atomic Cross-Chain Transaction, AC2T, from its execution.

A permissionless open network of witnesses coordinates the AC2T while participants in

the AC2T execute sub-transactions in the AC2T. This separation allows AC3WN to en-

sure atomicity of all the sub-transactions in an AC2T even in the presence of failures. In

addition, this separation enables AC3WN to parallelly execute sub-transactions in the

AC2T reducing the latency of an AC2T from O(Diam(D)) in [117], where Diam(D) is

the diameter of the AC2T graph D, to O(1) irrespective of the size of the AC2T graph

D. Also, this separation allows AC3WN to scale by using different permissionless witness

networks to coordinate different AC2Ts. This ensures that using a permissionless network

of witnesses for coordination does not introduce any performance bottlenecks. Finally,

the AC3WN protocol extends the functionality of the protocol in [117] by supporting

AC2Ts with complex graphs (e.g., cyclic and disconnected graphs). AC3WN introduces

a slight monetary cost overhead to the participants in the AC2T. This cost equals to the

cost of deploying a coordination smart contract in the witness network plus the cost of
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a function call to the coordination smart contract to decide whether to commit or to

abort the AC2T. The smart contract deployment and function call approximately cost

$2 combined per AC2T when the Ethereum network is used to coordinate this AC2T.
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Chapter 6

Towards Global Asset Management

in Blockchain Systems

6.1 Overview

A blockchain is a distributed data structure for recording transactions maintained by

nodes without a central authority [66]. Nodes in a blockchain system agree on their shared

states across a large network of untrusted participants. Existing blockchain systems can

be divided into two main categories: permissionless blockchain systems, e.g., Bitcoin

(with PoW-based consensus) [164] and permissioned blockchain systems, e.g., Tendermint

(with BFT-type consensus) [136].

Permissionless blockchains, which are mainly devised for cryptocurrency assets, e.g.,

Bitcoin [164], are public. Any computing node can participate in maintaining the block-

chain without obtaining a permission from a centralized authority, hence the name

permissionless. In Permissionless blockchains, transactions are used to transfer cryp-

tocurrency assets from one identity to another. In addition, new currency units are

generated through mining; once a new block of transactions is added to the blockchain,
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the miner of the block receives some currency units as the mining reward. The amount

of mining reward is specified as part of the blockchain protocol.

Permissionless blockchains are public and computing nodes without a priori known

identities can join or leave the blockchain network at any time. On the other hand, a

permissioned blockchain uses a network of a priori known and identified computing nodes

to manage the blockchain. In a permissioned blockchain systems, every node maintains

a copy of the blockchain ledger and a consensus protocol is used to ensure that the

nodes agree on a unique order in which entries are appended to the blockchain ledger.

To reach agreement among the nodes, asynchronous fault-tolerant replication protocols

have been used. Nodes in a permissioned blockchain might crash or maliciously behave.

Depending on the failure model of nodes, crash fault-tolerant protocols, e.g., Paxos [140],

or Byzantine fault-tolerant protocols, e.g., PBFT [67], are used to achieve consensus.

The tutorial by C. Mohan [162] provides an overview and discusses many aspects of

permissioned blockchains.

The blockchain model is similar to an object-oriented programming language (OOPL).

Similar to the primitive data types, user-defined functions, and classes in an OOPL, each

blockchain also has primitive data types (e.g., an asset, asset ownership, etc) and prim-

itive functions operating on these primitive data types (e.g., transactions that move

currency units from one user identity to another). Classes and complex functionalities

are implemented in the blockchain using smart contracts. A smart contract, as exem-

plified by Ethereum [205], is a computer program that self-executes once it is established

and deployed. A smart contract can be seen as a class in an object-oriented program-

ming language where assets are the objects of that class and transactions update the

state (ownership) of the objects. The state transformation of a smart contract is made

persistent in the blockchain by ensuring that every state change appears as a record in

the blockchain.
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While permissionless blockchains only support cryptocurrency assets, smart contracts

are more generic and can support any type of asset. Indeed, a smart contract, like a

class in the object-oriented programming, could potentially have different attributes and

functions. Once a smart contract is written, it can be deployed on a blockchain and

different transactions can call the functions of the smart contract to change its attributes

or even destroy the contract (using a destructor function), making it void.

Deploying general assets (e.g., cars, houses, etc) on the blockchain, in contrast to

cryptocurrency assets, gives rise to several challenges. First, ensuring the existence of

a registered asset requires some form of authentication of the asset. Second, the block-

chain system should prevent a malicious end-user from double spending the same asset

through two different smart contracts either within the same or on different permission-

less blockchains. Finally, depending on the asset, the asset transfer should be legally

allowed by the State law.

To address the aforementioned challenges of authentication, double spending, and le-

gality for complex assets in permissionless blockchains, in this chapter, we propose a global

asset management system that unifies permissionless and permissioned blockchains. In

the proposed system, a governmental permissioned blockchain authenticates the regis-

tration of end-user assets through smart contract deployments on a permissionless block-

chain. When an end-user requests to register their assets, in order to prevent double

spending, a governmental office checks if the asset is not already registered as a smart

contract in any permissionless blockchain. Next, the governmental office issues an au-

thenticated smart contract registering the asset wherein the contract also includes the

legal laws associated with the asset and deploys the smart contract on the permission-

less blockchain. Finally, the end-user will be able to trade the asset in the permissionless

blockchain while preserving the law enforcement explicitly specified in the smart contract.

Registering complex assets in permissionless blockchains extends the transaction
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model of the permissionless blockchains. While permissionless blockchains support intra-

chain cryptocurrency trades and cross-chain cryptocurrency trades (with the help of

cross-chain swap protocols [117, 169]), the proposed system is able to support any type

of transactions in either a single or in multiple chains with any kind of assets.

A key objective of this work is to demonstrate how global assets can be managed in

a blockchain system. The main contributions of this work are:

• a global asset management system that unifies permissioned and permissionless

blockchains to manage complex asset,

• an extended transaction model that supports varied types of transactions operating

on complex assets in multiple blockchains, and finally,

• a thorough analysis of the challenges that arise in designing blockchain-based asset

management systems.

The rest of the chapter is organized as follows. Section 6.2 presents the architecture

and asset management of permissionless blockchains. Section 6.3 explains how smart

contracts are used to extend the functionality of permissionless blockchains. Section 6.4

describes the architecture and asset management of permissioned blockchain. In Sec-

tion 6.5 permissionless and permissioned blockchains are unified in order to build a novel

global asset management system. We discuss the challenges that arise as a result of this

unification in Section 6.6. The related work is presented in Section 6.7 and the chapter

is concluded in Section 6.8.

6.2 Permissionless Blockchains

Permissionless blockchains are public and therefore, computing nodes, also known as

miners, can join or leave the blockchain network without obtaining a permission. Miners
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maintain a copy of the blockchain ledger and process end-user transactions. Miners and

end-users use their public keys as their identities in the blockchain system. Given the

open and public model of blockchains, these systems are exemplified by the complete

absence of the notion of trust. That is, these blockchains must operate in spite of a

complete absence of any trusted entity in the network. Permissionless blockchains are

mainly devised for cryptocurrency assets, e.g., Bitcoin [164]. In this section we first

explain the architecture of permissionless blockchains and then present the data and

transaction models of such systems.

6.2.1 Architecture Overview

A permissionless blockchain system [155] (e.g., Bitcoin, Ethereum) typically consists

of three layers: an application layer, a consensus layer, and a storage layer, as illustrated

in Figure 6.1.

Figure 6.1: Permissionless Blockchain Architecture Overview

The application layer. Transactions are initiated by end-users in the application

layer. End-users have identities, defined by their public keys and signatures, generated

using their private keys. Digital signatures are the end-users’ way to generate trans-
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actions. Once transactions are generated, the users multicast their transactions to the

mining nodes in the consensus layer through a client library. Transactions are used to

transfer assets from one end-user identity to another.

The Consensus Layer. In permissionless blockchains consensus is established

through mining. A mining node validates the transactions it receives, puts the valid

transactions into a block and try to solve some cryptographic puzzle. The industrious

miner who solves the puzzle multicasts the block to all nodes. To make progress, when

a miner receives a block of transactions, it first validates the solution to the puzzle and

all transactions in the block, appends the block to the blockchain, and then proceeds to

mine the next block.

The storage layer. The ledger is a tamper-proof chain of blocks that is maintained

by every mining node. The storage layer comprises a decentralized distributed ledger

managed by an open network of nodes. Each block of the ledger contains a set of valid

transactions that transfer assets among end-users.

Nodes in a permissionless blockchain are either end-users or miners. While end-users

have only the application layer, the architecture of miners consist of the consensus and

storage layers. Note that a miner can also be an end-user, thus has all three layers.

6.2.2 Asset Management

From a data point of view, assets in a permissionless blockchains can be modeled using

data types, i.e., an asset is represented by currency units and its ownership. Transactions,

on the other hand, transfer the ownership of assets, i.e., move some currency units from

one user identity to another user identity.

The ownership information of assets is stored in the storage layer. The owner of an

asset is determined using identities that are implemented using public keys. A coin that
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is linked to a user’s public key is owned by that user.

Transactions transfer the ownership of an asset from one identity to another. A

transaction is basically a digital signature. End-users, in the application layer, use their

private keys [186] to digitally sign assets linked to their identity to transfer these assets to

other identities, identified by their public keys. These digital signatures are submitted to

the consensus layer via message passing through a client library. It is the responsibility of

the miners to validate that end-users can transact only on their own assets. If an end-user

digitally signs an asset that is not owned by this end-user, the resulting transaction is

not valid and is rejected by the miners. In addition, miners validate that an asset cannot

be spent twice and hence prevent double spending of assets. Using transactions, an asset

can be tracked from its registration in the blockchain, the first owner, to its latest owner

in the blockchain. Transactions are stored in the blockchain in the storage layer.

Registration and divisibility are two other aspects of asset management. In bitcoin

and many other cryptocurrencies, new coins are generated and registered in the block-

chain through mining. In fact, once a miner solves the puzzle, it is allowed to generate

some amount of coin as a mining reward.

