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ABSTRACT OF THE DISSERTATION 
 
 

Physiological and Genetic Causes of a Selection Limit  
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by 
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Dr. Theodore Garland, Jr., Chairperson 
 
 

Populations under directional selection may reach a selection limit after which 

they no longer respond to selection.  This dissertation examined four possible genetic 

and/or physiological causes of selection limits reached in four replicate lines of mice bred 

for high voluntary wheel running (HR lines).  

Chapter 1 used individual locus models to test the hypothesis that “phenotypic 

epistasis” (non-additive interactions among components of a trait) can allow maintenance 

of additive genetic variance (VA) for a complex behavioral trait at a selection limit.  

Models with phenotypic epistasis but purely additive genetic effects on component traits 

involving motivation and ability for speed and duration of running did not maintain VA, 

nor did genetic dominance or pleiotropy.  However, models with genetic antagonistic 

pleiotropy did sometimes allow maintenance of VA. 

Chapter 2 attempted to break the selection limits in HR lines by use of a hybrid 

cross with continued selection on it and the parental HR lines.  The hybrid line did not 

break the limit for daily running distance.  The genetic correlation between running 

duration and speed evolved from positive in the starting population to negative in the 
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parental lines, and remained so in the hybrid line, which represents a type of genetic 

constraint.   

Chapter 3 studied body composition (i.e., lean and fat mass) of mice before and 

after 6 days of wheel access.  Despite increased exercise, HR lines lost less fat, indicating 

that preserving a baseline fat mass may be a limiting factor in HR locomotor activity. 

Chapter 4 examined energetic perturbations imposed in early-life.  Dams were 

given high-fat, high-sugar "Western" diet (WD) or standard chow from 2 weeks prior to 

pairing until pups were 14 days of age, when all mice were switched to standard chow.  

From weaning to adulthood, offspring received physiological and behavioral tests.  

Maternal WD increased juvenile home-cage activity for both HR and C mice (only males 

tested).  Maternal WD also increased fat and lean masses of adult mice, but 6 days of 

wheel access reversed the effect on fat.  Offspring of dams given WD did not increase 

wheel running, indicating that fat availability itself does not increase wheel running.   
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Introduction 
 

Breeders have used artificial selection for thousands of years to increase the 

frequency or expression of desired traits of crops and livestock (Price 1984; Vigne 2011; 

Larson and Burger 2013).  More recently, artificial selection has been used in hypothesis-

driven experiments to identify processes that cause evolutionary change in phenotypes 

and genotypes (Garland 2003; Garland and Rose 2009).  Artificial selection allows 

biologists to know, or make better estimates of, the target of selection and intensity of 

selection, both of which are difficult to measure in observations of natural populations.  

Artificial selection can also help predict outcomes of natural populations under similar 

types of selection (but see “multiple solutions” section below).   

Especially important are selection experiments that target behavioral traits, 

because natural and sexual selection generally act most strongly on traits at relatively 

high levels of biological organization (see Fig. 1 in Garland and Kelly 2006; Garland and 

Carter 1994; Careau and Garland 2012; Storz et al. 2015).  For example, an artificial 

selection experiment for maximal locomotor performance (e.g., sprint speed) might be 

interesting as a study of physiology, but it does not tell how evolution would occur in 

nature, because organisms may not always behave at their maximal capabilities.  Thus, 

artificial selection experiments that target voluntary behavioral traits, as opposed to 

forced performance traits, may be particularly relevant for understanding the evolution of 

wild populations under natural selection. 

However, predictions made from artificial selection experiments may not be as 

reliable as expected.  Even under the same laboratory environment and artificial selection 
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regime, similar populations (or lines) may undergo different evolutionary paths, i.e., have 

“multiple solutions” (Garland et al. 2011a).  As Mayr noted, "Probably nothing in 

biology is less predictable than the future course of evolution.  ... independent parallel 

lines exposed to the same selection pressures will respond at different rates and with 

different effects, none of them predictable." (1961, p. 1505).  Employing replicate lines in 

artificial selection experiments is therefore crucial in ascertaining whether or not a 

particular result is consistently reached (Garland 2003).   

 Replication is especially important for selection experiments with behavioral 

traits because they are complex.  Although the term "complex traits" has been used in 

various contexts (e.g., Fuller 2005), we will treat them here as traits that have many 

lower-level component traits, are polygenic (and hence appropriate for quantitative 

genetics, (Kelly et al. 2010)), and often exhibit emergent properties (Ghalambor et al. 

2003; Sinervo and Calsbeek 2003; Swallow and Garland 2005; Rezende et al. 2006b).  

Component (or subordinate) traits are all the lower-level traits that affect a complex trait.  

