UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Method for Distance-Vector Routing Using Adaptive Publish-Subscribe Mechanisms

Permalink
https://escholarship.org/uc/item/4sn0b957

Authors

Garcia-Luna-Aceves, J.).
Li, Qian

Publication Date
2018-10-02

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4sn0b957
https://escholarship.org
http://www.cdlib.org/

US010091094B2

a2 United States Patent (10) Patent No.: US 10,091,094 B2
Garcia-Luna-Aceves et al. 45) Date of Patent: Oct. 2, 2018
(54) METHOD FOR DISTANCE-VECTOR HO4L 12/743 (2013.01)
ROUTING USING ADAPTIVE HO4L 12/751 (2013.01)
PUBLISH-SUBSCRIBE MECHANISMS HO4W 40/02 (2009.01)
HO4W 40/24 (2009.01)
(71) Applicant: The Regents of the University of HO4W 84/18 (2009.01)
California, Oakland, CA (US) HO4L 12/705 (2013.01)
(52) US.CL
(72) Inventors: Jose Garcia-Luna-Aceves, Santa Cruz, CPC ... HO4L 45/122 (2013.01); HO4L 45/02
CA (US); Qian Li, Santa Cruz, CA (2013.01); HO4L 45/026 (2013.01); HO4L
(US) 45/44 (2013.01); HO4L 45/54 (2013.01);
, L HO4L 45/7453 (2013.01); HO4W 40/02
(73) ASSlgnee: The. Reg.ents of the UanerSlty of (201301), HO4W 40/24 (201301), HO4W
California, Oakland, CA (US) 40/246 (2013.01); HO4L 45/18 (2013.01);

HO4W 84/18 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 45/122; HO4L 45/02; HO4L 45/026;
HO4L 45/44; HO4L 45/54; HOAL 45/7453;
HO4L 45/18; HO4W 40/02; HO4W 40/24;

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 194 days.

(21) Appl. No.: 15/030,366
HO04W 40/246; HO4W 84/18
(22) PCT Filed: Oct. 16, 2014 See application file for complete search history.
(86) PCT No.: PCT/US2014/060922 (56) References Cited
§ 371 (c)(1), U.S. PATENT DOCUMENTS
(2) Date: Apr. 18, 2016
2004/0249972 Al* 12/2004 White HO4L 67/104
. 709/243
(87) PCT Pub. No.: WO2015/099866 2007/0150565 Al* 6/2007 Ayyagari HO4L 67/12
PCT Pub. Date: Jul. 2, 2015 709/223
(Continued)
(65) Prior Publication Data

Primary Examiner — Luat Phung
US 2016/0269275 Al Sep. 15, 2016 (74) Attorney, Agent, or Firm — Carter, DeLuca,

Farrell & Schmidt, LLP
Related U.S. Application Data

(60) Provisional application No. 61/891,455, filed on Oct. 7 ABSTRACT

16, 2013. A distance-vector based routing protocol that integrates with

adaptive publish-subscribe mechanisms by establishing

(51) Int. CL routes to well-known controllers using distance-vector sig-

HO4L 12/733 (2013.01) naling.

HO4L 12/721 (2013.01)

HO4L 12/741 (2013.01) 20 Claims, 1 Drawing Sheet

d's Anchor

Controller

b - ~ Destination
B s Next Hop =) P
o~ Distance = 2 o , 3
\ e B \ /’d’S Local o
AL Controiler 7717
Sourcel&F~ Data Packet d's: Next Hop = d 3
Distance =1

g,k m xnControllers ¥ 2420 femmee » Publish to Local Controller

G — -~ Puhlish fo Anchor Coniroller
s SOH_C'E [T 1. 1] N e > Subscription Request/Reply
d: Destination e = [ata Packet

US 10,091,094 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2007/0189257 Al* 82007 Suzukic.ccce... H04W 88/04
370/338
2008/0062945 Al* 3/2008 Ahuja HO04W 8/005
370/342
2008/0165786 Al* 7/2008 Ahujaccceee.. HO4L 45/00
370/395.2
2012/0084839 Al* 4/2012 Ayyagari HO4L 67/12
726/4
2013/0103836 Al* 4/2013 Baniqued HO4L 41/0803
709/226

2013/0238741 Al* 9/2013 Kristiansson

* cited by examiner

GO6F 11/2035

709/213

US 10,091,094 B2

Oct. 2, 2018

U.S. Patent

JOY0B BIR(] w-mrmm ...

Adosifisenbey UoRAUOSONG w--meememe-

IB[J0AU0Y JOYdUY O} USHONd & — — —

JBJ|0AU07) |BO0T 0} USHON -~ =~ -

uoneunsaq p
82IN0G 'S
SIBJIOHU0ND 4 X WY ‘B

| = 80UBISI(]

COION I {CD LD

LR IV [o W

D = JOH XN S0

JBJI04U0Y

12007 § n

=plcnicryie—ion
v Vg [oo I %

P Sssslhons
& o ex v e

s Telonue)
~IOYOUY S .p

US 10,091,094 B2

1
METHOD FOR DISTANCE-VECTOR
ROUTING USING ADAPTIVE
PUBLISH-SUBSCRIBE MECHANISMS

RELATIONSHIP TO OTHER APPLICATIONS

This application claims priority to and the benefit of U.S.
provisional application 61/891,455 filed 16 Oct, 2013, titled
“A Method for Distance-Vector Routing Using Adaptive
Publish-Subscribe Mechanisms”.

STATEMENT OF SUPPORT

This invention was made with government support under
Grant SUB700155/SC20070363 awarded by the US Army
Research Office. The government has certain rights in the
invention.

FIELD OF THE INVENTION

The presently disclosed subject matter is directed towards
routing in computer networks. More particularly, the present
invention relates to integrated routing and discovery services
in computer networks using distances and the application of
this method in wireless ad hoc networks.