Assets can be split or merged using transactions. Each transaction takes one or more

input assets owned by one identity and outputs one or more assets where each output

asset is owned by one identity. Indeed, a transaction references previous transaction

outputs as new transaction inputs and dedicates all input coin values to new outputs.

The summation of a transaction’s input assets matches the summation of its output

assets assuming that no transaction fees are imposed.

Figure 6.2 shows an example of three transactions A, B, and C in the Bitcoin block-

chain. As can be seen, in transaction A, a user (with address addrQ) transfers 0.4 bitcoins

to another user addrX . In Transaction B, addrP splits 1.1 bitcoins to (1) 0.8 to addrR

and (2) 0.3 to addrX . Finally, in Transaction C, the outputs of transactions A and B that
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Figure 6.2: Transactions input and output in blockchain

are owned by addrX (0.4 bitcoins from transaction A and 0.3 bitcoins from transaction

B) are merged and then split to 0.5 to addrY and 0.2 to addrZ .

In traditional databases, end-user transactions execute arbitrary updates in the stor-

age layer as long as the semantic and the access control rights of a transaction are

validated in the application layer. On the other hand, in blockchain systems, this valida-

tion is explicitly enforced in the consensus layer and hence end-users, in the application

layer, are allowed to transact only on the assets they own in the storage layer. This

is in contrast to the database systems model where individual transactions in isolation

and in the absence of concurrency are assumed to be correct. Indeed, the database

concurrency control component provides the guarantee that the interleaved execution of

multiple transactions will be equivalent to some serial execution. In the blockchain con-

text, however, the correctness of individual user transactions cannot be assumed due to

the absence of a trust model and hence the underlying storage system checks the validity

of the user transactions.

Note that this is only feasible due to the restrictive semantics of the currency-based

asset model. More complex applications on permissionless blockchain also need to deal
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with the lack of assumption of the correct transaction model that is made in traditional

database systems.

6.3 Smart Contracts

Blockchains can be viewed as analogous to object-oriented programming languages.

Consider permissionless blockchains where each blockchain consists of primitive data

types such as an asset represented by currency units, user identities, user accounts, etc,

along with primitive functions that are applicable on these primitive data types such as

transactions that move some currency units from one user identity to another user iden-

tity. To represent a complex asset, analogous to a complex data type, an end-user writes

a smart contract [64] that represents this complex asset. A smart contract is a program

written in some scripting language (e.g., Solidity for Ethereum smart contracts [38]) that

allows general program executions on a blockchain’s mining nodes. A smart contract

can be thought of as a class in an object-oriented programming language. End-users

write the specification of the member variables (the state) and the member functions

(the state transitions) of this class in the smart contract code. For example, Alice can

write a smart contract that represents her ownership of a car. The member variables of

this smart contract could include the car attributes (e.g., make, model, year, the VIN),

the car owner (Alice’s public key), and the sell price of the car (e.g., 10 bitcoins). The

member functions could include a buy function that allows Alice to move the ownership

of the car to another end-user if this end-user pays Alice the car price through a buy

function call.

After an end-user writes the description of the smart contract class, the end-user de-

ploys the smart contract on a blockchain through a deployment message that is sent to the

mining nodes in the consensus layer. The deployment message includes the smart con-
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tract code. Deploying a smart contract on the blockchain instantiates an object [118, 86]

of the smart contract class and stores this object in the blockchain. This object has a

state, a constructor that is called when a smart contract is first deployed on the block-

chain, and a set of functions that could alter the state of this object. The constructor

initializes the object state. To alter the state of the object, end-users call smart con-

tract functions via function call messages. End-users send function call messages to the

mining nodes accompanied by the function parameters to the blockchain mining nodes.

Miners execute the function on the current contract state and record any contract state

transitions in their current block in the blockchain. Therefore, a smart contract state

might span many blocks after the block where the smart contract is first deployed. The

deployment message is a special case of a function call message that includes the smart

contract code and results in executing the constructor of this smart contract. End-users

pay a fee to the mining nodes for every function call message, including the deployment

message, to incentivize the mining nodes to execute this function and record the state

transitions of the smart contract object in their current block.

Every function call message, msg, includes some implicit parameters that are passed

in the message and are accessible by the function code. These parameters include the

sender end-user public key, accessed through msg.sender, and an optional asset value,

accessed through msg.val. This optional asset value allows end-users to use their assets,

in currency units, in the smart contract functions. For example, Alice might deploy a

smart contract that locks 10 ethers of hers in the contract, passed in the deployment

message, and conditionally transfers these 10 ethers to Bob if Bob solves some puzzle

that is written in the contract. Another example is the car ownership transfer where Bob

passes 10 bitcoins of his in the buy function call of Alice’s smart contract in order to buy

Alice’s car. Note that miners have to verify that end-users who pass an asset value in

a smart contract function call must own this asset value and they cannot double spend

187



Towards Global Asset Management in Blockchain Systems Chapter 6

this asset value in another smart contract function call or another implicit transaction.

Figure 6.3: Smart contract state can span multiple blocks in the blockchain.

Figure 6.3 illustrates a smart contract example where the smart contract state spans

multiple blocks in the blockchain. As shown, Alice deploys smart contract SC1 on the

Bitcoin blockchains. Along with the deployment message, Alice passes her 0.5 bitcoins

signed to be locked in SC1. This locking moves the ownership of the 0.5 bitcoins from

Alice to SC1. SC1 has a state variable s = s0, an asset a (0.5 BTC), and an owner

Alice. SC1 has a function F1(x) that transfers the ownership of the asset a to any

caller who provides a valid parameter x according F1’s logic. Also, F1(x) transfers SC1

state variable s from s0 to s1. When Bob calls F1(x) providing a valid parameter x, the

mining nodes execute this function call and record all the smart contract state transitions

in their current block. As shown, after Bob calls F1(x), the contract’s variable s is set

to s1 and the asset a, 0.5 bitcoin, is moved to Bob. Bob can spend the transferred asset

via transactions in the following blocks. In Figure 6.3, the ownership of the 0.5 bitcoins

is moved from Alice to SC1 through the deployment message, from SC1 to Bob through

the F1 function call, and finally is split among Alice (0.2 BTC) and Bob (0.3 BTC) via

a Bitcoin transaction.

Algorithm 12 shows an example of a smart contract to register a car as a complex
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Algorithm 12 Smart contract that represents a car as a complex asset

class CarSmartContract

1: String make . the make of the car

2: String model . the model of the car

3: Integer year . the manufacture year of the car

4: Double p . the price of the car

5: Address o . the public key of the owner

6: procedure Constructor(String make, String model, Integer year, Double p)
7: this.make = make
8: this.model = model
9: this.year = year
10: this.p = p
11: this.o = msg.sender
12: end procedure
13: procedure Buy(Address curOwner)
14: requires(msg.val ≥ this.p and curOwner == this.o)
15: transfer msg.val to this.o
16: this.o = msg.sender
17: end procedure
18: procedure UpdatePrice(Double p)
19: requires(msg.sender == this.o)
20: this.p = p
21: end procedure

asset. The member variable (Lines 1 – 5) represent the attributes of the car. The

constructor (Line 6) initializes the car object with the attribute values passed in the

deployment message (e.g., make, model, year, and price). In addition, the constructor

uses the implicit parameter msg.sender to initialize the car owner (Line 11). The smart

contract has two other functions: Buy (Line 13) and UpdatePrice (Line 18). The Buy

function allows other end-users to buy the car asset. An end-user who wants to buy the

car sends a Buy function call message accompanied by the implicit parameters msg.sender

and msg.val in addition to, an explicit parameter curOwner that includes the address of

the current car owner. msg.sender determines the identity of the end-user who wants to

buy the car and msg.val determines the value in currency units that the end-user wants to

pay for the car. curOwner determines the current owner of the asset from the perspective
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of the function call request. This is necessary to prevent concurrent Buy requests from

buying the same asset. Assume two concurrent Buy function calls that are submitted

with the same curOwner value. If one Buy request succeeds, the owner of the asset will

be altered as a result. Therefore, the other Buy request will fail. The Buy function

requires msg.val to be greater than or equal to the car price and curOwner to be equal to

the current car owner (Line 14). If true, msg.val is transferred to the current owner and

the ownership of the car is transferred to msg.sender. However, if the requires instruction

fails, the function execution is terminated and the transfers do not take place. Finally,

the function UpdatePrice allows only the current owner of the car to update its price.

Although smart contracts are powerful tools to represent the attributes and the func-

tionality of complex assets in permissionless blockchain, registering complex assets via

smart contract deployments faces several challenges including the authentication, double

spending, and legality.

The authentication challenge. “How can end-users authenticate the registered

asset and ensure its existence?”. For example, if Alice registers her car title in the

Bitcoin blockchain, “how could Bob who wants to buy this car authenticate that this car

physically exists and that Alice is not maliciously registering a car that does not exist?”.

The double spending challenge. “How can the blockchain system prevent a

malicious end-user from registering the same asset in two smart contracts within the same

permissionless blockchain or in different permissionless blockchains?”. In the previous

example, even if Bob could magically authenticate Alice’s car smart contract, ”how could

Bob ensure that this is the only smart contract that Alice deployed to register her car in

a permissionless blockchain?”.

The legality challenge. “How can end-users ensure that this asset transfer is legally

allowed by State law where this transfer takes place?”. This challenge addresses the State
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laws including the taxation law. Transferring the ownership of a car requires the buyer

to pay a transfer taxes to the State according to the State law.

Our proposal in Section 6.5 addresses these challenges by unifying both permissioned

and permissionless blockchains. This unification allows end-users to use the infrastructure

of permissionless blockchains to trade their assets without violating State laws while

preventing double spending and trading unauthenticated assets.

6.4 Permissioned Blockchains

In a blockchain, nodes agree on their shared states across a network of participants.

Existing blockchain systems can be divided into two main categories of permissionless and

permissioned blockchains. While Permissionless blockchains are public and any comput-

ing node can participate in maintaining the blockchain ledger, permissioned blockchain

consists of a set of known and identified nodes that do not fully trust each other.

Blockchain was originally devised for Bitcoin cryptocurrency [164], however, recent

systems focus on its unique features such as transparency, provenance, fault-tolerant,

and authenticity to deploy a wide range of distributed applications such as supply chain

management, IoT, and healthcare in a permissioned settings.

