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Abstract 

Applying ecoacoustics to bird conservation and monitoring 

by 

Abraham L. Borker 

 

Passive acoustic monitoring is a transformative tool for increasing the scale of 

ecological monitoring.  The biggest challenges remain in analyzing large volumes of 

recordings to produce ecological information useful for decision making.  

Ecoacoustics, a holistic, quantitative analysis of soundscapes and their emergent 

properties is an appealing way to distill information from many recordings, but new 

tools require rigorous studies to measure their efficacy tracking ecological patterns.  

This thesis contains three studies testing the efficacy of ecoacoustic approaches to 

monitoring species and communities.  The first study uses simulations to test if a 

variety of indices of soundscape complexity, intensity and differences can measure 

realistic bird community changes in simulated dawn choruses.  In addition, I explore 

combining indices to increase predictive power, and how the addition of 

anthropogenic noise and changes in bird behavior impact the usefulness of acoustic 

indices.  The second study examines the acoustic monitoring of Cassin’s Auklets 

(Ptychoramphus aleuticus), a chorusing colonial seabird that is notoriously 

challenging to monitor.  I test how a traditional automated call detection compares to 

a novel approach based on energy spectrums of the entire soundscape to index auklet 
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activity.  I discuss how for some species, this approach may be more effective in 

indexing activity, and in this case is a reliable predictor or relative burrow density, 

and could be applicable for other nocturnal, vociferous seabirds.  In the third study I 

move from single seabird species to seabird communities.  I apply acoustic indices of 

soundscape differences, complexity and intensity to measure seabird restoration 

outcomes in the Western Aleutian Islands.  I find that acoustic richness, and the 

spectral differences from a pristine reference island are predicted by years of seabird 

recovery and other factors that promote seabird recovery.  Acoustic indices provided 

similar information to traditional and more laborious approaches.  In summation, 

ecoacoustic approaches are a valuable part of the acoustic monitoring toolbox.  

Across all three studies, acoustic indices reflected meaningful ecological patterns, at a 

fraction of the time and effort needed for other approaches.  This can greatly improve 

the scale and speed at which monitoring programs can inform management decisions 

and iteratively improve conservation outcomes. 
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1. Introduction 

Passive acoustic monitoring is a transformative tool in wildlife monitoring.  

Soundscapes, the ambient sonic environment, contain vast amounts of ecological 

information that many animals use to find food, shelter and mates (Farina et al. 2011).   

Applied biologists can inexpensively eavesdrop on this information to measure 

species distributions, abundance, and ecological patterns at wide spatial and temporal 

scales.  These large acoustic datasets necessitate scalable analysis tools.  Current 

approaches include spectrogram assisted listening (Swiston & Mennill 2009) , semi-

automated signal detection and classification algorithms (Mellinger & Clark 2000), 

and data driven indices that characterize entire recordings (Sueur, Pavoine, et al. 

2008; Eldridge et al. 2015).  The coupling of autonomous sensors and semi-

automated analysis has greatly increased the scale and feasibility of acoustic wildlife 

monitoring (Van Parijs et al. 2009; Newson et al. 2015; Thompson et al. 2010). 

Robust, scalable, cost-effective monitoring tools are urgently needed in the 

face of a global extinction crisis to measure the outcomes of conservation actions 

(Sutherland et al. 2004; Kapos et al. 2008, 2009; Ferraro & Pattanayak 2006). The 

adaptive management paradigm is widely advocated by academics, agencies and 

funders, however without scalable and cost-effective ways to measure ecological 

outcomes it is rarely fully realized in conservation or management (Keith et al. 2011; 

Walters 2007).  Optimizing resources for monitoring is important to assure that 

resources that could have been used for conservation action are not wasted 
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(McDonald-Madden et al. 2010) and at the same time sufficient statistical power is 

retained in the evaluation of conservation outcomes (Legg & Nagy 2006).   

An emerging approach to analyzing passive acoustic recordings considers the 

entire acoustic environment as an integrated reflection of biological communities 

(Pijanowski, Farina, et al. 2011; Sueur & Farina 2015).  Soundscape indices (also 

referred to as “ecoacoustic” and “global acoustic” indices) characterize an entire 

recording and measure emergent properties such as spectro-temporal complexity and 

spectral differences (Sueur et al. 2014).  The link between these acoustic features and 

community properties rests on behavioral theory regarding signal optimization 

(Marler 1955) and partitioning (Krause 1987), suggesting that patterns of 

soundscapes manifest patterns in biological communities.  These emergent properties 

of soundscapes have attracted the attention of applied biologists who believe these 

emergent properties are a potentially powerful biodiversity monitoring tool (Sueur et 

al. 2012; Sueur, Pavoine, et al. 2008; Gasc et al. 2015; Depraetere et al. 2012; Gasc, 

Sueur, Jiguet, et al. 2013; Lellouch et al. 2014; Deichmann et al. 2017; Towsey et al. 

2013; Buxton et al. 2016).   

Index based approaches for biodiversity monitoring require rigorous testing 

and illustrative case studies if they are going to advance conservation outcome 

monitoring.  In this spirit, this dissertation includes three studies that test the efficacy 

of soundscape-based indices to measure bird communities, and index patterns 

relevant to management and conservation outcomes.   
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The first chapter harnesses uses simulations and call libraries to test if 

soundscape indices can detect realistic changes in bird communities under idealized 

conditions.  By controlling the simulation process, I test how common sources of 

heterogeneity, like alarm calling behavior and the addition of road noise impact the 

efficacy of these indices.  The results indicate that indices do capture realistic change 

in the composition of the bird community represented in the simulated chorus.  

Spectral dissimilarity among choruses was highly correlated with bird community 

dissimilarity.  In addition, many complexity indices had strong linear relationships 

with species richness.  These relationships were robust to changing the proportion of 

alarm calls to songs, and the addition of moderate traffic noise.  This study advances 

the application of soundscape index based approaches to monitoring forest bird 

communities by directly addressing concerns of changes in background noise and 

animal behavior on the efficacy of these indices, while simulating realistic levels of 

bird community changes. 

The second chapter applies a soundscape approach to a familiar challenge of 

measuring the relative abundance of a focal species.  Cassin’s auklets 

(Ptychoramphus aleuticus) are a highly colonial seabird whose raucous colonies are 

filled with overlapping calls in conspecific choruses.  Because of chorusing behavior 

and overlapping calls, traditional call detection approaches fail to accurately measure 

acoustic activity as a predictive index of relative abundance.  We found that emergent 

spectral properties of colony recordings, specifically the amount of acoustic energy 

within frequency bands of auklet calls, was a powerful index of relative abundance 
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and compared this directly to an ineffective call detection approach.  These results 

suggest that for other chorusing and highly vocal species, soundscape characteristics, 

rather than call counts, may be a better index of abundance. 

The third chapter considers if automated soundscape indices can be used to 

measure restoration outcomes by comparing the soundscapes of restored seabird 

islands to a pristine reference site.  We found that the strongest predictors of restored 

island soundscapes were years since invasive predator removal, and the presence of 

predator refugia.  These findings echo a previous study that used call rates to identify 

patterns of seabird recovery, suggesting soundscape indices are a low-cost, scalable 

alternative to relatively laborious call detection and classification approaches for 

multiple species.  This study provides a framework and case study for evaluating 

restoration outcomes against a reference condition using soundscape indices and 

suggests that soundscape indices are a powerful tool to measure other restoration 

outcomes.  
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2. Evaluating automated acoustic indices as a long-term avian community 

monitoring tool with simulations of dawn choruses, alarm calls and road noise. 

 

Abstract 

Inexpensive scalable tools are needed for biodiversity monitoring.  Passive acoustic 

monitoring is a promising approach to measuring biodiversity at large scales, and 

emerging ecoacoustic indices are designed to measure community level patterns in 

biodiversity.  To test the principles of these indices, we simulated environmental 

recordings based on realistic changes in a forest breeding bird community from a 

long-term monitoring program.  Simulations contained songs and alarm calls 

belonging to 36 species in an agent-based model to produce three-minute simulated 

soundscapes.   We added two experimental treatments to these simulated recordings, 

an addition of moderate road noise, and increased proportions of alarm calls.  We 

tested the efficacy of twenty alpha indices to measure patterns in species richness, and 

the efficacy of nine beta indices to measure community dissimilarity under each 

experimental treatment.  Most alpha indices were linearly related to species richness, 

many predicted species richness to within ten species.  Experimental treatments often 

influenced the intercept, but not the slope of this relationship. Indices may work in the 

presence of road noise and alarm calling, but they are sensitive to changes in these 

conditions over time and could signal false changes in bird communities if used in 

isolation. Matrices generated from pairwise soundscape difference indices were 

highly correlated with a matrix of community dissimilarity, and this correlation was 
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robust to road noise and moderate levels of alarm calls.  Simulations are far from 

empirical recordings, but our study suggests that ecoacoustic indices may be useful 

for monitoring realistic changes in bird communities.  Empirical studies of 

soundscape indices in well monitored bird communities could help advance the 

emerging field to a scalable, powerful biodiversity monitoring tool. 

Introduction 

Low cost, high power tools to monitor biodiversity are necessary to meet 

global targets for biodiversity conservation and to improve the efficacy of the billions 

of dollars spent on conservation actions (Waldron et al. 2013).  One such tool is 

passive acoustic monitoring which can be used to monitor hierarchical nested levels 

of biodiversity (Noss 1990) from trait diversity (Laiolo & Tella 2006), to populations 

(Mellinger & Clark 2000), and potentially scaling to community-ecosystems and the 

regional landscape scale (Lomolino et al. 2015; Gasc, Sueur, Pavoine, et al. 2013).  A 

passive acoustic approach to monitoring biodiversity has three advantages over 

traditional approaches.  First, sound recordings may be used to monitor everything 

from phenotypic diversity in song within a species, to population indices, up to beta 

diversity across the landscape.  Second, data collection is automated, low cost (and 

decreasing), and scalable over space and time, lending itself to broad scale, long term 

monitoring programs.  Finally, a permanent record of ecological conditions is 

preserved in a multi-faceted, information rich acoustic recording. 
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The last ten years have seen a proliferation of acoustic indices that 

characterize entire soundscapes, agnostic to the identity of callers (Pijanowski, 

Villanueva-Rivera, et al. 2011; Gasc et al. 2015; Sueur, Pavoine, et al. 2008; Sueur & 

Farina 2015; Burivalova et al. 2017; Fuller et al. 2015; Villanueva-Rivera et al. 

2011).  Building on theory, simulations and observational studies, indices are linked 

to community structure by mechanisms of signal optimization, partitioning and 

competition (Ey & Fischer 2009; Villanueva-Rivera 2014; Pijanowski, Villanueva-

Rivera, et al. 2011; Krause 1987).  These indices have the potential to transform 

acoustic monitoring from a species centric tool to a community-level monitoring tool.  

When combined with improvements in the quality and decreases in the costs of 

acoustic sensors, they may enable monitoring of biodiversity at scales needed to 

routinely assess the outcomes of management actions (Krause & Farina 2016; Sueur, 

Pavoine, et al. 2008). In this paper we use simulations to evaluate the potential of 29 

published and proposed acoustic indices to measure patterns of communities and 

diversity from ambient sound recordings.   

Acoustic indices come in two types: those that characterize an individual 

recording (e.g. Spectral Entropy and Acoustic Diversity) known as alpha indices, and 

those that characterize the distance between a set of recordings (eg Spectral Distance) 

known as beta indices (Sueur et al. 2014).  Beta indices are theoretically well suited 

to measuring changes in community composition across time and variation between 

management units and controls. Consequently, they could enable conservation 

biologists to measure the positive and negative impact of human activities; providing 
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a comprehensive, integrated measure of ecological changes that reflects diversity, 

behavior and even abiotic conditions. 

Unlike signal specific passive acoustic monitoring programs, acoustic indices 

are being adopted slowly by managers and practitioners.  This may be due to 1) a lack 

of proof of concept studies that explicitly look at the predictive power of acoustic 

indices to measure changes in communities that are meaningful to managers 2) an 

indirect approach to tracking ecological changes 3) a lack of application to solving 

real world problems, and 4) a lack of clear understanding of how global acoustic 

indices relate to more traditional ecological metrics.  In order to help managers 

evaluate if these approaches can be taken to scale, there is a need to develop theory, 

simulations, and empirical studies that link community dynamics to soundscape 

characteristics. 

Previous studies have used simulations to test acoustic indices.  Sueur et al. 

(2008b) described acoustic entropy and dissimilarity with randomly organized 

acoustic communities drawn from 45 Western Palearctic soniferous birds, insects and 

amphibians.  A later analysis of 19,000 French breeding bird communities found that 

among empirical bird communities, spectral dissimilarity matrices of avian songs 

were correlated with phylogenetic distances, and the temporal acoustic dissimilarities 

with correlated with functional diversity distances (Gasc, Sueur, Jiguet, et al. 2013).  

Lellouch et al. (2014) used a combination of simulations and field recordings to test 

the utility of beta indices.  Measuring dissimilarity matrices based on a) a binary 
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species community derived from a field recording, b) simulated recordings of bird 

choruses using referenced calls and c) the field recording.  They found acoustic 

distances from simulations were correlated with community distance, however, this 

did not extend to the empirical recordings.  They identified the relative abundance of 

species songs composing the acoustic community as the most striking difference in 

simulated vs empirical recordings and concluded that dissimilarity methods don’t yet 

provide detailed information on changes in the species composition of bird 

communities.  Gasc et al. (2015) used one hundred of these same binary bird 

communities to test the sensitivity of alpha indices to a five sources of heterogeneity; 

song amplitude, song overlap, background amplitude, species identity and recording 

duration.  An emphasis on binary species communities in previous literature has 

ignored an important benefit of acoustic sensors to conservation biologists who are 

interested in changes to community composition rather than species lists.  

Here I use simulated choruses based on realistic bird communities.  With 

these simulated choruses, I test two major hypothesis (1) Indices of acoustic 

complexity are positively correlated with species diversity among simulated choruses 

and (2) Indices of acoustic distance between simulated choruses are positively 

correlated with community dissimilarity. I test published alpha and beta soundscape 

indices to detect changes in species richness and community structure (Table 2.1).  I 

also evaluate the efficacy of higher order and multivariate indices to predict richness 

and community change.  To address skepticism in the extension of theory and 

simulations to empirical recordings, I test for the impact of alarm calls, and road noise 
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on the efficacy of acoustic indices, as both are widespread in real world conditions.  I 

hypothesize that both alarm calls and road noise will decrease the predictive power of 

acoustic indices compared to a control as they increase the complexity and variation 

of simulated choruses independent of changes in species composition. 

