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Abstract

Targeted Minimum Loss Based Estimation for Longitudinal Data

by

Paul H. Chaffee

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming es-
sential tools in the search for optimized treatment regimes in ongoing treat-
ment settings. Analyzing data for multiple time-point treatments with a view
toward optimal treatment regimes is of interest in many types of afflictions:
HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia,
prostate cancer, renal failure, and many others. Methods for analyzing data
from SRCTs exist but they are either inefficient or suffer from the drawbacks
of estimating equation methodology. This dissertation describes the develop-
ment of a general methodology for estimating parameters that would typically
be of interest both in SRCTs and in observational studies which are longitu-
dinal in nature, and have multiple time-point exposures or treatments. It is
expected in such contexts that time-dependant confounding is either present
(observational studies) or actually designed in as part of a study (SRCTs). The
method, targeted minimum loss based estimation (TMLE), has been fully de-
veloped and implemented in point treatment settings and for various outcome
types, including time to event outcomes, and binary and continuous outcomes.
Here we develop and implement TMLE in the longitudinal setting, and pay
special attention to dynamic treatments or exposures, as might be seen in
SRCTs. Dynamic exposures are not limited to SRCTs however. The idea of a
rule-based intervention turns out be a very fruitful one when one faces complex
treatment or exposure patterns, or when one encounters challenges in defining
an intervention that must depend on time-varying factors. As in the former
settings, the TMLE procedure is targeted toward a pre-specified parameter of
the distribution of the observed data, and thereby achieves important bias re-
duction over non-targeted procedures in estimation of that parameter. As with
the so-called Augmented Inverse Probability of Censoring Weight (A-IPCW)
estimator, TMLE is double-robust and locally efficient. We develop some of
the background involving the causal and statistical models and report the re-
sults of several simulation studies under various data-generating distributions
and for two outcome types (binary, and continuous on [0,1]). In our results we
include comparisons from a number of other estimators in current use.

Chapter 1 develops the background and context in which this estimator ap-
pears, gives a brief history of other estimators used in SRCTs and describes
some of the theory behind TMLE in the longitudinal setting. Two different
TMLE algorithms are described in detail, and results of a simulation study for
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three separate causal parameters are presented.

Chapter 2 concerns the development of a new TMLE that solves the efficient
influence curve estimating equation directly by numerical methods, rather than
indirectly, which is the usual procedure. A new set of simulations is performed
here that compare this TMLE with the preceding two (presented in chapter
1). Its performance is comparable to those described in chapter 1, but it is
somewhat easier to implement.

Chapter 3 is a comparison of still another new TMLE (described in van der
Laan and Gruber, 2012) with one of the three described above. This TMLE
arguably shows the most promise generally, since it’s implementation does not
require discretization of the intermediate factors of the likelihood as does the
three preceding TMLEs. Further, under the right conditions it exhibits supe-
rior performance in terms of MSE. We also explore a new, targeted criterion
for selecting the initial estimators involved.

Chapter 4 describes a detailed analysis of the estimation of the effect of ges-
tational weight gain on women’s long term BMI using the preferred TMLE
described in chapter 3. Many issues were encountered during this analysis
concerning censoring of the exposure variable that led to the redefinition of
the parameter of interest, and the implementation of a different type of TMLE
for the first time (described originally in van der Laan, 2008). We also encoun-
tered issues arising from sparsity in the data and propose and implement corre-
sponding solutions. The analysis was performed using data from the national
longitudinal survey of youth, begun in 1979 and ending in 2008.

2



To Elina and Laszlo

i



Contents

1 Targeted Minimum Loss Based Estimation with Application
to Sequentially Randomized Controlled Trials with Dynamic
Treatment Rules 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Existing Procedures . . . . . . . . . . . . . . . . . . . . 2
1.2 Data Structure and Likelihood . . . . . . . . . . . . . . . . . . 3

1.2.1 Causal and Statistical Models . . . . . . . . . . . . . . 6
1.3 Targeted Maximum Likelihood Estimator . . . . . . . . . . . . 10

1.3.1 Basic Description . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Efficient Influence Curve . . . . . . . . . . . . . . . . . 12
1.3.3 Implementation of the TMLE’s . . . . . . . . . . . . . 14

1.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Some Specific Treatment Rules . . . . . . . . . . . . . 20
1.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 A TMLE Based on Directly Solving the Efficient Influence
Curve Equation 29
2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Existing TMLEs . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Numerical Solution TMLE . . . . . . . . . . . . . . . . 30
2.1.3 Numerical Methods for Solving Empirical Efficient In-

fluence Curve Equation . . . . . . . . . . . . . . . . . . 33
2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Data Generation . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . 35

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Convergence of the Secant Algorithm . . . . . . . . . . 39
2.3.2 Comparison of One Step, Iterative and Numerical Solu-

tion TMLE Algorithms . . . . . . . . . . . . . . . . . . 41

3 A Comparison of TMLEs in the Longitudinal Setting 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Parameter of Interest and G-computation Formulas . . . . . . 45

ii



3.3 Two Classes of TMLEs . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Density-Based TMLE (db-TMLE) . . . . . . . . . . . . 45
3.3.2 Nested Conditional Expectation TMLE (nce-TMLE) . 46
3.3.3 Other Comparison Estimators . . . . . . . . . . . . . . 51

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 TMLEs Using Superlearner . . . . . . . . . . . . . . . 52
3.4.2 TMLEs Using Variance of the Efficient Influence Curve

as Loss Function . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Comparison Estimators . . . . . . . . . . . . . . . . . . 57

4 Applying a TMLE to the Estimation of a Causal Effect in a
Long Term Observational Study 59
4.1 Observed Data Structure and Likelihood . . . . . . . . . . . . 60

4.1.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Post-Intervention Distribution . . . . . . . . . . . . . . 64

4.2 Causal Model and Counterfactuals . . . . . . . . . . . . . . . 64
4.3 Parameter of the Observed Distribution . . . . . . . . . . . . . 65

4.3.1 Censoring of the Exposure Variable . . . . . . . . . . . 67
4.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 TMLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Implementation of TMLE and Details of the Analysis . . . . . 71

4.5.1 Super Learner . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.2 Estimating g . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.3 Births Prior to 1979 . . . . . . . . . . . . . . . . . . . 74
4.5.4 Sparsity Issues . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix A Efficient Influence Curve for Discrete L(1) 83

Appendix B Data Generation for Chapters 1 & 2 Simulations 86

Appendix C Data Generation for Chapter 3 Simulations 88

Appendix D Computation of Variance of the Estimators in Chap-
ter 4 90

iii



Acknowledgements

I have always had great luck in encountering, unplanned, brilliant thinkers to
study under in my academic career. In the graduate program in biostatistics
at Berkeley, that previous lucky streak increased beyond all plausibility.

I am indebted first and foremost to my advisor, Professor Mark van der Laan.
Without the tremendous work he’s done paving the way in the realm of efficient
estimation of the type of parameters that are so prevalent in the area of public
health, the field would be a much poorer one. The novelty, depth and scope
of his ideas have not only enriched the field, but have opened up numerous
new paths of research that his students, myself included, can now take. It is a
genuine honor to have worked under his direction and guidance, and to have
experienced his genius at such close range.

I would also like to thank Professors Alan Hubbard and Nick Jewell. Their
guidance over the years has been superb, their ideas and approach to the field of
biostatistics, novel and inspirational. I am also thankful to Maya Peterson for
contributing much to solidifying some of the foundations of my knowledge in
the area of causal inference. They have very different styles of doing statistics,
and it’s been a pleasure to try to incorporate each into my own approach.

Sharon Norris has been an advocate for me in many ways during the years
and I’m indebted to her for all she’s done to help me navigate the university
bureaucracy. She has generously placed me in line for beneficial opportunities
I would not otherwise have been considered for.

Other students in the doctoral program have also been a great help and inspi-
ration to me, and have contributed to making life during the program more
of a pleasure than a burden. Among them are Iván Dı́az, Molly Davies, Inna
Gerlovina, Stephan Ritter, Oliver Bembom, Wenjing Zheng, Curt Hansen,
Farid Jamshidian, Sam Lendle, Luca Pozzi, Sherri Rose, Ori Stitelman, Susan
Gruber, Brian Greenhouse, and at least a few others who’ve contributed to
my development along the way.

My wife, Elina Coulter, has exhibited superhuman patience in allowing the
process to unfold, not least because pressing ahead for a Ph.D after completing
the Masters was never part of the original plan. Her support along the way
has sustained me, and to say that she helped me move past the low points is
an understatement. I don’t know that I could have done it without her.

My beloved son Laszlo was born in the middle of my first year of the Master’s
program, and he too never gave up on me (at least as far as I can tell). It
was always a welcome and necessary diversion to spend time with him when I
needed a break from my work.

Finally, it was worth it alone to complete this dissertation just to get Ken
Bouley and Elliott Long off my back about it.

iv



Chapter 1

Targeted Minimum Loss Based
Estimation with Application to
Sequentially Randomized
Controlled Trials with Dynamic
Treatment Rules

1.1 Introduction

The treatment of many types of afflictions involves ongoing therapy—that is,
application of therapy at more than one point in time. Therapy in this context
often involves treatment of patients with drugs, but need not be limited to
drugs. For example, the use of pill organization devices (“pillboxes”) has been
studied as a means to improve drug adherence (Petersen et al., 2007), and
others (Moodie et al., 2009) have studied the optimum time at which infants
should stop breastfeeding.

A common setting for ongoing treatment therapy involves randomization to
initial treatment (or randomization to initial treatment within subgroups of
the population of interest), followed by later treatments which may also be
randomized, or randomized to a certain subset of possible treatments given
that certain intermediate outcomes occurred, by definition, after the initial
treatment. Examples from the literature include treatment by antipsychotic
medications for reduction in severity of schizophrenia symptoms (Tunis et al.,
2006), treatment of prostate cancer by a sequence of drugs determined by
success or failure of first-line treatment (Bembom and van der Laan, 2007),
when HIV patients should switch treatments (Orellana et al. 2010, van der
Laan and Petersen 2007) and many others.
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Suppose, for example, that every subject in a prostate cancer study is ran-
domized to an initial pair of treatments (A or B, say), and if a subject’s tumor
size increases or does not decrease, the subject is again randomized to A or
B at the second treatment point. On the other hand, if the subject does well
on the first treatment (tumor size decreases, say), then he or she is assigned
the same treatment at the second time point as the first. The general term
for multiple time point treatments in which treatments after the first-line are
assigned in response to intermediate outcomes is dynamic treatment regimes
or dynamic treatment rules (Murphy et al., 2001). If the intermediate outcome
in such SRCTs is affected by initial treatment, and in turn affects decisions
at the second time-point treatment as well as the final outcome, then it is a
so-called “time-dependent confounder.”

1.1.1 Existing Procedures

A number of methods have been proposed to estimate parameters associated
with such a study. This article describes implementation of targeted maximum
likelihood estimation for two time-point longitudinal data structures, and is
based on the framework developed for general longitudinal data structures
presented in van der Laan (2010a,b).

Lunceford et al. (2002) develop inverse probability of treatment weighted
(IPTW) estimators and an estimating equation estimator suitable for analysis
of survival times from a leukemia clinical trial. Wahed and Tsiatis (2004) pro-
pose an estimating equation-based estimator which uses the efficient influence
curve for estimating treatment policy-specific parameters in two-stage clini-
cal trials. They later extended those methods to account for right-censoring
in such trials (Wahed and Tsiatis, 2006). Guo and Tsiatis (2005) develop
what they call a “Weighted Risk Set Estimator” for use in two-stage trials
where the outcome is a time-to-event (such as death). Tunis et al. (2006) use
IPTW methods, Marginal Structural Models and the so-called “g-estimation”
method for analyzing the causal effect of a “continuous” treatment regime
of atypical antipsychotic medications on severity of schizophrenia symptoms.
This study/analysis involved no time-dependent confounders, however. Laber
et al. (2009) use Q-learning to estimate optimal dynamic treatment regimes
in Attention Deficit Hyperactivity Disorder in children. Miyahara and Wa-
hed (2010) used weighted Kaplan-Meier estimators for estimating treatment-
specific survival rates. Orellana et al. (2010) use structural marginal mean
models, IPTW and the so-called augmented inverse probability of censoring
weighted (A-IPCW) estimators with a view toward estimating optimal treat-
ment regimes for switching to HAART therapy among HIV-positive patients.
Bembom and van der Laan (2007) apply simple g-computation and IPTW
estimation procedures in analyzing the optimum response of prostate cancer
patients to randomized first-line treatment followed by second-line treatment
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which was either 1) the same as the first line treatment if that had been deemed
successful, or 2) randomized to three remaining treatments if the first line had
failed. The data used for the latter analysis has recently been re-analyzed us-
ing stabilized IPTW estimation by Wang et al. (2012). The latter article was
the subject of discussion articles, among them a general presentation of the
methods described here (Chaffee and van der Laan, 2012). This type of trial
and data closely resembles what we simulate and analyze in the present study,
though we add baseline covariates and more than two levels of success in the
intermediate biomarker covariate in order to generalize the data structure to
more types of scenarios.

We present a new estimator for this longitudinal data structure: the tar-
geted maximum likelihood estimator (TMLE). TMLE has application in a wide
range of data structures and sampling designs (van der Laan and Rose, 2011).
Though this estimator can be applied to a broad range of data structures of
longitudinal type, we focus here on the estimation of treatment-rule-specific
mean outcomes. This also covers static treatment regimes for the given data
structures.

In the next section we describe the data structure and define the likelihood for
the scenarios we intend to analyze. Once we have specified a counterfactual
target parameter of interest and equated it with a well-defined mapping from
conditional distributions of the data to a real number, we describe TMLE
in broad outline, and in particular, the implementation of two different es-
timators grounded in the general TMLE approach. Specifically we present
the so-called efficient influence curve for certain parameters of interest and
show the relationship between elements of this object and elements of the tar-
geted maximum likelihood estimators. Following these general descriptions we
present simulation results, including details of specific treatment rules, data
generation and results in terms of bias, variance and relative mean squared
error. A short discussion of the results follows.

1.2 Data Structure and Likelihood

In the settings of interest here, a randomly sampled subject has data structure
O = (L(0), A(0), L(1), A(1), Y = L(2)) ∼ P0, where L(0) indicates a vector
of baseline covariates, A(0) is initial randomized treatment, L(1) is, say, an
intermediate biomarker (which we first consider as binary), A(1) is the second
time point treatment (which we also take as binary), Y = L(2) is the clinical
outcome of interest and P0 is the joint distribution of O. We take the data to
be n i.i.d. copies of O. We also assume A(1) can be set in response to L(1).
The patient’s full treatment is therefore (A(0), A(1)), and specific realizations
of (A(0), A(1)) may or may not constitute realizations of a specific dynamic
treatment rule. Such “rules” are dynamic in the sense that the regimen can
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be set according to a patient’s response to treatment over time. However,
even if A(0) and A(1) are both unconditionally randomized, parameters of the
distribution of the above data can nevertheless be identified which correspond
with dynamic treatment regimens.

The data structure for such an experimental unit can be thought of as a time
series in discrete time. For many of the (not necessarily regularly-spaced) time
points there may be no observation of interest, and at others measurable events
of interest occur. Many measurable events may occur at the same time—
e.g., assignment of treatment and recording of measured characteristics. A
specified set of all measured variables that respects this time-ordering, together
with possible additional knowledge about the ordering and relationships of the
variables, implies a particular statistical graph. The graph is a representation
of each variable and its causal relation to its parent nodes, the latter being
defined as all variables that preceded it in the specified time-ordering and are
either direct or indirect causal antecedents. The graph can be modified to
encode not only the time-ordering of the variables but also possible additional
causal assumptions. The likelihood of this unit-specific data structure can be
factorized according to the specified time-ordering, where the factors consist
of the conditional distribution of each node given its parents, for all nodes in
the graph.

The likelihood of the data described above can be factorized as

p(O) =
2∏
j=0

P
(
L(j) | L̄(j − 1), Ā(j − 1)

) 1∏
j=0

P
(
A(j) | L̄(j), Ā(j − 1)

)
, (1.1)

where Ā(j) = (A(0), A(1), ..., A(j)) and L̄(j) is similarly defined. Factorizing
the likelihood in this way is suggested by the time–ordering of the variables
in O. That is, we assume L(0) is followed by A(0), and then L(1), A(1) and
outcome L(2) occur in that order. The above formula is the most general in
the sense that each factor is represented as a function of its parents as defined
by the time-ordering of the data, but in some cases a particular factor may be
a function of fewer nodes than this representation suggests. (An example is
given later in this section.)

Equation (4.1.1) is an example of the general longitudinal factorization

p0(O) =
K∏
k=1

P (N(k) | Pa(N(k))) ,

where N(k) denotes node k, corresponding to observed variable k in the graph,
and Pa(N(k)) are the parents of N(k) (van der Laan, 2010a). We make no

4



assumptions on the conditional distributions of N(k) for each k = 0, 1, 2...K
beyond N(k)’s depending only on Pa(N(k)).

For simplicity, we introduce the notation QL(j), j = 0, 1, 2 to denote the factors
of (4.1.1) under the first product and gA(j), j = 0, 1 for those under the second;
the latter we refer to as the treatment and/or censoring mechanism. Thus in
the simpler notation we have

p(O) =
2∏
j=0

QL(j)

1∏
j=0

gA(j) = Qg.

The factorization of the likelihood alone puts no restrictions on the possible set
of data-generating distributions, but does affect the so-called G-computation
formula for the counterfactual distributions of the data under any interven-
tions implied by the ordering. The G-computation formula also specifies the
set of nodes on which to intervene, as well as the interventions that corre-
spond to the parameter of interest. For the data structures of interest here,
interventions will be on the treatment nodes (A(0), A(1)). These interventions
could be simply static assignment of treatment at each time point, or the
above-mentioned dynamic treatment rules.

A typical parameter of interest in point treatment settings is the treatment-
specific mean. For example if A is treatment, with levels a = {0, 1}, a
causal parameter of interest might be EY1, which is the mean outcome of
the population had that entire population received treatment 1. Similarly,
we define a treatment-specific mean for the multiple time point data struc-
ture where now a particular treatment means a specific treatment course
over time. We define a treatment rule, d = (d0, d1) for the treatment points
(A(0), A(1)), which is the set of mappings d0 : D0 → A0, d1 : D1 → A1, where
Aj, j = 0, 1 is the set of possible values for A(j), D0 is the support of L(0)
and D1 is the support of (L(0), A(0), L(1)). We can express the overall rule
as d(L̄(1)) =

(
d0(L(0)), d1(L̄(1))

)
. Under this definition we can easily express

either static or dynamic treatment rules, or a combination of the two (see
examples in section 1.4.1). For example, d0 = 1 would correspond to a static
assignment for A(0), and d1 = I(L(1) = 1)∗1+I(L(1) = 0)∗0 is dynamic since
it assigns treatment A(1) in response to the patient’s intermediate outcome,
L(1).

We can now define the G-formula to be the product across all nodes, excluding
intervention nodes, of the conditional distribution of each node given its parent
nodes, and with the values of the intervention nodes fixed according to the
static or dynamic intervention of interest. This formula thus expresses the
distribution of L̄ given Ā = (A(0), A(1)) is at value d(L̄).
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P d(L̄) =
2∏
j=0

Qd
L(j)(L̄(j)), (1.2)

where we used the notation

Qd
L(j)(L̄(j)) ≡ P (L̄(j) | L̄(j − 1), Ā(j − 1) = d(L̄(j − 1))).

The superscript d here denotes that the joint distribution of L̄ is conditional
on Ā = d(L̄). We reserve subscript d to refer to counterfactually-defined
variables.

Under the right conditions on the causal graph augmented by a set of nodes
that include unobserved variables (see below), the G-computation formula
equals the counterfactual distribution of the data had one carried out the
specified intervention described by the graph. In point treatment settings
the conditions are desribed as no unblocked backdoor paths from intervention
node to outcome node, or in alternative formulation, d-separation of interven-
tion and outcome nodes conditional on some subset of observed nodes (Pearl,
2000). Meeting these assumptions typically implies meeting the so-called ran-
domization assumption. In longitudinal settings, the analog is the sequential
randomization assumption (SRA) which is a generalized version of the no un-
blocked backdoor path condition, applied to multiple treatment nodes, defined
formally below.

1.2.1 Causal and Statistical Models

We signify the non-parametric causal model of interest MF , which includes
all possible distributions compatible with a specified causal structure. Such a
structure can be encoded in the form of an acyclic graph as mentioned above,
or a set of structural equations. The set of such equations, together with pos-
sible additional causal assumptions defines a so-called structural causal model
(SCM). Restrictions on relationships between nodes (other than those implied
by the time ordering itself) can reduce the size of the set of parent nodes for a
given node, and result in a semi-parametric causal model. The non-parametric
set of such equations (i.e., with no exclusion restrictions) corresponding to the
data structure here, for example, is

U = (UL(0), UA(0), UL(1), UA(1), UY ) ∼ PU

L(0) = fL(0)

(
UL(0)

)
A(0) = fA(0)

(
L(0), UA(0)

)
L(1) = fL(1)

(
L(0), A(0), UL(1)

)
6



A(1) = fA(1)

(
L(0), A(0), L(1), UA(1)

)
Y = fY (L(0), A(0), L(1), A(1), UY ) ,

where UL(0), UA(0), etc., are the so-called exogenous variables of the system—
random inputs associated with each of the graph nodes that are not affected by
any other variable in the model. The SCM represented above does not restrict
the set of functions F =

{
fL(0), fA(0), ...fY

}
to any particular functional form.

Further, each node is represented as a function of the complete set of parent
nodes implied by the time ordering. If, in addition, no assumptions are made
about the independence of the variables in U , then the causal model is fully
non-parametric. (This formulation of the SCM is based on Pearl, 2000.)

The nodes in the graph correspond to the endogenous variables—those vari-
ables that are affected by other variables in the graph, which we denote gener-
ically as X = {X1, ...XJ}. For the SCM depicted above, the set X consists
of the observed variables, i.e., X = O. Each endogenous variable, Xj, is the
solution of a deterministic function of its parents and Uj; the latter represents
all the unknown mechanisms that are involved in the generation of Xj. The
causal model can now be expressed as all probability distributions compatible
with the SCM. Elements of the observed data model, M, can be thought of
as being indexed by the elements of MF , i.e., for every P in M, P = PPU,X

for some PU,X ∈MF , or, alternatively, M =
{
PPU,X

: PU,X ∈MF}.

Assumptions of independence between any of the U ′s have implications for
identifiability of the causal parameter in terms of the distribution of the ob-
served data. For example, strict randomization of A(0) makes UA(0) indepen-
dent of all other U ′s, which will typically reduce the number of additional
assumptions needed for identifiability. Excluding nodes from the parent set
of a given node restricts the set of allowed distributions of the observed data,
M, corresponding to MF .

