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ABSTRACT

Santa Ana winds, common to Southern California from the fall through early spring, are a type of down-

slope windstorm originating from a direction generally ranging from 3608/08 to 1008 and are usually accom-

panied by very low humidity. Since fuel conditions tend to be driest from late September through the middle

of November, Santa Ana winds occurring during this time have the greatest potential to produce large,

devastating fires upon ignition. Such catastrophic fires occurred in 1993, 2003, 2007, and 2008. Because of the

destructive nature of such fires, there has been a growing desire to categorize Santa Ana wind events in much

the same way that tropical cyclones have been categorized. The SantaAna wildfire threat index (SAWTI) is a

tool for categorizing Santa Ana wind events with respect to anticipated fire potential. The latest version of

the index has been a result of a three-and-a-half-year collaboration effort between the USDAForest Service,

the SanDiegoGas andElectric utility (SDG&E), and theUniversity of California, LosAngeles (UCLA). The

SAWTI uses several meteorological and fuel moisture variables at 3-km resolution as input to the Weather

Research and Forecasting (WRF)Model to generate the index out to 6 days. In addition to the index, a 30-yr

climatology of weather, fuels, and the SAWTI has been developed to help put current and future events into

perspective. This paper outlines the methodology for developing the SAWTI, including a discussion on the

various datasets employed and its operational implementation.

1. Introduction

From the fall through early spring, offshore winds, or

what are commonly referred to as Santa Ana winds,

occur over Southern California from the coastal moun-

tains westward and from Ventura County southward to

the Mexican border. These synoptically driven wind

events vary in frequency, intensity, and spatial coverage

from month to month and from year to year, thus

making them difficult to categorize. Most of these wind

events are associated with mild to warm ambient

surface temperatures $ 188C and low surface relative

humidity # 20%. However, during the late fall and

winter months, these events tend to be associated with

lower surface temperatures as a result of the air mass

over the Great Basin originating from higher latitudes

and other seasonal effects. There are a variety of ways to

define a Santa Ana event through the analysis of local

and synoptic-scale surface pressure and thermal dis-

tributions across Southern California (Raphael 2003).

We view these offshore winds from a wildfire potential

perspective, taking into consideration both the fuel

characteristics and weather. As we have found, the in-

dex discussed herein provides a robust descriptor of

both Santa Ana winds and the potential for wildfire

activity. Used in conjunction with a mean sea level

pressure (MSLP) map type, this is a powerful method

for separating Santa Ana wind events from the more
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typical nocturnal offshore flows that occur throughout

the coastal and valley areas (i.e., land breeze) during

the year.

From 21 through 23 October 2007, Santa Ana winds

generatedmultiple large catastrophic fires across Southern

California (Moritz et al. 2010). Most notable was the

Witch Creek fire in San Diego County, where wind gusts

of 26m s21 were observed at the Julian weather station

along with relative humidity values of ’5%. However,

high-resolution model simulations at 667m showed that

wind velocities were much higher in unsampled areas

(Cao and Fovell 2016). This event became the catalyst

for the development of a comprehensive Santa Ana

wildfire potential index to better inform fire agencies,

first responders, private industry, and the general pub-

lic about the severity of an approaching event. This

index could also help augment fire weather watches

and red flag warnings from the National Weather Ser-

vice by providing value-added information about an

impending event.

The Predictive Services Unit, functioning out of the

Geographic Area Coordination Center (GACC) in

Riverside, California, is composed of several meteorol-

ogists employed by the USDA Forest Service. In 2009,

Predictive Services began working on an index to cate-

gorize Santa Ana wind events according to the poten-

tial for a large fire to occur (Rolinski et al. 2011). This

unique approach addresses the main impact Santa Ana

winds can have on the population of Southern California

beyond the causal effects of windy, dry weather. Fol-

lowing on, and improving upon this work, the Forest

Service (through Predictive Services) collaborated

during a three-and-a-half-year period with the San

Diego Gas and Electric utility (SDG&E) and the Uni-

versity of California, Los Angeles (UCLA), to develop

the Santa Ana wildfire threat index (SAWTI). This in-

dex employs a gridded 3-km model to not only assess

meteorological conditions, but also incorporates an es-

timation of fuel moisture to determine the likelihood of

rapid fire growth during Santa Ana winds.

The SAWTI domain covers the coastal, valley, and

mountain areas of Southern California from Point

Conception southward to theMexican border. This area

has been divided into four zones based in part on the

different offshore flow characteristics that occur across

the region (Fig. 1). Zone 4, which covers Santa Barbara

County and was the last zone to be included into the

index (thus the reason for the discontinuity within the

sequential order of zones going from north to south),

does not typically experience Santa Ana winds in the

classic sense. Strong northwest-to-north winds in this

zone can either precede a Santa Ana wind event or can

occur independently (typically in the summer), which in

the latter case are more commonly known as ‘‘sun-

downers’’ (Blier 1998). In both cases, these downsloping

winds are common to the south slopes of the Santa Ynez

Mountains, an east–west coastal range that runs parallel

to, and a few miles inland from, the shoreline. Although

not frequent, significant fire activity associated with

these winds in this zone has occurred in the past, which

is why this geographic area is now represented in the

index. Santa Ana winds across zones 1 and 2 are pri-

marily a result of offshore surface pressure gradients

(locally and/or synoptically) interacting with the local

FIG. 1. Map of SAWTI zones. Inset shows SAWTI zones in reference to the state of CA. Letters denote locations

of NDVI grassland sites with underlying topography shaded. Site names are provided in the lookup table to the

right. County boundaries shown in red.