Materials and Methods  

I simulated choruses based on 42 years of breeding bird abundance data from 

Hubbard Brook Experimental Forest (HBEF)’s 10ha study plot in New Hampshire 

(Holmes 2012; Holmes et al. 1986).  During this period species richness varied 

between 12 and 25 species.  Choruses were synthesized using an agent-based model 

of birds and simple calling behaviors for each of the 42 years, drawing on a library of 

species and behavior referenced bird recordings. 

Signal Library 

I built a library of 45 songs and 75 calls for the 36 species present at HBEF 

from the Cornell Guide to Bird Sounds Master Set for North America (Macauley 

Library 2014) and Xeno-canto (http://www.xeno-canto.org/), an online avian 

recording repository.  For each species I selected short repeated phrases and classified 

them as songs, alarms or ambiguous calls.  Clips ranged from <1s to 10s.  All clips 

were then normalized to control for variable source amplitudes. 

I used background noise recordings from Glacier National Park that contained 

no biological noise.  These were captured using an Edirol R09 recorder in mp3 format 
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at 128kbps.  The microphone was 15m from the center of Going to the Sun road, 

1.5m above the plane of the pavement at coordinates 48°40'15.3"N 113°49'34.8"W.   

Simulation Process 

Birds were randomly placed in a 200 row by 200 column matrix representing 

4ha of forest (Figure 2.1).  Bird abundance per 10ha was scaled down to per 4ha and 

rounded up to the nearest whole number.  Each individual bird was programmed to 

call randomly at four discrete times in each 180s chorus.  I used R (R Development 

Core Team 2011) and Sound eXchange (Bagwell 2016) to layer calls and individual 

birds onto a 180s audio sample.  For species that had multiple vocalizations for a 

given type (e.g. alarm, song or call) I randomly chose a recording for each calling 

event.  I attenuated each signal for distance to the sensor with a spherical attenuation 

model and constant signal source volume (44db / 1m).  Output files were comprised 

of single channel 44100hz uncompressed audio files (*.wav) for each year.  

 

Simulated Experimental Treatments 

In total, 252 simulated choruses were produced for a crossed design of six 

treatments manipulating three levels of alarm call frequency and two levels of 

background noise. (Figure 2.2).   The three treatments of calling behavior contained 

and increasing proportion of non-song vocalizations from no non-song vocalizations 

(0:1 Alarms:Songs), to a moderate treatment included three songs and a single alarm 

or call (1:3 Alarms:Songs), and an extreme treatment included an equal number of 



 

 

12 

 

songs and non-songs per individual bird (1:1 Alarms:Songs).  I crossed these 

treatments with two levels of background noise, one with and one without road noise.  

For the null treatment, I selected a five second clip of background audio from Glacier 

National Park with no audible road noise or bird song, cross faded and repeated for 

180s.  For the road noise treatment (moderate traffic, twelve cars/minute), I randomly 

sampled with replacement twenty three 25s recordings of passenger car passes, so 

that a total of 36 randomly spaced car passes were in each 180s recording (similar to 

Mcclure et al. 2013). 

 

Soundscape Analyses 

For each file, I calculated twenty indices that describe a simulated chorus 

(alpha indices), and nine indices that describe the pairwise acoustic distance between 

simulated choruses (beta indices) (Table 2.1).  Nearly all indices are reviewed by 

Sueur et al 2014.  For event based indices described in Towsey et. al. 2013 I used a 

.05s window size to detect events above background levels.  All recordings were pre-

processed with a 300hz high-pass filter, and no additional processing (e.g. noise 

reduction).  All analysis was performed in R (R Development Core Team 2011) using 

packages seewave (Sueur, Aubin, et al. 2008) and soundecology (Villanueva-Rivera 

& Pijanowski 2016).  For alpha indices I also conducted principal component 

analysis, using the first principal component of variation as a multivariate index 

(Alpha PC1). 
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Evaluating Alpha Indices 

I evaluated each index against the known species richness for the given 

simulation year.  I performed an ANCOVA on each index to determine how the slope 

and intercept of the linear relationship were influenced by each experimental 

treatment (richness~index+alarmratio+alarmratio:index+road+road:index).  I also 

used linear regression on a reduced single term model (richness~index) within each 

treatment to understand the effect of treatment on the 95% predictive interval for 

species richness. 

I also tested for a combination of indices that best predicts species richness.  I 

screened predictors by testing correlations between indices.  For pairs of indices that 

were highly correlated (Pearson’s r>0.8), I removed the index that had a higher mean 

correlation value across all indices. (Supplemental Figure 2.8).  I also removed 

multivariate and second-order indices (eg. H (product of Hf and Ht), AR (product of 

ranked H and ranked M) as they are already combinations of indices (similiar to 

Towsey et al. 2013))  I used the package leaps (Lumley 2017) in R to test what 

combination of remaining indices (maximum of five) could best predict species 

richness within each experimental treatment, and used BIC for model selection, 

reporting the top five linear models for predicting species richness within each 

treatment. 



 

 

14 

 

Evaluating Beta Indices 

I compared a Bray-Curtis community dissimilarity matrix of the breeding bird 

community across years with distance matrices based on six published acoustic 

dissimilarity indices (Gasc, Sueur, Jiguet, et al. 2013; Sueur, Pavoine, et al. 2008), a 

Euclidean distance based on relative energy in 1khz frequency bins, a Euclidean 

distance based on alpha index measurements, and a Euclidean distance based on the 

first two principal components of alpha indices.  I calculated the correlation between 

each distance matrix and the actual community distance matrix using Mantel’s r 

statistic, and conducted permutations to measure significance (Legendre & Legendre 

2012). 

Results 

Alpha Indices 

Almost all univariate alpha indices showed significant linear relationships 

with species richness (Figure 2.3, Supplemental Figure 2.7, Table 2.2).  In most of 

these, the intercept was influenced by the proportion of alarm calls or adding road 

noise (pindex), and for about half the indices, the slope of the relationship was changed 

by interactions of the index and either road or alarm treatment (palarm,ptraffic).  Mean 

95% prediction intervals for reduced models of species richness ranged from ±7.0 

species to ±3.7 species.  

 Multiple regression models had smaller 95% prediction intervals than single 

term models (Table 2.3).  Of the top models for each simulation treatment, prediction 
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intervals ranged from ±3.2 to ±3.6 species.  Multivariate indices better predicted 

species richness.  The first principal component of the fifteen alpha indices described 

32.5% of variation (Figure 2.4) and when regressed against species richness, had a 

predictive interval between ±3.6 to ±4.3 species depending on alarm call and traffic 

treatment. 

Beta Indices 

Acoustic distance matrices generated from beta indices were correlated with 

the Bray-Curtis distance matrix of the bird community, in nearly all cases (Figure 2.5, 

2.6).  The highest alarm call treatment (1:1 Alarms:Songs) dramatically decreased the 

matrix correlation of most indices and the community distance.  The average 

Mantel’s r was 0.32 across all treatments and indices.  The highest performing index 

across all treatments was Spectral Dissimilarity (mean Adj r2=0.56)  

 

Discussion 

This analysis of simulated avian choruses supports expanding evidence that 

acoustic indices can be used to measure community level diversity and are robust to 

sources of heterogeneity such as non-song calls and traffic noise.  Many indices 

predicted the richness of a given chorus within 10 species, out of a gamma species 

pool of 36 species.  Furthermore, in most cases over 40% of the variation in acoustic 

distance indices could be explained by community dissimilarity.  These findings 

suggests that indices can detect realistic long-term changes in bird communities and 

are consistent with previous literature with simulated choruses (Sueur, Pavoine, et al. 
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2008; Gasc, Sueur, Jiguet, et al. 2013) based on old world bird communities, adding 

to a body of evidence that soundscape indices are useful community monitoring tools.   

Many alpha indices were correlated with species richness, some being more 

robust to alarm calls and road noise than others, and a combination of alpha indices 

can significantly decrease predictive intervals around species richness.  The best 

performing single order indices considered entropy (e.g. Temporal Entropy, Entropy 

of Spectral Maxima and Acoustic Richness) or a diversity measure (e.g. Acoustic 

Diversity). Indices that had weaker predictive relationships with species richness 

were still valuable in composite and higher order indices. For example, alpha indices 

that focused on events (e.g. the percentage of acoustic activity or the number of 

acoustic events) did not perform well in predicting richness but were heavily loaded 

in principle components that predicted community distance.   A few intensity based 

indices performed well (Average Event Amplitude, Median Amplitude and Max 

Signal:Noise Ratio), but this may be confounded by a positive relationship between 

total bird abundance and richness in the HBEF bird community. 

Complex non-acoustic phenomena, such as oceanic patterns (Wolter & Timlin 

1993), behavior of soils (Dawes & Goonetilleke 2006), and water quality (Cao et al. 

1996; Primpas et al. 2010) are often better predicted by multivariate indices than by 

univariate indices. In previous literature, higher order acoustic indices such as Total 

Entropy (Sueur et. al. 2008b) and Acoustic Richness (Depraetere et al. 2012) are a 

multivariate approach, as is weighting multiple indices (Towsey et al. 2013).  In this 
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study we took two approaches, exploring a principal component based index, 

maximizing the variability captured in a single index, as well as a multiple regression 

approach to test combinations of first order indices by resampling.  The principal 

component index performed well (second lowest species richness predictive intervals 

across treatments), suggesting that this approach could have promise for analysis of 

empirical recordings.  A potential weakness is this type of index could be influenced 

by highly sensitive or variable component indices in less controlled environments.  

Using resampling, we found the best performing multivariate linear regression 

models included both intensity related and spectral complexity related indices, 

supporting the theory behind second order indices like Acoustic Richness.   

Most of the highest performing multiple regression models included at least 

one variable representing intensity (Median Amplitude, Maximum Signal:Noise, 

Average Event Amplitude), and paired this with a measure of complexity such as the 

Acoustic Diversity Index, Spectral Entropy, Number of Spectral Peaks or Avian 

Complexity Index.  Some indices such as the Bioacoustic Index were found in all the 

top models for a given treatment but absent in nearly all others.  The Acoustic 

Complexity Index was found in nearly all models predicting species richness with 

high levels of alarm callings, but conspicuously absent in other treatments.  In sum 

these results suggest that when calibration studies can be done on a known 

community or training recordings, it’s important to calculate multiple, orthogonal 

indices and build a multivariate index.   
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It seems unlikely that there is a one size fits all multi-variate index to apply to 

different communities and soundscapes and effectively predict species richness.  The 

selection of indices appears highly dependent on the soundscape of that area, 

including the anthropogenic noises and species signals (in this case relative rates of 

alarm calling).  

Additional predictive power decreased after using three to four indices in 

combination (Supplemental Figure 2.9), likely due to limitation in the number of 

methodologically non-orthogonal indices.  This suggests that future research should 

focus on expanding the toolbox of soundscape indices rather than refining 

complexity, or intensity indices.  Multi label transition indices (Zhang et al. 2016) and 

machine learning (Eldridge et al. 2015) approaches could add new non-correlated 

measurements to increase the power of a multivariate approach to characterizing 

recordings.  Perhaps as importantly, they need to be presented in accessible, 

transparent ways to managers and conservation practitioners such as R packages like 

seewave and soundecology. 

Beta indices are particularly important in conservation and restoration, 

allowing managers to compare acoustic recordings to control sites, or past recordings 

when evaluating management outcomes.  Consistent with the findings of Lellouch et 

al. (2014), we found that beta indices based on spectral distances reflected differences 

in community composition in simulated choruses.  Of these previously published beta 

indices, our highest performing beta index was perhaps the most straight forward, 
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spectral dissimilarity.  The two new approaches to beta indices based on comparing 

alpha indices between recordings performed equally well and were more resilient to 

alarm calls and road noise.  This suggests that characterizing recordings with non-

pairwise approaches, and then using these metrics to estimate pairwise distances 

between recordings may be useful when dealing with noisy or variable recordings and 

should be tested with empirical recordings. 

Contrary to expectations, the addition of alarm calls more often improved or 

had little effect on the predictive power of alpha and beta indices, suggesting that at 

moderate levels (1:3 Alarms : Songs), non-song vocalizations, often enhance rather 

than reduce the predictive power of alpha indices (Supplemental Figure 2.11).  Only 

at a 1:1 ratio of alarm and calls to songs did predictive power of alpha indices begin 

to deteriorate, and the correlation between beta indices and community dissimilarity 

decreased (Figure 2.5).   

An assumption of our analysis approach was a constant treatment effect over 

the 40 years of simulated choruses, however managers should concern themselves if 

alarm calling behavior increased significantly during a long-term monitoring 

program, or road noise changed background conditions.  Either of these events could 

create false increases in predicted species diversity or reduce the correlation between 

community dissimilarity and acoustic distance, and potentially over-estimate 

community changes.  Road noise generally decreased the predictive power of alpha 

indices (Table 2.2) and had a larger impact on index values than call types.  
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Importantly, indices responded differently, suggesting that it’s important to consider 

distance to roads and traffic noise when deciding appropriate alpha indices and 

interpreting results.  An advantage of long term acoustic monitoring approaches is the 

permanent nature of recordings that lend themselves to re-analysis and choosing the 

most appropriate indices at the time of analysis, rather than data collection; so while 

this is a concern, it can be addressed post-hoc.  The effect of road noise was minimal 

and inconsistent on the predictive power of beta indices.   Additionally, there was 

little evidence of an interaction effect of alarm calling and road noise on predicting 

community dissimilarity (Figure 2.5).   

In general, we found that soundscape indices could be strong predictors of the 

community composition of simulated choruses, particularly when assembled into 

composite indices.  These composite indices varied though, suggesting that 

calibration and training sets are needed to monitor new communities.  Background 

noise and non-song call types had limited impact on the sensitivity of the indices we 

tested.  However, while simulation approaches can always be refined and improved 

they will never mimic the complexity of empirical recordings. Thus, the important 

next step is testing these tools against natural recordings with associated community 

information.  Studies that attempt to “calibrate” indices are few, (but notably Gasc et 

al. 2013a, Lellouch et al. 2014), and managers may want to see a suite of proof of 

concepts before determining if this is an effective approach for bird community 

monitoring. Ultimately, annotated empirical recordings to showcase and validate the 

utility of community level acoustic indices and rich case studies are needed. The most 
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detailed analysis of sound recordings will always involve human listening, but these 

indices provide a powerful first pass analysis, identifying broad changes and patterns.  

As with all passive acoustic monitoring programs, a significant benefit is an archived, 

permanent record of ecological conditions that can be re-analyzed as tools, as well as 

ecological insight from acoustic patterns improve.   