Suppose now that we are interested in the outcomes of individuals had their
treatment regimen been assigned according to some rule, d. Given a particular
SCM such as the one defined above, we can write Yd, the so-called counterfac-
tual outcome under rule d, as the solution to the equation

Yd = fY (L(0), A(0) = d0(L(0)), Ld(1), A(1) = d1(L̄), UY ),

where now Ld(1) is the value L(1) takes under rule d. The full SCM under
intervention d is

U = (UL(0), UL(1), UY ) ∼ PU

L(0) = fL(0)(UL(0))

A(0) = d0(L(0))

Ld(1) = fL(1)(L(0), A(0) = d0(L(0)), UL(1))
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A(1) = d1(L̄)

Yd = fY (L(0), d0, Ld(1), d1, UY ).

With the counterfactual outcome Yd now defined in terms of the solution to a
system of structural equations, we can define a corresponding counterfactual
parameter of PU,X , say ΨF (PU,X) = EYd, which in fact is the parameter we
concern ourselves with in this article. Using (1.2),

ΨF (PU,X) = EYd =
∑

l(0),l(1)

E (Yd | L(0) = l(0), Ld(1) = l(1))
1∏
j=0

QLd(j)(l̄(j)),

(1.3)

where QLd(j) ≡ P (Ld(j) | L̄d(j−1)) and we omit the subscript d on L(0) since
it is prior to any treatment. In words, this parameter is the mean outcome
under PU,X when treatment is set according to Ā = d(L̄).

As mentioned above, the parent set of nodes for any given node can be re-
duced if confirmed by additional knowledge of the conditional distribution of
the node. If it is known, for example, that a particular node is a function only
of a subset of its parents, then the parent nodes not in that subset can be
excluded from the conditional distribution of that node. Such putative knowl-
edge reduces the size of the model for the data-generating distribution, and
can be tested from the data. For example, if A(1) is assigned such that it is
only a function of L(1) then the set Pa (A(1)) \L(1) provides no information
about the probability of A(1) beyond that contained in L(1), so

P
(
A(1) | Pa(A(1)

)
≡ P

(
A(1) | L(0), A(0), L(1)

)
= P

(
A(1) | L(1)

)
.

Once an SCM is committed to, one can formally state the assumptions on the
SCM required in order for a particular G-computation formula for the observed
nodes to be equivalent to the G-computation formula for the full set of nodes
(1.3), which includes any relevant unobserved nodes. The latter can be viewed
as the true causal parameter of interest (Pearl, 2000).

For the parameter of interest here, EYd, the sequential randomization assump-
tion (SRA), Yd ⊥ A(j) | Pa(A(j)) for j = 0, 1, is sufficient for equivalence of
the causal parameter ΨF (PU,X) and a particular parameter of the observed
data distribution Ψ(P0) for some Ψ (Robins, 1986). In particular, the SRA
implies
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ΨF (PU,X) ≡ EYd = (1.4)

Ψ(P0) =
∑

l(0),l(1)

E
(
Y | L(0) = l(0), L(1) = l(1), Ā = d(L̄)

)
×

P
(
L(1) = l(1) | L(0) = l(0), A(0) = d0

)
×

P
(
L(0) = l(0)

)
,

which is the so-called identifiability result.

Note that this parameter depends only on the Q part of the likelihood and we
therefore also write Ψ(P0) = Ψ(Q0). Note also that the first two factors in the
summand are undefined if either P

(
Ā = d(L̄) | L(0) = l(0), L(1) = l(1)

)
or

P
(
A(0) = d0 | L(0) = l(0)

)
are 0 for any (l(0), l(1)), and so we require these

two conditional probabilities to be positive. This is the so-called positivity
assumption.

In this article we present a method for semi-parametric efficient estimation of
causal effects. This is achieved through estimation of the parameters of the
G-computation formula given above. The method is based on n independent
and identically distributed observations of O, and our statistical model M,
corresponding to the causal model MF , makes no assumptions about the
conditional distribution ofN(k) given its parents, for each k in the graph.

Our parameter of interest, EYd, can be approximated by generating a large
number of observations from the intervened distribution Pd and taking the
mean of the final outcome, in this case L(2). The joint distribution Pd can itself
be approximated by simulating sequentially from the conditional distributions
QLd(j), j = 0, 1, 2 to generate the observed values L(j).

EYd can also be computed analytically:

Ψ(Q0) ≡ EYd =
∑
y
y
∑

l(0),l(1)

Pd
(
l(0), l(1), y

)
SRA
=
∑
y
y
∑

l(0),l(1)

P
(
Y = y | Ā = d(L̄), L(0) = l(0), L(1) = l(1)

)
×

P
(
L(1) = l(1) | L(0) = l(0), A(0) = d0(L(0))]× P [L(0) = l(0)

)
=
∑
y
y
∑

l(0),l(1)

QdL(2)

(
l(0), l(1), y

)
QdL(1)

(
l(0), l(1)

)
QdL(0)

(
l(0)

)
,

The last expression is equivalent to the RHS of (1.4) if Y is binary. If L(0)
is continuous, the sum over l(0) is replaced by an integral. The integral is
replaced in turn by the empirical distribution if the expression above is ap-
proximated from a large number of observations. In that case the last line
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reduces to

Ψ(Q0) =
1

n

n∑
i=1

∑
y

y
∑
l(1)

Qd
L(2)

(
L(0)i, l(1), y

)
Qd
L(1)

(
L(0)i, l(1)

)
. (1.5)

The latter expression represents a well-defined mapping from the conditional
distributions QL(j) to the real line. Given an estimator Qn ≡

∏2
j=0QL(j)n of

Q0 ≡
∏2

j=0QL(j) we arrive at the substitution estimator Ψ(Qn) of Ψ(Q0).

Next we describe the targeted minimum loss based estimator (TMLE) of the
relevant parameters of the G-computation formula. The TMLE is double-
robust and locally efficient. The methods described here extend naturally to
data structures with more time points, and/or more than one time-dependent
confounder per time point (van der Laan, 2010a).

1.3 Targeted Maximum Likelihood Estimator

With the above parameter now established to be a well-defined mapping from
the distribution of the data to the real line, we turn to the estimation of the
conditional distributions, QL(j) which are the domains of the function defining
the parameter of interest, Ψ(Q0).

1.3.1 Basic Description

In targeted maximum likelihood estimation we begin by obtaining an initial
estimator of Q0; we then update this estimator with a fluctuation function that
is tailored specifically to remove bias in estimating the particular parameter
of interest. Naturally, this means that the fluctuation function is a function of
the parameter of interest. There are, of course, various methods for obtaining
an initial estimator: one can propose a parametric model for each factor QL(j)

and estimate the coefficients using maximum likelihood, or one can employ
machine learning algorithms which use the data itself to build a model. The
former method involves using standard software if the factors L(j) are binary.
Each of these general methods in turn has many variants. We favor machine
learning, and in particular the Super Learner approach (van der Laan et al.,
2007a). We recommend the latter approach in all cases because even if one feels
one knows the true parametric model (and guessing the true model is highly
unlikely) that belief can be validated by including this parametric model in
the Super Learner library. If the model has good predictive results (where
“good” here means low estimated cross-validated risk using an appropriate
loss function) it will tend to be weighted highly in the final model returned
by the Super Learner. If not, then the data do not support the analyst’s
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guess and the model will be given a low weight. Moreover, the authors of
the Super Learner algorithm have shown that this particular machine learning
approach yields a model whose asymptotic properties approach those of the
“oracle” selector amongst the learners included in the Super Learner library.
There thus appears to be nothing to lose—and everything to gain—in using
this approach to obtaining an initial estimator Q(0) of Q0. (Here we change
notation slightly: the superscript (0) denotes the initial step in a multi-step
algorithm, and does not signify a treatment rule.)

Upon obtaining an initial estimate Q(0) of Q0, the next step in TMLE is to
apply a fluctuation function to this initial estimator that is the least favor-
able parametric submodel through the initial estimate, Q(0) (van der Laan
and Rubin, 2006). This parametric submodel through Q0 is chosen so that
estimation of Ψ(Q0) is “hardest in the sense that the parametric Cramer-Rao
Lower Bound for the variance of an unbiased estimator is maximal among all
parametric submodels,” (van der Laan, 2010a). Since the Cramer-Rao lower
bound corresponds with a standardized L2 norm of dΨ

(
Qn(ε)

)
/dε evaluated

at ε = 0, this is equivalent to selecting the parametric submodel for which this
derivative is maximal w.r.t. this L2 norm.

We also seek an (asymptotically) efficient estimator. This too is achieved
with the above described fluctuated update Qn(ε) because the score of our
parametric submodel at zero fluctuation equals the efficient influence curve
of the pathwise derivative of the target parameter, Ψ (also evaluated at ε =
0).

TMLE thus essentially consists in 1) selecting a submodel Qg(ε) possibly in-
dexed by nuisance parameter g, and 2) a valid loss function L(Q,O) : (Q,O)→
L(Q,O) ∈ R. Given these two elements, TMLE solves

Pn

{
d

d(ε)

(
L
(
Q∗n(ε)

))
ε=0

}
= 0, (1.6)

so if this “score” is equal to the efficient influence curve, D∗(Q∗n, gn), then we
have that Q∗n solves PnD

∗(Q∗n, gn) = 0. Now a result from semi-parametric
theory is that solving this efficient score for the target parameter yields, under
regularity conditions (including the requirement that Qn and gn consistently
estimate Q0 and g0, respectively), an asymptotically linear estimator with
influence curve equal to D∗(Q0, g0). The TMLE of the target parameter is
therefore efficient. Moreover, the TMLE is double-robust in that it is a con-
sistent estimator of Ψ(Q0) if either Qn or gn is consistent.

TMLE acquires this property by choosing the fluctuation function, Q∗, such
that it includes a term derived from the efficient influence curve of Ψ(Q0).

The following theorem presents the efficient influence curve for a parameter like
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the ones described above. The content of the theorem will make it immediately
apparent why the fluctuation function described subsequently takes the form
it does; i.e., it will be seen how the terms in the efficient influence curve lead
directly to the form of the fluctuation function, QL(j)n(ε).

1.3.2 Efficient Influence Curve

We repeat here Theorem 1 from van der Laan (2010a).

Theorem 1 The efficient influence curve for Ψ(Q0) = E0Yd at the true dis-
tribution P0 of O can be represented as

D∗ = Π(DIPCW | TQ),

where

DIPCW (O) =
I
(
Ā = d(L̄)

)
g
(
Ā = d(L̄) | X

)Y − ψ.
TQ is the tangent space of Q in the nonparametric model, X is the full data (in
the present context the full data X would be defined as {N(k) : k = 0, 1, 2, ..., K})
and Π denotes the projection operator onto TQ in the Hilbert space L2

0(P0) of
square P0-integrable functions of O, endowed with inner product 〈h1, h2〉 =
EP0h1h2(O).

This subspace

TQ =
2∑
j=0

TQL(j)

is the orthogonal sum of the tangent spaces TQL(j)
of the QL(j)-factors, which

consists of functions of L(j), Pa
(
L(j)

)
with conditional mean zero, given the

parents Pa
(
L(j)

)
of L(j), j = 0, 1, 2. Recall also that we denote L(2) by ‘Y .’

Let

D∗j (Q, g) = Π
(
Dj | TQL(j)

)
.

Then
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D∗0 =E
(
Yd | L(0)

)
− ψ,

D∗1 =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]
×{

CL(1)(Q0)(1)− CL(1)(Q0)(0)
}{

L(1)− E
(
L(1) | L(0), A(0)

)}
,

D∗2 =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X]

{
L(2)− E

(
L(2) | L̄(1), Ā(2)

)}
,

where, for δ = {0, 1} we used the notation

CL(1)(Q0)(δ) ≡ E
(
Yd | L(0), A(0) = d(L(0)), L(1) = δ

)
.

We note that

E
(
Yd | L(0), A(0) = d0(L(0)), L(1)

)
= E

(
Y | L̄(1), Ā = d(L̄)

)
.

We omit the rest of the theorem as presented in van der Laan (2010a) as it
pertains to data structures with up to T time points, T ∈ N.

As mentioned above, TMLE solves the efficient influence curve equation,
PnD

∗(Q∗n, gn) = 0. This is accomplished by adding a covariate to an initial

estimator Q
(0)
L(j) as follows. (Here L(j) is taken as binary.)

logit
(
QL(j)n(ε)

)
= logit

(
Q

(0)
L(j)n

)
+ εCL(j)(Qn, gn), (1.7)

where, for example,

CL(1)(Q, g) ≡ I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
CL(1)(Q0)(1)− CL(1)(Q0)(0)

}
,

with CL(1)(Q0)(δ) as defined in Theorem 1, and

CL(2)(Q, g) ≡
I
(
Ā = d(L̄)

)
g
(
Ā = d(L̄) | X

) .
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It immediately follows that this choice of QL(j)(ε) yields a score that is equal
to the efficient influence curve at ε = 0 as claimed.

1.3.3 Implementation of the TMLE’s

Below we briefly describe two different procedures for the fitting of ε, which
we call the one-step and iterative approaches, which result in two distinct
targeted maximum likelihood estimators. The iterative approach estimates a
common ε for all factors for which a fluctuation function is applied, and the
one-step estimator fits each factor separately. In the latter case ‘ε’ in equation
(1.7) should be replaced with ‘εj.’

There is at least one other method of fitting ε that we are aware of, which we
describe in the next chapter. The idea here is to start with an initial estimator
Qn(ε), where this initial estimator is defined as in equation (1.7), with ε chosen
at some initial value (say −1 ≤ ε ≤ 1). This estimator is then plugged into
the empirical efficient influence curve estimating equation, and then numerical
analysis methods are used to find

εn = argmin
ε
|PnD∗(Qn(ε), gn)|,

where gn is an estimate of the treatment mechanism, which can be either given
or estimated from the data, and ε ∈ [a, b] where a, b are assumed to bracket
the solution εn. We describe this procedure in detail in chapter 2.

It’s worth noting that the number of different TMLE’s is not limited to the
number of methods for fitting the fluctuation function. Targeted maximum
likelihood estimators can also be indexed by different initial estimators, Q(0).
Thus, for example, one may choose an initial estimator corresponding to a
parametric model for Q0, or, as we prefer, choose one corresponding to a
data-adaptive estimator. The latter can be partitioned into many varieties
as well; thus the number of initial estimators is vast, and this translates to
a corresponding number of possible TMLE’s. We explore this flexibility in
some detail in chapter 3. The class of TMLE’s is thus defined by the fact
that they all apply a specific fluctuation function to the initial estimator Q(0)

(which is explicitly designed so that the derivative of the loss function at zero
fluctuation is equal to the efficient influence curve), independent of the choice
of Q(0), and a loss function for the purposes of estimating ε.

Of course, some choices for Q(0) are better than others in that they will be
better approximations of Q0. Doing a good job on the initial estimator has
important performance consequences, which is one good reason to pursue an
aggressive data-adaptive approach.
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One-Step TMLE

The one-step TMLE exploits the fact that estimates of the conditional distri-
butions of Y and Yd are not required in order to compute the clever covariate
term of QL(2)(ε), the latter being the final Q0 term in the time-ordering of
the factors (for a two-stage sequential randomized trial). This allows one to

update Q
(0)
Ld(2) ≡ P

(
Yd = 1 | Ld(1), L(0)

)
= EQ(0)

(
Yd | Ld(1), L(0)

)
with

its fluctuation ε2CL(2)(Q, g) first, then use this updated (i.e., fluctuated) esti-
mate Q∗L(2) in the updating step of the QL(1) term. We remind the reader that

the efficient influence curve—and hence CL(j)(Q, g)—is parameter-specific, and
therefore different parameters (which in our context amounts to different EYd
indexed by d) will have different realizations of the clever covariates.

As with the maximum likelihood estimator (discussed in section 2.2), both

estimators (one-step and iterative) require an initial estimate Q
(0)
L(j) of QL(j) for

j = 0, 1, 2, where Q
(0)
L(0) ≡ PQ(0)(L(0)) will just be estimated by the empirical

distribution of L(0). Thus the estimates Q
(0)
L(j), j = 1, 2 would just be, e.g., the

ML estimates if that is how one obtains one’s initial estimate of Q0. (However,
as mentioned previously, we strongly recommend a data-adaptive/machine
learning approach for obtaining the initial estimators.) Upon obtaining these
initial estimates of Q0, one then computes an “updated” estimate Q∗L(2) by

fitting the coefficient ε2 using (in this case of binary factors), logistic regression.
The estimate of ε2 is thus an MLE. This means computing a column of values
of CL(2) (one value per observation) and then regressing the outcome L(2)

on this variable using the logit of the initial prediction (based on Q
(0)
L(2)) as

offset. That is, for each observation a predicted value of L(2) on the logit

scale is generated based on the previously obtained Q
(0)
L(2). Then ε2,n is found

by regressing L(2) on the computed column CL(2) with logit
(
Q

(0)
L(2)

)
as offset.

(This is achieved in R with the offset argument in the glm function.)

Note that this clever covariate, CL(2), requires an estimate of g
(
Ā | X) =

g(Ā | L(0), L(1)
)

(the latter equality valid under the sequential randomization
assumption). With A(0) random and A(1) a function of L(1) only, and if L(1)
is binary or discrete, this estimate is easily obtained non-parametrically. If
L(1) is continuous, some modeling will be required.

Having obtained an estimate Q∗L(2) (which is parameter-dependent, and hence

targeted at the parameter of interest), one then proceeds to update the estimate
of QL(1) by fitting the coefficient ε1,n—again using logistic regression if L(1)
is binary. Note that the clever covariate CL(1)(Q, g) involves an estimate of
QL(2). Naturally, we use our best (parameter-targeted) estimate for this, Q∗L(2),

which was obtained in the previous step. Q∗ ≡
(
Q∗L(1), Q

∗
L(2)

)
now solves the

efficient influence curve equation, and iterating the above procedure will not
result in an updated estimate of Q∗—i.e., the estimates of ε will be zero if the
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procedure is repeated using the Q∗ obtained in the previous round as initial
estimator. Armed now with the updated estimate Q∗, we obtain the one-step
TMLE, Ψ(Q∗), from the G-computation formula (1.5) for our parameter of
interest with Q∗ in place of Q0.

When L(1) is multilevel—say, four levels—one can model QL(1) as follows.
Code each of the categories for L(1) ∈ {0, 1, 2, 3} as a binary indicator variable,
L(1,m), m = 0, 1, 2, 3:

P
(
L(1) = m |Pa

(
L(1)

))
(1.8)

= P
(
L(1) = m | L(1) ≥ m,Pa

(
L(1)

))
P
(
L(1) ≥ m | Pa(L(1)

))
(1.9)

= P
(
L(1,m) = 1 | L(1) ≥ m,Pa

(
L(1)

))
× (1.10)

m−1∏
m′=0

{
1− P

(
L(1,m′) = 1 | L(1) ≥ m′, Pa

(
L(1)

))}
(1.11)

= QL(1,m)

(
1, L̄(1,m− 1) = 0, Pa

(
L(1)

))
× (1.12)

m−1∏
m′=0

QL(1,m′)

(
0, L̄(1,m′ − 1) = 0, Pa

(
L(1)

))
, (1.13)

where L̄(1, s) =
(
L(1, s), L(1, s − 1), ..., L(1, 0)

)
. In this way, the conditional

density of each binary factor of L(1), QL(1,m), can be estimated using logistic

regression. We now denote QL(1) =
∏3

m=0QL(1,m).

To estimate these binary conditional densities, one creates a new data set
analogous to a repeated measures data set, in which the number of rows cor-
responding to each observation is determined by the value of m for which
L(1,m) = 1. For example, suppose that for individual i, L(1)i = 2 and there-
fore L(1, 2)i = 1. Then i will contribute three rows of data where the values
in the cells for each row are identical except for two columns: a column that
denotes an indicator and an adjacent column corresponding to the increasing
values of m from 0 to 2. The rows for the indicator column for this individual
are 0 up until m = 2 (at which the indicator is 1), and the next row is the
first row for the next individual in the dataset. One now performs a logistic
regression of the column corresponding to the indicator on the parents of L(1),
including the column for m.

Now with conditional densities for these binary indicator variables in hand, one
can proceed with the targeting step. Each QL(1,m), m = 0, 1, 2, 3 is updated
by adding a clever covariate term. The terms are again derived from the cor-
responding part of the efficient influence curve associated with the likelihood
of the data, as factorized according to this new data structure with binary
indicator variables (see Appendix A). One can see from these terms that the
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updating proceeds as above for the binary L(1) case, i.e., one computes CL(2)

first, then the terms CL(1,m), m = 0, 1, 2, 3 in sequence backwards in time,
starting with CL(1,3), and performs logistic regression to obtain the estimates
of ε. Again, this process of computing the clever covariates and estimating the
corresponding ε′s converges in one round.

Iterative TMLE

The procedure here corresponds to estimating ε with the MLE,

εn = argmax
ε

2∏
j=1

n∏
i=1

QL(j),n(ε)(Oi).

In contrast to the one-step approach, here we estimate a single/common ε for
all factors QL(j), j = 1, 2.

This iterative approach requires treating the observations as repeated mea-
sures. Thus, (assuming L(1) binary for the moment), each observation con-
tributes two rows of data, and instead of a separate column for L(1) and L(2),
the values from these columns are alternated in a single column one might
call “outcome.” Thus the first two rows in the data set correspond to the
first observation. Both rows are the same for this first observation except for
three columns: those for outcome, offset and clever covariate. There are no
longer separate columns for L(1) and L(2), nor for the offsets, and there is
likewise a single column for CL(j). The rows for all three columns alternate
values corresponding to j = 1 and j = 2 (as described for L(j)).

If L(1) is multi-level, the repeated measures for each observation consists of
the rows described in the previous section, plus one row for L(2).

Maximum likelihood estimation of ε is then carried out by running logistic
regression on the outcome with CL(j) as the sole covariate, and with the logit

of the initial estimator, logit
(
Q

(0)
L(j)

)
, as offset. This value of εn is used as

coefficient for the clever covariates in the QL(j)(ε) terms for the next itera-
tion. Note that CL(1) = CL(1)(Qn, gn). Thus for the kth iteration (k = 1, 2, ...),

C
(k)
L(1) = C

(k)
L(1)

(
Q

(k−1)
n , gn

)
, and gn is not updated. The process can be iterated

till convergence. Convergence is hardly required, however, if the difference

|ψ(k−1)
n − ψ

(k)
n | is much smaller than var

(
ψ

(k−1)
n

)
. Here ψ

(k)
n ≡ Ψ

(
Q(k)(ε)

)
is the kth iteration TMLE of the parameter, and the estimated variance,

varn

(
ψ

(k−1)
n

)
can be used in place of the true variance. Our simulations sug-

gest that the iterated values of ψ
(k)
n are approximately monotonic, and in any

case, the value of |εn| for successive iterations typically diminishes more than
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an order of magnitude. The latter fact implies that successive iterations always
produce increasingly smaller values of the absolute difference |ψ(k−1)

n − ψ(k)
n |,

which means that once this difference meets the above stated criterion, the
process is complete for all practical purposes.

