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Recent years have witnessed a rapid growth in the amount of generated data. Learning

algorithms, like hyperdimensional (HD) computing, promise to reduce the computation complex-

ity of processing such a huge amount of data. However, traditional computing systems are highly

inefficient for such algorithms, mainly due to the limited cache capacity and memory bandwidth.

Processing in-memory (PIM) is an emerging paradigm which tries to address these issues by

using memories as computing units. In this dissertation, we propose a PIM-based HD computing

architecture that accelerates all phases of the HD computing pipeline namely, encoding, training,

retraining, and inference. Our architecture is enabled by fast and energy-efficient in-memory

logic operations, combined with a hardware-friendly distance metric. However, the improve-
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ments from PIM decrease as the size of the dataset increases beyond the memory capacity. Hence,

we also design an in-storage computing (ISC) solution. Our ISC design includes on-flash-chip

acceleration of HD encoding, which encodes multiple data points in parallel across different

flash chips, exploiting the high parallelism provided by the flash hierarchy. This is supported

by a controller-level accelerator that performs HD training, retraining, inference, and clustering.

Our proposed PIM and ISC solutions provide 434× and 222× speedup as compared to the

state-of-the-art HD computing implementations on CPU.

Many applications, most notably in healthcare, finance, and defense, rely on cloud com-

puting for learning tasks and demand privacy which today’s solutions cannot fully provide. Fully

homomorphic encryption (FHE) elevates the bar of today’s solutions by adding confidentiality

of data during processing, while introducing noticeable data size expansion - the ciphertext is

5000× bigger than the aggregate of native data types. In this dissertation, we present a design

of the first PIM-based accelerator of both client and server using the latest Ring-GSW based

homomorphic encryption schemes. Our design supports various security levels and provides

on average 2007× higher throughput than CPU while running FHE-enabled neural networks.

This improvement comes from a significant reduction in total data-transfers and the high number

of processing in-memory cores, which enables higher parallelism and deeper pipelining in our

design.
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Chapter 1

Introduction

There has been an unprecedented increase in the number of interconnected devices

and smart systems that generate big data. Drawing meaningful results from this data requires

advanced learning techniques, involving complex computations. Hence, they are either run on

a local multi-core system or sent to the cloud and run on large servers [4, 5]. The rise of big

data, the ever increasing demand for new complex applications, and the slowdown of Moore’s

Law have together pushed the current processing systems to their limits. Running data intensive

workloads with large datasets on traditional cores results in high energy consumption and slow

processing speed. Hence, there is a need to explore new computation models and algorithms.

Hyperdimensional Computing: Brain-inspired hyperdimensional (HD) computing is

a computation paradigm which represents data in terms of extremely large vectors, called

hypervectors. These hypervectors may have 10s of thousands of dimensions and present data

in the form of a pattern of signals instead of numbers. By representing data in high-dimension

space, HDC reduces the complexity of operations required to process data. HDC builds upon

a well-defined set of operations with random HDC vectors, making HDC extremely robust in

the presence of failures, and offers a complete computational paradigm that is easily applied to

learning problems [6]. Prior work has shown the suitability of HDC for various applications like

activity recognition, face detection, language recognition, image classification, etc [7, 8, 9, 10,

11, 12, 13].
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Memory-Centric Hardware for HD Computing: Even though HD computing reduces

the computation complexity, it has large energy and latency overheads when run on conventional

computing systems. This is caused by the large amount of data movement between processing

units and memory, owing to limited cache capacity and on-chip bandwidth [14, 15]. Processing

in-memory (PIM) tries to address this issue by processing part of data in-place, eliminating

the need to transfer all data to the processing unit. PIM has recently become an active area of

research. Most of it is driven by the emergence of new non-volatile memory technologies, like

resistive RAM (ReRAM) or memristors. They have fast switching speed, low switching energy,

and high scalability, making them suitable for dense and fast PIM solutions [16, 17, 18, 19, 20].

A number of recent publications have exploited memristors to enable PIM [21, 22, 23, 24, 25].

We exploit these techniques to design, for the first time, a ReRAM PIM architecture that can

accelerate all the phases of HD pipeline namely, encoding, training, retraining, and inference.

Apart from the typical data movement reductions that PIM designs achieve, we show how our

PIM functions can provide large vector-wide parallelism.

Going beyond Memory – In-Storage Computing: The huge improvements over tradi-

tional systems provided by our PIM solution for HD start to diminish as the size of data becomes

too huge to fit in the memory. This is due to the data transfer overhead between memory and

storage. Recent work has introduced computing capabilities to solid-state disks (SSDs) to process

data in storage [26, 27, 28, 1]. This not only reduces the computation load from the processing

cores but also processes raw data where it is stored. However, the state-of-the-art in-storage

computing (ISC) solutions are not able to efficiently leverage its hierarchical design. Instead,

we propose an HD computing system that spans multiple levels of the storage hierarchy and

computes at flash chips as well as the top-level controller. Flash chips performs HD computing

operations over multiple data samples in parallel which are then used for learning in the top-level

controller.

Cloud Computing and Privacy of Data: The existing PIM and ISC solutions assume

the data to be present in the raw form. However, there may be instances when that is not the case.
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In critical areas, like healthcare, finance, insurance, etc, which deal with extremely sensitive

information, user data is usually encrypted. Moreover, majority of the applications in these

areas rely on cloud for computing needs due to the involvement of complex algorithms, very

large and dynamic computation and learning models, proprietary algorithms, or the need to

simultaneously learn from multiple users [29, 30, 31, 32]. Traditional cryptography schemes

like AES, SHA-256, etc encrypt user data but decrypt them in the cloud before processing them

using user-specific keys. This makes user keys and data prone to attacks.

On the contrary, fully homomorphic encryption (FHE) allows us to apply functions of

arbitrary complexity on the encrypted data (ciphertext) without the need to decrypt it. This

eliminates the need for private key exchanges and decrypting data at the server, raising the

bar on security and privacy. However, computing on encrypted data comes at a huge data

and computation cost, resulting in large performance and memory overheads. For example,

encrypting an integer in homomorphic domain may explode its size from meagre 4B to more

than 20KB. Moreover, homomorphically multiplying two FHE encrypted integers may require

10s of millions of operations. PIM is an excellent match for the FHE since it provides extensive

parallelism, bit-level granularity, and an extensive library of compatible operations which

dramatically improving both performance and energy efficiency [33, 34, 35, 36]. It addresses the

issue of large data movement by processing data in memory where it is stored. We utilize PIM to

present the first end-to-end acceleration of latest generation FHE cryptosystem based on [37].

Unlike previous HE proposals, which supported a library of functions, our accelerator allows

computing arbitrary functions on encrypted data.

The rest of the introduction gives an overview of the contributions of this dissertation.

1.1 Learning with HD Computing in Memory

Chapter 2 presents a detailed PIM implementation of hyperdimensional (HD) computing,

called Tri-HD. We, for the first time, design a ReRAM Digital-PIM architecture that can
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accelerate all the phases of HD pipeline namely, encoding, training, retraining, and inference.

We present a new approximate distance metric which is PIM-compatible, unlike the traditionally

used metrics. While this metric enables us to complete the HD pipeline in PIM, it comes at

no loss in accuracy due to the robustness of HD computing. We also propose low latency PIM

functions and discuss them from the perspective of vector operations. Apart from the typical data

movement reductions that PIM designs achieve, we show how our PIM functions can provide

large vector-wide parallelism. Moreover, in contrast to GPUs which are limited to 1000s of cores,

our PIM designs can offer much greater compute capability by making every memory array in

the PIM chip a computing core.

Tri-HD’s architecture is enabled by novel single cycle PIM operations. While state-of-the-

art ReRAM PIM implementations use NOR as the building block for all their logic operations,

we propose a purely in-memory implementation of fast and energy efficient logic. It extends

the functionality of in-memory operations by implementing single cycle NOR, NOT, NAND,

minority (Min), and OR directly in crossbar memory. We used these low latency functions to

implement functions like XOR and addition 2× faster than MAGIC [33]. Our design further

increased the amount of in-memory parallelism by using in-block switches.

Our evaluation shows that for all applications tested using HD, Tri-HD provides on

average 434× (2170×) speedup and consumes 4114× (26019×) less energy as compared to the

CPU while running end-to-end HD training (inference).

1.2 Accelerating HD Computing in Storage

To alleviate the data transfer overhead incurred by PIM for extremely large datasets,

Chapter 3 proposes Store-n-Learn, an in-storage computing (ISC) based HD computing system

that spans multiple levels of the storage hierarchy. We exploit the internal bandwidth and

hierarchical structure of SSDs to perform HDC operations over multiple data samples in parallel.

Store-n-Learn is a novel ISC architecture for HDC which performs HDC classification and
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clustering completely in storage. It enables computing at multiple levels of SSD hierarchy,

allowing for highly-parallel ISC. Our hierarchical design provides parallelism and hides a

significant part of the performance cost of ISC in the storage read/write operations.

We introduce the concept of batching in HDC and utilize it to make our ISC imple-

mentation more efficient. During training, we batch together multiple data samples encoded

in the HDC domain in storage. This allows us to partially process data without accessing all

encoded hypervectors. Batching enables us to have a minimal aggregation hardware requirement.

Batching also reduces the amount of data sent out of storage. Store-n-Learn utilizes die-level

accelerators to convert raw data into hypervectors locally in all the flash planes in parallel. Unlike

previous work [2], our accelerator is simpler and hides its computation latency by the long read

times of raw data from flash arrays. Our die-level accelerators can perform both batched and

non-batched encoding efficiently in flash planes. For batched encoding, the accelerator processes

multiple inputs in a page in parallel. It generates multiple dimensions corresponding to an input

in parallel during non-batched encoding. This flexibility is enabled by our innovative adder

tree design. We present a top-level SSD accelerator, which aggregates the data from different

flash dies. This accelerator is implemented on an FPGA-based device controller. We implement

new and efficient FPGA designs for HDC training, retraining, inference, and clustering. While

HDC training provides sufficiently accurate initial models, retraining significantly improves the

accuracy of the models by iterating over training data and updating the models multiple times.

Store-n-Learn inference allows the users to directly obtain the classification result from the

storage drive without sending the entire model to the host. Store-n-Learn clustering leverages the

FPGA already present in storage and iteratively processes the datasets multiple times to generate

high quality cluster centers. We also present host-side and drive-side primitives to enable the

FPGA to work seamlessly with the die-level accelerators.

We evaluate Store-n-Learn over ten popular classification and clustering datasets. Our

experimental results show that Store-n-Learn is on average 222× (543×) faster than CPU and

10.6× (7.3×) faster than the state-of-the-art ISC solution, INSIDER for HDC classification
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(clustering).

1.3 Secure and Privacy-Preserving Computing with FHE in
Memory

This dissertation goes beyond learning at the edge to make end-to-end data privacy, one of

the most desired components of cloud computing, feasible. Chapter 4 presents the first end-to-end

acceleration of latest generation FHE cryptosystem based on [37]. Unlike previous HE proposals,

which supported a library of functions, the latest RGSW-based cryptosystem allows computing

arbitrary functions on encrypted data. Our proposed MemFHE has two main components, the

client and the server PIM accelerators. The client PIM accelerator runs ultra-efficient in-memory

operations to not only encode and decode data but also enables ring learning with errors (RLWE)

to encrypt and decrypt data. The encrypted data (ciphertext), along with an encrypted version

of secret key, are sent to the server PIM accelerator for processing. Server PIM receives the

ciphertext from multiple clients and performs operations on ciphertext to generate output. To

enable this, server PIM uses PIM-enabled bootstrapping which keeps the accumulated noise low

so that the output ciphertext can be decrypted by the intended client. This ciphertext is sent back

to the client. In MemFHE, only the client has the means to decrypt the output ciphertext and

access the unencrypted data.

While individual PIM operations are slower than in CPU, MemFHE employs ciphertext-

level and operation level parallelism combined with operation-level pipelining to achieve orders

of magnitude of performance improvement over the traditional systems. Our server PIM design

includes fast bootstrapping, key switching, and modulus switching in memory. It distributes the

key memory units to reduce the instances of data contention. It sequentially processes different

inputs in different pipeline stages for the best processing throughput. We accelerate the bottleneck

process of bootstrapping by using a highly pipelined architecture. Our bootstrapping introduces

parallel accumulation units, which supports two different types of bootstrapping techniques.
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We propose a novel implementation for the core bootstrapping operation, NTT. Unlike existing

works, our NTT doesn’t require any special interconnect structure. Moreover, it is flexible and

can process many NTT stages without needing extra hardware. Our client PIM design includes

encryption and decryption. MemFHE enables encryption efficiently in memory by exploiting

bit-level access and accelerates dot product with a new in-memory implementation.

We evaluate MemFHE for various security-levels and compare it with state-of-the-art

CPU implementations for Ring-GSW based FHE. MemFHE is up to 20k× faster than CPU for

FHE arithmetic operations and provides on average 2007× higher throughput than [3] while

implementing neural networks with FHE.
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Chapter 2

Learning with Hyperdimensional Comput-
ing in Memory

Hyperdimensional computing reduces the complexity of computation. However, it has

large energy and latency overhead when run on conventional computing systems. This is caused

by the large amount of data movement between processing units and memory, owing to limited

cache capacity and on-chip bandwidth [14, 15]. Processing in-memory (PIM) tries to address

this issue by processing part of the data in-place, significantly reducing the need to transfer all

the data to the processing unit.

In this chapter, we exploit single cycle operations to present a detailed PIM implemen-

tation of hyperdimensional (HD) computing, called Tri-HD. For the first time, we design a

ReRAM PIM architecture that can accelerate all the phases of HD pipeline namely, encoding,

training, retraining, and inference. We present a new approximate distance metric, which is

PIM-compatible unlike the traditionally used metrics. While this metric enables us to complete

the HD pipeline in PIM, it comes at no loss in accuracy. We also propose low latency PIM

functions and discuss them from the perspective of vector operations. Apart from the typical data

movement reductions that PIM designs achieve, we show how our PIM functions can provide

large vector-wide parallelism. Moreover, in contrast to GPUs which are limited to some 1000s

of cores, our PIM designs can offer much greater compute capability by making every memory

array in the PIM chip a computing core. Our evaluation shows that for all applications tested
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using HD, Tri-HD provides on average 434× (2170×) speedup and consumes 4114× (26019×)

less energy as compared to the CPU implementation while running end-to-end HD training

(inference).

2.1 Background on Processing in Memory with ReRAM

A number of recent publications have exploited ReRAM (memristors) to enable PIM [21,

22, 23, 24, 25]. Some compute logic at the periphery of the memory by modifying the memory

sense amplifiers [22, 24, 38]. They read the stored data from the memory, use transistor based

circuits to process data, and store the results back to the memory. In these designs, the amount of

data that can be processed in parallel is limited by the amount of sense circuitry present at the

periphery of the memory. Other work exploits the bipolar switching behaviour of memristors

to implement logic in-memory [33, 21, 23, 39, 40]. Some of them implement logic purely in

memory such as stateful implication logic [39, 41], and Memristor Aided loGIC (MAGIC)

[33].These designs depend on application of voltage at various memory cells with no change in

the sense amplifiers. They are purely in-memory operations which do not need to read out data

but are restricted by the limited functionality they can implement. For example, MAGIC [33]

only supports NOR directly in crossbar memory. All other functions are implemented by repeated

multiple NOR cycles.

Logic execution with MAGIC is fully compatible with the usual crossbar design, requires

a lower number of voltages, and supports NOR which can be used to implement any Boolean

logic. Also, it is non-destructive, unlike implication logic based designs like IMPLY [39] which

destroy one of the inputs. These properties of MAGIC make it a preferred logic family for

resistive crossbar memories. MAGIC uses voltage threshold based memristors which switch

whenever the voltage difference between the two terminals of the memory device exceeds a

threshold. However, they don’t fully utilize the threshold based switching of memristors and only

implement NOR in crossbar memory. All other functions are derived using NOR, which results

9



in unnecessary latency overheads. In contrast, in this chapter, we propose a purely in-memory

implementation of fast and energy efficient logic. It extends the functionality of in-memory

operations by implementing single cycle NOR, NOT, NAND, minority (Min), and OR directly

in crossbar memory. We use these low latency functions to implement functions like XOR and

addition 2× faster than MAGIC [33].

2.2 Hyperdimensional Computing

Brain-inspired HyperDimensional (HD) computing is a computing paradigm which works

based on understanding the fact that brains compute with patterns of neural activity [6, 42, 43, 8],

where such neural activity patterns can only be modeled with points of high-dimensional space

(e.g., D=10,000). Classification is one of the most important supervised learning algorithms.

Figure 2.1a shows the overview of HD computing architecture for a classification problem

consisting of an encoder module and an associative memory. The goal of the encoder is to map

an input data to a single hypervector with D dimensions and then combine these hypervectors for

all of the images in a class to generate a unique hypervector representing each class. Each class

hypervector is a long vector with D dimension, where each dimension can have binary (0, 1)

elements. Associative memory stores the trained hypervectors for all classes. In test mode, HD

classifies an unknown input by encoding the input image to a hypervector using the same encoder

used for training. The query hypervector has binary elements and the same D dimension as the

class hypervectors. Next, associative memory checks the similarity of the query hypervector to

all classes and classifies it to a class which has the closest similarity.

2.2.1 Encoding Module

Figure 2.1b shows the encoding module in HD computing. Let’s assume each data point

in original space can be represented using a features vector {v1, . . . ,vn}. The goal of encoding

module is to map this feature vector to high-dimensional space while keeping all its information

in a high-dimensional vector. Each feature vector stores two types of information: the value of
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Figure 2.1. (a) The overview of HD computing architecture for classification task. (b) The
encoding module of HD computing mapping a feature vector with n elements to high dimensional
space using pre-generated identity and level hypervectors.

signal and the index of each feature.

Feature values: In order to consider the impact of feature values, our design first

identifies the minimum and maximum value that signal can take in all dimensions {vmin&vmax}.

Then, it quantizes the feature values into Q levels were vmin and vmax are the first and last levels

respectively. HD assigns a single hypervector with D dimension to each of the quantized levels

L = {L1,L2, . . . ,LQ} where Li ∈ {0,1}D and L1 and L−Q correspond to the vmin and vmax

respectively. The generation of the level hypervector is similar to work [42], such that the level

hypervectors have similar values if the corresponding original data are closer, while L1 and LQ

will be nearly orthogonal.

Feature index: To specify the impact of each feature index on encoded hypervector,

HD generates a set of random identification hypervector {ID1, . . . , IDn}, where IDi ∈ {0,1}D

represents a hypervector corresponding to ith feature index. Due to random generation, the ID

hypervectors are semi-orthogonal, meaning that:

δ (IDi, ID j)' D/2 for i 6= j (2.1)

Depending on feature values, each feature maps to one of the Q generated hypervectors.

Hypervectors are combined together using element-wise XOR of the level and ID hypervector,
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and then summing the resulting hypervectors over all features:

H = L1⊕ ID1 + L2⊕ ID2 + · · ·+ Ln⊕ IDn f ∈ [1,m] (2.2)

where Li is the (binary) hypervector corresponding to the i-th feature of vector v.

2.2.2 HD Training and Retraining

The simplicity of HD training makes it distinguished from conventional learning al-

gorithms. Consider hypervector Hi as the encoded hypervector of input i with the procedure

explained above. Each input i belongs to a class j, so we further annotate H j
i to show the class j

of input i, as well. HD training simply adds all hypervectors of the same class to generate the

final model hypervector. Therefore, the class hypervector of label j, denoted by C j, is:

C j = H j
0 +H j

1 + · · ·= ∑
i

Hi
j (2.3)

Meaning that we simply accumulate the encoded hypervectors for which their original input

belongs to class j.

Another advantage of HD over DNNs is HD supports efficient one-pass training, i.e.,

visiting each input just once and adding the His to create the model yields acceptable accuracy,

while DNN training requires hundreds of iterations over the whole data set to converge to the

final accuracy. HD accuracy can also be improved by retraining the model. During retraining,

the encoded hypervector of each input is created again, and its similarity with the existing class

(model) hypervectors is checked. If a misprediction is observed, say that encoded H j belonging

to class C j is predicted as class Ck, the model is updated as follows, which means the information

of H j causing (mis)-similarity to Ck is discarded. The parameter α is the learning rate of the

model.
C j =C j +H j

α

Ck =Ck−H j
α

(2.4)

12



2.2.3 HD Inference

The inference step as well as the retraining step need to find out the most similar class

hypervector to the encoded one. Most commonly, this is performed by cosine similarity while

other metrics (e.g. Hamming distance) could be appropriate depending on the problem.

cos(~H,~C j) =
~H·~C j

‖~H‖·‖~C j‖
(2.5)

Equation (2.5) shows the similarity checking of encoded hypervector H with class hypervector

C j. Since classes are constant, ‖~C j‖ can be pre-calculated. ‖~H‖ can be factored out as it is

common for all candidate classes to be compared with H. Hence, cosine similarity reduces to a

simple dot-product between H and C js. These vectors are not in binary, they are the results of

accumulating several other binary vectors.

2.2.4 Existing HD Computing Work in PIM

Recent work has proposed ways to use PIM to accelerate HD computing. The associative

memory data structure of HD computing is generally regarded as the most suitable candidate

for acceleration by PIM. The work in [44] was the first to recognize this, and proposed an HD

computing accelerator based on resistive CAMs. The design achieved 746× reduction in energy-

delay product (EDP) as compared to the CMOS-based ASIC proposed in [45]. The authors

in [46] tried to alleviate the thermal challenges related to PIM implementation of associative

memory. They proposed memory block selection and activation schemes to reduce the overall

chip temperature, resulting 57.2% memory lifetime improvement and 17.6% performance gain.

