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Abstract

Probabilistic Methods for the Inference of Selection and Demography from Ancient Human
Genomes

by

Fernando Racimo

Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Montgomery Slatkin, Chair

Recently developed technologies for the recovery and sequencing of ancient DNA have
generated an explosion of paleogenomic data in the last five years. In particular, human
paleogenomics has become a thriving field for understanding evolutionary patterns of differ-
ent hominin groups over time. However, there is still a dearth of statistical tools that can
allow biologists to discern meaningful patterns from ancient genomes. Here, I present three
methods designed for inferring past demographic processes and detecting loci under selection
using ancient and modern hominin genomes. First, I describe an algorithm to co-estimate
the contamination rate, sequencing error rate and demographic parameters - including drift
times and admixture rates - for an ancient nuclear genome obtained from human remains,
when the putative contaminating DNA comes from present-day humans. The method is
implemented in a C++ program called ‘Demographic Inference with Contamination and Er-
ror’ (DICE). Then, I present two methods for downstream analyses of paleogenomic samples,
specifically tailored for detecting different types of positive selection. The first of these con-
sists in a series of summary statistics for detecting adaptive introgression (AI). In particular,
the number and allelic frequencies of sites that are uniquely shared between archaic humans
and specific present-day populations are particularly useful for detecting adaptive pressures
on introgressed haplotypes. The second approach for detecting selection is a composite like-
lihood ratio method called ‘3P-CLR’, and is aimed at locating regions of the genome that
were subject to selection before two populations split from each other. I use this method to
look for regions under positive selection in the ancestral modern human population after its
split from Neanderthals. I validate all of the above methods using simulations and real data,
including present-day human genomes from the 1000 Genomes Project and several high-
and low-coverage ancient genomes from archaic and early modern humans. I also recover
potentially interesting candidate loci that may have been important for various phenotypic
adaptations during recent human evolution.
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1. Introduction

The last six years have seen enormous advances in the retrieval and sequencing of ancient
DNA from fossils [1, 2, 3, 4, 5]. Arguably the most impressive insights stemming from these
methods have been in the field of human evolutionary genomics [6]. Since the sequencing
of the first ancient modern human genome [7] and the first Neanderthal genome [8] in 2010,
the field of paleogenomics has exploded, and now hundreds of ancient human genomes are
available for analysis [9, 10, 11, 12]. These have allowed geneticists to finely disentangle
the last half million years of human evolutionary history, revealing complex patterns of
population divergence, dispersal, selection and admixture. Most of these patterns would
have remain hidden without ancient DNA, as it provides a unique temporal dimension that
cannot be accessed with present-day sequences alone.

For these reasons, it is imperative to develop methods that can address the unique chal-
lenges of working with ancient DNA, so as to harness its potential for deriving meaningful
evolutionary inferences. In this thesis, I will present three sets of methodological approaches
for analyzing human paleogenomic data. Below, I will briefly introduce the biological and
technical motivations for these approaches.

1.1 Challenges of ancient DNA
Unlike DNA obtained from living tissues, ancient DNA has a number of features that

makes it especially challenging to analyze. First, it presents characteristic patterns of chem-
ical damage, as a result of extended exposure to environmental conditions after biological
death. The most prominent of these types of damages is generated by a process known as
cytosine deamination and preferentially occurs at the ends of fragments [13, 1]. Awareness of
these processes are important, as they will create mutations in sequenced reads that would
not have been originally present in the living individual [14].

Another important concern is contamination. In general, ancient DNA libraries tend to be
largely composed of exogenous DNA, be that from environmental microbes from the location
where the fossil was found, or from individuals that handled the fossil - like archaeologists
and laboratory technicians. As the proportion of ancient DNA in a fossil tends to be scarce,
even a small number of exogenous DNA fragments may be overwhelmingly abundant relative
to the number of endogenous DNA fragments [14]. Contamination from present-day humans
is especially problematic when analyzing ancient human genomes, as the two types of DNA
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will look very similar to each other. This can confound downstream analyses: a researcher
could, for example, wrongly infer that the present-day DNA in an archaic human genome
signifies admixture between modern and archaic humans.

In the first part of this thesis, I will present a method to estimate contamination in
an ancient DNA sample from a hominin fossil, along with other parameters of relevance,
like sequencing error and chemical damage rates. Importantly, the method also estimates
demogragraphic parameters, like admixture rates and the amount of genetic drift that sepa-
rates the ancient genome from the contaminant source. While several methods already exist
to estimate contamination [8, 2], this is the first to jointly estimate a demographic model
along with the contamination rate. It is also particularly useful as it is one of a few to use
data from the entire autosomal genome, rather than individual non-recombining sequences,
like the mitochondrial genome or the Y chromosome, which may be unreliable indicators of
contamination genome-wide [14, 15].

1.2 A complex history of admixture and divergence
Beside these difficulties, whole genome sequences from ancient hominins present unique

advantages for the study of human history. Importantly, they can reveal ancient demographic
processes, like gene flow between the ancestors of extant and extinct groups of humans.
For example, analysis of the first Neanderthal genome - obtained from Vindija Cave, in
Croatia - showed that modern humans and Neanderthals diverged from each other between
270,000 and 440,000 years ago (this date range was later revised to be between 275,000
and 765,000 years ago [16]). However, present-day non-African humans appear to derive a
small percentage of their ancestry from post-divergence Neanderthal gene flow. This likely
occurred via modern human - Neanderthal admixture event(s) in the Middle East, as modern
humans were expanding out of Africa [8].

This archaic ancestry was subsequently confirmed with the sequencing of a high-coverage
(50X) Neanderthal genome obtained from a finger bone found in the Altai Mountains, in
Siberia (the "Altai Neanderthal") [16]. Using patterns of linkage disequilibrium, the time
of the most recent admixture event into the ancestors of Eurasians was inferred to be ∼
56, 000 years ago [17], though there is also evidence for additional episodes of Neanderthal
admixture into East Asian populations [18, 19]. Later on, researchers were able to identify
the admixture tracts along the human genome, using Markovian probabilistic models [20,
21]. More recently, several genomes recovered from fossils of ancient modern humans that
lived shortly after the admixture event(s) have shown that these individuals carried longer
Neanderthal admixture tracts than present-day humans [22, 23, 24]. This is consistent with
the inferred timing of this event [17], as these tracts will tend to get shorter over time, via
recombination [25].

The finding of Neanderthal-into-Non-African admixture was followed by the discovery
of several other admixture events between diverged groups of humans. A toe bone found
in the same cave as the Altai Neanderthal revealed the existence of a previously unknown
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sister group to Neanderthals, called "Denisovans". Intriguingly, individuals closely related
to this group likely interbred with the ancestors of present-day Melanesians and East Asians,
as these groups derive 2.3 − 3.7% and 0.1 − 1.6% of their ancestry, respectively, from this
archaic population [26, 2, 27]. There may also have been interbreeding between Denisovans
and eastern Neanderthals, as well as between Denisovans and an archaic group that diverged
from present-day humans and Neanderthals about a million years ago [16]. Finally, a recent
analysis of the Altai Neanderthal genome showed evidence for a fifth interbreeding event,
between a basal modern present-day human population and eastern Neanderthals, which left
detectable modern human admixture tracts in the Altai Neanderthal genome [27].

These discoveries suggest that admixture between diverged hominin groups in the Pleis-
tocene was much more widespread than previously thought, and that these may be best
described as a large metapopulation [28]. Interestingly though, none of the traces left by
admixture involve more than a few percent of the entire human genome. In other words,
only small amounts of genetic material were ultimately passed on to us from these groups.
Hypotheses brought forward to explain these observations include Dobzhansky-Muller incom-
patibilities [20] and weakly deleterious alleles that were effectively neutral in Neanderthals,
but became negatively selected after entering modern human populations with larger effec-
tive population sizes [29, 30].

1.3 Introgression as a shortcut to adaptation
In spite of the fact that most of the exchanged genetic material may have been deleterious,

a growing body of evidence suggests that introgression of certain archaic genetic variants into
the human gene pool may have accelerated the action of positive selection. In the past few
years, biologists have found numerous haplotypes that appear to have originated in archaic
populations - like Neanderthals - then introduced into modern humans and rapidly risen to
high frequencies in particular locations of the world (reviewed in ref. [31]). Perhaps the prime
example of this is the gene EPAS1. This gene was discovered to be under positive selection in
Tibetans. The selected haplotype present at high frequency exclusively in Tibetans allows
carriers to better respond to hypoxia at high altitudes [32]. More recently, researchers
found that this haplotype was introduced into the ancestors of Tibetans via introgression
from Denisovans. The Denisovan genome carries a haplotype that is almost identical to the
Tibetan haplotype, which is highly divergent from almost all other haplotypes around the
world [33, 34].

In the second part of this thesis, I will examine the effectiveness of different summary
statistics to detect adaptive introgression. I will then use the most poweful of these to survey
the landscape of adaptively introgressed variants across the human genome, in different
populations around the world. Finally, I will focus on the haplotype structure and biological
function of candidate genes showing strong evidence for adaptive introgression in different
human populations. Some of these have been previously identified [35, 20, 21, 36], while
some are novel and will require further attention in the future.
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1.4 Searching for unique modern human selective events
Just as we may have shared adaptive variants with other groups of hominins, it is also

plausible that some unique modern human variants set us phenotypically apart from these
groups. Finding the genes that made us uniquely “modern" is a difficult challenge, as the
genomic signatures of selection left by these adaptive events are likely very old and weak
[37]. Methods aimed at detecting these types of events have consisted in looking at regions
of the genome where Neanderthals fall outside of present-day human variation, which would
be a hallmark of a selective sweep in the ancestors of present-day humans [8, 16].

In the last part of this thesis, I will present an alternative method, which is meant to scan
the genome for selective sweeps that occurred in the distant past, before two populations split
from each other, using a third outgroup population. My method also serves to distinguish
between ancestral events and events that occurred specifically in one of the two daughter
populations, after the split. I will then use this method to look for selective events that
occurred in the ancestral population of Yoruba and Eurasians, after modern humans split
from Neanderthals, as well as in the ancestral Eurasian population, after the split from
Yoruba. I will present several interesting candidate regions, including one that contains a
modern-human-specific nonsynonymous mutation that is fixed derived in all sampled present-
day humans, but ancestral in Neanderthal and Denisova.

1.5 Conclusion
With the rise of ancient DNA studies, the universe of questions that can be answered

about our distant and recent history has just exploded. However, as more ancient hu-
man genomes continue to be sequenced, it will become imperative to design computational
tools that are tailored to the unique task of analyzing them efficiently. The three methods
presented in this thesis aim to bridge the gap between raw sequence data and meaningful
biological insights. These insights may help us understand the evolution of our species, and
the adaptive processes that allowed us to expand around the world.
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2. Joint estimation of contamination,
error and demography from ancient
DNA
Fernando Racimo*, Gabriel Renaud*, Montgomery Slatkin

*These authors contributed equally to this work.

2.1 Introduction
When sequencing a human genome using ancient DNA (aDNA) recovered from fossils, a

common practice is to assess the amount of present-day human contamination in a sequencing
library [8, 26, 2, 16, 22, 23]. Several methods exist to obtain a contamination estimate. First,
one can look at ’diagnostic positions’ in the mitochondrial genome at which a particular
archaic population may be known to differ from all present-day humans. Then, one counts
how many aDNA fragments support the present-day human base at those positions. This is
the most popular technique and has been routinely deployed in the sequencing of Neanderthal
genomes [38, 8]. However, contamination levels of the mitochondrial genome may sometimes
differ drastically from those of the nuclear genome [14, 15].

A second technique involves assessing whether the sample was male or female using the
number of fragments that map to the X and the Y chromosomes. After determining the
biological sex, the proportion of reads that are non-concordant with the sex of the archaic
individual are used to estimate contamination from individuals of the opposite sex (e.g.
Y-chr reads in an archaic female genome are indicative of male contamination) [14, 8, 39,
16]. Another method uses a maximum-likelihood approach to estimate contamination, but
is only applicable to single-copy chromosomes, like the X chromosome in individuals known
a priori to be male [40, 41]. Finally, one last technique involves using a maximum-likelihood
approach to co-estimate the amount of contamination, sequencing error and heterozygosity
in the entire autosomal nuclear genome [8, 2], using an optimization algorithm such as L-
BFGS-B [42].

Afterwards, if the aDNA library shows low levels of present-day human contamination
(< ∼2%), demographic analyses are performed on the sequences while ignoring the contami-
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nation. If the library is highly contaminated, it is usually treated as unusable and discarded.
Neither of these outcomes is optimal: contaminating fragments may affect downstream anal-
yses, while discarding the library as a whole may waste precious genomic data that could
provide important demographic insights.

One way to address this problem was proposed by [43], who developed a statistical
framework to separate contaminant from endogenous DNA fragments by using the patterns
of chemical deamination characteristic of ancient DNA. The method produces a score which
reflects the odds that a particular fragment is endogenous or not, based on these chemical
patterns. This approach is effective at isolating truly endogenous fragments from contami-
nant fragments, but at the cost of potentially discarding some fragments that may not have
chemical damage and still be endogenous. This becomes more problematic the younger the
ancient DNA sample is, because younger samples will tend to have a higher proportion of
non-deaminated ancient DNA, and so the method will lead users to discard a larger fraction
of endogenous material.

Instead of (or in addition to) attempting to separate the two type of fragments before
performing a demographic analysis, one could incorporate the uncertainty stemming from
the contaminant fragments into a probabilistic inference framework. Such an approach has
already been implemented in the analysis of a haploid mtDNA archaic genome [44]. How-
ever, mtDNA represents a single gene genealogy, and, so far, no equivalent method has been
developed for the analysis of the nuclear genome, which contains the richest amount of popu-
lation genetic information. Here, we present a method to co-estimate the contamination rate,
per-base error rate and a simple demography for an autosomal nuclear genome of an ancient
hominin. We assume we have a large panel representing the putative contaminant popula-
tion, for example, European, Asian or African 1000 Genomes data [45]. The method uses
a Bayesian framework to obtain posterior estimates of all parameters of interest, including
population-size-scaled divergence times and admixture rates.

2.2 Methods

Basic framework for estimation of error and contamination

We will first describe the probabilistic structure of our inference framework. We begin
by defining the following parameters:

• rc: contamination rate in the ancient DNA sample coming from the contaminant pop-
ulation

• ε: error rate, i.e. probability of observing a derived allele when the true allele is
ancestral, or vice versa.

• i: number of chromosomes that contain the derived allele at a particular site in the
ancient individual (i = 0, 1 or 2)
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• dj: number of derived fragments observed at site j

• d: vector of dj counts for all sites j = {1, ..., N} in a genome

• aj: number of ancestral fragments observed at site j

• a: vector of aj counts for all sites j = {1, ..., N} in a genome

• wj: known frequency of a derived allele in a candidate contaminant panel at site j
(0 ≤ wj ≤ 1)

• w: vector of wj frequencies for all sites j = {1, ..., N} in a genome

• K: number of informative SNPs used as input

• θ: population-scaled mutation rate. θ = 4Neµ, where Ne is the effective population
size and µ is the per-generation mutation rate.

We are interested in computing the probability of the data given the contamination rate,
the error rate, the derived allele frequencies from the putative contaminant population (w)
and a set of demographic parameters (Ω). We will use only sites that are segregating in the
contaminant panel and we will assume that we observe only ancestral or derived alleles at
every site (i.e. we ignore triallelic sites). In some of the analyses below, we will also assume
that we have additional data (O) from present-day populations that may be related to the
population to which the sample belongs. The nature of the data in O will be explained
below, and will vary in each of the different cases we describe. The parameters contained
in Ω may simply be the population-scaled times separating the contaminant population and
the sample from their common ancestral population. However, Ω may include additional
parameters, such as the admixture rate - if any - between the contaminant and the sample
population. The number of parameters we can include in Ω will depend on the nature of the
data in O.

For all models we will describe, the probability of the data can be defined as:

P [ a, d | rC , ε,w,Ω,O] =
K∏
j=1

P [aj, dj|rC , ε, wj,Ω,O] (2.1)

where

P [aj, dj|rC , ε, wj,Ω,O] =
2∑
i=0

P [aj, dj | i, rC , ε, wj]P [i |Ω,O] (2.2)

Here, i is the true (unknown) genotype of the ancient sample, and P [i |Ω,O] is the probability
of genotype i given the demographic parameters and the data.

We focus now on computation on the likelihood for one site j in the genome. In the fol-
lowing, we abuse notation and drop the subscript j. Given the true genotype of the ancient
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individual, the number of derived and ancestral fragments at a particular site follows a bino-
mial distribution that depends on the genotype, the error rate and the rate of contamination
[8, 2]:

P [a, d|i, rC , ε, w] =

(
a+ d

d

)
qdi (1− qi)a (2.3)

where

q2 = rC (w(1− ε) + (1− w)ε) + (1− rC)(1− ε) (2.4)

q1 = rC (w(1− ε) + (1− w)ε) + (1− rC) ((1− ε)/2 + ε/2) (2.5)

q0 = rC (w(1− ε) + (1− w)ε) + (1− rC)ε (2.6)

In the sections below, we will turn to the more complicated part of the model, which is
obtaining the probability P [i|Ω,O] for a genotype in the ancient sample, given particular
demographic parameters and additional data available. We will do this in different ways,
depending on the kind of data we have at hand.

Diffusion-based likelihood for neutral drift separating two
populations

First, we will work with the case in which O = y, where y is a vector of frequencies yj
from an “anchor” population that may be closely related to the population of the ancient
DNA sample. An example of this scenario would be the sequencing of a Neanderthal sample
that is suspected to have contamination from present-day humans, from which many genomes
are available.

For all analyses below, we restrict to sites where 0 < yj < 1. Note that it is entirely
possible (but not required) that y = w, meaning that, aside from the ancient DNA sample,
the only additional data we have are the frequencies of the derived allele in the putative
contaminant population, which we can use as the anchor population too. However, it is also
possible to use a contaminant panel that is different from the anchor population (Figure
2.1.A). We will assume we have sequenced a large number of individuals from a panel of
the contaminant population (for example, The 1000 Genomes Project panel) and that the
panel is large enough such that the sampling variance is approximately 0. In other words, the
frequency we observe in the contaminant panel will be assumed to be equal to the population
frequency in the entire contaminant population. In this case, Ω = {τC , τA}, where τA and
τC are defined as follows:

τA: drift time (i.e. time in generations scaled by twice the haploid effective population
size) separating the population to which the ancient individual belongs from the ancestor of
both populations



CHAPTER 2. JOINT ESTIMATION OF CONTAMINATION, ERROR AND
DEMOGRAPHY FROM ANCIENT DNA 9

τC : drift time separating the anchor population from the ancestor of both populations
We need to calculate the conditional probabilities P [i|Ω,O] = P [i|y, τC , τA] for all three

possibilities for the genotype in the ancient individual: i = 0, 1 or 2. To obtain these
expressions, we rely on Wright-Fisher diffusion theory (reviewed in [46]), especially focusing
on the two-population site-frequency spectrum (SFS) [47]. The full derivations can be found
in Appendix A, and lead to the following formulas:

P [ i = 0 | y, τC , τA ] = 1− y ∗ e−τC − 1

2
∗ y ∗ e−τA−τC + y

(
y − 1

2

)
e−τA−3τC (2.7)

P [ i = 1 | y, τC , τA ] = y ∗ e−τA−τC + y (1− 2y) e−τA−3τC (2.8)

P [ i = 2 | y, τC , τA ] = y ∗ e−τC − 1

2
∗ y ∗ e−τA−τC + y

(
y − 1

2

)
e−τA−3τC (2.9)

We generated 10,000 neutral simulations using msms [48] for different choices of τC and
τA (with θ = 20 in each simulation) to verify our analytic expressions were correct (Figure
2.2). The probability does not depend on θ, so the choice of this value is arbitrary.

The above probabilities allows us to finally obtain P [i | yj,Ω,O].

Estimating drift and admixture in a three-population model

Although the above method gives accurate results for a simple demographic scenario, it
does not incorporate the possibility of admixture from the ancient sample to the contaminant
population. This is important, as the signal of contamination may mimic the pattern of
recent admixture. We will assume that, in addition to the ancient DNA sample, we also
have the following data, which constitute O:

1) A large panel from a population suspected to be the contaminant in the ancient DNA
sample. The sample frequencies from this panel will be labeled w, as before.

2) Two panels of genomes from two “anchor” populations that may be related to the
ancient DNA sample. One of these populations - called population Y - may (but need not)
be the same population as the contaminant and may (but need not) have received admixture
from the ancient population (Figure 2.1.B). The sample frequencies for this population will
be labeled as y. The other population - called Z - will have sample frequencies labeled z. We
will assume the drift times separating these two populations are known (parameters τY and
τZ in Figure 2.1.B). This is a reasonable assumption as these parameters can be accurately
estimated without the need of using an ancient outgroup sample, as long as admixture is
not extremely high.

We can then estimate the remaining drift parameters, the error and contamination rates
and the admixture time (β) and rate (α) between the archaic population and modern pop-
ulation Y . The diffusion solution for this three-population scenario with admixture is very
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difficult to obtain analytically. Instead, we use a numerical approximation, implemented in
the program ∂a∂i [49].

Markov Chain Monte Carlo method for inference

We incorporated the likelihood functions defined above into a Markov Chain Monte
Carlo (MCMC) inference method, to obtain posterior probability distributions for the con-
tamination rate, the sequencing error rate, the drift times and the admixture rate. Our
program - which we called ’DICE’ - is coded in C++ and is freely available at: http:
//grenaud.github.io/dice/. We assumed uniform prior distributions for all parameters,
and the boundaries of these distributions can be modified by the user.

For the starting chain at step 0, an initial set of parametersX0 = { rC0, ε0, Ω0 } is sampled
randomly from their prior distributions. At step k, a new set of values for step k + 1 is
proposed by drawing values for each of the parameters from normal distributions. The mean
of each of those distributions is the value for each parameter at state Xk and the standard
deviation is the difference between the upper and lower boundary of the prior, divided by a
constant that can be increased or decreased to achieve a desired rate of acceptance of new
states [50]. By default, this constant is equal to 1,000 for all parameters. The new state is
accepted with probability:

P [accept] = min

(
1,
P [a,d | Xk+1]

P [a,d | Xk]

)
(2.10)

where P [a,d | Xk] is the likelihood defined in Equation 2.1.
Unless otherwise stated below, we ran the MCMC chain for 100,000 steps in all analyses,

with a burn-in period of 40,000 and sampling every 100 steps. The sampled values were then
used to construct posterior distributions for each parameter.

Multiple error rates and ancestral state misidentification

[22] showed that, when estimating contamination, ancient DNA data can be better fit
by a two-error model than a single-error model. In that study, the authors co-estimate the
two genome-wide error rates along with the proportion of the data that is affected by each
rate. Therefore, we also included this error model as an option that the user can choose to
incorporate when running our program.

Furthermore, we developed an alternative error estimation method that allows the user
to flag transition polymorphisms, which are more likely to have occurred due to cytosine
deamination in ancient DNA. These sites are therefore likely to be subject to different error
rates than those common in present-day sequencing data [13, 1]. Our program can then
estimate two error rates separately: one for transitions and one for transversions. Finally,
we incorporated an option to include an ancestral state misidentification (ASM) parameter,
which should serve to correct for mispolarization of alleles [51].

http://grenaud.github.io/dice/
http://grenaud.github.io/dice/
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BAM file functionality

The standard input for DICE is a file containing counts of particular ancestral/derived
base combinations and SNP frequencies (see README file online). As an additional feature,
we also developed a module for the user to directly input a BAM file and a file containing
population allele frequencies for the anchor and contaminant panels, rather than the standard
input. The user can either choose to convert the BAM file to native DICE format using a
program provided with the software package and then run the program, or run it directly
on the BAM file. In the latter case, instead of calculating genome-wide error parameters,
the program will calculate error parameters specific to each sequenced fragment, based on
mapping qualities, base qualities and estimated deamination rates at each site (see Appendix
B).

2.3 Results: two-population method

Simulations

We first used DICE to obtain posterior distributions from simulated data, under the two-
population inference framework. We simulated two populations (i.e. an archaic and a modern
human population) with constant population size that split a number of generations ago.
For each demographic scenario tested, we generated 20,000 independent replicates (theta=1)
in ms [52], making sure each simulation had at least one usable SNP. In general, this yielded
∼80,000 usable SNPs in total. We then proceeded to sample derived and ancestral allele
counts using the same binomial sampling model we use in our inference framework, under
different sequencing coverage and contamination conditions. In all simulations, the contam-
inant panel was the same as the anchor population panel. We then applied our method to
the combined set of ∼80,000 SNPs.

Figure 2.3 and 2.4 show parameter estimation results from various demographic and
contamination scenarios for a low-coverage (3X) and a high-coverage (30X) archaic genome,
respectively, with low sequencing error (0.1%), and a contaminant/anchor population panel
of 100 haploid genomes. In both cases, the method accurately estimates the error rate, the
contamination rate and the drift parameters. All parameters are also accurately estimated
for the same scenarios even if the sequencing error rate is high (10%) (Figure 2.5).

Figures 2.6, 2.7, 2.8, 2.9 show how well the method does at estimating parameters over a
wide range of contamination and drift scenarios, by displaying the absolute difference between
simulated parameters and their corresponding posterior modes. So long as coverage is high
(for example, 5X or 30X), the contamination and anchor drift parameters are accurately
estimated even at 75% contamination. The method performs well even if the drift times
on both sides of the tree are as small as ≈ 0.001 or as large as ≈ 5, but starts becoming
inaccurate when contamination is extremely high. In general, the contamination rate and
anchor drifts are easier to determine than the drift corresponding to the ancient population.
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We find that for samples of very low coverage (0.5X, 1X, 1.5X) we require a larger
number of sites to obtain accurate estimates (Figures 2.10, 2.11, 2.12). For example, for
a sample of 0.5X coverage, we tried different numbers of independent replicate simulations
and found that at 800,000 replicates, we obtained approximately 1.6 million valid SNPs for
inference, which was enough to reach reasonable levels of accuracy (Figure 2.13). We note
that this number of SNPs is approximately the same as what is available, for example, in
the low-coverage (0.5X) Mezmaiskaya Neanderthal genome [16], which contains about 1.55
million valid sites with coverage ≥ 1, and which we analyze below. We also observed that
the MCMC chain in some of these simulations needed a longer time to converge than when
testing samples of higher coverage, especially when contamination is very high, and so in
this set of simulations, we ran it for 1 million steps instead of 100,000, with a burn-in of
940,000 steps and sampling every 100 steps. Finally, we note that our failure to recover the
true parameters under low coverage in a single MCMC run is partly due to the chain failing
to converge. Indeed, when we run the MCMC 10 times and recover the estimates from
the chain with the highest posterior probability, we are able to obtain increased accuracy
relative to the single run, especially when the drift parameters are extremely low and when
the contamination rate is extremely high (Figures 2.14, 2.15, 2.16).

Finally, we tested the method on simulations in a more realistic scenario, in which we
generated ancient and contaminant fragments based on empirical fragment sizes and then
mapped them to a simulated reference genome using BWA [53] with default parameters. We
produced DNA sequences from the output of msms [48] via seq-gen v.1.3.3 [54] with the
HKY substitution model [55]. This allows for multiple substitutions to occur at the same
site since the split from chimpanzee (which could cause ASM). We then simulated ancient
DNA fragments that had a fragment size distribution emulating empirical distributions.
Contaminant fragments were also sampled from the contaminant population. We used the
deamination rates from the single-stranded library from the Loschbour ancient individual
[9] (∼ 8% at the 5’ end and ∼ 34% at the 3’ end with a residual deamination rate of ∼ 1%
along the whole fragment) to artificially deaminate the ancient fragments. We simulated
sequencing errors on both the ancient and contaminant fragments using empirical sequencing
error rates from a PhiX library (Illumina Corp.) sequenced at the Max Planck Institute for
Evolutionary Anthropology on an Illumina HiSeq, basecalled using freeIbis[56]. With the
same empirical PhiX dataset distribution, we generated quality scores for each nucleotide.
Fragments were mapped back to a random individual from the contaminant panel. Figure
2.17 shows DICE’s performance on this scenario with different error models. In all cases,
we find that the parameters are estimated with high accuracy. As expected, the ts/tv
model infers a higher error rate at transitions, due to the additional errors introduced by
deamination on the ends of the ancient fragments.

Performance under violations of model assumptions

We evaluated the consequences of different violations of model assumptions. We started
by observing the effects of using a small modern human panel. Figure 2.18 shows results for



CHAPTER 2. JOINT ESTIMATION OF CONTAMINATION, ERROR AND
DEMOGRAPHY FROM ANCIENT DNA 13

cases in which the contaminant/anchor panel is made up of only 20 haploid genomes. In this
case, all parameters are estimated accurately, with only a slight bias towards overestimating
the drift parameters, presumably because the low sampling of individuals acts as a population
bottleneck, artificially increasing the drift time parameters estimated.

Additionally, we simulated a scenario in which only a single human contaminated the
sample. That is, rather than drawing contaminant fragments from a panel of individuals, we
randomly picked a set of two chromosomes at each unlinked site and only drew contaminant
fragments from those two chromosomes. Figure 2.19 shows that inference is robust to this
scenario, unless the contamination rate is very high (25%). In that case, the drift of the
archaic genome is substantially under-estimated, but the error, contamination and anchor
drift parameters only show slight inaccuracies in the estimate.

We then investigated the effect of admixture in the anchor/contaminant population from
the archaic population, occurring after their divergence, which we did not account for in the
simple, two-population model (Figure 2.20). In this case, the error and the contamination
rates are accurately estimated, but both drift times are underestimated. This is to be
expected, as admixture will tend to homogenize allele frequencies and thereby reduce the
apparent drift separating the two populations.