6.4.1 Architecture Overview

The architecture of a permissioned blockchain consists of Application layer, Consensus

layer, and Storage layer. The application layer of a permissioned blockchain, similar

to permissionless blockchains, consists of end-users who submit their transactions to

the blockchain through a client library. However the consensus layer which is mainly

responsible for ordering and validating the transactions differs from the consensus layer

in permissionless blockchains. In fact, since the nodes in a permissioned blockchain are
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Figure 6.4: Permissioned Blockchain Architecture Overview

known and identified, mining can be replaced with traditional consensus protocols in

order to establish a total order on the requests [65]. Finally, the storage layer, similar to

permissionless blockchains, consists of a decentralized distributed ledger maintained by

every node within the blockchain.

The consensus layer runs a consesus protocol among the computing nodes of the con-

sensus layer. Consensus protocols employ State Machine Replication (SMR) technique

to replicates data, e.g. ledger, over nodes. State machine replication is a technique for

implementing a fault-tolerant service by replicating servers [139]. In the state machine

replication model replicas agree on an ordering of incoming requests.

To establish consensus among the nodes in a permissioned blockchain, asynchronous

fault-tolerant protocols can be used. Nodes in a permissioned blockchain might crash or

maliciously behave. In a crash failure model, nodes operate at arbitrary speed, may fail

by stopping, and may restart, however, they may not collude, lie, or otherwise, attempt

to subvert the protocol. Whereas, in a Byzantine failure model, faulty nodes may exhibit

arbitrary, potentially malicious, behavior.
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Crash fault-tolerant protocols guarantee safety in an asynchronous network using

2f+1 nodes to overcome the simultaneous crash failure of any f nodes while in Byzantine

fault-tolerant protocols, 3f+1 nodes are usually needed to provide the safety property in

the presence of f malicious nodes.

Permissioned blockchain mainly follow an order-execute paradigm where a set of

peers (might be all of them) validates the transactions, agrees on a total order for the

transactions, puts them into blocks and multicasts them to all the nodes. Each node then

validates the block, executes the transactions using a ”smart contract”, and updates the

ledger.

6.4.2 Data Management

The permissioned blockchain systems are distinguished from the permissionless block-

chain systems in one critical way: although there is in general a lack of trust among

entities, all entities or components in the system are completely identified. The identi-

fied storage nodes in the permissioned blockchains can come together to allow a much

more general-purpose data model then that is stipulated in the permissionless system.

Thus, Permissioned blockchains can be used for different distributed applications. In the

same vein, since end-users of permissioned systems have known identities, we can enforce

the correct transaction computation assumption from the database systems. This allows

the transaction models in permissioned system to be more general than the transaction

model in permissionless blockchains where each transaction mainly transfers the own-

ership of assets, i.e., cryptocurrencies, from one identity to another. In a permissioned

blockchain depending on the application, different types of transactions can be defined.

For example, a Supply Chain Management includes different processes such as farming,

refining, design, manufacturing, packaging, and transportation. As a result, to support a
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Supply Chain Management system, the permissioned blockchain should be able to record

all transactions within these different processes.

To summarize, permissionless systems are completely open and public and therefore

do not have the notion of identity and trust. In effect, these systems have to withstand

malicious behavior at all levels: at the level of an end-user, at the level of a network node

who is miner, as well as other nodes that try to compromise the sanctity of the system.

End-users, consensus nodes, and storage nodes in the permissioned system, on the other

hand, all have known identities. The lack of trust is primarily because of two possibilities.

If the permissioned system belongs to a single enterprise, the consensus and storage nodes

may be stored at different infrastructure providers. The source of maliciousness in this

setting may arise if one or more of the infrastructures are compromised. Alternatively,

the permissioned system may be a designed to facilitate cooperation among multiple

enterprises. The source of maliciousness in this setting may arise due to the competition

among these cooperating entities.

6.5 Global Asset Management System

This section proposes a global asset management system that leverages permissioned

blockchains to address the authentication, the double spending, and the legality challenges

of using smart contract to represent complex assets in permissionless blockchains. Gov-

ernmental offices deploy their own permissioned blockchains. End-users request from a

governmental office to register their assets in a smart contract in some permissionless

blockchain. End-users pay a registration fee to the governmental office for this regis-

tration. The governmental office checks if this asset has not been previously registered

in any permissionless blockchain smart contract. This check is necessary to ensure that

end-users cannot double spend their assets through several smart contracts. If true, the
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governmental office issues an authenticated smart contract to deploy on the permission-

less blockchain included in the registration request. The governmental office encodes the

legal laws, including the taxation law, in the terms of the smart contract. Afterwards,

the governmental office deploys the smart contract on behalf of the end-user. The smart

contract, owned by the governmental office identity, registers an asset, owned by the end-

user identity, and allows the end-user to trade the asset in the permissionless blockchain

while preserving the legal rights of the governmental office. For example, the California

DMV office deploys a car registration permissioned blockchains. When Alice wants to

register her car in the Ethereum blockchain, she requests a smart contract registration

of her car in the Ethereum blockchain from the DMV office. The DMV office issues this

smart contract stating that any transfer of ownership of this car should pay the gov-

ernmental office some tax percentage, say 10%, from the car price. Alice cannot double

spend her car as there exists only one smart contract that represents Alice’s car in any

permissionless blockchain. Now, if Bob wants to buy Alice’s car, Bob first checks that

this smart contract is authenticated by the governmental office identity to ensure the

authenticity of the car in the smart contract. If true, Bob can buy the car by submitting

a Buy function call request to the mining nodes of the permissionless blockchain. This

request is accompanied by Bob’s currency units that he wants to pay for the car in the

implicit parameter msg.val. If the Buy function call succeeds, Alice gets paid in currency

units, the governmental office gets paid a tax in currency units, and the ownership of the

car is transferred to Bob.

This proposal simplifies the process of trading assets by leveraging the permissionless

blockchain infrastructure. Once an asset is registered in a smart contract, trading this

asset among end-users is as simple as a permissionless blockchain transaction. End-users

are motivated to register their assets as this registration offers them an elimination of the

bureaucratic process needed to trade their assets. Governmental offices are motivated
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to participate by running a permissioned blockchain as it offers them automation and

transparency.

In Section 6.5.1, we present the architecture overview of the permissioned and permission-

less blockchain unification proposal. Then, we explain the transaction model of the reg-

istered assets in permissionless blockchain in Section 6.5.2. We present a car registration

smart contract example in Section 6.5.3. Finally, we discuss alternative asset manage-

ment models in Section 6.5.4.

6.5.1 Architecture Overview

Figure 6.5: Architecture overview of the permissioned and permissionless blockchain
unification proposal.

Figure 6.5 illustrates the architecture overview of the permissioned and permissionless

blockchain unification proposal. Governmental offices run their trusted asset registration

systems. These trusted asset registration systems could be as simple as a database
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management systems. Governmental offices run permissioned blockchains with a set of

trusted governmental officials, called validators. Such governmental officials might fail,

e.g., the identity of a governmental official gets stolen. Depending on the failure model

of the validators, they run a crash fault-tolerant, e.g., Paxos [140] or a Byzantine fault-

tolerant, e.g., PBFT [67] consensus protocol to agree on the registered assets.

An end-user sends an asset registration request to the permssioned blockchain val-

idators. Validators run a consensus protocol among themselves to ensure that this asset

is not previously registered. Once the consensus is achieved, each validator executes the

request using some predetermined smart contract. The smart contract generates an-

other smart contract representing the registered asset. To ensure deterministic execution

of transactions, as mentioned in Section 6.3, smart contracts are written in scripting

languages like Solidity.

Validators then add the asset registration record in their permissioned blockchain. In

addition, they authenticate the deployment of the resulted smart contract in a permission-

less blockchain. This smart contract is owned by a multi-signature address of the val-

idators. In addition, the asset in the smart contract is owned by the end-user identity.

Once the smart contract is deployed on the permissionless blockchain, end-users can trade

assets through smart contract function calls.

As shown in Figure 6.5, different governmental offices can use the same permissionless

blockchain to deploy their asset registration smart contracts on. Also, a governmental

office can use multiple permissionless blockchains to deploy their smart contracts on.

For example, both car and house registration offices can use the Ethereum blockchain to

register cars and houses. Also, the car registration office can register some cars in the

Ethereum blockchain while registering other cars in the Bitcoin blockchain. Once assets

are registered in a permissionless blockchains, end-users can transact over these assets as

explained next in Section 6.5.2.
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6.5.2 Transaction Model

Registering complex assets in permissionless blockchains extends the transaction

model of these blockchain. We divide the supported transactions into four categories

as described below.

Currency units transactions. These transactions are the primitive built-in sup-

ported transactions that allow end-users to transfer the ownership of currency units

among end-user identities. In addition, these transactions allow end-user to split and

merge currency units as explained in Section 6.2.

Complex asset to currency units, of the same blockchain, transactions.

These transactions allow end-users to trade complex assets for currency units of the

same blockchain where the complex asset is registered. These transactions are allowed

through smart contract function calls. Smart contract classes of complex assets include

the trading functionalities of these complex assets. For example, an end-user who wants

to buy a complex asset calls the Buy function of the smart contract of this complex asset.

This Buy function call is accompanied with end-user’s currency units. The Buy function

transfers the currency units to the current owner of the complex asset and transfers the

ownership of the complex asset to the Buy function caller.

Complex asset to currency units, of another blockchain, transactions. These

transactions allow end-users to trade complex assets for currency units of a different

blockchain from the one where the complex asset is registered. These transactions are

enabled by atomic cross-chain swap protocols [117, 169, 212]. Also, these protocols require

the smart contracts of complex assets to support the functionality of atomic cross-chain

transactions. For example, an atomic cross-chain transaction could allow Alice to sell her

car, registered in the Bitcoin blockchain, to Bob who owns ether currency units in the

Ethereum blockchain. An atomic cross-chain commitment protocol must guarantee that
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either both the transfer of Alice’s car to Bob in the Bitcoin blockchain and the transfer of

Bob’s ether to Alice in the Ethereum blockchain take place or none of these two transfers

takes place.