The design in [47] extended the idea of the work in [44] and supplemented it with a

digital HD mapper and encoder to accelerate complete HD algorithm. However, the encoding

schemes used by them do not provide state-of-the-art results. The work in [48, 49] presented an

HD-chip which implemented both encoding and search operations using a combination of carbon

nanotube field-effect transistors (CNFETs) and ReRAM cells to achieve low EDP. However, they
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implement only inference and supported only few specialized applications. The work in [50]

proposed crossbar memory based encoding and associative search. The encoding module used

analog computing primitives to perform bitwise logical AND of hypervector dimensions. The

demonstrated chip provided 6.6× energy and 3.8× area improvement. However, approximately

92% of the area and 89% of energy were consumed by memory peripherals.

Another set of designs in [51, 52] take a different approach where instead of implementing

associative memory using PIM, they used large ReRAM PIM-based XOR operations to compare

different hypervectors. In both the implementations, HD encoder used ReRAM PIM bitwise

operations to generate hypervectors. A similar work in [53] breaks down all HD operations into

dot product and bitwise operations and implements them using analog computing techniques.

Finally, recent research in [54] presented a PIM implementation of both HD training and

inference. To maintain high training accuracy while achieving the efficient bitwise computation,

the work proposed the use of stochastic training, which generated multiple binary hypervectors

for each class. It increased the baseline accuracy, which was still 4-9% less than what HD could

achieve.

2.2.5 Challenges with the Existing Work

Most of prior work tried to accelerate HD by speeding up the computation in associative

memory [44]. In this work, we use HD computing for practical classification problems such

as speech recognition [55], face recognition [56], activity recognition [57], and physical mon-

itoring [58]. We observe that in most tested applications, the data point in original data is a

long feature vector. Encoding such feature vector to high dimensional space is extremely costly.

Table 2.1 compares the energy consumption and execution time of HD computing for several

applications including language recognition, speech recognition, face recognition, and activity

recognition. The experiments have been performed on the Intel i7 CPU with 16GB memory. Our

evaluation shows that for practical problems, the encoding module is a dominant part of energy

consumption and execution time. For example, for four tested applications the encoding module
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Table 2.1. Energy consumption of HD encoding module and associative memory for different
applications

Encoding Module Associative Memory
Speech Recognition 8.18 mJ 8.78 mJ

Face Recognition 7.85 mJ 1.43 mJ
Activity Recognition 7.01 mJ 3.87 mJ
Physical Monitoring 0.23 mJ 2.25 mJ

takes around 60% of total energy.

2.3 Tri-HD Acceleration in Memory

In this section, we present PIM implementation of the various stages in HD computing

pipeline. Tri-HD also demonstrates the benefits of PIM for large vectors since the entire HD

computing pipeline operates these large vectors. Hence, implementation of HD computing on

PIM allows us to evaluate its vector-wide parallelism benefits, while providing a look into the

potential applicability of PIM for big data algorithms.

2.3.1 Tri-HD HD Encoding

Here, we discuss how HD is mapped to memory and its acceleration using Tri-HD. The

HD efficiency depends on the amount of parallelism which we can apply to encoding module.

The most area efficient method is to store all ID and level hypervectors in a single memory

partition and perform XOR operation between each ID and corresponding level in series. This

method serially processes the features and its performance is directly related to the number of

features. Our design parallelizes the encoding module by partitioning the memory block.

Let us assume that a feature vector has n elements and Q corresponding Ls (Levels).

In HD, this results in n IDs. In total we have n + Q vectors with D=10,000 dimensions. All

these vectors are stored in a memory block. Each vector is mapped to a row of the memory,

where each row has a capacity of 10,000 bits as shown in Figure 2.2. As such huge memory

blocks are hard to achieve, a row is usually split among multiple smaller-width memory blocks.
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Unless otherwise mentioned, we consider a block size of 1024×1024 in our implementation.

In HD encoding, as discussed in the previous section, first each ID is XORed with one of the

Ls depending upon the values of the feature. The results of the XOR operations are then added

together dimensionwise. We map all these operations in Tri-HD-enabled memory.

We perform n Tri-HD XORs (one for each ID) and generate n outputs. For the first n

iterations, we select one ID and XOR it with one of the Ls in every iteration. For a pair of ID and

L, Tri-HD XOR can be computed in parallel for all dimensions since all dimensions of a vector

are stored in the same row. Each XOR operation requires one additional memory cell to store the

output of the result. This requires 10,000 additional cells, equivalent to a row of the memory,

to store the output. We then count the number of 1s in all XOR results for each dimension.

We execute this by Tri-HD addition. In order to perform addition for all the dimensions in

parallel, we store the output of addition vertically in a column, instead of a row, as shown in

Figure 2.2. We add n elements serially, three bits at a time. If X1, X2, ... Xn are the vectors to

be added together, we first add X1, X2, and X3 to generate S1 and C1. We then add X4, X5, and

{C1, S1} to generate S2 and C2, and so on till we have added all XOR results. The addition of n

1-bit elements results in an output with p = dlog2ne bits, requiring p rows to store the output

of addition. In addition, Tri-HD also requires p+ 1 rows to store the intermediate results of

addition like C1,S1,S2,C2, etc.

As described above, we add a maximum of three XOR results at a time. Hence, instead

of calculating all XOR results first and then adding them, we calculate them two at a time, except

the first step when we calculate three, and add them. This reduces the memory requirement for

XOR results from n rows to just 3. Apart from the 3 rows for XOR results and p rows required

for the addition results, we require p+1 rows to store the intermediate addition results and 2

rows for the intermediate Tri-HD stages, as shown in Figure 2.2.
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Figure 2.2. Organization of data in Tri-HD-enabled HD accelerator.

2.3.2 Parallelized Tri-HD HD Encoding

We accelerate the baseline Tri-HD HD by using the parallelism technique proposed in

Section 2.5. We observe that the n XOR operations in encoding are independent of each other.

Also, the addition of XOR results is not affected by the order of operands. Hence, all XORs

and majority of the addition operations can be paralleized. We divide our block into k smaller

partitions using transistor switches described in Section 2.5. Each partition stores n/k IDs and all

Q Ls. The transistors are first switched off. This makes each smaller partition to work similar

to the memory block in the baseline implementation. Since, the transistors physically segment

the bitlines, all the partitions operate independently in parallel. This reduces the number of

iterations required for executing XOR from n to n/k. Moreover, the size of addition in each

partition reduces from dlog2ne to dlog2(n/k)e.

The results of addition in different partitions are then aggregated. To implement this, the

transistors are switched on, allowing the block to behave as a single partition. We use Tri-HD

addition to perform aggregation in parallel for all the dimensions. This aggregation leads to
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additional latency overhead. Moreover, the effective memory requirement increases, since each

partition needs to replicate the level hypervectors and assign rows to perform computation and

store the XOR and addition result.

2.3.3 Tri-HD HD Training

As discussed in Section 2.2 HD training involves class-wise addition of the hypervectors

generated by encoding. This addition is similar to that involved in encoding but instead of

adding 1-bit-element vectors (Xi in encoding) to integer vectors, here we need to add multiple

integer vectors. Moreover, the implementation in the encoding module is sequential. The simple

training algorithm of HD allows us to split training into multiple modules, where each module

independently performs (partial) training over a subset of the data and then the partially trained

class hypervectors are added together.

To implement this in memory, we fuse HD encoding and partial training to form a partial

HD (p-HD) module, as shown in Figure 2.3a. For each input data, we perform encoding as

explained in Section 2.3.2. However, instead of creating a new encoded hypervector for each

input, we keep on accumulating the generated encoding outputs to a single hypervector. Hence,

at any point during the computation, we don’t have individual encoded data points but only a

partially trained class hypervector. After encoding all the data, p-HD modules send their class
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hypervectors to the training memory block for final accumulation, as shown in Figure 2.3b.

While sending data from p-HD to training block, each dimension which was column-wise stored

in p-HD is now stored row-wise. This is achieved by reading the hypervectors, one-row at a time.

As discussed in Section 2.3.2 each row of the final hypervector stores one bit of each dimension.

The jth element of the ith row read from p-HD is stored as the ith bit of the jth dimension of the

hypervector when stored in the training block. This way, each class hypervector is now stored

column-wise, with each dimension stored in a single row, as shown in Figure 2.3b, making the

computation of similarity metric in the future easier.

2.3.4 Tri-HD HD Inference

Tri-HD HD inference uses the Tri-HD encoding and similarity blocks. The encoding

block converts input data into hypervectors. The encoded vectors are then sent to the similarity

block to find its closest class hypervector. In the next section, we present a novel approach to

implement the similarity block. The output of the similarity check is the closest class and the

corresponding label is the output of HD inference.

2.3.5 Tri-HD HD Re-training

Similarly, re-training involves HD inference, followed by two-part training. First, the

input data is sent to Tri-HD inference block. The output of the inference is compared to the

actual true label of the input. If the inference output is same as the label, we bypass the remaining

stages of retraining. Otherwise, the encoded hypervector is sent to the Tri-HD training p-HD

corresponding to the true class. In addition, the hypervector is also sent to training p-HD

corresponding to the inferred class. However, for the inferred class, p-HD perform hypervector

subtraction instead of addition. This process is carried on for a maximum number of iterations,

provided by the application parameters, and the model corresponding to the best accuracy is

chosen as the final trained model.
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2.4 Approximation of Similarity Metric

2.4.1 Dot Product Similarity Metric

A key operation in the HD pipeline is the dot product, which is used as the similarity

metric during retraining and inference. The dot product of two vectors can be broken down

into their element-wise multiplication and the accumulation of the generated product vector. To

implement element-wise multiplication, the two vectors are stored column-wise so that a row of

the memory contains one element from each vector, corresponding to the same dimension. All

the elements of a vector share the same columns in memory. Then, we implement row-parallel

in-memory multiplication for the entire vector using the switching techniques presented in

[59, 40]. This gives us the product vector. The accumulation of this vector involves adding D

elements together in memory, which is a slow and serial operation due to the large dimensionality

of the hypervectors. Instead, we implement an approximate version of the accumulation. To

achieve this, we quantize the elements of the hypervector to the maximum power of 2 number

that is less than the each element’s value.

The best time for approximation is just before the final dot product accumulation. This

would, in theory, result in the least quality loss. However, this would still require fixed-point

multiplication over thousands of dimensions, which is both slow and energy-consuming. Hence,

we further evaluate the quality loss of HD if we instead perform approximation before multiplica-

tion. Figure 2.11 shows the accuracy of HD classification over five datasets with approximation

before and after multiplication and without approximation.

Because HD computing is robust to computational errors, both rounding after and

before multiplication result in similar accuracy to the reference with minimal rounding errors.

This property of HD computing comes from the high dimensionality of the data. Distributing

information equally across all of the dimensions leads to a representation with data redundancy.

Therefore, even in the event of various dimensions having errors, the redundancy in the data

results in a close approximation of the final similarity. This robustness to noise naturally
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scales with the dimensionality of the model. We can also see this in Figure 2.11. At a lower

dimensionality, the accuracy difference between rounding and the reference grows. Therefore,

Tri-HD uses a dimensionality of D = 10,000 to achieve the highest robustness to the rounding,

resulting in a model that maintains accuracy to the reference. Due to the highly parallel nature of

digital processing in memory, there is no real cost to increasing the dimensionality of the model

as long as the hypervertors still fit in memory.

2.4.2 Implementation in Tri-HD

Both before and after approximations described above involve quantizing the elements

of a vector to the maximum power of 2 number that is less than the each element’s value. In

hardware, this is equivalent to finding the leading (trailing) one for positive (negative) numbers.

This is implemented using the associative operations presented in [60, 61]. We utilize the exact

search operations to implement this power-of-2 (P-of-2) search, as shown in Figure 2.3c. Search

is done in parallel over all the elements of the vector. Each column of the vector stores one bit

from all the elements of the vector. We perform column-wise search on the vector. For each

column, whenever a ‘1’ is detected, the corresponding rows are deactivated from further search

operations. We implement a counter at the periphery which counts the number of rows that

are selected for each bit-column. At the end, the values in the counter are multiplied by the

corresponding power of 2 and added. The result is an approximate accumulation of the vector.

For approximation after the product, Tri-HD simply quantizes the product vector. In the

case of approximation before the product, we independently quantize just the class hypervectors.

Then, we use the value of the quantized class hypervector (C*) to shift the input hypervector.

Since all the elements of C* are power of 2, this shifting is equivalent to multiplication of

input with C*. The output of this shift is again quantized with P-of-2 to perform the final

accumulation. This puts forth a latency, energy consumption, and accuracy trade-off. The

before (after) approximation performs quantization of two (one) hypervectors, while using zero

(one) element-wise multiplication step. Hence, before approximation avoids a vector-wide
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multiplication by introducing an extra but faster (and less efficient) quantization step. We

evaluate the corresponding performance and energy consumption in Section 2.7.5 and show that

approximating before multiplication is 3.4× faster and 2.3× more energy-efficient as compared

to approximating after multiplication while providing on average 0.16% better accuracy.

2.5 Parallelism in Tri-HD

In order to increase in-memory parallelism, we split the array into smaller partitions such

that the achievable parallelism directly depends upon the number of partitions of the memory

block. These partitions are created by the transistor switches which divide the bitlines into smaller

segments. This enables Tri-HD to independently implement multiple operations simultaneously.

Consider a memory array with a 64-bit wordline and capacity of 1024 words. Now, a bitwise OR

operation needs to be carried out between 10 pairs of words and outputs be stored in the memory.

All these steps are independent of each other and can happen in parallel if the memory supports

it. Tri-HD can execute it in a single cycle if the memory has 10 or more partitions. In contrast,

the conventional design would execute it in 10 steps with each step implementing 64 parallel

single cycle OR operations between a pair of words [23].

Figure 2.4 shows how Tri-HD behaves in a memory with no partition when operations

are parallelized across rows and columns simultaneously. The currents from different operations

interfere with each other, as shown by {Op1 Op3} and {Op2 Op4} in Figure 2.4. It effectively

results in a single operation with more inputs and multiple copies of output. Transistors physically

split the bitlines while keeping them logically the same. Figure 2.5 shows how Tri-HD behaves

when a memory is divided into two partitions using transistors. The transistors, when switched

off, prevent the currents belonging to different operations from merging. This enables Tri-HD to

parallelize operations in rows and columns simultaneously.

Ideally, we would like to have as many partitions as possible. However, increasing the

number of partitions comes with additional overhead. First, more partitions lead to reduced mem-
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Figure 2.4. Limitation of the memory in implementing operations in a row and column simulta-
neously. The crossbar structure does not distinguish the currents from different operations.

ory utilization. Tri-HD requires some additional devices or processing elements for executing

logic. These elements store the intermediate states involved in achieving the final output. Since

each partition needs its own processing elements, increasing the number of partitions linearly

increases the number of devices required. These processing elements cannot be used for storing

logic because they are used by Tri-HD to implement operations. When the memory size is fixed,

increasing the number of processing elements directly reduces the amount of memory usable for

storage. Second, more partitions require a higher number of transistors to segment the bitlines,

leading an increased area overhead. Figure 2.6 shows the change in memory utilization and area

overhead for a 1024×64 memory block as the number of partitions increases.

2.6 Basic Operations in Tri-HD

Tri-HD uses purely in-memory implementations of Boolean functions. It executes NOR,

NOT, Min, NAND, and OR in a single cycle in crossbar memory. Tri-HD uses a variable voltage

based execution scheme, where the applied voltage defines the operation to be performed. In

addition, instead of relying only on resetting behavior of memristors, we exploit it’s two-way
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Figure 2.5. Tri-HD with transistors and the resultant memory crossbar. The currents for the four
operations do not interfere with each other.

switching to extend the capabilities of PIM. When the voltage Vpn > |von|, a memristor switches

from a high resistive state (ROFF ) to a low resistive state (RON). On the other hand, when

Vnp > vo f f , it switches from RON to ROFF . Here, |von| and vo f f are the device dependent voltage

thresholds and Vpn is the voltage difference between terminals p and n.

Table 2.2 compares the execution of different boolean logic functions in Tri-HD with

previously proposed PIM techniques. The latencies in the table and the discussion exclude the

first initialization cycle which is common to all designs. The numbers in brackets represent the

properties of the area conservative designs [23]. It shows that Tri-HD performs either the same

as or significantly better than the fastest state-of-the-art technique [33, 23]. For example, for

addition, Tri-HD is 2× faster, has 2× better energy efficiency, and 3× lower memory size. In

the following subsections, we outline the implementation of basic boolean operations in Tri-HD

and how they can be used to perform vector-wide operations that form the basis of Tri-HD

architecture.
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Figure 2.6. Change in memory utilization and area overhead due to transistors with increase in
parallelism in Tri-HD.

2.6.1 Single-Cycle Operations

NOR: Figure 2.7 shows how NOR is implemented in memristor-based crossbar array [33].

The output memristor is initialized to RON in the beginning. To execute NOR in a row, an

execution voltage, V0, is applied at the p terminals of the inputs and the p terminal of the output

memristor is grounded, as shown in Figure 2.7a. When NOR is executed in a column, the n

terminals of the inputs are grounded while V0 is applied to the n terminal of the output, as shown

in Figure 2.7b. The motive behind both the executions is to switch the output memristor from

RON to ROFF whenever the NOR output is ‘0’. Tri-HD is as fast as MAGIC [33] for NOR.

Assume two vectors A and B with 100 1-bit elements each are stored in the memory such

that ith element of a vector is present in the ith row of the memory. Moreover, all the elements of

vector A (B) occupy the ath (bth) column. We call this way of storing vectors as column-wise

storage. To perform a NOR over the ith elements of the two vectors, we implement the 2-input

row implementation of NOR. As discussed before, we apply voltage V0 to bitlines a and b, while

ground the output bitline, say c. However, we notice that this voltage application remain the same

irrespective of the value of i. Hence, the NOR operation discussed above provides vector-wide

parallelism, where an operation over all the elements of a vector takes the same time as the
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Table 2.2. Comparison of Tri-HD with state-of-the-art PIM technique designed for highest
performance.

Property Design NOR3 NAND3 Min3 OR3 Maj3 AND3 XOR2 1-bit ADD

Latency
(Cycles)

MAGIC 1 5 (6) 5 (6) 2 4 4 5 (7) 12 (14)
Tri-HD 1 1 1 1 2 2 2 6
Improv. 1× 5 (6)× 5 (6)× 2× 2× 2× 2.5 (3.5)× 2 (2.33)×

Memory
(# of Cells)

MAGIC 1 5 (4) 5 (4) 2 4 4 5 (3) 12 (6)
Tri-HD 1 1 1 1 2 2 1 4
Improv. 1× 5 (4)× 5 (4)× 2× 2× 2× 5 (3)× 3 (1.5)×

Energy
(fJ)

MAGIC 24.11 120.17 120.38 48.12 96.17 96.15 120.29 288.82
Tri-HD 24.11 49.24 41.64 9.53 65.65 73.26 34.97 135.60
Improv. 1× 2.44× 2.89× 5.05× 1.47× 1.31× 3.44× 2.13×

operation over single element of the vector. This discussion can be similarly extended to the case

when the vectors are stored row-wise and we use NOR in a column implementation.

NAND and Min: Tri-HD does not directly depend upon the inputs but the voltage

developed across the n and p terminals of the output device. This enables it to implement

minority and NAND in memory. Consider the case of a 3-input NOR using a V0 of 1V and vo f f

of 0.5V. The voltage developed across the output memristor is equal to 0V, 0.5V, 0.67V, and

0.75V when the inputs are ‘000,’ ‘001,’ ‘011,’ and ‘111’ respectively. Here, the output memristor

switches in all cases except the first one. Now, if V0 is changed to 0.75V, developed across the

output memristor changes to 0V, 0.38V, 0.5V, and 0.56V when the inputs are ‘000,’ ‘001,’ ‘011,’

and ‘111’ respectively. In this case, the output switches to ROFF only when there are at least

two ‘1’s in the input. The output is effectively the 3-bit minority function (Min3). As V0 is

further decreased to 0.67V, output changes only when the inputs are ‘111.’ In other words, the

output is ‘0’ only when all the inputs are ‘1.’ This is equivalent to a 3-bit NAND operation. The

above logic can be extended to N-bit minority and NAND functions. The execution voltage, V0,

required to implement these functions is given by Equation 2.6, where N is the number of inputs.

(
vo f f
RON

)
·
{

RON +
(

ROFF
N−(n+1)

)
||
(

RON
n+1

)}
<V0 <

(
vo f f
RON

)
·
{

RON +
(

ROFF
N−n

)
||
(

RON
n

)}
, (2.6a)
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Figure 2.7. n-input NOR implementation in (a) a row and (b) a column.

(n+2
n+1

)
· vo f f <V0 <

(n+1
n

)
· vo f f (2.6b)

The value of n is defined by the operation to be executed. For Min, n = dN/2e and for NAND,

n = N. Equation 2.6b is an approximation of Equation 2.6a under the assumption that ROFF >>

RON .

Hence, in addition to NOR and NOT, Tri-HD supports a single cycle MinN and NAND.

