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ABSTRACT OF THE DISSERTATION

A Joint Parsing System for Visual Scene Understanding

by

HANG QI

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2018

Professor Song-Chun Zhu, Chair

The computer vision community has been long focusing on classic tasks such as object

detection, human attributes classification, action recognition. While the state-of-the-art

performance is getting improved every year for a wide range of tasks, it remains a challenge

to organize individual pieces into an integral system that parses visual scenes and events

jointly. In this dissertation, we explore the problem of joint visual scene parsing in a restricted

visual Turing test scenario that encourages explicit concept grounding. The goal is to build

a scalable computer vision system that leverages the advancement of individual modules

in various tasks and exploits the inherent correlation and constraints between them for a

comprehensive understanding of visual scenes.

This dissertation contains three main parts.

Firstly, we describe a restricted visual Turing test scenario that evaluates computer vi-

sion systems across various tasks with a domain ontology and explicitly tests the grounding

of concepts with formal queries. We present a benchmark for evaluating long-range recog-

nition and event reasoning in videos captured from a network of cameras. The data and

queries distinguish us from visual question answering in images and video captioning in that

we emphasize explicit groundings of concepts in a restricted ontology via formal language

queries.

Secondly, we propose a scalable system which leverages off-the-shelf computer vision

modules to parse cross-view videos jointly. The system defines a unified knowledge rep-
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resentation for information sharing and is extendable to new tasks and domains. To fuse

information from multiple modules and camera views, we proposed a joint parsing method

that integrates view-centric proposals into scene-centric parse graphs that represent a co-

herent scene-centric understanding of cross-view scenes. Our key observations are that over-

lapped fields of views embed rich appearance and geometry correlations and that knowledge

fragments corresponding to individual vision tasks are governed by consistency constraints

available in commonsense knowledge. The proposed method captures such correlations and

constraints explicitly and generates semantic scene-centric parse graphs. Quantitative ex-

periments show that scene-centric predictions outperform view-centric proposals.

Thirdly, we discuss a principled method to construct parse graph knowledge bases that

retains rich structures and grounding details. By casting questions into graph fragments,

we present a graph-matching based question-answering system that retrieves answers for

questions via graph pattern matching.
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CHAPTER 1

Introduction

1.1 Motivation

Many computer vision tasks, such as object detection [FFP06, EVW], human attributes

classification [ZPR14], action recognition [SZS12] segmentation [AGB07], have gained great

performance improvements over the past decades. However, being able to solve the individual

tasks solely does not necessarily lead to solving a complex problem as a whole. Many

real-world applications, e.g. scene and events understanding, large-scale surveillance, and

autonomous driving, demand a complex set of perception and reasoning capabilities on

different data modalities that is not covered by any individual well-defined computer vision

task in isolation. Moreover, many of these tasks are inherently correlated. Exploring the

implicit connections and constraints can provide us additional information for pursuing a

solution jointly. In the scope of this work, we are interested in visual scene and event

understanding.

A comprehensive scene and event understanding demands a wide range of perception

tasks and reasoning capabilities. As shown in Figure 1.1, detection and recognition tasks

focus on locating entities and assigning labels to the data; attribute inference tasks char-

acterize more nuanced aspects for the detected entities; relationship inference tasks explore

connections between entities from various aspects (spatial, social, functional, etc); whereas

reasoning tasks focus on making predictions or drawing additional conclusions from the

observed information based on external knowledge. These tasks across the spectrum are

fundamental to higher level applications such robotics, human-machine collaboration. In

this dissertation, we primarily focus on detecting entities and objects, describing objects
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with a rich set of attributes, understanding the actions and activities in visual scenes.

Detection & 
recognition Attributes & properties Relationships Reasoning

A person

Dropping (action)

A room

Female

A couple of seconds

About 80 sq. feet

On a bike. Together with a friend. Her feet are above the ground.

He dropped a glass.

There is a refrigerator in the room. It’s likely to be a kitchen.

The glass is likely to be broken.

Figure 1.1: A comprehensive scene and event understanding demands a wide range of per-

ception and reasoning capabilities.

Learning a single model for a number of multimodal tasks jointly requires monolithic

datasets containing annotations with multiple types of labels, such as bounding box ground-

truth for localization, semantic labels ground-truth for classification, natural language sen-

tences for image captioning and question answering. Such approach does not scale well when

new tasks are introduced, since this often demands (i) a larger dataset that contains labels

for new tasks in addition to existing tasks, (ii) a more complex model with more parameters

to be trained on the new dataset. The size of the dataset can grow exponentially for an unbi-

ased distribution of labels. However, the bias in existing multimodal datasets is salient and

many monolithic approaches are data hungry and prone to dataset bias [ZWY17, GKS17].

Moreover, the lack of explicit grounding of concepts [JJM16] render it hard to reason the

strengths and weaknesses of such models.

Alternatively, it has been our focus to pursuit a scalable approach. We consider a desired

system shall have the following properties.

• Modular. In contrast to “one-model-solves-them-all” approaches, we pursuit a system

that is able to leverage the out-of-the-box modules. With a modular framework, the

system can be reconfigured with various different modules to achieve tasks that cover

a range of application requirements. For example, in delay-sensitive scenarios, such as

real-time surveillance and robotic applications, modules with slightly degraded perfor-

2



mance but lower computation workload may be preferred over computation intensive

alternatives.

• Decoupled. The system shall be able to be expanded and improved without requir-

ing all existing modules to be retrained. Being able to decouple tasks and for the

system to take in pre-trained models allows contributing components to be developed

independently.

• Extendable. The system shall be able to be extended to additional tasks or domains

while having the high-level interface unchanged such as knowledge base management,

retrieval, and question answering.

• Explicit. We view the ability of representing system’s internal state explicitly an

very important characteristics. When the system complexity increases, an implicit

representation allows users to identify strengths and weaknesses of the system and

therefore to establish trusts and reliance.

1.2 Our Approach

Our approach can be summarized as three main parts.

Restricted Visual Turing Test. We propose an evaluation framework called restricted

Turing test that evaluates a computer vision system’s capabilities from various perspectives

explicitly via formal queries. In contrast to viewing question answering as a multimodal and

language prediction problem [FHS10, AAL15], we treat question answering as an interface

for systematically exploring the capacity of an intelligent system. Specifically, we propose to

use a restricted domain-specific ontology to covering important spatial, temporal, and causal

aspects in videos with the quality of queries and answers controlled. The proposed benchmark

gives informed performance measure across the task spectrum regarding a system’s strengths

and weaknesses. Our contributions to scene and event understanding include:

(i) a new scene and event understanding benchmark consisting of a long-term and multi-

camera captured video dataset;

3



(ii) a set of formal and storyline-based queries that evaluates the capability of computer

vision systems with explicit grounding of concepts.

Joint Parsing System. Rather than building a monolithic model, we propose a joint

parsing system that leverages the advancement of various computer vision tasks while, more

importantly, exploits interconnections between them for a comprehensive understanding of

visual scenes and events. Concretely, our system uncovers the semantic structure of scenes

in a cross-view camera network by integrating pre-trained modules . The cross-view setting

implies rich physical and geometry constraints due to the overlap between fields of views.

Our joint parsing system optimizes for a scene-centric parse graph that summarizes all spatial

and temporal concepts from multiple view-centric local understanding of the scene obtained

from originally isolated components. The contributions of our method are three-fold:

(i) a unified hierarchical parse graph representation for cross-view person, action, and

attributes recognition;

(ii) a stochastic inference algorithm that explores the joint space of scene-centric and view-

centric interpretations efficiently starting with initial proposals;

(iii) a joint parse graph hierarchy that is an interpretable representation for scene and

events.

Unified Knowledge Representation. For sharing information among multiple mod-

ules, we explore a extendable unified knowledge representation. We propose a principled

approach originated from first-order logic to build knowledge bases in the form of labeled

property graphs from parse graphs and answer queries with this knowledge base.

Our joint approach for visual scene understanding is designed with desired characteristics

in mind to be scalable. In particular, our modular and decoupled architecture leverages off-

the-shelf computer vision models. The underlying ontology can be easily extended to other

domains and applications. The parse graph knowledge base is an explicit representation of

the system’s interpretation of input data.

4



1.3 Outline

We present our approach in the rest of the dissertation as follows.

In Chapter 2, we propose a restricted visual Turing test with a dataset and benchmark

that embodies an extendable query-answering framework for systematically experimenting

and evaluating computer vision systems across the task spectrum explicitly with a domain

ontology.

In Chapter 3, we describe a modular software system architecture for leveraging the ad-

vancements from individual computer vision tasks. The system provides an unified knowl-

edge representation for information sharing. We present evaluation results on our prototype

system. In Chapter 4, we formulate cross-view joint parsing as an MAP problem that infers

scene-centric parse graphs from view-centric proposals by exploring appearance and geome-

try constraints embedded in multi-camera cross-view videos. We compare our method with

multiple baselines on publicly available datasets.

Finally, in Chapter 5, we discuss principles and implementation details for building parse

graph knowledge bases and performing question answering with graph pattern matching. In

addition, the close correspondence to first-order logic gives reasoning potentials.

1.4 Related Work

Our work is closely related to the following research areas in computer vision and artificial

intelligence.

1.4.1 Visual Scene Understanding

Visual Turing Test. Inspired by the generic Turing test principle in AI [Tur50], Geman

et al. proposed a visual Turing test [GGH15] for object detection tasks in images which

organizes queries into storylines, within which queries are connected and the complexities

are increased gradually – similar to conversations between human beings. In a similar spirit,
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Malinowski and Fritz [MF14a, MF14b] proposed a multi-word method to address factual

queries of scene images. In the dataset and evaluation framework proposed in this work, we

adopt similar evaluation structure to [GGH15], but focus on a more complex scenario which

features videos and overlapping cameras to facilitate a broader scope of vision tasks.

Image Description and Visual Question Answering. To go beyond labels and

bounding boxes, image tagging [DBL11], image captioning [FHS10, KPD11, MXY15], and

video captioning [RQT13] have been proposed recently. The state-of-the-art methods have

shown, however, a coarse level understanding of an image (i.e., labels and bounding boxes

of appeared objects) together with natural language n-gram statistics suffices to generate

reasonable captions. Microsoft COCO [LMB14] provides descriptions or captions for images.

Question answering focuses on specific contents on the image and evaluate the system’s abil-

ities using human generated question. Unlike the image description task where a generated

sentence is consider correct as long as it describes the dominant objects and activities in

the image, human generated questions can ask all details and even hidden knowledge that

require deduction. In such scenario, a pre-trained end-to-end system may not necessarily

perform well as the question space is too large to be covered by training data. IQA [RKZ15]

converts image descriptions into QA pairs. VQA [AAL15] evaluates in a free-formed and

open-ended questions about images, where the question-answer pairs are given by human

annotators. Although it encourages participants to pursuit a deep and specific understand-

ing about the image, it only focuses on the content of the image and does not address

many other fundamental aspects of computer vision like 3D scene parsing, camera regis-

tration, etc. Moreover, actions are not static concepts, temporal information are largely

missing in images. Visual Genome [KZG17] dataset collects fine-grained grounding anno-

tations of objects, attributes, actions, and relations which targets similar goal as ours but

on image data. Existing video description datasets [RRW13, RRT15] and activity videos

datasets [PR12, CSS09, RA11, SXR15] addresses high-level actions and activities in videos

but do not incorporate multiple simultaneous videos from different views.

Multi-view video analytics. Typical multi-view visual analytics tasks include object

detection [LS10, UB11], cross-view tracking [BFT11, LPR12, XLL16, XLQ17], action recog-
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nition [WNX14], person re-identification [XLZ13, XMH14] and 3D reconstruction [HWR13].

While heuristics such as appearances and motion consistency constraints have been used

to regularize the solution space, these methods focus on a specific multi-view vision task

whereas we aim to propose a general framework to jointly resolve a wide variety of tasks.

Multi-modal Embedding. Many tasks and applications rely on bridge the semantic

of visual and linguistic signals. One stream of research, such as image captioning [FHS10]

and visual question answering [AAL15], focuses on predicting a sequence of words as a

translated version of the input or answers to natural language inputs. Learning a hidden

multi-modal embedding, as a common approach, requires training datasets and prones to

dataset bias [ZWY17, JJM16].Alternatively, a modular approach [ARD16a, ARD16b] defines

a set of neural network modules dedicated to different sub-tasks and solves the overall prob-

lem by composing multiple modules. These task-specific modules are low-level operations

such as localization, composition, regression. In our work, however, we assume the modules

are computer vision models pre-trained for high-level tasks such as detection, tracking, ac-

tion recognition, and human attributes classification. A centralized parse graph knowledge

base serve as the semantic bridge between vision and language. Our approach utilizes parse

graph knowledge base to decouple the vision and language tasks. Similarly, [HLJ09] uses a

RDF/OWL ontology to encode entities and relationships in the video and utilizes SPARQL

translated from natural language to retrieve video segments. Rather than using triples, in

our work, we adopt an property graph model to formulate the semantic knowledge for visual

scenes, which allows a richer representation for internal structures due to the property list

associated at every node and edge.