 The expansion of bioacoustics from focal recordings and species detection to 

analysis of communities and entire ambient soundscapes is challenging, but 

eventually fruitful for conservation.  The benefits of this approach are enormous, 

acoustic indices are highly scalable: a home computer can characterize many 

thousands of hours of recordings without human input.  Thus, as the spatial and 

temporal scales of monitoring projects increase, human hours stay relatively low.  If 

we can link soundscape characteristics to the ecosystem characteristics of interest (eg. 

animal communities, phenology), we can measure ecological processes from micro to 

landscape scales, and how they respond to management, conservation, and human 

disturbance. 
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Figures 

Figure 2.1. Diagram of agent based model for simulating choruses.  Birds (X’s) were 

randomly placed in a 201x201 cell matrix.  For each sound sample, volume was 

attenuated based on its distance (1 cell = 1 meter) from the center cell of the matrix. 
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Figure 2.2.  Spectrograms of six 60s portions of simulated choruses, one from each 

experimental treatment of vocalization types and road noise based on the 2010 avian 

breeding community at Hubbard Brook Experimental Forest. 
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Figure 2.3.  The relationship between six alpha indices and species richness over 42 

years of simulated avian choruses, the full suite of indices is in Supplemental Figure 

2.7.  Purple, teal, and yellow lines represent treatments with increasing proportions of 

alarm calls to songs (0:1,1:3,1:1).  Solid lines and circles denote treatments with 

moderate traffic noise compared to dashed lines and triangles without.  Both traffic 

noise and alarm calls can change the slope and intercept of the relationship. 
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Figure 2.4.  A) The relationship between multivariate first principle component of 

eighteen alpha indices (Table 1, Supplemental Figure 2.7) and species richness over 

42 years of simulated choruses.  Purple, teal, and yellow lines represent treatments 

with increasing proportions of alarm calls to songs (0:1,1:3,1:1).  Solid lines denote 

moderate traffic noise compared to dashed lines without.  B) Variable loading plot for 

principal component analysis of twenty alpha indices. 
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Figure 2.5.  Mantel r values for matrix correlations between the Bray-Curtis 

community distances and pairwise beta indices.   Solid lines denote treatments 

without road noise, and dashed lines denote treatments with no added road noise.  

Triangles represent significant (p<.05 via resampling) correlations, circles were non-

significant. 
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Figure 2.6. Relationship between beta index acoustic distances from simulated 

choruses without road noise and Bray Curtis dissimilarity measurement of the bird 

community for 42 years of simulated choruses at Hubbard Brook Experimental 

Forest.  Purple, teal, and yellow lines represent treatments with increasing proportions 

of alarm calls to songs (0:1,1:3,1:1).  
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Tables 

Table 2.1.  Descriptions, names and sources for the indices used to characterize 

simulated choruses and their acoustic distances (Modified from Sueur et al. 2014). 

Index Type Abbreviation Index Name and Description 

Alpha - Intensity M 

Median of the amplitude envelope 

(Depraetere et al. 2012) 

Alpha - Intensity Amp1Q 

 Background amplitude level (25% 

Quartile) (Towsey et al. 2013) 

Alpha - Intensity MaxSNR 

Maximum Amplitude:Background 

Noise Level (25% Quartile Amplitude) 

(Towsey et al. 2013) 

Alpha - Intensity PercAcoAct 

Acoustic Activity Fraction (.5s Frames 

with events above background level) 

(Towsey et al. 2013) 

Alpha - Intensity NumEvents 

Count of acoustic events (Towsey et al. 

2013) 

Alpha - Intensity AvgEventDur 

Average duration of events (Towsey et 

al. 2013) 

Alpha - Intensity AvgEventAmp 

 Average Event Amplitude (Towsey et 

al. 2013) 

Alpha - Complexity Ht Temporal Entropy (Sueur et al. 2008b) 
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Alpha - Complexity Hf Spectral Entropy (Sueur et al. 2008b) 

Alpha - Complexity Hm 

Entropy of spectral maxima (Towsey et 

al. 2013) 

Alpha - Complexity Hv 

Entropy of spectral variance (Towsey et 

al. 2013) 

Alpha - Complexity ACI 

Acoustic Complexity Index (Pieretti et 

al. 2011) 

Alpha - Complexity NP.01 

Number of peaks (slope >.01) (Gasc et 

al. 2013b) 

Alpha - Complexity NP.005 

Number of peaks (slope >.005) (Gasc et 

al. 2013b) 

Alpha - Complexity NP.001 

Number of peaks (slope >.001) (Gasc et 

al. 2013b) 

Alpha - Complexity H 

Acoustic Diversity (H) (Spectral x 

Temporal Entropy) (Sueur et al. 2008b) 

Alpha - Complexity ADIdb100 

Shannon’s Index (db threshold -100) 

(Villanueva-Rivera et al. 2011) 

Alpha - Complexity ADIdb50 

Shannon’s Index (db threshold -50) 

(Villanueva-Rivera et al. 2011) 

Alpha - Complexity AR 

Acoustic Richness (Ht * Ranked(M)) 

(Depraetere et al. 2012) 
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Alpha - Complexity BI 

Bioacoustic Index / Area under the 

spectral curve (Boelman et al. 2007) 

Beta Df Spectral Dissimilarity (Sueur 2008b) 

Beta K-S Distance 

Kolmogorov-Smirnov distance (Gasc et 

al. 2013b) 

Beta K-L Distance 

Kullback-Leibler distance (Gasc et al. 

2013b) 

Beta I-S Distance 

Itakuro-Saito distance (Gasc et al. 

2013b) 

Beta Dcf 

Cumulative Dissimilarity (Lellouch et 

al. 2014)  

Beta  1 Khz Bins 

Euclidean distance based on energy 

within 1khz frequency bins (this paper) 

Beta 

PCOA 

Distance 

Euclidean distance of first two Principal 

Components of Alpha index variation 

(this paper) 
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Table 2.2.  P-values of ANCOVA results testing alarm call treatments as covariates 

(pmodel term) in predicting species richness alongside 95% predictive intervals for 

linear models based on single indices predicting species richness per treatment 

(Background noise and Alarm:Song ratio).  Indices (full descriptions in Table 2.1) are 

ordered by increasing mean prediction interval across all treatments. 
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Index Name 

P value from ANCOVA 

Range of 95% Predictive Interval of Species 

Richness 

Quiet Background Traffic Background 

pindex palarm ptraffic pindex:alarm pindex:traffic palarm:traffic 0:01 1:3 1:1 0:01 1:3 1:1 

Ht <.01 <.01 <.01 <.01 <.01 0.92 7.58 6.98 7.47 7.71 7.38 7.20 

Alpha PC1 <.01 0.04 <.01 0.64 0.67 0.90 7.47 7.24 8.59 8.60 8.21 7.81 

ADIdb100 <.01 0.82 <.01 0.66 <.01 0.13 8.21 7.85 10.50 8.84 7.67 8.78 

Hm <.01 <.01 <.01 0.02 0.50 0.65 9.68 8.21 8.80 9.89 8.31 8.79 

AR <.01 <.01 <.01 <.01 0.47 0.37 8.94 8.61 10.28 10.22 7.78 8.01 

ADIdb50 <.01 0.12 0.55 0.04 <.01 <.01 8.27 7.83 9.66 10.72 8.49 10.23 

AvgEventAmp <.01 <.01 <.01 0.05 0.34 0.52 8.94 10.60 9.94 8.67 10.06 9.36 

Amp1Q <.01 0.15 <.01 <.01 0.80 0.01 10.09 9.64 9.45 10.29 9.24 9.74 

Hv <.01 0.89 <.01 0.74 0.21 0.96 8.23 8.04 9.33 10.71 12.20 12.11 

M <.01 <.01 <.01 0.04 <.01 0.50 13.14 8.82 8.67 13.79 10.05 9.43 

MaxSNR <.01 <.01 <.01 <.01 0.32 0.72 10.43 11.22 10.77 10.19 11.18 10.58 

H <.01 0.02 <.01 0.04 0.54 0.49 10.24 7.93 10.76 12.61 10.18 12.99 

BI <.01 0.54 <.01 0.30 <.01 0.77 13.01 13.32 13.69 9.54 10.39 10.11 

NumEvents <.01 0.98 0.86 <.01 <.01 0.01 10.05 14.27 14.25 11.14 10.99 10.91 

AvgEventDur <.01 0.44 0.78 <.01 <.01 0.03 10.68 14.15 13.58 11.83 11.81 11.58 

PercAcoAct 0.10 0.99 0.17 <.01 0.03 <.01 8.36 13.27 13.73 12.76 14.15 14.28 

Hf <.01 0.27 <.01 0.04 0.04 0.10 12.83 11.04 13.71 14.21 13.24 14.28 

ACI 0.01 0.02 0.01 0.17 0.44 0.63 14.16 13.65 12.71 14.12 13.62 12.87 

NP.005 <.01 0.16 0.04 0.21 0.90 0.26 14.18 14.11 13.29 14.15 13.86 12.03 

NP.01 0.66 0.98 0.84 0.02 0.23 0.38 14.23 13.16 14.25 14.09 13.85 13.95 

NP.001 0.03 0.88 0.29 0.34 0.56 0.61 14.11 14.22 13.82 14.13 14.24 13.46 
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Table 2.3. The top five multiple regression models predicting species richness 

using multiple alpha soundscape indices within each crossed treatment of alarm 

calling and road noise.  Models were limited to five terms and did not consider 

interaction terms.  Models were ranked on BIC and report the Adjusted R2 and 

mean 95% Prediction Interval (PI).  Abbreviations in predictor variables from 

Table 2.1. 
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Predictors BIC Adj. r2 PI Rank Alarm Ratio Noise 

BI+MaxSNR+Ht+M -50.491771 0.7865796 6.7512447 1 0:1 Quiet 

BI+MaxSNR+NumEvents+Ht+M -50.029589 0.7971078 6.6586216 2 0:1 Quiet 

BI+AvgEventAmp+MaxSNR+Ht -49.848367 0.7832851 6.8030961 3 0:1 Quiet 

BI+AvgEventAmp+Ht -49.380632 0.7667657 6.9770517 4 0:1 Quiet 

BI+Ht+M -49.220098 0.7658726 6.9903312 5 0:1 Quiet 

ADIdb50+Hm -54.425372 0.7797095 6.7011158 1 1:3 Quiet 

ADIdb50+Ht -54.419513 0.7796788 6.7011355 2 1:3 Quiet 

BI+Ht -53.836034 0.7765966 6.7487177 3 1:3 Quiet 

ACI+ADIdb50+Ht -53.831642 0.7902184 6.6167493 4 1:3 Quiet 

ADIdb50+BI+Ht -53.657887 0.7893488 6.6297234 5 1:3 Quiet 

ACI+AvgEventAmp+Ht -50.582504 0.7733454 6.8783597 1 2:2 Quiet 

ACI+BI+AvgEventAmp+Ht -50.424673 0.7862384 6.7573901 2 2:2 Quiet 

ACI+AvgEventAmp+MaxSNR+Ht -50.372383 0.7859721 6.761874 3 2:2 Quiet 
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ACI+BI+AvgEventAmp+MaxSNR+Ht -49.853045 0.7962531 6.6731638 4 2:2 Quiet 

Hf+BI+AvgEventAmp+M -48.958164 0.7786427 6.8763421 5 2:2 Quiet 

NP.001+BI+AvgEventAmp+Hm -46.055809 0.7628052 7.1180511 1 0:1 Road 

BI+AvgEventAmp+Hm -44.968459 0.7409308 7.3532117 2 0:1 Road 

BI+Ht -44.682498 0.7221948 7.524907 3 0:1 Road 

AvgEventAmp+M -44.629456 0.7218437 7.5306527 4 0:1 Road 

AvgEventAmp+Hm -44.497667 0.7209695 7.543109 5 0:1 Road 

NP.001+Ht -49.603289 0.7529085 7.0982001 1 1:3 Road 

Hf+Ht -49.558972 0.7526477 7.1018101 2 1:3 Road 

Hf+AvgEventAmp+Hm -49.036663 0.7648478 7.0069407 3 1:3 Road 

NP.001+ACI+Ht -48.626186 0.7625383 7.041054 4 1:3 Road 

Hf+ACI+Ht -48.246362 0.7603811 7.0730882 5 1:3 Road 

ACI+Ht+Amp1Q -55.53086 0.7985363 6.4852751 1 2:2 Road 

ACI+Ht -54.267329 0.778879 6.7151226 2 2:2 Road 
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ACI+MaxSNR+Ht+Amp1Q -53.576409 0.8016923 6.5091009 3 2:2 Road 

ACI+AvgEventDur+Ht+Amp1Q -52.800889 0.7979966 6.5689505 4 2:2 Road 

ACI+BI+Ht+Amp1Q -52.490337 0.7964974 6.5937969 5 2:2 Road 
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Appendix 

Supplemental Figure 2.7.  The relationship between twenty alpha soundscape 

indices and species richness over 42 years of simulated avian choruses.  Purple, teal, 

and yellow lines represent treatments with increasing proportions of alarm calls to 

songs (0:1,1:3,1:1).  Solid lines and circles denote moderate traffic noise compared to 

dashed lines and triangles without.  Shaded areas represent a 95% confidence interval 

around the slope.  
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Supplemental Figure 2.8.  Correlation matrix of all alpha indices (left) and those in 

the final multivariate models, after removing those with correlations to other indices 

>.8 (right)  
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Supplemental Figure 2.9. Adjusted R2 values for the highest performing multivariate 

models of alpha indices predicting species richness with one to five predictor 

variables 
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Supplemental Figure 2.10.  Variable selection for top 10 ranked models predicting 

species richness within each treatment.  Black boxes represented selected variables. 
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Supplemental Figure 2.11. Adjusted R2 values alpha indices predicting species 

richness across alarm call and traffic treatments. 
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Supplemental Figure 2.12.  Heuristic of experimental treatments for each of the 252 

simulated choruses 
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3. Band limited acoustic energy, not call rate, predicts relative burrow density of 

Cassin’s Auklets (Ptychoramphus aleuticus): implications for passive acoustic 

monitoring of chorusing species. 