Identifying the contaminant population

We sought to see whether we would use our method to identify the contaminant pop-
ulation, from among a set of candidate contaminants (for example, different present-day
human panels). Because our MCMC samples are samples from the posterior distribution of
the parameters and not the marginal likelihood of the data over the entire parameter space,
we cannot perform proper Bayesian model selection. Instead, we used the posterior mode
as a heuristic statistic that may suggest which panel is most likely to have contaminated
the sample. We validated this choice of statistic using simulations under a variety of de-
mographic scenarios (Figure 2.21). We simulated 5-population trees of varying drift times.
The outgroup was chosen to be the ancient population and the rest were chosen to be the
present-day human populations (A, B, C and D). One of the populations (A) was the true
contaminant. To add another layer of complexity, we also allowed for admixture (at 0%, 5%
and 50% rate) from the ancient population to the ancestral population of A and B. We then
ran our MCMC method four times on each of these demographic scenarios, using D as the
anchor and different panels as the putative contaminant in each run.

Figure 2.22 shows that the highest posterior mode always corresponds to the run that uses
the true contaminant (A), and that the mode decreases the farther the tested contaminant is
from the true contaminant in the tree. Additionally, Figures 2.23, 2.24, 2.25 show the effect
of misspecifying the contaminant panel for different admixture scenarios. The error rate
and the anchor drift time are correctly estimated, even when the candidate contaminant
is highly diverged from the true contaminant, while the other two parameters are more
sensitive to misspecification. In general, the correct candidate contaminant produces the
highest posterior probability and yields the best parameter estimates.
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Empirical data

We first applied our method to published ancient DNA data from a high-coverage genome
(52X) from Denisova cave in Siberia (the Altai Neanderthal) [16], and visually ensured that
the chain had converged. The demographic, error and contamination estimates are shown
in Table 2.1. We used the African (AFR) 1000 Genomes Phase 3 panel [45] as the anchor
population. The drift times estimated for both samples are consistent with the known
demographic history of Neanderthals and modern humans, and the contamination rates
largely agree with previous estimates (see Discussion below).

We ran our method with different putative contaminant panels: Africans (AFR), East
Asians (EAS), Native Americans (AMR), Europeans (EUR), South Asians (SAS). For the
Altai sample, we observe a contamination rate of∼ 1% and an error rate of∼ 0.1%, regardless
of which panel we use. Furthermore, the drift on the Neanderthal side of the tree seems to
be 6 times as large as the drift on the modern human side of the tree, reflecting the smaller
effective population size of Neanderthals after their divergence. The EUR panel is the one
with the highest posterior mode (Table 2.1).

We then tested a variety of ancient DNA nuclear genome sequences at different levels
of coverage, obtained via different methods (shotgun sequencing and SNP capture) and
from different hominin groups (modern humans and Neanderthals). We used AFR as the
anchor panel and either AFR (Table 2.2) or EUR (Table 2.3) as the contaminant panel. For
samples of high and medium average coverage, the MCMC converges to reasonable values
for all parameters. For example, we estimate the ancient population drift parameter (τA) to
be larger in Neanderthals than in various modern humans sampled across Eurasia, as the
effective population size of the former was smaller and their split time to Africans was larger.

However, for samples of very low coverage, we observe a failure of some of the parameters
to properly converge, as the MCMC seems to get stuck in the boundaries of parameter
space. We tested different boundaries and the problem remains. This appears to be less of
a problem when using AFR as the putative contaminant panel than when using EUR as the
putative contaminant panel, presumably because of the larger amount of SNPs that may be
informative for inference. In the former case, we only observe this problem when samples
are at lower than ∼ 0.5X coverage. In the latter case, we observe the problem for samples
at lower than ∼ 3X coverage.

For example, the low-coverage Neanderthal genome (0.5X) from Mezmaiskaya Cave in
Western Russia [16] seems to converge to parameters within the prior boundaries when using
AFR as the contaminant panel but the ancient population drift gets stuck in the upper limit
of parameter space when any of the other panels are used as contaminants (Table 2.4).
Regardless of which contaminant panel is used, there is good agreement with the modern
human drift parameter obtained when using the Altai Neanderthal genome. However, we
note that when using non-African populations as the contaminants, we obtain a higher
(∼ 5%) contamination rate in the Mezmaiskaya Neanderthal than in the Altai Neanderthal.
It is currently unclear to us whether this is due to the MCMC failing to properly converge
or to a real feature of the data.
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We sought to determine the robustness of our results to different levels of GC content.
We did this because we initially hypothesized that endogenous DNA might be preserved
at lower rates when GC content is low, leading to the presence of proportionally more
contaminant DNA. We partitioned the Altai Neanderthal genome into three different regions
of low (0% − 30%), medium (31% − 69%) and high (70% − 100%) GC content, using the
’GC content’ track downloaded from the UCSC genome browser [57]. We then used the
two-population method to infer contamination, error and drift parameters, using Africans
as the anchor population and Europeans as the contaminant population (Figure 2.26). We
observe that contamination rates are higher in low-GC regions than in medium-GC regions
(Welch one-sided t-test on the posterior samples, P < 2.2e-16), which in turn have higher
contamination rates than high-GC regions (P < 2.2e-16). The opposite trend occurs in the
error estimates, while the drift parameters are largely unaffected. However, we find that the
differences we observe across GC levels are almost entirely eliminated by removing CpG sites
from the input dataset (Figure 2.26), as CpG sites are known to have higher mutation rates
than the rest of the genome. For this reason, we recommend filtering them out when testing
for contamination on ancient DNA datasets, which is what was done in Tables 1 and 2.

Finally, we tested a present-day Yoruba genome (HGDP00936) sequenced to high cover-
age [16], which should not contain any contamination. Indeed, when applying our method,
we find this to be the case (Figure 2.27). We infer 0% contamination, regardless of whether
we use EUR or AFR as the candidate contaminant. Furthermore, the anchor drift time is
very close to 0 when using AFR as the anchor population (as the sample belongs to that
same population), while it is non-zero (= 0.22) when using EUR, which is consistent with
the drift time separating Europeans from the ancestor of Europeans and their closest African
sister populations [58].

2.4 Results: three-population method

Simulations

We applied our three-population method to estimate both drift times and admixture
rates. We simulated a high-coverage (30X) archaic human genome under various demo-
graphic and contamination scenarios. Each of the two anchor population panels contained
20 haploid genomes. The admixture time was 0.08 drift units ago, which under a constant
population size of 2N=20,000 would be equivalent to 1,600 generations ago. When running
our inference program, we set the admixture time prior boundaries to be between 0.06 and
0.1 drift units ago.

We find that the admixture time is inaccurately estimated under this implementation
- likely due to lack of information in the site-frequency spectrum - so we do not show
estimates for that parameter below. For admixture rates of 0%, 5% or 20%, the error and
contamination parameters are estimated accurately in all cases (Figures 2.28, 2.29 and 2.30,
respectively). The method is less accurate when estimating the demographic parameters,
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especially the admixture rate which is sometimes under-estimated. Importantly though, the
accuracy of the contamination rate estimates are not affected by incorrect estimation of the
demographic parameters.

We also tested what would happen if the admixture time was simulated to be recent:
0.005 drift units ago, or 100 generations ago under a constant population size of 2N=20,000.
When estimating parameters, we set the prior for the admixture time to be between 0 and
0.01 drift units ago. In this last case, we observe that the drift times and the admixture
rate (20%) are more accurately estimated than when the admixture event is ancient (Figure
2.31).

As before, we also verified that the posterior mode was a good proxy to identify the
true contaminant (A), when running the MCMC using different contaminant panels (A, B,
C and D). In all cases, we used D as the unadmixed anchor panel and B as the admixed
anchor panel. Results are shown in Figure 2.32 for all the demographic scenarios from Figure
2.21. Again, we observe that the true contaminant (A) is always the one that corresponds
to the highest posterior probability, though we again caution that because we do not have
the marginal probabilities, we cannot formally perform model selection to favor a particular
panel. Furthermore,the admixture rate from the ancient population into the ancestors of
A and B is robustly estimated unless the true contaminant (A) is highly diverged from the
candidate contaminant (Figures 2.33, 2.34, 2.35, for admixture rates of 0%, 5% and 50%,
respectively).

Empirical data

We also applied the three-population inference framework to the high-coverage Altai
Neanderthal genome. We first estimated the two drift times specific to Europeans and
Africans after the split from each other (τY and τZ , respectively), using ∂a∂i and the L-BFGS-
B likelihood optimization algorithm [42], but without using the archaic genome (τAfr = 0.009,
τEur = 0.255). Then, we used our MCMC method to estimate the rest of the drift times,
the archaic admixture rate and the contamination and error parameters in the Neanderthal
genome. We set the admixture time prior boundaries to be between 0.06 and 0.1 drift units
ago, which is a realistic time frame given knowledge about modern human - Neanderthal
cohabitation in Eurasia [59]. The error rate and contamination rates we obtain are similar to
those obtained under the two-population method, and we estimate an admixture rate from
Neanderthals into modern humans of 1.72% for the choice of contaminant panel with the
highest posterior mode - which is again EUR (Table 2.5).

We also applied the method to the low-coverage Mezmaiskaya Neanderthal genome. As
before, we are able to reach convergence for all parameters (including the admixture rate)
with the exception of the Neanderthal drift, which gets stuck in the upper boundary of
parameter space (Table 2.6).
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2.5 Discussion
We have developed a new method to jointly infer demographic parameters, along with

contamination and error rates, when analyzing an ancient DNA sample. The method can
be deployed using a C++ program (DICE) that is easy to use and freely downloadable. We
therefore expect it to be highly applicable in the field of paleogenomics, allowing researchers
to derive useful information from previously unusable (highly contaminated) samples, in-
cluding archaic humans like Neanderthals, as well as ancient modern humans.

Applications to simulations show that the error and contamination parameters are esti-
mated with high accuracy, and that demographic parameters can also be estimated accu-
rately so long as enough information (e.g. a large panel of modern humans) is available.
The drift time estimates reflect how much genetic drift has acted to differentiate the archaic
and modern populations since the split from their common ancestral population, and can
be converted to divergence times in generations if an accurate history of population size
changes is also available (for example, via methods like PSMC, [60]). Although we cannot
perform proper model testing, we found via extensive simulations that the posterior mode of
an MCMC run was a robust heuristic statistic to help detect which panel was most likely to
have contaminated the sample. We caution, however, that the fact that a particular panel
yields a higher posterior mode than another is no guarantee that it is a better fit to the data
for demographic scenarios that may be different from the ones we simulated.

We also applied our method to empirical data, specifically to two Neanderthal genomes
at high and low coverage, a present-day high-coverage Yoruba genome, and several ancient
genome sequences of varying degrees of coverage, some obtained via shotgun-sequencing and
some via SNP capture. For the high-coverage Yoruba genome, we infer no contamination, as
would be expected from a modern-day sample, and drift times indicating the Yoruba sample
indeed belongs to an African population.

The contamination and sequencing error estimates we obtained for the Altai Neanderthal
are roughly in accordance with previous estimates [16]. The drift times we obtain under the
three-population model for the African population (τC + τAfr) are approximately 0.411 +
0.009 = 0.42 drift units. The geometric mean of the history of population sizes from the
PSMC results in [16] give roughly that Ne ≈ 21, 818 since the African population size history
started differing from that of Neanderthals, assuming a mutation rate of 1.25 ∗ 10−8 per bp
per generation. If we assume a generation time of 29 years, and use our drift time in the
equation relating divergence time in generations to drift time (t/(2Ne) ≈ τ), this gives an
approximate human-Neanderthal population divergence time of 531,486 years. This number
roughly agrees with the most recent estimates obtained via other methods [16]. Additionally,
the Neanderthal-specific drift time is approximately 6.5 times as large as the modern human
drift time, which is expected as Neanderthals had much smaller population sizes than modern
humans [61, 16]. The admixture rate from archaic to modern humans that we estimate is
1.72%, which is consistent with the rate estimate obtained via methods that do not jointly
model contamination (1.5−2.1%) [16]. In the case of the Altai Neanderthal, we observe that
the sample was probably contaminated by one or more individuals with European ancestry.
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When testing modern human and Neanderthal ancient genomes of lower coverage than
the Altai Neanderthal, we obtain reasonable parameter estimates for samples of medium to
high-coverage. However, we run into problems in estimation when the samples are of low
coverage. For these reasons, and from our simulation results, we recommend that our method
should be used on nuclear genomes with > 3X coverage. The method may converge under
certain conditions at coverages as low as 0.5X (for example, in the case of the Mezmaiskaya
genome under the two-population model when using AFR as the anchor and contaminant
panel), but, in such cases, we caution the user to check convergence is achieved before drawing
any conclusions from the estimates. For SNP capture data, we obtain reliable estimates for
samples with a minimum coverage of 500,000 sites that are polymorphic in the anchor panel.

The demographic models used in our approach are simple, involving no more than three
populations and a single admixture event. This is partly due to limitations of known theory
about the diffusion-based likelihood of an arbitrarily complex demography for the 2-D site-
frequency spectrum - in the case of the two-population method - and to the inability of
∂a∂i [49] to handle more than 3 populations at a time. In recent years, several studies have
made advances in the development of methods to compute the likelihood of an SFS for larger
numbers of populations using coalescent theory [62, 63, 64], with multiple population size
changes and admixture events. We hope that some of these techniques could be incorporated
in future versions of our inference framework.
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2.7 Tables

Table 2.1. Posterior modes of parameter estimates under the two-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. Africans were the anchor population in all cases,
so the modern human drift is with respect to Africans. Values in parentheses are 95%
posterior quantiles.

Contami-
nant
panel

Anchor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift

Log-
posterior
mode

EUR AFR
0.12%
(0.119%−
0.12%)

0.952%
(0.949%−
0.956%)

0.414
(0.411−
0.414)

2.497
(2.49−2.504) -6476175.868

AMR AFR
0.118%
(0.118%−
0.118%)

0.964%
(0.963%−
0.967%)

0.414
(0.411−
0.414)

2.499
(2.494−
2.506)

-6484270.973

SAS AFR
0.12%
(0.12%−
0.121%)

0.95%
(0.946%−
0.951%)

0.411
(0.411−
0.414)

2.496
(2.493− 2.5)

-6489357.978

EAS AFR
0.13%
(0.129%−
0.13%)

0.888%
(0.888%−
0.891%)

0.414
(0.412−
0.414)

2.493
(2.488−
2.493)

-6521082.384

AFR AFR
0.112%
(0.111%−
0.112%)

0.969%
(0.966%−
0.973%)

0.412
(0.41−0.413)

2.495
(2.495−
2.504)

-6574080.092
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Table 2.4. Posterior modes of parameter estimates under the two-population inference
framework for the Mezmaiskaya Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. AFR were the anchor population in all cases, so
the modern human drift is with respect to Africans. Values in parentheses are 95%
posterior quantiles. Except when using AFR as the contaminant, the Neanderthal drift
parameter gets stuck at the upper boundary (5 drift units) of parameter space.

Conta-

minant
panel

An-
chor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift

Log-
posterior
mode

EUR AFR
0.295%
(0.284%−
0.306%)

5.568%
(5.472%−
5.673%)

0.425
(0.423−
0.429)

4.984
(4.95− 5)

-883632.4637

AMR AFR 0.316%
(0.3%−0.322%)

5.333%
(5.261%−
5.48%)

0.426
(0.422−
0.428)

4.994
(4.952−
4.999)

-884312.5366

SAS AFR
0.328%
(0.317%−
0.341%)

5.203%
(5.097%−
5.313%)

0.426
(0.422−
0.428)

4.996
(4.946−
4.999)

-884684.3521

EAS AFR
0.393%
(0.379%−
0.402%)

4.53%
(4.48%−
4.684%)

0.423
(0.421−
0.426)

4.99
(4.887−
4.999)

-885493.7081

AFR AFR 0.515%
(0.5%−0.525%)

0.007%
(0.002%−
0.126%)

0.406
(0.403−
0.409)

1.756
(1.701−
1774)

-889165.6704
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Table 2.5. Posterior modes of parameter estimates under the three-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. In all cases, Africans were the unadmixed anchor
population and Europeans were the admixed anchor population. The ancestral human drift
refers to the drift in the modern human branch before the split of Europeans and Africans.
The post-split European-specific and African-specific drifts were estimated separately
without the archaic genome (τAfr = 0.009, τEur = 0.255).

Conta-

minant
panel

Unad-

mixed
anchor
panel

Ad-
mixed
anchor
panel

Error
rate

Contamination
rate

Ancestral
human
drift

Neanderthal
drift

Admixture
rate

Log-
posterior
mode

EUR AFR EUR
0.119%
(0.119%−
0.12%)

0.967%
(0.954%−
0.967%)

0.411
(0.405−
0.414)

2.669
(2.656−
2.689)

1.72%
(1.682%−
1.805%)

-7452958.125

AMR AFR EUR
0.119%
(0.118%−
0.12%)

0.967%
(0.962%−
0.974%)

0.407
(0.402−
0.412)

2.677
(2.651−
2.708)

1.661%
(1.618%−
1.696%)

-7461041.325

SAS AFR EUR
0.122%
(0.122%−
0.123%)

0.95%
(0.944%−
0.955%)

0.399
(0.398−
0.406)

2.682
(2.677−
2.695)

1.469%
(1.422%−
1.48%)

-7465214.726

EAS AFR EUR
0.13%
(0.129%−
0.132%)

0.896%
(0.884%−
0.903%)

0.421
(0.413−
0.428)

2.702
(2.658−
2.706)

2.388%
(2.009%−
2.447%)

-7509504.053

AFR AFR EUR
0.117%
(0.117%−
0.119%)

0.957%
(0.945%−
0.964%)

0.409
(0.409−
0.418)

2.681
(2.66−2.702)

1.837%
(1.766%−
1.961%)

-7554080.773
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Table 2.6. Posterior modes of parameter estimates under the three-population inference
framework for the Mezmaiskaya Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. In all cases, Africans were the unadmixed anchor
population and Europeans were the admixed anchor population. The ancestral human drift
refers to the drift in the modern human branch before the split of Europeans and Africans.
The post-split European-specific and African-specific drifts were estimated separately
without the archaic genome (τAfr = 0.009, τEur = 0.255). In all cases, the Neanderthal
drift parameter gets stuck at the upper boundary (5 drift units) of parameter space.

Conta-

minant
panel

Unad-

mixed
anchor
panel

Ad-
mixed
anchor
panel

Error
rate

Contamination
rate

Ancestral
human
drift

Neanderthal
drift

Admixture
rate

Log-
posterior
mode

AFR AFR EUR
0.517%
(0.502%−
0.526%)

4.663%
(4.564%−
4.787%)

0.428
(0.426−
0.432)

4.999
(4.989− 5)

1.609%
(1.585%−
1.63%)

-1025944.516

EAS AFR EUR
0.71%
(0.697%−
0.721%)

2.471%
(2.403%−
2.564%)

0.415
(0.412−
0.418)

4.997
(4.985− 5)

1.486%
(1.462%−
1.508%)

-1028456.347

AMR AFR EUR
0.727%
(0.71%−
0.733%)

2.288%
(2.208%−
2.361%)

0.414
(0.412−
0.417)

4.999
(4.985− 5)

1.482%
(1.459%−
1.501%)

-1028866.312

SAS AFR EUR
0.724%
(0.709%−
0.732%)

2.315%
(2.219%−
2.375%)

0.414
(0.412−
0.418)

4.998
(4.984− 5)

1.479%
(1.458%−1.5%)

-1028823.568

EUR AFR EUR
0.761%
(0.745%−
0.77%)

1.875%
(1.784%−
1.928%)

0.413
(0.41−0.415)

4.998
(4.984− 2.5)

1.463%
(1.457%−
1.495%)

-1029429.156
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2.8 Figures

Figure 2.1. A) Schematic of two-population modeling framework: at each site, derived
and ancestral fragments (a, d) are binomially sampled from the true genotype of the
archaic individual, with some amount of contamination and error. In turn, the true
genotype depends on a demographic model, which can include the contaminant population.
B) Schematic of three-population modeling framework, incorporating admixture between
the archaic population and one of two anchor populations.
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Figure 2.2. Comparison of analytic solutions to P [i|y, τC , τA] and simulations under
neutrality from msms, for different choices of τA and τC .
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Figure 2.3. Estimation of parameters for a low-coverage ancient DNA genome (3X) with
low sequencing error (0.1%), no admixture and a large anchor population panel (100
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 2.4. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a large anchor population panel (100
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 2.5. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with high sequencing error (10%), no admixture and a large anchor population panel (100
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 2.6. We tested the performance of the two-population method under a variety of
drift and contamination scenarios for a sample of very low (0.5X) or very high (30X)
coverage. We found that we needed more sites (≈ 1.6 million) to obtain accurate estimates
from the low coverage sample. The MCMC chain was also run for a longer time (1 million
steps). A) Absolute difference between the estimated and the simulated contamination rate
for a 0.5X genome. B) Absolute difference between the estimated and estimated and the
simulated contamination rate for a 30X genome. C) Absolute difference between the
estimated and the simulated anchor drift for a 0.5X genome. D) Absolute difference
between the estimated and the simulated anchor drift for a 30X genome. In all simulations,
the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.7. Absolute difference between estimated and simulated contamination rates for
a variety of anchor drift and contamination scenarios, for different levels of coverage. In all
simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.8. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, for different levels of coverage. In all
simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.9. Absolute difference between estimated and simulated ancient sample drifts for
a variety of anchor drift and contamination scenarios, for different levels of coverage. In all
simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.10. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.11. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million steps.
In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.12. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure 2.13. Estimation of parameters for an ancient DNA genome of very low coverage
(0.5X) with low sequencing error (0.1%) and a large anchor population panel (100 haploid
genomes). Note that unlike the rest of the simulations, the number of SNPs used in this
case was approximately 1.6 million instead of 80,000, and the MCMC chain was run for 1
million steps instead of 100,000. Using a lower number of SNPs or running the chain for a
shorter time resulted in inaccurate inferences. Error bars represent 95% posterior intervals.
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Figure 2.14. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift
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Figure 2.15. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps each.
To ensure convergence, we then selected the chain with the highest posterior probability,
and here show estimates from that chain. In all simulations, the anchor drift was set to be
equal to the ancient sample drift
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Figure 2.16. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift.
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Figure 2.17. Estimation of parameters for a high-coverage ancient DNA genome (30X)
simulated under a realistic scenario in which fragments from the ancient and contaminant
genome were generated and then mapped to a reference genome. We allowed for multiple
substitutions at the same site after the split from chimp, as well as sequencing errors and
post-mortem deamination errors at the ends of the fragments. The five panels show results
from inferring parameters under five different error rate models. Top-left: single-error
model. Top-right: two-error model [22]. Middle-left: model with separate errors for
transitions (ts) and tranversions (tv). Middle-right: single-error model with an ancestral
state misidentification parameter. Bottom-left: Model in which errors were inferred
individually at each site, using base and mapping qualities obtained from the simulated
BAM file. Error bars represent 95% posterior intervals.
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Figure 2.18. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a small anchor population panel (20
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 2.19. Estimation of parameters for a high-coverage ancient DNA genome (30X),
when the contaminant fragments are exclusively drawn from a single diploid individual
from the contaminant panel. Error bars represent 95% posterior intervals.
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Figure 2.20. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), a large anchor population panel (100 haploid genomes)
and admixture in the anchor population from the archaic population (5%), using the
two-population inference framework, which does not model admixture. Error bars
represent 95% posterior intervals.
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Figure 2.21. Three demographic models used to test the method when the contaminant
is misspecified. When testing the two-population method, we set panel A as the true
contaminant and panel D as the anchor. When testing the three-population method, we set
panel A as the true contaminant, panel D as the unadmixed anchor and panel B as the
admixed anchor. The numbers on the branches represent the drift parameters. The
parameter α represents the admixture rate from the ancient population into the ancestor of
A and B.
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Figure 2.22. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the two-population model corresponds to the
true contaminant (panel A). The y-axis shows the difference between the log-posterior for
contaminant panel A and the log-posterior for different candidate contaminant panels (A,
B, C, D), so low values correspond to high posterior probabilities for each of the
candidates. We added a 1 to the difference to be able to plot the difference on a
logarithmic scale. The three panels contain results for three admixture scenarios (from left
to right: admixture rate of 0%, 5% and 50%) and each panel shows the difference under
different contamination rates and demographic models (see Figure 2.21).
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Figure 2.23. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 0%. The anchor panel used was panel D (see Figure
2.21).
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Figure 2.24. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 5%. The anchor panel used was panel D (see Figure
2.21).
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Figure 2.25. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 50%. The anchor panel used was panel D (see Figure
2.21).
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Figure 2.26. Estimation of parameters for the Altai Neanderthal genome across different
GC levels using the two-population model, while keeping (black) or removing (red) CpG
sites from the input dataset. Error bars represent 95% posterior intervals.
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Figure 2.27. We tested one of the Yoruba genomes from [16] and obtain an estimate of
0% contamination, regardless of whether we use Europeans or Africans as the candidate
contaminant. The anchor drift time is close to 0 when using Africans as the anchor
population, as the sample belongs to that same population, while it is non-zero (= 0.22)
when using Europeans. Error bars represent 95% posterior intervals.
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Figure 2.28. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 0%. The prior used
for the admixture time was uniform over [0.06, 0.1]. Error bars represent 95% posterior
intervals.
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Figure 2.29. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 5% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time was
uniform over [0.06, 0.1]. Error bars represent 95% posterior intervals.
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Figure 2.30. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time was
uniform over [0.06, 0.1]. Error bars represent 95% posterior intervals.
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Figure 2.31. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time was recent (0.005 drift units ago). The prior used for the admixture time
was uniform over [0, 0.01]. Error bars represent 95% posterior intervals.
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Figure 2.32. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the three-population model corresponds to the
true contaminant (panel A). The y-axis shows the difference between the log-posterior for
contaminant panel A and the log-posterior for different candidate contaminant panels (A,
B, C, D), so low values correspond to high posterior probabilities for each of the
candidates. We added a 1 to the difference to be able to plot the difference on a
logarithmic scale. The three panels contain results for three admixture scenarios (from left
to right: admixture rate of 0%, 5% and 50%) and each panel shows the difference under
different contamination rates and demographic models (see Figure 2.21).



CHAPTER 2. JOINT ESTIMATION OF CONTAMINATION, ERROR AND
DEMOGRAPHY FROM ANCIENT DNA 57

Figure 2.33. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 0%. The unadmixed anchor panel used was panel D
and the admixed anchor panel was panel B (see Figure 2.21).
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Figure 2.34. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 5%. The unadmixed anchor panel used was panel D
and the admixed anchor panel was panel B (see Figure 2.21).
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Figure 2.35. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at 25%
and the error rate at 0.1%. In this case, the admixture rate from the ancient population to
the ancestor of A and B was kept at 50%. The unadmixed anchor panel used was panel D
and the admixed anchor panel was panel B (see Figure 2.21).
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3. Signatures of archaic adaptive
introgression in present-day human
populations
Fernando Racimo, Davide Marnetto, Emilia Huerta-Sánchez

3.1 Introduction
There is a growing body of evidence supporting the idea that certain modern human

populations admixed with archaic groups of humans after expanding out of Africa. In par-
ticular, non-African populations have 1−2% Neanderthal ancestry [8, 16], while Melanesians
and East Asians have 3% and 0.2% ancestry, respectively, from Denisovans [26, 2, 16].

Recently, it has become possible to identify the fragments of the human genome that were
introgressed and survive in present-day individuals [20, 21]. Researches have also detected
which of these introgressed regions are present at high frequencies in some present-day non-
Africans but not others. These regions are likely to have undergone positive selection in those
populations after they were introgressed, a phenomenon known as adaptive introgression
(AI). One particularly striking example of AI is the gene EPAS1 [67] which confers a selective
advantage in Tibetans by making them less prone to hypoxia at high altitudes [32]. The
selected Tibetan haplotype is known to have been introduced in the human gene pool by
Denisovans or a population closely related to them [33, 34].

In this study, we use simulations to assess the power to detect AI using different summary
statistics that do not require the introgressed fragments to be identified a priori. Some of
these are inspired by the signatures observed in EPAS1, which contains an elevated number
of sites with alleles uniquely shared between the Denisovan genome and Tibetans. We then
apply these statistics to real human genomic data from phase 3 of the 1000 Genomes Project
[45], to detect AI in human populations, and find candidate genes. While these statistics are
sensitive to adaptive introgression, they may also be sensitive to other phenomena that gen-
erate genomic patterns similar to those generated by AI, like ancestral population structure
and incomplete lineage sorting. These processes, however, should not generate long regions
of the genome where haplotypes from the source and the recipient population are highly
similar. To assess whether the candidates we found are truly generated by AI, we explored
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the haplotype structure of some of the most promising candidates, and used a probabilistic
method [23] that infers introgressed segments along the genome by looking at the spatial
arrangement of SNPs that are consistent with introgression. This allows us to verify that
the candidate regions contain introgressed haplotypes at high frequencies: a hallmark of AI.

3.2 Methods

Summary statistics sensitive to adaptive introgression

Several statistics have been previously deployed to detect AI events (reviewed in Racimo
et al. [31]). We briefly describe these below, as well as three new statistics tailored specifically
to find this signal (Table 3.1). One of the simplest approaches consists of applying the D
statistic [8, 68] locally over windows of the genome. The D statistic was originally applied
to compare a single human genome against another human genome, so as to detect excess
shared ancestry between one of the genomes and a genome from an outgroup population.
Application of this statistic comparing non-Africans and Africans served as one of the pieces
of evidence in support of Neanderthal admixture into non-Africans. However, it can also be
computed from large panels of multiple individuals instead of single genomes. This form of
the D statistic has been applied locally over windows of the genome, to detect regions of
excess shared ancestry between an admixed population and a source population [69, 70].

The D statistic, however, can be confounded by local patterns of diversity, as regions
of low diversity may artificially inflate the statistic even when a region was not adaptively
introgressed. To correct for this, Martin et al. [71] developed a similar statistic called fD
which is less sensitive to differences in diversity along the genome. Both of these patterns
exploit the excess relatedness between the admixed and the source population.

AI is also expected to increase linkage disequilibrium (LD), as an introgressed fragment
that rises in frequency in the population will have several closely linked loci that together
will be segregating at different frequencies than they were in the recipient population before
admixture. Thus, two well-known statistics that are informative about the amount of LD in
a region - D′ and r2 - could also be informative about adaptive introgression. To apply them
over regions of the genome, we can take the average of each of the two statistics over all SNP
pairs in a window. In the section below, we calculate these statistics in two ways: a) using
the introgressed population only (D′[intro] and r2[intro]), and b) using the combination of
the introgressed and the non-introgressed populations (D′[comb] and r2[comb]).

