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ABSTRACT OF THE DISSERTATION

Electron vortices subject to imposed strain flows

by

Noah Carlson Hurst

Doctor of Philosophy in Physics

University of California, San Diego, 2018

Professor Clifford M. Surko, Chair

The stability and dynamics of two-dimensional (2D) ideal fluid vortices are studied

under the influence of externally imposed irrotational strain flows. Laboratory experiments

are conducted using pure electron plasmas. This is made possible by the isomorphism be-

tween the Drift-Poisson equations describing the dynamics of a single-component plasma

perpendicular to the magnetic field and the 2D Euler equations describing inviscid, incom-

pressible (ideal) fluids. Here, electron density is the analog of vorticity in a neutral fluid.

The experimental apparatus used in this work was designed specifically to study vortex

xviii



dynamics under the influence of external flows. It features a long, cylindrical electrode

spanning the length of the plasma which is divided into eight azimuthal segments that can

be electrically biased. Advantages of using electron plasmas to study 2D ideal fluid dynam-

ics are that the system is dissipationless over many vortex rotation periods, the vorticity can

be diagnosed directly, and the initial vorticity profile and boundary conditions can be pre-

cisely controlled. Quasi-flat, axisymmetric vorticity profiles are prepared and subjected to

external strain. The results are in quantitative agreement with a dynamical theory assuming

the vorticity is piecewise-constant inside an elliptical boundary. Dynamical oscillations of

the ellipses are observed, as well as stationary modes, and stretching modes that lead to

vortex destruction. When non-flat (e.g., Gaussian) radial vorticity profiles are used, the

vortices suffer loss of outer circulation, the stability threshold for vortex destruction is low-

ered, and the dynamical orbits undergo inviscid damping, thus driving the system toward a

stationary elliptical state. Preliminary experiments are also described in which the strength

of the strain flow was varied in time. The relationship of these results to other theoret-

ical, experimental, and numerical work is discussed, as are prospects for future research

studying the dynamics of electron vortices in strain and shear flows.
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Chapter 1

Introduction

1.1 Vorticity and strain in a 2D ideal fluid

Throughout history, humans have been intrigued by the motion of fluids [1]. There

is a unique visual appeal to the intricate patterns and structures which emerge in the air and

water around us. Few other natural systems are so ubiquitous in our everyday lives yet so

difficult to analyze scientifically. In many cases, both the beauty and the challenge of fluid

dynamics are due to the advective nonlinearity – a term arising in the fluid equations which

describes self-transport of the fluid velocity field. It is this nonlinearity which gives rise to

structure formation, self-organization, and turbulence in a fluid.

However, no natural structure or pattern is permanent; due to the second law of

thermodynamics, the captivating features of a fluid flow are removed over time in favor

of homogeneity. Dissipation in a fluid is described at the simplest level by viscosity. Al-

though we often think of fluids as continuous systems, they are typically aggregates of
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many discrete microscopic particles (i.e., atoms or molecules). Viscosity is an approximate

description of the friction arising from collisions between these particles, which converts

kinetic energy of the flow into thermal energy at small scales.

Viscous fluids are described by the Navier-Stokes equations, where the viscosity

appears as a diffusion term acting on the fluid velocity field. When the fluid velocity v is

small compared to the sound speed, the fluid is said to be incompressible, meaning that the

fluid density ρ is a constant and the divergence of the velocity field ∇ · v is zero. In this

case, the Navier-Stokes equations are given by

(∂t +v ·∇)v =−ρ
−1

∇p+ν∇
2v, (1.1)

where p is the fluid pressure, ν is the kinematic viscosity, and the second term is the advec-

tive nonlinearity. Therefore, the nonlinearity, which tends to generate structure in a fluid, is

in direct competition with the viscosity, which tends to dissipate structure. This competi-

tion is quantified by the Reynolds number Re, which is defined as the ratio of the nonlinear

term to the viscous term in Eq. 1.1. If the viscosity is sufficiently weak, then Re is large and

the nonlinearity is dominant. Although the second law still holds true, on short timescales

the fluid behaves as if the viscosity were inactive. Such a system is called an inviscid fluid.

The differential equations describing inviscid fluid flow were first published in 1757

by Leohnard Euler (1707-1783) [2]. The so-called “Euler equations” are identical to the

incompressible Navier-Stokes equations (Eq. 1.1) with the viscosity set to zero. Since they

are dissipationless, Euler fluids conserve total energy. Furthermore, the specific internal

energy is locally conserved along streamlines, and so thermal forces and sound waves are
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absent [3]. Euler fluids are the simplest fluid system featuring the advective nonlinearity,

therefore they represent an excellent laboratory for nonlinear fluid physics including self-

organization and turbulence. This dissertation focuses on the dynamics of an inviscid,

incompressible fluid (called an ideal or perfect fluid) as described by the Euler equations,

although the effects of viscosity are discussed briefly.

Euler originally formulated his ideal fluid equations in three spatial dimensions

(3D). However, in certain fluid systems, flows can be regarded as two-dimensional (2D),

and so many authors have studied the 2D Euler equations [4]. For example, a shallow layer

of fluid in a flat container under the influence of gravity moves primarily along the bottom

surface, and the motion of the fluid normal to the boundary is negligible. Such is the case

for the large-scale dynamics of the atmospheres and oceans of Earth and other planets, as

well as a variety of other important fluid systems. The scope of this dissertation is narrowed

further to the dynamics of 2D ideal fluids.

It was recognized early on by Lagrange, Helmholtz, Lord Kelvin, and others, that

rotation plays a key role in the dynamics of inviscid fluids [1]. Fluid rotation is quantified

locally by the vorticity, which is the curl of the velocity field, ω = ∇×v. In 2D, the fluid

velocity is confined to a plane v = v(x,y) and so the vorticity is a scalar field where the

direction of rotation is normal to the flow, ω = ωẑ. By taking the curl of Eq. 1.1 with ν = 0,

the 2D Euler equations can be written in terms of the vorticity and the stream function ψ,

(∂t−∇ψ× ẑ ·∇)ω = 0; ∇
2
ψ = ω, (1.2)

where ψ is a scalar field related to the velocity by v = −∇ψ× ẑ. Thus the flow advects
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the vorticity, which is locally conserved in the Lagrangian frame (i.e., ω is a constant in a

frame moving with the flow). The entire flow field at an instant is specified by the vorticity

distribution and boundary conditions through the Poisson equation.

It has been observed that 2D inviscid fluids tend to organize themselves such that the

vorticity is localized to discrete clumps [5]. These clumps of vorticity are known generally

as vortices (singular vortex). They are isolated, coherent regions of the flow where the

fluid is locally rotating. Figure 1.1 shows an example of a vorticity distribution for a 2D

fluid with a few isolated vortices. Well-known examples of vortex-like structures include

hurricanes, tornadoes, whirlpools (for example, the Maelstrom or the bathtub vortex [6]),

Earth’s polar vortices [7], and wingtip vortices generated by aircraft [8], although in many

of these cases 3D effects play a role.

In accordance with the observations, both the Euler equations and the Navier-Stokes

equations are known to have vortex solutions [9]. For a 2D ideal fluid, the Euler equations

are solved exactly by the so-called vortex patch distribution, where the vorticity is piece-

wise constant within a bounded area (for example, the Rankine vortex or the Kirchoff

vortex). For a 2D viscous fluid, the Navier-Stokes equations are solved exactly by the

Lamb-Oseen vortex solution, where the vorticity has a Gaussian spatial distribution which

spreads over time. Since natural fluids exist in a wide range from viscous to approximately

inviscid, one might expect a spectrum of vortex profiles ranging from smooth, Gaussian

distributions to flat, patch-like distributions.

In addition to rotational motion, 2D fluids can also undergo stretching in the plane

perpendicular to ω, as depicted in Fig. 1.2. These are the two most basic types of fluid
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Figure 1.1: Example of a 2D fluid in a circular container which is organized into many
discrete vortex structures. The colormap corresponds to the vorticity ω, normalized to its
maximum value ω0. The data were obtained using an electron fluid; a detailed description
of this technique is given in Chapter 2.
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Figure 1.2: Cartoon of vorticity and strain. Vorticity (a) corresponds to a rigid rotation of
a fluid element, whereas strain (b) corresponds to deformation.

motion (other than the trivial case of uniform flow). While rotation is quantified by the

vorticity, stretching is described by a quantity called strain1. Strain and vorticity are math-

ematical counterparts, being associated with the symmetric and antisymmetric parts of the

velocity gradient tensor, respectively. Strain flows are hyperbolic and incoherent, whereas

vortical flows are elliptical and periodic. Thus, the local dynamics at any point in a fluid

can be understood as a competition between these two basic motions, parameterized by the

ratio of strain to vorticity. Generally, regions of strain flow are created by the long-range

influence of vortices and/or boundary conditions (both of which source flow via the Poisson

equation), where the influence of the sources decreases gradually with distance.

Consider the case of a fluid vortex within a more complicated 2D flow. If the vortex

is well isolated (i.e., significantly separated from other comparable sources), then it is in a

region of weak strain. In this case, it is well known that vortices tend towards axisymmetry

1Although strain and vorticity are discussed here in the context of 2D fluids, these concepts are perfectly
valid in 3D as well.
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[5, 10]. However, when the vortex approaches another vortex or a boundary, it experiences

an externally imposed strain flow which can cause deformations (for example, see Fig. 1.1).

In some cases, the vortex can be partially or totally destroyed during an encounter. Upon

destruction, the circulation within the vortex loses coherence, succumbing to whatever flow

pattern exists around it. Vortex deformation and destruction events in a 2D ideal fluid are

precisely the subject of this dissertation.

1.2 Electron plasmas as 2D fluids

It is well known that many types of strongly magnetized plasmas exhibit quasi-2D

fluid-like drift dynamics perpendicular to the magnetic field [11, 12]. Two-dimensional

fluid behavior is observed in toroidal quasineutral plasmas for magnetized fusion experi-

ments [13], as well as in cyclotrons, accelerators, etc. [14, 15]. For certain types of confined

non-neutral plasma, the analogy is rigorous, and the perpendicular dynamics of the plasma

are identical to those of a 2D ideal fluid [16, 17]. A common non-neutral plasma con-

finement device for fluid studies is the Penning-Malmberg (PM) trap [18]. It is a device

with cylindrical geometry, where electrons are confined axially by applied electrostatic po-

tentials and radially by a strong applied magnetic field. In the plane perpendicular to the

magnetic field, the plasma obeys guiding-center E×B drift dynamics [19], where E and B

are the electric and magnetic fields. Here, the electrons perform miniscule, high-frequency

gyro-orbits, and the macroscopic motion in the plane perpendicular to the magnetic field is

given by the drift velocity, v = B−1 E× ẑ. The electron distribution is self-advected by its
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own electric field, just as the velocity in a fluid is self-advected.

The electron plasma typically forms a cylindrical column. It generates a radial

electric field which causes it to rotate azimuthally about its axis, as would a fluid vortex.

Electron motion parallel to the field consists of rapid bounce motion which is decoupled

from the slower cross-field drift dynamics. In the absence of dissipation (collisions, viscos-

ity, etc.) the drift dynamics of the electron plasma are given by the 2D Euler equations, Eq.

1.2 [17]. Here, the electron density behaves as the vorticity, and the electric potential as the

fluid stream function. Vortical flows are generated in such a device by injecting electrons;

irrotational strain flows can be generated by manipulating the boundary electric potential.

In this dissertation, electron plasmas in a PM trap are studied in the laboratory in or-

der to understand the dynamics of fluid vortices in response to externally imposed strain

flows. Further details of the analogy between electron plasmas and fluid vortices are given

in Chapter 2, including a schematic diagram of electron motion in a PM trap.

Electron plasmas offer distinct advantages over traditional methods of experimen-

tally studying 2D ideal fluid dynamics. Many aspects of 2D fluid physics have been stud-

ied in the laboratory using tanks of water, wind tunnels, and other similar devices. Here,

flows can be generated by pumps or by moving boundaries; and they can be diagnosed

using particle imaging velocimetry, other optical techniques [20], or pressure transducers,

etc. However, ideal fluid behavior is quite difficult to realize using traditional fluids in

the laboratory. Water or air features roughly the same kinematic viscosity (ν ∼ 10−6 and

15×10−6 m2/s at 20◦ C, respectively) in the laboratory as in the oceans and atmosphere,

but the length scales differ by many orders of magnitude, and thus so does the Reynolds

8



number, which is defined as Re = vL/ν where v and L are characteristic velocity and length

scales. For example, in laboratory water tanks Re ∼ 102 [21], whereas for vortices in the

oceans and atmosphere, Re can have values up to ∼ 106 [22]. Therefore, viscous effects

are typically present in traditional fluid experiments in the laboratory, whereas, to a good

level of approximation the large-scale motion of geophysical fluids is inviscid.

Viscosity in an electron plasma is a complicated subject. In a neutral fluid, col-

lisions between particles are simple in the sense that the particles interact only at short

distances (roughly speaking, when the particles are in contact). On the other hand, charged

particles such as electrons have long-range coulomb interactions due to the electric field,

leading to a significant enhancement of the viscosity relative to neutral fluids [23]. The col-

lisional behavior of a plasma can be further complicated by the presence of magnetic fields.

Additionally, the viscosity in an electron plasma depends on the particle density (i.e., on the

vorticity), and so its effect is somewhat different from that of a neutral fluid. Despite these

subtleties, attempts to define an effective Reynolds number based on the outward electron

transport rate yield Re ∼ 106 (see Chapter 2 for details), due in part to the strong electric

field which can generate drift velocities on the order v ∼ 1 km/s. As such, these plasmas

represent an excellent testbed for 2D inviscid fluid physics.

In contrast with traditional fluids, detailed control of the electron fluid is possible.

The stream function at the boundary can be specified by applying an electrical bias to the

conducting walls of the PM trap – as simple as just connecting a battery! By choosing the

boundary conditions in this way, externally imposed electric fields are created which advect

the electron density (i.e., the vorticity) via the E×B drift. In some cases, the response
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of the plasma to these boundary conditions is well-known, and so a particular vorticity

distribution can be selected in a repeatable manner [24, 25].

Additionally, 2D electron fluids can be diagnosed relatively simply and accurately.

At some point during the evolution of the fluid, the electrons can be deconfined in the axial

direction and accelerated onto a phosphor screen, and the resulting flourescent light imaged

by a camera. This technique provides a destructive measurement of the 2D vorticity field

(i.e., the electron density integrated over the axial direction). With a vorticity measurement

and knowledge of the boundary conditions, the entire flow field at an instant is determined.

Measurements can typically be repeated once every few seconds. By gathering many im-

ages at different times during the evolution, the complete spatial and temporal behavior of

the electron fluid can be determined. Coarse diagnosis of the plasma in situ can also be

accomplished by receiving electrical signals due to the electron motion [26].

1.3 An electron plasma experiment to study vortex dy-

namics in strain flows

In this dissertation, fluid experiments are presented using a PM trap device in which

a long electrode surrounding the plasma is divided into eight equal azimuthal segments.

This allows for the application of boundary conditions without introducing 3D effects that

break the plasma/fluid analogy. In this way, the response of an electron plasma vortex to

an external flow can be studied in detail.

An example of data obtained using this apparatus is shown in Fig. 1.3. Here, an
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Figure 1.3: An example of electron fluid data for vortices under strain. Shown are vorticity
measurements (colormap) in response to an applied strain flow at equal intervals over 100
µs (22.8ω

−1
0 ), where the peak vorticity is ω0 = 228 krad/s, and the strain-to-vorticity ratio

is ε∗ = (a) 0.116, and (b) 0.130. Spatial coordinates are scaled to the wall radius rw.

initially axisymmetric, quasi-flat electron vortex is prepared, and subjected to a simple

strain flow, where the stream function and velocity are given by

ψ =
1
2

ε(x2− y2); v = ε(yx̂+ xŷ). (1.3)

In Fig. 1.3 (a), the ratio of the external strain rate ε to the peak vorticity ω0 is ε/ω0 ≡

ε∗ = 0.116, where ω0 = 228 krad/s. Although small filaments of vorticity are stripped

away from the vortex periphery by the strain, the core survives and continues to rotate.

In row (b), ε∗ = 0.13, and the strain is sufficiently strong that the vortex is destroyed (i.e.,

stretched into a thin filament aligned with the strain axis). These and other data are analyzed

in Chapter 4, and details of the experimental technique are given in Chapter 2.
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1.4 Other examples of nearly ideal 2D fluids

Inviscid fluids and 2D fluids do not strictly exist in nature; dissipation and 3D ef-

fects are always present at some level. However, the 2D Euler equations provide a simple,

approximate description of many natural and man-made systems across a broad range of

spatiotemporal scales [4]. Thus, beyond interest in the 2D Euler system from a purely

academic perspective, it can also be used to understand the dynamics of real fluids and to

make predictions of their behavior. As examples, approximate 2D vortices are commonly

observed in geophysical fluids, strongly magnetized plasmas, astrophysical disks, and a

variety of other flows in engineering and industrial settings.

In order to behave as a 2D system, the planar dynamics of a fluid must be suffi-

ciently decoupled from the dynamics normal to the plane. This typically arises due to a

separation of scales, where the wavelength of the planar motion is far removed from that of

the normal dimension, and so the two do not interact significantly. For this to happen, the

3D translation symmetry of a fluid must be broken by some external influence. Common

examples of symmetry-breaking agents include gravity, rotation, and magnetic fields.

In many geophysical and astrophysical scenarios, fluids are confined to a spherical

shell by the force of gravity, leading to quasi-2D dynamics in the plane of the shell. For

example, quasi-2D vortices form regularly in the oceans and atmospheres of Earth and

other planets [27]. In this case, the characteristic scales of fluid motion on the shell can be

much greater than those in the normal direction; in the Earth’s atmosphere, the scales can

be separated by a factor of ∼ 102. Vortices in these systems provide an efficient means of
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transporting heat, chemical species, and momentum across the surface of the globe; as such,

they can have a profound impact on the planetary climate. The dynamics and stability of

these vortex structures have broad implications for humanity, ranging from agriculture, to

natural disasters, to navigation and transportation. Hurricanes and tornados are well-known

examples of atmospheric vortices, however these objects are typically not well-described

by the 2D Euler equations due to strong 3D or non-ideal effects. Quasi-2D fluids with

spherical shell geometry are also known to occur in stellar systems; one example is the

solar tachocline [28]. Interestingly, in the context of general relativity, recent theoretical

work suggests the existence of a 2D fluid-like flows of spacetime near the event horizon of

large black holes [29].

The Earth and many systems like it also feature rotation, and so the dynamics are

altered relative to that of a pure 2D fluid due to the Coriolis acceleration. The resulting

physics can be described approximately using the so-called “β-plane” model [30], which

belongs to a wider class of quasi-2D fluids known generally as “potential vorticity” (PV)

systems. Whereas the 2D Euler equations preserve the vorticity ω along streamlines (i.e.,

in the Lagrangian frame), these systems preserve a generalized quantity ζ called the PV.

For example, fluid flow on a β-plane is described by a PV model in which ζ = ω+ βy,

where y is a spatial coordinate corresponding to the latitude, and β is a constant related

to the rotation. Similar models have been used to describe magnetized plasmas [12] and

astrophysical disks [31]. One ubiquitous feature of PV systems is the formation of so-called

“zonal flows,” or banded flow structures which are clearly seen, for example, in images of

Jupiter.
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Another interesting consequence of planetary rotation is the common occurence of

polar vortices, which are rotational flow structures routinely observed at the poles of the

Earth and other planets [27]. The stability and dynamics of these structures are thought

to be of great importance to global weather patterns. The Earth’s arctic polar vortex has

a habit of periodically fragmenting due to large-amplitude distortions – these fragments

are often advected southward, resulting in a blast of frigid air to the mid-latitudes. The

antarctic polar vortex is quite stable in the winter, although a remarkable splitting event

occurred in 2002 [7].

In some astrophysical systems, rotational effects can dominate over gravity, leading

to the formation of disk-like structures which can also behave as quasi-2D fluids. Common

examples of astrophysical disk geometry are protoplanetary or protostellar disks, as well as

some types of galaxies [32], and accretion disks around compact objects (such as neutron

stars or black holes). Many of these systems are characterized by a background Keplerian

shear [33], as well as a fluid density which decreases with radius [31]. It is thought that

vortices forming in these disks could be important for momentum transport [34] and planet

formation [35].

Strong magnetic fields in a plasma cause anisotropy which can result in quasi-2D

fluid behavior perpendicular to the field [11, 12]. In this case, motion parallel to the field is

unimpeded and therefore rapid, while cross-field drift motion is slower, and so once again

the separation of scales leads to a decoupling of the parallel and perpendicular dynamics.

This phenomenology is applicable to a wide range of laboratory and astrophysical plasmas,

including magnetically-confined plasmas with toroidal geometry for controlled nuclear fu-
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sion (i.e., tokamaks, stellarators, and related devices). Efforts to achieve sustained fusion

in laboratory plasmas have been frustrated by cross-field turbulent transport which carries

heat, momentum, and particles out of the hot plasma core towards the wall of the confine-

ment chamber, similar to the way 2D turbulent transport in a geophysical system causes

mixing between the hot equatorial regions and cold polar regions. It is now accepted that

the turbulent transport can be reduced by the formation of shear layers (i.e., zonal flows)

which serve to decorrelate turbulent eddies [13, 36], similar to the vortex destruction pro-

cess shown in Fig. 1.3 (b).

The stability and behavior of 2D vortices is also of importance in various engineer-

ing flows including, for example, airfoil wakes [8] and mixing processes [37]. Finally, it

should be noted that the formation of vorticity filaments in response to strain [shown in Fig.

1.3 (b)] is a ubiquitous process in vortex dynamics; it is closely related to the forward en-

strophy cascade familiar to 2D turbulence theory [4]. Therefore, the competition between

vorticity and strain in a 2D fluid is applicable to a broad range of important topics, both

academic and practical.

1.5 Related work on strained vortices and electron plasma

fluids

The first investigations of deformed vortices took place in the late 19th century. In

1880, Lord Kelvin studied small-amplitude linear oscillations of a circular vortex patch

(sometimes called a Rankine vortex), where the vorticity is a constant inside the patch
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boundary and zero elsewhere. These modes are known as “Kelvin waves” (not to be con-

fused with Kelvin waves in the geophysical context); they can be excited by weak external

disturbances. Kirchoff, in his 1883 work Mechanik, generalized the Kelvin wave with

azimuthal wave number m = 2 to arbitrarily large amplitude, providing an exact nonlin-

ear vortex solution to the Euler equations. The Kirchoff vortex is a patch with elliptical

shape, where the rotation rate decreases relative to the linear rate as the ellipticity increases.

Thanks to Kirchoff, the “elliptical patch model” was born, variants of which have been

studied in detail by many authors; it forms the theoretical basis for much of the work pre-

sented in this dissertation. Although the Kirchoff vortex is an exact solution, Love found

in 1893 that perturbations to the elliptical patch could be unstable for sufficiently large

ellipticity. Discussions of these early results are given in Refs. [9] and [38].

More recently, the elliptical patch model has been implemented by Moore and

Saffman [8] and Kida [39] (henceforth MS71 and K81) in the presence of externally im-

posed strain flows. MS71 found stationary solutions for strained elliptical vortex patches,

while K81 found dynamical solutions. Most importantly, MS71 showed that no station-

ary solutions exist when the ratio of the external strain rate to the patch vorticity exceeds

a certain value, implying that vortices under conditions of strong strain must be unstable.

K81 found that different types of dynamical solutions were possible depending on the ini-

tial conditions and the strain-to-vorticity ratio; these include nutational modes, rotational

modes, stationary modes, and extensional modes. The nutating and rotating solutions cor-

respond to stable periodic orbits in phase space. The stationary solutions are identical to

those found by MS71, and so the MS71 work can be considered a limiting case of K81.
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Finally, the extending solutions correspond to vortices which succumb to the external strain

and lose stability; these vortices experience infinite stretching, where the aspect ratio of the

ellipse increases without bound. Thus, the idea that sufficiently strong strain could effec-

tively ”destroy” a vortex was implied by the MS71 results, and shown rigorously by K812.

Soon thereafter, it was shown that the K81 model could be described as a limiting case of a

Hamiltonian theory for many interacting vortex patches by truncating the patch distortions

at wavenumber m = 2 [40].

Though the vortex patch model is relatively simple and manageable, its utility in

describing realistic vortices is questionable, since the patch vorticity is discontinuous and

therefore unphysical. On the other hand, theoretical analysis of a smooth vorticity distri-

bution in the presence of external strain is a challenging task. While the K81 model is a

dynamical system with two degrees of freedom (the ellipse aspect ratio and orientation),

a smooth vorticity distribution, as described by the Euler equations, has infinite dimen-

sionality (i.e., where the dynamical variables are the continuous spatial coordinates [41]).

Progress has been made so far only in situations where the nonlinearity can be handled

perturbatively. For example, in the limit of weak strain, distortions of the vortex are small

and can be treated using an expansion about the axisymmetric distribution [42, 43, 44]. In

the opposite limit, when the strain is large, the vorticity can be treated passively or pertur-

batively; this approach is closely related to a technique known as “rapid distortion theory”

[45]. However, near the stability threshold of a strained vortex, the strain and vorticity

2Note that MS71 and K81 considered the more general case of both external shear and strain. In general,
the behavior is qualitatively similar in each case, the key difference being that the shear can be either adverse
or cooperative depending on its relative sign. This dissertation focuses primarily on the case of external strain.
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are of comparable strength, and so these techniques are not appropriate. In this case, it is

sometimes useful to consider the behavior of the system on short timescales. The simplest

example is to consider only the initial flow field given by the initial vorticity distribution

and the boundary conditions. On a more advanced level is the work of Okubo [46] and

Weiss [47], in which spatial derivatives of the flow field are used to find short-term, ap-

proximate solutions for the evolution of the vorticity gradients. This technique has been

used widely as a criterion to identify turbulent cascade activity in various fluids. It has also

been extended by other authors to higher orders of approximation [48, 49], as well as to 3D

flows [50].

Other approaches to studying smooth profiles involve truncating the Euler equations

(i.e., considering lower-dimensional approximations). For example, one technique involves

approximating a smooth vorticity profile with a series of nested contours of piecewise-

constant vorticity. Here, analytical progress was made under the assumption that each

contour remains elliptical [51, 52] (assumptions that, as we will see, are not necessarily

justified). For nested vorticity contours of arbitrary shape, the dynamics of each contour

are relatively simple to solve numerically. This approach is known as “contour dynamics,”

and it has been used extensively in the literature [53], since it is much less computation-

ally expensive than solving the continuous Euler equations using other numerical methods.

Contour dynamics simulations have been used to study vortex stripping events, or partial

destruction events where outer low-vorticity contours are destabilized and pulled away by

the strain [54], as well as total destruction events. One shortcoming of the contour dy-

namics method is that the contours can be heavily stretched and distorted such that the
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numerical solution becomes stiff; in this case, an ad-hoc small-scale reconnection scheme

known as “contour surgery” has been implemented [55].