In theory this technique can be extended for any n. However, the non-availability of different

voltage levels challenges its practical feasibility for large values of n. For example, Tri-HD

requires a V0 of 0.58V to implement a 6-bit NAND. It changes to 0.57V and 0.56V in case of a

7-bit and 8-bit NAND respectively. It is difficult to reliably generate these different and closely

valued levels of voltages. Hence, to keep the implementations practical, we restrict Tri-HD

to 2-bit and 3-bit NAND and Min. The vector-wide parallelism provided by these and future

operations can be derived from the discussion on NOR operations.

OR: Tri-HD reduces the latency of OR operation to one cycle by exploiting the setting

behavior of the memristor device. As discussed in Section 2, a device can be switched from ROFF

to RON by applying a voltage greater than the threshold, |von|. On the other hand, since MAGIC
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relies just on the resetting behavior of memristors, implementing OR in crossbar memory using

MAGIC involves two NOR cycles. Figure 2.8 shows the voltages division for different possible

inputs. Ground and V0 terminals are opposite of those used for MinN. When all the input and

output memristors are ROFF , the voltage across the output memristor is much less than V0. On

the other hand, if one or more inputs are RON , the voltage across the output is approximately V0.

If V0 is greater than von, then the output memristor switches to RON .

The above behavior is exploited to implement OR in memristive memory. The output

memristor is first initialized to ROFF . To execute OR in a row, the p terminals of the input

memristors are grounded while V0 is applied at the p terminal of the output. In case of OR in a

column, V0 is applied at the n terminals of the inputs the n terminal of the output is grounded

(show p and n terminals in a figure). If the logical ’high’ and ’low’ states are represented by

RON and ROFF states of memristor, the result of OR operation corresponds to ROFF when all the

input bits are low and RON otherwise. The execution voltage, V0, required to implement OR is

given by,

|von|
ROFF
·
{

ROFF +(RON) ||
(

ROFF
N−1

)}
<V0 <

|von|
ROFF
·
{

ROFF +
(

ROFF
N

)}
, (2.7a)

(
1+ RON

ROFF

)
· |von|<V0 <

(N+1
N

)
· |von|, (2.7b)

where N is the number of inputs. Equation 2.7b is an approximation of Equation 2.7a under the

assumption that ROFF >> RON .

2.6.2 Multi-Cycle Operations

The in-memory operations proposed in the above section can be combined to extend the

functionality of the memory.

Maj and AND: Majority (MajN) and AND can be implemented by inverting MinN and

NAND respectively. This results in 2-cycle MajN and AND in Tri-HD in contrast to four cycles
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Figure 2.8. Voltage division for Tri-HD OR. (a) Application of voltage for OR, (b) output
memristor remains ROFF when all the inputs are ROFF (red), and (c) output memristor switches
to RON when one or more inputs are RON (green).

in MAGIC.

XOR: XOR (⊕) can be expressed in terms of OR (+), AND (.), and NAND ((.)′) as

follows:

A⊕B = (A+B).(A.B)′ (2.8)

Figure 2.9 shows the in-memory implementation of Equation 2.8. Instead of calculating OR

and NAND separately and then ANDing them, we first calculate OR and then use its output

cell to implement NAND. In this way, we eliminate separate execution of AND operation. This

logic just requires 2 Tri-HD cycles and one additional memristor device, which also acts as the

output cell. In contrast, the state-of-the-art PIM technique proposed in [23] uses 5 cycles and 5

memristors for the fastest XOR implementation, while the most area conservative approach takes

7 cycles and 3 memristors. Hence, the proposed XOR implementation is both faster and smaller.

Addition: Tri-HD implements addition by combining XOR and MajN operations. A

29



in1 in2 inn out

V0

in1 in2 inn

out

in1

in2

inn

out

GND

in1 in2 inn

V0

out

V0

V0

GND

N-input  NOR  implementation  using  MAGIC  in  (a)  a  row  and  (b)  a column

in1 in2 inn out

V0

in1 in2 inn

out

V0

GND

in1 in2 inn

out

V0

≥V0-V0/2 ≈V0

(a)

(b) (c)

Felix OR

≥V0/2

≈ 0

(a) (b)

A B out

VRESET

A B 0

V0, or

A B A+BA B 0

GND GND

V0, nand

A B A⊕BA B A+B

GNDV0, nand

A B out

0 0 0

0 1 1

1 0 1

1 1 1

A B out

0 0 0

0 1 1

1 0 1

1 1 0

A B out

X X 0
Cycle 1:

Cycle 2:

Cycle 3:

Felix XOR

Op 1 Op 2

Op 3 Op 4

(a)

(b)

Op 1 Op 2

Op 3 Op 4

Vop

Vop

GND

GND

GND

GND

Vop

GND

GND

Vop

GND

GND

ID11

ID21

ID12

ID22

ID13

ID23

ID1D

ID2D

……………

……………

IDn1 IDn2 IDn3 IDnD……………

L11

L21

L12

L22

L13

L23

L1D

L2D

……………

……………

LQ1 LQ2 LQ3 LQD……………

Xi11

Xi21

Xi12

Xi22

Xi13

X23

Xi1D

Xi2D

……………

……………

Xi31 Xi32 Xi33 Xi3D……………

A11

A12

A21

A22

A31

A32

AD1

AD2

……………

……………

A1p A2p A3p ADp……………

Ai11

Ai12

Ai21

Ai22

Ai31

Ai32

AiD1

AiD2

……………

……………

Ai1p+1 Ai2p+1 Ai3p+1 AiDp+1……………

i11

i21

i12

i22

i13

i23

i1D

i2D

……………

……………

……………

……………

……………
Processing Area

in1 in2 inn out

V0

in1 in2 inn

out

in1

in2

inn

out

GND

in1 in2 inn

V0

out

V0

V0

GND

≥V0/2

≈ 0

(a) (b)

p

n

p

n

p

n

p

n

p

n

p

n

p

n

p

n

Figure 2.9. Different stages in implementing 2-bit XOR using Tri-HD

1-bit adder can be represented by,

S = A⊕B⊕Cin, (2.9a)

Cout = A.B+B.C+C.A = Ma jN(A,B,Cin), (2.9b)

where A, B, and Cin are 1-bit inputs while S and Cout are the generated sum and carry bits

respectively. Here, S is implemented as two serial in-memory XOR operations. Cout , on the other

hand, can be executed by inverting the output of MinN. Hence, S takes a total of 4 cycles and 2

additional memristors, while Cout needs 2 cycles and 2 additional memristors.

The previously proposed state-of-the-art processing in-memory techniques also support

addition within the crossbar memory [23, 62]. These approaches break down an operation into

a series of NOR operations. A typical addition implementation requires 12 NOR operations,

resulting in 12 MAGIC NOR cycles [23] as compared to 6 in Tri-HD and 12 additional memristors

as compared to 4 in Tri-HD.
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(a) Encoding (b) Training

(c) Retraining (d) Inference

Figure 2.10. Latency and energy consumption of HD on CPU and the proposed Tri-HD-based
architecture.

2.7 Results

2.7.1 Experimental Setup

We compare Tri-HD performance and energy efficiency with Intel(R) Core(TM) i7-

8700K CPU @ 3.70GHz (12 cores) with 16GB memory and 256GB SSD. All software support

for application level evaluation including training and testing of HD model have been performed

in CPU using python implementation. For hardware level evaluation we have designed a cycle

accurate simulator which emulates the HD computing functionality at inference. Our simulator

pre-store the randomly generated level and index hypervectors in memory and performs the

encoding, training, retraining, and inference operations in-memory using the controller signals.

We extracted the circuit level characteristic of Tri-HD performing basic bitwise operations

and give them as input to simulator. Performance and energy consumption of proposed hardware

are obtained from circuit level simulations for a 45nm CMOS process using Cadence Virtuoso.

We use VTEAM memristor model [63] for our memory design simulation with RON and ROFF
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of 10kΩ and 10MΩ respectively.

2.7.2 Workloads

We evaluate the efficiency of the proposed Tri-HD on four popular classification applica-

tions, as listed below:

Speech Recognition (ISOLET) [55]: The goal is to recognize voice audio of the 26 letters of

the English alphabet. The training and testing datasets are taken from Isolet dataset. This dataset

consists of 150 subjects speaking each letter of the alphabet twice. The speakers are grouped

into sets of 30 speakers. The training of hypervectors is performed on ISOLET 1, 2, 3, 4, and

tested on ISOLET 5.

Face Recognition (FACE): We exploit Caltech dataset of 10,000 web faces [56]. Negative

training images, i.e., non-face images, are selected from CIFAR-100 and Pascal VOS 2012

datasets [64]. We select 10% of images for the testing dataset which are completely separated

from the training dataset. For the Histogram of Oriented Gradients (HOG) feature extraction,

we divide a 32x32 image to (i) 2x2 regions for three color channels and (ii) 8x8 regions for

gray-scale.

Activity Recognition (UCIHAR) [57]: The dataset includes signals collected from motion

sensors for 8 subjects performing 19 different activities. The objective is to recognize the class

of human activities.

Physical Activity Monitoring (PAMAP) [58]: This dataset includes logs of 8 users and three

3D accelerometers positioned on arm, chest and ankle. They were collected over different human

activities such as lying, walking and, ascending stairs, and each of them was corresponded to an

activity ID. The goal is to recognize 12 different activities.

2.7.3 Tri-HD Results

Here we compare the efficiency of HD computing with D=10,000 for three different

platforms: CPU, proposed in-memory Tri-HD architecture, and MAGIC [23].
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Table 2.3. The energy efficiency, speedup and memory efficiency of Tri-HD as compared to
MAGIC running different applications.

ISOLET FACE UCIHAR PAMAP
Energy Improv. 2.20× 2.20× 2.21× 2.26×

Speedup 1.86× 1.86× 1.88× 1.87×
Memory Efficiency 1.61× 1.61× 1.61× 1.82×

(a) ISOLET (b) FACE (c) UCIHAR (d) PAMAP

Figure 2.11. Impact of HD dimension reduction and rounding approaches on the classification
accuracy for different datasets.

Table 2.3 compares the energy efficiency, speedup and memory efficiency of Tri-HD

with MAGIC [23] while running different HD classification applications. The memory efficiency

is defined as the number of processing cells required to execute in-memory operations. For a fair

comparison, we use the proposed architecture to evaluate both Tri-HD and MAGIC. The results

show that Tri-HD HD can achieve on an average 2.21× higher energy efficiency, 1.86× speedup,

and 1.68× lower memory requirement as compared to MAGIC. Moreover, both FELIX [59] and

MAGIC [33] enable dot product with parallel multiplication followed by a series of addition

operations. In contrast, Tri-HD uses an approximate version of dot product which does not cause

any inference accuracy loss for HD applications. Tri-HD’s dot product with rounding before

multiplication is 858× faster and 1.8× more energy efficient than dot product in FELIX. This is

a direct result of replacing multiplication and serial addition operations with faster parallel in

memory search operations.

Figure 2.10 shows the energy consumption and execution time of HD encoding, training,

retraining, and inference for different application on CPU and Tri-HD. Our evaluation shows that
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for all the applications tested, Tri-HD provides on average 434× and 2170× speedup and 4114×

and 26019× lower energy consumption as compared to the CPU while running end-to-end HD

training and inference respectively. End-to-end HD training involves encoding and training,

followed by 64 iterations of retraining to achieve maximum accuracy. We observe that the latency

does not depend much on the number of classes in a dataset in Tri-HD. Tri-HD exploits the fact

that computation for each class is independent and executes them in parallel. This is specifically

evident in the case of ISOLET and FACE datasets, where Tri-HD latency of end-to-end training

mainly depends upon the number of training samples. Moreover, the iterative nature of retraining

makes it the slowest operation in the HD pipeline for both Tri-HD and CPU. However, the

extensive parallelism offered by Tri-HD makes in-memory retraining 276× faster than CPU.

Here, we reported the result for Tri-HD with single memory partition. The higher efficiency

of the Tri-HD comes from (i) memory compatible operations of HD which enables Tri-HD

to parallelize the operations in different dimensions and (ii) lower data movement and higher

locality of the data in-memory for Tri-HD computation. We see that applications with large

number of features require more resources in order to perform the computation. Similarly, for

each application Tri-HD efficiency can change depending on the number of partitions that each

memory uses as shown in Section 2.5.

2.7.4 Tri-HD vs Previous Work

Here, we compare Tri-HD with existing PIM-based design for HD computing. It should

be noted that Tri-HD is the first works that uses 32-bit dimensions for hypervector, in contrast

with just 1-bit dimensions used by all other approaches. This increase both the algorithmic and

hardware complexity in Tri-HD. However, owing to the higher bitwidth, Tri-HD is able to achieve

much higher classification accuracy as compared to the existing work. For example, the model

obtained from Tri-HD is 2.2% more accurate (Figure 2.11) as compared to RRAM-based design

in [52]. At the same time, our end-to-end training with 20 retraining iterations is 48× faster and

3.4× more energy efficient. The speedup is a result of highly parallel and memory-compatible
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(a) Retraining Iterations (b) Learning Rate

Figure 2.12. Impact of number of retraining iterations and training learn rate on the application’s
classification accuracy on data set UCIHAR without rounding.

operations implemented in Tri-HD, whereas the approximate similarity metric of Tri-HD reduces

the otherwise high energy consumed by more complex operations. While comparing both designs

without retraining, Tri-HD is 289× faster and 5.2× more energy efficient.

Other PIM accelerators for HD [47, 48, 49, 50, 44, 54] implement fundamentally different

encoding schemes. Owing to the simplicity of their encoders, these designs are faster and

more energy-efficient. However, they suffer significantly in accuracy. For HDC inference, the

accelerators proposed in [47] and [54] are on average 57× and 24× faster and consume 3× and

731× less energy than Tri-HD respectively. However, they achieve 12.7-18.2% and 4.9-9.1%

less accuracy respectively as compared to Tri-HD. The remaining work [48, 49, 50, 44] do not

support the classification tasks discussed in this chapter. Hence, a comparison with these work is

beyond the scope of the dissertation.

We also compare Tri-HD with DNN running on FloatPIM [36] for ISOLET dataset.

We observe that Tri-HD is 221× (2132×) faster and 1.9× (3.6×) more energy-efficient than

FloatPIM with 32-bit fixed point (16-bit bfloat) data representation, while providing 1.7%

inference accuracy loss. The speedup is the result of simpler operations in Tri-HD as compared

to vector-matrix multiplications in FloatPIM.
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Figure 2.13. Latency and energy consumption per similarity check in Tri-HD with different
rounding approaches. RA stands for rounding after multiplication and RB stands for rounding
before multiplication.

2.7.5 Tri-HD with Approximate Similarity

Figure 2.11 shows the impact of the quantization in Tri-HD on the classification accuracy

of HD. We show three different policies: the reference, that is not rounding the products from

the matrix multiplication, round before, and round after, as explained in Section 2.4.

Accuracy: Figure 2.11 shows that the prediction accuracy increases at a diminishing

rate as the number of dimension increases. This is true for all five data sets we used, and for all

three rounding policies we used. It is noticeable that both the rounding after policy and round

before policy perform no worse than the reference policy. In fact, on average, Tri-HD using the

before (after) policy, is able to achieve 0.52% (0.36%) better accuracy when using D = 10,000.

Figure 2.12 demonstrates the influence on the number of retrain iterations and learning

rate on the classification accuracy of Tri-HD. The plot on the left shows the change in accuracy

during retraining on the UCIHAR dataset. This demonstrates that even in the presence of

inaccurate computations from quantizing the accumulation to powers of 2, HD is still able to

improve in accuracy by a significant amount during retraining. This shows that HD is robust to

noise. This property can further be exploited to increase the efficiency of the design as discussed

in Section 2.7.6. The plot on the right demonstrates the difference in accuracy after retraining
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Figure 2.14. Latency and energy consumption of Tri-HD for different dimensions.

utilizing different learning rates with varying dimensionality. The optimal learning rate may

be different for each dataset. Here we experimentally observed that, as shown by this graph, a

learning rate of 8.0 gave close to the best results on average. The learning rate determines how

strongly each misprediction during retraining effects the model being trained.

Performance and Energy: Figure 2.13 shows the latency and energy consumption of a

similarity check (dot product) for the two rounding approaches. As expected, similarity metric

37



with rounding before multiplication is on average 3.4× faster and 2.3× more energy-efficient

than similarity with rounding after multiplication because it avoids the comparatively slow

and high energy consuming in-memory multiplication. For rounding before multiplication,

in-memory search happens twice, once for the input and the other for the shifted output. While in

the case of rounding after, in-memory search is performed only for the output. We also observe

that the number of classes has negligible effect on the latency of similarity check. Whereas, the

energy consumption increases almost linearly with the number of classes because Tri-HD needs

to check the similarity of an input vector with all the class hypervectors.

2.7.6 Tri-HD Energy-Accuracy Trade-off

HD computing works based on the pattern of neural activity which are in high dimensional

space. In theory, the dimensional of the hypervector should be large enough (e.g., D = 10,000) to

ensure the randomly generated base hypervectors are nearly orthogonal. However, HD computing

shows robustness to scaling the hypervector dimensions. Figure 2.11 shows the HD accuracy

when the hypervector dimension scales from 2000 to 10,000. The result shows that for all

applications the HD can provide the similar accuracy as 10,000 when the hypervector dimension

scales to 8000. In addition, in reducing the hypervector dimensions from 10000 to 2000, HD

loses on average only 1.6% in accuracy.

Tri-HD can exploit the robustness of HD to dimensionality in order to reduce the compu-

tation cost. Figure 2.14 shows the latency and energy consumption of running HD classification

in memory. Our evaluation shows that reducing the hypervector dimension reduces Tri-HD en-

ergy consumption. This efficiency comes from the less number of class elements and operations

that HD needs to store and process in lower dimension. Our result shows that Tri-HD memory

requirement decreases linearly with the hypervector dimensions. For example, HD with D=2000

dimensions consumes 78% lower energy. Note that the latency of Tri-HD does not change with

the hypervector dimensions. In fact, Tri-HD is designed to perform bit parallel operations where

all computations can be parallelized across different dimensions.
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Hence, there is a trade-off between the accuracy and efficiency when the hypervector

dimension reduces. The results are relative to Tri-HD architecture running the baseline HD

with D = 10,000 dimensions. Let the quality loss, ∆E, be defined as the difference between the

HD classification accuracy in low dimension and D = 10,000. When our design ensures 0.5%

quality loss (∆E = 0.5%), the Tri-HD can provide 25% energy efficiency as compared to the

baseline HD model. Similarly, ensuring quality loss of less than 1% (2%), Tri-HD energy and

memory efficiency further improve by 65% and 78% receptively.

2.7.7 Tri-HD Parallelism

The HD efficiency depends on the amount of parallelism which we can apply to different

modules. The most area efficient method for HD encoding is to store all ID and level hypervectors

in a single memory partition and perform XOR operation between each ID and corresponding

level in series. This method serially processes the features and its performance is directly related

to the number of features. Our design parallelizes the encoding module by partitioning the

memory block as discussed in Section 2.3. For instance, HD using two memory partitions can

process two features at the same time. In the best case, the number of memory partitions can

be equal to the number of features that exist in application. For example, for ISOLET with 617

features, the encoding operation can be fully parallelized by dividing the memory block into

617 partitions. Each memory partition computes the XOR operation of ID and one of the level

hypervectors, which is selected depending on the feature value. There are two overheads of using

multiple memory partitions (i) The effective memory requirement increases, since each partition

needs to replicate the level hypervectors and assign rows to perform computation and store the

XOR result. (ii) All XOR results need to be written in a single memory in order to add together

and generate an encoded data. This write operation needs to perform sequentially and degrades

the efficiency of using multiple memory block.

Figure 2.15 compares the impact of number of memory partitions on the energy effi-

ciency, execution time and memory requirement of HD computing. Our evaluation shows that
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Figure 2.15. Impact of number of partitions on the energy consumption and execution time of
Tri-HD encoding running different HD applications.

increasing the number of partitions at first improves the performance and energy efficiency of the

computation, however, it results in less efficiency when the number of partitions surpasses 8. For

example, encoding ISOLET with 16 partitions is 10% slower than encoding the same dataset

with 8 partitions. For more than 8 partitions, the cost of combining the results from different

partitions exceeds the benefits provided by parallelism due to partitions.

This chapter showed how hyperdimensional computing can be accelerated with pro-

cessing in-memory. Chapter 3 shows how in-storage computing can enable hyperdimensional

computing on larger datasets, while further reducing the amount of data transfers.

Chapter 2, in part, is a reprint of the material as it appears in S. Gupta, M. Imani, and

T. Rosing, “FELIX: Fast and Energy-Efficient Logic in Memory,” IEEE/ACM International
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Conference On Computer Aided Design (ICCAD), 2018. The dissertation author was the primary

investigator and author of this material.

Chapter 2, in part, is currently being prepared for submission for publication of the

material. S. Gupta, J. Morris, X. Shen, M. Imani, B. Aksanli, and T. Rosing, “Tri-HD: Train,

Re-train, and Infer with Hyperdimensional Computing in Memory.” The dissertation author was

the primary investigator and author of this material.
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Chapter 3

Accelerating Hyperdimensional Comput-
ing in Storage

Chapter 2 presented a PIM architecture to accelerate HD computing. However, PIM may

not be able to store very large datasets and may fetch data from disk. Recent work has introduced

computing capabilities to solid-state disks (SSDs) to process data in storage [26, 27, 28, 1]. This

not only reduces the computation load from the processing cores but also processes raw data

where it is stored. However, the state-of-the-art in-storage computing (ISC) solutions either

utilize a single big accelerator for a SSD or limit the gains by using complex power-hungry

accelerators down the storage hierarchy [2]. Such architectures are not able to fully leverage its

hierarchical design.