Genotype and environment produce primary phenotypic traits (e.g., morphology), which 

determine organismal performance abilities, which limit behavior and hence impact life-

history traits (see Fig. 1 in Garland and Carter 1994; Storz et al. 2015).  Finally, emergent 

properties occur when lower-level traits interact in complicated paths, so that a simple 

change in one component trait can result in a disproportional or otherwise unpredictable 

change in the higher-level complex trait.  Complex traits can be difficult to study because 

of emergent properties.   
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 Limits to the evolution of complex traits can occur at any one of many component 

traits, or via interactions of those components.  Replicated selection experiments provide 

a fairly direct way to study complex traits, and their component traits, at their 

evolutionary limits (Barton and Partridge 2000).  Many artificial selection experiments do 

reach limits after tens of generations of selection: body mass in mice (Roberts 1966), 

shock-avoidance in rats (Brush et al. 1979), post-weaning mass gain in mice (Barria and 

Bradford 1981a,b), litter size in mice (Buis 1988), protein mass in mice (Bünger et al. 

1998), and nest-building behavior in mice (Lynch 1994), although some have not even 

after 100 generations (Bünger et al. 2001).  However, most of these artificial selection 

studies that hit limits do not study the cause.  

 The most common theories as to what causes limits to trait evolution include: 

diminished selection differentials, loss of additive genetic variance (VA), counterpoising 

natural selection, and negative genetic correlations between the trait under selection and 

other fitness-related traits  (e.g., caused by antagonistic pleiotropy, i.e., alleles that affect 

the trait under selection and a fitness-related trait in opposite directions: (e.g., see Rose 

1985)) (Falconer and MacKay 1996).  The selection differential (written as “s”) is the 

difference in phenotypic means between a population before selection and the subset of 

individuals that breed to produce the next generation (Falconer and MacKay 1996).  The 

"breeder's equation" (r = h2 s, where r is the response to selection across one generation 

and h2 is the narrow-sense heritability) plainly indicates why selection differentials of 

zero will coincide with a selection limit.  Narrow-sense heritability is the proportion of 

phenotypic variance that can be passed on from parent to offspring, i.e., the additive 
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genetic variance (Falconer and MacKay 1996).  Thus, the breeder's equation also clearly 

shows why a narrow-sense heritability of zero results in no response to selection (i.e., a 

selection limit), regardless of how strong selection might be. 

 Natural selection is said to counterpoise artificial selection when Darwinian 

fitness is negatively affected by artificial selection on a given trait (e.g., as the trait under 

selection increases, fertility and/or litter size decreases; (Hill and Mbaga 1998)).  (In such 

situations, the "realized" selection differential [weighted by litter size, e.g., see Careau et 

al. 2013], will be lower than the selection differential.)  As an example of natural 

selection counterpoising artificial selection, mice bred for rapid post-weaning mass gain 

reached a selection limit associated with reduced fertility and embryo survival (Barria 

and Bradford 1981a,b).  Subsequent subpopulations with reverse selection or relaxed 

selection regained fertility, but had reduced growth rate, indicating that natural selection 

was indeed counterpoising artificial selection (Barria and Bradford 1981a,b).   

 Behavioral traits offer interesting opportunities to further consider potential 

causes of selection limits.  Almost all voluntary behavioral traits can be considered 

composites of 1) traits that affect motivation to engage in the behavior and 2) traits that 

affect physical ability to perform the behavior (e.g., see Garland et al. 2011b specifically 

on voluntary exercise and wheel running).  If a limit to either motivation or ability exists, 

then the higher-level behavioral trait will be limited as well.  For example, a limit to 

voluntary wheel running may be caused by a limit on the motivation to run as opposed to 

a limit on the ability to run.  That is, mice may be physically capable of running more 

revolutions per day, but simply are not motivated to do so.  In this way, directional 
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selection on a voluntary behavior could reach a limit that is imposed when either 

motivation or ability, or both simultaneously, reach a limit. 

  

Mouse model 

 In this dissertation, I studied mice from an ongoing artificial selection experiment 

for high voluntary wheel-running (Swallow et al. 1998).  The founding population was 

224 outbred laboratory house mice (Mus domesticus) of the Hsd:ICR strain (Harlan-

Sprague-Dawley; Indianapolis, Indiana, USA).  Following 2 generations of random 

breeding, mice were randomly assigned to one of eight closed lines.  Four replicate lines 

were selected for high voluntary wheel running (HR; lab designated lines 3, 6, 7, and 8) 

and four lines were bred without regard to wheel running (C; lab designated lines 1, 2, 4, 

and 5).   

 In each generation, ~600 mice (HR and C of both sexes) were wheel tested at ~6-

8 weeks of age for 6 days in standard housing cages attached by a tunnel to Wahman-type 

running wheels (1.12 meter circumference; Lafayette Instruments, Lafayette, IN).  Mice 

were kept with ad libitum food (Harlan Teklad Laboratory Rodent Diet 8604) and water, 

in a 12:12 light-dark cycle with room temperature maintained at 22 – 24°C.  Wheel 

running was recorded every minute for approximately 23 hours per day using photocell 

counters and uploaded to an automated computer system.  Wheel running was quantified 

as the total number of wheel revolutions on days 5 and 6 of the 6-day test. 

