
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Reinforcement Learning in Structured and Partially Observable Environments

Permalink
https://escholarship.org/uc/item/4sx3s1ph

Author
Azizzadenesheli, Kamyar

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sx3s1ph
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Reinforcement Learning in Structured and Partially Observable Environments

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering and Computer Science

by

Kamyar Azizzadenesheli

Dissertation Committee:
Professor Sameer Singh, Chair
Professor Marco Levorato
Professor Animashree Anandkumar

2019

c© 2019 Kamyar Azizzadenesheli

DEDICATION

To my parents without whom this journey wouldn’t be taken.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Motivation . 1
1.2 Summery of Contribution . 2
1.3 Background . 7

2 RL in Linear Bandits 9
2.1 Introduction . 10
2.2 Preliminaries . 12
2.3 Overview of PSLB . 14
2.4 Theoretical Analysis of PSLB . 16

2.4.1 Projection Error Analysis . 17
2.4.2 Projected Confidence Sets . 18
2.4.3 Regret Analysis . 20

2.5 Experiments . 22
2.6 Related Work . 24
2.7 Conclusion . 25

3 RL in Markov Decision Processes 27
3.1 Introduction . 28
3.2 Linear Q-function . 32

3.2.1 Preliminaries . 32
3.2.2 LinReL . 33

3.3 Bayesian Deep Q-Networks . 35
3.4 Experiments . 38

iii

3.5 Related Work . 41
3.6 Conclusion . 43

4 Safe RL 44
4.1 Introduction . 45
4.2 Intrinsic fear . 47
4.3 Analysis . 50
4.4 Experiments . 55
4.5 Related work . 57
4.6 Conclusions . 59

5 RL in Partially Observable MDPs 61
5.1 Introduction . 62

5.1.1 Summary of Results . 63
5.1.2 Related Work . 68
5.1.3 Paper Organization . 70

5.2 Preliminaries . 71
5.3 Learning the Parameters of the POMDP . 75

5.3.1 The multi-view model . 75
5.3.2 Recovery of POMDP parameters . 78

5.4 Spectral UCRL . 83
5.5 Experiments . 91
5.6 Conclusion . 92

6 Policy Gradient in Partially Observable MDPs 96
6.1 Introduction . 97
6.2 Preliminaries . 100
6.3 Policy Gradient . 102

6.3.1 Natural Policy Gradient . 103
6.3.2 DKL vs DKLTRPO . 105

6.4 TRPO for POMDPs . 107
6.4.1 Advantage function on the hidden states 109
6.4.2 GTRPO . 111

6.5 Experiments . 114
6.6 Conclusion . 118

7 Policy Gradient in Rich Observable MDPs 119
7.1 Introduction . 120
7.2 Rich Observation MDPs . 123
7.3 Learning ROMDP . 125
7.4 RL in ROMDP . 131
7.5 Experiments . 137
7.6 Conclusion . 138

Bibliography 140

iv

LIST OF FIGURES

Page

1.1 RL paradigm . 8

2.1 (a) 2-D representation of the effect of increasing perturbation level in con-
cealing the underlying subspace (b) Regrets of PSLB vs. OFUL under
dψ = 1, 10 and 20. As the effect of perturbation increases PSLB’s perfor-
mance approaches to performance of OFUL 22

2.2 (a) Regret of PSLB vs. OFUL in SLB setting with ImageNet for d= 100
(b) Image classification accuracy of periodically sampled optimistic models of
PSLB and OFUL on ImageNet . 24

3.1 BDQN deploys Thompson Sampling to ∀a ∈ A sample wa (therefore a Q-
function) around the empirical mean wa and w∗a the underlying parameter of
interest. 36

3.2 The comparison between DDQN and BDQN 40

4.1 The analyses of the effect of radius k of the fear zone, and λ, the penalty assign
to fear zone for the game Pong. 4.1a: The average reward per episode for
different radius k = {1, 3, 5} and λ = 0.25 and 4.1a, the corresponding average
catastrophic mistakes. 4.1c: The average reward per episode for different
λ = {0.25, 0.50, 1.00} for fixed k = 3 and 4.1d, the corresponding average
catastrophic mistakes. 56

4.2 The analyses of the effect of radius k of the fear zone, and λ, the penalty
assign to fear zone for a set of different games 57

5.1 Graphical model of a POMDP under memoryless policies. 71
5.2 (a)Accuracy of estimated model parameter through tensor decomposition.

See h Eqs. 5.11,5.10 and 5.12. (b)Comparison of SM-UCRL-POMDP is our
method, UCRL-MDP which attempts to fit a MDP model under UCRL pol-
icy, ε− greedy Q-Learning, and a Random Policy. 93

6.1 POMDP under a memory-less policy . 101

7.1 Graphical model of a ROMDP. 123

v

7.2 (left) Example of an observation matrix O. Since state and observation label-
ing is arbitrary, we arranged the non-zero values so as to display a diagonal
structure. (right) Example of clustering that can be achieved by policy π

(e.g., X (a1)
π = {x2, x3}). Using each action we can recover partial clusterings

corresponding to 7 auxiliary states S = {s1..s7} with clusters Ys1 = {y1, y2},
Ys2 = {y3, y4, y5}, Ys3 = {y6}, and Ys8 = {y10, y11}, while the remaining el-
ements are the singletons y6, y7, y8, and y9. Clusters coming from different
actions cannot be merged together because of different labeling of the hidden
state, where, e.g., x2 may be labeled differently depending on whether action
a1 or a2 is used. 124

7.3 Monotonic evolution of clusters, each layer is the beginning of an epoch. The
green and red paths are two examples for two different cluster aggregation. . 132

7.4 Examples of clusterings obtained from two policies that can be effectively
merged. 133

7.5 Regret comparison for ROMDPs with X = 5, A = 4 and from top to bottom
Y = 10, 20, 30. 137

vi

LIST OF TABLES

Page

3.1 Thompson Sampling, similar to OFU and PS, incorporates the estimated
Q-values, including the greedy actions, and uncertainties to guide exploration-
exploitation trade-off. ε-greedy and Boltzmann exploration fall short in prop-
erly incorporating them. ε-greedy consider the most greedy action, and Boltz-
mann exploration just exploit the estimated returns. Full discussion in Ap-
pendix of (Azizzadenesheli and Anandkumar, 2018). 29

3.2 Comparison of scores and sample complexities (scores in the first two columns
are average of 100 consecutive episodes). The scores of DDQN+ are the re-
ported scores of DDQN in Van Hasselt et al. (2016) after running it for 200M
interactions at evaluation time where the ε = 0.001. Bootstrap DQN (Os-
band et al., 2016), CTS, Pixel, Reactor (Ostrovski et al., 2017) are borrowed
from the original papers. For NoisyNet (Fortunato et al., 2017), the scores
of NoisyDQN are reported. Sample complexity, SC : the number of samples
the BDQN requires to beat the human score (Mnih et al., 2015)(“− ” means
BDQN could not beat human score). SC+: the number of interactions the
BDQN requires to beat the score of DDQN+. 41

6.1 Category of most RL problems . 98

vii

List of Algorithms

Page
1 PSLB . 15
2 LinPSRL . 33
3 LinUCB . 33
4 BDQN . 38
5 Training DQN with Intrinsic Fear . 49
6 Estimation of the POMDP parameters. The routine TensorDecomposition

refers to the spectral tensor decomposition method of Anandkumar et al. (2012). 94
7 The SM-UCRL algorithm. 95
8 GTRPO . 112
9 Spectral learning algorithm. 127
10 Spectral-Learning UCRL(SL-UCRL). 129

viii

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Anima Anandku-
mar for the continuous support of my Ph.D. study and related research, for her patience,
motivation, and immense knowledge. Her guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor for
my Ph.D. study. I would like to express my most sincere gratitude to Prof. Yisong Yue for
unbelievable support during my stay at Caltech and before. For all the advice and sharing
of the most valuable experiences of his which saved my career multiple times.

My sincere thanks go to my second advisor Professor Sameer Singh for all the supports
during my Ph.D. career and all the wise advice he gave me to through my crucial decisions
along my Ph.D. journey.

Besides my advisors, I would like to thank Professor Marco Levorato, my thesis committee
member and a great person whom I had a chance to know, for his insightful comments,
guidance, and encouragement during my Ph.D. career.

I thank my fellow lab-mates and friends for all the fun we have had in the last few years. I
particularly thank Dr. Forough Arabshahi for her kindness and advice. She has been always
available to help me through my career. I would like to thank Prof. Furong Huang, Dr.
Hanie Sedghi, Dr. Majid Janzamin, Dr. Anqi(Angie) Liu, Dr. Yang Shi, Jeremy Bernstein,
Sahin Lale for enlightening me in conducting proper research.

I would like to thank my parents, my brother, his beloved fiancee, and relatives for supporting
me spiritually throughout writing this thesis and my life in general.

Last but not least, I would also thank all my friends who have been by my side all these
years, and without whom this journey would not have been possible.

During my Ph.D. career, I was honored to know many great people who mainly are now
great friends of mine. I would like to sincerely thank Professor Csaba Szepesvari for carving
my thoughts and giving me advice without any hesitation. I would like to thank Professor
Zachary Chase Lipton who plaid a significant role in my academic and personal life. I thank
all my colleagues at INRIA, particularly Dr. Alessandro Lazaric whose amazing helps and
supports made my first steps in my research career. There is no word to appreciate his
priceless patient effort in helping me. I thank my colleagues at Microsoft Research lab for
all the fantastic discussion which enlightened my research path.

I would like to thank my colleagues at UC Berkeley at Simons Institute and participants
in Foundation Machine Learning program, in particular, Prof. Daniel Hsu and Prof. Peter
Bartlett for their insights in research and teaching me fundamental ways of thinking. I would
like to thank my colleagues at Stanford University, especially my sincere gratitude to my
host, Prof. Emma Brunskill for all the valuable discussions and lessons. I also appreciate
the exceptional support and kindness by my colleagues and friends at Stanford University,
Ramtin Keramati, Khasahyar Khosravi, and Behrad Habib Afshar. I thank my amazing

ix

colleagues and friends at Caltech, who showed me a new aspect of academic and personal
life. I thank them for all the lessons they taught me. Finally, I appreciate all the people who
helped me to deliver proper research and due to the space limitation could not bring their
name on this draft.

My sincere thanks to my grant provider and funding agencies, NSF, Army Research, Air
Force, Office of Naval Research.

x

CURRICULUM VITAE

Kamyar Azizzadenesheli

EDUCATION

Doctor of Philosophy in Electrical Engineering & Computer Science 2019
University of California, Irvine, Irvine, CA.

Master of Science in Electrical Engineering & Computer Science 2015
University of California, Irvine, Irvine, CA.

Bachelor of Science in Computational Sciences 2007
Sharif University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Special Student Spring 2019
California Institute of Technology Pasadena, CA.

Visiting Student Researcher Summer 2018–Spring 2019
California Institute of Technology Pasadena, CA.

Visiting Student Researcher Fall 2017–Summer2018
Stanford University Stanford, CA.

Long-term Visiting Researcher Spring 2017–Summer2017
Simons Institute, University of California, Berkeley Berkeley, CA.

Guest Researcher Summer 2016
INRIA Lille, France

Visiting researcher Summer 2016
Microsoft Research Lab Boston, MA.

Visiting researcher Summer 2016
Microsoft Research Lab New York, MA.

Graduate Research Assistant Summer 2014–Summer 2019
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

xi

Teaching Assistant Winder 2015
University of California, Irvine Irvine, CA.

Teaching Assistant Winder 2019
California Institute of Technology Pasadena, CA.

Teaching Assistant 2009–2014
Advanced High Schools Iran

xii

Books

• Deep Learning - The Straight Dope, an online Deep Learning book on Amazon
Mxnet Library. Zachary C. Lipton, Mu Li, Alex Smola, Sheng Zha, Aston Zhang,
Joshua Z. Zhang, Eric Junyuan Xie, K. Azizzadenesheli, Jean Kossaifi, Stephan
Rabanser, [link]

Publication

1. K. Azizzadenesheli, Manish Kumar Bera, Animashree Anandkumar. Trust Region
Policy Optimization of POMDPs, [paper]

2. Sahin Lale, K. Azizzadenesheli, Babak Hassibi, Animashree Anandkumar. Stochas-
tic Linear Bandits with Hidden Low Rank Structure, [paper]

3. K. Azizzadenesheli, Anqi Liu, Fanny Yang, Animashree Anandkumar. Regularized
Learning for Domain Adaptation under Label Shifts, [paper]
Appeared at International Conference on Learning Representations (ICLR) 2019

4. Jeremy Bernstein, Jiawei Zhao, K. Azizzadenesheli, Anima Anandkumar. signSGD
with Majority Vote is Communication Efficient and Fault Tolerant, [paper]
Appeared at International Conference on Learning Representations (ICLR) 2019

5. Guanya Shi, Xichen Shi, Michael O’Connell1, Rose Yu, K. Azizzadenesheli, Ani-
mashree Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural Lander: Stable Drone
Landing Control using Learned Dynamics, [paper] [video]

International Conference on Robotics and Automation (ICRA) 2019

6. K. Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill, Zachary C Lip-
ton, Animashree Anandkumar. Surprising Negative Results for Generative Adversarial
Tree Search, [paper]
Appeared at International Conference on Machine Learning (ICML) 2018 workshop

7. Jeremy Bernstein, Yu-Xiang Wang, K. Azizzadenesheli, Anima Anandkumar. signSGD:
Compressed Optimisation for Non-Convex Problems, [paper]
Appeared at International Conference on Machine Learning (ICML) 2018

8. Jeremy Bernstein, K. Azizzadenesheli, Yu-Xiang Wang, Anima Anandkumar. Com-
pression by the signs: distributed learning is a two-way street, [paper]
Appeared at International Conference on Learning Representations (ICLR) 2018 Work-
shop

xiii

https://gluon.mxnet.io
https://gluon.mxnet.io
https://drive.google.com/file/d/1bWXW6JKFkVWEw1jBYZv7kU9B-jhRRT_8/view?usp=sharing
https://arxiv.org/pdf/1901.09490.pdf
http://tensorlab.cms.caltech.edu/users/anima/pubs/RLLS_ICLR.pdf
https://openreview.net/forum?id=BJxhijAcY7
https://arxiv.org/abs/1811.08027
https://www.youtube.com/watch?v=C_K8MkC_SSQ
https://drive.google.com/file/d/1aKNkyY2mxKnW22YVyRSzRq2bzjgmSmmB/view
https://arxiv.org/pdf/1802.04434.pdf
https://openreview.net/pdf?id=SJn0cw1PM

9. Guneet S. Dhillon, K. Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran
Khanna, Zachary C. Lipton, Animashree Anandkumar. Stochastic activation pruning
for robust adversarial defense, [paper]
Appeared at International Conference on Learning Representations (ICLR) 2017

10. K. Azizzadenesheli, Animashree Anandkumar. Efficient Exploration through Bayesian
Deep Q-Networks, Appeared at Neural Information Processing Systems, [paper][talk]
Appeared at Neural Information Processing Systems (NeurIPS) 2017 Workshop

11. K. Azizzadenesheli, Alessandro Lazaric, Anima Anandkumar. Reinforcement Learn-
ing in Rich Observation MDPs using Spectral Methods, [paper]
Appeared at Multi-disciplinary Conference on Reinforcement Learning and Decision
Making (RLDM) 2017

12. Zachary C. Lipton, K. Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao,
Li Deng. Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear,
[paper]

Appeared at Neural Information Processing Systems (NeurIPS) 2016 Workshop

13. K. Azizzadenesheli, Alessandro Lazaric, Anima Anandkumar. Experimental paper:
Reinforcement Learning of POMDPs using Spectral Methods, [paper]
Appeared at Neural Information Processing Systems (NeurIPS) 2016 Workshop

14. K. Azizzadenesheli, Alessandro Lazaric, Anima Anandkumar. Open Problem: Ap-
proximate Planning of POMDPs in the class of Memoryless Policies, [paper] [talk]

Appeared at Conference on Learning Theory (COLT) 2016

15. K. Azizzadenesheli, Alessandro Lazaric, Anima Anandkumar. Reinforcement Learn-
ing of POMDPs using Spectral Methods, [paper] [talk]

Appeared at Conference on Learning Theory (COLT) 2016

Azizzadenesheli et al. (2016a), Azizzadenesheli et al. (2016c), Azizzadenesheli et al. (2016b), Lip-
ton et al. (2016a), Azizzadenesheli et al. (2017), Azizzadenesheli and Anandkumar (2018), Bern-
stein et al. (2018a), Bernstein et al. (2018b), Dhillon et al. (2018), Azizzadenesheli et al.
(2018b), Azizzadenesheli et al. (2019), Bernstein et al. (2018c), Azizzadenesheli et al. (2018a), Shi
et al. (2018), Lale et al. (2019), Azizzadenesheli (2019).

xiv

https://openreview.net/forum?id=H1uR4GZRZ
https://drive.google.com/file/d/179Ugiv5nQmpjznCM6yqKH_gLWZvp7OOD/view
https://www.youtube.com/watch?v=BH9oGt4GTUc&t=3s
https://arxiv.org/abs/1611.03907
https://arxiv.org/pdf/1611.01211.pdf
https://drive.google.com/file/d/0B1PUpk7kwWu-eGc0akttY1Zac09MQ3NyUzlZLTItUlN6alU0/view
http://proceedings.mlr.press/v49/azizzadenesheli16b.pdf
https://www.youtube.com/watch?v=-GmdjGt5nBg
http://proceedings.mlr.press/v49/azizzadenesheli16a.pdf
https://www.youtube.com/watch?v=w7QCLFR8hJU

ABSTRACT OF THE DISSERTATION

Reinforcement Learning in Structured and Partially Observable Environments

By

Kamyar Azizzadenesheli

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2019

Professor Sameer Singh, Chair

Sequentially making-decision abounds in real-world problems ranging from robots needing to

interact with humans to companies aiming to provide reasonable services to their customers.

It is as diverse as self-driving cars, health-care, agriculture, robotics, manufacturing, drug

discovery, and aerospace. Reinforcement Learning (RL), as the study of sequential decision-

making under uncertainty, represents a core aspect challenges in real-world applications.

While most of the practical application of interests in RL are high dimensions, we study RL

problems from theory to practice in high dimensional, structured, and partially observable

settings. We show how statistically develop efficient RL algorithm for a variety of RL prob-

lems, from recommendation systems to robotics and games. We theoretically study these

problems from their first principles to provide RL agents which efficiently interact with their

surrounding environment and learn the desired behavior while minimizing their regrets.

We study linear bandit problems where we propose Projected Stochastic Linear Bandit

(PSLB), upper confidence bound based algorithm in linear bandit which exploit the intrinsic

structure of the decision-making problem to significantly enhance the performance of RL

agents.

We study the problem of RL in Markov Decision Process (MDP) where we propose the

xv

first sample efficient model-free algorithm for the general continuous state and action space

MDPs. We further investigate safe RL setting and introduce a safe RL algorithm to avoid

catastrophic mistakes that can be made by an RL agent. We extensively study tree-based

methods, a well-popularized method in RL which is also the core to Alpha-Go, a technique

to beat the masters of board games such as Go game.

We extend our study to partially observable environments, such as partially observable

Markov decision processes (POMDP) where we propose the first regret analysis for the

class of memoryless policies. We continue this study to a class of problems known as rich

observable Markov decision processes (ROMPD) and propose the first regret bound with no

dependency in the ambient dimension in the dominating terms.

We empirically study the significance of all these theoretically guaranteed methods and show

their value in practice.

xvi

Chapter 1

Introduction

1.1 Motivation

Reinforcement Learning (RL) is an effective approach to solve the problem of sequential

decision–making under uncertainty. RL agents learn how to maximize long-term reward us-

ing the experience obtained by direct interaction with a stochastic environment (Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998). Since the environment is initially unknown,

the agent needs to balance between exploring the environment to estimate its structure,

and exploiting the estimates to compute a policy that maximizes the long-term reward. As

a result, designing a RL algorithm requires three different elements: 1) an estimator for

the environment’s structure, 2) a planning algorithm to compute the optimal policy of the

estimated environment (LaValle, 2006), and 3) a strategy to make a trade-off between explo-

ration and exploitation to minimize the regret, i.e., the difference between the performance

of the exact optimal policy and the rewards accumulated by the agent over time.

While most of the practical application of interests in RL are high dimensions, we study

RL problems from theory to practice in high dimensional, structured, and partially observ-

1

able settings. We show how statistically develop efficient RL algorithm for a variety of RL

environment, from recommendation systems to robotics and games. We theoretically study

these problems from their first principles to provide RL agents which efficiently interact with

their surrounding environment and learn the desired behavior while minimizing regret.

1.2 Summery of Contribution

We study linear bandit problems where we propose Projected Stochastic Linear Bandit

(PSLB), upper confidence bound based algorithm in linear bandit which exploit the in-

trinsic structure of the decision-making problem to enhance the performance of RL agent

significantly.

High-dimensional representations often have a lower dimensional underlying structure. This

is particularly the case in many decision making settings. For example, when the repre-

sentation of actions is generated from a deep neural network, it is reasonable to expect

a low-rank structure whereas conventional structures like sparsity are not valid anymore.

Subspace recovery methods, such as Principle Component Analysis (PCA) can find the un-

derlying low-rank structures in the feature space and reduce the complexity of the learning

tasks. In this work, we propose Projected Stochastic Linear Bandit (PSLB), an algorithm

for high dimensional stochastic linear bandits (SLB) when the representation of actions has

an underlying low-dimensional subspace structure. PSLB deploys PCA based projection to

iteratively find the low rank structure in SLBs. We show that deploying projection meth-

ods assures dimensionality reduction and results in a tighter regret upper bound that is in

terms of the dimensionality of the subspace and its properties, rather than the dimensional-

ity of the ambient space. We modify the image classification task into the SLB setting and

empirically show that, when a pre-trained DNN provides the high dimensional feature repre-

sentations, deploying PSLB results in significant reduction of regret and faster convergence

2

to an accurate model compared to state-of-art algorithm (Lale et al., 2019).

We study the problem of RL in Markov Decision Process (MDP) where we propose the

first sample efficient model-free algorithm for the general continuous state and action space

MDPs.

We study reinforcement learning (RL) in high dimensional episodic Markov decision processes

(MDP). We consider value-based RL when the optimal Q-value is a linear function of d-

dimensional state-action feature representation. For instance, in deep-Q networks (DQN),

the Q-value is a linear function of the feature representation layer (output layer). We propose

two algorithms, one based on optimism, LinUCB, and another based on posterior sampling,

LinPSRL. We guarantee frequentist and Bayesian regret upper bounds of Õ(d
√
T) for these

two algorithms, where T is the number of episodes. We extend these methods to deep RL

and propose Bayesian deep Q-networks (BDQN), which uses an efficient Thompson sampling

algorithm for high dimensional RL. We deploy the double DQN (DDQN) approach, and

instead of learning the last layer of Q-network using linear regression, we use Bayesian

linear regression, resulting in an approximated posterior over Q-function. This allows us

to directly incorporate the uncertainty over the Q-function and deploy Thompson sampling

on the learned posterior distribution resulting in efficient exploration/exploitation trade-off.

We empirically study the behavior of BDQN on a wide range of Atari games. Since BDQN

carries out more efficient exploration and exploitation, it is able to reach higher return

substantially faster compared to DDQN (Azizzadenesheli and Anandkumar, 2018).

We further investigate safe RL setting and introduce a safe RL algorithm to avoid catas-

trophic mistakes that can be made by an RL agent.

Many practical environments contain catastrophic states that an optimal agent would visit

infrequently or never. Even on toy problems, Deep Reinforcement Learning (DRL) agents

tend to periodically revisit these states upon forgetting their existence under a new policy.

3

We introduce intrinsic fear (IF), a learned reward shaping that guards DRL agents against

periodic catastrophes. IF agents possess a fear model trained to predict the probability of

imminent catastrophe. This score is then used to penalize the Q-learning objective. Our

theoretical analysis bounds the reduction in average return due to learning on the perturbed

objective. We also prove robustness to classification errors. As a bonus, IF models tend to

learn faster, owing to reward shaping. Experiments demonstrate that intrinsic-fear DQNs

solve otherwise pathological environments and improve on several Atari games (Lipton et al.,

2016a).

We extensively study tree-based methods, a well-popularized method in RL which is also

the core to Alpha-Go, a technique to beat the masters of board games such as Go game.

While many recent advances in deep reinforcement learning rely on model-free methods,

model-based approaches remain an alluring prospect for their potential to exploit unsuper-

vised data to learn environment dynamics. One prospect is to pursue hybrid approaches, as in

AlphaGo, which combines Monte-Carlo Tree Search (MCTS)—a model-based method—with

deep-Q networks (DQNs)—a model-free method. MCTS requires generating rollouts, which

is computationally expensive. In this paper, we propose to simulate roll-outs, exploiting the

latest breakthroughs in image-to-image transduction, namely Pix2Pix GANs, to predict the

dynamics of the environment. Our proposed algorithm, generative adversarial tree search

(GATS), simulates rollouts up to a specified depth using both a GAN-based dynamics model

and a reward predictor. GATS employs MCTS for planning over the simulated samples and

uses DQN to estimate the Q-function at the leaf states. Our theoretical analysis establishes

some favorable properties of GATS vis-a-vis the bias-variance trade-off and empirical results

show that on 5 popular Atari games, the dynamics and reward predictors converge quickly

to accurate solutions. However, GATS fails to outperform DQNs. Notably, in these experi-

ments, MCTS has only short rollouts (up to tree depth 4), while previous successes of MCTS

have involved tree depth in the hundreds. We present a hypothesis for why tree search with

4

short rollouts can fail even given perfect modeling (Azizzadenesheli et al., 2018b).

We extend our study to partially observable environments, such as partially observable

Markov decision processes (POMDP) where we propose the first regret analysis for the

class of memoryless policies. We extend this study to a class of problems known as rich

observable Markov decision processes (ROMPD) and proposed the first regret bound with

no dependency in the ambient dimension in the dominating term.

We propose a new reinforcement learning algorithm for partially observable Markov decision

processes (POMDP) based on spectral decomposition methods. While spectral methods

have been previously employed for consistent learning of (passive) latent variable models

such as hidden Markov models, POMDPs are more challenging since the learner interacts

with the environment and possibly changes the future observations in the process. We devise

a learning algorithm running through episodes, in each episode we employ spectral techniques

to learn the POMDP parameters from a trajectory generated by a fixed policy. At the end

of the episode, an optimization oracle returns the optimal memoryless planning policy which

maximizes the expected reward based on the estimated POMDP model. We prove an order-

optimal regret bound w.r.t. the optimal memoryless policy and efficient scaling with respect

to the dimensionality of observation and action spaces (Azizzadenesheli et al., 2016c,a,a).

Reinforcement learning (RL) in Markov decision processes (MDPs) with large state spaces

is a challenging problem. The performance of standard RL algorithms degrades drastically

with the dimensionality of state space. However, in practice, these large MDPs typically

incorporate a latent or hidden low-dimensional structure. In this paper, we study the setting

of rich-observation Markov decision processes (ROMDP), where there are a small number

of hidden states which possess an injective mapping to the observation states. In other

words, every observation state is generated through a single hidden state, and this mapping

is unknown a priori. We introduce a spectral decomposition method that consistently learns

this mapping, and more importantly, achieves it with low regret. The estimated mapping is

5

integrated into an optimistic RL algorithm (UCRL), which operates on the estimated hidden

space. We derive finite-time regret bounds for our algorithm with a weak dependence on

the dimensionality of the observed space. In fact, our algorithm asymptotically achieves

the same average regret as the oracle UCRL algorithm, which has the knowledge of the

mapping from hidden to observed spaces. Thus, we derive an efficient spectral RL algorithm

for ROMDPs (Azizzadenesheli et al., 2016b).

We propose Generalized Trust Region Policy Optimization (GTRPO), a policy gradient

Reinforcement Learning (RL) algorithm for both Markov decision processes (MDP) and

Partially Observable Markov Decision Processes (POMDP). Policy gradient is a class of

model-free RL methods. Previous policy gradient methods are guaranteed to converge only

when the underlying model is an MDP and the policy is run for an infinite horizon. We relax

these assumptions to episodic settings and to partially observable models with memoryless

policies. For the latter class, GTRPO uses a variant of the Q-function with only three

consecutive observations for each policy updates, and hence, is computationally efficient. We

theoretically show that the policy updates in GTRPO monotonically improve the expected

cumulative return and hence, GTRPO has convergence guarantees (Azizzadenesheli et al.,

2018a).

We empirically study the significance of all these theoretically guaranteed methods and show

their importance in practice.

We conclude this section with a reference to our study on ways to extend the state of RL to

practical and high dimensional settings (Azizzadenesheli, 2019).

6

1.3 Background

In RL, we study the interaction between an agent and an environment. At each time step t

the agent receives an observation from the environment and then act accordingly while the

agent does not have a clear understanding of its environment. In order to build a better

intuition on RL, imagine a newborn baby. In the beginning, she does not have a clear

understanding of her surrounding environment. The baby interacts with her environment to

build knowledge and act accordingly. If the baby’s behavior is good, or the action taken by

her is useful, the baby receives a reward in some notion in any means the reader would like

to think of. It can be candy, treat, or even internal Dopamine released in her brain. These

rewards and interactions help the baby to build a better understanding of how to behave in

this world.

In RL, at each time step, the environment is at some state, and the agent receives some

observation from the environment. The state in general case is hidden from the agent. This

observation can be the state itself, like in many simple video games, or it can be a sensory,

noisy, and partial observation of the state. After receiving the observation, the agent makes

its decision, called the action. As a result of this decision, the agent receives some reward as

feedback and the environment evolves to a new hidden state.

7

Figure 1.1: RL paradigm

8

Chapter 2

RL in Linear Bandits

Stochastic Linear Bandits with Hidden Low Rank Structure

We propose Projected Stochastic Linear Bandits (PSLB), a sequential decision-making al-

gorithm for high dimensional stochastic linear bandits (SLB). We show that when the repre-

sentations of actions inherit an unknown low-dimensional subspace structure, PSLB deploys

subspace recovery methods, e.g., principal component analysis, and efficiently recovers this

structure. PSLB exploits this structure to better guide the exploration and exploitation,

resulting in significant improvement in performance. We prove that PSLB notably advances

the previously known regret upper bound and obtains a regret upper bound which scales

with the intrinsic dimension of the subspace, rather than the large ambient-dimension of the

action space. We empirically study PSLB on a range of image classification tasks formulated

as bandit problems. We show that, when a pre-trained DNN provides the high dimensional

action (label) representations, deploying PSLB results in a significant reduction in the regret

and faster convergence to an accurate model compared to the state-of-art algorithm.

9

2.1 Introduction

Stochastic linear bandits (SLB) is a problem of sequential decision-making under uncertainty.

At each round of SLB, an agent chooses an action from a decision set and receives a stochastic

reward from the environment whose expected value is an unknown linear function of the d-

dimensional action representation vector. The agent’s goal is to maximize its cumulative

reward. Thus, it dedicates the actions to not only maximize the current reward but also

to explore other actions to build a better estimation of the unknown linear function and

guarantee higher future rewards. Through the course of interactions, the agent implicitly

or explicitly constructs the model of the environment in order to systematically balance the

trade-off between exploration and exploitation.

The lack of knowledge of the true environment model causes the agent to make mistakes by

picking sub-optimal actions. The agent aims to design a strategy to minimize the cumulative

cost of these mistakes, known as regret. One promising approach is to utilize the optimism

in the face of uncertainty (OFU) principle (Lai and Robbins, 1985). OFU based methods

estimate the environment model up to a confidence interval and construct a set of plausible

models within this interval. Among those models, they choose the most optimistic one and

follow the optimal behavior suggested by the selected model.

For general SLB problems, Abbasi-Yadkori et al. (2011) deploys the OFU principle, proposes

OFUL algorithm, and for a d-dimensional SLB, derives a regret upper bound of Õ
(
d
√
T
)

.

These regret bounds in high dimensional problems especially when d and T are about the

same order are not practically tolerable. Fortunately, real-world problems may contain

hidden low-dimensional structures. For example in classical recommendation systems, each

item is represented by a large and highly detailed hand-engineered feature vector; but not

all the components of the features are helpful for the recommendation task. Therefore,

the true underlying linear function in SLBs is highly sparse. Abbasi-Yadkori et al. (2012)

10

and Carpentier and Munos (2012) show how to exploit this additional structure and derive

regret upper bound of Õ
(√

sdT
)

and Õ
(
s
√
T
)

respectively where s is the sparsity level

of the true underlying linear function. The recent success of deep neural networks (DNN)

in representation learning provide significant promises in advancing machine learning to

high dimensional real-world tasks (LeCun et al., 1998). DNNs convolve the raw features of

the input and construct new feature representations which arguably can replace the hand-

engineered feature vectors. When a DNN provides the feature representations, the sparse

structure is not relevant anymore; instead, the low-rank structure is suitable.

At each round of SLB, the chosen action is assigned a supervised reward signal while other

actions in the decision sets remain unsupervised. Even though the primary motivation in

the SLB framework is decision-making within a large stochastic decision set, the majority

of prior works do not exploit possible hidden structures in these sets. For example, Abbasi-

Yadkori et al. (2011) utilizes only the supervised actions, i.e., the actions selected by the

algorithm, to construct the environment model. It ignores all other unsupervised actions in

the decision set. On the contrary, large number of actions in the decision sets can be useful

in reducing the dimension of the problem and simplifying the learning task.

Contributions: In this paper, we demonstrate a method to utilize unsupervised actions

in the decision sets to improve the performance in SLB. We deploy subspace recovery using

principle component analysis (PCA) to exploit the structure in the massive number of un-

supervised actions observed in the decision sets of SLB and reduce the dimensionality and

the complexity of SLBs. We propose PSLB, an algorithm for high dimensional SLB, and

show that if actions come from a perturbed m-dimensional subspace, deploying PSLB im-

proves the regret upper bound to min
{
Õ
(

Υ
√
T
)
, Õ
(
d
√
T
)}

. Here Υ captures the effect

of difficulty of subspace recovery in SLB as a function of the structure of the problem. If

the underlying subspace is easily identifiable, e.g., large decision sets are available in each

round, using subspace recovery provides faster learning of the underlying linear function;

11

thus, smaller regret. In contrast, if learning the subspace is hard, e.g., the number of actions

(unsupervised signals) in each round is limited, then subspace recovery based approaches do

not provide much benefit in learning the underlying system.

We adapt the image classification tasks on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky

and Hinton, 2009) and ImageNet (Krizhevsky et al., 2012) datasets to the SLB framework

and apply both PSLB and OFUL on these datasets. We observe that there exists a low di-

mensional subspace in the feature space when a pre-trained DNN produces the d-dimensional

feature vectors. We empirically show that PSLB learns the underlying model significantly

faster than OFUL and provides orders of magnitude smaller regret in SLBs obtained from

MNIST, CIFAR-10, and ImageNet datasets.