Complex asset to complex asset transactions. These transactions allow end-

users to swap complex assets within the same permissionless blockchain or across permission-

less blockchains. For example, Alice might want to exchange her car, registered in the

Bitcoin blockchain, with Bob’s boat, registered in the Ethereum blockchain. These trans-

actions use atomic cross-chain swap protocols and require the smart contracts of complex

assets to support the functionality of atomic cross-chain transactions.

6.5.3 Car Smart Contract Example

This section presents an authenticated smart contract example that represents a car

as a complex asset. This example illustrates the necessary updates to the smart contract

presented in Algorithm 12 in order to ensure the authenticity and the legality of the car

registration in a permissionless blockchain. These updates are reflected in Algorithm 13.

The member variable (Lines 1 – 7) represent the attributes of the car. As shown,

the smart contract itself is owned by the validators multi-signature address (Line 6). In

addition, the car itself, as a complex asset example, is owned by an end-user (Line 5).

The constructor (Line 8) initializes the car object with the attribute values passed in

the deployment message (e.g., make, model, year, price, tax percentage, and the owner’s

public key). In addition, the constructor uses the implicit parameter msg.sender to

initialize the smart contract owner (Line 15).

The smart contract has two functions to manipulate the car asset: Buy (Line 17) and

UpdatePrice (Line 23). In addition, the smart contract has two functions to manipulate

the smart contract itself: UpdateContractOwner (Line 27) and DestroyContract (Line 31).
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Algorithm 13 Authenticated smart contract that represents a car as a complex asset

class CarSmartContract

1: String make . the make of the car

2: String model . the model of the car

3: Integer year . the manufacture year of the car

4: Double p . the price of the car (currency units)

5: Address o . the public key of the car owner

6: Address co . the contract owner represented by a multisignature address

of the validators

7: Double tp . the sales tax percentage

8: procedure Constructor(String make, String model, Integer year, Double p, Double
tp, Address o)

9: this.make = make
10: this.model = model
11: this.year = year
12: this.p = p
13: this.o = o
14: this.tp = tp
15: this.co = msg.sender
16: end procedure
17: procedure Buy(Address curOwner)
18: requires(msg.val ≥ this.p · (1 + this.tp

100
) and curOwner == this.o)

19: transfer msg.val · (1− this.tp
100

) to this.o

20: transfer msg.val · this.tp
100

to this.co
21: this.o = msg.sender
22: end procedure
23: procedure UpdatePrice(Double p)
24: requires(msg.sender == this.o)
25: this.p = p
26: end procedure
27: procedure UpdateContractOwner(Address co)
28: requires(validate-multisig(msg.sender, this.co))
29: this.co = co
30: end procedure
31: procedure DestroyContract
32: requires(validate-multisig(msg.sender, this.co))
33: destruct-contract()
34: end procedure
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The Buy function is slightly different from the Buy function of the smart contract in

Algorithm 12. The main difference is that the validators of the permissioned blockchain

embed the taxation law in the code of the Buy function. When a Buy function call is

received by the permissionless blockchain mining nodes, they verify that value of the

currency units sent in msg.val is greater than or equal to the sum of the car price and

the sales tax value of this car. If true, the car price is sent to the current car owner, the

tax value is sent to the contract owner (the validators’ multi-signature address), and the

ownership of the car is transferred to msg.sender. The UpdatePrice function is the same

as the UpdatePrice function in Algorithm 12.

The UpdateContractOwner function allows the validators to change the ownership

of the contract to another multi-signature address. This function is necessary to alter

the contract ownership in case a validator’s identity is stolen. Validators replace the

current multi-signature address that includes a stolen identity by a newly generated

multi-signature address that excludes the stolen identity. The DestroyContract function

allows the validators to destroy the smart contract object.

6.5.4 Alternative Asset Management Model

The proposed global asset management system leverages a permissioned blockchain

only in the registration process of complex assets in a permissionless blockchain. Once

an asset is registered, the permissionless blockchain has the only record of the current

ownership of the asset in the asset’s smart contract object. In addition, the permissionless

blockchain is the only marketplace where this asset is traded. Of course, the asset can

be traded for other assets and currency units in other permissionless blockchain through

atomic swaps. However, the asset object indefinitely remains in the same permissionless

blockchain from its registration time until the asset’s smart contract object is explicitly
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destroyed.

An alternative model can unify permissioned and permissionless blockchains as fol-

lows. A permissioned blockchain maintains the ownership record of an asset. If the

asset owner wants to trade it for some assets or currency units of some permissionless

blockchain, the owner requests to register this asset in a trading smart contract in the

permissionless blockchain. The permissionless blockchain only acts as the marketplace to

trade assets. After registering the asset, end-users can complete the trade through single-

chain or cross-chain transactions. Once the trade is completed, the ownership is updated

in the permissioned blockchain and the trading smart contract object is destroyed. This

model separates the ownership storing platform, the permissioned blockchain, from the

trading platform, the permissionless blockchain.

6.6 Challenges

Our proposal of unifying permissioned and permissionless blockchains to create a

global asset management system faces many challenges. First, the scalability of the global

asset management system is bounded by the scalability of the underlying permissionless

blockchain. Current permissionless blockchains are not scalable (e.g., Bitcoin blockchain

processes 3∼7 transactions per second [155]). As a result, the scalability of the global

asset management system could be limited. We address the scalability challenge in

Section 6.6.1. The second challenge is validator identity theft. If the identity of some

validators of the permissioned blockchain are stolen, the stolen identities can be used to

destroy currently deployed smart contracts in addition to authenticating smart contracts

of assets that do not exist. The problem of validator identity theft is addressed in

Section 6.6.2. Finally, we address the asset registration flexibility challenge. Our current

model allows a complex asset to be registered in only one permissionless blockchain
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at a time. We discuss open research challenges that arise from allowing a complex

asset to be concurrently registered and marketed at several permissionless blockchains in

Section 6.6.3.

6.6.1 The Scalability Challenge

The global asset management system requires the governmental offices to register as-

sets in permissionless blockchains through smart contract deployment. Registered assets

are traded through smart contract function calls that result in transactions in the un-

derlying permissionless blockchain. Although, the scalability, represented by the number

of executed transactions per second (TPS), of every individual permissionless blockchain

is limited, the global asset management system can scale. Each governmental office can

use multiple permissionless blockchains to register different end-user assets. Therefore,

the scalability of the asset management system is not bounded by the scalability of an

individual permissionless blockchain. Instead, the TPS of the asset management system

can scale up to the aggregated TPS of all the permissionless blockchains used in regis-

tering the assets. For example, if the Bitcoin blockchain executes up to 7 TPS and the

Ethereum blockchain executes up to 25 TPS, an asset management system that register

assets in both Bitcoin and Ethereun blockchains can scale up to 32 TPS. Using addi-

tional permissionless networks to register assets increases the overall TPS of the asset

management system.

Other permissionless blockchain scaling techniques can be used to scale the global

asset management system. One technique is sharding [63]. A permissionless blockchain

is partitioned into multiple shards and each shard is maintained by some mining nodes.

Transactions that span one shard are handled by the mining nodes of this shard. Transac-
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tions that span multiple shards are handled by the mining nodes of these multiple shards

and coordinated by an atomic swap protocol [169, 117, 21, 212]. Another technique to

scale permissionless blockchains is off-chain transactions. Lightning networks [180] can

be used to execute complex assets to currency transactions. The question of how to

ensure the correctness and tolerate maliciousness in off-chain complex assets to currency

transactions remains an open research question.

6.6.2 Validator Identity Theft Challenge

An important challenge of unifying permissioned blockchains and permissionless blockchains

is trust. Permissionless blockchains by design are trust-free and they only assume that

some percentage of the computing power (51% for Bitcoin) or of the stake owners are

honest and correct. On the other hand, permissioned blockchains depend on a known

set of trusted identities, the validators. If the validator failure model include byzantine

failures, typically the number of validators is set to 3f + 1 where f is the number of

validators that can maliciously fail. For example, a permissioned blockchain with four

validators can tolerate a malicious failure of one validator. Trusting the validators of the

permissioned blockchain is necessary to trust the authentication of smart contract that

represents complex assets in the permissionless blockchain. However, the identity theft

of more than f validators could result in authenticating the registration of non existing

assets and destroying the smart contract objects of existing assets.

To address this challenge, the standard technique of key rotation [159, 129] can be used

to limit the damage that results from validator identity theft. As shown in Figure 6.6,

the permissioned network divides the timeline into epochs. For every epoch, a fresh set

of validator identities is used to authenticate the smart contracts that register assets
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Figure 6.6: Permissioned blockchains use validators key rotation to limit the damage
that results from validator identity theft.

in the permissionless blockchain during this epoch. A stolen validator identity set can

maliciously register non existing assets only during one epoch. If a validator identity

theft is detected within an epoch, the permissioned blockchain can immediately reset

the epoch invalidating the stolen validator identity. The question of how to solve the

trust problem while achieving authenticity of asset registration remains an open research

question.

6.6.3 Asset Registration Flexibility Challenge

The proposed global asset management system requires to limit the number of permission-

less blockchain where an asset is registered to one at a time. This requirement is necessary

to prevent the double spending of the one asset on different blockchains. An asset can

be registered on one permissionless blockchain and if the current asset owner wants to

change the registration blockchain, an owner has to request a contract cancellation from

the validators of the permissioned blockchain. After the contract is cancelled, the owner

needs to request the registration of the asset in another permissionless blockchain. Asset
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owners might want to market their assets on many permissionless blockchains at a time.

If this flexibility is allowed, a protocol is required to ensure that once the asset is traded

in a smart contract on one blockchain, other smart contracts on other blockchains must

be atomically invalidated. This protocol can be thought of as a variation of atomic cross-

chain swaps. The design of such protocol and the details of its correctness remain open

research questions.

6.7 Related Work

Bitcoin [164] is considered the first successful global scale peer-to-peer cryptocurrency.

The Nakamoto consensus protocol used in Bitcoin allows participants to transact with

each other without the need for a trusted third party, such as a banks or a credit card

company. The ledger that records all the transaction history in traditional trusted banks

is replaced by a distributed ledger stored in all the participants in Bitcoin, thus elimi-

nating the need for trusted third parties. Many of the recent works on permissionless

blockchains are focused on enhancing one aspect of Bitcoin – the performance limitation.