 Within-family selection was used to increase the effective population size (Ne) 

while reducing maternal, environmental, and genotype-by-environment interaction 
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variances (Henderson 1989).  In HR lines, we paired the highest runner of every family to 

another family’s highest runner of the opposite sex.  We excluded sibling mating and 

generally avoided mating between first cousins.  Generations did not overlap and we used 

first litters. 

 Since approximately generation 16, all four HR lines run 2.5 to 3 times more 

revolutions per day than C lines.  Female HR mice increased wheel running primarily by 

increasing the average speed of running, rather than increasing the minutes per day spent 

running, while both components were important for increased wheel running in male 

mice (Swallow et al. 1998; Koteja et al. 1999a,b; Rhodes et al. 2000; Girard et al. 2001).  

By generation 25, HR lines (except possibly HR line 8) had reached an apparent selection 

limit (Careau et al. 2013).  

 Based on mean values for the sexes, the four HR lines had statistically significant 

differences in initial response to selection (realized heritability h2
w, range: 0.14–0.25), 

timing at which they reached a selection limit (range: generation 17 – 25), and height of 

the plateau (revolutions per day; range: 6,394 – 8,344) (Careau et al. 2013).    

 

Correlated trait responses in the mouse model  

 Artificial selection for increased wheel running in the HR mice resulted in 

multiple correlated responses, ranging from components of exercise capacity to 

morphology and physiology, as well as behavior and neurobiology (reviews in Rhodes 

and Kawecki 2009; Swallow et al. 2009; Garland et al. 2011b).  In many cases, these 
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changes can be considered as primarily related to either ability or motivation for 

sustained, endurance-type locomotion. 

 HR mice have increased endurance (Meek et al. 2009) and maximal oxygen 

consumption (VO2max) during forced exercise on a motorized treadmill, both of which 

are important components of locomotor performance abilities (Swallow et al. 1998; 

Rezende et al. 2006b,a).  As mentioned previously, the three-fold increase in running in 

the HR lines was achieved mostly by higher running speeds (Swallow et al. 1999; 

Garland et al. 2011a).   

 HR mice have numerous anatomical differences that might enhance sustained 

locomotor behavior, including smaller and leaner bodies, increased hindlimb symmetry, 

and larger femoral heads (Swallow et al. 1999, 2001, 2005; Garland and Freeman 2005; 

Rezende et al. 2006b).  They also have increased heart ventricle mass, which could have 

implications for stroke volume and cardiac output (Rezende et al. 2006b; Kelly et al. 

2017).   

 Administration of Ritalin (methylphenidate) in female mice decreased wheel 

running in the HR lines, almost to the level of C lines, but increased wheel running in the 

C lines (inverse rate-dependent effect) (Rhodes and Garland 2003).  Similarly, 

administration of cocaine in female mice decreased wheel running in HR lines but not C 

lines (Rhodes et al. 2001).  This suggests that (at least female) HR mice have reduced 

dopamine function, particularly in D1-like receptors (Rhodes et al. 2001; Rhodes and 

Garland 2003).  It is interesting to note that no pharmacological manipulation increased 

wheel running in HR lines, suggesting that they may already be near their maximal 
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motivation for wheel running.  However, feeding mice a high-fat, high-sugar “Western” 

diet increased wheel running in HR lines and not C lines (Meek et al. 2010; only males 

were studied).  The Western diet may have increased wheel running in HR lines by either 

increasing ability (e.g., related to fuel usage) or motivation, given that the rewarding 

effects of both Western diet and wheel running occur through the same brain circuitry.   

 Many of the pharmacological and behavioral studies on the mice have shown 

them to be possible model systems for various human conditions.  One hypothesis is that 

the HR mice exhibit higher running because they are addicted to physical exercise, which 

can be a self-rewarding behavior (Sherwin 1998; Novak et al. 2012).  During wheel 

withdrawal (no wheel access after several days of wheel access), HR mice exhibited 

behavioral despair (Malisch et al. 2009; only males tested), altered brain activity (Rhodes 

and Garland 2003; only females tested), and altered cardiovascular response (Kolb et al. 

2013).  HR mice also had higher levels of home-cage activity than C when housed 

without wheels (Malisch et al. 2009), which suggests a need to be more active. 

In summary, information on correlated responses to selection in the HR lines 

suggests that the observed limits to selection may be related to either motivation or 

ability.  It is possible that limits to either aspect of voluntary wheel-running behavior may 

be limiting further increases in the evolution of the behavior itself.  In this dissertation, I 

performed a set of related studies that together contribute to our understanding of the 

genetic and physiological causes of the selection limits.  
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Abstract 
 

For many complex behavioral traits, the total amount of a behavior expressed is 

the product of intensity and duration, each of which is potentially limited by the lower of 

motivation and physical ability.  Expression of such behaviors thus involves non-additive 

interactions among lower-level traits (i.e., phenotypic epistasis), even if the alleles at all 

loci affecting the four lowest-level traits (motivation and ability for intensity and 

duration) have purely additive effects.  Genetic epistasis is commonly mentioned as a 

possible cause of limits to selection, e.g., in artificial selection experiments, and could 

potentially maintain additive genetic variance (VA) at the limit, but the role of phenotypic 

epistasis has rarely been considered.  We created a simple model with the genetic 

architecture described above and purely additive genetic effects at the lowest levels.  