1.4 Simulations

We simulated data corresponding to the data structure described in section
1.2 under varying conditions. The specifics of the data generation process are
given in Appendix B. The conditions chosen illustrate the double-robustness
property of TMLE and EE, and behavior at various sample sizes. We report
on simulations in which A(0) was assigned randomly but A(1) was assigned
in response to an individual’s L(1); the latter corresponding to an individual’s
intermediate response to treatment A(0). The specification of these dynamic
regimes are given in the following section.

Simulations were divided into two main cases: binary L(1), and discrete L(1)
with four levels. For each simulated data set, we computed the estimate of
the target parameter Ψ(P0) ≡ EYd for three specific rules using the follow-
ing estimators: 1) One-step TMLE; 2) Iterative TMLE; 3) Inverse Probabil-
ity of Treatment Weighting (IPTW); 4) Efficient Influence Curve Estimating
Equation Methodology (EE); 5) Maximum Likelihood Estimation using the
G-computation formula. In the Results subsection we give bias, variance and
relative MSE estimates.

Here is a brief description of each of the estimators examined.

• Maximum Likelihood
The (parametric) MLE requires a parametric specification of QL(j) for
computation of the parameter estimate, Ψ(Q0). The form used (e.g.,
QL(j),n = expit[m(L̄(j − 1), Ā(j − 1) | βn)] for some function m(· | ·))
was either that of the correct QL(j) or a purposely misspecified form, and
in either case the MLE of the coefficients β were obtained with common
software (namely, the glm function in the R language). The estimate of
EYd was then computed using the G-computation formula (1.5), which,
e.g., with binary Y and binary L(1), and using the empirical distribution
of L(0) is
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Ψ(Q0) =
1

n

n∑
i=1

∑
y

y
∑
l(1)

QdL(1)(L(0)i, l(1))QdL(2)(L(0)i, l(1), y)

=
1

n

n∑
i=1

{
QdL(1)(L(0)i, l(1) = 1)QdL(2)(L(0)i, l(1) = 1, y = 1)

+QdL(1)(L(0)i, l(1) = 0)QdL(2)(L(0)i, l(1) = 0, y = 1)
}
.

The maximum likelihood estimator, which is a substitution estimator,
can thus be expressed as ΨMLE

n = Ψ
(
Q(0)

)
, where for each factor Qd

L(j)

in the G-computation formula, the corresponding MLE, Q
(0)d
L(j) is substi-

tuted, and where Q(0),d ≡ QMLE,d.

The estimator thus requires estimations of QL(j) ≡ P (L(j) | Pa(L(j))),
which as mentioned above, were correctly specified for one set of simu-
lations and incorrectly specified for another.

• One-Step TMLE
See Implementation section above. The initial estimator of Q0 is the
MLE estimator given above.

• Iterative TMLE
See Implementation section above. Here also the initial estimator of Q0

is the MLE estimator.

• IPTW
The IPTW estimator is defined to be

ψIPTWn =
1

n

n∑
i=1

Yi
I(Āi = d(L̄)

g[Āi = d(L̄) | Xi]
.

As with TMLE, this estimator requires estimation of g[Ā = d(L̄) | X],
which for binary factors and binary treatment is a straightforward non-
parametric computation. The IPTW estimator is known to become un-
stable when there are ETA violations, or practical ETA violations. Ad-
justments to the estimator that compensate for these issues have been
proposed (Bembom and van der Laan, 2008). In the simulations at hand,
g[Ā = d(L̄) | L̄] was bounded well away from 0 and 1 but was nevertheless
not estimated at all (the true distribution of A | X was used). However,
van der Laan and Robins (2003) show that there is some efficiency gain
in estimating g(Ā | L̄) over using the known true g.

• Estimating Equation Method
This method solves the efficient influence curve estimating equation in
ψ. That is,
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ψEEn = PnEQn(Yd | L(0)) +
1

n

∑
i

{
D∗1,n(Oi) +D∗2,n(Oi)

}
,

with D∗1,n, D
∗
2,n as given in Theorem 1 except that the true conditional

expectations of Y and of Yd in the expressions for D∗1 and D∗2 are replaced
with their respective sample estimates. The only difference between this
estimator and the so-called augmented inverse probability of censoring
weights (A-IPCW) estimator is in the way the expression for the efficient
influence curve is derived. The results for the A-IPCW estimator should
be identical to those for the one we describe here.

Just as with the TMLE, this estimator requires model specifications of
QL(j), j = 1, 2 for estimation of E(Yd | L(0)) and for the elements of
D∗1, D

∗
2 that involve conditional expectations of Yd and of Y . Here again

we used the ML estimates of QL(j), under both correct and incorrect
model specification scenarios, i.e., we used Qn = Q(0) for the factors
involving estimates of Q0 in the estimating equation above. (See de-
scription of the Maximum Likelihood Estimator above.)

1.4.1 Some Specific Treatment Rules

We considered several treatment rules, one set for binary L(1) (three different
rules), and a necessarily different set (also three separate rules) for the discrete
L(1) case. This permits easy computation of the natural parameters of interest
EYdi−EYdj , for i 6= j, where in our case, i, j = 1, 2, 3. Indeed such parameters
are arguably the ultimate parameters of interest to researchers utilizing longi-
tudinal data of the type described here, since they implicitly give the optimum
treatment rule among those considered. As the number of discrete levels of
L(1) increases, one can begin considering indexing treatment rules by thresh-
old levels θ of L(1) such that, e.g., assuming binary A(0) and A(1), one could
set A(1) according to A(1) = [1− A(0)]I(l(1) < θ) + [A(0)]I(l(1) ≥ θ).

Binary L(1)

In the binary L(1) case, we considered the following three treatment rules

• Rule 1 . A(0) = 1, A(1) = A(0) ∗ I(L(1) = 1) + (1−A(0)) ∗ I(L(1) = 0).
In words, set treatment at time 0 to treatment 1, and if the patient
does well on that treatment as defined by L(1) = 1, continue with same
treatment at time 1. Otherwise, switch at A(1) to treatment 0.

• Rule 2 . A(0) either 0 or 1, and A(1) = A(0). That is, A(0) can be
either 0 or 1, but whatever it is, stay on the same treatment at time 1,
independent of patient’s response to treatment A(0).
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• Rule 3 . A(0) = 0, A(1) = A(0) ∗ I(L(1) = 1) + (1−A(0)) ∗ I(L(1) = 0).
In words, set treatment at time 0 to 0 and if the patient does well, stay
on treatment 0 at time 1, otherwise switch to treatment 1 at A(1). This
is identical to Rule 1 except that patients start on treatment 0 instead
of treatment 1.

Note that estimation of, or evaluation of, a rule-specific parameter does not
require that patients were actually assigned treatment in that manner, i.e.,
according to the rule. If patients were assigned treatment randomly, then one
simply needs to know which individuals in fact followed the rule in order to
estimate the rule-specific mean outcome. In this case, and with P (A(0) = 1) =
P (A(1) = 1) = 0.5, one could also construct the simple, consistent estimator
(1/nd)

∑
i YiI(Āi = d(L̄i)), where nd =

∑
i(Āi = d(L̄i)), but this estimator is

inefficient relative to the double-robust estimators.

On the other hand, if treatment was indeed assigned according to, e.g., one of
the above treatment rules, then L(1) is a time-dependent confounder. These
are really the cases of interest. If one’s estimator does not adjust for confound-
ing in these cases it will be biased. All the estimators we compared attempt
to adjust for confounding in one way or another.

Discrete L(1) with Four Values

With discrete-valued L(1) (L(1) ∈ {0, 1, 2, 3}), the treatment rules were nec-
essarily modified slightly to accommodate the additional values. The analog
of rule 1 above, for example, is of the form

• A(0) = 1, A(1) = A(0) ∗ I(L(1) > l(1)) + (1−A(0)) ∗ I(L(1) ≤ l(1)) for
some l(1) ∈ {0, 1, 2, 3}.

1.4.2 Simulation Results

Notes on the tables

Estimates of bias, variance and relative mean squared error (Rel MSE) are
presented for the TMLEs and several comparison estimators. We define rel-
ative MSE for each estimator as the ratio of its MSE to that of an efficient,
unbiased estimator. The efficiency bound here is the variance of the efficient
influence curve. Thus for each estimator ψn of ψ0,

Rel MSE ≡ (E(ψn)− ψ0)2 + var(ψn)

var(D∗(Q, g))/n
, (1.14)
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whereD∗ is the efficient influence curve for the relevant parameter, ΨF . In fact,
the value used in these computations for var (D∗(Q, g)) is itself an estimate
computed from taking the variance of D∗(Q0, g0)(O) from a large number of
observations generated from P0.

The bias values shown are not accurate to much less than 10−3. This is because
the true parameter values were also obtained by simulation from the true Pd
for each rule d with a large number of observations. Thus bias estimates that
appear to be smaller than this should be viewed as simply being < 10−3. We
indicate these estimates with an asterisk.

Qm, gc denotes results where g (the treatment mechanism) was correctly spec-
ified, but QL(2) was purposely misspecified. Qc, gc are simulations for which
both Q and g are correctly specified. In an SRCT, we expect g to be known
and thus did not perform analyses with a misspecified g. For each trial sce-
nario we present results for both Qc, gc and Qm, gc. Note that the IPTW
estimator is not affected by whether or not Qn is correctly specified, since it
does not estimate Q0.

Varying numbers of simulations were done under the different scenarios. The
number of simulations under each configuration (i.e., a given scenario and
either Qc, gc or Qm, gc) ranged from 1990 to 5000 depending on computation
time.

Confidence Intervals and Coverage Estimates

Table 1.3 gives influence curve-based estimates of the true coverage for com-
puted 95% confidence intervals for the two TMLEs. The latter were computed
for each simulated data set by estimating the variance of the efficient influence
curve using that data set.

Scenario I: Binary L(1); A(1) Assigned in Response to L(1)

For brevity we only include the performance of the estimators for a single
parameter, EY1. The results for the other treatment-rule-specific parameters
are similar.

Scenario II: Discrete L(1); A(1) Assigned in Response to L(1)

With discrete L(1) we modeled the binary factors QL(1,m) similarly to the
way these factors were generated, i.e., using a hazard approach (see Appendix
B). Thus each binary factor is modeled with logistic regression: as with the

binary case, an initial estimate Q
(0)
L(1,m) is obtained by logistic regression (where
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Qc, gc

TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias 3.0e-3 2.8e-3 -1.5e.3 1.2e-3 1.8e-3
Var 3.9e-3 3.9e-3 1.1e-2 3.9e-3 3.8e-3
Rel MSE 1.3 1.3 3.9 1.3 1.3

n = 250
Bias * * -2.4e-3 1.0e-3 *
Var 1.3e-3 1.3e-3 4.6e-3 1.3e-3 1.3e-3
Rel MSE 1.1 1.1 3.9 1.1 1.1

n = 500
Bias * * -1.7e-3 * *
Var 6.3e-4 6.3e-4 2.3e-3 6.3e-4 6.3e-4
Rel MSE 1.1 1.1 4.0 1.1 1.1

Qm, gc

TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias 3.9e-3 3.5e-3 1.5e-3 -1.2e-1 -1.2e-3
Var 4.5e-3 4.5e-3 1.1e-2 2.8e-3 4.1e-3
Rel MSE 1.6 1.5 3.9 6.3 1.4

n = 250
Bias 1.4e-3 1.1e-3 -2.4e-3 -1.3e-1 -1.3e-3
Var 1.7e-3 1.7e-3 4.6e-3 1.1e-3 1.6e-3
Rel MSE 1.4 1.4 3.9 14.6 1.4

n = 500
Bias * * -1.7e-3 -1.3e-1 *
Var 8.7e-4 8.6e-4 2.3e-3 5.7e-4 8.3e-4
Rel MSE 1.5 1.5 4.0 28.5 1.4

Table 1.1: Scenario I Results: Performance of the various estimators in estimating EY1

at various sample sizes. ‘Qc, gc’: Q correctly specified, g correctly specified; ‘Qm, gc’: Q
misspecified, g correctly specified. Iterative TMLE estimates in this table were for the 5th
iteration. Asterisks indicate bias < 10e-3.
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Qc, gc

TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias -3.1e-3 -3.0e-3 -3.2e-3 -2.6e-3 -3.3e-3
Var 5.5e-3 5.5e-3 2.0e-2 4.9e-3 5.4e-3
Rel MSE 1.1 1.1 4.0 1.0 1.1

n = 200
Bias -1.5e-3 -1.4e-3 3.8e-3 1.2e-3 -1.5e-3
Var 2.6e-3 2.6e-3 1.2e-2 2.3e-3 2.6e-3
Rel MSE 1.0 1.0 4.1 0.9 1.0

n = 500
Bias * * 1.3e-3 * *
Var 1.0e-3 1.0e-3 4.3e-3 9.0e-4 1.0e-3
Rel MSE 1.0 1.0 4.2 0.9 1.0

Qm, gc

TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias -1.7e-3 -1.7e-3 -3.2e-3 -7.0e-2 -3.2e-3
Var 5.2e-3 5.2e-3 2.0e-2 2.9e-3 5.1e-3
Rel MSE 1.0 1.0 4.0 1.5 1.0

n = 200
Bias -1.9e-3 -1.9e-3 3.8e-3 -7.0e-2 -2.2e-3
Var 2.6e-3 2.6e-3 1.2e-2 1.5e-3 2.6e-3
Rel MSE 1.0 1.0 4.1 2.5 1.0

n = 500
Bias * * 1.3e-3 -7.0e-2 *
Var 1.1e-3 1.1e-3 4.3e-3 6.4e-4 1.1e-3
Rel MSE 1.1 1.1 4.2 5.5 1.0

Table 1.2: Scenario II Results: Performance of the various estimators in estimating a single
parameter, EY1, for various sample sizes. ‘Qc, gc’ means Q correctly specified, g correctly
specified, while ‘Qm’ means Q misspecified. Iterative TMLE estimates in this table were
for the 3rd iteration. Asterisks indicate bias < 10e-3.

this estimator could be correctly or incorrectly specified) and a corresponding
fluctuation function applied.

Small Sample Results

We also simulated data under scenario II above for a sample size of 30. We
anticipated efficiency differences (if any) between the iterative and one-step
TMLEs would show up at this very small sample size (see section 1.4.3). We
saw no significant difference in the variance of these two estimators, however.
The performance of the TMLEs at this sample size is remarkable, particularly
under model misspecification, and we felt these results warranted a separate
table (see Table 1.4).
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Scenario I
n = 100 250 500

Qc,gc

TMLE (1-step) 0.85 0.92 0.93
TMLE (iter) 0.85 0.92 0.94

Qm,gc

TMLE (1-step) 0.91 0.93 0.94
TMLE (iter) 0.91 0.93 0.94

Scenario II
n = 100 200 500

Qc,gc

TMLE (1-step) 0.88 0.91 0.94
TMLE (iter) 0.89 0.91 0.94

Qm,gc

TMLE (1-step) 0.91 0.92 0.95
TMLE (iter) 0.91 0.92 0.95

Table 1.3: Coverage for nominal 95% confidence intervals under both data generation
scenarios for the two TMLEs at various sample sizes.

Qc,gc
Bias Var Rel MSE

TMLE (1-step) -0.016 0.023 1.4
TMLE (iter) -0.021 0.022 1.4
IPTW 3.7e-3 0.069 4.1
MLE -0.035 0.021 1.3
EE -0.027 0.021 1.3

Qm,gc
Bias Var Rel MSE

TMLE (1-step) -6.5e-3 0.019 1.2
TMLE (iter) -7.0e-3 0.019 1.1
IPTW 3.7e-3 0.069 4.1
MLE -3.0e-1 0.070 9.4
EE -9.8e-3 0.027 1.6

Table 1.4: Scenario II Data, at n = 30: Performance of the various estimators in estimat-
ing EY1. ‘Qc, gc’ means Q correctly specified, g correctly specified, while ‘Qm’ means Q
misspecified. Iterative TMLE estimates in this table were for the 4th iteration.
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1.4.3 Discussion

Relative efficiency for the ML estimator is almost always ≤ 1. The semi-
parametric efficiency bound does not apply in general to that of an estimator
based on a parametric model. Even so, when Q is correctly specified, the
variance of the ML estimator appears to be very close to the semi-parametric
efficiency bound when n ≥ 200.

Of particular note is that the TMLE, EE and MLE estimators are already
very close to the efficiency bound at n = 250 under Qc in the binary L(1)
case. Further, the reduction in bias in going to n = 500 is small in absolute
terms.

Even more noteworthy is the performance of the TMLEs at the small sample
size of 30 for the scenario II simulations (discrete L(1)). Bias and variance of
both estimators are better when Q(0) is misspecified. Misspecification in this
case consisted in setting Logit(QL(2)) = 3 ∗ L(1) (compare with the true data
generating function given in Appendix B), but using correct specification for
QL(1). With Q(0) misspecified, the bias of both TMLEs is quite small and the
variance is very close to the efficiency bound. EE also shows lower bias under
incorrect Q, but not lower variance. The better performance under misspeci-
fication can be understood by noting that under correct model specification,
many more parameters of the model must be fit. We expect that asymptoti-
cally, there is a gain in efficiency of the TMLEs and EE if Q(0) is consistently
estimated, but these simulations show that a parsimonious model as initial es-
timator, even if misspecified, can have distinct advantages in TMLE at small
sample sizes.

The effect is still noticeable at sample size 100 in the discrete L(1) case. There
we also see lower bias of the TMLEs under incorrect model specification than
under correct model specification. This phenomenon is not present in the
scenario I simulations however.

The advantage of the TMLEs’ being substitution estimators also becomes
apparent in these small sample results: at n = 30, many times the EE and
IPTW estimators gave estimates outside the bounds of the model (EYd ∈
[0, 1]). Indeed, under Qm, the EE estimator gave estimates of EY1 > 1 more
than 13% of the time. For more extensive performance comparisons between
TMLE and other double robust estimators (including the A-IPCW estimator)
under various conditions, including sparsity/positivity violation conditions,
see, e.g., Porter et al. (2011), Stitelman et al. (2011), Gruber and van der
Laan (2010), Stitelman and van der Laan (2010) and van der Laan and Rose
(2011).

In general, under incorrect specification of Q we do not expect any of the
estimators that estimate Q0 to be asymptotically efficient except for the MLE,
which used a much simpler model than the true model and therefore could
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easily achieve a lower variance bound. Misspecification of Q in all cases meant
misspecifying Q

(0)
L(2) but correctly specifying QL(1). Thus under Qm, gc the

MLE will be biased but the TMLE and EE estimators are double robust
and therefore still asymptotically unbiased under correct specification of g.
Under the scenarios simulated here g is expected to be known and we therefore
omitted simulations in which g is misspecified; the latter will of course result
in bias of the IPTW estimator. Scenarios in which g is not known, or not
completely known are also quite plausible, however; e.g., one can easily imagine
settings in which assignment of A(0) and/or A(1) was not done in complete
accordance with a defined treatment rule. Nevertheless, even in these cases,
with A(0) randomized and L(1) discrete or binary, non-parametric estimation
of g would not be difficult. If A(0) is a function of L(0) then some smoothing
will be required for the estimate of g(A(0) | L(0)) and model misspecification
is likely to arise.

The two versions of TMLE we’ve implemented (one-step and iterative) typi-
cally agree in their estimate of the parameter to within 1%, and in many cases
to within quite a bit less than this. For the two time-point data structure
we’ve simulated, the one-step estimator is conceptually easier to implement
than the iterative approach, and slightly faster computationally. As the num-
ber of estimated factors increases (either from having multiple time points,
multiple covariates in L(j), 1 < j < K, or both), the iterative method may
become the more practical programming choice.

Also noteworthy is that the one-step TMLE requires estimation of two ε’s in
the binary L(1) case and four ε’s in the discrete L(1) case. For the general data
structure (L(0), A(0), ...L(K), A(K), L(K+1)) where intermediate factor L(j)
has tj levels, the number of ε’s the one-step estimator must fit is

∑K+1
j=1 (tj−1).

In contrast, the iterative TMLE performs a fitting of ε that is independent of
K and tj. (Though a new round of fitting occurs for each iteration, the bulk
of the fitting occurs in the first iteration.) We thus expected at least a small
efficiency advantage for the iterative method, though we have not observed it
in the simulations presented here, even in sample sizes as low as 30.

Comparison of the TMLE and Estimating Equation Methods

The fundamental differences between targeted maximum likelihood estimation
and estimating equation-based estimation have been detailed in the seminal
targeted maximum likelihood paper (van der Laan and Rubin, 2006) and else-
where (see, e.g., van der Laan and Rose, 2011). The differences bear repeating,
however, and we give a synopsis of them here.

The most essential difference is summed up in the fact that a TMLE is defined
as a (particular) substitution estimator—i.e, an estimator that can be repre-
sented as Ψ(P ∗n) for an estimator P ∗n in the statistical model M—and an EE
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estimator is not. This difference has important ramifications.

The EE algorithm is defined by writing the efficient influence curve, D(P ),
as an estimating function D(ψ, η) in terms of parameter ψ and nuisance pa-
rameter η, and solving for ψ (van der Laan and Robins, 2003). In general,
being able to express D(P ) in such a form is not a reasonable requirement for
parameters and models. In contrast the TMLE algorithm (described in sec-
tion 1.3.1) does not rely on the efficient influence curve’s being an estimating
function.

The TMLE definition also does not rely on an estimating equation’s having
a unique solution, while EE is only well defined if the estimating equation
has a unique solution in ψ. The existence of multiple solutions of estimating
equations is a common phenomenon, just as a log-likelihood can have multiple
local maxima (and thus multiple solutions for the associated score equation)
even though it has a unique maximum. The TMLE P ∗n of P is not defined as a
solution of the equation 0 =

∑
iD
∗(P )(Oi) in P either (it is not even sensible

to state that PnD(P ) = 0 has a unique solution in P , since there is a whole
class of P ’s that solve it)—it just happens to solve the efficient score equation
0 =

∑
iD
∗(P ∗n)(Oi) as a by-product of iteratively maximizing the likelihood

(or other loss) along a least-favorable submodel.

Instead of having to deal with multiple solutions of an equation, one might
well be faced with an estimating equation with no solution at all (in its pa-
rameter space); this can occur, for example, under practical violations of the
positivity assumption. In the estimation problem addressed in this article,
with positive probability the relevant estimating equation is only solved by
a negative number, or number larger than 1. We noted this behavior of the
EE estimator—i.e., giving an estimate that’s not even a probability—in the
Results section above.