2.2 Preliminaries

For any positive integer n, [n] denotes the set {1, . . . , n}. The Euclidean norm of a vector

x is denoted by ‖x‖2. The spectral norm of matrix A is denoted by ‖A‖2. A† denotes the

Moore-Penrose inverse of matrix A. For any positive definite matrix M , ‖x‖M denote the

norm of a vector x defined as ‖x‖M :=
√
xTMx. The j-th eigenvalue of a symmetric matrix

A is denoted by λj(A), where λ1(A) ≥ λ2(A) ≥ Id denotes d × d identity matrix. If

Yi is a column vector then Yt is a matrix whose columns are Y1, . . . , Yt whereas if yi is a

scalar then yt is a column vector whose elements are y1, . . . , yt.]ti=1Di defines the multiset

summation operation over the sets D1, . . . , Dt.

Model: At each round t, the agent is given a decision set Dt with K actions, x̂t,1, . . . , x̂t,K ∈

Rd. Let V be an d × m orthonormal matrix with m ≤ d, where span(V) defines a m-

dimensional subspace in Rd. Consider a zero mean true action vector, xt,i ∈ Rd, such that

xt,i ∈ span(V) for all i ∈ [K]. Let ψt,i ∈ Rd be zero mean random vectors which are

12

uncorrelated with true action vectors, i.e., E[xt,iψ
T
t,i] = 0 for all i ∈ [K]. Each action vector

x̂t,i is generated as follows,

x̂t,i = xt,i + ψt,i. (2.1)

This model states that each x̂t,i in Dt is a perturbed version of the true underlying xt,i.

Denote the covariance matrix of xt,i by Σx. Notice that Σx is rank-m. Perturbation vectors,

ψt,i, are assumed to be isotropic, thus covariance matrix Σψ = σ2Id. Let λ+ := λ1(Σx) and

λ− := λm(Σx). The described setting is standard in PCA problems Nadler (2008); Vaswani

and Narayanamurthy (2017).

Assumption 1 (Bounded Action and Perturbation Vectors). There exists finite constants,

dx and dψ, such that for all i ∈ [K] ,

‖xt,i‖2
2 ≤ dxλ+, ‖ψt,i‖2

2 ≤ dψσ
2.

Both dx and dψ can be dependent on m or d and they can be interpreted as the effective

dimensions of the corresponding vectors. At each round t, the agent chooses an action,

X̂t ∈ Dt and observes a reward rt such that

rt = X̂T
t θ∗ + ηt ∀t ∈ [T] (2.2)

where θ∗ ∈ span(V) is the unknown parameter vector and ηt is the random noise at round

t. Notice that since θ∗ ∈ span(V), rt = X̂T
t θ∗ + ηt = (PX̂t)

T θ∗ + ηt, where P = V V T is the

projection matrix to the m-dimensional subspace span(V). We mainly use this expression

of the reward in the later parts. Consider {Ft}∞t=0 as any filtration of σ-algebras such that

for any t ≥ 1, X̂t is Ft−1 measurable and ηt is Ft measurable.

Assumption 2 (Subgaussian Noise). For all t, ηt is conditionally R-sub-Gaussian where

13

R ≥ 0 is a fixed constant, ie. ∀λ ∈ R, E[eληt |Ft−1] ≤ e
λ2R2

2 .

The goal of the agent is to maximize the total expected reward accumulated in any T rounds,∑T
t=1 X̂

T
t θ∗. With the knowledge of θ∗, the oracle chooses the action X̂∗t = arg maxx∈Dt x

T θ∗

at each round t. We evaluate the agent’s performance against the oracle performance. Define

regret as the difference between expected reward of the oracle and the agent,

RT :=
T∑
t=1

X̂∗Tt θ∗ −
T∑
t=1

X̂T
t θ∗ =

T∑
t=1

(X∗t − X̂t)
T θ∗. (2.3)

The agent aims to minimize this quantity over time. In the setting described above, the

agent is assumed to know that there exists a m-dimensional subspace of Rd in which true

action vectors and the unknown parameter vector lie. This assumption is standard in PCA

problems Nadler (2008); Vaswani and Narayanamurthy (2017). In practice these quantities

can be estimated and updated in each round. Finally, we define some quantities about the

structure of the problem for all δ ∈ (0, 1):

gx =
λ+

λ−
, gψ =

σ2

λ−
,Γ = 2gψ+4

√
gxgψ, α=max(dx, dψ), nδ = 4α

(
Γ

√
log

2d

δ
+

√
2gx log

m

δ

)2

(2.4)

2.3 Overview of PSLB

We propose Projected Stochastic Linear Bandits (PSLB), a SLB algorithm which employs

subspace recovery to extract information from the unsupervised data accumulated in the

SLB. The PSLB is illustrated in Algorithm 1. PSLB consists of three key elements: subspace

estimation, creating confidence sets and acting optimistically. In the following, we will discuss

each of them briefly.

Subspace estimation: At each round t, the agent exploits the action vectors observed up

14

Algorithm 1 PSLB

1: Input: m, λ+, λ−, σ2, α, δ
2: for t = 1 to T do
3: Compute PCA over]ti=1Di

4: Create P̂t with first m eigenvectors
5: Construct Cp,t, high probability confidence set on P̂t
6: Construct Cm,t, high probability confidence set for θ∗ using subspace recovery
7: Construct Cd,t, high probability confidence set for θ∗ without using subspace recovery
8: Construct Ct = Cm,t ∩ Cd,t
9: (P̃t, X̂t, θ̃t) = arg max(P ′,x,θ)∈Cp,t×Dt×Ct(P

′x)T θ

10: Play X̂t and observe rt
11: end for

to round t,]ti=1Di, to estimate the underlying m-dimensional subspace. In particular, the

agent deploys PCA on tK action vectors and computes V̂t, the matrix of top m eigenvectors of

1
tK

∑
x̂∈]ti=1Di

x̂x̂T . span(V̂t) is the estimate of the underlying m-dimensional subspace. The

agent uses V̂t to compute P̂t := V̂tV̂
T
t , the projection matrix onto span(V̂t), and constructs a

high probability confidence set Cp,t around P̂t which contains both P̂t and P . In Section 2.4.1

we demonstrate the construction of Cp,t, and show that as the agent observes more action

vectors, Cp,t shrinks and the estimation error on P̂t vanishes.

Confidence set construction and optimistic action: At the beginning of each round

t, the agent uses P̂t, and projects the supervised actions onto the estimated m-dimensional

subspace. The d-dimensional SLB reduces to a m-dimensional SLB problem. The agent then

estimates the model parameter θ∗, as θt, up to a high probability confidence set Cm,t. The

tightness of this confidence interval, beside the action-reward pairs, depends on subspace

estimation and Cp,t.

Simultaneously, relying only on the history of action-reward pairs, the agent estimates the

model parameter θ∗, as θ̂t, up to a new high probability confidence set Cd,t. This is the

same confidence set generation subroutine of OFUL Abbasi-Yadkori et al. (2011). Since

θ∗ lives in both of these sets with high probability, it lies in the intersection of them with

high probability. Finally, the agent takes the intersection of the constructed confidence sets

15

to create the main confidence set, Ct = Cm,t ∩ Cd,t. If an efficient recovery of the subspace

is possible, then the plausible parameter set of Cm,t is significantly smaller than the set of

Cd,t, resulting in smaller Ct as well as more confident parameter estimation. If the subspace

recovery is hard, then Cm,t might not provide much information, and the intersection would

mainly result with Cd,t.

2.4 Theoretical Analysis of PSLB

In this section, we state the regret upper bound of PSLB and provide the theoretical com-

ponents that build up to this result. Recalling the quantities defined in (2.4), define Υ such

that

Υ = O
((

1 + Γ

√
α

K

)(
Γ
√
mα√

K
√
λ− + σ2

+m

))
. (2.5)

It represents the overall effect of the deploying subspace recovery on the regret in terms of

structural properties of SLB setting. It is further discussed in Section 2.4.3. Using Υ, the

theorem below states the regret upper bound of PSLB.

Theorem 2.1 (Regret Upper Bound of PSLB). Fix any δ ∈ (0, 1/6). Assume that for all

x̂t,i ∈ Dt, x̂
T
t,iθ∗ ∈ [−1, 1]. Under Assumptions 1 and 2, ∀t ≥ 1, with probability at least

1− 6δ, the regret of PSLB satisfies

Rt ≤ min
{
Õ
(

Υ
√
t
)
, Õ
(
d
√
t
)}

. (2.6)

The proof of the theorem involves two main pieces: the projection error analysis (Sections

2.4.1) and the construction of projected confidence sets (Section 2.4.2). Finally, in Section

2.4.3 their role in the proof of Theorem 2.1 is explained and the meaning of the result is

16

discussed.

2.4.1 Projection Error Analysis

Consider the matrix V̂ T
t V where ith singular value is denoted by σi(V̂

T
t V), such that

σ1(V̂ T
t V) ≥ . . . ≥ σm(V̂ T

t V). Using the analysis in Akhiezer and Glazman (2013), one

can show that ‖P̂t−P‖2 =

√
1− σ2

m(V̂ T
t V) = sin Θm, where Θm is the largest principal an-

gle between the column spans of V and V̂t. Thus, bounding the projection error between two

projection matrices is equivalent to bounding the sine of the largest principal angle between

the subspaces that they project. In light of this relation, using Davis-Kahan sin Θ theorem

(Davis and Kahan, 1970), following lemma bounds the finite sample projection error.

Lemma 1 (Finite Sample Projection Error). Fix any δ ∈ (0, 1/3). Let tw,δ = nδ
K

. Suppose

Assumption 1 holds. Then with probability at least 1− 3δ, ∀t ≥ tw,δ,

‖P̂t − P‖2 ≤
φδ√
t

, where φδ = 2Γ

√
α

K
log

2d

δ
. (2.7)

The lemma improves existing bound on the projection error (Corollary 2.9 in Vaswani and

Narayanamurthy (2017)) by using the Matrix Chernoff Inequality (Tropp, 2015). It also

provides the precise problem dependent quantities in the bound which are required for defin-

ing the minimum number of samples required to construct tight confidence sets by using

subspace estimation. The general version of the lemma and the details of the proof are given

in the Appendix of Lale et al. (2019).

Note that as discussed in Section 2.3, (2.7) defines the confidence set Cp,t for all t ≥ tw,δ. Due

to equivalence that ‖P̂t − P‖2 = sin Θm, ‖P̂t − P‖2 ≤ 1, ∀t ≥ 1. Therefore, any projection

error bound greater than 1 is vacuous. With the stated tw,δ, the bound on the projection

error in (2.7) becomes less than 1 when t ≥ tw,δ, with high probability. After round tw,δ,

17

PSLB starts to produce non-trivial confidence sets Cp,t around P̂t. However, note that tw,δ

can be significantly big for problems that have structure that is hard to recover, e.g. having

α linear in d.

Lemma 1 also brings several important intuitions about the subspace estimation problem

in terms of the problem structure. Recalling the definition of Γ in (2.4), as gψ decreases,

the projection error shrinks since the underlying subspace becomes more distinguishable.

Conversely, as gx diverges from 1, it becomes harder to recover the underlying m-dimensional

subspace. Additionally, since α is the maximum of the effective dimensions of the true action

vector and the perturbation vector, having large α makes the subspace recovery harder and

the projection error bound looser, whereas observing more action vectors, K, in each round

produces tighter bound on ‖P̂t − P‖2. The effects of these structural properties on the

subspace estimation translate to confidence set construction and ultimately to regret upper

bound.

2.4.2 Projected Confidence Sets

In this section, we analyze the construction of Cm,t and Cd,t. For any round t ≥ 1, define

Σ̂t :=
∑t

i=1 X̂iX̂
T
i = X̂tX̂

T
t . At round t, let At := P̂t(Σ̂t−1 + λId)P̂t for λ > 0. The rewards

obtained up to round t are denoted as rt−1. At round t, after estimating the projection

matrix P̂t associated with the underlying subspace, PSLB tries to find θt, an estimate of

θ∗, while believing that θ∗ lives within the estimated subspace. Therefore, θt is the solution

to the following Tikhonov-regularized least squares problem with regularization parameters

λ > 0 and P̂t,

θt = arg min
θ
‖(P̂tX̂t−1)T θ − rt−1‖2

2 + λ‖P̂tθ‖2
2.

18

Notice that regularization is applied along the estimated subspace. Solving for θ gives

θt = A†t
(
P̂tX̂t−1rt−1

)
. Define L such that for all t ≥ 1 and i ∈ [K], ‖x̂t,i‖2 ≤ L and let

γ = L2

λ log
(

1+L2

λ

) . The following theorem gives the construction of projected confidence set,

Cm,t.

Theorem 2.2 (Projected Confidence Set Construction). Fix any δ ∈ (0, 1/4). Suppose

Assumptions 1 & 2 hold, and ∀t ≥ 1 and i ∈ [K], ‖x̂t,i‖2 ≤ L. If ‖θ∗‖2 ≤ S then, with

probability at least 1 − 4δ, ∀t ≥ tw,δ, θ∗ lies in the set Cm,t =

{
θ ∈ Rd : ‖θt − θ‖At ≤ βt,δ

}
,

where

βt,δ = R

√
2 log

(
1

δ

)
+m log

(
1 +

tL2

mλ

)
+ LSφδ

√
γm log

(
1 +

tL2

mλ

)
+ S
√
λ. (2.8)

The detailed proof and a general version of the theorem are given in the Appendix of Lale

et al. (2019). We will highlight the key aspects in here. The overall proof follows a similar

machinery used by Abbasi-Yadkori et al. (2011). Specifically, the first term of βt,δ in (2.8)

is derived similarly by using the self-normalized tail inequality. However, since at each

round PSLB projects the supervised actions to an estimated m-dimensional subspace to

estimate θ∗, d is replaced by m in the bound. While enjoying the benefit of projection,

this construction of the confidence set suffers from the finite sample projection error, i.e.,

uncertainty in the subspace estimation. This effect is observed via second term in (2.8). The

second term involves the confidence bound for the estimated projection matrix, φδ. This

is critical in determining the tightness of the confidence set on θ∗. As discussed in Section

2.4.1, φδ reflects the difficulty of subspace recovery of the given problem and it depends

on the underlying structure of the problem and SLB. This shows that as estimating the

underlying subspace gets easier, having a projection based approach in the construction of

the confidence sets on θ∗ provides tighter bounds.

In order to tolerate the possible difficulty of subspace recovery, PSLB also constructs Cd,t,

19

which is the confidence set for θ∗ without having subspace recovery. The construction of

Cd,t follows OFUL Abbasi-Yadkori et al. (2011). Let Zt = Σ̂t−1 + λId. The algorithm tries

to find θ̂t which is the `2-regularized least squares estimate of θ∗ in the ambient space.

Construction of Cd,t is done under the same assumptions of Theorem 2.2, such that with

probability at least 1 − δ, θ∗ lies in the set Cd,t =
{
θ ∈ Rd : ‖θ̂t − θ‖Zt ≤ Ωt,δ

}
, where

Ωt,δ = R

√
2 log

(
1
δ

)
+ d log

(
1 + tL2

mλ

)
+ S
√
λ. The search for an optimistic parameter

vector happens in Cm,t ∩ Cd,t. Notice that θ∗ ∈ Cm,t ∩ Cd,t with probability at least 1 − 5δ.

Optimistically choosing the triplet, (P̃t, X̂t, θ̃t), within the described confidence sets gives

PSLB a way to tolerate the possibility of failure in recovering an underlying structure. If

confidence set Cm,t is loose or PSLB is not able to recover an underlying structure, then Cd,t
provides the useful confidence set to obtain desirable learning behavior.

2.4.3 Regret Analysis

Using the intersection of Cm,t and Cd,t as the confidence set at round t, gives PSLB the ability

to obtain the lowest possible instantaneous regret among both confidence sets. Therefore,

the regret of PSLB is upper bounded by the minimum of the regret upper bounds on the

individual strategies. Using only Cd,t is equivalent to following OFUL and the regret analysis

can be found in Abbasi-Yadkori et al. (2011). The regret analysis of using only the projected

confidence set Cm,t is the main contribution of this work.

The derivation of the regret upper bound can be found in the Appendix of Lale et al. (2019).

Here we elaborate more on the nature of the regret obtained by using Cm,t only, i.e. first

term in Theorem 2.1, and discuss the effect and meaning of Υ in particular.

Υ is the reflection of the finite sample projection error at the beginning of the algorithm. It

captures the difficulty of subspace recovery based on the structural properties of the problem

and determines the regret of deploying projection based methods in SLBs. Recall that α

20

is the maximum of the effective dimensions of the true action vectors and the perturbation

vectors. Depending on the structure of the problem, α can beO(d), e.g., the perturbation can

be uniform all dimensions, which prevents the projection error from shrinking; thus, causes

Υ = O(d
√
m) resulting in Õ(d

√
mt) regret. The eigengap within the true action vectors

gx and the eigengap between the true action vectors and the perturbation vectors gψ are

critical factors that determine the identifiability of the hidden subspace. As σ2 increases, the

subspace recovery becomes harder since the effect of perturbation increases. Conversely, as

λ− increases, the underlying subspace becomes easier to identify. These effects are significant

and translate to regret of PSLB via Γ in Υ.

Moreover, having finite samples to estimate the subspace affects the regret bound through

Υ. Due to the nature of SLB, i.e. finite action vectors in decision sets, this is unavoidable.

Note that if we were given infinitely many actions in the decision set, the subspace recovery

would be accomplished perfectly. Thus, in the setting of K → ∞, the problem becomes

m-dimensional SLB having regret upper bound of Õ(m
√
t), since Υ = O(m) as K → ∞.

Overall, with all these components, Υ represents the hardness of using PCA based methods

in dimensionality reduction in SLBs.

Theorem 2.1 states that if the underlying structure is easily recoverable, e.g. Υ = O(m),

then using PCA based dimension reduction and construction of confidence sets provide

substantially better regret upper bound for large d. If that is not the case, then due to the

best of the both worlds approach provided by PSLB, the agent obtains the best possible

regret upper bound. Note that the bound for using only Cm,t is a worst case bound and as

we present in Section 2.5, in practice PSLB can give significantly better results.

21

(a) (b)

Figure 2.1: (a) 2-D representation of the effect of increasing perturbation level in concealing
the underlying subspace (b) Regrets of PSLB vs. OFUL under dψ = 1, 10 and 20. As the
effect of perturbation increases PSLB’s performance approaches to performance of OFUL

2.5 Experiments

Synthetic example: We study PSLB on 50 dimensional SLBs with 4 dimensional hidden

subspace structure. At each round t, there are K = 200 actions in Dt. Each action is

generated as x̂t,i = xt,i + ψt,i. ψt,i ∈ Rd is drawn from Normal distribution but rejected

if ‖ψt,i‖2
2 > dψ. We picked an orthonormal matrix V ∈ R50×4 and generate xt,i such that

xt,i = V ε where ε ∼ uniform([−1, 1])4. For T = 10, 000 rounds, we generate 3 different

decision sets using dψ = 1, 10 and 20.

As depicted in 2-D representation in Figure 2.1(a), increasing the perturbation level conceals

the hidden structure resulting in harder subspace recovery. Using these SLB settings, we

studied the performance of PSLB and OFUL. Figure 2.1(b) provides the change in regrets

as we increase the noise level from dψ = 1 to dψ = 20. Note that dψ can be interpreted as

the effective dimension of the perturbation vectors. As the dψ increases the perturbations

become more dominant, PSLB loses its advantage of recovering the underlying subspace

and starts performing similar to OFUL. As suggested in the analysis, having dψ close to

dimension of the ambient space leads to poor subspace recovery performance, higher regret

in SLBs. This example demonstrates the overall effect of perturbation level on the subspace

estimation, confidence set construction and ultimately regret.

22

Image Classification in SLB Setting: In the image classification experiments, we study

MNIST, CIFAR-10 and ImageNet datasets and use them to create the decision sets for the

SLB setting. We train standard DNNs on each dataset to generate the feature representations

of each image for each class and use these features as the decision sets at each time step

of SLB. In other words, for all images in the datasets DNNs generate an action (label)

representation for every class. Thus, we obtain 10 action vectors for each image in MNIST

and CIFAR-10, and 1000 action vectors for ImageNet. In the SLB setting, the agent receives

a reward of 1 if it chooses the right action, which is the label representation for the correct

class according to trained network, and 0 otherwise. We apply both PSLB and OFUL on

these SLBs. We measure the regret by counting the number of mistakes each algorithm

makes. For details of experimental setting please refer the Appendix of Lale et al. (2019).

Through computing PCA of the empirical covariance matrix of the action vectors, surpris-

ingly we found that projecting action vectors onto the 1-dimensional subspace defined by

the dominant eigenvector is sufficient for these datasets in the SLB setting; thus, m = 1.

While surprising, a similar observation is founded by Chaudhari and Soatto (2018) that the

diffusion matrix which depends on the architecture, weights and the dataset has significantly

low rank structure for MNIST and CIFAR-10 datasets. We present the regret obtained by

PSLB and OFUL for ImageNet with d= 100 in Figure 2.2(a). During the experiment, PSLB

tries to recover a 1-dimensional subspace using the action vectors collected.

With the help of subspace recovery and projection, PSLB provides a massive reduction in

the dimensionality of the SLB problem and immediately estimates a fairly accurate model

for θ∗. On the other hand, OFUL naively tries to sample from all dimensions in order to

learn θ∗. This difference yields orders of magnitude improvement in regret. During the SLB

experiment, we also sample the optimistic models that are chosen by PSLB and OFUL. We

use these models to test the model accuracy of the algorithms, i.e. perform classification over

all images in dataset. The optimistic model accuracy comparison is depicted in Figure 2.2(b).

23

(a) (b)

Figure 2.2: (a) Regret of PSLB vs. OFUL in SLB setting with ImageNet for d= 100 (b)
Image classification accuracy of periodically sampled optimistic models of PSLB and OFUL
on ImageNet

This portrays the learning behavior of PSLB and OFUL. Using projection, PSLB learns the

underlying linear model in the first few rounds, whereas OFUL suffers from high-dimension

of SLB framework and lack of knowledge besides chosen action-reward pairs. The Appendix

in Lale et al. (2019) provides an extensive study of all datasets with different settings.

2.6 Related Work

The study of linear bandit problems extends to various algorithms and environment settings

(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Li et al., 2010). Kleinberg et al.

(2010) studies the class of problems when the decision set changes time to time, while Dani

et al. (2008) studies this problem when the decision set provides a set of fixed actions. Further

analysis in the area extend these approaches to classes where there are more structures in

the problem setup, e.g., graph structure inspired by social media (Valko et al., 2014). In

traditional decision-making problems, where hand engineered feature representations are

provided, sparsity in the linear function is a valid structure. Sparsity, as the key in high-

dimensional conventional structured linear bandits, conveys series of successes in classical

settings (Abbasi-Yadkori et al., 2012; Carpentier and Munos, 2012). In recommendations

systems, where a set of users and items are given, Gopalan et al. (2016) considers the low-

24

rank structure of the user-item preference matrix and provide an algorithm which exploits

this further structure.

Subspace recovery and dimensionality reduction problems are well studied in the litera-

ture. Several linear and nonlinear dimension reduction methods have been proposed such as

PCA (Pearson, 1901), independent component analysis (Hyvärinen and Oja, 2000), random

projections (Candes and Tao, 2006) and non-convex robust PCA (Netrapalli et al., 2014).

Among the linear dimension reduction techniques, PCA is the simplest, yet most widely used

method. Analysis of PCA based methods mostly focus on the asymptotic results (Anderson

et al., 1963; Jain et al., 2016). However, in the settings like SLB with finite number of

actions, it is necessary to have finite sample guarantees. In the literature, among few finite

sample PCA works, Nadler (2008) provides finite sample guarantees for one-dimensional

PCA, whereas Vaswani and Narayanamurthy (2017) extends it to larger dimensions with

various noise models.

2.7 Conclusion

In this paper, we study high dimensional SLB problems with hidden low rank structure.

We propose PSLB, an efficient SLB algorithm which utilizes subspace recovery methods

to estimate the effective subspace and enhance the regret upper bound on SLB problems.

While PSLB is not limited to any particular subspace recovery method, we choose PCA for

this study. Furthermore, for the exploration/exploitation, we deploy optimism while any

other efficient exploration strategy is also applicable. We theoretically show that if such

linear structure does not exist or is hard to recover, then the PSLB reduces to the standard

SLB algorithm, OFUL. We empirically study MNIST, CIFAR-10, and ImageNet datasets

to have image classification task in SLB framework. We test the performance of PSLB

vs. OFUL. We show that when DNNs produce features of the actions, a significantly low

25

dimensional structure is observed. Due to this structure, we showed that PSLB substantially

outperforms OFUL and converges to an accurate model while OFUL still struggles to sample

in high dimensions to learn the underlying parameter vector.

In the future work, we plan to extend this line of study to the general class of low dimensional

manifold structured problems. Bora et al. (2017) peruses a similar approach for compression

problems. While optimism is the primary approach in the theoretical analyses of SLBs, it

poses a computationally intractable internal optimization problem. An alternative method

is Thompson sampling, a practical algorithm for SLBs. In future work, we plan to deploy

Thompson sampling and mitigate the computational complexity of PSLB.

26

Chapter 3

RL in Markov Decision Processes

Efficient Exploration through Bayesian Deep Q-Networks

We study reinforcement learning (RL) in high dimensional episodic Markov decision processes

(MDP). We consider value-based RL when the optimal Q-value is a linear function of d-

dimensional state-action feature representation. For instance, in deep-Q networks (DQN),

the Q-value is a linear function of the feature representation layer (output layer). We propose

two algorithms, one based on optimism, LinUCB, and another based on posterior sampling,

LinPSRL. We guarantee frequentist and Bayesian regret upper bounds of Õ(d
√
T) for these

two algorithms, where T is the number of episodes. We extend these methods to deep RL

and propose Bayesian deep Q-networks (BDQN), which uses an efficient Thompson sampling

algorithm for high dimensional RL. We deploy the double DQN (DDQN) approach, and

instead of learning the last layer of Q-network using linear regression, we use Bayesian

linear regression, resulting in an approximated posterior over Q-function. This allows us

to directly incorporate the uncertainty over the Q-function and deploy Thompson sampling

on the learned posterior distribution resulting in efficient exploration/exploitation trade-off.

We empirically study the behavior of BDQN on a wide range of Atari games. Since BDQN

27

carries out more efficient exploration and exploitation, it is able to reach higher return

substantially faster compared to DDQN.

3.1 Introduction

One of the central challenges in reinforcement learning (RL) is to design algorithms with

efficient exploration-exploitation trade-off that scale to high-dimensional state and action

spaces. Recently, deep RL has shown significant promise in tackling high-dimensional (and

continuous) environments. These successes are mainly demonstrated in simulated domains

where exploration is inexpensive and simple explorations-exploitation approaches such as ε-

greedy or Boltzmann strategies are deployed. ε-greedy chooses the most greedy action with

1 − ε probability and randomizes over all the actions, and does not consider the estimated

Q-values or its uncertainties. The Boltzmann strategy considers the estimated Q-values to

guide the decision making but still does not exploit its uncertainty in estimation. For complex

environments, more statistically efficient strategies are required. One such strategy is opti-

mism in the face of uncertainty (OFU), where we follow the decision suggested by the most

optimistic estimation of the environment and guarantee efficient exploration/exploitation

strategies. Despite compelling theoretical results, these methods are mainly model based

and limited to tabular settings (Jaksch et al., 2010a; Auer, 2003).

An alternative to OFU is posterior sampling (PS), or more general randomized approach,

is Thompson Sampling (Thompson, 1933) which, under the Bayesian framework, maintains

a posterior distribution over the environment model, see Table 3.1. Thompson sampling

has shown strong performance in many low dimensional settings such as multi-arm ban-

dits (Chapelle and Li, 2011) and small tabular MDPs (Osband et al., 2013). Thompson

sampling requires sequentially sampling of the models from the (approximate) posterior

or uncertainty and to act according to the sampled models to trade-off exploration and ex-

28

ploitation. However, the computational costs in posterior computation and planning become

intractable as the problem dimension grows.

To mitigate the computational bottleneck, Osband et al. (2014) consider episodic and tab-

ular MDPs where the optimal Q-function is linear in the state-action representation. They

deploy Bayesian linear regression (BLR) (Rasmussen and Williams, 2006) to construct an

approximated posterior distributing over the Q-function and employ Thompson sampling for

exploration/exploitation. The authors guarantee an order optimal regret upper bound on

the tabular MDPs in the presence of a Dirichlet prior on the model parameters. Our paper

is a high dimensional and general extension of (Osband et al., 2014).

Table 3.1: Thompson Sampling, similar to OFU and PS, incorporates the estimated Q-
values, including the greedy actions, and uncertainties to guide exploration-exploitation
trade-off. ε-greedy and Boltzmann exploration fall short in properly incorporating them.
ε-greedy consider the most greedy action, and Boltzmann exploration just exploit the esti-
mated returns. Full discussion in Appendix of (Azizzadenesheli and Anandkumar, 2018).

Strategy Greedy-Action Estimated Q-values Estimated uncertainties

ε-greedy 3 7 7

Boltzmann exploration 3 3 7

Thompson Sampling 3 3 3

While the study of RL in general MDPs is challenging, recent advances in the understanding

of linear bandits, as an episodic MDPs with episode length of one, allows tackling high

dimensional environment. This class of RL problems is known as LinReL. In linear bandits,

both OFU (Abbasi-Yadkori et al., 2011; Li et al., 2010) and Thompson sampling (Russo and

Van Roy, 2014b; Agrawal and Goyal, 2013; Abeille and Lazaric, 2017) guarantee promising

results for high dimensional problems. In this paper, we extend LinReL to MDPs.

Contribution 1 – Bayesian and frequentist regret analysis: We study RL in episodic

MDPs where the optimal Q-function is a linear function of a d-dimensional feature repre-

sentation of state-action pairs. We propose two algorithms, LinPSRL, a Bayesian method

using PS, and LinUCB, a frequentist method using OFU. LinPSRL constructs a posterior

29

distribution over the linear parameters of the Q-function. At the beginning of each episode,

LinPSRL draws a sample from the posterior then acts optimally according to that model.

LinUCB constructs the upper confidence bound on the linear parameters and in each episode

acts optimally with respect to the most optimistic model. We provide theoretical perfor-

mance guaranteess and show that after T episodes, the Bayesian regret of LinPSRL and the

frequentist regret of LinUCB are both upper bounded by Õ(d
√
T)1.

Contribution 2 – From theory to practice: While both LinUCB and LinPSRL are

statistically designed for high dimensional RL, their computational complexity can make

them practically infeasible, e.g., maintaining the posterior can become intractable. To mit-

igate this shortcoming, we propose a unified method based on the BLR approximation of

these two methods. This unification is inspired by the analyses in Abeille and Lazaric

(2017); Abbasi-Yadkori et al. (2011) for linear bandits. 1) For LinPSRL: we deploy BLR to

approximate the posterior distribution over the Q-function using conjugate Gaussian prior

and likelihood. In tabular MDP, this approach turns out to be similar to Osband et al.

(2014)2. 2) For LinUCB: we deploy BLR to fit a Gaussian distribution to the frequentist

upper confidence bound constructed in OFU (Fig 2 in Abeille and Lazaric (2017)). These

two approximation procedures result in the same Gaussian distribution, and therefore, the

same algorithm. Finally, we deploy Thompson sampling on this approximated distribution

over the Q-functions. While it is clear that this approach is an approximation to PS, Abeille

and Lazaric (2017) show that this approach is also an approximation to OFU 3. For practical

use, we extend this unified algorithm to deep RL, as described below.

Contribution 3 – Design of BDQN: We introduce Bayesian Deep Q-Network (BDQN), a

Thompson sampling based deep RL algorithm, as an extension of our theoretical development

to deep neural networks. We follow the DDQN (Van Hasselt et al., 2016) architecture and

1The dependency in the episode length is more involved and details are in Section 3.2.
2We refer the readers to this work for an empirical study of BLR on tabular environment.
3An extra

√
d expansion of the Gaussian approximation is required for the theoretical analysis.

30

train the Q-network in the same way except for the last layer (the linear model) where we

use BLR instead of linear regression. We deploy Thompson sampling on the approximated

posterior of the Q-function to balance between exploration and exploitation. Thus, BDQN

requires a simple and a minimal modification to the standard DDQN implementation.

We empirically study the behavior of BDQN on a wide range of Atari games (Bellemare

et al., 2013; Machado et al., 2017). Since BDQN follows an efficient exploration-exploitation

strategy, it reaches much higher cumulative rewards in fewer interactions, compared to its

ε-greedy predecessor DDQN. We empirically observed that BDQN achieves DDQN perfor-

mance in less than 5M±1M interactions for almost half of the games while the cumulative

reward improves by a median of 300% with a maximum of 80K% on all games. Also, BDQN

has 300%± 40% (mean and standard deviation) improvement over these games on the area

under the performance measure. Thus, BDQN achieves better sample complexity due to a

better exploration/exploitation trade-off.

Comparison: Recently, many works have studied efficient exploration/exploitation in

high dimensional environments. (Lipton et al., 2016b) proposes a variational inference-based

approach to help the exploration. Bellemare et al. (2016) proposes a surrogate for opti-

mism. Osband et al. (2016) proposes an ensemble of many DQN models. These approaches

are significantly more expensive than DDQN (Osband et al., 2016) while also require a

massive hyperparameter tuning effort (Bellemare et al., 2016).

In contrast, our approach has the following desirable properties: 1) Computation: BDQN

nearly has a same computational complexity as DDQN since there is no backpropagation

in the last layer of BDQN (therefore faster), but instead, there is a BLR update which

requires inverting a small 512× 512 matrix (order of less than a second), once in a while. 2)

Hyperparameters: no exhaustive hyper-parameter tuning. We spent less than two days

of academic level GPU time on hyperparameter tuning of BLR in BDQN which is another

evidence on its significance. 3) Reproducibility: All the codes, with detailed comments

31

and explanations, are publicly available.

3.2 Linear Q-function

3.2.1 Preliminaries

Consider an episodic MDP M := 〈X ,A, P, P0, R, γ,H〉, with horizon length H, state space

X , closed action set A, transition kernel P , initial state distribution P0, reward distribution

R, discount factor 0 ≤ γ ≤ 1. For any natural number H, [H] = {1, 2, . . . , H}. The time

step withing the episode, h, is encoded in the state, i.e., X h and Ah, ∀h ∈ [H]. We drop h

in state-action definition for brevity. ‖ · ‖2 denotes the spectral norm and for any positive

definite matrix χ, ‖ · ‖χ denotes the χ matrix-weighted spectral norm. At a given time step

h, we define agent’s Q-function at state xh, as an agent’s expected return after taking action

ah and then following a policy π.