BACKGROUND OF THE INVENTION

Telecommunications are fundamental to the operation of
modern society. The performance and cost advantages of
modern telecommunications have lead to the widespread use
of computer networks to transmit voice, image, and data
around the world. Those computer networks enable billions
of people to easily, quickly, and at low cost communicate
with one another, share information, and transfer data.

Computer networks are based on an agreed set of proto-
cols that enable messages to be transmitted from a source,
passed along the telecommunication network, and received
at a destination. Messages have at least two parts, the actual
information that the sender wants to transfer to the destina-
tion and the routing information that controls who receives
the message. The agreed upon protocols enable a sender to
obtain the address of the destination and the various “sta-
tions” of the network to handle the message as it passes
through the network to the destination.

A computer network is a collection of nodes (terminals or
stations) that are interconnected by links (a connection
between two nodes). Each node has a unique network
address. Some nodes are directly connected to one another
(neighbors) while others are connected through intermediate
nodes. The nodes use the message routing information to
route the source’s message through the links and nodes from
the sender node to the destination node. Each transfer of the
message from one node to another is a hop.

As used herein a ‘network’ is an interactive system of
computers that often includes peripherals, terminals, and
databases that are connected by communications lines. Such
communication lines may be wired, fiber optic, wireless,
microwave, line of sight, repeaters or other communication
paths. The term ‘node’ is used herein expansively. A node is
a communication connection point, a communication end
point, or a communication distribution point. It is an active
entity capable of sending, receiving, or forwarding informa-
tion over a communications channel. A physical node may
be a computer, a terminal or a peripheral. A virtual node may
exist as a code construct. While different networks may use
different types of nodes the term node should be understood

10

15

20

25

30

35

40

45

50

55

60

65

2

as any entity that receives and transmits messages. By
‘dynamic’ it is meant an interactive network or process is
characterized by change and adaptation. A dynamic network
adapts to changes and to inputs to and from itself as required
to complete its tasks. For example, a new node may join a
dynamic network. Required processes such as node
addresses are kept and distributed as needed. Nodes can
leave, and other networks may be merged. All the while the
network still services its clients.

A small ‘fixed’ computer network with stable members
can relatively easily determine the correct or best path for
passing messages between any two nodes. But as the net-
work gets larger the number of “correct’ paths from one node
to the others gets very large. There are numerous methods of
selecting ‘correct’ paths. However, no matter the method it
is beneficial to reduce the routing information signal han-
dling requirements.

Greatly complicating the difficultly of choosing a correct
path to transfer messages between a source node and a
destination node are wireless ad hoc networks. A wireless ad
hoc network is a wireless network that sets itself up external
of a pre-existing infrastructure. Wireless ad hoc networks are
decentralized in the sense that no controlling node manages
the entire network. Each wireless ad hoc network node
participates in routing by forwarding messages for other
nodes dynamically based on network connectivity.

An ad hoc network should be understood broadly as an
improvised, possibly impromptu, dynamically formed net-
work. An ad hoc network forms as needed to service its
clients. Then it grows, shrinks, moves, and dissipates as
needed.

Traditional routing protocols for computer networks and
wireless ad hoc networks in particular rely on network-wide
dissemination of signaling packets that provide proactive
updates to the state of links (which nodes are connected by
links or the distances to destinations), or on-demand
requests for routes to destinations. However, as the number
of nodes, dynamic connectivity changes, and new traffic
flows increase both approaches tend to incur excessive
signaling overhead.

Making the problem of determining message paths even
more difficult are mobile ad hoc networks (MANET). In a
MANET a particular node may change its physical location,
which changes the nearest nodes it can directly connect to,
which changes “best” message paths, which makes keeping
track of good message paths even more difficult. The sig-
naling overhead required to track all nodes in a network and
to determine how to pass messages from any particular
source node to any particular destination node can be
prohibitive.

In a prior art computer network a particular node might be
a server having services to offer, a client in need of services,
or a router for passing information. To properly use a service
anode must be made aware of the availability of that service.
For example, to send a message a sender node must be able
to find the address of a destination node and a message path.
The sender node must use a service that can supply that
information, and for that the sender must know how to
contact the service. Publishing that information requires
service discovery. Considerable work has been performed
regarding implementing service discovery in computer net-
works. Typically service-discovery is performed by operat-
ing on top of a routing infrastructure or as an augment of an
existing routing protocol.

Interestingly, prior solutions for making routing more
scalable do not integrate destination-based routing with an

US 10,091,094 B2

3

adaptive publish-subscribe mechanism in a way that reduces
the signaling required for both routing and service discovery.

Prior routing protocols in computer networks and
MANETSs assumed that the mappings of destination names
to either addresses or routes were independent of actual
routing. Various routing approaches were used, including
hierarchical, limiting the dissemination of control messages,
distributed hash tables (DHT), Bloom filters, virtual or
geographical coordinates, or sets of dominating nodes to
reduce the size of routing tables or the amount of route
signaling.

Hierarchical routing schemes organize nodes into clus-
ters. Some hierarchical routing schemes reduce signaling
overhead by limiting the propagation of control messages
based on their distance from an originating node. One
problem with hierarchical routing schemes in a MANET is
that the affiliation of nodes to specific clusters is easily
broken when a node moves. Re-establishing affiliations
incurs considerable signaling overhead. Unless re-estab-
lished, incorrect routing can result in signaling decays based
on distances to specific links

Distributed hash tables (DHT)-based schemes are attrac-
tive because a distributed hash table grows only logarith-
mically as the number of destinations grows. However,
typical distributed hash table schemes define a virtual topol-
ogy, which requires substantial signaling overhead to main-
tain the various links of virtual topologies that are defined in
large MANET networks.

Automatic Incremental Routing (AIR) avoids virtual
topologies by using variable-length prefix labels instead of
addresses. Another approach is using hashing node identi-
fiers of destinations in Bloom filters, which are then used in
routing updates. Unfortunately, such schemes suffer from
“false positives” that incur considerable signaling overhead.