1882 WEATHER AND FORECAST ING VOLUME 31



terrain to produce gap winds through the Soledad

Canyon, the Cajon Pass, and the Banning Pass (Hughes

and Hall 2010; Cao and Fovell 2016). These winds also

tend to precede the Santa Ana winds that occur across

San Diego County by 12–24 h. Across zone 3, offshore

winds take on a more ‘‘downslope windstorm’’ charac-

teristic driven largely by the tropospheric stability (Cao

and Fovell 2016). Other factors that led to the division of

the zones were changes in terrain, National Weather

Service Forecast Office boundaries, and local news

media market areas. The SAWTI is more than a tool for

meteorologists and fire agency managers to assess the

severity of Santa Ana winds; it is also a tool for the

general public to help better prepare for impending

events that could lead to catastrophic fires. Therefore,

the idea of displaying the product via zones keeps the

index simple and easy to understand for all user groups.

The following discussion centers around the assessment

of fire potential related to Santa Ana winds, the meth-

odology behind the weather and fuel components of the

index, and its operational implementation.

2. Methodology

a. Large fire potential: Weather component

We define a large fire within the four SAWTI zones to

be 100ha. The potential for an ignition to reach or ex-

ceed this value depends on a number of components, for

example, various meteorological and fuel conditions,

suppression strategy, topography, accessibility, and re-

source availability. We achieved this threshold by

employing a historical fire database that was constructed

by Predictive Services. This database was assembled by

collecting fire occurrence data (1990–2013) from all

state and federal fire agencies within the confines of

California. For example, some of the fire agencies in-

clude the USDA Forest Service, the Bureau of Land

Management, the National Park Service, and the

California Department of Forestry and Fire Protection

(CALFIRE) to mention a few. This database contains

information such as ignition date, acres burned, con-

tainment date, etc., and contains 32 683 records. The

value of 100 ha was achieved by determining what the

largest fire was for each day within the database and

then taking the 95th percentile of all daily largest fires.

The determination of this semiempirical threshold was

also guided by decades of experience guiding co-

ordinated attacks on wildfires throughout Southern

California.Moreover, inmost cases when this threshold is

exceeded, the GACC becomes engaged in resource mo-

bilization to assist in fire suppression. Current methods

for evaluating fire potential include various indices from

the National Fire Danger Rating System (NFDRS;

Bradshaw et al. 1983) and from the Canadian Forest Fire

Danger Rating System (CFFDRS; Preisler et al. 2008).

The Fosberg fire weather index (FFWI) is one such

metric and is a function of wind speed, humidity, and

temperature with output values ranging from 0 to 100

(Fosberg 1978). While the FFWI may show elevated

output values for a SantaAnawind event, it can also show

elevated values for any day therefore making it too ge-

neric for our purposes.

Assuming an aggressive suppression strategy is

employed with adequate resource availability in an

easily accessible area, large fire potential (LFP) can be

simplified into a function involving fuel and meteoro-

logical conditions preceding, during, and following the

time of ignition. From observation and experience, the

two weather variables that contribute most toward fire

growth during a Santa Ana wind event are wind velocity

and the amount of dry air present near the surface. To

illustrate this concept, we examined the difference be-

tween two Southern California fire regimes (Jin et al.

2015) consisting of fire activity during the summer,

versus only during the fall when Santa Ana winds begin

to increase in frequency (Figs. 2 and 3). It is easy to see

that most of the fire activity during the summer occurs in

low-wind situations with varying dewpoint depression

values. However, fires burning in the autumn are com-

monly associated with stronger winds and higher dew-

point depression values. Therefore, based on operational

experience, observations, and model data, we believe the

potential for a new ignition to reach or exceed 100ha

based solely on weather conditions during a Santa Ana

wind event is best expressed by the following equation:

LFP
w
5 0:001W2

s Dd
, (1)

where Ws is the near-surface (10m AGL) sustained

wind speed (mi h21) and Dd is the near-surface dew-

point depression (8F). It should be noted that this

equation was validated by examining dynamically

downscaled reanalysis data across Southern California

for the month of October from 1979 to 2010. It has

been suggested that wind speed has an exponential

effect on the spread of fire among finer fuels such as

grass and brush, and that wind can also have the same

effect on fire spread as a fire burning upslope with little

or no wind (Rothermel 1972). Dewpoint depression

(T 2 Td) depicts the dryness at the surface well and

affects the moisture content of vegetation. Also, dew-

point depression can sometimes differentiate better

between warm and cold offshore events than relative

humidity can. In our dataset, it has been noted that

larger dewpoint depression values (Dd $ 248C) have
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mainly been associated with warm events. While this

may seem trivial, cold Santa Ana wind events (surface

ambient temperatures , 168C) are usually not associ-

ated with large fires (according to our historical fire

database previously mentioned). This may be due in

part to lower fuel temperatures because in those cases

more time would be needed to reach the ignition

temperature. Another reason is that colder events are

sometimes preceded by precipitation either by a few

days or by a few weeks, which would cause fuels to be

less receptive to new ignitions. These are the primary

reasons why temperature was excluded from (1), al-

though it has been incorporated indirectly through the

use of Dd and in the fuels component that will be dis-

cussed in the following section. Finally, we note that

while (1) bears some resemblance to the FFWI, a com-

parison of daily outputs of FFWI and LFPw revealed that

LFPw provides significantly greater contrast between

Santa Ana days and non–Santa Ana days. Therefore,

these results favored LFPw as being themore appropriate

equation for our purposes.

b. Large fire potential: Fuel moisture component

In addition to the meteorological conditions, LFP is

also highly dependent on the state of the fuels. Given the

complexity of the fuel environment (i.e., fuel type,

continuity, loading, etc.), we decided to focus more

specifically on fuel moisture since that aspect plays a

critical role in the spread of wildfires (Chuvieco et al.