Q(xh, ah) = E
[
R(xh, ah) + γQ(xh+1, π(xh+1))

∣∣∣xh, ah]

Following the Bellman optimality in MDPs, we have that for the optimal Q-function

Q∗(xh, ah) = E
[
R(xh, ah) + γmax

a∈A
Q∗(xh+1, a)

∣∣∣xh, ah]

We consider MDPs where the optimal Q-function, similar to linear bandits, is linear in state-

action representations φ(·, ·) := X × A → Rd, i.e., Qω∗
π∗ (x

h, ah) := φ(xh, ah)>ω∗h, ∀xh, ah ∈

X × A. ω∗ denotes the set of ω∗h ∈ Rd ∀h ∈ [H], representing the environment and π∗ the

set of π∗h : X → A with π∗h(x) := arg maxa∈AQ
ω∗h

π∗ (xh, ah). V ω∗
π∗ denotes the corresponding

value function.

32

Algorithm 2 LinPSRL

1: Input: the prior and likelihood
2: for episode: t= 1,2,. . . do
3: ωht ∼ posterior distribution, ∀h ∈

[H]
4: for h = 0 to the end of episode do
5: Follow πt induced by ωht
6: end for
7: Update the posterior
8: end for

Algorithm 3 LinUCB

1: Input: σ, λ and δ
2: for episode: t = 1,2,. . . do
3: for h = 1 to the end of episode do
4: choose optimistic ω̃ht in Cht−1(δ)
5: Follow π̃ht induced by ω̃ht
6: end for
7: Compute the confidence Cht (δ), ∀h ∈

[H]
8: end for

3.2.2 LinReL

At each time step h and state action pair xh, ah, define νh a mean zero random variable that

captures stochastic reward and transition at time step h;

φ(xh, ah)>ω∗h + νh = Rh + γφ(xh+1, π∗h+1(xh+1))>ω∗h+1

where Rh is the reward at time step h. Definition of νh plays an important role since

knowing ω∗h+1 and π∗h+1 reduces the learning of ω∗h to the standard Martingale based

linear regression problem. Of course we neither have ω∗h+1 nor have π∗h+1.

LinPSRL(Algorithm 2): In this Bayesian approach, the agent maintains the prior over the

vectors ω∗h, ∀h and given the collected experiences, updates their posterior at the beginning

of each episode. At the beginning of each episode t, the agent draws ωht , ∀h, from the

posterior, and follows their induced policy πht , i.e., aht := arg maxa∈A φ
>(xh, a)ωht ,∀xh ∈ X .

LinUCB(Algorithm 3): In this frequentist approach, at the beginning of t’th episode, the

agent exploits the so-far collected experiences and estimates ω∗h up to a high probability

confidence intervals Cht−1 i.e., ω∗h ∈ Ch
t−1, ∀h. At each time step h, given a state xht , the

agent follows the optimistic policy; π̃ht (xht) = arg maxa∈Amaxω∈Cht−1
φ>(Xh

t , a)ω.

Regret analysis: For both of these approaches, we show that, as we get more samples,

33

the confidence sets Cht , ∀h, shrink with the rate of Õ
(
1/
√
t
)
, resulting in more confidence

parameter estimation and therefore smaller per step regret (Appendix of (Azizzadenesheli

and Anandkumar, 2018)). For linear models, define the gram matrix χht and also ridge

regularized matrix with χ̃h ∈ Rd×d (we set it to λI)

χht :=
t∑
i=1

φhi φ
h
i

>
, χht = χht + χ̃h

Following the standard assumption in the self normalized analysis of linear regression and

linear bandit (Peña et al., 2009; Abbasi-Yadkori et al., 2011), we have;

• ∀h ∈ [H]: the noise vector νh is a σ-sub-Gaussian vector. (refer to Assumption in

Appendix of (Azizzadenesheli and Anandkumar, 2018))

• ∀h ∈ [H] we have ‖ω∗h‖2 ≤ Lω, ‖φ(xh, ah)φ(xh, ah)>‖2
2 ≤ L, ∀x ∈ X , a ∈ A, a.s.

• Expected rewards and returns are in [0, 1].

Then, ∀h define ρhλ such that;

t∑
i

‖φ(xhi , π
∗(xhi))‖2

χht
−1 ≤ ρhλ, ∀h, t,with ρH+1

λ = 0

similar to the ridge linear regression analysis in Hsu et al. (2012), we require ρhλ <∞. This

requirement is automatically satisfied if the optimal Q-function is bounded away from zero

(all features have large component at least in one direction). Let ρHλ (γ) denote the following

combination of ρhλ;

ρHλ (γ) :=
H∑
i=1

(γ)H−i

(
1

H
+

1

H

i∑
j=1

j∏
k=1

(γ)jρ
H−(i−k)+1
λ

)

For any prior and likelihood satisfying these assumptions, we have;

34

Theorem 3.1 (Bayesian Regret). For an episodic MDP with episode length H, discount

factor γ, and feature map φ(x, a) ∈ Rd, after T episodes the Bayesian regret of LinPSRL is

upper bounded as;

BayesRegT = E

[
T∑
t

[
V ω∗

π∗ − V ω∗

π̃t

]]
= O

(
d
√
ρHλ (γ)HT log(T)

)

Proof is given in the Appendix of (Azizzadenesheli and Anandkumar, 2018).

Theorem 3.2 (Frequentist Regret). For an episodic MDP with episode length H, discount

factor γ, feature map φ(x, a) ∈ Rd, after T episodes the frequentist regret of LinUCB is

upper bounded as;

RegT : = E

[
T∑
t

[
V ω∗

π∗ − V ω∗

π̃t

] ∣∣∣ω∗] = O
(
d
√
ρHλ (γ)HT log(T)

)

Proof is given in the Appendix of (Azizzadenesheli and Anandkumar, 2018). These regret

upper bounds are similar to those in linear bandits (Abbasi-Yadkori et al., 2011; Russo and

Van Roy, 2014b) and linear quadratic control (Abbasi-Yadkori and Szepesvári, 2011), i.e.

Õ(d
√
T). Since linear bandits are special cases of episodic continuous MDPs, when horizon

is equal to H = 1, we observe that our Bayesian regret upper bound recovers (Russo and

Van Roy, 2014b) and our frequentist regret upper bound recovers the bound in (Abbasi-

Yadkori et al., 2011). While our regret upper bounds are order optimal in T , and d, they

have bad dependency in the horizon length H. In our future work, we plan to extensively

study this problem and provide tight lower and upper bound in terms of T, d and H.

3.3 Bayesian Deep Q-Networks

35

w̄
a

w*
a

w
a

Figure 3.1: BDQN deploys Thompson Sam-
pling to ∀a ∈ A sample wa (therefore a Q-
function) around the empirical mean wa and
w∗a the underlying parameter of interest.

We propose Bayesian deep Q-networks

(BDQN) an efficient Thompson sampling

based method in high dimensional RL prob-

lems. In value based RL, the core of most

prominent approaches is to learn the Q-

function through minimizing a surrogate to

Bellman residual (Schweitzer and Seidmann,

1985; Lagoudakis and Parr, 2003; Antos et al., 2008) using temporal difference (TD) update

(Tesauro, 1995). Van Hasselt et al. (2016) carries this idea, and propose DDQN (similar to

its predecessor DQN (Mnih et al., 2015)) where the Q-function is parameterized by a deep

network. DDQN employ a target network Qtarget, target value y = r+ γQtarget(x′, â), where

the tuple (x, a, r, x′) are consecutive experiences, â = arg maxa′ Q(x′, a′). DDQN learns the

Q function by approaching the empirical estimates of the following regression problem:

L(Q,Qtarget) = E
[
(Q(x, a)− y)2] (3.1)

The DDQN agent, once in a while, updates the Qtarget network by setting it to the Q network,

and follows the regression in Eq.3.1 with the new target value. Since we aim to empirically

study the effect of Thompson sampling, we directly mimic the DDQN to design BDQN.

Linear Representation: DDQN architecture consists of a deep neural network where the

Q-value is a linear function of the feature representation layer (output layer) of the Q-

network, i.e., φθ(x) ∈ Rd parameterized by θ. Therefore, for any x, a, Q(x, a) = φθ(x)>wa

with wa ∈ Rd, the parameter of the last linear layer. Similarly, the target model has the

same architecture, and consists of φθtarget(·), the feature representation of the target network,

and wtargeta, ∀a ∈ A the target weight. Given a tuple (x, a, r, x′) and â = arg maxa′φθ
>wa′ ,

36

DDQN learns wa’s and θ to match y:

Q(x, a) = φθ(x)>wa → y := r + γφθtarget(x
′)>wtargetâ

In DDQN, we match φθ(x)>wa to y using the regression in Eq. 3.1. This regression problem

results in a linear regression in the last layer, wa’s. BDQN follows all DDQN steps except for

the learning of the last layer wa’s. BDQN deploys Gaussian BLR instead of the plain linear

regression, resulting in an approximated posterior on the wa’s and consequently on the Q-

function. As discussed before, BLR with Gaussian prior and likelihood is an approximation

to LinPSRL and LinUCB (Abeille and Lazaric, 2017). Through BLR, we efficiently approx-

imate the distribution over the Q-values, capture the uncertainty over the Q estimates, and

design a efficient exploration-exploitation strategy using Thompson Sampling.

Given a experience replay buffer D = {xτ , aτ , yτ}Dτ=1, for each action a we construct a data

set Da with aτ = a, then construct a matrix Φθ
a ∈ Rd×|Da|, the concatenation of feature

vectors {φθ(xi)}|Da|i=1 , and ya ∈ R|Da|, the concatenation of target values in set Da. We then

approximate the posterior distribution of wa as follows:

wa :=
1

σ2
ε

CovaΦ
θ
aya, Cova :=

(
1

σ2
ε

Φθ
aΦ

θ
a

>
+

1

σ2
I

)−1

→ sampling wa ∼ N (wa, Cova)

(3.2)

which is the derivation of well-known BLR. Fig. 3.1 demonstrate the mean and covariance

of the over wa for each action a. A BDQN agent deploys Thompson sampling on the

approximated posteriors every T S to balance exploration and exploitation while updating

the posterior every TBT .

37

Algorithm 4 BDQN

1: Initialize θ, θtarget, and ∀a, wa, w
target
a , Cova

2: Set the replay buffer RB = {}
3: for t = 1,2,3. . . do
4: if t mod TBT = 0 then
5: ∀a, update wtargeta and Cova, ∀a
6: end if
7: if t mod T S = 0 then
8: Draw wa ∼ N (wtargeta , Cova) ∀a
9: end if

10: Set θtarget ← θ every T T

11: Execute at = arg maxa′w
>
a′φθ(xt)

12: Store (xt, at, rt, xt+1) in the RB
13: Sample a minibatch (xτ , aτ , rτ , xτ+1) from the RB

14: yτ ←
{
rτ terminal xτ+1

rτ + wtargetâ

>
φθtarget(xτ+1), â := arg maxa′w

>
a′φθ(xτ+1) non-terminal xτ+1

}
15: Update θ ← θ − α · ∇θ(yτ − w>aτφθ(xτ))2

16: end for

3.4 Experiments

We empirically study BDQN behaviour on a variety of Atari games in the Arcade Learning

Environment (Bellemare et al., 2013) using OpenAI Gym (Brockman et al., 2016). All the

codes, with detailed comments and explanations are publicly available and programmed in

MxNet (Chen et al., 2015). We evaluate BDQN on the measures of sample complexity and

score against DDQN, Fig 3.2.

We implemented DDQN and BDQN following Van Hasselt et al. (2016). We also attempted

to implement a few other deep RL methods that employ strategic exploration (with advice

from their authors), e.g., (Osband et al., 2016; Bellemare et al., 2016). Unfortunately we

encountered several implementation challenges that we could not address since neither the

codes nor the implementation details are publicly available (we were not able to reproduce

their results beyond the performance of random policy). Along with BDQN and DDQN

codes, we also made our implementation of Osband et al. (2016) publicly available. In order

to illustrate the BDQN performance we report its scores along with a number of state-of-

38

the-art deep RL methods 3.2. For some games, e.g., Pong, we ran the experiment for a

longer period but just plotted the beginning of it in order to observe the difference. Due

to huge cost of deep RL methods, for some games, we run the experiment until a plateau

is reached. The BDQN and DDQN columns are scores after running them for number

steps reported in Step column without Since the regret is considered, no evaluation phase

designed for them. DDQN+ is the reported scores of DDQN in Van Hasselt et al. (2016)

at evaluation time where the ε = 0.001. We also report scores of Bootstrap DQN (Osband

et al., 2016), NoisyNet (Fortunato et al., 2017), CTS, Pixel, Reactor (Ostrovski et al., 2017).

For NoisyNet, the scores of NoisyDQN are reported. To illustrate the sample complexity

behavior of BDQN we report SC : the number of interactions BDQN requires to beat the

human score (Mnih et al., 2015)(“ − ” means BDQN could not beat human score), and

SC+: the number of interactions the BDQN requires to beat the score of DDQN+. Note

that Table 3.2 does not aim to compare different methods. Additionally, there are many

additional details that are not included in the mentioned papers which can significantly

change the algorithms behaviors (Henderson et al., 2017)), e.g., the reported scores of DDQN

in Osband et al. (2016) are significantly higher than the reported scores in the original

DDQN paper, indicating many existing non-addressed advancements (in the Appendix of

(Azizzadenesheli and Anandkumar, 2018)).

We also implemented DDQN drop-out a Thomson Sampling based algorithm motivated by

Gal and Ghahramani (2016). We observed that it is not capable of capturing the statistical

uncertainty in the Q function and falls short in outperforming a random(uniform) policy.

Osband et al. (2016) investigates the sufficiency of the estimated uncertainty and hardness

in driving suitable exploitation out of it. It has been observed that drop-out results in the

ensemble of infinitely many models but all models almost the same (Dhillon et al., 2018;

Osband et al., 2016) in the Appendix of (Azizzadenesheli and Anandkumar, 2018).

As mentioned before, due to an efficient exploration-exploitation strategy, not only BDQN

39

improves the regret and enhance the sample complexity, but also reaches significantly higher

scores. In contrast to naive exploration, BDQN assigns less priority to explore actions that

are already observed to be not worthy, resulting in better sample complexity. Moreover,

since BDQN does not commit to adverse actions, it does not waste the model capacity to

estimate the value of unnecessary actions in unnecessary states as good as the important

ones, resulting in saving the model capacity and better policies.

For the game Atlantis, DDQN+ reaches score of 64.67k during the evaluation phase, while

BDQN reaches score of 3.24M after 20M time steps. After multiple run of BDQN, we

constantly observed that its performance suddenly improves to around 3M in the vicinity

of 20M time steps. We closely investigate this behaviour and realized that BDQN saturates

the Atlantis game and reaches reaches the internal OpenAIGym limit of max episode. After

removing this limit, BDQN reaches score 62M after 15M . Please refer to the Appendix of

(Azizzadenesheli and Anandkumar, 2018) for the extensive empirical study.

Figure 3.2: The comparison between DDQN and BDQN

40

Table 3.2: Comparison of scores and sample complexities (scores in the first two columns
are average of 100 consecutive episodes). The scores of DDQN+ are the reported scores of
DDQN in Van Hasselt et al. (2016) after running it for 200M interactions at evaluation time
where the ε = 0.001. Bootstrap DQN (Osband et al., 2016), CTS, Pixel, Reactor (Ostrovski
et al., 2017) are borrowed from the original papers. For NoisyNet (Fortunato et al., 2017),
the scores of NoisyDQN are reported. Sample complexity, SC : the number of samples the
BDQN requires to beat the human score (Mnih et al., 2015)(“− ” means BDQN could not
beat human score). SC+: the number of interactions the BDQN requires to beat the score
of DDQN+.

Game BDQNDDQNDDQN+
Bootstrap NoisyNet CTS Pixel Reactor Human SC SC+ Step

Amidar 5.52k 0.99k 0.7k 1.27k 1.5k 1.03k 0.62k 1.18k 1.7k 22.9M 4.4M 100M
Alien 3k 2.9k 2.9k 2.44k 2.9k 1.9k 1.7k 3.5k 6.9k - 36.27M 100M
Assault 8.84k 2.23k 5.02k 8.05k 3.1k 2.88k 1.25k 3.5k 1.5k 1.6M 24.3M 100M
Asteroids 14.1k 0.56k 0.93k 1.03k 2.1k 3.95k 0.9k 1.75k 13.1k 58.2M 9.7M 100M
Asterix 58.4k 11k 15.15k 19.7k 11.0 9.55k 1.4k 6.2k 8.5k 3.6M 5.7M 100M
BeamRider 8.7k 4.2k 7.6k 23.4k 14.7k 7.0k 3k 3.8k 5.8k 4.0M 8.1M 70M
BattleZone 65.2k 23.2k 24.7k 36.7k 11.9k 7.97k 10k 45k 38k 25.1M 14.9M 50M
Atlantis 3.24M 39.7k 64.76k 99.4k 7.9k 1.8M 40k 9.5M 29k 3.3M 5.1M 40M
DemonAttack 11.1k 3.8k 9.7k 82.6k 26.7k 39.3k 1.3k 7k 3.4k 2.0M 19.9M 40M
Centipede 7.3k 6.4k 4.1k 4.55k 3.35k 5.4k 1.8k 3.5k 12k - 4.2M 40M
BankHeist 0.72k 0.34k 0.72k 1.21k 0.64k 1.3k 0.42k 1.1k 0.72k 2.1M 10.1M 40M
CrazyClimber 124k 84k 102k 138k 121k 112.9k 75k 119k 35.4k 0.12M 2.1M 40M
ChopperCmd 72.5k 0.5k 4.6k 4.1k 5.3k 5.1k 2.5k 4.8k 9.9k 4.4M 2.2M 40M
Enduro 1.12k 0.38k 0.32k 1.59k 0.91k 0.69k 0.19k 2.49k 0.31k 0.82M 0.8M 30M
Pong 21 18.82 21 20.9 21 20.8 17 20 9.3 1.2M 2.4M 5M

3.5 Related Work

The complexity of the exploration-exploitation trade-off has been deeply investigated in

RL literature for both continuous and discrete MDPs (Kearns and Singh, 2002; Brafman

and Tennenholtz, 2003; Asmuth et al., 2009; Kakade et al., 2003; Ortner and Ryabko, 2012;

Osband and Van Roy, 2014a,b). Jaksch et al. (2010a) investigate the regret analysis of MDPs

with finite state and action and deploy OFU (Auer, 2003) to guarantee a regret upper bound,

while Ortner and Ryabko (2012) relaxes it to a continuous state space and propose a sub-

linear regret bound. Azizzadenesheli et al. (2016c) deploys OFU and propose a regret upper

bound for Partially Observable MDPs (POMDPs) using spectral methods (Anandkumar

et al., 2014). Furthermore, Bartók et al. (2014) tackles a general case of partial monitoring

games and provides minimax regret guarantee. For linear quadratic models OFU is deployed

41

to provide an optimal regret bound (Abbasi-Yadkori and Szepesvári, 2011). In multi-arm

bandit, Thompson sampling has been studied both from empirical and theoretical point of

views (Chapelle and Li, 2011; Agrawal and Goyal, 2012; Russo and Van Roy, 2014a). A

natural adaptation of this algorithm to RL, posterior sampling RL (PSRL) Strens (2000)

also shown to have good frequentist and Bayesian performance guarantees (Osband et al.,

2013; Abbasi-Yadkori and Szepesvári, 2015). Inevitably for PSRL, these methods also have

hard time to become scalable to high dimensional problems, (Ghavamzadeh et al., 2015;

Engel et al., 2003; Dearden et al., 1998; Tziortziotis et al., 2013).

Exploration-exploitation trade-offs has been theoretically studied in RL but a prominent

problem in high dimensional environments (Mnih et al., 2015; Abel et al., 2016; Azizzade-

nesheli et al., 2016b). Recent success of Deep RL on Atari games (Mnih et al., 2015), the

board game Go (Silver et al., 2017), robotics (Levine et al., 2016), self-driving cars (Shalev-

Shwartz et al., 2016), and safety in RL (Lipton et al., 2016a) propose promises on deploying

deep RL in high dimensional problem.

To extend the exploration-exploitation efficient methods to high dimensional RL prob-

lems, Osband et al. (2016) suggests bootstrapped-ensemble approach that trains several

models in parallel to approximate the posterior distribution. Bellemare et al. (2016) propose

a way to come up with a surrogate to optimism in high dimensional RL. Other works suggest

using a variational approximation to the Q-networks (Lipton et al., 2016b) or a concurrent

work on noisy network (Fortunato et al., 2017) suggest to randomize the Q-network. How-

ever, most of these approaches significantly increase the computational cost of DQN, e.g.,

the bootstrapped-ensemble incurs a computation overhead that is linear in the number of

bootstrap models.

Concurrently, Levine et al. (2017) proposes least-squares temporal difference which learns a

linear model on the feature representation in order to estimate the Q-function. They use

ε-greedy approach and provide results on five Atari games. Out of these five games, one is

42

common with our set of 15 games which BDQN outperforms it by a factor of 360% (w.r.t. the

score reported in their paper). As also suggested by our theoretical derivation, our empirical

study illustrates that performing Bayesian regression instead, and sampling from the result

yields a substantial benefit. This indicates that it is not just the higher data efficiency at the

last layer, but that leveraging an explicit uncertainty representation over the value function

is of substantial benefit.

3.6 Conclusion

In this work, we proposed LinPSRL and LinUCB, two LinReL algorithms for continuous

MDPs. We then proposed BDQN, a deep RL extension of these methods to high dimen-

sional environments. BDQN deploys Thompson sampling and provides an efficient explo-

ration/exploitation in a computationally efficient manner. It involved making simple mod-

ifications to the DDQN architecture by replacing the linear regression learning of the last

layer with Bayesian linear regression. We demonstrated significantly improvement training,

convergence, and regret along with much better performance in many games.

While our current regret upper bounds seem to be sub-optimal in terms of H (we are not

aware of any tight lower bound), in the future, we plan to deploy the analysis in (Antos

et al., 2008; Lazaric et al., 2010) and develop a tighter regret upper bounds as well as an

information theoretic lower bound. We also plan to extend the analysis in Abeille and Lazaric

(2017) and develop Thompson sampling methods with a performance guarantee and finally

go beyond the linear models (Jiang et al., 2016). While finding optimal continuous action

given a Q function can be computationally intractable, we aim to study the relaxation of

these approaches in continuous control tasks in the future.

43

Chapter 4

Safe RL

Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

Many practical environments contain catastrophic states that an optimal agent would visit

infrequently or never. Even on toy problems, Deep Reinforcement Learning (DRL) agents

tend to periodically revisit these states upon forgetting their existence under a new policy.

We introduce intrinsic fear (IF), a learned reward shaping that guards DRL agents against

periodic catastrophes. IF agents possess a fear model trained to predict the probability of

imminent catastrophe. This score is then used to penalize the Q-learning objective. Our

theoretical analysis bounds the reduction in average return due to learning on the perturbed

objective. We also prove robustness to classification errors. As a bonus, IF models tend to

learn faster, owing to reward shaping. Experiments demonstrate that intrinsic-fear DQNs

solve otherwise pathological environments and improve on several Atari games.

44

4.1 Introduction

Following the success of deep reinforcement learning (DRL) on Atari games Mnih et al. (2015)

and the board game of Go Silver et al. (2017), researchers are increasingly exploring practical

applications. Some investigated applications include robotics Levine et al. (2016), dialogue

systems Fatemi et al. (2016); Lipton et al. (2016b), energy management Night (2016), and

self-driving cars Shalev-Shwartz et al. (2016). Amid this push to apply DRL, we might ask,

can we trust these agents in the wild? Agents acting society may cause harm. A self-driving

car might hit pedestrians and a domestic robot might injure a child. Agents might also cause

self-injury, and while Atari lives lost are inconsequential, robots are expensive.

Unfortunately, it may not be feasible to prevent all catastrophes without requiring extensive

prior knowledge Garcıa and Fernández (2015). Moreover, for typical DQNs, providing large

negative rewards does not solve the problem: as soon as the catastrophic trajectories are

flushed from the replay buffer, the updated Q-function ceases to discourage revisiting these

states.

In this paper, we define avoidable catastrophes as states that prior knowledge dictates an

optimal policy should visit rarely or never. Additionally, we define danger states—those

from which a catastrophic state can be reached in a small number of steps, and assume

that the optimal policy does visit the danger states rarely or never. The notion of a danger

state might seem odd absent any assumptions about the transition function. With a fully-

connected transition matrix, all states are danger states. However, physical environments

are not fully connected. A car cannot be parked this second, underwater one second later.

This work primarily addresses how we might prevent DRL agents from perpetually making

the same mistakes. As a bonus, we show that the prior knowledge knowledge that catas-

trophic states should be avoided accelerates learning. Our experiments show that even on

simple toy problems, the classic deep Q-network (DQN) algorithm fails badly, repeatedly

45

visiting catastrophic states so long as they continue to learn. This poses a formidable ob-

stacle to using DQNs in the real world. How can we trust a DRL-based agent that was

doomed to periodically experience catastrophes, just to remember that they exist? Imag-

ine a self-driving car that had to periodically hit a few pedestrians to remember that it is

undesirable.

In the tabular setting, an RL agent never forgets the learned dynamics of its environment,

even as its policy evolves. Moreover, when the Markovian assumption holds, convergence to

a globally optimal policy is guaranteed. However, the tabular approach becomes infeasible

in high-dimensional, continuous state spaces. The trouble for DQNs owes to the use of

function approximation Murata and Ozawa (2005). When training a DQN, we successively

update a neural network based on experiences. These experiences might be sampled in

an online fashion, from a trailing window (experience replay buffer), or uniformly from all

past experiences. Regardless of which mode we use to train the network, eventually, states

that a learned policy never encounters will come to form an infinitesimally small region

of the training distribution. At such times, our networks suffer the well-known problem

of catastrophic forgetting McCloskey and Cohen (1989); McClelland et al. (1995). Nothing

prevents the DQN’s policy from drifting back towards one that revisits forgotten catastrophic

mistakes.

We illustrate the brittleness of modern DRL algorithms with a simple pathological problem

called Adventure Seeker. This problem consists of a one-dimensional continuous state, two

actions, simple dynamics, and admits an analytic solution. Nevertheless, the DQN fails. We

then show that similar dynamics exist in the classic RL environment Cart-Pole.

To combat these problems, we propose the intrinsic fear (IF) algorithm. In this approach,

we train a supervised fear model that predicts which states are likely to lead to a catastrophe

within kr steps. The output of the fear model (a probability), scaled by a fear factor penalizes

the Q-learning target. Crucially, the fear model maintains buffers of both safe and danger

46

states. This model never forgets danger states, which is possible due to the infrequency of

catastrophes.

We validate the approach both empirically and theoretically. Our experiments address Ad-

venture Seeker, Cartpole, and several Atari games. In these environments, we label every

lost life as a catastrophe. On the toy environments, IF agents learns to avoid catastrophe

indefinitely. In Seaquest experiments, the IF agent achieves higher reward and in Asteroids,

the IF agent achieves both higher reward and fewer catastrophes. The improvement on

Freeway is most dramatic.

We also make the following theoretical contributions: First, we prove that when the reward

is bounded and the optimal policy rarely visits the danger states, an optimal policy learned

on the perturbed reward function has approximately the same return as the optimal policy

learned on the original value function. Second, we prove that our method is robust to noise

in the danger model.

4.2 Intrinsic fear

An agent interacts with its environment via a Markov decision process, or MDP, (S,A, T ,R, γ).

At each step t, the agent observes a state s ∈ S and then chooses an action a ∈ A according

to its policy π. The environment then transitions to state st+1 ∈ S according to transi-

tion dynamics T (st+1|st, at) and generates a reward rt with expectation R(s, a). This cycle

continues until each episode terminates.

An agent seeks to maximize the cumulative discounted return
∑T

t=0 γ
trt. Temporal-differences

methods Sutton (1988) like Q-learning Watkins and Dayan (1992a) model the Q-function,

which gives the optimal discounted total reward of a state-action pair. Problems of practical

interest tend to have large state spaces, thus the Q-function is typically approximated by

47

parametric models such as neural networks.

In Q-learning with function approximation, an agent collects experiences by acting greedily

with respect to Q(s, a; θQ) and updates its parameters θQ. Updates proceed as follows. For

a given experience (st, at, rt, st+1), we minimize the squared Bellman error:

L = (Q(st, at; θQ)− yt)2 (4.1)

for yt = rt + γ · maxa′ Q(st+1, a
′; θQ). Traditionally, the parameterised Q(s, a; θ) is trained

by stochastic approximation, estimating the loss on each experience as it is encountered,

yielding the update:

θt+1 ←θt + α(yt −Q(st, at; θt))∇Q(st, at; θt) . (4.2)

Q-learning methods also require an exploration strategy for action selection. For simplicity,

we consider only the ε-greedy heuristic. A few tricks help to stabilize Q-learning with function

approximation. Notably, with experience replay Lin (1992), the RL agent maintains a buffer

of experiences, of experience to update the Q-function.

We propose a new formulation: Suppose there exists a subset C ⊂ S of known catastrophe

states/ And assume that for a given environment, the optimal policy rarely enters from which

catastrophe states are reachable in a short number of steps. We define the distance d(si, sj)

to be length N of the smallest sequence of transitions {(st, at, rt, st+1)}Nt=1 that traverses

state space from si to sj.
1

Definition 4.1. Suppose a priori knowledge that acting according to the optimal policy π∗, an

agent rarely encounters states s ∈ S that lie within distance d(s, c) < kτ for any catastrophe

state c ∈ C. Then each state s for which ∃c ∈ C s.t. d(s, c) < kτ is a danger state.

1In the stochastic dynamics setting, the distance is the minimum mean passing time between the states.

48

Algorithm 5 Training DQN with Intrinsic Fear

1: Input: Q (DQN), F (fear model), fear factor λ, fear phase-in length kλ, fear radius kr
2: Output: Learned parameters θQ and θF
3: Initialize parameters θQ and θF randomly
4: Initialize replay buffer D, danger state buffer DD, and safe state buffer DS
5: Start per-episode turn counter ne
6: for t in 1:T do
7: With probability ε select random action at
8: Otherwise, select a greedy action at = arg maxaQ(st, a; θQ)
9: Execute action at in environment, observing reward rt and successor state st+1

10: Store transition (st, at, rt, st+1) in D
11: if st+1 is a catastrophe state then
12: Add states st−kr through st to DD
13: else
14: Add states st−ne through st−kr−1 to DS
15: end if
16: Sample a random mini-batch of transitions (sτ , aτ , rτ , sτ+1) from D
17: λτ ← min(λ, λ·t

kλ
)

18: yτ ←
{

for terminal sτ+1 : rτ − λτ
for non-terminal sτ+1 : rτ + maxa′ Q(sτ+1, a

′; θQ)− λ · F (sτ+1; θF)

}
19: θQ ← θQ − η · ∇θQ(yτ −Q(sτ , aτ ; θQ))2

20: Sample random mini-batch sj with 50% of examples from DD and 50% from DS
21: yj ←

{
1, for sj ∈ DD
0, for sj ∈ DS

}
22: θF ← θF − η · ∇θF lossF (yj, F (sj; θF))
23: end for

49

In Algorithm 5, the agent maintains both a DQN and a separate, supervised fear model

F : S 7→ [0, 1]. F provides an auxiliary source of reward, penalizing the Q-learner for

entering likely danger states. In our case, we use a neural network of the same architecture

as the DQN (but for the output layer). While one could sharing weights between the two

networks, such tricks are not relevant to this paper’s contribution.

We train the fear model to predict the probability that any state will lead to catastrophe

within k moves. Over the course of training, our agent adds each experience (s, a, r, s′) to

its experience replay buffer. Whenever a catastrophe is reached at, say, the nth turn of an

episode, we add the preceding kr (fear radius) states to a danger buffer. We add the first

n − kr states of that episode to a safe buffer. When n < kr, all states for that episode are

added to the list of danger states. Then after each turn, in addition to updating the Q-

network, we update the fear model, sampling 50% of states from the danger buffer, assigning

them label 1, and the remaining 50% from the safe buffer, assigning them label 0.

For each update to the DQN, we perturb the TD target yt. Instead of updating Q(st, at; θQ)

towards rt + maxa′ Q(st+1, a
′; θQ), we modify the target by subtracting the intrinsic fear :

yIFt = rt + max
a′

Q(st+1, a
′; θQ)− λ · F (st+1; θF) (4.3)

where F (s; θF) is the fear model and λ is a fear factor determining the scale of the impact

of intrinsic fear on the Q-function update.

4.3 Analysis

Note that IF perturbs the objective function. Thus, one might be concerned that the per-

turbed reward might lead to a sub-optimal policy. Fortunately, as we will show formally, if

the labeled catastrophe states and danger zone do not violate our assumptions, and if the

50

fear model reaches arbitrarily high accuracy, then this will not happen.

For an MDP, M = 〈S,A, T ,R, γ〉, with 0 ≤ γ ≤ 1, the average reward return is as follows:

ηM(π) :=


limT→∞

1
T
EM
[∑T

t rt|π
]

if γ = 1

(1− γ)EM
[∑∞

t γtrt|π
]

if 0 ≤ γ < 1

The optimal policy π∗ of the model M is the policy which maximizes the average reward

return, π∗ = maxπ∈P η(π) where P is a set of stationary polices.

Theorem 4.1. For a given MDP, M , with γ ∈ [0, 1] and a catastrophe detector f , let π∗

denote any optimal policy of M , and π̃ denote an optimal policy of M equipped with fear

model F , and λ, environment (M,F). If the probability π∗ visits the states in the danger

zone is at most ε, and 0 ≤ R(s, a) ≤ 1, then

ηM(π∗) ≥ ηM(π̃) ≥ ηM,F (π̃) ≥ ηM(π∗)− λε . (4.4)

In other words, π̃ is λε-optimal in the original MDP.

Proof. The policy π∗ visits the fear zone with probability at most ε. Therefore, applying

π∗ on the environment with intrinsic fear (M,F), provides a expected return of at least

ηM(π∗)− ελ. Since there exists a policy with this expected return on (M,F), therefore, the

optimal policy of (M,F), must result in an expected return of at least ηM(π∗)−ελ on (M,F),

i.e. ηM,F (π̃) ≥ ηM(π∗) − ελ. The expected return ηM,F (π̃) decomposes into two parts: (i)

the expected return from original environment M , ηM(π̃), (ii) the expected return from the

fear model. If π̃ visits the fear zone with probability at most ε̃, then ηM,F (π̃) ≥ ηM(π̃)− λε̃.

Therefore, applying π̃ on M promises an expected return of at least ηM(π∗)− ελ+ ε̃λ, lower

bounded by ηM(π∗)− ελ.

51

It is worth noting that the theorem holds for any optimal policy of M . If one of them does

not visit the fear zone at all (i.e., ε = 0), then ηM(π∗) = ηM,F (π̃) and the fear signal can

boost up the process of learning the optimal policy.