1.4.2 Knowledge Representation

Semantic representations. Semantic and expressive representations have been developed

for various vision tasks, e.g., image parsing [HZ09], 3D scene reconstruction [LZZ14, PBH13],

human-object interaction [KS16], pose and attribute estimation [WZZ16]. In this work, our

parse graph representation also falls into this category. The difference is that our parse graph
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hierarchy is defined upon cross-view spatio-temporal domain and is able to incorporate a

variety of tasks.

Graph-based representation. Graph structures has been widely used in database

and knowledge base [Sow76, BEP08, SH13, CM08]. We adopt similar ideas but aims to

build an parse graph knowledge base in the domain of visual understanding. A number of

work in computer vision have utilized graph structures to represent objects and relations

exists in single images. For exmaple, scene graph [JKS15] represents objects, attributes, and

their relationships in the scenes. It collects first-order tuples directly from crowdsourcing

human workers, whereas we extract the relationships directly from a large number of image

captions. Visual Genome [KZG17] collects and constructs graphs for individual images from

annotated bounding boxes and natural languages. In contrast, our parse graph knowledge

graph captures spatio-temporal information in cross-view videos.

Visual ontology. In our scope of visual scene understanding, the ontology is predefined

as a restricted domain [QWL15]. Although automatic ontology discovery is not the goal

our work, our system can be generalized to ontologies that are automatically discovered.

For example, NEIL [CSG13] discovers object-object, object-attribute, scene-attribute, and

scene-object relationships by mining the web. Visual sentiment ontology [BJC13] builds a

ontology of sentiment concepts in the form of adjective-noun phrases with links to 24 selected

emotions based on a psychological model. [ZFF14] constructs a knowledge base by mining

images from action dataset and text from the web with a set of manually designed labels

and classes. [VC10] starts with a manually created concept list which then gets refined by

users.

Interpretability. Automated generation of explanations regarding predictions has a

long and rich history in artificial intelligence. Explanation systems have been developed for

a wide range of applications, including simulator actions [VFM04, LCV05, CLV06], robot

movements [LCC12], and object recognition in images [BM14, HAR16]. Most of these ap-

proaches are rule-based and suffer from generalization across different domains. Recent

methods including [RSG16] use proxy models or data to interpret black box models, while

our scene-centric parse graphs are explicit representations of the knowledge by definition.
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CHAPTER 2

Restricted Visual Turing Test For Visual Scene

Understanding

2.1 Introduction

During the past decades, we have seen tremendous progress in individual vision modules

such as image classification [FP05, GD05, LSP06, ZWZ15] and object detection [FGM10,

SWJ13, ZM06, Gir15, RHG15], especially after competitions like PASCAL VOC [EEV14]

and ImageNet ILSVRC [RDS15] and the convolutional neural networks [LBD89, KSH12,

HZR15] trained on the ImageNet dataset [DDS09] were proposed. Those tasks are evaluated

based on either classification or detection accuracy, focusing on a coarse level understanding

of data. In the area of natural language and text processing, there have been well-studied

text-based question answering (QA). For example, a chatterbot named Eugene Goostman1

was reported as the first computer program which has passed the famed Turing test [Tur50]

in an event organized at the University of Reading. The success of text-based QA and the

recent achievements of individual vision modules have inspired visual Turing tests (VTT)

[GGH15, MF14b] where image-based questions (so-called visual question answering, VQA)

or storyline-based queries are used to test a computer vision system. VTT has been suggested

as a more suitable evaluation framework in going beyond measuring the accuracy of labels

and bounding boxes. Most existing work on VTT focus on images and emphasize free-form

and open-ended QA’s [BJJ10, AAL15].

In this work, we are interested in a restricted visual Turing test setting with storyline-

1https://en.wikipedia.org/wiki/Eugene_Goostman
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Q1: Is view-1 a conference room?
… 
Qk: Is there any chair in the 
conference room which no one has 
ever sat in during the past 30 
minutes?

view-1 view-2 view-3

Q1: Are there more than 10 people in 
the scene?
… 
Qk: Are they passing around a small-
object?

view-1 view-2 view-3

Figure 2.1: Illustration of depth and complexity of the proposed benchmark in scene and

event understanding, which focuses on a largely unexplored task in computer vision – joint

spatial, temporal, and causal understanding of scene and event in multi-camera videos over

relatively long time durations. See text for details.

based visual query answering in long-term videos. Our scene and event understanding bench-

mark emphasizes a joint spatial, temporal, and causal understanding of scenes and events,

which are largely unexplored in computer vision. By “restricted”, we mean the queries

are designed based on a selected ontology. Figure 2.1 shows two examples in our dataset.

Consider the question how we shall test whether a computer vision system understands,

for example, a conference room. In our benchmark, to understand a conference room, the

input consists of multi-camera captured videos and storyline-based queries covering basic

questions (e.g., Q1, for a coarse level understanding) and difficult ones (e.g., Qk) involving

spatial, temporal, and causal inference for a deeper understanding. More specifically, to

answer Qk correctly, a computer vision system would need to build a scene-centered rep-

resentation for the conference room, to detect, track, re-identify, and parse people coming

into the room across cameras, and to understand the concept of sitting in a chair (i.e., the

pose of a person and scene-centered spatial relation between a person and a chair), etc. Our

motivation is in two folds as follows.

Web-scale images vs. long-term videos. Web-scale images emphasize the breadth

that a computer vision system can learn and handle in different applications. These images

are often of album photo styles collected from different image search engines such as Flickr,

Google, Bing, and Facebook. This work focuses on long-term, especially multi-camera cap-
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Objects
ground, sky, plant 
building, road,
room, table, chair, 
trashcan, person, animal, 
car, bike,  part-of, 
luggage, package, etc.

Building parts
wall, window, pictures, 
frames, door, ceiling, 
floor, etc.

Appliance
stove, microwave, 
refrigerator, 
water-machine, etc.

Person parts 
head, arm, hand, torso, 
leg, foot, etc.
 

Vehicle parts door, 
trunk, hood, roof, 
fender, wheel 
window, bumper, 
light, etc.

Clothes/parts collar, 
sleeve, pocket, shoe,
shirt, etc. 

Small objects food, 
pizza, soda, book, 
laptop, ball, baseball 
bat, etc.

Attributes
male, female, 
wearing, accessories, 
glasses,  backpack, 
hat, colors, ages, etc.

Actions / Poses
crawling, walking, 
running, sitting, 
pointing, writing, 
reading, eating,
donning, doffing, etc.

Behavioral
starting, stopping 
moving, stationary,
turning, etc.  

Human-object/scene interactions 
driving, entering, exiting, crossing, 
loading, unloading, mounting, 
dismounting, carrying, dropping, 
picking-up, putting-down, catching, 
throwing, swinging, touching, etc.

Spatial (2D & 3D)
clear-line-of-sight, occluding, closer, 
further, same-object, facing, 
facing-opposite, following, passing, 
same-motion, opposite-motion, 
inside, outside, on, below, etc.
Temporal
precede, meet, overlap, finish-by, 
contains, starts-same,
equals, before, after, etc.

Social activities 
meeting, delivering, 
picnic, golf, disc, 
four-square, ball 
game, etc.

Fluent
light-on/off,
container-empty,
open/closed,
blinking

Cognitive relations
together,  talking-to, 
supporting, 
containing

Objects & Parts Attributes & properties Relationships Cognitive Reasoning

Figure 2.2: The ontology used in our QA benchmark

tured, videos usually produced by video surveillance, which are also important data sources

in the visual big data epic and have important security or law enforcement applications.

Furthermore, as the examples in Figure 2.1 show, mutli-camera videos can facilitate a much

deeper understanding of scenes and events. The two types of datasets are complementary,

but the latter has not been explored in a QA setting.

Free-form and open-ended questions vs. restricted storyline-based queries.

In VQA [AAL15], the input is an image and a “bag-of-questions” (e.g., is this a conference

room?) and the task is to provide a natural language answer (either in a multiple-choice

manner or with free-form responses). Free-form and open-ended questions are usually col-

lected through crowd-sourcing platforms like Amazon Mechanical Turk (MTurk) to achieve

diversity. However, it is hard to obtain well-posed pairs from a massive amount of untrained

workers on the Internet. This is challenging even for simple tasks like image labeling as

investigated in the ImageNet dataset [DDS09] and the Label-Me dataset [KZM12]. For the

queries in this work, we adopt a selected yet sufficiently expressive ontology (shown in Fig-

ure 2.2) in generating queries. Following the statistical principles stated in Geman el al’s

Turing test framework [GGH15], we design a easy-to-use toolkit by which several people

with certain expertise can create a large number of storylines covering different interesting
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and important spatial, temporal, and causal aspects in videos with the quality of queries and

answers controlled. We are working on a more sophisticated toolkit and inspection methods

to exploit MTurk to scale up collecting storyline-based queries covering long-term temporal

ranges and across multi-cameras.

Knowledge
Base

Q/A
Evaluation Server

Restricted story-line based queries

scene 1scene 2

…

Dataset …

query response

Query Engine

Replaceable Modules

Parsing Pipeline

Long-term multi-camera videos

Integrated vision system

Ontology
Query           

Generation 
Toolkit

Visualization
Toolkit

Figure 2.3: Overview of the restricted visual Turing test.

Figure 2.3 illustrates an overview of the proposed benchmark and system that consists

of four components:

(i) Multi-camera video dataset collection. Existing datasets are either focusing on

single individual images or short video sequences with clear action or event boundaries. Our

multiple-camera video dataset includes a rich set of activities in both indoor and outdoor

scenes. Videos are collected by multiple cameras with overlapping field-of-views during the

same time window. A variety types of sensors are used: stationary HD video cameras

located on the ground and rooftop, moving cameras mounted on bicycles and automobiles,

and infrared cameras. The camera parameters are provided as meta data. The videos capture

daily activities of a group of people and different events in a scene which include routine

ones (e.g., an ordinary group lunch, playing four square soccer game) and abnormal ones

(e.g., evacuating from a building during a fire alarm) with large appearance and structural

variations exhibited.

(ii) Ontology guided storyline-based QA collection. We are interested in a selected

ontology as listed in Figure 2.2. The ontology is sufficiently expressive to represent differ-

ent aspects of spatial, temporal, and causal understanding in videos from basic level (e.g.,

12



identifying objects and parts) to fine-grained level (e.g., does person A have a clear-line-of-

sight to person B?). Based on the ontology, we build a toolkit for collecting storyline-based

queries and grounding annotations for each predicates. Queries organized in multiple story-

lines are designed to evaluate a computer vision system from basic object detection queries

to more complex relationship queries, and further probe the system’s ability in reasoning

from the physical and social perspectives, which entails human-like commonsense reasoning.

Cross-camera referencing queries requires the ability to integrate visual signals from multiple

overlapping sensors.

(iii) Integrated vision system. We build a computer vision system that can be used

to study the organization of modules designed for different tasks and interactions between

them to improve the overall performance. It is designed with two principles in mind: first,

well-established computer vision tasks shall be incorporated so that we can built upon the

existing achievements; second, the modules shall be loosely coupled so that it allows user

to replace one or more modules with alternatives to study the performance in an integrated

environment. We define a set of APIs for individual tasks and connect all modules into

a pipeline. After the system has processed the input videos and saved the results in a

knowledge base, it fetches queries from the evaluation server one after another during the

evaluation.

(iv) Evaluation server. We provide a web service API through which a computer vision

system can interact with the evaluation server over HTTP connections. The evaluation server

iterates through a stream of queries grouped by scenes. In each scene, queries are further

grouped into storylines. A query is not available to the system until the previous storylines

and all previous queries in the same storyline have finished. The correct answer is provided

to the system after each query. This information can be used by the system to be adaptive

with the ability to learn from the provided answers. The answer can be used to update the

previous understanding such that any conflict has to be resolved and wrong interpretations

can be discarded.

In this rest of this chapter, we will focus on the dataset and query characteristics of the

proposed restricted visual Turing Test benchmark. The system architectural designs will be
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discussed in the next chapter.

2.2 Dataset

In this section, we introduce the video dataset we collected for our benchmark. Due to the

space limit, we show the summarized characteristics of our dataset only and more examples

of the videos will be presented in the supplementary material.

