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Abstract 

The integers include more structure than the natural numbers; 
for example, they exhibit symmetry about zero. Do adult 
mental representations directly encode this increased 
structure? In two studies, adults completed a numerical bi-
section task in which they were presented with two symbolic 
integers and were asked to report the digit at the midpoint of 
the interval. The reaction times demonstrated a “tuning 
curve” such that people were faster when the midpoint or end 
point of an interval was close to zero. The results suggest that 
the mental representation of negative numbers and zero has 
incorporated analog properties to represent the increased 
structure of the integers.  

Keywords: analog representation; mathematics; bisection; 
symmetry; integers 

Introduction 

The positive integers, or natural numbers, have ready 

perceptual referents; for example, six divided by three can 

be materialized in the world as six cookies shared between 

three people. The structural properties of natural numbers 

(e.g., ordinality, cardinality, magnitude) can be gleaned 

from applying numbers to physical situations (Griffin, Case, 

& Siegler, 1994). This may help explain why people have 

an analog representation of natural numbers, as indicated by 

the symbolic distance effect (Moyer & Landauer, 1967) and 

more recent brain evidence (Piazza, Izard, Pinel, Le Bihan, 

& Dehaene, 2004).  

In contrast, negative integers are abstract entities that do 

not map readily to tangible things; negative three cookies 

are hard to imagine, and a negative times a negative is 

typically handled symbolically in school curricula. 

Historically, negative numbers were considered fictitious 

even when effectively used in calculations (Schwarz, Kohn, 

& Resnick, 1993/1994).  Schwarz, et al. (1993/1994) say, 

“It was only in the 19
th

 century that negative numbers 

emerged as directed magnitudes (e.g., in the domain of 

electricity) and that the set of integers was axiomatically 

defined in such a way as to give negatives a symmetric 

status to that of positives.” 

The full set of integers includes greater quantitative 

structure than the natural numbers; for example, it includes 

zero as an identity; and it is possible for quantities to exhibit 

symmetry. How do people represent the increased structure 

of integers?  

One possibility is that the new structure is carried 

symbolically by a set of manipulation rules and categories 

(e.g., if two digits are the same absolute amount and one has 

a negative sign, then they are symmetric). A recent study by 

Varma and Schwartz (2009) suggests that this is not the case 

for adults. The authors compared seventh graders to adults 

on a number comparison task. Seventh graders showed no 

symbolic distance effect when comparing a positive and 

negative number.  The absence of this robust marker of 

analog representation suggests the children used a rule like 

“a positive is larger than a negative” to compare the 

numbers. On the other hand, adults showed an „inverse‟ 

distance effect on these problems – they answered far 

comparisons slower than near comparisons – indicating that 

they had developed a semantic representation of integers. 

Given that adults use a semantic representation to operate 

 
 

Figure 1: Protocol for bisection task. A) Study 1. B) Study 2. 
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with integers, it is possible that this representation directly 

encodes the increased structure of the integer system; for 

example, people may have developed an analog 

representation that encodes symmetry level as well as 

magnitude. This would be an interesting finding because 

people do not directly experience negative objects. 

To examine this possibility, we focused on the two 

inherent structures of negative integers: (a) symmetry about 

zero and (b) identity for addition/subtraction, which also 

involves zero.  Subjects completed two number bisection 

tasks (Figure 1).  They saw two symbolic digits on a 

computer screen, and orally reported the midpoint (Study 1) 

or verified a third digit as the midpoint (Study 2). For 

example, given -4 and 2, they might report -1.  If people 

solve these problems by applying a set of rules, then we 

would expect them to take about the same amount of time 

regardless of the proximity of the values to symmetry or 

identity.  For example, -8 and 2 should take the same time 

as -4 and 6.  Alternatively, if people have and use symmetry 

built into their representations of the integers, then we 

would expect them to solve problems closer to symmetric (-

4 and 6) more quickly, because they can leverage relative 

symmetry about zero to find the midpoint. The same 

predictions apply for identity. By a rule-based account, -11 

and 1 should require the same amount of time as -9 and 3. 

By a semantic account, -11 and 1 should be solved faster, 

because the 1 is closer to the identity of zero. 

Both accounts can predict extremely fast reaction times 

for perfectly symmetric problems (-6 and 6) and perfect 

identity problems (0 and 12) (see Figure 2, top and bottom 

sections). The differential predictions involve how response 

times vary when the problem diverges from perfect 

symmetry and identity. The semantic account predicts a 

reaction time “tuning curve,” indicative of analog processes. 