Another way to truncate the Euler system is by using a point vortex approximation

[56]. Here, a smooth vorticity distribution is represented by a distribution of N discrete

point vortices, which is an N−dimensional Hamiltonian system. Although theoretical anal-

ysis shows that the dynamics can be chaotic for N ≥ 3 [57], numerical solutions are quite

tractable. When the stream function is discretized to a grid (further reducing the computa-

tional load), the numerical procedure is known as a “Vortex-In-Cell” (VIC) simulation [58],

in analogy with the popular “particle-in-cell” codes frequently used in plasma physics.

Attempts to study strained vortices in the laboratory have relied heavily on experi-

ments with water tanks [21, 59]. However, in these systems, viscosity plays an important

role. Here, the Reynolds number is roughly Re ∼ 102, and the fluid vortices are best de-

scribed by the Lamb-Oseen model [9], where the vorticity profile is a Gaussian curve that

decays over time. Although vortex stripping and destruction events were observed for suf-

ficiently large values of shear or strain, quantitative comparison with the MS71 and K81

predictions was not possible due to viscous effects. Another interesting way to study 2D

fluid physics is by using soap films where the fluid flow is confined to a planar geometry

[60]. However, to our knowledge, no rigorous studies of vortex deformation and destruc-

tion have been conducted in this system.

It has long been known that magnetized plasmas behave as quasi-2D fluids under

certain conditions [11, 12]. The analogy is closer yet for magnetized non-neutral plasmas

[16], specifically when confined in a Penning-Malmberg trap geometry [17]. This analogy
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has been exploited by many authors as a tool to study the dynamics of 2D ideal fluids in

the laboratory. Electron plasmas have been used to study vortex merger events [61, 62, 63,

64]. The formation of vortex crystals from decaying turbulence was observed and studied

using electron plasmas [65, 66, 67], and the stability of these crystals was studied in detail

[68]. Further studies have focused on turbulent cascades in 2D [69, 70] and the guiding

principles of 2D turbulence [71, 72]. Other aspects of 2D vortex dynamics which have

been investigated using electron plasmas include vortex axisymmetrization (also known as

“inviscid damping” or “spatial Landau damping”) [44] and shear instabilities [73, 74].

The above electron plasma experiments all involved the free relaxation of some

initial vorticity distribution (i.e., under symmetric boundary conditions). Other researchers

have implemented asymmetric boundary conditions, including studies of non-axisymmetric

equilibria [75, 76] and studies of cascading turbulence under external forcing [77]. How-

ever, in many of these studies the asymmetric potential was applied by a segmented elec-

trode extending over only a portion of the plasma, and so 3D effects (namely, axial trap-

ping of particles) may have been present. Most notable is the work of Eggleston [78], who

studied the destruction of electron vortices under externally imposed irrotational shear by

applying a radial electric field. Here, the vorticity profiles were roughly Gaussian, and the

measured stability threshold was found to be in disagreement with theoretical predictions.

Despite the relatively large body of work on this subject, a rigorous quantitative

test of the K81 system is lacking. Specifically, to our knowledge, the dynamical orbits

predicted by K81 have not been previously studied in the laboratory. Additionally, key

questions remain as to the effect of profile smoothness on the vortex dynamics.
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1.6 Outline of the dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, details

of the experimental procedure are given, including a description of the apparatus, data

analysis and calibration techniques, and further discussion of the plasma/fluid analogy. In

Chapter 3, the theory of a vortex under strain is discussed, including the elliptical patch

approach as well as theoretical efforts regarding smooth profiles. In Chapter 4, experi-

mental data and numerical data from vortex-in-cell simulations are presented for the case

of strain flows which are constant in time. In Chapter 5, preliminary experimental data is

presented regarding time-dependent strain flows. In Chapter 6, the results are summarized

and discussed, and conclusions are made. The dissertation also includes an appendix in

which a series of other related electron plasma experiments that the author participated in

are discussed, and a second appendix containing a dictionary of mathematical symbols.
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Chapter 2

Experimental procedures

2.1 The plasma/fluid analogy

Non-neutral plasmas consisting only of electrons are routinely confined in a cylin-

drical geometry using a strong, constant axial magnetic field B = Bẑ for radial confinement

and electrostatic potentials φ(z) for axial confinement. This configuration is known as

a Penning-Malmberg (PM) trap [79]. A schematic diagram of this type of apparatus is

shown in Fig. 2.1. Confinement in these traps is sufficiently good that the electrons can

reach a state of thermal equilibrium, described by a temperature T . In the presence of a

strong magnetic field, the electrons perform small, high-frequency gyro-orbits perpendic-

ular to the magnetic field with radius rg = mevT/eB and frequency fg = eB/2πm, where

vT = (T/me)
1/2 is the thermal velocity, and e and me are the electron charge and mass. Fur-

thermore, when electric fields are present, the gyrating electrons drift perpendicular to B

with velocity v = E×B/B2 [19]. Electric fields are generated by the non-neutral plasma it-
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Figure 2.1: Cartoon of electron motion in a Penning-Malmberg trap. (a) (y,z) and (b)
(x,y) views are shown, with axial confinement voltages Vc, axial and radial electric fields
Ez and Er, and magnetic field B. Electron trajectories are depicted, including the small-
scale gyromotion, (a) axial bounce motion, and (b) perpendicular E×B drift motion.

self and by the boundary conditions via the Poisson equation, ∇2φ= en/ε0 (SI units), where

φ is the electric potential, n is the electron density and ε0 is the permittivity of free space.

Often, the plasma density is axisymmetric and quasi-uniform within the plasma “vortex”

radius rv (c.f. Fig. 2.8), so the self electric field is radial, and the drift motion is azimuthal

and periodic about the plasma centroid with frequency fv = en/4πBε0 [80]. Parallel to

the magnetic field, electrons bounce rapidly between the endcap confinement potentials at

frequency fb = vT/2L, where L is the plasma length. The axial motion, perpendicular drift

motion, and small-scale gyration of the electrons are depicted schematically in Fig. 2.1.

Collisions between electrons occur at a rate per particle given roughly by fc ∼ nvT e4/T 2,

although they are significantly more complicated than particle collisions in a neutral fluid

[81].

When the magnetic field is large, the gyroradius is very small compared to the

plasma radius (rg/rv � 1), and the gyrofrequency is large compared to the frequency of
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the drift motion ( fg/ fv � 1) . Typically, the plasma temperature is high enough that the

axial bounce frequency is large compared to the frequency scale of the perpendicular drift

motion ( fb/ fv� 1). Additionally, PM traps are often designed so that the aspect ratio is

large, i.e. L/rw � 1 where rw is the wall radius. In this way, 3D effects due to the end

confinement fields are small, and so the dynamics are two-dimensional to a good degree

of approximation. Furthermore, when the drift dynamics are rapid compared to collisional

frequency scales ( fc/ fv� 1), a collisionless description is appropriate, and so the system is

dissipationless. In summary, when the frequency scales are ordered as fg� fb� fv� fc

and spatial scales as rg � rv < rw � L, the electrons behave as rigid line charges which

move in 2D (i.e., in the plane perpendicular to B) as point-like particles under dissipation-

less E×B drift dynamics.

In this regime, the thermal energy is small compared to the electrostatic energy,

eφ/T � 1, so the electron dynamics are described by the Hamiltonian

H =
e
L

N

∑
i=1

φs(ri)+
( e

L

)2
∑
i 6= j

G(ri,rj), (2.1)

where φs is the potential associated with the applied boundary conditions, and G(ri,rj) is

the Green’s function for the Poisson equation in 2D [79]. If the electrons are all far away

from the conducting boundary (ri/rw � 1), then image fields can be neglected, and the

Green’s function is logarithmic: G(ri,rj) = ln(|ri− rj|). The momentum of the electrons

is dominated by the magnetic vector potential, and so the canonical coordinates for a given

particle are (pθ,θ), where pθ = eBr2/2L [75, 82]. Therefore, the electron drift dynamics

are analogous to point vortex dynamics, where the electron charge per unit length corre-
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sponds to the point vortex circulation [9, 41]. Since the PM trap confines only a single sign

of charge, the corresponding vorticity also has a single sign, i.e. ω ≥ 0. In principle, both

signs of vorticity could be studied by simultaneously confining electrons and positrons (i.e.,

anti-electrons), however in practice this is quite difficult to accomplish [80].

When the electron density is sufficiently large, a continuum description is appro-

priate, in the same way that 2D point vortex dynamics can be used to approximate the 2D

Euler equations (Eqs. 1.2) [56]. In this case, the electron distribution is advected perpen-

dicular to B by its own electric field via the E×B drift. These dynamics are given by the

Drift-Poisson equations,

[
∂t−

1
B
(∇φ× ẑ) ·∇

]
n = 0; ∇

2
φ = en/ε0, (2.2)

(SI units) where n = n(x,y), φ = φ(x,y), and the drift velocity is v = −∇φ× ẑ/B. Equa-

tions 2.2 are isomorphic to the 2D Euler equations (Eqs. 1.2) under the transformations

φ/B→ψ and en/Bε0→ω [17]. Thus, the perpendicular drift motion of the electron plasma

described by the Drift-Poisson equations is directly analogous to the motion of a 2D ideal

fluid, with electric potential playing the role of the fluid stream function and electron den-

sity that of the fluid vorticity. Therefore, a collection of electrons (i.e., an electron plasma)

will rotate coherently as a 2D fluid vortex.

This plasma/fluid analogy has been exploited to study the dynamics of 2D ideal

fluids in a way inaccessible to traditional fluid experiments (i.e., using water or air). Ad-

vantages of this technique include simple diagnosis of the vorticity distribution, precise

control over initial conditions and boundary conditions, weak dissipation, and slow radial
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transport of the vorticity – remarkably, the electron vortices discussed here can be approx-

imately static over 106 rotations (c.f. Fig. 2.14). Most prior work using this plasma/fluid

analogy focused on the free relaxation of an initial vorticity distribution. However, when

the electrical boundary conditions of the cylindrical confining electrodes are specified, an

externally imposed, irrotational E×B flow can be created which advects the vorticity.

This chapter contains a description of an apparatus called the 8-Segment Trap (8ST)

and the experimental procedures that have recently been developed to study ideal 2D fluid

dynamics in the presence of externally imposed flows. A key feature of the apparatus is that

the boundary conditions can be varied without violating the assumptions of the plasma/fluid

analogy. It consists of a specially designed Penning-Malmberg trap for electron plasma

confinement, where the boundary is divided into eight equal azimuthal segments that extend

axially over the entire length of the plasma (i.e., as opposed to other PM devices where

the segmented electrode extends axially only over a portion of the plasma). A report of

the first results from this device can be found in Refs. [83, 84]. Discussed here are the

experimental apparatus and operating procedure, data analysis and calibration procedures,

and limitations of the plasma/fluid analogy.

2.2 Experimental apparatus

Figure 2.2 shows a schematic diagram of the 8ST apparatus. Shown are the electron

source (A), cryopump (B), electrode structure (C), superconducting coils (D), and diagnos-

tic equipment (E, F, G). The coils produce an axial magnetic field B = 4.8 T which is

26



approximately uniform over the electrodes (with variations δB/B ∼ 0.01). The cryopump

maintains a pressure of . 10−9 torr inside the chamber. The electron source is a heated

tungsten cathode located in the flaring field region where Bz ≈ 0.03 T. It produces electron

beams of width ∼ 5 mm and currents ∼ 1 µA. Electrodes I, III, and V are used for axial

confinement; they are typically biased to Vc =−100 V. Electrode II is divided azimuthally

into eight equal segments which can be independently biased; this is the region in which the

fluid experiments take place. Electrode IV is divided azimuthally into four equal segments;

these electrodes are used to control the plasma density (vorticity) profile via the Rotating

Wall (RW) technique [80]. Pictures of the 8ST apparatus are shown in Fig. 2.3, including

computer models as well as the actual device before and after gold-plating.1

The wall radius of the 8ST is rw = 13 mm, the length of the entire electrode structure

is 440 mm, and the length of electrode II is 260 mm. Typical plasma parameters are total

electron number N = 108− 109, peak electron density (in the center of the plasma) n0 =

1013− 1015 m−3, temperature T ≈ 0.1 eV, and plasma radius rv = 1− 5 mm. In the 8ST,

fg = 130 GHz, fb≈ 1 MHz, fv = 50−250 kHz, fc≈ 3 kHz, rg = 0.5µm, rv = 0.1−10 mm,

rw = 13 mm, L∼ 240 mm, and the areal density of the electrons is roughly nL∼ 1013 m−2.

Thus, the separation of temporal and spatial scales discussed in Sec. 2.1 is satisfied, and

so the plasma/fluid analogy is expected to be valid. However, it is important to be able

to recognize non-fluid behavior if and when it occurs, so a discussion of plasma behavior

when these conditions are violated is given in Sec. 2.7.

1The electrodes are gold-plated so that applied potentials can be uniform over the surfaces, since gold is
mostly unreactive with background molecules in the vacuum system. In contrast, aluminum can form insu-
lating oxide layers on its surface which can collect charge and create non-uniform potentials, thus affecting
the plasma behavior.
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Figure 2.2: Schematic diagram of 8ST apparatus in the (y,z) plane. Shown are the electron
source (A), cryopump (B), 8ST electrodes (C), magnet coils (D), phosphor screen (E),
optical lens (F), and CCD camera (G). Magnetic field lines are shown schematically (blue),
as is a vacuum chamber enclosing the electrodes.

The diagnostic system consists of a phosphor screen which is electrically biased to

+5 kV, coupled to a CCD camera. The phosphor screen is located in the flaring field region

opposite the electron source, where Bz ≈ 1.2 T (see Fig. 2.2), so the electron distribution is

magnified by a factor of two as the particles travel adiabatically along field lines between

the 8ST electrodes and the phosphor screen. Fluorescent light emitted from the phosphor

screen passes first through a window in the vacuum chamber. Then it passes through an

achromatic doublet lens with focal length 600 mm and diameter 150 mm which is placed

380 mm from the phosphor screen. Finally, it is focused onto a 15 mm2, 4.2 megapixel

CCD chip by a compound lens system mounted to the camera housing, located 340 mm

from the doublet lens with a focal length 105 mm and diameter 53 mm.

The optical system was designed in this way for the following reasons. The two

main goals of the optical system are to maximize the signal-to-noise ratio (SNR) and to

maximize the pixel resolution. However, these two criteria are inversely related, so a com-
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Figure 2.3: Models and photographs of the 8ST apparatus. Shown are (a) a section view of
a wireframe computer model; (b) a solid computer model; (c) the assembled device prior
to, and (d) after gold-plating the electrodes.
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promise must be reached. The SNR is improved by cooling the CCD chip to ∼ −15◦ C

using a Peltier thermoelectric cooler coupled to a forced air system2. Furthermore, the

2048×2048 pixel CCD chip data is binned by a factor of two, resulting in a stronger signal

but lower resolution. The primary constraint is that the camera fails in a magnetic field

of & 0.03 T, thus it is placed far from the magnet where B ∼ 0.02 T. The optical signal

decreases as r−2, where r is the distance from the source to the camera, so the doublet lens

is placed closer to the magnet in order to maximize the amount of light collected. The focal

lengths and distances are chosen in order to obtain a magnification factor where the 8ST

trap domain fills the CCD chip, thus maximizing the number of pixels used. Given these

constraints and the available equipment, the optical setup described here represents our

best effort to simultaneous maximize the resolution and the SNR. Here, the magnification

factor between the phosphor screen and the CCD chip is 0.226, the resolution is roughly

rw = 390 pixels, and the SNR for these experiments (based on the peak signal at the center

of the plasma) ranges from 10-50.

Possible ways to improve the optical diagnostic system include the following. Most

importantly, it is advantageous to place the CCD chip as close as possible to the phosphor

screen. Ideally, one could purchase a camera which is engineered to work in a strong mag-

netic field, although we have yet to find a good option which is not prohibitively expensive.

Otherwise, the system could be improved dramatically by building a “magnetic shield” of

high-permeability metal around the camera in order to reduce B. Alternatively, the dou-

2The stock camera system was cooled by a small fan mounted to the back of the housing. Since the fan
failed in a magnetic field of B & 0.01 T, it was removed and replaced with an externally pressurized air source
which was mounted directly to the camera housing.
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blet lens could be replaced by a better lens with a large diameter, small focal length, and

aberration corrections; however, such a lens is difficult to manufacture and therefore expen-

sive. Plans are being made to implement some combination of these techniques for future

experiments in the 8ST.

2.3 External flow properties

During the fluid experiments, the segments of electrode II are biased, creating vac-

uum electric fields which give rise to an irrotational E×B flow that advects the trapped

electrons (i.e., the vorticity). In 2D, the vacuum electric potential inside the trap volume

satisfies the Laplace equation ∇2φ = 0 with

φ(r,θ) =
∞

∑
m=0

[
Am cos(mθ)+Bm sin(mθ)

]( r
rw

)m
, (2.3)

where the Am and Bm are expansion coefficients, given by

Am =
1
π

∫
dθcos(mθ)φ(rw,θ); Bm =

1
π

∫
dθsin(mθ)φ(rw,θ), (2.4)

where φ(rw,θ) is the applied boundary condition. Plasmas are typically centered at r = 0

with rv � rw, so the lowest-order expansion terms are dominant. With the segmented

electrodes aligned with the coordinate axes, the boundary conditions can often be chosen

such that all Bm = 0.

Different choices of boundary conditions and the resulting vacuum potentials are

shown in Fig. 2.4, where the equipotential contours are analogous to fluid streamlines.

An external flow with a dominant m = 1 term can be created by biasing the segments
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Figure 2.4: Choices of boundary conditions for electrode II, and the corresponding external
flow field. Shown are (a) a uniform vertical flow, (b) an irrotational shear flow, (c) a simple
strain flow, and (d) an octupolar flow. Boundary conditions are shown as +Va (red), −Va
(blue), and Va = 0 (gray). Streamlines are shown in black, with arrows indicating flow
direction. The direction of the magnetic field is shown in panel (a). The simple strain flow
shown in panel (c) is used for the majority of the experiments discussed here.
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of electrode II to voltages Va(1,1,0,−1,−1,−1,0,1) [Fig. 2.4 (a)], beginning with the

segment along the positive x-axis. This results in an approximately uniform flow field

v=A1ŷ/Brw near the axis, where A1 = 1.18Va; the next largest coefficient is A3 =−0.16Va.

This flow initially advects the plasma away from the axis with no distortion; however at

later times, the image charge induced in the wall leads to interesting dynamical orbits of

the plasma [85]. Alternatively, the voltage configuration Va(1,0,0,0,0,0,0,0) [shown in

Fig. 2.4 (b)] generates an irrotational shear flow similar to that which would be produced

by a nearby vortex structure.

A flow with a dominant m = 2 component can be generated by the voltage config-

uration Va(1,0,−1,0,−1,0,−1,0) [Fig. 2.4 (c)]. The second order flow velocity for this

configuration is given by v= ε(yx̂+xŷ), where A2 = 0.9Va, and the next nonzero coefficient

is A6 = 0.3Va, and

ε≡ 2A2/Br2
w. (2.5)

This flow is identified as the “simple strain flow” given in Eq. 1.3, where ε is the applied

strain magnitude. Another interesting possibility, not yet exploited, involves a quadrupolar

voltage pattern which rotates about the trap axis. In the rotating frame, this appears as a

simple shear flow [39]. Additionally, an octupolar flow (with a dominant m = 4 term) can

be generated using the boundary conditions Va(1,−1,1,−1,1,−1,1,−1) [Fig. 2.4 (d)].

A uniform potential associated with nonzero A0 can modify the length of the plasma,

and therefore change the density (vorticity). Typically, the boundary conditions are chosen

such that A0 = 0 to avoid this complication. Another issue is that the external flow can lead
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to a net translation of the vorticity away from the axis of the trap, for example, due to an

m = 1 component of the flow, or due to an m > 1 flow where the plasma is not initially

centered on the axis [76]. When the vorticity is advected away from the origin, r/rw is no

longer a small parameter, and so higher-order terms in Eq. 2.3 can become important. In

practice, this translational instability is avoided by carefully centering the initial vorticity

distribution at the origin, and by working on timescales short compared to the instabil-

ity. The distribution is centered using a damping circuit (described below), where a small

asymmetry voltage (∼ 0.1 V) is applied to a segment of electrode II in order to tune the

location of the vortex center [85].

For the flows discussed above, the Am are proportional to Va, so the magnitude of the

external flow velocity can be adjusted by varying Va over time. The temporal dependence

of the external strain is set using waveform generators. The only limitation is RC filtering

from the electrical circuit, which presently has a ∼ 1 µs time constant.

The influence of these external flows on an initially stable, axisymmetric vortex is

an important topic in fluid dynamics, which can be studied in the 8ST. Moreover, these

external flows can be implemented serially in order to generate other non-axisymmetric

initial vorticity distributions (e.g., elliptical vortices or thin filaments). This dissertation

focuses primarily on the case of an initially axisymmetric vortex subjected to a simple

strain flow [shown in Fig. 2.4 (c)].

34



2.4 Run sequence

The procedure for a single run cycle of the 8ST is shown in Fig. 2.5, where voltages

applied to the electrodes are represented schematically. A run cycle typically takes 5 - 10

s. The majority of this time is occupied by the preparation of the initial vorticity profile,

with the fluid experiment itself taking < 500 µs. At the end of each run, the vorticity is

diagnosed destructively using the phosphor screen diagnostic. Steps in this process are

given below.

• Programming. First, waveform generators with 1 µs resolution are programmed to

drive the segments of electrode II with the desired voltage and time dependence.

• Electron injection. Next, the trap is filled by injecting electrons. Electrode V is

biased to the confinement voltage Vc = −100 V and electrode I is biased to the “lip

voltage” Vl where |Vl| < |Vc|. The electron source is biased to an intermediate volt-

age Ve, where |Vl| < |Ve| < |Vc| such that electrons have sufficient energy to transit

electrode I but not electrode V. Electrons become confined between electrodes I and

V by scattering energy from the parallel to perpendicular direction, either through

collisions or conceivably by a two-stream instability [86]. This process continues for

0.1 - 1 s, until the desired total electron number is achieved. Then, electrode I is

ramped to voltage Vc to prevent further filling.

• First diocotron damp. The initial electron density distribution is typically offset

from the symmetry axis, resulting in an m = 1 diocotron mode [80], where m is an
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azimuthal wave number. This mode is damped in 100 - 300 ms using a feedback

circuit connected to two segments of electrode II.

• Profile conditioning. Then, the Rotating Wall (RW) technique is used to condition

the radial density profile [80]. Here, the 4 segments of electrode IV are biased to gen-

erate a uniform electric field near the origin which rotates azimuthally at frequency

fw (either with or against the rotation of the plasma). In this way, angular momentum

is either injected into or removed from the plasma, and the vorticity profile ω(r) can

be changed. A few examples of profile evolution in response to the RW are shown in

Fig. 2.6, and some examples of final profiles obtained in this manner are shown in

Fig. 2.8.

• Plasma cutting. The RW profile control is conducted with plasma confined between

electrodes I and V, however the fluid experiments must be conducted with plasma

confined between electrodes I and III. Therefore, the plasma is “cut” by ramping

electrode III abruptly from ground to voltage Vc. The plasma remaining between

electrodes III and V is discarded.

• Second diocotron damp. The cutting process can result in a small amplitude m = 1

diocotron mode. Thus, the damping circuit is once again implemented to position the

plasma centroid as close as possible to the symmetry axis.

• Plasma cooling. The plasma is held for about 500 ms, and the plasma cools via

cyclotron radiation to T ∼ 0.1 eV with a time constant of τc = 150 ms [87]. At this

point, the plasma has the properties necessary for experiments in the fluid regime.
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Figure 2.5: Serial steps in the experimental procedure, shown as voltage traces on the 8ST
electrodes. Labels A, I-V correspond to the electron source and electrodes in Fig. 2.2.
Shown are a square pulse (solid) and linear ramp (dashed) external flow time dependence,
with bipolar boundary conditions.

• Fluid experiment. Prior to the fluid experiment, the CCD camera is triggered with

an exposure time long enough to capture the event. Then, the external flow is applied

by triggering the waveform generators. The system is allowed to evolve for some

time, then the segments of electrode II are grounded, and immediately thereafter

electrode III is grounded such that the electrons stream along the field and impinge

on the phosphor screen. The resulting light is measured with the CCD camera.

• Dark exposure. After diagnosis, another camera exposure is taken in the absence of

plasma, and the two exposures are subtracted to eliminate background noise.

The end result is a CCD image of the electron density distribution integrated over

the axial direction [see, for example, Fig. 2.7 (a)]. This data represents a measurement

of the 2D vorticity field at each CCD pixel. Runs can be repeated to reduce noise, or the
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Figure 2.6: Demonstration of RW vorticity profile conditioning. (a) compression to a
quasi-flat profile with fw = 50 kHz over 3 s (blue to red); (b) compression to a Gaussian
profile with fw = 1 MHz over 500 ms; (c) reverse RW expansion to a quasi-flat profile with
fw =−1 MHz over 1 s.

protocol can be varied, for example to record time series data of the vorticity evolution.

2.5 Data analysis

Using the vorticity data and knowledge of the applied boundary conditions, the

Poisson equation ∇2ψ = ω is solved using a numerical finite-difference algorithm to find

the stream function at each CCD pixel. Then the velocity components (vx,vy) are deter-

mined by numerically differentiating the stream function. Second derivatives of the stream

function are then found and used to calculate quantities such as the local strain eigenvalue

s(x,y) =±[4ψ2
xy +(ψxx−ψyy)

2]1/2 (where subscripts indicate partial derivatives), and the

Okubo-Weiss local stability parameter Q(x,y) = s2−ω2 [47] (see Chapter 3 for further dis-

cussion of these quantities). Figure 2.7 (a) shows a CCD image of an axisymmetric vortex

centered on the domain axis with a quasi-flat profile and central vorticity ω0 = 228 krad/s,

and panel (b) shows the same image overlaid with contours of the stream function due to an
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applied strain flow with ε∗ ≡ ε/ω0 = 0.116. Panel (c) shows a close-up view of the stream

function separatrix and velocity magnitude |v|, and panel (d) shows the separatrix and the

strain eigenvalue s.

For axisymmetric vortices, it is useful to perform an azimuthal average of the vor-

ticity data to extract the radial profile, ω(r) = (2π)−1 ∫ ωdθ. It is observed that the profiles

are often well-described by the simple formula

ω(r) = ω0 exp
[
− (r/rv)

α
]
. (2.6)

This formula is numerically fit to the profiles using a least-squares routine to extract the

fitted peak vorticity ω0, vortex radius rv, and smoothness exponent α. Examples of profiles

and fits obtained in this manner are shown in Fig. 2.6. Low-order spatial moments of

the vorticity distribution are also calculated, including the total circulation Γ =
∫

ωdA, the

centroid Γ−1 ∫ riωdA, and the quadrupole tensor Γ−1 ∫ (3rir j− r2δi j)ωdA, where ri are the

spatial coordinates and δi j is the Kronecker delta function.

Elliptical modes of a vortex can be excited, for example, by an external strain flow

(Eq. 1.3) [39]. However, filamentary structures which form outside the vortex core can

influence the quadrupole moment (c.f. Fig. 1.3). In order to diagnose elliptical distortions

of the core, a numerical routine is used to fit an ellipse to the half-maximum vorticity

contour. Here, the aspect ratio λ and orientation ξ of the ellipse are fit to the set of CCD

pixels with vorticity in the range 0.4 ≤ ω/ω0 ≤ 0.6, where ω0 is the peak vorticity. In

this way, a robust representation of elliptical distortions of the vortex core is obtained.