Population sizes were chosen to mimic typical selection experiments with rodents, and 

the intensity of selection was set by selecting 40% of the individuals each generation 

(census and effective population size = 40 per generation).  Each of the four lowest-level 

traits was affected by 10 loci, and each locus had two alleles (+1 and -1) which were 

randomly assigned at the start of the model.  Values for allelic effects, environmental 

effects, and population means in the base population and when a limit might be reached 

were chosen to mimic a long-term selection experiment that targeted voluntary exercise 

on wheels in laboratory house mice.  VA was calculated by simulating a large number of 

mating pairs in each generation to allow calculation of variance in breeding values and by 

use of an “animal model” which partitioned variance components.  Similar to results from 

the mouse wheel-running selection experiment, the model reached a selection limit after 
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about 20 generations, but the limit coincided with depleted VA and hence narrow-sense 

heritability, unlike the selection experiment.  We then used more complex models to 

better mimic the likely genetic architecture of complex behaviors, including using a 

leptokurtic distribution of initial allelic effects (instead of a biallelic model), employing 

“within-family” selection (as in many rodent experiments), and adding dominance or 

pleiotropic effects of genes.  Despite increased complexity, these models followed the 

same patterns of depleted heritability at the selection limit.  However, in a few replicate 

simulations of a model with loci that had antagonistic pleiotropic effects, heritability was 

maintained (h2 > 0.1) at the selection limit.  We discuss biological relevance of these 

models and suggest modifications and additions which would further improve the model.
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1.  Introduction 

Many artificial selection experiments reach limits, beyond which continued 

directional selection causes little or no further change (Falconer 1981, 1992; Lynch and 

Walsh 1998; Barton and Partridge 2000).   Commonly cited explanation for such limits 

include reduced selection differentials (i.e., little phenotypic variance remains for 

selection to be applied), depletion of additive genetic variance (VA), counterpoising 

natural selection (e.g., via reduced fertility), and negative genetic correlations with other 

fitness-related traits (Falconer 1981; Barton and Partridge 2000).  In few cases have the 

causes of selection limits been identified with certainty. 

Selection limits are often observed in experiments with rodents.  One example 

involves bidirectional selection for nest-building behavior in laboratory house mice 

(Lynch 1994; Bult and Lynch 2000).  In the low-selected lines, the selection limit 

approached, but did not reach, a physical limit of zero grams of cotton used per day to 

build nests (Lynch 1994).  However, why these low-selected lines did not reach the 

physical limit of zero, and why the high-selected lines reached limits of approximately 40 

grams of cotton per day, was never clearly determined (C. B. Lynch, personal 

communication to T.G. 26 May 2011).   

Many behaviors, including nest-building and measures of physical activity, are 

composites of two traits, duration and intensity (e.g., average speed) (Fig. 1.1).  

Furthermore, both of these lower-level traits involve components of motivation and 

physical ability to perform the trait (Fig. 1.1).  Thus, the limiting factor to the amount of 

physical activity expressed (e.g., total distance moved on a daily basis) by an organism 
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may be any one of the following: its ability to run fast, its motivation to run fast, its 

ability to sustain running, or its motivation to sustain running (Fig. 1.1).  In this example, 

the relationships of the component traits with the total amount of physical activity 

expressed are non-additive: the expressed behavior is not simply the sum of its 

component traits.   

We term non-additive interactions of component phenotypes "phenotypic 

epistasis."  Non-additive interactions between or among alleles at different loci is termed 

epistasis (although many different definitions exist, see Cordell 2002; Ehrenreich 2017), 

but we believe that the term phenotypic epistasis is useful for describing situations in 

which the underlying genetic effects for the component traits might not include any non-

additive genetic effects, i.e., no genetic epistasis.  Studies on the Drosophila genome 

suggest that genetic epistasis is an important component of the genetic architecture of 

numerous traits (Forneris et al. 2017; review in Mackay and Huang 2017), but the 

possibility of phenotypic epistasis is rarely considered.    

Our thesis here is that phenotypic epistasis can allow the maintenance of VA for a 

complex behavioral trait at a selection limit, even if its lowest-level component traits 

(Fig. 1.1) are affected only by alleles with purely additive effects.  As a hypothetical 

example, the selection limit for running distance will occur when both speed and duration 

of running have reached limits.  The limits to these two lower-level traits will occur when 

VA for either ability or motivation has been depleted.  If, however, VA for ability for 

speed has been depleted, VA for motivation for speed might still remain, and similarly for 



 19 

duration of running.  In such a scenario, our conjecture is that VA could remain for 

running distance. 