2004). For our purposes, we have condensed fuel mois-

ture into three parameters: 1) dead fuel moisture, 2) live

fuel moisture, and 3) the state of green-up of the annual

grasses. Each of these aspects of fuel moisture is com-

plex and will be defined more specifically later. We

combined these moisture variables into one term, which

we refer to as the fuel moisture component (FMC).

While the variables within the FMC often act in concert

with each other, there are times when they are out of

FIG. 2. Relationship of large fire ($100 ha) occurrence and relative size with respect to av-

eragewind speed and dewpoint depression across zone 1 between 1 Jun and 20 Sep from 1992 to

2012. Bubble size represents relative fire size.

FIG. 3. As in Fig. 2, but between 21 Sep and 31 Dec.
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phase with one another as a result of the variability in

precipitation (frequency and amount) that occurs across

Southern California during the winter. Through a com-

prehensive empirical investigation, the governing equa-

tion for FMC can be expressed as

FMC5

�
0:1

��
DL

LFM
2 1

�
1G

ag

��1:7

, (2)

where DL is the dryness level consisting of the energy

release component (ERC) and the 10-h dead fuel

moisture time lagDFM10hr. Dead fuel refers to nonliving

plant material whose moisture content responds only to

ambient moisture. Dead fuel is typically grouped into

‘‘time lag’’ classes according to diameter as follows:

0.20 cm, DFM1hr; 0.64 cm, DFM10hr; 2.00 cm, DFM100hr;

and 6.40 cm, DFM1000hr. Live fuel moisture (LFM) is a

sampling of the moisture content of the live fuels in-

digenous to the local region, and Gag is the degree of

green-up of the annual grasses. Currently, we are making

the assumption that all the terms in (2) have equal weight,

but further study may lead to future modifications.

1) DRYNESS LEVEL

The DL is a function of ERC and DFM10hr calibrated

to historical fire occurrence across Southern California

with unitless values ranging from 1 to 3. ERC is a rela-

tive index of the amount of heat released per unit area in

the flaming zone of an initiating fire and is composed of

live and dead fuel moisture as well as temperature, hu-

midity, and precipitation (Bradshaw et al. 1983). While

ERC is a measure of potential energy, it also serves to

capture the intermediate- to long-term dryness of the

fuels with unitless values generally ranging from 0 to 100

(using NFDRS fuel model G). The DFM10hr represents

fuels in which the moisture content is exclusively con-

trolled by environmental conditions (Bradshaw et al.

1983). Output values of DFM10hr are in grams per gram

expressed as a percentage ranging from 0 to 60. In the

case of the DFM10hr, this is the time required for dead

fuels (0.64–2.54 cm in diameter) to lose approximately

two-thirds of their initial moisture content (Bradshaw

et al. 1983). Thus, a DL of 1 indicates that dead fuels are

moist, 2 represents average dead fuel dryness, and a 3

indicates that the dead fuels are drier than normal.

2) LIVE FUEL MOISTURE

The observed LFM is the moisture content of live

fuels (e.g., grasses, shrubs, and trees) expressed as a ratio

of the weight of water in the fuel sample to the oven dry

weight of the fuel sample (Pollet and Brown 2007). Soil

moisture as well as soil and air temperature govern the

physiological activity, which results in changes in fuel

moisture (Pollet and Brown 2007). LFM is a difficult

parameter to evaluate because of the irregularities as-

sociated with observed values. For instance, samples of

different species of native shrubs are normally taken

twice a month by various fire agencies across Southern

California. However, the sample times often differ be-

tween agencies and the equipment used to dry andweigh

the samples may vary from place to place. In addition,

sample site locations are irregular in their distribution and

observations from these sites may be taken sporadically.

This presents a problem when we attempt to assess LFM

over the region shown in Fig. 1.

Apart from taking fuel samples, there are several

ways of estimating LFM using meteorological variables,

soil water reserves, solar radiation, etc. (Castro et al.

2003). In particular, we developed an approach to mod-

eling the LFM of chamise or greasewood (Adenostoma

fasciculatum), a common shrub that grows within the

chaparral biome in Southern California and is particu-

larly flammable because of its fine, needlelike leaves

and other characteristics (Countryman and Philpot

1970; Fovell et al. 2016, manuscript submitted to Int.

J. Wildland Fire). This strategy makes use of histori-

cally observed LFM data from 10 sampling sites across

SouthernCalifornia and soilmoisture from the 40–100-cm

layer (SMOIS402100cm) from the North American Land

Data Assimilation System, phase 2 (NLDAS-2). At each

sampling site, LFM deviations from climatology are

predicted using SMOIS402100cm departures from its

own annual cycle. A key element of the model is the

incorporation of a 22-day lag between SMOIS402100cm

and LFM that improved the model fits. This is because a

certain period of time elapses during which water per-

colates downward through the soil layers and then is

drawn back up through the root system of the plant. This

time can vary between 4 and 43 days depending on the

evaporative conditions, soil structure, and site elevation.