We also introduce three new statistics that one would expect, a priori, to be particularly
effective at identifying windows of the genome that are likely to have undergone adaptive in-
trogression. First, in a region under adaptive introgression, one would expect the divergence
between an individual from the source population and an admixed individual to be smaller
than the divergence between an individual from the source population and a non-admixed
individual. Thus, one could take the ratio of these two divergences over windows of the
genome. One can then take the average of this ratio over all individuals in the admixed and
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non-admixed panels. This average should be larger if the introgressed haplotype is present
in a large number of individuals of the admixed population. We call this statistic RD.

Second, for a window of arbitrary size, let UA,B,C(w, x, y) be defined as the number
of sites where a sample C from an archaic source population (which could be as small as
a single diploid individual) has a particular allele at frequency y, and that allele is at a
frequency smaller than w in a sample A of a population but larger than x in a sample B of
another population (Figure 3.1). In other words, we are looking for sites that contain alleles
shared between an archaic human genome and a test population, but absent or at very low
frequencies in an outgroup (usually non-admixed) population. Below, we denote panels A,
B and C as the “outgroup", “target" and “bait" panels, respectively. For example, suppose
we are looking for Neanderthal adaptive introgression in the Han Chinese (CHB). In that
case, we can consider CHB as our target panel, and use Africans as the outgroup panel and
a single Neanderthal genome as the bait. If UAFR,CHB,Nea(1%, 20%, 100%) = 4 in a window
of the genome, that means there are 4 sites in that window where the Neanderthal genome
is homozygous for a particular allele and that allele is present at a frequency smaller than
1% in Africans but larger than 20% in Han Chinese. In other words, there are 4 sites that
are uniquely shared at more than 20% frequency between Han Chinese and Neanderthal,
but not with Africans.

This statistic can be further generalized if we have samples from two different archaic
populations (for example, a Neanderthal genome and a Denisova genome). In that case,
we can define UA,B,C,D(w, x, y, z) as the number of sites where the archaic sample C has
a particular allele at frequency y and the archaic sample D has that allele at frequency z,
while the same allele is at a frequency smaller than w in an outgroup panel A and larger
than x in a target panel B (Figure 3.2). For example, if we were interested in looking for
Neanderthal-specific AI, we could set y = 100% and z = 0%, to find alleles uniquely shared
with Neanderthal, but not Denisova. If we were interested in archaic alleles shared with both
Neanderthal and Denisova, we could set y = 100% and z = 100%.

Another statistic that we found to be useful for finding AI events is Q95A,B,C(w, y), and is
here defined as the 95th percentile of derived frequencies in an admixed sample B of all SNPs
that have a derived allele frequency y in the archaic sample C, but where the derived allele is
at a frequency smaller than w in a sample A of a non-admixed population (Figure 3.1). For
example, Q95AFR,CHB,Nea(1%, 100%) = 0.65 means that if one computes the 95% quantile
of all the Han Chinese derived allele frequencies of SNPs where the Neanderthal genome
is homozygous derived and the derived allele has frequency smaller than 1% in Africans,
that quantile will be equal to 0.65. As before, we can generalize this statistic if we have a
sample D from a second archaic population. Then, Q95A,B,C,D(w, y, z) is the 95th percentile
of derived frequencies in the sample B of all SNPs that have a derived allele frequency y in
the archaic sample C and derived allele frequency z in the archaic sample D, but where the
derived allele is at a frequency smaller than w in the sample A (Figure 3.2).

In the section below, we evaluate the sensitivity and specificity of all these statistics using
simulations. We also evaluate the effect of adaptive introgression on a common statistic that
is indicative of population variation - expected heterozygosity (Het), as this statistic was
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previously found to be affected by archaic introgression in a serial founder model of human
history [72]. We measured Het as the average of 2*p*(1-p) over all sites in a window, where
p is the sample derived allele frequency in the introgressed population.

Simulations

None of these statistics have been explicitly vetted under scenarios of AI so far, though
the performance of D and fD has been previously evaluated for detecting local introgression
[71]. Therefore, we aimed to test how each of the statistics described above performed in
detecting AI. We began by simulating a three population tree in Slim [73] with constant
Ne = 10, 000, mutation rate equal to 1.5 ∗ 10−8 per bp per generation, recombination rate
equal to 10−8 per bp per generation, and split times emulating the African-Eurasian and
Neanderthal-modern human split times (4,000 and 16,000 generations ago, respectively).
We allowed for admixture between the most distantly diverged population and one of the
closely related sister populations, at different rates: 2%, 10% and 25% (Figure 3.3.A). This is
meant to represent Neanderthal admixture into Eurasians, with Africans as the non-admixed
population. Under each of the three admixture rate scenarios, we simulated regions that were
evolving neutrally, regions where the central SNP was under weak positive additive selection
(s = 0.01) and regions with a central SNP under strong selection (s = 0.1).

We also tested how the statistics perform at detecting adaptive introgression when the
alternative model is not a neutral introgression model, but a neutral model with ancestral
structure (Figure 3.3.G). We followed a model described in Huerta-Sanchez et al (2014) and
simulated a population in which an African population splits from archaic humans before
Eurasians, but is allowed to exchange migrants with them. Afterwards, we split Eurasians
and archaic humans. At that point, we stop the previous migration and only allow for
migration between the Eurasian and African populations until the present, at double the
previous rate. This is meant to generate loci where Eurasians and archaic humans share a
more recent common ancestor with each other than with Africans, but because of ancient
shared ancestry, not recent introgression. We simulated 3 scenarios, in which we set the per-
generation ancient(recent) migration rate to be 0.01(0.02), 0.001(0.002) and 0.0001(0.0002).
We call these the strong-, medium-, and weak-migration scenarios, respectively. The stronger
the migration, the weaker the ancestral structure, as archaic-shared segments in Eurasians
will tend to be removed by migration with Africans.

Plotting haplotype structure

The Haplostrips software (Marnetto et al. in prep.) was used to produce plots of hap-
lotypes at candidate regions for AI. This software displays each SNP within a predefined
region as a column, while each row represents a phased haplotype. Each haplotype is la-
beled with a color that corresponds to the 1000 Genomes panel of its carrier individual. The
haplotypes are ordered by decreasing similarity to a reference that contains all derived alleles
found in the archaic genome (Altai Neanderthal or Denisova), so that haplotypes with more
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derived alleles shared with the archaic population are at the top of the plot. Derived alleles
are represented as black spots and ancestral alleles are represented as white spots. Variant
positions were filtered out when the site in the archaic genome had mapping quality less
than 30 or genotype quality less than 40, or if the minor allele had a population frequency
smaller than 5% in each of the present-day human populations included in the plot.

Hidden Markov Model

As haplotypes could look archaic simply because of ancestral structure or incomplete
lineage sorting, we used a Hidden Markov Model (HMM) [23] to verify that our candidate
regions truly had archaic introgressed segments. This procedure also allowed us to confirm
which of the archaic genomes was closest to the original source of introgression, as using a
distant archaic source as input (for example, the Denisova genome when the true source is
closest to the Neanderthal genome) produced shorter or less frequent inferred segments in
the HMM output than when using the closer source genome.

The HMM we used requires us to specify a prior for the admixture rate. We tried
two priors: 2% and 50%. The first was chosen because it is consistent with the genome-
wide admixture rate for Neanderthals into Eurasians. The second, larger, value was chosen
because each candidate region should a priori have a larger probability of being admixed, as
they were found using statistics that are indicative of admixture in the first place. We observe
almost no differences in the number of haplotypes inferred using either value. However, the
larger prior leads to longer and less fragmented introgressed chunks, as the HMM is less likely
to transition into a non-introgressed state between two introgressed states, so all figures we
show below were obtained using a 50% admixture prior. The admixture time was set to 1,900
generations ago and the recombination rate was set to 2.3 ∗ 10−8 per bp per generation. A
tract was called as introgressed if the posterior probability for introgression was higher than
90%.

Testing for enrichment in genic regions

To test for whether uniquely shared archaic alleles at high frequencies were enriched in
genic regions of the genome, we looked at archaic alleles at high frequency in any of the
Non-African panels that were also at low frequency (< 1%) in Africans. As background, we
used all archaic alleles that were at any frequency larger than 0 in the same Non-African
populations, and that were also at low frequency in Africans. We then tested whether the
high-frequency archaic alleles tended to occur in genic regions more often than expected.

SNPs in introgressed blocks will tend to cluster together and have similar allele frequen-
cies, which could cause a spurious enrichment signal. To correct for the fact that SNPs
at similar allele frequencies will cluster together (as they will tend to co-occur in the same
haplotypes), we performed linkage disequilibrium (LD) pruning using two methods. In one
(called “LD-1"), we downloaded the approximately independent European LD blocks pub-
lished in ref. [74]. For each set of high frequency derived sites, we randomly sampled one
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SNP from each block. In a different approach (called “LD-2"), for each set of high frequency
derived sites, we subsampled SNPs such that each SNP was at least 200 kb apart from each
other. We then tested these two types of LD-pruned SNP sets against 1000 SNP sets of
equal length that were also LD-pruned and that were obtained randomizing frequencies and
collecting SNPs in the same ways as described above.

3.3 Results

Simulations

Statistics based on shared allele configurations

We tested the performance of the statistics described above under scenarios of adaptive
introgression. Figures 3.4, 3.5 and 3.6 show the distribution of statistics that rely on pat-
terns of shared allele configurations between source and introgressed populations, for different
choices of the selection coefficeint s, and under 2%, 10% and 25% admixture rates, respec-
tively. For Q95A,B,C(w, 100%) and UA,B,C(w, x, 100%), we tested different choices of w (1%,
10%) and x (0%, 20%, 50% and 80%). Some statistics, like fD and Q95A,B,C(1%, 100%) show
strong separation between the selection regimes, while others, like UA,B,C(1%, 0%, 100%), are
not as effective.

LD-based statistics

In turn, Figure 3.7 shows the distribution of LD-based statistics under different selection
and admixture rate regimes. Note that while D′[intro], D′[comb] and r2[comb] are generally
increased by adaptive introgression, this is not the case with r2[intro] under strong selection
and admixture regimes. This is because r2 will tend to decrease if the minor allele frequency
is very small, which will occur if this frequency is only measured in the population undergoing
adaptive introgression. In general, these statistics do not seem to be as powerful for detecting
AI as allele configuration statistics like U or Q95.

Receiving operator curves

In Figures 3.8 and 3.9, we plot receiving operator curves (ROC) of all these statistics, for
various selection and admixture regimes. In general, QA,B,C(1%, 100%), QA,B,C(10%, 100%)
and fD are very powerful statistics for detecting AI. The number of uniquely shared sites
UA,B,C(x, y, z) is also powerful, so long as y is large. Additionally, for different choices of y,
using w = 1% yields a more powerful statistic than using w = 10%.

Joint distributions

We were also interested in the joint distribution of pairs of these statistics. Figure 3.10
shows the joint distribution of Q95A,B,C(1%, 100%) in the y-axis and four other statistics
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(RD, Het, D and fD) in the x-axis, under different admixture and selection regimes. One
can observe, for example, that while QA,B,C(1%, 100%) increases with increasing selection
intensity and admixture rates, Het increases with increasing admixture rates, but decreases
with increasing selection intensity. Thus, under AI the two forces cancel each other out, and
we obtain a similar value of Het as under neutrality. Furthermore, the joint distributions
of Q95A,B,C(1%, 100%) and fD or RD show particularly good separation among the different
AI scenarios.

Another joint distribution that is especially good at separating different AI regimes is the
combination of Q95A,B,C(w, 100%) and UA,B,C(w, x, 100%). In Figure 3.11, we show this joint
distribution, for different choices of w (1%, 10%) and x (20%, 50%). Here, with increasing
intensity of selection and admixture, the number of uniquely shared sites and the quantile
statistic increase, but the quantile statistic tends to only reach high values when selection is
strong, even if admixture rates are low.

Alternative demographic scenarios

We evaluated the performance of our statistics under various alternative demographic
scenarios. First, we simulated a 5X bottleneck occurring in population B 1,600 generations
before the admixture event, and lasting 200 generations, to observe its effects on the power of
the statistics for detecting AI (Figure 3.3.B). Though we observe a reduction in power - most
evident in the heterozygosity statistics - none of the statistics are very strongly affected by
this event (Figure 3.12). We also simulated a bottleneck of equal size but occurring after the
admixture event - starting 1,400 generations ago, and lasting 200 generations (Figure 3.3.C).
In this case, the sensitivity of all the statistics is strongly reduced when the admixture rate is
low (Figure 3.13). For example, when looking at the raw values of the UA,B,C and Q95A,B,C
statistics, we observe that for low admixture rates the distribution under selection has more
overlap with the distribution under neutrality, which explains the low power (Figures 3.14,
3.15). Additionally, UA,B,C seems to display more elevated values under neutrality than in
the constant population size model. However, the relative performance of each statistic with
respect to all the others does not appear to change much (Figure 3.13).

Then, we set the introgressed haplotype to not be immediately adaptive in the Eurasian
population, but to instead undergo an intermediate period of neutral drift, before it becomes
advantageous (Figure 3.3.D). In such a situation, our power to detect AI is reduced, for all
statistics (Figure 3.16). This is particularly an issue when the admixture rate is low, as in
those cases the starting frequency of the selected allele in the Eurasian population is low,
so it is more likely to drift to extinction during the neutral period, before it can become
advantageous.

We also evaluated the performance of our statistics under selective scenarios that did not
involve adaptive introgression, to check which of them were sensitive to these models and
which were not. Under a model of selection from de novo mutation (SDN, Figure 3.3.E),
in which a single mutation appears in the receiving population after the admixture event,
the heterozygosity and linkage disequilbrium statistics (r2[intro] and D′[intro]) are the most
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sensitive ones (Figure 3.17). This is expected, given that classical selective sweeps are known
to strongly affect patterns of heterozygosity and linkage disequilibrium in the neighborhood
of the selected site [75, 76, 77]. We also simulated a model of selection from standing variation
(Figure 3.3.F), by randomly selecting 20% of haplotypes within the introgressing population
to be advantageous, after the introgression event had already occurred. In this case, all
statistics perform poorly, especially when admixture is low. Interestingly, when admixture is
high (Figure 3.18), Q95A,B,C(1%, 100%) and UA,B,C(1%, 0%, 100%) are the best performing
statistics. This is likely because some of the haplotypes that are randomly chosen to be
selected also happen to be ancestrally polymorphic and present in the archaic humans.

When we set ancestral structure to be our null model, we observe different behav-
iors depending on the strength of the migration rates. When the migration rates are
strong (Figure 3.19), we have excellent power to detect AI with several statistics, including
Q95A,B,C(1%, 100%), D, fD, RD and UA,B,C(1%, 50%, 100%). When the rates are of medium
strength (Figure 3.20), the power is slightly reduced, but the same statistics are the ones
that perform best. When the migration rates are weak - meaning ancestral structure is very
strong - Q95A,B,C(1%, 100%) loses power, and the best-performing statistics are RD, D and
fD (Figure 3.21). We note, though, that the genome-wide D observed under this last ances-
tral structure model (D = 0.24) is much more extreme than the genome-wide D observed
empirically between any Eurasian population and Neanderthals or Denisovans, suggesting
that if there was ancestral structure between archaic and modern humans, it was likely not
of this magnitude.

Global features of uniquely shared archaic alleles

Before identifying candidate genes for adaptive introgression, we investigated the fre-
quency and number of uniquely shared sites at the genome-wide level. Specifically, we
wanted to know whether human populations varied in the number of sites with uniquely
shared archaic alleles, and whether they also varied in the frequency distribution of these
alleles. Therefore, we computed UA,B,Nea,Den(1%,x,y,z) and Q95A,B,Nea,Den(1%,y,z) for dif-
ferent choices of x, y and z. We used each of the non-African panels in the 1000 Genomes
Project phase 3 data [45] as the “test" panel (B), and chose the outgroup panel (A) to be the
combination of all African populations (YRI, LWK, GWD, MSL, ESN), excluding admixed
African-Americans. When setting x = 0% (i.e. not imposing a frequency cutoff in the tar-
get panel B), South Asians as a target population show the largest number of archaic alleles
(Figure 3.22). However, East Asians have a larger number of high-frequency uniquely shared
archaic alleles than Europeans and South Asians, for both x = 20% and x = 50% (Figure
3.22). Population-specific D-statistics (using YRI as the non-admixed population) also follow
this trend (Figure 3.23) and we observe this pattern when looking only at the X chromosome
as well (Figure 3.24). These results hold in comparisons with both archaic human genomes,
but we observe a stronger signal when looking at Neanderthal-specific shared alleles. We
observe a similar pattern when calculating Q95A,B,Nea,Den(1%, y, z) genome-wide (Figure
3.22) with the exception of Denisova-specific shared alleles. The elevation in UA,B,Nea,Den
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and Q95A,B,Nea,Den in East Asians may result from higher levels of archaic ancestry in East
Asians than in Europeans [18], and agrees with studies indicating that more than one pulse
of admixture likely occurred in East Asians [19, 78].

Surprisingly, the Peruvians (PEL) harbor the largest amount of high frequency mutations
of archaic origin than any other single population, especially when using Neanderthals as bait
(Figures 3.22,3.24). It is unclear whether this signal is due to increased drift or selection
in this population. Skoglund et al. [79] argue that drift coupled with an ascertainment
scheme that excludes low frequency alleles should artificially increase a signal of archaic
ancestry, which could explain this pattern. PEL has a history of low effective population
sizes relative to other Non-Africans [45], and our UAFR,PEL,Nea,Den(w, x, y, z) statistic is a
form of high-frequency ascertainment (in the sense that we only count mutations that have
more than x frequency in PEL). This could also explain why the effect is not seen when x
= 0% (Figure 3.22), or when computing D-statistics (Figure 3.23), both of which effectively
have no high-frequency ascertainment.

Additionally, we plotted the values of UAFR,X,Nea,Den(w,1%, y, z) andQ95AFR,X,Nea,Den(1%, y, z)
jointly for each population X, under different frequency cutoffs w. When w = 0%, there is
a generally inversely proportional relationship between the two scores (Figure 3.25), but
this becomes a directly proportional relationship when w = 20% (Figure 3.26) or w = 50%
(Figure 3.27). Here, we also clearly observe that PEL is an extreme region with respect to
both the number and frequency of archaic shared derived alleles, and that East Asian and
American populations have more high-frequency archaic shared alleles than Europeans.

We checked via simulations if the observed excess of high frequency archaic derived
mutations in Americans and especially Peruvians could be caused by genetic drift, as a
consequence of the bottleneck that occurred in the ancestors of Native Americans as they
crossed Beringia. We observe that if the introgressed population B undergoes a bottleneck
(5X for 200 generations, starting 200 generations after the admixture event) this can lead
to a larger number of UA,B,C(w, x, y, z) for large values of x (Figure 3.14,3.15,3.28). Indeed,
population structure analyses of the 1000 Genomes samples suggest that Peruvians have
the largest amount of Native American ancestry [45] and show a lack of recent population
growth, which could explain this pattern.

Candidate regions for adaptive introgression

To identify adaptively introgressed regions of the genome, we computed UA,B,C,D(w, x, y, z)
and Q95A,B,C,D(w, y, z) in 40kb non-overlapping windows along the genome, using the low-
coverage sequencing data from phase 3 of the 1000 Genomes Project [45]. We used this
window size because the mean length of introgressed haplotypes found in ref. [16] was
44,078 bp (Supplementary Information 13). Our motivation was to find regions under AI
in a particular panel B, using panel A as a non-introgressed out-group (generally Africans,
unless otherwise stated). We used the high-coverage Altai Neanderthal genome [16] as bait
panel C and the high-coverage Denisova genome [2] as bait panel D. We deployed these
statistics in three ways: a) to look for Neanderthal-specific AI, we set y = 100% and z = 0%;
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b) to look for Denisova-specific AI, we set y = 0% and z = 100%; c) to look for AI matching
both of the archaic genomes, we set y = 100% and z = 100% (Figure 3.2, Table 3.4). To
try to determine the adaptive pressure behind the putative AI event, we obtained all the
CCDS-verified genes located inside each window [80].

For guidance as to how high a value of U and Q95 we would expect under neutrality,
we used the simulations from Figure 3.3 to obtain 95% empirical quantiles of the distri-
bution of these scores under neutrality. Tables 3.2 and 3.3 show the 95% quantiles for
these two statistics under various models of adaptive introgression and ancestral structure,
for different choices of parameter values (see Methods Section). When examining our can-
didates for AI below, we focused on windows whose values for UA,B,Nea,Den(w, y, z) and
Q95A,B,Nea,Den(w, x, y, z) were both in the 99.9% quantile of their respective genome-wide
distributions, and also verified that these values would be statistically significant at the 5%
level under a simple model of neutral admixture.

We also calculated D and fD along the same windows (using Africans as the non-admixed
population), and saw good agreement with the new statistics presented here (Table 3.4).
Finally, we validated the regions most likely to have been adaptively introgressed by searching
for archaic tracts of introgression within them that were at high frequency, using a Hidden
Markov Model (see below).

Continental populations

When focusing on adaptive introgression in continental populations, we first looked for
uniquely shared archaic alleles specific to Europeans that were absent or almost absent
(< 1% frequency) in Africans and East Asians. Conversely, we also looked for uniquely
shared archaic alleles in East Asians, which were absent or almost absent in Africans and
Europeans. In this continental survey, we ignored Latin American populations as they have
high amounts of European and African ancestry, which could confound our analyses. Fig-
ure 3.29 shows the number of sites with uniquely shared alleles for increasing frequency
cutoffs in the introgressed population, and for different types of archaic alleles (Neanderthal-
specific, Denisova-specific or common to both archaic humans). In other words, we calculated
UAFR,EUR,Nea,Den(1%, x, y, z) and UAFR,EAS,Nea,Den(1%, x, y, z) for different values of x (0%,
20%, 50% and 80%) and different choices of y and z, depending on which type of archaic
alleles we were looking for. We observe that the regions in the extreme of the distribu-
tions for x = 50% corresponded very well to genes that had been previously found to be
candidates for adaptive introgression from archaic humans in these populations, using more
complex probabilistic methods [21, 20] or gene-centric approaches [36]. These include BNC2
(involved in skin pigmentation [81, 82]), POU2F3 (involved in skin keratinocyte differenti-
ation [83, 84]), HYAL2 (involved in the response to UV radiation on human keratinocytes
[85]), SIPA1L2 (involved in neuronal signaling [86]) and CHMP1A (a regulator of cerebellar
development [87]). To be more rigorous in our search for adaptive introgression, we looked
at the joint distribution of the U statistic and the Q95 statistic for the same choices of w,
y and z, and then selected the regions that were in the 99.9% quantiles of the distributions
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of both statistics (Figures 3.30, 3.31, 3.32). We find that the strongest candidates here are
BNC2, POU2F3, SIPA1L2 and the HYAL2 region.

We also scanned for regions of the genome where South Asians (SAS) had uniquely shared
archaic alleles at high frequency, which were absent or almost absent in Europeans, East
Asians and Africans. In this case, we focused on x = 20% because we found that x = 50% left
us with no candidate regions. Among the candidate regions sharing a large number of high-
frequency Neanderthal alleles in South Asians, we find genes ASTN2, SFMBT1, MUSTN1
and MAML2 (Figure 3.33). ASTN2 is involved in neuronal migration [88] and is associated
with schizophrenia [89, 90]. SFMBT1 is involved in myogenesis [91] and is associated with
hydrocephalus [92]. MUSTN1 plays a role in the regeneration of the muscoskeletal system
[93]. Finally, MAML2 codes for a signaling protein [94, 95], and is associated with cutaneous
carcinoma [96] and lacrimal gland cancer [97].

Eurasia

We then looked for AI in all Eurasians (EUA=EUR+SAS+EAS, ignoring American
populations) using Africans as the non-admixed population (AFR, ignoring admixed African-
Americans). Figure 3.30 shows the extreme outlier regions that are in the 99.9% quantiles
for both UEUA,AFR,Nea,Den(1%, 20%, y, z) and Q95EUA,AFR,Nea,Den(1%, y, z), while Figure 3.34
shows the entire distribution. We focused on x = 20% because we found that x = 50% left
us with almost no candidate regions. In this case, the region with by far the largest number
of uniquely shared archaic alleles is the one containing genes OAS1 and OAS3, involved in
immunity [98, 99, 100, 101]. This region was previously identified as a candidate for AI
from Neanderthals in non-Africans [35]. Another region that we recover and was previously
identified as a candidate for AI is the one containing genes TLR1 and TLR6 [102, 103]. These
genes are also involved in immunity and have been shown to be under positive selection in
some non-African populations [104, 105].

Interestingly, we find that a very strong candidate region in Eurasia contains genes TBX15
andWARS2. This region has been associated with a variety of traits, including adipose tissue
differentiation [106], body fat distribution [107, 108, 109, 110], hair pigmentation [111], facial
morphology [112, 113], ear morphology [114], stature [113] and skeletal development [115,
113]. It was previously identified as being under positive selection in Greenlanders [116], and
it shows particularly striking signatures of adaptive introgression, so we devote a separate
study to its analysis [117].

Population-specific signals of adaptive introgression

To identify population-specific signals of AI, we looked for archaic alleles at high fre-
quency in a particular non-African panel X, which were also at less than 1% frequency in
all other non-African and African panels, excluding X (Table 3.4). This is a very restrictive
requirement, and indeed, we only find a few windows in a single panel (PEL) with archaic
alleles at more than 20% frequency, at sites where the archaic alleles is at less than 1%
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frequency in all other panels. One of the regions with the largest number of uniquely shared
Neanderthal sites in PEL contains gene CHD2, which codes for a DNA helicase [118] involved
in myogenesis (UniProtKB by similarity), and that is associated with epilepsy [119, 120].

Shared signals among populations

In the previous section, we focused on regions where archaic alleles were uniquely at high
frequencies in particular populations, but at low frequencies in all other populations. This
precludes us from detecting AI regions that are shared across more than one non-African
population. To address this, we conditioned on observing the archaic allele at less than
1% frequency in a non-admixed outgroup panel composed of all the African panels (YRI,
LWK, GWD, MSL, ESN), excluding African-Americans, and then looked for archaic alleles
at high frequency in particular non-African populations. Unlike the previous section, we did
not condition on the archaic allele being at low frequency in other non-African populations
as well. The whole joint distributions of U and Q95 for this choice of parameters for each
non-African panel are shown in figs. 3.35 to 3.53, while regions in the 99.9% quantile for
both statistics are shown in Figure 3.30.

Here, we recapitulate many of the findings from our Eurasian and continental-specific
analyses above, like TLR1/TLR6, BNC2, OAS1/OAS3, POU2F3, LIPA and TBX15/WARS2
(Figure 3.30). For example, just as we found that POU2F3 was an extreme region in the East
Asian (EAS) continental panel, we separately find that almost all populations composing that
panel (CHB, KHV, CHS, CDX, JPT) have archaic alleles in that region at disproportion-
ately high frequency, relative to their frequency in Africans. Additionally though, we can
learn things we would not have detected at the continental level. For example, the Bengali
from Bangladesh (BEB) - a South Asian population - also have archaic alleles at very high
frequencies in this region.

We detected several genes that appear to show signatures of AI across various popula-
tions (Figures 3.30). One of the most extreme examples is a 120 kb region containing the
LARS gene, with 76 uniquely shared Neanderthal alleles at < 1% frequency in Africans and
> 50% frequency in Peruvians, which are also at > 20% frequency in Mexicans. LARS codes
for a leucin-tRNA synthetase [121], and is associated with liver failure syndrome [122]. Ad-
ditionally, a region containing gene ZFHX3 displays an elevated number of uniquely shared
Neanderthal sites in PEL, and we also observe this when looking more broadly at East
Asians (EAS) and - based on the patterns of inferred introgressed tracts (see below) - in var-
ious American (AMR) populations as well. ZFHX3 is involved in the inhibition of estrogen
receptor-mediated transcription [123] and has been associated with prostate cancer [124].

We also find several Neanderthal-specific uniquely shared sites in American panels (PEL,
CLM, MXL) in a region previously identified as harboring a risk haplotype for type 2 diabetes
(chr17:6880001-6960000) [125]. This is consistent with previous findings suggesting the risk
haplotype was introgressed from Neanderthals and is specifically present at high frequencies
in Latin Americans [125]. The region contains gene SLC16A11, whose expression is known to
alter lipid metabolism [125]. We also find that the genes FAP/IFIH1 have signals consistent
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with AI, particularly in PEL. This region has been previously associated with type 1 diabetes
[126, 127].

Another interesting candidate region contains two genes involved in lipid metabolism:
LIPA and CH25H. We find a 40 kb region with 11 uniquely shared Denisovan alleles that
are at low (< 1%) frequency in Africans and at very high (> 50%) frequency in various
South and East Asian populations (JPT, KHV, CHB, CHS, CDX and BEB). The Q95 and
D statistics in this region are also high across all of these populations, and we also find this
region to have extreme values of these statistics in our broader Eurasian scan. The LIPA
gene codes for a lipase [128] and is associated with cholesterol ester storage disease [129]
and Wolman disease [130]. In turn, the CH25H gene codes for a membrane hydroxylase
involved in the metabolism of cholesterol [131] and associated with Alzheimer’s disease [132]
and antiviral activity [133].

Finally, we find a region harboring between 3 and 10 uniquely shared Neanderthal alleles
(depending on the panel used) in various non-African populations. This region was identified
earlier by ref. [20] and contains genes PPDPF, PTK6 and HELZ2. PPDPF codes for
a probable regulator of pancreas development (UniProtKB by similarity). PTK6 codes
for an epithelial signal transducer [134] and HELZ2 codes for a helicase that works as a
transcriptional coactivator for nuclear receptors [135, 136].