 

Abstract 

Colonial seabirds that attend cryptic nest sites at night are often highly threatened, 

ecologically important and notoriously challenging to monitor. Cassin’s Auklets 

(Ptychoramphus aleuticus) are one such colonial seabird with raucous nighttime nest site 

calls suited for passive acoustic monitoring. Unfortunately, the efficacy of acoustic detection 

tools can be limited by masked and overlapping signals in dense nighttime choruses. We 

propose a novel approach using a frequency band limited energy index of auklet activity 

levels and relative abundance.  We tested this approach by comparing it with a conventional 

call detection approach using nighttime recordings from a well-studied auklet colony in 

central California. Moonlight, burrow abundance, and hour of the night explained 38% of 

variation in auklet activity measured by a band limited energy index. These factors explained 

only 11% of variation in detected auklet calls per minute using conventional call detection 

measures.  Conventional call detection was a less robust index of Cassin’s Auklet vocal 

activity and abundance compared to the band limited energy index due to call saturation, 

particularly during choruses. At the seasonal scale, band limited energy explained 63% of the 

variation in breeding densities across sites and predicted burrow density to within +/- 0.13 

burrows/m2.  In contrast, the number of auklet calls detected per minute could not be used to 

predict burrow density.  Our results expand the toolbox for monitoring the relative abundance 

of colonial seabirds with passive acoustic recording.  The emergent patterns of acoustic 
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energy across frequencies was a powerful predictor of relative abundance.  In addition to 

mitigating problems associated with call saturation, this approach also required significantly 

less human effort.  This study and others suggest that acoustic monitoring, including band 

limited energy indices, can be important tools for seabird monitoring programs.  If widely 

applied, this approach could fill a problematic knowledge gap in monitoring population 

trends for elusive burrow nesting seabirds. 

Introduction 

Monitoring seabird breeding populations on islands is critical to establishing 

baselines, detecting population trends, and measuring the efficacy of conservation 

actions; particularly for the 30% of extant seabirds at risk of extinction (Croxall, 

Stuart H M Butchart, et al. 2012). A review of global trends in seabird populations 

found that most monitored populations have declined dramatically since 1950, and 

there is a relative lack of monitoring data for nocturnal and elusive (i.e. burrow and 

crevice nesting) seabirds, for which declines are also likely (Paleczny et al. 2015).  

Even when crevice and burrow nesting seabirds are locally abundant in colonies, 

abundance is notoriously difficult to monitor due to cryptic nest sites, nocturnal 

attendance, and fragile habitat.   

For seabirds that attend their colonies at night, monitoring is increasingly 

relying on acoustic activity rather than visual counts (Dufour et al. 2016; Croll et al. 

2015; Raine et al. 2017; Harvey et al. 2016).  Seabird calling activity has been found 

to be a reliable index of relative abundance for a growing number of species (Borker 

et al., 2014; Oppel et al., 2014), enabling seabird biologists and managers to monitor 
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relative abundance of more species (particularly nocturnal and elusive nesters) at 

wider scales and lower cost.  This approach has been transformative, particularly for 

seabird populations where traditional monitoring was infeasible due to cost, 

remoteness or fragile habitats. 

While the adoption of passive acoustic monitoring has improved the scale of 

seabird monitoring efforts, significant challenges remain.  The high temporal 

resolution and information density of autonomous passive acoustic recordings 

presents an enormous amount of data to interpret, requiring sub sampling or semi-

automated approaches to detect and classify sounds of interest.  Semi-automated tools 

rarely exist as turn-key solutions and methodological approaches are diverse with 

unique biases.  In addition, manual human review of automated detections can be 

laborious and expensive. For the most vociferous seabirds, acoustic monitoring may 

paradoxically be the most challenging as overlapping calls may decrease the 

effectiveness of detectors (Buxton & Jones 2012).  For many seabird species, acoustic 

communication is accomplished amongst high levels of both external and conspecific 

noise (Bretagnolle 1996; Aubin & Jouventin 1998).  Many colonial birds have 

sharply modulated, wide spectra, repetitive calls that may increase signal detection 

and help receivers locate senders (Wiley & Richards 1982).  These densely packed 

and overlapping calls can create a chorus of overlapping or masked signals, which 

can lead to calls being easily missed by most semi-automated detection tools.  As a 

result, the use of call-based acoustic activity for highly vocal or densely nesting 

seabirds as an index of abundance may not yield meaningful information or risk 
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misidentifying activity trends.  An alternative to measuring individual calls is to 

measure the emergent pattern of relative acoustic energy across frequencies. This 

approach has been useful in measuring the activity of a chorusing aquatic insect 

(Desjonquères et al. 2018) and another colonial seabird, the Leach’s Storm-petrel (R. 

Orben pers. comm. 8/2018), suggesting that it may have wide applications for 

monitoring chorusing species. 

We investigated acoustic monitoring in a large colony of Cassin’s Auklets 

(Ptychoramphus aleuticus), a densely burrow breeding, nocturnally chorusing, 

colonial seabird.  This nighttime chorus has been described similarly to a frog chorus 

that ebbs and flows in intensity (Thoreson 1964).  Or, as William Leon Dawson 

(1923) wrote, “A thousand dolorous voices take up the chorus.  The uproar gets upon 

the nerves.  Is this a bird lunatic asylum?”.  We chose this challenging environment to 

compare the efficacy of an index of acoustic energy within frequency bounds 

(henceforth, a band limited energy index) compared to a conventional call-based 

approach at a well-studied seabird colony. Given the raucous, overlapping nature of 

auklet choruses we hypothesized that band limited spectral energy would be a 

stronger predictor of burrow density than detectable call activity. 

Materials and methods 

Study Area and Species 

Southeast Farallon Island, part of the Farallon Islands National Wildlife 

Refuge, is a 44ha granitic island 43km from San Francisco, California in the Central 
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California Current.  It is the largest seabird colony in the contiguous United States 

and has been the focus of a long-term monitoring program since 1971 (Sydeman et al. 

2001; Ainley & Boekelheide 1990). 

Southeast Farallon Island has a rich and varied acoustic landscape. Nighttime 

biological sounds include the barking of California sea lions (Zalophus 

californianus), the roar of Steller sea lions (Eumatopias jubatus), and vocalizations of 

four seabird species that are primarily nocturnal in their activity: Ashy Storm-petrel 

(Oceanodroma homochroa), Leach’s Storm-petrel (Oceanodroma leucorhoa), 

Rhinoceros Auklet (Cerorhinca monocerata), and Cassin’s Auklet.  In addition, 

diurnal species often call during nighttime hours, so recordings include calls of the 

Western Gull (Larus occidentalis), Black Oystercatcher (Haematopus bachmani) and 

Pigeon Guillemot (Cepphus columba).  The island is heavily exposed to the elements 

and both wind and wave noise are ubiquitous in recordings.  Where Cassin’s Auklets 

are abundant on the island, they are the most common biological element of the 

nighttime soundscape. 

Cassin’s Auklets were the most common seabird species on Southeast 

Farallon Island for over a century (Dawson 1911).  However,populations have 

dramatically declined from over 100,000 in the 1970’s (David A Manuwal 1974a) to 

an estimated 25,000 during this study (Warzybok et al. 2011; Carter et al. 1992).  

Cassin’s Auklets were listed as near threatened in 2015 by the IUCN following 

significant population declines over the last forty years (Birdlife International, 2015) 
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and are a California Species of Special Concern (Shuford & Gardali 2008).  Breeding 

success and timing is predicted by regional ocean conditions, but generally auklets 

begin laying eggs in early March to late April  (Wolf et al. 2009; Ainley et al. 2011).  

During this study 27.5% of auklets attempted a second brood, but this can be highly 

variable between years (Johns et al. 2017).  Adult Cassin’s Auklet have three types of 

calls; Kut-I-er (the most common ground call used for courting, advertisement and 

contact/alarm), Kreerr-er (a contact call occasionally used in flight), and Kut-reeah 

(an uncommon advertisement call) (Seneviratne et al. 2009).   

Acoustic Data Collection 

We deployed acoustic sensors at seven sites (Supplemental Figure 3.7 and 

Supplemental Table 3.1) on Southeast Farallon Island: three at existing Cassin’s 

Auklet monitoring plots, and four more at sites chosen to represent a wide range of 

Cassin’s Auklet burrow densities.  We deployed sensors during two consecutive 

summers from May 29th through August 1st in 2010 and 2011, coinciding with the 

post-laying to fledging period of Cassin’s Auklets. 

We used Song Meter 2 devices (Wildlife Acoustics, 

www.wildlifeacoustics.com) outfitted with a single SMX-II omni-directional 

microphone connected through the left channel of each sensor and oriented vertically. 

The sensor was kept upright with rocks and protected from gulls with a wire cage.  

We used a 20kHz sampling rate to capture the frequency range of seabird 

vocalizations and a +36db setting gain was used to avoid clipping from loud acoustic 

http://www.wildlifeacoustics.com/
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sources (e.g. wind gusts).  Sensors were programmed to make one-minute recordings 

every nine minutes (for a total of 6 minutes of sound per hour) between 10pm and 

5am.  

Auklet burrow counts 

We counted all likely Cassin’s Auklet burrows within 10m of recording sites 

after the breeding season in 2013 to determine auklet density within the effective 

range of the acoustic sensors.  It is unlikely that relative burrow density between sites 

dramatically changed between 2010 and 2013.  In ten separate long-term monitoring 

plots of varying burrow density, despite an overall increase in burrow density, there 

was no significant change in the proportions of burrows in each plot from 2010 to 

2011 and from 2011 to 2013 (Supplementary Table 3.2). 

Moonlight 

Nocturnal activity patterns are known to decrease in periods around the full 

moon (Manuwal 1974, Ainley and Boekelheide 1990). Therefore, we calculated the 

moon azimuth and fraction illuminated during each recording using package suncalc 

(Agafonkin & Thieurmel 2017) in R.  We calculated a moonlight index that ranged 

from zero to one from the fraction of the moon illuminated while above the horizon. 

Spectrogram cross-correlation 

We used spectrogram cross-correlation (Mellinger & Clark 2000), 

implemented in XBAT (Figueroa 2007) to detect the “Kut-I-er” call used in courting, 

advertisement, contact and alarm calling (Supplemental Figure 1).  Specifically, we 
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chose a clear recording of the ascending note II or “kut” syllable as described by 

Seniviratne et al. (2009) as our detection template.  We tested this template against 70 

minutes of randomly sampled recordings to measure accuracy and sensitivity of call 

detection.  We chose a detection threshold (spectrogram cross correlation 

threshold=0.4) with moderate sensitivity, but high accuracy to measure patterns of 

relative activity, minimizing the effect of type I (false positive) errors on relative call 

rates.   We reported the average rate of “kut” detections per minute for each hour of 

the night as an index of acoustic activity. 

Spectral Analysis 

We measured the mean relative amplitude across the frequency distribution of 

the time wave for the six minutes of acoustic data collected each hour using packages 

seewave (Sueur, Aubin, et al. 2008) and tuneR (Ligges et al. 2016).  We used a fast 

fourier transform with hanning window length of 512 samples to measure relative 

energy in 256 frequency bins from 0-10kHz.  We were interested in the amount of 

relative energy within the range of dominant frequencies of Cassins’s Auklet “kut” 

syllables (Seneviratne et al. 2009), 2.3kHz +/- 0.25kHz (StdDev).  Thus, we measured 

the ratio of mean relative energy within 2.05kHz-2.55kHz to mean relative energy 

outside this limited frequency window as an index of auklet acoustic activity (Figure 

3.2).  We refer to this metric as a band limited energy ratio (BLER). 
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Comparing Acoustic Indices 

We modeled the relationship between “kut” syllables per minute and the band 

limited energy ratio using a nested linear mixed model using package nlme (Pinheiro 

et al. 2017), and a corAR1 correlation structure.  We modeled site within year as a 

nested effect with a random coefficient and intercept.  We included a quadratic 

predictor to account for a possible curvilinear nature of the relationship between the 

band limited energy ratio and “kut” syllables per minute.  We selected the final model 

by AIC score and report delta AIC below the next best model when reporting the top 

model.  We reported 95% confidence intervals around model estimates to assess 

significance.  Finally, we estimated the proportion of variance explained by fixed and 

random effects (pseudo R2) using conditional and marginal coefficients of 

determination (R_GLMM2) (Nakagawa & Schielzeth 2013) as implemented in the 

MuMIn (Barton 2017) package for R. 

Modeling Patterns of Activity 

To measure differences in both “kut” syllables per minute and the band 

limited energy ratio across hours of the night we fit nested linear mixed effect models 

using lme with a categorical fixed factor of hour, and a random nested effect of year 

within site.  We fit each model using a corAR1 correlation structure that reduced 

temporal autocorrelation.  We tested for differences across hours using an ANOVA.  

To measure the factors that influenced acoustic activity we used a linear 

mixed model to test if burrow density, moonlight, and hour of the night predicted 
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acoustic activity (with the band limited energy ratio or “kut" syllables per minute) at 

the hourly scale.  We fit these models with a nested structure (of site and year) with 

random intercepts and a corAR1 correlation structure (night within year within site).  

We centered and scaled parameter estimates so that we could directly compare the 

effects of moon illumination and burrow density.   

Seasonal Scale Acoustic Indices of Abundance 

We took a simplified modeling approach as an example of how managers 

might use an acoustic activity index at the site level; calculating the mean acoustic 

index value for sites in each year and used this to predict burrow density, treating year 

as a categorical random factor.  Because we no longer needed a temporal correlation 

structure we fit the model using package lme4 (Bates & Sarkar 2007).  By switching 

the dependent and independent variable we calculated 80% prediction intervals for 

burrow density given a future observation of the band limited energy ratio (via 

bootstrap (n=100,000) implemented in package merTools (Knowles & Frederick 

2016)). 

Results 

We collected 36,974 one-minute recordings from May 29th through Aug 1st 

over two years (Figure 3.1).  The spectrogram-cross correlation “kut” detector 

identified 69,680 likely Cassin’s Auklet calls at an average rate of 1.89 calls per 

minute (range=0-4.5).  The detector’s accuracy was 92% based on reviewing a 

random sample of one hundred detections.  The band limited energy ratio averaged 
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3.588 (range=0.36-10.61) (Figures 3.2, 3.3).  Auklet burrow density within 10m from 

each acoustic sensor ranged from 0.04/m2 to 0.37/m2 (mean=0.18/m2). 

Comparison of Call Activity and Band Limited Energy Ratio 

There was a positive relationship between the rate of “kut” syllables detected 

per minute and the band limited energy ratio (Figure 3.4).  The best model predicting 

“kut” syllables detected per minute included the band limited energy ratio 

(Coefficient=0.69, 95% CI 0.56,0.82), a quadratic term for the band limited energy 

ratio (Estimate=-0.059, 95% CI(-0.066, -0.052)), the categorical variable year 

(Coefficient=0.73, 95% CI (0.48,0.99), and the interaction of the band limited energy 

ratio quadratic term and year (Estimate=-0.022, 95% CI (-0.026,-0.018)) as well as a 

random slope and intercept for year nested within site.  This model performed better 

than a model without a quadratic term (dAIC=300.2).  This quadratic term also 

increased the amount of variation in calls per minute explained by fixed effects 

(Marginal R_GLMM2= 0.35 versus Marginal R_GLMM2=0.33 without a quadratic 

term). 