Other routing schemes for MANET rely on geographical
coordinates for routing. Unfortunately such protocols
require ubiquitous GPS services yet still incur routing signal
overhead when discovering the geo-locations of destinations
node. Some other routing schemes use virtual coordinates
consisting of the distances between nodes and reference
nodes. The main limitation of this type of routing scheme is
that the virtual coordinates of multiple nodes may be
assigned the same virtual coordinates. This is because there
is simply no inherent uniqueness to a specific vector of
distances to beacons. The result is either possible incorrect
routing or the use of additional signaling (typically flooding)
to resolve false positives.

There are also many proposals in the prior art to reduce
the number of relays needed to forward signaling messages
for a given number of destinations. The best known example
uses multipoint relays, for example, P. Jacquet, P. Muhle-
thaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized Link State Routing Protocol for Ad Hoc Net-
works,” IEEE INMIC 2001, pages 62-68, 2001. However,
such proposals require the establishment and maintenance of
“connected dominating sets,” i.e., the nodes selected to
forward signaling messages must form a connected sub-
graph. This usually requires a large subset of nodes, espe-
cially in dynamic topologies.

There has also been work performed on resource and
service discovery in ad hoc networks. Interestingly, such
work either assumes that names are mapped to addresses and
that routing to those addresses is independent of or aug-
mented by existing routing protocols of service discovery
functionality.

In addition to the classic routing schemes discussed
above, ad hoc networks can also simply use flooding for

40

45

50

55

65

4

forwarding data. A sender sends a message to its neighbors,
which then pass that message on to its other neighbors, and
so on. This approach involves very large signaling overhead,
especially as the wireless ad hoc network grows.

In view of the foregoing a new approach to routing in
computer networks based on publish-subscribe mechanisms
would be beneficial. Even more beneficial would be an
adaptive protocol for routing in wireless ad hoc networks. In
particular, an adaptive protocol that uses distance vectors for
routing in computer networks and that integrates a sub-set of
nodes to serve as controllers that maintain routes to nearby
destination nodes, maintains routes to all known controllers
using distance vectors, and uses publish-subscribe mecha-
nisms in which destinations inform controllers of routes to
them and in which sources obtain routes to destinations
would be useful.

BRIEF SUMMARY OF THE INVENTION

The principles of the present invention provide for a novel
approach to routing in computer networks, and MANETs in
particular. The approach uses publish-subscribe mechanisms
in an adaptive distance-vector routing protocol. In particular,
the new approach uses distance-vector protocols for routing
and integrates a sub-set of nodes to serve as controllers that
maintain routes to nearby destination nodes, maintains
routes to all known controllers using distance vectors, and
uses publish-subscribe mechanisms in which destinations
inform controllers of routes to them and in which sources
obtain routes to destinations.

The principles of the present invention are incorporated in
a network that implements scalable integrated destination-
based routing using adaptive publish-subscribe mechanisms.
First a subset of all nodes is selected to act as controllers that
maintain routes to nearby destinations. The routes to all
known controllers are then maintained using distance vec-
tors. Publish-subscribe mechanisms are then implemented in
which destination nodes inform controllers of routes to them
and from which sources obtain routes to destinations. Ben-
eficially the adaptive publish-subscribe mechanisms support
routing to specific destination nodes as well as copies of
content that can be replicated anywhere in the network.

The principles of the present invention further provide for
a method routing that establishes a wireless network com-
prised of a plurality of nodes, with each node having a
unique node identifier (such as an address). Then, dynami-
cally selecting a subset of those nodes to serve as controllers,
thereby dividing the nodes into a plurality of controller
nodes and a plurality of destination nodes. Furthermore, that
method includes maintaining routes to nearby destination
nodes of each controller node, thereby forming local con-
trollers, maintaining routes to all controllers in each con-
troller based on distance vectors, and using publish-sub-
scribe mechanisms in which destinations inform local
controllers of routes to them and sources obtain routes to
local controllers of destination nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages and features of the present invention will
become better understood with reference to the following
detailed description and claims when taken in conjunction
with the accompanying drawings, in which like elements are
identified with like symbols, and in which:

US 10,091,094 B2

5

FIG. 1 is a topological view of a distributed network
having links and a variety of nodes for implementing a
method that is in accord with the principles of the present.
invention.

DETAILED DESCRIPTION OF THE
INVENTION

The presently disclosed subject matter now will be
described more fully hereinafter with reference to the
accompanying figures in which one embodiment is shown.
However, it should be understood that this invention may
take different forms and thus the invention should not be
construed as being limited to the specific embodiment set
forth herein.

All documents and references referred to in this disclosure
are hereby incorporated by reference for all purposes. Addi-
tionally, in the figures like numbers refer to like elements
throughout. The terms “a” and “an” as used herein do not
denote a limitation of quantity, but rather denote the pres-
ence of at least one of the referenced items.

The present invention is described herein with reference
to FIG. 1. Specifically, the present invention provides an
Adaptive Publish-Subscribe Distance Vector (APDV)
approach to maintaining a communication network that is or
that includes a network or sub-network. APDV assumes that
each network node is assigned a network-wide unique node
identifier. APDV can take advantage of the broadcast nature
of radio links by having each network node broadcast
control messages to all neighbors once, rather than trans-
mitting a separate control message to each neighboring
node.

In APDV a subset of nodes are dynamically selected to
serve as controllers. Once selected a controller acts as a
directory server for other nodes by maintaining routes to
nearby destinations that are denoted by node identifiers. This
dynamic selection is based on a distributed algorithm that
selects controllers to ensure that each non-controller desti-
nation node is within a maximum distance r from a mini-
mum number k of local controllers. As a side effect a
controller node informs each destination node about routes
to its one-hop and two-hop neighbors.

FIG. 1 illustrates a proto-typical computer network with
APDV. FIG. 1 is useful for illustrating and explaining the
basic operation of APDV. In FIG. 1 each non-controller node
has at least one local controller within two hops. The local
controllers are nodes a, k, m, x and r. As is described
subsequently those nodes are dynamically elected to be the
local controllers.