The symbolic account does not.  By the semantic account, 

as intervals diverge from symmetry about zero people 

should slow down (e.g. -3 and 9 is slower than -5 and 4). As 

the interval moves toward the identity people should speed 

up again (e.g. -1 and 11 is faster than -3 and 9).  Moreover, 

people should only exhibit symmetry effects for mixed 

pairs, in other words intervals bounded by a positive and 

negative integer. 

Figure 2, top and middle, shows the Symmetry-to-

Anchored Scale (STAS), which quantifies the degree to 

which a problem pair diverges from symmetry and identity. 

Identity pairs are termed “anchored” in the scale, because 

the 0 presumably anchors the problem solving. 

  Symmetric pairs (6 and -6) receive the value of -1, while 

anchored pairs (0 and 12) receive the value 1. STAS values 

for non-symmetric and non-anchored pairs were computed 

as follows: 

 

 

Where: 

 I = size of the interval bounded by the stimulus pair 

M = midpoint of the stimulus pair 

 

For mixed pairs, STAS scores are based on the 

proportion of the interval‟s size represented by double the 

magnitude of the interval‟s midpoint. These proportions are 

shifted by a constant of -1 and stretched by a factor of 2 so 

that they span from -1 to 1.  Since STAS scores are based on 

proportion of interval size rather than absolute numerical 

distance, the STAS allows intervals of 

different sizes to be collapsed onto the 

same -1 to 1 metric. 

For non-mixed interval pairs (i.e. 

bounded by two positive or two 

negative integers), rather than 

quantifying the distance from 

symmetric and anchored, the STAS 

defines an interval‟s distance from 

anchored and “skip-counted” (e.g. the 

pair 5 and 15). 

 

Study 1: Oral Response 

In study 1, subjects completed an oral-

response interval-bisection task 

including purely positive, purely 

negative, and mixed problems, as well 

as problems that involve zero as an 

interval endpoint (“anchored”) or 

midpoint (“symmetric”). 

 
 

Figure 2: Symmetric-to-Anchored Scale (STAS) values and RT predictions for 

intervals of size 12 (those that span zero only).  Top: The interval pairs.  

Symmetric pairs have midpoint 0. Anchored pairs have endpoint of 0.  Middle: 

Corresponding STAS values.  Zero denotes intervals maximally far from either 

symmetric or anchored.  Bottom: Response time predictions according to the 

semantic and symbolic accounts of integer processing.  

 

324



Methods 

Participants Sixteen adults from a private university 

participated (8 female, mean age=30.1 years, SD=8.4).  

 

Stimuli There were 88 unique pairs of integers. The integers 

ranged from -15 to 15. Each integer appeared between 8 and 

16 times, with the numbers closer to 0 repeated more often 

than those farther from 0. Each pair defined an interval and 

there were four intervals sizes: 50 pairs of interval size 6; 46 

pairs of size 8; 42 pairs of size 10; and, 38 pairs of size 12. 

Pairs were classified into five types: 48 pure positive (e.g. 2, 

10), 48 pure negative (e.g. -2, -10), 56 mixed (e.g. 2, -10), 

16 anchored (e.g. 10, 0), and 8 symmetric (e.g. -3, 3).  Each 

pair was presented twice, flipping the order of the digits, for 

a total of 176 pairs. 

 

Procedures Subjects completed the task individually. Digits 

were presented on a computer display in 18 pt Arial bold on 

a white background. Subjects sat approximately 24 inches 

away from the screen and held a small microphone. 

Subjects were told, “You will see two numbers pop up 

consecutively. Your task is to figure out the number halfway 

between them, and say the answer into the microphone. 

Answer as fast as you can.”  Additionally, before each 

block, subjects were instructed, “Please give an approximate 

answer. Do not calculate.” 

Figure 1a shows the sequence for each problem. The first 

number appeared in the middle of the screen for 1s, and then 

the second number appeared for up to 7s.  As soon as the 

subject spoke, the second number changed font style to 

„unbold‟ for 2s as feedback that a response was recorded. 

During these two seconds, the experimenter entered the 

subject‟s response on a keyboard.  A blank screen appeared 

for 500ms between items. 

Subjects completed 8 blocks of 22 items balanced to each 

contain 6 positive, 6 negative, 7 mixed, 2 anchored, and 1 

symmetric pair. Presentation order was randomized 

individually for each subject within each block. 