In our dataset, we organize data by multiple independent scenes. Each scene consists of

video footage from eight to twelve cameras with overlapping fields of view during the same

time period. By now, we have a total number of 14 collections covering both indoor and

outdoor scenarios. Table 2.1 gives a summary of the data collections.

Our dataset reflects real-world video surveillance data and poses unique challenges to

modern computer vision algorithms:

Varied number of entities. In our dataset, activities in the scene could involve indi-

viduals as well as multiple interacting entities.

Rich events and activities. The activities captured in the dataset involve different

degrees of complexities: from the simplest single-person actions to the group sport activities

which involve as many as dozens of people.

Unknown action boundary. Unlike existing action or activity dataset where each

action data point is well segmented and each segment only contains one single action, our

dataset consists of multiple video streams. Actions and activities are not pre-segmented

and multiple actions may happen at the same time. Such characteristic preserves more

information about the spatial context of one action and correlation between multiple actions.

Multiple overlapping cameras. This requires the system to perform multi-object

tracking across multiple cameras with re-identification and 3D geometry reasoning.

Varied scales and view points. Most of our data are collected in 1920x1080 resolution,

however, because of the difference in cameras’ mounting points, a person who only occupies

a couple of hundred pixels in bird’s-eye views may occlude the entire view frame when he or
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Type Cameras Length Major events and activities

(Moving) hh:mm:ss

1 Indoor 9 8:27:23 Meetings, package exchange

2 Indoor 12 17:35:36 Meetings, card game, group lunch, coffee break

3 Indoor 10 (1) 2:29:50 Classroom routines, lectures

4 Indoor 11 (1) 8:53:24 Registration, classroom routines, lectures, evacuation

5 Outdoor 9 (1) 2:41:24 Parking lot routines

6 Outdoor 11 (2) 8:15:44 Parking lot routines

7 Outdoor 9 2:22:00 Four square game

8 Outdoor 11 (2) 8:14:42 Various group ball games, bicycle races

9 Outdoor 11 (1) 13:15:06 Various group ball games, auto repair

10 Outdoor 11 (1) 4:27:44 Parking lot routines, auto repair

11 Outdoor 7 (1) 1:57:01 Picnic, gardening, walking dogs

12 Outdoor 10 (2) 6:54:38 Picnic, gardening, preaching

13 Outdoor 8 (1) 3:27:00 Single-person exercises, ball and Frisbee games

14 Outdoor 8 (2) 4:15:56 Group exercises, fashion contest, ball and Frisbee games

Total 93.5 hours

Table 2.1: Summary of our dataset
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she stands very close to a ground camera.

Illumination variation. Areas covered by different cameras have different illumination

conditions: some areas are covered by dark shadows whereas some other areas have heavy

reflection.

Infrared cameras and moving cameras. Apart from regular RGB cameras, our

dataset include infrared cameras in some scenes as a supplementary. Moving cameras (i.e.,

cameras mounted on moving objects) also provide additional challenges to the dataset and

reveal more spatial structure of the scene.

The complexity of our dataset. To demonstrate the difficulties of our dataset, we

conduct a set of experiments on a typical subset of data using the state-of-the-art object

detection models [RHG15] and multiple-object tracking methods [PRF11]. A summary of

the data and results are shown in Tables 2.2 and 2.3, respectively.

Dataset Fashion Sport Evacuation Jeep

Cameras 4 4 4 4

Length (mm:ss) 4:30 1:35 3:00 3:35

Frames 32,962 11,798 21,830 25,907

Table 2.2: Summary of the selected subset of data.

2.3 Queries

In our framework, we support both formal language and natural langue queries. They are

collected at the same time using a unified query collection tool. In this section, we first

introduce the format of formal language queries and then describe our tool for collecting

queries and groundings.
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Fashion Detection AP MOTP MOTA

View-CT2 0.475 0.692 0.341

View-HC2 0.413 0.674 0.304

View-HC3 0.635 0.692 0.494

View-IP1 0.485 0.694 0.339

Sport Detection AP MOTP MOTA

View-CT2 0.554 0.728 0.413

View-HC2 0.596 0.727 0.483

View-HC3 0.534 0.716 0.430

View-IP1 0.694 0.739 0.573

Evacuation Detection AP MOTP MOTA

View-HC3-6 0.518 0.698 0.389

View-HC4-6 0.556 0.692 -0.241

View-IP2 0.534 0.720 0.346

View-IP5 0.533 0.651 0.399

Jeep Detection AP MOTP MOTA

View-GL1-2 0.252 0.680 0.172

View-GL2-2 0.250 0.651 0.170

View-GL5 0.280 0.689 0.203

View-GL6 0.389 0.696 0.270

Table 2.3: Results from detection and tracking. For Detection: AP of all object occurrence

is calculated as in PASCAL VOC 2012 [EEV14] based on results by Faster R-CNN [RHG15].

For Tracking: Accuracy (MOTA) and Precison (MOTP) are calculated as in Multiple Object

Tracking Benchmark [LMR15] based on results by [PRF11]
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2.3.1 Formal Language Queries

A formal language query is a first-order logic sentence (with modification) composed using

variables, predicates (as shown in Figure 2.2), logical operators (∧,∨,¬), arithmetic oper-

ators, and quantifiers (∃ and ∀). The answer to a query is either true or false meaning

whether the fact stated by the sentence holds given the data and the system’s state of belief.

The formal language representation eliminates the need of natural language processing and

allows us to focus computer vision problems on a constrained set of predicates.

We evaluate computer vision systems by asking a sequence of queries organized into

multiple storylines. Each storyline explores a natural event across a period of time in a way

similar to conversations between humans. At the beginning of a storyline, major objects of

interest are defined first. The vision system under evaluation shall indicate whether it detects

these objects. A correct detection establishes a mutual conversation context for consecutive

queries, which ensures the vision system and queries are referring to the same objects in

later interactions. When the system fails to detect an object, consecutive queries regarding

that object will be skipped.

Object predicates. To define an object, specifications of object type, time, and location

are three components. Object type is specified by object predicates in the ontology. A time

t is either a view-centric frame number in a particular video or a scene-centric wall clock

time. A location is either a point (x, y) or a bounding box (x1, y1, x2, y2) represented by its

two diagonal points, where a point can be specified either in view-centric coordinates (i.e.

pixels) or in scene-centric coordinates (i.e. latitude-longitude, or coordinates in a customized

reference coordinate system, if defined). For example, an object definition query regarding

a person in the form of first-order logic sentence would look like:

∃p person(p; time = t; location = (x1, y1, x2, y2))

when the designated location is a bounding box.

Attribute and relationship predicates. Attribute and relationship predicates are

used to explores a system’s spatial, temporal, and causal understanding of events in a scene

regarding the detected objects. The query space consists of all possible combinations of
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predicates in the ontology with the detected objects (and/or objects interacting with the

detected ones) being the arguments. When expressing complex activities or relationships,

multiple predicates are typically conjuncted to form a query. For example, suppose M1 and

F1 are two detected people, the following query states “M1 is a male, F1 is a female, and

there is a clear line of sight between them at time t1”:

male(M1) ∧ female(F1) ∧ clear-line-of-sight(M1, F1; time = t1).

Note that the location is not specified, because once M1 and F1 is identified and detected,

we expect the vision system can track them over space and time.

Moreover, storylines unfold fine-grained knowledge about the event in the scene as it

goes. In particular, given the detected objects and established context, querying about

objects interacting with the detected ones becomes unambiguous. As in the example shown

in Figure 3.1, even the ball is not specified by any object definition queries (and actually it

is hard to detect the ball even if the position is given), once the two people interacting with

the ball are identified, it becomes legitimate to ask if “the female catches a ball at time t2”:

∃b ball(b) ∧ catching(F1, b; time = t2),

and if “the male and female are playing a ball game together over the period of t1 to t2”:

game(M1, F1; time = (t1, t2)).

Times and locations are specified the same way as in object definition queries with an

extension that a time period (t1, t2) can be specified by a starting time and a ending time.

Correctly answering such queries is non-trivial as it requires joint cognitive reasoning

based on spatial, temporal, and casual information across multiple cameras over a time

period.

2.3.2 Queries and Groundings Collection

To collect queries and grounding annotations for objects and relationships, we design and

implement a query collection toolkit. When composing a query, we first define and annotate
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Person: M1 Person: M2Person: F1

Person: M1 Person: M2Person: F1 Ball: b

Step 1: Define objects Step 2: Add predicates to compose query

Male(M2) Catching(M2, b)AND

Figure 2.4: An example of composing queries using our query collection toolkit

the objects of interests. Our tool allows annotators to draw bounding boxes and points to

refer to specific objects and move the annotated boxes along the video timeline to generate

a ground-truth track. Tracks from different views can also be associated with same identity

for collection cross-view tracking ground-truth. After the objects are annotated, we obtain a

list of object predicates with groundings. Next step is to compose queries by concatenating

an arbitrary number of attribute or relationship predicates. Each predicate is annotated

with a binary label “true” or “false” indicating whether the objects involved in the predi-

cate satisfy the relationship, this serves as the grounding of attributes and relationships of

objects. To ensure the collected queries are meaningful, we constrain the possible choices for

each argument of a predicate so that the allowed combinations will always represent concep-

tually correct relationships that align with commonsense. This lowers the bar for educating

annotators and make it possible to adopt this tool to crowdsourcing platforms like Amazon

Mechanical Turk. Figure 2.4 illustrates an example of this process. For each query, we also

collect a ground-truth answer and a sentence that is the natural language equivalent to the

first-order form.

Currently, we have created 3,426 queries in the dataset. Figure 2.5 shows the distribu-

tion of predicates in selected categories. Though we try to be unbiased in general, we do

consider some predicates are more common in and important than others and thus make the

distribution non-uniform. For example, among all occurrence of object predicates, “person”

takes 55.9%, which is reasonable because human activities are our major point of interest.
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(a) Objects (b) Parts

(c) Attributes

same-object

21.9%

touching

10.4%on

9.0%

carrying
6.9%

clear-line-of-sight 5.6%

facing

4.4%

throwing

4.3%

following

3.2%

same-motion

2.8%

below

2.7%

picking-up

2.5%

entering

2.2%

dropping

2.1%

putting-down

2.1%

catching

2.0%

occluding

2.0%

passing

2.0%

closer

1.4%

facing-opposite

1.3%

inside

1.3%
driving

1.3%
dismounting

1.3%
mounting

1.2%
opposite-motion

1.2% exiting
1.1% loading
0.9% swinging
0.9% unloading0.9% outside0.7% crossing0.5%

(d) Relationships

Figure 2.5: Distribution of predicates in each category.
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2.4 Summary

We described a restricted visual Turing test scenario that evaluates computer vision systems

across a wide task spectrum with a domain ontology and explicitly tests the grounding of

concepts with formal queries. Given a set of videos of a scene and a sequence of queries

organized into storylines, the task of the restricted Turing test is to provide answers either

simply in binary form “true/false” or in natural language. View-centered queries focus

on evaluating visual parsing from particular camera views, whereas scene-centered queries

involve data fusion and joint inference across different cameras.

The data and queries distinguish us from existing scenarios such as visual question an-

swering in images and video captioning. In contrast to multi-way classification and sequence

prediction problems, we emphasize explicit groundings of concepts in a restricted ontology

via formal language queries. Our framework evaluates computer vision systems across the

task spectrum and emphasizes a joint spatial, temporal, and causal understanding of visual

scenes in multi-camera cross-view videos.

In the next chapter, we will present a modular system architecture that integrates various

vision modules and evaluate its performance in the restricted visual Turing test.
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CHAPTER 3

Joint Parsing System

3.1 Introduction

Approaches proposed for image captioning and VQA are primarily based on the combination

of convolutional neural network [LBD89, KSH12] and recurrent neural network like long

short-term memory [HS97], which formulate the problem as sequence prediction or multi-

way classification. In contrast to end-to-end approaches, we take an explicit approach to

build a joint parsing system which integrates various vision modules. The architecture

supports symbolic reasoning on results generated by individual modules. We are interested

in whether a computer vision system can further unfold the intermediate representation to

explicitly show how it derives the answer, and if so it enhances the “trust” that we have on

the system that it has gain a correct understanding of the scene.

Our joint parsing system consists of three major components: an offline parsing pipeline

which decompose the visual perception into multiple sub-tasks, a knowledge base which

stores parsing results (including entities, properties, and relations between them), and a

query engine which answers queries by searching the knowledge base. The system also

features a flexible architecture and a visualization toolkit. Figure 3.1 shows an example of a

full workflow of our system.