In this chapter, we propose an in-storage computing (ISC) based HD computing system

that spans multiple levels of the storage hierarchy. We exploit the internal bandwidth and

hierarchical structure of SSDs to perform HDC operations over multiple data samples in parallel.

Our main contributions are as follows:

• We present a novel ISC architecture for HDC which performs HDC classification and

clustering completely in storage. It enables computing at multiple levels of SSD hierarchy,

allowing for highly-parallel ISC. Our hierarchical design provides parallelism and hides a

significant part of the performance cost of ISC in the storage read/write operations.

• We introduce the concept of batching in HDC and utilize it to make our ISC implementation
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more efficient. During training, we batch together multiple data samples encoded in the

HDC domain in storage. This allows us to partially process data without accessing all

encoded hypervectors. Batching enables us to have a minimal aggregation hardware

requirement. Batching also reduces the amount of data sent out of storage.

• Store-n-Learn utilizes die-level accelerators to convert raw data into hypervectors locally

in all the flash planes in parallel. Unlike previous work [2], our accelerator is simpler and

hides its computation latency by the long read times of raw data from flash arrays. Our

die-level accelerators can perform both batched and non-batched encoding efficiently in

flash planes. For batched encoding, the accelerator processes multiple inputs in a page in

parallel. Whereas, it generates multiple dimensions corresponding to an input in parallel

during non-batched encoding. This flexibility is enabled by our innovative adder tree

design.

• We present a top-level SSD accelerator, which aggregates the data from different flash

dies. This accelerator is implemented on an FPGA-based device controller. We implement

new and efficient FPGA designs for HDC training, retraining, inference, and clustering.

While HDC training provides sufficiently accurate initial models, retraining significantly

improves the accuracy of the models by iterating over training data and updating the

models multiple times. Store-n-Learn inference allows the users to directly obtain the

classification result from the storage drive without sending the entire model to the host.

Moreover, Store-n-Learn clustering leverages the FPGA already present in storage and

iteratively processes the datasets multiple times to generate high quality cluster centers.

• We also present host-side and drive-side primitives to enable the FPGA to work seamlessly

with the die-level accelerators.

• We evaluate Store-n-Learn over ten popular classification and clustering datasets. Our

experimental results show that Store-n-Learn is on average 222× (543×) faster than
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CPU and 10.6× (7.3×) faster than the state-of-the-art ISC solution, INSIDER for HDC

classification (clustering).

3.1 Related Work

Hyperdimensional Computing: Prior work applied the idea of hyperdimensional com-

puting to a wide range of learning applications, including language recognition [45], speech

recognition [42], gesture detection [65], human-brain interaction [66], and sensor fusion pre-

diction [7]. For example, work in [9] proposed an HD encoder based on random indexing for

recognizing a text’s language by generating and comparing text hypervectors. Work in [65]

proposed an encoding method to map and classify biosignal sensory data in high dimensional

space. Work in [8] proposed a general encoding module that maps feature vectors into high-

dimensional space while keeping most of the original data. Prior work also designed different

training framework to enable sparsity and quantization in HD computing [67, 68]. Prior work

also tried to design different hardware accelerators for HD computing. This include accelerating

HD computing on existing FPGA, ASIC, and processing in-memory platforms [69, 48, 44].

However, these solutions do not scale well with the number of classes and dimensions, primarily

due to the data movement issue. In addition, the existing processing in-memory architectures

only accelerate the encoding, training, or associative search and they are not scale with number of

classes of hypervector dimensions. Moreover, they work with binary hypervector which has been

shown to provide very low classification accuracy in HD space [70]. In contrast, our proposed

Store-n-Learn accelerates all the phases of HDC classification and clustering by fundamentally

addressing data movement and memory requirement issues. In addition, Store-n-Learn scales

with the size of data and the complexity of learning task.

In-Storage Computing: The major bottlenecks in the current storage systems include

the slow flash array read latency and the SSD to host I/O latency [71]. To alleviate these issues

prior work introduced ISC architectures [72, 28]. These work exploit the embedded cores present

in the SSD controller to implement ISC. Another set of work in [27, 26, 2] used ASIC accelerators
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in SSD for specific workloads. The work in [1] proposed a full-stack storage system to reduce

the host-side I/O stack latency. However, all these works propose single-level computing in

storage. Store-n-Learn on the other hand, is the first work to push the computing all the way

down to the flash die to extract maximum parallelism. It also uses a top level accelerator to

provide addition layer of computing. The combination provides a faster implementation that

overcomes the SSD to host transfer bottleneck for HDC.

3.2 Hyperdimensional Computing

Brain-inspired Hyperdimensional (HDC) computing has been proposed as the alternative

computing method that processes the cognitive tasks in a more light-weight way [6, 45]. HDC

offers an efficient learning strategy without over-complex computation steps such as back

propagation in neural networks. HDC works by representing data in terms of extremely large

vectors, called hypervectors, on the order of 10,000 dimensions. HDC has been shown to incur

minimal error rates, providing accuracy similar to the state-of-the-art learning algorithms like

DNNs [59] and k-means [11]. However, the high-dimensional space of HDC makes it robust

to external noise sources and hardware-induced errors like device failures [73], stuck-at-fault

errors [48], errors from low-precision hardware [45], and noisy communication [74]. Hence,

in noisy and error-prone systems HDC proves superior to algorithms like DNNs and k-means

that incur large accuracy losses. HDC performs the learning task after mapping all training

data into the high-dimensional space. The mapping procedure is often referred to as encoding.

Ideally, the encoded data should preserve the distance of data points in the high-dimensional

space. For example, if a data point is completely different from another one, the corresponding

hypervectors should be orthogonal in the HDC space. There are multiple encoding methods

proposed in literature [8, 9]. These methods have shown excellent classification accuracy for

different data types. In the following, we explain the details of HDC classification steps.
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3.2.1 Encoding

Let us consider an encoding function that maps a feature vector F = { f1, f2, . . . , fn},

with n features ( fi ∈ N) to a hypervector H = {h1, h2, . . . , hD} with D dimensions (hi ∈ {0,1}).

We first generate a projection matrix PM with D rows and each row is a vector with n dimensions

randomly sampled from {−1,1}. This matrix is generated once offline and is then be used to

encode all of the data samples. We generate the resulting hypervector by calculating the matrix

vector multiplication product of the projection matrix with the feature vector:

H′ = PM×F (3.1)

After this step, each element hi of a hypervector H′ has a non-binary value. In HDC, binary

(bipolar) hypervectors are often used for the computation efficiency. We thus obtain the final

encoded hypervector by binarizing it with a sign function (H = sign(H′)) where the sign function

assigns all positive hypervector dimensions to ‘1’ and zero/negative dimensions to ‘-1’. The

encoded hypervector stores the information of each original data point with D bits.

3.2.2 Training for Classification

In the training step, we combine all the encoded hypervectors of each class using element-

wise addition. For example, in an activity recognition application, the training procedure adds all

hypervectors which have the “walking” and “sitting” tags into two different hypervectors. Where

H i
j = 〈hD, · · · ,h1〉 is encoded for the jth sample in ith class, each class hypervector is trained as

follows:

Ci = ∑
j

H i
j = 〈ci

D, · · · ,ci
1〉 (3.2)

3.2.3 Classification Retraining

HD classification training requires only a single pass over training data and delivers

reasonable accuracy. However, some critical applications and/or situations may demand higher
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accuracy. In such cases, HD classification retraining can significantly improve the accuracy

of the base trained hypervectors by iterating over the training data multiple times. Consider a

training input hypervector Hx which belongs to class j but is incorrectly assigned to class k, the

retraining step proceeds as follows:

Ci =Ci−Hx (3.3)

C j =C j +Hx (3.4)

This step can be repeated several times for the whole dataset until the desired accuracy is

achieved.

3.2.4 Classification Inference

The main computation of inference is the encoding and associative search. We perform

the same encoding procedure to convert a test data point into a hypervector, called a query

hypervector, Q ∈ {−1,1}D. Then, HDC computes the similarity of the query hypervector with

all k class hypervectors, {C1,C2, · · · ,Ck}. We measure the similarity between a query and a ith

class hypervector using: δ 〈Q, Ci〉, where δ denotes the similarity metric. The similarity metric

most commonly used is Cosine Similarity as it provides the highest accuracy. However, other

similarities metrics like dot product and hamming distance for binary class hypervectors are

also used. After computing all similarities, each query is assigned to a class with the highest

similarity.

3.2.5 Clustering

The HD clustering algorithm is very similar to the popular K-means algorithm. HD

clustering, like K-means, first starts off with random centers. Each cluster center is assigned a

unique hypervector. Then, the algorithm iterates through all of the data points while comparing

their corresponding hypervectors with those of the cluster centers using cosine similarity metric.
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Each data point is assigned the center with maximum similarity. After all the points are labeled,

the new centers are chosen by superimposing the corresponding points to form an updated set of

cluster centers:

Ct+1
k = ∑

HX∈Ct
k

HX (3.5)

where HX ∈Ct
k indicates the set of all data points assigned to the cluster represented by Ck after

iteration t. The process is repeated until convergence or the maximum number of iterations is

reached. Convergence occurs when no point is assigned to a different cluster compared to the

previous iteration.

3.2.6 Challenges

HDC is light-weight enough to run at acceptable speed on a CPU [70]. Utilizing a

parallel architecture can significantly speed up the execution time of HDC [44]. However, with

the constantly increasing data sizes along with the explosion in data that occurs due to HDC

encoding, running this algorithm on current systems is highly inefficient. All of these platforms

need to fetch the extremely large hypervectors from memory/disk in order to process them. They

also require huge memory space to store HDC hypervectors and train on them. With the available

parallelism across thousands of dimensions and simple operations needed, in-storage computing

(ISC) is a promising solution to accelerate HDC encoding and training.

General-purpose ISC solutions partially address the data transfer bottleneck but still are

not able to fully exploit the huge internal SSD bandwidth [1]. The state-of-the-art application

specific ISC [2] try to exploit the internal SSD bandwidth but provide only one-level of computing,

which fails to accelerate applications which either (i) have a computing logic that is too complex

to implement using the small accelerator or (ii) require post-processing computation steps. Store-

n-Learn aims to overcome these issues by breaking complex HDC algorithms into simpler, both

data-size and computation-wise, parallelizable tasks. Then, Store-n-Learn utilizes two levels
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of computation within the SSD, one at the chip-level and other at the SSD level, to efficiently

implement those tasks.

3.3 Store-n-Learn Design

Store-n-Learn is an ISC design that performs HDC classification and clustering com-

pletely in storage. Figure 3.1 shows an overview of Store-n-Learn SSD architecture. A flash die

consists of multiple flash planes, each of which generates a page during a read cycle. Store-n-

Learn inserts a simple low-power accelerator, die-level accelerator (green on the right in Figure

3.1), in each plane to encode every read page into a hypervector. These hypervectors are then

sent to a SSD-level FPGA, which accumulates these hypervectors in batches in the top-level

accelerator (green on bottom left in Figure 3.1). The FPGA is also used for retraining, inference,

and clustering on the encoded hypervectors received from the flash planes. Store-n-Learn uses

a scratchpad (green on top left in Figure 3.1) in the controller to store the projection matrix,

which it receives as an application parameter from the host. Batching ensures that data generated

by each SSD-wide read operation is used in training as soon as it is available, without waiting

for the remaining data. The top-level accelerator is a FPGA which uses INSIDER acceleration

cluster [1] to implement all HDC operations other than encoding. We utilize the INSIDER’s

software stack to connect Store-n-Learn to the rest of the system. We modify the SSD drivers

and INSIDER virtual files mechanism to enable computing in flash chips and make it visible to

the FPGA.

3.3.1 Batched HDC Training in Store-n-Learn

The size of raw data (number of data points) combined with the size of each hypervector

(size of each encoded data point) makes it unrealistic to store all the encoded hypervectors and

then perform HDC training over them. Hence, we employ batching to perform partial training

with the hypervectors available at any given moment. As mentioned in Section 3.2, the initial

HDC training algorithm to create a class hypervector (3.2) is to add up all of the encoded samples
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Figure 3.1. Store-n-Learn SSD Overview. The components added by Store-n-Learn are shown
in green.

belonging to a given class. This summation can be spit up into batches of partial sums and

maintain the same result. For example, say there are s samples for each class, the total sum

can be split up into k partial sums or batches and the batch size defined as b = s/k, as shown in

Equation 3.6.

Ci =
b

∑
j=1

H i
j +

2b

∑
j=b+1

+...+
s

∑
j=((s−1)b)+1

H i
j (3.6)

Batching allows Store-n-Learn to process a subset of encoded hypervectors together.

Store-n-Learn chip-level accelerators encode raw data into hypervectors and send them to the

top-level SSD FPGA accelerator for further processing. All flash chips operate in parallel to

encode some of their data, send the hypervectors to FPGA, and operate on the next set. Each of

these hypervectors belongs to a specific class. For an application with C classes, we allocate

enough memory in the top-level accelerator to store C model hypervectors, each assigned to a

class. We batch all incoming hypervectors from flash that belong to the same class together and

bundle the result with the corresponding model hypervector. This is continued until all required

data has been encoded and used to train model hypervectors. In the end, the top-level model

hypervectors represent a fully trained model of the data. Batching provides us with two benefits.

First, it minimizes the memory requirement during training. Second, it reduces its effective

latency by combining hypervectors as soon as they are generated. This hides a major part of

training latency with the time taken to read data from flash.
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What if the size of model hypervectors is too large to store at top-level FPGA accel-

erator? Some application may need too many dimensions or have too many classes to store all

model hypervectors at the FPGA, which at best may have few MBs of blocked RAMs (BRAMs).

In such a case, even with balanced data, it will not be possible to train the model completely in

storage. However, Store-n-Learn can still perform training in batches and reduce the amount

of data sent to the host for processing. Now, instead of allocating FPGA BRAMs for all model

hypervectors, it is dynamically allocated according to the encoded input hypervectors available at

a time. If an input hypervector does not belong to one of the present models, a model hypervector

is sent out to the CPU host and an empty model hypervector corresponding to the class associated

with incoming hypervector is allocated instead. The implementation details are presented in

Section 3.3.3. The host is then responsible for combining various batched training hypervectors

together.

In this operating mode, Store-n-Learn still reduces the amount of data movement com-

pared to sending the raw low dimensional data. Here, we define n as the number of features or

dimensionality of the original data, D as the dimensionality of the encoded hypervectors, and

b as the batch size. When nb > D, the total data movement of the resulting batched hypervec-

tors is less than the amount of original data sent in low-dimensional space when the batched

hypervector uses the same bitwidth as the original data. However, we can utilize lower bitwidth

representations as we encode the data into a hypervector whose elements are {−1,1} and then

bundle the hypervectors with element-wise addition. Therefore, the range of data in any given

dimension can be defined by the normal distribution with a mean of 0 and standard deviation of
√

b. We can represent each dimension of the batched hypervector with (log2 4
√

b)+1 bits while

maintaining an accurate representation. We multiply by 4 to capture 4 standard deviations away

and add one to account for the sign bit. In this case, assuming the original data is represented

with 32 bits, Store-n-Learn sends less data than the data movement required to send the original

data in low-dimensional space when 32nb > D((log2 4
√

b)+1)/32
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3.3.2 Encoding Near Data via Flash Hierarchy

The modern SSD architecture is hierarchical in nature. An SSD has multiple channels.

Each channel is shared by 4-8 flash chips as shown in Figure 3.1. The flash chip may consist of

several flash dies which are further divided into flash planes, each plane consisting of a group

of blocks, each of which store multiple pages. Each plane has a page buffer to write the data

to. Operations in SSD happen in page granularity where the size of pages usually ranges from

2KB-16KB [75]. To fully utilize the flash hierarchy, we introduce accelerators for each flash

plane as shown in Figure 3.1. The aim of this added computing primitive is to process the data

where it has no conflict or competition for resources.

Chip-level Accelerator Design:

Store-n-Learn plane-accelerator encodes an entire page with raw data to generate a D

dimensional hypervector. Let us assume the SSD page size to be 4KB (ps) with each data point

being 4 bytes (ds). This translates to 1K data points (ps/ds). Let the feature vector contain 1K

features. Assuming that the feature vectors are page-aligned, each page stores one feature vector.

HDC encoding multiplies n-size feature vector with a projection matrix containing D×n 1-bit

elements. Our accelerator calculates the dot product between two page-long vectors, one read

from the flash array and another being a row-vector of the projection matrix. This involves

element-wise multiplication of the two vectors and adding together all the elements in the product.

Since the weights in the projection matrix ∈ {1,−1}, we reduce the bits required to store the

weights by mapping them such that 1−→ 1 and (−1)−→ 0. We use 2’s complement to break the

multiplication into an inversion using XNOR gates and then adding the total number of inverted

inputs to the accumulated sum of XNOR outputs. The accelerator is shown in Figure 3.2. It

consists of an array of 32K XNOR gates followed by a 1K input tree adder (labeled CSA in

Figure 3.2). The tree adder is a pruned version of the Wallace carry-save tree, where the operand

size throughout the tree is fixed to 4B. It reduces 1024 inputs to 2, which is followed by a carry

look ahead addition (labeled CLA in Figure 3.2). This gives us the dot product of the two vectors.
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It is the value of one dimension of the encoded hypervector. The accelerator is iteratively run D

times to generate D dimensions. Depending upon the power budget, Store-n-Learn may employ

multiple parallel instances of this accelerator to reduce the total number of iterations. Since D is

generally large, the generated D-dimensional vector is multi-page output. Store-n-Learn writes

the output of the accelerator to the page buffer of the plane, which serves as the response to the

original SSD read request.

Storing Input Data:

The accelerator above assumed the size of the feature vectors to be exactly the same as

that of a page. However, this is rarely the case. State-of-the-art ISC designs use page-aligned

feature vectors, which may lead to poor storage utilization if the feature vector size is too small

or just larger than the page size. For example, in a page-aligned feature vector setting, a 4KB

page may fit only one 512B feature instead of eight. Also, a 5KB feature vector may occupy

two complete pages. To alleviate the issue, we propose a cross-plane storing scheme, which

considers all the planes in a chip when storing data, with the goal of increasing the traditional

ISC storage utilization while being accelerator-friendly. We first describe the case when the size

of the feature vector is smaller than the page size. The scheme, shown in Figure 3.3 on the left,

divides an n-sized feature vector into np equal segments such that the most efficient storage is

given when:

argmax
c

(c×n + d.n/np ≤ ps)

53



PLANE 0 PLANE 1 PLANE 2 PLANE 3

Data 0 Data 1

1000200

Data 2 Data 3 Data 4

800

D

Projection 
Matrix

Page p Page p Page p Page p

Figure 3.3. Data storage scheme in Store-n-Learn and the corresponding segmentation of the
projection matrix. Data represents a feature vector.

where c is the number of complete n-sized feature vectors in a ps-sized page, np is the number of

planes per chip, and d ∈ {0,1, ...np}. Hence, a page would contain c×np +d segments in total.

Having np equal segments instead of any variable segmentation allows the accelerator to have a

simple segment-wise weight allocation. Each row-vector in the projection matrix of a plane is

divided into the same sized segments as the feature vector as shown in Figure 3.3 on the right.

This allows Store-n-Learn to increase storage efficiency while minimizing the control overhead

of the accelerator.

If the size of the feature vector is less than the page size, Store-n-Learn uses the same

segmentation size. However, the number of segments in a page are given by:

argmax
d

(d.n/np ≤ ps)

A drawback of this scheme is that individual reads for small feature vectors may require

reading two pages instead of one. However, our main purpose is to obtain trained vectors and

not raw feature vector values. Moreover, since a feature split across two planes shares the same

block and page number, they are both read at the same time.
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Encoding on Store-n-Learn Flash Chips:

While the new data storing scheme improves the page utilization, it does not suit well

the chip-level accelerator. As proposed before, our accelerator is a dot product engine. It

processes an entire page from the flash array to generate values of different dimensions of the

corresponding hypervector. In the new data storage scheme, this would result in an encoded

hypervector consisting of multiple and also partial feature vectors. An easy fix would be to

just process one feature vector at a time by setting the remaining inputs of the accelerator to

0. However, this would increase the total latency of the accelerator. The situation is worse if

the size of feature vectors is very small. We address this problem by extending the concept of

batching in Store-n-Learn.

As detailed in Section 3.3.1, a set of encoded hypervectors can be added dimension-wise

without interfering with HDC training process as long as they belong to the same final trained

hypervector, for example the same class model. An encoded dimension (di) of a feature vector

(FV ) is obtained by a dot product between the feature values (FVi) and the corresponding row of

the projection matrix (PM), i.e.,

di = FV0×PMi,0 +FV1×PMi,1 + ...FVn−1×PMi,(n−1)

Now, to add multiple FVs together, we just need to make sure that an element in a FV is being

multiplied with the corresponding weight of the PM. In that case, we would achieve the same

effect as batching, only at a lower level of abstraction. This also works when we have partial

features. In this case, the encoded hypervector for the current page would just have partial

information and may not correctly represent the data. Some part of this information is contained

in the encoded hypervector of another page. However, all these hypervectors will be added

together during training. Hence, the final hypervector will contain all the information.

To support this strategy in Store-n-Learn accelerator, the flash controller segments the

projection matrix in the same way as the feature vectors in the planes and sends the corresponding
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segments to the accelerator in each plane. It is important to note that only the features belonging

to the same class are added together in batches. So, a chip-level accelerator performs a bitwise

comparison between the labels of feature vectors in a page and only processes those belonging

to the same final model together.