Prior to the recorded trials, subjects completed 20 practice 

problems and any confusion was clarified.  

Results 

Figure 3 shows that perfectly anchored and symmetric trials 

were solved extremely fast, affirming the privileged status 

of zero in people‟s representation of the integers. Of greater 

interest, mixed trials varied systematically according to their 

position on the STAS such that problems furthest from 

symmetry and anchored were solved the slowest. Pure 

positive and negative problems did not show strong 

evidence of a tuning curve. 

 

Data Preparation Items tainted by microphone malfunction 

or premature subject response (e.g. “umm”) were trimmed, 

as were outlier response times (> 3SD off the subject‟s 

mean) and inaccurate responses (farther than 1/4
th

 the total 

interval size from the correct answer). This removed 17% of 

the trials (range of 9% to 27%).  

 

Anchored and Symmetric A MANOVA on the five levels 

of problem type revealed a significant effect; F(2,14) = 

29.70, p<.01. Two planned comparisons showed that 

 
 

Figure 3: Study 1 response times by STAS value and problem type.  Fitted lines come from multiple regressions on the 

group means at each response point. Lines were estimated for each problem type separately, and are curvilinear if the squared 

regressor in the model was significant at p<0.15. Error bars represent 1 s.e. between-subjects. 

 

325



anchored and symmetric items were faster than other 

problem types; F(1,15) = 55.98, p<.01. Anchored and 

symmetric types were not significantly different.  

 

STAS Position To demonstrate the tuning curve for the 

mixed items statistically, perfectly anchored and symmetric 

pairs were removed, and the mixed items were grouped into 

three bins according to their position on the STAS.  The first 

bin had almost symmetric (aSymm) items (STAS of -.99 

through -.33). The second bin (Far) contained items far from 

symmetry and anchoring (STAS of -.33 to .33). The third 

bin held almost anchored (aAnch) items (STAS of .33 to 

.99). A MANOVA crossed three within-subjects factors: 

STAS Position (3 bins), interval Size (sizes 8, 10, 12 – size 

six was removed because it did not have three STAS bins), 

and Bias (positive versus negative midpoint, shown as left-

right of 0 respectively in Figure 3).  

There were no significant effects at the p<0.05 level.  

Using a more lenient threshold of p<0.10, the analysis 

showed a main effect of STAS Position; F(2,7) = 3.35. Post-

hoc contrasts showed that the Far Position was slower than 

other two; F(1,8) = 6.22, p<.05, indicating that people had 

more difficulty as problems were moved away from 

anchored and symmetric. Interval Size also exerted an effect 

on reaction time; F(2,7) = 4.31, p<.10, such that size 8 was 

faster than size 12; p<.05, Bonferroni corrected. There was 

an interaction between Size and Position; F(4,5) = 4.40, 

p<.10, such that for sizes 10 and 12, the Far was slower than 

aSymm and aAnch, but for size 8, the aSymm position was 

slower than Far; F(1,8) = 17.81, p<.01.  There was no effect 

of Bias. 

 

Pure v. Mixed If the tuning curve involves symmetry about 

zero, the pure positive and pure negative bisections should 

not exhibit a tuning curve. A 3 x 2 x 3 MANOVA of STAS 

Position, Purity (mixed versus positive/negative, or “pure”, 

items), and interval Size showed a main effect of Purity; 

F(1,15) = 5.18, p<.05, such that pure items were faster than 

mixed. There was also a main effect of Size; F(2,14) = 7.94, 

p<.01, such that size 8 was faster than size 12; p<.01, 

Bonferroni corrected. The Position factor did not show a 

significant main effect, but did interact marginally with 

Purity; F(2,14) = 2.87, p<.10 -- for mixed trials, response 

times were relatively slower for Far than aAnch, while for 

pure trials, Far was no different from aAnch; F(1,15) = 6.10, 

p<.05.  

Discussion 

The results align with the hypothesis that adults have 

developed a mental representation that semantically encodes 

the symmetry and identity structures available in the 

integers. People were faster to respond to anchored and 

symmetric problems than all other types, showing the 

privileged status of zero in simple computation.  This, 

however, does not demonstrate a semantic or analog 

representation. This was provided by the promissory 

evidence that the ease of problems was determined by 

proximity to the symmetric and anchored pairs, even when 

zero was not a midpoint or endpoint. Finally, the pure 

positive and negative pairs did not exhibit strong evidence 

of a tuning curve. This shows that the tuning curve 

disappears when zero is not a possible symmetry point. 