In APDV all nodes maintain routes to all controllers using
a loop-free distance-vector routing algorithm. For simplicity
of explanation it will be assumed that a node maintains a
single route to each controller. However, in practice APDV
can be readily extended to use multiple loop-free paths. Each
non-controller node contacts each of its local controllers to
publish its presence. That is accomplished by a non-con-
troller node, for example non-controller node d sending a
publish message to each of its local controllers with the
mapping (d, {I',.. . ., 1*,}), where 1', (1=i=k) is a local
controller for the non-controller node d. Each local control-
ler I’; of the non-controller node d and each relay node (a
node that passes information between other nodes) between
the non-controller node d and a local controller that receives
the publish request stores a tuple stating the address of the
non-controller node d, the next hop to non-controller node d,
and the address of the local controllers {1, . . ., ¥}

10

15

20

25

30

35

40

45

50

55

60

65

6

In addition, the non-controller node d uses a common
hash function to select an anchor controller a, which is a
selected controller for storing the mapping (d, {1',, . . ., 1*,}).
That mapping is the addresses of all of the local controllers
of non-controller node d. That mapping is sent to the anchor
controller a,. The anchor controller a,; and the relay nodes
between d and a, cache the mapping information. In FIG. 1,
node d has published its presence with its local controller
(node r) and its anchor controller (node a,).

The foregoing produces the important result that each
local controller node r has a route to non-controller node d;
the relay nodes between each local controller node r and
non-controller node d have the path from local controller
node r to non-controller node d; the anchor controller a,; has
a route to each local controller node r; and the relay nodes
between the anchor controller a,; and each local controller
node r have the path between them.

A source node requiring a route to a non-controller node
d uses the same common hash function on the identifier of
node d to find the anchor controller for d, a, Thus any
source node can send a subscription request to anchor
controller a, by providing d and (s, {I',, . .. 1%}), where I,
(1=i=k) is a local controller for node s. The controller a,
responds with the mapping (d, {I', . . ., 1*;}) and sends that
response towards the nearest local controller for source s
selected from the set {I',, .. ., 1% }. The answer is redirected
to source s by either the selected controller ¥, or the first
relay node along the route from a, to controller k with a
route to s.

Node s can then send data packets to destination d by
sending them towards the nearest controller in the set
{1,... ., 1%} Those packets will be redirected to d after
either reaching the selected controller in {I',, ..., *,} ora
node along the route from s to the selected controller with an
active route to d. In FIG. 1, node s subscribes to node d by
contacting anchor a, which maintains the mapping (d, r)
and returns it to node s by sending its response towards node
k, which is the local controller of node s. Node a , also caches
the mapping (s, k). Node s then sends data packets to d by
sending them towards controller r; however, node y is in the
route from s to r and also has a route to d, and forwards the
data packets directly to d.

A proper implementation of APDV requires appropriate
methods to select controllers, to maintain the routes to the
controllers, and then publishing and subscribing to destina-
tions using the controllers. Furthermore, the information
maintained at each node must allow that node to select and
route to controllers, to route to local destinations, and to
learn the local controllers associated with distant destina-
tions on demand.

To achieve the foregoing a non-controller node i main-
tains a controller table (CT") that states information about all
controllers elected in the network (the election process is
described subsequently). The non-controller node i also
maintains a neighbor controller table (NCT’) stating infor-
mation reported by each neighbor of non-controller node i
regarding all controllers elected in the network; a neighbor
table (NT’) stating information about all one-hop and two-
hop neighbors of non-controller node i; a neighbor local
routing table (NLRT’) stating routing information reported
by each neighbor regarding all destinations within two hops
and some destinations within r hops; a local routing table
(LRT") stating routing information about all destinations
within two hops and some destinations within r hops; a
neighbor routing table (NRT’) stating information reported

US 10,091,094 B2

7

by each neighbor regarding distant destinations; and a
routing table (RT") stating information about distant desti-
nations.

APDV employs a soft-state to operate efficiently. -A node
transmits its HELLOs periodically every 3 seconds. A
HELLO includes some or all the updates made to its node
tables. A node stores all the information from the HELLOs
it receives from its neighbors, and also caches information
it receives in subscription or publication requests from
neighbors. Entries in RT' and NRT’ are populated by the
publish-subscribe signaling described subsequently. NT,
CT’, NCT’, LCL!, NLRT’, and LRT’ are updated by the
exchange of HELLOs among one-hop neighbors. In a net-
work with point-to-point links, a node transmits a HELLO
over each of the links it shares with its neighbor nodes. In
a network with broadcast links (e.g., a wireless network
based on broadcast links) a node transmits a HELLO once
and addresses it to all its neighbors.

For each controller ¢ selected in the network, CT’ speci-
fies: the identifier of node ¢ (nid’); the distance from i to ¢
(d',); the successors (next hops) from i to ¢ (s'.); and a
sequence number (sn’_) used to avoid routing loops. N CT"
stores the controller tables reported by each neighbor of
node i. The entry for controller ¢ reported by neighbor j and
stored in NCT’ is denoted by {nid’,, d’,, sn’,;}.

For each neighbor j of node i, NT" specifies: the identifier
of the node (nid’)); a sequence number (sn’) created by j and
used to determine that the entry is the most recent from node
J; a controller status flag (cs’)) stating whether or not node j
is a controller; the controller counter (kl) stating the number
of controllers within r hops of node j; and the local controller
list (LCLZ) consisting of the identifiers of all controllers
within r hops of node j j- An entry for neighbor v in NT/ sent
in a HELLO to node i is denoted by {nid'v, sw'v, cs'v, kv,
LCLJV} and the same entry stored in NT" is denoted {nid", ,
s, ¢, K, LCLY,).