Encoding without Batching:

The encoding acceleration discussed above works well while training class hypervectors

for classification because training inputs samples can be batched together. However, other tasks

like clustering, retraining, and inference operate on individual data samples. Hence, they cannot

utilize batched hypervectors and require access to individual ones.

As discussed before, encoding individual data points is slow and doesn’t fully utilize

the adder tree present in the encoding accelerator. Hence, unlike batched encoding where we

could get away with generating just one dimension per iteration of the accelerator, here we need

to generate multiple dimensions in parallel. Since each dimension is independent, one way to

improve the latency of encoding individual vectors would be to introduce multiple adder trees,

each computing one dimension. However, this would linearly increase the power and area of the

accelerator. Moreover, the optimal size and number of trees would differ for each application.

Instead, we preserve the current single adder tree and introduce carry look ahead adders

(CLAs) at intermediate stages as shown in Figure 3.4. The figure shows only a part of our

complete 20-stage adder tree. Our 32-bit CLA implementation has a latency similar to four

sequential carry save additions, i.e. four stages of the carry save adder tree (CSA). Hence, we

generate our tree using four-stage CSAs. We also add CLAs after every four stages, as shown

with blue and purple boxes in Figure 3.4. For example, a 16 (20) stage CSA consists of 113

(455) smaller and independent 4-stage, 24 (97) 8-stage, 4 (19) 12-stage, and 1 (3) 16-stage

CSAs. We insert a 32-bit CLA for each of these independent CSA. This results in a total of 141

(574) intermediate 32-bit CLAs. Each of these CLA-enabled independent trees can generate

one output (dimension) each. Hence, in the case when the size of feature vector is significantly
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Figure 3.4. Modified CSA in die-accelerator to encode individual feature vectors in Store-n-
Learn. The blue and purple squares represent intermediate CLAs.

smaller than the page-size and less than the input size of any of the CLA-enable smaller trees,

these trees can generate a dimension each. So, if a feature vector has a size of, say 32 (8), we

utilize the stage-8 (stage-4) CLAs, i.e. the blue (purple) boxes in Figure 3.4. For a 1024-input

adder, we can generate 24 dimensions of the hypervector corresponding to this feature vector in

parallel. To enable this, the feature vector is input to each smaller CSA. Moreover, the projection

submatrix corresponding to the 24 dimensions is flattened and supplied to the accelerator. These

above modification allows us to generate multiple dimensions in parallel, significantly boosting

the performance of single feature vector encoding.

3.3.3 Training at Top-Level

The encoded hypervectors from flash chips are used for training in the top-level accelera-

tor, which is implemented on an FPGA present in the SSD. We use FPGA because it is flexible

with the application parameters and can be configured using the primitives provided by INSIDER

[1]. The encoded hypervectors come with class labels. During training, they are accumulated

into the corresponding class (or model) hypervectors. At the end of training we obtain an output

hypervector for each class that in turn represents all the input samples belonging to that class.

In the FPGA, we first allocate memory for the final class hypervectors. For each class,
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the FPGA has an input queue, where the input hypervectors belonging to that class are indexed,

and an accumulator, which serially accumulates the vectors in the input queue to generate the

final class hypervector. The class label of an incoming hypervector is used to index it to the

corresponding class input queue. The size of the queue is determined based on the frequency

of the inputs, the number of classes, and dimensionality D. The introduction of class-wise

input queues removes the input data dependency of the accumulator by pre-processing class

labels. An accumulator simply needs to read the input index from its queue and operate on the

corresponding data. It makes the computation for different classes independent and parallelizable.

The accumulators for each class then operate in parallel to add an input hypervector from

the queue to the corresponding class hypervector. While the computation can also be fully

parallelized over all dimension, the large size of hypervectors and the limited read ports of the

memory make it impractical. Hence, we divide the hypervectors into partitions to allow partial

parallelism. The final class hypervectors are sent to the host.

If an application has too many classes or requires extremely large number of dimensions,

then the FPGA may not have enough space to store all the class hypervectors. In such a case, we

allocate the memory for the maximum number of class hypervectors, Cmax. We assign labels

to these classes with respect to the incoming hypervectors. Hence, the first set of incoming

hypervectors belonging to Cmax different classes are processed as before. We introduce an

addition queue that indexes, along with their labels, the incoming hypervectors not associated

with any of the active Cmax class. Whenever the queue is full, one of the Cmax class hypervectors

is sent to the CPU host. The corresponding memory is allocated for the class to which the first

hypervector in the queue belongs. The class hypervector sent to the host is the one that has

accumulated the most incoming hypervectors.

3.3.4 Retraining and Inference at Top-Level

The initial training iteration builds the HD model, a class hypervector for each class.

However, to fine-tune the HD model and increase accuracy, multiple retraining iterations may be
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needed. As explained in subsection 3.2.3, the retraining step consists of reading the encoded

hypervectors from the storage, performing the inference, comparing the classification output with

the data label, and adjusting the HD model in case of misprediction. To adjust the model, the

encoded hypervector is added to the class it belongs to and is subtracted from the mispredicted

class hypervector. Store-n-Learn supports inference and retraining on FPGA by leveraging

the flash chips that encode data into hypervectors. Previous works perform data encoding on

the FPGA to avoid storing the encoded data which requires more storage space. Supporting

HD encoding on FPGA consumes a lot of FPGA resources, thus limits the performance of the

accelerator. Store-n-Learn uses Flash chips to encoded the data in real-time that saturates the

internal SSD bandwidth. Thus, Store-n-Learn dedicates all the FPGA resources for HD training,

inference, and retraining, thereby providing higher performance as conventional FPGA-based

accelerators.

Figure 3.5(a) shows the architecture of the Store-n-Learn FPGA-based accelerator for HD

training, retraining and inference. The encoded hypervector is read from the storage device and

stored into the “encoded hypervector” buffer. During HD inference, Store-n-Learn in every clock

cycle reads d dimensions of the encoded hypervector and since HD operations can be parallelized

in the dimension level, it calculates the partial similarity metric between the dimensions of the

encoded hypervector and corresponding dimensions of the class hypervectors. In HD inference,

in every clock cycle, Store-n-Learn calculates the similarity metric between d dimensions of the

encoded hypervector and d dimensions of C class hypervectors. For each class, Store-n-Learn

performs d multiplications, and accumulates the multiplication results in a tree adder with d

inputs. At the end, the class with the maximum similarity is the inference result. In each cycle,

Store-n-Learn calculates a part of similarity metric and the entire inference is executed in D
d

cycles. d directly affects the required resources for training, retraining, and inference of HD. On

the other hand, Store-n-Learn reads the encoded hypervector from the storage device. Hence, the

value of d depends on the available resources on the FPGA and the SSD-to-FPGA bandwidth.

To perform HD retraining, Store-n-Learn first performs HD inference, and compares the
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Figure 3.5. Store-n-Learn top-level FPGA design. (a) Retraining and inference for HD classifi-
cation and (b) HD clustering as compared to the retraining step in HD classification.

prediction label with the original data label. In case of misprediction, it adjust the HD model

by subtracting the encoded hypervector from the mispredicted class and adding it to the actual

class. As illustrated in Figure 3.5(a), for each misprediction, one addition and one subtraction is

needed. Since during the retraining stage, entire encoded hypervector is needed, Store-n-Learn

locally stores it on FPGA BRAMs. If Store-n-Learn predicts the label correctly, it reads the

next encoded input; otherwise, it performs the model adjustment in D
d cycles. In each cycle d

dimensions of the encoded hypervector is added to the class hypervector with actual label and

subtracted from the predicted class.

3.3.5 Clustering at Top-Level

Store-n-Learn supports HD clustering, consisting of multiple clustering iterations on

FPGA. As explained in subsection 3.2.5, in each clustering iteration, HD uses the existing

centroids to clusters the input data, and uses the clustered data, at the end of iteration, to update

the cluster centroids. Multiple clustering iterations are required for HD clustering model to

converge. Store-n-Learn proposes a novel FPGA-based accelerator for HD clustering. During HD
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clustering, similar to HD classification, Store-n-Learn reads the encoded hypervector from the

storage device. It initializes the clustering HD model with randomly selecting an encoded input

hypervector for each cluster hypervector. Then it reads d dimensions of the encoded hypervector

in every clock cycle and calculates the similarity metric between the encoded hypervector and

cluster hypervectors. Store-n-Learn assigns the cluster with the highest similarity to the input.

Store-n-Learn uses the average of the encoded hypervectors assigned to a cluster as the cluster

centroid, giving us the initial clustering model. This is followed by multiple clustering iterations.

For each iteration, Store-n-Learn uses a copy of the latest HD clustering model to update the

centroids. In an iteration, Store-n-Learn uses the clustering model to perform similarity check

for each encoded input and assigns a cluster to it. Then, the corresponding input hypervector is

added to the predicted cluster centroid of the iteration’s copy of the HD clustering model. At the

end of each clustering iteration, i.e. after processing all the input data, the HD clustering model

is replaced by the updated copy of the HD clustering model.

Figure 3.5(b) highlights the differences between Store-n-Learn HD retraining and HD

clustering. To support HD clustering, along with HD classification, Store-n-Learn reuses the

similarity check module of HD classification to find the predicted cluster; it additionally, needs a

copy of the HD model to update the centroids. As illustrated in the figure, Store-n-Learn requires

a duplicate of the HD model memory to support HD clustering and it reuses the adder array

to update the cluster centroids. Therefore, Store-n-Learn supports HD clustering with double

BRAM utilization and with minimal logic overhead, only for generating related control signals.

In each cycle, similar to classification inference, the similarities between the encoded hypervector

and the clustering centroid hypervectors are calculated. Finding the closest cluster takes D
d cycles.

Then Store-n-Learn uses the predicted clusters, to update the centroids. Updating the centroids,

takes another D
d cycles. Hence, clustering each input, including the centroid updating, takes a

total of 2×D
d cycles.
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3.3.6 Software Support

Store-n-Learn derives its base system-architecture from INSIDER [1]. The INSIDER

framework is an API which, while being compatible with POSIX, allows us to implement an ISC

accelerator cluster. The INSIDER API takes a C++ or RTL code as an input and programs the

acceleration cluster (running on drive FPGA) accordingly. The drive program interface has three

FIFOs. The data input (output) FIFO takes in the input (output) data that is needed (generated)

by the accelerator. The parameter FIFO contains the runtime parameters for the FPGA which are

sent by the host. INSIDER keeps control and data planes of ISC separated. The drive control and

standard operations are handled by the SSD firmware while all compute data from flash chips

are intercepted by the top level FPGA accelerator for computing. The FPGA doesn’t care about

the source and/or destination of the data.

Store-n-Learn Host-Side Support:

INSIDER API uses POSIX-like I/O functionaly to communicate with the driver. IN-

SIDER has a standard block device driver with changes made to the virtual read and write

functionalities to accommodate for the programmable accelerator clusters in the drive. However,

the current abstraction allow us to pass directive/parameters only to the ISC FPGA and not the

drive. We define a new API, send_mode, which defines the mode for read and write operations,

further discussed in Section 3.3.6. It passes a single integer, mode, to the drive firmware while

opening a virtual file. For a non-ISC read/write from the drive, mode is set to ’0.’ During an

ISC read, mode represents the expansion f actor (EF). EF defines the increase in the size of

raw data after encoding. For example, EF = 5 means that each page of raw data generates

five pages of encoded data (due to large D). In this case, mode is set to 5. This parameter is

necessary to enable the drive to read the required number of pages from the flash chips. Since

EF is dependent on the number of features of the data and dimensionality requirement of the

application, it remains constant for an entire run. Similarly, a non-zero mode signifies ISC write.

In this case, the data being sent to the drive contains the elements of the HDC projection matrix

62



and is written to the controller scratchpad. No data is written to the flash chips. During write we

only care about whether mode is zero or non-zero.

Store-n-Learn Drive-Side Architecture:

Store-n-Learn implements its top-level accelerator described in Section 3.3.3 as an

INSIDER acceleration cluster, which enables the final training step. However, INSIDER system

doesn’t support Store-n-Learn’s die-level acceleration because the standard read/write drive

operations can’t readily accommodate on-the-fly change in data size while reading encoded

pages and writing projection matrix elements to the on-die accelerator.

Store-n-Learn introduces the processing capability between flash planes and page buffers

but sometimes only raw data may be required. Hence, Store-n-Learn employs two read modes,

normal and compute. It uses the die-level accelerator in multiplexed mode where a read page is

sent to the accelerator for processing only in compute mode, shown in Figure 3.6. In normal

mode, the plane directly writes the original page to the page buffer. Moreover, response type in

the two modes also differs. A normal read results in just one page while a compute read responds

with multiple but fixed number of pages. Store-n-Learn uses application specifications such as

feature vector size and dimensionality requirement to generate an expansion factor, which is

supplied to the SSD firmware by the host, as explained in Section 3.3.6. The firmware uses this

factor to calculate the response size for page read commands in compute mode.

Store-n-Learn also employs two write modes, normal and compute. The compute mode

is used to supply projection matrix data to the on-die accelerators. In normal mode, data is

written in the data buffer and then programmed in the flash array. In compute mode, the data in

data buffer is sent to the accelerators as shown in Figure 3.6. The writes in compute mode are

fast since the data is just latched in CMOS registers instead of flash arrays. Unlike a compute

mode read, where the same command can be issued to all the chips, compute mode write requires

individual commands for each plane to configure their respective on-die accelerators. This

follows from Figure 3.3. Each plane gets the same segments but their positions may differ for
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different planes. A write configuration command is separately issued for each plane. For each

plane, it configures the size of segment (segS), number of input segments (segin), actual number

of segments in the plane (segact), and the ID of the first segment (segone). The format of the

command is [segS,segin,segact ,segone]. For example, the command for plane 0 and plane 2 in

Figure 3.3 would be [200,4,5,0] and [200,4,5,2] respectively. While sequential, this step has

negligible latency overhead because it can be performed in parallel for all the flash chips.

As discussed briefly in Section 3.3.2, the flash controller sends the projection matrix

elements to the respective accelerators. SSD receives the projection matrix from host. We

introduce a dedicated scratchpad in the flash controller to store the matrix. The controller

sends the elements in page-sized frames to the die accelerators. The frames consist of multiple

segments and are used by the die-accelerators according to the configuration command, as shown

in Figure 3.3.

3.4 Results

3.4.1 Experimental Setup

We developed a simulator for Store-n-Learn which supports parallel read and write

accesses to the flash chips. We utilized Verilog and Synopsys Design Compiler to implement

and synthesize our die-level accelerator at 45nm and scale it down to 22nm. The top-level

FPGA accelerator has been synthesized and simulated in Xilinx Vivado. For Store-n-Learn

drive simulation, we assume the characteristics similar to 1TB Intel DC P4500 PCIe-3.1 SSD
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connected to an Intel(R) Xeon(R) CPU E5-2640 v3 host. The parameters for Store-n-Learn are

shown in Table 3.1.

We compare Store-n-Learn with 7th Gen 2.4GHz Kaby Lake Intel Core i5 CPU with

8MB RAM and 256 GB SSD. We also compare it with a 3.5GHz Intel(R) Xeon(R) CPU E5-2640

v3 CPU server with 256GB RAM and 2TB local disk. We also compare Store-n-Learn with

INSIDER [1] and DeepStore [2], the state-of-the art ISC solutions. INSIDER is a full-stack

storage system and uses a top-level FPGA accelerator in the drive for ISC. DeepStore is an

ISC implementation for query-based workloads which employs specialized accelerators in SSD.

For all our experiments, including those for other ISC solutions, the data is assumed to be

channel-striped and stored using Store-n-Learn’s proposed scheme.

3.4.2 Classification Workloads

We evaluate the efficiency of Store-n-Learn on five popular classification applications, as

listed below:

Speech Recognition (ISOLET): The goal is to recognize voice audio of the 26 letters of the

English alphabet [55].

Face Recognition (FACE): We exploit Caltech dataset of 10,000 web faces [56]. Negative

training images, i.e., non-face images, are selected from CIFAR-100 and Pascal VOS 2012

datasets [64].

Activity Recognition (UCIHAR): The dataset includes signals collected from motion sensors for

8 subjects performing 19 different activities [57].

Medical Diagnosis (CARDIO): This dataset provides medical diagnosis based on cardiotocogra-

phy information about each patient [76].

Gesture Recognition (EMG): The dataset contains EMG readings for five different hand gestures

[77].
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Table 3.1. Store-n-Learn Parameters

Capacity 1T B Channels 32
Page Size 16KB Chips/Channel 4

External BW 3.2GBps Planes/Chip 8
BW/Channel 800MBps Blocks/Plane 512
Flash Latency 53us Pages/Block 128

FPGA XCKU025 Scratchpad Size 4MB
Avg Power/DA 8mW DA Latency 1.02ns

*DA: Die-accelerator

3.4.3 Clustering Workloads

We evaluate Store-n-Learn on FCPS, the fundamental clustering problem suite [78],

which has been widely used in the literature. We also evaluate HD clustering on the pattern

recognition dataset [79]. The specific datasets used are:

FCPS Hepta [78]: The three-dimensional Hepta data set consists of seven clusters that are

clearly separated by distance, one of which has a much higher density.

FCPS Tetra [78]: The Tetra data set consists of 400 data points in four clusters that have large

intra-cluster distances. The clusters are nearly touching each other, resulting in low inter-cluster

distances.

FCPS TwoDiamonds [78]: The data consists of two clusters of two-dimensional points. Inside

each “diamond” the values for each data point were drawn independently from uniform distribu-

tions.

FCPS WingNut [78]: The Wing Nut dataset consists of two symmetric data subsets of 500

points each. Each of these subsets is an overlay of equally spaced points with a lattice distance

of 0.2 and random points with a growing density in one corner.

Pattern Recognition (Iris) [79]: The data set consists of samples from each of three species of

Iris flower with four features are present from each sample. One class is linearly separable from

the other 2; the latter are not linearly separable from each other.
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3.4.4 Comparison with CPU and CPU Server

We first compare Store-n-Learn with CPU and CPU-based server running state-of-the-art

implementations of HDC classification and clustering over the five datasets with D = 10k. In

addition, we generate a synthetic dataset with 10 classes and each data sample having 512

features. We vary the size DS (number of data points) of the synthetic dataset from 103 to 107.

HDC Classification with Single-pass Training: The runtime of single-pass classifica-

tion for different platforms is shown in Figure 3.7. We observe that Store-n-Learn is on average

3405× and 1612× faster than CPU and CPU-server, respectively. Our evaluations show that the

improvements from Store-n-Learn increases linearly with an increase in the dataset size. This

happens because more data samples result in more huge hypervectors to generate and process. In

conventional systems, this translates to a huge amount of data transfers between the core and

memory. It should be noted that the CPU system runs out of memory while encoding for 106

samples and kills the process. The CPU server faces a similar situation for 107 samples. In

contrast, since Store-n-Learn generates hypervectors (encoding) while reading data out of the

slow flash arrays and processes (training) them on the disk itself, there is minimal data movement

involved.

Figure 3.7 also shows the size of raw input data in each case normalized to the size of the

corresponding trained class hypervectors. While Store-n-Learn only sends class hypervectors

from drive to the host, CPU-based systems fetch all data samples from the disk. We observe that

the ratio increases linearly with an increase in the data size. In fact, the size of class hypervectors

does not change with an increase in data size as long as the number of classes and required

dimensions remain the same.

HDC Classification with Retraining: Figure 3.8 shows the runtime of HD classification

with 50 epochs of retraining for different platforms. We observe that Store-n-Learn is on average

222× and 81× faster than CPU and CPU-server, respectively. The improvements are lower than

those in case of single-pass classification because now FPGA-based retraining, specifically the
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search component of retraining, is the major latency bottleneck. Our evaluations also show that

the performance of Store-n-Learn classification with retraining increases with an increase in

either the dataset size or the number of classes. In addition to processing more hypervectors

for a larger dataset, more classes increase total number of the latency critical search operations.

Store-n-Learn is able to process much larger datasets than CPU and CPU-server, both of which

run out of memory while working with 106 data samples. The trend for total SSD to host data

transfers remains similar to that of single-pass training, where the amount of data transfers saved

increases linearly with an increase in the data size.

HDC Clustering: Figure 3.9 shows the runtime of HDC with 50 epochs of clustering

for different platforms. We observe that Store-n-Learn is on average 543× and 187× faster

than CPU and CPU-server, respectively. Moreover, the latency of Store-n-Learn clustering

increases with both dataset size and the number of classes. However, the relative improvements

from Store-n-Learn also increase with an increase in dataset size. Store-n-Learn is able to

process much larger datasets than CPU and CPU server, both of which run out of memory while

clustering 106 data samples.

The amount of data transfers saved increases linearly with an increase in the data size.

For very small clustering datasets [78, 79], transferring hypervectors of cluster centers instead of

raw data increases the data transfers between SSD and host. However, data transfers become a

system bottleneck for large datasets, in which case Store-n-Learn significantly reduces the total

transfers. For example, Store-n-Learn transfers ˜5000× less data as compared to CPU-based

systems for the synthetic dataset with one million samples.