As mentioned above, dramatic differences in finite sample performance be-
tween EE (of which A-IPCW is an example) and TMLE under practical vi-
olations of the positivity assumption have been established in many settings.
The erratic behavior of EE in such cases is mainly due to its not respecting
the global constraints imposed by the target parameter mapping defined on
the statistical model. Such differences in behavior are not expected in a se-
quentially randomized trial in which the treatment mechanism is known and
nicely bounded away from zero, and sample size is reasonably large, but the
differences can be quite apparent in observational settings or for very small
sample sizes in the sequentially randomized trial setting (as seen here).
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Chapter 2

A TMLE Based on Directly
Solving the Efficient Influence
Curve Equation

In chapter 1 we described the implementation of two distinct targeted maxi-
mum likelihood estimation (TMLE) algorithms (the “one-step” and “iterative”
procedures) for estimating specified counterfactual parameters of the under-
lying distribution corresponding to a particular longitudinal data structure,
indexed by dynamic treatment rules. We also compared their performance
to that of some well-known existing estimators. The comparative advantages
amongst TMLE’s involve differences in computational resources needed, and
in complexity of implementation. In this chapter we present a third algorithm,
which we find conceptually easier to implement than either of the foregoing
methods, and whose speed is comparable to that of the iterative method.

We emphasize that there are targeted maximum likelihood estimators (plural)
of a given parameter, since TMLE is a class of estimation methods that utilizes
i) a fluctuation submodel of an initial estimator and ii) a loss function or other
empirical criterion for fitting the submodel.

The TMLEs presented in chapter 1, as well as all other heretofore imple-
mented TMLEs independent of data type, all solve a score equation as the
means of constructing the estimator. Here we present a TMLE based on a
different empirical criterion, namely, solving the empirical efficient influence
curve equation directly. We have been moving toward the term “targeted
minimum loss-based” rather than “targeted maximum likelihood” in describ-
ing this class of estimators, and the procedure we describe here motivates this
terminological adjustment since maximizing the likelihood is not involved in
the construction of the estimator.

The procedure bears a superficial similarity to that of estimating equation
methodology, though our procedure solves the efficient influence curve (EIC)
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equation by adjusting the amount of fluctuation of a predesignated fluctuation
submodel, and does not solve it in the parameter, ψ. Like all TMLE’s (and
unlike estimating equation-based estimators), this TMLE is a substitution
estimator, and retains the associated benefits. Results from our simulations
indicate that the procedure also exhibits all of the finite sample advantages
of the existing TMLE procedures, which have been described in a variety of
applications (van der Laan et al., 2009), and which were also seen in chapter
1.

We refer the reader to section 1.2 for a description of the likelihood, G-formula
and parameter definition.

2.1 Method

2.1.1 Existing TMLEs

In chapter 1 we explained that in the TMLE method begins by obtaining
an initial estimator of Q0; we then update this estimator with a fluctuation
function that is tailored specifically to remove bias in estimating the particular
parameter of interest. Naturally, this means that the fluctuation function is a
function of the parameter of interest. The initial estimator, Q0 of Q0 can be
obtained in a number of ways, but we advocate a data-adaptive approach in all
cases. In any case, the TMLE methods do not require any particular estimation
method for Q0, though there are clear gains if Q0 is close to Q0.

Upon obtaining an initial estimate Q0, the next step in TMLE is to apply a
fluctuation function to this initial estimator that is the least favorable para-
metric submodel through the initial estimate, Q0, for the parameter Ψ (van der
Laan and Rubin, 2006). We signify this fluctuated update Qn(ε). Since
the Cramer-Rao lower bound corresponds with a standardized L2 norm of
dΨ(Qn(ε))/dε evaluated at ε = 0, this is equivalent to selecting the parametric
submodel for which this derivative is maximal w.r.t. this L2 norm.

2.1.2 Numerical Solution TMLE

General Description

Above we mentioned that existing TMLE’s solve (1.6). The method we present
here involves solving instead

PnD
∗(Qn(ε), g) = 0 (2.1)
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in ε, or to the same effect, selecting εs such that

εs = argmin
ε
|PnD∗(Qn(ε), g)|, (2.2)

where g is either the given, known treatment mechanism or an estimate of
it, and ε ∈ [a, b] ⊂ R, which interval is assumed to contain the solution to
(2.1). The general idea for this method was first suggested in van der Laan
and Rubin (2006). Qn(ε) takes the exact form as for the loss-based TMLE’s,
i.e., it uses the same parametric submodel through Q0 (see below). What
remains is to choose ε. If the empirical EIC is well-behaved on ε ∈ [a, b] and
the solution is contained in that interval, then one should be able to find an
εs such that PnD

∗(Qn(εs), gn) is arbitrarily close to 0, which means one has
effectively found an estimator Qn(εs) of Q0 that solves (2.1).

Accordingly, let us define Q∗s ≡ Qn(εs), where εs is the solution to (2.1), or
to (2.2) if a finite number of candidate solutions is considered. Ψ(Q∗s) is then
the corresponding “numerical methods TMLE” of Ψ(Q0). Since this choice
of Q∗s solves PnD

∗(Qn(ε), g) = 0, it necessarily solves (1.6) with Q∗s in place
of Qn(ε). However, since the solution εs was not arrived at via application
of the loss function L(Q,O) assumed in (1.6), we have no assurance that
the likelihood for Q∗s has increased relative to Q0, the latter estimator being
some initial estimate of Q0 without fluctuation applied. That is, assuming
the negative log likelihood as the loss function, we have no set of conditions
that guarantees that PnL(Q∗s, O) ≤ PnL(Q0, O). Nevertheless, Q∗s represents a
movement along the hardest submodel from some initial Q0, which does indeed
result in an estimator Ψ(Q∗s) that is less biased than Ψ(Q0), even if in practice
Q∗s does not have a greater likelihood than Q0, though it would be surprising
if it failed to. It is nevertheless encouraging to see that PnL(Q∗s) ≤ PnL(Q0)
in practice, where in our simulations Q0 is the standard MLE, and this was
indeed the case without fail in our simulation runs. In fact, the likelihood
of the numeric solution estimator was strictly greater than that of Q0 in all
simulations.

Efficient Influence Curve and Parametric Submodel

In order to obtain a numerical solution to (2.1), one of course needs the explicit
form of D∗(Q, g) for the parameter being estimated. The EIC for parameter
ψ = EYd when L(1) and Y ≡ L(2) are binary, and where d is a treatment rule
is given in chapter 1, adpated from Theorem 1 of van der Laan (2010a), and
the EIC for ψ when L(1) is discrete-valued is given in Appendix A.

The empirical estimate of D∗ (say D∗n) for a single observation substitutes the
corresponding estimates QL(j),n and Qd

L(j),n in place of QL(j) and QLd(j).
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It is instructive to representD∗n in terms of these estimates of theQ-components
of the likelihood and, by implication, in terms of ε, which is to be selected.

Though the D∗ we present here is for the case of binary L(1), our simulations
for this article are for discrete-valued L(1) with four levels. The EIC for the
parameters we identified above are more complex in the discrete L(1) case
than the binary case, but the method we present here is independent of the
types of variables involved. We therefore develop the method for the binary
L(1) case to avoid unnecessary conceptual and notational complexity.

We have

D∗n(O) = D∗n(Qn, gn)(O) =
2∑
j=0

D∗j,n(Qn, gn)(O)

where

D∗0,n =
∑
l(1)

{
Qd
L(2),n(y = 1, L(0), l(1))Qd

L(1),n(L(0), l(1))
}
− ψn,

D∗1,n =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
Qd
L(2),n(y = 1, l(1) = 1, L(0))−

Qd
L(2),n(y = 1, l(1) = 0, L(0))

}
×
{
L(1)−QL(1),n(l(1) = 1, A(0), L(0))

}
,

D∗2,n =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X]

{
L(2)−QL(2),n

(
y = 1, L̄(1), Ā(1)

)}
,

(2.3)

and

ψn = ÊYd =
1

n

n∑
i=1

∑
l(1)

Q
(d)
L(2),n(y = 1, L(0)i, l(1))

1∏
j=0

Q
(d)
L(j),n(L(0)i, l(1)).

and where X refers to the full data. For TMLE, the EIC gives us the form of
the parametric submodel, Q(ε) for the conditional probability of each factor
L(j) that is to be estimated:

logit(QL(j)(ε)) = logit(Q0
L(j)) + εCL(j),n, (2.4)
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where Q0
L(j) is some initial estimate of QL(j) (e.g., the MLE),

CL(1),n =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
Qd
L(2),n(y = 1, l(1) = 1, L(0))−

Qd
L(2),n(y = 1, l(1) = 0, L(0))

}
,

and

CL(2),n =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X]
.

Using now fluctuation submodels QL(j)(ε) and Qd
L(j)(ε) given in (2.4) for the

elements QL(j),n and Qd
L(j),n, respectively, in the formula above, our method

attempts to solve (2.1) or (2.2) with D∗n in place of D∗.

2.1.3 Numerical Methods for Solving Empirical Effi-
cient Influence Curve Equation

Though complex, (2.3) for our present purposes is nothing but a one dimen-
sional function of ε. For notational convenience let us thus write f(ε) ≡
PnD

∗(Qn(ε)). If f(ε) is continuous and has a unique root, then the well-
known bisection and secant methods of numerical analysis (see, e.g., Faires
and Burden, 2003) are promising techniques for finding the root. If, further,
f(ε) is differentiable w.r.t ε on the interval over which it is being evaluated,
then Newton’s method is also a candidate. (Other well-known methods include
the method of false position and Müller’s method.)

The purpose of this chapter is primarily to present the solving of the empiri-
cal EIC equation—given a specified fluctuation submodel—via numerical tech-
niques as a method of producing a TMLE. We thus omit technical and detailed
comparisons of various numerical techniques for obtaining these solutions. For
a suitably well behaved function f , the specific technique employed to find εs,
though central to the actual implementation of the estimator, is of secondary
importance to the overall method described here. There are certainly pros and
cons of each technique, which can be assessed a priori if one knows the exact
form of f(ε) under all applicable data sets, but one generally does not have
such knowledge. The advantages associated with these techniques have to do
with whether or not the algorithm is guaranteed to converge, and if it does
converge, how quickly. Basic texts on the subject (e.g., Faires and Burden,
2003) give an adequate treatment of these comparisons and we refer the reader
there for more detail. To re-iterate: our research interest is in the performance
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of a TMLE that is produced by solving (2.1) or (2.2) in the manner explained
in the previous section, and we assume that in all cases of interest there is a
numerical technique adequate to the task.

Nevertheless, a brief comparison of the best known techniques for the present
context is in order. We have in fact implemented both the bisection and secant
methods, and have not attempted Newton’s method. The appeal of Newton’s
method is its rate of convergence (in terms of number of iterations)—under
most circumstances if it does converge it has the fastest convergence rate. This
is not universally true however. Moreover, the method has the drawback that
for each iteration both f(ε) and f ′(ε) must be evaluated. For functions that
are computationally intensive to evaluate, as in our case, this undercuts the
advantage of requiring fewer iterations for a given tolerance compared to the
secant method, and could even make Newton’s method slower to converge in
real time, even if in fewer iterations. The latter fact combined with the added
complexity of implementation make the possible gains of Newton’s method
over the secant method negligible in our case. We thus pursued the secant
method as our primary numerical method, having first implemented the bisec-
tion method.

Most worthy of mention in comparing these latter two numerical techniques is
that 1) the bisection method is guaranteed to converge if the function of inter-
est has a root on the initially specified interval, and the secant method is not
(though this is not problematic in our context—see below) and 2) the bisection
method is much slower to converge than the secant method in general. In our
context the latter factor drives the choice between these two numerical tech-
niques. (Recall that we seek estimators that have computational advantages
in the longitudinal setting, which setting is generalizable to any number of
time points, and multiple intermediate outcomes per time point.) Though we
have implemented the bisection method, we found that in all cases tested, the
secant method converged in far fewer iterations for a given tolerance (usually
chosen to be ∼ 10−6). The difference in the values of the solution εs produced
by the two methods can be made arbitrarily small by performing enough it-
erations. Since the secant method is superior in every way applicable to our
function (except guaranteed convergence) we focus entirely on it as the chosen
technique. As mentioned above, lack of guaranteed convergence is not a con-
cern here, which we address in detail in the Discussion section. We therefore
give a brief description of how to apply the secant method for our function of
interest, f(ε) ≡ PnD

∗(Qn(ε)).

Secant Method

The secant method is based on a sequence of approximations to the root of a
function, generated by drawing secant lines through, in our case, the points
(εk, f(εk)) and (εk+1, f(εk+1)), k = 0, 1, ..., K. The zero of each such line is
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computed and this defines the position of the next approximation, εk+2. The
initial values (ε0, ε1) need not bracket the solution though the closer they
are to it, the more rapidly the algorithm will converge. Starting with initial
approximations (ε0, ε1), the first iteration produces a new approximation

ε2 = ε1 −
(ε1 − ε0)f(ε1)

f(ε1)− f(ε0)
.

This result follows from a straight-forward application of point-slope algebra.
The next iteration uses (ε1, ε2) as starting values and the process is iterated
until |f(εk)| ≤ T where T is the tolerance deemed sufficient. In our case,
the difference in successive estimates |ψk − ψk+1| was typically on the order
of |PnD∗(εk)|. Thus, an εk that yields a |PnD∗(εk)| ≤ 10−3 is quite sufficient,
though for our simulations we used T = 10−6.

2.2 Simulations

We simulated data corresponding to the data structure described in section 1.2
for discrete-valued L(1) under correct and incorrect model specification, and
at various sample sizes. Incorrect model simulations were done to illustrate
the double-robustness property of the TMLE’s. A(0) was assigned randomly
but A(1) was assigned in response to an individual’s L(1); the latter corre-
sponding to an individual’s intermediate response to treatment A(0). We gave
the specification of these dynamic regimes in section 1.4.1.

For each simulated data set, we computed the estimate of our target parameter
Ψ(P0) ≡ EYd for the following estimators: 1) Secant TMLE; 2) Iterative
TMLE; 3) One-step TMLE; 4) Inverse Probability of Treatment Weighting
(IPTW); 5) Efficient Influence Curve Estimating Equation Methodology (EE);
6) Maximum Likelihood Estimation using the G-computation formula. In the
Results subsection we give bias, variance and relative MSE estimates. A brief
description of each of the comparison estimators is given in chapter 1.

2.2.1 Data Generation

Please see Appendix B for a full description of the data-generation process for
discrete (four-valued) L(1).

2.2.2 Simulation Results

Estimates of bias, variance and relative mean squared error (Rel MSE) for all
three parameters specified above are presented for the TMLE’s and several
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comparison estimators in tables 2.1 and 2.2. We defined estimated relative
MSE for each estimator in (1.14).

Once again, the estimates of bias in all cases are not accurate to much less
than 10−3; we indicate estimates that appeared to be less than this with an
asterisk.

Qm, gc denotes simulations where g (the treatment mechanism) was correctly
specified, but Q0

L(2) was purposely misspecified. Qc, gc are simulations for
which both Q and g are correctly specified. Note that the IPTW estimator
is not affected by the form of Q0 since this estimator does not estimate Q0.
Differences in IPTW performance between the sets of runs where Q is correctly
specified and those where it is misspecified are thus the result of randomness
in the simulations.

We generated 4000 independent simulations for each model specification/sample
size combination (six sets of simulations in all).

2.3 Discussion

In chapter 1 we discussed the results as they pertain to the maximum likelihood-
based TMLEs and the rest of the comparison estimators. We mention a few
highlights here but focus on results from the secant-based TMLE.

In terms of the performance measures given in the tables, the differences be-
tween the three TMLEs implemented are insignificant. The one-step algorithm
appears to hold a very slight bias advantage at the small sample size of 30 in
estimating EY1, but the relative MSE’s are nearly the same. The overall per-
formance of the secant TMLE could be improved slightly by intervening on
simulation runs to ensure the algorithm converges. This makes the differences
in bias that we report partly an artifact of the process of bias estimation by
simulation, and not a true bias difference, assuming that in actual practice one
can examine the empirical EIC for any given data set, which generally should
be the case.

In almost every simulation the difference in estimates produced by the iterative
and secant approaches was on the order of 10−4 or less, even at n = 30. The
occasions in which the difference was significant were those in which one or
the other algorithm failed to converge (in terms of yielding an estimate of Q
that solved the empirical EIC) in the allotted number of steps.

The variance of the TMLE, EE and MLE estimators are already very close to
the efficiency bound at n = 100 under Qc. In the chapter 1 simulations we
found this to be the case for sample sizes of 250 and greater rather than at
100.
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Qc, gc

n = 30
Sec Iter 1-step IPTW MLE EE

EY1

Bias -0.028 -0.028 -0.023 -0.009 -0.041 -0.032
Var 0.024 0.023 0.024 0.069 0.022 0.022
Rel MSE 1.4 1.4 1.5 4.1 1.4 1.4

EY2

Bias -0.018 -0.018 -0.017 -0.004 -0.024 -0.019
Var 0.027 0.027 0.028 0.062 0.027 0.027
Rel MSE 1.4 1.4 1.4 3.0 1.3 1.3

EY3

Bias -0.017 -0.017 -0.017 -0.007 -0.024 -0.017
Var 0.012 0.012 0.012 0.024 0.012 0.012
Rel MSE 1.2 1.2 1.2 2.5 1.2 1.2

n = 100
Sec Iter 1-step IPTW MLE EE

EY1

Bias -0.0019 -0.0019 -0.0020 * -0.0017 -0.0021
Var 0.0054 0.0054 0.0054 0.0212 0.0048 0.0054
Rel MSE 1.1 1.1 1.1 4.2 1.0 1.1

EY2

Bias * * * 0.0016 * *
Var 0.0068 0.0068 0.0068 0.0197 0.0064 0.0067
Rel MSE 1.1 1.1 1.1 3.2 1.0 1.1

EY3

Bias * * * * * *
Var 0.0032 0.0032 0.0032 0.0075 0.0031 0.0032
Rel MSE 1.1 1.1 1.1 2.5 1.0 1.1

n = 200
Sec Iter 1-step IPTW MLE EE

EY1

Bias * * * * * *
Var 0.0026 0.0026 0.0026 0.0103 0.0023 0.0026
Rel MSE 1.0 1.0 1.0 4.1 0.9 1.0

EY2

Bias 0.0015 0.0015 0.0016 0.0028 0.0010 0.0015
Var 0.0032 0.0032 0.0032 0.0094 0.0029 0.0031
Rel MSE 1.0 1.0 1.0 3.1 1.0 1.0

EY3

Bias * * * 0.0016 * *
Var 0.0014 0.0014 0.0014 0.0034 0.0014 0.0014
Rel MSE 1.0 1.0 1.0 2.3 0.9 1.0

Table 2.1: Qc, gc. Estimator performance for various sample sizes with Q and g correctly
specified, for each of three estimated parameters. The estimates for the iterative TMLE were
from the 4th iteration. (*) indicates an estimated bias < 10−3. (Based on 4000 simulations
at each sample size.)
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Qm, gc

n = 30
Sec Iter 1-step IPTW MLE EE

EY1

Bias -0.0049 -0.0050 -0.0042 -0.0071 -0.2975 -0.0093
Var 0.021 0.020 0.020 0.068 0.071 0.028
Rel MSE 1.2 1.2 1.2 4.1 9.5 1.7

EY2

Bias -0.0010 * * 0.0022 -0.1677 0.0090
Var 0.024 0.024 0.024 0.064 0.075 0.029
Rel MSE 1.2 1.1 1.2 3.1 5.0 1.4

EY3

Bias -0.0025 -0.0026 -0.0026 -0.0025 -0.2326 *
Var 0.011 0.011 0.011 0.025 0.072 0.013
Rel MSE 1.1 1.1 1.1 2.5 12.8 1.3

n = 100
Sec Iter 1-step IPTW MLE EE

EY1

Bias -0.0040 -0.0040 -0.0044 0.0014 -0.3159 -0.0034
Var 0.0056 0.0056 0.0056 0.0203 0.0326 0.0078
Rel MSE 1.1 1.1 1.1 4.0 26.3 1.6

EY2

Bias 0.0021 0.0021 0.0026 -0.0024 -0.1855 0.0026
Var 0.0063 0.0063 0.0064 0.0187 0.0351 0.0080
Rel MSE 1.0 1.0 1.0 3.0 11.3 1.3

EY3

Bias * * * * -0.251 *
Var 0.0030 0.0030 0.0030 0.0072 0.0338 0.0036
Rel MSE 1.0 1.0 1.0 2.4 32.6 1.2

n = 200
Sec Iter 1-step IPTW MLE EE

EY1

Bias -0.0038 -0.0038 -0.0042 -0.0016 -0.3276 -0.0029
Var 0.0028 0.0028 0.0028 0.0104 0.0187 0.0039
Rel MSE 1.1 1.1 1.1 4.1 50.0 1.5

EY2

Bias 0.0017 0.0017 0.0020 0.0012 -0.1962 0.0019
Var 0.0033 0.0033 0.0034 0.0095 0.0200 0.0040
Rel MSE 1.1 1.1 1.1 3.1 19.0 1.3

EY3

Bias -0.0010 -0.0010 -0.0011 * -0.2620 *
Var 0.0015 0.0015 0.0015 0.0034 0.0193 0.0017
Rel MSE 1.0 1.0 1.0 2.3 59.4 1.1

Table 2.2: Qm, gc. Estimator performance for various sample sizes with Q misspecified
and g correctly specified, for each of three estimated parameters. Estimates for the iterative
TMLE were from the 4th iteration. (*) indicates an estimated bias < 10−3. (Based on 4000
simulations at each sample size.)
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The performance of the TMLE’s at the small sample size of 30 is remark-
able, particularly under model misspecification. Indeed, bias and variance of
all three estimators are better when Q0 is misspecified. The bias of the esti-
mating equation estimator is also smaller under model misspecification. The
advantage of the TMLEs’ being substitution estimators also becomes apparent
in these small sample results: at n = 30, many times the estimating equation
and IPTW estimators gave estimates outside the range [0, 1] even though the
outcome is binary.

Misspecification of Q in all cases meant misspecifying Q0
L(2) but correctly speci-

fying Q0
L(1). Thus under Qm, gc the MLE will be biased but the TMLE and EE

estimators are double-robust and therefore still asymptotically unbiased under
correct specification of g. Under the scenarios simulated here g is expected to
be known and we therefore omitted simulations in which g is misspecified; the
latter will of course result in bias of the IPTW estimator.

2.3.1 Convergence of the Secant Algorithm

In practice, we examined several plots of f(ε) vs ε to get a rough idea of its
shape, and variability of shape, in order to select starting points for the secant
algorithm in the simulations. Using these examples we selected fixed initial
points for a given set of simulations, and never intervened on particular runs to
ensure convergence of the algorithm. (The algorithm never failed to converge
for n ≥ 100.) The shape of most curves examined was made to order for the
secant method, assuming well-chosen starting values (see below). In general
practice, one would not need to specify starting points without first examining
such a plot, which allows one simply to select starting points that will clearly
lead to convergence. In effect, this just means selecting starting points that
are “close enough” to the root. Unfortunately there is no generally agreed
upon (or even proposed) notion of “close-enough” in the literature, but there
are clear cases of it. For example, if the curve is roughly linear near the root,
then starting points in the linear region will suffice.