BitcoinNG [94] separates the blocks in the chain into key-blocks and micro-blocks. Key-

blocks are created by solving the proof-of-work challenge and the miner who solved the

puzzle becomes the leader producing many micro-blocks consisting of transactions. The

leader is replaced when another miner mines the next key-block. Thus, by increasing

the frequency of micro-blocks produced by a leader, BitcoinNG improves the throughput

of Bitcoin. But empowering a single leader to produce micro-blocks entails considerable

risks. ByzCoin [131] identifies the benefits of separating the blocks into key and micro

blocks, as well as the issues with a single leader. ByzCoin replaces a single leader with

a dynamically changing group of trustees. Trustees execute PBFT [67] to decide on the

next micro-block and use Collective Signing (CoSi) [199] to collectively sign the chosen
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block. Elastico [152] is another blockchain solution aiming to increase the performance

of Bitcoin. The key idea proposed in Elastico is to split all the servers in the system

into smaller sized groups called committees. Every committee is then assigned with a

disjoint set of transactions and the committee members verify those transactions. Each

committee executes classical PBFT in order to agree on the set of verified transactions.

These transactions are then sent to a final committee which is in-charge of aggregating

all the transactions produced by different committees into one block and then to broad-

cast the final block. Thus by allowing different committees to process different shard of

transactions, Elastico increases the throughput of Bitcoin.

Although the above discussed solutions provide various strategies to increase the

performance on Bitcoin, most of the solutions assume a cryptocurrency application. Even

if they can be easily extended to include smart contracts, they would still lack in managing

global assets. The high churn of participants in a permissionless blockchain network poses

impediments is regulating laws associated with global assets.

While Permissionless blockchains are public and anyone can participate without a

specific identity, in permissioned blockchains nodes are known and identified. This work

uses permissioned blockchains to register global assets and deploy them on permissionless

blockchains. Most existing permissioned blockchains follow the order-execute architec-

ture where nodes agree on the order of incoming requests and then execute the requests

in the same order. Permissioned blockchains differ mainly in their consensus protocols.

Tendermint [136] is different from the original PBFT in two ways, first, only a sub-

set of nodes, called validators, participate in the consensus protocol and second, the

leader is changed after the construction of every block (leader rotation). Quorum [70]

is an enterprise-focused version of Ethereum [205] developed by JP Morgan. Quorum

introduces a consensus protocol based on Raft [173]: a well-known crash fault-tolerant

protocol. Chain Core [2], Multichain [113], Hyperledger Iroha [6], and Corda [3] are some
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other prominent permissioned blockchains that follow order-execute architecture and use

varients of Byzantine fault-tolerant protocols.

Fabric [49] introduces the execute-order-validate architecture and leverages paral-

lelism by executing the transactions of different applications simultaneously. Modular de-

sign, pluggable fault-tolerant protocol, policy-based endorsement, and non-deterministic

execution are some of the main advantages of Fabric. However, it performs poorly on

workloads with high-contention, i.e., many conflicting transactions in a block. To sup-

port conflicting transactions, Parblockchain [46] introduces the order-(parallel)execute

architecture where the orderer nodes generate a dependency graph in the ordering phase

and transactions are executed in parallel following the generated dependency graph in

the execution phase.

Users on the same or different blockchains should be able to initiate transactions in

order to exchange assets. Our proposal supports four types of transactions: transac-

tions in currency units, transactions between complex asset and currency units in the

same blockchain, transactions between complex asset and currency units in different

blockchains, and transactions between two complex assets. Different techniques have

been presented to support intra- and cross-chain asset trades. Atomic cross-chain swaps

[117] are used for trading assets on two unrelated blockchains. Atomic swaps use hash-

lock and time-lock mechanisms to either perform all or none of a cryptographically linked

set of transactions. Interledger protocols (ILPV [202]) which are presented by the World

Wide Web Consortium (W3C) use a generalization of atomic swaps and enable secure

transfers between two blockchain ledgers using escrow transactions. since the redemption

of an escrow transaction needs fulfillment of all the terms of an agreement, the transfer

is atomic. Lightning network [161][180] also generalizes atomic swap to transfer assets

between two different clients via a network of micro-payment channels. Blocknet [83],

BTC [61], Xclaim [221], POA Bridge [7] (designed specifically for Ethereum), Wanchain
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[8], and Fusion [5] are some other blockchain systems that allow users to transfer assets

between two chains.

Hyperledger also addresses atomic cross-chain swap between permissioned blockchains

that are deployed on different channels by either assuming the existence of a trusted

channel among the participants or using an atomic commit protocol [50][49].

Using sidechain is proposed in [52] to transfer assets from a main blockchain to

the sidechain(s) and execute some transactions in the sidechain(s) in order to reduce

confirmation time and transaction cost, and support more functionality. Liquid [88],

Plasma [179], Sidechains [98], and RSK [142] are some other blockchain systems that

use sidechains. In Polkadot [206] and Cosmos [137] also assets can be exchanged using a

main chain and a set of (side) blockchains. Both Polkadot and Cosmos rely on byzantine

consensus protocol in both sender and receiver sides.

To support global assets in blockchains, using tokens which are backed by external

assets, called asset-backed tokens, is proposed [120]. Tokenization is the process of rep-

resenting the ownership of real world assets digitally on a blockchain. While the main

purpose of tokenization is to use tokens as assets (investment instrument) and split it

into smaller pieces, this work mainly focuses on how to authenticate an asset as being

legitimate so that it can be transacted in a marketplace (i.e., transfer of ownership). In

addition, the tokenization of the assets on the blockchain is being done by a known entity

(highly centralized) whereas in our proposal the centralized entity is replaced by a gov-

ernmental permissioned blockchain which first, puts the responsibility of forcing the law

on the government, and second, ensures that the centralized entities do not monopolize

the tokenization of assets on the blockchain.
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6.8 Conclusion

This chapter proposes a global asset management system that leverages both permis-

sioned and permissionless blockchains. Governmental offices maintain trusted permis-

sioned blockchains. Permissioned blockchains authenticate the registration of end-user

assets in permissionless blockchains through smart contracts. In addition, permissioned

blockchains prevent the double spending of assets by ensuring that every asset can be

registered in only one authenticated smart contract in one permissionless blockchain. Fi-

nally, the permissioned blockchain ensure the legality of trading the assets by encoding

the laws (e.g., taxation law) in the smart contract code. Permissionless blockchains are

marketplaces to trade the registered assets. Registered assets can be traded for currency

units or other assets on the same permissionless blockchain or on other permissionless

blockchain. This extended transaction model is enabled through single-chain and cross-

chain transactions.
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Chapter 7

Transactional Smart Contracts in

Blockchain Systems

7.1 Introduction

Executing concurrent operations has been a long-term challenge in the design of

large software systems. Without careful usage of synchronization primitives [87], the

concurrent execution of multiple procedures that access shared variables can easily result

in anomalous executions. Instead of using synchronization primitives, that a programmer

must carefully program, database systems introduced the elegant declarative notion of

transactions [110]. Programs that may be executed concurrently are each executed as a

transaction, and the database management system ensures that transaction execution is

isolated from each other and that the concurrent and interleaved execution of multiple

transactions is serializable, i.e., equivalent to a serial execution [57].

Recent interest in blockchains has resulted in its rapid usage in diverse applications,

and its evolution to support complex concurrent executions. The original blockchain,

as proposed in Bitcoin[164], involved simple transactions, that transfer some bitcoins
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from one end-user (typically Alice) to another end-user (typically Bob). The original

bitcoin blockchain can be easily modelled as an abstract data type representing a linked

list of blocks of transactions. The accessed data is the cryptocurrency, bitcoins, and

transactions transfer part of the remaining, unused assets of Alice to Bob, while keeping

the rest with Alice (hence the term Unspent Transaction Output, UTXO to refer to the

assets belonging to a client in Bitcoin). A miner adds a transaction to a block if the

assets consumed in the transaction are not double spent in the same block and if the

miner can validate that the end-user does actually have these assets, i.e., the UTXO

actually belongs to the end-user issuing the transaction. Finally, a miner adds a block

to the blockchain if it solves the Proof of Work (PoW) puzzle [164].

Ethereum [205] reintroduced the notion of smart contracts [200] to blockchains. Smart

contracts extend the simple abstract data type notion of blockchain transactions to in-

clude complex data type classes with end-user defined variables and functions. When

an end-user deploys a smart contract in a blockchain, this deployment results in instan-

tiating an object instance of the smart contract class in the blockchain [118, 86]. The

object state is initially stored in the block where the object is instantiated. End-users

can issue a smart contract function call by sending function call requests to the miners

of a blockchain. These function calls are transactions that are sent to the address of the

smart contract object. Miners execute these transactions and record object state changes

in their currently mined block. Therefore, the state of a smart contract object could span

one or more blocks of a blockchain.

Smart contracts now have their own variables and multiple functions that may be

executed by different end-users results in transactions which might be incorporated in

different blocks by different miners. This clearly results in complex concurrency chal-

lenges which need to be handled by smart contract developers. Distributed database

literature [79, 195] has shown that putting the burden of implementing transaction logic
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in the application layer is problematic. This is no simple task and serious smart contract

concurrency bugs have been highlighted in the blockchain literature [132, 151, 193, 86].

In fact, from a financial point-of-view, two such famous anomalies in the context of

blockchains, TheDAO [4, 62] and the BlockKing [9] have resulted in a loss of tens of

millions of investors’ dollars [151].

This work advocates leveraging the traditional transactional approach to address the

concurrency violations in the context of smart contract executions in large scale block-

chain systems. In particular, we propose Transactional Smart Contracts (TXSC) as a

framework that allows developers to write smart contracts with correct transaction isola-

tion semantics. Unlike previous works [132, 151, 193] that propose smart contract analysis

tools to detect concurrency bugs in smart contracts, TXSC aims to free smart contract

developers from the burden of implementing correct concurrency control semantics for

each smart contract. Instead, developers can focus on the smart contract application

semantics and leave the concurrency semantics to TXSC.

Concurrency control problems arise in two general contexts during smart contract

function execution depending on whether the application semantic functionality is im-

plemented by a single or multiple functions. In a single function, each function in a

smart contract is executed correctly (and in isolation) as a miner validates its execution.