Acoustic Activity Patterns 

The band limited energy ratio varied between hours (Nested ANOVA, 

Fdf=6=812.01, p<.001) and 19 of 21 pairwise Tukey comparisons were significant 

(p<.05).  “Kut” syllables detected by minute also varied by hour (Fdf=6=153.20, 

p<.001), however post-hoc comparisons detected fewer pairwise differences (15 of 21 
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comparisons had a p<.05).  Regardless of method used, pre-midnight hours had lower 

activity than after midnight hours (Figure 3.5). 

The best fit model for predicting band limited energy ratio values at the hourly 

scale included hour, burrow density and moonlight as fixed factors in a random 

intercept model with a nested random factor of year within site and temporal 

correlation structure AR1 (name/year/day). By scaling and centering fixed factors we 

estimated the positive effect of burrow density on the band limited energy ratio 

(Coefficient=0.61, 95%CI= (0.28, 0.95) as twice the negative effect of moonlight 

(Coefficient=-0.13, 95%CI= (-0.18, -.086).  These fixed predictors, along with a 

categorical fixed effect of hour explained 38% of variability in the band limited 

energy ratio (Marginal R_GLMM2= 0.38, Conditional R_GLMM2=0.46).   

A similarly structured model was used to predict “kut” syllables detected per 

hour.  However, we found no significant effect of burrow density on call rates 

(Coefficient=0.07, 95%CI (-0.23, 0.38), and a weaker effect of moonlight 

(Coefficient=0.07, 95%CI (-0.098, -0.046)).  These predictors, along with categorical 

fixed effect of hour only explained 11% of variability in calls per minute (Marginal 

R_GLMM2= 0.11, Conditional R_GLMM2=0.35). 

We also fit a model at the seasonal scale, to determine if burrow density at 

each site could be predicted by the seasonal mean of acoustic activity (measured by 

the band limited energy ratio or “Kut” syllables per minute).  This is a realistic way in 

which the tool would be applied by managers, measuring acoustic activity across a 
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season rather than a single hour or night.  This model contained only 14 data points 

and a random intercept for each year.  The mean band limited energy ratio was 

strongly predicted by burrow density within 10m (Coefficient=0.017, 95%CI= (0.010, 

0.024)) explaining 63% of variation in the band limited energy ratio (Marginal 

R_GLMM2= 0.63).  The random intercept for year only explained an additional 9% 

of band limited energy ratio variance (Conditional R_GLMM2=0.72), and this model 

had lower AIC than one that allowed the slope to change between years (dAIC = 

3.22).   Bootstrapped 80% prediction intervals for future measurements of the band 

limited energy ratio averaged +/- 0.13 burrows/m2.  By contrast, the mean rate of 

“kut” syllables per minute over the season was not predicted by burrow density 

(Coefficient=0.0022, 95%CI (-0.0028, 0.0072)), and this model failed to explain 

meaningful variance in “kut” notes per minute (Marginal R_GLMM2= 0.033, 

Conditional R_GLMM2=0.55) (Figure 3.6). 

Discussion 

We found strong evidence that emergent spectral properties of long-term 

environmental recordings can be used as a powerful index of abundance for a 

chorusing colonial seabird at the seasonal scale.  Specifically, the ratio of acoustic 

energy within the frequencies of Cassin’s Auklet vocalizations to background 

acoustic energy can be used as an index of relative abundance.  Prediction intervals 

for burrow density based on a seasonal average of band limited energy ratio were +/- 

0.13 burrows per m2.  This tool can be used by managers to estimate auklet burrow 
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abundance where burrow counting may be logistically or cost prohibitive and expand 

monitoring programs for minimal cost and effort. 

Multiple lines of evidence suggested that the band limited energy ratio 

accurately captured patterns of Cassin’s Auklet vocal activity.  First, at the hourly 

scale we saw a negative effect of moonlight on the band limited energy ratio, 

corroborating patterns of auklets restricting activity on moonlit nights due to 

predation risk (David A Manuwal 1974b; Nelson 1989; Ainley & Boekelheide 1990).  

Second, there was greater auklet acoustic activity in early morning hours as 

previously documented (Ainley & Boekelheide 1990; David A Manuwal 1974b).  

Finally, and most importantly, there was a strongly predictive relationship (Marginal 

R_GLMM2=.63) between BLER and burrow density in both years at the seasonal 

scale (Figure 3.6).   

Our study provides evidence that under some conditions, automated call 

detection rates can be a poor way to measure acoustic activity or predict the relative 

abundance of a colonial seabird.  We propose that the spectral patterns are a powerful 

alternative when calls are densely packed and overlapping, making them difficult to 

detect.   In comparing the two approaches directly, we found that detectable “kut” 

syllables peaked below the highest amounts of activity as measured by the band 

limited energy ratio (Figure 3.4).  The automated detector failed to detect many 

overlapping and masked calls, while the band limited energy ratio approach was able 
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to capture the effect of the increased acoustic energy during these intense choruses of 

overlapping calls. 

  Measuring mean frequency spectra of recordings is relatively 

straightforward, and while computationally expensive, does not require significant 

human supervision unlike designing and evaluating call detection algorithms.  The 

efficacy of a band limited energy ratio to index acoustic activity is most applicable to 

chorusing, highly vocal, or densely nesting species that make up the dominant 

element of the soundscape, particularly within their respective frequency range.  

There are potential pitfalls of a strictly band limited approach that should be 

considered before being applied to other species and soundscapes.  Energy measures 

are very sensitive to non-target signals influencing the index of acoustic activity.  

This is especially true if the activity of interest is low, as it doesn’t discriminate 

between calls of the species of interest and other sounds in that frequency range.  

Non-target signals within the frequency band obscure the relationship of acoustic 

energy and calls, and signals outside the band may diminish the response of the ratio 

to increases in calls. In the range of approaches to analyzing acoustic data these 

energy approaches are crude but may be effective when coupled with inspecting 

recordings and a greater holistic understanding of the soundscape under analysis, 

including sources of biological and non-biological noise such as waves crashing and 

the effect of wind.  We chose to calculate a ratio to account for common wide 

spectrum noise (both from wind and biological sources) present in oceanic seabird 

island soundscapes, but in quieter soundscapes, band restricted energy may also be a 
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useful index.  At the hourly scale, only 38% of variation in our band limited energy 

ratio acoustic activity index was explained by burrow density, hour and moonlight, 

leaving a large portion of acoustic activity unexplained.  Wave noise, the impacts of 

wind, and the activity of non-target species all had large impact on recordings and the 

index.  This low portion of variation explained at the hourly scale illustrates the 

importance of long duration recordings to deal with high variability in acoustic 

indices. 

Two weakness of this study are that we did not measure burrow occupancy 

and that burrow counts were not conducted until two years after acoustic data 

collection.  On Southeast Farallon Island most burrows are occupied annually, 

however because they persist between years, burrow density does not translate 

directly into breeding abundance.  However, burrow occupancy is exceedingly 

difficult to measure, so counting burrow entrances is often a de-facto measure of 

breeding density, particularly for measuring relative abundance at large scales.  In 

fact, acoustic indices may be more likely to directly index the number of breeding 

individuals rather than available nesting sites.  Secondly, it would have been ideal to 

conduct independent burrow counts after the 2010 and 2011 breeding seasons.  

However, when we examined burrow density trends in ten monitored study plots 

around the island, we found there was no change in the proportions of burrows in 

each plot from 2010 to 2011 and then to 2013 (Supplemental Table 3.2). That is, a 

plot with high burrow density remained a high-density plot, even if the absolute 

number of burrows changed between years. In fact, burrow counts were 37% higher 
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in 2011 versus 2010 (Warzybok et al. 2011).  This may explain the higher intercept in 

the fitted relationship between band limited energy and burrow density in 2011 

compared to 2010 (Figure 3.6). 

This study has opened up future directions for Cassin’s Auklet monitoring, 

and the potential of designing a scalable range-wide monitoring program for this 

sentinel of ecosystem change (Wolf et al. 2010).  Even though we sampled over two 

months of the summer breeding season, auklet breeding can begin as early as March 

in some years.  Considering auklets breeding flexibility, earlier season recordings 

may have been able to capture seasonal patterns and begin to estimate phenology.  

Based on our findings, deployments could be made longer by reducing sampling 

effort to early morning hours when auklets are more vocally active.  It’s also 

important to test these methods across the broader range of Cassin’s auklet breeding 

colonies in the Northeast Pacific where soundscapes, and the efficacy of analyses 

approaches may differ. 

 Monitoring acoustic activity through spectral properties may also have 

applications for other colonial seabirds, particularly those that nest in dense, loud 

colonies where calls are frequent and overlapping.  Comparison studies of approaches 

to measuring acoustic activity would be helpful, particularly with problematic taxa for 

which few scalable abundance monitoring approaches exist.  Even for species where 

call activity measured by call detectors has been effective, band limited energy 

approaches may be more efficient, requiring less time and effort in data analysis.  
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This approach may also be useful in measuring other chorusing animals such as 

cicadas, frogs, and others producing overlapping signals in discrete frequencies. 

The recent advances in both acoustic recorders and automated acoustic 

analysis suggest that acoustic monitoring programs hold great promise for monitoring 

seabird populations.  Recording hardware has continued to come down in cost as the 

market for these devices expands (Hill et al. 2018).  Powerful detection algorithms 

(Katz et al. 2016), ecoacoustic indices (Villanueva-Rivera & Pijanowski 2016) and 

analyses toolboxes (Towsey et al. 2012) are increasingly available in freely accessible 

open source software.  The archival and information-rich nature of sound recordings 

lends them to re-analysis as tools and questions evolve.  To advance the passive 

acoustic monitoring of colonial seabirds, researchers should consider utilizing sites of 

known or closely monitored abundance to calibrate acoustic indices that can be used 

to estimate abundance in inaccessible or remote sites.  Relatively inexpensive data 

collection and management makes acoustic data collection a low risk endeavor, and at 

best a transformative tool to increase the temporal and spatial scale of monitoring 

effort.  Ultimately acoustic monitoring could go a long way in estimating population 

trends for nocturnal and burrow nesting seabirds and understanding how their 

populations respond to threats and conservation actions. 
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Figure 3.1. Long Term Spectral Averages of Relative Energy during nighttime 

hours at six sites on Southeast Farallon Island during June and July, in 2010 and 

2011.  Each column represents an averaged spectrum of relative energy for a 

single night based on 42 one-minute samples.  Sites are presented from top to 

bottom in order of decreasing ranked abundance of Cassin’s Auklet 

(Ptychoramphus aleuticus) acoustic activity.  
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Figure 3.2. Five second spectrograms, and respective mean spectral energy 

distributions, of nocturnal soundscapes at Southeast Farallon Island.  From top to 

bottom, these illustrative short clips are from recordings that scored within the 

lowest, middle and highest quintiles of Cassin’s auklet acoustic activity as 

measured by a frequency band limited energy ratio.  The right column of plots 

shows the mean distribution of acoustic energy across the frequency spectrum. 

The range of frequencies associated with Cassin’s Auklet “kut” syllables and used 

to calculate the energy ratio is indicated by dashed lines. 
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Figure 3.3.  Cassin’s Auklet (Ptychoramphus aleuticus) acoustic activity patterns 

measured by band limited energy ratio (BLER; 2.05kHz-2.55kHz) during June and 

July, 2010 and 2011 on Southeast Farallon Island.  Sites are presented from top to 

bottom in order of decreasing ranked abundance of Cassin’s Auklet acoustic activity.  
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Figure 3.4. Relationship between detected “kut” syllables per minute and a band 

limited energy ratio (2.05kHz-2.55kHz) as indices of Cassin’s Auklet acoustic 

activity on Southeast Farallon Island during 2010 and 2011.  Curves represent 

predicted fits of a linear mixed model nested by site within year. 
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Figure 3.5.  Hourly patterns of Cassin’s Auklet acoustic activity at three sites on 

Southeast Farallon Island collected over two years using a band limited energy ratio 

(2.05kHz-2.55kHz) (purple) and calls per minute (green).  From left to right sites 

contain high, medium and low auklet burrow abundance.  Notched boxplots hinges 

represent 25th and 75th percentiles, and whiskers are the range up to 1.5 times the IQR 

from the hinge, outliers beyond that range are indicated by points. 
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Figure 3.6.  Relationship between Cassin’s Auklet burrow density and mean acoustic 

activity measured by a band limited energy ratio and “kut” syllables detected per 

minute on Southeast Farallon Island in 2010 (purple) and 2011 (green).  Solid lines 

are predicted linear mixed model fits for each year.  Dashed lines represent 80% 

prediction intervals around the model fit. 
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Appendix 

Supplemental Figure 3.7. Map of sampling sites on Southeast Farallon Island. 
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Supplemental Table 3.1. Locations of acoustic sensors and associated burrow 

densities. 