An entry for dest1natron j listed in LRT’ ',); the identifier of
the node (n1d); a sequence number (sn) created by j used
to avoid routrng loops; the distance from itoj (d)); the
successor in the route to j (s7,); and the local controller list
of' node j (LCLl), which may be a link to NT" if the node is
within two hops An update made by neighbor j to LRT
communicated in a HELLO is denoted by {nid , st/ , &,
LCI/,}. The corresponding entry stored at node i in NLRT’
is denoted by {nrd st d L LCL L. An entry for
destination v listed in RT simply specifies the identifier of
the node (nid’,) and the list of local controllers for node v
(LCL’,), because node i maintains the routes to all control-
lers in CT".

Node i includes its own information in NT, i.e., it stores
an entry corresponding to n1d , uses the information in its
HELLOs. A HELLO from nodé i contains: nid’,, sn’,, cs’, '),
and updates to NT’, CT' and LRT. An update to NT*
regarding neighbor j cons1sts of the tuple {nrd sn’; cs kl
LCLf } An update to CT’ regarding controller c cons1sts of
the tuple {nid',, sn’,, d’,, LCL' }.

With the foregorng 1nformatron stored and exchanged
within the various nodes a distributed selection of control-
lers is required. In APDV selecting the controllers amounts
to selecting a dominating set C of nodes in the network to
serve as controllers. Every node u that is not a member of C
(called a simple node) is at a distance smaller than or equal
to r hops from at least k nodes in C (called controllers). A
node u is said to be (k, r) dominated (or covered) if there are
at least k nodes in C within r hops from u. There is a large
body of work on dominating sets in graphs. Reference for
example T. Haynes, S. Hedetniemi, and P. Slater “Funda-
mentals of Domination in Graphs,” Marcel Dekker, 1998.

30

35

40

45

55

60

8

Many other distributed algorithms exist to approximate
minimum connected dominating sets MCDS with con-
straints.

However, the controller selection scheme used in APDV
is simply aimed at obtaining a set of controllers that cover
all nodes but it need not be a MCDS, and maintaining routes
to all selected controllers. The APDV method is based on
HELLO messages exchanged among one-hop neighbors. To
keep the selection algorithm and signaling simple, only
distances to controllers and node identifiers are used as the
basis for the selection of controllers.

In ADPV controllers self-select themselves to become
controllers or to stop being controllers. A given node i
determines whether to add or delete its own entry in CT",
respectively, according to the Controller Addition Rules
(CAR) presented below in Algorithm 1 and the Controller
Deletion Rules (CDR) presented below in Algorithm 2.

Algorithm 1 is represented as pseudo code for adding
controllers to the topology according to CAR:

#define DEFAULT_HELLO_INERVAL 3*SECOND
#define DEFAULT_UPDATE_INERVAL 20*SECOND
Algorithm 1 Controller Addition Rule (CAR)
Init: CT"=@, and NT'=¢
if cs’;=false && k';<k then
minID=nid’;;
for ¥V ENT' do
if J%CTl && k' <k then
minlD=Min (mrnlD nid’ i
end if
end for
if minID==nid’, then
cs’ ~true;
K)
CTle{mdl =i, d'/=0, sn’;=sn’+1};
LCL!,«{nid, —1}

end if
end if

Algorithm 2 is represented as pseudo code for deleting
controllers from the topology according to CDR:
Algorithm 2 Controller Deletion Rule (CDR)

If ¢s' ~—true && k' >k then
CanDelete==true;
for V.ENT' do
if J%LCLl && ILCL'~{i}I<k then
CanDelete=false;
break;
else if JELCL, && nid’<nid’; then
CanDelete=false;
break;
end if
if CanDelete==
break;
end if
end for

if CanDelete==true then

cs’, :false'

K-

CTle{md =i, d’;=o0, sn’;=sn’,+1}
LCL,«<-LCL-{i }

end if
end if

Node i is initialized with CT"=¢ and NT'=q, and waits for
a few seconds to start receiving HELLOs from nearby
nodes. Hence, according to the CAR, node i self selects itself
as a controller when it is first initialized, unless node i has
received HELLOs from neighbors that prompt it not to
include itself as a controller based on the CDR (see below).

false then

US 10,091,094 B2

9

Node i updates an entry for j=ECT" according to the rules
shown in Algorithm 1. Those rules ensure that no loops are
formed for routes to controllers. Once node i has updated
NT’ and CT, by processing HELLOs received from neigh-
bors, it computes its local controller list (LCL?) from CT,
such that v&LL.CL' if divsr, and sets kK, ; ,'=1.

The local controller list (LCL) at each node, and each new
state per node is determined by the reception of HELLOs
from all neighbors, followed by the addition or deletion of
controllers in the LCL resulting from applying CAR and
CDR, thereby deleting controllers that are farther than 2
hops away, or deleting a controller after the successor to that
controller sends an update with a deletion of the controller.

Following the CAR each new node selects itself as a
controller after initialization and sends a HELLO. Nodes do
not wait for HELLOs to arrive. After receiving a HELLO
from each neighbor, a node may add new controllers
reported in the HELLOs. However, it also may delete itself
from being a controller based on the CDR.

For simplicity of explanation it is assumed that each node
maintains a single route to each controller selected in the
network using the updates to controller tables included in
HELLOs.

APDV uses a distance-vector routing approach to main-
taining routes to controllers. To guarantee loop-free routes,
APDYV uses sequence numbers that restrict the selection of
next hops towards a given controller by any node, such that
only those neighbors with shorter distances to the controller
or with a more recent sequence number reported by the
controller can be considered as successors. An important
aspect of APDYV is that entries for controllers can be deleted
on purpose as a result of the CDR, rather than only as rare
occurrences due to failures or network partitions. Together
with the transmission of periodic HELLOs, the Reset Con-
troller Rule (RCR) and the Update Controller Rule (UCR)
discussed below address this functionality.