Examples of the elliptical fitting routine are shown in Fig. 2.9.
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Figure 2.7: Analysis of a CCD image. (a) vorticity data (color map) with ω0 = 228 krad/s,
truncated at 0.05ω0; (b) vorticity overlaid with numerically calculated streamlines (black
lines) and separatrix (thick black line) under applied strain with ε∗ = 0.116; (c) close-up
of separatrix and velocity magnitude (color map); (d) close-up of separatrix and strain
eigenvalue s (color map).
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Figure 2.8: Examples of initial vorticity profiles obtained using the RW technique. Shown
are data (blue) and fits to Eq. 2.6 (dashed), for (a) a smooth profile with α∼ 3; (b) a quasi-
flat profile with α∼ 6; and (c) a quasi-flat profile with α∼ 8 where the fit fails to capture a
tail in the distribution at the vortex periphery. In panel (b), vertical (dashed) and horizontal
(dash-dot) slices of the vorticity data are shown in red.

2.6 Calibration

In order to obtain quantitative data, the spatial resolution and signal magnitude of

the CCD diagnostic must be calibrated. From the confinement region to the phosphor

screen, the electron distribution is magnified by a factor of approximately two due to the

flaring magnetic field. The flourescent light from the phosphor screen is then focused onto

the CCD chip through an optical lens system. The total magnification factor can be found in

situ by preparing a plasma which fills the entire trap volume, as shown in Fig. 2.10 (a), thus

providing a measurement of rw on the CCD image. Alternatively, the spatial calibration can

be obtained using a plasma subjected to a strong external strain flow [83], as shown in Fig.

2.10 (b). In this case, the plasma collapses to a thin filament which is advected through

small gaps between the segmented electrodes. The orientation of the filament and the point

at which the signal disappears give a calibration of rw and the orientation of the segments.

Figure 2.10 (c) shows the electrode geometry fitted to data using these techniques. For the
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Figure 2.9: Demonstration of the elliptical fitting routine, for two different instances of
vorticity data (a) and (b). Panel (c) shows a close-up region given by the square in panel
(b). Pixels with vorticity between 40-60% of ω0 are highlighted (black dots), and the
elliptical fit to these points is shown (magenta line).

work presented here, the pixel calibration factor is approximately 1 pixel = 33 µm.

The vorticity is calibrated by measuring the rotation rate of a slightly elliptical vor-

tex. A quasi-flat vorticity profile is prepared, and a low-amplitude elliptical distortion is

excited using an external strain flow; then the strain is removed and the vortex is allowed

to rotate freely at approximately the linear rate dξ/dt = ω0/4 [9]. The orientation angle

ξ(t) is measured using the fitting routine described above. Using this procedure, the mea-

sured vorticity is calibrated to the CCD signal magnitude in the vortex core. Figure 2.11

shows the free evolution of (λ,ξ) for three different initial values of λ. Although the as-

pect ratio decreases due to inviscid damping [44], the rotation rate is initially constant for

1.2≤ λ≤ 1.8, and a robust calibration of the vorticity magnitude is obtained.

The external flow field is completely specified by the electrode geometry and knowl-

edge of the boundary conditions. However, it is frequently observed that the strength of the

external flow differs slightly from the calculated value. For this reason, the external strain

magnitude ε is calibrated in situ using the plasma, and this calibrated value is used for
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Figure 2.10: Spatial calibration of the CCD diagnostic. (a) an image of plasma filling the
entire trap volume; (b) overlaid images of four plasmas during destruction by an external
strain flow; (c) data from panels (a) and (b) fitted with the 8-segment electrodes (gray) and
their orientations (black dashed lines).

Figure 2.11: Vorticity calibration process. (a) λ(t) and (b) ξ(t) are shown for a freely
rotating quasi-flat vortex excited to three different initial values of λ. Included in panel (b)
is a linear fit (dashed) to the ξ(t) data for 0≤ t ≤ 16 µs, where ω0 = 488 krad/s.
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quantitative studies. Possible reasons for the discrepancy are discussed here, although a

clear answer has yet to be found.

A uniform flow (i.e., with a dominant m = 1 component) such as that shown in

Fig. 2.4 (a), when imposed suddenly, will cause the plasma to translate rigidly at velocity

v = A1/Brw. This velocity can be measured using the phosphor screen, thus providing

a measurement of the ratio A1/Brw. Alternatively, the simple strain flow [Fig. 2.4 (c)]

with dominant m = 2 component can be used to directly calibrate the strain rate ε. When

the normalized strain ε∗ is sufficiently large, the plasma will behave passively, distorting

elliptically with aspect ratio [39]

λ(t) = exp(2εt). (2.7)

The time dependence of the aspect ratio can be measured using the elliptical fitting routine

described above, providing a direct measurement of ε.

Similar techniques using slowly ramped (i.e., adiabatic) uniform flows and simple

strain flows also yield calibrations of the external flow. When an m = 1 flow is gradually

imposed, the plasma moves away from the trap axis adiabatically, and remains in an off-

axis equilibrium where the external flow is balanced by image fields [85]. When an m = 2

simple strain flow is applied gradually, the expected equilibrium ellipticity is given by Ref.

[8] (these elliptical equilibrium states are discussed in greater detail in Chapters 3 & 4).

Thus, calibrations can be performed using both instantaneously imposed and gradually

ramped flows, either with an m = 1 or 2 flow pattern.

Figure 2.12 shows measurements of the strain magnitude using a simple strain
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Figure 2.12: Strain calibration process. (a) measurements of λ(t) for ε∗ = 0.18− 0.27
(blue to red), with ω0 = 420 krad/s; (b) measurements of ε(Va) given by exponential fits
to λ(t). The calibrated strain to voltage ratio (dashed) is compared to the calculated value
(solid).

flow imposed instantaneously on an initially axisymmetric plasma. In panel (a), expo-

nential curves are fitted to λ(t) data to extract ε. In panel (b), the measured ε is plot-

ted against the applied voltage Va, showing a linear dependence for ε∗ & 0.23 with slope

ε/Va = 1923 (Vs)−1, consistent with the assumption that the plasma is behaving passively.

However, the calculated value is ε/Va = 2219 (Vs)−1 based on the aforementioned values

of B, rw, and A2, giving a discrepancy of −13%.

This issue is further complicated by the fact that the calibration ε/Va has actually

changed a few times over the course of about a year and a half of 8ST experiments. For

example, in Ref. [83] the calibration was measured to be ε/Va = 2390 Vs−1, or +7%.

Thus, the strain magnitude has been measured to be both above and below the predicted

value by as much as 13%, but more typically in the range 5-10%. In general, once the cali-

bration has shifted, it is consistent from day to day. At least one instance of the calibration
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shift was correlated with erratic behavior of laboratory equipment (in this case, a power

supply for the magnet), although in other cases the calibration has shifted for no apparent

reason. Recently, the calibration has been steady at ε/Va ≈ 2060 (−7%) for about half a

year. Although the strain calibration technique shown in Fig. 2.12 provides the most direct

measurement of ε, other techniques using m = 1 flows and ramped flows have given cal-

ibrations which are roughly consistent with the strain calibration results. Thus, the strain

calibration technique appears to give robust results.

In order to investigate the source of this discrepancy in the strain calibration, the

magnetic field, applied voltage, and electrode geometry were scrutinized. Deviation from

the expected magnetic field would produce the observed shift in external flow magnitude,

since B appears in the denominator of all E×B flows. However, the 8ST apparatus was re-

moved and the magnetic field measured directly, with no significant discrepancy observed.

Furthermore, calibrations were performed at a lower magnetic field (B = 3.5 T) and the cal-

ibration shift was still apparent. A systematic error in the voltage applied to the segments

of electrode II could also be responsible for the shift. For example, a contact resistance

or a finite resistance to ground could alter the applied voltages. The electrode voltages

were measured directly under atmospheric pressure, and no shift was observed. Further

experiments under vacuum indicated that the circuit was behaving properly. Finally, the

shift could be due to geometric errors involved with construction of the 8ST apparatus.

For example, due to relatively large tolerances on certain parts of the design, some seg-

ments of electrode II were noticeably shifted both azimuthally and radially, as shown in

the photograph in Fig. 2.13. However, direct measurements of rw were made and precise
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Figure 2.13: Photograph of the segments of electrode II. Slight misalignment and imper-
fections in the assembly are observed, which could impact the exact value of the applied
strain magnitude.

calculations of A2 were conducted, with neither quantity deviating sufficiently to explain

the calibration shift. In summary, systematic errors of many types were investigated, but

none of these are likely to produce a shift in strain magnitude greater than about 5%, and

so the source of the discrepancy remains a mystery.

2.7 Non-fluid behavior

In order for the plasma/fluid analogy to be valid, the perpendicular dynamics of the

plasma must follow the Drift-Poisson equations (Eqs. 2.2). This amounts to a separation

of spatial and temporal scales, which is discussed in Sec. 2.1. However, it is important
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to understand the plasma behavior when these conditions are violated. Described here are

non-ideal, non-2D, and non-fluid effects which arise when the scale separations are not

satisfied. Also given are the degrees to which these assumptions are valid in the 8ST.

• 3D effects. The confinement electrodes (I, III, and V) produce a radial vacuum elec-

tric field which gives rise to an E×B background rotation known as the “magnetron”

drift [80]. This effect is minimized by using a large aspect ratio trap, with rw� L.

In the 8ST, rw/L = 10 and the magnetron rotation frequency near the origin is both

measured and calculated to be ∼ 150 Hz, three orders of magnitude below fv. Addi-

tionally, 3D geometric effects can be introduced by a misalignment of the electrode

axis with the magnetic field. Such a misalignment would also adversely impact the

confinement properties of the plasma and operation of the RW. The alignment is ad-

justed in order to minimize the asymmetry-induced radial transport of the plasma,

and to optimize the RW operation. We estimate that the magnetic field is aligned

with the electrodes to within an error of . 3 mrad.

• Small spatial scales. At small spatial scales, the fluid analogy can be broken by

finite gyroradius effects and discrete particle effects. In the 8ST the gyroradius is

rg = 0.5 µm, 2 orders of magnitude below the CCD resolution. Discrete particle ef-

fects are expected at spatial scales approaching the inter-particle spacing, which is

(nLp)
−1/2 = (ωBε0L/e)−1/2 ≈ 0.125 ω−1/2 mm. Therefore, the inter-particle spac-

ing approaches the CCD pixel size for ω ≈ 14 rad/s, 4 orders of magnitude lower

than the typical central vorticity. Such a signal would be well below the CCD noise
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floor, which is typically ∼ 10 krad/s.

• Viscosity. Viscosity is present in a pure electron plasma as a result of electron-

electron collisions; however it differs fundamentally from the hydrodynamic viscos-

ity appearing in the Navier-Stokes equations. In general, the viscosity varies with

electron density inside the plasma, and it is a complicated function of the various

system parameters (magnetic field, density, temperature, etc.). There is no viscosity

outside of the plasma (i.e., in irrotational regions of the flow), and so the system obeys

free-slip boundary conditions. For a more detailed discussion of electron plasma vis-

cosity, see Ref. [23].

• Plasma expansion. For a plasma isolated from an axisymmetric (circular) bound-

ary, viscosity itself cannot drive net radial vorticity transport since the global angular

momentum is conserved [88]. In contrast, viscous hydrodynamic vortices are char-

acterized by an outward radial diffusion of circulation (i.e., the Lamb-Oseen vortex

[9]). In practice, small asymmetries and construction errors in the apparatus (for ex-

ample, gaps between the segmented electrodes) can drive outward radial transport of

the plasma [89], thus behaving like an effective viscosity. In the 8ST, the ratio of the

decay time of the central vorticity to the vortex rotation period is > 106, as shown in

Fig. 2.14; this quantity can be interpreted as an effective Reynolds number.

• Plasma re-entry. For sufficiently large values of the strain magnitude, some or all

of the electron distribution may be advected out of the trap through the small gaps

between the 8-segment electrodes [83]. It is routinely observed that some electrons
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orbit the biased segment and return into the trap, as shown in Fig. 2.15. Apparently,

these particles are confined axially and obey E×B drift dynamics in the vacuum

region outside the segmented electrodes. Although interesting, this behavior can

be detrimental to the experiments, since the re-entrant circulation can modify the

dynamics of the remaining circulation.

• Dump rotation. During the imaging process, the electrons must travel axially from

the 8-segment region to the phosphor screen. In this time, the density distribution

continues to drift in the plane perpendicular to B. For example, an elliptical vortex

may rotate as much as 10◦ during diagnosis [83]. The amount of rotation is deter-

mined by measuring the orientation of an elliptical vortex in equilibrium with the

strain [8], and comparing this to the known electrode geometry. The data are cor-

rected accordingly when necessary, in order to recover the ellipse orientation just

prior to diagnosis.

The effects described in this section break the 2D fluid analogy, and so care must

be taken to avoid them. In most cases, this can be accomplished by choosing appropriate

values of the vorticity and experiment duration, such that the necessary separation of scales

is acheived.

2.8 Vortex-in-cell simulations

To support and extend the 8ST experimental results, numerical simulations were

conducted using the vortex-in-cell technique [58]. Here, the vorticity distribution is ap-
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Figure 2.14: A quasi-flat initial vorticity profile (solid), and the same profile after 10 s of
free relaxation in the absence of strain (dashed). A small amount of circulation near the
edge of the vortex is lost to the wall, likely due to asymmetry transport, but the core remains
approximately unchanged.

Figure 2.15: Demonstration of electron re-entry after a straining event. Here, ε∗ = 0.25
and ω0 = 520 krad/s, and the vorticity evolution is shown at times t = (a) 20, (b) 30, and
(c) 40 µs. Electrons are advected through gaps between segmented electrodes, then drift
around the biased segment and eventually return to the trap volume.

51



proximated by a number of discrete point vortices of equal strength. A Monte Carlo method

is used to arrange the point vortices to achieve the desired initial profile. Typically, pro-

files given by Eq. 2.6 are used, where the vortex radius rv and the smoothness exponent

α are chosen. Alternatively, experimentally measured vorticity profiles can be loaded into

the simulation. At each time step, the Poisson equation is solved on a grid using a finite-

difference method, subject to the same boundary conditions used in the experiments (see

Fig. 2.4). The stream function at the location of each point vortex is calculated using a

linear interpolation between grid points, and time is advanced using a 4th order Runge-

Kutta technique. Typical simulation parameters are the number of point vortices N = 105,

grid size rw/300, and a time step ∆t ∼ 0.05ω
−1
0 . The displacement of the entire vorticity

distribution is feedback-damped artificially in the simulation in order to avoid the m = 1

translation instability due to the external flow, thus allowing for longer timescales than are

possible in the experiments.

Examples of the results of vortex-in-cell simulations are shown in Fig. 2.16, corre-

sponding directly to the data in Fig. 1.3, with ε∗ = (a) 0.116 and (b) 0.13. The simulation

results in Fig. 2.16 appear to be in good qualitative agreement with the experimental re-

sults in Fig. 1.3. Notable differences are that the experimental vortices are rotated counter-

clockwise slightly due to the diagnosis process, and the thin filaments are more difficult to

observe in the laboratory due to noise acquired by the CCD.

Some of the work and discussion in Chapter 2 is taken from N. C. Hurst, J. R.

Danielson, and C. M. Surko, “An electron plasma experiment to study vortex dynamics

subject to externally imposed flows,” AIP Conf. Proc. 1928, 020007 (2017). The author of
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Figure 2.16: Vortex-in-cell simulations of a quasi-flat vortex subject to applied strain.
Here, ε∗ = (a) 0.116 and (b) 0.13, and 0≤ t ≤ 22.8ω

−1
0 . These results correspond directly

to the experimental data in Fig. 1.3.

the dissertation led the research and was the primary investigator and author of this paper.
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Chapter 3

Theoretical description of vortices in

strain flows

3.1 Introduction

Ideal 2D fluids are described by the 2D Euler equations, Eqs. 1.2. The flow field

v = −∇ψ× ẑ is uniquely specified at an instant by the vorticity and the boundary condi-

tions via the Poisson equation, ∇2ψ = ω, and the vorticity is advected without dissipation

by the flow field, (∂t + v ·∇)ω = 0 [which can be written as ∂tω+ J(ψ,ω) = 0, where J

is the Jacobian operator]. Thus, the vorticity is a constant in the Lagrangian frame (i.e.,

the frame moving with the fluid). Equations 1.2 form an infinite-dimensional Hamiltonian

system, where the continuous spatial coordinates (x,y) are one choice of the canonical mo-

mentum and coordinate. Alternatively, the the polar coordinates (r2,θ) are another choice

of canonical coordinates which are also action-angle coordinates [41]. The dissipationless
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flow conserves internal energy along streamlines, so thermal forces are absent. Due to

incompressibility, sound waves are absent. The pressure plays the role of a Lagrange mul-

tiplier, and can be calculated directly from the flow field [90]. In this dissertation, bounded

fluids with non-uniform boundary conditions are considered, and so it is useful to decom-

pose the stream function into homogeneous and particular solutions, ψ = ψs +ψv where

ψs describes irrotational flow associated with boundary conditions and ψv describes flow

associated with the vorticity. The ideal 2D fluid equations conserve total energy, angular

momentum, circulation, and a set of Casimir invariants which are moments of the vorticity

[4].

A key theme in this work is the competition between strain and vorticity in a 2D

fluid. The velocity gradient tensor at any point ∇v(x,y, t) can be decomposed into its sym-

metric part

σ≡ 1
2
[∇v+(∇v)T] (3.1)

which is called the strain tensor, and its antisymmetric part

Ω≡ 1
2
[∇v− (∇v)T] (3.2)

which is called the vorticity tensor, where the superscript T denotes the transpose opera-

tion. The vorticity tensor has complex-conjugate eigenvalues with magnitude equal to the

vorticity ω in the ẑ direction. Assuming incompressibility (∇ · v = 0), the strain tensor is

traceless with real eigenvalues ±s, where

s = [4ψ
2
xy +(ψxx−ψyy)

2]
1
2 , (3.3)
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with partial deriatives indicated by subscripts. The magnitude of the strain and vorticity

eigenvalues can be combined to form a dimensionless parameter s∗ = s/ω, which quan-

tifies the local competition between strain and vorticity, with s∗ � 1 corresponding to

strain-dominated hyperbolic fluid motion, and s∗� 1 corresponding to vorticity-dominated

periodic fluid motion.

Here we consider an initially axisymmetric, monotonically decreasing vorticity dis-

tribution ω(r) in a 2D ideal fluid, subject to an externally imposed irrotational simple strain

flow as defined by Eq. 1.3. The external strain flow ψs has a uniform strain tensor every-

where, for which the eigenvalue is s = 2ε, and the orientation angle of the strain axis (i.e.,

the direction of the positive eigenvector) is chosen to be π/41. When ψs is superposed with

the flow ψv due to the vortex, s may vary across the domain, since ψv can contribute to the

strain tensor. The vorticity is taken to be of a single sign, ω≥ 0, as is the case for electron

plasmas.

The primary goal of this work is to study the behavior of quasi-flat radial vorticity

profiles, where ω(r) is a constant in the core, and then decreases quickly to zero at the edge

of the vortex [c.f. Fig. 2.8 (b)]. In this case, the elliptical vortex patch theory is expected

to be an accurate description. A secondary goal is to study how the dynamics depend on

the degree of flatness of the profile. When the profile is relatively smooth [c.f. Fig. 2.8

(a)], departures from the elliptical patch theory are expected. In this chapter, details of

the vortex patch model and its predictions are presented, and theoretical efforts regarding

1Here, ε is used rather than s for historical purposes, namely because MS71, K81, and others have used
this convention as well. The strain orientation is irrelevant to the dynamics, so this value is chosen mainly for
cosmetic purposes.
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smooth profiles are discussed. These theoretical results are compared to experimental and

numerical data in Chapter 4.

3.2 The elliptical patch model

A particularly useful theoretical description of 2D ideal vortices is the so-called

elliptical patch model. Here, the vorticity is treated as piecewise constant inside an elliptical

boundary, namely the vorticity distribution is given by ω(x,y) = ω0 when

1
2

[
(x+ y)cosξ− (x− y)sinξ

a

]2

+
1
2

[
−(x+ y)sinξ− (x− y)cosξ

b

]2

≤ 1 (3.4)

and ω(x,y) = 0 elsewhere. Here, ξ is the orientation of the ellipse with respect to the strain

axis (at 45◦), and a and b are the semimajor and semiminor axes. Uniform translations

have been neglected, so the ellipse remains centered on the origin and the vorticity centroid

is
∫

dA rω = 0. Imposing incompressibility, the area of the ellipse πab is a constant, and

so we need only consider the aspect ratio of the ellipse, λ = a/b. This geometry is shown

schematically in relation to the applied strain flow in Fig. 3.1.

The elliptical patch model was first studied by Kirchoff, who found exact solutions

to the 2D Euler equations where the patch rotates freely in the absence of external flow

with dλ/dt = 0 and [9]

dξ

dt
= ω0

λ

(λ+1)2 . (3.5)

This solution can be thought of as a nonlinear generalization of the linear Kelvin modes

[91] on a vortex patch for azimuthal wavenumber m = 2 and axial wavenumber kz = 0.

57



Figure 3.1: Geometry of an elliptical vortex in a background simple strain flow. Stream-
lines of the strain flow are depicted (dashed arrows), as is the strain axis (dotted) which
is oriented at 45◦ with respect to the coordinate axes. The ellipse is shown in blue, with
indications for the semimajor and semiminor axes a and b, and the orientation with respect
to the strain axis ξ.
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3.2.1 The K81 system under constant strain

In the presence of the time-independent, simple strain flow (Eq. 1.3, where ε is

a constant), the behavior of the elliptical vortex patch was solved exactly by Kida [39];

this work is referred to here as K81. The dynamical equations for the aspect ratio and

orientation are given by

dλ

dt
= 2λεcos2ξ, (3.6)

dξ

dt
=−εsin2ξ

λ2 +1
λ2−1

+ω0
λ

(λ+1)2 . (3.7)

These equations were solved by eliminating the time dependence, giving trajectories of the

form

εsin2ξ = ω0

[
λ

λ2−1
ln
(λ+1)2

4Cλ

]
, (3.8)

where C is an integration constant associated with the initial conditions, with C = 1 corre-

sponding to an initially circular vortex [i.e., λ(t = 0) = 1]. This case is particularly impor-

tant here since the 8ST produces initially axisymmetric vortices, as described in Chapter

2.

Since the Euler flow is dissipationless, the K81 system preserves the total energy,

and so the Hamiltonian

H(λ,ξ) = 2εsin2ξ
1−λ2

λ
+2ω0 ln

[(1+λ)2

λ

]
(3.9)

is invariant along a trajectory in phase space [92], and C = 1
4 exp(H/2ω0). Although (λ,ξ)

are physically intuitive quantities, they are not canonical coordinates for this system, and

they are degenerate under the transformations (λ,ξ)→ (1/λ,ξ+π/2) and ξ→ ξ+π. A
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suitable choice of canonical momentum and coordinate is [40]

p =
(λ−1)2

λ
, q = 2ξ, (3.10)

yielding the Hamiltonian and equations of motion

H(p,q) =−2εsinq
√

p2 +4p+2ω ln(p+4). (3.11)

dp
dt

=−2εsinq
√

p2 +4p, (3.12)

dq
dt

=−εcosq
2p+4√
p2 +4p

+
2ω

p+4
. (3.13)

In this dissertation, the coordinates (λ,ξ) are primarily used, where 1 ≤ λ and 0 ≤ ξ < π.

However, the canonical coordinates (p,q) are also discussed since they are useful from a

theoretical perspective.

The timescale of the dynamics is set by ω
−1
0 , so time can be normalized as t∗ ≡ tω0.

The first term on the right side of Eq. 3.9 is the interaction energy between the patch and

the strain, and the second term is the self-energy associated with elliptical distortion of the

patch [93] (note that the second term on the right side of Eq. 3.7 is given by Eq. 3.5).

Thus the dynamics can be described qualitatively as a competition between the two terms

in the Hamiltonian representing stretching and rotation of the patch. This competition is

parameterized by the (global) strain-to-vorticity ratio ε∗ ≡ ε/ω0.

Contours of the K81 Hamiltonian (Eq. 3.9) are shown in (λ,ξ) space in Fig. 3.2

for four different values of the strain ε∗ = 0.05, 0.11, 0.135, and 0.155. The separatrix is

shown in black, closed orbits within the separatrix are shown in red, open orbits outside the

separatrix are shown in blue, and the orbit corresponding to C = 1 (the circular condition)
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is shown in magenta. Here, H(λ < 1,ξ) is not shown since it is symmetric to H(λ >

1,ξ+π/2), although the symmetry ξ→ ξ+π is still evident. Alternatively, Fig. 3.3 shows

contours of H in (p,q) space, as given by Eq. 3.11, for the same values of ε∗. Usage of

the canonical coordinates eliminates the degeneracy, however the phase space is difficult

to visualize when p is small. For this reason, it is convenient to visualize the phase space

in the coordinates (λ−1,q), as shown in Fig. 3.4 (again, for the same values of ε∗). With

positive vorticity, the closed orbits proceed in a counter-clockwise sense.

Some general observations can be made by inspecting these phase space plots. For

panels (a) – (c), there exists a separatrix which is defined by an unstable saddle point at

q = π/2. The separatrix encloses a set of periodic orbits surrounding a stable center point,

also located at q = π/2. The separatrix is absent at ε∗ = 0.155 in panel (d), implying that

a saddle-node bifurcation occurs as the control parameter ε∗ is varied. Above this critical

value of ε∗, no periodic (stable) orbits exist, all orbits are open (unstable). Furthermore,

the C = 1 orbit is unstable at ε∗ = 0.135 in panel (c), implying that the separatrix coincides

with the C = 1 orbit at some point below the bifurcation threshold. In Fig. 3.5, colormaps

of H [for ε∗ = (a) 0.11 and (b) 0.155] show that the stable center point (marked by a green

dot) is a local energy minimum.

It was found in K81 that the solutions (Eq. 3.8) come in a few different types,

depending on the initial conditions and the value of ε∗: rotations, nutations, stationary

modes, and unstable modes. Physically, a closed orbit which does not enclose the origin

corresponds to a nutation of the ellipse where ξ is bounded, and one enclosing the origin

corresponds to rotation of the ellipse where ξ increases monotonically. The orbit with
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Figure 3.2: Contours of the K81 Hamiltonian (Eq. 3.9) in polar (λ ≥ 1,ξ) space. Here,
ε∗= (a) 0.05; (b) 0.115; (c) 0.135; and (d) 0.155. Shown are closed orbits (red), open orbits
(blue), the separatrix (black), and the C = 1 orbit (magenta).
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Figure 3.3: Contours of the K81 Hamiltonian (Eq. 3.11) in polar (p,q) space. Here, ε∗ =
(a) 0.05; (b) 0.115; (c) 0.135; and (d) 0.155. Shown are closed orbits (red), open orbits
(blue), the separatrix (black), and the C = 1 orbit (magenta).
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Figure 3.4: Contours of the K81 Hamiltonian (Eq. 3.9) in polar (λ− 1,q) space. Here,
ε∗= (a) 0.05; (b) 0.115; (c) 0.135; and (d) 0.155. Shown are closed orbits (red), open orbits
(blue), the separatrix (black), and the C = 1 orbit (magenta).
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Figure 3.5: Color maps of the K81 Hamiltonian H (Eq. 3.9) in polar (λ−1,q) space. Here,
ε∗ = (a) 0.11 and (b) 0.155. In panel (a), there exists a separatrix (black line) enclosing a
stable center point (green dot) which corresponds to a local energy minimum; in panel (b),
no fixed points or separatrices exist.

circular initial condition (C = 1) marks the boundary between rotations and nutations. Since

it returns after each period exactly to λ = 1 where ξ is degenerate, it cannot be strictly

classified as either a rotation or a nutation. Open orbits correspond to unstable destruction

modes of the vortex; here, ξ is bounded, λ is unbounded from above, and the vortex is

stretched into an ever-thinning filament aligned with the strain axis (λ→ ∞,ξ→ 0).