However, the state of the data in the blockchain is visible and can be read all the time

by any end-user. An end-user might take action based on a value read, but due to the

concurrent execution of smart contract functions, such a read value might be stale when

the function is executed. TXSC needs to ensure that the attribute values observed by

an end-user, where these attributes are in the read set of a function, are still valid when

the function is executed. Alternatively, the semantic functionality might be executed by

multiple functions in the same or even different smart contracts on potentially different

blockchains. These functions might invoke each other in an asynchronous manner. In

213



Transactional Smart Contracts in Blockchain Systems Chapter 7

particular, a function, before termination may call another function to perform a specific

task, which in turn calls a third function, and so on. This arises due to smart contracts

in a single blockchain like the puzzle example in [151] or across multiple chains [9, 62]

that requires atomic execution across blockchains [169, 117, 212]. In this case, different

invocations of the function might be interleaved resulting in incorrect executions due to

the lack of isolation.

In this chapter, we propose the Transactional Smart Contracts paradigm to solve

these concurrency problems. In particular,

1. This work models smart contract concurrency anomalies as transaction isolation

problems. Examples illustrate how different smart contract concurrency anomalies

can be mapped to the problem of transaction isolation of either single domain or

distributed cross-domain transactions.

2. TXSC is the first framework to provide smart contract developers with transactional

primitives start transaction and end transaction. TXSC takes a smart contract that

contains these primitives as an input and translates it to a transactionally correct

smart contract using the smart contract native language.

The rest of the chapter is organized as follows. We start with two examples to illustrate

the types of concurrency anomalies that can arise in the context of smart contracts in

Section 7.2. Data and transaction models are presented in Section 7.3. Section 7.4

explains our solution and presents TXSC and the chapter is concluded in Section 7.5.

7.2 Concurrency Anomalies in Smart Contracts

Most of the smart contract anomalies identified in prior work [132, 151, 193, 86]

are rooted to faulty transaction isolation semantics implemented by the smart contract
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developers. These anomalies can be classified into two categories: 1) faulty transaction

isolation semantics among transactions that span a single administrative domain (or one

blockchain) and 2) faulty transaction isolation semantics among distributed transactions

that span several administrative domains (more than one blockchain or one blockchain

and services outside the domain of this blockchain). We explain the two categories

using the following two examples from [151] and [193]. For consistency with the original

blockchain terminology, in this section, we refer to a function call request as a transaction

(later we will change this).

The puzzle example. This example illustrates the first category of smart contract

concurrency anomalies. In this example, an end-user, the challenger, deploys a smart

contract that pays another end-user, the solver, a reward if the solver’s submitted puzzle

solution is correct. Algorithm 14 shows the puzzle smart contract pseudocode. As shown,

the smart contract has three functions: a Constructor (Line 6), UpdateReward (Line 12),

and SubmitSolution (Line 19) functions. The Constructor is executed by the contract

owner, the challenger, to initialize the smart contract object. UpdateReward can be

executed only by the challenger to update the reward value of the puzzle. Furthermore,

UpdateReward can only be executed if the puzzle has not been solved yet (Line 14) and

UpdateReward sends the old reward value to the challenger and updates the reward value

with the new value sent by the challenger (Line 16). SubmitSolution (Line 19) allows

any solver to submit a solution to the puzzle only if the puzzle has not been solved yet.

If the submitted solution is correct (Line 21), the reward goes to the solver, the puzzle’s

solution is updated, and the puzzle is marked as solved.

Now, assume Alice is a challenger who posts a puzzle that follows the smart contract

description in Algorithm 14 in the Ethereum network and she sets the reward value r to

r = 2 ethers, the currency of the Ethereum network. Bob, a solver, reads the reward value

r = 2 ethers, solves the puzzles, and submits the solution to the smart contract through
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a transaction TX1. Bob assumes to receive a puzzle reward of 2 ethers if his solution is

correct. Concurrently, Alice might, benignly or maliciously, schedule a transaction TX2

that updates the reward of the puzzle to a smaller value than the current reward e.g.,

r = 0. If TX2 is executed first, r would be updated to its new value 0. While updating

the reward value should result in aborting TX1 as the value of r read by TX1 is stale,

the smart contract code in Algorithm 14 would allow TX1 to execute. This results in

Alice receiving a solution to her puzzle while Bob gets a reward of 0 ethers. As both TX1

and TX2 access an object that spans only one blockchain, the Ethereum network, this

concurrency anomaly falls into the first category of the two aforementioned categories.

The BlockKing [193, 9] example. This example demonstrates the second cat-

egory of smart contract concurrency anomalies where end-user distributed transactions

span several administrative domains (objects of one or more blockchains in addition to

asynchronous calls to external services). Algorithm 15 shows code snippets from the orig-

inal 366 lines of code of the BlockKing smart contract [9] where concurrency anomalies

occur. The BlockKing smart contract works as follows. At any moment in time, there

exists one block king, initially, the contract owner. Users send money to the contract via

the Enter function (Line 4) as bids to become the next block king. The Enter function

stores the address of the caller, the current block number, and the caller’s bid value in

the attributes warrior, warriorBlock, and warriorGold respectively. Then, the Enter

function calls an external random number generator to generate a random number be-

tween 1-9 and if the returned number equals to the first digit of the block number stored

in the warriorBlock attribute, the caller of the Enter function becomes the new block

king. A block king gets a percentage of the bid money of every call to the Enter function

and the contract owner gets the remaining percentage of this bid money. Notice that the

random number generator triggers an asynchronous callback function (Line 10) where

the returned random number is checked against the block number in the warriorBlock
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Algorithm 14 Puzzle smart contract example in [151]

class Puzzle

1: address public owner . contract owner

2: bool public solved . true if the puzzle is solved

3: uint public reward . puzzle solving reward

4: bytes32 public diff . puzzle difficulty

5: byte32 public solution . puzzle solution if found

6: procedure Constructor
7: this.owner = msg.sender
8: this.reward = msg.value
9: this.solved = false
10: this.diff = bytes32(msg.data) . set difficulty

11: end procedure
12: procedure UpdateReward
13: requires(msg.sender == this.owner)
14: if ! solved then
15: transfer reward to owner
16: reward = msg.value
17: end if
18: end procedure
19: procedure SubmitSolution
20: if ! solved then
21: if sha256(msg.data) ¡ diff then
22: transfer reward to msg.sender
23: solution = msg.data
24: solved = true
25: end if
26: end if
27: end procedure

attribute. If the returned random number matches the first digit of the block number in

the warriorBlock, the current warrior becomes the new block king.

If calls to the Enter function are blocking; meaning that at most one call to the Enter

function is allowed until its callback is completed, the smart contract in Algorithm 15

would not have any concurrency anomalies. However, the smart contract in Algorithm 15

is non-blocking. This non-blocking behavior allows many concurrent calls to the Enter

function to take place. If multiple transactions are concurrently sent to the Enter func-
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Algorithm 15 Snippets from the BlockKing contract [9]

class BlockKing

1: address public king, warrior
2: uint public kingBlock, warriorBlock
3: uint public warriorGold, randomNumber
4: procedure enter
5: ... . check if minimum bet is sent

6: warrior = msg.sender, warriorGold = msg.value
7: warriorBlock = block.number
8: byte32 myid = oraclize query(0, ”WolframAlpha”, ”random number between 1

and 9”)
9: end procedure
10: procedure callback(byte32 myid, string result)
11: requires(msg.sender == oraclize cbAddress())
12: randomNumber = uint(bytes(result)[0]) - 48;
13: if singleDigitBlock == randomNumber then
14: ... . update reward

15: king = warrior, kingBlock = warriorBlock
16: end if
17: end procedure

tion, each transaction would replace the values of the warrior, the warriorBlock, and

the warriorGold attributes of all the previous incomplete transactions. This leads to

an advantage to the latest caller who sends a transactions to the Enter function be-

fore all previous callbacks occur. Every trigger to the callback function gives the latest

caller a chance to become the new block king while previous callers have no chance to

become the new block king. We illustrate this transaction isolation anomaly using the

following example. Assume Alice, Bob, and Carol concurrently want to become the next

block king. They send three transactions (corresponding to three Enter function calls)

TX1, TX2, and TX3 accompanied by their bids to the enter function respectively. TX1

updates the warrior attributes to Alice’s attributes sent along with TX1 then, calls the

external random number generator. Before TX1’s callback is triggered, TX2 replaces

the warrior attributes with Bob’s attributes sent with TX2 and similarly, TX3 replaces
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the warrior attributes with Carol’s attributes. When the callbacks of TX1, TX2, and

TX3 are triggered, which possibly could take place in another block in the BlockKing

blockchain, the three callbacks use the warrior attribute values of Carol to decide if she

could be the next block king or not. Carol gets 3 chances to become the block king while

Alice and Bob have no chance. This concurrency violation occurs as transactions TX1,

TX2, and TX3 are not being executed in isolation.

Transactions in the first category can be atomically executed in one shot within one

block of its smart contract blockchain. On the other hand, distributed transactions could

span multiple blocks in one or more blockchains and hence ensuring their atomicity while

executing them in isolation is significantly more complicated than executing transactions

in the first category in isolation.

7.3 Data and Transaction Models

An open permissionless blockchain [155] comprises an application layer and a storage

layer. Clients in the application layer have public identities represented by their public

keys and private signatures generated using their private keys. Clients send signed trans-

actions to the storage layer in order to transfer assets from one client to another. The

storage layer consists of mining or computing nodes, miners, and each miner manages a

copy of the blockchain. Transactions, in the storage layer, are grouped into blocks and

each block is hash chained to the previous block; hence the name blockchain. When a

mining node receives a transaction, it verifies the transaction and adds it to its current

block, only if the transaction is valid. Mining nodes run a consensus algorithm or in a

permissionless blockchain Proof of Work (PoW) to reach consensus on the next block to

be added to the blockchain.

Smart contracts are analogous to classes [118, 86, 215] in Object Oriented Program-
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ming Languages (OOPL) and are used by clients to implement complex data types.