One example of a selection experiment in which a behavioral trait reached a limit 

despite maintained VA is artificial selection on voluntary wheel running in mice (Careau 

et al. 2013).  Four replicate High Runner (HR) lines were bred for high wheel running, 

which resulted in a 2.5-3-fold increase in revolutions run over days 5+6 of a 6-day trial, 

compared against 4 replicate, non-selected control lines (Swallow et al. 1998).  All four 

lines reached a selection limit at generation 17-25 (depending on line and sex), but VA 

was maintained at these limits for at least 3 of the 4 lines (Careau et al. 2013).  Other 

explanations for the selection limit (e.g., counterpoising natural selection via reduced 

fertility, reduced selection differential) were not supported (Careau et al. 2013).  As 

voluntary wheel running can be broken down into the component traits of ability and 

motivation (e.g., Lightfoot et al. in press; Kelly and Pomp 2013; Garland et al. 2016) for 

both intensity and duration of running (cf. Fig. 1.1), a plausible explanation for the 

maintenance of VA at the selection limit could be the non-additive phenotypic 

architecture of the trait.    

We created an individual locus model to test whether the non-additive interactions 

between ability and motivation for both intensity and duration of a behavior (i.e., 

phenotypic epistasis) could cause the maintenance of VA for a trait at a selection limit.  

With purely additive genetic effects at the four lowest-level traits (Fig. 1.1) and 

individual (mass) selection, VA for the top-level trait was not maintained.  We then 

incorporated within-family selection (as used for the mouse wheel-running selection 
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experiment), a leptokurtic distribution of allelic (and mutational) effects, which also did 

not lead to maintenance of VA.  Finally, we allowed dominance, positive pleiotropy or 

antagonistic pleiotropy for the lowest-level traits.  Results show that antagonistic 

pleiotropy can sometimes maintain VA at a selection limit. 

 

2.  The model 

The simulation model was adapted from the individual-based model described by 

Roff (2010, sections 4.6 and 4.9).  The initial model described below in section 2.1.1 

through 2.1.3 was the basic model with simple genetic assumptions.  In subsequent 

models, we added more biologically relevant complexities regarding selection and 

genetic effects (see sections 2.2-2.6).  We analyzed twenty replicate simulations of every 

model.  For each replicate simulation, we saved pedigree information (individuals’ dam 

and sire identities) for all 100 generations and individual phenotypic data for 7 traits (i.e., 

the phenotypes in Fig. 1.1).  From the pedigree information, we created a relationship 

matrix to obtain inbreeding coefficients (F) (Butler et al. 2007).   

 

2.1.1.  Starting population 

Each simulation was started with 100 diploid individuals who were assigned 10 

loci each for four traits that affected wheel running (referred to as “lowest-level traits” in 

the text): motivation for running speed, physical ability for running speed, motivation for 

running duration, and physical ability for running duration (10 loci per trait x 4 traits x 2 

alleles per locus = 80 alleles total per individual).  Alleles at every locus were assigned as 



 21 

either +1 or -1 (biallelic model) with a probability of 0.5.  These alleles were unlinked 

and autosomal (sexes were not defined).  Generations were non-overlapping. 

 

2.1.2.  Assigning genotypes and phenotypes 

All alleles at the 4 lowest-level traits were additive within and among loci, so that 

an individual’s genotype for a trait was the sum of all 20 alleles plus a population mean.  

Because these 80 alleles were assigned independently, no genetic correlations between 

any of the 4 lowest-level traits were specified.  The population mean added for 

motivation and ability for running speed was 16, and the effect of every allele was kept at 

+1 or -1.  For duration, the population mean added was 500, and the effect of every allele 

was multiplied by 20.  The resulting genotype was calibrated so that no individual would 

have a genotype for speed of less than 1 (i.e., any individual that had genotype of speed 

motivation or ability less that 1 was re-assigned 1 for that trait) or more than 39 

revolutions per minute.  Similarly, genotype for duration was truncated to a lower limit of 

10 and upper limit of 960 minutes per day.  

To obtain the phenotype for speed traits, we multiplied the genotype by 0.7 and 

added an environmental effect.  The environmental effect was pulled from a normal 

distribution with a mean of zero and standard deviation (SD) of 1 and multiplied by 3.  

Environmental effects were independently assigned for each of 4 traits within each 

individual, so the expected environmental covariances between traits were zero.  For 

duration phenotypes, we multiplied genotypes by 0.7 and environmental deviations by 

25.  Genotypic and environmental effects on phenotype were scaled to obtain phenotypic 
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values that were in the range we have observed for the control lines of the mouse 

selection experiment (duration ~ 350 minutes per day and average speed ~ 11.2 

revolutions per minute (Swallow et al. 1998; Garland et al. 2011)).  The phenotype for 

speed was truncated again to a lower limit of 1 (i.e., no mouse runs at an average speed of 

less than 1 revolution per minute) and an upper limit of 39 revolutions per minute.  

Similarly, the phenotype for duration traits were truncated to a lower limit of 10 minutes 

per day and an upper limit of 960 minutes per day (i.e., 16 hours per day). 