The qualitative behavior of the K81 system is dictated by its fixed points (λ0,ξ0),

which are defined by dλ/dt = dξ/dt = 0, resulting in ξ0 = π/4 and λ0 given by the solution

to

λ0(λ0−1)
(λ0 +1)(λ2

0 +1)
= ε
∗. (3.14)

This formula was first derived by MS71 (prior to K81), and later, independently, in the con-

text of electron plasmas by Backhaus, et. al. [94]. For ε∗ < ε∗c , Eq. 3.14 has two solutions,

where ε∗c ≈ 0.15 is the critical strain value. At ε∗c the two branches meet and the saddle-
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node bifurcation occurs; above ε∗c there are no solutions to Eq. 3.14. The lower branch of

Eq. 3.14 is plotted in Fig. 3.6 as a solid line, and the upper branch as a dashed line. The

lower and upper branches correspond to the center and saddle points (respectively) shown

in Figs. 3.2 – 3.4. Therefore, the location of these points can be calculated from Eq. 3.14,

and then the value of H(λ0,ξ0) at the separatrix or the local minimum can be calculated. It

is helpful to picture a three-dimensional space H(λ,ξ,ε∗), where Figs. 3.2 – 3.4 are slices

of constant ε∗ and Fig. 3.6 is a slice of constant ξ = π/4.

A K81 orbit is uniquely defined by the constant C and the normalized strain ε∗. For

a given value of C, there exists a critical value of the strain which we call the dynamical

stability limit ε∗d(C) where the orbit coincides with the separatrix. The orbit is closed if

ε∗ < ε∗d and open if ε∗ > ε∗d . The dynamical stability limit can be calculated by determining

when the maximum value λm of the aspect ratio reached in the orbit coincides with the

upper branch of Eq. 3.14. At this point, dλ/dt = 0, yielding ξ = π/4, and λm is given by

the solution to (
λm

λ2
m−1

)
ln

[
(λm +1)2

4Cλm

]
= ε
∗. (3.15)

When the left sides of Eqs. 3.14 and 3.15 are equated and C is specified, the solution for λ

can be used to find the stability limit ε∗d(C). This is shown graphically in Fig. 3.6, where

λm is plotted (dotted lines, given by Eq. 3.15) over the MS71 equilibria (Eq. 3.14) for

three different initial conditions, C = 1, 1.12, and 1.335. The λm curves meet the unstable

branch of Eq. 3.14 at the points ε∗d(C), at which point the orbits become unstable and so

λm is undefined (the orbit is said to be “homoclinic” when it coincides with the separatrix).

66



Figure 3.6: Fixed points of the K81 system and maximum aspect ratio curves. Shown are
the values of λ as a function of ε corresponding to the saddle point (dashed) and the center
point (solid), as given by Eq. 3.14, where ξ = π/4 . Also shown are the values of λm(ε

∗)
(dotted) as given by Eq. 3.15 for C = 1, 1.12, and 1.135.

For C = 1, ε∗d ≈ 0.123, which corresponds to λm ≈ 5.4. Thus an initially circular vortex

patch subject to constant strain is destroyed at a smaller value of strain than the critical

value ε∗c ≈ 0.15, and in general ε∗d can vary with C across the interval [0,ε∗c ]. The strain

values shown in Figs. 3.2 – 3.4 are chosen such that for the lowest two [panels (a) and (b)]

ε∗ < 0.123 with C = 1 corresponding to a closed orbit; then in panel (c) 0.123 < ε∗ < 0.15

where C = 1 is an open orbit; and in panel (d) ε∗ > ε∗c above the bifurcation threshold, so

all orbits are unstable.

The temporal behavior of K81 orbits are shown in Fig. 3.7, with C = 1 and ε∗ =

0.05, 0.11, 0.123, 0.135, and 0.155 (the same values considered above), including (a) λ(t∗),

(b) ξ(t∗), (c) p(t∗), and (d) q(t∗). At low values of ε∗, the elliptical distortions are weak,

and so the orbital period approaches the linear value T = 8π/ω0. In this case, p(t) is

approximately sinusoidal. For all closed orbits, p(t) is smooth near p = 0, while λ(t)
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has a kink at λ = 1 (i.e., dλ/dt is discontinuous). As ε∗ increases, the orbital period is

lengthened, as would be expected for a highly distorted ellipse based on Eq. 3.5, until the

period becomes infinite at ε∗d(C = 1) ≈ 0.123. At this point, the system moves along the

separatrix and approaches the saddle point, as shown by the dashed line in Fig. 3.7. Above

ε∗d , the orbits are unstable and λ increases without bound.

The K81 system can be simplified substantially by neglecting one of the two terms

in the Hamiltonian. The rotation term dominates when λ is near 1; however for C = 1

with sufficiently large ε∗, dλ/dt� dξ/dt, and λ quickly grows to a value where the strain

term dominates. In this case, ξ(t) ≈ 0, the rotation term is negligible, and the vorticity

is advected as a passive scalar. Thus the solution to Eqn. 3.6 is approximately given by

Eq. 2.7. On the other hand, in the limit of small ε∗, the rotation term dominates over the

strain, and the orbits are simply perturbed Kelvin waves. Examples of open K81 orbits for

ε∗ > ε∗d(C = 1) are shown in Fig. 3.8, including (a) λ(t∗) and (b) ξ(t∗). Here, the homo-

clinic orbit is shown as a dotted line (ε∗ = 0.12271), and other K81 solutions are shown

as solid lines for ε∗ = 0.15 (blue), 0.120 (magenta), and 0.125 (red). Also shown are the

corresponding exponential curves (dashed) given by Eq. 2.7 (i.e., assuming passive vortic-

ity). The K81 solutions approach the exponential curves in panel (a), and the amplitude of

ξ decreases in panel (b) as ε∗ increases.

3.2.2 The K81 system under time-dependent strain

When the strain magnitude is allowed to vary in time, the Hamiltonian is no longer

conserved, and the phase space structure changes as the system evolves. Although time-
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Figure 3.7: Temporal behavior of K81 orbits with circular initial condition. Shown are
ε∗ = 0.05 (blue), 0.11 (magenta), 0.135 (green), and 0.155 (red), including (a) λ(t∗); (b)
ξ(t∗); (c) p(t∗); and (d) q(t∗). The homoclinic orbit is also shown (black dashed line,
ε∗ = 0.12271).
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Figure 3.8: Temporal behavior of open (unstable) K81 orbits with circular initial condition.
Shown are ε∗ = 0.15 (blue), 0.20 (magenta), and 0.25 (red), including (a) λ(t) and (b) ξ(t).
Also shown are the homoclinic orbit (black dotted line, ε∗ = 0.12271) and exponential
curves (dashed) given by Eq. 2.7 for corresponding values of ε∗.
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dependent strain was not discussed by K81 or MS71, the K81 dynamical equations (Eqs.

3.6 & 3.7) are valid for time-dependent ε∗. If the applied strain varies slowly in time relative

to the vortex rotation, the system preserves the adiabatic invariant J =
∮

p dq, which is the

area enclosed by the orbit in (p,q) space [95]. Since the circular initial condition occupies

only a point in the phase space for ε∗ = 0, then as the strain is gradually increased, the

system evolves in equilibrium along the lower branch of Eqn. 3.14 with J ≈ 0. As ε∗

approaches the limit ε∗c , the center point and saddle point annihilate, and the vortex loses

stability via a saddle-node bifurcation. For an initial condition with J 6= 0, as the strain

is gradually increased, J is preserved until the orbit collides with the separatrix and the

system loses stability via a homoclinic bifurcation. For sufficiently rapid changes in ε∗, the

adiabaticity is broken, and dJ/dt 6= 0.

Examples of the K81 dynamics under time-dependent strain are shown in Figs. 3.9

& 3.10. Figure 3.9 shows λ(t) and ξ(t) in response to a strain flow which is ramped up

linearly from zero at rates dε∗/dt∗ = 0.002, 0.004, and 0.006. Also shown, as dashed

lines, are the equilibrium values of λ0(ε
∗) as calculated by Eq. 3.14. If the system behaves

adiabatically, it is expected to follow these equilibrium curves. The lowest ramp rate shown

in Fig. 3.9 closely follows the equilibrium, while the higher ramp rates show a greater level

of divergence. However, a small orbit amplitude can be observed even for the lowest ramp

rate. This is likely due to the kink in ε∗(t) as the ramp begins, and can be eliminated by

using a smooth function [96].
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In Fig. 3.10, Gaussian time dependence is used,

ε(t) = ε0 exp
[
−
(t− t0

τs

)2]
, (3.16)

where the maximum strain ε∗0 = 0.05 occurs at t∗0 ≡ t0ω0 = 25. Three different Gaussian

pulse widths are used, τ∗s ≡ τsω0 = 4 (blue), 8 (magenta), and 12 (red). Here, since the

pulse is smooth, adiabatic behavior can be observed for the widest pulse (red). In this case,

the vortex distorts elliptically as the strain is applied, then returns to axisymmetry as the

strain is removed. However, for more narrow pulses (magenta and blue), adiabaticity is

broken, leaving the vortex with a residual finite-amplitude Kirchoff mode (Eq. 3.5) after

the strain pulse has receded to zero.

The nonlinear dynamics of vortices under time-dependent external flow can be quite

complicated, and in particular, chaotic [97]. Such behavior can be studied in the 8ST using,

for example, a sinusoidal time dependence for the applied strain. Detailed experiments of

this nature have yet to be conducted, although an example of preliminary data is shown

in Chapter 5. A rigorous study of adiabatic behavior and chaotic dynamics under time-

dependent flows is left for future work.

3.2.3 Instabilities

The K81 solutions described above are possible because an initially elliptical vortex

patch remains elliptical at all times under the action of a simple strain flow such as Eq. 1.3.

However, perturbations to the elliptical shape may be unstable. Perturbations about the

freely rotating Kirchoff elliptical patch vortex (Eq. 3.5) were considered by Love (i.e., in

72



Figure 3.9: Response of the K81 system to an external strain which is ramped up linearly
in time. The ramp rates are dε∗/dt∗ = 0.002 (blue), 0.004 (magenta), and 0.006 (red). The
corresponding equilibria are shown as dashed lines.
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Figure 3.10: Response of the K81 system to an external strain with Gaussian time de-
pendence. The normalized pulse width is τ∗s = 4 (blue), 8 (magenta), and 12 (red). The
corresponding equilibria are shown as dashed lines.
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the absence of external flow), who found that modes grow as exp(−iηt) where [98]

η
∗2 =

1
4

[[ 2mλ

(λ+1)2 −1
]2
−
(

λ−1
λ+1

)2m
]
, (3.17)

with azimuthal wavenumber m, and normalized growth rate η∗ ≡ η/ω0. MS71 considered

the stability of their elliptical vortex equilibria (Eq. 3.14) in the presence of external shear

and strain. For the case of applied strain, they found the growth rates to be [8]

η
∗2 =

1
4

[( 2mλ

λ2 +1
−1
)2
−
(

λ−1
λ+1

)2m
]
. (3.18)

Interestingly, the Love and MS71 results differ only in the denominator of the first term,

presumably since the free Kirchoff vortex rotates whereas the MS71 strained vortex is

stationary. These growth rates are plotted versus λ for a few of the lowest wavenumbers

in Fig. 3.11. The m = 2 mode is marginally stable for Eq. 3.17, corresponding simply

to the Kirchoff solution. For the MS71 instabilities, the m = 2 mode becomes unstable

past λ ≈ 2.9, which corresponds to the critical strain value ε∗c ≈ 0.15. Generally, higher

wavenumbers become unstable as the vortex aspect ratio increases.

In the limit λ→∞, the vortex can be regarded as a thin shear layer (i.e., a filament).

In this case, the Love instabilities can be identified with the familiar Kelvin-Helmholtz

(KH) instability, whereas the MS71 instabilites can be thought of as KH instabilities under

the influence of a background strain of a particular strength (a situation which was studied

in detail by Dritschel [99]). While the KH instability was first studied in the context of an

infinitely thin vortex sheet, Rayleigh [100] first considered the linear stability of a finite

strip of piecewise constant vorticity; a useful recap is given by Dritschel [101]. The growth
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rate of a mode on such a strip with wavenumber k is given by

η
∗2 =

1
4

[
(1−2bk)2− exp(−4bk)

]
, (3.19)

where b is the half-thickness of the strip, in analogy with the semiminor axis of an ellipse.

Equation 3.19 is plotted in Fig. 3.12. Unstable modes exist for 0 < 2bk . 1.278, and the

fastest growing unstable mode occurs at 2bk ≈ 0.7968.

3.3 Vortex dynamics beyond the patch model

3.3.1 Overview of methodology

In the preceding section, the dynamics of the elliptical patch vortex were described

entirely in terms of the two variables (λ,ξ), without discussion of the continuous flow field

v(x,y). This is possible because the K81 solutions exactly satisfy the Euler equations, and

so a higher-dimensional model is unnecessary (neglecting the aforementioned instabilities).

However, the patch model is unphysical in that the vorticity gradient is infinite. Therefore,

it is important to also consider the dynamics of smooth vorticity profiles in continuous

fluids. An important theme here is that the competition between strain and vorticity is lo-

cally quantified by s∗(x,y), as opposed to the patch description where the dynamics are set

by the global parameter ε∗. Such a description is further motivated by prior experimental

and numerical results, most notably the vortex stripping and filamentation phenomenon

observed in water tank experiments [21] and contour dynamics simulations [54]. Filamen-

tation presents a significant theoretical challenge, since it involves the nonlinear transfer of
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Figure 3.11: Normalized squared growth rates versus λ for (a) Love instabilities, and (b)
MS71 instabilities. Shown are azimuthal wavenumbers m = 2 – 6. A black dashed line at
η∗2 = 0 indicates the stability boundary, where η∗2 < 0 corresponds to unstable modes.
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Figure 3.12: Normalized squared growth rates versus normalized wavenumber 2bk for the
KH instability on a strip of piecewise constant vorticity. Instability occurs for η∗2 < 0.

vorticity structures across a broad range of scales. This behavior is believed to be a key

ingredient of the forward enstrophy cascade familiar to 2D turbulence theory [102, 4].

The dynamics of smooth vorticity distributions are in general strongly nonlinear

and difficult to solve, so certain approximations must be used in order to make progress.

For example, the Euler equations can be linearized in the limit of weak or strong strain,

or in the limit of short timescales. In the case of weak applied strain, perturbations to

the vorticity distribution are small, and so the Euler equations can be linearized about the

steady-state axisymmetric vortex solution. For the case of strong strain, the dynamics can

be linearized by neglecting the particular solution to the Poisson equation ψv, such that the

vorticity is advected as a passive scalar (so-called rapid distortion theory [45]).

A few authors [42, 43, 44] have used these perturbative techniques in order to de-

scribe low-amplitude elliptical excitations of a smooth vortex. In each case, the motivation
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was to study the damping properties of the excitation, although each used a slightly differ-

ent approach. For example, Schecter [44] considered a weak strain which is applied impul-

sively (i.e., over a duration which is short compared to the vortex rotation period); Balm-

forth [43] considered a weak strain which rotates along with the vortex; and Lingevitch [42]

considered a weak strain whose magnitude oscillates slowly with respect to the vortex ro-

tation. Common to each approach is the idea that the applied strain excites a “quasi-mode”

which can become decoherent over time due to filamentation behavior and/or differential

rotation of the vortex.

However, in this dissertation, we consider marginal strain (i.e., near the critical

strain threshold), so neither the strain nor the vorticity may be treated perturbatively. In

this case, it can be instructive to analyze the flow behavior on short timescales. A linear

description can be obtained by neglecting the feedback of the vorticity on the flow field;

this amounts to considering the passive advection of the vorticity by the initial flow field.

On longer timescales, the changing vorticity distribution influences the flow field as the

nonlinearity becomes important.

3.3.2 The Okubo-Weiss criterion

By studying spatial derivatives of the velocity field, Okubo [46] and Weiss [47]

(independently) derived approximate short-term descriptions of the 2D Euler equations

which have been widely studied in the context of 2D turbulence. Local solutions are found

for the evolution of the vorticity gradient ∇ω in the Lagrangian frame, under the assumption
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that strain and vorticity vary slowly relative to ∇ω. The solutions take the form

d
dt

∇ω ∝ expQ
1
2 t, (3.20)

where Q = ψ2
xy−ψxxψyy is the Okubo-Weiss parameter, with subscripts indicating partial

derivatives. Q is identified as the square of the eigenvalues of the velocity gradient ten-

sor ∇v, which is equal to the difference of the squared strain magnitude and the squared

vorticity, Q = s2−ω2. Normalizing to the vorticity yields Q/ω2 ≡ Q∗ = s∗2−1, so Q is a

measure of the local strain-to-vorticity ratio. Eq. 3.20 admits oscillatory solutions when the

vorticity dominates (s∗ < 1), and exponential solutions when the strain dominates (s∗ > 1).

The oscillatory solutions are associated with stable vortices, and the exponential solutions

are associated with filamentation behavior. Although the assumption used to derive Eq.

3.20 was found to be valid only in certain regions of flow [48], the Okubo-Weiss result has

been extended to higher orders of approximation and to 3D [49, 50], and is widely used to

differentiate stable vortex structures from regions of turbulent cascade activity.

3.3.3 A few examples

In the 8ST, the initial vorticity profiles are generally well approximated by Eq. 2.6,

where α→ ∞ corresponds to the vortex patch and α = 2 to the Gaussian profile. Experi-

mentally, α can be varied approximately from 2 to 10, where α≥ 5 is loosely referred to as

a “quasi-flat” profile due to good agreement with the elliptical patch theory (see Chapter 4).

However, Eq. 2.6 is not localized, and is therefore difficult to handle mathematically. An

alternative approach is to consider piecewise vorticity profiles which are monotonically de-
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Figure 3.13: Examples of theoretical vorticity profiles. (a) profiles given by Eq. 2.6 for
α =2, 4, 6, 8, and 20 (blue to red), and the patch profile (black); (b) a piecewise parabolic
profile (blue) and an approximation using discrete steps [i.e., nested contours (red)].

creasing for r < rv and zero for r > rv [43, 44]. Another approach is the contour dynamics

method, where smooth vorticity profiles are approximated using discrete steps [53, 55, 51].

Some examples of these profiles are shown in Fig. 3.13.

For example, consider the flow fields of a circular vortex patch profile and a piece-

wise parabolic profile. Taking ω0 = 1 and rv = 1, the vorticity of the patch profile and the

associated stream function is given by

ω(r) =


1 r ≤ 1

0 r > 1

(3.21)

ψv(r) =


1
4r2 r ≤ 1

1
2 lnr+ 1

4 r > 1.

(3.22)
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For the piecewise parabolic profile,

ω(r) =


1− r2 r ≤ 1

0 r > 1

(3.23)

ψv(r) =


1
4r2− 1

16r4 r ≤ 1

1
4 lnr+ 3

16 r > 1.

(3.24)

Here, the streamlines associated with ψv are all circular, and there exists a single stagnation

point (defined by v = 0) at the origin. However, when ψv is superposed with a strain flow

ψs given by Eq. 1.3, the flow contains additional stagnation points for certain values of ε∗.

The flow geometry for these two cases is shown in Fig. 3.14 for ε∗ = 0.2, 0.4, and 0.6.

For the circular patch, two saddle points exist outside the vortex at location (x0,y0)

where x0 = 0 and y0 = ±(2ε∗)−1/2, and one center point exists at the origin. The saddle

points define a separatrix in the flow field that divides open, hyperbolic streamlines from

closed, elliptical ones. As ε∗ increases from zero, the stagnation points move toward the

origin along the y−axis. When ε∗= 1/2, the stagnation points coincide with the edge of the

vortex, and the streamlines inside the vortex are vertical. When ε∗ > 1/2, there is a single

stagnation point at the origin, but it is a saddle point. Thus, as ε∗ is increased through 1/2,

the saddle points jump immediately to the origin and annihilate the stable point, changing

the topology of the stream function. The separatrix intersects the vorticity distribution

along the x−axis for ε∗ & 0.14, and it shrinks as ε∗ is increased before disappearing at

ε∗= 1/2. The Okubo-Weiss stability boundary, defined by Q= 0, coincides with the vortex

boundary (a circle of unit radius) for 0 < ε∗ < 1/2, otherwise Q is everywhere positive and
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Figure 3.14: Flow geometry for a circular vortex patch (left) and a parabolic vorticity
distribution (right). The applied strain magnitude is ε∗ = (a) 0.2, (b) 0.4, and (c) 0.6.
Shown are streamlines (black) including the separatrix (thick black), the boundary of the
vortices (thick blue), and the Okubo-Weiss stability boundary defined by Q = 0 (thick red).
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the entire flow field is hyperbolic. Further discussion of topological changes in 2D fluid

flows can be found in Refs. [103, 104].

In the case of the parabolic profile, stagnation points exterior to the vortex are given

by x0 = 0, y0 = ±(4ε∗)−1/2. For ε∗ > 1/4, the stagnation points intersect the vorticity

distribution, and their locations are instead given by the solution to y0(y2
0/4+ ε∗−1/2). If

1/4 < ε∗ < 1/2, then y0 = 0, ±[4(1/2− ε∗)]−1/2, where the point at the origin is stable

and the other two are symmetric saddles. Again, the flow topology changes at the critical

value ε∗ = 1/2 as the saddles annihilate the stable point. However, with a smooth profile,

the saddles move smoothly toward the origin as ε∗ is increased rather than jumping. The

Okubo-Weiss stability boundary is shown for the parabolic profiles in Fig. 3.14; it shrinks

as ε∗ increases before disappearing completely as the topology changes.

Both the stream function separatrix and the Okubo-Weiss criterion serve as approx-

imate predictors of the local stability of the vorticity. Knowledge of the full flow field is

necessary to find the stream function separatrix, whereas the Okubo-Weiss stability crite-

rion can be calculated locally by differentiating the velocity field. Both criteria are valid

on short timescales where the vorticity is approximately static. On longer timescales the

nonlinear evolution of the vorticity field must be taken into account, and so these stability

criteria may be inaccurate.

For example, the center of a circular vortex patch with 0.123 < ε∗ < 0.5 initially

follows closed streamlines, whereas the nonlinear K81 theory predicts eventual destruction.

As the patch distorts elliptically, it contributes to the strain tensor. Based on the particular

solution to the Poisson equation ψv, an elliptical vortex patch produces a constant strain
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within the patch with eigenvalue

sv = ω0

(
λ−1
λ+1

)
(3.25)

and orientation ξ− π/4. Therefore, the total strain inside the vortex patch can be much

larger than the applied strain. For example, a patch in equilibrium just below the thresh-

old has ε∗ ≈ 0.15, λ ≈ 2.9, and sv/2 ≈ 0.25, so the self-strain exceeds the applied strain

significantly.

85



Chapter 4

Experiments with constant strain flows

Experimental data for the evolution of an initially axisymmetric electron plasma

vortex in response to a simple strain flow were shown in Fig. 1.3 for two values of nor-

malized strain, ε∗ = 0.116 and 0.13, that are below and above the critical strain threshold.

In this chapter, we compare these and other data, and corresponding vortex-in-cell simu-

lations, with theoretical predictions of the elliptical patch model. Additionally, departures

from the elliptical patch theory are studied using smooth profiles.

4.1 Tests of the elliptical patch model

Data are presented here from experiments with the 8ST comparing elliptical distor-

tions of a strained vortex to predictions of the elliptical patch theory [8, 39]. Ellipses are fit

to the measured half-maximum vorticity contours using the numerical routine described in

Chapter 2. This yields experimentally determined values of the aspect ratio of the ellipse λ
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Figure 4.1: Comparison of experimental data and K81 predictions for dynamical orbits in
(λ,2ξ) space. Here, ε∗ = (a) 0.087, (b) 0.116, (c) 0.13, and (d) 0.152. Contours of the
K81 Hamiltonian are shown (solid lines), including open orbits (blue lines), the separatrix
(thick black line), and the C = 1 orbit (magenta line). Fixed points of the K81 system are
shown as (X) and (O), and experimental data are shown as magenta circles.

and the orientation ξ with respect to the applied strain axis. These quantities are compared

directly to the theory with no fitted parameters. For comparison to the patch model, quasi-

flat initial vorticity profiles are used, where ω(r) is approximately given by Eq. 2.6 with

smoothness exponent α≥ 5.

4.1.1 K81 orbits

The measured evolution of an initially axisymmetric vortex subject to a constant

external strain flow is shown in Fig. 4.1. The initial vorticity profile is well described by

Eq. 2.6 with α ≈ 6 [c.f. Fig. 2.8 (b)], and the strain flow is given by Eq. 1.3. The ellipse
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Figure 4.2: Comparison of experimental data and K81 predictions for λ(t∗) and ξ(t∗). (a)
λ(t∗), (b) ξ(t∗) (closed orbits), and (c) ξ(t∗) (open orbits), where t∗ = tω0 and ω0 = 228
krad/s, for normalized strains ε∗ = 0.044 (cyan), 0.087 (black), 0.116 (blue), 0.13 (green),
0.152 (magenta), and 0.173 (red). Predictions of K81 elliptical patch theory are shown as
solid lines, including the threshold orbit ε∗ = 0.123 (black dashed line).
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parameters (λ,2ξ) are plotted in Fig. 4.1 for normalized strain ε∗ = 0.087, 0.116, 0.13,

and 0.152 [panels (a)-(d), respectively], with central vorticity ω0 = 228 krad/s. Data are

taken at intervals of 5 µs (1.1 ω
−1
0 ), and repeated three times for statistics. These data are

compared to the K81 prediction for C = 1. Contours of the K81 Hamiltonian (Eq. 3.9) are

plotted over the data including open orbits, the C = 1 orbit, and the separatrix. Note that in

Fig. 4.1 (c), the circular initial condition is unstable, although closed orbits still exist inside

the separatrix; whereas in panel (d) the separatrix has disappeared.

These data are also plotted versus normalized time in Fig. 4.2. Shown are λ(t∗) in

panel (a), and ξ(t∗) in panels (b) and (c), for six values of strain, ε∗ = 0.044, 0.087, 0.116,

0.13, 0.152, and 0.173. Predictions of the K81 theory for C = 1 are shown as solid lines.

The lowest strain values ε∗ = 0.044, 0.087, and 0.116 are below the dynamical stability

threshold ε∗d(C = 1) ≈ 0.123 (which is shown as a dashed line), so the system executes

periodic orbits in (λ,ξ) space. The higher strain values ε∗ = 0.13, 0.152, and 0.173 are

above the threshold, and so λ grows without bound as ξ approaches 0.