An average of this time lag over all the stations equated

to 22 days. Current LFMvalues observed are relatable to

gridded NLDAS-2 soil moisture anomalies from about

3 weeks earlier.

That approach, although quite skillful, results in site-

specific equations not easily generalized across Southern

California. The SAWTI index presently makes use of a

simplified version of this strategy, applied to all grid

points in the domain. For a given day, the model can be

expressed as

LFM5 (SMOIS
402100cm22days

2 SMOIS
m
)1 82, (3)

where SMOIS402100cm22days is the soil moisture of the

40–100-cm layer from 22 days earlier and SMOISm is the

mean soil moisture from 2009 to 2012 for that same date.
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The empirically selected constant of 82 roughly approxi-

mates the annual mean LFM over a large variety of sites.

3) ANNUAL GRASSES Gag

Following the onset of significant wetting rains, new

grasses will begin to emerge in a process called green-up.

While the timing and duration of this process fluctuate

from year to year, some degree of green-up usually oc-

curs by December across Southern California. During

the green-up phase, grasses will begin to act as a heat

sink, thereby preventing new ignitions and/or signifi-

cantly reducing the rate of spread among new fires. By

late spring these grasses begin to cure with the curing

phase normally completed by mid-June. In (2), Gag is a

value that quantifies the said green-up and curing cycles

of annual grasses.

The value of Gag is derived from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) NDVI

dataset at a resolution of 250m for select pixels consisting

solely of grasslands. NDVI is further defined by red and

near-infrared (NIR) bands in the following equation:

NDVI5
r
NIR

2 r
b

r
NIR

1 r
b

, (4)

where b is the reflectance in band b (Clinton et al. 2010).

It can be shown thatNDVIvalues for SouthernCalifornia

grasslands generally range from about 0.25 (60.05) to

0.75 (60.05) for an average rainfall year (Fig. 4). There is

evidence that NDVI is affected by soil color (Elmore

et al. 2000), which may explain the NDVI differences

(60.05) seen among the selected Southern California

grassland locations.

We give Gag a rating of from 0 to 5 based on NDVI

data, where 0 is green and 5 is fully cured. When

applying the methodology discussed by White et al.

(1997) to the general range of Southern California

grasslands, green-up is estimated to have occurred when

NDVI exceeds 0.50. However, we have found that this

value can be closer to 0.64 for some sites, and therefore

NDVI values greater than 0.64 are assigned a value of 0,

or green. Furthermore, NDVI values less than or equal

to 0.39 are assigned a value of 5. This is because NDVI

values are observed to be below 0.39 for all grassland

sites during the dry season when grasses are known to be

fully cured. A linear relationship exists between NDVI-

derived values of Gag and fire occurrence in Southern

California (Fig. 5). For this reason, the transition between

green and fully cured (or vice versa) was given a rating of

from 1 to 4 in NDVI increments of 0.05 (Table 1).

To model NDVI, we used MODIS-derived NDVI

biweekly data observed at 21 stations shown in Fig. 1,

interpolated to daily frequency using cubic splines. The

data availability period was January 2004–June 2012.

For ease of implementation, our goal was to create a

simple, yet skillful equation to capture the temporal

variation of NDVI:

NDVI5a1b
1
cos(2pDOY/LOY)1b

2
PRECIP

accum

1b
3
RH

avg
1b

4
VEG

frac
1b

5
SMOIS

402100cm
,

(5)

where DOY is the 1 January–based day of the year and

LOY is the length of the year in days. The regressor

PRECIPaccum is the 1 September–based annually accu-

mulated precipitation (mm), RHavg is the 30-day run-

ning averaged relative humidity, VEGfrac is the surface

vegetation fraction (0–1), and SMOIS402100cm is the soil

moisture content of the 40–100-cm depth (kgm23). This

FIG. 4. Sample annual NDVI output.
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equation was the result of the ‘‘random forest’’ selection

and stepwise regression applied to a large number of

meteorological candidate regressors; see Cao (2015)

for more information. The R2 of the model is 0.73; see

Table 2 for coefficient values.

We applied this model to the 21 sites in the four zones

shown in Fig. 1. It is recognized that at some stations and

times, the NDVI predictions are somewhat out of phase

(i.e., the up and down ramps are too early or too late)

with the observations, and the peaks are over- or un-

derpredicted at different locations and times. The

marked drought year of 2007 is clearly a problem at

some locations, especially in zone 2. However, con-

sidering the fact that this is a simple universal model

with only five regressors applied across Southern

California, we believe it has shown adequate skill

overall (Cao 2015).

c. Large fire potential: Weather and fuels

Given our derived expression for fuel characteristics,

we can now predict large fire potential during Santa Ana

wind events, taking into consideration both the weather

and the fuels. FMC modifies (1) in cases where fuels

have not fully cured and are still inhibiting fire spread.

Output values of FMC range from 0 to 1, where 0 rep-

resents wet fuels and 1 denotes dry fuels. This modifier

can become so influential that it will greatly reduce or

even eliminate the potential for large fire occurrence

despite favorable meteorological conditions for rapid

fire growth. So the final equation for large fire potential

becomes

LFP5 0:001W2
s Dd

FMC. (6)

The value of the incorporation of fuel moisture pre-

dictions into the index is illustrated in Fig. 6. For ex-

ample, examination of the period between September

2008 and May 2009 shows a number of significant Santa

Ana wind events indicated by the spikes in LFPw. The

difference between LFPw and LFP is small during the

fall months attributed to high FMC values. This is con-

firmed by viewing the relatively close spatial agreement

between LFPw and LFP (Fig. 7). In contrast, large dif-

ferences occur after significant winter rains commence

(Fig. 8). Large wildfires had occurred during each of the

spikes noted in the fall while little fire activity was re-

corded despite the LFPw spikes during January. This is

precisely because of low FMC values, which illustrates

the critical role that fuels play in this index.