3.2 Parsing Pipeline

Offline parsing pipeline processes the multiple-view videos. Each view is first processed

by a single-view parsing pipeline where video sequences from multiple cameras are handled
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1. Is there a male wearing a black shirt?
    Let’s call it “M1”.
2. Is there a female wearing pink shorts?  
    Let’s call it “F1”.
3. Are the bounded man in view 1 and view 2 the same 
    person?
4. Is M1 swinging a baseball bat at time t1?
5. Is F1 catching a ball at time t2?
6. Is there a clear-line-of-sight between M1 and F1?
7. Are M1 and F1 playing a game together?
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der
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Figure 3.1: Illustration of our prototype vision system. Top-left: input videos with people

playing baseball games. Middle-Left: Illustration of the offline parsing pipeline which per-

forms spatial-temporal parsing in the input videos. Bottom-Left: Visualization of the parsed

results. Bottom-Right: The knowledge base constructed based on the parsing results in the

form of a relation graph. Top-Right: Example storyline and queries. Graph segments used

for answering two of the queries are highlighted.

independently. Then multiple-view fusion matches tracks from multiple views, reconciles

results from single-view parsing, and generates scene-based results for answering questions.

To take advantage of achievements in various sub-areas in computer vision, we organize a

pipeline of modules, each of which focuses on one particular group of predicates by generating

corresponding labels for the input data. Every module gets access to the original video

sequence and products from previous modules in the pipeline. The implemented modules

are described as follows. Most components are derived from the state-of-the-art methods at

the time we developed the system last year and are pre-trained on other datasets.

Scene parsing generates a homography matrix for each sensor by camera calibration
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and also produces estimated depth map and segmentation label map for each camera view.

The implementation is derived from [LZZ14].

Object detection [SWJ13, RHG15] processes the video frames and generates bounding

boxes for major objects of interest.

Multiple object tracking [PRF11] generates tracks for all detected objects.

Human attributes [PZ15] classifies appearance attributes of detected human including

gender, color of clothes, type of clothes, and accessories (e.g. hat, backpack, glasses).

Action detection detects human actions and poses in the scene. The implementation

is derived form [XXZ15, YNL14, WKS11].

Behavior detection parses human-human, human-scene, and human-object interac-

tions.

Vehicle parsing [WLZ15, HZ15, HR12] produces bounding boxes and fluent labels for

specific parts of detected cars (e.g. fender, hood, trunk, windows, lights).

Multiple-view fusion merges the tracks and bounding boxes from multiple views based

on appearance and geometry cues.

The middle-left part of Figure 3.1 shows the dependencies between these modules in the

system.

3.3 Knowledge Base and Query Answering

We employ a generic graph-based data model to store knowledge. The detected objects,

actions, attribute labels are all modeled as nodes, the connections between them are modeled

as edges. In our implementation, the parsing results are stored into Resource Description

Framework (RDF) graphs [W3Ca], in the from of triple expressions, which can be queried by

a standard query language SPARQL [W3Cb]. Given that the questions are formal language,

our query engine first parses the query and transforms the query into a sequence of SPARQL

statements. Apache Jena [McB02] is used to execute these statements and to return answers

derived from the knowledge base. Figure 3.2 shows the architecture of query engine.
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Figure 3.2: The architecture of query engine.

In practice, it is infeasible to pre-calculate all possible predicates and save each individual

knowledge segment into the knowledge base. For example, pre-calculating all following(x,

y) relationships would involve pair-wise combination across all detected humans. This strat-

egy is obviously inefficient in that the portion of data being queried with this predicate is

actually sparse. Alternatively, we designed an online computation protocol which evaluates

binary and ternary relationships only at the testing time when such predicates appear in a

query.

3.4 Online Computation

To make offline parsing efficient, we leave some parsing tasks to be only performed when a

related predicate is received. In the current design, such parsing tasks usually involve pred-

icates between two entities. At the offline parsing phase, enumerating all possible pairwise

combinations and testing such predicates against all pairs can be computational expensive.

Hence, this design is a trade-off between the parsing-time complexity and evaluation-time

complexity.

For example, for predicate together(x, y), which is true if two entities x and y are

physically located nearby each other, the complexity of testing pairwise combination is O(n2)

in a video sequence containing n objects. However, in the evaluation stage, the predicates

in a query usually only involves a small number of objects constrained in a limited time

26



range. Hence, delaying the evaluation of such predicates could reduce the computation

efforts significantly.

We can interpret this architecture as a combination of bottom-up and top-down ap-

proaches. The offline parsing phase can be considered as a bottom-up parsing process in

which we explore an initial set of knowledge including the positions (e.g. bounding box,

contours), characteristics (e.g. color) and status (e.g. moving or stationary) of entities by

perception modules. Whereas at the query answering stage, when encountering a query that

involves a predicate that is not evaluated we explore it on the fly by online computation.

This top-down process only performs specific computation on a limited subset of entities

within a bounded time interval.

3.5 Implementation Details

The system is designed with two goals bearing in mind: first, we want to incorporate existing

tasks in computer vision; second, the architecture shall be flexible enough for replacing a

module with alternatives to pursuit incremental improvements later. To this end, we defined

a set of APIs for each vision task and connect all the modules using remote procedure calls

(RPC). This enables the system to only focus on the logical connection between modules

and provides the implementation flexibility for individual components. This design allows us

to use this system as an experiment platform by switching between alternative models and

implementations for studying their effects and contributions to query answering. To make

the system easy to use, we also developed a dashboard with visualization tools for rapid

development and experiment.

We developed a SDK for modules implemented in various programming languages, in-

cluding C++, Python, Java, and MATLAB to be used in our systems. In our system

implementation, we use Apache Thrift [SAK07] as the underlying serialization and RPC

framework. It allows us to define the shared data structure and service interface through an

interface description language that abstracts away the dependencies on programming lan-

guages. By implementing bindings to multiple programming languages, modules written in
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different languages can be plugged into the system.

To support different use cases, every module can be executing in two modes:

(i) Batch processing mode allows a module to fetch inputs from the system (optionally

intermediate results produced by other modules) and to produce a new pack of result

managed by the system to be consumed by other modules in the pipeline. Execution

are usually triggered from the dashboard.

(ii) Online service mode lets a module listen requests from end-user or other modules.

This is particular useful in the online computing scenario discussed in the previous

subsection. In addition, this mode allows frequently-used lightweight operations to

be shared as on-demand services, which also help reducing the system’s workload in

managing intermediate results.

3.6 Evaluation

We evaluated our prototype system using a subset of the dataset (see the upper parts in

Table 3.1) and 1,160 polar queries. During the evaluation, our system did not utilize the

ground-truth answers after answering each query for consecutive queries. Among the 1,160

queries, 243 queries are object definitions, 197 (81%) of which are successfully detected. For

non-definition queries, we either provided binary “true/false” answers or claimed “unable

to respond” (when our implementation cannot handle or recognize some of the predicates

involved in a query). Table 3.1 shows the accuracy as the ratio of correctly answered queries

to number of the responded non-definition queries.

Figure 3.3 further breakdowns the accuracy by the category of predicates and the number

of unique predicates in a query. Most queries have either one, two, or three predicates. This

is a natural result of the choice to avoid over-complicating the queries. Queries with one

predicate focus on various types of objects (people, car, etc.): most of these queries (243)

are object definitions; the others (46) are about counting (e.g., “how many people are in

the scene?”). Queries with two predicates mostly involve attributes and properties of single
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objects: one predicate of the two is used to define the object (usually person or automobile),

the other unary predicate focuses on attributes. Queries with three predicates focus on binary

relationships operating on two objects: two predicates are used to define the operands and

the third predicate is for relationships. The results reveal that our prototype system performs

well in object detection tasks and also indicate room for improvements for complex queries

regarding spatial reasoning and interactions between entities.

Office Parking lot (winter) Parking lot (fall) Garden Auditorium

Video length 17:35:36 8:14:42 4:27:44 4:15:56 8:53:24

# of cameras 12 12 11 8 11

# moving cameras 0 2 1 1 2

# IR cameras 0 1 1 0 1

# of queries 108 247 236 215 254

Definition queries - 63 71 54 55

Non-definition queries 108 184 165 161 199

Respond rate 0.522 0.600 0.795 0.683 0.731

Accuracy 0.785 0.615 0.626 0.586 0.684

Table 3.1: Performance by data collection.
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Figure 3.3: Experiment results breakdown. Left : accuracies by the number of unique predi-

cates in a query. Right : accuracies by the category of predicates.
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3.7 Summary

We discussed a scalable system design for visual scene understanding. It features a modular

and decoupled architecture to integrate off-the-shelf computer vision modules. Such config-

uration allows us to leverage the advancements from research on various computer vision

tasks and studies the performance of a joint computer vision system explicitly. The unified

graph-based knowledge representation together with system SDK enable information sharing

between multiple modules. With the system evaluated in the restricted visual Turing test,

the strengths and weaknesses of the system are make explicit for future research.

In the following chapters, we will dive into two topics in detail. First, in Chapter 4, we will

formulate a cross-view joint parsing problem that fuses view-centric proposals from multiple

modules and cameras into a set of consistent scene-centric beliefs. Then in Chapter 5, we will

discuss the underlying formalism of parse graph knowledge bases and discuss an alternative

implementation of question answering with graph matching.
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CHAPTER 4

Scene-centric Joint Parsing of Cross-view Videos

4.1 Introduction

During the past decades, remarkable progress has been made in many vision tasks, e.g., image

classification, object detection, pose estimation. Recently, more comprehensive visual tasks

probe deeper understanding of visual scenes under interactive and multi-modality settings,

such as visual Turing tests [GGH15, QWL15] and visual question answering [AAL15]. In ad-

dition to discriminative tasks focusing on binary or categorical predictions, emerging research

involves representing fine-grained relationships in visual scenes [KZG17, ABY16] and unfold-

ing semantic structures in contexts including caption or description generation [YYL10], and

question answering [TML14, ZGB16].

In this chapter, we present a framework for uncovering the semantic structure of scenes in

a cross-view camera network. The central requirement is to resolve ambiguity and establish

cross-reference among information from multiple cameras. Unlike images and videos shot

from single static point of view, cross-view settings embed rich physical and geometry con-

straints due to the overlap between fields of views. While multi-camera setups are common

in real-word surveillance systems, large-scale cross-view activity dataset are not available

due to privacy and security reasons. This makes data-demanding deep learning approaches

infeasible.

Our joint parsing framework computes a hierarchy of spatio-temporal parse graphs by

establishing cross-reference of entities among different views and inferring their semantic

attributes from a scene-centric perspective. For example, Figure 4.1 shows a parse graph

hierarchy that describes a scene where two people are playing a ball. In the first view,
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person 1

View 1 View-2

Scene-centric parse graph

View-centric parse graphs

male

throwing

no-hat short-sleeves

female

catching

no-hat long-sleeves

person 2

male

throwing

no-hat short-sleeves female long-sleeves

??person 1 person 2

? ?

torsohead torsohead

torsohead torsohead

male no-hat

person 1

torsohead

female long-sleeves

catchingperson 2

?

head torso

Figure 4.1: An example of the spatio-temporal semantic parse graph hierarchy in a visual

scene captured by two cameras.
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person 2’s action is not grounded because of the cluttered background, while it is detected

in the second view. Each view-centric parse graph contains local recognition decisions in an

individual view, and the scene centric parse graph summaries a comprehensive understanding

of the scene with coherent knowledge.

The structure of each individual parse graph fragment is induced by an ontology graph

that regulates the domain of interests. A parse graph hierarchy is used to represent the

correspondence of entities between the multiple views and the scene. We use a probabilistic

model to incorporate various constraints on the parse graph hierarchy and formulate the

joint parsing as an MAP inference problem. A MCMC sampling algorithm and a dynamic

programming algorithm are used to explore the joint space of scene-centric and view-centric

interpretations and to optimize for the optimal solutions. Quantitative experiments show

that scene-centric parse graphs outperforms the initial view-centric proposals.

4.2 Representation

A scene-centric spatio-temporal parse graph represents humans, their actions and attributes,

interaction with other objects captured by a network of cameras. We will first introduce the

concept of ontology graph as domain definitions, then we will describe parse graphs and

parse graph hierarchy as view-centric and scene-centric representations respectively.