The data in Figs. 4.1 and 4.2 generally agree with the theory, with a few exceptions.

Since behavior of the K81 system is unstable near the separatrix, data for the strain values

just above and below the threshold (i.e., ε∗ = 0.116 and 0.13) become noisy at later times.

For the above-threshold cases (ε∗ = 0.13, 0.152, and 0.173), the experimentally measured

ξ diverges from that of the theory when λ is large. This is a manifestation of the dump

rotation effect discussed in Sec. 2.2. Since the ellipse continues to rotate slightly during

the diagnostic process, the data here are corrected using a uniform shift of ∆ξ = −10◦;

however, the rotation shift decreases as the vortex distorts, similar to the trend in Eq. 3.5.
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Figure 4.3: Dynamics of unstable elliptical vortices above the critical strain threshold. (a)
data (circles) for λ(t∗) for ε∗ = 0.136, 0.159, 0.181, 0.204, 0.227, 0.249, 0.272 (blue to
red), with exponential fits (lines), where ω0 = 195 krad/s. (b) normalized time constant of
the exponential fits τ∗ ≡ τω0 for ω0 =195 (blue), 260 (green), and 326 (magenta) krad/s.
Also shown are the K81 theory (solid black line), assuming passive vorticity τ∗ = 1/2ε∗

(dashed line), and the stability boundary ε∗d = 0.123 (dotted line).

Well above the critical strain threshold ε∗� ε∗d , K81 elliptical patch theory predicts

an exponential behavior λ(t) = exp(t/τ), where τ = 1/2ε (Eq. 2.7). For ε∗ > ε∗d , exponen-

tial curves are fit to data for λ(t) to find τ. Figure 4.3 (a) shows measurements of λ(t) for

ω0 = 150 krad/s and ε∗ = 0.136, 0.159, 0.181, 0.204, 0.227, 0.249, 0.272 (blue to red) with

exponential fits as solid lines. Figure 4.3 (b) shows the normalized time constant τ∗ ≡ τω0

associated with the exponential fits as a function of ε∗ for ω0 =195, 260, and 326 krad/s,

compared to the K81 prediction (solid line). The prediction assuming passive vorticity

(τ∗ = 1/2ε∗) is shown as a dashed line, and the K81 stability limit ε∗d(C = 1) is shown as

a vertical dotted line. Figure 4.3 shows that the assumption of passive vorticity is accurate

for roughly ε∗> 0.20; whereas for 0.123 < ε∗< 0.20 the stretching rate is reduced (i.e., the

lifetime of the vortex is extended), and λ(t) is not exactly exponential because the system

stalls near the saddle point.
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Figure 4.4: Demonstration of MS71 strained vortex equilibria. Data are obtained using a
slow linear ramp function ε∗ ∝ t, for ω0 = 143 krad/s (red), 182 krad/s (green), 228 krad/s
(magenta), and 313 krad/s (blue). They are compared to the stable branch (solid line) of
the MS71 theory (Eq. 3.14). The unstable branch is also shown (dashed line). Data and
predictions for the maximum aspect ratio in a K81 orbit λm are shown as well, with theory
given by Eq. 3.15 (dotted line) and data (black diamonds).

4.1.2 MS71 equilibria

For the case of constant strain imposed on an initially axisymmetric vortex, as in

Fig. 4.1, stationary solutions are not possible. However, if the strain is gradually increased,

the system can be expected to behave adiabatically. In this case, the action J remains ap-

proximately zero, such that the (λ,ξ) are given by the MS71 equilibrium solution (Eq.

3.14). Data are shown in Fig. 4.4, where λ is studied by the imposition of a slow, lin-

early ramped strain, for ω0 = 143, 182, 228, and 313 krad/s, and ramp rates in the range

dε∗/dt∗ = 0.0025 - 0.005. The theoretical MS71 equilibria are shown, including both the

stable (solid) and unstable (dashed) branches. The data agree with the theory, to within the

experimental uncertainty, up to the stability limit ε∗c ≈ 0.15. This implies that the system
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Figure 4.5: Stability threshold measurements versus peak vorticity. The thresholds ε∗d(C =
1) for initially axisymmetric vortices subject to constant strain are shown (blue). Also
shown are those for vortex equilibria ε∗c using a linearly ramped strain (red). K81 and MS71
predictions are shown (ε∗= 0.123, dashed, and 0.15, dotted), as are results of vortex-in-cell
simulations (shaded). The experimental measurements are indicated by error bars (see text
for details).

is behaving adiabatically. However, numerical solutions to Eqs. 3.6 & 3.7 indicate that a

small amplitude orbit may be excited due to the kink in ε(t) as the linear ramp begins (c.f.

Fig. 3.9) [96].

Also shown in Fig. 4.4 is the maximum aspect ratio λm reached by a K81 orbit with

C = 1 (Eq. 3.15, dotted line), with data for ε∗ = 0.045, 0.087, and 0.116, corresponding to

the orbits shown in Fig. 4.1. Again, the data and theory are in close agreement.

4.1.3 Stability threshold measurements

Shown in Fig. 4.5 are experimental measurements of both the equilibrium and

dynamical stability thresholds for quasi-flat vortices with α ≥ 5 (red and blue error bars,

respectively). These data are compared to results of vortex-in-cell simulations (shaded
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bars), and predictions of the elliptical patch theory ε∗c ≈ 0.15 (dotted) and ε∗d(C = 1) ≈

0.123 (dashed). Experimentally, the dynamical stability threshold is found by varying ε∗

and observing λ at late times in the evolution (t ∼ 20ω
−1
0 ), such that the stability or lack

thereof is evident (c.f. Fig. 4.2). The measurements of ε∗d(C = 1) are plotted against the

peak vorticity ω0 in Fig. 4.5, where the bottom (top) end of the error bar corresponds to a

strain where five consecutive runs show stable (unstable) behavior. A similar technique is

used to measure the equilibrium stability limit ε∗c . In this case, the strain is slowly increased

using a linear-ramp time dependence with dε∗/dt∗ ∼ 0.005 (c.f. Fig. 4.4), and then held

at a particular value of ε∗ to determine the stability. The stability thresholds are found in

a similar manner using vortex-in-cell simulations. The experimental measurements give

ε∗c = 0.15±0.01 and ε∗d(C = 1) = 0.124±0.006. The simulations give ε∗c = 0.145−0.147

and ε∗d(C = 1) = 0.123−0.125.

Thus the stability threshold observed in experiments and simulations are in good

agreement with the predictions of elliptical patch theory, except for a slightly reduced value

of ε∗c in the simulations. Small deviations such as this may be associated with the smooth-

ness of the profile at the edge of the vortex. Alternatively, the finite ramp time of the strain

could lead to breaking of the adiabaticity and therefore to slightly reduced stability limits.

The dependence of the stability limits on profile smoothness is investigated in further detail

in Fig. 4.8. Constancy of the experimental results over a wide range of ω0 lends confidence

that non-ideal or 3D effects depending on the electron density are negligible.

In conclusion, many aspects of the elliptical vortex patch model studied by K81

and MS71 have been tested using realistic, quasi-flat vorticity profiles that are subjected
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to external strain. In general, the global dynamics of the vortex cores are found to be in

good agreement with the theory. However, the analysis so far considered only the ellipse

parameters (λ,ξ) obtained using the elliptical fitting routine, whereas the CCD images

contain information of the full vorticity field. In the next section, we consider the dynamics

of the continuous vorticity distribution, which is beyond the scope of the elliptical patch

model.

4.2 Physics beyond the elliptical patch model

The agreement between the experiments and the elliptical patch theory for quasi-flat

profiles raises the following questions: How “flat” must the profile be in order to agree with

the theory? How are the vortex dynamics modified relative to the patch theory predictions

when the profile is not sufficiently flat? These questions are addressed here by studying the

full flow field as described by the 2D Euler equations (Eqs. 1.2), and by studying non-flat

profiles.

4.2.1 The stream function separatrix and the Okubo-Weiss criterion

The vorticity evolution data shown in Fig. 1.3 for ε∗ = 0.116 and 0.13 are plotted

again in Fig. 4.6, with overlaid streamlines, the separatrix (thick), and the Okubo-Weiss

stability criterion Q = 0 (dashed). At t = 0, a small amount of circulation exists outside

the separatrix; and as the vorticity evolves, the separatrix changes accordingly. Below the

critical strain threshold [panel (a)], peripheral vorticity is carried into filaments exterior
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Figure 4.6: Evolution of the vorticity distribution, stream function, and Okubo-Weiss cri-
terion. Vorticity data are shown (color maps) for ε∗ = 0.116 (a) and 0.13 (b) at increments
of 20 µs (4.56ω

−1
0 ). Streamlines are overlaid (black lines), as are the separatrix (thick black

line), saddle points (X), center points (O), and the Okubo-Weiss stability boundary defined
by Q = 0 (dashed line). Note the topological change of the stream function between 4th
and 5th panels in row (b).
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to the separatrix, while the majority of the circulation remains on closed streamlines in-

side the separatrix. Above the critical threshold [panel (b)], the separatrix shrinks as the

vortex distorts. The saddle points move inward and annihilate the center point at the ori-

gin between the fourth and fifth panels, thus changing the stream function topology as the

vortex is destroyed. The Okubo-Weiss local stability criterion shows qualitatively similar

behavior to the separatrix, disappearing at the same point in Fig. 4.6 (b). Quantitatively,

however, stable regions predicted by the separatrix and the Okubo-Weiss theory are slightly

different in shape and spatial extent. Notably, according to the stream function separatrix,

there may exist regions which are vorticity-dominated where the local vorticity is small

or zero (specifically, above and below the vortex, near the X-points) due to nonlocality of

the Poisson equation; whereas these regions are classified as stable by the Okubo-Weiss

criterion.

The temporal evolution of these data are studied quantitatively in Fig. 4.7 for six

values of ε∗. Shown are (a) the total normalized circulation integrated over the domain

Γ/Γ0; (b) the circulation Γsep/Γ0 contained inside the separatrix; (c) the circulation ΓQ/Γ0

inside the Q = 0 surface; and (d) the normalized Okubo-Weiss parameter Q∗0 evaluated

at the origin (c.f. Eq. 3.20), where the stability boundary Q∗0 = 0 is shown as a black

dashed line. Here, Γsep and ΓQ are calculated as
∫

S ωdA where S corresponds to the region

enclosed by the separatrix or the Q = 0 surface. Error bars show averages over three data

points. These results are calculated from the same data shown in Figs. 1.3, 4.1, and 4.2.

At late times, Fig. 4.7 (a) demonstrates loss of circulation to the wall gaps (note that for

the three strain values above the threshold, Γ/Γ0 eventually tends to zero). Panels (b) and
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Figure 4.7: Local stability inside a vortex versus time. Here, ε∗ = 0.045 (cyan), 0.087
(black), 0.116 (blue), 0.13 (green), 0.152 (magenta), and 0.173 (red). (a) the normalized
total circulation, (b) circulation inside the separatrix, (c) circulation inside the Okubo-Weiss
stability boundary, and (d) value of the normalized Okubo-Weiss parameter at the origin,
compared to the stability threshold (dashed line). Note that Γsep,ΓQ→ 0, and Q∗0 crossing
zero indicate a change of the stream function topology.
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(c) show the shrinking and disappearance of the separatrix and Okubo-Weiss stable region

for the cases above the strain threshold and destabilization of peripheral circulation for the

case slightly below the threshold. In Fig. 4.7 (d), Q∗0 = s∗2−1 increases dramatically from

its initial value 4ε∗2−1 due to the self-strain sv as the vortex distorts. For the three strain

values above the threshold, Q∗0 crosses the stability boundary as the stream function changes

topology. Thus, the initial stream function separatrix and the Okubo-Weiss criteria fail to

predict the eventual destruction of the vortex due to nonlinear evolution of the vorticity.

The temporal behavior of Γsep and ΓQ are comparable, although not exactly in agreement.

Further study of these local stability criteria is left for future work.

4.2.2 Shifted stability limits

Reference [83] demonstrated a slightly reduced critical strain threshold for smooth,

Gaussian vorticity profiles relative to quasi-flat ones. This effect is analyzed further in Fig.

4.8, which shows the dynamical threshold ε∗d(C = 1) versus the smoothness exponent α.

Experimental and numerical data are shown, as is the K81 strain threshold ε∗d(C = 1). The

error bars are found in the same manner described above in the discussion of Fig. 4.5.

Here, the simulations use profiles given by Eq. 2.6, with α varying from 2 to 10. For the

experimental data, α is found using a fit to Eq. 2.6. Both the experimental and numerical

data show a clear shift to lower stability threshold at low α (i.e., approaching Gaussian

profiles). Data are taken here for ω0 = 347 - 571 krad/s, and radius rv = 0.1 - 0.2 rw. The

experimental profiles agree closely with Eq. 2.6. Other data (not shown) suggest that the

threshold is lowered by about 10% for rv ≈ 0.3rw, likely due to the influence of the wall.
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Figure 4.8: Dynamical stability threshold ε∗d(C = 1) for constant strain versus smoothness
exponent α. The K81 theoretical stability limit for α→ ∞ is shown (dashed line), as are
simulations (black) and experimental data (magenta).

Additionally, results (also not shown) for profiles which are not good fits to Eq. 2.6 indicate

that the threshold can be sensitive to specific details of the profile.

Vorticity and stream function data for the evolution of a Gaussian vortex relative to

a quasi-flat vortex are shown in Fig. 4.9. Here, (a) shows a Gaussian vortex with α ≈ 2,

and (b) shows a quasi-flat vortex with α ≈ 8. For both profiles, ω0 = 785 krad/s and ε∗ =

0.112. Consecutive panels are separated by time t∗ = 12.56, beginning at t∗ = 0. The strain

magnitude is chosen just slightly below the K81 threshold, such that the flat vortex survives.

However, the Gaussian vortex is destroyed, thus demonstrating the threshold shift shown in

Fig. 4.8. A plausible explanation for this shift is that the smooth profiles have substantial

filamentary structures near the saddle points which augment the total strain in the vortex

core. In contrast, although quasi-flat profiles may also show filamentary behavior, the

circulation contained in these filaments is small; and therefore, the effect of the filaments
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Figure 4.9: Experimental evolution of vorticity (color maps) and stream function (lines)
for (a) a Gaussian profile, and (b) a quasi-flat profile with α ≈ 8. Both rows (a) and (b)
correspond to ω0 = 785 krad/s, ε∗ = 0.112, and panels are separated by time t∗ = 12.56
beginning with t∗ = 0.

on the core is negligible.

4.2.3 Stripping of peripheral circulation

For a smooth vortex below the critical destruction threshold, although the core may

survive, some of the outer circulation can be stripped away. Figure 4.10 shows the total

remaining circulation in a vortex subjected to constant strain for a duration t = 25ω
−1
0 .

Experimental data (magenta) agree well with simulations (black, with guide lines) for both

a quasi-flat profile with α ≈ 7 and a smooth profile with α = 2. The K81 destruction

threshold is shown as well (black dashed line). The data show that smooth vortices suffer

heavy stripping due to the external strain, even well below the destruction threshold.
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Figure 4.10: Fraction of the circulation remaining in a vortex after a straining event. Shown
are experimental (magenta) and numerical (black) data, for a quasi-flat vortex with α ≈ 7
(circles) and a smooth vortex with α = 2 (triangles). Also shown are guides to the eye
(black lines), and the K81 stability threshold (vertical black dashed line).
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4.2.4 Inviscid damping of K81 orbits

The K81 elliptical patch model preserves energy; and therefore, the trajectories in

phase space are given by contours of the Hamiltonian (Eq. 3.9). However, it is observed

that these orbits can undergo inviscid damping (i.e., spatial Landau damping [44]) when the

vorticity profile is sufficiently non-flat. This effect is demonstrated in Fig. 4.11 using an

initial profile which has a flat core (α≈ 8) and a low-vorticity tail exterior to the core [c.f.

Fig. 2.8 (c)]. Figures 4.11 (a)-(c) show evolution of the ellipse parameters (λ,ξ) in response

to constant strain of magnitudes ε∗ = 0.045, 0.09, and 0.108, respectively. Shown here are

experimental data (magenta circles) and simulation data (black circles). The simulations

use an initial vorticity profile identical to the experimental one. The data are compared

to the C = 1 contour of the K81 Hamiltonian (magenta line). The energy H is calculated

from (λ,ξ), and plotted versus time in Fig. 4.11(d)-(f) for experimental and numerical data,

corresponding to the damped orbits in panels (a)-(c). The amount of remaining circulation

at the end of each data set is Γ f /Γ0 ≈ 1 in panel (a), 0.95 in panel (b), and 0.9 in panel

(c). The evolution of the vorticity and stream function is shown for two damped orbits in

Fig. 4.12 with ε∗ = 0.045 and 0.09 [i.e., corresponding to the data in Figs. 4.11 (a) and (b),

respectively]. Both cases clearly show filamentation behavior within the separatrix, and

panel (b) also shows circulation loss to the wall.

Here, the energy H (given by Eq. 3.9) associated with the m= 2 elliptical distortions

decreases as energy is transferred to other wavenumbers, either by differential rotation or

filamentation [44]. In this way, the C = 1 orbit evolves toward the local minimum of H
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Figure 4.11: Evidence of inviscid damping of K81 orbits in (λ,2ξ) space. Panels (a)-(c)
show experimental results (magenta circles) and simulation results (black circles), plotted
over Hamiltonian contours for the C = 1 orbit (magenta line), the separatrix (black line),
and the equilibrium point (green square), for ε∗ = (a) 0.045, (b) 0.09, and (c) 0.108. Panels
(d)-(f) show the corresponding temporal evolution of H, relative to the initial value (dashed)
and the value at the stable equilibrium (dotted).
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Figure 4.12: Vorticity (color maps) and stream function (black lines) evolution during
inviscid damping of the K81 orbit. Here, ε∗ = 0.045 (a) and 0.09 (b). Here, ω0 = 458
krad/s, and data are shown at time intervals ∆t∗ = 9.16 beginning with t∗ = 0.916.

at the stable center point given by the lower branch of Eq. 3.14. In Fig. 4.11 (a) and (b),

the damping drives the system close to the equilibrium. However in panel (c), the damping

saturates at a finite orbit amplitude. In this case, the tail is stripped away suddenly, the

damping shuts off, and the remaining flat core executes nutations. Both the experiments

and simulations show similar behavior, although the onset and rate of damping is slightly

different.

Based on these observations, inviscid Landau damping of an elliptical vortex in

the presence of external strain differs qualitatively from the freely relaxing case studied

previously in Ref. [44] in two major ways. First, rather than damping toward axisymmetry,

the system damps toward a steady elliptical state similar to the stable equilibria described

by MS71. In the case of zero strain, the damping may saturate as a rotation mode; whereas

with nonzero strain, the saturated state corresponds to a nutation. Secondly, circulation may

be stripped and lost to the wall due to the external strain. Thus, in addition to damping via
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differential rotation and filamentation, damping may also occur through an “evaporative”

process associated with circulation crossing the separatrix. Circulation loss was observed

for the data in Fig. 4.11 (b) and (c), implying that the evaporative damping mechanism

is active; whereas in panel (a), no circulation loss is observed. Here, inviscid damping of

the K81 orbit is demonstrated for a profile which is quasi-flat in the core, but with a tail of

circulation at the edge of the vortex, as shown in Fig. 2.8 (c). However, various other data

from the 8ST indicate that damping may occur for a broad range of non-flat profiles.

Some of the work and discussion in Chapter 4 is taken from N. C. Hurst, J. R.

Danielson, D. H. E. Dubin, and C. M. Surko, “Experimental study of the stability and dy-

namics of a two-dimensional ideal vortex under external strain,” submitted to J. Fluid Mech.

(2017). The author of the dissertation led the research and was the primary investigator and

author of this paper.
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Chapter 5

Experiments with time-dependent strain

flows

5.1 Introduction

In the preceding chapter, the discussion was restricted primarily to experiments

where the applied strain magnitude ε was a constant. This was a logical first step in the

8ST research program due to its simplicity. In this case, the system energy is conserved, a

valuable constraint which allowed K81 to obtain exact solutions using the elliptical patch

model. Time-dependent strain, where ε = ε(t), was considered only once in Chapter 4, in

the context of the MS71 equilibria (which are fixed points of the K81 system). Although the

strain varied in time, the vortex response was approximately adiabatic, and so the behavior

was relatively simple and well-understood. For more general time dependence, theoretical

results are hard to come by. In this chapter, we discuss a set of preliminary experiments
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which begin to explore the vast parameter space of time-dependent strain flows. Given the

preliminary nature of the data, the discussion that follows will be somewhat speculative.

A few basic types of time dependence, shown in Fig. 5.1, are considered here.

Panel (a) shows a linear ramp time dependence,

ε(t) =
ε0 t
t f

, (5.1)

which is considered briefly in Chapter 4, where ε0 is a constant and t f is the time at which

the experiment is concluded and the vorticity diagnosed. However, here ε(t) has a kink at

t = 0 (i.e., dε/dt is discontinuous). Alternatively, a smooth ramp can be generated using a

hyperbolic tangent function. An example is shown in panel (b), where the strain is given

by

ε(t) =
1
2

[
tanh

(t− t0
τs

)
−1

]
. (5.2)

Here, the strain reaches its half-maximum value at time t = t0, and the rate of change is

controlled by the parameter τs. Although not discussed further here, smooth ramps such as

this will be useful for future studies of adiabaticity.

Panel (c) shows a square-pulse strain time dependence,

ε(t) = ε0Θ(t)Θ(t0− t), (5.3)

where Θ is the Heaviside step function. Here, the strain is turned on for some time t0, and

then turned off for the remainder of the experiment until the vorticity is diagnosed at time

t = t f . Thus, the vortex experiences a transient K81 straining event followed by a period

of free relaxation. We also consider a “double square-pulse” time dependence, shown in
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panel (d):

ε(t) = ε1Θ(t)Θ(t0− t)+ ε2Θ(t− t0)Θ(t f − t). (5.4)

Here, after the initial square pulse with magnitude ε1, the strain is reduced to a constant,

intermediate value 0 < ε2 < ε1. In this way, the dynamics on the time interval [0, t0] are

given by a K81 orbit with circular initial condition and strain ε1. The value of the ellipse

parameters (λ,ξ) at t = t0 then serves as an initial condition for a second K81 orbit with

strain ε2 on the interval [t0, t f ].

Gaussian pulses are also used [shown in panel (e)], where the strain time depen-

dence is given by Eq. 3.16. The Gaussian pulse represents a smooth, transient straining

event, a situation which is more physically realistic than that of the square pulse. Finally,

sinusoidal time dependence is considered [shown in panel (f)],

Va(t) =V0 sin(Ωst), (5.5)

where the applied voltage Va varies harmonically at frequency Ωs. Here, the strain magni-

tude is proportional to the absolute value of the voltage, ε ∝ |Va|. Positive voltage Va > 0

corresponds to a strain flow where ε ∝ Va and the orientation of the strain axis (i.e., the

direction of the positive eigenvector) is π/4 with respect to the (x,y) coordinate system;

and Va < 0 corresponds to a flow with orientation −π/4. This type of situation could arise,

for example, when a vortex is trapped in a periodic orbit.
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Figure 5.1: Various time dependencies of the applied strain flow. Shown are (a) a linear
ramp function, (b) a hyperbolic tangent ramp, (c) a square pulse, (d) a double square pulse,
(e) a Gaussian pulse, and (f) a sinusoidal function.
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5.2 Square pulses

Here we consider an external strain with square-pulse time dependence, given by

Eq. 5.3 and shown in Fig. 5.1(c). The vortex evolves under constant strain on the time

interval [0, t0], then evolves freely (in the absence of strain) for some time until it is diag-

nosed at t f > t0. The evolution under constant strain was studied in detail in Chapter 4. The

dynamics are given by a K81 orbit for 0 < t < t0. The state of the system at t = t0 is that of

an elliptical vortex described by the aspect ratio λ and orientation ξ. Since the subsequent

evolution on the time interval [t0, t f ] takes place without strain, the boundary conditions are

symmetric and so the orientation is irrelevant. The resulting dynamics are therefore given

by the free relaxation of an elliptical vortex, and the character of the evolution depends on

λ(t0). For patch-like profiles, the evolution is that of a Kirchoff vortex (Eq. 3.5) which may

be subject to Love instabilities (Eq. 3.17). However, if the vorticity profile is sufficiently

smooth, some level of inviscid damping is expected [44].

In order to best control the vorticity distribution at t = t0, a large value of strain

is used, ε∗0 ≈ 0.25� ε∗d . In this way, the vorticity behaves passively, and λ(t0) is given

approximately by Eq. 2.7. At some point in time, the tips of the vortex along the semimajor

axis contact the wall at the gaps between the segmented electrodes. This occurs when the

semimajor axis is a = rw, or when λ = r2
w/r2

v . Past this point, the vorticity distribution is

better described near the center of the trap as a filament of constant thickness 2b (i.e., a

finite-width vortex sheet, or a shear layer), rather than as an ellipse. The free evolution of

a vorticity filament is characterized by the well-known Kelvin-Helmholtz (KH) instability
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Figure 5.2: Free relaxation of a stretched vortex with ω0 = 440 krad/s and initial aspect
ratio λ≈ 7.5. Images are taken at t = (a) 0, (b) t0 = 11 µ s, (c) t = t0+25 µs, (d) t = t0+50
µs, (e) t = t0 + 75 µs, and (f) t = t0 + 100 µs, where the applied strain is ε∗ = 0.24 on the
interval 0 ≤ t ≤ t0. The vortex is subject to Love instabilities, and it ultimately forms a
cat’s-eye structure.

[9], which can be thought of as a generalization of the Love instability for λ→ ∞.

Data are shown for the free relaxation of elliptical vortices with λ(t0)≈ 7.5 in Fig.

5.2, and λ(t0) ≈ 11.5 in Fig. 5.3. Here, the diffuse, peripheral circulation surrounding the

vortex core has begun to contact the wall gaps, although the half-maximum vorticity con-

tour has not. Snapshots of the vorticity are shown at t = 0, t = t0 (at the end of the strain

pulse), and then at t = t0+25 µs intervals (11 ω
−1
0 ) up to t0+100 µs (44 ω

−1
0 ) during the free

relaxtion period. In Fig. 5.2, the vortex experiences inviscid damping, and ultimately sat-

urates as a quasi-elliptical distribution with sharp edges and λ≈ 3. Filamentary structures

exterior to the core are wrapped around the core, generating a cat’s-eye structure. In Fig.

5.3, the evolution is that of a vortex splitting (fission) event with two daughter vortices,
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Figure 5.3: Free relaxation of a stretched vortex with ω0 = 440 krad/s and initial aspect
ratio λ≈ 11.5. Images are taken at t = (a) 0, (b) t0 = 13 µ s, (c) t = t0+25 µs, (d) t = t0+50
µs, (e) t = t0 + 75 µs, and (f) t = t0 + 100 µs, where the applied strain is ε∗ = 0.24 on the
interval 0≤ t ≤ t0. The vortex is subject to Love instabilities, ultimately leading to a vortex
splitting event.

which corresponds to the nonlinear saturation of the Love instability with wavenumber

m = 4 [98].