3.4.5 Store-n-Learn Efficiency

Figure 3.10 shows the breakdown of Store-n-Learn single-pass classification latency

normalized to the total latency. Here I/O shows the time spent in sending the generated class

hypervectors to the host. For small datasets, CARDIO and EMG, the latency is dominated by the

encoding. However, as the data size increases, the internal SSD channel bandwidth becomes a
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Figure 3.7. Runtime comparison of HDC encoding and single-pass classification training in
Store-n-Learn with other platforms. The bars in red shows the size of raw data normalized to the
total size of corresponding class hypervectors in Store-n-Learn.

bottleneck. This indicates that Store-n-Learn is able to completely utilize and saturate the huge

internal SSD bandwidth. In addition, a significant amount of time spent in training and some part

of the encoding is hidden by the SSD channel latency. As a result, the combined latency is less

than sum of the latency for individual stages. For the example of FACE dataset, even though the

training takes more than half of the total latency, a negligible portion of it actually contributes

to the overall latency. It shows that Store-n-Learn stages are able to hide some of their latency.

However, in the case of HD retraining and clustering, top-level FPGA accelerator becomes the

latency bottleneck. This happens due to the iterative nature of these algorithms.

To demonstrate the scalability provided by Store-n-Learn, we evaluate it over a synthetic

dataset with 104 samples each with 512 features. We vary the dimensions D from 103 to 105.

Figure 3.11a shows that the latency of Store-n-Learn increases linearly with an increase in the

number of dimensions, showing that Store-n-Learn is able to scale with D. Additionally, an

increase in D results in longer class hypervectors for the same input data. Hence, the ratio of

raw data to hypervector size decreases with an increase in dimensions, falling from from 512 for

D = 1k to 2.5 for D = 105.

We also scale the dataset with the number of class, while keeping its size fixed to 104

69



Figure 3.8. Runtime comparison of HDC classification with retraining in Store-n-Learn with
other platforms. The bars in red shows the size of raw data normalized to the total size of
corresponding class hypervectors in Store-n-Learn.

samples and D as 103. Figure 3.11b shows that the Store-n-Learn latency has minor changes with

the number of classes when we have less than 50 classes. This is because our FPGA has enough

resources to train up to 54 classes with D = 10k dimensions. The latency almost doubles for 100

classes. However, when number of classes increases further, the size of model hypervectors is

too large to store in the FPGA. Hence, partially trained hypervectors are then sent to the host for

further processing. This can be seen by a jump in the latency for 500 classes in Figure 3.11b.

In addition to the time spent in training, transferring the class hypervectors to host creates a

major bottleneck. This is also evident from the data size ratio which declines for large number of

classes. A ratio of less than 1 signifies that the size of generated hypervectors is larger than the

raw data.

3.4.6 Store-n-Learn vs Other Algorithms

We compare Store-n-Learn with the best existing algorithms for classification and cluster-

ing. For classification, we compare our work with the state-of-the-art DNN network for ISOLET

[80]. In our evaluation, Store-n-Learn runs HDC classification with 50 epochs of retraining

while DNN is trained on the CPU. We observe that Store-n-Learn is 9.4× faster than DNN while

incurring less than 1% accuracy loss. We also compare our design with DNN running on FPGA.
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Figure 3.9. Runtime comparison of HDC clustering in Store-n-Learn with other platforms. The
bars in red shows the size of raw data normalized to the total size of corresponding cluster center
hypervectors in Store-n-Learn.

No FPGA implementation completely trains DNNs due to the complexity of operations and lack

of sufficient on-board resources. Hence, we compare the inference performance of our design

with that of DNN running on FPGA [81]. Store-n-Learn is 17.7× faster than FPGA for ISOLET

dataset, with less than 1% accuracy loss.

For clustering, we compare Store-n-Learn with the k-means algorithm [82] for the five

clustering datasets on CPU. Store-n-Learn runs HDC clustering with 50 epochs of clustering.

The quality of clustering is measured in terms of mutual information score, which is one when

the predicted labels are perfectly correlated with the ground truth and zero when they are totally

uncorrelated. Store-n-Learn is on average 1.3× faster than k-means on CPU while providing

the same mutual information score. We also compare Store-n-Learn clustering with k-means

running on FPGA and observe that Store-n-Learn is 47× faster. Store-n-Learn is faster than the

state-of-the-art algorithms for both classification and clustering due to the latency overhead of

data transfers in traditional systems. Moreover, the higher complexity of operations in traditional

algorithms further makes them slower on FPGA.
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Figure 3.10. Breakdown of latency of different stages of HDC single-pass classification normal-
ized to the total latency.

3.4.7 Comparison with Existing ISC Solutions

We compare the performance and data transfer efficiency of Store-n-Learn with state-of-

the-art ISC designs INSIDER [1] and DeepStore [2]. In our experiments, INSIDER performs

both encoding and training/clustering using the FPGA accelerator in SSD and sends the class

hypervectors to the host. Since DeepStore was intended for a completely different application, we

replace its accelerator with Store-n-Learn die-level accelerator. During ISC, Deepstore encodes

the raw data into hypervectors and sends those hypervectors to the host for training/clustering.

HDC Single-Pass Classification: Figure 3.12 shows the change in latency and data

transfer size of single-pass classification for the three ISC solutions. We observe that Store-n-

Learn is on an average 14.4× and 446.8× faster than INSIDER and DeepStore, respectively.

While encoding in DeepStore takes the same time as Store-n-Learn, transferring hypervector

from SSD to host and further training on them on CPU increases the execution time of Deep-

Store significantly. On the other hand, the SSD channel bottleneck faced by Store-n-Learn is

relaxed in case of INSIDER since it only transfers raw data. However, the FPGA-based HDC

encoding+training are on an average 21× slower as compared to FPGA-based training. Also,

since INSIDER performs training in SSD, it transfers the same amount of data to the host as
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Figure 3.11. Change in HDC runtime and raw data size to hypervector ratio with (a) dimensions
and (b) number of classes.

Figure 3.12. Runtime and data transfer size comparison of Store-n-Learn classification without
retraining with INSIDER [1] and DeepStore [2]

Store-n-Learn. However, by transferring untrained hypervectors, DeepStore increases the amount

of data transferred on an average by 397× as compared to Store-n-Learn.

HDC Classification with Retraining: Figure 3.13 shows the change in latency and

data transfer size for complete HDC classification. We observe that Store-n-Learn is on an

average 10.6× and 179× faster than INSIDER and DeepStore, respectively. For DeepStore,

transferring hypervector from SSD to host and further retraining on them for 50 epochs on CPU

increases the execution time of DeepStore significantly. INSIDER’s FPGA-based HDC encoding

and retraining are on an average 10.7× slower as compared to Store-n-Learn’s FPGA-based
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Figure 3.13. Runtime and data transfer size comparison of Store-n-Learn classification with
retraining with INSIDER [1] and DeepStore [2]

Figure 3.14. Runtime and data transfer size comparison of Store-n-Learn clustering with
INSIDER [1] and DeepStore [2]

retraining because encoding consumes a significant amount of FPGA resources, leaving less

resources to accelerate latency critical retraining. While INSIDER transfers the same amount

of data to the host as Store-n-Learn, DeepStore increases the amount of data transferred on an

average by 2510× as compared to Store-n-Learn. This is 6.3× worse than the data transferred in

single-pass classification because in retraining hypervectors are sent for individual data points,

eliminating the gains from batched encoding.

HDC Clustering: Figure 3.14 shows the change in latency and data transfer size for

HDC clustering. We observe that Store-n-Learn is on an average 7.3× and 187× faster than
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INSIDER and DeepStore, respectively. The latency results follow the same trends and reasoning

as those for HDC classification with retraining. For data transfers, DeepStore increases the

amount of data transferred on an average by 217× as compared to Store-n-Learn. The data

transfer overhead of DeepStore worsens with an increase in the dataset size.

This and the previous chapters accelerated computations on raw data in memory and

storage. The next chapter shows how similar computations can be performed in a server-client

setup where the data is always encrypted.

Chapter 3, in part, is a reprint of the material as it appears in S. Gupta, J. Morris, M.

Imani, R. Ramkumar, J. Yu, A. Tiwari, B. Aksanli, and T. Rosing, “THRIFTY: Training with

Hyperdimensional Computing across Flash Hierarchy,” IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2020. The dissertation author was the primary investigator

and author of this material.

Chapter 3, in part, is currently being prepared for submission for publication of the

material. S. Gupta, B. Khaleghi, S. Salamat, J. Morris, R. Ramkumar, J. Yu, A. Tiwari, M. Imani,

B. Aksanli, and T. Rosing, “Store-n-Learn: Classification and Clustering with Hyperdimensional

Computing across Flash Hierarchy.” The dissertation author was the primary investigator and

author of this material.
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Chapter 4

Secure and Privacy-Preserving Computing
with Fully Homomorphic Encryption in
Memory

Chapters 2 and 3 presented in-memory and in-storage HD computing accelerators. How-

ever, some critical healthcare, finance, or insurance applications may rely on cloud computing

due to the complexity of algorithms, very large and dynamic computation/learning models,

proprietary algorithms, or the need to simultaneously learn from multiple users [29, 30, 31, 32].

Since they deal with extremely sensitive information, most of the users’ data is encrypted. The

solutions proposed earlier cannot process such data without decrypting it first.

Fully homomorphic encryption (FHE) allows us to apply functions of arbitrary complexity

on encrypted data (ciphertext) without the need to decrypt it. This eliminates the need for private

key exchanges and decrypting data at the server, raising the bar on security and privacy. However,

computing on encrypted data comes at a huge data and computation cost, resulting in large

performance and memory overheads. For example, encrypting an integer in homomorphic

domain may explode its size from meagre 4B to more than 20KB. Moreover, homomorphically

multiplying two FHE encrypted integers may require 10s of millions of operations. Further,

computing with encrypted data may limit the complexity of the function that can be evaluated

for a set of encryption parameters. The work in Gentry [83] proposes a procedure, called

bootstrapping, to reduce the growth of noise during function evaluation in FHE domain, allowing
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FHE to perform more complex operations. However, it is extremely expensive and increases the

latency of evaluating a homomorphic function by 100-1000×. Recent proposals in [84, 85, 86]

make bootstrapping faster and computationally less expensive. Unfortunately, bootstrapping still

remains expensive and is the major limiting factor while using FHE to evaluate real workloads.

The encryption keys used in such schemes may reach up to GBs in size, adding to the huge

capacity and data transfer bottleneck of FHE.

The works in [87, 88, 89, 90, 91, 92] proposed CPU and GPU implementations of RGSW-

based FHE schemes [84, 37, 93]. However, they cannot scale enough to provide the speedup

needed to make FHE feasible. Most operations in these schemes are based on polynomials and

vectors, which are difficult to accelerate due to the limited parallelism and data access provided

by current systems. Other hardware-acceleration work in [94, 95, 96, 97] accelerate previous

generation schemes which are not truly FHE and support limited functionality.

Processing in-memory is an excellent match for the FHE since it provides extensive

parallelism, bit-level granularity, and an extensive library of compatible operations which

dramatically improving both performance and energy efficiency [33, 34, 35, 36]. It addresses

the issue of large data movement by processing data in memory where it is stored. We use

Resistive RAM (RRAM) which has low energy requirements, high switching speed, is scalable,

and compatible with the CMOS fabrication process.

In this chapter, we present the first latest generation end-to-end acceleration of FHE cryp-

tosystem based on [37]. Unlike previous HE proposals, which supported a library of functions,

the latest RGSW-based cryptosystem allows computing arbitrary functions on encrypted data.

Our proposed MemFHE has two main components, the client and the server PIM accelerators.

The client PIM accelerator runs ultra-efficient in-memory operations to not only encode and

decode data but also enables ring learning with errors (RLWE) to encrypt and decrypt data.

The encrypted data (ciphertext), along with an encrypted version of secret key, are sent to the

server PIM accelerator for processing. Server PIM receives the ciphertext from multiple clients

and performs operations on ciphertext to generate output. To enable this, server PIM uses
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PIM-enabled bootstrapping which keeps the accumulated noise low so that the output ciphertext

can be decrypted by the intended client. This ciphertext is sent back to the client. In MemFHE,

only the client has the means to decrypt the output ciphertext and access the unencrypted data.

To summarize, our specific contributions are:

• We present the first end-to-end acceleration of fully homomorphic encryption in memory.

Our design accelerates both the encryption/decryption and the full FHE computation

pipelines. While individual PIM operations are slower than in CPU, MemFHE employs

ciphertext-level and operation level parallelism combined with operation-level pipelining

to achieve orders of magnitude of performance improvement over the traditional systems.

• Our server PIM design includes fast bootstrapping, key switching, and modulus switching

in memory. It distributes the key memory units to reduce the instances of data contention.

It sequentially processes different inputs in different pipeline stages for the best processing

throughput.

• We accelerate the bottleneck process of bootstrapping by using a highly pipelined archi-

tecture. Our bootstrapping introduces parallel accumulation units, which supports two

different types of bootstrapping techniques. We propose a novel implementation for the

core bootstrapping operation, NTT. Unlike existing works, our NTT doesn’t require any

special interconnect structure. Moreover, it is flexible and can process many NTT stages

without needing extra hardware.

• Our client PIM design includes encryption and decryption. MemFHE enables encryption

efficiently in memory by exploiting bit-level access and accelerates dot product with a new

in-memory implementation.

• We evaluate MemFHE for various security-levels and compare it with state-of-the-art CPU

implementations for Ring-GSW based FHE. MemFHE is up to 20k× faster than CPU for

78



FHE arithmetic operations and provides on average 2007× higher throughput than [3]

while implementing neural networks with FHE.

4.1 Background and Motivation

4.1.1 FHE Schemes

Many fully homomorphic encryption schemes have been developed during the past

decade. The first generation include the original design from [83] and its subsequent optimiza-

tions. However, they have limited homomorphic capacity due to rapid noise growth during

evaluation, restricting the evaluation to few gates at a time. Second generation schemes reduce

the noise growth from linear to logarithmic and are based on more standard hardness assumptions.

However, they are slow, requiring minutes to perform simple gate operations (HElib-IBM [98]).

The third generation schemes use weaker hardness assumptions to minimize the boot-

strapping time and provide slower noise growth [99, 84, 93]. The work in [37] presented a

framework to enable fast bootstrapping for such schemes under different security assumptions.

While being the most general, supporting arbitrary functions, allowing many bootstrapping

iterations without the need to decrypt, and providing providing control over security-levels, these

schemes bootstrap individual boolean gates. They may be slower overall when implementing

multi-bit operations. Recent works [100, 101, 3] have shown efficient extension of these schemes

for multi-bit operations. The work in this direction promise to deliver faster bootstrapping and

better overall application latencies, while providing the ability to perform functions of arbitrary

complexity in encrypted domain.

4.1.2 FHEW Cryptosystem

FHEW cryptosystem [37] is based on the latest generation of FHE schemes, namely

FHEW [84] and TFHE [85], and evaluates logic functions on encrypted data, i.e. ciphertexts, by

evaluating look-up tables (LUTs). This is a foundational work toward realizing the full potential

of FHE with more efficient encryption (less data size explosion), and faster bootstrapping for
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the same level of security as the previous generation schemes. It operates at bit-level, where

each data bit is encrypted into pair consisting of a polynomial and an integer using a secret key,

s, with learning-with-error (LWE) scheme. The encryption is performed for given application

parameters, q and n, where n is the degree of the polynomial. All operations and data are taken

modulus q. The typical values of n and q, presented in Section 4.7, results in a bit of data being

encrypted into a 0.5-1kb ciphertext. In some cases, FHEW further breaks the ciphertext integers

(including each polynomial coefficient) into dr numbers, each with base Br, to control the growth

rate of noise. This further increases the ciphertext size. FHEW operates on LWE-encrypted

ciphertexts, utilizing two different encrypted versions of s, EKB and EKS. The encrypted keys

may have memory footprint in GBs.

FHEW employs cyclotomic ring-based encryption technique, namely RGSW [99], to

operate on the ciphertexts. For each function, like NOR or XOR, that should be applied on the

input ciphertexts, FHEW stores a corresponding FHE function in the LUTs. For example, an

AND operation between two bits in plaintext, translates to simple addition of their corresponding

ciphertexts, followed by AND-specific coefficient mapping. This is followed by bootstrapping,

which reduces the noise accumulated in the output ciphertext due to function implementation.

If not bootstrapped, the output ciphertext may become undecryptable. Most operations in

bootstrapping happen over the polynomial part of output ciphertext, using the encrypted version

EKB of s. The ciphertext undergoes several accumulation iterations during bootstrapping.

Bootstrapping works on parameters with similar functionality as that of LWE encryption but

have different values, namely N, Q, Bg, and dg. Here, all operations in accumulation happen on

integers that have each been decomposed into dg digits with base Bg. The final accumulation

output is a pair of polynomials of degree N and modulus Q. The final output ciphertext, with

reduced noise, is extracted out of the accumulation output. It is further treated with EKS

encrypted version of s to convert it back to the original LWE-encrypted domain. This process is

called key-switching. The key-switched ciphertext can then be decrypted to obtain the output bit.

Apart from the large memory requirements of different FHEW components, the iterative
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nature and high polynomial degrees of FHEW operations makes it a slow and a memory-

intensive process. Most data operations in FHEW are applied over polynomials which have

a large compute and memory transfer bottleneck [89]. Efficient polynomial multiplication

converts the polynomial into the frequency domain with number theoretic transform (NTT).

The digit-decomposed computations of FHEW (i.e. breaking integers into dr or dg digits),

required back-and-forth polynomial conversions between normal (coefficient) and NTT domain.

Cumulatively, these operations make the implementation of FHEW on CPUs/GPUs very slow.

Moreover, the huge memory requirement of the third generation FHEW cryptosystem, restricts

the development of an effective FPGA/ASIC implementations. In contrast, MemFHE presents

the first memory-centric architecture for FHEW cryptosystem. While MemFHE benefits from

the large memory density due to its memory-centric approach, processing in memory further

enables efficient computations, extreme parallelism, and significantly reduced data movement.

4.1.3 Processing in Memory

Many PIM techniques using RRAM have been proposed recently which implement

bitwise operations, arithmetic, and search operations in memory [33, 102, 59, 103, 104], with

support for varying bit-widths and data types including binary, integer, fixed point, and floating

point. They use the switching-based RRAM processing in memory logic, where operations are

governed by the voltage applied at the memory bitlines [33, 59]. The work in [59, 40] implement

addition and multiplication using the bitwise operations. A b-bit addition is implemented with

b serial 1-bit additions, which are further implemented with operations like AND, OR, and

XOR. Where, a multiplication operation is implemented by first generating partial products using

bitwise AND and then adding them using 1-bit additions.

4.2 MemFHE System Overview

MemFHE employs an end-to-end privacy-preserving computing system consisting of

both client and server implementations. Our architecture is based on the FHEW cryptosystem
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[37] which provides the slowest noise growth and hence is the most generally applicable class of

FHE. MemFHE is implemented completely in memory, using homogeneous crossbar memory

arrays and exploits processing in memory to implement all FHE operations.

All computations in the MemFHE-server happen in encrypted domain. It inputs the

encrypted ciphertexts and performs the desired operations on the ciphertexts in the basic function

unit, UFUNC, without decrypting them. Computing in FHE domain leads to the accumulation

of noise in the resultant ciphertext. To reduce this noise and keep it below the threshold, server

utilizes the MemFHE-bootstrapping. Bootstrapping is the most important but also the slowest

process in the MemFHE-server pipeline due to its iterative nature. Hence, we heavily pipeline

bootstrapping architecture, so that the slowest operations in bootstrapping happens on different

pipeline stages. We introduce novel architectures for various sub-components of bootstrapping

and perform operation level optimizations in the bootstrapping core. As a result, MemFHE-server

can achieve a high throughput of 170 inputs/ms even for high security parameters, which is 20k×

higher than the latest CPU implementation [92].

In addition to the server, we also present MemFHE-client, which provides the input

ciphertexts and receives the output of the server. The client is responsible for converting raw

data into FHE domain, using a client-specific secret key. The client in FHEW cryptosystem

encrypts a bit of data into an LWE ciphertext. MemFHE-client accelerates LWE utilizing efficient

in-memory multiply-accumulation and shift operations. The encrypted ciphertext is sent to server

along with an encrypted version of the client’s secret key. Client also decrypts the output from

the server to obtain the result of FHE computation in the plaintext form.

4.3 MemFHE-Server Architecture

Figure 4.1 shows an overview of the server’s architecture. The goal of MemFHE’s server

is to provide a high throughput for operations on encrypted data. To achieve this, we create a deep

pipeline. As discussed later and evaluated in experiments, bootstrapping is the major bottleneck
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Figure 4.1. MemFHE Server Architecture

of the server-side computations. Hence, we use the latency of the slowest bootstrapping stage

to set the maximum latency of any pipeline-stage in the server. We next present in-memory

implementations of all the server components.

4.3.1 FHEW Function Implementation

The main strength of FHEW lies in its ability to implement arbitrary functions. FHEW

achieves this by translating each boolean function into one or more homomorphic computation

steps and then mapping the integer output to a bootstrapping-compatible polynomial, mb. Each

element of mb is set to either Q/8 and −Q/8, the FHE equivalents of binary ‘1’ and ‘0’.

MemFHE allocates a memory block which stores these translations for all functions. Function

implementation is the only process in MemFHE server that follows the client’s parameters, n

and q. FHEW uses polynomial addition, subtraction, and scaling by a constant as computing

steps. For example, an AND between two bits is implemented by first homomorphically adding

the corresponding ciphertexts (both the polynomial and the integer parts), followed by mapping

the integer part of the output ciphertext to N-degree polynomial, mb. Then, each coefficient of

mb in [3q/8, 7q/8) is set to Q/8 and the others are set to −Q/8. A complete list of boolean

gates and their corresponding FHEW translations are presented in [37]. MemFHE implements
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computation steps in a memory block, UFUNC, executing polynomial additions and subtractions

as described in Section 4.6. Scaling is performed using a series of shift-add operations. Since

mapping happens within server’s parameters, MemFHE performs it during the initialization stage

of bootstrapping discussed in Section 4.4.1.