Average speed was calculated per individual as the lower phenotype between 

motivation and physical ability for speed.  That is, an individual would only run as fast as 

they were motivated or able to do (limited by motivation or ability, whichever was 

lower).  Duration was calculated the same—as the lower of motivation or physical ability 

for running duration.  Finally, the trait under selection (i.e., total wheel running) was 

calculated as the product of speed and duration (Fig. 1.1).  

 

2.1.3.  Selecting parents 

In models with directional selection, selection intensity was set to 40 breeding 

individuals (= 20 pairs) per generation to mimic the mouse selection experiment, which 

has a Ne~40.  In non-selected, control models, 40 individuals were randomly chosen as 

breeders for the next generation.  Breeders were only allowed to mate once and we did 

not separate sexes.  We kept note of family identity, and sibling-mating was disallowed.  

Each of 20 pairs produced 5 offspring to create 100 individuals for the next generation.  

(Note, litter size did not vary among pairs.)  Offspring alleles were assigned by selecting 
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one allele at random from each parent for each locus.  Mutations were allowed to occur 

right after offspring alleles were determined, and caused a change in the sign of allelic 

effect (i.e., +1 to -1 or vice versa).  The number of mutations was pulled from a Poisson 

distribution with lambda (λ) equal to the number of alleles multiplied by 10-4 (Roff 

2010).  After mutations, the new generation of individuals were assigned genotypes and 

phenotypes (back to section 2.1.2.), and this was repeated for 100 total generations of 

breeding. 

 

2.1.4.  Heritability estimates 

 We estimated the narrow-sense heritability (VA divided by phenotypic variance) 

of total wheel running in two ways: variances of breeding values and use of the “animal 

model”. 

Additive genetic variance was calculated in each generation as the variance in 

breeding values among all individuals.  To obtain breeding values, every individual (N = 

100) was “mated” to every other individual to produce 5 offspring per pair.  Then, an 

average phenotypic value for total wheel running was obtained across all offspring for 

each individual (5 offspring x 99 pairs = mean of 495 offspring total).  An individual’s 

breeding value was calculated as twice the difference between the grand mean of all 

offspring (100 individuals x 99 mates x 5 offspring = 49,500 offspring total) and the 

mean of the individual’s offspring.  The variance in breeding values (100 individuals = 

100 breeding values per generation) is the additive genetic variance.  To obtain narrow-
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sense heritability, the variance in breeding values was divided by phenotypic variance for 

wheel running for each generation. 

We also estimated narrow-sense heritability by use of linear mixed-effects models 

(commonly referred to as the “animal model”, software ASReml-R (Butler et al. 2007)), 

which separated variance components into common family environment (i.e., identity of 

the mouse’s family), additive genetic variance (i.e., the identity of the mouse linked with 

the pedigree), and residual variance.  Narrow-sense heritability was calculated as the ratio 

of the additive genetic variance component divided by the sum of all variance 

components.  Confidence intervals for the variance components were estimated using 

profile likelihoods with the R package nadiv (Wolak 2012). 

Given a pedigree, the animal model makes inference of variance component 

estimates back at the starting population.  Thus, in order to estimate heritability over 100 

generations, we analyzed 10 generation-blocks separately (i.e., generations 1-10, 11-20, 

21-30, etc.).  This procedure effectively assumed that individuals in the first generation of 

each block (i.e., generation 1, 11, 21, etc.) were unrelated—which is, of course, untrue.  

Therefore, we specified the inbreeding coefficient F of all individuals in the first 

generation of each block to account for inbreeding.  The violation of the assumption (that 

the individuals are unrelated) is necessary to estimate VA at a given time point in a 

pedigree (otherwise, the animal model makes inference back to generation 1).  

We compared heritability estimates obtained from breeding values and animal 

models by matching the breeding value at generations 1, 11, 21, etc. to the animal model 

estimates for generation blocks 1-10, 11-20, 21-30, etc. for each replicate simulation of 
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each model.  We calculated both Pearson’s and Spearman’s coefficient of correlation 

with replicate simulations pooled. 

 

2.2.  Within-family selection 

To account for more biologically relevant genetic models, we introduced 

complexities to the model in increments.  First, we mimicked the HR selection 

experiment by adding the use of within-family selection in our models, in which the top 

runner in each family is chosen as a breeder and bred to the top runner of other families 

(thus, selection is only employed at the family level; (Swallow et al. 1998)).  As in the 

HR experiment, we used 20 breeding individuals with 10 offspring per family, for a total 

of 100 individuals per generation.  (Note, litter size did not vary among pairs.) 

 

2.3.  Leptokurtic alleles 

As an alternative to using biallelic genetic effects (+1 or -1, as described in 

section 2.1.1), we also tested the effect of assigning initial alleles by sampling from a 

leptokurtic distribution of allelic effects.  We used a leptokurtic distribution with mean = 

0, standard deviation (SD) = 1, and kurtosis of k~10 (a normal distribution has k = 3).  