At the same time, the data are muddy. One problem in the 

method was the oral response. For example, subjects may 

have started to say “negative” as a way to buy time while 

finding the mid-point. This would distort the true estimate 

of processing time.  A second problem was that some 

subjects may have calculated rather than approximated the 

mid-point, despite instructions to the contrary. If so, 

calculating might contaminate results, as it is theorized to be 

a verbally mediated process reliant on memorized facts 

rather than a representation of quantity (Dehaene, Spelke, 

Pinel, & Stanescu., 1999).  Finally, some of the intervals 

were too small to find evidence of a response curve. Study 2 

addresses these concerns. 

Study 2: Button-Press Response 

In study 2, subjects responded via button press rather than 

vocalization (Fig. 1b). Also, subjects were randomly 

assigned to either an approximate or calculate condition.  

Methods 

Participants Forty right-handed, private university  

students participated (20 female, mean age = 22.11 years, 

SD = 5.65). 

 

Stimuli The stimulus set consisted of 75 unique pairs, 

presented twice for a total of 150 pairs.  Within-pair interval 

sizes were 10 (42 items), 12 (50 items), and 14 (58 items). 

Numbers ranged from -21 to 21. Across the entire stimulus 

set, each integer appeared between 2 and 12 times, with 

integers at the middle of the range appearing more often 

than those at the ends. There were 36 positive and 36 

negative pairs, 60 mixed pairs, 6 symmetric pairs, and 12 

anchored pairs. For each trial, there was also a target integer 

that subjects had to judge as close to the midpoint of the 

stimulus pair or not.  Target numbers were either: the 

midpoint (correct), or the midpoint plus/minus ~1/4 the 

interval size (to be rejected as implausible). 

 

Procedures There were two conditions. In the Calculate 

condition, subjects received the following instructions on 

the screen and verbally: “Two numbers will appear.  As fast 

as you can, calculate the number halfway between them. A 

formula you can use is (a+b)/2.” In the Approximate 

condition, the instructions were: “Two numbers will appear.  

As fast as you can, think of a number approximately 

halfway between them. Do this without calculating.” 
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The experiment consisted of six blocks of 25 items, with 

item type balanced between blocks.  Subjects sat ~24” from 

the screen of a Lenovo T400 laptop with 18 pt bold white 

Arial font on black background.   

Subjects controlled the pace of the experiment. For each 

item (Figure 1b), a fixation cross appeared for 1s, followed 

by a 400ms blank. Then a stimulus pair appeared and 

subjects had up to 5s to press the spacebar indicating they 

had a midpoint in mind. The target appeared immediately 

after the spacebar depression and subjects had up to 1,250 

ms to press Y or N as to whether they thought the target was 

the actual midpoint. Subjects responded with their right 

hand only. Y and N buttons were denoted with sticky note 

labels on the „l‟ or „‟‟ (apostrophe) keys on the keyboard. 

Before the experiment the subjects completed two 

practice runs of 12 trials. The experimenter asked the 

subjects their strategy periodically during the practice runs 

to ensure they followed the task instructions.  

Results and Discussion 

Figure 4 shows strong evidence of a tuning curve for mixed 

trials. In contrast, pure trials show little evidence of the tell-

tale arches.  

 

Anchored and Symmetric Outliers were removed as 

before, with an average of 18% trimmed trials (range 3% to 

59%).  A 2 x 5 MANOVA with Group (Approximate, 

Calculate) as a between-subjects factor and Problem Type 

as a within-subjects factor showed a significant main effect 

of Problem Type; F(2,37) = 53.99, p<.01, so that anchored 

and symmetric problems were significantly faster from the 

others; F(1,38) = 93.55, p<.01. Symmetric problems were 

marginally faster than anchored problems in this study; 

F(1,38) = 4.00, p<.10. There was also an interaction by 

condition such that the Approximate group was slower on 

the problems that did not involve zero than the Calculate 

group; F(2,37) = 3.56, p<.05. Evidently, symmetric and 

anchored answers were retrieved before the approximation 

process is completed. 

 

STAS Position A MANOVA used the within-subjects 

factors of STAS Position (aSymm, Far, aAnch), interval 

Size (10, 12, 14), and Bias (positive, negative), with Group 

as a between-subjects factor. There was a main effect of 

STAS Position; F(2,26) = 12.55, p<.01, such that the Far 

position was slower than aSymm or aAnch F(1,27) = 25.25, 

p<.01. Thus, the top of each “arch” in the data was 

significantly higher than the bottoms.  