There are also clear cases which can be problematic for finding the root in a
reasonable number of iterations using the secant method. We have discovered
two such general cases, both of which were observed only at the small sample
size of 30. The first is when the curve has a point approaching zero slope
between the two starting values (see figure 2.1). That is, assuming f(ε) is
differentiable, then there is an ε′ ∈ [ε0, ε1] such that

f ′(ε)

∣∣∣∣
ε=ε′
≈ 0.

(The empirical EIC is in fact differentiable for our parameters of interest.
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More generally, if PnD
∗(Q, g) were merely continuous and not differentiable at

all points in the domain, then the situation above approximately corresponds
to the existence of an ε′ such that ε∗ < ε′ < ε1 or ε∗ > ε′ > ε1 implies
0 < |f(ε′)| ≥ |f(ε1)|, where ε∗ is the root.) In fact the algorithm performs
much worse if the position of zero slope is between ε1 and ε∗, rather than
between ε0 and ε∗. Since this is true of the two starting points, (ε0, ε1), it
is also true for the points (εk, εk+1) corresponding to the kth iteration of the
algorithm.

Figure 2.1: Two examples of PnD
∗(ε) for which the secant method failed to converge

at n = 30. Left: Point of zero slope in starting interval. No convergence with the two
indicated starting values (-1,1) in 10 steps or less. Starting values (ε0, ε1) = (0.25, 0.5) did
yield converence. Right: Curve approaches 0 slowly near the root. The true εs in this case
was ≈ 20.81. Starting values (-0.5, 0.5) failed to converge but alternate starting points did
yield convergence.

The second difficulty arises when f(ε) approaches zero slowly near the root (see
figure 2.1). In this case the secant method is known to have trouble converging
in a reasonable number of iterations even if the starting values yield a value
of f(ε) that is relatively close to zero. Several of our simulations at n = 30
confirm this. Interestingly, these tend also to be cases in which all the TMLE’s
give a parameter estimate of either 1 or 1 − δ with δ < 0.05. In these cases,
the TMLE is trying to force the estimate to 1. Regardless of the reason for
this, the situation is reflected in the empirical EIC, which reveals that the
solution εs, is relatively far from 0. Since εs is the coefficient in front of the
clever covariate term, a large (absolute) value of εs (assuming a non-negligible
clever covariate) will result in a large term in the exponential expression in
the denominator of Qn(ε), and drive Ψ(Qn(ε)) toward 0 or 1. Nevertheless,
even in these cases the secant-based TMLE tends to agree with the maximum
likelihood-based TMLE’s—they all produce estimates very close to 1. These
are cases in which the TMLE methods are breaking down due to sparsity.
(They are not cases of positivity violation, since g0 is given and bounded well
away from 0.)
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Despite these potentially problematic types of curves, the fact that the secant
method is not guaranteed to converge in general appears to be no drawback at
all in our situation. One can always examine f(ε) in the neighborhood of the
root and pick initial estimates in an informed way—i.e., close enough to the
root to avoid the potential problems described above. We were able to do this
whenever the initial starting values did not result in convergence to a solution
in ten iterations of the algorithm or less. It may be that there are cases in
which the empirical EIC behaves so poorly in the neighborhood of the root
that this technique fails when there is in fact a solution, but we observed no
such cases.

There are also so-called “safeguarded” algorithms which force each iteration to
bracket the solution by ensuring that the two current estimates are of opposite
sign. The method of false position is one such algorithm (Faires and Burden,
2003). Such methods can be used to guard against divergence of the method,
and can be used in place of the secant method if for some reason an a priori
guarantee of convergence is required.

2.3.2 Comparison of One Step, Iterative and Numerical
Solution TMLE Algorithms

All targeted minimum loss-based estimators—including the “numerical meth-
ods” TMLE—are double-robust, and are efficient under correct model specifi-
cation.

The advantage of the the numerical methods approach (secant, bisection, New-
ton, etc.) is that it is the easiest overall to implement, given K ≥ 2 (where
K is the number of time-points at which data is measured). Next in terms of
implementation complexity is the one-step algorithm, and finally the iterative
approach.

Also noteworthy is that the one-step TMLE requires estimation of two ε’s in the
binary L(1) case and four ε’s when L(1) has four levels (three for L(1) and one
for L(2)). For the general data structure (L(0), A(0), ...L(J), A(J), L(J + 1))
where intermediate factor L(j) has tj levels, the number of ε’s the one-step

estimator must fit is
∑J+1

j=1 (tj − 1). In contrast, the iterative and numerical
solution TMLE’s perform a fitting of a single ε. It would therefore not be
surprising to see at least a small efficiency advantage for the iterative and
numerical methods as K and/or tj increase, though we have not observed any
such advantage in the present simulations.

The three methods also differ slightly in terms of computational resources
required. For the data simulated here, at n = 2000, the order in terms of
computational speed was 1) one-step, 2) iterative and 3) secant. However,
this result was based on running four iterations of the iterative procedure and
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imposing a tolerance |PnD∗(Qn(ε))| ≤ 10−6 on the secant algorithm, both of
which criteria are overkill. Since typically for the kth iteration of the secant
method, |ψk−ψk+1| ≈ |PnD∗(εk)|, a reasonable tolerance is, say, |PnD∗(εk)| ≤
var(ψk)/10. Such a tolerance will make the speed of the secant procedure
comparable to the iterative procedure.

It is possible that under some conditions the empirical EIC has multiple solu-
tions, or no solution, though we observed no such cases. If multiple solutions,
one could select the εs that yielded the highest likelihood. If the EIC has
no solution for the single ε approach then the one-step procedure would be
favored.
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Chapter 3

A Comparison of TMLEs in the
Longitudinal Setting

3.1 Introduction

We have already seen that targeted minimum loss-based estimation is a highly
flexible substitution estimation methodology that is locally efficient and double-
robust. Indeed, estimating parameters associated with longitudinal data al-
lows for many choices of TMLE’s, and the investigator faces many more choices
even after choosing a particular TMLE. In this chapter we investigate a com-
parison between two general categories of TMLE, and within each, a set of
TMLEs indexed by different initial estimators of the relevant conditional den-
sities and/or conditional means expressed in the G-computation formula that
represents the parameter to be estimated.

We focus on the same general data structure that is defined in chapter 1,
though this time we choose an outcome that is continuous on the interval
[0,1].

Again we take as the parameter(s) to be estimated a set of treatment-specific
means, as defined in chapter 1. Recall that in the sequentially randomized
controlled trial setting, the treatment mechanism, g ≡ P (A = a | Pa(A)),
is known and therefore double-robust estimators, including all TMLE’s, and
inverse probability of censoring weight (IPCW) estimators are guaranteed to
be consistent estimators of the relevant parameter. The double-robustness
property of the TMLE allows for a number of options in estimating the non-g
part of the likelihood, which we call Q:

p(O) = Q(O)g(O)

where, to reiterate,
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Q ≡
∏
j

Qj ≡
∏
j

P (L(j) | L̄(j − 1), Ā(j − 1) and

g ≡
∏
j

gj ≡
∏
j

P (A(j) | L̄(j), Ā(j − 1)

Since consistency is guaranteed under correct specification of g in a double-
robust estimator, efficiency is a driving force in choosing an approach to esti-
mation of Q, assuming finite sample bias is more or less equal among the set
of competing estimators.

The focus of this chapter is two-fold. First we interest ourselves in the relative
performances of two classes of TMLE’s. Each general class attempts to esti-
mate the factors of a so-called g-computation formula, which is a representation
of the counterfactual parameter of interest in terms of the observed data. The
first class, which we shall call a density based-TMLE (db-TMLE) corresponds
with a G-computation formula that consists of a series of conditional densi-
ties, and is the subject of the first two chapters of this disseration; the second
corresponds with a formula that only includes a set of nested conditional ex-
pectations (nce-TMLE ). van der Laan and Gruber (2012) describe this latter
TMLE, which represents a fundamentally different approach to producing a
TMLE than the former. The latter has been theorized to have advantages
over estimators that must estimate a larger portion of the likelihood, possibly
including the db-TMLEs.

The second aim is to investigate the performance of each class under differ-
ent initial estimators of the relevant factors of the respective G-computation
formulas. (The TMLE method proceeds by obtaining an initial estimator of
the relevant factor and then updating this initial estimate by fluctuating it
along a least favorable parametric submodel. See van der Laan and Rubin,
2006.) In the first two chapters we observed the behavior of the TMLEs under
correct and incorrect model specification. Correct model specfication is not
of particular interest to the investigator who seeks to estimate the effect of
some real world treatment or exposure, since he or she will not know the cor-
rect model. Incorrect specification is likely, but, as we remarked earlier, we’re
interested in how the estimators perform under an initial model specification
that is likely to be employed. We therefore would like to observe the behaviors
using data-adaptive estimation of the initial estimators of the parameters of
the G-computation formula.

After some initial exploration, we believe the nce-TMLE shows more promise
in its ability to minimize MSE in estimating the parameter of interest, and
consequently we explore an additional approach to initial estimator selection
for this TMLE. It remains for future work to perform a similar comparison for
the db-TMLE.

44



Chapters 1 and 2 together describe three db-TMLEs for the longitudinal set-
ting, all of which perform comparably. We here select the so called one-step
method to represent the db-TMLEs in the current simulation study.

3.2 Parameter of Interest and G-computation

Formulas

We are interested in the same treatment-specific mean as has been described
in earlier chapters.

3.3 Two Classes of TMLEs

3.3.1 Density-Based TMLE (db-TMLE)

The db-TMLEs we’ve described and implemented thus far attempt to estimate
the parameters of the G-computation formula given in (1.4).

Note that the second and third multiplicative terms in the summand are den-
sities. While P (L(0) = l(0)) can be estimated non-parametrically, estimat-
ing the conditional density of L(1) requires the estimation of the conditional
probability of L(1) = l(1) for each possible value of l(1). In the present case
this amounts to the estimation of four conditional probabilities, which can be
achieved as was mentioned in chapter 1:

Code each of the categories for L(1) ∈ {0, 1, 2, 3} as a binary indicator vari-
able, L(1,m), m = 0, 1, 2, 3, and relate them to the categorical variable L(1)
as shown in (1.8). As we mentioned, in this way the conditional density of
each binary factor of L(1), QL(1,m), can be estimated using logistic regression.
(Further details of the implementation of this approach were given in chapter
1.)

We mentioned at the beginning of this chapter that one can index any TMLE
by initial estimators of the parameters of the G-computation formula. In the
case of the db-TMLE this means one has a choice of initial estimators of the
relevant densities. Our preferred approach for initial estimation is the highly
data-adaptive Superlearner algorithm (van der Laan et al., 2007b). Naturally
one will not know the true Q0(P ) that generated the data, but we include
the correct model as an initial estimator here for comparison against the more
realistic case of using data-adaptive methods to construct an initial estima-
tor.
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3.3.2 Nested Conditional Expectation TMLE (nce-TMLE)

By the so-called iterative conditional expectation or “tower” rule, EY d can
also be written as a series of nested conditional expectations. The inner-most
such conditional expectation is

E
(
Y | Ā = d(L̄), L̄(J)

)
=E

(
Y | Pad(Y )

)
. (3.1)

Here we introduced the notation Pad(X(j)) to indicate the set Pa(X(j)) with
each intervention node set to the value dictated by the specified intervention.
We use the notation Q̄d

J+1 to signify this innermost conditional expectation.
Similarly, define

Q̄d
J ≡ E

(
Q̄d
J+1 | Pad(L(J))

)

and so on for Q̄d
j , j = J − 1, ...0. The parameter we want to estimate can

be written in terms of these nested conditional expectations where for each
j, the relevant conditional expectation is taken conditional on Ā(j − 1) =
d̄j−1, L̄(j − 1). We eventually reach the last conditional expectation in the
series, and finally a marginal expectation. With the above notation, we’re able
to express the parameter starting at any point in the series. For example,

Ψd(P ) = Ψ(Q̄d) (3.2)

= Q̄d
0

≡ E[E
(
Q̄d

1 | Pad(L(1))
)
]

≡ E[E
(
E(Q̄d

2 | Pad(L(2)) | Pad(L(1))
)
],

and so on, where Q̄d ≡
(
Q̄d
J+1, Q̄

d
J , ..., Q̄

d
0

)
.

The nce-TMLE algorithm begins by obtaining an initial estimator of Q̄d
j for

each j; we then update this estimator with a fluctuation function that is
tailored specifically to remove bias in estimating the parameter of interest.
The TMLEs do not dictate the use of any particular estimation method for
Q̄d
j , though there are clear gains in finite sample performance if Q̄d

j,n is close
to Q̄d

j .

As with the db-TMLEs, upon obtaining the initial estimates of Q̄d
j , these esti-
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mates are fluctuated such that the fluctuated updates of the initial estimates
are guaranteed to yield a consistent estimate of ψd if either the initial esti-
mates, Q̄d

j,n, are consistent estimators of Q̄d
j or our estimates gj,n of gj for each

j are consistent, i.e., like all TMLEs, this TMLE is double-robust. And, as
usual, if both estimates are consistent, then the estimator is asymptotically
efficient.

Suppose for example that Q̄d
J+1,n is an initial estimate of Q̄d

J+1 obtained via
some preferred approach (e.g., logistic regression). The updated estimate,
which, approximately following van der Laan and Gruber (2012), we designate
Q̄d,∗
J+1,n is obtained by using the initial estimator as an offset in a univariate

logistic regression of Y on the covariate c(J + 1), where

c(J + 1) =
I(Ā(J) = d̄J)∏J

j=0 gj

(3.3)

The relevant covariates for 1 < j < J + 1 are analogous. In these simulations,
the correct g was used in computation of these covariates in implementing the
estimator.

The estimation of each successive conditional expectation starting with Q̄d
J+1,n

is updated in this manner yielding the corresponding Q̄d,∗
j,n for j = J+1, J, ..., 1.

The parameter estimate is then computed as ψd,n ≡ Ψ(Q̄d,∗
n ) = Q̄d,∗

0,n

We include comparisons of the nce-TMLE using both Superlearner and the
“correct” model as initial estimators of Q̄d, as well as the initial estima-
tors described below. (See section 3.4 for an explanation of the quotation
marks.)

Additional Targeting of the nce-TMLE

Since in an SRCT the treatment mechanism, g, is known, double robust es-
timators present the opportunity to make choices for estimation of Q̄d that
might further improve efficiency. We’ve mentioned TMLE’s indexed by the
Superlearner-based initial estimator and the parametric model-based initial
estimator.

Note that the Superlearner uses average cross validated risk, with squared error
as the loss function, as a criterion in building its overall prediction model. How-
ever, one can use as loss function the variance of the efficient influence curve
itself—an excellent choice since it targets ψ0 directly (see van der Laan, 2010a)
because it corresponds with the asymptotic variance of the TMLE:
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L(Q̄) = D∗(Q̄d, g0)2 (3.4)

This loss function is valid since it satisfies Q̄d
0 = argminQ̄dE0L(Q̄d)(O) among

all Q̄d for the parameter Ψ(Q̄d
0) = ψd. One could thus select among initial

estimators by picking the one that minimizes the risk corresponding to this
loss function. Indeed, one could employ superlearning using the above as loss
function, which is a good direction for future research. In our simulations we in
fact implemented two distinct nce-TMLEs that use either 1) the entire efficient
influence curve (EIC) or 2) separate components of it as loss functions, and
select the TMLE with the lowest empirical variance of the estimated EIC.

The representation of the EIC for parameter EY d in our two time-point lon-
gitudinal setting, in terms of nested conditional expectations, is the sum of
three random variables (van der Laan and Gruber, 2012). Defining first

c(j) =
I(Ā(j − 1) = d̄j−1)∏j−1

s=0 gs
, (3.5)

(3.6)

for j = 1, 2, we have that the EIC can be written

D∗ψd
(Q̄d, g) =

2∑
j=0

D∗ψd,j

with

D∗ψd,2
= c(2)(Y − Q̄d

2)

D∗ψd,1
= c(1)(Q̄d

2 − Q̄d
1)

D∗ψd,0
= Q̄d

1 −Ψ(Q̄d).

1. Selection Based on Minimizing the Entire EIC

In the following we suppress the superscript d and note that whenever Q̄
appears we mean Q̄d. Given a collection of candidate estimators Q̄k of Q̄, one
way of using the EIC loss function to select k from K possible estimators is
with the cross-validation selector kn
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kn = k(Pn) = argmin
k

EBnP
1
n,Bn

D∗(Q̄∗k(P
0
n,Bn

), g0)2. (3.7)

Here Bn ∈ {0, 1}n is a random vector of binary variables determining the
split into training samples ({i : Bn(i) = 0}) and validation samples ({i :
Bn(i) = 1}). P 0

n,Bn
and P 1

n,Bn
are the empirical distributions of the training and

validation samples, respectively, for a given split Bn. We also used the notation
Pnf ≡ 1/n

∑n
i=1 f(Oi). In words, implementing this selector corresponds to

splitting the data into, say, V pairs of training and validation samples. Let
R be the number of learners considered for estimation of Q̄2. For each split
Bn, one trains the candidate Q̄2,r on P 0

n,Bn
and uses the resulting prediction

model to obtain estimates of Q̄2(Oi) for {i : Bn(i) = 1}. This is done for each
split v ∈ 1, 2, ..., V such that one eventually has a cross-validated estimate of
Q̄2(O) for each observation i in the data set. TMLE updating of these initial
estimators is done as usual to produce the r-specific cross-validated TMLE
Q̄∗2,rcv .

One now proceeds likewise for j = 1. However, since now there are R possible
distinct estimators of Q̄2, each of them must be used in turn for the cross-
validated fitting of each of the (say S) estimators of Q̄1 thus giving a total
of K = S ∗ R such estimators. Finally, each fluctuation-updated Q̄∗kcv yields
a corresponding cross-validated TMLE ψkcv = Ψ(Q̄∗kcv), which is needed in
the computation of the associated estimate of the cross-validated influence
curve.

This procedure is performed for each candidate estimator Q̄k. Once the cross-
validation selector (3.7) has been applied, the selected algorithm Q̄kn is fit-
ted on the full data set to yield the cross validation selector-based TMLE
Ψ(Q̄∗kn).

As we hint at above, D∗ψd
(Q̄d, g) = D∗ψd

(Q̄d
1, Q̄

d
2, g), i.e., Q̄d is composed of two

parts; thus each k-specific estimator Q̄k consists of two algorithms, one for
each j = 1, 2. Thus if one has S candidate estimators of Q̄d

1 and R estimators
of Q̄d

2 then one is selecting among K = S ∗ R estimators of Q̄d. Since one
must compute ψkcv for each k, K cross-validated TMLEs must be evaluated
before the final estimate Ψ(Q̄∗kn) is obtained. This fact has computational
ramifications, especially as one considers data with more than two treatment
or exposure times. Even for J = 2, in our simulations S ×R = 14× 18 = 252
algorithms and we consider this S and R relatively small compared to what is
possible with this technique.

2. Selection Based on Minimizing the Components of the EIC Separately

Another way of incorporating the EIC into a targeted loss function is to apply
a cross-validation selector based on minimizing the variance of each component
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of the EIC separately. Recalling that the EIC for our parameter of interest
has J + 1 orthogonal components, the corresponding selector is

kn = k(Pn) = argmin
k

J+1∑
j=0

EBnP
1
n,Bn

Dj(gj,0, Q̄
∗
j,kj

(P 0
n,Bn

))2 (3.8)

where gj,0 is the correctly specified treatment mechanism for the jth time point,
and kj now denotes the kth estimator out of the Kj considered for estimating
Q̄j. In practice, the sum is only taken over j = 1, 2 since the final component of
the EIC consists in the quantity Q̄1−Ψ(Q̄), and the estimator of Q̄1 has already
been selected based on minimizing the variance of D∗1. Since this procedure
does not necessarily select the TMLE of ψ with the lowest estimated overall
variance, one would expect it to not perform as well as the first cross-validated
selector described above.

Since one is minimizing the sum of two positive entities, the minimum for each
component of the EIC can be found separately. First one chooses the rn such
that

rn = argmin
r

EBnP
1
n,Bn

D2(g2,0, Q̄
∗
2,r(P

0
n,Bn

))2. (3.9)

(In keeping with our notation above, we assume here K2 = R candidate esti-
mators for Q̄2 and K1 = S candidates for Q̄1.) One then fits Q̄rn on the full
data (or the subset for which Ā(2) = d̄(2), depending on how one chooses to
estimate Q̄d

2), performs the TMLE update, and uses Q̄∗rn as “outcome” for the
next stage of the NCE algorithm, viz., selection of Q̄1,sn . The cross-validation
selector for the next initial estimator, sn is found in the same manner as
depicted in (3.9), but with D1 in place of D2, and with the appropriate sub-
scripts on Q̄∗ and g. To compute the final estimation of ψd one now starts
the algorithm from the top, but uses the overall k-specific cross-validation se-
lector kn(rn, sn) as initial estimator. In this case, assuming one chooses from
R candidates for Q̄2 and S candidates for Q̄1, there are still a total of R ∗ S
possible estimators of Q̄, but since the cross-validation selectors are imple-
mented sequentially, one only has to perform R + S cross-validated fittings.
This procedure is thus computationally much quicker than the first selector
described.
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3.3.3 Other Comparison Estimators

Data-adaptive G-computation Estimation

This a straightforward data-adaptive estimator of the parameters of the G-
computation formula given in (1.4). We use the Superlearner here as well.
These initial estimates of the densities are also the final estimates, i.e., there
is no fluctuation updating.

Using data-adaptive estimation is a good step away from parametric model-
ing, but a major drawback (aside from being biased if one does not know the
correct parametric model) is that this estimation method does not produce an
asymptotically linear estimator and thus one cannot use standard methods to
compute confidence intervals (e.g., by computing the variance of the estima-
tor’s influence curve). No theory yet exists that establishes that the estimator
converges as n increases without bound, which means the validity of even the
bootstrap for obtaining inference is not known.

IPTW Estimators

The basic IPTW estimator of the parameter EY d was described in chapter
1:

ψIPTWn =
1

n

n∑
i=1

Yi
I(Āi = d(L̄)

g[Āi = d(L̄) | Xi]
.

The so-called stabilized IPTW, which typically performs much better than the
simple IPTW estimator (and certainly does in these simulations), is obtained
by dividing the above estimator by the average of the weights:

ψstb−IPTWn =

∑n
i=1 Yi

I(Āi=d(L̄)

g[Āi=d(L̄)|Xi]∑n
i=1

I(Āi=d(L̄)

g[Āi=d(L̄)|Xi]

=
ψIPTWn

1
n

∑n
i=1

I(Āi=d(L̄)

g[Āi=d(L̄)|Xi]

.