The X chromosome

Previous studies have observed lower levels of archaic introgression in the X chromosome
relative to the autosomes [20, 21] . Here, we observe a similar trend: compared to the
autosomes, the X chromosome contains a smaller number of windows with sites that are
uniquely shared with archaic humans (Figure 3.29). For example, for w = 1% and x = 20%,
we observe that, in Europeans, 0.4% of all windows in the autosomes have at least one
uniquely shared site with Neanderthals or Denisovans, while only 0.05% of all windows in
the X chromosome have at least one uniquely shared site (P = 4.985×10−4, chi-squared test
assuming independence between windows). The same pattern is observed in East Asians (P
= 1.852× 10−8).

Nevertheless, we do identify some regions in the X chromosome exhibiting high values
for both UA,B,C,D(w, x, y, z) and Q95A,B,C,D(w, y, z). For example, a region containing gene
DHRSX contains a uniquely shared site where a Neanderthal allele is at < 1% frequency in
Africans, but at > 50% frequency in a British panel (GBR). Another region contains gene
DMD and harbors two uniquely shared sites where two archaic (Denisovan/Neanderthal)
alleles are also at low (< 1%) frequency in Africans but at > 50% frequency in Peruvians.
DHRSX codes for an oxidoreductase enzyme [137], while DMD is a well-known gene because
mutations in it cause muscular dystrophy [138], and was also previously identified as having
signatures of archaic introgression in non-Africans [139].
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Consequences of relaxing the outgroup frequency cutoff

When using a more lenient cutoff for the outgroup panel (10% maximum frequency, rather
than 1%), we find a few genes that display values of the U statistic that are suggestive of AI,
and that have been previously found to be under strong positive selection in particular human
populations [140, 141]. The most striking examples are TYRP1 in EUR (using EAS+AFR
as outgroup) and OCA2 in EAS (using EUR+AFR as outgroup)(Table 3.4). Both of these
genes are involved in pigmentation. We caution, however, that the reason why they carry
archaic alleles at high frequency may simply be because their respective selective sweeps
pushed an allele that was segregating in both archaic and modern humans to high frequency
in modern humans, but not necessarily via introgression. In fact, TYRP1 only stands out
as an extreme region for the number of archaic shared alleles in EUR when using the lenient
10% cutoff, but not when using the more stringent 1% cutoff. When looking at these SNPs
in more detail, we find that their allele frequency in Africans (∼ 20%) is even higher than
in East Asians (∼ 1%), largely reflecting population differentiation across Eurasia due to
positive selection [141], rather than adaptive introgression. When exploring the haplotype
structure of this gene (see below), we find one haplotype that shows similarities to archaic
humans but is at low frequency worldwide, and a second - more frequent - haplotype that
is more distinct from archaic humans but present at high frequency in Europeans. We find
that the uniquely shared sites obtained using the lenient (<10%) allele frequency outgroup
cutoff are tagging both haplotypes together, giving the illusion of a strong signal of AI.

OCA2 has several sites with uniquely shared alleles in EAS (AFR+EUR as outgroup)
when using the lenient 10% cutoff, but only a few (2) shared archaic sites when using the
< 1% outgroup frequency cutoff. When exploring the haplotype structure of this gene
(see below), we fail to find a clear-cut differentiation between putatively introgressed and
non-introgressed haplotypes, so the evidence for adaptive introgression in this region is also
weak. Overall, this suggests that using a lenient outgroup frequency cutoff may lead to
misleading inferences. Nevertheless, the particular haplotype structure of these genes and
their relationship to their archaic human counterparts warrant further investigation.

Introgressed haplotypes in candidate loci

We inspected the haplotype patterns of candidate loci. We displayed the haplotypes
for selected populations at seven regions with evidence for AI: POU2F3 (Figure 3.54.A),
BNC2 (Figure 3.54.B), OAS1 (Figure 3.54.C), LARS (Figure 3.54.D), FAP/IFIH1 (Figure
3.54.E), LIPA (Figure 3.54.F) and SLC16A11 (Figure 3.55.C). We included continental
populations that show a large number of uniquely shared archaic alleles, and included YRI
as a representative African population. We then ordered the haplotypes by similarity to the
closest archaic genome (Altai Neanderthal or Denisova) (Figure 3.54). As can be observed, all
these regions tend to show sharp distinctions between the putatively introgressed haplotypes
and the non-introgressed ones. This is also evident when looking at the cumulative number of
differences of each haplotype to the closest archaic haplotype, where we see a sharp rise in the
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number of differences, indicating strong differentiation between the two sets of haplotypes.
Additionally, the YRI haplotypes tend to predominantly belong to the non-introgressed
group, as expected.

Moreover, we used this same approach to look at the haplotype structure of genes that,
as mentioned above, showed suggestive but not necessarily strong signals of AI (Figure
3.55). First, we see that OCA2 does not show a large number of differences between the
haplotypes that are closer to the archaic humans (Figure 3.55.A). Second, the TYRP1 region
only contains a small number of haplotypes that are similar to the Neanderthal genome: in
the combined YRI+EUR panel, just 6% of haplotypes have less than 73 differences to the
Neanderthal genome, and this number is roughly the point of transition between the archaic-
like and the non-archaic-like haplotypes (Figure 3.55.B).

Finally, we used a HMM [23] to verify that the strongest candidate regions effectively
contained archaic segments of a length that would be consistent with introgression after
the divergence between archaic and modern humans. For each region, we used the closest
archaic genome (Altai Neanderthal or Denisova) as the putative source of introgression. We
then plotted the inferred segments in non-African continental populations for genes with
strong evidence for AI. Among these, genes with Neanderthal as the closest source (figs. 3.56
to 3.63) include: POU2F3 (EAS,SAS), BNC2 (EUR), OAS1 (Eurasians), LARS (AMR),
FAP/IFIH1 (PEL), CHD2 (PEL), TLR1-6 (EAS) and ZFHX3 (PEL). Genes with Denisova
as the closest source (figs. 3.64 and 3.65) include: LIPA (EAS, SAS, AMR) and MUSTN1
(SAS).

Testing for enrichment in genic regions

We aimed to test whether uniquely shared archaic alleles at high frequencies were enriched
in genic regions of the genome. SNPs in introgressed blocks will tend to cluster together and
have similar allele frequencies, which could cause a spurious enrichment signal. Therefore,
we performed two types of LD pruning, which we described in the Methods section.

Regardless of which LD method we used, we find no significant enrichment in genic regions
for high-frequency (> 50%) Neanderthal alleles (LD-1 P=352, LD-2 P=0.161) or Denisovan
alleles (LD-1 P=0.348, LD-2 P=0.192). Similarly, we find no enrichment for medium-to-
high-frequency (> 20%) Neanderthal alleles (LD-1 P=0.553, LD-2 P=0.874) or Denisovan
alleles (LD-1 P=0.838, LD-2 P=0.44).

3.4 Discussion
Here, we have tested which statistics are most informative in the detection of AI. We find

that one of the most powerful ways to detect AI is to look at both the number and allele
frequency of mutations that are uniquely shared between the introgressed and the archaic
populations. Such mutations should be abundant and at high-frequencies in the introgressed
population if AI occurred. In particular, we identified two novel summaries of the data that
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capture this pattern quite well: the statistics U and Q95. These statistics can recover loci
under AI and are easy to compute from genomic data, as they do not require phasing.

We have also studied the general landscape of archaic alleles and their frequencies in
present-day human populations. While scanning the present-day human genomes from phase
3 of the 1000 Genomes Project [45] using these and other summary statistics, we were able
to recapitulate previous AI findings (like the TLR [102, 103] and OAS regions [35]) as well
as identify new candidate regions (like the LIPA gene and the FAP/IFIH1 region). These
mostly include genes involved in lipid metabolism, pigmentation and immunity, as observed
in previous studies [20, 21, 142]. Phenotypic changes in these systems may have allowed
archaic humans to survive in Eurasia during the Pleistocene, and may have been passed on
to present-day human populations during their expansion out of Africa.

When using more lenient definitions of what we consider to be “uniquely shared archaic
alleles” we find sites containing these alleles in genes that have been previously found to
be under positive selection (like OCA2 and TYRP1 ) but not necessarily under adaptive
introgression. While these do not show as strong signatures of adaptive introgression as
genes like BNC2 and POU2F3, their curious haplotype patterns and their relationship to
archaic genomes warrants further exploration.

In this study, we have mostly focused on positive selection for archaic alleles. One
should remember, though, that a larger proportion of introgressed genetic material was
likely maladaptive to modern humans, and therefore selected against. Indeed, two recent
studies have shown that negative selection on archaic haplotypes may have reduced the initial
proportion of archaic material present in modern humans immediately after the hybridization
event(s) [30, 29]. Another caveat is that some regions of the genome display patterns that
could be consistent with multiple introgression events, followed by positive selection on one
or more distinct archaic haplotypes [102]. In this study, we have simply focused on models
with a single pulse of admixture, and have not considered complex scenarios with multiple
sources of introgression.

It is also worth noting that positive selection for archaic haplotypes may be due to
heterosis, rather than adaptation to particular environments [30]. That is, archaic alleles
may not have been intrinsically beneficial, but simply protective against deleterious recessive
modern human alleles, and therefore selected after their introduction into the modern human
gene pool.

Although many of the statistics we introduced in this study have their draw-backs -
notably their dependence on simulations to assess significance - they highlight a characteristic
signature left by AI in present-day human genomes. Future avenues of research could involve
developing ways to incorporate uniquely shared sites into a robust test of selection that
specifically targets regions under AI. For example, one could think about modifying statistics
based on local between-population population differentiation, like PBS [32], so that they
are only sensitive to allele frequency differences at sites that show signatures of archaic
introgression.

Finally, while this study has largely focused on human AI, several other species also show
suggestive signatures of AI [143]. Assessing the extent and prevalence of AI and uniquely



CHAPTER 3. SIGNATURES OF ARCHAIC ADAPTIVE INTROGRESSION IN
PRESENT-DAY HUMAN POPULATIONS 76

shared sites in other biological systems could provide new insights into their biology and
evolutionary history. This may also serve to better understand how populations of organisms
respond to introgression events, and to derive general principles about the interplay between
admixture and natural selection.
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3.6 Tables

Table 3.2. 95% quantiles of the UA,B,C statistic in a 40 kb window, under different
demographic scenarios and archaic allele frequency cutoffs in the outgroup (A) and target
(B) population panels. The demographic scenarios correspond to scenarios A, B, C and G
from Figure 3.3.

Max. outgroup freq. Min. target freq. Scenario 95% quantile under neutrality
0.01 0.8 Admixture (2%) 0
0.01 0.8 Admixture (10%) 0
0.01 0.8 Admixture (25%) 0
0.01 0.8 Ancestral Structure (strong mig.) 0
0.01 0.8 Ancestral Structure (medium mig.) 1
0.01 0.8 Ancestral Structure (weak mig.) 18
0.01 0.8 Admixture (2%), then bottleneck 0
0.01 0.8 Admixture (10%), then bottleneck 0
0.01 0.8 Admixture (25%), then bottleneck 0.05
0.01 0.8 Bottleneck, then admixture (2%) 0
0.01 0.8 Bottleneck, then admixture (10%) 0
0.01 0.8 Bottleneck, then admixture (25%) 0
0.01 0.5 Admixture (2%) 2
0.01 0.5 Admixture (10%) 2
0.01 0.5 Admixture (25%) 5
0.01 0.5 Ancestral Structure (strong mig.) 0
0.01 0.5 Ancestral Structure (medium mig.) 5
0.01 0.5 Ancestral Structure (weak mig.) 22
0.01 0.5 Admixture (2%), then bottleneck 2
0.01 0.5 Admixture (10%), then bottleneck 2
0.01 0.5 Admixture (25%), then bottleneck 8
0.01 0.5 Bottleneck, then admixture (2%) 2
0.01 0.5 Bottleneck, then admixture (10%) 2
0.01 0.5 Bottleneck, then admixture (25%) 6
0.01 0.2 Admixture (2%) 6
0.01 0.2 Admixture (10%) 13
0.01 0.2 Admixture (25%) 29.05
0.01 0.2 Ancestral Structure (strong mig.) 0
0.01 0.2 Ancestral Structure (medium mig.) 9.05
0.01 0.2 Ancestral Structure (weak mig.) 25
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0.01 0.2 Admixture (2%), then bottleneck 6
0.01 0.2 Admixture (10%), then bottleneck 17
0.01 0.2 Admixture (25%), then bottleneck 30
0.01 0.2 Bottleneck, then admixture (2%) 8
0.01 0.2 Bottleneck, then admixture (10%) 13.05
0.01 0.2 Bottleneck, then admixture (25%) 29
0.01 0 Admixture (2%) 24
0.01 0 Admixture (10%) 37
0.01 0 Admixture (25%) 39
0.01 0 Ancestral Structure (strong mig.) 3
0.01 0 Ancestral Structure (medium mig.) 12.05
0.01 0 Ancestral Structure (weak mig.) 27
0.01 0 Admixture (2%), then bottleneck 21
0.01 0 Admixture (10%), then bottleneck 34
0.01 0 Admixture (25%), then bottleneck 38
0.01 0 Bottleneck, then admixture (2%) 28
0.01 0 Bottleneck, then admixture (10%) 34.05
0.01 0 Bottleneck, then admixture (25%) 37.05
0.1 0.8 Admixture (2%) 0
0.1 0.8 Admixture (10%) 2
0.1 0.8 Admixture (25%) 2
0.1 0.8 Ancestral Structure (strong mig.) 0
0.1 0.8 Ancestral Structure (medium mig.) 11
0.1 0.8 Ancestral Structure (weak mig.) 23.05
0.1 0.8 Admixture (2%), then bottleneck 0
0.1 0.8 Admixture (10%), then bottleneck 2
0.1 0.8 Admixture (25%), then bottleneck 2
0.1 0.8 Bottleneck, then admixture (2%) 1
0.1 0.8 Bottleneck, then admixture (10%) 2
0.1 0.8 Bottleneck, then admixture (25%) 2
0.1 0.5 Admixture (2%) 5
0.1 0.5 Admixture (10%) 6
0.1 0.5 Admixture (25%) 12
0.1 0.5 Ancestral Structure (strong mig.) 0
0.1 0.5 Ancestral Structure (medium mig.) 17
0.1 0.5 Ancestral Structure (weak mig.) 29
0.1 0.5 Admixture (2%), then bottleneck 6
0.1 0.5 Admixture (10%), then bottleneck 7
0.1 0.5 Admixture (25%), then bottleneck 12
0.1 0.5 Bottleneck, then admixture (2%) 6
0.1 0.5 Bottleneck, then admixture (10%) 6.05
0.1 0.5 Bottleneck, then admixture (25%) 12
0.1 0.2 Admixture (2%) 12
0.1 0.2 Admixture (10%) 18.05
0.1 0.2 Admixture (25%) 35
0.1 0.2 Ancestral Structure (strong mig.) 4
0.1 0.2 Ancestral Structure (medium mig.) 21
0.1 0.2 Ancestral Structure (weak mig.) 32.05
0.1 0.2 Admixture (2%), then bottleneck 14
0.1 0.2 Admixture (10%), then bottleneck 22
0.1 0.2 Admixture (25%), then bottleneck 37
0.1 0.2 Bottleneck, then admixture (2%) 14
0.1 0.2 Bottleneck, then admixture (10%) 20
0.1 0.2 Bottleneck, then admixture (25%) 37
0.1 0 Admixture (2%) 29
0.1 0 Admixture (10%) 44
0.1 0 Admixture (25%) 45
0.1 0 Ancestral Structure (strong mig.) 11
0.1 0 Ancestral Structure (medium mig.) 25
0.1 0 Ancestral Structure (weak mig.) 34
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0.1 0 Admixture (2%), then bottleneck 28
0.1 0 Admixture (10%), then bottleneck 40
0.1 0 Admixture (25%), then bottleneck 44
0.1 0 Bottleneck, then admixture (2%) 35
0.1 0 Bottleneck, then admixture (10%) 41
0.1 0 Bottleneck, then admixture (25%) 45
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Table 3.1. Summary statistics mentioned in the main text.

Statistic Explanation Reference
D D-statistic: measures excess allele sharing between a test population

and an outgroup using a sister population that is more closely related
to the test than the ougroup

[8][68]

fD Similar to the D-statistic, but serves to better control for local varia-
tion in diversity patterns if one is interested in finding loci with excess
ancestry from an admixing population.

[71]

RD Expected ratio of the divergence between an individual from the source
population and an individual from the admixed population, and the
divergence between an individual from the source population and an
individual from the non-admixed individual. This is computed by tak-
ing the average over all pairs of admixed and non-admixed individuals.

This study

UA,B,C(w, x, y) Number of sites in which any allele is at a frequency lower than w in
panel B, higher than x in panel B and equal to y in panel C.

This study

UA,B,C,D(w, x, y, z) Number of sites in which any allele is at a frequency lower than w in
panel A, higher than x in panel B, equal toy in panel C and equal to
z in panel D.

This study

Q95A,B,C(w, y) 95% quantile of the distribution of derived allele frequencies in panel
B, for sites where the derived allele is at a frequency lower than w in
panel A and equal to y in panel C.

This study

Q95A,B,C,D(w, y, z) 95% quantile of the distribution of derived allele frequencies in panel
B, for sites where the derived allele is at a frequency lower than w in
panel A, equal to y in panel C and equal to z in panel D.

This study

Het Expected heterozygosity, measured as the average of 2p(1− p) over all
sites in a window, where p is the frequency of an arbitrarily chosen
allele.

[144]

D′[intro] A measure of linkage disequilibrium. Computed as D/Dmax where
D = pXY − pXpY , pXY is the frequency of haplotype XY , pX is the
frequency of allele X, pY is the frequency of allele Y , and Dmax is the
maximum theoretical value that D can take. D′[intro] is computed
only using frequencies from the introgressed panel.

[145]

D′[comb] D′ computed using haplotype and allele frequencies from the combina-
tion of the introgressed and non-introgressed panels.

[145]

r2[intro] A measure of linkage disequilibrium. Computed as D2/(pX(1 −
pX)pY (1 − pY )). r2[intro] is computed only using frequencies from
the introgressed panel.

[146]

r2[comb] r2 computed using haplotype and allele frequencies from the combina-
tion of the introgressed and non-introgressed panels.

[146]
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Table 3.3. 95% quantiles of the Q95A,B,C statistic in a 40 kb window, under different
demographic scenarios and archaic allele frequency cutoffs in the outgroup (A) population
panel. The demographic scenarios correspond to scenarios A, B, C and G from Figure 3.3.

Max. outgroup freq. Scenario 95% quantile under neutrality
0.01 Admixture (2%) 0.28
0.01 Admixture (10%) 0.37
0.01 Admixture (25%) 0.54
0.01 Ancestral Structure (strong mig.) 0.04
0.01 Ancestral Structure (medium mig.) 0.67
0.01 Ancestral Structure (weak mig.) 1
0.01 Admixture (2%), then bottleneck 0.31
0.01 Admixture (10%), then bottleneck 0.44
0.01 Admixture (25%), then bottleneck 0.6
0.01 Bottleneck, then admixture (2%) 0.28
0.01 Bottleneck, then admixture (10%) 0.42
0.01 Bottleneck, then admixture (25%) 0.55
0.1 Admixture (2%) 0.47
0.1 Admixture (10%) 0.51
0.1 Admixture (25%) 0.63
0.1 Ancestral Structure (strong mig.) 0.25
0.1 Ancestral Structure (medium mig.) 0.91
0.1 Ancestral Structure (weak mig.) 1
0.1 Admixture (2%), then bottleneck 0.53
0.1 Admixture (10%), then bottleneck 0.58
0.1 Admixture (25%), then bottleneck 0.67
0.1 Bottleneck, then admixture (2%) 0.47
0.1 Bottleneck, then admixture (10%) 0.53
0.1 Bottleneck, then admixture (25%) 0.66
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Table 3.4. 40 kb windows that lie in the highest 99.9% quantile of both UA,B,Nea,Den and
Q95A,B,Nea,Den for various outgroup panels A and target panels B, using an outgroup
maximum frequency cutoff of 1%, and using different target allele frequency cutoffs (20%,
50%). For each region, we also show other statistics indicative of AI for reference. We
partitioned the 1000 Genomes panels into outgroup panel A and target panel B in different
ways (column “Mode"), depending on the signals we were looking for. These modes of
partitioning are as follows. “Populations" = outgroup panel was the combination of all the
populations that were not the target panel. “PopulationsB" = outgroup panel was the
combination of all African panels (excluding admixed African-Americans), while target
panel was one of the non-African panels. “Continents" = target panel was either the EUR
continental panel (in which case the outgroup was AFR+EAS) or the EAS continental
panel (in which case the outgroup was AFR+EUR). “ContinentsB" = target panel was the
EUR continental panel (in which case the outgroup was AFR+EAS+SAS) or the EAS
continental panel (in which case the outgroup was AFR+EUR+SAS) or the SAS
continental panel (in which case the outgroup was AFR+EUR+EAS). “Eurasia" = target
panel was EUR+EAS, while outgroup panel was AFR.

https://www.dropbox.com/s/p9k94i2c50rincq/Extreme_gene_table.xlsx?dl=0

https://www.dropbox.com/s/p9k94i2c50rincq/Extreme_gene_table.xlsx?dl=0
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3.7 Figures

Figure 3.1. Schematic illustration of the way the UA,B,C and Q95A,B,C statistics are
calculated.
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Figure 3.2. Schematic illustration of the way the UA,B,C,D and Q95A,B,C,D statistics are
calculated.

Figure 3.3. Demographic models described in the main text.
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Figure 3.4. Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3.8 and the admixture rate was set at 2%. See Table 3.1 for a
definition of the statistics shown.
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Figure 3.5. Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3.8 and the admixture rate was set at 10%. See Table 3.1 for a
definition of the statistics shown.
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Figure 3.6. Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3.8 and the admixture rate was set at 25%. See Table 3.1 for a
definition of the statistics shown.
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Figure 3.7. Density of statistics that detect patterns of linkage disequilibrium for various
neutral and adaptive introgression scenarios. See Table 3.1 for a definition of the statistics
shown.
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Figure 3.8. Receiver operating characteristic curves for a scenario of adaptive
introgression (s=0.1) compared to a scenario of neutrality (s=0), using 1,000 simulations
for each case. Populations A and B split from each other 4,000 generations ago, and their
ancestral population split from population C 16,000 generations ago. Population sizes were
constant and set at 2N = 20, 000. The admixture event occurred 1,600 generations ago
from population C to population B, at rate 2% (top panels) or 25% (bottom panels). The
right panels are zoomed-in versions of the left panels.
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Figure 3.9. Receiver operating characteristic curves for adaptive introgression with
constant population size, using 1,000 simulations of adaptive introgression, under various
selection (s=0.1, s=0.01) and admixture rate (2%, 10%, 25%) regimes. Populations A and
B split from each other 4,000 generations ago, and their ancestral population split from
population C 16,000 generations ago. Population sizes were set at 2N = 20, 000. The
admixture event occurred 1,600 generations ago from population C into population B,
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Figure 3.10. Joint distribution of Q95A,B,C(1%,100%) and other statistics (RD, Het, D
and fD). 100 individuals were sampled from panel A, 100 from panel B and 2 from panel
C. The demographic parameters were the same as in Figure 3.8.
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Figure 3.11. Joint distribution of Q95A,B,C(w, y) and UA,B,C(w, x, y) for different choices
of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases. 100 individuals were
sampled from panel A, 100 from panel B and 2 from panel C. The demographic parameters
were the same as in Figure 3.8.
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Figure 3.12. Receiver operating characteristic curves for adaptive introgression with a
pre-admixture bottleneck, using 1,000 simulations under adaptive introgression . We
simulated the same demography as in Figure 3.8, but also included a 5X bottleneck in
population B after the introgression event, starting 3,000 generations ago and finishing
2,800 generations ago.
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Figure 3.13. Receiver operating characteristic curves for adaptive introgression with a
post-admixture bottleneck, using 1,000 simulations under adaptive introgression . We
simulated the same demography as in Figure 3.8, but also included a 5X bottleneck in
population B after the introgression event, starting 1,400 generations ago and finishing
1,200 generations ago.
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Figure 3.14. Joint distribution of Q95A,B,C(w, y) and UA,B,C(w, x, y) for different choices
of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases. 100 individuals were
sampled from panel A, 100 from panel B and 2 from panel C. In this case, we included a
5X bottleneck in population B after the introgression event, starting 1,400 generations ago
and finishing 1,200 generations ago.
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Figure 3.15. Joint distribution of Q95A,B,C(1%,100%) and other statistics (RD, Het, D
and fD). 100 individuals were sampled from panel A, 100 from panel B and 2 from panel
C. In this case, we included a 5X bottleneck in population B after the introgression event,
starting 1,400 generations ago and finishing 1,200 generations ago.
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Figure 3.16. Receiver operating characteristic curves for adaptive introgression with an
intermediate neutrality period. We simulated the same demography as in Figure 3.8, but
changed the selection coefficient of the beneficial variant to be 0 right after the
introgression event (1,600 generations ago). If still present in population B, the variant
regained its original coefficient 800 generations ago.
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Figure 3.17. Receiver operating characteristic curves for a selective sweep from de novo
mutation. We simulated the same demography as in Figure 3.8, but rather than
introducing the beneficial variant in the introgressed population via admixture from an
archaic population, we introduced it by mutation in the introgressed population (B) 3,900
generations ago.
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Figure 3.18. Receiver operating characteristic curves for selection from standing
variation. We simulated the same demography as in Figure 3.8, but rather than
introducing the beneficial variant in the introgressed population via admixture from an
archaic population, we introduced it with a starting frequency of 20% in the introgressed
population (B) 3,900 generations ago.
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Figure 3.19. Receiving operating characteristic curves for adaptive introgression against a
neutral ancestral structure model with strong migration rates. The demographic scenario
for adaptive introgression was the same as in Figure 3.8. For a description of the ancestral
structure model, see main text.
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Figure 3.20. Receiving operating characteristic curves for adaptive introgression against a
neutral ancestral structure model with intermediate migration rates. The demographic
scenario for adaptive introgression was the same as in Figure 3.8. For a description of the
ancestral structure model, see main text.
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Figure 3.21. Receiving operating characteristic curves for adaptive introgression against a
neutral ancestral structure model with weak migration rates. The demographic scenario for
adaptive introgression was the same as in Figure 3.8. For a description of the ancestral
structure model, see main text.
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Figure 3.22. We computed the number of uniquely shared sites in the autosomes and the
X chromosome between particular archaic humans and different choices of present-day
non-African panels X (x-axis) from phase 3 of the 1000 Genomes Project. We used a
shared frequency cutoff of 0% (top-left panel), 20% (top-right panel) and 50% (bottom-left
panel). Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only =
UAfr,X,Nea,Den(1%, 20%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%). Den-all =
UAfr,X,Den(1%, 20%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%). We also
computed the quantile statistics Q95 for different choices of present-day non-African
human panels (x-axis) from phase 3 of the 1000 Genomes Project (bottom-right panel).
Nea-only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%).
Nea-all = Q95Afr,X,Nea(1%, 100%). Den-all = Q95Afr,X,Den(1%, 100%). Both =
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 3.23. We computed D(X,YRI,Y,Chimpanzee) for different choices of present-day
human panels X (x-axis) from phase 3 of the 1000 Genomes Project, and for two
high-coverage archaic human genomes Y: Altai Neanderthal (blue) and Denisova (red).
The low value of the right-most panel is due to that panel being composed of
African-Americans, which have a higher proportion of African ancestry than the other
panels.
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Figure 3.24. We computed the number of uniquely shared sites in the X chromosome
between particular archaic humans genomes and different choices of present-day
non-African human panels X (x-axis) from phase 3 of the 1000 Genomes Project, using a
shared frequency cutoff of 0% (top-left panel), 20% (top-right panel) and 50% (bottom-left
panel). Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only =
UAfr,X,Nea,Den(1%, 20%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%). Den-all =
UAfr,X,Den(1%, 20%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%). We also
computed the quantile statistics Q95 for different choices of present-day non-African
human panels (x-axis) from phase 3 of the 1000 Genomes Project (bottom-right panel).
Nea-only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%).
Nea-all = Q95Afr,X,Nea(1%, 100%). Den-all = Q95Afr,X,Den(1%, 50%, 100%). Both =
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 3.25. For each population panel from the 1000 Genomes Project, we jointly
plotted the U and Q95 statistics with an archaic frequency cutoff of > 0% within each
population. Nea-only = UAfr,X,Nea,Den(1%, 0%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 0%, 0%, 100%) and
Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 0%, 100%) and
Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 0%, 100%) and Q95Afr,X,Den(1%, 100%).
Both = UAfr,X,Nea,Den(1%, 0%, 100%, 100%) and Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 3.26. For each population panel from the 1000 Genomes Project, we jointly
plotted the U and Q95 statistics with an archaic frequency cutoff of > 20% within each
population. Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%) and
Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%) and
Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 20%, 100%) and
Q95Afr,X,Den(1%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%) and
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 3.27. For each population panel from the 1000 Genomes Project, we jointly
plotted the U and Q95 statistics with an archaic frequency cutoff of > 50% within each
population. Nea-only = UAfr,X,Nea,Den(1%, 50%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 50%, 0%, 100%) and
Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 50%, 100%) and
Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 50%, 100%) and
Q95Afr,X,Den(1%, 100%). Both = UAfr,X,Nea,Den(1%, 50%, 100%, 100%) and
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 3.28. Effect of bottlenecks on the distribution of various statistics under
introgression and neutrality.
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Figure 3.29. We partitioned the genome into non-overlapping windows of 40kb. Within
each window, we computed UEUR,Out,Nea,Den(1%, x, y, z) and UEAS,Out,Nea,Den(1%, x, y, z),
where Out=EAS+AFR for EUR as the target introgressed population, and
Out=EUR+AFR for EAS as the target introgressed population. We searched for
Neanderthal-specific alleles (y = 100%, z = 0%), Denisovan-specific alleles
(y = 0%, z = 100%) and alleles present in both archaic genomes (y = 100%, z = 100%) that
were uniquely shared with either EUR or EAS at various frequencies (z=0%, z=20%,
z=50% and z=80%). Windows that fall within the upper tail of the distribution for each
modern-archaic population pair are colored in red (P < 0.001 / number of pairs tested) and
those that do not are colored in blue, except for those in the X chromosome, which are in
green. Ovals drawn around multiple points contain multiple windows with uniquely shared
alleles that are contiguous. For comparison, the number of high frequency uniquely shared
sites between Denisova and Tibetans is also shown [33], although Tibetans are not included
in the 1000 Genomes data and the region is 32 kb long, so this may be an underestimate.
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Figure 3.30. We plotted the 40kb regions in the 99.9% highest quantiles of both the
Q95Out,Pop,Nea,Den(1%, y, z) and UOut,Pop,Nea,Den(1%, x, y, z) statistics for different choices of
target introgressed population (Pop) and outgroup non-introgressed population (Out), and
different archaic allele frequency cutoffs within the target population (x). A) We plotted
the extreme regions for continental populations EUR (Out=EAS+AFR), EAS
(Out=EUR+AFR) and Eurasians (EUA, Out=AFR), using a target population archaic
allele frequency cutoff x of 20%. B) We plotted the extreme regions from the same
statistics as in panel A, but with a more stringent target population archaic allele
frequency cutoff x of 50%. C) We plotted the extreme regions for individual non-African
populations within the 1000 Genomes data, using all African populations (excluding
African-Americans) as the outgroup, and a cutoff x of 20%. D) We plotted the extreme
regions from the same statistics as in panel C, but with a more stringent target population
archaic allele frequency cutoff x of 50%. Nea-only = UOut,Pop,Nea,Den(1%, x, 100%, 0%) and
Q95Out,Pop,Nea,Den(1%, 100%, 0%). Den-only = UOut,Pop,Nea,Den(1%, x, 0%, 100%) and
Q95Out,Pop,Nea,Den(1%, 0%, 100%). Both = UOut,Pop,Nea,Den(1%, x, 100%, 100%) and
Q95Out,Pop,Nea,Den(1%, 100%, 100%).
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Figure 3.31. Uniquely shared archaic alleles in an East Asian (EAS) panel. Joint
distribution of Q95EUR+AFR,EAS,Nea,Den(1%, y, z) and UEUR+AFR,EAS,Nea,Den(1%,x,y,z), for
40kb non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.32. Uniquely shared archaic alleles in an European (EUR) panel. Joint
distribution of Q95EAS+AFR,EUR,Nea,Den(1%, y, z) and UEAS+AFR,EUR,Nea,Den(1%,x,y,z), for
40kb non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.