Clients deploy smart contracts to a blockchain by sending a deployment message to min-

ers of this blockchain. As a result, a miner instantiates an object of the smart contract

class and stores this object in the current block in the blockchain. Smart contract objects

have attributes that capture their state. Once a smart contract object is instantiated in a

blockchain, the state of this object, as part of the blockchain, is made public and can be

externally read by any client at any moment. In addition, smart contract objects

have functions that define the possible state transitions of these objects. Since an object

state is public, smart contract read-only functions are pointless. Therefore, it is safe to

assume that any smart contract function call has to update at least one attribute of the

smart contract object [209]. A smart contract object has an address in the blockchain.

When a client wants to issue a smart contract function call, the client sends a function

call request to the miners of the blockchain where the smart contract is deployed. This

function call request is directed to the address of the smart contract object. Miners use

the smart contract address to locate the smart contract object (state and code). This

function call is accompanied by some implicit parameters like msg.sender, the address of

the client who sent the transaction, msg.val, the value of the money sent along with the

transaction, and msg.data, any data that needs to be sent along with the transaction. In

addition, function calls could be accompanied by some function explicit parameters.

We follow the Ethereum [205] smart contract execution model. Each function call is

accompanied by some gas value. The gas value represents the amount of money a client

is willing to pay to incentivize miners to execute the function call. Miners charge some

gas for every executed line of code in the called function. A miner stores any intermediate

results of a function call in their local storage. If the function call completes before the

function call runs out of gas, the intermediate results are finalized and included in the

miner’s current block. However, if a function call runs out of gas before the function
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call is completed, intermediate results are deleted and the smart contract object state

does not change. Either way, the miner includes a transaction that pays the miner the

amount of gas spent during the execution of the function call in its current block. Smart

contract function calls are atomic meaning that each function call either terminates after

it successfully updates the object state in the blockchain or rolls back to the object state

before the call occurs. Concurrent function calls are sequentially executed one after the

other without any interruption [193]. In blockchain terminology, a function call request is

usually referred to as a transaction. Yet, a function call might not ensure the ACID [57]

properties of transactions in traditional databases.

In traditional DBMS, a client transaction starts when a client calls the start (begin)

transaction command. Afterwards, a transaction reads and updates some data values

followed by an end (commit) transaction command. The role of the DBMS is to ensure

the ACID properties of a client transaction from the moment the transaction begins till

the moment the transaction ends (whether the transaction commits or aborts).

In permissionless blockchains, miners have no way to learn the details of all client

activities before calling the smart contract functions, e.g., when the client activities start

and what values were read before a function call request is sent to the miners. Even when

each function call is executed in isolation from concurrent function calls, transaction

isolation concurrency violation still occur as shown in Algorithms 14 and 15 as a result of

poor client transaction isolation, network asynchrony, and smart contract asynchronous

callbacks. We consider a client transaction span to include all the read operations that

took place before the client sends a function call, the function execution caused by the

function call, and any callbacks that are triggered as a result of this function call. The

goal of this work is to ensure the ACID properties of client transactions from the time a

client starts a transaction till the end of the function call that terminates this transaction.
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7.4 Transactional Smart Contracts

Algorithm 16 A smart contract example that uses TXSC

class SmartContract

1: procedure f1
2: start transaction
3: f1’s logic
4: end transaction
5: end procedure
6: procedure f2
7: start transaction
8: f2’s logic
9: end transaction
10: end procedure

This section presents TXSC, a framework that allows smart contract developers to

write smart contracts with correct client transaction isolation semantics. The goal of

TXSC is to provide developers with the primitives start transaction and end transaction.

We call each function surrounded by these primitives, a transactional function. TXSC

ensures that calls to transactional functions are executed in isolation from any concurrent

function calls to the same function or any other function in the smart contract even in

the presence of network asynchrony. Algorithm 16 illustrates an example smart contract

written using TXSC. This smart contract has two functions F1 and F2 and both functions

are transactional functions.

The ACID execution of a client transaction requires atomic, consistent, isolated, and

durable execution of this client transaction. If the semantics of every smart contract

function is correct, function calls should transfer the smart contract object from one

consist state to another. Therefore, consistency is the responsibility of the smart contract

developer. Durability of a function call is guaranteed through the blockchain protocol.

Function calls that complete execution and are included in a mined block are durable

assuming this block gets enough confirmations [23]. Since confirmed blocks are replicated
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to most of the mining nodes, these blocks are durable even in the presence of failures of

many mining nodes. This leaves the responsibility of ensuring atomicity and isolation of

client transactions on TXSC.

Isolation: Since smart contract developers have no way to detect which attribute

values have been read by the client before a function call request is sent to miners, a

smart contract developer has to insert checks at the beginning of every smart contract

function call (similar to optimistic concurrency control [135]) to ensure that any data

attribute value read by the client and is in the read set of the function call matches its

current value in the blockchain. The read set of a smart contract function is the set

of attributes that a function reads during its execution. We assume that the outcome

of each function is invariant to any attribute outside the read set of this function.

To ensure serializability [57] of client transactions, the client has to send her observed

attribute values of the read set of the function along with the function call. The smart

contract has to ensure that the received attribute values are up-to-data and they match

the current values of all the attributes in the function read set before executing the

function call. Otherwise, the function call has to abort. A function call and all its

asynchronous callbacks must be executed in isolation from concurrent function calls and

callbacks.

Atomicity: The smart contract code has to guarantee that a function call and all its

asynchronous callbacks are atomic. This means that updates that result from a function

call and all its asynchronous callbacks should either all take place or none of them do.

TXSC automatically adds transaction isolation checks at the beginning of every trans-

actional function to ensure an isolated execution of every call to any transactional func-

tion. TXSC handles the atomicity of single domain transactional functions differently

from cross-domain distributed transactional functions as follows.
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7.4.1 Single Domain Transactional Functions

A Single Domain Transactional Function (SDTF for short) is a function that reads

and updates one or more smart contract objects stored under a single administrative

domain or a single blockchain. SDTFs do not access external services or objects outside

the domain of their blockchain. As a result, SDTF calls do not trigger any asynchronous

callbacks. Any transactional function that accesses external services, blockchains, or

trigger callbacks is classified as cross-domain distributed transactional function.

Since all the objects accessed by SDTF calls are stored in a miner’s copy of the

blockchain and since SDTFs do not trigger asynchronous callbacks, a SDTF call can

atomically be executed in one shot. Therefore, the atomicity of a client transaction

that calls a SDTF is guaranteed by the smart contract execution model. To ensure a

seriablizable execution of a SDTF, the function code has to only ensure the freshness of

the read set of this function. TXSC scans every SDTF in a smart contract to determine

the object’s attributes in the read set of this SDTF. Then, TXSC adds checks at the

beginning of the SDTF to ensure that the attribute values observed by the client at the

time when the transaction started are equivalent to attribute values when the function

call is received by miners.

Recall the puzzle example in Algorithm 14. Both UpdateReward and SubmitSolution

are single domain function calls. To convert UpdateReward to a SDTF, TXSC adds a

requirement that every function call to the UpdateReward function must be accompa-

nied by the client observed value of the attribute solved, in the function read set, in

its implicit parameter msg.data. Then, TXSC adds a requirement check solved ==

msg.data.solved. If the solvd attribute value in a client’s UpdateReward function call

is stale, the call must abort and the smart contract object state remains unchanged.

However, if the solved attribute is up-to-date and the function call is also accompanied
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by sufficient gas, the call can be atomically executed and as a result, the reward value is

updated.

For the SubmitSolution function call, TXSC adds the requirement checks solved ==

msg.data.solved and reward == msg.data.reward. Recall the concurrency violation of

the puzzle smart contract in Section 7.2. When Bob sends his solution to the SubmitSolu-

tion function, Bob would send the attribute values solved = false and reward = 2ethers

in themsg.data parameter of his function call. When Bob’s request is received by a miner,

there are two possible outcomes: 1) the function call gets executed only if the current

reward value equals to 2 ethers and the puzzle is not solved and 2) the function call

aborts if the reward value has been updated in between the time when Bob’s transaction

started and the time when his function call is received by a miner. Both outcomes do

not violate the serializability guarantee.

7.4.2 Cross-Domain Transactional Functions

A Cross-Domain Distributed Transactional Function (CDTF for short) is a function

that reads and updates one or more smart contract objects stored under multiple ad-

ministrative domains or multiple blockchains. In addition, CDTFs can access external

services or objects outside the domain of their blockchain. Also, CDTFs may trigger

asynchronous callbacks. As a result, updates made by a CDTF can span more than one

block of the blockchain. Recall the BlockKing smart contract in Algorithm 15. Each

function call first updates the warrior, warriorBlock, and warriorGold in some block and

might update the BlockKing in another block when the callback function is trigger. Al-

lowing a CDTF call to update the state of a smart contract object in several blockchain

blocks is problematic. If the updates in the first block gets committed in a mined block,

committed updates cannot be rolled back even if updates in the following blocks fail due
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to an exception or that the call runs out of gas. We first explain isolation and atomicity

challenges of CDTFs. Afterwards, we explain how TXSC handles CDTFs.

Isolation: A CDTF has an entry point that comprises a function call in an object in

some blockchain. This function call might trigger other function calls of objects stored

in different blockchains. Since a CDTF can span multiple blockchain objects, sending

the read set of all the accessed objects at the entry point (the first function call) is not

sufficient to guarantee transaction isolation as in SDFT. Since all subsequent function

calls to other objects are trigger over an asynchronous network, the state of these sub-

sequent objects might change in the time between the entry point and the point when

the subsequent call is received by the miners of the blockchain where these objects are

stored. Even if the read set is carried on with every subsequent call, a stale attribute

in the read set might result in aborting a subsequent call. However, the first call might

have been committed leading to a violation to atomicity.

Atomicity: Guaranteeing the atomicity of CDTF calls is significantly more compli-

cated than SDFTs. First, atomicity could be violated if one of the subsequent calls to

functions in other blockchains runs out of gas. Second, if an external service (e.g., the

random number generator in the BlockKing example) crashes for a long time or if the

message from this external services that triggers the callback function is lost, atomicity

can be violated resulting in an inconsistent state (some updates occur in one block but

the callback is never triggered to complete the execution of the function call).