3.4 Results and Discussion

The data-generating functions for the simulations are given in Appendix C.
Note that, in contrast to the simulations for chapters 1 & 2, this time Y ∈ [0, 1].
This allows one more control of var(Y ) in designing data generation functions,
and thus the degree of predictability of the outcome from the covariates. The
EIC tells us that the more predictable the outcome is (as a function of Pa(Y ))
the smaller the variance of the EIC is. This has implications for the relative
efficiency of an estimator whose influence curve is the EIC vs. an estimator’s
whose influence curve is not.
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Table 3.1 lists the various estimators and their performances in terms of bias,
relative efficiency and relative mean squared error (MSE), the latter two of
which were defined in chapter 1. We are estimating the same three parameters
as previously, i.e., EYd for three treatment rules d = 1, 2, 3.

3.4.1 TMLEs Using Superlearner

The first comparison of interest for us is between the density-based and nested-
conditional-expectation TMLEs. In estimating all parameters and at all sam-
ple sizes, the nce-TMLE using the full dataset for fitting the initial Q̄’s outper-
forms the db-TMLE in terms of MSE when using Superlearner for estimating
initial Q̄. The gains are more in efficiency than in bias. Of significant interest
as well is that the nce-TMLE that uses the entire dataset for fitting of initial
Q̄ performs substantially better than the version that fits Q̄ on the subset of
the data which follow the relevant intervention rule.

The latter nce-TMLE sometimes outperforms the db-TMLE, and sometimes
not. At n = 100, db prevails while at n = 500 the nce version does a little
better on two of the three parameters. Among TMLEs then, when using Su-
perlearner for initial estimation of the relevant parameter (conditional density
or conditional expectation), the nce version using the full dataset for fitting
Superlearner is the clear winner in estimating the specified parameters and for
this particular data-generating distribution. Indeed, in most cases this esti-
mator achieves a variance below the semi-parametric efficiency bound.

It’s also interesting to note that for all parameters and at all sample sizes, the
SL-based nce-TMLE performs nearly the same as when using the “correct”
model specification for Q̄. “Correct” is in quotes because we do not know
the correct form of E(Q̄d

Y | A(0) = d0, L(0)). Instead we approximate it by
E(L(1) | A(0) = d0, L(0)), since that function is used to generate the data.
This is especially noteworthy given the small number of learners in the SL
library: 15 for Q̄2 and 11 for Q̄1, many of which were parametric glms. The
lack of a completely correct specification of Q̄d

1 may partially explain the close
match between SL and “correct” model nce-TMLE’s. On the other hand,
there is a noticeable difference between correct model and Superlearner based
db-TMLEs.

3.4.2 TMLEs Using Variance of the Efficient Influence
Curve as Loss Function

As mentioned in our descriptions of the estimators, another nce-TMLE of
particular interest to us is that which uses the variance of the EIC as loss
function in selecting the initial Q̄. There are four nce-TMLEs we examined.
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For each of the two ways of fitting the initial Q̄ (using the full dataset, or the
subset which followed the intervention), there were the two ways of utilizing
the EIC as loss function: selecting each Q̄j separately, based on minimizing
var(D∗j ), or selecting the overall Q̄ that minimizes var(D∗).

Overall this MVE (Minimum Variance of the EIC) nce-TMLE did not out-
perform the SL-based nce-TMLE in terms of MSE, though the estimator that
used the full EIC came close. The comparison between SL-based and MVE
TMLEs in these simulations is particularly apt since they both incorporated
approximately the same number and type of learners. Indeed, one can consider
the method used to select the initial estimator a Superlearner-based approach
with loss function as specified in (3.4), though only a single k-specific learner is
selected, rather than a convex combination of learners, as is the case with the
Superlearner algorithm utilized in the SL-based TMLEs. This Superlearner-
based initial estimator thus is at a slight disadvantage compared to what it
might achieve if the learners could be combined as in the Superlearner package
implemented in R.

There were notable cases in which the MVE TMLE variance was somewhat
lower, but usually at the expense of some bias, which resulted in a higher MSE.
For example, at all sample sizes and using the full data for fitting initial Q̄,
the MVE nce-TMLE that utilized minimization of the variance of the D∗j sep-
arately had a remarkably low variance in estimating EY2. Yet the bias of this
estimator, though small, does not appear to decrease with sample size.

Though this is indeed a TMLE, and all TMLEs are expected to be asymptot-
ically unbiased under correct specification of g, this property can be defeated
in a number of ways. One way in which it may have been defeated here
is if the cross-validation selector selected a model that predicted the same
outcome for all observations that followed d. Suppose for example that the
selected model Q̄1,kn is only a function of A(0). Then for EY1, EY2 the values
Q̄1,kn(Oi) generated by this prediction model will be equal for all observa-
tions that followed d0 since for EY1, d0(L(0)) = 1 and for EY1, d0(L(0)) = 0.
Furthermore, since A(0) was randomized with P (A(0) = 1) = 0.5, all obser-
vations which followed d for EYd=1, EYd=2 will also have the same computed
value of the clever covariate c(1) (as defined in (3.5))using correct specification
of g. Therefore the TMLE updating step associated with this initial Q̄1,k will
do nothing (same offset and same clever covariate for all observations in the
set where A(0) = d0(L(0))), and one has produced a TMLE that has a mis-
specified Q̄1 and no effective fluctuation updating, i.e., an estimator that will
not generally remove the bias associated with model misspecification. This
particular scenario did indeed obtain in some of the simulations.

Such a scenario is less likely using the Superlearner with standard squared
error loss function since, as noted above, the SL will typically yield a convex
combination of several learners for its prediction model.
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As with the SL and correct model-based nce-TMLEs, the MVE nce-TMLEs
that used the full data for fitting the initial Q̄ outperformed those that used
the subset which followed the intervention for initial fitting. Further, with
one exception, the MVE nce-TMLE that used the full EIC as loss function
outperformed the version minimizing the variance of the D∗j separately. The
exception was in estimating parameter EY2 at n = 100. Here the extremely
low variance of the latter separate D∗j estimator dominates the MSE term and
the MSE beats all estimators including both TMLEs that used the correct
model as initial estimator. As n increases however, the bias of this estimator
starts to dominate in the MSE and it loses out to the full EIC loss function
version.

The MVE nce-TMLEs would have been improved had the Superlearner itself
been one of the K candidate algorithms in the candidate library, but run time
considerations prevented implementation of this in the present study.

We conclude from these comparisons that, for this particular set of data-
generation mechanisms, the SL-based nce-TMLE is the overall winner. The
MSE of the estimator was consistently lower than all other estimators, with
the occasional exception of the MVE nce-TMLE. And even in the latter cases
the differences in MSE are insignificant.

3.4.3 Comparison Estimators

The non-stabilized version of the IPTW performs terribly in all cases.

The stabilized version, stb-IPTW performs rather well, even sometimes beat-
ing out the db-TMLE at the larger sample sizes, and for one parameter at
n = 100. The advantage of TMLE in an SRCT is that under correct speci-
fication of Q (or Q̄) it is semi-parametric efficient, and the simulations bear
this out. Using the Superlearner, without the correct model in the library, the
performance is slightly degraded from that under correct specification, though
still good relative to the comparison estimators. It’s performance using Super-
learner would improve with more algorithms in the library. Examination of
the EIC can tell us under what circumstances an efficient estimator (one whose
influence curve spans the EIC) should have lower variance than an inefficient
estimator, such as IPTW. In this particular case, that means Pa(L(j)) being
highly predictive of L(j). One could thus construct generating mechanisms
that varied in their relative strengths of that prediction (see, e.g., Chaffee and
van der Laan, 2012), and observe the relative efficiencies of the TMLE and
stb-IPTW estimator.

The data-adaptive G-computation estimator occasionally performs well but,
for example in estimating EY1, it exhibited a bias that diminishes very slowly
with sample size. It typically loses in terms of MSE to even the db-TMLE
which is a good indication that fluctuation updating along a least favorable

57



submodel reduces the bias in the expected way. It seems to do well at each
sample size in estimating EY2, for reasons we have not discovered. When this
estimator lucks out in terms of bias, it has a fairly low relative MSE. One must
keep in mind though, that the (rather serious) drawback of this estimator is
its lack of an established method of consistently estimating its variance.
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Chapter 4

Applying a TMLE to the
Estimation of a Causal Effect in
a Long Term Observational
Study

In this chapter we apply the Superlearner-based nce-TMLE to a real dataset.
We describe first the background of the estimation problem before moving to
the technical details of the implementation of the estimator.

Two-thirds of American women 20 years of age and above are overweight,
and one-third are obese (Flegal et al., 2010). Naturally, it is hypothesized
that behaviors and environmental factors play a critical role in the dramatic
increases in population level obesity beginning in the late 1980s. A compre-
hensive overview of the current literature suggests a large number of complex
causes of obesity, at both social and biological levels, with the conclusion that
there is not likely to be a silver bullet for reducing obesity. Rather, the focus is
on understanding how interventions targeting multiple risk factors may work
to reduce future population levels of obesity (McPherson et al., 2007).

One such potential target is the amount of weight gained during pregnancy:
gestational weight gain. While a woman’s not gaining enough weight can
have negative impacts on the gestation of the baby, excessive weight gain has
the potential to lead to longer-term weight gain and obesity for the mother.
However, a surprisingly small number of observational studies have examined
this, and those that have suffer from substantial limitations. Only two studies
have found that excessive gestational weight gain was associated with increased
body weight 15 years after the birth (Rooney et al., 2005, Linne et al., 2004). In
addition, women who still retained weight six months after delivery were more
likely to weigh more 15 years later (Rooney et al., 2005). A recently published
study, with the longest follow-up to date, reported that in a subsample of 2055

59



pregnant women, excessive gestational weight gain during pregnancy signifi-
cantly doubled the odds of becoming overweight and quadrupled the odds of
becoming obese 21 years after delivery, after adjusting for a wide range of po-
tentially confounding variables, including high risk pregnancy conditions like
diabetes, method of delivery, physical activity and television watching during
pregnancy, depression and psycho-social factors (Mamun et al., 2010).

While these several studies give some suggestion of the potential importance
of gestational weight gain for long term obesity in women, they are only cor-
relational in nature, and thus may not give us useful information for what
might result if we actually intervened on the population to reduce gestational
weight gain. One of the greatest limitations of these prior correlational studies
was the analysis of the effects of only a single pregnancy—a reslut of limited
methodological tools available for accounting for time varying confounding.
This modeled situation is a substantial departure from reality for the popula-
tion of women, since so many have more than one child, and thus the results
apply to a relatively limited target population.

In addition, the use of data from the National Longitudinal Survey of Youth
1979 (NLSY79) allows analysis of a much longer follow-up time than prior
studies, and includes as well a sample that is socio-economically and racially
and ethnically diverse and representative of the United States female popula-
tion generally.

4.1 Observed Data Structure and Likelihood

The dataset consisted of all women in the NLSY79 sample who had between
one and four children, inclusive, as of 2008, and who had no multiple births
from a single pregnancy, i.e., no twins, triplets, etc. The oldest respondent in
year 2008 was 52 and the youngest was 44. The dataset we used excluded the
so-called over-sampled subsets that are included in datasets downloaded from
the NLSY79 site—i.e., supplemental samples added to the demographically
representative cross-sectional sample that were added for sparsity concerns,
such as the military subsample and the non-hispanic blacks subsample.

The dataset contained 2246 observations, each of which included baseline co-
variates measured in 1979, and time-varying covariates measured annually
through 1986. After 1986 the measurement waves occurred every two years
up through and including 2008. Although that amounts to 19 waves of mea-
surement, this analysis used the first 17 waves only (plus outcome at 2008),
since there were no births after 2004, and hence no exposure of interest after
that time.

We use the following notation for the observed longitudinal data structure.
X(k), k = 0, 1, ...K = 16 represents the variable or vector of variables, X
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at measurement time k. X̄(k) signifies the history of X up through time k:
X̄(k) = {X(0), X(1), ...X(k)}; whereas X̄ represents the entire history of the
variable: X̄ = X̄(K) = {X(0), X(1), ...X(K)}.

We can think of the data as consisting of i.i.d. observations O, where

O =(L(0), δ(0),∆A(0),∆A(0)A(0), ...,

L(K), δ(K),∆A(K),∆A(K)A(K),∆,∆Y ),

with the variable coding as follows

• L(0): baseline covariates, consisting of race, age at start of study, num-
ber of term pregnancies and associated gestational weight gain (GWG)
prior to start of study, and the following variables, also collected at each
interview wave: education level, employment status, income level, mari-
tal status, pre-pregnancy BMI, number of previous births, smoking status
(if one or more pregnancies).

• δ(k), (0 ≤ k ≤ K): number of pregnancies since previous interview
∈ {0, 1, 2}

• ∆A(k), (0 ≤ k ≤ K): indicator (yes/no) that A(k) is not missing

• A(k), (0 ≤ k ≤ K): the exposure of interest (see definition below)

• L(k), (0 < k ≤ K): subset of those mentioned under L(0): education
level, employment status, income level, marital status, pre-pregnancy
BMI, number of previous births, smoking status (if one or more preg-
nancies), GWG for each pregnancy, as well as I(interview = 1), an
indicator that the subject was interviewed in year k.

• ∆: indicator that Y is not missing

• Y ≡ L(K + 1): binary outcome, I(BMI ≥ BMI0) with BMI0 = 30,
and BMI obtained at year 2008, regardless of age.
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4.1.1 Likelihood

The likelihood of the above described data can be factorized as

P (O) = P (L(0))
K∏
k=1

P (L(k) | Pa(L(k)))×

K∏
k=0

P (δ(k) | Pa(δ(k)))×

K∏
k=0

P (∆A(k) | Pa(∆A(k)))×

K∏
k=0

P (A(k) | Pa(A(k)))×

P (∆ | Pa(∆))P (Y | ∆ = 1, Pa(∆))∆,

where we use the notation Pa(X) to indicate the “parents” of X,
i.e., the factors in the likelihood that occur before X in time. So,
e.g., Pa(L(k)) is the set

(
Ā(k − 1), ∆̄A(k − 1), δ̄(k − 1), L̄(k − 1)

)
, and

Pa(A(k)) =
(
∆̄A(k), δ̄(k), L̄(k), Ā(k − 1)

)
.

As we’ve described in previous chapters, it’s helpful to think of this likelihood
as consisting of two parts, the part associated with the variables on which we
do, and the ones on which we do not, want to intervene. In keeping with our
earlier notation, we use gk, k = 0, 1, ...K and QL(k) , k = 0, 1, ...K+1 to denote
these two parts respectively. We can thus rewrite the above likelihood as

P (O) =
K+1∏
k=0

QL(k),δ(k)

K∏
k=0

gk,

where

QL(k),δ(k) ≡P [Y | ∆ = 1, Pa(∆)]∆ for k =K + 1

QL(k),δ(k) ≡P [δ(k) | Pa(δ(k))]P [L(k) | Pa(L(k))] for k =0, 1, ...K

gk ≡P [∆ | Pa(∆)]P [A(k) | Pa(A(k))]P [∆A(k) | Pa(∆A(k))] for k =K

gk ≡P [A(k) | Pa(A(k))]P [∆A(k) | Pa(∆A(k))] for k =0, 1, ...K − 1

(4.1)

The conditional densities gk are thus associated with the intervention variables
∆,∆A(k), A(k).

There are many possible ways to define the exposure of interest, gestational
weight gain (GWG), each of which represents a choice that is related directly to
the parameter one wants to estimate. One such choice is the binary indicator
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of excessive vs. not excessive weight gain. This is a convenient definition since
it reduces the complexity of the analysis while allowing an easily interpretable
parameter of interest. However, since GWG is not defined when there is no
pregnancy, we define instead exposure for time point k as

A(k) =


0 if δ(k) = 0

I(GWG(k) > w0) if δ(k) = 1

(I(GWG1(k) > w0), I(GWG2(k) > w0)) if δ(k) = 2

(4.2)

for an individual-defined w0 determined to be excessive. The dichotomous cat-
egorization of the exposure is based on the most recent Institute of Medicine
(IOM) recommendations on what level of weight gain is recommended for the
long term health of the child and the mother, although most of the limited
evidence supporting these clinical cut-points is based on attempts at optimiz-
ing offspring health (Rasmussen and Yaktine, 2009). While evidence of the
optimality for long-term health weight for the mother is almost non-existent,
these cut-offs represent the most policy-relevant target for which clinicians are
attempting to intervene to change weight gain during pregnancy.

Excessive weight gain is defined as

• > 40 pounds for women who are underweight (< 18.5 BMI)

• > 35 pounds for women who are normal weight (18.5-24.9 BMI)

• > 25 pounds for women who are overweight (25.0-29.9 BMI)

• > 20 pounds for women who are obese (> 30 BMI).

Defining exposure in this way translates easily into the desired exposure inter-
vention: having not excessive GWG for any pregnancy in a period. In keeping
with our earlier notation, we define the desired intervention as the following
of an exposure rule, d:

d(δ(k)) =


δ(k) if δ(k) = 0

0 if δ(k) = 1

(0, 0) if δ(k) = 2
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4.1.2 Post-Intervention Distribution

In chapter 1 we defined the G-formula as the product across all nodes,
excluding intervention nodes, of the conditional distribution of each node
given its parent nodes in the model, and with the values of the interven-
tion nodes fixed according to the intervention of interest. This formula
thus expresses the distribution of L̄ and δ̄ under the intervention Ā = d̄ ≡
(d0(δ(0)), d1(δ̄(1)), ..., dK(δ̄(K))), ∆ = 1, ∆̄A = 1̄. We use superscript a to
denote this intervention:

P a(L̄, δ̄) =
K+1∏
k=0

Qa
L(k),δ(k)(L̄(k), δ̄(k)) (4.3)

where for k = 0, 1, ...K,

Qa
L(k),δ(k)(L̄(k), δ̄(k)) ≡

P (δ(k) | L̄(k), Ā(k − 1) = d̄k−1, ∆̄A(k − 1) = 1̄k−1, δ̄(k − 1))×
P (L(k) | Ā(k − 1) = d̄k−1, ∆̄A(k − 1) = 1̄k−1, δ̄(k − 1), L̄(k − 1)),

and for k = K + 1,

Qa
L(k),δ(k)(L̄(k), δ̄(k)) ≡ P (Y | ∆ = 1, Ā = d̄, ∆̄A = 1̄, δ̄(K), L̄(K)).

Here, ∆̄A(k − 1) = 1̄k−1 stands for the set of relations (∆A(0) = 1,∆A(1) =
1, ...,∆A(k − 1) = 1). In words, the RHS of (4.3) is the product across all L
and δ nodes of the probability of each node conditional on its parents, and
with all intervention nodes set to the desired intervention values. As implied
above, the intervention of interest here is that all exposures are not missing,
outcome is not missing and exposures are set in accordance with the exposure
rule d. This representation of the intervened-on distribution will be helpful in
defining our parameter of interest.

4.2 Causal Model and Counterfactuals

We assume a structural causal model (SCM) and associated causal modelMF

as in chapter 1.

Suppose now that we are interested in the outcomes of individuals had their
exposure followed the rule d. Given a particular SCM, we can write Yd, the so-
called counterfactual outcome under rule d, as the value Y would have taken
on under the intervention where Ā is set to the value dictated by d as specified
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by the SCM. Similarly, we define Ya as the value Y would have had under the
intervention Ā = d̄,∆ = 1, ∆̄A = 1.

With the counterfactual outcome Ya now defined in terms of the solution to a
system of structural equations given by the SCM, we define a corresponding
counterfactual parameter ΨF (PU,X). For the parameter of interest here, the
sequential randomization assumption (SRA), Ya ⊥ A(k),∆A(k) | Pa(A(k)) for
k = 0, 1, ...K, and the coarsening at random (CAR) assumption (see below) are
sufficient for identification of the causal parameter ΨF (PU,X) and a particular
parameter of the observed data distribution Ψ(PPU,X

) for some Ψ (Robins,
1986). We define the counterfactual parameter of interest as

ΨF (PU,X) = ΨF
1 (PU,X)−ΨF

2 (PU,X) ≡ P (Ya > y0)− P (Y∆=1 > y0)

where y0 is a fixed value of BMI, which we have chosen as 30. This represents
the difference in two probabilities: the first is the probability of being obese
(under this obesity definition) had everyone in the target population followed
exposure rule d, and with no missingness on either exposure or outcome. The
second probability is that of being obese under the actual conditions, and had
there been no missingness on the outcome. We can rewrite ΨF as the difference
of two means by defining Ỹ = 1 if Y > y0 and 0 otherwise. Then the above
parameter is equivalent to

EỸa − EỸ∆=1

Henceforth we drop the tilde over the Y and take as our outcome the binary
indicator of obesity in 2008 under the above definition, rather than the year
2008 BMI itself.

4.3 Parameter of the Observed Distribution

Under the two assumptions mentioned above,

EYa − EY∆=1 = EY a − EY ∆=1

= Ψ1(P )−Ψ2(P ) (4.4)

where P is a distribution of the observed data O in the model M.

The superscripts have the same meaning as in the previous section. The
translation from subscripts to superscripts, valid under the SRA and CAR,
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represents the assumption that the parameter of the observed data distribution
is equivalent to the corresponding parameter of the underlying data-generating
mechanism.

There are various ways of mathematically representing the RHS of (4.4) in
terms of the measured variables. Different representations of the parameter
will inspire different estimators, since the different representations suggest es-
timation of different parts of the true joint and/or conditional densities (see,
e.g., chapter 3). As we showed in chapter 3, one particular representation
involves writing the parameter as a series of iterated conditional means. A
resulting plug-in estimator of the parameter would then attempt to estimate
those conditional means and would require no density estimation at all. Our
parameter EY a can again be written as a series of nested conditional expec-
tations. The inner most such conditional expectation is

E
(
Y | ∆ = 1, Ā = d̄, ∆̄A(K) = 1, δ̄, L̄(K)

)
=E (Y | Paa(Y )) . (4.5)

Similar to our earlier notation, Paa(X(k)) indicates the set Pa(X(k)) with
each intervention node set to the value dictated by the specified intervention.
We use the notation Q̄a

K+1 to signify this innermost conditional expectation.
Similarly, define

Q̄a
K ≡ E

(
Q̄a
K+1 | Paa(L(K))

)

and so on for Q̄a
k, k = K−1, ...0. The parameter we want to estimate is written

in terms of these nested conditional expectations where for each k, the relevant
conditional expectation is taken conditional on Ā(k − 1) = d̄k−1, ∆̄A(k − 1) =
1̄k−1, δ̄(k− 1), L̄(k− 1). We express our parameter at any stage of the nesting
set:

Ψ1(P ) = Ψ1(Q̄a) (4.6)

= Q̄a
0

≡ E[E
(
Q̄a

1 | Paa(L(1))
)
]

≡ E[E
(
E(Q̄a

2 | Paa(L(2)) | Paa(L(1))
)
],

and so on, where Q̄a ≡
(
Q̄a
K+1, Q̄

a
K , ..., Q̄

a
0

)
.
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Note that the Q̄a
k for any k is only defined if P

(
Ā(k − 1) = d̄k−1 | L̄(k − 1),

δ̄(k − 1)
)
> 0 a.e., and so we require these probabilities to be strictly postive—

the so-called positivity or experimental treatment assumption.