There was also a main effect of Bias; F(1,27) = 28.96, 

p<.01, such that negative bias problems were slower than 

the positive bias problems. The Group and Size main effects 

were not statistically significant. 

Importantly, there was a significant interaction between 

Group and Position; F(2,26) = 3.39, p<.05. Planned 

 
 

Figure 4: Study 2 response times by STAS value and problem type.  X markers and solid fitted lines represent data from the 

Approximate condition. Diamond markers and broken fitted lines represent data from the Calculate condition. Fitted lines 

come from multiple regressions on the group means at each response point. Lines were estimated for each group and problem 

type separately, and are curvilinear if the squared regressor in the model was significant at p<0.15. Error bars represent 1 s.e. 

between-subjects. 
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comparisons showed that the difference between the Far and 

aSymm/aAnch items was greater for the Approximate group 

than for the Calculate group; F(1,27) = 4.24, p<.05. In other 

words, the response time “arch” pattern was flatter for the 

Calculate group. The interaction between Group and 

Position indicates that subjects in the Calculate and 

Approximate groups were using different mental processes 

to complete the problems; thus, we successfully controlled 

the participants‟ strategies through task instructions. It also 

shows that when people are encouraged to calculate the 

answer symbolically, the tuning curve mitigates, as would 

be anticipated if people were not relying as much on a 

semantic representation. 

 

Pure v. Mixed A 2 x 3 x 2 MANOVA crossed Purity, 

STAS Position, and Group. Of particular relevance, there 

was a significant interaction between Purity and Position; 

F(2,37) = 15.13, p<.01.  For pure positive and pure negative 

problems in both groups, response times increased with the 

absolute magnitude of the problem rather than showing the 

arching pattern of the mixed problems.  This suggests that 

there is something particular about zero that privileges it in 

the integer representation. 

General Discussion 

In an integer bisection task, subjects were very fast to 

respond to intervals bounded or bisected by zero. 

Furthermore, response times varied systematically as a 

function of proximity to these fast zero problems. 

The results indicate that zero is a salient feature in the 

adult mental representation of integers. The behavioral 

patterns fit an interpretation of zero as a cognitive reference 

point (Rosch, 1975) that subjects use as a jumping-off 

station for interpreting or manipulating surrounding 

integers.  The fact that the reference point also facilitates 

symmetry judgment is not entailed by Rosch‟s theory. We 

propose that adults have developed a semantic, analog 

representation of integers that directly codes symmetry. 

An alternative explanation might be that the results are 

due to differential experience with the problems presented.  

However, it is hard to make the case that people are faster to 

bisect -7 and 5 than -8 and 4 because of more experience 

with -7 and 5. Moreover, if over-learning were the source of 

the effect, then easy skip-counting problems like 5 and 15 

should have also exhibited exceptionally fast responses, 

which they did not.  

Our leading hypothesis is that these adults developed an 

analog representation of the integers that incorporated 

important structures of the integer system. It is interesting to 

consider how this representation of abstract quantities 

develops. The extremely fast responses for the anchored and 

symmetric problems may provide one clue.  For the 

symmetric problems, people probably capitalized on a 

feature of the integer symbol system. They noted that the 

two digits were identical except for the difference of the 

negative sign, and they quickly retrieved that the answer has 

to be 0.  Similarly for the anchored problems, people saw 

that one of the digits was 0, so they simply retrieved the 

well-learned “half-of” facts. In both cases, the structure of 

the symbol system privileges zero in finding symmetry or 

half-way points. Over time, it is possible that these symbolic 

affordances recruit perceptual processes associated with 

symmetry. For instance, the symbolic structure makes zero a 

special point, and people may rely on this point when 

working with number lines or other extended external 

representations. Given zero, people can then apply 

perceptual process associated with finding midpoints, and 

with practice, these processes may be encoded directly into 

the internal representation of integers.  

In conclusion, we found support for the assertion that the 

adult representation of integers relies on zero as a structural 

pillar that aids operations with the set of integers.  This may 

not be a special feature of the quantity zero per se, but rather 

it may be that zero is an indicator of symmetry in the integer 

system. Further understanding of how people recruit new 

computational structures for handling integers will benefit 

from investigations into the neural underpinnings of the 

presently observed effect and behavioral investigations of 

other features of the representation. 
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