4.3.2 Bootstrapping

Implementing functions homomorphically in encrypted domain introduces noise in the

ciphertext, which may make it impossible to decrypt the ciphertext. Bootstrapping reduces

this accumulated noise. A majority of MemFHE’s resources are dedicated to the bootstrapping

core. MemFHE transfers the output of UFUNC to bootstrapping. The initialization phase of

bootstrapping coverts the output of UFUNC into a server-compatible encryption and initializes a

cryptographic accumulator, ACC. Then, bootstrapping utilizes a series of accumulation units,

UACC, to modify the contents of ACC. The accumulation uses EKB to ”decrypt away” the accu-

mulated noise from the output of UFUNC. MemFHE supports two types of accumulation schemes,

AP [105] and GINX [106]. While GINX is more efficient for binary- and ternary-distributed

secret keys, AP is more efficient in other cases [37]. MemFHE chooses the accumulation scheme

based on the client’s encryption procedure. The output ciphertext with reduced-noise is then

extracted from the ACC. Section 4.4 details the implementation of different bootstrapping steps

in MemFHE.

4.3.3 Key Switching

Bootstrapping encrypts the output with a different key, EKB instead of the original key

s. Key switching is performed to obtain an output encrypted with s, so that it can be decrypted

by the client. It utilizes the switching key, EKS, which is sent by the client to the server along

with the refreshing key, EKB. As shown in [37], key switching uses a base Bs that breaks the

integers into ds digits. The N domain output of ACC gets converted to a client-compatible n.

Key switching initializes a ciphertext, cs, with an empty polynomial and the integer value of
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the extracted ACC. The ciphertext cs has the parameters n and Q. Each coefficient of the ACC

polynomial part, selects elements (n,Q ciphertext) from EKS and then subtracts them from the

existing value of cs. This is repeated for ds iterations. At the end of each iteration, the ACC

polynomial coefficients are divided by the switching base Bs.

All operations in key switching are performed modulo Q. MemFHE first implements

(ds− 1) divisions as shown in Figure 4.1. Since Bs is known, MemFHE pre-computes and

stores the value of 1/Bs. Division is now a multiplication with 1/Bs. To prevent losing data

due to rounding errors, the multiplication with 1/Bs is performed in full precision, generating

twice the number of bits than needed. This happens in parallel for all the coefficients in a

row-parallel way. This is followed by a modulo operation with Bs. Here we utilize in-memory

Montgomery reduction (Section 4.6) to obtain the modulus of the divided coefficients. Now, we

have N× (ds−1) coefficients, that select as many ciphertexts from EKS, and perform sequential

ciphertext subtractions. MemFHE employs a tree structure to subtract the ciphertexts. Each

computing element of this tree is a memory block. Each blocks perform x sequential subtractions

so that the total latency of these subtractions is less than the throughput of the design. Hence, we

pipeline the tree stage-by-stage. It takes dlog2(N.(ds−1)/x)e tree stages to implement all the

subtractions. Each subtraction is followed by Barrett reduction (Section 4.6 with modulo Q. The

final output of the tree, cs, represents the key-switched output.

4.3.4 Modulus Switching

Lastly, the output of key switching is converted from a modulo Q ciphertext to a modulo q

ciphertext. To achieve that, each element is multiplied with q and divided by Q and then rounded

off to the nearest integer. MemFHE implements modulus switching in a single memory block.

The key-switched ciphertext cs, including its integer part, and is stored vertically in the memory

block so that each coefficient is in a separate row. Similar to key switching, MemFHE prestores

the value q/Q. All the ciphertext coefficients are hence multiplied with q/Q in a row parallel

way. Then, a value of 0.5 is added to all the products in parallel using row-parallel addition as
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Figure 4.2. Accumulation Unit UACC of MemFHE

detailed in Section 4.6. Now, for each memory row, the integer part represents the integer nearest

to the corresponding coefficient of cs.(q/Q). We finally take modulus of the output with q. Since

q is a power of 2 for all security parameters that MemFHE considers, modulo is equivalent to

reading log2q LSBs of the output. If q is not a power of 2, we use Barrett reduction instead. The

output of modulus switching, also the output of server, is a ciphertext with parameter n and q,

encrypted with secret key, s of the client.

4.4 MemFHE Bootstrapping

Bootstrapping inputs an encrypted version of the private key, EKB, also called the re-

freshing key, along with a ciphertext. The output is a ciphertext corresponding to the input

ciphertext but with reduced noise. Bootstrapping performs iterative computations on a crypto-

graphic accumulator, ACC. The process involves first initializing ACC with the input ciphertext,

then implementing an iterative accumulation over ACC. Each accumulation involves a series of

multiplication and addition operations over polynomials. Finally, an element of the final ACC is

extracted to obtain the output ciphertext. In this section, we discuss the implementation of each

of these steps in MemFHE.
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4.4.1 Initialization

The initialization phase of bootstrapping performs two tasks (i) setting the initial value of

ACC and (ii) ensures that the input ciphertext’s polynomial is compatible with the decomposed

refreshing key.

Initializing ACC: MemFHE performs the mapping discussed in Section 4.3.1 in this

phase. The coefficients of the bootstrapping-compatible polynomial, mb are each mapped to Q/8

and −Q/8 based on whether they lie inside or outside an operation-dependent range (lb,ub),

[3q/8, 7q/8) in the case of AND. To implement this mapping operation in parallel for all

the coefficients of mb, we utilize search-based PIM operations. Using exact bitwise-search

operations, MemFHE implements in-memory compare operation, which can search a set of

memory columns for all the numbers greater, equal, or less than the query. The details of the

operation are presented in Section 4.6. First MemFHE inputs lb as a query and searches for all

the numbers greater than lb. Then, MemFHE performs another query of the filtered numbers

with ub as an input, searching for the numbers less than ub. The final filtered-out rows are then

initialized to Q/8, while the remaining rows are initialized to−Q/8. The resultant mb is assigned

as the initial value of ACC.

Polynomial’s Compatibility with EKB: The input ciphertext’s polynomial a, needs to

be made compatible with the decomposed refreshing key, EKB. The polynomial a undergoes

the same set of operations as those discussed in key switching, except for subtractions, with

parameters n, Br, and dr instead of N, Bs, and ds. It results in n×dr coefficients for each input.

We call them adec. For the bootstrapping pipeline to work, all of the n×dr UACC units should

receive elements from adecs belonging to different inputs. Hence, we introduce an n×dr-sized

register, in which wordi is fed directly to UACC−i as shown in Figure 4.1.
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4.4.2 Accumulation

The inputs to the accumulation function include the decomposed representation of a

(adec from the initialization step, an RGSW encrypted refreshing key, EKB, and the output

of initialization step, a pair of polynomials of degree N. Accumulation preforms iterative

multiplication of this key with ACC and then addition back to ACC. It is the slowest part

of bootstrapping due to high data dependency between the iterations. It adds the result of

multiplication in each iteration to the accumulator. The dependency of the input of one ciphertext

element on the output of the previous one further prohibits the functions from being parallelized

across the ciphertext elements. However, each ciphertext element is a high-degree polynomial,

providing an opportunity to parallelize over the polynomial length.

AP Bootstrapping:

Traditionally, refreshing key is an n-dimensional vector where each element of the vector

is either an N-degree polynomial or a pair of those. However, in AP bootstrapping instead of

each element of EKB being an N-degree polynomial, it is a pair of 2dg polynomials of degree

N. Each dimension of the vector is further represented using the pair (Br, dr). Hence, the AP

refreshing key is a three dimension matrix where each element of the matrix is a pair of 2dg

N-degree polynomials. MemFHE stores the refreshing key in n×dr memory blocks such that

each block stores 2Br.dg polynomials. Each EKB memory block is assigned to the corresponding

accumulation unit. The main computation of the AP bootstrapping is to perform accumulation

function on ACC n×dr times. Each step involves a multiplication of the current ACC value with

an element of EKB as ACC← ACC ♦ EKB.

Accumulation Unit (UACC): We design a bootstrapping pipeline such that the accumula-

tion logic consists of n×dr accumulation units, UACC. The unit address (i, j), where 0≤ i < n

and 0 ≤ j < dr, corresponds to the (i×dr + j)th accumulation iteration. While the units can-

not operate on multiple iterations of a single ciphertext in parallel, they can process different

ciphertexts in a pipelined fashion. Each unit receives the corresponding value from adec memory
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and uses it to select an element from EKB for multiplication. Since all units input EKB in each

iteration, it introduces a fetch bottleneck at the EKB. To reduce this problem, EKB is split over

multiple memory blocks, with each UACC having a local EKB memory. EKB is independent of

the inputs and populated once.

Since FHEW is based on RGSW encryption scheme, the multiplication in the accumula-

tion stage happens on digit-decomposed operands to reduce the growth of noise. As explained

later, the SDD tile in UACC performs digit decomposition on the two N-degree polynomials of

ACC, splitting each coefficient of ACC into dg numbers with log2Bg bits each. EKB is already

digit-decomposed. The output of SDD tile, digit-decomposed ACCdec, contains 2dg polynomials

of degree N, similar to each part of EKB pair polynomials. Now UACC performs 4dg polynomial-

wise multiplications in parallel, 2dg between ACCdec and each part of the EKB pair as shown

in Figure 4.2. To make the multiplication efficient, all the polynomials are converted in NTT

domain before multiplying. UACC employs 2dg NTT pipelines and converts ACCdec into NTT

domain. The details of our NTT pipeline are presented in Section 4.4.2. EKB is already in NTT

domain. Polynomials in NTT domain are stored in a row-parallel way, such that each coefficient

is stored in a separate row as shown in Figure 4.2. Then, we perform row-parallel multiplication

between the polynomials. After multiplication, all products are accumulated to generate a pair

of polynomials that serve as the output ACC. Before sending the output to the next unit, UACC

converts it back to the coefficient (non-NTT) domain using the INTT pipeline.

Signed Digit Decompose (SDD): Signed digit decompose (SDD) decomposes a pair

of polynomials into multiple polynomials. The core operation is to break each polynomial

coefficient (originally log2Q bits) into smaller log2Bg bit signed numbers. As shown in Table 4.1,

Bg is always a power of 2, making the process simpler. SDD consists of one or more memory

blocks which perform iterative modulus-division operations, as shown in Figure 4.2. In each

iteration, MemFHE selects log2Bg LSBs (remainder of the division by Bg) from the coefficients,

preserving the remaining bits (quotient of the division). The selected LSBs represent the first

log2Bg-bit number. This process is repeated dg times, decomposing all coefficients into into dg
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log2Bg-bit numbers. Hence, in the beginning of each iteration, we first change the range of the

coefficients from [0,Q) to [−Q/2,Q/2] by subtracting Q from all inputs in [Q/2,Q), mapping

them to [−Q/2,0). MemFHE implements this operation in parallel for all the coefficients of the

input polynomial. Coefficients are stored in different rows, occupying the same set of memory

columns. We search for all numbers greater than Q/2 using MemFHE’s in-memory parallel

compare operation discussed in Section 4.6. MemFHE then subtracts Q from all the filtered

coefficients. Similarly, the selected LSBs (remainders) are sign-extended, where MemFHE

copies the (log2Bg−1)th bit for all the coefficients in parallel. Then, all negative remainders are

made positive. MemFHE achieves this by searching the MSB bits of all the remainders in parallel

(one remainder per coefficient per iteration) and subtracting Q from the filtered remainders.

GINX Bootstrapping:

The decision to run either AP or GINX bootstrapping is based on the type of secret

key used by the client. As shown in [37], GINX works better in case of binary and ternary

secret keys, while AP works better for other. GINX bootstrapping differs from AP in two major

ways. First, it utilizes binary secret keys, resulting in a smaller refreshing key EKB. EKB in

GINX has a dimension of n× 2, instead of AP’s n×Br× dr. Each element consists of 2dg

polynomials of degree N, the same as AP. Second, the bootstrapping function in GINX involves

extra multiplicative and additive terms to generate the effect of input-dependent polynomial

rotation. Specifically, the bootstrapping follows:

ACC← ACC+(Xm−1)(ACC ♦ EKB),

where m = ba(i)× (2N/q)c for ith coefficient of the input ciphertext polynomial a. (Xm−1) is

a monomial representing GINX’s ”blind rotation” by m. This encodes the input in the form of

the powers of polynomial. The state-of-the-art implementation PALISADE [92] pre-computes

(Xm−1) for all possible values of 0≤m < 2N and maintains a library of their NTT counterparts.
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Based on the m corresponding to a UACC, PALISADE selects a value from the library and then

multiply it with UACC’s output. This creates a data transfer bottleneck in a pipelined architecture

like MemFHE’s, where many units need to access the library simultaneously. On the contrary,

MemFHE exploits the bit-level access provided by PIM to implement this ”rotation” efficiently.

MemFHE uses the same architecture to implement GINX as that for AP. GINX requires

n× 2 UACC units. Here, unlike AP, EKB input to UACC is independent of the polynomial part

a of the ciphertext. Like in the case of AP, the SDD tile of UACC first decomposes input ACC,

UACC then performs the same polynomial-wise multiplication and subsequent addition, and

finally converts them to coefficient domain using INTT. Now, the output of addition represents

prod = (ACC ♦ EKB) in coefficient domain. We now perform in-memory row-parallel rotation

on prod as discussed in Section 4.6. MemFHE finally adds the rotated prod, prodr, to pre-

decomposed ACC and finally subtracts prod. The output is the GINX accumulated ACC in

coefficient domain.

NTT and INTT Pipeline

Number theoretic transform (NTT) is a generalization of fast Fourier transform (FFT)

that performs transformation over a ring instead of complex numbers. In FHE, it is mainly used

in polynomial multiplication where it converts a polynomial (by default in coefficient domain)

into its frequency (NTT) domain equivalent. A polynomial multiplication in coefficient domain

translates to an element-wise multiplication in NTT domain, enabling extensive parallelism

for high-degree polynomials. However, the process of converting to and from NTT domain is

complex. The state-of-the-art implementations of NTT [96, 25] utilize algorithms where the

coefficient access pattern for an n-degree polynomial changes for each of the log2n stages of NTT

pipeline. Instead, we utilize Singleton’s FFT algorithm proposed in [107] and later accelerated in

[108, 109, 110] to implement MemFHE’s NTT pipeline. Figure 4.3a shows the signal flow graph

for Singleton’s FFT algorithm. We observe that the coefficient access pattern for the algorithm

remains the same for every stage. MemFHE exploits this property to avoid using NTT-specific
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interconnects.

Data Mapping: Figure 4.3b shows the data layout of one NTT stage in MemFHE. We

write an n-degree input polynomial, a, in n/2 rows such that a pair of coefficients with indices

2i and (2i+ 1) share the ith row of the memory block. All such pairs are hence written in

separate rows, utilizing the same columns. A twiddle factor is associated with each pair, which

is pre-computed and stored in the corresponding row. Each pair generates the ith and (i+n/2)th

coefficients of the output polynomial in ith row of the block.

Computation: Each NTT stage of MemFHE performs three compute operations. First,

we perform row-parallel multiplication between the coefficients with odd indices (2i+1) and

the corresponding twiddle factor W . Second, we add the generated products to the coefficients

with even indices (2i) in a row-parallel way to generate the first n/2 coefficients of the output

polynomial. Lastly, we subtract the products from the even-indexed coefficients in a row-parallel

way to obtain the remaining output coefficients. The details of the row-parallel operation

execution are presented in Section 4.6.

Stage-to-Stage Data Transfer: Figure 4.3c shows the data transferred in each transfer

phase. We perform column-wise data transfer, where each column consists of one bit from all

(or a subset of) rows of the memory block. In one data transfer phase, q column transfers can

transfer as many q-bit numbers as the rows in the memory. As discussed in data mapping, the

output polynomial is present in n/2 rows such that indices [0,n/2−1] are stored in one set of

columns and the remaining indices in the another set of columns. Hence, we need four data

transfer phases. The first data transfer reads the even-indexed coefficients from [0,n/2−1] and

write them to the next stage according to the data mapping scheme, while the second data transfer

does the same for the even-indexed coefficients from [n/2,n−1]. Similarly, third and fourth data

transfer phases deal with odd-indexed coefficients. These data transfers read selected rows from

one memory block, send it over a conventional local interconnect, and write them at a contiguous

location of the destination memory.

Operation Pipeline: We pipeline our NTT implementation at the granularity of an NTT
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stage. Each stage works in parallel over different inputs. As discussed in Section 4.7, each

MemFHE memory block contains 1024 rows. Hence, one memory block can implement an NTT

stage for up to 2048-degree polynomial, requiring a total of 11(log22048) memory block for

whole NTT. For n < 2048, we perform NTT over m = 2048/n inputs at the same time in parallel,

while requiring only log2n stages in the pipeline. In order to maintain the computation and data

transfer characteristics, we interleave the inputs as shown in Figure 4.3e. For example, if m = 4,

then the first four rows of the memory block store the coefficients corresponding to indices 0 and

1 for the four inputs. The next four rows store coefficients for indices 2 and 3 for those inputs

and so on. This ensures that the generated output can be transferred in four data transfer phases

as before, without incurring any latency or hardware overhead. Here, the output throughput of

the pipeline becomes m× the original throughput. For n > 2048, MemFHE allocates multiple

memory blocks per stage and implements a deeper pipeline. For example, if n = 8192, MemFHE

allocates four memory blocks per stage and thirteen stages per NTT pipeline, requiring a total of

52 memory blocks. Since MemFHE’s NTT is stage-wise pipelined, the throughput of the larger

NTT is the same as that for n = 2048.

Inverse NTT (INTT): NTT and INTT utilize the same hardware and have identical

data-mapping, computation, transfer, and pipelining schemes. The two operations differ only

in the twiddle factors they use. During pre-compute step, INTT pipeline generates the twiddle

factors, w−k, which are inverse of those used in NTT. The rest of the process remains the same.

4.4.3 Extraction

After accumulation, ACC consists of a pair of polynomials. Extraction is a simple

mapping process that converts ACC to a ciphertext. The first polynomial of ACC represents the

polynomial part of the bootstrapped output ciphertext. Whereas, the constant term (corresponding

to degree-0) of the second polynomial represents the integer part. To reverse the mapping

operation that occurred during initialization phase, Q/8 is added (modulo Q) to the integer part.
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Figure 4.3. Singleton’s NTT in MemFHE

4.5 MemFHE Client Architecture

MemFHE client has two functions, encryption and decryption. As discussed below, both

require similar operations and can be implemented using the same memory block.

4.5.1 Encryption

Client encryption converts a message bit, m, into a ciphertext of the type (a, b), where

a is an integer polynomial of length n, while b is an integer. This encryption utilizes learning

with errors (LWE) encryption technique [111, 112, 37] and is defined as LWEs(m) = (a,b) =

(a,(a.s+ e+m′) mod q), where m′ is an encoded version of m, s is the secret key with the same

data type as a, and e is an integer error added to the message.

Evaluating m′ involves dividing the message, m, with a message modulus t and then

multiplying the output with the application parameter, q/2. According to the state-of-the-art

implementation in [92] and the security parameters presented in [37] and Section 4.7, t and q are

always powers of 2. Hence, MemFHE scales m to m′ using in-memory shift and add operations.

We first extract the log2t LSBs of m. Then, in-memory multiplication with q/2 is simply a left

shift operation on m%t by log2(q/2). Since all the operations in encryption are done modulo

q, we extract the log2q LSBs of the output. In the case when q is not a power of 2, we perform

modulo operations as described in Section 4.6.
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Generating integer b requires a dot product between vectors a and s, followed by adding

e and m′. To generate this dot product, we utilize the secret key memory, SKmem. It stores the

vector corresponding to secret key s in a row-parallel way such that all the elements of s occupy

the same set of memory bitlines and each element is stored in a different row. The incoming

vector a is written in the same way as s such that the corresponding elements of a and s are

present in the same row.

We implement row-parallel integer multiplication between the elements of the two vectors.

Our row-parallel execution performs vector-wide multiplication with the same latency as that

of a single multiplication, discussed in Section 4.6. This is followed by an addition of all the

products. To add, we perform column parallel in-memory addition operations on the output

products such as those proposed in [34] but using the in-memory switching techniques instead of

sense amplifier based operations of [34]. In the following discussion, we denote the bitwidth of

each product (i.e. log2q) with the letter p. Here, we accumulate each bit position independently,

so that k p-bit numbers are reduced to p log2k-bit numbers after (k−2) column parallel 1-bit

additions for each of the p bit position. To further reduce the output to a single number, we

transpose the output of column-parallel addition so that the outputs for all p columns are stored

in the same row. It takes p data transfers, log2k bits per transfer, to read the outputs column-wise

and store them in a row. We then perform bit-serial addition to obtain the final integer output,

which takes p× log2k 1-bit additions. This output represents the dot product a.s, to which we

add integers e and m′.

4.5.2 Decryption

Client decryption converts the server’s output ciphertext, (a,b), back to a bit message, m,

as Round(4/q∗ (b−a.s)), where s is the client’s private key. MemFHE first uses the dot product

implementation of MemFHE’s encryption to obtain a.s, followed by a subtraction operation with

b. The subtraction is followed by a modulo q operation, where MemFHE simply reads the log2q

LSBs of the output. Scaling is done with 4/q by discarding the log2(q/4) LSBs. Round(.) is
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implemented similar to the rounding function discussed during modulus switching in Section

4.3.4.