Since we empirically learn the fear model F using collected data of some finite sample size N ,

our RL agent has access to an imperfect fear model F̂ , and therefore, computes the optimal

policy based on F̂ . In this case, the RL agent trains with intrinsic fear generated by F̂ ,

learning a different value function than the RL agent with perfect F . To show the robustness

against errors in F̂ , we are interested in the average deviation in the value functions of the

two agents.

Our second main theoretical result, given in Theorem 4.2, allows the RL agent to use a

smaller discount factor, denoted γplan, than the actual one (γplan ≤ γ), to reduce the planning

horizon and computation cost. Moreover, when an estimated model of the environment is

used, Jiang et al. (2015) shows that using a smaller discount factor for planning may prevent

over-fitting to the estimated model. Our result demonstrates that using a smaller discount

factor for planning can reduce reduction of expected return when an estimated fear model

is used.

Specifically, for a given environment, with fear model F1 and discount factor γ1, let V
π∗F2,γ2
F1,γ1

(s), s ∈

S, denote the state value function under the optimal policy of an environment with fear model

F2 and the discount factor γ2. In the same environment, let ωπ(s) denote the visitation dis-

tribution over states under policy π. We are interested in the average reduction on expected

return caused by an imperfect classifier; this reduction, denoted L(F, F̂ , γ, γplan), is defined

as

(1− γ)

∫
s∈S

ω
π∗
F̂ ,γplan (s)

(
V
π∗F,γ
F,γ (s)− V

π∗
F̂ ,γplan

F,γ (s)

)
ds .

Theorem 4.2. Suppose γplan ≤ γ, and δ ∈ (0, 1). Let F̂ be the fear model in F with

52

minimum empirical risk on N samples. For a given MDP model, the average reduction on

expected return, L(F, F̂ , γ, γplan), vanishes as N increase: with probability at least 1− δ,

L = O
(
λ

1− γ
1− γplan

VC(F) + log 1
δ

N
+

(γ − γplan)

1− γplan

)
, (4.5)

where VC(F) is the VC dimension of the hypothesis class F .

Proof. In order to analyze

(
V
π∗F,γ
F,γ (s)− V

π∗
F̂ ,γplan

F,γ (s)

)
, which is always non-negative, we de-

compose it as follows:

(
V
π∗F,γ
F,γ (s)− V π∗F,γ

F,γplan
(s)
)

+

(
V
π∗F,γ
F,γplan

(s)− V
π∗
F̂ ,γplan

F,γ (s)

)
(4.6)

The first term is the difference in the expected returns of π∗F,γ under two different discount

factors, starting from s:

E

[
∞∑
t=0

(γt − γtplan)rt|s0 = s, π∗F,γ, F,M

]
. (4.7)

Since rt ≤ 1, ∀t, using the geometric series, Eq. 4.7 is upper bounded by 1
1−γ − 1

1−γplan
=

γ−γplan
(1−γplan)(1−γ)

.

The second term is upper bounded by V
π∗F,γplan
F,γplan

(s)− V
π∗
F̂ ,γplan

F,γ (s) since π∗F,γplan is an optimal

policy of an environment equipped with (F, γplan). Furthermore, as γplan ≤ γ and rt ≥ 0, we

have V
π∗
F̂ ,γplan

F,γ (s) ≥ V
π∗
F̂ ,γplan

F,γplan
(s). Therefore, the second term of Eq. 4.6 is upper bounded by

V
π∗F,γplan
F,γplan

(s) − V
π∗
F̂ ,γplan

F,γplan
(s), which is the deviation of the value function under two different

close policies. Since F and F̂ are close, we expect that this deviation to be small. With one

53

more decomposition step

V
π∗F,γplan
F,γplan

(s)− V
π∗
F̂ ,γplan

F,γplan
(s)

=

(
V
π∗F,γplan
F,γplan

(s)− V
π∗F,γplan

F̂ ,γplan
(s)

)
+

(
V
π∗F,γplan

F̂ ,γplan
(s)− V

π∗
F̂ ,γplan

F̂ ,γplan
(s)

)
+

(
V
π∗
F̂ ,γplan

F̂ ,γplan
(s)− V

π∗
F̂ ,γplan

F,γplan
(s)

)
.

Since the middle term in this equation is non-positive, we can ignore it for the purpose of

upper-bounding the left-hand side. The upper bound is sum of the remaining two terms

which is also upper bounded by 2 times of the maximum of them;

2 max
π∈{π∗F,γplan ,π

∗
F̂ ,γplan

}

∣∣∣V π
F̂ ,γplan

(s)− V π
F,γplan

(s)
∣∣∣ ,

which is the deviation in values of different domains. The value functions satisfy the Bellman

equation for any π:

V π
F,γplan

(s) =R(s, π(s)) + λF (s) + γplan

∫
s′∈S
T (s′|s, π(s))V π

F,γplan
(s′)ds

V π
F̂ ,γplan

(s) =R(s, π(s)) + λF̂ (s) + γplan

∫
s′∈S
T (s′|s, π(s))V π

F̂ ,γplan
(s′)ds (4.8)

which can be solved using iterative updates of dynamic programing. Let V π
i (s) and V̂ π

i (s)

respectably denote the i’th iteration of the dynamic programmings corresponding to the first

and second equalities in Eq. 4.8. Therefore, for any state

V π
i (s)−V̂ π

i (s)

=λ′F (s)− λ′F̂ (s) + γplan

∫
s′∈S
T (s′|s, π(s))

(
Vi−1(s′)− V̂i−1(s′)

)
ds ≤ λ

i∑
i′=0

(γplanT π)i
′
(
F − F̂

)
(s) ,

(4.9)

where (T π)i is a kernel and denotes the transition operator applied i times to itself. The

classification error
∣∣∣F (s)− F̂ (s)

∣∣∣ is the zero-one loss of binary classifier, therefore, its ex-

54

pectation
∫
s∈S ω

π∗
F̂ ,γplan (s)

∣∣∣F (s)− F̂ (s)
∣∣∣ ds is bounded by 3200

VC(F)+log 1
δ

N
with probability at

least 1−δ Vapnik (2013); Hanneke (2016). As long as the operator (T π)i is a linear operator,

∫
s∈S
ω
π∗
F̂ ,γplan (s)

∣∣∣V π
i (s)− V̂ π

i (s)
∣∣∣ ds ≤ λ

3200

1− γplan
VC(F) + log 1

δ

N
. (4.10)

Therefore, L(F, F̂ , γ, γplan) is bounded by (1− γ) times of sum of Eq. 4.10 and 1−γ
1−γplan

, with

probability at least 1− δ.

Theorem 4.2 holds for both finite and continuous state-action MDPs. Over the course of our

experiments, we discovered the following pattern: Intrinsic fear models are more effective

when the fear radius kr is large enough that the model can experience danger states at a

safe distance and correct the policy, without experiencing many catastrophes. When the fear

radius is too small, the danger probability is only nonzero at states from which catastrophes

are inevitable anyway and intrinsic fear seems not to help. We also found that wider fear

factors train more stably when phased in over the course of many episodes. So, in all of

our experiments we gradually phase in the fear factor from 0 to λ reaching full strength at

predetermined time step kλ.

4.4 Experiments

As it has been mentioned in the Thm. 4.1, the degradation of the optimal policy due to the

intrinsic fear, potentially, can be characterized with fear penalty λ and ε, which is also a

function of radius of the fear zone k. In practice, we use function approximation methods in

order to find the optimal policy and as it is mentioned before, the function approximation

approaches suffer from various sources of biases, e.g. catastrophic forgetting. In th following

experimental studies, we expect by deploying the fear model, the DRL algorithm becomes

more robust to the catastrophic mistakes but we expect as the k and λ increase, the DRL

55

(a) (b) (c) (d)

Figure 4.1: The analyses of the effect of radius k of the fear zone, and λ, the penalty assign
to fear zone for the game Pong. 4.1a: The average reward per episode for different radius
k = {1, 3, 5} and λ = 0.25 and 4.1a, the corresponding average catastrophic mistakes. 4.1c:
The average reward per episode for different λ = {0.25, 0.50, 1.00} for fixed k = 3 and 4.1d,
the corresponding average catastrophic mistakes.

behavior degrades. In this section, we study the sensitivity of the DQN model to the choice

of these parameters. We vary the radius of the fear zone k in range of k = {1, 3, 5} and the

fear intrinsic penalty λ in the range of {0.25, 0.50, 1.00}. We study the DQN behavior ac-

companied with fear model for four ALE environments, Pong, Chopper Command, Seaquest,

and Demon Attack. For each experiment, and a specific configuration of k and λ, we run

the experiment for three times and report the mean and variance of the return as well as

the occurrence rate of catastrophic mistakes. Each run of the game Pong is 20M frame (5M

decision steps) and for the rest of the games, each run consist of 80M frames (20M decision

steps). The plotted returns are through moving average with window if length 100 over

episode. For the rate of catastrophic mistakes, for the game Pong, we report the average

number of catastrophic mistake per 100 episode Fig. 4.1.

This measure can not capture the effect of inartistic fear model for the games where avoiding

the catastrophically event make the length of each episode significantly long or the number of

possible catastrophic mistake is constant (the number of life assign to each round of game.).

For these type of games, we report the average number of catastrophic mistake divided

by the average length of the episodes Fig. 4.2. As it is shown in the Fig. 4.2 when the

deployed radius k or the penalty λ increase, the DRL performance develops, while the rate

of catastrophic mistakes goes down. When these two parameters increase dramatically, there

is the degration in the agent behaviour, .e.g the the agent in Chopper-Command for k = 3

56

and λ = 1.00 learns a too conservative policy such that the agent does not proceed forward

in order to collect rewards https://youtu.be/em-FQMH8mMQ, or Seaquest agent learns to a

deadlock move in order to minimize the negative penalties https://youtu.be/dOIqv0afnNE.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of steps 1e7

1.0

1.5

2.0

2.5

3.0

Av
e.

 c
at

as
tr

op
hi

c
m

is
ta

ke
 p

er
 e

pi
so

de

1e−2 Seaquest
k=3,lambda=1.00
k=3,lambda=0.50
k=3,lambda=0.25

Figure 4.2: The analyses of the effect of radius k of the fear zone, and λ, the penalty assign
to fear zone for a set of different games

4.5 Related work

The paper studies safety in RL, intrinsically motivated RL, and the stability of Q-learning

with function approximation under distributional shift. Our work also has some connection

to reward shaping. We attempt to highlight the most relevant papers here. Several papers

address safety in RL. Garcıa and Fernández (2015) provide a thorough review on the topic,

identifying two main classes of methods: those that perturb the objective function and those

that use external knowledge to improve the safety of exploration.

57

While a typical reinforcement learner optimizes expected return, some papers suggest that

a safely acting agent should also minimize risk. Hans et al. (2008) defines a fatality as any

return below some threshold τ . They propose a solution comprised of a safety function, which

identifies unsafe states, and a backup model, which navigates away from those states. Their

work, which only addresses the tabular setting, suggests that an agent should minimize the

probability of fatality instead of maximizing the expected return. Heger (1994) suggests an

alternative Q-learning objective concerned with the minimum (vs. expected) return. Other

papers suggest modifying the objective to penalize policies with high-variance returns Garcıa

and Fernández (2015); Chow et al. (2015). Maximizing expected returns while minimizing

their variance is a classic problem in finance, where a common objective is the ratio of

expected return to its standard deviation Sharpe (1966). Moldovan and Abbeel (2012) give

a definition of safety based on ergodicity. They consider a fatality to be a state from which

one cannot return to the start state. Shalev-Shwartz et al. (2016) theoretically analyzes how

strong a penalty should be to discourage accidents. They also consider hard constraints to

ensure safety. None of the above works address the case where distributional shift dooms

an agent to perpetually revisit known catastrophic failure modes. Other papers incorporate

external knowledge into the exploration process. Typically, this requires access to an oracle

or extensive prior knowledge of the environment. In the extreme case, some papers suggest

confining the policy search to a known subset of safe policies. For reasonably complex

environments or classes of policies, this seems infeasible.

The potential oscillatory or divergent behavior of Q-learners with function approximation has

been previously identified Boyan and Moore (1995); Baird (1995); Gordon (1996). Outside

of RL, the problem of covariate shift has been extensively studied Sugiyama and Kawanabe

(2012). Murata and Ozawa (2005) addresses the problem of catastrophic forgetting owing

to distributional shift in RL with function approximation, proposing a memory-based solu-

tion. Many papers address intrinsic rewards, which are internally assigned, vs the standard

(extrinsic) reward. Typically, intrinsic rewards are used to encourage exploration Schmid-

58

huber (1991); Bellemare et al. (2016) and to acquire a modular set of skills Chentanez et al.

(2004). Some papers refer to the intrinsic reward for discovery as curiosity. Like classic work

on intrinsic motivation, our methods perturb the reward function. But instead of assign-

ing bonuses to encourage discovery of novel transitions, we assign penalties to discourage

catastrophic transitions.

Key differences In this paper, we undertake a novel treatment of safe reinforcement

learning, While the literature offers several notions of safety in reinforcement learning, we

see the following problem: Existing safety research that perturbs the reward function requires

little foreknowledge, but fundamentally changes the objective globally. On the other hand,

processes relying on expert knowledge may presume an unreasonable level of foreknowledge.

Moreover, little of the prior work on safe reinforcement learning, to the best of our knowledge,

specifically addresses the problem of catastrophic forgetting. This paper proposes a new

class of algorithms for avoiding catastrophic states and a theoretical analysis supporting its

robustness.

4.6 Conclusions

Our experiments demonstrate that DQNs are susceptible to periodically repeating mistakes,

however bad, raising questions about their real-world utility when harm can come of actions.

While it is easy to visualize these problems on toy examples, similar dynamics are embedded

in more complex domains. Consider a domestic robot acting as a barber. The robot might

receive positive feedback for giving a closer shave. This reward encourages closer contact at a

steeper angle. Of course, the shape of this reward function belies the catastrophe lurking just

past the optimal shave. Similar dynamics might be imagines in a vehicle that is rewarded

for traveling faster but could risk an accident with excessive speed. Our results with the

59

intrinsic fear model suggest that with only a small amount of prior knowledge (the ability to

recognize catastrophe states after the fact), we can simultaneously accelerate learning and

avoid catastrophic states. This work is a step towards combating DRL’s tendency to revisit

catastrophic states due to catastrophic forgetting.

60

Chapter 5

RL in Partially Observable MDPs

Reinforcement Learning of POMDPs using Spectral Methods

We propose a new reinforcement learning algorithm for partially observable Markov decision

processes (POMDP) based on spectral decomposition methods. While spectral methods

have been previously employed for consistent learning of (passive) latent variable models

such as hidden Markov models, POMDPs are more challenging since the learner interacts

with the environment and possibly changes the future observations in the process. We devise

a learning algorithm running through episodes, in each episode we employ spectral techniques

to learn the POMDP parameters from a trajectory generated by a fixed policy. At the end

of the episode, an optimization oracle returns the optimal memoryless planning policy which

maximizes the expected reward based on the estimated POMDP model. We prove an order-

optimal regret bound w.r.t. the optimal memoryless policy and efficient scaling with respect

to the dimensionality of observation and action spaces.

61

5.1 Introduction

Reinforcement Learning (RL) is an effective approach to solve the problem of sequential

decision–making under uncertainty. RL agents learn how to maximize long-term reward us-

ing the experience obtained by direct interaction with a stochastic environment (Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998). Since the environment is initially unknown,

the agent has to balance between exploring the environment to estimate its structure, and ex-

ploiting the estimates to compute a policy that maximizes the long-term reward. As a result,

designing a RL algorithm requires three different elements: 1) an estimator for the environ-

ment’s structure, 2) a planning algorithm to compute the optimal policy of the estimated

environment (LaValle, 2006), and 3) a strategy to make a trade off between exploration and

exploitation to minimize the regret, i.e., the difference between the performance of the exact

optimal policy and the rewards accumulated by the agent over time.

Most of RL literature assumes that the environment can be modeled as a Markov decision

process (MDP), with a Markovian state evolution that is fully observed. A number of

exploration–exploitation strategies have been shown to have strong performance guarantees

for MDPs, either in terms of regret or sample complexity (see Sect. 5.1.2 for a review). For the

large state space MDP, where the classical approaches are not scalable, Kocsis and Szepesvári

(2006) introduces MDP Monte-Carlo planning tree which is one of the few viable approaches

to find the near-optimal policy. However, the assumption of full observability of the state

evolution is often violated in practice, and the agent may only have noisy observations of

the true state of the environment (e.g., noisy sensors in robotics). In this case, it is more

appropriate to use the partially-observable MDP or POMDP (Sondik, 1971) model.

Many challenges arise in designing RL algorithms for POMDPs. Unlike in MDPs, the esti-

mation problem (element 1) involves identifying the parameters of a latent variable model

(LVM). In a MDP the agent directly observes (stochastic) state transitions, and the estima-

62

tion of the generative model is straightforward via empirical estimators. On the other hand,

in a POMDP the transition and reward models must be inferred from noisy observations and

the Markovian state evolution is hidden. The planning problem (element 2), i.e., computing

the optimal policy for a POMDP with known parameters, is PSPACE-complete (Papadim-

itriou and Tsitsiklis, 1987a), and it requires solving an augmented MDP built on a continuous

belief space (i.e., a distribution over the hidden state of the POMDP). Finally, integrating

estimation and planning in an exploration–exploitation strategy (element 3) with guarantees

is non-trivial and no no-regret strategies are currently known (see Sect. 5.1.2).

5.1.1 Summary of Results

The main contributions of this paper are as follows: (i) We propose a new RL algorithm for

POMDPs that incorporates spectral parameter estimation within a exploration-exploitation

framework, (ii) we analyze regret bounds assuming access to an optimization oracle that

provides the best memoryless planning policy at the end of each learning episode, (iii) we

prove order optimal regret and efficient scaling with dimensions, thereby providing the first

guaranteed RL algorithm for a wide class of POMDPs.

The estimation of the POMDP is carried out via spectral methods which involve decompo-

sition of certain moment tensors computed from data. This learning algorithm is interleaved

with the optimization of the planning policy using an exploration–exploitation strategy in-

spired by the UCRL method for MDPs (Ortner and Auer, 2007; Jaksch et al., 2010b). The

resulting algorithm, called SM-UCRL (Spectral Method for Upper-Confidence Reinforcement

Learning), runs through episodes of variable length, where the agent follows a fixed pol-

icy until enough data are collected and then it updates the current policy according to the

estimates of the POMDP parameters and their accuracy. Throughout the paper we focus

on the estimation and exploration–exploitation aspects of the algorithm, while we assume

63

access to a planning oracle for the class of memoryless policies (i.e., policies directly mapping

observations to a distribution over actions).1

Theoretical Results. We prove the following learning result. For the full details see

Thm. 5.1 in Sect. 5.3.

Theorem 1. (Informal Result on Learning POMDP Parameters) Let M be a

POMDP with X states, Y observations, A actions, R rewards, and Y > X, and characterized

by densities fT (x′|x, a), fO(y|x), and fR(r|x, a) defining state transition, observation, and

the reward models. Given a sequence of observations, actions, and rewards generated by

executing a memoryless policy where each action a is chosen N(a) times, there exists a

spectral method which returns estimates f̂T , f̂O, and f̂R that, under suitable assumptions on

the POMDP, the policy, and the number of samples, satisfy

‖f̂O(·|x)−fO(·|x)‖1 ≤ Õ

(√
Y R

N(a)

)
,

‖f̂R(·|x, a)− fR(·|x, a)‖1 ≤ Õ

(√
Y R

N(a)

)
,

‖f̂T (·|x, a)−fT (·|x, a)‖2 ≤ Õ

(√
Y RX2

N(a)

)
,

with high probability, for any state x and any action a.

This result shows the consistency of the estimated POMDP parameters and it also provides

explicit confidence intervals.

By employing the above learning result in a UCRL framework, we prove the following bound

on the regret RegN w.r.t. the optimal memoryless policy. For full details see Thm. 5.2 in

Sect. 5.4.

1This assumption is common in many works in bandit and RL literature (see e.g., Abbasi-Yadkori and
Szepesvári (2011) for linear bandit and Chen et al. (2013) in combinatorial bandit), where the focus is on
the exploration–exploitation strategy rather than the optimization problem.

64

Theorem 2. (Informal Result on Regret Bounds) Let M be a POMDP with X states,

Y observations, A actions, and R rewards, with a diameter D defined as

D := max
x,x′∈X ,a,a′∈A

min
π

E
[
τ(x′, a′|x, a; π)

]
,

i.e., the largest mean passage time between any two state-action pairs in the POMDP using

a memoryless policy π mapping observations to actions. If SM-UCRL is run over N steps

using the confidence intervals of Thm. 5.1, under suitable assumptions on the POMDP, the

space of policies, and the number of samples, we have

RegN ≤ Õ
(
DX3/2

√
AY RN

)
,

with high probability.

The above result shows that despite the complexity of estimating the POMDP parameters

from noisy observations of hidden states, the regret of SM-UCRL is similar to the case of

MDPs, where the regret of UCRL scales as Õ(DMDPX
√
AN). The regret is order-optimal,

since Õ(
√
N) matches the lower bound for MDPs.

Another interesting aspect is that the diameter of the POMDP is a natural extension of the

MDP case. While DMDP measures the mean passage time using state–based policies (i.e., a

policies mapping states to actions), in POMDPs policies cannot be defined over states but

rather on observations and this naturally translates into the definition of the diameter D.

More details on other problem-dependent terms in the bound are discussed in Sect. 5.4.

The derived regret bound is with respect to the best memoryless (stochastic) policy for the

given POMDP. Indeed, for a general POMDP, the optimal policy need not be memoryless.

However, finding the optimal policy is uncomputable for infinite horizon regret minimiza-

tion (Madani, 1998). Instead memoryless policies have shown good performance in practice

65

(see the Section on related work). Moreover, for the class of so-called contextual MDP,

a special class of POMDPs, the optimal policy is also memoryless (Krishnamurthy et al.,

2016a).

Analysis of the learning algorithm. The learning results in Thm. 5.1 are based on

spectral tensor decomposition methods, which have been previously used for consistent es-

timation of a wide class of LVMs (Anandkumar et al., 2014). This is in contrast with tra-

ditional learning methods, such as expectation-maximization (EM) (Dempster et al., 1977),

that have no consistency guarantees and may converge to local optimum which is arbitrarily

bad.

While spectral methods have been previously employed in sequence modeling such as in

HMMs (Anandkumar et al., 2014), by representing it as multiview model, their application to

POMDPs is not trivial. In fact, unlike the HMM, the consecutive observations of a POMDP

are no longer conditionally independent, when conditioned on the hidden state of middle

view. This is because the decision (or the action) depends on the observations themselves.

By limiting to memoryless policies, we can control the range of this dependence, and by

conditioning on the actions, we show that we can obtain conditionally independent views.

As a result, starting with samples collected along a trajectory generated by a fixed policy, we

can construct a multi-view model and use the tensor decomposition method on each action

separately, estimate the parameters of the POMDP, and define confidence intervals.

While the proof follows similar steps as in previous works on spectral methods (e.g., HMMs

Anandkumar et al., 2014), here we extend concentration inequalities for dependent random

variables to matrix valued functions by combining the results of Kontorovich et al. (2008)

with the matrix Azuma’s inequality of Tropp (2012). This allows us to remove the usual

assumption that the samples are generated from the stationary distribution of the current

policy. This is particularly important in our case since the policy changes at each episode

66

and we can avoid discarding the initial samples and waiting until the corresponding Markov

chain converged (i.e., the burn-in phase).

The condition that the POMDP has more observations than states (Y > X) follows from

standard non-degeneracy conditions to apply the spectral method. This corresponds to

considering POMDPs where the underlying MDP is defined over a few number of states

(i.e., a low-dimensional space) that can produce a large number of noisy observations. This

is common in applications such as spoken-dialogue systems (Atrash and Pineau, 2006; Png

et al., 2012) and medical applications (Hauskrecht and Fraser, 2000). We also show how this

assumption can be relaxed and the result can be applied to a wider family of POMDPs.

Analysis of the exploration–exploitation strategy. SM-UCRL applies the popu-

lar optimism-in-face-of-uncertainty principle2 to the confidence intervals of the estimated

POMDP and compute the optimal policy of the most optimistic POMDP in the admissible

set. This optimistic choice provides a smooth combination of the exploration encouraged

by the confidence intervals (larger confidence intervals favor uniform exploration) and the

exploitation of the estimates of the POMDP parameters.

While the algorithmic integration is rather simple, its analysis is not trivial. The spectral

method cannot use samples generated from different policies and the length of each episode

should be carefully tuned to guarantee that estimators improve at each episode. Furthermore,

the analysis requires redefining the notion of diameter of the POMDP. In addition, we

carefully bound the various perturbation terms in order to obtain efficient scaling in terms

of dimensionality factors.

Finally, in the Appendix 5.5, we report preliminary synthetic experiments that demonstrate

2This principle has been successfully used in a wide number of exploration–exploitation problems ranging
from multi-armed bandit (Auer et al., 2002), linear contextual bandit (Abbasi-Yadkori et al., 2011), linear
quadratic control (Abbasi-Yadkori and Szepesvári, 2011), and reinforcement learning (Ortner and Auer,
2007; Jaksch et al., 2010b).

67

superiority of our method over existing RL methods such as Q-learning and UCRL for

MDPs, and also over purely exploratory methods such as random sampling, which randomly

chooses actions independent of the observations. SM-UCRL converges much faster and to a

better solution. The solutions relying on the MDP assumption, directly work in the (high)

dimensional observation space and perform poorly. In fact, they can even be worse than the

random sampling policy baseline. In contrast, our method aims to find the lower dimensional

latent space to derive the policy and this allows UCRL to find a much better memoryless

policy with vanishing regret.

5.1.2 Related Work

While RL in MDPs has been widely studied (Kearns and Singh, 2002; Brafman and Ten-

nenholtz, 2003; Bartlett and Tewari, 2009; Jaksch et al., 2010b), the design of effective

exploration–exploration strategies in POMDPs is still relatively unexplored. Ross et al.

(2007) and Poupart and Vlassis (2008) propose to integrate the problem of estimating the

belief state into a model-based Bayesian RL approach, where a distribution over possible

MDPs is updated over time. The proposed algorithms are such that the Bayesian inference

can be done accurately and at each step, a POMDP is sampled from the posterior and the

corresponding optimal policy is executed. While the resulting methods implicitly balance

exploration and exploitation, no theoretical guarantee is provided about their regret and

their algorithmic complexity requires the introduction of approximation schemes for both

the inference and the planning steps. An alternative to model-based approaches is to adapt

model-free algorithms, such as Q-learning, to the case of POMDPs. Perkins (2002) proposes

a Monte-Carlo approach to action-value estimation and it shows convergence to locally opti-

mal memoryless policies. While this algorithm has the advantage of being computationally

efficient, local optimal policies may be arbitrarily suboptimal and thus suffer a linear regret.

68

An alternative approach to solve POMDPs is to use policy search methods, which avoid esti-

mating value functions and directly optimize the performance by searching in a given policy

space, which usually contains memoryless policies (see e.g., (Ng and Jordan, 2000),(Baxter

and Bartlett, 2001a),(Poupart and Boutilier, 2003; Bagnell et al., 2004)). Beside its practi-

cal success in offline problems, policy search has been successfully integrated with efficient

exploration–exploitation techniques and shown to achieve small regret (Gheshlaghi-Azar

et al., 2013, 2014). Nonetheless, the performance of such methods is severely constrained by

the choice of the policy space, which may not contain policies with good performance.

Matrix decomposition methods have been previously used in the more general setting of

predictive state representation (PSRs) (Boots et al., 2011) to reconstruct the structure of

the dynamical system. Despite the generality of PSRs, the proposed model relies on strong

assumptions on the dynamics of the system and it does not have any theoretical guarantee

about its performance. Gheshlaghi azar et al. (2013) used spectral tensor decomposition

methods in the multi-armed bandit framework to identify the hidden generative model of a

sequence of bandit problems and showed that this may drastically reduce the regret.

Krishnamurthy et al. (2016a) recently analyzed the problem of learning in contextual-MDPs

and proved sample complexity bounds polynomial in the capacity of the policy space, the

number of states, and the horizon. While their objective is to minimize the regret over a

finite horizon, we instead consider the infinite horizon problem. It is an open question to

analyze and modify our spectral UCRL algorithm for the finite horizon problem. As stated

earlier, contextual MDPs are a special class of POMDPs for which memoryless policies are

optimal. While they assume that the samples are drawn from a contextual MDP, we can

handle a much more general class of POMDPs, and we minimize regret with respect to the

best memoryless policy for the given POMDP.

Finally, a related problem is considered by Ortner et al. (2014), where a series of possible

representations based on observation histories is available to the agent but only one of them

69

is actually Markov. A UCRL-like strategy is adopted and shown to achieve near-optimal

regret.

In this paper, we focus on the learning problem, while we consider access to an optimiza-

tion oracle to compute the optimal memoryless policy. The problem of planning in general

POMDPs is intractable (PSPACE-complete for finite horizon (Papadimitriou and Tsitsiklis,

1987a) and uncomputable for infinite horizon (Madani, 1998)).Many exact, approximate,

and heuristic methods have been proposed to compute the optimal policy (see Spaan (2012)

for a recent survey). An alternative approach is to consider memoryless policies which di-

rectly map observations (or a finite history) to actions (Littman, 1994; Singh et al., 1994; Li

et al., 2011). While deterministic policies may perform poorly, stochastic memoryless policies

are shown to be near-optimal in many domains (Barto et al., 1983; Loch and Singh, 1998;

Williams and Singh, 1998) and even optimal in the specific case of contextual MDPs (Kr-

ishnamurthy et al., 2016a). Although computing the optimal stochastic memoryless policy

is still NP-hard (Littman, 1994), several model-based and model-free methods are shown to

converge to nearly-optimal policies with polynomial complexity under some conditions on

the POMDP (Jaakkola et al., 1995; Li et al., 2011). In this work, we employ memoryless

policies and prove regret bounds for reinforcement learning of POMDPs. The above works

suggest that focusing to memoryless policies may not be a restrictive limitation in practice.

5.1.3 Paper Organization

The paper is organized as follows. Sect. 5.2 introduces the notation and the technical assump-

tions concerning the POMDP and the space of memoryless policies that we consider. Sect. 5.3

introduces the spectral method for the estimation of POMDP parameters together with

Thm. 5.1. In Sect. 5.4, we outline SM-UCRL where we integrate the spectral method into

an exploration–exploitation strategy and we prove the regret bound of Thm. 5.2. Sect. 5.6

70

y2y1

a1 a2

r2r1

x3x2x1

Figure 5.1: Graphical model of a POMDP under memoryless policies.

draws conclusions and discuss possible directions for future investigation. The proofs are re-

ported in the appendix together with preliminary empirical results showing the effectiveness

of the proposed method.

5.2 Preliminaries

A POMDP M is a tuple 〈X ,A,Y ,R, fT , fR, fO〉, where X is a finite state space with cardi-

nality |X | = X, A is a finite action space with cardinality |A| = A, Y is a finite observation

space with cardinality |Y| = Y , and R is a finite reward space with cardinality |R| = R and

largest reward rmax. For notation convenience, we use a vector notation for the elements in

Y and R, so that ~y ∈ RY and ~r ∈ RR are indicator vectors with entries equal to 0 except a 1

in the position corresponding to a specific element in the set (e.g., ~y = ~en refers to the n-th

element in Y). We use i, j ∈ [X] to index states, k, l ∈ [A] for actions, m ∈ [R] for rewards,

and n ∈ [Y] for observations. Finally, fT denotes the transition density, so that fT (x′|x, a)

is the probability of transition to x′ given the state-action pair (x, a), fR is the reward den-

sity, so that fR(~r|x, a) is the probability of receiving the reward in R corresponding to the

value of the indicator vector ~r given the state-action pair (x, a), and fO is the observation

density, so that fO(~y|x) is the probability of receiving the observation in Y corresponding to

the indicator vector ~y given the state x. Whenever convenient, we use tensor forms for the

71

density functions such that

Ti,j,l = P[xt+1 = j|xt = i, at = l] = fT (j|i, l), s.t. T ∈ RX×X×A

On,i = P[~y = ~en|x = i] = fO(~en|i), s.t. O ∈ RY×X

Γi,l,m = P[~r = ~em|x = i, a = l] = fR(~em|i, l), s.t. Γ ∈ RX×A×R.

We also denote by T:,j,l the fiber (vector) in RX obtained by fixing the arrival state j and

action l and by T:,:,l ∈ RX×X the transition matrix between states when using action l. The

graphical model associated to the POMDP is illustrated in Fig. 5.1.

We focus on stochastic memoryless policies which map observations to actions and for any

policy π we denote by fπ(a|~y) its density function. We denote by P the set of all stochastic

memoryless policies that have a non-zero probability to explore all actions:

P = {π : min
~y

min
a
fπ(a|~y) > πmin}.

Acting according to a policy π in a POMDP M defines a Markov chain characterized by a

transition density

fT,π(x′|x) =
∑
a

∑
~y

fπ(a|~y)fO(~y|x)fT (x′|x, a),

and a stationary distribution ωπ over states such that ωπ(x) =
∑

x′ fT,π(x′|x)ωπ(x′). The

expected average reward performance of a policy π is

η(π;M) =
∑
x

ωπ(x)rπ(x),

72

where rπ(x) is the expected reward of executing policy π in state x defined as

rπ(x) =
∑
a

∑
~y

fO(~y|x)fπ(a|~y)r(x, a),

and r(x, a) =
∑

r rfR(r|x, a) is the expected reward for the state-action pair (x, a). The best

stochastic memoryless policy in P is π+ = arg max
π∈P

η(π;M) and we denote by η+ = η(π+;M)

its average reward.3 Throughout the paper we assume that we have access to an optimization

oracle returning the optimal policy π+ in P for any POMDP M . We need the following

assumptions on the POMDP M .

Assumption 3 (Ergodicity). For any policy π ∈ P, the corresponding Markov chain fT,π is

ergodic, so ωπ(x) > 0 for all states x ∈ X .

We further characterize the Markov chains that can be generated by the policies in P . For

any ergodic Markov chain with stationary distribution ωπ, let f1→t(xt|x1) by the distribution

over states reached by a policy π after t steps starting from an initial state x1. The inverse

mixing time ρmix,π(t) of the chain is defined as

ρmix,π(t) = sup
x1

‖f1→t(·|x1)− ωπ‖TV ,

where ‖ · ‖TV is the total-variation metric. Kontorovich et al. (2014) show that for any

ergodic Markov chain the mixing time can be bounded as

ρmix,π(t) ≤ G(π)θt−1(π),

where 1 ≤ G(π) < ∞ is the geometric ergodicity and 0 ≤ θ(π) < 1 is the contraction

coefficient of the Markov chain generated by policy π.

3We use π+ rather than π∗ to recall the fact that we restrict the attention to P and the actual optimal
policy for a POMDP in general should be constructed on the belief-MDP.