Latitude Longitude Location Name Burrow Density within 10m 

(burrows/m2) 

37.70016 123.00314 Northeast corner of Egger's Building 0.366 

37.69900 123.00224 Lighthouse Trail 0.089 

37.69780 123.00042 Carp Shop (E. Landing) 0.051 

37.69916 123.00463 Nest Boxes 0.045 

37.70027 123.00358 The Gap (L9) 0.331 

37.69778 123.00154 Generator Shed (E4) 0.051 

37.69641 123.00180 Road to Nowhere (F1)  0.178 
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Supplemental Table 3.2. Cassin’s auklet burrow abundance in 12 long term 

monitoring plots (A-L) in the years of this study.  Despite an increasing population, 

pearson’s χ2 statistic showed no change in the relative proportion of burrows in each 

site (2010v2011 χ2df=11=7.60, p=0.765; 2010v2013 χ2 df=11=16.95, p=0.11; 

2011v2013 χ2 df=11=18.59, p=0.07) 

 

Year A B C D E F G H I J K L Total 

2010 14 9 16 10 9 3 11 9 73 29 0 18 201 

2011 17 14 27 12 9 4 17 9 90 54 1 23 277 

2012 31 25 33 15 11 4 14 - 91 48 6 26 304 

2013 31 31 26 17 15 4 16 11 98 60 7 34 350 
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Supplemental Figure 3.8.  A spectrogram of a single Cassin’s Auklet “Kut-I-eer” 

vocalization with the introductory “kut” syllables denoted with yellow dashed lines 

(described in Seneviratne et. al. 2009) from a field recording used in the study. 
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Supplemental Figure 3.9.  Time series of indices of Cassin’s Auklet acoustic 

activity and moonlight on Southeast Farallon Island.  Faded color lines are 

decomposed seasonal trend of sites from low ranked auklet abundance (purple) to 

high ranked auklet abundance (yellow).  Thin lines are a LOESS smoother line 

(span=0.2) with a shaded standard error interval.  Black lines are hourly levels of 

moonlight (fraction of the moon illuminated when above the horizon). 
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4. Does seabird recovery predict soundscape indices? A comparative study in the 

Western Aleutian Islands 

 

Abstract  

Measuring restoration outcomes is essential, but challenging and expensive, 

particularly on remote islands. Acoustic recording increases the potential scale of 

ecological monitoring inexpensively, however extracting biological information from 

large volumes of recordings remains challenging. Soundscape approaches, 

characterizing communities using acoustic indices, rapidly analyze large acoustic 

datasets. We evaluated soundscape indices as measures of seabird recovery following 

invasive predator removal in the Aleutian Islands. We used recordings of nocturnal 

seabird soundscapes from six islands with varied histories of predator removal, 

ranging from never invaded (1 island) to 9 - 34 years post predator removal (4 

islands) and currently invaded (1 island). We calculated ten indices of acoustic 

intensity and complexity, and two pairwise indices of acoustic differences. Three 

indices reflected patterns of seabird recovery. Acoustic richness (measuring temporal 

entropy and amplitude) increased with time since predator removal and presence of 

historical predator refugia (r2=0.44).  These factors and moonlight accounted for 30% 

of variation in cumulative spectral difference from the reference island. Over 10% of 

acoustic richness and temporal entropy was explained by Leach’s storm-petrel 

(Oceanodroma leucorhoa) calls. However, indices characterized the soundscape of 

rat-invaded Kiska island like a never invaded island, likely due to high levels of 
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abiotic noise and few seabird calls. Soundscape indices have potential to monitor 

outcomes of seabird restoration quickly and cheaply, if confounding factors are 

considered and controlled in experimental design. We suggest soundscape indices 

become part of the expanding acoustic monitoring toolbox to cost-effectively measure 

restoration outcomes at scale and in remote areas. 

Introduction 

Effective environmental restoration relies on rigorous measurement of 

intervention outcomes, but this can be logistically challenging and costly to achieve. 

Even at fine geographic scales, outcome metrics are often inconsistent, hampering the 

ability to evaluate restoration success (Wortley et al. 2013). As restoration 

interventions are applied at increasingly large scales (Perring et al. 2015), scalable, 

cost-effective tools will be required to monitor patterns of recovery at appropriate 

landscape scales. Advances in passive acoustic recording technologies offer scalable 

sampling to measure ecological conditions at high spatiotemporal resolution (Buxton 

et al. 2018; Hill et al. 2018; Wrege et al. 2016; Ross et al. 2018). However, passive 

acoustic recording has not been widely applied as a monitoring tool largely due to the 

enormous amount of resulting data and subsequent time consumptive and expensive 

process of data analysis (e.g., Buxton and Jones 2012). 

 Large-scale passive recordings, where the entire ambient acoustic 

environment is recorded for long time periods, serve as a permanent record of 

ecological conditions for analysis of indicator species, anthropogenic sounds, and 
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other evolving questions.  Automated analysis of large acoustic datasets generally 

falls into two categories: signal detection of particular calls or species (Acevedo et al. 

2009) and soundscape approaches that examine patterns and variation in acoustic 

energy across long duration recordings to index ecological conditions (Sueur, 

Pavoine, et al. 2008). Signal detection is a powerful approach to measure species 

activity directly, but effort increases with the number of calls being detected, making 

the use of automated detectors prohibitively time consuming for large numbers of 

species. As a complementary approach, characterizing acoustic environments (i.e. 

soundscapes) using indices of acoustic diversity and intensity can describe ecological 

patterns without the need for species detection and classification (Sueur et al. 2014; 

Pijanowski, Villanueva-Rivera, et al. 2011; Towsey et al. 2013). An increasing 

number of studies suggest that patterns of acoustic energy in soundscapes reflect 

biodiversity and can be used as a monitoring index (Buxton et al. 2018). By 

quantifying acoustic diversity, complexity, intensity, and spectral differences between 

soundscape recordings, acoustic indices have been used to characterize ecological 

communities (Lellouch et al. 2014; Gasc, Sueur, Jiguet, et al. 2013; Harris et al. 

2016), measure the impacts of ecological disturbance (Deichmann et al. 2017; 

Burivalova et al. 2017), and determine the effectiveness of protected areas (Bertucci 

et al. 2016). Moreover, using acoustic indices can avoid potential biases of large-scale 

monitoring programs such as observer and temporal biases. 

Much of restoration outcome monitoring focuses on comparing the condition 

of restoration sites with reference sites (Wortley et al. 2013). Soundscape indices 
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provide a potentially efficient method to compare the acoustic environment of 

recordings collected at restoration sites to those of reference sites. However, 

soundscape indices come with potential pitfalls necessitating careful examination of 

their relationship to ecological conditions before these approaches can be taken to 

scale. Namely, characterizing biological, geological, and anthropogenic sources 

driving soundscape indices is essential to link ecological condition to soundscape 

indies. While numerous studies have examined the potential for soundscape analysis 

as a monitoring tool, rarely have acoustic indices been applied in a comparative 

approach with a reference condition (although notably (Bertucci et al. 2016; 

Burivalova et al. 2017; Fuller et al. 2015)). 

Invasive predator removal as a restoration technique on islands has created 

substantial conservation gains (Jones et al. 2016).  In some cases, outcomes have been 

varied, where ecosystem responses range from rapid (Whitworth et al. 2013), to 

prolonged (Beltran et al. 2014), complex (Donlan et al. 2002), and unanticipated 

(Bergstrom et al. 2009). Because of their role as ecosystem engineers (Lorrain et al. 

2017) and threatened status (Croxall, Stuart H. M. Butchart, et al. 2012), seabirds are 

often the target beneficiaries of invasive species removal (Brooke et al. 2018) . 

However, seabird characteristics such as cryptic nesting, sensitivity to disturbance, 

and nocturnal nesting activity make some seabird populations a challenge to monitor 

using traditional methods.  Passive acoustic monitoring has been applied as an 

efficient means of monitoring seabird populations (Buxton & Jones 2012; Borker et 

al. 2014; Oppel et al. 2014; Croll et al. 2015). 



 

79 

 

 

The removal of invasive Arctic Fox (Vulpes lagopus) and Norway Rats 

(Rattus norvegicus) in the Aleutian Islands has been a widely documented ecosystem 

restoration success, dramatically increasing seabird abundance, and restoring nutrient 

cycling patterns and plant diversity (Croll et al. 2005; Maron et al. 2006; Buxton et al. 

2013; Ebbert & Byrd 2000). Buxton et al. (2013) investigated Aleutian nocturnal 

soundscapes using seabird call detectors and found that time since predator removal 

and presence of nearby predator refugia (areas that invasive predators could not 

access when they were present, such as talus, cliffs and offshore islets) were the most 

important positive predictors of seabird acoustic activity. A call detection approach 

effectively quantified seabird activity in a noisy environment, measuring patterns of 

recovery that were infeasible by any other method. However, even with these 

automated tools, this analysis required a great deal of hours designing call detectors 

and evaluating automated detections.  Thus, here we test if soundscape indices can 

capture similar patterns of seabird recovery, which could measure restoration 

outcomes at a fraction of the effort. We applied two basic types of acoustic indices 

(reviewed by Sueur et al 2014): alpha indices, which characterize the acoustic 

complexity or intensity of a single recording and beta indices, which compare 

acoustic properties among recordings. 

Specifically, we tested if the same factors that influence seabird calling 

activity predicted soundscape characteristics, particularly the time since invasive 

predator removal and presence of refugia. We hypothesized that nocturnal 

soundscapes dominated by seabirds would, with time since predator removal and 
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presence of predator refugia become increasingly similar to pristine reference islands. 

Furthermore, nocturnal soundscape intensity and complexity would increase with 

time since predator removal and presence of refugia. We then tested which seabird 

species calls were important in driving soundscape indices. Finally, we discuss the 

advantages of a soundscape approach when monitoring restoration outcomes. 

Methods 

Study Area 

To investigate outcomes of invasive predator removal for seabird island soundscapes, 

we examined the acoustic environment on six islands in the western Aleutians, 

Alaska, USA (Buxton et al. 2013). These islands have similar climactic conditions 

and ecosystems but different histories with two invasive predators, rats and foxes. 

Arctic Foxes were introduced to the archipelago for the fur trade beginning in the mid 

1700’s (Bailey 1993). All islands have been part of the Alaska Maritime National 

Wildlife Refuge since 1913, but fox eradication began only in 1949 (Ebbert & Byrd 

2000).  Waterfowl (e.g., Aleutian Cackling Goose Branta hutchinsii leucopareia), 

ground-nesting Glaucous-winged Gulls (Larus glaucescens), and nocturnal seabirds 

(that we focused on here) including storm-petrels (Oceanodroma spp.), Ancient 

Murrelets (Synthliboramphus antiquus) and Cassin’s (Ptychoramphus aleuticus) and 

Whiskered (Aethia pygmaea) Auklets are believed to have been most negatively 

affected by introduced foxes (Murie 1959; Ebbert & Byrd 2000; Williams et al. 

2003).  Arctic Foxes have now been eradicated successfully from over 38 Aleutian 

Islands (Keitt et al. 2011). Norway Rats were introduced during World War II and 
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have made many nesting seabird species rare or absent (Ebbert & Byrd 2000) on 

islands they invaded.  Rodents were successfully removed from one island, Hawadax 

in 2008 (Croll et al. 2015), but remain on several islands including Kiska. Arctic 

foxes were eradicated from Kiska in 1986, possibly resulting in an escalation of rat 

predation on native species (Major et al. 2013). 

We collected nighttime acoustic recordings from thirteen sites on four islands 

with a range of years since fox eradication (Nizki-Alaid, 34 years; Kasatochi, 25 

years; Amatignak, 18 years and Little Sitkin Island, 9 years).  Foxes were the only 

invasive predator to have reached these islands. We also collected acoustic recordings 

from Buldir Island, which has never been invaded by predators and is the most 

diverse seabird colony in the northern Hemisphere with dense populations of 

nocturnal seabirds.  Thus, we refer to Buldir as the “reference site”.  Finally, we 

collected recordings from five sites on Kiska where foxes were removed (in 1986), 

but rats are still present and severely limit seabird populations, preventing seabird 

recovery and thus we refer to this island as “invaded” (Major et al. 2013).  All these 

islands are treeless, windswept, uninhabited, experience high surf, and are subject to 

frequent precipitation in the form of rain, drizzle and mist (i.e., a challenging 

environment for sound recording). To evaluate factors that would influence the 

recovery of seabirds after predator eradication, we noted the presence of any 

historical predator refugia such as talus, cliffs or offshore islets within 100 m of 

microphones, and calculated the distance to the nearest large predator free source 

colony using Google Earth (expanded methods in Buxton et al. 2013). 
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Acoustic Data Collection and Analysis 

Recording locations were chosen by identifying suitable burrow nesting seabird 

breeding habitat 50-150m from shorelines, at elevations under 400m at cardinal 

locations on each island, or at Kiska Island (http://www.mun.ca/serg/Kiska-

songmeters.html), in representative areas of suitable habitat >1km from other sensors 

(Buxton et al. 2013). Wildlife Acoustics Songmeter SM1 autonomous recorders were 

deployed in July 2008, 2009 and 2010 attached to a 1m wooden stake. Sensors 

recorded for 15 minutes of every 30 minutes between 0130 and 0430 (peak nocturnal 

seabird activity) at a 16kHz sample rate. The number of recording nights per 

deployment ranged from 13-31 nights (detailed in Buxton et. al. 2013).  

All recordings were processed using packages seewave (Sueur, Aubin, et al. 2008), 

tuneR (Ligges et al. 2016), and soundecology (Villanueva-Rivera & Pijanowski 2016) 

in program R version 3.4.3 (R Development Core Team 2011). We analyzed the first 

ten minutes of each recording after isolating the right channel and applying a 0-200hz 

band pass filter. For each file we computed a mean frequency spectrum of the time 

wave (window length=512, overlap=0, Hamming Fourier Transform) and a Hilbert 

amplitude envelope. These were used to calculate twelve soundscape indices (see 

below). 

Soundscape Indices 

We measured ten alpha indices that characterized each night of recordings and two 

beta indices that measured differences between recordings (Table 4.1).  When 
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calculating beta indices, we measured all pairwise differences between each recording 

night, and the difference between each night and an averaged spectrum of all Buldir 

recordings (reference condition).  Thus, for each night of recording, we measured the 

difference from each of the 702 other nights we sampled, as well the difference from 

the average night on Buldir Island. 

Call activity and indices 

To examine which aspects of the nocturnal soundscape may be driving patterns in 

acoustic indices we compared nightly index values with nightly seabird call activity 

and wind speeds. We measured the rates of nine seabird calls belonging to four 

nocturnal seabird species (Leach’s and Fork-tailed Storm-petrels, Ancient Murrelet, 

and Cassin’s Auklet), and measured call richness (the number of call types present in 

an evening). Semi-automated methods for measuring detecting seabird calls were 

described by Buxton et al. (2013) and Buxton and Jones (2012); briefly, we used 

automated call-recognizers constructed using SONG SCOPE (version 2.3, Wildlife 

Acoustics Inc).  Automated detections were audited by visually inspecting 

spectrograms. We measured call rates for all 87% of recordings from restored islands.  

Daily wind speeds were collected from National Oceanic and Atmospheric 

Administration weather buoy no. 46071 at 51.16°N, 179.00°E; and no. 46070 at 

55.00°N, 175.28°E.  
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Quantitative methods 

To test if years since fox eradication or presence of refugia predicted any of the ten 

alpha index values on restored islands we used ten linear mixed effect models fit by 

maximum likelihood, treating each year, site and islands as a nested random factor 

using package lmer (Bates & Sarkar 2007). Fixed factors included years since fox 

eradication, presence of predator refugia, distance to source populations and the 

fraction of the moon illuminated (a known covariate of seabird acoustic activity 

(Mougeot & Bretagnolle 2000)). We tested all combinations of fixed effects and 

selected the best fit model by Akaike’s Information Criterion (AIC). We scaled and 

centered continuous predictors to make coefficients comparable within models. Last, 

we estimated proportion of variance explained by fixed and random effects with 

marginal and conditional R2 (Nakagawa & Schielzeth 2013) as implemented in the 

MuMIn package (Barton 2016). For beta index values we used a similar linear mixed 

effect model procedure to predict the difference from the reference condition (Buldir 

Island).  In addition, we used the beta index pairwise distances among nights at 

different sites to explore the relative differences between all sites using a principal 

components analysis.  