Ontology graph. To define the scope of our representation on scenes and events, an

ontology is used to describe a set of plausible objects, actions and attributes. We define an

ontology as a graph that contains nodes representing objects, parts, actions, attributes re-

spectively and edges representing the relationships between nodes. Specifically, every object

and part node is a concrete type of object that can be detected in videos. Edges between

object and part nodes encodes “part-of” relationships. Action and attribute nodes connected

to an object or part node represent plausible actions and appearance attributes the object

can take. For example, Figure 4.2 shows an ontology graph that describes a domain including

people, vehicles, bicycles. An object can be decomposed into parts (i.e., green nodes), and

enriched with actions (i.e., pink nodes) and attributes (i.e., purple diamonds). The red edges
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Figure 4.2: An illustration of the proposed ontology graph describing objects, parts, actions

and attributes.
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Figure 4.3: The proposed spatio-temporal parse graph hierarchy.
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among action nodes denote their incompatibility. The ontology graph can be considered a

compact AOG [LZZ14, WZZ16] without the compositional relationships and event hierarchy.

In this work, we focus on a restricted domain inspired by [QWL15], while larger ontology

graphs can be easily derived from large-scale visual relationship datasets such as [KZG17]

and open-domain knowledge bases such as [LS04].

Parse graphs. While an ontology describes plausible elements, only a subset of these

concepts can be true for a given instance at a given time. For example, a person cannot

be both “standing” and “sitting” at the same time, while both are plausible actions that a

person can take. To distinguish plausible facts and satisfied facts, we say a node is grounded

when it is associated with data. Therefore, a subgraph of the ontology graph that only

contains grounded nodes can be used to represent a specific instance (e.g. a specific person)

at a specific time. In this work, we refer to such subgraphs as parse graphs.

Parse graph hierarchy. In cross-view setups, since each view only captures an incom-

plete set of facts in a scene, we use a spatio-temporal hierarchy of parse graphs to represent

the collective knowledge of the scene and all the individual views. To be concrete, a view-

centric parse graph g̃ contains nodes grounded to a video sequence captured by an individual

camera, whereas a scene-centric parse graph g is an aggregation of view-centric parse graphs

and therefore reflects a global understanding of the scene. As illustrated in Figure 4.3, for

each time step t, the scene-centric parse graph gt is connected with the corresponding view-

centric parse graphs g̃
(i)
t indexed by the views, and the scene-centric graphs are regarded as

a Markov chain in the temporal sequence. In terms of notations, we use a tilde notation to

represent the view-centric concepts x̃ corresponding to scene-centric concepts x.

4.3 Probabilistic Formulation

The task of joint parsing is to infer the spatio-temporal parse graph hierarchy

G = 〈Φ, g, g̃(1), g̃(2), . . . , g̃(M)〉
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from the input frames from video sequences I = {I(i)t } captured by a network of M cameras ,

where Φ is an object identity mapping between scene-centric parse graph g and view-centric

parse graphs g̃(i) from camera i. Φ defines the structure of parse graph hierarchy. In this

section, we discuss the formulation assuming a fixed structure, while defer the discussion of

how to traverse the solution space to section 4.4.

We formulate the inference of parse graph hierarchy as an MAP inference problem in a

posterior distribution p(G|I) as follows

G∗ = arg max
G

p(I|G) · p(G). (4.1)

Likelihood. The likelihood term models the grounding of nodes in view-centric parse

graphs to the input video sequences. Specifically,

p(I|G) =
M∏
i=1

T∏
t=1

p(I
(i)
t |g̃

(i)
t )

=
M∏
i=1

T∏
t=1

∏
v∈V (g̃

(t)
i )

p(I(v)|v),

(4.2)

where g̃
(i)
t is the view-centric parse graph of camera i at time t and V (g̃

(i)
t ) is the set of nodes

in the parse graph. p(I(v)|v) is the node likelihood for the concept represented by node v

being grounded on the data fragment I(v). In practice, this probability can be approximated

by normalized detection and classifications scores [PRF11].

Prior. The prior term models the compatibility of scene-centric and view-centric parse

graphs across time. We factorize the prior as

p(G) =p(g1)
T−1∏
t=1

p(gt+1|gt)
M∏
i=1

T∏
t=1

p(g̃
(i)
t |gt), (4.3)

where p(g1) is a prior distribution on parse graphs that regulates the combination of nodes,

and p(gt|gt−1) is a transitions probability of scene-centric parse graphs across time. Both

probability distributions are estimated from training sequences. p(g̃
(i)
t |gt) is defined as a

Gibbs distribution that models the compatibility of scene-centric and view-centric parse
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graphs in the hierarchy (we drop subscripts t and camera index i for brevity).

p(g̃|g) =
1

Z
exp{−E(g, g̃)}

=
1

Z
exp{−w1ES(g, g̃)− w2EA(g, g̃)

− w3EAct(g, g̃)− w4EAttr(g, g̃)},

(4.4)

where energy E(g, g̃) is decomposed into four different terms described in detail in the sub-

section below. The weights are tuning parameters that can be learned via cross-validation.

We consider view-centric parse graphs for videos from different cameras are independent

conditioned on scene-centric parse graph under the assumption that all cameras have fixed

and known locations.

4.3.1 Cross-view Compatibility

In this subsection, we describe the energy function E(g, g̃) for regulating the compatibility

between the occurrence of objects in the scene and an individual view from various aspects.

Note that we use a tilde notation to represent the node correspondence in scene-centric and

view-centric parse graphs (i.e., for a node v ∈ g in a scene-centric parse graph, we refer to

the corresponding node in a view-centric parse graph as ṽ).

Appearance similarity. For each object node in the parse graph, we keep an appear-

ance descriptor. The appearance energy regulates the appearance similarity of object o in

the scene-centric parse graph and õ in the view-centric parse graphs.

EA(g, g̃) =
∑
o∈g

||φ(o)− φ(õ)||2, (4.5)

where φ(·) is the appearance feature vector of the object. At the view-level, this feature

vector can be extracted by pre-trained convolutional neural networks; at the scene level, we

use a mean pooling of view-centric features.

Spatial consistency. At each time point, every object in a scene has a fixed physical

location in the world coordinate system while appears on the image plane of each camera

according to the camera projection. For each object node in the parse graph hierarchy, we
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keep a scene-centric location s(o) for each object o in scene-centric parse graphs and a view-

centric location s(õ) on the image plane in view-centric parse graphs. The following energy

is defined to enforce the spatial consistency:

ES(g, g̃) =
∑
o∈g

||s(o)− h(s(õ))||2, (4.6)

where h(·) is a perspective transform that maps a person’s view-centric foot point coordinates

to the world coordinates on the ground plane of the scene with the camera homography, which

can be obtained via the intrinsic and extrinsic camera parameters.

Action compatibility. Among action and object part nodes, scene-centric human ac-

tion predictions shall agree with the human pose observed in individual views from different

viewing angles:

EAct(g, g̃) =
∑
l∈g

− log p(l|p̃), (4.7)

where l is an action node in scene-centric parse graphs and p̃ are positions of all human

parts in the view-centric parse graph. In practice, we separately train a action classifier that

predicts action classes with joint positions of human parts and uses the classification score

to approximate this probability.

Attribute consistency. In cross-view sequences, entities observed from multiple cam-

eras shall have a consistent set of attributes. This energy term models the commonsense

constraint that scene-centric human attributes shall agree with the observation in individual

views:

EAttr(g, g̃) =
∑
a∈g

1(a 6= ã) · ξ, (4.8)

where 1(·) is an indicator function and ξ is a constant energy penalty introduced when the

two predictions mismatch.

4.4 Inference

The inference process consists of two sub-steps: (i) matching object nodes Φ in scene-centric

and view-centric parse graphs (i.e. the structure of parse graph hierarchy) and (ii) estimating
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optimal values of parse graphs {g, g̃(1), . . . , g̃(M)}.

The overall procedure is as follows: we first obtain view-centric objects, actions, and

attributes proposals from pre-trained detectors on all video frames. This forms the initial

view-centric predictions {g̃(1), . . . , g̃(M)}. Next we use a Markov Chain Monte Carlo (MCMC)

sampling algorithm to optimize the parse graph structure Φ. Given a fixed parse graph

hierarchy, variables within the scene-centric and view-centric parse graphs {g, g̃(1), . . . , g̃(M)}

can be efficiently estimated by a dynamic programming algorithm. These two steps are

performed iteratively until convergence.

4.4.1 Inferring Parse Graph Hierarchy

We use a stochastic algorithm to traverse the solution space of the parse graph hierarchy

Φ. To satisfy the detailed balance condition, we define three reversible operators Θ =

{Θ1,Θ2,Θ3} as follows.

Merging. The merging operator Θ1 groups a view-centric parse graph with an other

view-centric parse graph by creating a scene-centric parse graph that connects the two. The

operator requires the two operands to describe two objects of the same type either from

different views or in the same view but with non-overlapping time intervals.

Splitting. The splitting operator Θ2 splits a scene-centric parse graph into two parse

graphs such that each resulting parse graph only connects to a subset of view-centric parse

graphs.

Swapping. The swapping operator Θ3 swaps two view-centric parse graphs. One can

view the swapping operator as a shortcut of merging and splitting combined.

We define the proposal distribution q(G→ G′) as an uniform distribution. At each itera-

tion, we generate a new structure proposal Φ′ by applying one of the three operators Θi with

respect to probability 0.4, 0.4, and 0.2, respectively. The generated proposal is then accepted

with respect to an acceptance rate α(·) as in the Metropolis-Hastings algorithm [MRR53]:

α(G→ G′) = min

(
1,
q(G′ → G) · p(G′|I)

q(G→ G′) · p(G|I)

)
, (4.9)
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where p(G|I) the posterior is defined in Eqn. (4.1).

4.4.2 Inferring Parse Graph Variables

Given a fixed parse graph hierarchy, we need to estimate the optimal value for each node

within each parse graph. As illustrated in Figure 4.3, for each frame, the scene-centric node

gt and the corresponding view-centric nodes g̃
(i)
t form a star model, and the whole scene-

centric nodes are regarded as a Markov chain in the temporal order. Therefore the proposed

model is essentially a Directed Acyclic Graph (DAG). To infer the optimal node values, we

can simply apply the standard factor graph belief propagation algorithms.

4.5 Experiments

4.5.1 Setup and Datasets

We evaluate our scene-centric joint-parsing framework in tasks including object detection,

multi-object tracking, action recognition, and human attributes recognition. In object de-

tection and multi-object tracking tasks, we compare with published results. In action recog-

nition and human attributes tasks, we compare the performance of view-centric proposals

without joint parsing and scene-centric predictions after joint parsing as well as additional

baselines. The following datasets are used to cover a variety of tasks.

The CAMPUS dataset [XLL16] 1 contains video sequences from four scenes each cap-

tured by four cameras. Different from other multi-view video datasets focusing solely on

multi-object tracking task, videos in the CAMPUS dataset contains richer human poses and

activities with moderate overlap in the fields of views between cameras. In addition to the

tracking annotation in the CAMPUS dataset, we collect new annotation that includes 5

action categories and 9 attribute categories for evaluating action and attribute recognition.

The TUM Kitchen dataset [TBB09]2 is an action recognition dataset that contains

1http://bitbucket.org/merayxu/multiview-object-tracking-dataset

2http://ias.in.tum.de/software/kitchen-activity-data
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20 video sequences captured by 4 cameras with overlapping views. As we only focusing

on the RGB imagery inputs in our framework, other modalities such as motion capturing,

RFID tag reader signals, magnetic sensor signals are not used as inputs in our experiments.

To evaluate detection and tracking task, we compute human bounding boxes from motion

capturing data by projecting 3D human poses to the image planes of all cameras using the

intrinsic and extrinsic parameters provided in the dataset. To evaluate human attribute

tasks, we annotate 9 human attribute categories for every subject.

In our experiments, both the CAMPUS and the TUM Kitchen datasets are used in all

tasks. In the following subsection, we present isolated evaluations.

4.5.2 Evaluation

Object detection & tracking. We use FasterRCNN [RHG15] to create initial object

proposals on all video frames. The detection scores are used in the likelihood term in

Eqn. (4.2). During joint parsing, objects which are not initially detected on certain views

are projected from object’s scene-centric positions with the camera matrices. After joint

parsing, we extract all bounding boxes that are grounded by object nodes from each view-

centric parse graph to compute multi-object detection accuracy (DA) and precision (DP).

Concretely, the accuracy measures the faction of correctly detected objects among all ground-

truth objects and the precision is computed as fraction of true-positive predictions among

all output predictions. A predicted bounding box is considered a match with a ground-truth

box only if the intersection over union (IoU) score is greater than 0.5. When more than

one prediction overlaps with a ground-truth box, only the one with the maximum overlap is

counted as true positive.