4.6 MemFHE Computations

In this section, we detail PIM implementation of the basic MemFHE operations.

Vectorized Data Organization: MemFHE implements vectorized-versions of its opera-

tions. An input vector, with n b-bit elements, is stored such that n elements occupy n different

rows with but share the same b memory columns.

Row-parallel Addition and Multiplication: A b-bit addition in MemFHE is imple-

mented using bitwise AND, OR, and XOR and requires (6b+1) memory cycles [59]. Similarly,

multiplication is performed by generating partial products and serially adding them. MemFHE

optimizes the multiplication in [40] by sharing the memory cells among intermediate outputs of

addition and utilizing faster operations proposed in [59]. This significantly reduces the time to

perform full precision b-bit multiplication from (13b2−14b−6) to (7b2 +4b) memory cycles,

while the total memory required reduces from (20b− 5) to 13b. This increase the maximum

possible multiplication bitwidth from 51 bits in [40] to 78 bits in MemFHE.

Modulus/Modulo: Modulus operation gives the remainder of a division. In the context

of FHE, modulus is used to avoid overflow during computation. Hence, most operations in

MemFHE are followed by modulus. In most cases in MemFHE-server, modulus is taken

with respect to a prime number. We perform PIM variants of Barrett [113] (for addition) and

Montgomery [114] (for multiplication) reductions using shift and add operations, as done in [25].

This requires prior knowledge of the modulus base, which is governed by the security parameters

(and hence known) in MemFHE. If taken with respect to a power of 2, then modulus just selects

the corresponding LSBs of the input.

Comparison:Comparison operation in MemFHE can compare an input query with the

data stored in MemFHE’s memory blocks. We exploit the associative operations proposed in
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[103] to search for a bit of data in a memory column. To compare data stored in b columns and r

rows of a memory block with a b-bit query, we perform bit-by-bit search. Starting from MSB,

associative search is applied for each memory column and all memory rows. All rows where

there is a mismatch between the stored bit and the query bit, are selected by associative search

circuit [103].

Rotation: Rotation in MemFHE is equivalent to reading out a memory row (column),

bit-wise rotating them at the input register of the block and writing it back.

Shift: MemFHE implements shift operation by simply selecting or deselecting bitlines

for the corresponding LSB/MSBs. If sign-extension is required, then MemFHE copies the data

stored at the original MSB bitline.

4.7 Evaluation

4.7.1 Simulation Setup

We simulate MemFHE using a cycle-accurate simulator. The simulator considers the

memory block size (1024× 1024 bits in our experiments), the precision for each operation,

the degree of polynomials, the locations and the organization of the data. We use HSPICE for

circuit-level simulations and calculate energy consumption and performance of all the MemFHE

operations with 28nm process node. We adopt an RRAM device with VTEAM model [63] and

switching delay of 1.1ns [23]. The parameters of the model have been set to mimic the behavior

of practical RRAM memory chips [115]. RRAM components of the design have a SET and

RESET voltage of 2V and 1V respectively, with a high-to-low resistance ratio of 10MΩ/10kΩ.

A detailed list of parameters is presented in [33, 36]. However, the proposed architecture works

with most processing in memory implementations based on digital data. The robustness of all

circuits is verified using 5000 Monte Carlo simulations with 10% process variations on the size

and threshold voltage of transistors.
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Table 4.1. MemFHE Security Parameters

Set Security n q N log2Q Bs Bg Br
Classical

STD128 128-bit 512 512 1024 27 25 27 23
STD192 192-bit 512 512 2048 37 25 213 23
STD256 256-bit 1024 1024 2048 29 25 210 32

Quantum−Safe
STD128Q 128-bit 512 512 2048 50 25 225 23
STD192Q 192-bit 1024 1024 2048 35 25 212 32
STD256Q 256-bit 1024 1024 2048 27 25 27 32

4.7.2 Parameters and Security Guarantees

MemFHE is based on the FHEW cryptosystem of PALISADE library [92]. We perform

our evaluation over multiple security parameter sets as described in [37] and summarized in

Table 4.1. These parameters guarantee a wide range of security levels for both classical and

quantum-safe FHE. MemFHE can be configured to work with any of these security settings.

4.7.3 MemFHE-Server Pipeline Analysis

Figure 4.4 shows the throughput, latency, energy consumed, and memory required for

one MemFHE-server pipeline with different parameter settings. The throughput represents

the number of input operations that MemFHE can process per millisecond (ms). The latency

shows the end-to-end server-side execution time for one input. This also represents the time

MemFHE-server takes to fill the pipeline. The energy consumption shows the total end-to-

end energy consumed by an input. We compare the throughput-optimized and area-optimized

implementations of the pipeline. The two implementations differ in the way they pipeline

NTT/INTT. While the area-optimized version follows the stage-wise pipelining mechanism

discussed in Section 4.4.2, the throughput-optimized design implements a finer-grained pipeline.

It further break an NTT stage into three pipeline stages, first for multiplication with twiddle,
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second for reduction of the product and addition/subtraction, and the third for final reduction and

data transfer to the next stage.

Throughput-Optimized MemFHE: We observe that the four design metrics change

significantly with the security levels. MemFHE-server provides a throughput of 174 (51)

inputs/ms while ensuring 128-bit classical (quantum-safe) security in the throughput-optimized

configuration. Throughput is highly dependent on Q, the bitwidth of server-side computations.

More precisely, throughput varies approximately with (log2Q)2. This happens because the

slowest operation of the pipeline, i.e. the coefficient-wise multiplication, has an implementation

latency of O(Q2) in MemFHE. Similarly, MemFHE-server takes 29 ms (55 ms) to process

an input and generate the output ciphertext for the client in 128-bit classical (quantum-safe)

FHE setting.MemFHE’s latency is dependent on Q2 as well as the polynomial degree of input

ciphertext, n, and parameter dr and varies approximately with n.dr.(log2Q)2. MemFHE-server

consumes a total energy of 34 mJ (164 mJ) for processing an input in 128-bit classical (quantum-

safe) FHE setting. While the quantum-safe implementations consume higher energy than their

classical counterparts, the difference reduces as the security-level increases. For example,

MemFHE consumes 378% more energy in 128-bit quantum-safe mode as compared to the

corresponding classical implementation. This reduces to 94% and 11% for 192-bit and 256-bit

security levels respectively. The total memory consumed by MemFHE’s server changes with

different parameter settings as well. It varies approximately with n.N.dg, consuming 37 GB (47

GB) for a complete server pipeline running 128-bit classical (quantum-safe) FHE. We further

observe that the accumulation of cryptographic accumulator, ACC, consumes on average 96.5%

of the total memory requirement of the server pipeline, while contributing 99.7% to the total

latency.

Area-Optimized MemFHE: While MemFHE provides extensive throughput benefits, it

takes considerable amount of area. Moreover, since memory is the main resource in MemFHE,

we optimized our implementation for area. We observe that an area-optimized MemFHE-server

pipeline consumes 2.5× less memory resources on average as compared to the throughput-
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Figure 4.4. MemFHE-server pipeline results for a bitwise operation. The suffix Q represents
quantum-safe security guarantee.

optimized design, while reducing the throughput by approximately 2.2×. In contrast, the latency

increases by 75%. This happens because we reduce the number of pipeline stages by 3× in the

area-optimized design but at the same time increase the latency of each pipeline stage by 2.2×.

Since the operations remain the remain in both the designs, their total energy consumption is

similar. This highlights one of the advantages of PIM as pipelining doesn’t have operational and

storage overhead since outputs of most operations are generated in the memory block and hence

stored inherently. Similar to the throughput-optimized design, accumulation of ACC consumes

on average 91.4% of the total memory requirement of the server pipeline, while contributing

99.8% to the total latency.

4.7.4 MemFHE-Server Scalability

To evaluate the scalability of MemFHE, we take the area-optimized version MemFHE for

different security-levels and scale it to the given memory size. MemFHE has a minimum memory
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Table 4.2. MemFHE Key Sizes (in MB)

STD128 STD192 STD256 STD128Q STD192Q STD256Q
EKS 253 925 1269 1719 1750 1013
EKB (AP) 322 897 1920 1150 2304 1792
EKB (GINX) 14 39 60 50 72 56
Total (AP) 575 1822 3189 2869 4054 2805
Total (GINX) 267 964 1329 1769 1822 1069

requirement, which is storage needed for the refreshing and switching keys. The different key

sizes in MemFHE are presented in Table 4.2. To scale down from a pipeline’s ideal memory size

described in Section 4.7.3 and Figure 4.4, we reduce the number of NTT cores in the memory.

To scale up from the ideal memory size, we increase the number of pipelines.

Figure 4.5 shows the throughput of the server for different security levels under different

memory constraints. Missing bars in the figure show the cases when the available memory is

not sufficient to implement MemFHE. We observe that MemFHE’s throughput changes almost

linearly with the total memory availability. It increases from the ideal 77 inputs/ms with 14 GB

memory consumption to 307 inputs/ms with 64 GB for 128-bit security level, while decrease to 7

inputs/ms with 2 GB memory size. However, in some cases the changes isn’t linear. For example,

for the quantum-safe 128-bit security configuration, MemFHE’s throughput of 20 inputs/ms

doesn’t change when going from the ideal 20 GB to 32 GB. This happens because the increase

in memory is not sufficient to support two pipelines. At the same time, increasing the memory

availability further to 64 GB increases the throughput by 3× to 61 inputs/ms because 64 GB

memory has enough resources to fit three STD128Q pipelines.

4.7.5 MemFHE Client Analysis

MemFHE-client encrypts bits to ciphertexts and decrypts processed ciphertexts back to

bits. Figure 4.6a shows the encryption latency and energy consumption for MemFHE-client at

different security levels for a bit. Decryption involves the same operations and has roughly the

same latency as that of encryption. The latency of encryption depends on the ciphertext modulus,
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Figure 4.5. MemFHE-server throughput for different memory sizes. The missing bars represents
memory lower than the minimum required size.

q, and the polynomial degree, n. As expected, the dot product a.s is the slowest operation in

encryption, taking 98% of the total latency. Encrypting a bit to a 128-bit (256-bit) quantum-safe

ciphertext takes 3 us (5.5 us), while it consumes 4 nJ (9.8 nJ) of energy.

MemFHE requires a total of 128 KB (256 KB) memory (one memory block) for gen-

erating a 128-bit (256-bit) quantum-safe ciphertext. However, similar to MemFHE-server, the

client is also scalable and employs multiple encrypting-decrypting memory blocks for processing

multiple inputs in parallel. Figure 4.6b shows how the throughput of the MemFHE-client changes

with the available memory sizes. The figure shows the combined encrypt-decrypt throughput.

Each memory block in MemFHE can be dynamically configured to run either encryption or

decryption. We observe that the client’s throughput increases linearly with the increase in the

total memory size, going from 0.2 inputs/us for 256 KB memory to nearly 47 inputs/us for 64

MB for quantum-safe 256-bit encryption.

4.7.6 Arithmetic Operations in MemFHE

In this subsection, we show the end-to-end performance of MemFHE while implementing

addition and multiplication. We utilize Kogge-Stone adders for addition operation as well as

accumulation of partial products during multiplication. This reduces the critical path of the

circuits. It is essential because even though MemFHE provides large throughput, the end-to-end
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Figure 4.6. Encryption in MemFHE-client. (a) Latency and energy consumption and (b)
throughput for different memory sizes.

latency for an input is comparatively high due to MemFHE’s large pipeline depth. Hence, here we

focus on the latency of executing each operation, rather than the associated throughput. Provided

sufficient independent inputs, MemFHE can implement all these operations with the same

throughput as shown in Section 4.7.3, processing up to 174 inputs/ms at 256-bit quantum-safe

security.

Figure 4.7 shows the latency of running different types of additions and multiplications

in MemFHE pipeline for various security settings. We observe that for individual operations, the

latency is limited by their critical path. The latencies for individual addition vary with O(log2b),

where b is the bitwidth of operation, taking 353 ms (705 ms) for an 8-bit (64-bit) addition while

providing 256-bit quantum-safe security. For a multiplication, the latency varies with O(b.log2b),
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Figure 4.7. End-to-end latency for implementing additions and multiplications in MemFHE.

taking 2.8 s (45 s) for an 8-bit (64-bit) multiplication at the same security level.

Implementing 1024 independent additions and multiplications does not increase the

latency significantly. Instead, these independent inputs fill up MemFHE’s pipeline, which was

otherwise severely underutilized. For example, performing 1024 8-bit additions/multiplication

take only twice the total time as that for single addition/multiplication in 128-bit quantum-safe

setting. For 256-bit quantum-safe FHE, the latency for 1024 8-bit additions/multiplications is

actually similar to that for a single addition/multiplication. This happens because MemFHE

pipeline for STD256Q is much deeper than that of STD128Q, allowing more operations to fill

up the pipeline. Even for 1024 64-bit multiplications, MemFHE is at most 13× slower than one

64-bit multiplication. This shows that MemFHE truly shines when there are enough independent

operations to fill the pipeline.

Lastly, Figure 4.7 also shows the latency of different addition and multiplication opera-

tions, normalized to MemFHE, for an Intel i7-9700 CPU with 64 GB of RAM in 128-bit classical

security setting in log scale. The results were obtained using single-threaded implementation

of the state-of-the-art PALISADE library [92] as detailed in [37]. We observe that CPU is on

average 35× (295×) slower than MemFHE for individual 8-bit (64-bit) arithmetic operations.

For 1024 arithmetic operations, MemFHE is on average 20573× faster than CPU. While a

multi-threaded CPU implementation would theoretically reduce the latency by 8× in this case, it
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Table 4.3. Workloads for Learning in MemFHE [3]

Dataset Network Topology Accuracy #GateOps
MNIST C-B-A-P-C-P-F-B-A-F[116] 99.54% 856K
CIFAR-10 [C-B-A-C-B-A-P]×3-F-F[117] 92.54% 211M
ImageNet ShuffleNet [118] 69.4% 1.1G
Penn Treebank [119] LSTM: t-step 25, 300-unit layer; ReLU [119] 89.8 PPW 24.4M

C: convolution layer; A: activation layer; B: batch normalization layer;
P: pooling layer; F: fully-connected layer; PPW: perplexity per word.

would still be much slower than MemFHE. This is due to the highly pipelined architecture of

MemFHE that can deliver higher throughput for large data.

4.7.7 Learning in MemFHE

We show how MemFHE performs for complicated learning tasks. Our evaluation is

inspired from the CPU implementation of TFHE-based deep neural networks (DNN) in [3], which

we refer to as TDNN for simplicity. TDNN converts DNN operations into TFHE compatible

functions. We use the same functions to evaluate MemFHE as it also supports TFHE. Table 4.3

details the datasets and the corresponding network topologies used for evaluation. TDNN works

in both fully homomorphic (TDNN-FHE) mode as well as leveled mode (TDNN-Lvl). While

TDNN-FHE bootstraps each gate operation, TDNN-Lvl bootstraps only higher-level operations

like polynomial multiplications and additions [3].

Figure 4.8a shows the inference throughput of MemFHE and TDNN over various datasets.

MemFHE is scaled to have a total of 64GB memory size. We then configure MemFHE based

on the target security setting. While MemFHE provide a range of classical and quantum-safe

security guarantees, TDNN provides 163-bit (152-bit) security guarantee in FHE (leveled) mode.

We observe that as compared to TDNN-FHE, MemFHE provides on average 2007× higher

throughput (inference/s) for classical FHE. Moreover, MemFHE has 827× higher throughput

while ensuring quantum-safe FHE while TDNN-FHE just provides classical security. We also

observe that MemFHE in quantum-safe provides similar throughput as TDNN-Lvl. This is a

huge improvement because leveled HE accelerates computations on encrypted data by enabling
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Figure 4.8. Inference throughput of MemFHE and TDNN [3] for different datasets. MemFHE
utilizes (a) 64GB memory and (b) 1TB memory. TDNN-FHE and TDNN-Lvl provide 163-bit
and 152-bit security guarantees.

operations without bootstrapping. However, it restricts the ciphertext sizes, further limiting the

achievable security levels. Moreover, encrypting in leveled mode is dependent on the complexity

of target operation, which introduces dependency between different inputs of an application. On

the other hand, MemFHE achieves the throughput of a leveled implementation while running

FHE.

We observe that TDNN presented in [3] runs on an Intel Xeon E7-4850 CPU with

1TB DRAM. To perform a similar memory evaluation, we scale MemFHE up to consume

1TB memory. Figure 4.8 summarizes the results. We observe that MemFHE’s throughput

further increases on average by 19× (17×) for classical (quantum-safe) FHE. This translates

to four orders of magnitude higher throughput than TDNN-FHE. This huge improvement in
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MemFHE comes from (i) significant reduction in total data-transfers and (ii) the significantly

higher number of processing in memory cores. In MemFHE, off-chip data-transfers consists only

of the communication between client and server. On the other hand, traditional systems require a

large number of back and forth core to memory transfers even during server-side computation.

The high density of memory allows us to have a large number of PIM-enabled processing cores

in the system, allowing for higher parallelism and deeper pipelining.

Chapter 4, in part, has been submitted for publication of the material as it may appear

in S. Gupta and T. Rosing, “Accelerating Fully Homomorphic Encryption with Processing in

Memory,” Design Automation Conference (DAC), 2021. The dissertation author was the primary

investigator and author of this material.

Chapter 4, in part, is currently being prepared for submission for publication of the

material. S. Gupta, R. Cammarota, and T. Rosing, “MemFHE: End-to-End Computing with Fully

Homomorphic Encryption in Memory.” The dissertation author was the primary investigator and

author of this material.
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Chapter 5

Summary and Future Work

The massive growth of data and the desire to process it with algorithms like machine

learning have been pushing traditional computing systems to their limits. The aim of the

dissertation is to make learning significantly more efficient and secure. In doing so, we utilize the

brain-inspired hyperdimensional computing to make learning less complex and more hardware-

friendly. We alleviate the pressure on today’s computing platforms by enabling computations

across the memory hierarchy, making it intelligent. We make end-to-end data privacy feasible

in cloud computing based systems by designing accelerators that enable fully homomorphic

encryption.

In this dissertation, we propose solutions for learning problems in two different scenarios.

For efficient local learning, we accelerate HD computing using processing in-memory (Chapter 2)

and propose an in-storage computing solution for learning with HD computing on large datasets

(Chapter 3). To enable secure and privacy-preserved computing, we make fully homomorphic

encryption feasible with processing in-memory (Chapter 4).

5.1 Dissertation Summary

Hyperdimensional Computing Across Memory Hierarchy: Chapter 2 proposed Tri-

HD, the first ReRAM PIM architecture to implement the complete HD computing-based clas-

sification pipeline for non-binary data. Our design utilizes a novel distance metric that is
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PIM-friendly and provides similar application accuracy as the more complex baseline metric.

Our proposed architecture is enabled in PIM by fast and energy-efficient in-memory logic oper-

ations. We further increase the amount of in-memory parallelism by using in-block switches,

which segment the bitlines to make parallel operations independent of each other. Our evaluation

shows that for all applications tested using HD, Tri-HD provides on average 434x (2170x)

speedup and consumes 4114x (26019x) less energy as compared to the CPU while running

end-to-end HD training (inference). Tri-HD also achieves at least 2.2% higher classification

accuracy than all existing PIM-based HD designs.

Chapter 3 proposed Store-n-Learn, an in-storage HD computing system that spans

multiple levels of the storage hierarchy. We exploited the internal bandwidth and hierarchical

structure of SSDs to perform HD classification and clustering in-storage. We proposed batched

HD computing training to enable partial processing of HD hypervectors. We further proposed die-

level accelerator for HD encoding and top-level FPGA accelerators for HD training, retraining,

inference, and clustering. Our evaluation shows that Store-n-Learn is on average 222x (543x)

faster than CPU and 10.6x (7.3x) faster than the state-of-the-art ISC solution, INSIDER [1] for

HD computing-based classification (clustering).

Privacy-Preserving Computing with Fully Homomorphic Encryption: Chapter 4

presented MemFHE, the first end-to-end acceleration of fully homomorphic encryption in

PIM. We designed accelerators for both client as well as server for the latest Ring-GSW based

homomorphic encryption schemes. MemFHE alleviates the effect of FHE’s data and compute

explosion by reducing the data transfer bottlenecks and enabling extensive parallelism. MemFHE

raises the bar of the security of today’s systems, providing both classical as well as quantum-safe

security guarantees. Our evaluation shows that MemFHE provides an average 2007x higher

throughput for FHE-enabled neural networks than the state-of-the-art implementation.
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5.2 Future Work

Our future plan is to design a heterogeneous system that can compute in processing core,

cache, memory, and storage. To realize this effort, we aim to create a system infrastructure that

can enable processing at different parts of the system. Such an infrastructure would include

a code analyzer that can identify the parts of the program that could potentially be offloaded

to memory and storage, followed by an operation library that maps those parts of the code to

the PIM/ISC operations. This would be supported by PIM and ISC-specific compilers and data

allocator. An initial proof-of-concept can be enabled with memory-centric interconnects like

OpenCAPI and CXL as the underlying technologies.

On the application-side, we want to bridge the gap between hyperdimensional computing

and state-of-the-art machine learning algorithms. We plan to add feature extraction capabilities

to the current HD computing algorithms. This would allow HD to process data like images with

higher accuracy. We also plan to extend our implementation of fully homomorphic encryption to

natively support more data types in addition to bit operations. This would significantly reduce

the latency of applications, bringing FHE closer to a real-world deployment.
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