73

Assumption 4 (Full Column-Rank). The observation matrix O ∈ RY×X is full column

rank.

and define

This assumption guarantees that the distribution fO(·|x) in a state x (i.e., a column of the

matrix O) is not the result of a linear combination of the distributions over other states.

We show later that this is a sufficient condition to recover fO since it makes all states

distinguishable from the observations and it also implies that Y ≥ X. Notice that POMDPs

have been often used in the opposite scenario (X � Y) in applications such as robotics,

where imprecise sensors prevents from distinguishing different states. On the other hand,

there are many domains in which the number of observations may be much larger than the

set of states that define the dynamics of the system. A typical example is the case of spoken

dialogue systems (Atrash and Pineau, 2006; Png et al., 2012), where the observations (e.g.,

sequences of words uttered by the user) is much larger than the state of the conversation

(e.g., the actual meaning that the user intended to communicate). A similar scenario is

found in medical applications (Hauskrecht and Fraser, 2000), where the state of a patient

(e.g., sick or healthy) can produce a huge body of different (random) observations. In these

problems it is crucial to be able to reconstruct the underlying small state space and the

actual dynamics of the system from the observations.

Assumption 5 (Invertible). For any action a ∈ [A], the transition matrix T:,:,a ∈ RX×X is

invertible.

Similar to the previous assumption, this means that for any action a the distribution fT (·|x, a)

cannot be obtained as linear combination of distributions over other states, and it is a

sufficient condition to be able to recover the transition tensor. Both Asm. 4 and 5 are strictly

related to the assumptions introduced by Anandkumar et al. (2014) for tensor methods in

HMMs. In Sect. 5.4 we discuss how they can be partially relaxed.

74

5.3 Learning the Parameters of the POMDP

In this section we introduce a novel spectral method to estimate the POMDP parameters fT ,

fO, and fR. A stochastic policy π is used to generate a trajectory (~y1, a1, ~r1, . . . , ~yN , aN , ~rN)

of N steps. We need the following assumption that, together with Asm. 3, guarantees that

all states and actions are constantly visited.

Assumption 6 (Policy Set). The policy π belongs to P.

Similar to the case of HMMs, the key element to apply the spectral methods is to construct a

multi-view model for the hidden states. Despite its similarity, the spectral method developed

for HMM by Anandkumar et al. (2014) cannot be directly employed here. In fact, in HMMs

the state transition and the observations only depend on the current state. On the other

hand, in POMDPs the probability of a transition to state x′ not only depends on x, but also

on action a. Since the action is chosen according to a memoryless policy π based on the

current observation, this creates an indirect dependency of x′ on observation ~y, which makes

the model more intricate.

5.3.1 The multi-view model

We estimate POMDP parameters for each action l ∈ [A] separately. Let t ∈ [2, N − 1] be

a step at which at = l, we construct three views (at−1, ~yt−1, ~rt−1), (~yt, ~rt), and (~yt+1) which

all contain observable elements. As it can be seen in Fig. 5.1, all three views provide some

information about the hidden state xt (e.g., the observation ~yt−1 triggers the action at−1,

which influence the transition to xt). A careful analysis of the graph of dependencies shows

that conditionally on xt, at all the views are independent. For instance, let us consider ~yt and

~yt+1. These two random variables are clearly dependent since ~yt influences action at, which

triggers a transition to xt+1 that emits an observation ~yt+1. Nonetheless, it is sufficient to

75

condition on the action at = l to break the dependency and make ~yt and ~yt+1 independent.

Similar arguments hold for all the other elements in the views, which can be used to recover

the latent variable xt. More formally, we encode the triple (at−1, ~yt−1, ~rt−1) into a vector

~v
(l)
1,t ∈ RA·Y ·R, so that view ~v

(l)
1,t = ~es whenever at−1 = k, ~yt−1 = ~en, and ~rt−1 = ~em for a

suitable mapping between the index s ∈ {1, . . . , A · Y · R} and the indices (k, n,m) of the

action, observation, and reward. Similarly, we proceed for ~v
(l)
2,t ∈ RY ·R and ~v

(l)
3,t ∈ RY . We

introduce the three view matrices V
(l)
ν with ν ∈ {1, 2, 3} associated with action l defined as

V
(l)

1 ∈ RA·Y ·R×X , V
(l)

2 ∈ RY ·R×X , and V
(l)

3 ∈ RY×X such that

[V
(l)

1]s,i = P
(
~v

(l)
1 = ~es|x2 = i

)
= [V

(l)
1](n,m,k),i = P

(
~y1 = ~en, ~r1 = ~em, a1 = k|x2 = i

)
,

[V
(l)

2]s,i = P
(
~v

(l)
2 = ~es|x2 = i, a2 = l

)
= [V

(l)
2](n′,m′),i = P

(
~y2 = ~en′ , ~r2 = ~em′|x2 = i, a2 = l

)
,

[V
(l)

3]s,i = P
(
~v

(l)
3 = ~es|x2 = i, a2 = l

)
= [V

(l)
3]n′′,i = P

(
~y3 = ~en′′|x2 = i, a2 = l

)
.

In the following we denote by µ
(l)
ν,i = [V

(l)
ν]:,i the ith column of the matrix V

(l)
ν for any

ν ∈ {1, 2, 3}. Notice that Asm. 4 and Asm. 5 imply that all the view matrices are full

column rank. As a result, we can construct a multi-view model that relates the spectral

decomposition of the second and third moments of the (modified) views with the columns

of the third view matrix.

Proposition 1 (Thm. 3.6 in (Anandkumar et al., 2014)). Let K
(l)
ν,ν′ = E

[
~v

(l)
ν ⊗ ~v(l)

ν′

]
be the

correlation matrix between views ν and ν ′ and K† is its pseudo-inverse. We define a modified

version of the first and second views as

~̃v
(l)

1 := K
(l)
3,2(K

(l)
1,2)†~v

(l)
1 , ~̃v

(l)

2 := K
(l)
3,1(K

(l)
2,1)†~v

(l)
2 . (5.1)

76

Then the second and third moment of the modified views have a spectral decomposition as

M
(l)
2 = E

[
~̃v

(l)

1 ⊗ ~̃v
(l)

2

]
=

X∑
i=1

ω(l)
π (i)µ

(l)
3,i ⊗ µ(l)

3,i, (5.2)

M
(l)
3 = E

[
~̃v

(l)

1 ⊗ ~̃v
(l)

2 ⊗ ~v(l)
3

]
=

X∑
i=1

ω(l)
π (i)µ

(l)
3,i ⊗ µ(l)

3,i ⊗ µ(l)
3,i, (5.3)

where ⊗ is the tensor product and ω
(l)
π (i) = P[x = i|a = l] is the state stationary distribution

of π conditioned on action l being selected by policy π.

Notice that under Asm. 3 and 6, ω
(l)
π (i) is always bounded away from zero. Given M

(l)
2 and

M
(l)
3 we can recover the columns of the third view µ

(l)
3,i directly applying the standard spectral

decomposition method of Anandkumar et al. (2012). We need to recover the other views

from V
(l)

3 . From the definition of modified views in Eq. 5.1 we have

µ
(l)
3,i = E

[
~̃v1|x2 = i, a2 = l

]
= K

(l)
3,2(K

(l)
1,2)†E

[
~v1|x2 = i, a2 = l

]
= K

(l)
3,2(K

(l)
1,2)†µ

(l)
1,i,

µ
(l)
3,i = E

[
~̃v2|x2 = i, a2 = l

]
= K

(l)
3,1(K

(l)
2,1)†E

[
~v2|x2 = i, a2 = l

]
= K

(l)
3,1(K

(l)
2,1)†µ

(l)
2,i.

(5.4)

Thus, it is sufficient to invert (pseudo invert) the two equations above to obtain the columns

of both the first and second view matrices. This process could be done in any order, e.g.,

we could first estimate the second view by applying a suitable symmetrization step (Eq. 5.1)

and recovering the first and the third views by reversing similar equations to Eq. 5.4. On

the other hand, we cannot repeat the symmetrization step multiple times and estimate the

views independently (i.e., without inverting Eq. 5.4). In fact, the estimates returned by the

spectral method are consistent “up to a suitable permutation” on the indexes of the states.

While this does not pose any problem in computing one single view, if we estimated two

views independently, the permutation may be different, thus making them non-consistent

and impossible to use in recovering the POMDP parameters. On the other hand, estimating

first one view and recovering the others by inverting Eq. 5.4 guarantees the consistency of

the labeling of the hidden states.

77

5.3.2 Recovery of POMDP parameters

Once the views {V (l)
ν }3

ν=2 are computed from M
(l)
2 and M

(l)
3 , we can derive fT , fO, and fR.

In particular, all parameters of the POMDP can be obtained by manipulating the second

and third view as illustrated in the following lemma.

Lemma 2. Given the views V
(l)

2 and V
(l)

3 , for any state i ∈ [X] and action l ∈ [A], the

POMDP parameters are obtained as follows. For any reward m ∈ [R] the reward density is

fR(~em′|i, l) =
Y∑

n′=1

[V
(l)

2](n′,m′),i; (5.5)

for any observation n′ ∈ [Y] the observation density is

f
(l)
O (~en′ |i) =

R∑
m′=1

[V
(l)

2](n′,m′),i
fπ(l|~en′)ρ(i, l)

, (5.6)

with

ρ(i, l) =
R∑

m′=1

Y∑
n′=1

[V
(l)

2](n′,m′),i
fπ(l|~en′)

=
1

P(a2 = l|x2 = i)
.

Finally, each second mode of the transition tensor T ∈ RX×X×A is obtained as

[T]i,:,l = O†[V
(l)

3]:,i, (5.7)

where O† is the pseudo-inverse of matrix observation O and fT (·|i, l) = [T]i,:,l.

In the previous statement we use f
(l)
O to denote that the observation model is recovered from

the view related to action l. While in the exact case, all f
(l)
O are identical, moving to the

empirical version leads to A different estimates, one for each action view used to compute

it. Among them, we will select the estimate with the better accuracy.

4Each column of O(l) corresponds to `1-closest column of O(l∗)

78

Empirical estimates of POMDP parameters. In practice, M
(l)
2 and M

(l)
3 are not avail-

able and need to be estimated from samples. Given a trajectory of N steps obtained ex-

ecuting policy π, let T (l) = {t ∈ [2, N − 1] : at = l} be the set of steps when action l is

played, then we collect all the triples (at−1, ~yt−1, ~rt−1), (~yt, ~rt) and (~yt+1) for any t ∈ T (l)

and construct the corresponding views ~v
(l)
1,t, ~v

(l)
2,t, ~v

(l)
3,t. Then we symmetrize the views using

empirical estimates of the covariance matrices and build the empirical version of Eqs. 5.2

and 5.3 using N(l) = |T (l)| samples, thus obtaining

M̂
(l)
2 =

1

N(l)

∑
t∈Tl

~̃v
(l)

1,t ⊗ ~̃v
(l)

2,t, M̂
(l)
3 =

1

N(l)

∑
t∈Tl

~̃v
(l)

1,t ⊗ ~̃v
(l)

2,t ⊗ ~v(l)
3,t. (5.8)

Given the resulting M̂
(l)
2 and M̂

(l)
3 , we apply the spectral tensor decomposition method to

recover an empirical estimate of the third view V̂
(l)

3 and invert Eq. 5.4 (using estimated

covariance matrices) to obtain V̂
(l)

2 . Finally, the estimates f̂O, f̂T , and f̂R are obtained by

plugging the estimated views V̂ν in the process described in Lemma 2.

Spectral methods indeed recover the factor matrices up to a permutation of the hidden states.

In this case, since we separately carry out spectral decompositions for different actions, we

recover permuted factor matrices. Since the observation matrix O is common to all the

actions, we use it to align these decompositions. Let’s define dO

dO =: min
x,x′
‖fO(·|x)− fO(·|x′)‖1

Actually, dO is the minimum separability level of matrix O. When the estimation error over

columns of matrix O are less than 4dO, then one can come over the permutation issue by

matching columns of Ol matrices. In T condition is reflected as a condition that the number

of samples for each action has to be larger some number.

The overall method is summarized in Alg. 6. The empirical estimates of the POMDP pa-

rameters enjoy the following guarantee.

79

Theorem 5.1 (Learning Parameters). Let f̂O, f̂T , and f̂R be the estimated POMDP models

using a trajectory of N steps. We denote by σ
(l)
ν,ν′ = σX(K

(l)
ν,ν′) the smallest non-zero singular

value of the covariance matrix Kν,ν′, with ν, ν ′ ∈ {1, 2, 3}, and by σmin(V
(l)
ν) the smallest

singular value of the view matrix V
(l)
ν (strictly positive under Asm. 4 and Asm. 5), and we

define ω
(l)
min = minx∈X ω

(l)
π (x) (strictly positive under Asm. 3). If for any action l ∈ [A], the

number of samples N(l) satisfies the condition

N(l) ≥ max

{
4

(σ
(l)
3,1)2

,
16C2

OY R

λ(l)2
d2
O

,

 G(π) 2
√

2+1
1−θ(π)

ω
(l)
min min

ν∈{1,2,3}
{σ2

min(V
(l)
ν)}


2

Θ(l)

}
log
(2(Y 2 + AY R)

δ

)
,

(5.9)

with Θ(l), defined in Eq 5.95, and G(π), θ(π) are the geometric ergodicity and the contraction

coefficients of the corresponding Markov chain induced by π, then for any δ ∈ (0, 1) and for

any state i ∈ [X] and action l ∈ [A] we have

‖f̂ (l)
O (·|i)−fO(·|i)‖1 ≤ B(l)

O :=
CO
λ(l)

√
Y R log(1/δ)

N(l)
, (5.10)

‖f̂R(·|i, l)− fR(·|i, l)‖1 ≤ B(l)
R :=

CR
λ(l)

√
Y R log(1/δ)

N(l)
, (5.11)

‖f̂T (·|i, l)−fT (·|i, l)‖2 ≤ B(l)
T :=

CT
λ(l)

√
Y RX2 log(1/δ)

N(l)
, (5.12)

with probability 1− 6(Y 2 +AY R)Aδ (w.r.t. the randomness in the transitions, observations,

5We do not report the explicit definition of Θ(l) here because it contains exactly the same quantities, such

as ω
(l)
min, that are already present in other parts of the condition of Eq. 5.9.

80

and policy), where CO, CR, and CT are numerical constants and

λ(l) = σmin(O)(π
(l)
min)2σ

(l)
1,3(ω

(l)
min min

ν∈{1,2,3}
{σ2

min(V (l)
ν)})3/2. (5.13)

Finally, we denote by f̂O the most accurate estimate of the observation model, i.e., the

estimate f̂
(l∗)
O such that l∗ = arg minl∈[A] B(l)

O and we denote by BO its corresponding bound.

Remark 1 (consistency and dimensionality). All previous errors decrease with a rate

Õ(1/
√
N(l)), showing the consistency of the spectral method, so that if all the actions are

repeatedly tried over time, the estimates converge to the true parameters of the POMDP.

This is in contrast with EM-based methods which typically get stuck in local maxima and

return biased estimators, thus preventing from deriving confidence intervals.

The bounds in Eqs. 5.10, 5.11, 5.12 on f̂O, f̂R and f̂T depend on X, Y , and R (and the

number of actions only appear in the probability statement). The bound in Eq. 5.12 on f̂T

is worse than the bounds for f̂R and f̂O in Eqs. 5.10, 5.11 by a factor of X2. This seems

unavoidable since f̂R and f̂O are the results of the manipulation of the matrix V
(l)

2 with Y ·R

columns, while estimating f̂T requires working on both V
(l)

2 and V
(l)

3 . In addition, to come up

with upper bound for f̂T , more complicated bound derivation is needed and it has one step

of Frobenious norms to `2 norm transformation. The derivation procedure for f̂T is more

complicated compared to f̂O and f̂R and adds the term X to the final bound. (Appendix in

Azizzadenesheli et al. (2016c))

Remark 2 (POMDP parameters and policy π). In the previous bounds, several terms

depend on the structure of the POMDP and the policy π used to collect the samples:

• λ(l) captures the main problem-dependent terms. While K1,2 and K1,3 are full column-

rank matrices (by Asm. 4 and 5), their smallest non-zero singular values influence the

81

accuracy of the (pseudo-)inversion in the construction of the modified views in Eq. 5.1

and in the computation of the second view from the third using Eq. 5.4. Similarly

the presence of σmin(O) is justified by the pseudo-inversion of O used to recover the

transition tensor in Eq. 5.7. Finally, the dependency on the smallest singular values

σ2
min(V

(l)
ν) is due to the tensor decomposition method (see the Appendix of Azizzade-

nesheli et al. (2016c)).

• A specific feature of the bounds above is that they do not depend on the state i and

the number of times it has been explored. Indeed, the inverse dependency on ω
(l)
min

in the condition on N(l) in Eq. 5.9 implies that if a state j is poorly visited, then

the empirical estimate of any other state i may be negatively affected. This is in

striking contrast with the fully observable case where the accuracy in estimating, e.g.,

the reward model in state i and action l, simply depends on the number of times that

state-action pair has been explored, even if some other states are never explored at

all. This difference is intrinsic in the partial observable nature of the POMDP, where

we reconstruct information about the states (i.e., reward, transition, and observation

models) only from indirect observations. As a result, in order to have accurate estimates

of the POMDP structure, we need to rely on the policy π and the ergodicity of the

corresponding Markov chain to guarantee that the whole state space is covered.

• Under Asm. 3 the Markov chain fT,π is ergodic for any π ∈ P . Since no assumption is

made on the fact that the samples generated from π being sampled from the stationary

distribution, the condition on N(l) depends on how fast the chain converge to ωπ and

this is characterized by the parameters G(π) and θ(π).

• If the policy is deterministic, then some actions would not be explored at all, thus

leading to very inaccurate estimations (see e.g., the dependency on fπ(l|~y) in Eq. 5.6).

The inverse dependency on πmin (defined in P) accounts for the amount of exploration

assigned to every actions, which determines the accuracy of the estimates. Further-

82

more, notice that also the singular values σ
(l)
1,3 and σ

(l)
1,2 depend on the distribution of

the views, which in turn is partially determined by the policy π.

Notice that the first two terms are basically the same as in the bounds for spectral methods

applied to HMM (Song et al., 2013), while the dependency on πmin is specific to the POMDP

case. On the other hand, in the analysis of HMMs usually there is no dependency on the

parameters G and θ because the samples are assumed to be drawn from the stationary dis-

tribution of the chain. Removing this assumption required developing novel results for the

tensor decomposition process itself using extensions of matrix concentration inequalities for

the case of Markov chain (not yet in the stationary distribution). The overall analysis is

reported in the Appendix of Azizzadenesheli et al. (2016c). It worth to note that, Kon-

torovich et al. (2013), without stationary assumption, proposes new method to learn the

transition matrix of HMM model given factor matrix O, and it provides theoretical bound

over estimation errors.

5.4 Spectral UCRL

The most interesting aspect of the estimation process illustrated in the previous section is

that it can be applied when samples are collected using any policy π in the set P . As a result,

it can be integrated into any exploration-exploitation strategy where the policy changes over

time in the attempt of minimizing the regret.

The algorithm. The SM-UCRL algorithm illustrated in Alg. 7 is the result of the in-

tegration of the spectral method into a structure similar to UCRL (Jaksch et al., 2010b)

designed to optimize the exploration-exploitation trade-off. The learning process is split into

episodes of increasing length. At the beginning of each episode k > 1 (the first episode is

used to initialize the variables), an estimated POMDP M̂ (k) = (X,A, Y,R, f̂
(k)
T , f̂

(k)
R , f̂

(k)
O) is

83

computed using the spectral method of Alg. 6. Unlike in UCRL, SM-UCRL cannot use all

the samples from past episodes. In fact, the distribution of the views ~v1, ~v2, ~v3 depends on the

policy used to generate the samples. As a result, whenever the policy changes, the spectral

method should be re-run using only the samples collected by that specific policy. Nonethe-

less we can exploit the fact that the spectral method is applied to each action separately. In

SM-UCRL at episode k for each action l we use the samples coming from the past episode

which returned the largest number of samples for that action. Let v(k)(l) be the number of

samples obtained during episode k for action l, we denote by N (k)(l) = maxk′<k v
(k′)(l) the

largest number of samples available from past episodes for each action separately and we

feed them to the spectral method to compute the estimated POMDP M̂ (k) at the beginning

of each episode k.

Given the estimated POMDP M̂ (k) and the result of Thm. 5.1, we construct the setM(k) of

admissible POMDPs M̃ = 〈X ,A,Y ,R, f̃T , f̃R, f̃O〉 whose transition, reward, and observation

models belong to the confidence intervals (e.g., ‖f̂ (k)
O (·|i)− f̃O(·|i)‖1 ≤ BO for any state

i). By construction, this guarantees that the true POMDP M is included in M(k) with

high probability. Following the optimism in face of uncertainty principle used in UCRL,

we compute the optimal memoryless policy corresponding to the most optimistic POMDP

within M(k). More formally, we compute6

π̃(k) = arg max
π∈P

max
M∈M(k)

η(π;M). (5.14)

Intuitively speaking, the optimistic policy implicitly balances exploration and exploitation.

Large confidence intervals suggest that M̂ (k) is poorly estimated and further exploration

6The computation of the optimal policy (within P) in the optimistic model may not be trivial. Nonethe-
less, we first notice that given an horizon N , the policy needs to be recomputed at most O(logN) times
(i.e., number of episodes). Furthermore, if an optimization oracle to η(π;M) for a given POMDP M is
available, then it is sufficient to randomly sample multiple POMDPs fromM(k) (which is a computationally
cheap operation), find their corresponding best policy, and return the best among them. If enough POMDPs
are sampled, the additional regret caused by this approximately optimistic procedure can be bounded as
Õ(
√
N).

84

is needed. Instead of performing a purely explorative policy, SM-UCRL still exploits the

current estimates to construct the set of admissible POMDPs and selects the policy that

maximizes the performance η(π;M) over all POMDPs in M(k). The choice of using the

optimistic POMDP guarantees the π̃(k) explores more often actions corresponding to large

confidence intervals, thus contributing the improve the estimates over time. After computing

the optimistic policy, π̃(k) is executed until the number of samples for one action is doubled,

i.e., v(k)(l) ≥ 2N (k)(l). This stopping criterion avoids switching policies too often and it

guarantees that when an episode is terminated, enough samples are collected to compute a

new (better) policy. This process is then repeated over episodes and we expect the optimistic

policy to get progressively closer to the best policy π+ ∈ P as the estimates of the POMDP

get more and more accurate.

Regret analysis. We now study the regret SM-UCRL w.r.t. the best policy in P . While

in general π+ may not be optimal, πmin is usually set to a small value and oftentimes the

optimal memoryless policy itself is stochastic and it may actually be contained in P . Given

an horizon of N steps, the regret is defined as

RegN = Nη+ −
N∑
t=1

rt, (5.15)

where rt is the random reward obtained at time t according to the reward model fR over the

states traversed by the policies performed over episodes on the actual POMDP. To restate,

similar to the MDP case, the complexity of learning in a POMDP M is partially determined

by its diameter, defined as

D := max
x,x′∈X ,a,a′∈A

min
π∈P

E
[
τ(x′, a′|x, a; π)

]
, (5.16)

which corresponds to the expected passing time from a state x to a state x′ starting with

action a and terminating with action a′ and following the most effective memoryless policy

85

π ∈ P . The main difference w.r.t. to the diameter of the underlying MDP (see e.g., Jaksch

et al. (2010b)) is that it considers the distance between state-action pairs using memoryless

policies instead of state-based policies.

Before stating our main result, we introduce the worst-case version of the parameters char-

acterizing Thm. 5.1. Let σ1,2,3 := min
l∈[A]

min
π∈P

ω
(l)
min min

ν∈{1,2,3}
σ2

min(V
(l)
ν) be the worst smallest non-

zero singular value of the views for action l when acting according to policy π and let

σ1,3 := min
l∈[A]

min
π∈P

σmin(K
(l)
1,3(π)) be the worst smallest non-zero singular value of the covariance

matrix K
(l)
1,3(π) between the first and third view for action l when acting according to policy

π. Similarly, we define σ1,2. We also introduce ωmin := min
l∈[A]

min
x∈[X]

min
π∈P

ω
(l)
π (x) and

N := max
l∈[A]

max
π∈P

max

{
4

(σ2
3,1)

,
16C2

OY R

λ(l)2
d2
O

,

(
G(π) 2

√
2+1

1−θ(π)

ωminσ1,2,3

)2

Θ
(l)
}

log

(
2

(Y 2 + AY R)

δ

)
,

(5.17)

which is a sufficient number of samples for the statement of Thm. 5.1 to hold for any action

and any policy. Here Θ
(l)

is also model related parameter depending on the underlying

model. Then we can prove the following result.

Theorem 5.2 (Regret Bound). Consider a POMDP M with X states, A actions, Y observa-

tions, R rewards, characterized by a diameter D and with an observation matrix O ∈ RY×X

with smallest non-zero singular value σX(O). We consider the policy space P, such that the

worst smallest non-zero value is σ1,2,3 (resp. σ1,3) and the worst smallest probability to reach

a state is ωmin. If SM-UCRL is run over N steps and the confidence intervals of Thm. 5.1

are used with δ = δ′/N6 in constructing the plausible POMDPs M̃, then under Asm. 3, 4,

and 5 it suffers from a total regret

RegN ≤ C1
rmax

λ
DX3/2

√
AY RN log(N/δ′) (5.18)

with probability 1 − δ′, where C1 is numerical constants, and λ is the worst-case equivalent

86

of Eq. 5.13 defined as

λ = σmin(O)π2
minσ1,3σ

3/2
1,2,3. (5.19)

Remark 1 (comparison with MDPs). If UCRL could be run directly on the underlying

MDP (i.e., as if the states where directly observable), then it would obtain a regret (Jaksch

et al., 2010b)

RegN ≤ CMDPDMDPX
√
AN logN,

where

DMDP := max
x,x′∈X

min
π

E[τ(x′|x; π)],

with high probability. We first notice that the regret is of order Õ(
√
N) in both MDP

and POMDP bounds. This means that despite the complexity of POMDPs, SM-UCRL has

the same dependency on the number of steps as in MDPs and it has a vanishing per-step

regret. Furthermore, this dependency is known to be minimax optimal. The diameter D in

general is larger than its MDP counterpart DMDP, since it takes into account the fact that

a memoryless policy, that can only work on observations, cannot be as efficient as a state-

based policy in moving from one state to another. Although no lower bound is available

for learning in POMDPs, we believe that this dependency is unavoidable since it is strictly

related to the partial observable nature of POMDPs.

Remark 2 (dependency on POMDP parameters). The dependency on the number of

actions is the same in both MDPs and POMDPs. On the other hand, moving to POMDPs

naturally brings the dimensionality of the observation and reward models (Y ,X, and R

87

respectively) into the bound. The dependency on Y and R is directly inherited from the

bounds in Thm. 5.1. The term X3/2 is indeed the results of two terms; X and X1/2. The

first term is the same as in MDPs, while the second comes from the fact that the transition

tensor is derived from Eq. 5.7. Finally, the term λ in Eq. 5.18 summarizes a series of terms

which depend on both the policy space P and the POMDP structure. These terms are

directly inherited from the spectral decomposition method used at the core of SM-UCRL

and, as discussed in Sect. 5.3, they are due to the partial observability of the states and the

fact that all (unobservable) states need to be visited often enough to be able to compute

accurate estimate of the observation, reward, and transition models.

Remark 3 (computability of the confidence intervals). While it is a common assump-

tion that the dimensionality X of the hidden state space is known as well as the number

of actions, observations, and rewards, it is not often the case that the terms λ(l) appearing

in Thm. 5.1 are actually available. While this does not pose any problem for a descriptive

bound as in Thm. 5.1, in SM-UCRL we actually need to compute the bounds B(l)
O , B(l)

R , and

B(l)
T to explicitly construct confidence intervals. This situation is relatively common in many

exploration–exploitation algorithms that require computing confidence intervals containing

the range of the random variables or the parameters of their distributions in case of sub-

Gaussian variables. In practice these values are often replaced by parameters that are tuned

by hand and set to much smaller values than their theoretical ones. As a result, we can run

SM-UCRL with the terms λ(l) replaced by a fixed parameter. Notice that any inaccurate

choice in setting λ(l) would mostly translate into bigger multiplicative constants in the final

regret bound or in similar bounds but with smaller probability.

In general, computing confidence bound is a hard problem, even for simpler cases such as

Markov chains Hsu et al. (2015). Therefore finding upper confidence bounds for POMDP

is challenging if we do not know its mixing properties. As it mentioned, another parameter

is needed to compute upper confidence bound is λ(l) 5.13. As it is described in, in practice,

88

one can replace the coefficient λ(l) with some constant which causes bigger multiplicative

constant in final regret bound. Alternatively, one can estimate λ(l) from data. In this case,

we add a lower order term to the regret which decays as 1
N

.

Remark 4 (relaxation on assumptions). Both Thm. 5.1 and 5.2 rely on the observa-

tion matrix O ∈ RY×X being full column rank (Asm. 4). As discussed in Sect. 5.2 may not

be verified in some POMDPs where the number of states is larger than the number of obser-

vations (X > Y). Nonetheless, it is possible to correctly estimate the POMDP parameters

when O is not full column-rank by exploiting the additional information coming from the

reward and action taken at step t + 1. In particular, we can use the triple (at+1, ~yt+1, rt+1)

and redefine the third view V
(l)

3 ∈ Rd×X as

[V
(l)

3]s,i = P(~v
(l)
3 = ~es|x2 = i, a2 = l) = [V

(l)
3](n,m,k),i

= P(~y3 = ~en, ~r3 = ~em, a3 = k|x2 = i, a2 = l),

and replace Asm. 4 with the assumption that the view matrix V
(l)

3 is full column-rank, which

basically requires having rewards that jointly with the observations are informative enough

to reconstruct the hidden state. While this change does not affect the way the observation

and the reward models are recovered in Lemma 2, (they only depend on the second view

V
(l)

2), for the reconstruction of the transition tensor, we need to write the third view V
(l)

3 as

[V
(l)

3]s,i = [V
(l)

3](n,m,k),i

=
X∑
j=1

P
(
~y3 = ~en, ~r3 = ~em, a3 = k|x2 = i, a2 = l, x3 = j

)
P
(
x3 = j|x2 = i, a2 = l

)
=

X∑
j=1

P
(
~r3 = ~em|x3 = j, a3 = k)P(a3 = k|~y3 = ~en

)
P
(
~y3 = ~en|x3 = j

)
P
(
x3 = j|x2 = i, a2 = l

)
= fπ(k|~en)

X∑
j=1

fR(~em|j, k)fO(~en|j)fT (j|i, l),

89

where we factorized the three components in the definition of V
(l)

3 and used the graphical

model of the POMDP to consider their dependencies. We introduce an auxiliary matrix

W ∈ Rd×X such that

[W]s,j = [W](n,m,k),j = fπ(k|~en)fR(~em|j, k)fO(~en|j),

which contain all known values, and for any state i and action l we can restate the definition

of the third view as

W [T]i,:,l = [V
(l)

3]:,i, (5.20)

which allows computing the transition model as [T]i,:,l = W †[V
(l)

3]:,i, where W † is the pseudo-

inverse of W . While this change in the definition of the third view allows a significant

relaxation of the original assumption, it comes at the cost of potentially worsening the

bound on f̂T in Thm. 5.1. In fact, it can be shown that

‖f̃T (·|i, l)− fT (·|i, l)‖F ≤B′T := max
l′=1,...,A

CTAY R

λ(l′)

√
XA log(1/δ)

N(l′)
. (5.21)

Beside the dependency on multiplication of Y , R, and R, which is due to the fact that now

V
(l)

3 is a larger matrix, the bound for the transitions triggered by an action l scales with

the number of samples from the least visited action. This is due to the fact that now the

matrix W involves not only the action for which we are computing the transition model but

all the other actions as well. As a result, if any of these actions is poorly visited, W cannot

be accurately estimated is some of its parts and this may negatively affect the quality of

estimation of the transition model itself. This directly propagates to the regret analysis,

since now we require all the actions to be repeatedly visited enough. The immediate effect is

the introduction of a different notion of diameter. Let τ
(l)
M,π the mean passage time between

90

two steps where action l is chosen according to policy π ∈ P , we define

Dratio = max
π∈P

maxl∈A τ
(l)
M,π

minl∈A τ
(l)
M,π

(5.22)

as the diameter ratio, which defines the ratio between maximum mean passing time between

choosing an action and choosing it again, over its minimum. As it mentioned above, in order

to have an accurate estimate of fT all actions need to be repeatedly explored. The Dratio is

small when each action is executed frequently enough and it is large when there is at least

one action that is executed not as many as others. Finally, we obtain

RegN ≤ Õ
(rmax

λ

√
Y RDratioN logNX3/2A(D + 1)

)
.

While at first sight this bound is clearly worse than in the case of stronger assumptions,

notice that λ now contains the smallest singular values of the newly defined views. In

particular, as V
(l)

3 is larger, also the covariance matrices Kν,ν′ are bigger and have larger

singular values, which could significantly alleviate the inverse dependency on σ1,2 and σ2,3.

As a result, relaxing Asm. 4 may not necessarily worsen the final bound since the bigger

diameter may be compensated by better dependencies on other terms. We leave a more

complete comparison of the two configurations (with or without Asm. 4) for future work.

5.5 Experiments

Here, we illustrate the performance of our method on a simple synthetic environment which

follows a POMDP structure with X = 2, Y = 4, A = 2, R = 4, and rmax = 4. We find

that spectral learning method converges quickly to the true model parameters, as seen in

Fig. [5.2(a)]. Estimation of the transition tensor T takes longer compared to estimation of

observation matrix O and reward Tensor R. This is because the observation and reward

91

matrices are first estimated through tensor decomposition, and the transition tensor is esti-

mated subsequently through additional manipulations. Moreover, the transition tensor has

more parameters since it is a tensor (involving observed, hidden and action states) while the

observation and reward matrices involve fewer parameters.

For planning, given the POMDP model parameters, we find the memoryless policy using a

simple alternating minimization heuristic, which alternates between updates of the policy

and the stationary distribution. We find that in practice this converge to a good solution.

The regret bounds are shown in Fig. [5.2(b)]. We compare against the following policies:

(1) baseline random policies which simply selects random actions without looking at the

observed data, (2) UCRL-MDP Auer et al. (2009) which attempts to fit a MDP model

to the observed data and runs the UCRL policy, and (3) Q-Learning Watkins and Dayan

(1992b) which is a model-free method that updates policy based on the Q-function. We find

that our method converges much faster than the competing methods. Moreover, it converges

to a much better policy. Note that the MDP-based policies UCRL-MDP and Q-Learning

perform very poorly, and are even worse than the baseline are too far from SM-UCRL policy.

This is because the MDP policies try to fit data in high dimensional observed space, and

therefore, have poor convergence rates. On the other hand, our spectral method efficiently

finds the correct low dimensional hidden space quickly and therefore, is able to converge to

an efficient policy.