3. Operational SAWTI

a. Model configuration

The data ingested to compute the four-zone, 6-day

LFP operational forecasts come from multiple sources

FIG. 5. Probability of fires $ 0.04 ha predicted by NDVI-derived Gag for zone 3.

TABLE 1. Relationship between NDVI and greenness.

NDVI Gag No. Description

NDVI . 0.64 0 Green

0.59 , NDVI # 0.64 1

0.54 , NDVI # 0.59 2

0.49 , NDVI # 0.54 3

0.39 , NDVI # 0.49 4

0 # NDVI # 0.39 5 Cured

TABLE 2. Selected NDVI regressors.

Coef Value

a 20.314 867

b1 0.112 535 92

b2 1.44 3 1025

b3 0.003 556 47

b4 0.911 360 168

b5 0.002 412 815
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at different temporal and horizontal resolutions ranging

from hourly to daily, and from 3 to 12.5 km, respectively

(Fig. 9). To reduce the exposure to error in fields with

long accumulation periods, we sourced input variables

for LFM and NDVI from the NLDAS-2 data (con-

structed using a land surface model in conjunction with

assimilated observations and atmospheric model

output). In contrast, hourly DFM and ERC values are

predicted using offline models (Nelson 2000; Carlson

et al. 2007; NFDRS) forced by WRF weather output.

DFM and ERC are calculated from meteorological

variables predicted using WRF version 3.5 (Skamarock

et al. 2008), run at 3- and 6-km horizontal resolution.We

selected a WRF configuration that minimized errors

with respect to near-surface temperature, winds, and

dewpoint during Santa Ana wind events (Cao 2015; Cao

and Fovell 2016). This configuration includes the sim-

ple WRF single-moment 3-class microphysics scheme

(Hong et al. 2004), the GCM version of the Rapid

Radiative Transfer Model (RRTMG) shortwave and

longwave radiation schemes (Iacono et al. 2008), the

MM5 Monin–Obukhov surface layer scheme, and the

Asymmetrical Convective Model version 2 boundary

layer scheme (Pleim 2007). The Noah land surface

model (Tewari et al. 2004) with four soil layers was used

in conjunction with the MODIS land-use dataset. Each

operational WRF forecast dynamically downscales the

12-km-resolution 0000 and 1200 UTC North American

FIG. 6. Comparison of LFPw and LFP time series for zone 1 during the period spanning September 2008–May 2009. For large fires that

occurred in October and November of 2008, relatively dry fuels (LFP, solid black line) accompanied the dry and windy weather (LFPw,

dashed gray line). In contrast, January–February of 2009 experienced peaks of windy and dry conditions (LFPw) accompanied by moist

fuels (LFP) and, as a result, no fires grew larger than 100 ha.

FIG. 7. Average (left) LFPw and (right) LFP from 0800 to 1500 LST during a Santa Ana event on 15 Nov 2008. This offshore event was

accompanied by the Freeway Complex fire, which burned over 12 141 ha, destroying 187 homes and damaging 117 others (http://cdfdata.

fire.ca.gov/incidents/incidents_details_info?incident_id5305).
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Mesoscale Forecast System (NAM) 1–3.5-day forecasts

to 3-km resolution. We use a two-way-nested WRF

domain configuration consisting of a 3-km-resolution

innermost domain nested within a 9-km-resolution out-

ermost domain with 51 vertical levels. To extend the

forecast out to 6 days, the 0.258-resolution Global

Forecast System (GFS) is downscaled using WRF to

6-km resolution.We use a two-way-nestedWRF domain

configuration consisting of a 6-km-resolution innermost

domain nested within an 18-km outer domain and a

54-km outermost domain with 46 vertical levels. To help

determine bounds and behavior of the SAWTI equations

and place forecasts into some historical perspective, we

dynamically downscaled the 32-km-resolution North

American Regional Reanalysis (NARR; Mesinger et al.

2006) dataset to 3-km resolution using WRF over the

FIG. 8. Average LFPw and (bottom left) LFP from 0800 to 1500 LST during a Santa Ana event in January 2009.

FIG. 9. Flowchart depicting operational LFP input models and datasets, derived variables, and

the final LFP equation.
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historical period spanning January 1984–December 2013.

We used a two-way-nested WRF domain configuration

consisting of a 27-km-resolution outer domain, 9-km-

resolution inner domain, and 3-km-resolution innermost

domain with 51 vertical levels. WRF was integrated

across 3.5-day periods with the first 12h from each period

discarded as spinup time.

b. Calculating SAWTI

1) WEATHER

Equation (1) is temporally averaged at eachWRF grid

point across the domain using the following equation:

LFP
w,gpx

5
LFP

whour1
1LFP

whour2
1⋯1LFP

whour8

8
, (7)

where LFPw,gpx is an average LFPw value over an 8-h

time period at grid point x. An 8-h period was chosen

because that is ample time for the finer fuels (i.e.,DFM10hr)

to respond to the ambient atmospheric conditions. Once

an average LFPw had been calculated for each grid point,

the maximum 8-h-average LFPw for each day is then

spatially averaged over each zone as follows:

LFP
w,zone

5
LFP

wgp1
1LFP

wgp2
1⋯1LFP

wgpx

Number of grid points per zone
, (8)

where LFPw,zone is the maximum 8-h average at each

grid point within the model domain. It is important to

note that (7) was calculated for five different eight-

consecutive-hour time periods with the highest value

chosen to represent each zone for the day (Fig. 10). This

is to ensure that the worst conditions are being captured

on a daily basis. For instance while most Santa Ana wind

events peak during the morning hours, some events can

peak later in the day or at night depending on the arrival

time of stronger dynamical support. Thus, calculating

LFPw for only one consecutive 8-h time period may fail

to capture the worst conditions of the day. This more

simplistic approach was favored compared to using an

8-h running average.