CHAPTER 3. SIGNATURES OF ARCHAIC ADAPTIVE INTROGRESSION IN
PRESENT-DAY HUMAN POPULATIONS 113

Figure 3.33. Uniquely shared archaic alleles in a South Asian (SAS) panel. Joint
distribution of Q95EAS+EUR+AFR,SAS,Nea,Den(1%, y, z) and
UEAS+EUR+AFR,SAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome,
using two choices of x (20% in left column panels,50% in right column panels). Red dots
refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific
shared alleles are displayed in the top panels, Denisovan-specific shared alleles are
displayed in the middle-row panels, and alleles shared with both archaic human genome are
displayed in the bottom panels.
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Figure 3.34. Uniquely shared archaic alleles in a Eurasian (EUA=EUR+SAS+EAS)
panel. Joint distribution of Q95AFR,EUR+SAS+EAS,Nea,Den(1%, y, z) and
UAFR,EUR+SAS+EAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome,
using two choices of x (20% in left column panels,50% in right column panels). Red dots
refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific
shared alleles are displayed in the top panels, Denisovan-specific shared alleles are
displayed in the middle-row panels, and alleles shared with both archaic human genome are
displayed in the bottom panels.
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Figure 3.35. Uniquely shared archaic alleles in a Bengali (BEB) panel. Joint distribution
of Q95AFR,BEB,Nea,Den(1%, y, z) and UAFR,BEB,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.36. Uniquely shared archaic alleles in a Chinese Dai (CDX) panel. Joint
distribution of Q95AFR,CDX,Nea,Den(1%, y, z) and UAFR,CDX,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.



CHAPTER 3. SIGNATURES OF ARCHAIC ADAPTIVE INTROGRESSION IN
PRESENT-DAY HUMAN POPULATIONS 117

Figure 3.37. Uniquely shared archaic alleles in a Central European (CEU) panel. Joint
distribution of Q95AFR,CEU,Nea,Den(1%, y, z) and UAFR,CEU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.38. Uniquely shared archaic alleles in a Han Chinese (CHB) panel. Joint
distribution of Q95AFR,CHB,Nea,Den(1%, y, z) and UAFR,CHB,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.39. Uniquely shared archaic alleles in a Southern Han Chinese (CHS) panel.
Joint distribution of Q95AFR,BEB,Nea,Den(1%, y, z) and UAFR,CHS,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.40. Uniquely shared archaic alleles in a Colombian (CLM) panel. Joint
distribution of Q95AFR,CLM,Nea,Den(1%, y, z) and UAFR,CLM,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.41. Uniquely shared archaic alleles in a Finnish (FIN) panel. Joint distribution
of Q95AFR,FIN,Nea,Den(1%, y, z) and UAFR,FIN,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.42. Uniquely shared archaic alleles in a British (GBR) panel. Joint distribution
of Q95AFR,GBR,Nea,Den(1%, y, z) and UAFR,GBR,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.43. Uniquely shared archaic alleles in a Gujarati Indian (GIH) panel. Joint
distribution of Q95AFR,GIH,Nea,Den(1%, y, z) and UAFR,GIH,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.44. Uniquely shared archaic alleles in an Iberian (IBS) panel. Joint distribution
of Q95AFR,IBS,Nea,Den(1%, y, z) and UAFR,IBS,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.45. Uniquely shared archaic alleles in an Indian Telugu (ITU) panel. Joint
distribution of Q95AFR,ITU,Nea,Den(1%, y, z) and UAFR,ITU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.46. Uniquely shared archaic alleles in a Japanese (JPT) panel. Joint
distribution of Q95AFR,JPT,Nea,Den(1%, y, z) and UAFR,JPT,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.47. Uniquely shared archaic alleles in a Kinh (KHV) panel. Joint distribution of
Q95AFR,KHV,Nea,Den(1%, y, z) and UAFR,KHV,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.48. Uniquely shared archaic alleles in a Mexican (MXL) panel. Joint
distribution of Q95AFR,MXL,Nea,Den(1%, y, z) and UAFR,MXL,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.49. Uniquely shared archaic alleles in a Peruvian (PEL) panel. Joint
distribution of Q95AFR,PEL,Nea,Den(1%, y, z) and UAFR,PEL,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.50. Uniquely shared archaic alleles in a Punjabi (PJL) panel. Joint distribution
of Q95AFR,PJL,Nea,Den(1%, y, z) and UAFR,PJL,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.



CHAPTER 3. SIGNATURES OF ARCHAIC ADAPTIVE INTROGRESSION IN
PRESENT-DAY HUMAN POPULATIONS 131

Figure 3.51. Uniquely shared archaic alleles in a Puerto Rican (PUR) panel. Joint
distribution of Q95AFR,PUR,Nea,Den(1%, y, z) and UAFR,PUR,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.52. Uniquely shared archaic alleles in a Sri Lankan Tamil (STU) panel. Joint
distribution of Q95AFR,STU,Nea,Den(1%, y, z) and UAFR,STU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure 3.53. Uniquely shared archaic alleles in a Toscani (TSI) panel. Joint distribution
of Q95AFR,TSI,Nea,Den(1%, y, z) and UAFR,TSI,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both
statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure 3.54. We explored the haplotype structure of six candidate regions with strong
evidence for AI. For each region, we plotted the haplotypes of particular human
populations ordered by similarity to the archaic human genome with the larger number of
uniquely shared sites. We also plotted the number of differences to the closest archaic
haplotype for each human haplotype and sorted them by decreasing similarity from left to
right. POU2F3 : chr11:120120001-120200000. BNC2 : chr9:16720001-16760000. LARS :
chr5:145480001-145520000. FAP/IFIH1 : chr2:163040001-163120000. OAS1 :
chr12:113360001-113400000. LIPA: chr10:90920001-90980000.
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Figure 3.55. We explored the haplotype structure of OCA2, TYRP1 and SLC16A11. We
plotted the haplotypes of particular human populations ordered by similarity to the archaic
human genome with the larger number of uniquely shared sites. We also plotted the
number of differences to the closest archaic haplotype for each human haplotype and sorted
them by decreasing similarity from left to right. OCA2: chr15:28160001-28200000.
TYRP1: chr9:12680001-12720000.SLC16A11: chr17:6880001-6960000.
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Figure 3.56. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the POU2F3 region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.57. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the BNC2 region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.58. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the OAS region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.59. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the LARS region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.60. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the FAP/IFIH1 region, using the Altai Neanderthal
as the archaic source.
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Figure 3.61. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the CHD2 region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.62. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the TLR1-6 region, using the Altai Neanderthal
genome as the archaic source.



CHAPTER 3. SIGNATURES OF ARCHAIC ADAPTIVE INTROGRESSION IN
PRESENT-DAY HUMAN POPULATIONS 143

Figure 3.63. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the ZFHX3 region, using the Altai Neanderthal
genome as the archaic source.
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Figure 3.64. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the LIPA region, using the Denisova genome as the
archaic source.
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Figure 3.65. Introgressed tracks inferred in the four Non-African 1000 Genomes
continental panels by an HMM [23] in the MUSTN1 region, using the Denisova genome as
the archaic source.
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4. Testing for ancient selection using
cross-population allele frequency
differentiation
Fernando Racimo

4.1 Abstract
A powerful way to detect selection in a population is by modeling local allele frequency

changes in a particular region of the genome under scenarios of selection and neutrality,
and finding which model is most compatible with the data. [147] developed a composite
likelihood method called XP-CLR that uses an outgroup population to detect departures
from neutrality which could be compatible with hard or soft sweeps, at linked sites near a
beneficial allele. However, this method is most sensitive to recent selection and may miss
selective events that happened a long time ago. To overcome this, we developed an extension
of XP-CLR that jointly models the behavior of a selected allele in a three-population tree.
Our method - called 3P-CLR - outperforms XP-CLR when testing for selection that occurred
before two populations split from each other, and can distinguish between those events and
events that occurred specifically in each of the populations after the split. We applied our
new test to population genomic data from the 1000 Genomes Project, to search for selective
sweeps that occurred before the split of Yoruba and Eurasians, but after their split from
Neanderthals, and that could have led to the spread of modern-human-specific phenotypes.
We also searched for sweep events that occurred in East Asians, Europeans and the ancestors
of both populations, after their split from Yoruba. In both cases, we are able to confirm
a number of regions identified by previous methods, and find several new candidates for
selection in recent and ancient times. For some of these, we also find suggestive functional
mutations that may have driven the selective events.
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4.2 Introduction
Genetic hitchhiking will distort allele frequency patterns at regions of the genome linked

to a beneficial allele that is rising in frequency [148]. This is known as a selective sweep.
If the sweep is restricted to a particular population and does not affect other closely re-
lated populations, one can detect such an event by looking for extreme patterns of localized
population differentation, like high values of Fst at a specific locus [149]. This and other
related statistics have been used to scan the genomes of present-day humans from different
populations, so as to detect signals of recent positive selection [150, 151, 152, 32].

Once it became possible to sequence entire genomes of archaic humans (like Neanderthals)
[8, 2, 16], researchers also began to search for selective sweeps that occurred in the ancestral
population of all present-day humans. For example, [8] searched for genomic regions with
a depletion of derived alleles in a low-coverage Neanderthal genome, relative to what would
be expected given the derived allele frequency in present-day humans. This is a pattern
that would be consistent with a sweep in present-day humans. Later on, [16] developed a
hidden Markov model (HMM) that could identify regions where Neanderthals fall outside of
all present-day human variation (also called "external regions"), and are therefore likely to
have been affected by ancient sweeps in early modern humans. They applied their method
to a high-coverage Neanderthal genome. Then, they ranked these regions by their genetic
length, to find segments that were extremely long, and therefore highly compatible with
a selective sweep. Finally, [37] used summary statistics calculated in the neighborhood of
sites that were ancestral in archaic humans but fixed derived in all or almost all present-day
humans, to test if any of these sites could be compatible with a selective sweep model. While
these methods harnessed different summaries of the patterns of differentiation left by sweeps,
they did not attempt to explicitly model the process by which these patterns are generated
over time.

[147] developed a method called XP-CLR, which is designed to test for selection in one
population after its split from a second, outgroup, population tAB generations ago. It does
so by modeling the evolutionary trajectory of an allele under linked selection and under
neutrality, and then comparing the likelihood of the data for each of the two models. The
method detects local allele frequency differences that are compatible with the linked selection
model [148], along windows of the genome.

XP-CLR is a powerful test for detecting selective events restricted to one population.
However, it provides little information about when these events happened, as it models all
sweeps as if they had immediately occurred in the present generation. Additionally, if one is
interested in selective sweeps that took place before two populations a and b split from each
other, one would have to run XP-CLR separately on each population, with a third outgroup
population c that split from the ancestor of a and b tABC generations ago (with tABC > tAB).
Then, one would need to check that the signal of selection appears in both tests. This may
miss important information about correlated allele frequency changes shared by a and b, but
not by c, limiting the power to detect ancient events.

To overcome this, we developed an extension of XP-CLR that jointly models the behavior
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of an allele in all 3 populations, to detect selective events that occurred before or after
the closest two populations split from each other. Below we briefly review the modeling
framework of XP-CLR and describe our new test, which we call 3P-CLR. In the Results, we
show this method outperforms XP-CLR when testing for selection that occurred before the
split of two populations, and can distinguish between those events and events that occurred
after the split, unlike XP-CLR. We then apply the method to population genomic data from
the 1000 Genomes Project [153], to search for selective sweep events that occurred before
the split of Yoruba and Eurasians, but after their split from Neanderthals. We also use
it to search for selective sweeps that occurred in the Eurasian ancestral population, and
to distinguish those from events that occurred specifically in East Asians or specifically in
Europeans.

4.3 Materials and Methods

XP-CLR

First, we review the procedure used by XP-CLR to model the evolution of allele frequency
changes of two populations a and b that split from each other tAB generations ago (Figure
4.1.A). For neutral SNPs, [147] use an approximation to the Wright-Fisher diffusion dynamics
[154]. Namely, the frequency of a SNP in a population a (pA) in the present is treated as a
random variable governed by a normal distribution with mean equal to the frequency in the
ancestral population (β) and variance proportional to the drift time ω from the ancestral to
the present population:

pA|β ∼ N(β, ωβ(1− β)) (4.1)

where ω = tAB/(2Ne) and Ne is the effective size of population A.
This is a Brownian motion approximation to the Wright-Fisher model, as the drift incre-

ment to variance is constant across generations. If a SNP is segregating in both populations
- i.e. has not hit the boundaries of fixation or extinction - this process is time-reversible.
Thus, one can model the frequency of the SNP in population a with a normal distribution
having mean equal to the frequency in population b and variance proportional to the sum of
the drift time (ω) between a and the ancestral population, and the drift time between b and
the ancestral population (ψ):

pA|pB ∼ N(pB, (ω + ψ)pB(1− pB)) (4.2)

For SNPs that are linked to a beneficial allele that has produced a sweep in population
a only, [147] model the allele as evolving neutrally until the present and then apply a trans-
formation to the normal distribution that depends on the distance to the selected allele r
and the strength of selection s [155, 156]. Let c = 1 − qr/s0 where q0 is the frequency of the
beneficial allele in population a before the sweep begins. The frequency of a neutral allele is
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expected to increase from p to 1 − c + cp if the allele is linked to the beneficial allele, and
this occurs with probability equal to the frequency of the neutral allele (p) before the sweep
begins. Otherwise, the frequency of the neutral allele is expected to decrease from p to cp.
This leads to the following transformation of the normal distribution:

f(pA|pB, r, s, ω, ψ) =
1√
2πσ

pA + c− 1

c2
e−

(pA+c−1−cpB)2

2c2σ2 I[1−c,1](pA)+
1√
2πσ

c− pA
c2

e−
(pA−cpB)2

2c2σ2 I[0,c](pA)

(4.3)
where σ2 = (ω + ψ)pB(1− pB) and I[x,y](z) is 1 on the interval [x, y] and 0 otherwise.

For s→ 0 or r >> s, this distribution converges to the neutral case. Let v be the vector
of all drift times that are relevant to the scenario we are studying. In this case, it will be
equal to (ω, ψ) but in more complex cases below, it may include additional drift times. Let r
be the vector of recombination fractions between the beneficial alleles and each of the SNPs
within a window of arbitrary size. We can then calculate the product of likelihoods over all
k SNPs in that window for either the neutral or the linked selection model, after binomial
sampling of alleles from the population frequency, and conditioning on the event that the
allele is segregating in the population:

CLXP−CLR(r,v, s) =
k∏
j=1

∫ 1

0
f(pjA|p

j
B,v, s, r

j)
(
n
mj

)
(pjA)mj(1− pjA)n−mjdpjA∫ 1

0
f(pjA|p

j
B,v, s, rj)dp

j
A

(4.4)

This is a composite likelihood [157, 158], because we are ignoring the correlation in
frequencies produced by linkage among SNPs that is not strictly due to proximity to the
beneficial SNP. We note that the denominator in the above equation is not explicitly stated
in [147] for ease of notation, but appears in the published online implementation of the
method.

Finally, we obtain a composite likelihood ratio statistic SXP−CLR of the hypothesis of
linked selection over the hypothesis of neutrality:

SXP−CLR = 2[supr,v,slog(CLXP−CLR(r,v, s))− supvlog(CLXP−CLR(r,v, s = 0))] (4.5)

For ease of computation, [147] assume that r is given (via a recombination map) instead
of maximizing the likelihood with respect to it, and we will do so too. Furthermore, they
empirically estimate v using F2 statistics [159] calculated over the whole genome, and assume
selection is not strong or frequent enough to affect their genome-wide values. Therefore, the
likelihoods in the above equation are only maximized with respect to the selection coefficient,
using a grid of coefficients on a logarithmic scale.

3P-CLR

We are interested in the case where a selective event occurred more anciently than the
split of two populations (a and b) from each other, but more recently than their split from
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a third population c (Figure 4.1.B). We begin by modeling pA and pB as evolving from an
unknown common ancestral frequency β:

pA|β, ω ∼ N(β, ωβ(1− β)) (4.6)

pB|β, ψ ∼ N(β, ψβ(1− β)) (4.7)

Let χ be the drift time separating the most recent common ancestor of a and b from the
most recent common ancestor of a, b and c. Additionally, let ν be the drift time separating
population c in the present from the most recent common ancestor of a, b and c. Given these
parameters, we can treat β as an additional random variable that either evolves neutrally or
is linked to a selected allele that swept immediately more anciently than the split of a and b.
In both cases, the distribution of β will depend on the frequency of the allele in population
c (pC) in the present. In the neutral case:

fneut(β|pC , ν, χ) = N(pC , (ν + χ)pC(1− pC)) (4.8)

In the linked selection case:

fsel(β|pC , ν, χ, r, s) =
1√
2πκ

β + c− 1

c2
e−

(β+c−1−cpC )2

2c2κ2 I[1−c,1](β) +
1√
2πκ

c− β
c2

e−
(β−cpC )2

2c2κ2 I[0,c](β)

(4.9)
where κ2 = (ν + χ)pC(1− pC)

The frequencies in a and b given the frequency in c can be obtained by integrating β out.
This leads to a density function that models selection in the ancestral population of a and b.

f(pA, pB|pC ,v, r, s) =

∫ 1

0

fneut(pA|β, ω)fneut(pB|β, ψ)fsel(β|pC , ν, χ, r, s)dβ (4.10)

Additionally, formula 4.10 can be modified to test for selection that occurred specifically
in one of the terminal branches that lead to a or b (Figures 4.1.C and 4.1.D), rather than in
the ancestral population of a and b. For example, the density of frequencies for a scenario
of selection in the branch leading to a can be written as:

f(pA, pB|pC ,v, r, s) =

∫ 1

0

fsel(pA|β, ω, r, s)fneut(pB|β, ψ)fneut(β|pC , ν, χ)dβ (4.11)

We will henceforth refer to the version of 3P-CLR that is tailored to detect selection in
the internal branch that is ancestral to a and b as 3P-CLR(Int). In turn, the versions of
3P-CLR that are designed to detect selection in each of the daughter populations a and b
will be designated as 3P-CLR(A) and 3P-CLR(B), respectively.

We can now calculate the probability density of specific allele frequencies in populations
a and b, given that we observe mC derived alleles in a sample of size nC from population c:
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f(pA, pB|mC ,v, r, s) =

∫ 1

0

f(pA, pB|pC ,v, r, s)f(pC |mC)dpC (4.12)

and

f(pC |mC) =
1

B(mC , nC −mC + 1)
pmC−1C (1− pC)nC−mC (4.13)

where B(x,y) is the Beta function. We note that formula 4.13 assumes that the unconditioned
density function for the population derived allele frequency f(pC) comes from the neutral
infinite-sites model at equilibrium and is therefore equal to the product of a constant and
1/pC [160].

Conditioning on the event that the site is segregating in the population, we can then
calculate the probability of observing mA and mB derived alleles in a sample of size nA from
population a and a sample of size nB from population b, respectively, given that we observe
mC derived alleles in a sample of size nC from population c, using binomial sampling:

P (mA,mB|mC ,v, r, s) =

∫ 1

0

∫ 1

0
P (mA|pA)P (mB|pB)f(pA, pB|mC ,v, r, s)dpAdpB∫ 1

0

∫ 1

0
f(pA, pB|mC ,v, r, s)dpAdpB

(4.14)

where

P (mA|pA) =

(
nA
mA

)
pmAA (1− pA)nA−mA (4.15)

and

P (mB|pB) =

(
nB
mB

)
pmBB (1− pB)nB−mB (4.16)

This allows us to calculate a composite likelihood of the derived allele counts in a and b
given the derived allele counts in c:

CL3P−CLR(r,v, s) =
k∏
j=1

P (mj
A,m

j
B|m

j
C ,v, r

j, s) (4.17)

As before, we can use this composite likelihood to produce a composite likelihood ratio
statistic that can be calculated over regions of the genome to test the hypothesis of linked
selection centered on a particular locus against the hypothesis of neutrality. Due to compu-
tational costs in numerical integration, we skip the sampling step for population c (formula
4.13) in our implementation of 3P-CLR. In other words, we assume pC = mC/nC , but this is
also assumed in XP-CLR when computing its corresponding outgroup frequency. To perform
the numerical integrations, we used the package Cubature (v.1.0.2). We implemented our
method in a freely available C++ program that can be downloaded from here:
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https://github.com/ferracimo
The program requires the neutral drift parameters α, β and (ν+χ) to be specified as input.

These can be obtained using F3 statistics [161, 159], which have previously been implemented
in programs like MixMapper [58]. For example, α can be obtained via F3(A;B,C), while (ν+
χ) can be obtained via F3(C;A,B). When computing F3 statistics, we use only sites where
population C is polymorphic, and so we correct for this ascertainment in the calculation.
Another way of calculating these drift times is via ∂a∂i [49]. Focusing on two populations at
a time, we can fix one population’s size and allow the split time and the other population’s
size to be estimated by the program, in this case using all polymorphic sites, regardless of
which population they are segregating in. We then obtain the two drift times by scaling the
inferred split time by the two different population sizes. We provide scripts in our github
page for the user to obtain these drift parameters using both of the above ways.

4.4 Results

Simulations

We generated simulations in SLiM [73] to test the performance of XP-CLR and 3P-
CLR in a three-population scenario. We first focused on the performance of 3P-CLR(Int)
in detecting ancient selective events that occurred in the ancestral branch of two sister
populations. We assumed that the population history had been correctly estimated (i.e.
the drift parameters and population topology were known). First, we simulated scenarios
in which a beneficial mutation arose in the ancestor of populations a and b, before their
split from each other but after their split from c (Table 4.1). Although both XP-CLR and
3P-CLR are sensitive to partial or soft sweeps (as they do not rely on extended patterns
of haplotype homozygosity [147]), we required the beneficial allele to have fixed before the
split (at time tab) to ensure that the allele had not been lost by then, and also to ensure
that the sweep was restricted to the internal branch of the tree. We fixed the effective size
of all three populations at Ne = 10, 000. Each simulation consisted in a 5 cM region and
the beneficial mutation occurred in the center of this region. The mutation rate was set at
2.5 ∗ 10−8 per generation and the recombination rate between adjacent nucleotides was set
at 10−8 per generation.

To make a fair comparison to 3P-CLR(Int), and given that XP-CLR is a two-population
test, we applied XP-CLR in two ways. First, we pretended population b was not sampled,
and so the "test" panel consisted of individuals from a only, while the "outgroup" consisted
of individuals from c. In the second implementation (which we call "XP-CLR-avg"), we
used the same outgroup panel, but pooled the individulas from a and b into a single panel,
and this pooled panel was the "test". The window size was set at 0.5 cM and the number
of SNPs sampled between each window’s central SNP was set at 600 (this number is large
because it includes SNPs that are not segregating in the outgroup, which are later discarded).
To speed up computation, and because we are largely interested in comparing the relative

https://github.com/ferracimo
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performance of the three tests under different scenarios, we used only 20 randomly chosen
SNPs per window in all tests. We note, however, that the performance of all of these tests
can be improved by using more SNPs per window.

Figure 4.2 shows receiver operating characteristic (ROC) curves comparing the sensitiv-
ity and specificity of 3P-CLR(Int), 3P-CLR(A), XP-CLR and XP-CLR-avg in the first six
demographic scenarios described in Table 4.1. Each ROC curve was made from 100 simu-
lations under selection (with s = 0.1 for the central mutation) and 100 simulations under
neutrality (with s = 0 and no fixation required). In each simulation, 100 haploid individuals
(or 50 diploids) were sampled from population a, 100 individuals from population b and 100
individuals from the outgroup population c. For each simulation, we took the maximum
value at a region in the neighborhood of the central mutation (+/- 0.5 cM) and used those
values to compute ROC curves under the two models.

When the split times are recent or moderately ancient (models A to D), 3P-CLR(Int)
outperforms the two versions of XP-CLR. Furthermore, 3P-CLR(A) is the test that is least
sensitive to selection in the internal branch as it is only meant to detect selection in the
terminal branch leading to population a. When the split times are very ancient (models
E and F), none of the tests perform well. The root mean squared error (RMSE) of the
genetic distance between the true selected site and the highest scored window is comparable
across tests in all six scenarios (Figure 4.3). 3P-CLR(Int) is the best test at finding the true
location of the selected site in almost all demographic scenarios. We observe that we lose
almost all power if we simulate demographic scenarios where the population size is 10 times
smaller (Ne = 1, 000) (Figure 4.4). Additionally, we observe that the power and specificity
of 3P-CLR decrease as the selection coefficient decreases (Figure 4.5).

We also simulated a situation in which only a few individuals are sequenced from the
outgroup, while large numbers of sequences are available from the tests. Figures 4.6 and 4.7
show the ROC curves and RMSE plots, respectively, for a scenario in which 100 individuals
were sampled from the test populations but only 10 individuals (5 diploids) were sampled
from the outgroup. Unsurprisingly, all tests have less power to detect selection when the split
times and the selection events are recent to moderately ancient (models A-D). Interestingly
though, when the split times and the selective events are very ancient (models E-F), both 3P-
CLR and XP-CLR perform better when using a small ougroup panel (Figure 4.6) than when
using a large outgroup panel (Figure 4.2). This is due to the Brownian motion approximation
that these methods utilize. Under the Wright-Fisher model, the drift increment at generation
t is proportional to p(t)*(1-p(t)), where p(t) is the derived allele frequency. The derivative
of this function gets smaller the closer p(t) is to 0.5 (and is exactly 0 at that point). Small
outgroup panels serve to filter out loci with allele frequencies far from 0.5, and so small
changes in allele frequency will not affect the drift increment much, making Brownian motion
a good approximation to the Wright-Fisher model. Indeed, when running 3P-ClR(Int) in a
demographic scenario with very ancient split times (Model E) and a large outgroup panel
(100 sequences) but only restricting to sites that are at intermediate frequencies in the
outgroup (25% ≤ mC/nC ≤ 75%), we find that performance is much improved relative to
the case when we use all sites that are segregating in the outgroup (Figure 4.8).
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Importantly, the usefulness of 3P-CLR(Int) resides not just in its performance at de-
tecting selective sweeps in the ancestral population, but in its specific sensitivity to that
particular type of events. Because the test relies on correlated allele frequency differences
in both population a and population b (relative to the outgroup), selective sweeps that are
specific to only one of the populations will not lead to high 3P-CLR(Int) scores, but will
instead lead to high 3P-CLR(A) scores or 3P-CLR(B) scores, depending on where selection
took place. Figure 4.9 shows ROC curves in two scenarios in which a selective sweep occurred
only in population a (models I and J in Table 4.1), using 100 sampled individuals from each
of the 3 populations. Here, XP-CLR performs well, but is outperformed by 3P-CLR(A).
Furthermore, 3P-CLR(Int) shows almost no sensitivity to the recent sweep. For example, in
Model I, at a specificity of 90%, 3P-CLR(A) and XP-CLR(A) have 86% and 80% sensitivity,
respectively, while at the same specificity, 3P-CLR(Int) only has 18% sensitivity. One can
compare this to the same demographic scenario but with selection occurring in the ancestral
population of a and b (model C, Figure 4.2), where at 90% specificity, 3P-CLR(A) and XP-
CLR(A) have 72% and 84% sensitivity, respectively, while 3P-CLR(Int) has 90% sensitivity.
We also observe that 3P-CLR(A) is the best test at finding the true location of the selected
site when selection occurs in the terminal branch leading to population a (Figure 4.10).

Finally, we tested the behavior of 3P-CLR under selective scenarios that we did not
explicitly model. First, we simulated a selective sweep in the outgroup population. We find
that all three types of 3P-CLR statistics (3P-CLR(Int), 3P-CLR(A) and 3P-CLR(B)) are
largely insensitive to this type of event, though 3P-CLR(Int) is relatively more sensitive than
the other two. Second, we simulated two independent selective sweeps in populations a and
b (convergent evolution). This results in elevated 3P-CLR(A) and 3P-CLR(B) statistics, but
3P-CLR(Int) remains largely insensitive (Figure 4.11). We note that 3P-CLR should not be
used to detect selective events that occurred before the split of all three populations (i.e.
before the split of c and the ancestor of a and b), as it relies on allele frequency differences
between the populations.