5.6 Conclusion

We introduced a novel RL algorithm for POMDPs which relies on a spectral method to

consistently identify the parameters of the POMDP and an optimistic approach for the

solution of the exploration–exploitation problem. For the resulting algorithm we derive

confidence intervals on the parameters and a minimax optimal bound for the regret.

92

1 2 3 4 5 6 7 8 9 10
episode

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

a
v
e
ra

g
e
 d

e
v
ia

ti
o
n
 f
ro

m
 t
ru

e
 p

a
ra

m
e
te

r

Transition Tensor

Observation Matrix

Reward Tensor

a)Learning by Spectral Method

0 1000 2000 3000 4000 5000 6000 7000
Number of Trials

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

A
v
e

ra
g

e
 R

e
w

a
rd

SM-UCRL-POMDP

UCRL-MDP

Q-learning

Random Policy

b) Regret Performance

Figure 5.2: (a)Accuracy of estimated model parameter through tensor decomposition. See h
Eqs. 5.11,5.10 and 5.12. (b)Comparison of SM-UCRL-POMDP is our method, UCRL-MDP
which attempts to fit a MDP model under UCRL policy, ε − greedy Q-Learning, and a
Random Policy.

This work opens several interesting directions for future development. 1) SM-UCRL cannot

accumulate samples over episodes since Thm. 5.1 requires samples to be drawn from a fixed

policy. While this does not have a very negative impact on the regret bound, it is an open

question how to apply the spectral method to all samples together and still preserve its

theoretical guarantees. 2) While memoryless policies may perform well in some domains, it

is important to extend the current approach to bounded-memory policies. 3) The POMDP

is a special case of the predictive state representation (PSR) model Littman et al. (2001),

which allows representing more sophisticated dynamical systems. Given the spectral method

developed in this paper, a natural extension is to apply it to the more general PSR model

and integrate it with an exploration–exploitation algorithm to achieve bounded regret.

93

Algorithm 6 Estimation of the POMDP parameters. The routine TensorDecomposition

refers to the spectral tensor decomposition method of Anandkumar et al. (2012).
Input:

Policy density fπ, number of states X

Trajectory 〈(~y1, a1, ~r1), (~y2, a2, ~r2), . . . , (~yN , aN , ~rN)〉
Variables:

Estimated second and third views V̂
(l)

2 , and V̂
(l)

3 for any action l ∈ [A]

Estimated observation, reward, and transition models f̂O, f̂R, f̂T

for l = 1, . . . , A do

Set T (l) = {t ∈ [N − 1] : at = l} and N(l) = |T (l)|
Construct views ~v

(l)
1,t = (at−1, ~yt−1, ~rt−1), ~v

(l)
2,t = (~yt, ~rt), ~v

(l)
3,t = ~yt+1 for any t ∈ T (l)

Compute covariance matrices K̂
(l)
3,1, K̂

(l)
2,1, K̂

(l)
3,2 as

K̂
(l)
ν,ν′ =

1

N(l)

∑
t∈T (l)

~v
(l)
ν,t ⊗ ~v

(l)
ν′,t; ν, ν ′ ∈ {1, 2, 3}

Compute modified views ~̃v
(l)

1,t := K̂
(l)
3,2(K̂

(l)
1,2)†~v1, ~̃v

(l)

2,t := K̂
(l)
3,1(K̂

(l)
2,1)†~v

(l)
2,t for any t ∈ T (l)

Compute second and third moments

M̂
(l)
2 =

1

N(l)

∑
t∈Tl

~̃v
(l)

1,t ⊗ ~̃v
(l)

2,t, M̂
(l)
3 =

1

N(l)

∑
t∈Tl

~̃v
(l)

1,t ⊗ ~̃v
(l)

2,t ⊗ ~v(l)
3,t

Compute V̂
(l)

3 = TensorDecomposition(M̂
(l)
2 , M̂

(l)
3)

Compute µ̂
(l)
2,i = K̂

(l)
1,2(K̂

(l)
3,2)†µ̂

(l)
3,i for any i ∈ [X]

Compute f̂(~em|i, l) =
∑Y

n′=1[V̂
(l)

2](n′,m),i for any i ∈ [X], m ∈ [R]

Compute ρ(i, l) =
∑R

m′=1

∑Y
n′=1

[V
(l)
2](n′,m′),i
fπ(l|~en′)

for any i ∈ [X], n ∈ [Y]

Compute f̂
(l)
O (~en|i) =

∑R
m′=1

[V
(l)
2](n,m′),i

fπ(l|~en)ρ(i,l) for any i ∈ [X], n ∈ [Y]

end for

Compute bounds B(l)
O

Set l∗ = arg minl B(l)
O , f̂O = f̂ l

∗
O and construct matrix [Ô]n,j = f̂O(~en|j)

Reorder columns of matrices V̂
(l)

2 and V̂
(l)

3 such that matrix O(l) and O(l∗) match, ∀l ∈ [A]4

for i ∈ [X], l ∈ [A] do

Compute [T]i,:,l = Ô†[V̂
(l)

3]:,i
end for

Return: f̂R, f̂T , f̂O, BR, BT , BO

94

Algorithm 7 The SM-UCRL algorithm.

Input: Confidence δ′

Variables:

Number of samples N (k)(l)

Estimated observation, reward, and transition models f̂
(k)
O , f̂

(k)
R , f̂

(k)
T

Initialize: t = 1, initial state x1, δ = δ′/N6, k = 1

while t < N do

Compute the estimated POMDP M̂ (k) with the Alg. 6 using N (k)(l) samples per action

Compute the set of admissible POMDPs M(k) using bounds in Thm. 5.1

Compute the optimistic policy π̃(k) = arg max
π∈P

max
M∈M(k)

η(π;M)

Set v(k)(l) = 0 for all actions l ∈ [A]

while ∀l ∈ [A], v(k)(l) < 2N (k)(l) do

Execute at ∼ fπ̃(k)(·|~yt)
Obtain reward ~rt, observe next observation ~yt+1, and set t = t+ 1

end while

Store N (k+1)(l) = maxk′≤k v
(k′)(l) samples for each action l ∈ [A]

Set k = k + 1

end while

95

Chapter 6

Policy Gradient in Partially

Observable MDPs

Trust Region Policy Optimization for POMDPs We propose Generalized Trust Region

Policy Optimization (GTRPO), a policy gradient Reinforcement Learning (RL) algorithm for

both Markov decision processes (MDP) and Partially Observable Markov Decision Processes

(POMDP). Policy gradient is a class of model-free RL methods. Previous policy gradient

methods are guaranteed to converge only when the underlying model is an MDP and the

policy is run for an infinite horizon. We relax these assumptions to episodic settings and to

partially observable models with memoryless policies. For the latter class, GTRPO uses a

variant of the Q-function with only three consecutive observations for each policy updates,

and hence, is computationally efficient. We theoretically show that the policy updates in

GTRPO monotonically improve the expected cumulative return and hence, GTRPO has

convergence guarantees.

96

6.1 Introduction

One of the central challenges in reinforcement learning is the design of efficient algorithms

for high-dimensional environments. Recently, Deep-Q networks (Mnih et al., 2015) and

its variants, as value-based model-free methods, have shown promise in scaling to large

observational spaces. However, these methods are limited to MDPs and mainly dedicated

to finite action spaces. Policy gradient methods (Aleksandrov et al., 1968) are another

class of model-free methods with no model assumption, therefore conventional approach for

continuous high-dimensional action spaces and more importantly for partially observable

environments.

Policy gradient approaches mainly deploy Monte Carlo sampling for the gradient update but

suffer from high variance gradient estimation (Rubinstein, 1969). To mitigate the high vari-

ance shortcoming, recent works deploy value-based methods to the gradient estimation and

provide low variance policy gradient methods (Schulman et al., 2015; Lillicrap et al., 2015).

However, they mainly assume the underlying environment is a Markov decision process

(MDP), the policy is run to the infinite horizon, and the rewards are discounted (Schul-

man et al., 2015). In practice, many of these assumptions do not hold. The real-world

problems are mainly partially observable, episodic and sometimes, the rewards are undis-

counted. It is worth noting that even the empirical study provided in these previous works

are episodic, while the theory assumes infinite horizon. If the underlying model of the envi-

ronment is POMDP, applying MDP based method might result in policies with arbitrarily

bad expected returns (Azizzadenesheli et al., 2017).

Table 6.1 categorizes the majority of RL problems concerning their observability level, policy

class, horizon length, and discount factor. Prior methods mainly focus on the memory-less,

infinite horizon, undiscounted MDPs. In this work, we focus on episodic MDPs and POMDP

with memoryless policies. We investigate both discounted and undiscounted reward settings.

97

Table 6.1: Category of most RL problems

Observability Policy Class Horizon Discounting

MDP Memory-less Infinite Discounted
POMDP Memory dependent Episodic Undiscounted

Generally, on-policy policy gradient methods collect data under the policies at hand (current

policy) and exploit the acquired data to search for a new and potentially a better policy to

deploy. The hope is that this procedure iteratively reinforces the algorithm’s behavior and

improves its expected return. Therefore, one of the central goals in policy gradient methods

is to develop low variance policy updates which result in the monotonic improvements of

the expected returns: the so-called Monotonic Improvement guarantee. Under the infinite

horizon undiscounted setting with MDP modeling assumption, Kakade and Langford (2002);

Schulman et al. (2015) study the trust-region methods, e.g., TRPO, a class of policy gradients

methods which perform the policy search in the trust region around the current policy. They

construct a surrogate objective using advantage functions and propose a low variance policy

gradient updates. They prove that their low variance policy updates monotonically improves

the expected return.

In the low sample setting, the accurate estimation of the trust regions is not tractable.

TRPO requires to explicitly estimate the trust region to constrain the parameter space

which may be hard to maintain in high dimensional and low samples settings. To mitigate

this limitation, (Schulman et al., 2017) offer Proximal Policy Optimization (PPO), a simple

extension to TRPO, which approximately retains the trust-region constraints directly on the

policy space than the parameter space. It also significantly reduces the computation cost of

TRPO, therefore it is a reasonable choice for empirical study.

Contributions: In this work, we extend the trust region methods, e.g., TRPO, PPO,

to episodic MDPs. We show that deploying infinite horizon methods for episodic problem

results in a biased estimation of the trust region. We show that it is necessary to incorporate

the length of each episode to construct the trust region and extend TRPO and PPO to

98

episodic MDPs.

In presence of discount factor, it is intuitive that the later parts of an episode would have

less contribution towards constructing the trust region than the earlier parts. This is also

not captured in previous trust region works, e.g. TRPO, PPO. We further extend our

analysis and introduce a new notion of distribution divergence, as a discounted sum of

Kullback–Leibler (KL) divergences, and show how to construct trust regions in discounted

reward settings.

Mainly, the optimal policies for MDPs are deterministic and memoryless. In contrast, we

might consider a class of history-dependent policies when we deal with POMDPs. However,

tackling history dependent policies can be computationally undecidable (Madani et al., 1999)

or PSPACE-Complete (Papadimitriou and Tsitsiklis, 1987b), and hence, many works con-

sider the class of stochastic memoryless policies (Azizzadenesheli et al., 2016c). In this work,

to avoid the computation intractability of history dependent policies, we focus on the class

of memory-less policies. Generally, the optimal policies of POMDPs in the class of memo-

ryless policies are indeed stochastic. It is also worth noting that extending the value-based

methods through Bellman equations to stochastic memoryless or limited memory policies is

not possible if optimality is concerned.

Despite the MDP assumption in the mainstream policy gradient works, empirical studies

have demonstrated superior performance when the classes of stochastic policies are consid-

ered, e.g., TRPO. The stochastic policies are also known to contribute to the exploration.

Many policy gradient algorithms mainly do not converge to deterministic policies in the

evaluation period, which is another piece of evidence on partial observability of the environ-

ments. Moreover, Sutton et al. (1998) argues that when function approximation methods are

deployed to represent the states, due to loss of information in the representation function,

the problem inherently is a POMDP.

99

We propose GTRPO, a policy gradient algorithm for episodic POMDPs. GTRPO deploys

three consecutive observations in order to approximate an advantage function and computes

a low variance estimation of the policy gradient. Surprisingly, deploying three consecutive

observations matches the statement in (Azizzadenesheli et al., 2016c) which shows statistics

of three consecutive observations are necessary to learn the POMDP dynamics and guarantee

a regret upper bound in the model-based RL. We construct a trust region for the policy search

in GTRPO and show that the policy updates are guaranteed to monotonically improve the

expected return. To the best of our knowledge, GTRPO is the first algorithm with monotonic

improvement guarantee for the class of POMDP problems.

For the experimental study of GTRPO, we deploy the same methodology used in PPO to

reduce the computation cost in TRPO. We apply GTRPO on a variety of RoboSchool (Schul-

man et al., 2017) environments, which are the extension to the MuJoCo environments

(Todorov et al., 2012). We empirically show that despite the computational complexity

introduced by most of POMDP based methods, computation complexity introduced by

GTRPO is in the same order as its MDP based predecessors. We study GTRPO perfor-

mance on these simulated environments (RoboSchool environments are almost MDPs, and

we do not aim to outperform MDP based methods in these experiments) and report its be-

havior under different simulation design choices. Throughout the experiments, we observe a

similar behavior of the MDP based approach PPO and POMDP based approach GTRPO.

6.2 Preliminaries

An episodic POMDP M is a tuple 〈X ,A,Y , P0, T, R,O, γ, xT 〉 with latent state space X ,

observation space Y , action space A, discount factor of 0 ≤ γ ≤ 1 and stochastic reward

distribution of R(x, a) with mean R(x, a) = E[R(x, a)], ∀x ∈ X , a ∈ A. Let xT denote the

terminal state which is accessible from any other state, i.e. starting from any other state

100

xh

yh

ah

rh

xh+1

yh+1

ah+1

rh+1

xh+2

yh+2

ah+2

rh+2

Figure 6.1: POMDP under a memory-less policy

there is a nonzero probability of reaching the xT in finite time steps. The episode terminates

when the process reaches xT . The initial latent states are drawn from distribution P1. The

state dynamics follows transition density T (x′|x, a), ∀x, x′ ∈ X , a ∈ A and the observation

process is generated using density O(y|x), ∀x ∈ X , y ∈ Y where a memory-less policy is

deployed Fig. 6.1.

We consider a set of continuously differentiable parameterized memory-less policies πθ with

θ ∈ Θ. For each y, a pair, πθ(a|y) denotes the conditional probability distribution of choosing

action a under the policy πθ when an observation y is made. Furthermore, we define a random

trajectory τ as a finite length |τ | sequence of events {(x1, y1, a1, r1), (x2, y2, a2, r2), . . . (x|τ |, y|τ |, a|τ |, r|τ |)}

where the termination happens at the step after x|τ |, i.e. x|τ |+1 = xT . Let f(τ ; θ), ∀τ ∈ Υ

denote the probability distribution of trajectories under policy πθ and Υ is the set of all

possible trajectories. Furthermore, R(τ) denotes the cumulative γ-discounted rewards of the

trajectory τ ∈ Υ. The agent goal is to maximize the unnormalized expected cumulative

return η(θ) = Eτ |θ[R(τ)];

θ∗ = arg min
θ∈Θ

η(θ) :=

∫
τ∈Υ

f(τ ; θ)R(τ)dτ (6.1)

with π∗ = π(θ∗) the optimal policy.

101

6.3 Policy Gradient

In this section, we study the policy gradients methods for POMDPs. Generally, the opti-

mization problem in Eq. 6.1 is a non-convex problem. Therefore, hill climbing methods such

as gradient ascent based approaches might converge to the first order stationary points. Gra-

dient ascent for Eq. 6.1 results in the policy gradient method. The policy gradient lemma

states that the gradient of the expected cumulative return does not require the explicit

knowledge of the dynamics but just the cumulative reward distribution (Rubinstein, 1969;

Williams, 1992; Baxter and Bartlett, 2001b). This lemma has mainly been proven through

the construction of score function (see the Appendix of Azizzadenesheli et al. (2018a)). In

this section, we re-derive the same Lemma but through importance sampling since it is more

related to the latter parts of this paper.

Importance sampling is a general technique for estimating the properties of a particular dis-

tribution, while only having samples generated from another distribution. One can estimate

η(θ′), θ′ ∈ Θ, while the expectation is over the distribution induced by πθ;

η(θ′) = Eτ |θ′ [R(τ)] =

∫
τ∈Υ

f(τ ; θ)

(
f(τ ; θ′)

f(τ ; θ)
R(τ)

)
dτ

= Eτ |θ
[
f(τ ; θ′)

f(τ ; θ)
R(τ)

]
(6.2)

as long as for each τ that f(τ ; θ′) > 0 also f(τ ; θ) > 0. The gradient of η(θ′) with respect to

θ′ is

∇θ′η(θ′) = Eτ |θ
[∇θ′f(τ ; θ′)

f(τ ; θ)
R(τ)

]
= Eτ |θ[

f(τ ; θ′)

f(τ ; θ)
∇θ′ log(f(τ ; θ′))R(τ)]

102

The gradient at θ′ = θ is;

∇θ′η(θ′) |θ′=θ= Eτ |θ [∇θ log(f(τ ; θ))R(τ)] (6.3)

Since for each trajectory τ , the log(f(τ ; θ));

log
(
P1(x1)O(y1|x1)R(r1|x1, a1)Π

|τ |
h=2T (xh|xh−1, ah−1)

O(yh|xh)R(rh|xh, ah)
)

+ log
(

Π
|τ |
h=1πθ(ah|yh)

)

and the first part is independent θ we have;

∇θ log(f(τ ; θ)) = ∇θ log
(

Π
|τ |
h=1πθ(ah|yh)

)

This derivation suggest that given trajectories under a policy πθ we can compute the gradient

of the expected return with respect to the parameters of πθ without the knowledge of the

dynamics. In practice, however we are not able to compute the exact expectation. Instead we

can deploy Monte Carlo sampling technique to estimate the gradient. Given m trajectories

{τ 1, . . . , τm} with elements (xth, y
t
h, a

t
h, r

t
h),∀h ∈ {1, . . . , |τ t|} and ∀t ∈ {1, . . . ,m} generated

under a policy πθ, we can estimate the gradient in Eq. 6.3 at point θ;

∇θη̂(θ) =
1

m

m∑
t=1

∇θ log
(

Π
|τ t|
h=1πθ(a

t
h|yth)

)
R(τ t) (6.4)

which returns a high variance estimation of the gradient.

6.3.1 Natural Policy Gradient

Generally, the notion of gradient depends on the parameter metric space. Given a pre-

specified Riemannian metric, a gradient direction is defined. When the metric is Euclidean,

103

the notion of gradient reduces to the standard gradient (Lee, 2006). This general notion

of gradient adjusts the standard gradient direction based on the local curvature induced

by the Riemannian manifold of interest. Valuable knowledge of the curvature assists to

find an ascent direction which might conclude to big ascend in the objective function. This

approach is also interpreted as a trust region method where we are interested in assuring that

the ascent steps do not change the objective beyond a safe region where the local curvature

might not stay valid. In general, a valuable manifold might not be given, and we need to

adopt one. Fortunately, when the objective function is an expectation over a parameterized

distribution, Amari (2016) recommends employing a Riemannian metric, induced by the

Fisher information. This choice of metric results in a well knows notion of gradient, so-

called natural gradient. For the objective function in 6.1, the Fisher information matrix is

defined as follows;

F (θ):=

∫
τ∈Υ

f(τ ; θ)
[
∇θ log (f(τ ; θ))∇θ log (f(τ ; θ))>

]
dτ (6.5)

Natural gradients are firstly deployed by Kakade (2002) for RL in MDPs. Consequently, the

direction of the gradient with respect to F is defined as F (θ)−1∇θ(η(θ)). One can compute

the inverse of this matrix to come up with the direction of the natural gradient. Since neither

storing the Fisher matrix is always possible nor computing the inverse is practical, direct

utilization of F (θ)−1∇θ(η(θ)) is not feasible. Similar to the approach in TRPO, we suggest

to first deploy DKL divergence substitution technique and then conjugate gradient method

to tackle the computation and storage bottlenecks.

Lemma 3. Under some regularity conditions;

∇2
θ′DKL(θ, θ′)|θ′=θ = F (θ) (6.6)

with DKL(θ, θ′) :=−
∫
τ∈Υ

f(τ ; θ) log (f(τ ; θ′)/f(τ ; θ)) dτ

104

The Lemma 3 is a known lemma in the literature and we provide its proof in the Appendix

of Azizzadenesheli et al. (2018a). In practice, it is not feasible to compute the expectation in

neither the Fisher information matrix nor in the DKL divergence, but rather their empirical

estimates. Given m trajectories

∇2
θ′D̂KL(θ, θ′)|θ′=θ

= − 1

m
∇2
θ′

m∑
t=1

[
log
(

Π
|τ t|
h=1πθ′(a

t
h|yth)

)
log
(

Π
|τ t|
h=1πθ(a

t
h|yth)

)]
|θ′=θ

=− 1

m
∇2
θ′

m∑
t=1

|τ t|∑
h=1

log

(
πθ′(a

t
h|yth)

πθ(ath|yth)

)

This derivation of DKL is common between MDPs and POMDPs. The analysis in most of the

state-of-the-art policy gradient methods, e.g. TRPO, PPO, are dedicated to infinite horizon

MDPs, while almost all the experimental studies are in the episodic settings. Therefore the

estimator used in these methods;

∇2
θ′D̂TRPOKL (θ, θ′)|θ′=θ = − 1∑m

t |τ t|
∇2
θ′

m∑
t=1

|τ t|∑
h=1

log

(
πθ′(a

t
h|yth)

πθ(ath|yth)

)

is a bias estimation of the DKL in episodic settings.

6.3.2 DKL vs DKLTRPO

The use of DKL instead of DKLTRPO is motivated by theory and also intuitively recom-

mended. A small change in the policy at the beginning of a short episodes does not make

a drastic shift in the distribution of the trajectory but might cause radical shifts when the

trajectory length is long. Therefore, for longer horizons, the trust region needs to shrink.

Consider two trajectories, one long and one short. The DKL ≤ δ induces a region which

allows higher changes in the policy for short trajectory while limiting changes in long trajec-

105

tory. While DKLTRPO ≤ δ induces the region which does not convey the length of trajectories

and looks at each sample as it experienced in a stationary distribution of an infinite horizon

MDP.

Consider a toy RL problem where at the beginning of the learning, when the policy is not

good, the agent dies at early stages of the episodes (termination). In this case, the trust

region under DKL is vast and allows for substantial change in the policy space, while again

DKLTRPO does not consider the length of the episode. On the other hand, toward the end

of the learning, when the agent has leart a good policy, the length of the horizon grows,

and small changes in the policy might cause drastic changes in the trajectory distribution.

Therefore the trust region shrinks again, and just a small changes in the policy space are

allowed, which is again captured by DKL but not by DKLTRPO.

Compatible Function Approximation As it is mentioned before, one way of computing

the direction of the natural gradient is to estimate the D̂KL and use conjugate gradient

methods to find F−1∇θ(η). There is also an alternative way to estimate F−1∇θ(η), which is

based on compatible function approximation methods. Kakade (2002) study this approach

in the context of MDPs. In the following, we develop this approach for POMDPs. Consider

a feature map φ(τ) in a desired ambient space defined on Γ. We approximate the return

R(τ) via a linear function ω on the feature representation φ(τ), i.e.,

min
ω
ε(ω) s.t.; ε(ω) :=

∫
τ∈Υ

f(τ, θ)[φ(τ)>ω −R(τ)]2dτ

To find the optimal ω we take the gradient of ε(ω) and set it to zero;

0 = ∇ωε(ω)|ω=ω∗ =

∫
τ∈Υ

2f(τ, θ)φ(τ)[φ(τ)>ω∗ −R(τ)]dτ

106

For the optimality,

∫
τ∈Υ

f(τ, θ)φ(τ)φ(τ)>ω∗dτ =

∫
τ∈Υ

f(τ, θ)φ(τ ; θ)R(τ)dτ

If we consider the φ(τ) = ∇θ log
(

Π
|τ |
h=1πθ(ah|yh)

)
, the LHS of this equation is F (θ)ω∗.

Therefore

F (θ)ω = ∇θη(θ) =⇒ ω∗ = F (θ)−1∇ρ

In practice, depending on the problem at hand, either of the discussed approaches of comput-

ing the natural gradient might be applicable. Due to the close relationship between DKL and

Fisher information matrix Lemma 3 and also the fact that the Fisher matrix is equal to second

order Taylor expansion of DKL, instead of considering the area ‖ (θ − θ′)> F (θ − θ′) ‖2 ≤ δ,

or ‖ (θ − θ′)>∇2
θ′DKL(θ, θ′)|θ′=θ (θ − θ′) ‖2 ≤ δ for construction of the trust region, we can

approximately consider DKL(θ, θ′) ≤ δ/2. This relationship between these three approaches

in constructing the trust region is used throughout this paper.

6.4 TRPO for POMDPs

In this section we extend the MDP analysis in Kakade and Langford (2002); Schulman et al.

(2015) to POMDPs, propose GTRPO, and derive a guarantee on its monotonic improvement

property. We prove the monotonic improvement property using DKL. Moreover, we propose

a discount factor dependent divergence and provide the monotonic improvement guarantee

w.r.t. this new divergence.

The DKL divergence and Fisher information matrix in Eq. 6.6, Eq. 6.5 do not convey the

effect of the discount factor. Consider a setting with a small discount factor γ. In this setting,

107

we do not mind drastic distribution changes in the latter part of episodes. Therefore, we

desire to have a even wider trust region and allow bigger changes for later parts of the

trajectories. This is a valid intuition and in the following, we re-derive the DKL divergence

by also incorporating γ. Let τhh′ denote the elements in τ from the time step h′ up to the

time step h; we rewrite η(θ) as follows;

η(θ) =

∫
τ∈Υ

f(τ ; θ)R(τ)dτ =

∫
τ∈Υ

|τ |∑
h=1

f(τh1 ; θ)γhrh(τ)dτ

Following the Amari (2016) reasoning for Fisher information of each component of the sum,

we derive a γ dependent divergence;

Dγ(πθ, πθ′)=
τmax∑
h=1

γhDKL
(
τh1 ∼f(·; πθ′), τh1 ∼f(·; πθ)

)
(6.7)

For some upper bound on the trajectory lengths, τmax. This divergence less penalizes the

distribution mismatch in the later part of trajectories. Similarly, taking into account the rela-

tionship between KL divergence and Fisher information we have discount factor γ dependent

definition of the Fisher information;

Fγ(θ) :=

∫
τ∈Υ

τmax∑
h=1

γhf(τh1 ; θ)

[
∇θ log

(
f(τh1 ; θ)

)
∇θ log

(
f(τh1 ; θ)

)>]
dτ

In the following we develop GTRPO monotonic improvement guarantee under both Dγ and

DKL.

108

6.4.1 Advantage function on the hidden states

Let πθ, the current policy, denote the policy under which we collect data, and πθ′ , the new

policy, the policy which we evaluate its performance. Generally, any memory-less policy on

the observation space is transferable to a policy on the latent states as follows; π(a|x) =∫
y∈Y π(a|y)O(y|x)dy for each pair of (x, a). Consider the case where the agent also observes

the latent state, i.e. POMDP →MDP. Since the dynamics on the latent states is MDP, we

define the advantage function on the latent states. At time step h of an episode;

Ãπ(a, x, h) =

Ex′∼T (x′|x,a,h)

[
r(x, a, h) + γṼπ(x′, h)− Ṽπ(x, h)

]

Where Ṽπ denote the value function of underlying MDP of latent states when a policy π is

deployed. For this choice of advantage function we can write;

Eτ∼f(τ,πθ′)

[|τ |∑
h

γhÃπθ(xh, ah, h)

]

= Eτ∼f(τ,πθ′)

[|τ |∑
h

γh
[
r(xh, ah, h) + γṼπθ(xh+1, h)− Ṽπθ(xh, h)

]]

= Eτ∼f(τ,πθ′)

[|τ |∑
h

γhrh

]
− Ex0∼P1(x)

[
Ṽπθ(x0)

]
= η(πθ′)− η(πθ)

This equality suggests that if we have the advantage function of the current policy πθ and

sampled trajectories from πθ′ , we could compute and maximize the improvement in the

expected return η(πθ′) − η(πθ) or, potently, directly just maximize the expected return for

πθ′ without incorporating πθ. In practice, we do not have sampled trajectories from the new

policy πθ′ , rather we have sampled trajectories from the current policy πθ. Therefore, we are

interested in maximizing the following surrogate objective function since we can compute

109

it;

L̃πθ(πθ′) := η(πθ) + Eτ∼πθ,a′h∼πθ′ (a′h|xh,h)

 |τ |∑
h

γhÃπθ(xh, a
′
h, h)


For infinite horizon MDPs when O is an identity map, i.e., xh = yh, Kakade and Langford

(2002); Schulman et al. (2015) show that optimizing L̃πθ(πθ′) over θ′ can provide an improve-

ment in the expected discounted return. They derive a lower bound on this improvement if

the DKL between πθ′ and πθ for all x’s is bounded. In the following, we extend these analyses

to the general class of environments, i.e. POMDPs and show such guarantees are conserved.

Generally, in POMDPs, when classes of memory-less policies are regarded, neither Q nor V

functions are well-defined as they are for MDP through the Bellman optimality equations.

In the following, we define two quantities similar to the Q and V in MDPs and for the

simplicity we use the same Q and V notation for them. The conditional value and Q-value

functions of POMDPs

Vπ(yh, h, yh−1, ah−1) := Eπ

[
H∑
h′

γh
′
rh′ |yh, yh−1, ah−1

]

Qπ(yh+1, ah, yh, h) := Eπ

[
H∑
h′

γh
′
rh′ |yh, yh+1, ah

]
(6.8)

For h = 0 we relax the conditioning on yh−1 for Vπ and simply denote it as Vπ(y, 0). Deploying

these two quantities, we define the advantage function as follows;

Aπ(yh+1, ah, yh, h, yh−1, ah−1)

= Qπ(yh+1, ah, yh, h)− Vπ(yh, h, yh−1, ah−1)

110

The relationship between these two quantity is as follows;

Qπ(yh+1, ah, yh, h) :=

Eπ [rh|yh+1, ah, yh] + γVπ(yh+1, h+ 1, ah, yh)

Furthermore, we defined the following surrogate objective;

Lπθ(πθ′) = η(πθ) + Eτ∼πθ,a∼πθ′ (a|y)

|τ |∑
h

γhAπθ(yh+1, ah, yh, h, yh−1, ah−1) (6.9)

Similar to MDPs, one can compute and maximize this surrogate objective function in Eq. 6.9

by just having sampled trajectories and advantage function of the current policy πθ. But

the domain of trust region for the policy search stays unknown. In the following section, we

present the trust region for POMDPs.

Reward Structure: Similar to MDPs where the reward distribution given the current state,

current action and the next state is conditionally independent of the rest of the events, we

assume that the reward distribution given the current observation, current action and the

next observation is conditionally independent of the rest of the events.

Under this structure we have;

Lemma 4. The improvement in expected return, η(πθ′)− η(πθ) is equal to;

Eτ∼πθ′
|τ |∑
h

γhAπθ(yh+1, ah, yh, h, yh−1, ah−1)

Proof of Lemma 4 in the Appendix of Azizzadenesheli et al. (2018a).

6.4.2 GTRPO

111

Algorithm 8 GTRPO

1: Initial πθ0 , ε
′, δ′

2: Choice of divergence D: DKL or Dγ
3: for episode = 1 until convergence do
4: Estimate the advantage function Â
5: Construct the surrogate objective L̂πθt−1

(πθ)
6: Find the next policy

πθt = arg max
θ
Lπθt−1

(πθ) , s.t

1

2
‖(θ− θt−1)>∇2

θ′Dγ(θt−1, θ
′)|θ′=θt−1(θ − θt−1)‖2≤δ′

7: end for

We propose generalized trust region policy optimization (GTRPO) as a policy gradient algo-

rithm for POMDPs. GTRPO deploys its current policy to compute the advantage function

and then maximize the advantage function over its actions in the vicinity of the current pol-

icy. This algorithm is almost identical to its predecessor TRPO except instead of maximizing

over on observed hidden state dependent advantage function, Aπθ(ah, xh, h) , it maximizes

over Aπθ(yh+1, ah, yh, h, yh−1, ah−1) Alg. 8. It is important to note the one can easily turn the

current implementations of TRPO to GTRPO by only changing the line of the code corre-

sponding to the advantage function and substitute it with the proposed one. Moreover, if the

model is MDP, Aπθ(yh+1, ah, yh, h, yh−1, ah−1) is equivalent to Aπθ(xh+1, ah, xh) where after

marginalizing out xh+1 in the expectation we end up with Aπθ(ah, xh) and recover TRPO

algorithm.

In practice, one can estimate the advantage function Aπθ(yh+1, y, a, h, yh−1, ah−1) by approx-

imating Qπθ(yh+1, a, yh, h) and Vπθ(yh, h, yh−1, ah−1) using on-policy data of πθ. Moreover,

for Lπθ(πθ′) we have;

Lπθ(πθ) = η(πθ), and ∇θ′Lπθ(πθ′)|πθ=πθ = ∇θη(πθ)

In the following we show that maximizing Lπθ(πθ′) over θ′ results in a lower bound on the

112

improvement η(πθ′) − η(πθ) when πθ and πθ′ are close under DKL or Dγ divergence. Lets

define the averaged advantage function

Aπθ,πθ′ (yh+1, yh, h, yh−1, ah−1) =

Ea∼πθ′ [Aπθ(yh+1, a, yh, h, yh−1, ah−1)]

also the maximum span of the averaged advantage function and its discounted sum as follows;

ε′ = max
τ∈Υ

Aπθ,πθ(yh+1, yh, h, yh−1, ah−1)

ε = max
τ∈Υ

|τ |∑
h

γhAπθ,πθ(yh+1, yh, h, yh−1, ah−1)

Theorem 6.1 (Monotonic Improvement Guarantee). For two πθ and πθ′, construct Lπθ(πθ′),

then

η(πθ′) ≥ Lπθ(πθ′)− εTV (τ ∼ f(·; πθ′), τ ∼ f(τ ; πθ))

≥ Lπθ(πθ′)− ε
√

1

2
DKL (πθ′ , πθ),

η(πθ′) ≥ Lπθ(πθ′)− ε′
√
Dγ (πθ, πθ).

Proof of Theorem 6.1 in the Appendix of Azizzadenesheli et al. (2018a).