When extracting all bounding boxes on which the view-centric parse graphs are grounded

and grouping them according to the identity correspondence between different views, we

obtain object trajectories with identity matches across multiple videos. In the evaluation,

we compute four major tracking metrics: multi-object tracking accuracy (TA), multi-object

track precision (TP), the number of identity switches (IDSW), and the number of fragments
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CAMPUS-S1 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 24.52 64.28 22.43 64.17 2269 2233

Berclaz et al. 30.47 62.13 28.10 62.01 2577 2553

Xu et al. 49.30 72.02 56.15 72.97 320 141

Ours 56.00 72.98 55.95 72.77 310 138

CAMPUS-S2 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 16.51 63.92 13.95 63.81 241 214

Berclaz et al. 24.35 61.79 21.87 61.64 268 249

Xu et al. 27.81 71.74 28.74 71.59 1563 443

Ours 28.24 71.49 27.91 71.16 1615 418

CAMPUS-S3 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 17.90 61.19 16.15 61.02 249 235

Berclaz et al. 19.46 59.45 17.63 59.29 264 257

Xu et al. 49.71 67.02 49.68 66.98 219 117

Ours 50.60 67.00 50.55 66.96 212 113

CAMPUS-S4 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 11.68 60.10 11.00 59.98 828 812

Berclaz et al. 14.73 58.51 13.99 58.36 893 880

Xu et al. 24.46 66.41 24.08 68.44 962 200

Ours 24.81 66.59 24.63 68.28 938 194

TUM Kitchen DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 69.88 64.54 69.67 64.76 61 57

Berclaz et al. 72.39 63.27 72.20 63.51 48 44

Xu et al. 86.53 72.12 86.18 72.37 9 5

Ours 89.13 72.21 88.77 72.42 12 8

Table 4.1: Quantitative comparisons of multi-object tracking on CAMPUS and TUM

Kitchen datasets.
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CAMPUS TUM Kitchen

Methods Run PickUp PutDown Throw Catch Overall Reach Taking Lower Release OpenDoor CloseDoor OpenDrawer CloseDrawer Overall

view-centric 0.83 0.76 0.91 0.86 0.80 0.82 0.78 0.66 0.75 0.67 0.48 0.50 0.50 0.42 0.59

baseline-vote 0.85 0.80 0.71 0.88 0.82 0.73 0.80 0.63 0.77 0.71 0.72 0.73 0.70 0.47 0.69

baseline-mean 0.86 0.82 1.00 0.90 0.87 0.88 0.79 0.61 0.75 0.69 0.67 0.67 0.66 0.45 0.66

scene-centric 0.87 0.83 1.00 0.91 0.88 0.90 0.81 0.67 0.79 0.71 0.71 0.73 0.70 0.50 0.70

Table 4.2: Quantitative comparisons of human action recognition on CAMPUS and TUM

Kitchen datasets.
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Figure 4.4: Confusion matrices of action recognition on view-centric proposals (left) and

scene-centric predictions (right).

(FRAG). A higher value of TA and TP and a lower value of IDSW and FRAG indicate the

tracking method works better. We report quantitative comparisons with several published

methods [XLL16, BFT11, FBL08] in Table 4.1. From the results, the performance measured

by tracking metrics are comparable to published results. We conjecture that the appearance

similarity is the main drive for establish cross-view correspondence while additional semantic

attributes proved limited gain to the tracking task.

Action recognition. View-centric action proposals are obtained from a fully-connected

neural network with 5 hidden layers and 576 neurons which predicts action labels using hu-

man pose. For the CAMPUS dataset, we collect additional annotations for 5 human action

classes: Run, PickUp, PutDown, Throw, and Catch in total of 8,801 examples. For the TUM

Kitchen dataset, we evaluate on the 8 action categories: Reaching, TakingSomething, Low-

43



CAMPUS

Methods Gender Long hair Glasses Hat T-shirt Long sleeve Shorts Jeans Long pants mAP

view-centric 0.59 0.77 0.56 0.76 0.36 0.59 0.70 0.63 0.35 0.59

baseline-mean 0.63 0.82 0.55 0.75 0.34 0.64 0.69 0.63 0.34 0.60

baseline-vote 0.61 0.82 0.55 0.75 0.34 0.65 0.69 0.63 0.35 0.60

scene-centric 0.76 0.82 0.62 0.80 0.40 0.62 0.76 0.62 0.24 0.63

TUM Kitchen

Methods Gender Long hair Glasses Hat T-shirt Long sleeve Shorts Jeans Long pants mAP

view-centric 0.69 0.93 0.32 1.00 0.50 0.89 0.91 0.83 0.73 0.76

baseline-mean 0.86 1.00 0.32 1.00 0.54 0.96 1.00 0.83 0.81 0.81

baseline-vote 0.64 1.00 0.32 1.00 0.32 0.93 1.00 0.83 0.76 0.76

scene-centric 0.96 0.98 0.32 1.00 0.77 0.96 0.94 0.83 0.83 0.84

Table 4.3: Quantitative comparisons of human attribute recognition on CAMPUS and TUM

Kitchen datasets.

ering, Releasing, OpenDoor, CloseDoor, OpenDrawer, and CloseDrawer. We measure both

individual accuracies for each category as well as the overall accuracies across all categories.

Table 4.2 shows the performance of scene-centric predictions with view-centric proposals, and

two additional fusing strategies as baselines. Concretely, the baseline-vote strategy takes ac-

tion predictions from multiple views and outputs the label with majority voting, while the

baseline-mean strategy assumes equal priors on all cameras and outputs the label with the

highest averaged probability. When evaluating scene-centric predictions, we project scene-

centric labels back to individual bounding boxes and calculate accuracies following the same

procedure as evaluating view-centric proposals. Our joint parsing framework demonstrates

improved results as it aggregates marginalized decisions made on individual views while also

encourages solutions that comply with other tasks. Figure 4.4 compares the confusion ma-

trix of view-centric proposals and scene-centric predictions after joint parsing for CAMPUS

dataset. To further understand the effect of multiple views, we break down classification

accuracies by the number of cameras where persons are observed (Figure 4.5). Observing

an entity from more cameras generally leads to better performance, while too many conflict-

ing observations may also cause degraded performance. Figure 4.6 shows some success and

failure examples.

Human attribute recognition. We follow the similar procedure as in the action

recognition case above. Additional annotations for 9 different types of human attributes are
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Figure 4.5: The breakdown of action recognition accuracy according to the number of camera

views in which each entity is observed.

collected for both CAMPUS and TUM Kitchen dataset. View-centric proposals and score

are obtained from an attribute grammar model as in [PNZ16]. We measure performance with

average precisions for each attribute categories as well as mean average precision (mAP) as

in human attribute literatures. Scene-centric predictions are projected to bounding boxes

in each views when calculating precisions. Table 4.3 shows quantitative comparisons be-

tween view-centric and scene-centric predictions. The same baseline fusing strategies as in

the action recognition task are used. The scene-centric prediction outperforms the original

proposals in 7 out of 9 categories while remains comparable in others. Notably, the CAM-

PUS dataset is harder than standard human attribute datasets because of occlusions, limited

scales of humans, and irregular illumination conditions.

4.5.3 Runtime

With initial view-centric proposals precomputed, for a 3-minute scene shot by 4 cameras con-

taining round 15 entities, our algorithm performs at 5 frames per second on average. With

further optimization, our proposed method can run in real-time. Note that although the

proposed framework uses a sampling-based method, using view-based proposals as initial-

ization warm-starts the sampling procedure. Therefore, the overall runtime is significantly

less than searching the entire solution space from scratch. For problems of a larger size,
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Figure 4.6: Success (1st row) and failure examples (2nd row) of view-centric (labels overlaid

on the images) and scene-centric predictions (labels beneath the images) of action and at-

tribute recognition tasks. For failure examples, true labels are in the bracket. “Occluded”

means that the locations of objects or parts are projected from scene locations and therefore

no view-centric proposals are generated. Better viewed in color.

more efficient MCMC algorithms may be adopted. For example, the mini-batch acceptance

testing technique [CSP16] has demonstrated several order-of-magnitude speedups.

4.6 Summary

In this chapter, we focused on the joint parsing problem of fusing inconsistent and noisy view-

centric proposals from various modules and camera-views into a consistent set of scene-centric

beliefs about the visual scene. We described a parse graph hierarchy as a formal knowledge

representation for scene understanding in cross-view videos. Joint parsing is formulated as

an MAP problem of inferring the structure and values of the parse graph hierarchy given the

initial proposals from view-centric modules. A probabilistic model is developed to capture

the appearance and geometry constraints among objects observed at multiple views and the

semantic constraints among different properties of objects.
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CHAPTER 5

Parse Graph Knowledge Base and Question Answering

5.1 Introduction

We have discussed a general scenario called restricted visual Turing test and a joint parsing

framework that leverages pre-trained computer vision models for visual scene understanding.

In this chapter, we focus on formally describe a structured storage for parse graphs as a

knowledge base that bridges the parsing phase of the system and additional applications

that use language as interface, such as question answering.

Parse graphs, as a form of knowledge representation, is an important mean of information

sharing and reusing among multiple intelligent agents for communication and cooperation. In

this chapter, we are interested in developing a general principle of constructing a parse graph

knowledge base for visual scene understanding using a property graph model. The structure

of the knowledge base are closely related to the first-order logic. Specifically, predicates are

represented by nodes and arguments of predicates are modeled as edges.

The parse graph knowledge base is a semantic bridge. Rather than viewing language

as the outputs of a model as in [FHS10, AAL15], we think of language as an interface for

information exchange. In our framework, every query to our knowledge base can be written

as a first-order logic statement. By converting the statement into a graph fragment, we can

retrieve answers by graph matching in the knowledge base. Figure 5.1 illustrates the idea.

With a common ontology that defines the scope and schema of the knowledge base, multiple

agents or applications can interact with the parse graph knowledge base.

Our main contributions include developing a principled method connected to first-order

logic for storing spatio-temporal parse graphs in a knowledge base using property graph
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Figure 5.1: Graph matching in the parse graph knowledge base.

model. In addition we develop a system that uses the knowledge base for question answering

with graph matching.

This chapter is organized as follows. We discuss preliminaries in Section 5.2. Then we

describe the parse graph knowledge base construction in Section 5.3. In Section 5.4, we

present graph matching techniques for question answering. Finally, we discuss potential

future use cases on reasoning in Section 5.5.

5.2 Preliminaries

5.2.1 Ontology and Parse Graphs

Ontology is an explicit specification of domain conceptualization [Gru95]. In our work, it

defines the scope of our representation on scenes and events. Concretely, it characterizes a

set of plausible objects, actions, and attributes in visual scenes understanding applications.

As discussed in Chapter 4, we define an ontology as a graph that contains nodes represent-

ing objects, parts, actions, attributes respectively and edges representing the relationships

between nodes. To capture semantic structures of objects in the real world, we also in-

clude two special types of relationships: IsA for class taxonomy hierarchy and PartOf for

compositional relationships between object and semantic parts.

While an ontology describes plausible elements, only a subset of these concepts can be
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true for a given instance at a given time. Therefore, the ontology can be viewed as the

metadata or schema for parse graphs, which is the agent’s view of the world after the input

images or videos are parsed. In the context of visual scene understanding, the ontology

summarizes the labels that the modules in the system can potentially produce. For question

answering, the ontology characterizes the scope of questions that the system can handle. On

the other hand, parse graphs are produced by the system and its sub-modules. Answers to

questions are generated from a knowledge base that stores parse graphs.

Ontology is closely related to the system organization. In general, top-down and bottom-

up approaches can be adopted. The former organizes sub-modules of the system after an

ontology is determined at the first place (by the design from domain expert or automatically

generated from web or external databases), while the latter grows the ontology from the

capability of all system components. In practice, we take a hybrid approach that starts

from an initial ontology designed by domain experts and makes adjustments as the domain

requirements or the capabilities of system components change.

5.2.2 RDF Triples

One popular choice for graph-structured knowledge representation is using a set of triples,

each defined as (subject, predicate, object). The Semantic Web [DMV00] community uses

Web Ontology Language (OWL) [Gro12] and Resource Description Framework (RDF) [W3Ca,

BG14] to pursuit semantic interoperability of the Web. SPARQL [W3Cb] is a standard tool

to query RDF knowledge bases. However, although entities are logically connected, triple-

based graph databases typically store each triple as an individual artifact instead of storing

the graph as a connected structure. In addition, each node in the RDF triple representation

is atomic. When representing data with internal structures, such as a list of properties, the

RDF triple model requires using multiple triples that results in an significantly increased

size of the knowledge base.
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5.2.3 Property Graph Model

In this work, we adopt the property graph model as an alternative to store parse graphs.