Wavenumber m = 4 is the fastest growing unstable Love mode in the range 6 <

λ < 8 (c.f. Fig. 3.11). Numerical experiments by Mitchell [98] and simple arguments

by Dritschel [105] support the idea that an elliptical patch vortex becomes unstable to

fission when λ & 6.04, although Mitchell showed that the threshold could be reduced by

introducing an m = 4 seed perturbation on the initial vortex. The data in Figs. 5.2 and 5.3

show the fission threshold to be in the range 7.5 < λ < 11.5, which is significantly higher

than that found by Mitchell and Dritschel.

It is well-known that m = 2 modes on a vortex can be subject to inviscid damping
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if the profile is smooth (c.f. Fig. 4.11); and it seems plausible that other modes may obey

similar physics. In this manner, the m = 4 mode could damp away rather than growing to a

saturated state, thus raising the threshold for vortex splitting events. The data presented in

Figs. 5.2 show that an m = 4 mode grows and then damps away in favor of lower modes.

Similarly, in the case of Fig. 5.3, an m = 6 mode grows, and then damps away in favor of

the m = 4 mode.

Similar experiments were conducted for vortices that were stretched into thin fil-

aments spanning the trap. In this case, the evolution is better described as a Kelvin-

Helmholtz instability as opposed to the Love instabilities shown in Figs. 5.2 and 5.3. Data

are shown in Fig. 5.4 for filaments of three different initial half-thicknesses, b/rw = (a)

0.036, (b) 0.014, and (c) 0.007, which relax to states with Nd daughter vortices, where

Nd = 3, ∼ 10, and ∼ 25, respectively. Panel (d) shows a close-up view of the vorticity

evolution in panel (c). The data in rows (b) and (c) show evidence of re-entrant circulation,

which could perturb the dynamics of the filament. Furthermore, the effect of the image

fields is clear: vortices form at the tips of the filament near the wall long before the free

KH instability creates vortices near the origin. The increased roll-up rate near the wall can

be expected, since the image vorticity generates a cooperative shear. In panel (d), there

is evidence of a secondary pairing instability, where two adjacent KH vortices enter into

orbits about each other and may eventually merge.

The nonlinear saturation of the KH instability on a vorticity filament was studied

further by measuring the number of daughter vortices Nd as a function of filament thickness,

as shown in Fig. 5.5. Here, a quasi-flat vortex with ω0 = 520 krad/s and rv/rw ≈ 1/8 was
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Figure 5.4: Free relaxation of vorticity filaments for ω0 = 440 krad/s and filament half-
thickness b/rw = (a) 0.036; (b) 0.014; (c) 0.007. The first image in each row is taken at the
moment the strain is turned off, and subsequent images are separated by 50 µs (22 ω

−1
0 ).

The filaments are subject to Kelvin-Helmholtz instabilites, causing them to break up into a
number Nd of daughter vortices, where Nd = (a) 3; (b) ∼ 10; (c) ∼ 25. Row (d) shows a
close-up view of row (c). The blobs of vorticity on either side of the filaments are re-entrant
electrons (see Fig. 2.15).
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Figure 5.5: Number of daughter vortices Nd versus normalized filament half-thickness
b/rw, or aspect ratio λ. Each error bar represents the variation in Nd observed over three
runs (dots are shown if no variation was observed). The semimajor axis contacts the wall
at roughly b/rw = 0.016, denoted by a vertical dashed line.

stretched into an ellipse, and further into a filament spanning the trap. It was then allowed

to relax for a time ∼ 50ω
−1
0 (i.e., sufficiently long that the saturated state was evident), and

Nd was observed visually. The point where the half-maximum vorticity contour contacts

the wall, b/rw ≈ 0.0156, is shown in Fig. 5.5 as a vertical dashed line. Error bars are

determined by conducting three consecutive runs and observing a range of Nd . When each

of the three runs results in the same Nd , a dot is plotted rather than an error bar. These

data can be compared roughly to predictions based on the fastest-growing mode in the KH

spectrum, which occurs for wavenumber 2bk ≈ 0.8. Assuming each wave period develops

into a daughter vortex, one would expect Nd ∼ (16b/rw)
−1. The data disagree with this

prediction by about a factor of two, the reason for which is presently unknown.
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5.3 Double square pulse

Following a square pulse of strain, the elliptically distorted vortex or filament may

be subject to Love or KH instabilities, as shown in the preceding section. However, it is

known that these instabilities can be stabilized by an external strain flow [99]. Thus, we

now consider a “double square-pulse” strain time dependence, where immediately follow-

ing the initial square pulse is a second square pulse of weaker strain [c.f. Fig. 5.1(d)]. The

first pulse stretches the initially axisymmetric vortex into a filament roughly aligned with

the strain axis, as seen in the first column of Fig. 5.4. The second pulse provides stabiliza-

tion against the KH instability. The double square pulse technique can also be used to study

K81 orbits with a non-circular initial condition, although this idea is not explored further

here.

Data are shown in Fig. 5.6 for a filament with ω0 = 440 krad/s and b/rw = 0.014

[c.f. Fig. 5.4(b)] evolving under the influence of applied strain with ε∗ = (a) 0.01, (b)

0.02, and (c) 0.03. In row (a), the strain has little effect, and the filament rolls up into

daughter vortices as would be expected. In row (b), and to an even greater extent in row

(c), the KH roll-up is significantly suppressed by the applied strain. The number and spatial

extent of the daughter vortices is diminished. The strain affects the KH modes in two

ways: the waves are squashed (i.e., the amplitude is reduced) by the strain in the direction

perpendicular to the filament; and they are stretched in the parallel direction, such that the

wavenumber of a seed wave decreases over time. The linear problem was analyzed by

Dritschel [99], who numerically calculated the extent to which a seed wave was amplified

116



by the KH mechanism before eventually succumbing to the strain. More relevant here is

the question of whether KH waves grow to the point where they can saturate by forming

vortices, which seems to be the case to some extent in all three rows of Fig. 5.6.

5.4 Gaussian pulses

We now turn our attention to an applied strain with a Gaussian time dependence,

These Gaussian pulses can be thought of as smooth relatives of the square pulses considered

earlier in this section; during the pulse, the behavior is similar to that of a K81 vortex, and

on the trailing edge of the pulse, instabilities begin to set in. When the peak strain is

sufficiently small (i.e., ε∗0 < ε∗c), at no point during the pulse is the vortex destabilized in the

sense of a K81 destruction mode, and so λ(t) is bounded below about 5. Based on the data

shown above in Figs. 5.2 and 5.3, these vortices are not expected to undergo fission, and

so the final state of the vortex core should be quasi-elliptical, possibly with filamentation at

the periphery. When the pulse half-width τs is long compared to the vortex rotation period

τv = 4π/ω0, the behavior should be adiabatic, such that the vortex remains in equilibrium

with the strain throughout the pulse, and so the vortex is expected to return to axisymmetry

after the pulse has passed. When τs is short compared to τv, the behavior is non-adiabatic,

and so the vortex may be left with a residual elliptical distortion after the pulse has receded.

Finally, resonant behavior is expected when τs ∼ τv.

These effects are studied in Fig. 5.7, where Gaussian pulses of varying width are

applied to a vortex with ω0 = 228 krad/s for ε∗0 = (a) 0.054 and (b) 0.108. Here, t0 = 100
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Figure 5.6: The Kelvin-Helmholtz instability under applied strain. A filament with ω0 =
440 krad/s and half-thickness b/rw = 0.014 [c.f. Fig. 5.4(b)] is generated by an initial
strain pulse. Then, it evolves under the influence of a second strain pulse with ε∗ = (a)
0.01; (b) 0.02; (c) 0.03. The three panels in each row correspond to 40, 80, and 120 µs of
evolution (intervals of 17.6ω

−1
0 ). Re-entrant vorticity can be observed on either side of the

filament (see Fig. 2.15).
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µs (22.8 ω
−1
0 ), and the aspect ratio of the ellipse λ is diagnosed at t f = 200 µs (45.6 ω

−1
0 )

while the pulse half-width τs is varied. Each data point is repeated five times for statistical

purposes and compared to predictions based on numerical solutions to the K81 equations

(c.f. Fig. 3.10). In all cases, the final vorticity distribution is close to circular for pulses

with τ−1
s � ω0, as expected for adiabatic behavior. For short pulses with τ−1

s � ω0, the

final aspect ratio is close to unity, simply because the strain is not on long enough for λ

to grow significantly. For intermediate pulse widths, a resonance peak of sorts is observed

at τ∗s ≡ τsω0 ∼ 3 in both the data and the K81 predictions. However, the experimentally

observed residual ellipticity is significantly smaller than that predicted by K81. The reason

for this is likely inviscid damping [44], which takes place after the pulse has receded.

Figure 5.8 shows vortex behavior in response to Gaussian strain pulses, as a func-

tion of the normalized pulse half-width τ∗s (on the vertical axis) and the amplitude ε∗0 (on

the horizontal axis). Different types of behavior are observed across the two-dimensional

parameter space (τ∗s ,ε
∗
0). They are plotted as colored symbols in panel (a). Panel (b) shows

an example of a vorticity distribution corresponding to each of the colored symbols. Black

squares correspond to circular vortices; they are observed for ε∗0 < ε∗c and τ−1
s �ω0, so that

the vortex behaves adiabatically, below the critical strain threshold. Red circles correspond

to vortices with residual elliptical distortions, which can occur due to non-adiabaticity (c.f.

Fig. 5.7). Under more severe conditions, non-adiabatic behavior at higher values of strain

can lead to stripping at the periphery of the vortex, or inviscid damping can set in to produce

cat-eye structures; these behaviors are indicated by green triangles. Cases where the ellipse

becomes highly distorted due to Love instabilities are shown as blue triangles. When the in-
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Figure 5.7: Residual elliptical distortion of a vortex with ω0 = 228 krad/s following a
Gaussian strain pulse of varying width. The peak strain is ε∗0 = (a) 0.054; (b) 0.108, and
the pulse half-width is τs. Data for the final aspect ratio λ f (black triangles) are obtained
using the elliptical fitting routine, and compared to numerical solutions of the K81 system
(blue circles).

120



stability is sufficiently strong, fission events occur, and the vortex splits into two daughters;

these conditions are indicated by magenta triangles. Finally, when the strain is sufficiently

strong and the pulse duration is sufficiently long, the vortex can be stretched into a filament,

which then relaxes to a state of multiple daughters (i.e., Nd > 2); these cases are shown as

cyan diamonds.

5.5 Sinusoidal strain

When the strain time dependence is taken to be sinusoidal, the dynamics can be

quite complicated. For example, each half-cycle of the wave can be thought of as a strain

pulse, and so the vortex responds to the sinusoidal strain by a sequence of K81-like stretch-

ing events, and subsequent relaxation periods where instabilities can grow. In principle,

one can envision a diagram similar to that of Fig. 5.8(a), where the vortex response to a

sinusoidal strain pattern is described as a function of the amplitude and frequency variables

(ε∗0,Ωs). For example, when ε∗0 < ε∗c and Ωs�ω, adiabatic behavior can be expected. Sim-

ilarly, when Ωs� ω, the vortex response should be small due to time-averaging (similar to

cutoff phenomena in forced oscillators). However, when the right conditions are chosen,

the vortex can resonate with the strain and produce chaotic dynamics.

An example of a vorticity distribution resulting from such conditions is shown in

Fig. 5.9. Here, the vortex has been repeatedly stretched and allowed to relax over the course

of six periods, effectively “stirring” the vortex and generating a patch of turbulence where

there was once a quiescent vortex. This process is described further in Fig. 5.10, where the
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Figure 5.8: Map of vortex response to a Gaussian strain pulse. (a) map of behaviors ob-
served as a function of the half-width τs and amplitude ε∗0 of the strain pulse; (b) examples
of late-time vorticity distributions corresponding to regions of panel (a). Counter-clockwise
from the top left panel of (a): circular states (black squares); pure elliptical states (red cir-
cles); elliptical states with filamentation/stripping (green triangles); distorted ellipses with
significant filamentation (blue triangles); split states with two daughters (magenta trian-
gles); and filamentary structures (cyan diamonds).
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vorticity evolution is depicted schematically in response to a single cycle of periodic strain.

As the strain grows, the initially circular vortex is stretched into an ellipse [c.f. Fig. 5.10

(a), i-ii]; then, as the strain decreases to zero, the distorted vortex is split due to Love insta-

bilities (ii-iii). The two daughter vortices then experience a similar scenario where Va < 0

and the orientation of the strain axis is −π/4 (iv-v), which leads to further splitting events.

In principle, this process could continue over many cycles, leading to a large number of

small-scale vortices. However, the simple physical picture presented in Fig. 5.10 neglects

interactions between vortices, which can, for example, affect the straining rates and the

growth rates of the instabilities, and lead to vortex pairing and merging events.

The results described in this section, although interesting, are preliminary and de-

serving of further analysis. It is anticipated that future work will address the issues raised

here in a more rigorous and quantitative way.
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Figure 5.9: A vortex subjected to six periods of sinusoidal strain. Here, fs ≡ Ωs/2π = 20
kHz, ω0 = 240 krad/s, and ε∗0 = 0.175. A series of straining events and instabilities results
in a complicated vorticity distribution; one could say the vortex has been “stirred” into a
state of turbulence.
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Figure 5.10: Cartoon of vortex behavior under periodic strain. Panel (a) shows the vorticity
evolution (blue) at various points in time (i-vi) throughout a single strain cycle, where the
time dependence of the applied voltage Va is shown in panel (b). Here, vortex structures
undergo periods of stretching under strong strain, and subsequent periods of relaxation
where Love instabilities result in vortex splitting events.
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Chapter 6

Summary and conclusions

6.1 Recap of the strained vortex problem

2D fluids exist in natural and man-made systems across a wide range of scales. It

is important to understand their dynamics from both a scientific and a practical perspec-

tive. Perhaps the most striking example is the quasi-2D motion of air and water across the

surface of the Earth [27]. These dynamics have a profound impact on our lives, through

the weather we experience every day, as well as long-term climate behavior. Other impor-

tant quasi-2D flows are found in aircraft wakes [8] and mixing applications [37], and in

magnetized laboratory plasmas for nuclear fusion research [13, 36]. More exotic scenarios

include disk-like flow geometry found in astrophysical settings, for example in galaxies

and accretion disks [35, 34].

Many of these systems are characterized by high Reynolds numbers, in which case

external forcing can create vortices and turbulence. For example, solar heating drives tur-
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bulence in Earth’s oceans and atmosphere, just as external heating drives plasma turbulence

in fusion devices. Transport in these systems is enhanced significantly by the formation of

vortices which carry heat, momentum, and passive tracers as they move through the fluid.

However, these vortices can be perturbed and even destroyed by other flow structures that

they encounter along their journey. Large-scale jets, such as Earth’s jet stream or zonal

flows in fusion devices, can suppress transport by decorrelating vortices. Furthermore, in-

teractions between vortices can lead to deformation, destruction, and vortex merger events.

These behaviors can be studied in a controlled manner by considering the canonical

example of a single isolated vortex subject to an externally imposed flow. Here, the spa-

tiotemporal form of the external flow can be chosen to mimic the effect of other vortices,

large-scale flows, or boundaries. The simplest case is that of an initially axisymmetric vor-

tex in a 2D ideal fluid, subjected to an irrotational simple strain flow, that is, a hyperbolic

external flow with azimuthal wavenumber m = 2. When the flow is static and the initial

vorticity profile is flat, a simple theoretical description is possible in terms of the so-called

elliptical patch model studied by K81 [39], MS71 [8], and many others. Here, the vorticity

is treated as piecewise constant inside an elliptical boundary. In this way, the system is

described completely by two dynamical variables, the aspect ratio λ and the orientation ξ

of the ellipse, thus reducing the dimensionality and making the problem tractable.

Although this simple scenario is both soluble and understandable, the assump-

tions involved are sometimes not physically realistic. Often, vorticity profiles in nature

are smooth, and the environment in which they exist is chaotic. In this dissertation, the

K81 system is studied experimentally, and the results are used as a starting point to inves-
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tigate the dynamics of smooth vorticity profiles under strain. Furthermore, intuition gained

from studying the K81 system is used to extrapolate to time-dependent flows, which more

accurately model the experiences of a vortex in a natural system.

6.2 Summary of experimental data and results

6.2.1 Development of an apparatus for strained vortex experiments

In order to conduct the studies described above, a novel electron plasma apparatus

called the Eight-Segment Trap (8ST) was designed and built, and experimental techniques

and protocols were developed [106]. The experiments make use of an isomorphism be-

tween the Drift-Poisson equations describing the dynamics of a single-component plasma

perpendicular to the magnetic field, and the 2D Euler equations describing ideal fluid flow

[17]. Here, the electron density plays the role of the fluid vorticity, and the electric potential

is analogous to the fluid stream function. The 8ST was designed such that plasmas could

be contained under a long, eight-fold azimuthally segmented electrode. In this way, exter-

nal flows could be implemented by electrically biasing the segments without introducing

3D effects. In contrast, other electron plasma devices feature short segmented electrodes,

which limits the ability to apply external flows. The plasma must be long relative to the

transverse dimensions in order to behave as a 2D fluid, as described in Chapter 2. Addition-

ally, axial electric fields are generated which introduce 3D physics such as axial particle

trapping. Thus, the 8ST is uniquely capable of creating external flows which are within the

bounds of the plasma/fluid analogy.
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In the 8ST, prior to application of the external flow, fluid vortices are prepared by

manipulating the trapped electron plasmas. Most importantly, the rotating wall technique

is used to control the radial vorticity profile. In this way, profiles ranging from smooth

to quasi-flat can be obtained. Once the electron plasma has the desired profile and other

properties (density, temperature) necessary for a fluid description, then the external flow is

created by biasing the electrode segments. The vorticity distribution evolves under the flow

for some time, then the flow is removed and the distribution is immediately diagnosed using

a phosphor screen and a CCD camera. By repeating this protocol many times, the evolution

of the vorticity distribution ω(x,y, t) can be determined. The evolution can be studied as

a function of the profile smoothness, the strain magnitude ε∗, and the time dependence of

the strain ε∗(t). Although this dissertation focuses only on the simple strain flow, other

types of flow geometry are possible by biasing the segments in a different pattern. The

vortex dynamics observed in the 8ST are complemented by numerical experiments using a

vortex-in-cell code [58], which serve to reinforce the experimental results and to explore a

wider parameter space than is possible experimentally.

6.2.2 Experiments with quasi-flat profiles

The first set of experiments conducted in the 8ST focused on the dynamics of quasi-

flat initial vorticity profiles, which are easily prepared using the rotating wall technique.

The motivation was to test the predictions of the elliptical patch theories of K81 and MS71.

The experimental data show that, for constant strain ε∗ below the dynamical stability thresh-

old ε∗d(C = 1), the vortices distort elliptically in a periodic manner, executing closed orbits
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in (λ,ξ) space. For ε∗ > ε∗d , it is observed that the vortices experience indefinite stretching

as the strain overcomes the vorticity; hence, the vortices are effectively destroyed. The

shape of the orbits in (λ,ξ) space and the temporal behavior of the system are in quantita-

tive agreement with predictions of the K81 model. When the strain is gradually increased

from zero, it is found that the vortices behave adiabatically, remaining in equilibrium with

the strain. The stationary states obtained in this manner are in quantitative agreement with

the equilibria given by MS71, which are fixed points of the K81 equations. The stability

threshold is measured for both the dynamical case (constant strain) and the equilibrium

case (ramped strain), and the results match the predictions of the elliptical patch theory.

6.2.3 Experiments with smooth profiles

When smooth profiles are studied, the behavior of the vortices differs in certain

ways from the patch model. A key theme is that the stability of the vorticity becomes a

local matter, rather than a global one. This simple fact opens the door for partial vortex de-

struction events, also known as “vortex stripping” events. In this case, although the strain is

not strong enough to completely destroy the vortex core, it can destabilize low-vorticity cir-

culation around the edge of the vortex. This circulation is carried into filamentary structures

which are then advected away from the core by the strain. The amount of circulation which

is stripped away is a function of the applied strain magnitude and the profile smoothness.

These basic ideas were discovered previously through water tank experiments and contour

dynamics simulations [21, 54]; however, the 8ST offered a higher level of precision which

has allowed us to conduct more quantitative experiments. It was discovered using the 8ST
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that smooth profiles have modified stability properties relative to flat ones. Specifically,

for the case of constant strain applied to an initially axisymmetric vortex, it was found that

Gaussian profiles are destroyed for strain magnitudes which are about 15% lower than that

for quasi-flat profiles. The reason for this seems to be associated with the formation of

substantial filamentary structures which modify the strain experienced by the vortex core.

Perhaps the most important result from the 8ST experiments regarding smooth pro-

files is that the K81-like elliptical oscillations undergo inviscid damping which drives the

system toward the stable, elliptical equilibria given by MS71. This phenomenon is closely

related to the free damping of a smooth, elliptical vortex, a case which was studied in

Refs. [10, 44, 43], among others. However, due to the presence of the external strain, a

few important differences arise. For a free elliptical vortex, the system “axisymmetrizes,”

or damps toward an axisymmetric state, although nonlinear effects can cause the system

to saturate as a steady cat’s-eye distribution. In contrast, under strain, the system damps

toward a steady elliptical state, and may saturate as a finite-amplitude K81 nutation mode

(or, conceivably, a rotation mode). Another key difference is associated with the vortex

stripping phenomenon; under strain, the vortex can experience circulation loss, especially

along the semimajor axis near the saddle points, and this can result in a type of “evapora-

tive” damping.

6.2.4 Experiments with time-dependent strain

The most recent (albeit preliminary) experiments in the 8ST involved time-dependent

strain flows, mostly in the context of quasi-flat vortices. A number of different cases were
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considered, including square pulses, Gaussian pulses, and sinusoids. During a square pulse,

the vortex evolution is well-described by the K81 phenomenology; as such, the state at the

end of the pulse is that of an elliptically distorted vortex. Following the square pulse, the

free evolution of that elliptical state was observed. At relatively small values of λ, the ob-

served dynamics are similar to that of Ref. [44]. At higher values of λ, rather than damping

to an elliptical state, the Love instability with azimuthal wavenumber m = 4 grows into a

state of nonlinear saturation; this is identified as a vortex splitting event which produces

two daughter vortices. As λ is increased further, the number of daughter vortices rises. As

the vortex is stretched further, the semimajor axis reaches the wall, at which point the distri-

bution is best described as a finite strip of vorticity spanning the fluid domain. In this case,

linear evolution of the strip is that of a Kelvin-Helmholtz (KH) instability, which again

produces a number of daughter vortices in the saturated state. In the 8ST, as many as ∼ 30

daughter vortices were observed for very thin filaments. Furthermore, a secondary pair-

ing instability was observed, where neighboring daughter vortices enter into binary orbits

about each other, and may eventually merge.

Other experiments were conducted where the strain was reduced after the initial

square pulse not to zero, but to some intermediate value. Here, the evolution is that of

a filament of vorticity relaxing under weak external strain. The question becomes: what

value of strain is necessary to stabilize the filament against KH roll-up? Although the data

are preliminary, it is clear that even small values of strain ε∗ ∼ 0.02−0.03 can drastically

alter the dynamics; although even then, a few small daughter vortices are observed.

Another set of experiments involved strain pulses with Gaussian time dependence.
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Qualitatively, the observed dynamics were similar to that of the square pulses: a com-

bination of K81-like dynamics during the pulse, followed by Love instabilities after the

pulse had receded. The key difference is that the Gaussian pulse is smooth, and so adia-

batic behavior is possible. Different types of vortex behavior were observed, depending on

the amplitude and width of the Gaussian strain pulse. They include axisymmetric states

corresponding to adiabatic behavior, slightly elliptical states where adiabaticity is broken,

cat-eye states for larger strain values, highly distorted vortices which have suffered Love

instabilities, and split states where the number of daughter vortices ranges from two up-

wards.

When a strain flow which is sinusoidal in time is applied, the dynamics can be

very complicated and even chaotic. Specifically, for some range of parameters (frequency

and amplitude of the sinusoid), the vortex can be “stirred” into a patch of turbulence. In

this scenario, a half cycle of the applied strain stretches the vortex, and then instabilities

set in while the strain passes through zero, and this procedure is then repeated. Although

detailed experiments have yet to be conducted, we also can expect adiabatic behavior for

low-frequency sinusoids, as well as a weak response when the frequency is too high due to

time-averaging.

6.3 Implications for other quasi-2D fluid systems

The results discussed in this dissertation for ideal 2D fluids may be useful in un-

derstanding a variety of other quasi-2D fluid systems, including geophysical fluids, magne-
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tized plasmas, and astrophysical disks. However, these systems are more complicated than

the simple 2D fluids studied here: often 3D and non-ideal effects are present at some level.

In this section, I will speculate as to how the results of the dissertation pertain to various

other related fluid systems.

A common theme among many quasi-2D fluid systems is that of “potential vortic-

ity” (PV) conservation. Whereas the 2D Euler equations preserve the vorticity ω in the

Lagrangian frame, other systems preserve some other form of generalized vorticity. Poten-

tial vorticity models are often used to describe the behavior of geophysical fluid flow on the

surface of rotating planets [30], as well as quasi-2D drift wave turbulence in magnetized

quasi-neutral fusion plasmas [12].

Whereas the 2D Euler system tends to evolve toward a state of isolated, quasi-

axisymmetric vortices, PV systems tend to favor strip-like vorticity structures called “zonal

flows,” which are clearly observed in images of Jupiter, for example. Thus, the PV dynam-

ics seem to have a stabilizing effect on filamentary structures and a destabilizing effect on

vortex structures. If a vortex is to persist in such an environment, it must be intense, and

even then, it may be subject to elliptical distortions; the Great Red Spot of Jupiter is a clear

example [107]. In this sense, one could imagine that the breakdown of a vortex might be

facilitated in a PV environment, thus lowering the strain destruction threshold ε∗d relative

to its value in the Euler system. However, near the poles of rotating planets, the opposite is

true – the planetary rotation leads to the formation and persistence of “polar vortex” struc-

tures which are routinely observed on Earth and other planets. The PV dynamics due to

the rotation have a stabilizing effect on these structures, therefore more extreme straining
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events may be necessary to destabilize the polar vortices. Reference [7] discusses a rare

event in 2002 where Earth’s antarctic polar vortex was destabilized in this way.

Turbulent transport in a 2D ideal fluid is facilitated by the motion of vortices, which

are capable of carrying heat, momentum, and tracers quickly over large distances. However,

in a PV system, the transport can be suppressed as vortices are destabilized by large-scale

zonal flows. As such, the transport rate should scale inversely with the ratio of the zonal

flow strain to the vorticity (i.e., an analog of ε∗). These ideas are of great importance to the

magnetic fusion research community [13, 36], since the suppression of transport can lead

to high-confinement states with high plasma temperature and pressure. More specifically, a

vortex which encounters a shear layer associated with a zonal flow (also called a “transport

barrier” in the literature) will likely experience some type of time-dependent strain similar

to the strain pulses studied in Chapter 5. The question then becomes whether the magnitude

and duration of the strain pulse is sufficient to “destroy” the vortex. If so, it seems plausible

that the resulting filament of vorticity would simply reinforce the shear layer rather than

fragmenting into daughter vortices.