FIG. 10. Time periods over which LFPw is averaged.

FIG. 11. Using historical fire occurrence data between 1992 and 2011, the relationship be-

tween binned FMC, LFPw, and fire activity for zone 1 is shown. Tickmarks indicate starting bin

values for both FMC (bin interval of 0.099) and LFPw (bin interval of 5). Bubble size indicates

the conditional probability for an ignition to meet or exceed 100 ha. For instance, 100% of fires

that ignited during conditions characterized by FMC$ 0.7 and LFPw $ 36 grew into large fires.
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2) FUELS

Recall thatDL relates ERCandDFM to historical fire

activity. To provide a DL forecast, DFM and ERC are

computed across the spunup WRF forecast period. To

avoid the potentially long spinup times required by

DFM, the DFM must be initialized at each grid point

across the WRF domain. Since a publicly available

gridded observed DFM product does not exist, DFM is

initialized using the previous day’s DFM forecast valid

at the fourth hour of the currentWRF forecast. The first

4 h of each WRF forecast are removed to allow for

model spinup and to avoid contamination of DFM and

ERC as a result of relatively unrealistic atmospheric

inputs. Because of the need for these continuously

spunup DFM time series, WRF forecasts must be un-

interrupted. However, if any WRF forecasts are missed,

DFM forecasts could be initialized using output from

earlier WRF/DFM forecasts, which are archived for at

least a month.

Quasi-observational data (NLDAS-2) are available

for estimating LFM and NDVI using (3) and (5), re-

spectively. The 22-day lagged soil moisture required

for LFM is provided from the Noah land surface

model output of the NLDAS-2 dataset. For NDVI, the

latest NLDAS-2 output is used (typically a 5-day lag),

TABLE 3. Categories of threat levels and their descriptions.

Category Description

No rating Santa Ana winds are either not expected or will not contribute to significant fire activity

Marginal Upon ignition, fires may grow rapidly

Moderate Upon ignition, fires will grow rapidly and will be difficult to control

High Upon ignition, fires will grow very rapidly, will burn intensely, and will be very difficult to control

Extreme Upon ignition, fires will have extreme growth, will burn very intensely, and will be uncontrollable

FIG. 12. Online operational SAWTI product.

DECEMBER 2016 ROL IN SK I ET AL . 1891



which provides vegetation fraction, 2-m relative humidity,

and soil moisture. Archived NLDAS-2 data are needed

going back to the previous 1 September for cumulative

precipitation. Both LFM and NDVI are regridded from

the NLDAS-2 data at 12.5km to the 3-km horizontal

resolution, matching the WRF domain using bilinear in-

terpolation, and are held constant across the 6-day fore-

cast period. In contrast to weather that is calculated

hourly, fuel conditions are calculated only at 1300 LST,

representing fuel conditions for the entire day.

c. Public dissemination

Social science was incorporated during the early

stages of the developmental process of SAWTI (Wall

et al. 2014). The Desert Research Institute provided a

social scientist to conduct an in-depth survey of five

communities across Southern California. Much of the

survey centered on questions regarding how the public

obtains weather and fire information and their associ-

ated responses to that information. The results of the

survey were used to help determine the type of in-

formation that would be presented in the product. In

conjunction with the social science, historical weather

and fuels data were correlated to historical fire occur-

rence records to develop index threat level categories.

For example, for each SAWTI zone we compared daily

FMC values along with daily LFPw values from (1) for

the historical period (1992–2011) to whether or not a fire

had occurred. We repeated the process; this time

equating the output to whether or not a 100-ha fire or

greater occurred (Fig. 11). Comparing these two results

yielded a conditional probability for an ignition to

reach or exceed 100 ha based on FMC and LFP values.

By assessing and employing these probabilities, LFP

breakpoints could easily be determined (see section 3e

for more details).

The SAWTI has four threat levels that range from

‘‘marginal’’ to ‘‘extreme.’’ When Santa Ana winds are

either not expected or will not contribute to significant

fire activity, then a ‘‘no rating’’ is issued for that day. For

example, it could be possible that if a strong Santa Ana

wind event were to transpire after appreciable rains

occurred or when fuels are wet, the event would be

categorized as a no rating. For definitions of other threat

levels, see Table 3. Tied to each threat level is a list of

recommended actions suggested to the public to better

prepare for an impending event. Examples include the

following instructions: ‘‘Clean debris away from your

house, charge your cell phone and make sure you have

plenty of gas.’’ The list of recommended actions expands

as the threat levels increase. This aspect of the product is

critical, as it serves to link categories of severity with

public awareness.