Like ordinary graphs, a property graph consists of a set of nodes and directed edges (also

called relationships), each of which connects two end nodes. However, every node and

edge in a property graph can be associated with a list of properties in the form of key-value

pairs. In addition, nodes and edge can be optionally attached with one or more labels for

richer semantic representations in a dialet called labeled property graph. In practice, we

use Neo4j [Dev12] and Cypher, its corresponding query language, as underlying tools for

managing and querying parse graph knowledge bases, respectively.

5.3 Parse Graph Knowledge Base

When building parse graph knowledge bases using the property graph model, we aim to (i)

map an ontology into a property graph knowledge base in a principled way, (ii) store all

concepts in scene-centric and view-centric parse graphs into the knowledge base without loss

of information, (iii) develop a method to retrieve grounded understanding of visual scenes

from the parse graph knowledge base. We address the first two goals in this section and the

last goal in the next section.

We start with formally defining the property graph structure of an ontology. We first

describe a potential modeling ambiguity issue and then present how to resolve it by estab-

lishing formal connections with first-order logic. With a principled way to map an ontology

to a property graph, we then present how to store scene-centric and view-centric concepts

in a parse graph hierarchy discussed in the previous chapters.

5.3.1 Graph Structure

Given an object concept in an ontology, it is straightforward to represent that concept with a

single node with the property graph model. However, given an relationship, there could exist

multiple seemly equivalent ways to represent it. For example, consider Driving(person,
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vehicle) where Driving is a binary relationship whose agent is a person and patient is a

vehicle. Figure 5.2 shows two modeling choices. As one option (Figure 5.2(a)), driving

can be modeled as a node with two out-going edges each pointing to one participant in this

activity. Alternatively, driving is modeled as a directed edge that connects the agent and

the patient, as in Figure 5.2(b).

Person VehicleDriving

Driving

Person Vehicle

patientagent

(a) (b)

Figure 5.2: Two equivalent ways to model binary relationships: (a) As a node with two

out-going edges. (b) As an edge connecting two nodes.

In this example, the two options give the same capacities in expressing this relationship

and the option (b) uses exactly one node and one edge less than (a). However, in the context

of our work, we always prefer option (a) where relationships are modeled as nodes, rather than

edges. The disadvantage of using edges is that edges inherently constraint every relationship

to have two and only two participants. Consider a ternary relationship Together(person1,

person2, person3) which describes a possible world where three persons are spatially close

to each other. A single labeled edge will not be sufficient to connect all three person nodes;

whereas together, if modeled as a node, can be connected with all three entities each with

an edge.

Now we describe a formal principle behind this modeling decision. The fundamental idea

is to establish a correspondence between ontology and first-order logic. First-order logic

syntax contains three basic symbols: constant (representing concrete objects), predicates

(representing relationships), and functions (mappings between objects). They can be used
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to compose statements that describe possible worlds. For an given ontology, we consider

every concept of objects and relationships (includes attributes, actions, and other spatio-

temporal relationships) in the ontology as a predicate.

Parse graph contains grounded concepts. Every grounded object concept is considered

as a constant, every grounded relationship is a statement that evaluates to true given the

operands. When building a labeled property graph knowledge base from parse graphs,

for each grounded concept (objects and relationships), we create a node in the knowledge

base and use edges to link relationship nodes to the corresponding object nodes where the

relationship predicates evaluate to true. All nodes are labeled with the concept name in

ontology. Table 5.1 lists the correspondence between ontology concepts and first-order logic

syntax. Figure 5.3 illustrates the primary subgraph structures in the knowledge base.

Ontology concepts First-order logic Example

Objects Predicate Person(x)

Attributes Predicate (unary) IsMale(x)

Action Predicate (unary) Running(x)

Relationship Predicate (binary) Driving(x, y)

Relationship Predicate (n-ary) Together(x, y, z)

Grounded objects constants p1, v3

true predicate statements Person(p1), Vehicle(v3)

Grounded relationships true predicate statements Driving(p1, v3)

Table 5.1: Correspondence between ontology concepts and first-order logic syntax. Every

concept in the ontology is considered a predicate. Grounded objects are considered constants.

In addition to semantic attributes and relationships defined in ontology for visual under-

standing, we define two binary relationships to represent object taxonomy and part hierarchy,

respectively. As an exception, these binary relationships are modeled as edges for conciseness.
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Figure 5.3: Primary subgraph structures in property graph knowledge bases. Every grounded

concepts will be stored as a node. (a) An object. (b) An attribute. (c) An action. (d) A

binary relationship. (e) A n-ary relationship.

Object Taxonomy. We introduce an

IsA(low-level concept, high-level concept)

relationship to represent the taxonomy relationship between low-level concepts and high-

level concepts. For example, Figure 5.4(a) shows an graph fragment that represents a vehicle

taxonomy. This relationship is particularly useful for answering queries formulated with only

high-level concepts while the parse graph contains only low-level concepts.

Part Hierarchy. Spatial parse graphs (S-pg) represents the compositional relationships

of a scene [ZZ11] or human [RPZ13]. We introduce a binary relationship to model this part

hierarchy

PartOf(part, whole).

Figure 5.4(b) shows an example that decomposes a detected person into a part hierarchy.
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Figure 5.4: Examples of (a) class taxonomy hierarchy and (b) part hierarchy.

Note that the taxonomy and part hierarchy relationships are transitive. Formally,

∀ x, y, z IsA(x, y) ∧ IsA(y, z)⇒ IsA(x, z), (5.1)

likewise for PartOf relationships.

5.3.2 Property List

With each node in a parse graph knowledge base representing a grounded concept, we store

grounding details in the internal structure of each node as a list of properties. Concretely,

for each object and its bounding box node, the properties characterize the grounding details

such as scene-centric locations or view-centric bounding box coordinates, detection labels,

and confidence scores. For each attribute, action, and relationship node, the properties

include the start and end timestamps, the camera view it is observed, additional labels and

scores. Figure 5.5 shows example properties for a various types of nodes. In practice, the

exact list of properties to include depends on the application and domain specification.
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Figure 5.5: Example properties associated with different types of nodes.

5.3.3 Scene-centric and View-centric Hierarchy

Temporal information is retained by creating a key-frame nodes for every key frame where

the concepts is grounded to data by computer vision modules. The granularity can be

varied according the application requirements. In practice, we typically store a grounded

node about every 10 frames. To characterize that a set of nodes grounded at multiple

different timestamps have the same identity, we create a entity node that is connected to

every grounded key-frame nodes with an edge (optionally labeled with observedAt for rich

semantic).

In multi-view scenarios, we generalize the concept of key-frame nodes to view-centric

nodes by attaching additional grounding information that characterizes from which camera

view the concept is grounded. Hence, a view-centric key-frame node represents a local belief

of the scene from a specific camera view at a fixed time stamp, while the entity nodes captures

the system’s scene-centric belief. The view-centric and scene-centric information together

contributes to a comprehensive understanding of a scene, since view-centric nodes contain

details about what local predictions were made by the underlying modules given a concrete

piece of data and scene-centric nodes present an aggregated view, which helps answering

queries such as counting the number of persons without duplicates. Figure 5.6 illustrates

how scene-centric and view-centric representation are modeled with property graph.
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Figure 5.6: Scene-centric and view-centric representations.

5.4 Question Answering by Graph Matching

In this section, we present a graph-matching based method to retrieve grounded understand-

ing of visual senses from parse graph knowledge bases in question answering scenarios. In

contrast to open-ended question answering, we consider a constrained question answer sce-

nario where the question domain is restricted by an ontology. Since we use an ontology to

specify the possible objects and relationships in visual scenes, all questions can be asked are

also characterized by the same ontology. Fundamentally, we view every question as a set of

fragments of the ontology. By doing so, the answer to the question is all the parse graph

fragments in the knowledge base that matches the pattern of the question graph.

Formally, we define a question q to be a set of graph fragments that are subgraphs of the

ontology

q , {g : g ⊂ Gontology}. (5.2)
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Accordingly, we define the answer A(q) to a question q to be a set of graph fragments in the

parse graph knowledge base that is isomorphic to question graph

A(q) ,
⋃
g∈q

{a : a ' g, a ⊂ pg}. (5.3)

In our system, we support both formal language questions and natural language questions.

We first discuss the idea of translating the questions into formal first-order logic statement

that corresponds to a graph patterns. Then we provide implementation details of utilizing

graph matching to retrieve answers from a parse graph knowledge base.

5.4.1 Formal Language Questions

We begin with formal language questions written in the form of first-order logic statement,

where each question is expressed by a conjunction of predicates

∃x1, . . . , xm p1(x1) ∧ . . . ∧ pk(xi, xj) . . . ∧ pn(xm), (5.4)

where the quantified variables specifics the objects to be fetched1. The answer to the question

would be a set of bindings between the fetching variables in the query and constants in

knowledge base so that all predicates evaluate to true. With the correspondence principle

described in the previous section, the formal language query can be converted to a graph

pattern by creating a node for every predicates and linking relationships and its object

operands with edges.

Objects. When querying the existence of objects without additional predicates, we

simply define the query to be the object predicate itself. The corresponding graph fragment

is simply a single node. For instance, Person(x) and Vehicle(y) queries all the person

nodes and vehicle nodes, respectively.

Attributes. Attributes predicates impose additional constraints on the objects in queries.

Formally, an attribute predicate shall take the the same variable as the object predicate

which it modifies. For example, the following formal language statement queries persons

1When there is no ambiguity, we omit the quantifier and fetching variables for brevity.
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who possess two different attributes:

Person(x) ∧ IsMale(x) ∧ HasLongHair(x), (5.5)

whereas a slightly modified version queries two persons with different attributes:

Person(x) ∧ IsMale(x) ∧ Person(y) ∧ HasLongHair(y). (5.6)

Figure 5.7(a) and (b) shows the graph fragments corresponding to these two queries, respec-

tively.

IsMale

Person

agent

(a)

IsMale

Person

agent

(b)

HasLong
Hair

agent

HasLong
Hair

agent

Person

IsMale

Person

agent

HasLong
Hair

agent

Person

Follow-
ing

agent patient

(c)

Figure 5.7: Graph fragments correspond to attribute queries. (a) Query 5.5. (b) Query 5.6.

(c) Query 5.8.

Actions and relationships. Unary action predicates is similar to attributes predicates

as it only has one agent. For example, the following query uses the action predicate together

with the object predicate to fetch all walking persons:

Person(x) ∧ Walking(x). (5.7)
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Binary action predicates takes two arguments and therefore the corresponding node connects

to two object node in the query graph (Figure 5.7(c))

Person(x) ∧ IsMale(x) ∧ Person(y) ∧ HasLongHair(y) ∧ Following(x, y). (5.8)

5.4.2 Natural Language Questions

Natural language questions also fit in our framework of graph-matching based question an-

swering so that the answers can be retrieved from the same parse graph knowledge. Recall

that, in contrast to open-ended question answering or human-machine dialogue, the domain

is restricted and has a formal structure with respect to an ontology. Given the formalism

defined in the formal language and its underlying first-order representation, our approach is

to cast the natural language questions into formal graph patterns.

Rather than focusing on the linguistic details of the input natural language questions, we

pursuit a structural understanding of the natural language query so that a correspondence

between the natural language and formal structure of the parse graph knowledge base can be

established. We adopt the text parsing approach in [HLJ09, TML14] where the natural lan-

guage input is first parsed into a dependency tree representation [DM08] with the terminal

terms mapped to concepts in the ontology. The connectivity between concepts are directly

informed by the dependencies tree. For simple queries that mainly contain attributes and

unary action predicates, tracking a small set of dependencies edges (such as nsubj, attr,

amod) can reduce the structure to the corresponding graph form that complies with the

ontology. Figure 5.8 shows examples of dependency trees and the corresponding graph pat-

tern for natural language queries. For more versatile natural language questions, a semantic

extraction grammar can be learned as shown by [HLJ09].

5.4.3 Implementation Details

In this section, we describe the implementation details of our query answering system with

Neo4j [Dev12] and its the corresponding query language Cypher.

Being a declarative query language, Cypher specifies a query by defining a graph pattern
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“Who is running?”

who-1/WP is-2/VBZ running-3/NN
attr nsubj

“Who has a shirt?”

who-1/WP has-2/VBZ shirt-4/NN

attr
nsubj

who-1/WP walking-3/VBG
detaux

conj_and

male-6/JJis-2/VBZ

nsubj

nsubj

“Who is walking and is a male?”

cop

is-5/VBZ

root

root
Person Runningagent

Person HasShirtagent
root

root

root

root

Person Walkingagent

isMale

agent

a-3/DT
det

a-3/DT

Figure 5.8: Example dependency trees and query graph fragment for natural language ques-

tions.

to be matched in the graph database. In the scope of our work, we primarily use the following

clauses to compose queries:

• The MATCH clause specifies the pattern to be found in the database. It has an in-

tuitive and expressive syntax to describe graph patterns. Concretely, bracket and

squared bracket, such as (:Person) and [:Agent], represent a labeled node and a

labeled edge, respectively. Dashes together with greater-than or less-than signs, such

as -[:Agent]->, represents an directed edge.