A similar situation arises in the context of astrophysical disks. At the simplest level,

hydrodynamical flow within these disks can be described using the so-called “shearing box”

geometry, where the flow evolves under the influence of a background shear associated with

the Keplerian rotation of the disk [33]. When the radial variation of the fluid density is con-

sidered, the disk also follows a type of PV dynamics [31]. Thus, the ideas considered above

in the context of geophysical fluids and fusion plasmas may be applicable. For example, it

is thought that vortices in stellar accretion disks could enhance planet formation processes
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[34]. The background Keplerian shear and/or PV dynamics may have a destabilizing effect

on the vortices, which could reduce the likelihood of planet formation.

6.4 Ideas for future experiments

So far, experiments with the 8ST have focused primarily on the case of time-

independent strain flows, a particularly simple case for which the data can be compared

directly to the K81 theory. Interesting discrepancies with the K81 theory have been ob-

served when smooth vorticity profiles are used, including modified stability properties and

inviscid damping of the orbits. These topics deserve further, quantitative study. It would

be worthwhile to measure precisely the damping rate of the orbit for a range of vorticity

profiles, and attempt to quantify the conditions necessary for the damping to be shut off

before reaching a steady elliptical state. By conducting a perturbation analysis about such

an elliptical state, it might be possible to also compute theoretically the damping rate and

compare to experimental data. Although the Okubo-Weiss local stability criterion [46, 47]

and its variants [49, 50] are often implemented for turbulent flows, it would be interesting

to study these predictions further for the simple case of a single strained vortex.

Data were presented in Chapter 5 for certain cases of time-dependent strain, includ-

ing square pulses, Gaussian pulses, and sinusoids. However, these data were preliminary,

and the parameter space of possible time dependencies is vast. A logical next step in the

8ST research program is to document precisely the behavior of the vortices in response to a

wide range of time-dependent strain flows of varying magnitude and frequency scale (i.e.,
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in the spirit of Fig. 5.8). Wherever possible, the data should be compared with theoretical

results. For example, when the strain varies slowly, adiabatic behavior is expected, and so

future experiments should focus on studying the equilibria occuring under these conditions,

as well as the manner in which adiabaticity is broken when the frequency scale of the strain

is increased. Of particular interest is the case of the sinusoidal strain, where the vortex can

be “stirred” into a state of driven turbulence; here, the transition to chaotic behavior could

be studied in detail. Furthermore, it would be interesting to then cease the sinusoidal time

dependence in favor of a constant one, and study the relaxation of the turbulence in the

presence of a background (static) strain flow.

The parameter space of possible experiments in the 8ST could be further expanded

by considering other spatial dependencies of the applied flow (i.e., boundary conditions

other than the quadrupolar one used to generate the simple strain flow). Whereas this

dissertation focuses primarily on elliptical m = 2 vortex modes, attempts could be made to

excite and study m = 3 or m = 4 modes as well. The effect of applied irrotational shear on

a vortex could be studied by using the flow pattern shown in Fig. 2.4(b), although in this

case the timescale of the experiment is limited due to translation of the vortex toward the

wall. On a slightly more complicated level, when a quadrupolar voltage pattern is rotated

about the trap, the external flow appears as a simple shear flow in the rotating frame, and

so this could be an interesting direction for research.

Finally, looking beyond the 8ST, it would be valuable to consider ways to simulate

other types of quasi-2D fluid behavior using electrons. For example, it could be possible

to create a PV-like situation if the trapping length of the apparatus was a function of the
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perpendicular spatial coordinates, L = L(x,y); here, the circulation associated with a given

electron would change as it drifts about the trap. Although such experiments would be

difficult or impossible using the current 8ST apparatus, this could be implemented on a

future device. Experiments of this type would be of greater relevance to the dynamics of

geophysical fluids, laboratory fusion plasmas, and astrophysical disks. Complementary

studies would also be relatively simple to carry out using a modified version of the vortex-

in-cell code.
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Appendix A

Experiments with the multi-cell trap

A.1 Introduction

Prior to construction of the 8ST, experiments were conducted using a different non-

neutral plasma confinement apparatus called the Multi-Cell Trap (MCT). The goal of these

experiments was to develop a high storage capacity PM trap capable of confining large

numbers of charged particles for a long period of time. They constitute the first laboratory

studies of the multi-cell concept originally proposed by Surko and Greaves [108], in which

single-component plasmas are transferred into off-axis Penning-Malmberg (PM) traps and

stored in parallel. Contrary to the 8ST experiments, the conditions for the plasma/fluid

analogy are often violated here. Collisional and 3D effects play an important role in the

dynamics of MCT plasmas. However, in many cases the plasmas exhibit vortex-like be-

havior (i.e., due to the plasma rotation and the rapid axial bounce motion) – in fact, the 8ST

concept was motivated by a set of experiments performed in the MCT.
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The primary constraint on storage capacity in a PM trap is the “space charge” po-

tential generated by the plasma through Poisson’s equation. The space charge potential

has its maximum absolute value at the center of the plasma where the particle density is

highest, given by

|φ0|=
eN

4πLε0

[
1+2ln

(rw

rp

)]
, (A.1)

where rp is the radius of the plasma and a flat plasma density profile is assumed [109]. In

order to confine the plasma axially, the electrostatic potentials generated by the confinement

electrodes must exceed the plasma space-charge potential, otherwise particles will leak out

of the ends of the trap until the plasma potential and confinement potential are equal. This

places a practical limit on the number of particles that can be confined in a single PM trap.

The confinement electrodes are biased to voltage Vc by a power supply. These voltages

must be switched quickly in order to both trap and deliver particles. While confinement

voltages of order Vc ∼ 1 kV are manageable, one would like to avoid larger voltages due

to a number of factors including electrical breakdown and plasma heating. Additionally,

rp/rw and L must be relatively small in order to avoid expansion and heating of the plasma,

and therefore maximize its lifetime in the trap. The MCT concept addresses these problems

by separating the plasma into a few smaller plasmas which are confined individually in a

series of smaller, parallel PM traps. In this way, the separate plasmas are shielded from

each other by conducting walls, thus allowing for a greater number of particles to be stored

in a similar volume.

The multicell concept was developed in order to store and manipulate large num-
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Figure A.1: Computer model (a) and photograph (b) of the MCT electrode structure. The
large-diameter master cell is located on the left, the storage cell array is in the middle, and
the phosphor screen assembly is on the right.

bers of positrons (i.e., anti-electrons) for a variety of antimatter applications. These include

efforts to create an electron-positron plasma in the laboratory [110], and other applications

where large bursts of positrons are needed [111]. The MCT experiments discussed here

were performed using electrons, with the idea that the techniques developed could also

be used to manipulate positron plasmas. Due to its unusual geometry, experiments with

the MCT led to a number of interesting discoveries in the context of non-neutral plasma

physics, which are presented here. Also discussed are the successes and failures of this

MCT device with regard to the goal of high-capacity antimatter storage, and recommenda-

tions for future devices are given.

Pictures of the MCT apparatus are shown in Fig. A.1, including a computer model

and a photograph of the assembled device after gold-plating. The MCT consists of a large-
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diameter “master cell” PM trap (left side), and a series of four small-diameter, parallel

“storage cells” (right). One storage cell, labeled “cell A,” shares an axis with the master

cell, while the axes of the other three cells (B, C, and D) are parallel to but displaced

radially by 30 mm from the master cell axis, and evenly spaced in azimuthal location. The

wall radius of the master cell is 38 mm. The radius of cells A, B, C, and D are 8, 8, 6, and

4 mm. The storage cells were designed and built with different radii, so as determine how

small the cells can be made without adversely impacting the confinement properties. The

length of the confinement region is about 200 mm for the master cell, and 170 mm for all

of the storage cells.

Each cell (including the master) is equipped with a few solid annular electrodes

for axial confinement, and a four-fold azimuthally segmented electrode which can be used

for improved plasma confinement via the Rotating Wall (RW) technique [24]. The entire

electrode structure was mounted inside the same vacuum chamber and magnet system used

for the 8ST experiments, with vacuum pressure ∼ nanotorr and magnetic field B = 4.8 T.

The same electron source was used to generate plasmas, and the same phosphor screen and

CCD camera were used to diagnose the electron density (although the optical setup was

slightly different).

The procedure for injecting electron plasmas into the MCT storage cells is shown

schematically in Fig. A.2. First, plasmas are generated (“filled”) in the master cell with

the heated cathode source using the procedure described in Chapter 2. The number of

electrons N can be controlled by the electrode voltages and the duration of the fill process.

The plasma must be small in radius so as to eventually fit into the smaller storage cells, and
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Figure A.2: Schematic diagram of the MCT geometry and procedure. (a) view of the
master and storage cells in the plane perpendicular to B, including a spiral plasma trajectory
from the master cell axis to the axis of cell B (red). (b)-(e) side view of the electrodes with
labels M1-5 (master) and S1-6 (storage). Plasmas beginning on the master cell axis (b) are
moved across the field using the autoresonant diocotron drive (c), injected into an off-axis
cell (d) and stored (e).

high in density in order to maximize the number of stored particles. This was accomplished

by compressing the plasma with the RW technique using the segmented electrodes (M4).

In order to transfer the plasma into cell A (on-axis), the confinement potentials are simply

adjusted so that the plasma streams into the cell along the magnetic field. In order to transfer

the plasma into the off-axis cells, the plasma must be displaced across the magnetic field.

This was done by applying a chirped voltage signal (i.e., a sinusoid where the frequency

increases with time) to one of the segments of electrode M4 in order to drive the plasma

outward in radius. Here, the nonlinear m = 1 diocotron mode of the plasma locks to the

drive signal through a process called autoresonance, as described in Refs. [112, 109, 25].

When the plasma displacement reaches the radius of the off-axis cells, the drive signal is

removed, and the plasma orbits the master cell at a fixed radius. As the plasma transits
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the desired off-axis cell, the confinement potentials are adjusted so that the plasma streams

along the magnetic field into the storage cell. Then, the plasma in the storage cell is isolated

by once again raising the confinement potentials, and plasma expansion is countered in the

storage cell by implementing the RW technique using the segmented electrodes (S4). In

this way, plasmas can be injected into the storage cells, both on and off the axis of the

master cell, and confined for long periods of time using the RW.

In general, to transfer and confine a plasma in a storage cell requires a number of

steps, where the performance at each step can have a significant impact on the following

steps. The research program with the MCT can be summarized as a series of experiments

aimed at understanding the plasma dynamics through each step from filling the master cell

to RW confinement in the storage cell. This appendix is organized such that each section

focuses on a particular step in this process.

A.2 Plasma pinning during the fill process

The trap is filled with plasma using a heated cathode source which produces a mag-

netized beam of electrons. The cathode is located in the flaring region of the magnetic field

where Bz ∼ 0.02 T, and biased to a negative voltage Ve in order to generate a beam. As the

electrons travel into the high field region where the MCT electrodes are located, parallel

energy is converted to perpendicular in order to conserve the magnetic moment adiabatic

invariant E⊥/B [19]. The first master cell confinement electrode M1 (closest to the cathode)

is biased to the “lip voltage” Vl , which is chosen to be slightly less than the parallel energy
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Figure A.3: Schematic diagram of the plasma generation process. (a) a heated cathode
(red) produces an electron beam which passes through the master cell. (b) the beam (red)
has sufficient energy to transit electrode M1, but is reflected by electrode M5. Scattering
events can cause electrons to become trapped (black arrow), and the trapped electrons can
form a plasma (blue).

of the beam, so that the electrons are just barely able to pass through the lip electrode into

the trap region. The last master cell electrode M5 is biased to the confinement voltage

Vc = −100 V such that the incoming beam particles are reflected. As the particles transit

the master cell confinement region, they can scatter parallel energy into the perpendicular

direction, either through binary collisions or, conceivably, through a two-stream instability

[86]. In this way, the parallel energy can be reduced to below eVl so that the particles be-

come trapped in the master cell. A schematic of the plasma filling process is shown in Fig.

A.3. This process continues until the desired number of trapped electrons N is reached. At

this point, the lip electrode M1 is ramped to voltage Vc so the incoming beam is blocked,

and the plasma is isolated inside the master cell.

In practice, the voltages Vl and Ve and the fill time are adjusted until the desired
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plasma is achieved. However, small variations in the intial plasma can have a significant

effect on the dynamics later in the experimental procedure. Thus it is important to de-

velop a better understanding of how the plasmas are generated in order to achieve better

reproducibility.

The above description of the fill process considers only the axial dynamics. In prin-

ciple, the distribution of electrons perpendicular to the magnetic field is of little importance

since the profile can be adjusted with the RW. However, the performance of the RW com-

pression can be sensitive to the initial electron distribution. It was found in the MCT that

the initial density profile was in turn sensitive to where in the perpendicular plane the elec-

tron beam passed through the master cell electrodes. For example, a beam which was well

centered on the axis of the master cell tended to result in plasmas with small radius and

high density, whereas a beam which was offset from the axis resulted in broad, low-density

plasmas. In the latter case, electrons are deposited at the beam location away from the trap

axis.

Eventually, the trapped particles settle into a collective rotational motion as would

be expected for an electron plasma. However, during the early stages of the fill process,

very few particles are trapped, and so the collective rotation of the trapped particles (which

may not yet constitute a plasma) is weak. It was observed in the MCT that early in the fill

process, the trapped particles were “pinned” to the beam location. As the particle number

N grew over time, a transition occurred where the trapped population separated from the

beam and began to execute an m = 1 diocotron mode.

Data are shown in Fig. A.4 (a) for the location of the beam and plasma during
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Figure A.4: Data showing the de-pinning of the trapped electron population as its par-
ticle number increases. (a) location (triangles) and spatial extent (contours) of the beam
(green circle), pinned plasmas (cyan), and de-pinned plasmas (red); (b) particle number as
a function of the fill time.

the fill process in the master cell. Here, the beam location and width is diagnosed by di-

rect imaging with the phosphor screen (the beam is allowed to pass through the electrodes

briefly so as not to damage the screen). The beam is shown in Fig. A.4 (a) as a green

shaded circle; its width is ∼ 0.25 mm, and it is located approximately 1 mm from the

trap axis. Plasmas are created and diagnosed at various times throughout the fill process.

Panel (a) shows the location of the plasma density centroid (triangles) for pinned (cyan)

and unpinned (red) plasmas. Also shown is the spatial extent of the pinned plasmas (cyan

contours corresponding to 5% of the peak density). Panel (b) shows the total trapped parti-

cle number N as a function of the fill time t. The data show that below a certain threshold,

the plasma location is coincident with that of the beam; whereas above the threshold, the

plasma becomes decoupled from the beam and performs a quasi-circular diocotron orbit

about the trap axis.
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The pinning behavior can be understood in terms of a simple 2D fluid model, where

the plasma and the beam are treated as individual point vortices. As discussed in Chapter

2, a single electron can be treated as a point vortex (under certain conditions), where the

charge per unit length is analogous to the vortex circulation. For a plasma consisting of N

electrons, if the internal degrees of freedom (i.e., elliptical distortions, etc.) are neglected,

the perpendicular dynamics are that of a point vortex with circulation Γp = eN/L which

can move across the magnetic field according to the E×B drift. The passing beam particles

quickly transit the master cell in a single bounce, therefore the perpendicular drift motion

is insignificant and the beam can be treated as a stationary point vortex. The circulation

associated with the beam is given by the number of passing electrons in the trap at any

given time, which is Nb = I/e fb = 2LI/ev‖ where I ∼ 0.1 µA is the beam current, so the

beam circulation is Γb = 2I/v‖.

We construct a Hamiltonian describing the drift dynamics of the trapped plasma

located at (r,θ) under the influence of the beam and its own image field,

H(r,θ) = ΓbΓp ln
[
r−1

w (r2 + x2
b−2rxb cosθ)

1
2

]
+Γ

2
p ln(1− r2/r2

w), (A.2)

where the beam is located at distance xb along the positive x−axis, and the canonical co-

ordinates are (pθ,θ), where pθ = eBr2/2L. The first term in Eq. A.2 is the interaction

energy between the beam and the plasma; it describes orbital motion of the plasma about

the beam, since the beam location is fixed. The second term is the interaction energy of

the plasma with its image charge induced in the wall; it describes circular orbital motion

about the trap axis (i.e., the m = 1 diocotron mode). The system is parameterized by the
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Figure A.5: Contours of the beam-plasma Hamiltonian given by Eq. A.2. Here, xb = 0.1,
and Γp/Γb = (a) 0.1, and (b) 10, corresponding to beam-dominated and plasma-dominated
behavior, respectively. A bifurcation occurs as the parameter Γp/Γb is varied.

ratio of circulations Γp/Γb. Contours of the Hamiltonian in Eq. A.2 are plotted in Fig. A.5

for xb/rw = 0.1, and Γp/Γb = (a) 0.1, and (b) 10. For small Γp/Γb, the plasma orbits are

centered on the beam. As Γp/Γb increases, a bifurcation occurs, and the plasma can orbit

either the beam, the trap axis, or both. Thus, as the particle number associated with the

plasma grows, the plasma can be de-pinned when Γp/Γb reaches its critical value.

This simple model captures qualitative aspects of the plasma pinning phenomenon.

These ideas are useful in understanding the early stages of the plasma filling process. Ad-

ditionally, the pinning behavior could potentially be used as a technique to better control

the transverse location of small trapped plasmas.
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A.3 Cell-to-cell transfer

After generating a plasma, the RW technique is used to compress the plasma as

needed. The RW method has been studied widely and is well understood [113, 24], so it

is not discussed in detail here. Following the RW compression, the plasma can be either

transferred directly into the on-axis cell (A), or moved across the field and injected into one

of the off-axis cells (B, C, or D). Although plasma transfers have been performed in other

devices, they are unique in the MCT. Coaxial transfers (into cell A) are unique in that the

storage cell has a much smaller transverse dimension than the master cell. Transfer into the

off-axis cells provides an additional level of complication, since, in addition to the axial

motion, the plasma is inclined to drift around the trap due to image fields. Due to their

relative simplicity, coaxial transfers were studied first in the MCT in order to understand

the effect of the differing trap dimensions.

Experiments with coaxial transfers were conducted by preparing a plasma in the

master cell, then simply grounding the gate between the master and storage cell (electrodes

M5 and A1) for some time t, after which the gate was raised again, thus isolating the

transferred plasma from that remaining in the master cell. Then, the transferred plasma

was diagnosed using the CCD camera. This procedure is shown schematically in Fig. A.6,

where we allow for a uniform bias Vs applied to all storage cell electrodes. It was found that

the spatial distribution of the transferred plasma was similar to that of the original plasma,

so the perpendicular dynamics are unimportant. The primary metric for these experiments

was the ratio of the number of particles in the transferred plasma Ns to that of the original
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Figure A.6: Schematic diagram of transferring plasma into an on-axis storage cell. The
experiments begin with (a) a plasma confined in the master cell, then (b) the plasma is
allowed to stream into the storage cell, then (c) the storage cell plasma is isolated and
diagnosed.
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plasma N0, which we will call the transfer efficiency Ns/N0. The goal was to maximize the

transfer efficiency so as to increase the number of particles trapped in the storage cells1.

Data are shown in Fig. A.7 (a) for the transfer efficiency as a function of the the

gate time t, for two different initial plasmas with rp ∼ 1 mm and N0 = 4× 106 (magenta)

and 6× 106 (blue) e−. Although not shown in the data, plasma initially streams into the

storage cell on the order of the bounce time 1/ fb = 2L/vT , which is approximately 1 µs.

The plasma quickly develops a collisionless steady state where Ns/N0 ∼ 0.2− 0.3. For

t & 1 ms, the transfer efficiency is increased to Ns/N0 > 0.5 as the plasma relaxes into the

storage cell through collisions. The efficiency is comparable for the two different plasmas,

indicating that the curve in Fig. A.7 (a) may be independent of the specific details of the

plasma.

The collisionless steady state can be understood using a simple kinetic model. Here,

the dynamics are described by a phenomenon called “anti-shielding” [114], where the

plasma density is reduced in the vicinity of a positive test charge since the collisionless

particles are accelerated. We consider a 1D system where particles bounce across both

the master cell and the storage cell. The master cell plasma and the storage cell plas-

mas are described by their particle numbers Nm, Ns and lengths Lm, Ls. Initially, before

the transfer begins, Nm = N0, the total number of particles, and the particle energy is

φ0 = −(e/4πε0)nmγm, where nm ≡ Nm/Lm is the 1D density, and γm = 1+ 2log(rw/rm)

(c.f. Eq. A.1). Here, we have assumed that the plasma temperature is small compared to

1One possibility is to conduct multiple sequential transfer events, which is called “plasma stacking”. In
this case, the initial transfer efficiency is not as important. However, subsequent transfer events are compli-
cated by the preexisting plasma in the storage cell. Stacking events are not discussed further here, although
this may be an interesting direction of research.
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Figure A.7: Data showing the efficiency of transferring plasma into an on-axis storage
cell, as a function of (a) time, and (b) voltage applied to the storage cell electrodes. Panel
(a) shows data for two different plasmas with rp ∼ 1 mm and N0 = 4×106 (magenta) and
6×106 (blue) e−. In panel (b), data for N0 = 6×106 e− are compared to a simple kinetic
model (dashed) which is described in the text.
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the space charge potential, eφ/T � 1.

When the gate between the master and storage cells is lowered, particles stream into

the storage cell, and then eventually bounce back into the master cell. Once a collisionless

steady state is reached, the net flux of particles across the boundary between the two traps

is zero. This amounts to a continuity condition nmvm = nsvs, with v the axial velocity of

the particles in each trap region. Energy conservation dictates that mev2
m/2 = φ0− φm,

and mev2
s/2 = φ0−φs−Vs (since the storage cell can be biased). Finally, conservation of

particle number dictates that Nm +Ns = N0. Imposing these three conditions, we obtain a

quadratic equation for the particle number in the storage cell:[
γm

L3
m
+

γs

L3
s

]
N2

s −

[
4πε0Vs

eL2
s

+
2N0γm

L3
m

+
N0γm

LmL2
s

]
Ns +

N2
0 γm

L3
m

= 0 (A.3)

The solution of this equation, scaled to the initial particle number N0, gives the transfer

efficiency. All of the coefficients in Eq. A.3 are constants, except that the storage cell

voltage Vs can be varied. When Vs = 0, the solution is Ns/N0 ≈ 0.37, which is slightly

greater than the observed efficiency on collisionless timescales [c.f. Fig. A.7 (a)].

Physically, this model describes a situation where the storage cell density is reduced

relative to that of the master cell mainly due to the factor γ which depends on the wall radius.

Since rs < rm, the potential in the storage cell is reduced and so particles are accelerated

into the storage cell by the electric field at the interface. Thus, the particles transit the

storage cell faster than the master cell – that is, the storage region is anti-shielded by the

plasma – and so the storage cell density is reduced. This is detrimental to the goal of

maximizing transfer efficiency. However, by applying a negative voltage Vs to the storage
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cell electrodes, particles are slowed down in the storage cell, thus increasing the efficiency

(up to a certain point where the voltage begins to block the incoming particles).

In Fig. A.7 (b), data are shown for the collisionless transfer efficiency (i.e., with

t ∼ 50 µs) as a function of the voltage applied to the storage cell for a plasma with rp ∼ 1

mm and N = 6× 108 e−. It is observed that the efficiency decreases when Vs > 0, since

the electrons are accelerated through the storage cell. Similarly, the efficiency increases

when small negative voltages are applied. The efficiency then decreases again with suffi-

ciently large negative voltages, since electrons are simply blocked from entering the stor-

age cell. The solution to Eq. A.3 (dashed) is compared to the data, up to the point at

which the quadratic solution becomes imaginary (Vs ∼ −3 V). Although the model tends

to overpredict the transfer efficiency, it seems to capture qualitatively the key aspects of the

anti-shielding phenomenon.

In summary, when transferring plasma into a smaller cell on short timescales, it

may be advantageous to apply a small, negative voltage to the electrodes in order to max-

imize the efficiency. On longer timescales t & 1 ms, particle collisions become important.

Collisional dissipation drives the plasma toward a state of uniform potential across the trap

interface, φm = φs. In this case, the transfer efficiency is actually increased in the smaller

cell,

Ns

N0
=

1
1+ γsLm/γmLs

≈ 0.6, (A.4)

in agreement with the observed efficiency on longer timescales [c.f. Fig. A.7 (a)]. Although

interesting, this is somewhat irrelevant, since on collisional timescales, the efficiency can
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be set to unity by applying a sufficiently deep potential well +Vs.

A.4 Autoresonant plasma positioning

In order to transfer plasma into the off-axis storage cells, it must first be displaced

across the magnetic field. This is done by exciting an m= 1 diocotron mode autoresonantly,

where a chirped voltage signal (where the frequency grows in time) is applied to one of the

segmented electrodes in the master cell [25]. Autoresonance is a phenomenon occuring

in nonlinear oscillators, where the amplitude of the oscillator will adjust itself in order to

match the frequency of an applied drive signal. Thus, by varying the frequency of the drive

signal, the amplitude of the oscillator can be varied as well.

The m = 1 diocotron mode is a nonlinear oscillation, where the frequency is given

by

fd =
cNe

πLBr2
w

[
1

1− (d/rw)2

]
, (A.5)

where d is the radial displacement of the plasma centroid [109]. For d/rw� 1, the brack-

eted quantity in Eq. A.5 is ≈ 1, so the linear frequency is f1 = cNe/πLBr2
w. It increases

with d/rw, until d + rp ∼ rw, at which point the plasma distorts elliptically2and Eq. A.5 is

not accurate.

The initial plasma is located near the axis of the master cell. A chirped voltage sig-

nal is applied where the starting frequency is less than f1. As the chirp frequency increases

2These elliptical distortions of plasmas near the wall are analogous to the elliptical vortex distortions
discussed in the body of the dissertation. Here, the plasma is subject to an external, irrotational shear flow
due to its own image charge induced in the wall.
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through f1, the diocotron mode locks to the signal, and the radial location of the plasma

increases autoresonantly as the frequency increases. In this case, the plasma trajectory is

an outward spiral, as depicted in Fig. A.2 (a). The drive signal is removed when the plasma

displacement reaches the radial location of the off-axis cells, that is, when d = 30 mm.

At this point, d/rm ≈ 0.79 and fd ≈ 2.66 f1 according to Eq. A.5. Once the drive signal

is removed, the plasma performs a circular diocotron orbit over which it transits the three

off-axis cells.

However, the observed diocotron frequency in the MCT master cell was not exactly

in agreement with Eq. A.5. Thus, a more detailed model of the diocotron mode was

needed in order to position the plasma at the correct radius. In previous work [115], an

analytical theory for the diocotron mode frequency was given, including the effect of the

“magnetron” drift due to the vacuum electric fields produced by the confinement electrodes.

In order to obtain this result, Ref. [115] assumed that rp/rw� 1, d/rw� 1, rw/L� 1, and

φ0/Vc� 1. In the MCT, these assumptions are all routinely violated except for rp/rw� 1.

Therefore, a model was developed where the plasma is treated as a line charge, but no

other assumptions are made. This problem was solved numerically to find the diocotron

frequency as a function of N and d.

Given N, d, and the electrode geometry, the length L of the plasma can be calculated

numerically by comparing the plasma potential (Eq. A.1) to the confinement potentials.