For the second parameter in (4.4), Ψ2(P ), we require the coarsening at random
assumption (Y ⊥ ∆ | Ā, δ̄, L̄) in order for the causal parameter to be equivalent
to the relevant parameter of the observed data distribution. The identity result
is thus

EY∆=1
CAR
= EY ∆=1

=
∑
l̄,s̄,ā

E(Y | ∆ = 1, L̄ = l̄, δ̄ = s̄, Ā = ā)P (L̄ = l̄, δ̄ = s̄, Ā = ā)

=
∑
l̄,s̄,ā

Q̄1(l̄, s̄, ā)P (L̄ = l̄, δ̄ = s̄, Ā = ā)

= Ψ2(P ). (4.7)

Our estimation problem is now defined: we seek to estimate the parameters of
the above two so-called g-computation formulas. For Ψ1 this means estimation
of each of the iterated conditional expectations implied in (4.6), and for Ψ2

the elements of the summand expressed in (4.7).

4.3.1 Censoring of the Exposure Variable

The data-gathering methods for this study allowed for respondents to miss
an interview or interviews and return later to the study for subsequent inter-
views. For any particular interview and respondent, a number of the variables
identified as potential confounders may be missing. This included the expo-
sure variable. However, for a respondent who missed, say, interview k but
returned for an interview at monitoring time k′ > k, both the history of the
pregnancy variable, δ̄(k′), and the history of the exposure variables, Ā(k′),
as of k′ are present. This is because, even if a respondent does not answer
various questions at a particular interview period, we believe they always re-
sponded to questions about pregnancies, which included gestational weight
gain information.

This data-gathering process set up an interesting set of conditions regarding
missingness and censoring of the exposure variable. First, note that for each
time-dependent variable, including A(k), if the variable was missing for a par-
ticular respondent it was coded as 0. A corresponding column of missingness
indicators was generated for each such variable subject to missingness. This
indicates to the regression algorithms that a missingness variable equal to 1
signifies something different from missingness equaling 0. It also allows the

67



algorithms to retain in their procedures observations that have missingness
rather than omitting them, which would result if missing values were just
coded as “NA” and with no missingness indicator.

Suppose one now proceeds to estimate P (∆A(k) = 1 | Pa(∆A(k)), i.e., proba-
bility of the exposure variable not missing at time k, given the past at k. Since
for some observations, the variable ∆A(k) was collected at time k′ > k, it may
be the case that events occurring after k affect the value of ∆A(k). This means
that the variable ∆A(k) represented in the data may not be a function only of
variables generated prior to time k, which means the conditional distribution
mentioned above does not capture the correct causal ordering of the data-
generating process. Further, this means that among observations for which
an interview occurred after k, the missingness indicators for exposures before
k will perfectly predict ∆A(k)—since in those cases no exposures from the
start of the study to k will be missing—resulting in probability estimates of
either 1 or unreasonably close to 1. This presents some interesting problems
in estimation of exposure censoring (and indeed the overall parameter) if one
performs estimates at each time k.

To circumvent these issues, we proposed two slightly different versions of the
target parameter Ψ1. The first is the same as that which has been described
thus far, but simply redefines missingness on exposure; the second assumes no
missingness on exposure.

The first version of Ψ1, call it Ψ
[1]
1 , defines ∆A(k) ≡ I(int(k) = 1), where

int(k) = 1 just in case there was an interview in year k. Under this definition
of ∆A(k), A(k) is considered missing if there was no interview in year k,
even if in fact the exposure is present in the data. The quantity P (∆A(k) =
1 | Pa(∆A(k)) now represents a conditional distribution that conditions on
the correct set of variables, i.e., this representation in the likelihood is the
correct one based on the time ordering. This parameter thus represents a
slightly different intervention from that corresponding to the original definition
of ∆A(k). The interpretation of Ψ

[1]
1 , i.e., EY a[1] is the mean outcome, under

the true data-generating distribution, under the intervention a[1], defined as
no missing interviews, following exposure rule d through all years (from 1979
on), and no missing outcome.

The second version, Ψ
[2]
1 , does not include exposure missingness as an inter-

vention variable, and thus represents the mean outcome under the intervention
a[2] ≡ (Ā = d̄,∆ = 1).

The two parameters we will be estimating are thus

68



Ψ[1] ≡ Ψ
[1]
1 −Ψ2 ≡ EY a[1] − EY ∆=1

Ψ[2] ≡ Ψ
[2]
1 −Ψ2 ≡ EY a[2] − EY ∆=1.

4.4 Estimation

Naturally we seek to demonstrate the utilization of the nce-TMLE here. Com-
parison estimators are of little value in the analysis since we don’t know the
true parameter values. The remainder of the chapter is about applying the
Superlearner-based nce-TMLE to this estimation problem.

4.4.1 TMLE

Estimation of ψ1

Let P0 be the true observed data-generating distribution. We seek to estimate
the two alternate parameters ψ

[1]
1 ≡ Ψ

[1]
1 (P0) and ψ

[2]
1 ≡ Ψ

[2]
1 (P0). The major

elements of the TMLEs we describe here, (aside from their underlying theory)
and details of the algorithm and its implementation are presented in chapter
3. There the parameter to be estimated was somewhat similar to Ψ1 here,
though the former parameter did not include intervention on any censoring
variables since censoring was not simulated.

In the following we refer to Ψ1 (without superscript) whenever the explicative

details are the same for the two alternate parameters Ψ
[1]
1 and Ψ

[2]
1 , with the

obvious adjustments for the respective interventions.

Obtaining initial estimates and the corresponding fluctuated updates of the
nested conditional expectations implied in (4.6) are performed as described in
section 3.3.2.

In this case, let Q̄a
K+1,n be an initial estimate of Q̄a

K+1 obtained via a preferred
approach. The updated estimate Q̄a,∗

K+1,n is, as described previously, obtained
by using the initial estimator as an offset in a univariate logistic regression of
Y on the covariate c1(K + 1), where for our two alternate parameters,
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c
[1]
1 (K + 1) =

I(Ā(K) = d̄K ,∆ = 1, ∆̄A = 1̄)∏K
k=0 g

[1]
k

c
[2]
1 (K + 1) =

I(Ā(K) = d̄K ,∆ = 1)∏K
k=0 g

[2]
k

(4.8)

For all other k, 1 < k < K + 1,

c
[1]
1 (k) =

I(Ā(k − 1) = d̄k−1, ∆̄A(k − 1) = 1̄k−1)∏k−1
j=0 g

[1]
j

c
[2]
1 (k) =

I(Ā(k − 1) = d̄k−1)∏k−1
j=0 g

[2]
j

, (4.9)

where gj and gk are similar to the definitions in section 4.1.1, but adjusted to

reflect the respective intervention variables defining Ψ
[1]
1 and Ψ

[2]
1 . In observa-

tional studies such as the present one, these conditional probabilities are not
known and must be estimated from the data. As with the estimation of the
initial Q̄a

k, we prefer data adaptive estimation here as well (see below).

The estimation of each successive conditional expectation starting with Q̄a
K+1,n

is updated in this manner yielding the corresponding Q̄a,∗
k,n for k = K +

1, K, ..., 1. The parameter estimate is then computed as ψ1,n ≡ Ψ1(Q̄a,∗
n ) =

Q̄a,∗
0,n

Estimation of Ψ2

We estimate ψ2 ≡ Ψ2(P0) using a different TMLE, one which was developed in
the context of point-treatment estimation with a single intervention node. This
estimator has been developed and written about extensively (see, e.g., van der
Laan and Rose, 2011). Here the entire history of all variables prior to ∆ can be
thought of as potential confounders, and since they all occur prior to ∆ there
are no time-varying confounders in the causal model. In this case the TMLE
algorithm requires an initial estimator of Q̄1(W ) ≡ E(Y | ∆ = 1,W ) (see
(4.7)), where for notational convenience we define W ≡ (L̄(K), δ̄, Ā). Notice
that the exposure(s) of interest for parameter Ψ1—the Ā—are not intervention
nodes for this parameter, and are not otherwise distinguished from the other
covariates. The only intervention variable here is the missingness indicator on
the outcome.

Upon obtaining the initial estimate Q̄1
n of Q̄1, it is updated, similarly to the

process described above, by running a univariate logistic regression of Y on a
covariate c2 with the logit of the initial estimator as offset, where
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c2 ≡ ∆/g(∆ | W ),

and g(∆ | W ) ≡ P (∆ | W ). This regression yields a maximum likelihood
estimate of the coefficient in front of c2, ε. The estimator can be written

ψn,2 =
1

n

n∑
i=1

Q̄1,∗
n (Wi)

=
1

n

n∑
i=1

expit[logit(Q̄1
n(Wi)) + εnc2,i]

where Q̄1
n(W ) is an initial estimate of Q̄1(W ) and εn is the MLE of ε.

To obtain Q1
n(W ) one performs a “regression” of Y on W among all observa-

tions with no missing outcome. We place “regression” in quotes to indicate
that standard software for estimating a conditional expectation is not implied
as the estimation method. Predicted values of the outcome are then obtained
for each observation using the empirical model Q1

n(W ).

4.5 Implementation of TMLE and Details of

the Analysis

Implementation of the TMLE of ψ1 consists in an initial estimator of Q̄a
k(P0)

for each k, which means estimating

E(Q̄a[1]

k+1 |L̄(k), ∆̄A(k) = 1̄k, Ā(k) = d̄k, δ̄(k)), for Ψ
[1]
1

E(Q̄a[2]

k+1 |L̄(k), Ā(k) = d̄k, δ̄(k)), for Ψ
[2]
1

(4.10)

i.e. estimating expectation of Q̄a
k+1 conditional on L̄(k) among observations

with exposure following rule d up through at least time k, and additionally
for Ψ

[1]
1 , conditional on having all interviews up through k. Here we define

Y ≡ Q̄K+2 for convenience. The first regression in the series (for estimating

either ψ
[1]
1 or ψ

[2]
1 ) is conditional on ∆ = 1 as well.

The update step in producing Q̄a,∗
k,n for each k requires an estimate of gk, which
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is equivalent to estimating a set of conditional expectations since the A(k) are
binary.

For estimation of ψ
[2]
1 , the only observations that were included in the estima-

tion of the parameter were those with complete treatment history. The details
of the data gathering process mentioned in section 4.3.1 imply that ∆A(K) = 1
implies ∆̄A(K − 1) = 1, i.e., any observation with ∆A(K) = 1 has a complete
treatment history. To compensate for the fact that our estimator only uses
observations that meet this condition, all the regressions for estimating Q̄a

k

and gk were weighted regressions, with weight

∆A(K)

P (∆A(K) | Pa(∆A(K)))
(4.11)

The univariate logistic regression performed in the fluctuation update was
weighted in the same way. We thus refer to this as an inverse probability of
censoring weighted, reduced data TMLE (IPCW-R-TMLE), with the weights
as specified above. This estimator was first proposed and developed in van der
Laan (2008).

4.5.1 Super Learner

One has a number of choices in estimating these conditional expectations.
One could propose a parametric model and simply do logistic regression of
Q̄k+1 on the specified covariates according to the parametric model proposed.
Parametric analyses are common when a coefficient in front of the exposure or
treatment variable in the model can be interpreted as the parameter of interest,
even when there is no evidence that the proposed model is correct. Here
however, since we have defined our parameter non-parametrically, there is even
less reason than in those cases to assume a particular parametric model. The
ability to interpret coefficients as the parameter of interest is of no advantage
and hence parametric modeling represents an assumption that is both wrong
and unneeded. In contrast to such an approach, we attempt to estimate these
conditional means as nonparametrically as possible. Our preferred approach
is to employ the highly data-adaptive Super Learner algorithm (van der Laan
et al., 2007b), which was one of the choices for initial estimator in chapter
3.

Briefly, the Super Learner (SL) uses minimum cross-validated risk as the cri-
terion for building a regression model, with squared error as loss function.
There may be other valid loss functions appropriate for a given parameter of
interest—we gave another example in section 3.3.2. Cross-validated risk has
many advantages as an algorithm selection criterion. Among other things,
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it targets the quantity we’re interested in “honestly.” That is, we obtain an
assessment of each algorithm’s predictive success based on a validation set
that was not used in construction of the prediction model generated by the
algorithm.

One first determines the algorithms to be contained in the SL’s “library of
learners,” which can include any data-adaptive algorithms suitable to the type
of data at hand, as well as the user’s preferred parametric regression models if
there are such. The algorithm then computes an average cross-validated risk
for each learner across V cross-validation folds where V is a number selected
by the user. The final prediction model consists of a convex combination of the
predictions from the original set of learners, each of which is weighted based
partly, but not entirely, on its cross-validated risk; the lower the risk the more
weight the learner will tend to have, though there are additional factors in
determining the final set of weights. Indeed, some algorithms might receive a
weight of 0.

The Super Learner is our preferred algorithm for estimation of conditional
expectations, and TMLE requires an estimate both of Q̄k for k = 1, ..., K + 1
and gk, k = 0, ..., K. We thus used SL to estimate both of these entities. The
library for each regression consisted of a subset of the following algorithms
(the relevant R package name is given in parentheses): main terms logistic re-
gression (glm), Random Forests (randomForest), Bayesian Generalized Linear
Models (bayesglm), generalized additive models (gam), Feed-forward Neural
Networks (nnet), multivariate adaptive polynomial spline regression (poly-
mars) and Step-wise selection based on AIC (stepAIC). The Super Learner
is capable of supporting many, many more algorithms for samples of the size
for this study, but time constraints required limiting the library to just a few
algorithms.

4.5.2 Estimating g

In Ψ[2] the intervention only involves A(k) and ∆, not ∆A(k), thus g is now
represented by the conditional distributions of these intervention nodes.

Recall that when δ(k) = 2, the exposure variable A(k) is a vector of two binary
GWG variables. Let us define A(k) as in (4.2) and A(k)1 ≡ I(GWG1(k) > w0),
A(k)2 ≡ I(GWG2(k) > w0). We model the probability of exposure having
followed d up through each k based on

P (A(k) = dk | δ̄(k), L̄(k), Ā(k − 1) = d̄k−1) ≡
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
1 if δ(k) = 0

P (A(k)1 = d1,k | δ(k) = 1, Paa
[2]

(δ(k))) if δ(k) = 1

P (A(k)2 = d2,k | A(k)1 = d1,k, δ(k) = 2, Paa
[2]

(δ(k)))

×P (A(k)1 = d1,k | δ(k) > 0, Paa
[2]

(δ(k))) if δ(k) = 2

As is intuitive from the definition of d, dj,k = 0 for j = 1, 2 and all k. For Ψ
[2]
1

this definition encompasses gk, though as mentioned above, all “regressions”
were weighted regressions with weights given in (4.11). This means that esti-
mation of g (and Q̄ for that matter) using the super learner required that each
learner in the library was capable of performing weighted regressions. This
limited the library to four or five learners.

Estimation of the probability of following d and no exposure censoring, for the
purposes of estimating ψ

[1]
1 required estimating the joint distribution of ∆A(k)

and A(k), conditional on the past, for each k = 0, 1, ...K, as suggested in (4.1).
We estimate the relevant probabilities here based on the representation above,
but modified to include the time-dependent censoring on A(k):

g
[1]
k ≡ P (A(k) = dk | ∆A(k) = 1, Paa

[1]

(∆A(k)))

× P (∆A(k) = 1 | Paa[1](∆A(k)))

4.5.3 Births Prior to 1979

Some respondents had births prior to the start of the study. Since we could
not measure time-dependent confounders for such observations, or all relevant
pre-birth variables if just one such pregnancy, we treated the number of pre-
1979 births and their associated GWGs as baseline covariates. The implication
for the interpretation of our parameters is as follows: we consider the target
population to be a mix of ages ranging from 14 - 22 at the beginning of a
data generation process in which intervention starts at that point. Some of
these subjects will have had term-pregnancies prior to that and others not.
Our parameter targets this population with non-intervened on pregnancies
prior to this point, and intervened-on pregnancies after this point. The target
population at 2008 naturally consists of a mix of ages as well, but, as is common
in clinical trials, we define the outcome at this fixed time.
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4.5.4 Sparsity Issues

Another issue that arose in this data is sparsity concerning the exposure vari-
able under certain conditions. Table 4.1 shows the numbers of women who
had one and two pregnancies during each of the between-interview periods.
For those who had one pregnancy, estimation of P (A(k)1 = d1,k | δ(k) =
1, Paa(δ(k))) for year 2004 clearly presents a problem. The number of co-
variates in L̄(k), δ̄(k) for that year is well over 300. One can easily see how,
even assuming this conditional probability is a smooth function of all of the
covariates, it is impossible to use the data to do a reasonable job of estimating
it. Other years have similar problems, though not as severe.

yr δ(k) = 1 A(k)1 = d(k) δ(k) = 2 A(k)2 = d(k)
1979 106 64 0 NA
1980 160 105 0 NA
1981 217 133 0 NA
1982 237 158 1 0
1983 254 157 0 NA
1984 251 162 0 NA
1985 273 183 0 NA
1986 292 246 0 NA
1988 525 352 11 8
1990 500 275 21 12
1992 448 243 17 6
1994 390 242 7 6
1996 281 196 3 3
1998 219 143 10 6
2000 135 83 3 2
2002 67 41 0 NA
2004 8 6 0 NA

Table 4.1: Numbers of observations with one pregnancy and with two pregnancies in the
specified interview period, and associated number of observations which followed rule d (not
excessive GWG). The total number of observations in the data set is 2246.

The problem is even worse for estimating P (A(k)2 = d2,k | A(k)1 = d1,k, δ(k) =
2, Paa(δ(k))) in most years. The problem is particularly acute for years 2000,
1996, 1994 and 1982, in which the number of women who had two term-
pregnancies and who followed d was either 1 or 0. Parametric modeling without
cross-validation would result in a complete overfit of these probabilities. And
for the years mentioned above, even algorithms that employ cross-validation
encounter a problem, since in every fold there will fail to be at least one
observation in both the training and validation sets that satisfy A(k)2 = d2,k.
Some algorithms require any outcome value for which a probability is predicted
(i.e. outcomes in the validation set) to be present in the training sample as
well, and they will fail to run otherwise. On the other hand, predictions from
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algorithms that do not require this condition should not be trusted since these
algorithms must do an unacceptable extrapolation.

The problem is somewhat mitigated by the fact that the fraction of women
having two pregnancies in a period is quite small, and therefore the estimate of
our parameter may be somewhat insensitive to bias in the estimation of these
probabilities. For many of the years, the condition δ(k) = 2 did not arise at all
in the dataset and we can ignore the issue of estimating P (A(k)2 | ...) in those
years. Certainly in the target population there is a small, positive probability
that δ(k) = 2 for each k, but fortunately we can infer that this constitutes a
very small fraction of the target population. The associated portions of the
population will contribute very little to the true value of the parameter.

These constitute what one might call practical positivity violations: there is
no reason to think that the relevant true conditional probabilities of expo-
sure are particularly small, though the sparsity in this data set makes those
probabilities difficult to estimate.

We dealt with these issues in two ways. First we implemented a variable
reduction technique based on a Markov condition. Here, this amounts to the
assumption that the probability of following d, given the entire past including
baseline covariates, is equal to the probability of following d given the recent
past, including baseline covariates, i.e., that the time-varying covariates from
the more distant past affect the current exposure probability only through the
most recent period’s covariates:

P (A(k)1 =dj,k | δ(k) = 1, Paa(δ(k)))

= P (A(k)1 = d1,k | δ(k) = 1, L(k), Ā(k − 1) = d̄k−1),

and similarly for P (A(k)2 = d2,k | A(k)1 = d1,k, δ(k) = 2, Paa(δ(k))). We did,
however, include covariates in L(k), such as parity, that are summary mea-
sures of earlier time-varying covariates, since these may indeed be important
time-varying confounders, and predictors of the current probabilities. Invoking
this Markov assumption allowed the number of conditioned-on variables to be
reduced to around 20, which is a manageable number for many of the years.
With this reduced set of covariates, cross-validation in the Super Learner algo-
rithm appeared to do a reasonable job of avoiding overfitting for the years in
which the number of observations with one or two pregnancies was relatively
small.

For years with very small numbers of cases of δ = 1 or δ = 2, we adopted
the following additional smoothing approach. Reasoning that the conditional
distribution of A(k) for a given k ought to be very close to that for year k+ 1
or k−1, or possibly interview periods even more removed from k, we estimated
P (A(k′)j = dj,k′ | ...) for some k′ close to k in which the number of observations
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with δ(k′) = 1 (or 2 as the case may be) was larger. Then, to estimate the
relevant probability for each of the small number of observations in year k, we
used the model for the estimated conditional probability from period k′ but
set the covariate values accordingly, i.e., to those of each relevant observation
from year k.

4.6 Results and Discussion

The TMLEs for the various parameters, including confidence intervals are
given in table 4.2.

Parameter Estimate 95% CI 80% CI 70% CI

ψ
[1]
1 0.282 - - -

ψ
[2]
1 0.297 - - -
ψ2 0.333 - - -

ψ[1] ≡ ψ
[1]
1 − ψ2 -0.051 [-0.099, -0.003] [-0.082, -0.020] [-0.077, -0.026]

ψ[2] ≡ ψ
[2]
1 − ψ2 -0.037 [-0.109, 0.034] [-0.084, 0.009] [ -0.075, 0.001]

Table 4.2: Parameter estimates and various confidence intervals. Confidence intervals
were computed only for the overall parameters of interest. (See Appendix D).

The interpretation for ψ[1] is a reduction of about 18% in the probability of be-
ing obese in the target population had all pregnancies been intervened on such
that the GWG was not excessive, had all subjects received an interview in all
years and had their outcomes not been censored, compared to the probability
of being obese in the target population under the actual GWG and interview
conditions, had outcomes not been censored. The effect is just significant at
the 95% level.

For Ψ[2], the interpretation is that there is about a 12% reduction in proba-
bility of being obese had all pregnancies been not excessive in GWG and had
outcomes not been censored, compared to the associated probability if out-
comes had not been censored. The effect is not significant at the 95% level,
but is so at about the 70% level.

It may indeed be the case that a parameter that represents an intervention in
which respondents always come in for interviews (Ψ

[1]
1 ) is a substantially differ-

ent parameter than one defined in terms merely of the presence or absence of
data. Thus one should view with caution the notion that these two “versions”
of the parameter really are getting at the same effect.

The variance of the estimates of ψn were estimated using the so-called influence
curve or influence function of the TMLE (see Appendix D). In our estimation
procedure we truncated both gn,A(k) and Q̄a

n,(k) at the value 0.015 for all k.
This is to keep the influence curve for any observation well-bounded, which in
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turn bounds the variance of the estimator. There appear to be no observations
in which the bounding on gn changed the estimated value of that probability,
but there were some cases where the truncated estimate of Q̄a

k was different
from the non-truncated estimate. Even so this truncation should produce a
minimum of bias in the estimates of ψ.