The process of routing to controller begins with the set N';
the set of one-hop neighbors of node i. Node i updates CT’
based on HELLOs from neighbor j € N’ or the loss of
connectivity to neighbor j. If node i loses connectivity to
node j, the entries in CT’ are deleted. Once node i is selected
as a controller, it is the only node that can change the
sequence number for its own entry in controller-table
updates sent in HELLOs.

When a given node i decides to delete itself as a controller
based on the CDR its entry must be deleted as a controller
in the rest of the network. To accomplish this node i uses a
Reset Controller Rule (RCR) (provided below) to set its
self-entry with an infinite distance and an up-to-date
sequence number for a finite period of time T before deleting
its self-entry from CT’. This ensures that the rest of the nodes
delete i from their controller tables.

If node i receives a HELLO from j or experiences a link
failure that makes it update CT’ for entry c=i: {nid'_, d',,,
snlcj}, node i updates its entry for ¢ in CT" according to
Update Controller Rules (UCR), see Algorithm 3below,
which forces node 1 to propagate a reset update or to select
a successor to controller ¢ that is either closer to ¢ or has
reported a more recent sequence number from c.

20

25

30

35

40

45

60

10

Algorithm 3 is represented as pseudo code for UCR used

in the topology:
Algorithm 3 Update Controller Rule (UCR)
Event Trigger: node i updates entry for ¢ in CT'
If 3, ENT' && sn’_>sn’, then
if n==s', && s’ >sn’, && d'., == then
Sniczsnicv;
d =oo;

else

maxSN=sn’_;

for V ENT’ do

maxSN=Max(maxSN,, sn’_);

end for

minD=d’_;

for VIENT’ do

if sn’_~=maxSN then
if minD>d’_+1 then
minD=d’_+1;
temp_s=f}
end if
end if

end for

d’ =minD;

s’ =temp_s;

sn’_ =maxSN;

end if
else

minD=d’_;

for V. ENT' do

if s’ ==sn’, && d' <d’, then
if minD>d’ >d’ +1 then
minD=d’_>d’_+1;
temps_s=f
end if
end if

end for

d’ =minD;

s’ =temp_s;
end if

The RCR is:

RCR (Reset Controller Rule):
If node i must delete itself from CT’ using CDR then
set d’,/=o0; sn’ =sn’,+1; reset-timer'=T

Nodes learn about routes to controllers and to one- and
two-hop neighbors. However, exchanging HELL.Os does not
provide routes to destinations many hops away. To enable
sources to obtain routes to arbitrary destinations without
incurring network-wide dissemination of signaling mes-
sages, APDV uses a publish-subscribe mechanism for name-
to-route resolution.

The basis of the publish-subscribe mechanism used in
APDV is the use of consistent hashing. This is similar to
recent proposals for distributed name resolution in MANETs
that also use consistent hashing to map the names of
destinations to one of several predefined directory sites
storing the name-to-address mapping for destinations. Key
differences exist however between the APDV approach and
the prior art. Those differences include: (a) the directories
(i.e., controllers) are selected dynamically; (b) a node pub-
lishes its presence with multiple controllers; and (¢) name
resolution is integrated with the selection of and routing to
controllers, rather than running on top of routing. Hence, in
APDYV, controllers maintain name-to-route mappings rather
than storing name-to-address mappings and then using an
underlying routing protocol to obtain the routes for known
addresses.

US 10,091,094 B2

11

For ease of explanation and understanding the APDV
publish-subscribe mechanism described herein assumes that
node identifiers constitute the names for which routes must
be found. However, the same APDV publish-subscribe
mechanism can be used to support information-centric net-
working, such that nodes publish and subscribe to names of
destinations, content or services, rather than just node iden-
tifiers.

Publishing in APDV consists of having a local controller
know the route to a given destination or having an anchor
controller know the mapping from a node identifier to a list
of'local controllers. Subscribing in APDV consists of a node
requesting a way to reach a named destination through an
anchor controller.

In APDV, node i publishes itself with the k controllers
listed in LCL?, and with one or more anchor controllers. The
local controllers in LCL’ are within r hops of node i and
serve as the “landmarks” for other nodes to submit data to
node i, given that nodes far away from node i do not have
routes to node i. Accordingly, a local controller for node i
must maintain a route to node i, and it also maintains the
mapping (i, LCL"), so that it can find alternate ways to reach
node i if its route to i fails. The anchor controllers are needed
for nodes far away from destinations to obtain the mappings
between the identifiers of those destinations and their local
controllers.

For simplicity, the assumption is that a single anchor
controller is used for any one node. The anchor controller for
node i (denoted by a,) is obtained by using a network-wide
consistent hash function that maps the identifier of node i
into the identifier of one of the controllers selected in the
network. Controller a, must store the mapping (i, LCL"), so
that it can provide any node v far away from node i the list
LCL’, with which node v can send data packets towards the
local controller in LCL' that is nearest to node v according
to its controller table CT".

The forwarding of a publication request from a node to its
local controllers is done by the exchange of HEL.L.Os. Given
that nodes maintain loop-free routes to all controllers, pub-
lication requests directed to local controllers of nodes are
forwarded over the reverse loop-free routes already estab-
lished from local controllers to nodes. The routes maintained
by local controllers to nearby nodes are refreshed periodi-
cally; each node creates a new publication request by
increasing the sequence number included in the LRT self-
entry of its own HELLO. If node i receives a HELLO from
neighbor j with a publication request originated by node v,
which consists of update to LRT for destination v({nid’,,
stV,, &, LCI/ }) then node I forwards the request (ie., it
includes the LRT’ entry {nid’,, sn’,, &, LDL' } in its own
HELLO) if it is the successor for node j to any of the
controllers listed in LCI/,. Once a local controller ¢ receives
an entry for destination v and ¢ € LCL", then ¢ publishes
(i.e. stores) the entry {nid”,, sn°,, d°,, s°,, LCL* }, where s°,
is the neighbor from which it received the publication
request. Controller ¢ may also forward it if it is the successor
to another controller in LCL" for the neighbor from which it
received the publication request.