• The WHERE clause specifies conditions for filtering the results.

• The RETURN clause specifies which nodes and edges to be fetched after executing the

query. All properties associated with the matched nodes and edges are included. This

is particularly helpful for analyzing the how the concepts are grounded to the original
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input data. In the cases where unique results are desired, a DISTINCT keyword can be

included in the RETURN clause.

We characterize the primary graph patterns used in our question answering system as

follows.

5.4.3.1 Scene-centric queries

Scene-centric queries is one of the main types of queries in our system. These queries specifies

graph patterns with scene-centric nodes, i.e. objects, scene-centric actions, and attributes.

The answers to such queries reflect the global understanding of the scene. Typical use cases

including counting entities that satisfies a condition, retrieving clips that contains certain

actions.

Objects. Query for one type of objects is a simple match clause consisting only one

node. For example, Person(x) directly translates to the a Cypher query as follows:

MATCH (x:Person)

RETURN x

Attributes. Each attribute query is expressed by an attributes nodes connected to

the object nodes it modifies. Multiple attributes about the same object in a conjunction

statement are represented as a connected graph fragment. For example, the first-order

query at (5.5) can be converted into a Cypher query as follows.

MATCH (:IsMale)-[:Agent]->(x:Person)<-[:Agent]-(:HasLongHair)

RETURN x

Actions and Relationships. Similar to the attribute queries, unary actions connects

to the agent of the action with an out-going edge. Optionally, a WHERE clause can be used

to filter the matching pattern using global timestamps in the visual scene. As a concrete

example, the following Cypher query finds all walking persons between frame 1000 and 1020
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specified by the first-order equivalent:

Person(p) ∧ Walking(p; time=[1000, 1020])

MATCH (w:Walking)-[:Agent]->(p:Person)

WHERE w.StartFrame >= 1000 AND w.EndFrame <= 1020

RETURN p, w

Binary relationships have more than one out-going edges. As an example, formal language

query

Following(x, y) ∧ Person(x) ∧ Person(y)

corresponds to a Cypher query consisting of a three-node pattern as follows.

MATCH (f:Following)-[:Agent]->(x:Person),

(f:Following)-[:Patient]->(y:Person)

RETURN f, x, y

In applications, various types of predicates in an conjunction can be connected to the

same graph fragment. For example, the following query contains an object node, an action

node, and an attribute node.

MATCH (w:Walking)-[:Agent]->(p:Person)<-[:Agent]-(m:IsMale)

WHERE w.StartFrame >= s AND w.EndFrame <= e

RETURN p, w, m

5.4.3.2 View-centric queries

View-centric nodes at key frames contains detailed grounding information for each concept.

We use view-centric queries to retrieve these view-specific information, such as the coordi-

nates of a bounding box, the confidence score of a particular prediction.

For example, to retrieve all bounding boxes of a walking person between frame 1000

and 1020 observed from view-RT2, the following view-centric query statement includes a

view-centric bounding box node labeled as BBox:
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MATCH (w:Walking)-[:Agent]->(p:Person)-[:ObservedAt]->(b:BBox)

WHERE w.StartFrame >= 1000 AND w.EndFrame <= 1020 AND

b.viewId = "view-RT2"

RETURN p, b, w

5.4.3.3 Taxonomy and part hierarchy queries

For questions formulated with high-level concepts, we use the syntax -[:IsA*1..n]-> to

allow for matching nodes that are up to n IsA edges away.

As a concrete example, the following query retrieves all moving vehicles. All subcategories

of vehicle nodes (connected to a Vehicle node via multiple intermediate concepts with IsA

edges) match with the pattern.

MATCH (m:Moving)-[:Agent]->(x)-[:IsA*]->(v:Vehicle)

RETURN x, m

Similarly, for part-of hierarchy, parts of a particular object at all granularity levels can be

retrieved by using the -[:PartOf*]-> syntax. Concretely, the following Cypher statement

returns all detected parts of an object bounding box whose id is 100.

MATCH (p)-[:PartOf*]->(b:BBox)

WHERE b.id = "100"

RETURN b, p

5.5 Reasoning Potentials

The correspondence between parse graphs and first-order logic allows additional capabilities

beyond retrieval and taxonomic reasoning. In this section, we discuss a potential direction

of extending the graph-based question answering from retrieval to reasoning with additional

first-order clauses that capture commonsense knowledge.
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The connection between the formulation of parse-graph based knowledge graph and first-

order logic can support interesting higher level tasks such as reasoning with theorem proving.

To see this, let knowledge base ∆pg be the collection of grounded facts in parse graphs.

Consider a query statement α, to find out whether the statement α is true in the knowledge

base, we either directly query the knowledge base via retrieval,

α ⊂ ∆pg,

or we verify if it can be inferred from the knowledge base that the statement α is true

∆ � α.

where ∆ = ∆pg ∪∆c is the augmented knowledge base that consists of grounded concepts in

the parse graphs ∆pg and additional set of clauses ∆c that captures commonsense knowledge

regarding the problem domain.

Concretely, consider an example parse graph fragment and snapshot in Figure 5.9, the

knowledge ∆pg from the parse graph can be summarized as the following clauses

BaseballGame(P1, P2),

Person(P1), IsFemale(P1), Catching(P1),

Person(P2), IsMale(P2), Swinging(P2),

TShirt(S), isBlue(S), Wearing(P1, S).

with P1, P2, S being object constants.

Pre-trained computer vision models may have failed to detect a baseball bat due to resolu-

tion or occlusion. To see how first-order logic reasoning can help with inferring such missing

concepts, assume we have the following first-order clause that captures the commonsense

knowledge that performing a swinging action implies holding a bat:

∀p Swinging(p)⇒ ∃b Bat(b) ∧ Holding(p, b).

With this additional clause, the formal language query statement α:

Person(x) ∧ TShirt(y) ∧ Wearning(x, y) ∧ IsBlue(y) ∧ bat(b) ∧ Holding(x, b).
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Figure 5.9: Example parse graph fragment of a baseball game that has two participants.

Shaded nodes with dashed border represent concepts that are not grounded to data but can

be inferred with additional clauses capturing commonsense knowledge. Dotted lines connect

person nodes to the grounded bounding boxes.

evaluates to true with grounding {x/P2, y/S, b/f(P2)} using the modus ponens inference

rule. Specifically, x grounds to the person P2, y grounds to the T-shirt S, whereas the inferred

object b does not ground to any detected constants but can be inferred from the existence

of person P2.

65



Nevertheless, the set of commonsense first-order clauses is domain-dependent and specific

to applications. Discovering a set of clauses automatically from data or external sources

remains an challenging task which is beyond the scope of our discussion.

5.6 Summary

In this chapter, we discussed the formalism for constructing parse graph knowledge bases.

We adopted the labeled property graph model to capture the semantic structure of parse

graphs and grounding details for each node. Parse graphs share the same local structure

with ontology graphs. By casting questions into graph fragments of the ontology graph and

answers as matched graph fragments in parse graphs, the question answering problem can

be reduced to a graph matching problem. We showed a straight-forward implementation

with Neo4j and Cypher. The correspondence to the first-order logic eliminates the modeling

ambiguity and provides symbolic reasoning potentials.

66



CHAPTER 6

Conclusion

The computer vision community has been long focusing on classic tasks such as object

detection, human attributes classification, action recognition. As the performance of the

state-of-the-art methods are getting improved, it is increasingly important to organize the

individual pieces into an integral system that can under the visual scene from a holistic

joint perspective beyond the original individual tasks. In this dissertation, we explored

the problem of joint visual scene parsing in a restricted visual Turing test scenario that

encourages explicit concept grounding. We build a scalable and modular computer vision

system that leverages pre-trained individual modules in various tasks to parse visual scenes

jointly.

Firstly, we described a restricted visual Turing test scenario that evaluates computer

vision systems across a wide task spectrum with a domain ontology and explicitly tests the

grounding of concepts with formal queries. We presented a benchmark for evaluating long-

range recognition and event reasoning in videos captured from a network of cameras via query

answering. Given a set of videos of a scene and a sequence of storyline-based queries, the

task is to provide answers either simply in binary form “true/false” or in natural language.

Queries consist of view-centered queries which can be answered from a particular camera view

and scene-centered queries which involve joint inference across different cameras. The data

and queries distinguish us from visual question answering in images and video captioning as

we emphasize a joint spatial, temporal, and causal understanding by utilizing scene-centered

representation and storyline-based queries.

Secondly, we proposed a scalable joint parsing system that leverages off-the-shelf com-

puter vision modules to parse scene and events in cross-view videos. The system defines a
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unified knowledge representation for information sharing and is extendable to new tasks and

domains with its modules reconfigured. To aggregate information from multiple modules

and multiple camera views, we proposed a joint parsing method that computes a hierarchy

of parse graphs which represents a comprehensive understanding of cross-view videos. We

explicitly specify various constraints that reflect the appearance and geometry correlations

among objects across multiple views and the correlations among different semantic proper-

ties of objects. Experiments show that the joint parsing framework improves view-centric

proposals and produces more accurate scene-centric predictions in various computer vision

tasks.

Thirdly, based on the parse graph hierarchy, we discussed constructing parse graph knowl-

edge bases and implementation details of graph-matching based query answering. We de-

scribed a principled way originated from first-order logic to model concepts in a domain-

specific ontology into nodes and edges in labeled property graphs. By casting the questions

to graph fragments, the question answering problem is reduced to a graph pattern matching

problem. Utilizing the property graph model and a declarative query language, our system

efficiently stores parse graphs together with the grounding details for each node. Although

our current system implements question answering as retrieval, we showed that it can be

extended to reasoning with first-order resolution.

Finally, we highlight the advantages of our joint parsing system and potential future

directions from three perspectives as follows.

Explicit Parsing. While the end-to-end training paradigm is appealing in many data-

rich supervised learning scenarios, as an extension, leveraging loosely-coupled pre-trained

modules and exploring commonsense constraints can be helpful when large-scale training

data is not available or too expensive to collect in practice. For example, many applications

in robotics and human-robot interaction domains share the same set of underlying perception

units such as scene understanding, object recognition, etc. Training for every new scenarios

entirely could end up with exponential number of possibilities. Leveraging pre-trained mod-

ules and explore correlation and constraints among them can be treated as a factorization

of the problem space. Therefore, the explicit joint parsing scheme allows practitioners to
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leverage pre-trained modules and to build systems with an expanded skill set in a scalable

manner.

Interpretable Interface. Our joint parsing system not only aim at a comprehensive

understanding of the scene, moreover, the unified parse graph representation is an inter-

pretable interface of the intelligence agent to users. In particular, we consider the following

properties an explainable interface shall have apart from the correctness of results:

• Relevance: an agent shall recognize the intent of humans and provide information

relevant to humans’ questions and intents.

• Self-explainability : an agent shall provide information that can be interpreted by hu-

mans as how answers are derived. This criterion promotes humans’ trust on an intel-

ligent agent and enables sanity check on the answers.

• Consistency : answers provided by an agents shall be consistent throughout an interac-

tion with humans and across multiple interaction sessions. Random or non-consistent

behaviors cast doubts and confusions regarding the agent’s functionality.

• Capability : an explainable interface shall help humans understand the boundary of

capabilities of an agent and avoid blinded trusts.

We argue that the parse graph hierarchy satisfies the four criteria above. By casting

questions into graph structures and performing graph matching, the answers returned in the

form of parse graphs naturally ensure its relevance to questions. In contrast to answering

yes/no or providing resulting video sequences solely, the parse graphs with nodes grounded

to specific data fragment serve as self-explanatory traces regarding how the answers are

concluded. The answers retrieved from parse graph knowledge base are guaranteed to be

consistent since the parse graph hierarchy is the single source of truth in the system and

its structure is constraint by the ontology of the domain, which defines the capability of an

agent explicitly.

Reasoning Potentials. We presented a retrieval-based question answering method

on top of our parse graph knowledge base. The formalism of parse graph knowledge bases
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originating from first-order logic enables further reasoning potentials. Specifically, with addi-

tional first-order clauses that capture domain-specific commonsense knowledge incorporated,

refutation theorem-proving can be implemented to infer concepts that are not originally

grounded. However, discovering a proper set of commonsense knowledge clauses remains a

challenging problem.
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