This chapter presents a high level solution that guarantees both the isolation and

atomicity of CDTFs. The atomic and isolated execution of a CDTF that spans multiple

blockchains can be mapped to the problem of atomic cross-chain transaction processing.

Atomic cross-chain commitment protocols have been introduced in [169, 119, 117, 212].

First, the solution requires to lock all the object attributes in both the read set and the

write set of all the functions in a CDTF before calling the entry point. This locking
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guarantees the isolation of a CDTF from all concurrent function calls to any of the

functions that can update either the read set or the write set of a CDTF. However, as

shown in [212], using timelocks as proposed in [169, 117] can lead to atomicity violations.

The AC3WN [212] and the CBC [119] protocols that use an additional blockchain as

a lock manger are possible solutions to manage the locking of object attributes across

blockchains. After all the object attributes are locked, a caller can send a function call

request to the entry point accompanied by evidence that all the object attributes in both

the read set and the write set of this function call and all subsequent function calls are

locked. Object attributes are unlocked only when the function call that accesses them

and its corresponding callbacks, if any, terminate. Recall the BlockKing concurrency

anomaly in Section 7.2. Alice’s call locks the accessed attributes before calling the Enter

function. This prevents other callers, Bob and Carol, from issuing concurrent function

calls to the Enter function. Second, economic incentives should be used to enforce

callers to accompany function calls with enough gas. At the entry point, a caller locks

some money in the contract that gets refunded to the caller only if all her function

calls terminate. If any function call runs out of gas, the caller loses her locked money

to the contract owner who can complete the call and gets the locked objects unlocked.

Finally, redo logs can be used to overcome the atomicity violations in the presence of

external service crashes. In the BlockKing example, the smart contract object should

have an ”after-image” attribute corresponding to every attribute in the object. The

Enter function should update the after-images of warrior, warriorBlock, and warriorGold

attributes. When the callback is triggered, only then, the after-image attributes can be

copied to the actual attributes of the object. This guarantees that even if the external

service crashes or the callback trigger is lost, the object is in consistent state.
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7.5 TXSC Concluding Remarks

This chapter presents TXSC, a framework that allows developers to write smart con-

tracts with correct transactional semantics. We showed that TXSC can help developers

solve isolation anomalies of both single domain and cross-domain distributed transac-

tional functions.
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Chapter 8

Concluding Remarks and Future

Directions

It is an exciting time for Global Scale Data Management (GSDM) systems and dis-

tributed computing researchers. On one hand, social networks, web, and mobile appli-

cations strive to efficiently serve billions of end-users across the globe. These systems

are supported by several cloud service providers backed by hundreds of core data-centers

and thousands of edge data-centers. The wide usage of current social networks, web, and

mobile applications, the outreach of mobile and internet technology to billions of users

around the globe, and the high competition among cloud service providers to build more

data-centers suggest that building GSDM systems backed by cloud infrastructure is a

continuing trend. On another hand, the wide adoption of permissionless open blockchain

networks by both industry (e.g., Bitcoin, Ethereum, etc) and academia (e.g., Bzycoin,

Elastico, BitcoinNG, Algorand, etc) and the rapid and extensive investment in both

permissionless and permissioned blockchains suggest that blockchain technology is here

to stay.

In this dissertation, we aspire to provide efficient and decentralized solutions that
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address several challenges to GSDM systems in both controlled cloud and open blockchain

environments. We foresee that the value of our proposed solutions would increase over

time as more data-centers are built and as the number of blockchain systems increases.

Controlled cloud environments: as the competition among cloud providers in-

tensifies, many core and edge data-centers will be built. Having hundreds of core data-

centers and thousands of edge data-centers built by several cloud providers would make

the problem of optimal data replica placement extremely hard on system administrators.

This would make GPlacer a necessity for GSDM system to optimize the placement of

data replicas among the available data-centers. CoT has several applications in data

processing and data retrieval at the edge. As the adoption of Internet-of-Things (IoT)

devices increases with many sensors and devices that have limited capabilities at the

edge, the need for an elastic cache and a replacement policy that minimizes the needed

cache sizes will rise. CoT would be of significant importance for real-time data analytics

at the edge where CoT’s replacement policy caches the heavy hitter data values at the

edge closer to where data processing takes place. The need to build more user-centric

systems like Aegis that enable social networks and web users to have fine-control over

their personal data privacy would increase. Since online surveillance and tracking are on

rise and social network negative effects on society and democracy are increasing, systems

like Aegis would help social network and web end-users protect their privacy against

several personal data privacy threats.

Open blockchain environments: blockchain technology enables business oppor-

tunities among end-users that do not trust each other by leveraging untrusted infrastruc-

ture. To envision open blockchains as the next generation public cloud, many primitives

and abstractions need to be developed to enable this vision. AC3WN, TXSC, and global

asset management system are among these necessary primitives and abstractions. Cur-

rently, there are thousands of permissionless blockchains and millions of end-users who
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own the cryptocurrencies of these blockchains. The need for an atomic cross-chain com-

mitment protocol that does not rely on a trusted coordinator or an exchange is on rise.

AC3WN is the first atomic commitment protocol across permissionless blockchains that

ensures safety of cross-chain transactions. The value of AC3WN would increase as more

end-users and businesses adopt permissionless blockchains. Also, AC3WN is a neces-

sary primitive to enable a generalized transaction model in global asset management

systems. A future that has generic assets such as cars and houses stored in permission-

less blockchains requires AC3WN to extend the transaction model to support generic

asset transactions over several blockchains. Registering generic assets in permissionless

blockchains requires a unification of permissioned and permissionless blockchains. Per-

missioned blockchains are used for the asset verification and permissionless blockchains

are used as the assets marketplace. This cannot be achieved without developing primi-

tives that allow smart contract developers to write smart contracts with correct ACID

transaction semantics. We believe that TXSC is a step towards achieving this goal.

8.1 Future Directions

The section summarizes some of the future directions that, we believe, are of ex-

treme importance for GSDM in both controlled cloud environments and permissionless

blockchain environments.

8.1.1 Data Privacy in Cloud and Blockchain Environments

One of the main challenges that faces both controlled cloud environments and permission-

less blockchain environments is data privacy. Data privacy and security are the main

hurdles for cloud adoption by enterprises [73]. Several works in Private Information Re-

trieval (PIR) [184] and Oblivious RAM (ORAM) [106] enable private retrieval and update
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accesses on outsourced data to the cloud. However, many of these technologies introduce

significant performance overheads that make them impractical for GSDM systems. Also,

many of these solutions consider only sequential access to the outsourced data and assume

reliable system components that do not fail. All these assumptions make the adoption of

privacy techniques by cloud-based GSDM systems nonviable. During the development

of this thesis, we contributed in TaoStore [189], an ORAM based technique that allows

concurrent and asynchronous accesses to the outsourced data while achieving the same

privacy guarantees of sequential ORAM proposals. TaoStore is a step towards building

efficient ORAM techniques for GSDM systems. However, TaoStore assumes reliable in-

frastructure. Since cloud infrastructures run on commodity machines where failures are

the norm, assuming reliable infrastructure puts the availability of cloud-based GSDM

systems at risk. Therefore, addressing the fault-tolerance aspect of these privacy tech-

niques is of extreme importance to their adoption in GSDM systems. We show in [219]

that applying traditional replication mechanisms to address fault tolerance in ORAM

systems is not a simple task. Since privacy and performance are in tension, several of the

efficient replication mechanisms can not be directly leveraged to achieve fault tolerance of

ORAM systems without violating their privacy guarantees. Therefore, novel replication

techniques need to be developed to achieve efficient fault tolerance of ORAM techniques

without imposing additional overheads, a concern that pushes GSDM systems back from

using ORAM techniques.

Permissionless blockchains such as Bitcoin and Ethereum are built on transparency.

All end-user transactions are publicly stored in the blockchain including the transac-

tion source, destination, and value. Although end-users use pseudonyms to hide their

identities and protect the privacy of their spending activities, an increasing body of re-

search [183, 55, 187] has shown that using information of transactions and the transaction

graph in the blockchain can result in revealing the identities of transaction identities. This
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motivated the development of several protocols e.g., [191] to use cryptographic primitives

such as zero knowledge proofs to protect the privacy of end-user transactions while guar-

anteeing the verifiability of transparent blockchains. We believe that such techniques

must be extended to protect the privacy of smart contract users, publishers, and func-

tion call invocations. Also, several efficient privacy techniques need to be developed

to facilitate private data sharing in blockchain systems. This could enable the usage

of permissionless blockchains as a marketplace for data sharing where data is privately

stored and accessed in the blockchain. Data accesses are granted through smart con-

tract function calls and payments are facilitated through the native cryptocurrency of

the blockchain.

8.1.2 Blockchain as the New Public Cloud and Scalability

Permissionless blockchains promise a novel compute paradigm. End-users who do

not trust each other can still leverage untrusted infrastructures to do business transac-

tions. This promise enables several business opportunities that do not exist in trusted

environments. However, permissionless blockchains such as Bitcoin and Ethereum exe-

cute tens of transactions per second [82, 156] whereas trusted, centralized systems such

as Visa execute tens of thousands of transactions per second [82]. This scalability lim-

itation represents a hurdle in envisioning permissionless blockchain infrastructures as

the new public cloud. Until scalability of permissionless blockchains is achieved, their

main use-case remains managing cryptocurrency transactions. One direction to scale

permissionless blockchains is sharding. The mining network could be sharded where each

shard manages transactions of some end-user partition (horizontal sharding) or transac-

tions over some cryptocurrency unit partition (vertical sharding). Both horizontal and

vertical sharding require the abstraction of the atomic cross shard commitment protocol
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(e.g., AC3WN) to enable transactions that span multiple blockchain shards. AC3WN is

an important step towards scaling permissionless blockchains.

Another challenge that faces leveraging permissionless blockchains as the new pub-

lic cloud is the lack of the right abstractions in blockchain systems. Many abstractions

(e.g., concurrency, transaction, atomic commitment, replication, etc) have been exten-

sively studied in trusted environments. However, since the field of blockchain research

is young, many of these abstractions are absent in untrusted environments. TXSC is

one necessary primitive for permissionless blockchain systems. However, there are sev-

eral other abstractions that need to be rethought and developed before permissionless

blockchains could be used as the new public cloud.
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