The distribution we used had 82.5% values within one SD from the mean, while a normal 

distribution has 68.2% within one SD of the mean.  That is, in the leptokurtic models, 

most alleles sampled had effects near the mean but some rare alleles had values very 

distant from the mean.   
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Leptokurtic distributions of allelic effects are more realistic than normal distributions at 

mutation-stabilizing selection-drift balance (for example, in outbred ICR house mice used 

to start the HR selection experiment) (Barton and Turelli 1989; Reeve 2000; Reeve and 

Fairbairn 2001).  Such a distribution of allelic effects occurs under “house-of-cards” 

mutation, e.g., mutation rate is low but mutational variance is high compared with 

Gaussian assumptions (Turelli 1984).  An empirical example of a rare allele with large 

effects was found in the HR selection experiment in the “mini-muscle” allele, a 

Mendelian recessive allele which causes a ~50% reduced hindlimb muscle mass (Garland 

et al. 2002; Kelly et al. 2013). 

 

2.4.  Dominance effects 

 We introduced directional dominance effects at the genetic level for the first 5 out 

of 10 loci for each lowest-level trait.  We had positive dominance in the direction of 

selection so that if a locus had two unequal alleles, the value for that locus was equal to 

twice the allele of higher value.  If the locus had two equal alleles, the value was simply 

the sum of the two alleles.  The other loci which did not have dominance effects were 

simply summed for both alleles contributing to each locus. 

 

2.5.  Pleiotropic effects 

We also introduced loci with overlapping effects for two of the four lowest-level 

traits because some genes are likely to affect two or more of these closely-related 

component traits of wheel-running.  We coded these overlapping effects as genetic 
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pleiotropy, although linkage disequilibrium (especially tight genetic linkage) could cause 

the same or similar effects.  In the pleiotropic model, each of the 4 lowest-level traits was 

affected by 10 loci total (as before), but only 4 loci were unique to that trait and 6 loci 

were shared in common with another trait (e.g., physical ability for speed was affected by 

4 unique loci and 6 pleiotropic loci; (following pleiotropic model in Roff [2010], section 

4.1.3)).  Of the 6 pleiotropic loci, 3 loci affected the same “second-level” trait (speed or 

duration) but for the other type (ability or motivation), and 3 more loci affected the same 

type but for the other second-level trait (Fig. 1.2).  In total, we modeled 12 pleiotropic 

loci: 3 loci that affected both motivation and physical ability for speed, 3 loci that 

affected both motivation and physical ability for duration, 3 loci that affected both 

motivation for speed and motivation for duration, and 3 loci that affected ability for speed 

and ability for duration.  The number of pleiotropic loci was chosen arbitrarily.  

The pleiotropic correlation was set to +1, so that the loci shared in common had 

the exact same effects in the two traits they affected (Fig. 1.2, Positive pleiotropy).  This 

is equivalent to assuming the alleles are pulled from a bivariate distribution of phenotypic 

effects with a correlation of 1.  The result is that the total number of loci are reduced from 

40 to 26.  However, each lowest-level trait was still affected by 10 total loci. 

 

2.6. Antagonistic pleiotropic effects 

Additive genetic variance can be maintained at a selection limit in the case of 

simultaneous selection on two phenotypes if some genes that act in pleiotropy for the trait 

have opposite effects (Falconer 1981, pg. 300).  We modeled antagonistic genetic 
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pleiotropy using the same model described above (section 2.5), but allowed 6 of the 12 

pleiotropic loci to have opposite effects in different lowest-level traits (Fig. 1.2, 

Antagonistic pleiotropy).  Specifically, the 3 pleiotropic loci that affected physical ability 

(grey loci in Fig. 1.2) affected speed normally (as the sum of all alleles at the 3 loci), but 

for duration the sign of effect was flipped.  Similarly, the 3 pleiotropic loci that affected 

motivation (white loci in Fig. 1.2) affected duration normally, but for speed the sign of 

effect was flipped.  The other pleiotropic loci (blue and red in Fig. 1.2) could have had 

antagonistic effects as well, but we did not explore these models. 

 

3.  Results 

3.1. The simple model 

 Both non-selected and selected simulations of the simple model produced changes 

in the wheel-running trait over 100 generations comparable to the HR selection 

experiment’s Control and HR lines (Fig. 1.3A and 1.3E, 1.4A and 1.4E) (Garland et al. 

2011).  Specifically, the 20 replicates of the non-selection model maintained a mean 

value of ~2500 revolutions with expected increase in variability among replicates over 

100 generations due to genetic drift (Fig. 1.3A, in blue).  Narrow-sense heritability for 

wheel running calculated from the variance in breeding values started at h2 ≈ 0.45 and 

decreased to h2 ≈ 0.3 by generation 100 (Fig. 1.3A, in black).  Heritability estimated from 

the animal model started at similar values but increased to h2 ≈ 0.5 over 100 generations 

(Fig. 1.3E).  These estimates of narrow-sense heritability are higher than estimates 

obtained for the HR selection experiment (Careau et al. 2013).  However, we confirmed 
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the general pattern of finding a non-zero, positive estimate for heritability in the Control 

lines. 