Selection in Eurasians

We first applied 3P-CLR to modern human data from phase 1 of the 1000 Genomes
Project [153]. We used the African-American recombination map [162] to convert physical
distances into genetic distances. We focused on Europeans (CEU, FIN, GBR, IBS, TSI)
and East Asians (CHB, CHS, JPT) as the two sister populations, using Yoruba (YRI) as
the outgroup population (Figure 4.12.A). We randomly sampled 100 individuals from each
population and obtained sample derived allele frequencies every 10 SNPs in the genome. We
then calculated likelihood ratio statistics by a sliding window approach, where we sampled
a "central SNP" once every 10 SNPs. The central SNP in each window was the candidate
beneficial SNP for that window. We set the window size to 0.25 cM, and randomly sampled
100 SNPs from each window, centered around the candidate beneficial SNP. In each window,
we calculated 3P-CLR to test for selection at three different branches of the population tree:
the terminal branch leading to Europeans (3P-CLR Europe), the terminal branch leading
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to East Asians (3P-CLR East Asia) and the ancestral branch of Europeans and East Asians
(3P-CLR Eurasia). Results are shown in Figure 4.13. For each scan, we selected the windows
in the top 99.9% quantile of scores and merged them together if their corresponding central
SNPs were contiguous, effectively resulting in overlapping windows being merged. Tables
4.2, 4.3 and 4.4 show the top hits for Europeans, East Asians and the ancestral Eurasian
branch, respectively

We observe several genes that were identified in previous selection scans. In the East
Asian branch, one of the top hits is EDAR. Figure 4.14.A shows that this gene appears to
be under selection exclusively in this population branch. It codes for a protein involved in
hair thickness and incisor tooth morphology [163, 164], and has been repeatedly identified
as a candidate for a sweep in East Asians [165, 166].

Furthermore, 3P-CLR allows us to narrow down on the specific time at which selection
for previously found candidates occurred in the history of particular populations. For ex-
ample, [147] performed a scan of the genomes of East Asians using XP-CLR with Yoruba
as the outgroup, and identified a number of candidate genes [147]. 3P-CLR confirms re-
covers several of their loci when looking specifically at the East Asian branch: OR56A1,
OR56B4, OR52B2, SLC30A9, BBX, EPHB1, ACTN1 and XKR6. However, when applied
to the ancestral Eurasian branch, 3P-CLR finds some genes that were previously found in
the XP-CLR analysis of East Asians, but that are not among the top hits in 3P-CLR applied
to the East Asian branch: COMMD3, BMI1, SPAG6, NGLY1, OXSM, CD226, ABCC12,
ABCC11, LONP2, SIAH1, PPARA, PKDREJ, GTSE1, TRMU and CELSR1. This sug-
gests selection in these regions occurred earlier, i.e. before the European-East Asian split.
Figure 4.14.B shows a comparison between the 3P-CLR scores for the three branches in
the region containing genes BMI1 (a proto-oncogene [167]) and SPAG6 (involved in sperm
motility [168]). Here, the signal of Eurasia-specific selection is evidently stronger than the
other two signals. Finally, we also find some candidates from [147] that appear to be un-
der selection in both the ancestral Eurasian branch and the East Asian daughter branch:
SFXN5, EMX1, SPR and CYP26B1. Interestingly, both CYP26B1 and CYP26A1 are very
strong candidates for selection in the East Asian branch. These two genes lie in two different
chromosomes, so they are not part of a gene cluster, but they both code for proteins that
hydrolize retinoic acid, an important signaling molecule [169, 170].

Other selective events that 3P-CLR infers to have occurred in Eurasians include the
region containing HERC2 and OCA2, which are major determinants of eye color [171, 172,
173]. There is also evidence that these genes underwent selection more recently in the history
of Europeans [174], which could suggest an extended period of selection - perhaps influenced
by migrations between Asia and Europe - or repeated selective events at the same locus.

When running 3P-CLR to look for selection specific to Europe, we find that TYRP1,
which plays a role in human skin pigmentation [175], is among the top hits. This gene has
been previously found to be under strong selection in Europe [140], using a statistic called
iHS, which measures extended patterns of haplotype homozygosity that are characteristic of
selective sweeps. Interestingly, a change in the gene TYRP1 has also been found to cause a
blonde hair phenotype in Melanesians [176]. Another of our top hits is the region containing
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SH2B3, which was identified previously as a candidate for selection in Europe based on both
iHS and Fst [141]. This gene contains a nonsynonymous SNP (rs3184504) segregating in
Europeans. One of its alleles (the one in the selected haplotype) has been associated with
celiac disease and type 1 diabetes [177, 178] but is also protective against bacterial infection
[179].

We used Gowinda (v1.12) [180] to find enriched Gene Ontology (GO) categories among
the regions in the 99.5% highest quantile for each branch score, relative to the rest of the
genome (P < 0.05, FDR < 0.3). The significantly enriched categories are listed in Table 4.5.
In the East Asian branch, we find categories related to alcohol catabolism, retinol binding,
vitamin metabolism and epidermis development, among others. In the European branch, we
find cuticle development and hydrogen peroxide metabolic process as enriched categories.
We find no enriched categories in the Eurasian branch that pass the above cutoffs.

Selection in ancestral modern humans

We applied 3P-CLR to modern human data combined with recently sequenced archaic
human data. We sought to find selective events that occurred in modern humans after
their spit from archaic groups. We used the combined Neanderthal and Denisovan high-
coverage genomes [2, 16] as the outgroup population, and, for our two test populations, we
used Eurasians (CEU, FIN, GBR, IBS, TSI, CHB, CHS, JPT) and Yoruba (YRI), again
from phase 1 of the 1000 Genomes Project [153] (Figure 4.12.B). As before, we randomly
sampled 100 genomes for each of the two daughter populations at each site, and tested for
selective events that occurred more anciently than the split of Yoruba and Eurasians, but
more recently than the split from Neanderthals. Figure 4.15 shows an ROC curve for a
simulated scenario under these conditions, based on the history of population size changes
inferred by PSMC [60, 16], suggesting we should have power to detect strong (s=0.1) selective
events in the ancestral branch of present-day humans. We observe that 3P-CLR(Int) has
similar power as XP-CLR and XP-CLR-avg at these time-scales, but is less prone to also
detect recent (post-split) events, making it more specific to ancestral sweeps.

We ran 3P-CLR using 0.25 cM windows as above (Figure 4.16). As before, we selected
the top 99.9% windows and merged them together if their corresponding central SNPs were
contiguous (Table 4.6). Figure 4.16 shows that the outliers in the genome-wide distribution
of scores are not strong. We wanted to verify that the density of scores was robust to the
choice of window size. By using a larger window size (1 cM), we obtained a distribution
with slightly more extreme outliers (Figures 4.17 4.16). For that reason, we also show the
top hits from this large-window run (Table 4.7), using a smaller density of SNPs (200/1cM
rather than 100/0.25cM), due to costs in speed. To find putative candidates for the beneficial
variants in each region, we queried the catalogs of modern human-specific high-frequency or
fixed derived changes that are ancestral in the Neanderthal and/or the Denisova genomes
[16, 61] and overlapped them with our regions.

We found several genes that were identified in previous studies that looked for selection in
modern humans after their split from archaic groups [16, 8], including SIPA1L1, ANAPC10,
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ABCE1, RASA1, CCNH, KCNJ3, HBP1, COG5, CADPS2, FAM172A, POU5F2, FGF7,
RABGAP1, SMURF1, GABRA2, ALMS1, PVRL3, EHBP1, VPS54, OTX1, UGP2, GTDC1,
ZEB2 and OIT3. One of our strongest candidate genes among these is SIPA1L1 (Figure
4.18.A), which is in the first and the fourth highest-ranking region, when using 1 cM and
0.25 cM windows, respectively. The protein encoded by this gene (E6TP1) is involved in
actin cytoskeleton organization and controls neural morphology (UniProt by similarity). In-
terestingly, it is also a target of degradation of the oncoproteins of high-risk papillomaviruses
[181].

Another candidate gene is ANAPC10 (Figure 4.18.B). This gene codes for a core subunit
of the cyclosome, which is involved in progression through the cell cycle [182], and may play
a role in oocyte maturation and human T-lymphotropic virus infection (KEGG pathway
[183]). ANAPC10 is noteworthy because it was found to be significantly differentially ex-
pressed in humans compared to other great apes and macaques: it is up-regulated in the
testes [184]. The gene also contains two intronic changes that are fixed derived in modern
humans, ancestral in both Neanderthals and Denisovans and that have evidence for being
highly disruptive, based on a composite score that combines conservation and regulatory
data (PHRED-scaled C-scores > 11 [185, 16]). The changes, however, appear not to lie in
any obvious regulatory region [186, 187].

We also find ADSL among the list of candidates. This gene is known to contain a non-
synonymous change that is fixed in all present-day humans but homozygous ancestral in
the Neanderthal genome, the Denisova genome and two Neanderthal exomes [61] (Figure
4.19.A). It was previously identified as lying in a region with strong support for positive
selection in modern humans, using summary statistics implemented in an ABC method [37].
The gene is interesting because it is one of the members of the Human Phenotype ontology
category "aggression / hyperactivity" which is enriched for nonsynonymous changes that
occurred in the modern human lineage after the split from archaic humans [188, 61]. ADSL
codes for adenylosuccinase, an enzyme involved in purine metabolism [189]. A deficiency of
adenylosuccinase can lead to apraxia, speech deficits, delays in development and abnormal
behavioral features, like hyperactivity and excessive laughter [190]. The nonsynonymous
mutation (A429V) is in the C-terminal domain of the protein (Figure 4.19.B) and lies in a
highly conserved position (primate PhastCons = 0.953; GERP score = 5.67 [191, 192, 185]).
The ancestral amino acid is conserved across the tetrapod phylogeny, and the mutation is
only three residues away from the most common causative SNP for severe adenylosuccinase
deficiency [193, 194, 195, 196, 197]. The change has the highest probability of being disrup-
tive to protein function, out of all the nonsynonymous modern-human-specific changes that
lie in the top-scoring regions (C-score = 17.69). While ADSL is an interesting candidate and
lies in the center of the inferred selected region (Figure 4.19.A), there are other genes in the
region too, including TNRC6B and MKL1. TNRC6B may be involved in miRNA-guided
gene silencing [198], while MKL1 may play a role in smooth muscle differentiation [199], and
has been associated with acute megakaryocytic leukemia [200].

RASA1 was also a top hit in a previous scan for selection [8], and was additionally inferred
to have evidence in favor of selection in [37]. The gene codes for a protein involved in the
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control of cellular differentiation [201], and has a modern human-specific fixed nonsynony-
mous change (G70E). Human diseases associated with RASA1 include basal cell carcinoma
[202] and arteriovenous malformation [203, 204].

The GABAA gene cluster in chromosome 4p12 is also among the top regions. The gene
within the putatively selected region codes for a subunit (GABRA2 ) of the GABAA receptor,
which is a ligand-gated ion channel that plays a key role in synaptic inhibtion in the central
nervous system (see review by [205]). GABRA2 is significantly associated with risk of alcohol
dependence in humans [206], perception of pain [207] and asthma [208].

Two other candidate genes that may be involved in brain development are FOXG1 and
CADPS2. FOXG1 was not identified in any of the previous selection scans, and codes for
a protein called forkhead box G1, which plays an important role during brain development.
Mutations in this gene are associated with a slow-down in brain growth during childhood
resulting in microcephaly, which in turn causes various intellectual disabilities [209, 210].
CADPS2 was identified in [8] as a candidate for selection, and has been associated with
autism [211]. The gene has been suggested to be specifically important in the evolution
of all modern humans, as it was not found to be selected earlier in great apes or later in
particular modern human populations [212].

Finally, we find a signal of selection in a region containing the gene EHBP1 and OTX1.
This region was identified in both of the two previous scans for modern human selection [16,
8]. EHBP1 codes for a protein involved in endocytic trafficking [213] and has been associated
with prostate cancer [214]. OTX1 is a homeobox family gene that may play a role in
brain development [215]. Interestingly, EHBP1 contains a single-nucleotide intronic change
(chr2:63206488) that is almost fixed in all present-day humans and homozygous ancestral
in Neanderthal and Denisova [16]. This change is also predicted to be highly disruptive (C-
score = 13.1) and lies in a position that is extremely conserved across primates (PhastCons
= 0.942), mammals (PhastCons = 1) and vertebrates (PhastCons = 1). The change is 18 bp
away from the nearest splice site and overlaps a VISTA conserved enhancer region (element
1874) [216], suggesting a putative regulatory role for the change.

We again used Gowinda [180] to find enriched GO categories among the regions with
high 3P-CLR scores in the Modern Human branch. The significantly enriched categories
(P < 0.05, FDR < 0.3) are listed in Table 4.5. We find several GO terms related to the
regulation of the cell cycle, T cell migration and intracellular transport.

We overlapped the genome-wide association studies (GWAS) database [217, 218] with the
list of fixed or high-frequency modern human-specific changes that are ancestral in archaic
humans [16] and that are located within our top putatively selected regions in modern
humans (Tables 4.8 and 4.9 for the 0.25 cM and 1 cM scans, respectively). None of the
resulting SNPs are completely fixed derived, because GWAS can only yield associations
from sites that are segregating. We find several SNPs in the RAB28 gene [186, 187], which
are significantly associated with obesity [219]. We also find a SNP with a high C-score
(rs10171434) associated with urinary metabolites [220] and suicidal behavior in patients
with mood disorders [221]. The SNP is located in an enhancer regulatory freature [186,
187] located between genes PELI1 and VPS54, in the same putatively selected region as
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genes EHBP1 and OTX1 (see above). Finally, there is a highly C-scoring SNP (rs731108)
that is associated with renal cell carcinoma [222]. This SNP is also located in an enhancer
regulatory feature [186, 187], in an intron of ZEB2. In this last case, though, only the
Neanderthal genome has the ancestral state, while the Denisova genome carries the modern
human variant.

4.5 Discussion
We have developed a new method called 3P-CLR, which allows us to detect positive

selection along the genome. The method is based on an earlier test (XP-CLR [147]) that
uses linked allele frequency differences between two populations to detect population-specific
selection. However, unlike XP-CLR, 3P-CLR can allow us to distinguish between selective
events that occurred before and after the split of two populations. Our method has some
similiarities to an earlier method developed by [223], which used an Fst-like score to detect
selection ancestral to two populations. In that case, though, the authors used summary
statistics and did not explicitly model the process leading to allele frequency differentia-
tion. It is also similar to a more recent method [224] that models differences in haplotype
frequencies between populations, while accounting for population structure.

We used our method to confirm previously found candidate genes in particular human
populations, like EDAR, TYRP1 and CYP26B1, and find some novel candidates too (Tables
4.2, 4.3, 4.4). Additionally, we can infer that certain genes, which were previously known to
have been under selection in East Asians (like SPAG6 ), are more likely to have undergone a
sweep in the population ancestral to both Europeans and East Asians than in East Asians
only. We find that genes involved in epidermis development and alcohol catabolism are par-
ticularly enriched among the East Asian candidate regions, while genes involved in peroxide
catabolism and cuticle development are enriched in the European branch. This suggests
these biological functions may have been subject to positive selection in recent times.

We also used 3P-CLR to detect selective events that occurred in the ancestors of modern
humans, after their split from Neanderthals and Denisovans (Table 4.6). These events could
perhaps have led to the spread of phenotypes that set modern humans apart from other
hominin groups. We find several intersting candidates, like SIPA1L1, ADSL, RASA1, OTX1,
EHBP1, FOXG1, RAB28 and ANAPC10, some of which were previously detected using
other types of methods [8, 16, 37]. We also find an enrichment for GO categories related
to cell cycle regulation and T cell migration among the candidate regions, suggesting that
these biological processes might have been affected by positive selection after the split from
archaic humans.

An advantage of differentiation-based tests like XP-CLR and 3P-CLR is that, unlike other
patterns detected by tests of neutrality (like extended haplotype homozygostiy, [225]) that
are exclusive to hard sweeps, the patterns that both XP-CLR and 3P-CLR are tailored to
find are based on regional allele frequency differences between populations. These patterns
can also be produced by soft sweeps from standing variation or by partial sweeps [147], and



CHAPTER 4. TESTING FOR ANCIENT SELECTION USING CROSS-POPULATION
ALLELE FREQUENCY DIFFERENTIATION 160

there is some evidence that the latter phenomena may have been more important than classic
sweeps during human evolutionary history [226].

Another advantage of both XP-CLR and 3P-CLR is that they do not rely on an arbi-
trary division of genomic space. Unlike other methods which require the partition of the
genome into small windows of fixed size, our composite likelihood ratios can theoretically
be computed over windows that are as big as each chromosome, while only switching the
central candidate site at each window. This is because the likelihood ratios use the genetic
distance to the central SNP as input. SNPs that are very far away from the central SNP
will not contribute much to the likelihood function of both the neutral and the selection
models, while those that are close to it will. In the interest of speed, we heuristically limit
the window size in our implementation, and use less SNPs when calculating likelihoods over
larger windows. Nevertheless, these parameters can be arbitrarily adjusted by the user as
needed, and if enough computing resources are available. The use of genetic distance in
the likelihood function also allows us to take advantage of the spatial distribution of SNPs
as an additional source of information, rather than only relying on patterns of population
differentiation restricted to tightly linked SNPs.

3P-CLR also has an advantage over HMM-based selection methods, like the one imple-
mented in [16]. The likelihood ratio scores obtained from 3P-CLR can provide an idea of
how credible a selection model is for a particular region, relative to the rest of the genome.
The HMM-based method previously used to scan for selection in modern humans [16] can
only rank putatively selected regions by genetic distance, but cannot output a statistical
measure that may indicate how likely each region is to have been under selection in ancient
times. In contrast, 3P-CLR provides a composite likelihood ratio score, which allows for a
statistically rigorous way to compare the neutral model and a specific selection model (for
example, recent or ancient selection).

The outliers from Figure 4.13 have much higher scores (relative to the rest of the genome)
than the outliers from Figure 4.16. This may be due to both the difference in time scales
in the two sets of tests and to the uncertainty that comes from estimating outgroup allele
frequencies using only two archaic genomes. This pattern can also be observed in Figure 4.20,
where the densities of the scores looking for patterns of ancient selection (3P-CLR Modern
Human and 3P-CLR Eurasia) have much shorter tails than the densities of scores looking for
patterns of recent selection (3P-CLR Europe and 3P-CLR East Asia). Simulations show that
3P-CLR(Int) score distributions are naturally shorter than 3P-CLR(A) scores (Figure 4.21),
which could explain the short tail of the 3P-CLR Eurasia distribution. Additionally, the
even shorter tail in the distribution of 3P-CLR Modern Human scores may be a consequence
of the fact that the split times of the demographic history in that case are older than the
split times in the Eurasian tree, as simulations show that ancient split times tend to further
shorten the tail of the 3P-CLR score distribution (Figure 4.21). We note, though, that using
a larger window size produces a larger number of strong outliers (Figure 4.17).

A limitation of composite likelihood ratio tests is that the composite likelihood calculated
for each model under comparison is obtained from a product of individual likelihoods at each
site, and so it underestimates the correlation that exists between SNPs due to linkage effects
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[157, 158, 227, 147]. One way to partially mitigate this problem is by using corrective weights
based on linkage disequilibrium (LD) statistics calculated on the outgroup population [147].
Our implementation of 3P-CLR allows the user to incorporate such weights, if appropriate
LD statistics are available from the outgroup. However, in cases where these are unreliable,
it may not be possible to correct for this (for example, when only a few unphased genomes
are available, as in the case of the Neanderthal and Denisova genomes).

While 3P-CLR relies on integrating over the possible allele frequencies in the ancestors
of populations a and b (formula 4.10), one could envision using ancient DNA to avoid this
step. Thus, if enough genomes could be sampled from that ancestral population that existed
in the past, one could use the sample frequency in the ancient set of genomes as a proxy
for the ancestral population frequency. This may soon be possible, as several early modern
human genomes have already been sequenced in recent years [22, 23, 9].

Though we have focused on a three-population model in this manuscript, it should be
straightforward to expand our method to a larger number of populations, albeit with addi-
tional costs in terms of speed and memory. 3P-CLR relies on a similar framework to the
demographic inference method implemented in TreeMix [228], which can estimate population
trees that include migration events, using genome-wide data. With a more complex modeling
framework, it may be possible to estimate the time and strength of selective events with bet-
ter resolution and using more populations, and also to incorporate additional demographic
forces, like continuous migration between populations or pulses of admixture.
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4.7 Tables

Table 4.1. Description of models tested. All times are in generations. Selection in the
"ancestral population" refers to a selective sweep where the beneficial mutation and
fixation occurred before the split time of the two most closely related populations.
Selection in "daughter population a" refers to a selective sweep that occurred in one of the
two most closely related populations (a), after their split from each other. tAB: split time
(in generations ago) of populations a and b. tABC : split time of population c and the
ancestral population of a and b. tM : time at which the selected mutation is introduced. s:
selection coefficient. Ne: effective population size.

Model Population where selection occurred tAB tABC tM s Ne

A Ancestral population 500 2,000 1,800 0.1 10,000
B Ancestral population 1,000 4,000 2,500 0.1 10,000
C Ancestral population 2,000 4,000 3,500 0.1 10,000
D Ancestral population 3,000 8,000 5,000 0.1 10,000
E Ancestral population 2,000 16,000 8,000 0.1 10,000
F Ancestral population 4,000 16,000 8,000 0.1 10,000
I Daughter population a 2,000 4,000 1,000 0.1 10,000
J Daughter population a 3,000 8,000 2,000 0.1 10,000



CHAPTER 4. TESTING FOR ANCIENT SELECTION USING CROSS-POPULATION
ALLELE FREQUENCY DIFFERENTIATION 163

Table 4.2. Top hits for 3P-CLR run on the European terminal branch, using
Yoruba as the outgroup. We show the windows in the top 99.9% quantile of scores.
Windows were merged together if the central SNPs that define them were contiguous. Win
max = Location of window with maximum score. Win start = left-most end of left-most
window for each region. Win end = right-most end of right-most window for each region.
All positions were rounded to the nearest 100 bp. Score max = maximum score within
region.

chr Win max Win start Win end Score max Genes within region

9 125585000 125424000 126089000 362.273 ZBTB26,RABGAP1,GPR21,STRBP,OR1L1,OR1L3,OR1L4,
OR1L6,OR5C1,PDCL,OR1K1,RC3H2,ZBTB6

22 35631900 35528100 35754100 309.488 HMGXB4,TOM1
8 52698800 52361800 52932100 289.921 PXDNL,PCMTD1
2 74967500 74450100 74972700 289.019 INO80B,WBP1,MOGS,MRPL53,CCDC142,TTC31,LBX2,

PCGF1,TLX2,DQX1,AUP1,HTRA2,LOXL3,DOK1,M1AP,
SEMA4F,SLC4A5,DCTN1,WDR54,RTKN

1 35634700 35382000 36592200 263.83 DLGAP3,ZMYM6NB,ZMYM6,ZMYM1,SFPQ,ZMYM4,
KIAA0319L,NCDN,TFAP2E,PSMB2,C1orf216,CLSPN,AGO4,
AGO1,AGO3,TEKT2,ADPRHL2,COL8A2

15 29279800 29248000 29338300 251.944 APBA2
12 112950000 111747000 113030000 242.067 BRAP,ACAD10,ALDH2,MAPKAPK5,TMEM116,ERP29,

NAA25,TRAFD1,RPL6,PTPN11,RPH3A,CUX2,FAM109A,
SH2B3,ATXN2

9 90947700 90909300 91210000 219.285 SPIN1,NXNL2
19 33644300 33504200 33705700 213.189 RHPN2,GPATCH1,WDR88,LRP3,SLC7A10
9 30546800 30085400 31031600 207.378 -
4 33865300 33604700 34355600 204.96 -
1 198035000 197943000 198308000 197.96 NEK7
1 204868000 204681000 204873000 194.594 NFASC
10 74613800 73802300 75407100 191.864 SPOCK2,ASCC1,ANAPC16,DDIT4,DNAJB12,MICU1,MCU,

OIT3,PLA2G12B,P4HA1,NUDT13,ECD,FAM149B1,DNAJC9,MRPS16,
TTC18,ANXA7,MSS51,PPP3CB,USP54,MYOZ1,SYNPO2L

7 138809000 138798000 139136000 180.75 TTC26,UBN2,C7orf55,C7orf55-LUC7L2,LUC7L2
6 95678500 95351800 95831000 180.676 -
2 104752000 104592000 104951000 177.053 -
16 7602450 7528820 7612510 171.615 RBFOX1
10 30568100 30361300 30629500 170.714 KIAA1462,MTPAP
3 137183000 136873000 137250000 166.559 -
1 116731000 116709000 116919000 165.137 ATP1A1
9 135136000 135132000 135298000 165.004 SETX,TTF1,C9orf171
13 89882200 89262100 90103800 158.112 -
2 17094600 16977500 17173100 156.531 -
4 82050400 81981400 82125100 154.54 PRKG2
2 69245100 69147300 69342700 149.948 GKN2,GKN1,ANTXR1
17 46949100 46821000 47137900 147.537 ATP5G1,UBE2Z,SNF8,GIP,IGF2BP1,TTLL6,CALCOCO2
10 83993700 83977100 84328100 147.072 NRG3
14 63893800 63780300 64044700 142.831 PPP2R5E
1 244070000 243645000 244107000 142.335 SDCCAG8,AKT3
14 66636800 66417700 67889500 140.97 GPHN,FAM71D,MPP5,ATP6V1D,EIF2S1,PLEK2
11 38611200 38349600 39004500 138.731 -
3 123368000 123196000 123418000 136.651 PTPLB,MYLK
6 112298000 111392000 112346000 135.167 SLC16A10,KIAA1919,REV3L,TRAF3IP2,FYN
5 109496000 109419000 109608000 132.766 -
5 142160000 142070000 142522000 132.436 FGF1,ARHGAP26
12 39050200 33590600 39618900 130.832 SYT10,ALG10,ALG10B,CPNE8
9 108423000 108410000 108674000 129.893 TAL2,TMEM38B
3 159453000 159263000 159486000 126.462 IQCJ-SCHIP1
2 70182800 70020100 70563900 126.092 FAM136A,ANXA4,GMCL1,SNRNP27,MXD1,ASPRV1,PCBP1,C2orf42,
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TIA1,PCYOX1,SNRPG
3 177605000 177536000 177745000 123.927 -
8 18534300 18515900 18656800 123.593 PSD3
5 123555000 123371000 123603000 122.973 -
17 19287500 18887800 19443300 122.35 SLC5A10,FAM83G,GRAP,GRAPL,EPN2,B9D1,MAPK7,

MFAP4,RNF112,SLC47A1
11 42236100 41807600 42311500 122.131 -
13 41623700 41119400 41801600 121.214 FOXO1,MRPS31,SLC25A15,ELF1,WBP4,KBTBD6,KBTBD7,

MTRF1
5 10311500 10284000 10481500 118.766 CMBL,MARCH6,ROPN1L
14 65288500 65222500 65472700 118.576 SPTB,CHURC1,FNTB,GPX2,RAB15
1 47651700 47396900 47938300 118.241 CYP4A11,CYP4X1,CYP4Z1,CYP4A22,PDZK1IP1,TAL1,STIL,

CMPK1,FOXE3,FOXD2
2 138527000 138428000 138694000 116.881 -
17 42294300 42056700 42351800 115.466 PYY,NAGS,TMEM101,LSM12,G6PC3,HDAC5,C17orf53,ASB16,

TMUB2,ATXN7L3,UBTF,SLC4A1
9 12480000 12439900 12776500 115.209 TYRP1,LURAP1L
7 78743000 78688400 78897900 114.946 MAGI2
2 216626000 216556000 216751000 114.901 -
1 65511700 65377500 65611400 114.699 JAK1
5 115391000 115369000 115784000 113.862 ARL14EPL,COMMD10,SEMA6A
15 45402300 45096000 45490700 113.69 C15orf43,SORD,DUOX2,DUOXA2,DUOXA1,DUOX1,SHF
3 25840300 25705200 25934000 113.326 TOP2B,NGLY1,OXSM
2 73086900 72373800 73148200 110.523 CYP26B1,EXOC6B,SPR,EMX1
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Table 4.3. Top hits for 3P-CLR run on the East Asian terminal branch, using
Yoruba as the outgroup. We show the windows in the top 99.9% quantile of scores.
Windows were merged together if the central SNPs that define them were contiguous. Win
max = Location of window with maximum score. Win start = left-most end of left-most
window for each region. Win end = right-most end of right-most window for each region.
All positions were rounded to the nearest 100 bp. Score max = maximum score within
region.