The Theorem. 6.1 recommends optimizing Lπθ(πθ′) over πθ′ around the vicinity defined by

DKL or Dγ divergences Therefore, given the current policy πθ we are interested in either of

the following optimization:

max
θ′

Lπθ(πθ′)− C
√
DKL (πθ, πθ′)

max
θ′

Lπθ(πθ′)− C ′
√
Dγ (πθ, πθ′))

113

Where C and C ′ are the problem dependent constants. Similar to TRPO, using C and C ′ as

they are might result in tiny changes in the policy. Therefore, for practical purposes, we view

them as the knobs to restrict the trust region denoted by δ, δ′ and turn these optimization

problems to constraint optimization problems;

max
θ′

Lπθ(πθ′) s.t. DKL (πθ, πθ′) ≤ δ

max
θ′

Lπθ(πθ′) s.t. Dγ (πθ, πθ′)) ≤ δ′

which results in Alg. 8. Taking into account the relationship between the KL divergence

and Fisher information, we can also approximate these two optimization up to their second

order Taylor expansion of the constraints;

max
θ′

Lπθ(πθ′) s.t.
1

2
‖ (θ′ − θ)> F (θ′ − θ) ‖2 ≤ δ

max
θ′

Lπθ(πθ′) s.t.
1

2
‖ (θ′ − θ)> Fγ (θ′ − θ) ‖2 ≤ δ′

These analyses provide insights into the design similar algorithm as TRPO and PPO for the

general class of POMDPs.

6.5 Experiments

Extension to PPO: Usually, in high dimensional but low sample setting, constructing the

trust region is hard due to high estimation errors. It is even harder especially when the region

depends on the inverse of the estimated Fisher matrix or optimizing over the non-convex

function of θ′ with KL divergence constraint. Therefore, trusting the estimated trust region is

questionable. While TRPO constructs the trust region in the parameter space, its final goal

114

is to keep the new policy close to the current policy, i.e., small DKL (πθ, πθ′) or Dγ (πθ, πθ′).

Proximal Policy Optimization (PPO) is instead proposed to impose the structure of the trust

region directly onto the policy space. This method approximately translates the constraints

developed in TRPO to the policy space. It penalized the gradients of the objective function

when the policy starts to operate beyond the region of trust by setting the gradient to zero.

E[min{πθ′(a|x)

πθ(a|x)
Ãπθ(a, x), clip(

πθ′(a|x)

πθ(a|x)
; 1− δL, 1 + δU)Ãπθ(a, x)}]

We dropped the h dependency in the advantage function since this approach is for the infinite

horizon MDPs. If the advantage function is positive, and the importance weight is above

1 + δU this objective function saturates. When the advantage function is negative, and the

importance weight is below 1 − δL this objective function saturates again. In either case,

when the objective function saturates, the gradient of this objective function is zero therefore

further development in that direction is obstructed. This approach, despite its simplicity,

approximates the trust region effectively and substantially reduce the computation cost of

TRPO. Note: In the original PPO paper δU = δL.

Following the TRPO, the clipping trick ensures that the importance weight, derived from

estimation of DKL does not go beyond a certain limit | log
πθ′ (a|y)

πθ(a|y)
| ≤ ν, i.e.,

1− δL := exp (−ν)≤ πθ′(a|y)

πθ(a|y)
≤1 + δU := exp (ν) (6.10)

As discussed in the Remark. 6.3.2 we propose a principled change in the clipping such that

it matches Eq. 6.6 and conveys information about the length of episodes; | log πθ(a|y)
πθ′ (a|y)

| ≤ ν
|τ | ;

therefore for α := exp (ν)

1− δL := α−1/|τ | ≤ πθ′(a|y)

πθθ(a|y)

≤ 1 + δU := α1/|τ | (6.11)

115

This change ensures more restricted clipping for longer trajectories, while wider for shorter

ones. Moreover, as it is suggested in theorem. 6.1, and the definition of Dγ(πθ, πθ′) in Eq. 6.7,

we propose a further extension in the clipping to conduct information about the discount

factor. In order to satisfy Dγ (πθ, πθ′)) ≤ δ′, for a sample at time step h of an episode we

have | log
πθ′ (a|y)

πθ(a|y)
| ≤ ν

|τ |γh . Therefore;

1−δhL:=exp (− ν

|τ |γh)≤
πθ′(a|y)

πθ(a|y)
≤1 + δhU:= exp (

ν

|τ |γh)

→ α−1/|τ |α−1/γh ≤ πθ′(a|y)

πθ(a|y)
≤ α1/|τ |α1/γh (6.12)

As it is interpreted, for deeper parts in the episode, we make the clipping softer and allow

for larger changes in policy space. This means, we are more restricted at the beginning of

trajectories compared to the end of trajectories. The choice of γ and α are critical here.

In practical implementation of RL algorithm, as also theoretically suggested by Jiang et al.

(2015); Lipton et al. (2016a) we usually choose discount factors smaller than the one for

depicted in the problem. Therefore, the discount factor we use in practice is much smaller

than the true one specially when we deploy function approximation. Therefore, instead of

keeping γh in Eq. 6.12, since the true γ in practice is unknown and can be arbitrary close to

1, we substitute it with a maximum value;

1− δhL := max{α−1/(|τ |γh), 1− β} ≤ πθ′(a|y)

πθ(a|y)

≤ 1 + δhU := min{α1/(|τ |γh), 1 + β} (6.13)

The modification proposed in series of equations Eq. 6.10, Eq. 6.11, Eq. 6.12, and Eq6.13

provide insight in the use of trust regions in for both MDPs and POMDPs based PPO. The

116

PPO objective for any choice of δhU and δhL in MDPs is

E
[

min
{πθ′(ah|xh)
πθ(ah|xh)

Ãπθ(ah, xh), clip(
πθ′(ah|xh)
πθ(ah|xh)

, 1− δhL, 1 + δhU)Ãπθ(ah, xh)
}]

(6.14)

while for POMDPs we have

E
[

min
{πθ′(ah|yh)
πθ(ah|xh)

Aπθ(yh+1, ah, yh, yh−1, ah−1),

clip(
πθ′(ah|xh)
πθ(ah|yh)

, 1− δhL, 1 + δhU)Aπθ(yh+1, ah, yh, yh−1, ah−1)
}]

(6.15)

h is encoded in xh. In order to make the existing MDP-based PPO suitable for POMDPs

we just substitute Aπθ(ah, xh) with Aπθ(yh+1, ah, yh, yh−1, ah−1) in the corresponding line.

Moreover, as we showed for TRPO, in the case of MDP model, Eq. 6.15 reduces to Eq. 6.14.

RoboSchool, a variant to MuJoCo: In the experimental study, we first started to

analyze the behavior of the plain PPO agent but observe that the environment enforces

a short termination which results in significantly short trajectories. We relaxed this hard

threshold and analyzed PPO Appendix of Azizzadenesheli et al. (2018a). We deploy the

analysis in Eq. 6.11 and Eq. 6.13, apply the suggested changes to the plain PPO and ex-

amine its performance in the variety of different parameters and environments Appendix of

Azizzadenesheli et al. (2018a). As it is provided in the Appendix of Azizzadenesheli et al.

(2018a), along with the mentioned experimental studies, we have done an extensive study

on a variety of different settings to present a more detailed understanding of policy gradient

methods. Throughout the experiments, we observe a similar behavior of the MDP based

approach PPO and POMDP based approach GTRPO. This might be due to the simplicity

of the environment as well as the close similarity of current state of environments are close to

MDP. Along the course of the experimental study, we realized that the environment set-up

and the deployed reward shaping require a critical and detailed modification to make the

117

test-bed suitable for further studies, Appendix of Azizzadenesheli et al. (2018a).

6.6 Conclusion

In this paper, we propose GTRPO, a trust region policy optimization method for the general

class of POMDPs when the reward process given the current observation, current action,

and successive observation is conditionally independent of the rest of variables. We develop a

new advantage function for POMDPs which depends on three consecutive observation. The

dependency on three consecutive observations also matches the claim in Azizzadenesheli

et al. (2016c) which shows learning the model and minimizing the regret requires modeling

three consecutive observations. GTRPO deploys this advantage function to perform the

policy updates. We consider memoryless policies and show that each policy update derived

by GTRPO is low variance and monotonically improves the expected return. Additionally,

we show how to utilize the analyses in this work and extend the infinite horizon MDP based

policy gradient methods, TRPO and PPO, to finite horizon MDPs as well as discounted

reward setting. Finally, the same way that PPO extends TRPO and make it computationally

more efficient, we extend GTRPO analyses and make it computationally more efficient. We

implement this extension and empirical study its behavior along with PPO on Roboschool

environments.

118

Chapter 7

Policy Gradient in Rich Observable

MDPs

Reinforcement Learning in Rich-Observation MDPs using Spectral Methods

Reinforcement learning (RL) in Markov decision processes (MDPs) with large state spaces

is a challenging problem. The performance of standard RL algorithms degrades drastically

with the dimensionality of state space. However, in practice, these large MDPs typically

incorporate a latent or hidden low-dimensional structure. In this paper, we study the setting

of rich-observation Markov decision processes (ROMDP), where there are a small number

of hidden states which possess an injective mapping to the observation states. In other

words, every observation state is generated through a single hidden state, and this mapping

is unknown a priori. We introduce a spectral decomposition method that consistently learns

this mapping, and more importantly, achieves it with low regret. The estimated mapping is

integrated into an optimistic RL algorithm (UCRL), which operates on the estimated hidden

space. We derive finite-time regret bounds for our algorithm with a weak dependence on

the dimensionality of the observed space. In fact, our algorithm asymptotically achieves

119

the same average regret as the oracle UCRL algorithm, which has the knowledge of the

mapping from hidden to observed spaces. Thus, we derive an efficient spectral RL algorithm

for ROMDPs.

7.1 Introduction

Reinforcement learning (RL) framework studies the problem of efficient agent-environment

interaction, where the agent learns to maximize a given reward function in the long run (Bert-

sekas and Tsitsiklis, 1996; Sutton and Barto, 1998). At the beginning of the interaction, the

agent is uncertain about the environment’s dynamics and must explore different policies in

order to gain information about it. Once the agent is fairly certain, the knowledge about the

environment can be exploited to compute a good policy attaining a large cumulative reward.

Designing algorithms that achieve an effective trade-off between exploration and exploita-

tion is the primary goal of reinforcement learning. The trade-off is commonly measured in

terms of cumulative regret, that is the difference between the rewards accumulated by the

optimal policy (which requires exact knowledge of the environment) and those obtained by

the learning algorithm.

In practice, we often deal with environments with large observation state spaces (e.g.,

robotics). In this case the regret of standard RL algorithms grows quickly with the size

of the observation state space. (We use observation state and observation interchangeably.)

Nonetheless, in many domains there is an underlying low dimensional latent space that sum-

marizes the large observation space and its dynamics and rewards. For instance, in robot

navigation, the high-dimensional visual and sensory input can be summarized into a 2D

position map, but this map is typically unknown. This makes the problem challenging, since

it is not immediately clear how to exploit the low-dimensional latent structure to achieve

low regret.

120

Contributions. In this paper we focus on rich-observation Markov decision processes

(ROMDP), where a small number of X hidden states are mapped to a large number of

Y observations through an injective mapping, so that an observation can be generated by

only one hidden state and hidden states can be viewed as clusters.

In this setting, we show that it is indeed possible to devise an algorithm that starting from

observations can progressively cluster them in “smaller” states and eventually converge to the

hidden MDP. We introduce SL-UCRL, where we integrate spectral decomposition methods

into the upper-bound for RL algorithm (UCRL) (Jaksch et al., 2010a). The algorithm

proceeds in epochs in which an estimated mapping between observations and hidden state

is computed and an optimistic policy is computed on the MDP (called auxiliary MDP)

constructed from the samples collected so far and the estimated mapping. The mapping is

computed using spectral decomposition of the tensor associated to the observation process.

We prove that this method is guaranteed to correctly “cluster” observations together with

high probability. As a result, the dimensionality of the auxiliary MDP decreases as more

observations are clustered, thus making the algorithm more efficient computationally and

more effective in finding good policies. Under transparent and realistic assumptions, we

derive a regret bound showing that the per-step regret decreases over epochs, and we prove

a worst-case bound on the number of steps (and corresponding regret) before the full mapping

between states and observations is computed. The regret accumulated over this period is

actually constant as the time to correct clustering does not increase with the number of

steps N . As a result, SL-UCRL asymptotically matches the regret of learning directly on

the latent MDP. We also notice that the improvement in the regret comes with an equivalent

reduction in time and space complexity. In fact, as more observations are clustered, the space

to store the auxiliary MDP decreases and the complexity of the extended value iteration step

in UCRL decreases from O(Y 3) down to O(X3).

Related work. The assumption of the existence of a latent space is often used to reduce the

121

learning complexity. For multi-armed bandits, Gheshlaghi azar et al. (2013) and Maillard

and Mannor (2014) assume that a bandit problem is generated from an unknown (latent)

finite set and show how the regret can be significantly reduced by learning this set. Gentile

et al. (2014) consider the more general scenario of latent contextual bandits, where the

contexts belong to a few underlying hidden classes. They show that a uniform exploration

strategy over the contexts, combined with an online clustering algorithm achieve a regret

scaling only with the number of hidden clusters. An extension to recommender systems is

considered in Gopalan et al. (2016) where the contexts for the users and items are unknown

a priori. Again, uniform exploration is used together with the spectral algorithm of Anand-

kumar et al. (2014) to learn the latent classes. Bartók et al. (Bartók et al., 2014) tackles

a general case of partial monitoring games and provides minimax regret guarantee which is

polynomial in certain dimensions of the problem.

The ROMDP model considered is a generalization of the latent contextual bandits, where

actions influence the contexts (i.e., the states) and the objective is to maximize the long-

term reward. ROMDPs have been studied in Krishnamurthy et al. (2016b) in the PAC-MDP

setting and episodic deterministic environments using an algorithm searching the best Q-

function in a given function space. This result is extended to the general class of contextual

decision processes in Jiang et al. (2016). While the resulting algorithm is proved to achieve

a PAC-complexity scaling with the number of hidden states/factors X, it suffers from high

computations complexity.

Ortner (2013) proposes an algorithm integrating state aggregation with UCRL but, while

the resulting algorithm may significantly reduce the computational complexity of UCRL, the

analysis does not show any improvement in the regret.

Learning in ROMDPs can be also seen as a state-aggregation problem, where observations

are aggregated to form a small latent MDP. While the literature on state-aggregation in RL

is vast, most of the results have been derived for the batch setting (see e.g., Li et al. (2006)).

122

Figure 7.1: Graphical model of a ROMDP.

Finally, we notice that ROMDPs are a special class of partially observable MDPs (POMDP).

Azizzadenesheli et al. (2016c) recently proposed an algorithm that leverages spectral meth-

ods to learn the hidden dynamic of POMDPs and derived a regret scaling as
√
Y using fully

stochastic policies (which are sub-optimal in ROMDPs). While the computation of the opti-

mal memoryless policy relies on an optimization oracle, which in general is NP-hard Littman

(1994); Vlassis et al. (2012); Porta et al. (2006); Azizzadenesheli et al. (2016a); Shani et al.

(2013), computing the optimal policy in ROMDPs amounts to solving a standard MDP.

Moreover, Guo et al. (2016) develops a PAC-MDP analysis for learning in episodic POMDPs

and obtain a bound that depends on the size of the observations. The planning, in general,

is computationally hard since it is a mapping from history to action.

7.2 Rich Observation MDPs

A rich-observation MDP (ROMDP) (Fig. 7.1) is a tuple M = 〈X ,Y ,A, R, fT , fO〉, where X ,

Y , and A are the sets of hidden states, observations, and actions. We denote by X, Y , A

their cardinality and we enumerate their elements by i ∈ [X] = {1..X}, j ∈ [Y] = {1..Y },

l ∈ [A] = {1..A}. We assume that the hidden states are fewer than the observations, i.e.,

X ≤ Y . We consider rewards bounded in [0, 1] that depend only on hidden states and actions

with a reward matrix R ∈ RA×X such that [R]i,l = E[r(x = i, a = l)]. The dynamics of the

MDP is defined on the hidden states as Ti′,i,l := fT (i′|i, l) = P(x′= i′|x = i, a = l), where

123

T ∈ RX×X×A is the transition tensor. The observations are generated as [O]j,i = fO(j|i) =

P(y= j|x= i), where the observation matrix O ∈ RY×X has minimum non-zero entry Omin.

This model is a strict subset of POMDPs since each observation y can be generated by only

one hidden state (see Fig. 7.2-left) and thus X can be seen as a non-overlapping clustering

of the observations.

y2

y3

y4

y5

y6

y7

y8

y9

x4

y1

y10

y11

x1 x2 x3

y2

y3

y4

y5

y6

y7

y8

y9

a1

a2

a3

π

x4x3

y1

y10

y11

x1 x2

Figure 7.2: (left) Example of an observation matrix O. Since state and observation labeling
is arbitrary, we arranged the non-zero values so as to display a diagonal structure. (right)

Example of clustering that can be achieved by policy π (e.g., X (a1)
π = {x2, x3}). Using each

action we can recover partial clusterings corresponding to 7 auxiliary states S = {s1..s7}
with clusters Ys1 = {y1, y2}, Ys2 = {y3, y4, y5}, Ys3 = {y6}, and Ys8 = {y10, y11}, while the
remaining elements are the singletons y6, y7, y8, and y9. Clusters coming from different
actions cannot be merged together because of different labeling of the hidden state, where,
e.g., x2 may be labeled differently depending on whether action a1 or a2 is used.

We denote by Yx = Yi = {y = j ∈ Y : [O]j,i > 0} the set of observations in cluster x, while

xy = xj is the cluster observation y = j belongs to.1 This structure implies the existence

of an observable MDP MY = 〈Y ,A, R′, f ′T 〉, where R′ = R as the reward of an observation-

action pair (y, a) is the same as in the hidden state-action pair (xy, a), and the dynamics

can be obtained as f ′T (j′|j, a) = P(y′= j′|y = j, a = l) = P(y′= j′|x′= xj′)P(x′= xj′ |x =

xj, a = l) = [O]j′,xj′ [T]xj′ ,xj ,l. We measure the performance of an observation-based policy

πY : Y → A starting from a hidden state x by its asymptotic average reward ρ(x; πY) =

limN→∞ E
[∑N

t=1 rt/N
∣∣x0 = x, πY

]
. Given the mapping between the ROMDP to the hidden

MDP, the optimal policy π∗Y(y) is equal to the optimal hidden-state policy π∗X : X → A for

all y ∈ Yx. The learning performance of an algorithm run over N steps is measured by the

1Throughout the paper we use the indices i, j, and l and the “symbolic” values x, y, and a interchangeably.

124

regret

RN = Nρ∗ −
[N∑
t=1

rt
]
, where ρ∗ = ρ(π∗X).

Finally we recall that the diameter of the observation MDP is defined as

DY = max
y,y′∈Y

min
π:Y→A

E
[
τπ(y, y′)

]
,

where τπ(y, y′) is the (random) number of steps from y to y′ by following the observation-

based policy π (similar for the diameter of the hidden MDP).

7.3 Learning ROMDP

In this section we introduce the spectral method used to learn the structure of the observation

matrix O. In particular, we show that we do not need to estimate O exactly as the clusters

{Yx}x∈X can be recovered by identifying the non-zero entries ofO. We need a first assumption

on the ROMDP.

Assumption 7. The Markov chain induced on the hidden MDP M by any policy πY is

ergodic.

Under this assumption for any policy π there is a stationary distribution over hidden states

ωπ and a stationary distribution conditional on an action ω
(l)
π (i) = Pπ(x = i|a = l). Let

X (l)
π = {i ∈ [X] : ω

(l)
π (i) > 0} be the hidden states where action l could be taken according

to policy π. In other words, if Y(l)
π = {j ∈ [Y] : π(j) = l} is the set of observations in

which policy π takes action l, then X (l)
π is the set of hidden states {xy} with y ∈ Y(l)

π (see

Fig. 7.2-right). We also define the set of all hidden states that can be reached starting from

125

states in X (l)
π and taking action l, that is

X (l)

π =
⋃

i∈X (l)
π

{
i′ ∈ [X] : P

(
x′ = i′|x = i, a = l

)
> 0
}
.

Similarly X (l)
π is the set of hidden states from which we can achieve the states X (l)

π by policy

π. We need the following assumption.

Assumption 8 (Full-Rank). Given any action l, the slice of transition tensor [T]·,·,l is full

rank.

Asm. 8 implies that for any action l the dynamics of M is “expansive”, i.e., |X (l)
π | ≤ |X (l)

π |.

In other words, the number of hidden states where policy π can take an action l (i.e., X (l)
π)

is smaller than the number of states that can be reached when executing action l itself (i.e.,

X (l)

π). These two assumptions ensure that the underlying Markov process is stochastic.

Multi-view model and exact recovery. We are now ready to introduce the multi-view

model (Anandkumar et al., 2014) that allows us to reconstruct the clustering structure of

the ROMDP Alg. 9. We consider the trajectory of observations and actions generated by

an arbitrary policy π and we focus on three consecutive observations yt−1, yt, yt+1 at any

step t. As customary in multi-view models, we vectorize the observations into three one-hot

view vectors ~v1, ~v2, ~v3 in {0, 1}Y such that ~v1 = ~ej means that the observation in the first

view is j ∈ [Y] and where we remap time indices t − 1, t, t + 1 onto 1, 2, and 3. We notice

that these views are indeed independent random variables when conditioning on the state x2

(i.e., the hidden state at time t) and the action a2 (i.e., the action at time t), thus defining

a multi-view model for the hidden state process. Let k1 = |X (l)
π |, k2 = |X (l)

π | and k3 = |X (l)

π |,

then we define the factor matrices V
(l)

1 ∈ RY×k1 , V
(l)

2 ∈ RY×k2 , V
(l)

3 ∈ RY×k3 as follows

[V (l)
p]j,i = P(~vp = ~ej|x2 = i, a2 = l),

where for p=1, i ∈ X (l)
π , for p=2, i ∈ X (l)

π , and for p=3, i ∈ X (l)

π .

126

Algorithm 9 Spectral learning algorithm.
Input: Trajectory (y1, a1, . . . , yN)

For Action l ∈ [A] do

Estimate second moments K̂
(l)
2,3, K̂

(l)
1,3, K̂

(l)
2,1, and K̂

(l)
3,1

Estimate the rank of matrix K̂
(l)
2,3 (see the Appendix of Azizzadenesheli et al. (2018a))

Compute symmetrized views ṽ1,t and ṽ3,t, for t = 2..N − 2

Compute second and third moments M̂
(l)
2 and M̂

(l)
3

Compute V̂
(l)

2 from the tensor decomposition of (an orthogonalized version of) M̂
(l)
3

return clusters

Ŷ(l)
i = {j ∈ [Y] : [Ṽ

(l)
2]j,i > 0}

We are interested in estimating V
(l)

2 since it directly relates to the observation matrix as

[V
(l)

2]j,i =
P(a2 = l|y2 = j)P(y2 = j|x2 = i)

P(a2 = l|x2 = i)
=

I{π(j) = l}fO(j|i)
P(a2 = l|x2 = i)

, (7.1)

where I is the indicator function. As it can be noticed, V
(l)

2 borrows the same structure

as the observation matrix O and since we want to recover only the clustering structure of

M (i.e., {Yi}i∈[X]), it is sufficient to compute the columns of V
(l)

2 up to any multiplicative

constant. In fact, any non-zero entry of V
(l)

2 corresponds to a non-zero element in the

original observation matrix (i.e., [V
(l)

2]j,i > 0⇒ [O]j,i > 0) and for any hidden state i, we can

construct a cluster Y(l)
i = {j ∈ [Y] : [V

(l)
2]j,i > 0}, which is accurate up to a re-labelling of the

states. More formally, there exists a mapping function σ(l) : X → X such that any pair of

observations j, j′ ∈ Y(l)
i is such that j, j′ ∈ Yσ(i). Nonetheless, as illustrated in Fig. 7.2-right,

the clustering may not be minimal. In fact, we have [O]j,i > 0 6⇒ [V
(l)

2]j,i > 0 since [V
(l)

2]j,i

may be zero because of policy π, even if [O]j,i > 0. Since the (unknown) mapping function

σ(l) changes with actions, we are unable to correctly “align” the clusters and we may obtain

more clusters than hidden states. We define S as the auxiliary state space obtained by the

partial aggregation and we prove the following result.

Lemma 5. Given a policy π, for any action l and any hidden state i ∈ X (l)
π , let Y(l)

i be the

observations that can be clustered together according to V
(l)

2 and Yc = Y \ ⋃i,l Y
(l)
i be the

observations not clustered, then the auxiliary state space S contains all the clusters {⋃i,l Y
(l)
i }

127

and the singletons in Yc for a total number of elements S = |S| ≤ AX.

We now show how to recover the factor matrix V
(l)

2 . We introduce mixed second and third

order moments as K
(l)
p,q = E[~vp ⊗ ~vq], K(l)

p,q,r = E[~vp ⊗ ~vq ⊗ ~vr] where p, q, r is any permutation

of {1, 2, 3}. Exploiting the conditional independence of the views, the second moments can

be written as

K(l)
p,q =

∑
i∈X lπ

ω(l)
π (i)[V (l)

p]:,i ⊗ [V (l)
q]:,i

where [V
(l)
p]:,i is the i-th column of V

(l)
p . In general the second moment matrices are rank

deficient, with rank X
(l)
π . We can construct a symmetric second moment by introducing the

symmetrized views

ṽ1 = K
(l)
2,3(K

(l)
1,3)†~v1, ṽ3 = K

(l)
2,1(K

(l)
3,1)†~v3, (7.2)

where K† denotes the pseudoinverse. Then we can construct the second and third moments

as

M
(l)
2 =E

[
ṽ1 ⊗ ṽ3

]
=
∑
i∈X (l)

π

ω(l)
π (i)[V

(l)
2]:,i ⊗ [V

(l)
2]:,i. (7.3)

M
(l)
3 = E

[
ṽ1 ⊗ ṽ3 ⊗ ~v2

]
=
∑
i∈X lπ

ω(l)
π (i)[V

(l)
2]:,i ⊗ [V

(l)
2]:,i ⊗ [V

(l)
2]:,i. (7.4)

We can now employ the standard machinery of tensor decomposition methods to orthogo-

nalize the tensor M
(l)
3 using M

(l)
2 and recover V

(l)
2 (refer to (Anandkumar et al., 2014) for

further details) and a suitable clustering.

Lemma 6. For any action l ∈ [A], let M
(l)
3 be the third moment constructed on the sym-

metrized views as in Eq. 7.4, then we can orthogonalize it using the second moment M
(l)
2

and obtain a unique spectral decomposition from which we compute the exact factor matrix

[V
(l)

2]j,i. As a result, for any hidden state i ∈ X (l)
π we define the cluster Ỹ(l)

i as

Ỹ(l)
i = {j ∈ [Y] : [V

(l)
2]j,i > 0} (7.5)

128

Algorithm 10 Spectral-Learning UCRL(SL-UCRL).

Initialize: t = 1, initial state x1, k = 1, δ/N6

While t < N do

Run Alg. 9 on samples from epoch k − 1 and obtain Ŝ
Compute aux. space Ŝ(k) by merging Ŝ and Ŝ(k−1)

Compute the estimate reward r(k) and dynamics p(k)

Construct admissible AuxMDPs M(k)

Compute the optimistic policy

π̃(k) = arg max
π

max
M∈M(k)

ρ(π;M) (7.6)

Set v(k)(s, l) = 0 for all actions l ∈ A, s ∈ Ŝ(k)

While ∀l,∀s, v(k)(s, l) < max{1, N (k)(s, l)} do
Execute at = π̃(k)(st)

Observe reward rt and observation yt

and there exists a mapping σ(l) : X → X such that if j, j′ ∈ Ỹ(l)
i then j, j′ ∈ Yσ(l)(i) (i.e.,

observations that are clustered together in Ỹ(l)
i are clustered in the original ROMDP).

The computation complexity of Alg. 9 has been studied by Song et al. (2013) and is poly-

nomial in the rank of third order moment.

Spectral learning. 2 While in practice we do not have the exact moments, we can only

estimates them through samples. Let N be the length of the trajectory generated by policy

π, then we can construct N − 2 triples {yt−1, yt, yt+1} that can be used to construct the

corresponding views ~v1,t, ~v2,t, ~v3,t and to estimate second mixed moments as

K̂(l)
p,q =

1

N(l)

N(l)−1∑
t=1

I(at = l) ~vp,t ⊗ ~vq,t,

with p, q ∈ {1, 2, 3} and N(l) =
∑N−1

t I(at = l). Furthermore, we require knowing |X (l)
π |,

which is not known apriori. Under Asm. 7 and 8, for any action l, the rank of K
(l)
2,3 is indeed

2We report the spectral learning algorithm for the tensor decomposition but a very similar algorithm

and guarantees can be derived for the matrix decomposition approach when the eigenvalues of M̂
(l)
2 for all

actions and all posible policy have multiplicity 1. This further condition is not required when the tensor
decomposition is deployed.

129

|X (l)
π | and thus K̂

(l)
2,3 can be used to recover the rank. The actual way to calculate the efficient

rank of K̂
(l)
2,3 is quite intricate and we represent the details in the Appendix of Azizzadenesheli

et al. (2018a). From K̂
(l)
p,q we can construct the symmetric views ṽ1,t and ṽ3,t as in Eq. 7.2

and compute the estimates of second and third moments as

M̂
(l)
2 =

1

N(l)

N−1∑
t=1

I(at = l)ṽ1,t ⊗ ṽ3,t,

M̂
(l)
3 =

1

N(l)

N−1∑
t=1

I(at = l)ṽ1,t ⊗ ṽ3,t ⊗ ~v2,t.

Following the same procedure as in the exact case, we are then able to recover estimates of

the factor matrix V̂
(l)

2 , which enjoys the following error guarantee.

Lemma 7. Under Asm. 7 and 8, let V̂
(l)

2 be the empirical estimate of V
(l)

2 obtained using

N samples generated by a policy π. There exists N0 such that for any N(l) > N0, l ∈ A,

i ∈ X (l)
π w.p. 1− δ

‖[V (l)
2]·,i−[V̂

(l)
2]·,i‖2≤C2

√
log(2Y 3/2/δ)

N(l)
:= B(l)

O (7.7)

where C2 is a problem-dependent constant independent from the number of observations Y .

While this estimate could be directly used to construct a clustering of observations, the noise

in the empirical estimates might lead to [V̂
(l)

2]j,i > 0 for any (j, i) pair, which prevents us

from generating any meaningful clustering. On the other hand, we can use the guarantee in

Lem. 7 to single-out the entries of V̂
(l)

2 that are non-zero w.h.p. We define the binary matrix

Ṽ
(l)

2 ∈ {0, 1}Y×X as

[Ṽ
(l)

2]j,i =


1 if [V̂

(l)
2]j,i ≥ B(l)

O

0 otherwise

,

which relies on the fact that [V̂
(l)

2]j,i − B(l)
O > 0 implies [V

(l)
2]j,i > 0. At this point, for any l

130

and any i ∈ X (l)
π , we can generate the cluster

Ŷ(l)
i = {j ∈ [Y] : [Ṽ

(l)
2]j,i > 0}, (7.8)

which is guaranteed to aggregate observations correctly in high-probability. We denote be

Ŷc = Y \ ⋃i,l Ŷ
(l)
i the set of observations which are not clustered through this process.

Then we define the auxiliary state space Ŝ obtained by enumerating all the elements of

non-clustered observations together with clusters {Ŷ(l)
i }i,l, for which we have the following

guarantee.

Corollary 1. Let Ŝ be the auxiliary states composed of clusters {Ŷ(l)
i } and singletons in Yc

obtained by clustering observations according to Ṽ
(l)

2 , then for any pair of observations j, j′

clustered together in Ŝ, there exists a hidden state i such that j, j′ ∈ Yi. Finally, Ŝ → S as

N tends to infinity.

7.4 RL in ROMDP

We now describe the spectral learning UCRL (SL-UCRL) (Alg. 10) obtained by integrating

the spectral method above with the UCRL strategy. The learning process is split into epochs

of increasing length. At the beginning of epoch k, we use the trajectory (s1, a1, .., sN(k−1))

generated at previous epoch using auxiliary states s ∈ Ŝ(k) to construct the auxiliary state

space Ŝ using Alg. 9.3 As discussed in the previous section, the limited number of samples

and the specific policy executed at epoch k−1 may prevent from clustering many observations

together, which means that despite Ŝ being a correct clustering (see Cor. 1), its size may

still be large. While clusterings obtained at different epochs cannot be “aligned” because

of different labelling, we can still effectively merge together any two clusterings Ŝ and Ŝ ′

generated by two different policies π and π′. We illustrate this procedure through Fig. 7.4.

3Since Alg. 9 receives as input a sequence of auxiliary states rather than observations as in the Appendix
of Azizzadenesheli et al. (2018a), the spectral decomposition runs on a space of size |Ŝ(k−1)| instead of Y ,
thus reducing the computation complexity.

131

Observations y3, y4, and y5 are clustered together in the auxiliary space generated by π,

while y5 and y6 are clustered together using π′. While the labeling of the auxiliary states is

arbitrary, observations preserve their labels across epochs and thus we can safely conclude

that observations y3, y4, y5, and y6 belong to the same hidden state. Similarly, we can

construct a new cluster with y9, y10, and y11, which, in this case, returns the exact hidden

space X . Following this procedure we generate Ŝ(k) as the clustering obtain by merging Ŝ

and Ŝ(k−1) (where Ŝ1 = Y).

At this point we can directly estimate the reward and transition model of the auxiliary MDP

constructed on Ŝ(k) by using empirical estimators. For a sequence of clustering Ŝ(0), . . . , Ŝ(k),

since the clustering Ŝ(k) is monotonic (i.e., observations clustered at epoch k stay clustered at

any other epoch k′ > k) any cluster s(tk) ∈ Ŝ(k) can be represented as result of a monotonically

aggregating observations as a increasing series of s1 ⊆ s2 ⊆ . . . ⊆ s(tk−1) (not unique, and

random. As it is has been shown in Fig. 7.3 any branching can be considered as one of these

series. Let’s choose one of them. Here, st is a cluster at time point t(≤ tk) which evolves to

Figure 7.3: Monotonic evolution of clusters, each layer is the beginning of an epoch. The
green and red paths are two examples for two different cluster aggregation.

the cluster s(tk). For a clustering sequence s1 ⊆ s2 ⊆ . . . ⊆ s(tk−1), evolving to s(tk), define

N (k)(s, a), the number of samples in interest is:

N (k)(s(tk), a) =
t(k)∑
t

1(yt ∈ st)1(at = a)

with an abuse of notation, we write y ∈ st to denote that the observation y has been clustered

into an auxiliary state st at time step t. For any observation y, we use all the samples of y

132

y3

y4

y5

y6

y7

y8

y9

π

y1

y2

y3

y4

y5

y6

y7

y8

y9

π′

x4

y2

x1 x2 x3

y1

y10

y11

x1 x2 x3 x4

y10

y11

Figure 7.4: Examples of clusterings obtained from two policies that can be effectively merged.

to decide whether to merge this observation to any cluster. When we merge this observation

to a cluster, we do not use the past sample of y for the empirical estimates of reward and

transition. For example, Fig. 7.4, we cluster together {y3, y4, y5}. At the beginning of each

epoch, we use all the samples to decide whether y6 belongs to this cluster. For an epoch,

when we decide that y6 belongs to this cluster, we do not use the samples of y6 up to this

epoch to estimate the reward and transition estimates of cluster {y3, y4, y5, y6}. Therefore,

to estimate the empirical mean of reward and the transition kernel, we have

r̂(k)(s(tk), a) =
t(k)∑
t

rt1(yt ∈ st)1(at = a)/N (k)(s, a)

and for transitions, let’s define the following count

N (k)(s(tk), a, s′) =
t(k)∑
t

1(yt+1 ∈ s′)1(yt ∈ st)1(at = a)

therefore

p̂(k)(s′|s(tk), a) = N (k)(s(tk), a, s′)/N (k)(s(tk), a)

then we return the estimates.4 For further use, we define the per-epoch samples of interest

for s ∈ Ŝ(k) as ν(k)(s(tk), a) :=
∑

y∈Y
∑t(k)

t(k−1) zt,t(k)(y) The corresponding confidence intervals

4Since the clustering Ŝ(k) is monotonic, r̂(k) and p̂(k) can be computed incrementally without storing the
statistics N (k)(y, a, y′), N (k)(y, a), and R(k)(y, a) at observation level, thus significantly reducing the space
complexity of the algorithm.