Finally, to examine which aspect of the nocturnal soundscape was driving each index 

we constructed a linear mixed effect model.  We included centered and scaled 

predictors of counts of each seabird call type, call richness and wind speed as fixed 

effects. We also included a nested random intercept of year within site within island. 
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In all cases, we considered covariates with bootstrapped 95% confidence intervals 

excluding 0 to indicate a significant effect. 

Results 

We analyzed 4,917 ten-minute samples from 25 sensor deployments at 19 sites on six 

islands over a total of recording 703 nights (Supplemental Figure 4.4, Supplemental 

Table 4.4). The average length of a deployment was 28.6 nights (range=13-31). 

The best fit model explaining index values included at least one of years since fox 

eradication, distance to source populations, refugia presence, and moonlight (Table 

4.1). For eight of the twelve indices, years since fox eradication was a significant 

predictor and the presence of refugia was a significant predictor of five indices. Of all 

indices, acoustic richness was best predicted by the presence of refugia and years 

since fox eradication (Marginal R2 = 0.44; Figure 4.1). Median amplitude and 

temporal entropy (which are multiplied to produce acoustic richness) were both also 

positively related to years since fox eradication, but these factors explained less of the 

variability. Other alpha indices were positively related to years since fox eradication 

and presence of refugia but had considerably less variation explained (maximum 

signal to noise ratio, number of spectral peaks, and number of acoustic events).  Total 

entropy, the percent of acoustic activity, the acoustic complexity index (ACI) and 

spectral entropy were not meaningfully explained by years since fox eradication or 

presence of refugia (Marginal R2<.1). 
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The two beta indices, spectral difference (Df) and cumulative spectral difference (Dcf) 

from never invaded Buldir Island decreased with increasing years since predator 

removal (Figure 4.2). Years since predator removal, distance from source populations 

and moonlight explained 30% of the variation in cumulative spectral difference from 

Buldir, the reference condition (Table 4.2). 

We measured 494,209 pairwise differences from 703 recording nights on all islands.  

To visualize the differences between all recordings, the first principal components 

captured 81.3% of the variation in the cumulative spectral difference matrix and 

57.9% of the variation in the spectral difference matrix (Figure 4.3). Among restored 

islands, the first principal component of each beta index was correlated with the 

number of years since fox eradication, (Cumulative spectral dissimilarity r = -0.15, 

pdf=499 < .05, Spectral dissimilarity r = 0.32, pdf=499 < .05) indicating that as years pass 

after predator removal the soundscape becomes increasingly like a never invaded 

island. 

In models testing the relationship between soundscape components and each index 

we found that for all but one index, Leach’s storm-petrel calls and/or call richness 

were the only significant factors predicting indices (Table 4.2).  These factors 

described a low proportion of variance in indices (Marginal R2 values ranged from 

0.01 to 0.15), with the highest variance explained for temporal entropy, ACI, and 

acoustic richness (Marginal R2 > 0.1). Leach’s storm-petrel chuckle calls had a 

significant effect on nine of twelve indices (negative on ACI, AR and Dcf from 



 

87 

 

 

Buldir, positive on H, Hf, Ht, NP.001 and PercAcoAct). Call richness had a 

significant effect on six of twelve indices (negative on ACI, AR, NumEvents and log 

median amplitude; positive on Ht and NP.001). The only other significant predictor of 

indices from call rates was a small positive effect of Ancient Murrelet chick calls on 

the cumulative spectral difference from Buldir Island. Wind speed was not included 

in any of the final models. 

Discussion 

We tested the effectiveness of acoustic indices as a technique to compare 

soundscapes of Aleutian Islands with increasing time since predator removal against a 

never invaded reference sites.  We expected indices to vary with time since predator 

removal, reflecting the recovery of seabirds, whose calls dominate the nocturnal 

soundscape. Of the twelve indices we tested that have been previously used to 

describe biological patterns in soundscape recordings, we found acoustic richness 

performed best in indexing seabird recovery on islands. Almost half of the variation 

in acoustic richness on restored islands was explained by seabird recovery factors 

such as years since fox eradication and the presence of historical predator refugia. 

Moreover, acoustic richness was related to Leach’s storm petrel calls, the most 

prominent element of nocturnal seabird soundscapes, as well as seabird call richness. 

This suggests that some indices can provide an initial rapid analysis of the difference 

between soundscapes of restored and reference sites by identifying coarse differences 

in the amount of seabird acoustic activity, and different emergent patterns of acoustic 
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environments.  This can inform more detailed acoustic analysis by manual listening 

or semi-automated detection of specific species. 

Comparing the efficacy of the ten alpha indices that describe individual 

recordings, those that characterized amplitude (e.g. median amplitude, temporal 

entropy, acoustic richness and number of events) increased with time since fox 

eradication, and some with other predictors of seabird recovery such as distance to 

source populations, and the presence of refugia. However, indices that characterized 

spectral complexity (e.g. spectral entropy, acoustic complexity index and the number 

of spectral peaks) were generally not well predicted by recovery variables.  This may 

be related to a pattern of recovery in which increased seabird activity rather than the 

diversity is the most dramatic result of invasive species removal. While soundscape 

intensity or amplitude is a simplistic way to gauge seabird call activity, intensity 

based indices are consistent with the idea that many seabirds use broad band, 

repetitive signals to communicate effectively in a noisy environment (Bretagnolle 

1996).  The emphasis in other soundscape studies on complexity indices may reflect 

the need to monitor passerine birds, which generally have more complex and discrete 

calls.  Contrastingly, our results suggest that in soundscapes dominated by repetitive, 

broadband seabird calls with lower overall acoustic diversity than many bird 

choruses, complexity indices may be less useful.  

The two beta indices, that characterized soundscape differences between 

restored islands and the reference island, Buldir, both captured patterns of recovery. 
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Whereas spectral difference only measures overlap between frequency spectra, 

cumulative spectral difference is also sensitive to the distances in frequency between 

spectral peaks.  The cumulative spectral difference performed best, with 30% of 

variance explained by years since fox eradication, distance to source populations, and 

moonlight.  Principal component analysis of the large pairwise spectral difference 

matrices allowed visualization of soundscape differences in two dimensions and for 

both indices, the first principle component was correlated with years of recovery. This 

could be a good starting point for data exploration of acoustic datasets and comparing 

sites of varied restoration treatments.  

While acoustic indices showed great promise characterizing soundscapes on 

restored islands, many index values from Kiska Island (where introduced rats are still 

present) were similar to the pristine Buldir Island, despite far fewer seabird calls 

(Buldir has millions of nesting storm-petrels, Kiska has almost none, Buxton et al. 

2013). Few seabird calls, and noise from wind and waves likely inflated acoustic 

indices.  This is an issue for entropy based indices, and a reason why acoustic 

richness is calculated by weighting temporal entropy with a ranked measure of 

amplitude (Depraetere et al. 2012).  In this study, weighting by amplitude may have 

been less effective because even in the absence of seabird calls, the sound of waves 

generated significant signal amplitude. Kiska Island is larger than the other islands in 

this study, and topographic complexity possibly resulted in two problematic recording 

sites: one site (KIS_C), on a very steep cliff clearly captured the sound of oceanic 

waves, and another picked up small wavelets from an intermittent stream (KIS_P). 
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For beta indices based on differences between relative energy spectra, a seabird call 

saturated spectrum from Buldir Island appeared similar to a spectrum from Kiska 

Island containing broadband wind and wave noise (Supplemental Figure 4.5). This 

remains an issue in extending acoustic indices to noisy environments, emphasizing 

the importance of relating soundscape indices to relevant biological information in 

recordings.  One index characterized Kiska Island as strongly different from Buldir 

Island, the number of acoustic events (Figure 4.3). This event-based index measuring 

amplitude in half second frames and relative to background noise was resilient to the 

longer duration wind and wave noises and sensitive to seabird call syllables.  

However only 11% of the variation in the number of acoustic events was explained 

by recovery variables.   Index values from Kiska serve as a cautionary case that in the 

absence of at least some qualitative analysis, fully automated analysis can produce 

spurious results, and that soundscape monitoring sites should have comparable levels 

of non-target noise. 

Based on this study, we suggest that pairwise soundscape indices that compare 

restored islands with a pristine reference sites are a coarse and rapid approach to 

measure patterns of recovery. Some alpha indices based on individual recordings 

effectively indexed seabird restoration outcomes; however, a comparative approach 

(i.e., beta indices) allows a direct comparison to desired ecological conditions is 

important.  In the absence of a reference condition, changes in single alpha indices 

should be used with caution.  Indices should be considered as features of soundscape 

recordings to be analyzed in a multi index comparative framework against controls or 
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reference condition, rather than as a direct index of ecological condition (Buxton et 

al. 2018; Phillips et al. 2018).   

While perhaps not as effective as measuring seabird call activity directly as an 

index of recovery, soundscape indices identified similar patterns of recovery across 

restored islands, for comparatively little effort. This approach can be more easily 

scaled to include increased sampling, both in the number of sites and recording 

duration. At the archipelago scale, for multiple species, species detection approaches 

in many cases are not feasible given the time and effort required to design multiple 

detectors and audit detections.  We suggest that a comparative soundscape index 

approach doesn’t replace, but complements the acoustic monitoring toolbox for 

measuring the outcomes of seabird restoration activities. As a first pass, it can guide 

the identification of activity rich time periods, identify the most acoustically diverse 

recordings, and broadly describe biological community patterns compared to a 

reference condition.  Recording at sites with equivalent levels of non-target noise is 

particularly important for comparing soundscape indices, more than for comparing 

detected call activity, although extreme levels of wind and wave noise also decrease 

the effectiveness of call detection (Buxton & Jones 2012).  Given decreasing costs 

and increasing capabilities of acoustic sensors, increased temporal and spatial 

sampling effort is one method of addressing variability driven by other sources of 

noise.  
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Seabird acoustic activity and soundscape characteristics, while indicative of 

seabird relative abundance, also reflect behavioral changes in individuals. Growing 

colonies with more unpaired individuals and courting behaviors may be more 

acoustically active per individual than older colonies consisting of more breeders 

(Storey 1984; James 1985).  While this may make it easier for acoustic indices to 

detect seabird restoration progress due to higher call rates per individual compared to 

an established colony, it may introduce error when using any acoustic monitoring 

method to compare relative abundance to reference sites. 

Despite its limitations, acoustic monitoring is particularly important for 

monitoring seabirds on remote islands, as other approaches can be cost prohibitive, 

dangerous, or logistically infeasible (Borker et al. 2014). In the case of seabird 

islands, invasive species removal could benefit 73% of threatened seabird species 

(Spatz et al. 2017), and having tools to measure patterns of recovery is important to 

evaluate outcomes. Acoustic recordings have already proven valuable in indexing 

seabird abundance through call activity, and our acoustic index analysis strengthens 

the case for recording seabird colony soundscapes to monitor restoration outcomes. 

More studies that connect seabird behavior, abundance, phenology, call activity with 

soundscape indices would strengthen passive acoustic recording as a seabird 

monitoring approach. To measure progress in restoration of a wide array of degraded 

ecosystems, scalable approaches are required to measure outcomes. Acoustic 

recordings, collected at scale for low cost, and analyzed without laborious call 
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detectors could be a complement to remote sensing of landscape variables when 

comparing restoration outcomes to reference sites.  

 

 

  



 

94 

 

 

Figures 

Figure 4.1. Acoustic richness on six islands in the Western Aleutian Islands with 

varied history of invasive species. Acoustic richness increased on restored islands 

with time since predator removal. Points are mean values of acoustic richness for 

each acoustic sensor deployment, with 95% confidence intervals around the mean. 

Points nudged to show overlapping confidence intervals. Dashed line is the best fit 

line from a linear mixed model that explained 44% of the variation in acoustic 

richness. 
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Figure 4.2. Soundscape difference of Western Aleutian Islands from pristine Buldir 

Island as measured by Spectral Difference (above) and Cumulative Spectral 

Difference (below). On restored islands, soundscape differences from Buldir Island 

decreased with years of recovery from invasive predators. Points display the mean 

value for each deployment with 95% Confidence Intervals. Points nudged to show 

overlapping CIs. Dashed line represents a fit line from a single fixed term linear 

mixed model treating deployments as a nested random effect. 
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Figure 4.3. Principle components of a difference matrix of nightly spectral averages 

of recordings from six Western Aleutian Islands during the month of July. Error bars 

are 95% confidence intervals of mean spectral differences (above) and mean 

cumulative spectral differences (below). Labels are abbreviations for site names and 

islands (Table S1) and are shaded by invasion history from purple (invaded), blue-

green (increasing years since predator removal) to yellow (pristine, never invaded).  

Dashed error bars indicate a site had predator refugia present within 500m. 
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Tables 

Table 4.1.  Indices used in this study to describe nocturnal Aleutian Island 

soundscapes in July of 2008, 2009, 2010 and 2011. 

 

Index Name Abbreviation Description Source 

Temporal Entropy Ht Temporal Entropy (Sueur 

et al. 2008b) 

Seuer et. al. 

2008 

Spectral Entropy Hf Entropy of the 

normalized mean 

frequency spectrum 

Seuer et. al. 

2008 

Number of 

Spectral Peaks 

NP Number of spectral peaks 

(slope >.001) in the 

normalized mean 

frequency spectrum 

Gasc et al. 2013 

Total Entropy H Product of Spectral and 

Temporal Entropy 

Seuer et. al. 

2008 

Median Amplitude M Median of the amplitude 

envelope 

Depraetere et al. 

2012 

Acoustic Richness AR Spectral Entropy x 

Ranked Median 

Amplitude 

Depraetere et al. 

2012 
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Maximum Signal-

to-noise Ratio 

MaxSNR Maximum 

Amplitude:Background 

Noise Level (25% 

Quartile Amplitude) 

Towsey et al. 

2013 

Acoustic Activity 

Fraction 

PercAcoAct The proportion of .5s 

Frames with amplitude 

about the 25% quartile 

Towsey et al. 

2013 

Number of 

Acoustic Events 

NumEvents The number of 

continuous sets of .5s 

frames where amplitude 

was above the 25% 

quartile 

Towsey et al. 

2013 

Acoustic 

Complexity Index 

ACI A measure of amplitude 

variaibility 

Pieretti et al. 

2011 

Spectral 

Dissimilarity 

Df Difference between 

normalized mean 

frequency spectra 

Seuer et. al. 