One might have expected the variance of ψ
[2]
n to be smaller than ψ

[1]
n since

the latter represents a more highly constrained intervention, i.e., fewer people
follow the intervention of all pregnancies being not excessive GWG and coming
in for all interviews. However, as mentioned above the estimation of ψ[2]

required a series of weighted regressions. We noticed in this process that the
predictive success for each of these weighted regressions was markedly less (in
terms of MSE) than those of the unweighted regressions done for estimation
of ψ[1]. Since the influence curve of the estimator includes factors that are
closely related to the MSE, one would expect a higher MSE to translate to
larger variance of the IC. We believe this is a plausible explanation for the
higher variance of the second estimator.

4.7 Conclusions

We have implemented a TMLE that we examined in earlier chapters, and is
semi-parametric efficient under the right conditions and asymptotically unbi-
ased (under milder conditions) to estimate the population level effect of an
intervention on women’s gestational weight gain on long term obesity. To our
knowledge, no causal analysis of this effect has been performed to date, let
alone with such an advanced estimator.

The two versions of the parameter we estimate essentially compare the prob-
ability of being obese in middle age if we could intervene on the target popu-
lation such that no one had excessive weight gain during any pregnancy (and
data were not missing) with the probability in the actual population of being
obese later in middle age under no such intervention (and if there were no
censoring on the data). Though the two parameters Ψ[1] and Ψ[2] are techni-
cally different because, among other things, they define censoring differently,
they are both versions of what we (somewhat imprecisely) paraphrase above.
Defining censoring in terms of having or not having an interview represents
a tight constraint, and is not part of the intervention we would ideally want
to perform, though it did result in an estimate with a slightly lower variance
than that for the alternate version of the parameter.

Based on the risk difference point estimates of the effect, our findings suggest
that the development of interventions to successfully reduce excessive gesta-
tional weight gain to within the IOM weight gain recommendations could have
a substantial impact on reducing population obesity in middle age, a condi-
tion that has been linked to increased risk of mortality in other studies. The
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confidence intervals, however, suggest a fairly wide range of probable impacts
of intervening on the target population, from no impact at all, to a very sub-
stantial impact (i.e. 30% reduction in obesity). Thus any interventions must
proceed with the acknowledgement that it is within the confidence bounds
of the estimate that such interventions would have very little benefit towards
reducing obesity in the popluation. However, it is also important to note that,
based on our estimates, we do not anticipate any potential negative impact
of these interventions. Thus, in terms of the comparative cost-effectiveness
of other interventions to reduce obesity, our results suggest pursuit of inter-
ventions to target reductions in excessive weight gain during pregnancy shows
promise.

Bibliography

O. Bembom and M.J. van der Laan. Statistical methods for analyzing sequen-
tially randomized trials. Journal of the National Cancer Institute, 99(21):
1577–1582, 2007.

O. Bembom and M.J. van der Laan. Data-adaptive selection of the trunca-
tion level for inverse-probability-of-treatment-weighted estimators. Berkeley
Division of Biostatistics Working Paper Series. Working Paper 230, 2008.

Paul Chaffee and Mark J. van der Laan. Discussion of evaluation of viable
dynamic treatment regimes in a sequentially randomized trial of advanced
prostate cancer, by Wang et al. 2012. Journal of the American Statistical
Association, 107(498):513–517, 2012.

J. D. Faires and R. Burden. Numerical Methods. Thomson Brooks/Cole,
Pacific Grove, CA, 3rd edition, 2003.

K. Flegal, M.D. Carroll, C.L. Ogden, and L.R. Curtin. Prevalence and trends
in obesity among US adults, 1999-2008. Journal of the American Medical
Association, 303(3):235–241, 2010.

Susan Gruber and Mark J. van der Laan. A targeted maximum likelihood
estimator of a causal effect on a bounded continuous outcome. The Inter-
national Journal of Biostatistics, 6(1), 2010.

X. Guo and A. Tsiatis. A weighted risk set estimator for survival distributions
in two-stage randomization designs with censored survival data. Interna-
tional Journal of Biostatistics, 1(1), 2005.

E. Laber, M. Qian, D. Lizotte, and S.A. Murphy. Statistical inference in
dynamic treatment regimes. Revision of Univ. of Michigan, Statistics De-
partment Technical Report 506, 2009.

Yvonne Linne, Louise Dye, Britta Barkeling, and Stephan Rossner. Long-

79



term weight development in women: a 15-year follow-up of the effects of
pregnancy. Obesity Research, 12(7):1166–78, 2004.

J.K. Lunceford, M. Davidian, and A.A. Tsiatis. Estimation of survival distri-
butions of treatment policies in two-stage randomization designs in clinical
trials. Biometrics, 58(1):48–57, 2002.

Abdullah A Mamun, Mansey Kinarivala, Michael J O’Callaghan, Gail M
Williams, Jake M Najman, and Leonie K Callaway. Associations of ex-
cess weight gain during pregnancy with long-term maternal overweight and
obesity: evidence from 21 y postpartum follow-up. American Journal of
Clinical Nutrition, 91(5):1336–41, 2010.

K. McPherson, T. Marsh, M. Brown, and G. Britain. Tackling obesities: fu-
ture choices: Modelling future trends in obesity and the impact on health.
Department of Innovation, Universities and Skills, 2007.

S. Miyahara and A.S. Wahed. Weighted Kaplan-Meier estimators for two-stage
treatment regimes. Statistics in Medicine, 29(25):2581–2591, 2010.

E.E.M. Moodie, R.W. Platt, and M.S. Kramer. Estimating response-
maximized decision rules with applications to breastfeeding. Journal of
the American Statistical Association, 104(485):155–165, 2009.

S.A. Murphy, M.J. van der Laan, and J.M. Robins. Marginal mean models
for dynamic regimes. Journal of the American Statistical Association, 6:
1410–1423, 2001.

L Orellana, A Rotnitzky, and J Robins. Dynamic regime marginal structural
mean models for estimation of optimal dynamic treatment regimes. Inter-
national Journal of Biostatistics, 6(2), 2010.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University
Press, Cambridge, 2000.

M.L. Petersen, Y. Wang, M.J. van der Laan, D. Guzman, E. Riley, and D.R.
Bangsberg. Pillbox organizers are associated with improved adherence to
HIV antiretroviral therapy and viral suppression: a marginal structural
model analysis. Clinical Infectious Diseases, 45(7):908–15, 2007.

Kristin E. Porter, Susan Gruber, Mark J. van der Laan, and Jasjeet S. Sekhon.
The relative performance of targeted maximum likelihood estimators. In-
ternational Journal of Biostatistics, 7(1), 2011.

Kathleen M. Rasmussen and Ann L. Yaktine. Weight Gain During Preg-
nancy: Reexamining the Guidelines. Committee to Reexamine IOM Preg-
nancy Weight Guidelines; Institute of Medicine; National Research Coun-
cil; The National Academies Press, 2009. ISBN 9780309131131. URL
http://www.nap.edu/openbook.php?record id=12584.

80



J.M. Robins. A new approach to causal inference in mortality studies with
sustained exposure periods—application to control of the healthy worker
survivor effect. Mathematical Modeling, 7:1393–1512, 1986.

B.L. Rooney, C.W. Schauberger, and M.A. Mathiason. Impact of perinatal
weight change on long-term obesity and obesity-related illnesses. Obstetrics
and Gynecology, 106(6):1349–56, 2005.

Ori M. Stitelman and Mark J. van der Laan. Collaborative targeted maximum
likelihood for time to event data. The International Journal of Biostatistics,
6(1), 2010.

Ori M. Stitelman, Victor De Gruttola, and Mark J. van der Laan. A general
implementation of TMLE for longitudinal data applied to causal inference
in survival analysis. U.C. Berkeley Division of Biostatistics Working Paper
Series, Working Paper 281, April 2011.

S.L. Tunis, D.E. Faries, and et. al Nyhuis, A.W. Cost-effectiveness of olan-
zapine as first-line treatment for schizophrenia: results from a randomize,
open-label, 1-year trial. Value Health, 9:77–89, 2006.

Mark J. van der Laan. The construction and analysis of adaptive group se-
quential designs. U.C. Berkeley Division of Biostatistics Working Paper
Series, Working Paper 232, March 2008.

Mark J. van der Laan. Targeted maximum likelihood based causal inference:
Part I. The International Journal of Biostatistics, 6(2), 2010a.

Mark J. van der Laan. Targeted maximum likelihood based causal inference:
Part II. The International Journal of Biostatistics, 6(2), 2010b.

Mark J. van der Laan and Susan Gruber. Targeted minimum loss based estima-
tion of causal effects of multiple time point interventions. The International
Journal of Biostatistics, 8(1), 2012.

Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard. Super learner.
U.C. Berkeley Division of Biostatistics Working Paper Series, Working pa-
per 222, 2007a. http://www.bepress.com/ucbbiostat/paper222.

Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard. Super learner.
Statistical Applications in Genetics and Molecular Biology, 6(1), 2007b.

M.J. van der Laan and M. Petersen. Causal effect models for realistic individ-
ualized treatment and intention to treat rules. The International Journal of
Biostatistics, 3(1), 2007.

M.J. van der Laan and J.M. Robins. Unified methods for Censored Longitudinal
Data and Causality. Springer Verlag, New York, 2003.

M.J. van der Laan and S. Rose. Targeted Learning: Causal Inference for

81



Observational and Experimental Data. Springer, Berlin Heidelberg New
York, 2011.

M.J. van der Laan and D. Rubin. Targeted maximum likelihood learning. The
International Journal of Biostatistics, 2(1), 2006.

M.J. van der Laan, S. Rose, and S. Gruber. Readings in targeted maximum
likelihood estimation. U.C. Berkeley Division of Biostatistics Working Pa-
per Series, Available at: http://works.bepress.com/sgruber/6, 2009.

A.S. Wahed and A.A. Tsiatis. Optimal estimator for the survival distribution
and related quantities for treatment policies in two-stage randomization de-
signs in clinical trials. Biometrics, 60(1):124–133, 2004.

A.S. Wahed and A.A. Tsiatis. Semi-parametric efficient estimation of the sur-
vival distribution for treatment policies in two-stage randomization designs
in clinical trials with censored data. Biometrika, 60(1):147–161, 2006.

Lu Wang, Andrea Rotnitzky, Xihong Lin, Randall E. Millikan, and Peter F.
Thall. Evaluation of viable dynamic treatment regimes in a sequentially
randomized trial of advanced prostate cancer. Journal of the American Sta-
tistical Association, forthcoming, 2012. doi: 10.1080/01621459.2011.641416.

82



Appendix A

Efficient Influence Curve for
Discrete L(1)

In the following, D∗1,m indicates the efficient influence curve for the mth binary
indicator of L(1),m = 0, 1, 2, 3, and Pa(L(1)) = (L(0), A(0)). We have

D∗1,0(O) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 0, Pa(L(1)))−∑

m>0

E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 0, Pa(L(1)))}×

{I(L(1) = 0)− I(L(1) ≥ 0)E[I(L(1) = 0) | Pa(L(1))]},

where, e.g.,

P (L(1) = 2 | L(1) > 0, Pa(L(1)))

=
P (L(1) = 2, L(1) > 0 | Pa(L(1)))

P (L(1) > 0 | Pa(L(1)))

=
P (L(1) = 2) | Pa(L(1))

1− P (L(1) = 0 | Pa(L(1)))

=
P (L(1) = 2 | L(1) ≥ 2, Pa(L(1)))

1− P (L(1) = 1 | Pa(L(1))
×∏

s<2

[1− P (L(1) = s | L(1) ≥ s, Pa(L(1)))]

= P (L(1) = 2 | L(1) ≥ 2, Pa(L(1))) [1− P (L(1) = 1 | L(1) ≥ 1, Pa(L(1)))] ,
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and

P (L(1) = 3 | L(1) > 0, Pa(L(1)))

= P (L(1) = 3 | L(1) ≥ 3, Pa(L(1)))×
2∏
s=1

[1− P (L(1) = s | L(1) ≥ s, Pa(L(1)))]

= 1 ∗
2∏
s=1

[1− P (L(1) = s | L(1) ≥ s, Pa(L(1)))] .

Similarly,

D∗1,1(O) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 1, Pa(L(1)))−∑

m>1

E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 1, Pa(L(1)))}×

{I(L(1) = 1)− I(L(1) ≥ 1)E[I(L(1) = 1) | L(1) ≥ 1, Pa(L(1))]},

and

E[I(L(1) = m) | L(1) ≥ m,Pa(L(1))] ≡ P (L(1) = m | L(1) ≥ m,Pa(L(1))).

D∗1,2(O) is similar, but D∗1,3(O) = 0 since

I(L(1) = 3)−I(L(1) ≥ 3)E[I(L(1) = 3) | L(1) ≥ 3, Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3) ∗ E[I(L(1) = 3) | L(1) ≥ 3, Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3) ∗ P [L(1) = 3 | L(1) ≥ 3, Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3) ∗ 1 = 0.

Thus the efficient influence curve for EYd is

D∗(O) = D∗0(O) +
3∑

m=0

D∗1,m(O) +D∗2(O),

with D∗0(O) and D∗2(O) exactly as given in Theorem 1.

The expression for clever covariate CL(1,m) follows immediately from D∗1,m as
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simply the IPCW term times the first bracketed term. So, for example, CL(1,2)

would be

CL(1,2) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 2, Pa(L(1)))−∑

m>2

E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 2, Pa(L(1)))}.
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Appendix B

Data Generation for Chapters 1
& 2 Simulations

In this appendix we describe the data generation process for each of the vari-
ables in the causal model. There are notable differences in the two major sets
of simulations (i.e., the binary L(1) case vs. the discrete L(1) case).

• L(0)
For both binary and discrete L(1) cases, L(0) consisted of four base-
line covariates, L(0) = (W1, ...,W4)T , three of which were distributed
Normally, i.e.,

(W1,W2,W3)T ∼ N(µ,Σ),

with µ = (0,−0.35, 0)T and with all off-diagonal terms of Σ set to 0.
The fourth baseline covariate W4 was distributed as a truncated normal,
also independent of the other baseline variables. Specifically, let random
variable Z ∼ N(5, 1.52). Then

W4 =

{
Z if 2 < Z < 8
0 otherwise

• A(0)
A(0) was assigned randomly for all simulations, A(0) ∼ Ber(0.5)

• L(1)

– (1) Binary In the binary L(1) case,
L(1) ∼ Ber([1 + exp(−(Logit[QL(1)]))]

−1), where

Logit[QL(1)] = 1
2.5

(2−W1−W4−2W 2
2 + 1.8W 2

3 −3W4W3 + 3A(0) +
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2(1− A(0))).

and with W1, ...W4 as defined above.

– (2) Discrete The conditional probabilities for each factor L(1,m),
m = 0, 1, 2, were generated as follows.

logit[QL(1,0)] = 1
6.5

[−15−W1 −W4 − 2W 2
2 + 1.8W 2

3 − 3W4W3 +
3A(0) + 2(1− A(0))],

logit[QL(1,1)] = logit[QL(1,0)] + 2.8,

logit[QL(1,2)] = logit[QL(1,1)] + 4.2.

• A(1)

– (1) Binary L(1) A(1) was set according to

A(1) =

{
A(0) if L(1) = 1
A(0) with probability 0.5 otherwise

– (2) Discrete L(1) A(1) in the discrete case was set according to

A(1) =

{
A(0) if L(1) > 1
A(0) with probability 0.5 otherwise

• L(2)

– (1) Binary L(1) For the binary L(1) simulations,
L(2) ∼ Ber([1 + exp(−(Logit[QL(2)]))]

−1), where

Logit[QL(2)] = 1
2.5 (2−W1−W4−2W 2

2 +1.8W 2
3 −3W4W3+3A(0)+2(1−A(0))+

2L(1)− 1.5(1− L(1)) + 6 ∗ I(d(L̄) = 1)− 6.5 ∗ I(d(L̄) = 2)−
W1(1−A(0)) +W4A(1))).

– (2) Discrete L(1) For the simulations with discrete L(1),
L(2) ∼ Ber([1 + exp(−(Logit[QL(2)]))]

−1), where

Logit[QL(2)] = 1
6 (−7−W1 −W4 − 0.7W 2

2 + 0.6W 2
3 −W4W3 + 9A(0) +

3(1−A(0))) + 1.4L(1)−W1(1−A(0)) +W4A(1) + 6 ∗ I(d(L̄) = 3).

In the above expressions I(d(L̄) = j), j = 1, 2, 3 is equal to 1 if rule j was
followed at both treatment time points (as described in section 1.4.1) and 0
otherwise.
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Appendix C

Data Generation for Chapter 3
Simulations

We describe the data generation process for each of the variables in the model.
Note that the logits of QL(1) and QL(2) are highly non-linear functions of the
parents of L(1) and L(2), respectively.

• L(0) consisted of two baseline covariates, L(0) = (W1,W2)T , where

W1 ∼ 20 ∗ χ2
2,

and the second baseline covariate W2 was distributed as a truncated
normal. Specifically, let random variable Z ∼ N(5 + (W1/150), 1.52).
Then

W2 =

{
Z if 2 < Z < 8
0 otherwise

• A(0) was assigned randomly for all simulations, A(0) ∼ Ber(0.5)

• L(1) was a single discrete-valued random variable with four levels: 0,1,2,3.
Define

logit
(
QL(1),basis

)
≡ −3.5 + A0 + 2 ∗ expit(W1/80).

Then the conditional probabilities for each factor L(1,m), m = 0, 1, 2,
were generated according to the logits

logit[QL(1,0)] = logit
(
QL(1),basis

)
+ 12 ∗ I(W2 < 3.5),

logit[QL(1,1)] = logit
(
QL(1),basis

)
+ 12 ∗ I(3.5 ≤ W2 < 5),

logit[QL(1,2)] = logit
(
QL(1),basis

)
+ 12 ∗ I(5 ≤ W2 < 6.5),
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and, of course QL(1,3) ≡ P (L(1) = 3 | L(1) > 2, Pa(L(1)) = 1.

• A(1) was set according to

A(1) =

{
A(0) if L(1) > 1
A(0) with probability 0.5 otherwise.

• Y ≡L(2) was continuous on [0,1] with value expit
(
logit[QL(2)]

)
, where

logit
(
QL(2)

)
=(

− 2−W2 + 1.5A(0) + 30 ∗ expit
(
0.65 + 0.8(L(1)− 1.3)2

)
− 9A(1) + ZL(2)

)
/6

with

ZL(2) ∼ N(0, 1)
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Appendix D

Computation of Variance of the
Estimators in Chapter 4

Under regularity conditions, TMLE is an asymptotically linear estimator
whose influence curve (IC) is equal to the so-called efficient influence curve
(EIC)(van der Laan and Rubin, 2006). One can estimate the variance of the
estimator by estimating the variance of the EIC,D∗ψ(P0) = D∗(Q0, g0, ψ) where
P0 is the true distribution of the observed data.

Regarding Ψ1, Theorem 1 of van der Laan and Gruber (2012) tells us that the
EIC can be written in terms of Q̄a and g. We adapt the result there to our
data structure and parameters of interest. For parameter Ψ

[1]
1 ,

D∗
ψ
[1]
1

(Q̄a[1] , g[1]) =
K+1∑
k=0

D∗
ψ
[1]
1,k

where g[1] is the set (g
[1]
k : k = 0, ..., K) and

D∗
ψ
[1]
1,K+1

= c
[1]
1 (K + 1)(Y − Q̄a[1]

K+1)

and for k = 1, ...K,

D∗
ψ
[1]
1,k

= c
[1]
1 (k)(Q̄a[1]

k+1 − Q̄a[1]

k ).

Finally,

D∗
ψ
[1]
1,0

= Q̄a[1]

1 −Ψ(Q̄a[1]).

D∗
ψ
[1]
1

is a function of the true value of the parameter, but also a function of the

true distribution of the data through Q̄a[1] and g[1], i.e., D∗
ψ
[1]
1

= D∗
ψ
[1]
1

(P0) =
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D∗
ψ
[1]
1

(Q̄a[1](P0), g[1](P0)). Though we cannot know P0, we follow the common

practice of using our best estimates of those parameters in estimating the
variance. Thus the TMLE estimates of Q̄a[1] and ψ

[1]
1 , and the SL estimate of

g
[1]
k for all k were used in place of these true parameters in estimating the IC of

the TMLE, and hence its variance. As mentioned, under regularity conditions
on Q̄ and g, the IC of the TMLE is equal to the EIC, i.e.,

IC
ψ
[1]
1

= D∗
ψ
[1]
1

(Q̄a[1] , g[1]).

Further, even if Q̄n and gn do not converge to Q̄ and g, respectively, if Q̄n

converges to some Q̄′ and gn converges to some g′, then the variance esti-
mate using this estimation method is asymptotically correct, and one obtains
asymptotically nominal coverage. Table 1.3 shows that estimating the TMLE
variance by estimating the variance of its influence curve (under both correct
and incorrect model specification) can give slightly non-conservative estimates
of confidence intervals at smaller sample sizes, but they rapidly approach the
nominal levels by sample sizes of around 500.

For estimation of the alternative parameter ψ
[2]
1 , the influence curve is modified

as a result of the inverse weighting given by (4.11), and is not equivalent to
the EIC for that parameter. In this case the influence curve follows exactly
the expressions given above, with the corresponding elements for intervention
a[2], but multiplied by the weighting function given by (4.11). That is, the

influence curve for our estimator of parameter ψ
[2]
1 is

IC
ψ
[2]
1

=

(
∆A(K)

P
(
∆A(K) | Pa(∆A(K))

))(D∗
ψ
[2]
1

(
Q̄a[2] , g[2]

))

where D∗
ψ
[2]
1

(Q̄a[2] , g[2]) corresponds exactly to the version presented for Ψ
[1]
1 but

with all the obvious adjustments based on the alternate intervention.

The EIC for parameter Ψ2 can be written

D∗ψ2

(
Q̄, g2, ψ2

)
=

∆

P (∆ | W )

(
Y − Q̄(∆,W )

)
+ Q̄1(W )− ψ2,

with g2 ≡ P (∆ | W ). Here too, the IC of the TMLE is equal to the EIC under
regularity conditions, i.e., ICψ2 = D∗ψ2

(
Q̄, g2, ψ2

)
. As with ψ1, the TMLE

update of Q̄k and the TMLE of ψ2 and the SL estimate of g2 are used in place
of the respective parts of the EIC in the computation. And, under assumptions
similar to those above, the variance estimate for the TMLE for this parameter
will also have asymptotically correct coverage.
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From the fact that the IC of the sum of two asymptotically linear estimators
is the sum of their ICs, we can write the IC of the TMLE of ψ (supressing the
intervention-related superscripts) as

ICψ = ICψ1 − ICψ2 ,

from which it follows, by the central limit theorem and the fact that D∗ is a
mean-0 function of O, that a reasonable estimate of the variance of the TMLE
of ψ is

v̂ar (ψn) =
1
n

∑
i (ICψ,n(Oi))

2

n
,

where ICψ,n(Oi) indicates the sample estimate of ICψ(Oi).
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