The product consists of an online web page (http://

sawti.fs.fed.us) that displays a 6-day forecast of the

above-mentioned categories for each of the four zones

across Southern California (Fig. 12). A map of the re-

gion stands as the centerpiece of the page and graphi-

cally shows the categories that are colorized, ranging

from gray (no rating) to purple (extreme). The product

is issued once daily but can be updated more frequently

as conditions warrant. The web page allows users to

obtain more information such as viewing the latest

weather observation from select stations when zoomed

in on the map. The page will also display active and

nonactive fires (via icons) on the map when such activity

is present. Selecting one of these icons will provide the

user with specific fire information such as acreage

burned, percent contained, and links to more data.

SAWTI also has a Twitter feed (https://twitter.com/

sawti_forecast), where users are notified about changes

in threat levels.

The product was beta tested for a year prior to it

becoming a public product in the fall of 2014. During the

beta test phase, the index performedwell in capturing all

events that occurred during the fall of 2013 through the

spring of 2014, which featured events that ranged from

no rating to high. Several notable events occurred dur-

ing this period: 16 January 2014 (Colby fire), 29 April–

1 May 2014 (Etiwanda fire), and 13–14 May 2014 (the

FIG. 13. Map of active fires (icons) on 14 May 2014 across San

Diego County.
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San Diego fires). Fire agencies that were granted access

to the index during this time used the product to make

critical decisions regarding the allocation and mobili-

zation of shared fire resources prior to when these

fires occurred. Specifically, the event that occurred on

13–14 May 2014 was especially notable because of the

fact that the winds were unusually strong during this

period, and that multiple large fires occurred as a result.

Figure 13 shows a map of the fires across San Diego

County, while Fig. 14 shows the SAWTI in beta test

form for this event. The product was officially released

to the public on 17 September 2014 via a press release

and at an associated press conference. Since that time,

the product has been used by local news media across

the San Diego and Los Angeles metropolitan areas, as

well as being shown on The Weather Channel.

d. Validation

Fire potential is very difficult to validate since our

model is based on a conditional probability (i.e., getting

an ignition). In addition, once an ignition occurs there

are a number of human behaviors that cannot be pre-

dicted that can influence fire potential. For instance, if

the SAWTI indicates a high likelihood of having a large

fire for a particular Santa Ana wind event and one does

not occur, it does not necessarily mean the model per-

formed poorly. There may not have been an ignition

during the event, or theremay have been an ignition, but

adequate fire-fighting resources were made available to

be successful in suppressing the incident before the fire

became large. There have been a few times where the

index displayed a no rating and a large fire occurred, but

this has been very rare.

Modeling fuel conditions accurately presents certain

challenges. Regarding DFM, our ability to validate

WRF DFM and ERC is limited given the sparse obser-

vations across this domain. Various Remote Automated

Weather Stations (RAWSs) calculate DFM using mea-

sured atmospheric inputs including near-surface tem-

perature, relative humidity, precipitation, and solar

radiation. We validate WRF DFM and ERC across two

years of the 30-yr historical period at 14 RAWSs

(Fig. 15). These stations were selected so that at least

three stations represent zones 1–3. Zone 4 has relatively

fewer RAWSs reporting DFM and ERC measurements

for the time period of interest; thus, only one station

represents zone 4. At each RAWS location, the closest

WRF grid cell with the smallest elevation difference was

selected for validation. We show two example time se-

ries plots (Figs. 16 and 17), for the Goose Valley and

Claremont RAWSs. At the Goose Valley RAWS site

(Fig. 16), the WRF DFM and ERC output agrees well

with RAWS measurements for most of the two years

examined, with only slightly positive biases of 0.24 and

2.14 for DFM100hr and DFM1000hr, respectively. At the

Claremont RAWS (Fig. 17), the WRF DFM and ERC

FIG. 14. SAWTI (in beta test) during 14–15 May 2014.
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output compares less favorably at certain times over the

two years andmore strongly during others. However, we

report small biases at the Claremont RAWS of 21.27

and 1.30 for DFM100hr and DFM1000hr, respectively, with

RMSEs of 4.22 and 2.65. Table 4 shows WRF error

statistics for all 14 RAWS across the 2-yr period. The

WRF DFM100hr bias ranges from 21.27 to 4.00, while

RMSE ranges from 2.72 to 4.93, with the correlation

ranging from 0.55 to 0.86. Our WRF DFM1000hr has a

positive bias ranging from 1.30 to 6.00, with RMSE

spanning 2.50–6.15, and the correlation from 0.54 to

0.92. Finally, the WRF ERC bias is mostly negative

given the positive DFM1000hr bias ranging from 225.09

to 0.50, with RMSE ranging from 9.52 to 27.41, and the

correlation from 0.53 to 0.90. It is hypothesized that

WRF does not adequately resolve the complex topog-

raphy at the two RAWSs that have the worst error sta-

tistics: Chilao and Palomar.

e. Climatology

The historical dataset described previously provides

us with an unprecedented 30-yr climatology of the fuel

and weather variables related to wildfires across the four

SAWTI zones in Southern California. Having this

dataset has allowed us first to create breakpoints within

the raw SAWTI output necessary for the development

of the four threat levels that are integral to the final

public product. To do this, we correlated historical fire

occurrence data with historical LFP values from the

dataset to develop breakpoints for the SAWTI. Most of

the breakpoints fell naturally, but with some minor

FIG. 15. RAWSs used to validate WRF DFM and ERC.