Results are shown in Fig. A.8 for the master cell geometry and the storage cell geometry,

where contours of the electrostatic potentials due to the end confinement electrodes are

shown. The axial coordiante z is measured from the center of the trap; only half of the trap
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Figure A.8: Calculated plasma length plotted over vacuum electric potentials for the master
cell (a) and a storage cell (b). Here, the vacuum equipotential contours are plotted due to
end confinement electrodes, which are biased to −Vc = −100 V. Plasmas are shown for
N = 2×108 (solid), N = 9×108 (dashed), and N = 16×108 (dash-dot), at three different
values of d.
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is shown, since it is symmetric. Plasmas with three different values of N are shown as lines,

for three different values of d, where the length of the line corresponds to the calculated

plasma length L. For larger values of N, the plasma pushes further into the confinement

field, and so the magnetron effect is emphasized. Furthermore, it is clear that the magnetron

effect is significantly more important in the master cell than in the storage cell, due to the

larger aspect ratio rw/L.

After calculating L, the diocotron frequency is calculated numerically in the spirit

of Ref. [115], including contributions from both the image fields and the confinement

fields. These predictions are compared to experimental data in Fig. A.9 as a function of N

and d. The numerical model discussed here (solid) is in good quantitative agreement with

the data, whereas the predictions of Ref. [115] diverge, since the assumptions used in that

calculation are violated.

Using this numerical model, the diocotron mode frequency corresponding to the

off-axis cell location can be calculated, and the drive signal can be removed upon reaching

this frequency. At this point, the plasmas can be transferred into the off-axis cells. In

order to complete the transfer, the plasmas must be small in spatial extent so as to fit

smoothly into the storage cells. In order to do this, the plasmas were compressed using

the RW technique on the axis of the master cell. However, it was found that the plasmas

expanded significantly during the autoresonant diocotron excitation (i.e., over the course

of the spiral trajectory) [25]. This work studied the dependence of the expansion on other

system parameters, and identified ways to minimize its effect.

Some of the work and discussion in this section is taken from N. C. Hurst, J. R.
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Figure A.9: Comparison of diocotron frequency data with a numerical model (solid) and
an analytical one (dashed) in the master cell. (a) frequency as a function of particle number.
Shown are the image field contribution (blue), the magnetron contribution (magenta), and
the sum of the two (black). (b) frequency as a function of displacement, including fitted
(black) and unfitted (green) numerical predictions, and analytical ones (dashed, red).
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Danielson, C. J. Baker, C. M. Surko, ”Finite-length, large-amplitude diocotron mode dy-

namics,” AIP Conf. Proc. 1668, 020003 (2015). The author of the dissertation led the

research and was the primary investigator and author of this paper.

A.5 Bounce-average orbits

As the plasma executes a circular diocotron mode at d ≈ 30 mm, it transits the lo-

cation of each of the off-axis cells (B, C, and D). In order to transfer the plasma into these

cells, the confinement potential separating the two traps is removed so that the plasma

streams along the magnetic field into the storage cell, as depicted in Fig. A.2 (d). How-

ever, this situation is more complicated than the on-axis transfer discussed above, since

the plasma continues to execute a diocotron orbit while the transfer takes place. Prior to

conducting these experiments, it was naively thought that the transfer would be interrupted

when the master cell diocotron motion carried it away from the storage cell location.

In fact, experiments with off-axis plasma transfer in the MCT showed that during

the transfer process, the plasmas actually perform quasi-elliptical diocotron-like drift orbits

within the bounds of the storage cell. This phenomenon is demonstrated using experimental

data and a simple model (magenta lines) in Fig. A.10. Panel (d) shows the trajectory of the

plasma density centroid in the frame of the storage cell (cell C), where the master cell axis

is located along the negative x−axis; panel (f) shows CCD images of the plasma density

over one period of the orbit. The particle number, mean-square radius, and displacement

of the plasma in the storage cell are shown in panels (a)-(c). Evidently some particles in
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Figure A.10: Data and a simple model of bounce-average diocotron orbits for plasmas
spanning the master and storage cells. Shown are (a) the number of particles inside the
storage cell Ns, and total, N0; (b) plasma radius; (c) displacement in the storage cell frame;
(d) trajectory of the plasma centroid (blue) and orbit predictions of a simple model (ma-
genta); (e) plasma images over the first orbit; (f) plasma images over the third orbit. Panels
(e) and (f) correspond to the green and magenta bars in panel (c).
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the outer region of the plasma are lost during a transient event as the transfer begins, after

which the plasma settles into a steady orbit. CCD images of the plasma density during the

transient are shown in panel (e).

This interesting orbital behavior of the plasma can be modeled simply according

to bounce-average drift dynamics, as would be a normal diocotron orbit in a single cell.

Since the bounce motion of the particles is rapid compared to the drift motion, the plasma

behaves as a rigid column. Thus, the perpendicular drift motion of a particle is given by

the average electric field experienced across a full bounce cycle spanning both cells, and

so we average the drift velocity vectors, weighted by the instantaneous fraction of particles

existing in each cell. Since the orbit spans a large range of displacement in the storage

cell, 0 ≤ ds/rs . 0.8, the full nonlinear dioctron formula must be considered (Eq. A.5).

However, the orbit extends over a small range of displacement in the master cell, that is

dm/rm ≈ constant, so the contribution from the master cell can be modeled as a uniform

drift velocity. These dynamics are referred to as “bounce-average orbits”.

Working in the frame of the storage cell, we treat the plasma as a line charge and

describe its drift dynamics using the Hamiltonian

H =−κds

rs
cosθs + log

[
1−
(ds

rs

)2]
, (A.6)

where κ is a parameter describing the relative weighting of the master cell drift to that of

the storage cell. Unfortunately, κ is difficult to calculate, so the model is fitted to the data

using κ as an adjustable parameter. Contours of the Hamiltonian (which correspond to

plasma orbits) are shown as magenta lines in Fig. A.10. The shape of the orbits predicted
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by this model is in close agreement with the experimental data.

The standard diocotron mode has a stable stationary point at the origin, where the

image field is identically zero; Eq. A.6 has a stationary point which is offset from the

origin, given by θs = π,

ds

rs
=−1

κ
+
( 1

κ2 +1
) 1

2
. (A.7)

Near the stationary point, the orbits are approximately elliptical; whereas for larger orbit

amplitude, the orbit shape is more circular. However, the finite plasma radius places a

limit on the possible orbit amplitude, since the edge of the plasma approaches the wall. By

selecting the location where the plasma transfer begins, the plasma can be positioned near

the stationary point, where, in principle, it should remain static. In this way, the off-axis

transfer can proceed similarly to the on-axis case, without the additional complication of

the orbital motion. Data are shown in Fig. A.11 for a bounce-average plasma spanning

both cells which is situated near the stationary point. Shown are the location of the plasma

density centroid [panel (a)], the particle number, plasma radius, and displacement [panels

(b)-(d)], and CCD images of the plasma density at times t = 15, 30, and 45 ms [panels

(e)-(g)]. The data show that the plasma remains at the stationary point, although it expands

and loses particles at an enhanced rate due to the unusual trapping geometry. Other data

(not shown here) indicate that plasmas executing bounce-average orbits can be damped

toward the stationary point using a feedback circuit connected to the segmented electrode

on the storage cell. Additionally, the exact location of the stationary point can be tuned by

applying a static asymmetric potential using the storage cell segmented electrode.
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Figure A.11: Data for a bounce-average plasma located at the stationary point. (a) location
of the plasma centroid over 50 ms, including predictions of a simple model; (b) total particle
number N0 and number in the storage cell Ns; (c) plasma radius; (d) displacement in the
storage cell frame; (e)-(g) CCD images of stationary plasmas at t = 15, 30, and 45 s.
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The feasibility of performing off-axis transfers is improved significantly due to the

bounce-average orbit behavior. Rather than having to complete the transfer while the mas-

ter cell diocotron orbit transits the storage cell (∼ 100 µs), the transfer can be completed

over the course of∼ 10 ms while the plasma sits at the stationary point given by Eq. A.7. In

this way, the transfer events can be performed on collisional timescales, and are therefore

not subject to the anti-shielding effect shown in Fig. A.7. By applying a positive voltage to

the electrodes of the storage cell, off-axis transfers approaching 100 % efficiency could be

performed.

Some of the work and discussion in this section is taken from N. C. Hurst, J. R.

Danielson, C. J. Baker, C. M. Surko, ”Electron plasma orbits from competing diocotron

drifts,” Phys. Rev. Lett. 113, 025004 (2014). The author of the dissertation led the research

and was the primary investigator and author of this paper.

A.6 Trapped off-axis plasmas

During an off-axis transfer, the bounce-average orbit dynamics are allowed to pro-

ceed for some time, then the gate electrodes separating the storage cell from the master cell

are biased to the confinement voltage −Vc. This isolates the transferred plasma in the stor-

age cell. The plasma remaining in the master cell continues to execute a large-amplitude

diocotron mode; it can be either discarded, or returned to the master cell axis using autores-

onance or feedback damping. Thus, the primary goal of the MCT, to transfer plasmas into

off-axis cells, was realized. Plasmas were transferred into the on-axis storage cell, and each

166



Figure A.12: Images of plasmas trapped in each of the storage cells (not simultaneously).
(a) combined, and (b) individual images of all four trapped plasmas; (c) radial density
profiles of each plasma.

of the off-axis ones (although not simultaneously). Images of these plasmas are combined

and shown in Fig. A.12. Here, the off-axis plasmas have larger radii and lower density

compared to the on-axis plasma, due to expansion during the diocotron excitation and the

bounce-average orbits.

A secondary goal of the MCT research program was to hold plasmas in off-axis cells

for long periods of time. In principle, while a plasma is held in an off-axis cell, other plas-

mas could be injected into other cells, so as to obtain simultaneous long-term confinement

of multiple different off-axis plasmas. This was not accomplished in the MCT experiments

described here, primarily due to technical limitations and hardware availability. However,

the transport properties of confined off-axis plasmas were studied.
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Figure A.13 shows the evolution of a plasma trapped in the off-axis cell C over

half a minute using the RW technique to combat expansion (blue). Other data are shown

(magenta), where the RW compression is turned off after 15 s and the plasma is allowed to

relax freely. The data show that the RW compression can take 5 - 10 s to reach a steady

state, and that the free expansion rate of the plasma is about 5 s. Similar methods were used

to measure the lifetime of plasmas (without RW compression) in each of the off-axis cells

for a range of plasma parameters. In cell A and cell B, the measured lifetime was ∼ 15 s;

in cell C, ∼ 5−10 s; and in cell D, < 1 s.

A few conclusions can be made here. Since cells A and B (which have the same

wall radius) show similar transport properties, the transport does not seem to be any worse

for the off-axis cell. However, the transport does depend strongly on the radius of the cell

(i.e., for a fixed plasma radius), specifically the transport is much more rapid in the smallest

cell (cell D) than in the others. When the RW is used to counter the expansion, plasmas can

be stored without particle loss in cells A and B for over a day. Similarly, plasmas were held

in cell C without loss for about two hours, although this is likely not the limit. However, the

transport in cell D was so rapid that the RW method was unable to counter the expansion,

thus plasmas could not be held in cell D for longer than about 1 s.

A.7 High-voltage experiments

All of the experiments discussed in this dissertation use axial confinement voltages

of Vc = −100 V, except for the experiments presented in this section. Since the goal is
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Figure A.13: Data showing the RW compression and free expansion of an off-axis plasma.
(a) evolution of the peak density for a plasma under RW compression (blue), and one where
the RW is turned off at t = 15 s (magenta); (b) plasma radius; (c) total particle number. The
data are taken in cell C, and the free expansion time is found to be ∼ 5 s.
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to maximize the trap capacity, the confining potential well should be as deep as possible.

Therefore, experiments were performed in cell A where the confinement voltages were

chosen to be Vc =−1 kV. The main goal of these experiments was to study the fill process

and the confinement properties of plasmas with ∼ kV space charge.

In order to generate kV plasmas, electrodes A1 and A6 were connected to special-

ized power supplies capable of producing ±2 kV voltages which could be varied quickly.

Electrodes A2-A5 were connected to a third power supply. The fill procedure was identical

to that described above, except that the interior electrodes were biased to the “well” voltage

Vw. At some time, the beam was blocked to stop the filling, and electrodes A1 and A6 were

raised to Vc = −1 kV. Shortly thereafter, electrodes A2-A5 were raised to ground. Then,

the plasma was imaged by grounding electrode A6.

Data are shown in Fig. A.14 for the radial density profile of plasmas during the fill

process, and during subsequent free relaxation, for well depths of Vw = 0, 0.5, and 1 kV.

For Vw = 0 V, the fill and relaxation proceeds as usual, where asymmetry-induced transport

drives a flux of particles to the wall on a∼ 10 s timescale. For Vw = 0.5 kV, the transport is

strong enough that a particle flux to the wall develops during the fill process, and continues

after the fill has concluded. For Vw = 1 kV, interesting behavior is observed. Here, the

plasma again develops a flux to the wall during the fill. However, after the fill is concluded,

the plasma maintains a steady state profile reaching all the way to the wall. At lower Vw, the

profiles decayed as particles were absorbed by the wall, but here the profile is static. Figure

A.15 shows the total particle number during the fill and relaxation periods for different well

depths. The cases with Vw ≤ 0.5 kV show decay at late times as particles are absorbed by
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Figure A.14: Radial profiles of high-voltage plasmas during filling and relaxation. Panels
(a) and (b) correspond to Vw = 0 V, (c) and (d) to Vw = 0.5 kV, and (e) and (f) to Vw = 1 kV.
The left column shows the profile evolution over 2.5 s of filling; the right column shows
the subsequent free relaxation of these profiles. The wall radius is indicated by a dashed
line.
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Figure A.15: Evolution of trapped particle number for high-voltage plasmas. Measure-
ments of N are shown for plasmas with Vw = 0, 0.25, 0.5, 0.75, and 1 kV. The fill proceeds
for 2.5 s, up to the dashed line; afterwards, the plasma is allowed to freely relax. For Vw =
0.75 and 1 kV, the plasma develops a steady state where N ≈ constant.

the wall; the cases Vw = 0.75 and 1 kV show a static particle number at late times. Other

experiments were performed where the m = 1 diocotron signal was monitored as a gauge

of the plasma state over long time periods, showing that the plasma maintained the steady

state for at least an hour.

Since these steady profiles extend all the way to the wall, it is clear that there must

be a particle flux to the wall. This implies that, in order to maintain the steady profile, there

must also be a source of electrons. Although this phenomenon was not studied in greater

detail, our hypothesis is that the plasma was continuously resupplied with electrons by

ionizing the background neutral gas in the vacuum chamber. Generally, at low confinement

voltages Vc =−100 V, the plasma often cools to a temperature T < 1 eV due to cyclotron

radiation. However, with Vc ∼ 1 kV and N approaching 1011, the radial transport rate is
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much higher. As electrons move outward in radius, electrostatic energy is liberated, which

heats the plasma. The hot plasma in turn can ionize the background gas, providing a source

of electrons. The potential well is filled by these electrons until the well is filled (i.e., the

plasma space charge potential is equal to Vc). The ions, presumably, are accelerated by

the negative endcap potentials, where they can either become trapped, or ejected from the

system along the magnetic field. When the potential well was full, a flux of electrons onto

the phosphor screen was observed during the steady state, showing that electrons were lost

axially through the confinement electrodes, as well as radially to the wall.

Further insight can be gained by studying the spatial density distribution during the

steady state discharge. CCD images are shown in Fig. A.16 for plasmas with Vw = 0.25 kV

(left) and 0.75 kV (right), after 2 s of filling (top) and after 2.5 s of filling and 2 s of free

relaxation (bottom). Whereas Fig. A.14 shows the evolution of azimuthally averaged radial

density profiles, Fig. A.16 shows that the plasmas feature non-axisymmetric structures.

For example, in Fig. A.16 (a), a clear m = 4 mode is observed, whereas the structures

are more complicated in the other images. These data indicate that the radial transport

may be occuring due to the growth and breaking of diocotron-like waves on the plasma

surface. Thus the transport is somewhat turbulent and fluid-like, rather than diffusive. It is

interesting to draw an analogy with the behavior of toroidal fusion plasmas, where radial

transport is driven largely by turbulent behavior rather than diffusive processes.
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Figure A.16: Images of the electron density distribution of high-voltage plasmas during
the fill and relaxation periods. Panels (a) and (c) correspond to Vw = 0.25 kV, and panels
(b) and (d) to Vw = 0.75 kV. Panels (a) and (b) show the density after 2 s of filling; panels
(c) and (d) show the density after 2.5 s of filling and 2 s of free relaxation. The dark spot at
(x/rw,y/rw)≈ (0.1,0.1) is an artifact due to a defect on the phosphor screen.
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A.8 Vortex destruction in the MCT

Reference [25] found an upper limit to the diocotron mode amplitude that could be

excited using the autoresonant drive technique. When the plasmas reached dm/rm ∼ 0.85-

0.9, they would become deformed and disappear. This process was difficult to diagnose,

since the master cell plasmas could only be imaged by passing through the storage cells.

We hypothesized that the plasmas were being deformed and destroyed by the electric field

due to the autoresonant drive electrode. Although the amplitude of the signal was typically

< 5 V, the electric field is concentrated near the gaps between the segmented electrode.

Plasmas with large-amplitude diocotron modes pass close by these gaps, and are therefore

subject to strong electric fields.

In order to test these ideas, plasmas were trapped in cell A (where the entire density

distribution could be diagnosed) and subjected to strong electric fields by biasing one seg-

ment of electrode A4 to a positive voltage Va. These data are shown in Fig. A.17, where

the biased electrode is shown in magenta. The outer region of the plasma is stripped away

by the E×B drift flow due to the applied electric field. In Fig. A.17 about 20 % of the

original particles are lost during the stripping event.

These events are similar to the vortex stripping phenomena which have been ob-

served in laboratory water tanks [21]. However, these plasmas are not well-described as

2D fluids, since the asymmetry potential is applied to a segment which extends only over a

portion of the plasma length. It was found that the asymmetry potential gave rise to axial

trapping of plasma particles. For example, with Va > 0, the plasma particles were divided
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Figure A.17: Stripping of a plasma in the MCT due to an applied asymmetric potential.
Electron density maps are shown at times t = 2, 8, 14, 20, 26, and 32 µs (a)-(f) when a
constant voltage is applied to one segment (magenta) of electrode A4. This and other data
provided the motivation for the 8ST device.
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into two populations, those trapped axially under the electrode A4, and those confined be-

tween electrodes A1 and A6 (i.e., passing particles). The passing particles experienced a

much weaker electric field than the trapped particles due to bounce-averaging; therefore,

the trapped plasma could be heavily deformed or destroyed, while the passing plasma was

just weakly deformed. When Va < 0, particles could be excluded from electrode A4 al-

together, and thus the asymmetry potential had little effect. Other experiments were done

where the segments of electrode A4 were biased in a quadrupole pattern, generating a

simple strain flow (as discussed in the body of the dissertation). In this way, the m = 0

component of the asymmetric potential was zero, so particles on the trap axis would not

experience axial trapping. However, trapping effects were still observed for off-axis parti-

cles.

Due to these 3D effects, we were unable to develop a theoretical model which could

quantitatively describe the behavior. Therefore, a new set of electrodes was designed and

built, where the segmented electrode was made to be long in order to study pure 2D fluid

physics with external flows – the 8ST. The data in Chapter 4 are generally in quantitative

agreement with 2D fluid theory, thus the 8ST design is sufficient to avoid the 3D effects

from which the MCT “vortex” experiments suffered.

A.9 Summary and Conclusions

A series of experiments were conducted with the MCT electron plasma confinement

device, in order to study the feasibility of trapping large numbers of charged particles in a
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set of small, parallel PM traps. In order to trap plasmas in off-axis cells, plasmas must first

be generated in the master cell, compressed using the RW technique, displaced off-axis in

the master using the autoresonant diocotron drive, transferred axially into the storage cell,

and finally compressed and held in the storage cell using the RW. Each of these steps was

studied in detail, and interesting physical processes were observed during each step.

When filling plasma into the master cell, it was found that early in the fill process,

the plasma was pinned to the location of the incoming beam. When the plasma developed

a sufficiently large particle number, it decoupled from the beam. When transferring plasma

into the on-axis cell (cell A), it was found that the plasma developed a collisionless steady

state where the plasma density in the storage cell was reduced due to anti-shielding. This

density could be adjusted by applying a uniform potential to the storage cell electrodes. On

longer timescales, the storage cell density during the transfer increased due to collisional

effects.

During the autoresonant diocotron excitation, it was observed that the plasma ex-

panded significantly, and was eventually destroyed upon reaching displacements of dm/rm∼

0.9. Moreover, the observed diocotron mode frequency was not in agreement with any

known theory, so a numerical model was constructed which accurately predicts the fre-

quency. When plasmas were transferred into the off-axis cells, they performed quasi-

elliptical bounce-average orbits due to the differing electric fields in the master and storage

cells. These bounce-average plasmas could also be held in stationary states by positioning

them at a stationary point where the master and storage cell drifts cancel.

It was determined that, without using the RW technique to counter expansion, the
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lifetime of plasmas in the storage cells was about 15 s in cells A and B (rw = 8 mm), 5-10

s in cell C (rw = 6 mm), and < 1 s in cell D (rw = 4 mm). With the RW, plasmas could be

confined more or less indefinitely in cells A, B, and C; however in cell D, the expansion was

too rapid and could not be countered with the RW. Experiments with kilovolt confinement

potentials in cell A showed that the expansion rate was so large that the plasma heated and

ultimately ionized the background neutral gas.

Future attempts to develop multi-cell PM trap devices should consider these results

and adapt the design accordingly. The plasma manipulation techniques have been shown

to work, including on-axis and off-axis transfers and the autoresonant diocotron excitation;

although care must be taken to properly compress the plasma using the RW technique, and

to minimize the expansion during other stages. According to the data presented here, the

primary problem with operation a multi-cell device is the strong radial transport which is

observed at large particle number N, and at large scaled plasma radius rp/rw. In the regime

of kilovolt plasma potentials, the transport may be too strong to counteract with the RW.

The same is true for small-radius traps such as cell D.

Best practices in order to reduce the radial transport are two-fold. First, the plasmas

must be compressed to a small radius relative to the trap dimensions, ideally rp/rw . 0.2.

The extent to which the plasma can be compressed will dictate the wall radius needed for

successful containment. Secondly, the transport can be minimized by carefully designing

the trap(s) to obtain a high degree of symmetry. Details of the MCT storage cell construc-

tion resulted in cells which were slightly distorted from the ideal cylindrical geometry; this

is thought to have driven much of the observed transport. This could be avoided with a
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more robust trap design.

Finally, experiments were conducted in the MCT demonstrating the stripping and

destruction of electron plasmas in response to applied asymmetric potentials. These exper-

iments were subject to 3D effects, which complicated the dynamics. This motivated the

design and construction of the 8ST, where experiments could be conducted purely in 2D.
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Appendix B

List of mathematical symbols

Given in Tbl. B.1 is a list of mathematical symbols and abbreviations used in the

dissertation, and a brief description of each. They are organized approximately in order of

appearance.

Table B.1: List of mathematical symbols and abbreviations.

Symbol Description

v Fluid velocity

ρ Fluid mass density

p Fluid pressure

ω Scalar fluid vorticity in 2D

ψ Fluid stream function

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

PM Penning-Malmberg trap (non-neutral plasma device)

E Electric field

B Magnetic field

Re Reynolds number

ν Kinematic viscosity

ω0 Peak (central) vorticity

ε Strain rate

ε∗ Strain rate normalized to peak vorticity

PV, ζ Potential Vorticity

β Coriolis parameter

m Azimuthal wavenumber

MS71 A scientific paper by Moore and Saffman, 1971 [8]

K81 A scientific paper by Kida, 1981 [39]

N Total number of particles

VIC Vortex-In-Cell (numerical point-vortex method)

φ Electric potential

T Plasma temperature

rg Electron gyroradius

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

e Electron charge

me Electron mass

vT Thermal velocity

n Electron density

ε0 Permittivity of free space

rv Vortex radius

fv Vortex rotation frequency

fb Axial bounce frequency

L Plasma length

rw Wall radius

H Hamiltonian (system energy)

φs Vacuum potential in 2D (due to boundary conditions)

pθ Canonical angular momentum

(x,y) Cartesian coordinates

(r,θ) Polar coordinates

8ST Eight-Segment Trap (PM trap device for fluid experiments)

δB Magnetic field variation

Vc Axial confinement voltage

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

RW Rotating Wall (method for compressing non-neutral plasmas)

n0 Peak (central) density

SNR Signal to Noise Ratio

Am, Bm Vacuum potential expansion coefficients

Va Asymmetry voltage

Vl Lip voltage (used during plasma filling process)

Ve Electron source voltage

fw Rotating wall frequency

τc Cyclotron cooling time (∼ 150 ms for B = 4.8 T)

s Magnitude of eigenvalues of strain tensor

Q Okubo-Weiss parameter

α Profile smoothness exponent

Γ Circulation

a, b Semimajor and semiminor axis of ellipse

λ Aspect ratio of ellipse

ξ Orientation of ellipse semimajor axis

ψv Stream function associated with vorticity

ψs Stream function associated with boundary conditions

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

σ Strain tensor

Ω Vorticity tensor

s∗ Normalized local strain

C Integration constant, K81 initial condition

(p,q) Ellipse canonical variables

(λ0,ξ0) Fixed points of K81 system

ε∗c Critical strain (equilibrium)

ε∗d Critical strain (dynamical)

λm Maximum aspect ratio during a K81 orbit

J Action associated with a K81 orbit (also, the Jacobian operator)

t0 Time parameter for time-dependent strain flows

τs Pulse width parameter for time-dependent strain flows

ε0 Amplitude of time-dependent strain flow

KH Kelvin-Helmholtz (shear instability)

η Growth rate for Love and KH instabilities

k Cartesian wavenumber

(x0,y0) Stagnation points

sv Self-strain (generated by a distorted vortex)

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

τ Vortex stretching rate

Γ0 Circulation integrated across the domain

Γsep Circulation inside the stream function separatrix

ΓQ Circulation inside the Okubo-Weiss stable region

Q∗0 Normalized Okubo-Weiss parameter evaluated at the origin

Γ f Final circulation remaining after a straining event

t f Total duration of a time-dependent strain flow

Ωs Frequency of a harmonic time-dependent strain flow

Nd Number of daughter vortices resulting from an instability

τv Vortex rotation period

φ0 On-axis space charge potential

rp Plasma radius

MCT Multi-Cell Trap (PM trap device with multiple cells)

E⊥ Perpendicular energy

Γp Circulation associated with a point plasma

Γb Circulation associated with a beam

xb Location where the beam enters the master cell

N0 Initial particle number of plasma

Continued on next page
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Table B.1 – continued from previous page

Symbol Description

Nm, Ns Number of particles in the master, storage cell

v‖ Parallel velocity

γm, γs Geometric factor in the space charge formula

φm, φs Space charge potential inside the master, storage cell

Vs Uniform voltage applied to storage cell electrodes

fd m = 1 diocotron frequency

dm, ds Radial plasma displacement in the master and storage cells

κ Ratio of master cell drift to storage cell drift (bounce-average orbits)

Vw Positive well voltage used for generating high-voltage plasmas

Va Asymmetry voltage used for MCT “vortex” experiments
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