2008 

Cumulative 

Spectral 

Dissimilarity 

Dcf Difference between 

normalized cumulative 

mean frequency spectra 

Lellouch et al. 

2014 
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Table 4.2. Best fit models and scaled predictor coefficients predicting soundscape 

index values from predictors of seabird recovery and moonlight on four restored 

islands in the Western Aleutians. Models were fit with a random intercept and 

nested by year, within site, within island. Best fit models were selected by AIC, 

coefficients estimated by maximum likelihood and 95% confidence intervals were 

generated by model bootstrapping. Proportion of variance explained by fixed and 

random effects was estimated using conditional and marginal coefficient of 

determination. Indices are sorted in decreasing order of proportion of variance 

explained by recovery factors. 

 

 



 

 

 

1
0
1
 

Index 
Best fit model 

predictors 
Intercept 

Years 

since 

Predators 

Distance 

to Source 

Refugia 

presence 
Moonlight 

Marginal 

GLMM_R2 

Conditional 

GLMM_R2 

Acoustic 

Richness 

(Ht x Ranked 

MedianAmp) 

years+refugia 

2340.51 

(1460.76, 

3276.11) 

1757.17 

(1179.45, 

2307.64) 

- 

1555.06 

(141.16, 

2821.57) 

- 0.443 0.622 

Log Median 

Amplitude 
years+refugia 

-12.03 

(-12.91, -

11.1) 

0.97 

(0.3,1.61) 
- 

0.6 

(-0.22, 

1.33) 

- 0.337 0.659 

Cumulative 

Spectral 

Difference 

(Dcf) from 

Buldir 

years+distance+

moon 

0.074 

(0.067, 

0.081) 

-0.02 

(-0.027, 

-0.013) 

-0.0073 

(-0.014,  

-0.00086) 

- 

0.0019 

(-0.00063, 

0.0044) 

0.304 0.436 

Maximum 

Signal:Noise 

Ratio 

years+refugia+d

istance+moon 

136.82 

(101.11, 

169.84) 

-29.3 

(-53.51,  

-6.04) 

39.59 

(23.79, 

56.38) 

-69.12 

(-120.94,  

-11.06) 

5.58 

(-1.7, 

13.03) 

0.234 0.304 

Temporal 

Entropy 

(Ht) 

years+distance 

0.97 

(0.97, 

0.97) 

0.0045 

(0.0014, 

0.0077) 

-0.0064 

(-0.0096,  

-0.0033) 

- - 0.156 0.209 

Spectral 

Difference 

(Df)  

from Buldir 

years+distance 

0.23 

(0.21, 

0.25) 

-0.034 

(-0.051,  

-0.017) 

-0.014 

(-0.03, 

0.0042) 

- - 0.15 0.295 

Number of  

Spectral Peaks 

(NP) (>.001) 

distance 

10.26 

(8.76, 

11.97) 

- 

-2.17 

(-3.71,  

-0.62) 

- - 0.127 0.323 



 

 

 

1
0
2
 

Number of 

Events 
years+refugia 

74.1 

(62.33, 

85.25) 

14.77 

(7.05, 

22.72) 

- 

20.61 

(2.75, 

38.07) 

- 0.113 0.194 

Total Entropy 

(Hf x Ht) 
years+distance 

0.88 

(0.87, 0.9) 

0.0096 

(-0.0034, 

0.023) 

-0.011 

(-0.023, 

0.0014) 

- - 0.058 0.170 

Percent  

Acoustic 

Activity 

years+distance 

0.64 

(0.63, 

0.66) 

-0.02 

(-0.036,  

-0.0061) 

-0.022 

(-0.04, -

0.0058) 

- - 0.048 0.091 

Acoustic 

Complexity 

Index (ACI) 

moon 

20148.27 

(18105.72, 

22223.14) 

- - - 

238.24 

(18.93, 

449.71) 

0.007 0.471 

Spectral 

Entropy 

(Hf) 

none 

0.91 

(0.89, 

0.93) 

- - - - 0.000 0.209 
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Table 4.3. Significant predictors of nightly soundscape index values from seabird 

call activity on four restored islands in the Western Aleutians. Models were fit 

with a random intercept and nested by year, within site, within island. Scaled 

predictor coefficients were estimated by restricted maximum likelihood and 

significance determined with bootstrapped 95% confidence intervals. 



 

 

 

1
0
4
 

Index Intercept 
Leach's Storm-petrel 

Chuckles 
Call Richness 

Marginal 

GLMM_R2 

Conditional 

GLMM_R2 

Temporal Entropy 

(Ht) 

0.97 

(0.96,0.98) 

0.0084 

(0.0059,0.011) 

0.0048 

(0.0013,0.0083) 
0.15 0.47 

Acoustic 

Complexity Index (ACI) 

19689.5 

(18586.98,20811.30) 

-375.65 

(-658.86,-58.32) 

-966.29 

(-1378.99,-558.68) 
0.13 0.37 

Acoustic Richness 

(Ht x Ranked MedianAmp) 

3428.4 

(2025.68,4855.92) 

-318.75 

(-474.18,-168.92) 

-577.97 

(-782.06,-375.51) 
0.11 0.72 

Total Entropy 

(Hf x Ht) 

0.89 

(0.86,0.92) 

0.02 

(0.012,0.027) 

0.01 

(0.0013,0.02) 
0.10 0.41 

Number of Events 
81.85 

(70.67,94.11) 
- 

-10.5 

(-14.84,-5.54) 
0.085 0.29 

Number of Spectral Peaks 

(NP) (>.001) 

11 

(7.9,14.07) 

1.03 

(0.34,1.59) 

1.31 

(0.47,2.11) 
0.081 0.53 

Log Median Amplitude 
-11.62 

(-12.62,-10.54) 

-0.18 

(-0.28,-0.083) 

-0.36 

(-0.50,-0.22) 
0.078 0.75 

Percent  

Acoustic Activity 

0.66 

(0.62,0.71) 

0.032 

(0.018,0.045) 
- 0.075 0.34 

Spectral Entropy 

(Hf) 

0.92 

(0.90,0.94) 

0.013 

(0.0073,0.019) 
- 0.060 0.36 

Spectral Difference (Df)  

from Buldir 

0.21 

(0.16,0.26) 

-0.043 

(-0.063,-0.023) 
- 0.052 0.54 

Cumulative Spectral 

Difference (Dcf) from Buldir 

0.072 

(0.046,0.1) 
- - 0.010 0.58 



 

 

 

1
0
5
 

Maximum 

Signal:Noise Ratio 

96.39 

(52.98,144.42) 
- - 0.0081 0.24 
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Appendix 

Supplemental Figure 4.4. Nightly spectral averages from 25 sites on six Western 

Aleutian nocturnal soundscapes during the month of July. 
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Supplemental Figure 4.5. Mean relative energy spectrums of nighttime recordings 

from six Western Aleutian Islands during July (above); and spectral difference from 

the never-invaded Buldir Island (below). Shaded areas are a 95% confidence interval 

around the mean. Colors/shades represent a continuum of ecological recovery from 

invasive predators from degraded Kiska Island (KIS) currently invaded with rats, 

Little Sitkin Island (LSI) with foxes removed nine years earlier, Amatignak Island 

(AMA) with foxes removed 18 years earlier, Kasatochi Island (KAS) with foxes 

removed 25 years earlier, Nizki-Alaid Islands (NIZ) with foxes removed 34 years 

earlier, to Buldir Island (BUL) that has never been invaded by predators.  
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Supplemental Table 4.4. Locations and number of nights recorded on six western 

Aleutian Islands 

Island Site Abbreviation 

Position 

(WGS 84) Year 

Recording 

Nights 

Amatignak East AMA_E 

51.264°N 

179.074°W 2008 26 

    2009 31 

 North AMA_N 

51.293°N, 

179.090°W 2008 31 

    2009 31 

 South AMA_S 

51.230°N, 

179.010°W 2008 31 

    2009 31 

 West AMA_W 

51.262°N, 

179.134°W 2008 22 

    2009 31 

Buldir North Bight BUL_O 

52.372°N, 

175.894°E 2008 27 

    2009 30 

Kasatochi Troll Talus KAS_O 

52.169°N, 

175.524°W 2009 31 

    2011 29 
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Kiska Bukhti Point KIS_B 

51.919°N, 

177.461°E 2009 25 

 

Christine 

Cliff KIS_C 

52.087°N, 

177.552°E 2010 31 

 Pond Midden KIS_P 

51.007°N, 

177.580°E 2010 31 

 

Raynard 

Cove KIS_R 

52.018°N, 

177.587°E 2010 30 

 West KIS_W 

51.940°N, 

177.430°E 2009 29 

Little Sitkin North LSI_N 

51.975°N, 

178.457°E 2008 31 

 South LSI_S 

51.904°N, 

178.538°E 2008 22 

 West LSI_W 

51.932°N, 

178.453°E 2008 13 

 Northwest LSI_X 

51.955°N, 

178.452°E 2008 30 

Nizki-Alaid West NIZ_A 

52.748°N, 

173.950°E 2009 31 

 North NIZ_B 

52.750°N, 

173.898°E 2009 31 



 

111 

 

 South NIZ_C 

52.750°N, 

173.928°E 2009 31 

 East NIZ_D 

52.733°N, 

173.967°E 2009 30 
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5. Conclusion 

Preventing biodiversity loss may be the defining environmental challenge of 

the 21st century.  Fortunately, there exists a large toolbox of innovative conservation 

actions to safeguard biodiversity and restore damaged ecosystems.  Monitoring 

wildlife and evaluating the outcomes of these conservation actions is critical to 

spending conservation dollars wisely and assessing progress towards conservation 

targets.  To meet the challenge of assessing biodiversity outcomes at scale, managers 

and policymakers need low-cost, robust, replicable tools to measure animal 

populations and communities.   

Soundscapes contain a vast amount of ecological information and can be 

inexpensively sampled using autonomous passive acoustic recorders.  These large 

acoustic datasets require scalable analysis, ranging from time intensive manual 

listening to semi-automated signal detection and classification algorithms, and now 

automated soundscape indices characterizing the emergent properties of recordings 

without a priori decision making.  Depending on the scale of monitoring questions, 

from individuals to communities, different approaches may be best suited and are not 

exclusive. 

Despite analytic simplicity, automated soundscape indices that characterize 

entire recordings by measuring complexity, intensity or spectral differences, reflect 

meaningful biological patterns in species communities.  These indices characterize 

entire recordings without discrimination of signals but can be more rapidly applied 
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than signal detection and classification approaches.  This data-driven, fully automated 

approach to acoustic analysis is relatively new and likely to advance considerably 

with the application of more sophisticated machine learning and unsupervised feature 

extraction-based approaches. 

In this dissertation, I examined how soundscape indices and analysis can play 

an informative role in wildlife monitoring, with an attention to measuring 

conservation outcomes.  Each chapter tackled a different piece of a wider challenge of 

applying new analysis techniques to existing acoustic monitoring challenges.  The 

common thread between these chapters is an emphasis on low-cost and scalable 

approaches to capture sufficiently reliable information to be used in conservation 

planning.  

In the first chapter I used simulations of forest bird dawn choruses to assess 

the underlying efficacy of soundscape indices to measure realistic community 

changes.  By using simulated choruses, I was able to directly test how changes to 

calling behavior, and anthropogenic noise influenced the efficacy of these indices.  

The main result is that soundscape indices are surprisingly robust to these sources of 

heterogeneity.  Furthermore, by testing combinations of over a dozen published 

indices we found that orthogonal indices in combination were most effective at 

measuring species richness, and when used in a multi-variate distance framework, 

these distances were correlated with bird community dissimilarity.  This suggests that 

future research should be put into finding more orthogonal indices to characterize 
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recordings, perhaps more than refining complexity and entropy-based indices that are 

becoming widespread.  The next step is taking these conclusions to empirical studies 

using field recordings of known forest bird communities. 

In the second chapter I used a soundscape approach to measure the relative 

abundance of a vocally conspicuous, however cryptically nesting seabird, the 

Cassin’s Auklet.  Traditional call detection methods did not accurately measure auklet 

acoustic activity in the presence of heavily overlapping calls and chorusing behavior.  

By understanding the entire soundscape of Southeast Farallon Island, we clearly 

showed how a non-discriminating spectral approach to recordings contained a more 

accurate index of auklet activity.  This band limited acoustic energy index was highly 

predictive of relative auklet abundance and could be used to measure cryptic and 

remote auklet breeding abundance at broad scales.  This approach is highly relevant 

to other vocally conspicuous, and chorusing species that dominate their respective 

soundscapes. 

In the final chapter I apply soundscape indices to measure patterns of seabird 

recovery across restored seabird islands.  This application could have widespread 

impact, as we directly apply soundscapes to measure the outcomes of invasive 

predator removal on seabird communities.  Invasive species removal to benefit island 

breeding seabirds is a widespread, potent conservation action where outcomes are 

complex and monitoring approaches are inconsistent.  We found that soundscape 
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differences from a reference condition where a powerful index to measure seabird 

activity, and the pattern of seabird recovery on restored islands. 

Together, these three studies further the case to promote soundscape indices in 

an expanded toolbox of standard analysis tools used in passive acoustic monitoring.  

These types of low-cost, scalable approaches are needed if passive acoustic 

monitoring is to measure conservation outcomes at scale.   

Soundscape approaches greatly expand the power of acoustic monitoring 

programs.  A soundscape approach can unveil patterns of seabird abundance, 

phenology and recovery in a fraction of the time of other approaches.  Original 

recordings remain for manual listening or automated call detection and classification 

for asking further questions, or to confirm initial findings.  The last two chapters of 

my dissertation directly apply to real world seabird monitoring needs.  Passive 

acoustic recordings are often the only feasible tool to monitor seabirds nesting 

cryptically in habitats that are remote, fragile and extremely sensitive to human 

disturbance.  A soundscape approach to analyzing these large acoustic datasets 

doesn’t exclude follow-up analysis and they have a much lower technical barrier to 

entry than other approaches, meaning soundscape indices may be more likely to be 

adopted by newcomers to acoustic monitoring. 

The narrative of conservation is all too often one of doom and gloom and 

documenting declines.  It is true that the planet is rapidly losing biodiversity, and the 

human footprint has extended to every corner of the globe.  However, there has also 
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never been a greater number of people with 21st century tools and innovation working 

to protect biodiversity and restore ecosystems.  This gives me hope that future 

generations will continue to reap the benefits of biodiversity and functioning 

ecosystems.  Monitoring and evaluation will be the guide we use to find the most 

effective solutions and bring them to the same scale as environmental problems.  

Technology is rapidly transforming our ability to collect and analyze monitoring data 

at scale, and conservationists would be wise to embrace it.   
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