FIG. 16. RAWS (blue line) and closest WRF grid cell (orange line) time series of (top) 100- and (middle) 1000-h

dead fuel moisture, and (bottom) ERC spanning January 2012–December 2013 for Goose Valley. WRF output

coincides with RAWS 1300 LST measurements. Each plot is annotated with WRF output bias, RMSE, and the

Spearman correlation.
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adjustments, we created breakpoints at the 50th, 75th,

90th, and 97th percentiles. Significant increases in con-

ditional probabilities for each category seemed to con-

firm our choices.

This unique dataset informs us about the historical

significance the fuels, weather, and SAWTI events have

had during the past 30 years. Having the ability to put

past, but perhaps more importantly, forecasted SAWTI

events into historical perspective helps inform the

public and first responders about the nature and the

characteristics of an impending event. For example, we

can authoritatively state that the Santa Ana wind event

that helped to spawn the Witch Creek fire (and served

as the catalyst for the development of this index) was

ranked as the highest event in the 30-yr dataset for

zones 1 and 2.

As we continue to explore this dataset, we hope to

gain a better understanding of the climatology of Santa

FIG. 17. As in Fig. 16, but for the Claremont RAWS.

TABLE 4. WRF error statistics at each RAWS for time spanning January 2012–December 2013.

100-h DFM 1000-h DFM ERC

Station Bias RMSE Correlation Bias RMSE Correlation Bias RMSE Correlation

Camp Elliot 0.17 3.90 0.55 1.75 2.97 0.54 20.71 11.12 0.53

Cheeseboro 0.99 3.30 0.69 3.89 4.25 0.75 210.78 14.81 0.74

Chilao 4.00 4.93 0.84 6.00 6.15 0.92 225.09 27.41 0.89

Claremont 21.27 4.22 0.66 1.30 2.65 0.76 0.50 13.71 0.79

Clark 20.06 3.24 0.69 2.80 3.39 0.75 24.27 11.24 0.76

Descanso 2.45 4.07 0.82 3.93 4.40 0.85 214.40 18.39 0.84

El Cariso 1.26 3.70 0.73 3.27 3.94 0.81 29.19 15.02 0.82

Fremont Canyon 20.03 3.73 0.66 2.21 3.13 0.63 22.52 11.25 0.73

Goose Valley 0.24 3.96 0.65 2.14 2.90 0.78 24.82 11.50 0.77

Julian 0.95 3.97 0.80 2.36 3.05 0.90 24.81 10.54 0.90

Los Prietos 20.97 2.72 0.74 1.69 2.67 0.72 23.27 10.45 0.72

Palomar 3.06 4.46 0.86 4.12 4.82 0.88 214.72 20.12 0.88

Rose Valley 0.74 2.83 0.77 3.06 3.45 0.85 210.06 14.06 0.82

Valley Center 20.22 3.80 0.67 1.84 2.50 0.80 22.32 9.52 0.78
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Ana winds during the past three decades, including

detecting and understanding interannual trends and

cycles in event frequencies and strength. Figure 18 shows

the number of days when Santa Ana winds occurred

across zone 3 for the period spanning 1984–2013. This

figure reveals a noticeable upward trend in the frequency

of Santa Ana wind days during approximately the last 10

years, ending in 2013. Preliminary research shows that

this long-term trend in frequency (possibly associated

with a longer-term interannual cycle) coincides with a

predominately negative phase of the Pacific decadal os-

cillation (PDO). Further investigation conducted in a

future paper will seek to explore the causal mechanisms

for this trend in frequency, aswell as other trends in Santa

Ana wind characteristics.

4. Summary and conclusions

As the wildland–urban interface (WUI) continues to

expand across Southern California, the sources of igni-

tion will increase, leading to a greater probability for

large and destructive fires during Santa Ana wind

events. This puts the public and firefighter safety at risk,

thus the increasing need to categorize such events in

terms of their effect on the fire environment.

Predictive Services’ initial efforts to categorize Sana

Anawinds helped to provide the leadership and guidance

necessary for the development of the SAWTI. Through

the successful collaboration between the government,

academia, and the private sector, high-resolution model

data along with satellite-derived variables allowed us to

incorporate fuel and weather data into the index on a

gridded domain within Southern California. Challenges

surrounding the assessment of fuel conditions include the

difficulty in determining different fuel moisture parame-

ters, which can sometimes result in a less accurate eval-

uation of fuel conditions. Further refinement of the

model is needed to improve the overall output. However,

during the beta testing process, the index performed very

well with positive responses from the recipients of the

preliminary output. Since its public unveiling, the index

has been well received by the media and the fire

community.

Our 30-yr dataset is unprecedented. Not only does it

provide us with 30 years’ worth of fuel moisture data

across Southern California (which is useful in relating

fuel conditions with drought), it also gives us quantifi-

able outputs of average wind velocity, dewpoint de-

pression, and the SAWTI itself. This allows us to put

past and future Santa Ana events (magnitude, duration,

and spatial coverage) into historical perspective, which

is significant. Future studies in the climatology of such

events can be conducted, leading to a better under-

standing of why certain trends exist.

Fire agencies and first responders, private industry,

the general public, and the media now have a new op-

erational tool that determines the severity of Santa Ana

wind events. Furthermore, they will have a clearer un-

derstanding of the severity of an event based on the

potential for large fires to occur. Specifically, a more

effective media response will result in the general pop-

ulation (particularly those living within the WUI) being

more proactive in its response to an impending event.
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FIG. 18. Number of Santa Ana wind days per rain year (1 Jul–30 Jun) for years spanning 1984–2014 (solid black

line). Dashed line is a polynomial fit to the data, which helps to depict the longer time period trends.
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