chr Win max Win start Win end Score max Genes within region

15 64151100 63693900 64188300 266.459 USP3,FBXL22,HERC1
10 94962900 94830500 95093900 241.875 CYP26A1,MYOF
2 73086900 72353500 73170800 218.482 CYP26B1,EXOC6B,SPR,EMX1,SFXN5
10 55988000 55869200 56263600 215.051 PCDH15
1 234359000 234209000 234396000 189.946 SLC35F3
5 117350000 117344000 117714000 189.051 -
17 60964400 60907300 61547900 186.63 TANC2,CYB561
2 44268900 44101400 44315200 185.629 ABCG8,LRPPRC
11 6126830 6028090 6191240 184 OR56A1,OR56B4,OR52B2
2 109318000 108905000 109629000 183.859 LIMS1,RANBP2,CCDC138,EDAR,SULT1C2,SULT1C4,GCC2
4 41882900 41456100 42196500 183.481 LIMCH1,PHOX2B,TMEM33,DCAF4L1,SLC30A9,BEND4
18 5304160 5201440 5314680 183.476 ZBTB14
9 105040000 104779000 105042000 181.781 -
7 105097000 104526000 105128000 181.358 KMT2E,SRPK2,PUS7
3 107609000 107149000 107725000 178.27 BBX
7 101729000 101511000 101942000 169.558 CUX1
6 159274000 159087000 159319000 169.058 SYTL3,EZR,C6orf99
9 90947700 90909300 91202200 163.828 SPIN1,NXNL2
9 92311400 92294400 92495100 162.821 -
15 26885200 26723700 26911100 160.496 GABRB3
5 109197000 108988000 109240000 156.271 MAN2A1
3 12506200 12476600 12819300 151.978 TSEN2,C3orf83,MKRN2,RAF1,TMEM40
2 125998000 125740000 126335000 148.576 -
3 139052000 139033000 139351000 148.572 MRPS22,COPB2,RBP2,RBP1,NMNAT3
3 134739000 134629000 135618000 146.833 EPHB1
2 9766680 9354260 9774110 145.998 ASAP2,ITGB1BP1,CPSF3,IAH1,ADAM17,YWHAQ
3 17873800 17189600 18009400 145.345 TBC1D5
14 69592000 69423900 69791100 144.488 ACTN1,DCAF5,EXD2,GALNT16
22 39747800 39574300 39845300 144.477 PDGFB,RPL3,SYNGR1,TAB1
8 10875300 10731100 11094000 143.754 XKR6
4 99985900 99712200 100322000 143.554 EIF4E,METAP1,ADH5,ADH4,ADH6,ADH1A,ADH1B
4 144235000 143610000 144412000 143.124 INPP4B,USP38,GAB1
2 17596700 16574500 17994400 142.084 FAM49A,RAD51AP2,VSNL1,SMC6,GEN1
2 211707000 211652000 211873000 141.706 -
1 103763000 103353000 103785000 141.473 COL11A1
3 71482600 71372800 71685500 140.75 FOXP1
17 10519000 10280200 10564000 140.243 MYH8,MYH4,MYH1,MYH2,MYH3
4 13283100 13126100 13537100 139.729 RAB28
8 73836900 73815300 73953100 139.423 KCNB2,TERF1
14 50226700 49952500 50426100 139.052 RPS29,LRR1,RPL36AL,MGAT2,DNAAF2,POLE2,KLHDC1,

KLHDC2,NEMF,ARF6
2 26167200 25895300 26238100 138.585 KIF3C,DTNB
6 47369600 47312800 47708400 138.112 CD2AP,GPR115
3 102005000 101899000 102361000 137.862 ZPLD1
1 65943500 65891700 66168800 137.68 LEPR,LEPROT
11 25169300 24892400 25274500 137.191 LUZP2
1 28846900 28430000 29177900 136.458 PTAFR,DNAJC8,ATPIF1,SESN2,MED18,PHACTR4,RCC1,

TRNAU1AP,TAF12,RAB42,GMEB1,YTHDF2,OPRD1
2 154054000 154009000 154319000 136.247 -
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7 108874000 108718000 109226000 135.996 -
1 75471000 75277400 75941000 133.055 LHX8,SLC44A5
1 154824000 154802000 155113000 131.45 KCNN3,PMVK,PBXIP1,PYGO2,SHC1,CKS1B,FLAD1,

LENEP,ZBTB7B,DCST2,DCST1,ADAM15,EFNA4,
EFNA3,EFNA1,SLC50A1,DPM3

3 58413700 58096400 58550500 130.828 FLNB,DNASE1L3,ABHD6,RPP14,PXK,PDHB,KCTD6,
ACOX2,FAM107A

1 36170500 35690600 36592200 130.701 ZMYM4,KIAA0319L,NCDN,TFAP2E,PSMB2,C1orf216,
CLSPN,AGO4,AGO1,AGO3,TEKT2,ADPRHL2,COL8A2

17 39768900 39673200 39865400 130.04 KRT15,KRT19,KRT9,KRT14,KRT16,KRT17,JUP,EIF1
15 82080400 81842500 82171400 129.682 -
17 30842700 30613600 30868000 128.36 RHBDL3,C17orf75,ZNF207,PSMD11,CDK5R1,MYO1D
2 107933000 107782000 108041000 128.04 -
3 44917100 44138200 45133100 127.824 TOPAZ1,TCAIM,ZNF445,ZKSCAN7,ZNF660,ZNF197,

ZNF35,ZNF502,ZNF501,KIAA1143,KIF15,TMEM42,
TGM4,ZDHHC3,EXOSC7,CLEC3B,CDCP1

4 153009000 152902000 153101000 126.503 -
22 43190000 43148300 43455100 126.326 ARFGAP3,PACSIN2,TTLL1
4 168849000 168619000 168995000 126.125 -
5 42286000 41478600 42623200 125.831 PLCXD3,OXCT1,C5orf51,FBXO4,GHR
7 136345000 135788000 136570000 125.551 CHRM2
3 60305100 60226500 60349500 125.16 FHIT
10 59763900 59572200 59825500 124.643 -
3 114438000 114363000 115146000 124.535 ZBTB20
4 160142000 159944000 160359000 123.391 C4orf45,RAPGEF2
2 177717000 177613000 177889000 123.094 -
5 119672000 119639000 119868000 122.93 PRR16
20 43771800 43592200 43969300 122.421 STK4,KCNS1,WFDC5,WFDC12,PI3,SEMG1,SEMG2,

SLPI,MATN4,RBPJL,SDC4
1 172928000 172668000 172942000 121.532 -
7 112273000 112126000 112622000 121.336 LSMEM1,TMEM168,C7orf60
1 169523000 169103000 169525000 119.533 NME7,BLZF1,CCDC181,SLC19A2,F5
3 26265100 25931700 26512400 119.052 -
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Table 4.4. Top hits for 3P-CLR run on the Eurasian ancestral branch, using
Yoruba as the outgroup. We show the windows in the top 99.9% quantile of scores.
Windows were merged together if the central SNPs that define them were contiguous. Win
max = Location of window with maximum score. Win start = left-most end of left-most
window for each region. Win end = right-most end of right-most window for each region.
All positions were rounded to the nearest 100 bp. Score max = maximum score within
region.

chr Win max Win start Win end Score max Genes within region

2 72379700 72353500 73170800 617.695 CYP26B1,EXOC6B,SPR,EMX1,SFXN5
20 53879500 53876700 54056200 605.789 -
10 22712400 22309300 22799200 566.463 EBLN1,COMMD3,COMMD3-BMI1,BMI1,SPAG6
3 25856600 25726300 26012000 557.376 NGLY1,OXSM
18 67725100 67523300 67910500 535.743 CD226,RTTN
10 66262400 65794400 66339100 532.732 -
11 39695600 39587400 39934300 518.72 -
7 138927000 138806000 139141000 508.385 TTC26,UBN2,C7orf55,C7orf55-LUC7L2,LUC7L2,KLRG2
9 90934600 90909300 91202200 498.898 SPIN1,NXNL2
4 41554200 41454200 42195300 487.476 LIMCH1,PHOX2B,TMEM33,DCAF4L1,SLC30A9,BEND4
16 61271700 61121600 61458700 485.291 -
17 58509300 58113700 59307700 477.117 HEATR6,CA4,USP32,C17orf64,APPBP2,PPM1D,BCAS3
1 230132000 229910000 230208000 468.258 GALNT2
8 35540400 35533900 35913800 454.601 UNC5D
17 60964400 60907300 61547900 449.203 TANC2,CYB561
16 47972300 33707000 48480500 448.504 SHCBP1,VPS35,ORC6,MYLK3,C16orf87,GPT2,DNAJA2,

NETO2,ITFG1,PHKB,ABCC12,ABCC11,LONP2,SIAH1
1 90393900 90329700 90521600 436.002 LRRC8D,ZNF326
8 52698800 52238900 52932100 423.865 PXDNL,PCMTD1
11 106237000 105877000 106256000 419.391 MSANTD4,KBTBD3,AASDHPPT
13 48798100 48722300 49288100 414.218 ITM2B,RB1,LPAR6,RCBTB2,CYSLTR2
3 19240300 19090800 19424900 408.064 KCNH8
2 194986000 194680000 195299000 404.394 -
12 15962600 15690100 16137200 402.558 PTPRO,EPS8,STRAP,DERA
9 125564000 125484000 126074000 400.096 ZBTB26,RABGAP1,GPR21,STRBP,OR1L4,OR1L6,

OR5C1,PDCL,OR1K1,RC3H2,ZBTB6
15 28565300 28324600 28611900 398.519 OCA2,HERC2
8 47631700 42502000 49037700 396.687 CHRNB3,CHRNA6,THAP1,RNF170,HOOK3,FNTA,

POMK,HGSNAT,SPIDR,CEBPD,MCM4,UBE2V2
1 116994000 116808000 117027000 395.221 ATP1A1
7 99338700 98717600 99376500 393.41 ZSCAN25,CYP3A5,CYP3A7,CYP3A4,SMURF1,

KPNA7,ARPC1A,ARPC1B,PDAP1,BUD31,PTCD1,ATP5J2-PTCD1,
CPSF4,ATP5J2,ZNF789,ZNF394,ZKSCAN5,FAM200A,ZNF655

7 30343200 30178800 30485700 391.828 MTURN,ZNRF2,NOD1
10 31583000 31430600 31907900 389.863 ZEB1
6 10647900 10583800 10778900 387.883 GCNT2,C6orf52,PAK1IP1,TMEM14C,TMEM14B,

SYCP2L,MAK
11 123275000 123156000 123313000 386.485 -
15 64642400 64333700 65204100 385.748 DAPK2,FAM96A,SNX1,SNX22,PPIB,CSNK1G1,

KIAA0101,TRIP4,ZNF609,OAZ2,RBPMS2,PIF1,PLEKHO2
2 222560000 222523000 222690000 383.336 -
6 43620800 43398400 43687800 378.463 ABCC10,DLK2,TJAP1,LRRC73,POLR1C,YIPF3,

XPO5,POLH,GTPBP2,MAD2L1BP,RSPH9,MRPS18A
14 57643800 57603400 58047900 378.332 EXOC5,AP5M1,NAA30,C14orf105
4 33487100 33294500 34347100 377.815 -
3 188699000 188647000 188856000 373.617 TPRG1
17 46949100 46821000 47137900 371.886 ATP5G1,UBE2Z,SNF8,GIP,IGF2BP1,TTLL6,

CALCOCO2
4 172656000 172565000 172739000 369.949 GALNTL6
15 34404500 34212600 34413500 369.949 AVEN,CHRM5,EMC7,PGBD4
1 32888000 32445400 33065900 369.725 KHDRBS1,TMEM39B,KPNA6,TXLNA,CCDC28B,

IQCC,DCDC2B,TMEM234,EIF3I,FAM167B,LCK,HDAC1,
MARCKSL1,TSSK3,FAM229A,BSDC1,ZBTB8B,ZBTB8A,ZBTB8OS

22 46820900 46593300 46834700 369.511 PPARA,CDPF1,PKDREJ,TTC38,GTSE1,TRMU,CELSR1
10 93143600 93060500 93324900 368.648 HECTD2
6 14845800 14753800 14948200 367.9 -
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Table 4.5. Enriched GO categories in the European, East Asian and Modern
Human branches. We tested for ontology enrichment among the regions in the 99.5%
quantile of the 3P-CLR scores for each population branch (P < 0.05, FDR < 0.3). The
Eurasian branch did not have any category that passed these cutoffs.

Population
Branch

Raw
p-value FDR GO category

European 0.00002 0.05977 cuticle development
European 0.00007 0.096085 hydrogen peroxide catabolic process
East Asian 0.00001 0.013385 regulation of cell adhesion mediated by integrin
East Asian 0.00001 0.013385 epidermis development
East Asian 0.00014 0.14102 cell-substrate adhesion
East Asian 0.00023 0.185135 nucleosomal DNA binding
East Asian 0.0003 0.185135 nuclear chromosome

East Asian 0.00033 0.185135
RNA polymerase II core promoter proximal region sequence-specific DNA
binding transcription factor activity involved in negative regulation of
transcription

East Asian 0.00048 0.2023525 negative regulation of vitamin metabolic process
East Asian 0.00048 0.2023525 substrate adhesion-dependent cell spreading

East Asian 0.00058 0.219074444 regulation of ERK1 and ERK2 cascade

East Asian 0.00077 0.258110909 retinol binding

East Asian 0.00084 0.258110909 primary alcohol catabolic process

East Asian 0.00112 0.296474 D1 dopamine receptor binding

East Asian 0.00125 0.296474
RNA polymerase II transcription regulatory region sequence-specific DNA
binding transcription factor activity involved in negative regulation of
transcription

East Asian 0.00127 0.296474 positive regulation of protein kinase B signaling
East Asian 0.0013 0.296474 gap junction assembly
Modern
Human 0.00002 0.031153333 nuclear division

Modern
Human 0.00003 0.031153333 organelle fission

Modern
Human 0.00003 0.031153333 mitosis

Modern
Human 0.00006 0.0490675 intra-Golgi vesicle-mediated transport

Modern
Human 0.00012 0.069241429 regulation of cell cycle

Modern
Human 0.00014 0.069241429 retinoic acid-responsive element binding

Modern
Human 0.00015 0.069241429 cell cycle process

Modern
Human 0.00029 0.12784125 T cell migration

Modern
Human 0.00041 0.162306667 chromosomal part

Modern
Human 0.00055 0.198124 ’de novo’ IMP biosynthetic process

Modern
Human 0.00072 0.237017273 intracellular organelle

Modern
Human 0.00081 0.24451 SNAP receptor activity

Modern
Human 0.00113 0.294514286 ATP-dependent protein binding

Modern
Human 0.00114 0.294514286 RNA biosynthetic process
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Table 4.6. Top hits for 3P-CLR run on the ancestral branch to Eurasians and
Yoruba, using archaic humans as the outgroup and 0.25 cM windows. We show
the windows in the top 99.9% quantile of scores. Windows were merged together if the
central SNPs that define them were contiguous. Win max = Location of window with
maximum score. Win start = left-most end of left-most window for each region. Win end
= right-most end of right-most window for each region. All positions were rounded to the
nearest 100 bp. Score max = maximum score within region.

chr Win max Win start Win end Score max Genes within region

2 95724900 95561200 96793700 859.783 ZNF514,ZNF2,PROM2,KCNIP3,FAHD2A,TRIM43,GPAT2,ADRA2B,
ASTL,MAL,MRPS5

5 87054300 86463700 87101400 852.543 RASA1,CCNH
17 61538200 60910700 61557700 849.335 TANC2,CYB561,ACE
14 72207400 71649200 72283600 849.304 SIPA1L1
18 19089800 15012100 19548600 846.182 ROCK1,GREB1L,ESCO1,SNRPD1,ABHD3,MIB1
3 110675000 110513000 110932000 841.499 PVRL3
2 37990900 37917900 38024200 841.339 CDC42EP3
3 36938000 36836900 37517500 839.211 TRANK1,EPM2AIP1,MLH1,LRRFIP2,GOLGA4,C3orf35,ITGA9
7 107246000 106642000 107310000 838.948 PRKAR2B,HBP1,COG5,GPR22,DUS4L,BCAP29,SLC26A4
12 96986900 96823000 97411500 835 NEDD1
2 201056000 200639000 201340000 832.4 C2orf69,TYW5,C2orf47,SPATS2L
1 66851800 66772600 66952600 832.221 PDE4B
10 37795700 37165100 38978800 831.353 ANKRD30A,MTRNR2L7,ZNF248,ZNF25,ZNF33A,ZNF37A
2 156129000 155639000 156767000 827.839 KCNJ3
17 56516700 56379200 57404800 826.026 BZRAP1,SUPT4H1,RNF43,HSF5,MTMR4,SEPT4,C17orf47,

TEX14,RAD51C,PPM1E, TRIM37,SKA2,PRR11,SMG8,GDPD1
5 18755900 18493900 18793500 825.858 -
2 61190300 61050900 61891900 824.962 REL,PUS10,PEX13,KIAA1841,AHSA2,USP34,XPO1
22 40392200 40360300 41213400 824.52 GRAP2,FAM83F,TNRC6B,ADSL,SGSM3,MKL1,MCHR1,SLC25A17
2 99013400 98996400 99383400 821.891 CNGA3,INPP4A,COA5,UNC50,MGAT4A
4 13294400 13137000 13533100 820.222 RAB28
18 32975600 32604100 33002800 819.128 MAPRE2,ZNF397,ZSCAN30,ZNF24,ZNF396
21 35204700 34737300 35222100 818.754 IFNGR2,TMEM50B,DNAJC28,GART,SON,DONSON,CRYZL1,ITSN1
12 73048100 72740100 73160400 816.903 TRHDE
1 213511000 213150000 213563000 814.632 VASH2,ANGEL2,RPS6KC1
1 27500300 26913700 27703900 814.332 ARID1A,PIGV,ZDHHC18,SFN,GPN2,GPATCH3,NUDC,NR0B2,C1orf172,

TRNP1,FAM46B,SLC9A1,WDTC1,TMEM222,SYTL1,MAP3K6,FCN3
8 79219300 78698200 79558000 813.796 PKIA
12 116455000 116380000 116760000 809.406 MED13L
11 72857900 72416300 72912800 809.274 ARAP1,STARD10,ATG16L2,FCHSD2
4 22941400 22827300 23208900 808.696 -
12 79783400 79748800 80435300 804.117 SYT1,PAWR,PPP1R12A
13 35534800 35429700 36097500 801.815 NBEA,MAB21L1
4 146141000 145514000 146214000 799.686 HHIP,ANAPC10,ABCE1,OTUD4
16 61429300 61124400 61458700 798.318 -
4 46530000 46360000 46881700 797.876 GABRA2,COX7B2
2 133038000 132930000 133117000 796.277 -
17 28980100 28549700 29407200 796.136 SLC6A4,BLMH,TMIGD1,CPD,GOSR1,TBC1D29,CRLF3,ATAD5,

TEFM,ADAP2,RNF135
5 127332000 127156000 127607000 789.339 SLC12A2,FBN2
5 27208300 27072700 27352900 788.924 CDH9
7 122294000 121973000 122559000 787.777 CADPS2,RNF133,RNF148
10 38218900 37175000 43224100 786.651 ANKRD30A,MTRNR2L7,ZNF248,ZNF25,ZNF33A,ZNF37A,ZNF33B
7 23100200 22888500 23114300 785.919 FAM126A
1 228050000 227587000 228112000 785.53 SNAP47,JMJD4,PRSS38,WNT9A
4 74891400 74846600 75086500 781.895 PF4,PPBP,CXCL5,CXCL3,CXCL2,MTHFD2L
22 34588400 34516300 34811800 781.522 -
2 63899700 62767900 64395700 778.951 EHBP1,OTX1,WDPCP,MDH1,UGP2,VPS54,PELI1
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6 136666000 136527000 136967000 778.233 MTFR2,BCLAF1,MAP7,MAP3K5
16 75738400 75522400 75968000 778.171 CHST6,CHST5,TMEM231,GABARAPL2,ADAT1,KARS,TERF2IP
14 63446800 63288600 63597500 776.567 KCNH5
6 117528000 117080000 117579000 775.402 FAM162B,GPRC6A,RFX6
11 30206400 29986200 30443900 775.051 KCNA4,FSHB,ARL14EP,MPPED2
12 67533400 67436200 67639400 772.731 -
20 35460500 35049400 35710900 772.319 DLGAP4,MYL9,TGIF2,TGIF2-C20orf24,C20orf24,SLA2,NDRG3,

DSN1,SOGA1,TLDC2,SAMHD1,RBL1
13 80131900 79801800 80268900 771.976 RBM26,NDFIP2
11 121408000 121310000 121493000 771.669 SORL1
4 105305000 104931000 105454000 770.437 CXXC4
5 93218900 92677500 93647600 769.192 NR2F1,FAM172A,POU5F2,KIAA0825
15 49975000 49247500 50040200 768.997 SECISBP2L,COPS2,GALK2,FAM227B,FGF7,DTWD1,SHC4
1 243669000 243505000 244087000 767.303 SDCCAG8,AKT3
21 36822500 36691000 36883300 762.715 RUNX1
1 154133000 153745000 154280000 762.43 INTS3,SLC27A3,GATAD2B,DENND4B,CRTC2,SLC39A1,

CREB3L4,JTB,RAB13,RPS27,NUP210L,TPM3,C1orf189,
C1orf43,UBAP2L,HAX1

7 144655000 144465000 144700000 762.429 TPK1
12 69177500 68890300 69290800 762.399 RAP1B,NUP107,SLC35E3,MDM2,CPM
2 145116000 144689000 145219000 757.235 GTDC1,ZEB2
1 176195000 175890000 176437000 755.81 RFWD2,PAPPA2
7 152155000 151699000 152199000 754.754 GALNTL5,GALNT11,KMT2C
7 116575000 116324000 116788000 754.606 MET,CAPZA2,ST7
14 29571400 29264600 29691100 754.435 -
1 226323000 226140000 226575000 754.04 SDE2,H3F3A,ACBD3,MIXL1,LIN9,PARP1
7 73051800 72317200 73134700 752.285 POM121,TRIM74,NSUN5,TRIM50,FKBP6,FZD9,BAZ1B,BCL7B,

TBL2,MLXIPL,VPS37D,DNAJC30,WBSCR22,STX1A
5 89578700 89408400 89654700 751.498 -
8 22999100 22926500 23113900 749.992 TNFRSF10B,TNFRSF10C,TNFRSF10D,TNFRSF10A,CHMP7
15 75883900 75462000 76038100 749.953 C15orf39,GOLGA6C,GOLGA6D,COMMD4,NEIL1,MAN2C1,

SIN3A,PTPN9,SNUPN,IMP3,SNX33,CSPG4,ODF3L1
7 98978400 98719400 99376100 749.35 ZSCAN25,CYP3A5,CYP3A7,CYP3A4,SMURF1,KPNA7,ARPC1A,

ARPC1B,PDAP1,BUD31,PTCD1,ATP5J2-PTCD1,CPSF4,ATP5J2,
ZNF789,ZNF394,ZKSCAN5,FAM200A,ZNF655

1 96340100 96155200 96608300 748.253 -
2 73508400 73482800 74054300 745.963 FBXO41,EGR4,ALMS1,NAT8,TPRKB,DUSP11,C2orf78
1 150868000 150224000 151137000 745.222 CA14,APH1A,C1orf54,C1orf51,MRPS21,PRPF3,RPRD2,TARS2,

ECM1,ADAMTSL4,MCL1,ENSA,GOLPH3L,HORMAD1,CTSS,
CTSK,ARNT,SETDB1,CERS2,ANXA9,FAM63A,PRUNE,BNIPL,
C1orf56,CDC42SE1,MLLT11,GABPB2,SEMA6C,TNFAIP8L2,
SCNM1,LYSMD1

3 99877600 99374500 100207000 744.933 COL8A1,CMSS1,FILIP1L,TBC1D23,NIT2,TOMM70A,LNP1
12 56244900 56086600 56360700 743.698 PMEL,CDK2,ITGA7,BLOC1S1,RDH5,CD63,GDF11,SARNP,

ORMDL2,DNAJC14,MMP19,WIBG,DGKA
3 44843200 44139200 45128900 743.157 TOPAZ1,TCAIM,ZNF445,ZKSCAN7,ZNF660,ZNF197,ZNF35,

ZNF502,ZNF501,KIAA1143,KIF15,TMEM42,TGM4,ZDHHC3,
EXOSC7,CLEC3B,CDCP1

12 102922000 102388000 102964000 741.338 DRAM1,CCDC53,NUP37,PARPBP,PMCH,IGF1
1 21114300 21012100 21636800 740.553 KIF17,SH2D5,HP1BP3,EIF4G3,ECE1
11 108770000 108492000 108830000 740.463 DDX10
3 51678700 50188500 51919700 740.272 SEMA3F,GNAT1,GNAI2,LSMEM2,IFRD2,HYAL3,NAT6,HYAL1,

HYAL2,TUSC2,RASSF1,ZMYND10,NPRL2,CYB561D2,TMEM115,
CACNA2D2,C3orf18,HEMK1,CISH,MAPKAPK3,DOCK3,MANF,
RBM15B,RAD54L2,TEX264,GRM2,IQCF6,IQCF3,IQCF2,IQCF5

11 64581900 64293300 64589300 738.648 RASGRP2,PYGM,SF1,MAP4K2,MEN1,SLC22A11,SLC22A12,NRXN2
9 126023000 125542000 126076000 738.221 ZBTB26,RABGAP1,GPR21,STRBP,OR5C1,PDCL,OR1K1,RC3H2,ZBTB6
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Table 4.7. Top hits for 3P-CLR run on the ancestral branch to Eurasians and
Yoruba, using archaic humans as the outgroup and 1 cM windows. We show the
windows in the top 99.9% quantile of scores. Windows were merged together if the central
SNPs that define them were contiguous. Win max = Location of window with maximum
score. Win start = left-most end of left-most window for each region. Win end =
right-most end of right-most window for each region. All positions were rounded to the
nearest 100 bp. Score max = maximum score within region.

chr Win max Win start Win end Score max Genes within region

14 71698500 71349200 72490300 1210.24 PCNX,SIPA1L1,RGS6
4 145534000 145023000 146522000 1157.25 GYPB,GYPA,HHIP,ANAPC10,ABCE1,OTUD4,SMAD1
2 156103000 155391000 156992000 1100.35 KCNJ3
5 93425300 92415600 94128600 1065.66 NR2F1,FAM172A,POU5F2,KIAA0825,ANKRD32,MCTP1
7 106717000 106401000 107461000 1049.82 PIK3CG,PRKAR2B,HBP1,COG5,GPR22,DUS4L,BCAP29,

SLC26A4,CBLL1,SLC26A3
7 151831000 151651000 152286000 1028.93 GALNTL5,GALNT11,KMT2C
2 145008000 144393000 145305000 1027.28 ARHGAP15,GTDC1,ZEB2
19 16578500 16387600 16994000 991.083 KLF2,EPS15L1,CALR3,C19orf44,CHERP,SLC35E1,MED26,

SMIM7,TMEM38A,NWD1,SIN3B
2 37996300 37730400 38054600 989.901 CDC42EP3
2 63467700 62639800 64698300 989.891 TMEM17,EHBP1,OTX1,WDPCP,MDH1,UGP2,VPS54,

PELI1,LGALSL
10 38074100 36651400 44014800 988.663 ANKRD30A,MTRNR2L7,ZNF248,ZNF25,ZNF33A,ZNF37A,

ZNF33B,BMS1,RET,CSGALNACT2,RASGEF1A,FXYD4,
HNRNPF

1 27203100 26703800 27886000 988.598 LIN28A,DHDDS,HMGN2,RPS6KA1,ARID1A,PIGV,
ZDHHC18,SFN,GPN2,GPATCH3,NUDC,NR0B2,C1orf172,
TRNP1,FAM46B,SLC9A1,WDTC1,TMEM222,SYTL1,
MAP3K6,FCN3,CD164L2,GPR3,WASF2,AHDC1

12 102906000 102308000 103125000 966.591 DRAM1,CCDC53,NUP37,PARPBP,PMCH,IGF1
2 133034000 132628000 133270000 941.856 GPR39
15 43507200 42284300 45101400 938.129 PLA2G4E,PLA2G4D,PLA2G4F,VPS39,TMEM87A,GANC,

CAPN3,ZNF106,SNAP23,LRRC57,HAUS2,STARD9,CDAN1,
TTBK2,UBR1,EPB42,TMEM62,CCNDBP1,TGM5,TGM7,
LCMT2,ADAL,ZSCAN29,TUBGCP4,TP53BP1,MAP1A,
PPIP5K1,CKMT1B,STRC,CATSPER2,CKMT1A,PDIA3,
ELL3,SERF2,SERINC4,HYPK,MFAP1,WDR76,FRMD5,
CASC4,CTDSPL2,EIF3J,SPG11,PATL2,B2M,TRIM69

2 73848400 73178500 74194400 934.997 SFXN5,RAB11FIP5,NOTO,SMYD5,PRADC1,CCT7,FBXO41,
EGR4,ALMS1,NAT8,TPRKB,DUSP11,C2orf78,STAMBP,
ACTG2,DGUOK

5 54861800 54193000 55422100 927.745 ESM1,GZMK,GZMA,CDC20B,GPX8,MCIDAS,CCNO,DHX29,
SKIV2L2,PPAP2A,SLC38A9,DDX4,IL31RA,IL6ST,ANKRD55

3 52356200 50184000 53602300 925.895 SEMA3F,GNAT1,GNAI2,LSMEM2,IFRD2,HYAL3,
NAT6,HYAL1,HYAL2,TUSC2,RASSF1,ZMYND10,NPRL2,
CYB561D2,TMEM115,CACNA2D2,C3orf18,HEMK1,CISH,
MAPKAPK3,DOCK3,MANF,RBM15B,RAD54L2,TEX264,
GRM2,IQCF6,IQCF3,IQCF2,IQCF5,IQCF1,RRP9,PARP3,
GPR62,PCBP4,ABHD14B,ABHD14A,ACY1,RPL29,DUSP7,
POC1A,ALAS1,TLR9,TWF2,PPM1M,WDR82,GLYCTK,
DNAH1,BAP1,PHF7,SEMA3G,TNNC1,NISCH,STAB1,
NT5DC2,SMIM4,PBRM1,GNL3,GLT8D1,SPCS1,NEK4,ITIH1,
ITIH3,ITIH4,MUSTN1,TMEM110-MUSTN1,TMEM110,
SFMBT1,RFT1,PRKCD,TKT,CACNA1D

13 96364900 96038900 97500100 923.257 CLDN10,DZIP1,DNAJC3,UGGT2,HS6ST3
18 19248800 14517500 19962400 920.641 POTEC,ANKRD30B,ROCK1,GREB1L,ESCO1,SNRPD1,

ABHD3,MIB1,GATA6
7 116587000 116214000 117339000 918.567 MET,CAPZA2,ST7,WNT2,ASZ1,CFTR



CHAPTER 4. TESTING FOR ANCIENT SELECTION USING CROSS-POPULATION
ALLELE FREQUENCY DIFFERENTIATION 172

14 29544300 29031800 29913200 918.292 FOXG1
7 94710700 93964000 95170200 910.235 COL1A2,CASD1,SGCE,PEG10,PPP1R9A,PON1,PON3,PON2,

ASB4
12 79783400 79231600 80435300 906.28 SYT1,PAWR,PPP1R12A
19 19290700 18936200 19885600 905.94 UPF1,CERS1,GDF1,COPE,DDX49,HOMER3,SUGP2,ARMC6,

SLC25A42,TMEM161A,MEF2BNB-MEF2B,MEF2B,MEF2BNB,
RFXANK,NR2C2AP,NCAN,HAPLN4,TM6SF2,SUGP1,MAU2,
GATAD2A,TSSK6,NDUFA13,YJEFN3,CILP2,PBX4,LPAR2,
GMIP,ATP13A1,ZNF101,ZNF14

11 72551000 72182800 72952400 902.837 PDE2A,ARAP1,STARD10,ATG16L2,FCHSD2,P2RY2
14 31685700 31255700 32384600 895.417 COCH,STRN3,AP4S1,HECTD1,DTD2,NUBPL
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Table 4.8. Overlap between GWAS catalog and catalog of modern human-specific high-frequency
changes in the top modern human selected regions (0.25 cM scan). Chr = chromosome. Pos = position
(hg19). ID = SNP rs ID. Hum = Present-day human major allele. Anc = Human-Chimpanzee ancestor allele. Arch
= Archaic human allele states (Altai Neanderthal, Denisova) where H=human-like allele and A=ancestral allele. Freq
= present-day human derived frequency. Cons = consequence. C = C-score. PubMed = PubMed article ID for
GWAS study.