The submission of a publication request from node i to its
anchor controller a, is done by node i using the network-wide
consistent hash function on the set of identifiers in CT’ to
obtain hash(i)=a, , where a, € CT'. After that, node i sends
a publication request to its successor towards its anchor
controller a, with the tuple {nid’, sn’,, d’,, LCL';}. Each node
v in the route from node i to controller a, forwards the
publication request towards a, and caches the tuple {nid",
sn”,, d*, s¥;, LCL";}. Once controller a, receives the request,

20

30

40

45

55

12
it stores the tuple {nid“, sn®,, d*,, s*,, LCL*}. Hence, each
node processing a publication request learns the route to the
node issuing the request, and the anchor controller is able to
obtain the mapping needed to redirect nodes sending sub-
scription requests to the local controllers of node i.

The forwarding of subscription requests is handled in
much the same way described above for the case of publi-
cation requests. When node o has data for destination j &
CT?, it computes hash (j)=a,, where a, € CT* and sends its
subscription request towards a. The subscription request
from node o regarding destination j states the identifier of
node j, its anchor controller a, and LCL®. When a, receives
0’s request, it responds with the tuple {ni%,, sn® LCL%,} and
sends the response to the nearest controller it finds in LCL°.

Node o stores the tuple {nid°, sn®, LCL?} in RT® upon
receiving the reply to its subscription. Data packets from o
are then sent towards the controllers in LCL?, that are the
closest to node o. A data packet must specify the sender, the
destination, and the selected local controller of the destina-
tion. This can be done by encapsulating the header of the
packet stating the origin and the destination with a header
stating the origin and the selected local controller of the
destination. Once the packet reaches a relay node y with an
active route for the destination, the packet is forwarded
directly to the destination itself, as long as the distance from
node y to the destination is at most r hops.

In one embodiment of APDYV, the functional steps
required for its operation can be organized as illustrated in
the pseudo-code listed in Algorithm 4 below. That pseudo-
code can be implemented in a variety of ways as part of a
routing protocol designed for wired networks or wireless
networks.

It should also be understood that while the figures and the
above description illustrate the present invention, they are
exemplary only. They are not intended to be exhaustive or to
limit the invention to the precise forms disclosed, and
obviously many modifications and variations are possible in
light of the above teaching. Others who are skilled in the
applicable arts will recognize numerous modifications and
adaptations of the illustrated embodiments that remain
within the principles of the present invention. Therefore, the
present invention is to be limited only by the appended
claims.

Algorithm 4 is represented as pseudo code for the overall
functional steps of APDV:

APDVInit(i)

t
nid =i
cs’ ~false;
k' =0;
sn’~=1;
CT'=;
NCT=g;
NCT'=g;
NCT'=g;
NT'=g;
LRT'=g;
NLRT=g;
RT"=;
NRT'=g;
LCL'=g;
APDVSetTimer (i,

FRVAL);

SendHello, DEFAULT_HELLO_IN-

US 10,091,094 B2

13
APDVSetTimer (i, CheckRoutinglnfo,
UPDATE_INERVAL);
APDVSetEventHandler (i, APDVHandleEvent);
APDVSetSignalingPacketHandler (i, APDVHandleSig-
nalingPacket);
}

APDVHandleEvent (i, eventType)

}

switch (eventType)

DEFAULT _

case SendHello:

SendHello(i);
APDVSetTimer (i, SendHello, DEFAULT_HEL-
LO_INERVAL);

case CheckRoutinglnfo:

CheckUpdate(i);
APDVSetTimer(i, CheckRoutinglnfo, DEFAULT_
UPDATE_INERVAL);
}
}

HandleHello(i, packet)

{
UpdateNT(i, packet)
UpdateCT(i, packet, i. Call (UCR));
1.Call(CAR);
1.Call(CDR);
UpdateL.CL (i, i.Call(UCR));
SendLocalControllerUpdate(i);

APDVHandleSignalingPacket(i, packet, packetType)
Switch(packetType)
case HELLO
HandleHello(i, packet);
case Anchor Update;

HandleAnchorUpdate(i, packet);

}
}

Z}Z&PDV(i)

APDCInit(i)

The invention claimed is:

1. A method of routing, the method comprising:

(1) establishing a computer network comprising a plurality
of' nodes, each node of said plurality of nodes having a
unique node identifier; the plurality of nodes including
an anchor controller storing a mapping having
addresses of each of the plurality of nodes;

(ii) dynamically selecting a subset of said plurality of
nodes to serve as controllers, said selecting based on a
distributed algorithm that selects controllers such that
each non-controller node is within a maximum distance
from a minimum number of local controllers and
wherein dynamically selecting controllers is performed
in accord with predetermined Controller Addition

10

20

25

30

35

40

45

55

60

65

14

Rules, thereby dividing said plurality of nodes into a
plurality of controller nodes and a plurality of destina-
tion nodes;

(iii) maintaining routes to nearby destination nodes of
each controller node, thereby forming local controllers;

(iv) maintaining routes to all controllers in each controller
based on distance vectors; and

(v) using publish-subscribe mechanisms in which desti-
nation nodes inform local controllers of routes to them
and sources obtain routes to local controllers of the
destination nodes nodes, wherein the source obtaining
routes includes:

(a) sending a subscription request from a source node
to the anchor controller, the subscription request
including a destination node and a source node
controller selected from the local controllers;

(b) sending the mapping to the source node controller
from the anchor controller;

(c) forwarding the mapping to the source node;

(d) sending a data packet based on the mapping to a
destination node controller of the destination node,
the destination node being selected from the local
controllers; and

(e) forwarding the data packet from the destination
node controller to the destination node.

2. The method of routing of claim 1, wherein dynamically
selecting controllers is performed by nodes of said plurality
of nodes deselecting themselves as controllers and wherein
deselecting is performed in accord with Controller Deletion
Rules.