133

are such that for any s ∈ Ŝ(k) and a ∈ A

‖p(·|s, a)–p̂(k)(·|s, a)‖1≤dp(s, a)=

√
28S(k) log(2AN(k)

δ
)

N (k)(s, a)
,

|r̄(s, a)− r̂(k)(s, a)| ≤ dr(s, a) =

√
28 log(2Y AN(k)

δ
)

N (k)(s, a)
,

hold w.p. 1 − δ, where p(·|s, a) and r̄ are the transition probabilities and reward of the

auxiliary MDP MŜ(k) Appendix of Azizzadenesheli et al. (2018a). Given the estimates and

the confidence intervals, we construct a set of plausible auxiliary MDPs, M(k), where the

reward means and transition probabilities satisfy the confidence intervals.

At this point we can simply apply the same steps as in standard UCRL, where an optimistic

auxiliary MDP M̃ (k) is constructed using the confidence intervals above and extended value

iteration (EVI) (Jaksch et al., 2010a). The resulting optimal optimistic policy π̃(k) is then

executed until the number of samples at least for one pair of auxiliary state and action is

doubled.

EVI has a per-iteration complexity which scales as O((Ŝ(k))2A) thus gradually reducing

the complexity of UCRL on the observation space (i.e., O((Y)2A)) as soon as observations

are clustered together. When the whole clustering is learnt, the computational complexity

of EVI tends to O((X)2A). Moreover, since we aggregate the samples of the elements in

clusters, therefore more accurate estimates, the number of times we call EVI algorithm goes

from O(Y log(N)) to O(X log(N)).

Theorem 7.1. Consider a ROMDP M = 〈X ,Y ,A, R, fT , fO〉 with diameter DX . If SL-

UCRL is run over N time steps, under Asm. 7 and 8, with probability 1 − δ it suffers the

total regret of

RegN ≤
K∑
k=1

(
DŜ(k)

√
Ŝ(k) log

(N (k)

δ

) ∑
s∈Ŝ(k),a

ν(k)(s, a)√
N (k)(s, a)

)
,

where (S(k)) is the sequence of auxiliary state spaces generated over K epochs.

134

Remark. This bound shows that the per-step regret decreases over epochs. First we notice

that only the regret over the first few (and short) epochs actually depends on the number

of observations Y and the diameter DY . As soon as a few observations start being clustered

into auxiliary states, the regret depends on the number of auxiliary states Ŝ(k) and the

diameter DS(k) . Since Ŝ(k) decreases every time an observation is added to a cluster and

DS(k) is monotonically decreasing with of Ŝ(k), the per-step regret significantly decreases

with epochs.5 Cor. 1 indeed guarantees that the number of auxiliary states in Ŝ reduces

down to |S| (XA in the worst case) as epochs get longer. Furthermore we recall that even

if the clustering Ŝ returned by the spectral method is not minimal, merging clusters across

epochs may rapidly result in very compact representations even after a few epochs.

Minimal clustering. While Thm. 7.1 shows that the performance of SL-UCRL improves

over epochs, it does not relate it to the (ideal) performance that could be achieved when the

hidden space had been known. Unfortunately, even if the number of clusters in Ŝ(k) is nearly-

minimal, the MDP constructed on the auxiliary state space may have a large diameter. In

fact, it is enough that an observation j with very low probability Oj,i is not clustered (it

is a singleton in S(k)) to have a diameter that scales as 1/Omin (although its actual impact

on the regret may be negligible, for instance when j is not visited by the current policy). ,

in general the advantage obtained by clustering reduces the dependency on the number of

states from Y to XA but it may not be effective in reducing the dependency on the diameter

from DY to DX .

In order to provide a minimal clustrting, we integrate Alg. 10 with a clustering technique

similar to the one used in Gentile et al. (2014) and Ortner (2013). At any epoch k, we proceed

by merging together all the auxiliary states in Ŝ(k) whose reward and transition confidence

intervals overlap (i.e., s and s′ are merged if the confidence interval [r̂(s, a)±dr(s, a)] overlaps

5We refer to the per-step regret since an epoch may be longer, thus making the cumulative epoch regret
larger.

135

with [r̂(s′, a) ± dr(s′, a)] and [p̂(·|s, a) ± dp(s, a)]6 overlaps with [p̂(·|s′, a) ± dp(s′, a)]. If the

number of new clusters is equal to X, then we claim we learned the true clustering, if it is

less than X we ignore this temporary clustering and proceed to the next epoch. It is worth

noting that this procedure requires the knowledge of X, while the spectral method, by its

own, does not. While an explicit rate of clustering is very difficult to determine (the merging

process depends on the spectral method, whose result depends on the policy, which in turn

is determined according to the clustering at previous epochs), we derive worst-case bounds

on the number of steps needed to start clustering at least one observation (i.e., steps before

avoiding the dependency on Y and DY) and before the exact clustering is recovered.

Corollary 2. Let τM = maxx,π Eπ[τπ(x, x)] the maximum expected returning time in MDP

M (bounded due to ergodicity) and

Nfirst =
AY τM
Omin

C2 log(1/δ)

maxi,j fO(y = j|x = i)2
;

N last =
AY τM
O3

min

C2 log(1/δ). (7.9)

After Nfirst steps at least two observations are clustered and after N last steps all observa-

tions are clustered (but not necessarily in the minimum hidden space configuration) with

probability 1 − δ. This implies that after N last steps |Ŝ(k)| ≤ XA. Furthermore, let γr =

minx,x′,a |r(x, a)− r(x′, a)| and γp = minx,x′,a ‖p(·|x, a)− p(·|x′, a)‖1 be the smallest gaps be-

tween rewards and transition probabilities and let γ = max{γr, γp} the maximum between

the two. In the worst case, using the additional clustering step together with SL-UCRL

guarantees that after NX

min
{AY 2τM

γ2
log(1/δ),max

{AS2τM
γ2

log(1/δ), N last

}}
samples the hidden state X is correctly reconstructed (i.e., Ŝ(k) = X), therefore

RegN ≤ 34DXX

√
A(N −NX) log(N/δ)I(N ≥ NX)

+ min{NX , 34DYY

√
A(NX) log(NX/δ)}

6Deviation dp(s, a) on a Ŝ dimensional simplex

136

100 200 300 400 500 600 700 800 900
0

1

2

3

×10
5

UCRL
DQN
SL-UC

100 200 300 400 500 600 700 800 900
0

1

2

3

R
e

g
re

t

×10
5

100 200 300 400 500 600 700 800 900
sqrt(N)

0

1

2

3

×10
5

Figure 7.5: Regret comparison for ROMDPs with X = 5, A = 4 and from top to bottom
Y = 10, 20, 30.

We first notice that this analysis is constructed over a series of worst-case steps (see proof in

the Appendix of Azizzadenesheli et al. (2018a)). Nonetheless, it first shows that the number

of observations Y does impact the regret only over the first Nfirst steps, after which Ŝ(k) is

already smaller than Y . Furthermore, after at most N last the auxiliary space has size at most

XA (while the diameter may still be as large as DY). Finally, after NX steps Ŝ(k) reduces to

X and the performance of SL-UCRL tends to the same performance of UCRL in the hidden

MDP.

7.5 Experiments

We validate our theoretical results by comparing the performance of SL-UCRL, UCRL2

(model based) and DQN (model free, function approximation) Mnih et al. (2015), two well

known RL algorithms. The goal of this experiment is to evaluate the dependency of regret

to dimensionality of observation space. Generally, DQN is considered as model free RL

method which extend the notion of Bellman residual (Antos et al., 2008) to deep RL. For

DQN, we implement a three layers feed forward network (with no CNN block), equipped

with RMSprop and replay buffer. We tune the hyper parameters of the network and report

the best performance achieved by network of size 30× 30× 30.

137

We consider three randomly generated ROMDPs (Dirichlet transition and Uniform reward

with different bias) with X = 5, A = 4 and observation spaces of sizes Y = 10, 20, 30. Fig. 7.5

reports the regret on a
√
N scale where regret of UCRL and DQN grows much faster than

SL-UCRL’s. While all regrets tend to be linear (i.e., growing as
√
N), we observe that

the regret slope of UCRL and DQN are negatively affected by the increasing number of

observations, while the regret slope of SL-UCRL stays almost constant, confirming that

the hidden space X is learned rapidly. These experiments are the first step towards more

practical applications. Additional experiments in the Appendix of Azizzadenesheli et al.

(2018a).

7.6 Conclusion

We introduced SL-UCRL, a novel RL algorithm to learn in ROMDPs combining a spectral

method for recovering the clustering structure of the problem and UCRL to effectively trade

off exploration and exploitation. We proved theoretical guarantees showing that SL-UCRL

progressively refines the clustering so that its regret tends to the regret that could be achieved

when the hidden structure is known in advance (in higher order term). Despite this result

almost matching the regret obtained by running UCRL directly on the latent MDP, the

regret analysis requires ergodicity of the MDP. One of the main open questions is whether

the spectral clustering method could still provide “useful” clusterings when the state space is

not fully visited (i.e., in case of non-ergodic MDP), so that observations are properly clustered

where it is actually needed to learn the optimal policy the Appendix of Azizzadenesheli et al.

(2018a).

At the beginning of the learning, the algorithm deals with larger MDPs and gradually, while

learning bigger cluster, it starts to deal with smaller MDPs. Reducing the state space of

MDPs means lower cost in computing optimistic policy, having fewer number of epochs, and

138

suffer from lower computation cost. Finally, this work opens several interesting directions to

extend the results for variety of state aggregation topologies (Li et al., 2006).

139

Bibliography

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–
2320.

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems 24 - NIPS,
pages 2312–2320.

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2012). Online-to-confidence-set conversions
and application to sparse stochastic bandits. In Artificial Intelligence and Statistics, pages
1–9.

Abbasi-Yadkori, Y. and Szepesvári, C. (2011). Regret bounds for the adaptive control of
linear quadratic systems. In COLT 2011 - The 24th Annual Conference on Learning
Theory, June 9-11, 2011, Budapest, Hungary.

Abbasi-Yadkori, Y. and Szepesvári, C. (2011). Regret bounds for the adaptive control of lin-
ear quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory,
pages 1–26.

Abbasi-Yadkori, Y. and Szepesvári, C. (2015). Bayesian optimal control of smoothly param-
eterized systems. In UAI, pages 1–11.

Abeille, M. and Lazaric, A. (2017). Linear thompson sampling revisited. In AISTATS
2017-20th International Conference on Artificial Intelligence and Statistics.

Abel, D., Agarwal, A., Diaz, F., Krishnamurthy, A., and Schapire, R. E. (2016). Exploratory
gradient boosting for reinforcement learning in complex domains. arXiv.

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit
problem. In COLT.

Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning, pages 127–135.

Akhiezer, N. I. and Glazman, I. M. (2013). Theory of linear operators in Hilbert space.
Courier Corporation.

140

Aleksandrov, V. M., Sysoyev, V. I., and Shemeneva, V. V. (1968). Stochastic optimaization.
Engineering Cybernetics, 5(11-16):229–256.

Amari, S.-i. (2016). Information geometry and its applications. Springer.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decom-
positions for learning latent variable models. The Journal of Machine Learning Research,
15(1):2773–2832.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012). A method of moments for mixture
models and hidden markov models. arXiv preprint arXiv:1203.0683.

Anderson, T. W. et al. (1963). Asymptotic theory for principal component analysis. Annals
of Mathematical Statistics, 34(1):122–148.

Antos, A., Szepesvári, C., and Munos, R. (2008). Learning near-optimal policies with
bellman-residual minimization based fitted policy iteration and a single sample path. Ma-
chine Learning.

Asmuth, J., Li, L., Littman, M. L., Nouri, A., and Wingate, D. (2009). A bayesian sampling
approach to exploration in reinforcement learning. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence.

Atrash, A. and Pineau, J. (2006). Efficient planning and tracking in pomdps with large
observation spaces. In AAAI Workshop on Statistical and Empirical Approaches for Spoken
Dialogue Systems.

Auer, P. (2003). Using confidence bounds for exploitation-exploration trade-offs. The Journal
of Machine Learning Research, 3:397–422.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256.

Auer, P., Jaksch, T., and Ortner, R. (2009). Near-optimal regret bounds for reinforcement
learning. In Advances in neural information processing systems, pages 89–96.

Azizzadenesheli, K. (2019). Maybe a few considerations in reinforcement learning research?

Azizzadenesheli, K. and Anandkumar, A. (2018). Efficient exploration through bayesian
deep q-networks. arXiv preprint arXiv:1802.04412.

Azizzadenesheli, K., Bera, M. K., and Anandkumar, A. (2018a). Trust region policy opti-
mization of pomdps. arXiv preprint arXiv:1810.07900.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016a). Open problem: Approximate
planning of pomdps in the class of memoryless policies. In Conference on Learning Theory,
pages 1639–1642.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016b). Reinforcement learning in
rich-observation mdps using spectral methods. arXiv preprint arXiv:1611.03907.

141

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2016c). Reinforcement learning of
pomdps using spectral methods. arXiv preprint arXiv:1602.07764.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. (2017). Experimental results: Rein-
forcement learning of pomdps using spectral methods. arXiv preprint arXiv:1705.02553.

Azizzadenesheli, K., Liu, A., Yang, F., and Anandkumar, A. (2019). Regularized learning
for domain adaptation under label shifts. arXiv preprint arXiv:1903.09734.

Azizzadenesheli, K., Yang, B., Liu, W., Brunskill, E., Lipton, Z., and Anandkumar, A.
(2018b). Surprising negative results for generative adversarial tree search. PGMRL work-
shop at ICML.

Bagnell, J. A., Kakade, S. M., Schneider, J. G., and Ng, A. Y. (2004). Policy search by
dynamic programming. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in
Neural Information Processing Systems 16, pages 831–838. MIT Press.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.
In Elsevier.

Bartlett, P. L. and Tewari, A. (2009). REGAL: A regularization based algorithm for rein-
forcement learning in weakly communicating MDPs. In Proceedings of the 25th Annual
Conference on Uncertainty in Artificial Intelligence.

Barto, A., Sutton, R., and Anderson, C. (1983). Neuronlike adaptive elements that can solve
difficult learning control problems. Systems, Man and Cybernetics, IEEE Transactions on,
SMC-13(5):834–846.

Bartók, G., Foster, D. P., Pál, D., Rakhlin, A., and Szepesvári, C. (2014). Partial monitor-
ing—classification, regret bounds, and algorithms. Mathematics of Operations Research.

Baxter, J. and Bartlett, P. L. (2001a). Infinite-horizon policy-gradient estimation. J. Artif.
Int. Res., 15(1):319–350.

Baxter, J. and Bartlett, P. L. (2001b). Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15:319–350.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Infor-
mation Processing Systems, pages 1471–1479.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning
environment: An evaluation platform for general agents. J. Artif. Intell. Res.(JAIR).

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. (2018a). Compression
by the signs: distributed learning is a two-way street.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. (2018b). signsgd:
compressed optimisation for non-convex problems. arXiv preprint arXiv:1802.04434.

142

Bernstein, J., Zhao, J., Azizzadenesheli, K., and Anandkumar, A. (2018c). signsgd with
majority vote is communication efficient and byzantine fault tolerant. arXiv preprint
arXiv:1810.05291.

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

Boots, B., Siddiqi, S. M., and Gordon, G. J. (2011). Closing the learning-planning loop
with predictive state representations. The International Journal of Robotics Research,
30(7):954–966.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. (2017). Compressed sensing using gener-
ative models. arXiv preprint arXiv:1703.03208.

Boyan, J. and Moore, A. W. (1995). Generalization in reinforcement learning: Safely ap-
proximating the value function. In NIPS.

Brafman, R. I. and Tennenholtz, M. (2003). R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. The Journal of Machine Learning Research, 3:213–
231.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

Candes, E. J. and Tao, T. (2006). Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–
5425.

Carpentier, A. and Munos, R. (2012). Bandit theory meets compressed sensing for high
dimensional stochastic linear bandit. In Artificial Intelligence and Statistics, pages 190–
198.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In Advances
in neural information processing systems, pages 2249–2257.

Chaudhari, P. and Soatto, S. (2018). Stochastic gradient descent performs variational in-
ference, converges to limit cycles for deep networks. In 2018 Information Theory and
Applications Workshop (ITA), pages 1–10. IEEE.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., and
Zhang, Z. (2015). Mxnet: A flexible and efficient machine learning library for heteroge-
neous distributed systems. arXiv.

Chen, W., Wang, Y., and Yuan, Y. (2013). Combinatorial multi-armed bandit: General
framework and applications. In Dasgupta, S. and Mcallester, D., editors, Proceedings of
the 30th International Conference on Machine Learning (ICML-13), volume 28, pages
151–159.

Chentanez, N., Barto, A. G., and Singh, S. P. (2004). Intrinsically motivated reinforcement
learning. In NIPS.

143

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. (2015). Risk-sensitive and robust decision-
making: A CVaR optimization approach. In Advances in Neural Information Processing
Systems (NIPS), pages 1522–1530.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic linear optimization under
bandit feedback. COLT.

Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation. iii.
SIAM Journal on Numerical Analysis, 7(1):1–46.

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian q-learning. In AAAI/IAAI,
pages 761–768.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38.

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bernstein, J., Kossaifi, J., Khanna, A.,
and Anandkumar, A. (2018). Stochastic activation pruning for robust adversarial defense.
arXiv preprint arXiv:1803.01442.

Engel, Y., Mannor, S., and Meir, R. (2003). Bayes meets bellman: The gaussian process ap-
proach to temporal difference learning. In Proceedings of the 20th International Conference
on Machine Learning (ICML).

Fatemi, M., El Asri, L., Schulz, H., He, J., and Suleman, K. (2016). Policy networks with
two-stage training for dialogue systems. In SIGDIAL.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos,
R., Hassabis, D., Pietquin, O., et al. (2017). Noisy networks for exploration. arXiv.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In ICML.

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning.
JMLR.

Gentile, C., Li, S., and Zappella, G. (2014). Online clustering of bandits. In International
Conference on Machine Learning, pages 757–765.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., et al. (2015). Bayesian reinforcement
learning: A survey. Foundations and Trends R© in Machine Learning.

Gheshlaghi-Azar, M., Lazaric, A., and Brunskill, E. (2013). Regret bounds for reinforce-
ment learning with policy advice. In Proceedings of the European Conference on Machine
Learning (ECML’13).

144

Gheshlaghi azar, M., Lazaric, A., and Brunskill, E. (2013). Sequential transfer in multi-armed
bandit with finite set of models. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems 26, pages
2220–2228. Curran Associates, Inc.

Gheshlaghi-Azar, M., Lazaric, A., and Brunskill, E. (2014). Resource-efficient stochastic
optimization of a locally smooth function under correlated bandit feedback. In Proceedings
of the Thirty-First International Conference on Machine Learning (ICML’14).

Gopalan, A., Maillard, O.-A., and Zaki, M. (2016). Low-rank bandits with latent mixtures.
arXiv preprint arXiv:1609.01508.

Gordon, G. J. (1996). Chattering in SARSA(λ). Technical report, CMU.

Guo, Z. D., Doroudi, S., and Brunskill, E. (2016). A PAC rl algorithm for episodic POMDPs.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
pages 510–518.

Hanneke, S. (2016). The optimal sample complexity of PAC learning. Journal of Machine
Learning Research.

Hans, A., Schneegaß, D., Schäfer, A. M., and Udluft, S. (2008). Safe exploration for rein-
forcement learning. In ESANN.

Hauskrecht, M. and Fraser, H. (2000). Planning treatment of ischemic heart disease with par-
tially observable markov decision processes. Artificial Intelligence in Medicine, 18(3):221
– 244.

Heger, M. (1994). Consideration of risk in reinforcement learning. In Machine Learning.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2017). Deep
reinforcement learning that matters. arXiv.

Hsu, D., Kakade, S. M., and Zhang, T. (2012). Random design analysis of ridge regression.
In Conference on Learning Theory, pages 9–1.

Hsu, D. J., Kontorovich, A., and Szepesvári, C. (2015). Mixing time estimation in reversible
markov chains from a single sample path. In Advances in neural information processing
systems, pages 1459–1467.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and appli-
cations. Neural networks, 13(4-5):411–430.

Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learning algorithm
for partially observable markov decision problems. In Advances in Neural Information
Processing Systems 7, pages 345–352. MIT Press.

Jain, P., Jin, C., Kakade, S. M., Netrapalli, P., and Sidford, A. (2016). Streaming pca:
Matching matrix bernstein and near-optimal finite sample guarantees for oja’s algorithm.
In Conference on Learning Theory, pages 1147–1164.

145

Jaksch, T., Ortner, R., and Auer, P. (2010a). Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600.

Jaksch, T., Ortner, R., and Auer, P. (2010b). Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res., 11:1563–1600.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. (2016).
Contextual decision processes with low bellman rank are pac-learnable. arXiv preprint
arXiv:1610.09512.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of effective plan-
ning horizon on model accuracy. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pages 1181–1189.

Kakade, S., Kearns, M. J., and Langford, J. (2003). Exploration in metric state spaces. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
306–312.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In ICML, volume 2, pages 267–274.

Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information pro-
cessing systems, pages 1531–1538.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232.

Kleinberg, R., Niculescu-Mizil, A., and Sharma, Y. (2010). Regret bounds for sleeping
experts and bandits. Machine learning, 80(2-3):245–272.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In Machine
Learning: ECML 2006, pages 282–293. Springer.

Kontorovich, A., Nadler, B., and Weiss, R. (2013). On learning parametric-output hmms.
arXiv preprint arXiv:1302.6009.

Kontorovich, A., Weiss, R., et al. (2014). Uniform chernoff and dvoretzky-kiefer-wolfowitz-
type inequalities for markov chains and related processes. Journal of Applied Probability,
51(4):1100–1113.

Kontorovich, L. A., Ramanan, K., et al. (2008). Concentration inequalities for dependent
random variables via the martingale method. The Annals of Probability, 36(6):2126–2158.

Krishnamurthy, A., Agarwal, A., and Langford, J. (2016a). Contextual-mdps for pac-
reinforcement learning with rich observations. arXiv preprint arXiv:1602.02722v1.

Krishnamurthy, A., Agarwal, A., and Langford, J. (2016b). PAC reinforcement learning
with rich observations. In Advances in Neural Information Processing Systems, pages
1840–1848.

146

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.
Technical report, Citeseer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of machine
learning research, 4(Dec):1107–1149.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22.

Lale, S., Azizzadenesheli, K., Anandkumar, A., and Hassibi, B. (2019). Stochastic linear
bandits with hidden low rank structure. arXiv preprint arXiv:1901.09490.

LaValle, S. M. (2006). Planning algorithms. Cambridge university press.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2010). Finite-sample analysis of lstd. In
ICML-27th International Conference on Machine Learning, pages 615–622.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J. M. (2006). Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media.

Levine, N., Zahavy, T., Mankowitz, D. J., Tamar, A., and Mannor, S. (2017). Shallow
updates for deep reinforcement learning. arXiv.

Levine et al., S. (2016). End-to-end training of deep visuomotor policies. JMLR.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction
for MDPs. In Proceedings of the Ninth International Symposium on Artificial Intelligence
and Mathematics (ISAIM-06).

Li, Y., Yin, B., and Xi, H. (2011). Finding optimal memoryless policies of pomdps under the
expected average reward criterion. European Journal of Operational Research, 211(3):556–
567.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning.

147

Lipton, Z. C., Azizzadenesheli, K., Kumar, A., Li, L., Gao, J., and Deng, L. (2016a).
Combating reinforcement learning’s sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211.

Lipton, Z. C., Gao, J., Li, L., Li, X., Ahmed, F., and Deng, L. (2016b). Efficient exploration
for dialogue policy learning with bbq networks & replay buffer spiking. arXiv preprint
arXiv:1608.05081.

Littman, M. L. (1994). Memoryless policies: Theoretical limitations and practical results.
In Proceedings of the Third International Conference on Simulation of Adaptive Behavior
: From Animals to Animats 3: From Animals to Animats 3, SAB94, pages 238–245,
Cambridge, MA, USA. MIT Press.

Littman, M. L., Sutton, R. S., and Singh, S. (2001). Predictive representations of state. In
In Advances In Neural Information Processing Systems 14, pages 1555–1561. MIT Press.

Loch, J. and Singh, S. P. (1998). Using eligibility traces to find the best memoryless policy
in partially observable markov decision processes. In ICML, pages 323–331.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling,
M. (2017). Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. arXiv preprint arXiv:1709.06009.

Madani, O. (1998). On the computability of infinite-horizon partially observable markov
decision processes. In AAAI98 Fall Symposium on Planning with POMDPs, Orlando, FL.

Madani, O., Hanks, S., and Condon, A. (1999). On the undecidability of probabilistic plan-
ning and infinite-horizon partially observable markov decision problems. In AAAI/IAAI,
pages 541–548.

Maillard, O.-A. and Mannor, S. (2014). Latent bandits. In Proceedings of the Thirty-First
International Conference on Machine Learning (ICML’14).

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are comple-
mentary learning systems in the hippocampus and neocortex: Insights from the successes
and failures of connectionist models of learning and memory. Psychological Review.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of learning and motivation.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature.

Moldovan, T. M. and Abbeel, P. (2012). Safe exploration in Markov decision processes. In
ICML.

Murata, M. and Ozawa, S. (2005). A memory-based reinforcement learning model utilizing
macro-actions. In Adaptive and Natural Computing Algorithms. Springer.

148

Nadler, B. (2008). Finite sample approximation results for principal component analysis: A
matrix perturbation approach. The Annals of Statistics, 36(6):2791–2817.

Netrapalli, P., Niranjan, U., Sanghavi, S., Anandkumar, A., and Jain, P. (2014). Non-convex
robust pca. In Advances in Neural Information Processing Systems, pages 1107–1115.

Ng, A. Y. and Jordan, M. (2000). Pegasus: A policy search method for large mdps and
pomdps. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelli-
gence, UAI’00, pages 406–415, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Night, W. (2016). The AI that cut google’s energy bill could soon help you. MIT Tech
Review.

Ortner, P. and Auer, R. (2007). Logarithmic online regret bounds for undiscounted rein-
forcement learning. Advances in Neural Information Processing Systems, 19:49.

Ortner, R. (2013). Adaptive aggregation for reinforcement learning in average reward Markov
decision processes. Annals of Operations Research, 208(1):321–336.

Ortner, R., Maillard, O.-A., and Ryabko, D. (2014). Selecting near-optimal approximate
state representations in reinforcement learning. In Auer, P., Clark, A., Zeugmann, T., and
Zilles, S., editors, Algorithmic Learning Theory, volume 8776 of Lecture Notes in Computer
Science, pages 140–154. Springer International Publishing.

Ortner, R. and Ryabko, D. (2012). Online regret bounds for undiscounted continuous rein-
forcement learning. In Advances in Neural Information Processing Systems, pages 1763–
1771.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via boot-
strapped dqn. In Advances in Neural Information Processing Systems.

Osband, I., Russo, D., and Van Roy, B. (2013). (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems.

Osband, I. and Van Roy, B. (2014a). Model-based reinforcement learning and the eluder
dimension. In Advances in Neural Information Processing Systems, pages 1466–1474.

Osband, I. and Van Roy, B. (2014b). Near-optimal reinforcement learning in factored mdps.
In Advances in Neural Information Processing Systems, pages 604–612.

Osband, I., Van Roy, B., and Wen, Z. (2014). Generalization and exploration via randomized
value functions. arXiv.

Ostrovski, G., Bellemare, M. G., Oord, A. v. d., and Munos, R. (2017). Count-based explo-
ration with neural density models. arXiv.

Papadimitriou, C. and Tsitsiklis, J. N. (1987a). The complexity of markov decision processes.
Math. Oper. Res., 12(3):441–450.

149

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987b). The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–
572.

Peña, V. H., Lai, T. L., and Shao, Q.-M. (2009). Self-normalized processes: Limit theory
and Statistical Applications. Springer Science & Business Media.

Perkins, T. J. (2002). Reinforcement learning for POMDPs based on action values and
stochastic optimization. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI 2002), pages 199–204. AAAI Press.

Png, S., Pineau, J., and Chaib-draa, B. (2012). Building adaptive dialogue systems via
bayes-adaptive pomdps. Selected Topics in Signal Processing, IEEE Journal of, 6(8):917–
927.

Porta, J. M., Vlassis, N., Spaan, M. T., and Poupart, P. (2006). Point-based value iteration
for continuous pomdps. Journal of Machine Learning Research, 7(Nov):2329–2367.

Poupart, P. and Boutilier, C. (2003). Bounded finite state controllers. In Thrun, S., Saul,
L. K., and Schölkopf, B., editors, NIPS, pages 823–830. MIT Press.

Poupart, P. and Vlassis, N. (2008). Model-based bayesian reinforcement learning in partially
observable domains. In International Symposium on Artificial Intelligence and Mathemat-
ics (ISAIM).

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning,
volume 1. MIT press Cambridge.

Ross, S., Chaib-draa, B., and Pineau, J. (2007). Bayes-adaptive pomdps. In Advances in
neural information processing systems, pages 1225–1232.

Rubinstein, R. Y. (1969). Some problems in monte carlo optimization. Ph.D. thesis.

Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathe-
matics of Operations Research, 35(2):395–411.

Russo, D. and Van Roy, B. (2014a). Learning to optimize via information-directed sampling.
Advances in Neural Information Processing Systems, pages 1583–1591.

Russo, D. and Van Roy, B. (2014b). Learning to optimize via posterior sampling. Mathe-
matics of Operations Research, 39(4):1221–1243.

Schmidhuber, J. (1991). A possibility for implementing curiosity and boredom in model-
building neural controllers. In From animals to animats: SAB90. Citeseer.

150

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International Conference on Machine Learning, pages 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approximations in marko-
vian decision processes. Journal of mathematical analysis and applications, 110(2):568–
582.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv.

Shani, G., Pineau, J., and Kaplow, R. (2013). A survey of point-based pomdp solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1–51.

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business.

Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli, K., Anandkumar, A., Yue, Y., and
Chung, S.-J. (2018). Neural lander: Stable drone landing control using learned dynamics.
arXiv preprint arXiv:1811.08027.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human
knowledge. Nature.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning without state-estimation in
partially observable markovian decision processes. In ICML, pages 284–292. Citeseer.

Sondik, E. J. (1971). The optimal control of partially observable Markov processes. PhD
thesis, Stanford University.

Song, L., Anandkumar, A., Dai, B., and Xie, B. (2013). Nonparametric estimation of multi-
view latent variable models. arXiv preprint arXiv:1311.3287.

Spaan, M. T. (2012). Partially observable markov decision processes. In Wiering, M. and
van Otterlo, M., editors, Reinforcement Learning, volume 12 of Adaptation, Learning, and
Optimization, pages 387–414. Springer Berlin Heidelberg.

Strens, M. (2000). A bayesian framework for reinforcement learning. In ICML.

Sugiyama, M. and Kawanabe, M. (2012). Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. MIT Press.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT Press.

151

Sutton, R. S., Barto, A. G., Bach, F., et al. (1998). Reinforcement learning: An introduction.
MIT press.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based con-
trol. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 5026–5033. IEEE.

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389–434.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230.

Tziortziotis, N., Dimitrakakis, C., and Blekas, K. (2013). Linear bayesian reinforcement
learning. In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Arti-
ficial Intelligence.

Valko, M., Munos, R., Kveton, B., and Kocák, T. (2014). Spectral bandits for smooth graph
functions. In International Conference on Machine Learning, pages 46–54.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In AAAI.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business
media.

Vaswani, N. and Narayanamurthy, P. (2017). Finite sample guarantees for pca in non-
isotropic and data-dependent noise. In Communication, Control, and Computing (Aller-
ton), 2017 55th Annual Allerton Conference on, pages 783–789. IEEE.

Vlassis, N., Littman, M. L., and Barber, D. (2012). On the computational complexity of
stochastic controller optimization in pomdps.

Watkins, C. J. and Dayan, P. (1992a). Q-learning. Machine Learning.

Watkins, C. J. and Dayan, P. (1992b). Q-learning. Machine learning, 8(3-4):279–292.

Williams, J. K. and Singh, S. P. (1998). Experimental results on learning stochastic memo-
ryless policies for partially observable markov decision processes. In Kearns, M. J., Solla,
S. A., and Cohn, D. A., editors, NIPS, pages 1073–1080. The MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256.

152

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Summery of Contribution
	Background

	RL in Linear Bandits
	Introduction
	Preliminaries
	Overview of PSLB
	Theoretical Analysis of PSLB
	Projection Error Analysis
	Projected Confidence Sets
	Regret Analysis

	Experiments
	Related Work
	Conclusion

	RL in Markov Decision Processes
	Introduction
	Linear Q-function
	Preliminaries
	LinReL

	Bayesian Deep Q-Networks
	Experiments
	Related Work
	Conclusion

	Safe RL
	Introduction
	Intrinsic fear
	Analysis
	Experiments
	Related work
	Conclusions

	RL in Partially Observable MDPs
	Introduction
	Summary of Results
	Related Work
	Paper Organization

	Preliminaries
	Learning the Parameters of the POMDP
	The multi-view model
	Recovery of POMDP parameters

	Spectral UCRL
	Experiments
	Conclusion

	Policy Gradient in Partially Observable MDPs
	Introduction
	Preliminaries
	Policy Gradient
	Natural Policy Gradient
	DKL vs DKLTRPO

	TRPO for POMDPs
	Advantage function on the hidden states
	GTRPO

	Experiments
	Conclusion

	Policy Gradient in Rich Observable MDPs
	Introduction
	Rich Observation MDPs
	Learning ROMDP
	RL in ROMDP
	Experiments
	Conclusion

	Bibliography