Chr Pos Hum Anc Arch Freq Gene Cons C GWAS trait

1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 HDL cholesterol
1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 LDL cholesterol
1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 Triglycerides
1 151009719 A G A/A,A/A 0.92 BNIPL intron 7.111 DNA methylation, in blood cell lines
1 244044810 A C A/A,A/A 0.94 NA intergenic 2.376 Response to taxane treatment (placlitaxel)
2 64279606 C T A/A,A/A 0.92 NA intergenic 8.324 Suicide attempts in bipolar disorder
2 64279606 C T A/A,A/A 0.92 NA intergenic 8.324 Urinary metabolites
2 144783214 T C A/A,A/A 0.93 GTDC1 intron 4.096 Body mass index
2 144783214 T C A/A,A/A 0.93 GTDC1 intron 4.096 Body mass index
2 145213638 G C A/A,H/H 0.92 ZEB2 intron,nc 12.16 Renal cell carcinoma
2 156506516 C T A/A,A/A 0.92 NA intergenic 2.077 Alcohol consumption
3 51142359 T C A/A,A/A 0.91 DOCK3 intron 2.344 Multiple complex diseases
3 51824167 G C A/A,A/A 0.94 NA intergenic 2.285 Response to taxane treatment (placlitaxel)
4 13325741 G C A/A,A/A 0.91 NA intergenic 0.56 Obesity (extreme)
4 13328373 T C A/A,A/A 0.92 NA intergenic 3.609 Obesity (extreme)
4 13330095 C T A/A,A/A 0.92 NA intergenic 0.303 Multiple complex diseases
4 13330095 C T A/A,A/A 0.92 NA intergenic 0.303 Obesity (extreme)
4 13333413 A G A/A,A/A 0.92 HSP90AB2P upstream 4.041 Obesity (extreme)
4 13338465 C T A/A,A/A 0.92 HSP90AB2P intron,nc 10.31 Obesity (extreme)
4 13340249 T C A/A,A/A 0.92 HSP90AB2P non coding exon,nc 0.873 Obesity (extreme)
4 13346602 C T A/A,A/A 0.92 NA intergenic 0.22 Obesity (extreme)
4 13350973 T C A/A,A/A 0.92 NA regulatory 3.346 Obesity (extreme)
4 13356393 G A A/A,A/A 0.94 NA intergenic 1.347 Obesity (extreme)
4 13357274 A G A/A,A/A 0.94 NA intergenic 20 Obesity (extreme)
4 13360622 T A A/A,A/A 0.93 RAB28 downstream 4.509 Obesity (extreme)
4 13363958 A G A/A,A/A 0.97 RAB28 intron 1.536 Obesity (extreme)
4 13363974 C T A/A,A/A 0.97 RAB28 intron 0.363 Obesity (extreme)
4 13366481 C T A/A,A/A 0.93 RAB28 intron 3.083 Obesity (extreme)
4 13370308 T C A/A,A/A 0.93 RAB28 intron 14.23 Obesity (extreme)
4 13373583 C T A/A,A/A 0.97 RAB28 intron 0.402 Obesity (extreme)
4 13374462 G A A/A,A/A 0.93 RAB28 intron 0.826 Obesity (extreme)
4 13393897 A T A/A,A/A 0.96 RAB28 intron 2.579 Obesity (extreme)
4 13403855 G A A/A,A/A 0.94 RAB28 intron 0.842 Multiple complex diseases
4 13403855 G A A/A,A/A 0.94 RAB28 intron 0.842 Obesity (extreme)
4 13403998 G A A/A,A/A 0.93 RAB28 intron 1.179 Obesity (extreme)
4 13404130 G T A/A,A/A 0.94 RAB28 intron 0.385 Obesity (extreme)
4 13404717 A C A/A,A/A 0.93 RAB28 intron 1.116 Obesity (extreme)
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4 13440031 C G A/A,A/A 0.93 RAB28 intron 0.138 Obesity (extreme)
4 13440271 C T A/A,A/A 0.94 RAB28 intron 0.54 Obesity (extreme)
4 13449532 A C A/A,A/A 0.94 RAB28 intron 0.905 Obesity (extreme)
4 13452022 C A A/A,A/A 0.91 RAB28 intron 3.789 Obesity (extreme)
4 13463991 T C A/A,A/A 0.93 RAB28 intron 3.377 Obesity (extreme)
4 13465710 T A A/A,A/A 0.93 RAB28 intron 1.709 Obesity (extreme)
4 23095293 C T A/A,A/A 0.96 NA intergenic 0.797 Multiple complex diseases
5 89540468 C T A/A,A/A 0.97 RP11-61G23.1 intron,nc 3.627 Multiple complex diseases
6 136947540 A G A/A,A/A 0.93 MAP3K5 intron 0.586 Blood pressure, CVD RF and other traits
7 72746648 C T A/A,A/A 0.97 TRIM50 upstream 1.88 Immune reponse to smallpox
7 106720932 G A A/A,A/A 0.93 NA regulatory 3.447 Multiple complex diseases
7 116668662 C T A/A,A/A 0.93 ST7-OT4 intron,nc 8.279 Response to gemcitabine or arabinosylcytosin
7 116668662 C T A/A,A/A 0.93 ST7-OT4 intron,nc 8.279 Response to gemcitabine or arabinosylcytosin
10 37579117 A C A/A,A/A 0.94 ATP8A2P1 intron,nc 2.346 Multiple complex diseases
10 37579117 A C A/A,A/A 0.94 ATP8A2P1 intron,nc 2.346 Multiple complex diseases
12 56308562 G T A/A,A/A 0.96 NA regulatory 1.192 Multiple complex diseases
12 72889122 A T A/A,A/A 0.93 TRHDE intron 4.133 Multiple complex diseases
13 35811439 C T A/A,A/A 0.93 NBEA intron 3.514 Body mass index
16 61340362 G C A/A,A/A 0.93 NA intergenic 4.37 Multiple complex diseases
22 34557399 T G A/A,A/A 0.93 LL22NC03-86D4.1 intron,nc 1.126 HIV-1 viral setpoint
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Table 4.9. Overlap between GWAS catalog and catalog of modern human-specific high-frequency
changes in the top modern human selected regions (1 cM scan). Chr = chromosome. Pos = position (hg19).
ID = SNP rs ID. Hum = Present-day human major allele. Anc = Human-Chimpanzee ancestor allele. Arch =
Archaic human allele states (Altai Neanderthal, Denisova) where H=human-like allele and A=ancestral allele. Freq =
present-day human derived frequency. Cons = consequence. C = C-score. PubMed = PubMed article ID for GWAS
study.

Chr Pos Hum Anc Arch Freq Gene Cons C GWAS trait

1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 HDL cholesterol
1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 LDL cholesterol
1 27138393 C T A/A,A/A 0.95 Metazoa SRP upstream 4.193 Triglycerides
2 64279606 C T A/A,A/A 0.92 NA intergenic 8.324 Suicide attempts in bipolar disorder
2 64279606 C T A/A,A/A 0.92 NA intergenic 8.324 Urinary metabolites
2 144783214 T C A/A,A/A 0.93 GTDC1 intron 4.096 Body mass index
2 144783214 T C A/A,A/A 0.93 GTDC1 intron 4.096 Body mass index
2 145213638 G C A/A,H/H 0.92 ZEB2 intron,nc 12.16 Renal cell carcinoma
2 156506516 C T A/A,A/A 0.92 NA intergenic 2.077 Alcohol consumption
3 51142359 T C A/A,A/A 0.91 DOCK3 intron 2.344 Multiple complex diseases
3 51824167 G C A/A,A/A 0.94 NA intergenic 2.285 Response to taxane treatment (placlitaxel)
3 52506426 T C A/A,A/A 0.96 NA regulatory 0.316 Waist-hip ratio
5 54558972 G A A/A,A/A 0.92 DHX29 intron 5.673 Alcohol and nicotine co-dependence
7 106720932 G A A/A,A/A 0.93 NA regulatory 3.447 Multiple complex diseases
7 116668662 C T A/A,A/A 0.93 ST7-OT4 intron,nc 8.279 Response to gemcitabine or arabinosylcytosin
7 116668662 C T A/A,A/A 0.93 ST7-OT4 intron,nc 8.279 Response to gemcitabine or arabinosylcytosin
10 37579117 A C A/A,A/A 0.94 ATP8A2P1 intron,nc 2.346 Multiple complex diseases
12 79387804 C T A/A,A/A 0.92 RP11-390N6.1 intron,nc 2.716 Response to taxane treatment (placlitaxel)
15 42527218 C A A/A,A/A 0.91 TMEM87A intron 10.12 Multiple complex diseases
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4.8 Figures

Figure 4.1. Schematic tree of selective sweeps detected by XP-CLR and
3P-CLR. While XP-CLR can only use two populations (an outgroup and a test) to detect
selection (panel A), 3P-CLR can detect selection in the ancestral branch of two populations
(3P-CLR(Int), panel B) or on the branches specific to each population (3P-CLR(A) and
3P-CLR(B), panels C and D, respectively). The greek letters denote the known drift times
for each branch of the population tree.
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Figure 4.2. ROC curves for performance of 3P-CLR(Int), 3P-CLR(A) and two
variants of XP-CLR in detecting selective sweeps that occurred before the split
of two populations a and b, under different demographic models. In this case, the
outgroup panel from population c contained 100 haploid genomes. The two sister
population panels (from a and b) also have 100 haploid genomes each.
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Figure 4.3. Root-mean squared error for the location of sweeps inferred by
3P-CLR(Int), 3P-CLR(A) and two variants of XP-CLR under different
demographic scenarios, when the sweeps occurred before the split of
populations a and b. In this case, the outgroup panel from population c contained 100
haploid genomes and the two sister population panels (from a and b) have 100 haploid
genomes each.



CHAPTER 4. TESTING FOR ANCIENT SELECTION USING CROSS-POPULATION
ALLELE FREQUENCY DIFFERENTIATION 179

Figure 4.4. ROC curves for performance of 3P-CLR(Int), 3P-CLR(A) and two
variants of XP-CLR in detecting selective sweeps that occurred before the split
of two populations a and b, under two demographic models where the
population size is extremely small (Ne = 1,000).
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Figure 4.5. Performance of 3P-CLR(Int) for a range of selection coefficients.
We used the demographic history from model B (Table 4.1) but extended the most ancient
split time by 4,000 generations. The reason for this is that we wanted the internal branch
to be long enough for it to be easy to sample simulations in which the beneficial allele fixed
before the split of populations a and b, even for weak selection coefficients.
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Figure 4.6. ROC curves for performance of 3P-CLR(Int), 3P-CLR(A) and two
variants of XP-CLR in detecting selective sweeps that occurred before the split
of two populations a and b, under different demographic models. In this case, the
outgroup panel from population c contained 10 haploid genomes. The two sister population
panels (from a and b) have 100 haploid genomes each.
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Figure 4.7. Root-mean squared error for the location of the sweep inferred by
3P-CLR(Int), 3P-CLR(A) and two variants of XP-CLR under different
demographic scenarios, when the sweeps occurred before the split of
populations a and b. the outgroup panel from population c contained 10 haploid genomes
and the two sister population panels (from a and b) have 100 haploid genomes each.
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Figure 4.8. For demographic scenarios with very ancient split times, it is best
to use sites segregating at intermediate frequencies in the outgroup. We
compared the performance of 3P-CLR(Int) in a demographic scenario with very ancient
split times (Model E) under two conditions: including all SNPs that are segregating in the
outgroup, and only including SNPs segregating at intermediate frequencies in the outgroup.
In both cases, the number of sampled sequences from the outgroup population was 100.
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Figure 4.9. 3P-CLR(Int) is tailored to detect selective events that happened
before the split tab, so it is largely insensitive to sweeps that occurred after the
split. ROC curves show performance of 3P-CLR(Int) and two variants of XP-CLR for
models where selection occurred in population a after its split from b.
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Figure 4.10. Root-mean squared error for the location of the sweep inferred by
3P-CLR(Int), 3P-CLR(A) and two variants of XP-CLR under different
demographic scenarios, when the sweeps occurred in the terminal population
branch leading to population a, after the split of populations a and b. In this
case, the outgroup panel from population c contained 100 haploid genomes and the two
sister population panels (from a and b) have 100 haploid genomes each.



CHAPTER 4. TESTING FOR ANCIENT SELECTION USING CROSS-POPULATION
ALLELE FREQUENCY DIFFERENTIATION 186

Figure 4.11. ROC curves for performance of 3P-CLR(Int), 3P-CLR(A) and
3P-CLR(B) when the selective events occur in different branches of the
3-population tree. Upper-left panel: Selection in the ancestral population of populations
a and b. This is the type of events that 3P-CLR(Int) is designed to detect and, therefore,
3P-CLR(Int) is the most sensitive test in this case, though 3P-CLR(A) and 3P-CLR(B)
show some sensitivity to these events too. Upper-right panel: Selection exclusive to
population a. This is the type of events that 3P-CLR(A) is designed to detect, and it is
therefore the best-performing statistic in that case, while 3P-CLR(B) and 3P-CLR(Int) are
insensitive to selection. Lower-left panel: Selection in the outgroup population. In this
case, none of the statistics seem very sensitive to the event, though 3P-CLR(Int) shows
better relative sensitivity than the other two statistics. Lower-right panel: Independent
selective events in populations a and b at the same locus. Here, both 3P-CLR(A) and
3P-CLR(B) perform best. In all cases, we used the split times and population sizes
specified for Model C.
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Figure 4.12. A. Three-population tree separating Europeans, East Asians and
Yoruba. B. Three-population tree separating Eurasians, Yoruba and archaic
humans (Neanderthal+Denisova).
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Figure 4.13. 3P-CLR scan of Europeans (upper panel), East Asians (middle
panel) and the ancestral population to Europeans and East Asians (lower
panel), using Yoruba as the outgroup in all 3 cases. The red line denotes the 99.9%
quantile cutoff.
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Figure 4.14. 3P-CLR scan of Europeans (black), East Asians (blue) and the
ancestral Eurasian population (red) reveals regions under selection in different
branches of the population tree. To make a fair comparison, all 3P-CLR scores were
standardized by substracting the chromosome-wide mean from each window and dividing
the resulting score by the chromosome-wide standard deviation. A) The region containing
EDAR is a candidate for selection in the East Asian population. B) The region containing
genes SPAG6 and BMI1 is a candidate for selection in the ancestral population of
Europeans and East Asians. The image was built using the GenomeGraphs package in
Bioconductor.
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Figure 4.15. ROC curves for 3P-CLR run to detect selective events in the
modern human ancestral branch, using simulations incorporating the history of
population size changes and Neanderthal-to-Eurasian admixture inferred in
Prüfer et al. (2014).
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Figure 4.16. 3P-CLR scan of the ancestral branch to Yoruba and Eurasians,
using the Denisovan and Neanderthal genomes as the outgroup. The red line
denotes the 99.9% quantile cutoff. The top panel shows a run using 0.25 cM windows, each
containing 100 SNPs, and sampling a candidate beneficial SNP every 10 SNPs. The
bottom panels shows a run using 1 cM windows, each containing 200 SNPs, and sampling a
candidate beneficial SNP every 40 SNPs.
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Figure 4.17. Comparison of 3P-CLR on the modern human ancestral branch
under different window sizes and central SNP spacing. The red density is the
density of standardized scores for 3P-CLR run using 0.25 cM windows, 100 SNPs per
window and a spacing of 10 SNPs between each central SNP. The blue dashed density is
the density of standardized scores for 3P-CLR run using 1 cM windows, 200 SNPs per
window and a spacing of 40 SNPs between each central SNP.
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Figure 4.18. Two of the strongest candidates for selection in the modern
human lineage, after the split from Neanderthal and Denisova. We show scores
from the 1 cM scan, but the signals persist in the 0.25 cM scan. To make a fair
comparison, all 3P-CLR scores were standardized by substracting the chromosome-wide
mean from each window and dividing the resulting score by the chromosome-wide standard
deviation. A) The region containing SIPA1L1. B) The region containing ANAPC10. The
image was built using the GenomeGraphs package in Bioconductor.
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Figure 4.19. ADSL is a candidate for selection in the modern human lineage,
after the split from Neanderthal and Denisova. A) One of the top-scoring regions
when running 3P-CLR (0.25 cM windows) on the modern human lineage contains genes
TNRC6B, ADSL, MKL1, MCHR1, SGSM3 and GRAP2. The most disruptive
nonsynonymous modern-human-specific change in the entire list of top regions is in an
exon of ADSL and is fixed derived in all present-day humans but ancestral in archaic
humans. It is highly conserved across tetrapods and lies only 3 residues away from the
most common mutation leading to severe adenylosuccinase deficiency. B) The ADSL gene
codes for a tetrameric protein. The mutation is in the C-terminal domain of each
tetrameric unit (red arrows), which are near the active sites (light blue arrows). Scores in
panel A were standardized using the chromosome-wide mean and standard deviation.
Vertebrate alignments were obtained from the UCSC genome browser (Vertebrate Multiz
Alignment and Conservation track) and the image was built using the GenomeGraphs
package in Bioconductor and Cn3D.
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Figure 4.20. Genome-wide densities of each of the 3P-CLR scores described in
this work. The distributions of scores testing for recent selection (Europeans and East
Asians) have much longer tails than the distributions of scores testing for more ancient
selection (Modern Humans and Eurasians). All scores were computed using 0.25 cM
windows and were then standardized using their genome-wide means and standard
deviations.
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Figure 4.21. Distribution of 3P-CLR(Int) and 3P-CLR(A) scores under
different demographic histories. We combined all scores obtained from 100 neutral
simulations and 100 simulations with a selective sweep under different demographic and
selection regimes. We then plotted the densities of the resulting scores. Top panel: Model
A; Middle panel: Model C; Bottom panel: Model I. See Table 4.1 for details about each
model.
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5. Conclusion

The methods in this thesis are meant to serve in the advancement of paleogenomics to-
wards a more rigorously quantitative field. The first method is geared as a first-pass analysis
tool for researchers who have just sequenced and mapped an ancient hominin genome. We
have implemented it in an easy-to-use C++ program that is freely downloadable and has a
well-documented online manual. The other two sets of methods are meant for downstream
analyses, especifically focusing on the detection of selected loci using ancient human data.
These two are also applicable to non-human and non-ancient DNA data, in cases when
biologists may be interested in detecting ancient selective events or loci under adaptive in-
trogression in other organisms.

While distinct in many respects, the three methods share some similiarities. For example,
the first and third methods heavily rely on diffusion theory and its approximations. In order
to infer the demographic parameters, the contamination method uses either an exact formula
for a multi-population site frequency spectrum [47] obtained via a Wright-Fisher diffusion
equation, or a numerical approximation to such a formula (in the case of the three-population
model) [49]. The third method uses an approximation to the Wright-Fisher diffusion dynam-
ics which assumes that the variance in allele frequencies stays constant accross generations
[154], which results in a Normal distribution (in the case of neutrality) or a mixture of two
Normals (in the case of linked selection) [147].

Additionally, the second and third methods use previously inferred demographic parame-
ters to better model the targeted selective events. The third method relies on a pre-computed
population tree, and assumes no admixture among the populations of this tree. The second
method incorporates admixture and requires a pre-computed admixture graph to be able to
distinguish the outgroup, the source and the target of introgression, but relies on the use of
summary statistics to distinguish selective events under different conditions.

All three of the methods could be improved by the incorporation of more complex mod-
els into their inference framework. For example, one could foresee developing a composite
likelihood method like 3P-CLR that also allows for adaptive introgression between popu-
lations. Additionally, one could also expand DICE to infer additional parameters beyond
admixture rates and drift times, like migration rates, bottlenecks and rates of population
growth. As ancient DNA sequences were sampled in the past, they tend to display what
is known as “branch shortening” - essentially missing mutations relative to present-day se-
quences. This phenomenon produces shorter branches when building phylogenetic trees with
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ancient genomes [2, 16]. In the future, it may also be possible to co-estimate the amount of
branch shortening of a fossil, along with contamination and other demographic parameters.
This may allow for the dating of fossils sampled beyond the temporal resolution of traditional
dating methods - like radiocarbon dating.

The ongoing explosion of data in the field of paleogenomics will bring about many chal-
lenges for those tasked with interpreting and analyzing it. As the field grows, it will become
imperative to use quantitative tools to extract meaningful historical and biological patterns
from ancient genomes. The approaches presented in this thesis are largely based on previ-
ously developed population genetic and statistical theory. They should serve as a springboard
for these quantitative approaches to become accessible and useful to the more empirically-
driven field of ancient DNA. Thus, with a careful combination of theory and data, the path
towards new insights about our evolutionary past will become ever easier to tread.
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A. Appendix: Genotype probabilities
conditional on a demography

Below we derive formulas 2.7, 2.8 and 2.9. Recall that we are interested in calculating the
conditional probabilities P [i|Ω,O] = P [i|y, τC , τA] for all three possibilities for the genotype
in the ancient individual: i = 0, 1 or 2. These can be obtained from the definition of
conditional probability. Let fDDy be the joint probability that a site has frequency y (0 <
y < 1) in the contaminant panel and is homozygous for the derived allele in the ancient
individual. Let fDAy be the joint probability that a site has frequency y in the contaminant
panel and is heterozygous in the ancient individual. Finally, let fAAy be the joint probability
that a site has frequency y in the anchor panel and is homozygous for the ancient allele in
the ancient individual. Then:

P [ i = 0 | y, τC , τA ] =
fAAy
fy

=
fAAy

fAAy + fDAy + fDDy

(A.1)

P [ i = 1 | y, τC , τA ] =
fDAy

fy
=

fDAy

fAAy + fDAy + fDDy

(A.2)

P [ i = 2 | y, τC , τA ] =
fDDy

fy
=

fDDy

fAAy + fDAy + fDDy

(A.3)

In the above expressions, the functions f depend on τC and τA, but we omit this con-
ditioning for ease of notation. As can be seen, all we need to find is the joint probabilities
fAAy , fDAy and fDDy . Here is where diffusion theory comes into play. Let φ(y, τ |x, 0) be the
Kimura solution to the neutral forward diffusion equation in the absence of mutation [229],
given a frequency x at time 0 and an elapsed drift time τ :

φ(y, τ |x, 0) = 4x(1− x)
∞∑
h=1

2j + 1

j(j + 1)
C

3/2
h−1(1− 2x)C

3/2
h−1(1− 2y)e−j(j+1)τ/2 (A.4)

Here, x is the unknown population frequency of the derived allele in the ancestral popu-
lation and C(3/2)

h−1 (•) is the Gegenbauer polynomial of order h-1 [230].
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Assuming the ancestral population follows an equilibrium frequency distribution g(x) =
θ/x, we can write fDDy as follows:

fDDy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

z2φ(z, τA|x, 0)dz

)
dx (A.5)

where z is the unknown population frequency of a derived allele in the population to
which the ancient individual belongs.

The expression in parentheses is the second moment of the transition density and its
solution is known [144]: ∫ 1

0

z2φ(z, τA|x, 0)dz = x− x(1− x)e−τA (A.6)

This results in:

fDDy = θ

∫ 1

0

φ(y, τC |x, 0)[1− (1− x)e−τA ]dx (A.7)

fDDy = θ

[∫ 1

0

φ(y, τC |x, 0)dx− e−τA
∫ 1

0

φ(y, τC |x, 0)dx+ e−τA
∫ 1

0

x φ(y, τC |x, 0)dx

]
(A.8)

The integral of the first two terms of the sum was solved in [47]:∫ 1

0

φ(y, τC |x, 0)dx = e−τC (A.9)

The third term of the sum can be solved by noting that, though the integrand is an
infinite sum (i.e. formula A.4 multiplied by x), only the integrals of the first two terms of
that infinite sum are not equal to 0. This can be seen by integrating the parts of the terms
of that infinite sum that depend on x:

∫ 1

0

x2(1− x)C
(3/2)
h−1 (1− 2x)dx =


1/12 h = 1

−1/20 h = 2

0 h ≥ 3

Therefore, after integrating the first two terms of the infinite sum, we obtain:∫ 1

0

xφ(y, τC |x, 0)dx =
1

2
e−τC +

(
y − 1

2

)
e−3τC (A.10)

So we finally arrive at:

fDDy = θ

[
e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.11)



APPENDIX A. APPENDIX: GENOTYPE PROBABILITIES CONDITIONAL ON A
DEMOGRAPHY 201

We can obtain fDAy in a similar fashion:

fDAy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

2z(1− z)φ(z, τA|x, 0)dz

)
dx (A.12)

Solving the term in the parentheses:

∫ 1

0

2z(1− z)φ(z, τA|x, 0)dz = 2

(∫ 1

0

zφ(z, τA|x, 0)dz −
∫ 1

0

z2φ(z, τA|x, 0)dz

)
(A.13)

The first term of the difference is the first moment of the transition density, which is
equal to x [144], while the second term is the second moment (formula A.6). Therefore:

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)(1− x)dx

]
(A.14)

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)dx−
∫ 1

0

x φ(y, τC |x, 0) dx

]
(A.15)

And after using formulas A.9 and A.10, we obtain:

fDAy = θ
[
e−τA−τC + (1− 2y) e−τA−3τC

]
(A.16)

To obtain fAAy , we know that, assuming the anchor population to be at equilibrium:

fy = g(y) (A.17)

And therefore:

fAAy + fDAy + fDDy =
θ

y
(A.18)

So we finally obtain:

fAAy = θ

[
1

y
− e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.19)

We now have all the elements necessary to obtain the conditional probabilities from
formulas A.1, A.2 and A.3, which immediately lead us to formulas 2.7, 2.8 and 2.9.
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B. Appendix: Probabilistic inference
using BAM files

Here, we briefly explain the way we infer fragment-specific error parameters in the op-
tional BAM mode of DICE. Let R be the set of all fragments in the BAM file, and Rj ∈ R be
a particular aligned fragment of length l. For fragment Rj, let {bj,1, ..., bj,l} be the individuals
nucleotides in the fragment. At each position of the fragment, there is a specific probability
κj,i that the base is erroneous. This probability is provided by the basecaller. Below, we will
compute the likelihood of observing a base bj,i ∈ Rj under a bi-allelic model, given an error
rate κj,i. Below, we focus on an individual fragment Rj and an individual position i on that
fragment, so for simplicity, we drop the subscripts i and j and we let bj,i = b and κj,i = κ.

Let v be the base that was originally sampled at a given site, before deamination or
mismapping. This base could be ancestral or derived. Let Pdam[v → b] be the probability of
substitution from v to b due to post-mortem chemical damage. The probabilities of different
types of damage (e.g. C→T or G→A) occurring at different positions of a fragment can be
computed following [231] and [232], producing a matrix that can be provided to DICE as
input. We offer the possibility of specifying different post-mortem damage matrices for the
endogenous and the contaminant fragments.

Let E denote the event that a sequencing error has occurred, letD the event that chemical
damage has occurred, letM be the event that Rj was correctly mapped and let ¬ denote the
complement of an event (i.e. event has not occurred). We define the probability of observing
sequenced base b given that no sequencing error has occurred at a position on a correctly
mapped fragment that was originally v, by summing over two possibilities, either chemical
damage occurred or it did not:

P [b|v,M,¬E] = 1(v = b) · P [¬D] + (1− 1(v = b)) · P [D] (B.1)

Here, 1(v = b) is an indicator function that is equal to 1 if v is equal to b, and 0 otherwise.
The probabilities P [D] and P [¬D] are respectively equal to Pdam[v → b] and 1−Pdam[v → b].

Subsequently, we compute P [b|v,M ], the probability of observing b given v under the
assumption that Rj was mapped at the correct genomic location. We have:

P [b|v,M ] = (1− κ) · P [b|v,M,¬E] + κ · 1

2
(B.2)
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This is because if a sequencing error has occurred, the probability of observing b is inde-
pendent of v, and therefore P [b|v,M,E] = 1

2
. Finally, let P [M ] be the probability that

the fragment Rj is mapped at the correct location as given by the mapping quality. The
probability of seeing b given that v was the base that was sampled before deamination is
then:

P [b|v] = P [M ] · P [b|v,M ] + P [¬M ] · 1

2
(B.3)

The probability of observing b given that the fragment was mismapped is independent of v,
hence P [b|v,¬M ] = 1

2
. If either the base quality or mapping quality indicate a probability of

error of 100%, P [b|v] will be equal to 1
2
. These probabilities are used instead of the genome-

wide error term ε in equations 2.4, 2.5 and 2.6. For instance, equation 2.4 for a specific base
b in fragment Rj becomes:

q2 = rC(w · P [b = der|v = der, contaminant]+

(1− w) · P [b = der|v = anc, contaminant])+

(1− rC) · P [b = der|v = der, ancient]

(B.4)

Here, der is the derived base and anc is the ancestral base. In case different post-mortem
damage matrices are provided by the user for the ancient and the contaminant fragments,
the events contaminant and ancient serve to denote which damage probabilities (i.e. Pdam)
should be used in each case.
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