3. The method of routing of claim 1, wherein maintaining
routes to all controllers uses sequence numbers to restrict
selection of next hops towards a given controller such that
only neighbors with shorter distances to the controller can be
considered as successors.

4. The method of routing of claim 3, wherein maintaining
routes to all controllers include deleting controllers based on
Controller Deletion Rules, and wherein controllers are
deleted based on loss of connectivity to neighbors.

5. The method of routing of claim 4, wherein controllers
are deleted based on HELLOs from neighbors.

6. The method of routing of claim 5, wherein controllers
are updated based on an Update Controller rule.

7. The method of routing of claim 1, wherein maintaining
routes to each nearby destination node of each controller
node in each controller is performed by:

(1) each non-controller node d sending a publish message

to each of its local controllers with a mapping (d,

{1, ..., 15}, where T, (1si=k) is a local controller

for non-controller node d;

(ii) each local controller I’ ; of non-controller node d and
each destination node between said each local control-
ler ', and said non-controller node d receiving said
publish message stores a tuple stating an address of
non-controller d, a next hop to non-controller d, and
{1, ..., T} and

(iii1) each non-controller node d selecting an anchor node
a, using a hash function;

(iv) each non-controller node d sends said selected anchor
node a, the mapping (d, {I,, . . . I¥,}); and

(v) said selected anchor node a; and relay nodes between
d and a, cache the mapping (d, {I’,, . .., I*,}).

8. The method of routing of claim 7, further including

determining a path from a source node s to a destination
node d by performing:

US 10,091,094 B2

15

(1) having a node s identifying anchor a; using said hash
function;

(ii) said node s sending said identified anchor a, addresses
dand (s, {T, ..., I*,}), where I', (1=i=k) is a local
controller for node s;

(iii) anchor a, returns a mapping (d, r) to node s by
sending a response towards a local controller of node s;

(iv) said local controller of node s passes said mapping (d,
r) to node s, and

(v) node s sends data packets to d by sending them
towards controller r.

9. The method of routing of claim 7, wherein maintaining
routes to named services or content objects is performed by
performing:

(1) each non-controller node d selecting an anchor node a,

using a hash function on a name of a service or content
o that it wants to publish;

(ii) each non-controller node d sends said selected anchor
node a, a mapping (o, d, {1’ . . ., 1*,}); and

(iii) said selected anchor node a, and the relay nodes
l;{etween d and a, cache the mapping (o, d, {1, . . .,
D).

10. The method of routing of claim 9, further including
determining a path from a subscriber node s to a named
service or content object o by performing:

(1) a node s identifying anchor a, using a hash function on

the name of the service or content object o required by
5

(ii) said node s sending said identified anchor a, the name
oand (s, {I', . .., I*.}), where I', (1=i<k) is a local
controller for node s;

(iii) anchor a, returns a mapping (o, d, {1, . . . ¥,}) to
node s by sending a response towards a local controller
of node s;

(iv) said local controller of node s passes said mapping (o,
d, {I'), ... 1%,}) to node s, and

(v) node s sends request for object o to d by sending them
towards a local controller of d.

11. The method of routing of claim 9, further comprising
constructing a name of a service or content object to include
a prefix component and a suffix component, with the prefix
component being used in the hash function used to select an
anchor controller for a named service or content object.

12. The method of routing of claim 10, wherein estab-
lishing a computer network establishes an ad hoc network.

13. The method of routing of claim 12, wherein the ad hoc
network is a wireless network.

14. The method of routing of claim 1, wherein each
non-controller node i maintains the following:

a controller table (CT’) that states information about

network controllers;

a neighbor controller table (NCT?) stating information
reported by each neighbor of non-controller node i
regarding all controllers elected in the network;

10

15

20

30

35

40

45

50

16

a neighbor table (NT?) stating information about all one-
hop and two-hop neighbors of non-controller node 1i;

a neighbor local routing table (NLRT?) stating routing
information reported by each neighbor regarding all
destinations within two hops and some destinations
within r hops;

a local routing table (LRT") stating routing information
about all destinations within two hops and some des-
tinations within r hops;

a neighbor routing table (N RT’) stating information
reported by each neighbor regarding distant destina-
tions; and

a routing table (RT’) stating information about distant
destinations.

15. The method of routing of claim 14, wherein entries in
RT’ and N RT’ are populated by publish-subscribe signaling
and wherein using publish-subscribe mechanisms uses a
network-wide consistent hash function.

16. The method of routing of claim 15, wherein publish-
ing is performed by:

a node i using the network-wide consistent hash function
on a set of identifiers in CT' to obtain hash(i)=a,, where
a,cCT,

node i sending a publication request towards its anchor
controller a, with a tuple {nid’, sn’,, &,, LCL',,};

nodes in the route from node i to controller a, forwarding
the publication request towards a,; and

a, caching a tuple {nid”, sn", d”,, s*,, LCL"}.

17. The method of routing of claim 15, wherein publish-
ing is performed by:

a node o using the network-wide consistent hash function
on a set of identifiers in CT* to obtain hash(i)=a;, where
aeCT?;

node o sending a subscription request towards its anchor
controller a, stating an identifier of node j, its anchor
controller a, and LCL?;

nodes in the route from node o to controller a; forwarding
a publication request towards a;; and

a, receiving o’s request and sending a tuple {ni?¥, sn?,
LCL%} to a nearest controller it finds in LCL®,

the nearest controller in LCL® sending a tuple {ni", sn",
LCLY } to o.

18. The method of routing of claim 17, wherein node o
stores a tuple {nid®, sn°,, LCL?;} in R’ upon receiving a
reply to its subscription; and wherein node o sends data
packets towards controllers in LCL?, that are closest to node
o for transmission to node i.

19. The method of routing of claim 1, wherein establish-
ing a computer network establishes an ad hoc network.

20. The method of routing of claim 19, wherein the ad hoc
network is a wireless network.

#* #* #* #* #*