All twenty replicates of the simple selected model increased from ~2500 

revolutions to ~14000 revolutions over 100 generations, with a selection limit reached 

around generation 30 (Fig. 1.4A, in red).  Estimates of narrow-sense heritability by 

breeding values and animal models followed the same pattern of starting h2 ≈ 0.4 and 

decreasing to barely above zero (Fig. 1.4A, in black).  These estimates did not indicate 

the same maintenance of heritability at the selection limit reported for selection lines in 

the HR selection experiment (Careau et al. 2013).  

 

3.2.  Within-family selection 

 Adding within-family selection to the models did not significantly affect non-

selected models for mean revolutions or heritability estimates (except possibly a slight 

increase in variance in animal model h2 estimates, Fig. 1.3F).  For selected models, 

within-family selection slightly shifted the selection limit and corresponding heritability 

estimates to the right (generation 40 instead of 30) (Fig. 1.4F).  However, the limit did 

not correspond with maintained heritability. 

 

3.3.  Leptokurtic effects 

 Non-selected models were unaffected by biallelic vs. leptokurtic distributions of 

allelic effects (Fig. 1.3A vs. 1.3C).  For selected models, sampling from a leptokurtic 

distribution of allelic effects increased the trait value at the limit (~16000 revolutions 
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instead of ~14000 revolutions in biallelic models; Fig. 1.4C).  Another interesting effect 

of the leptokurtic distributions was the increase in narrow-sense heritability in the first 

~10 generations in these models.  This effect is expected under leptokurtic distributions 

of allelic effects  (Turelli 1984) and has been observed for other theoretical models 

(Reeve and Fairbairn 2001). 

 

3.4.  Dominance effects 

 Including dominance effects in half of the total number of loci (i.e., 20 loci with 

dominance effects, 5 for each of the 4 lowest-level traits) did not affect the selection limit 

or heritability estimates (Fig. 1.5A and 1.6D, compared with Fig. 1.4D and 1.4H). 

 

3.5.  Pleiotropic effects 

 Including loci with pleiotropic effects in the model did not affect the selection 

limit or heritability estimates of models when the loci had the same effects in all traits 

(Fig. 1.5B and 1.5E).  However, when these loci had antagonistic pleiotropic effects (Fig. 

1.5 Antagonistic pleiotropy), some replicate simulations had much lower responses to 

selection and/or reached a limit much later than generation ~20 (Fig. 1.5C and 1.5F).  

Along with phenotypic differences, the heritability estimates for models with antagonistic 

pleiotropy were much more variable and higher compared with simpler models (Fig. 1.5C 

and 1.5F).  Because of these differences from other models, we analyzed the antagonistic 

pleiotropic model replicates further to test whether h2 was maintained at the selection 

limits.  We defined the phenotypic selection limit as the mean phenotypic value at 
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generation 91-100 (Table 1.1, “Limit”).  Then, we calculated the generation at which the 

simulation first reached 95% and 99% of this limit (Table 1.1, “Generation”).  Finally, we 

obtained the h2 estimates from breeding values at that generation for that replicate 

population (Table 1.1, “h2”).  Some replicate simulations (i.e., replicate run 16, 17, and 

20) had high h2 estimates (i.e., h2 > 0.1) even at the selection limit (Table 1.1; Phenotypes 

of replicate run 16 are shown in Fig. 1.8). 

 

3.6.  Breeding value vs. animal model 

 The estimate of narrow-sense heritability differed somewhat based on method of 

estimation (i.e., variance of breeding values vs. variance components in an animal model) 

(Fig. 1.6).  Correlations were lower in non-selected models (range of Pearson’s r = 0.24 – 

0.52) compared with selected models (range of Pearson’s r = 0.93 – 0.97), especially in 

later generations (although no statistical tests were run for separate generation blocks) 

(Fig. 1.6).  Estimates from animal models tended to be higher than from breeding values 

(points are above the 1:1 line) (Fig. 1.6).  Although some estimates seem to be at h2 = 0, 

no estimate from either method was actually h2 = 0 (or negative; results not shown).   

We were also particularly interested in differences between heritability estimates 

obtained from the two methods at later generations when heritability estimates were low 

(after the selection limit was reached in selected models), particularly if the animal model 

gave substantial h2 while the breeding value did not.  That is, if the animal model 

overestimated heritability when breeding values suggested h2 was not significantly higher 

than zero, then we might question the previous report that heritability was maintained in 
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the HR selection experiment at selection limits (Careau et al. 2013).  In general, we did 

not find animal model heritability estimates to be much higher than breeding value 

estimates.   

 

3.7.  Inbreeding coefficient (F) 

 Inbreeding coefficients increased in all models (Fig. 1.7).  Models without within-

family selection increased from F = 0 to F = 0.6, while models with within-family 

selection increased from F = 0 to F = 0.7, with no discernable difference within these 

groups as result of any other model parameters.  In each model, the 20 replicate 

simulations were very similar (Fig. 1.7 depicts mean F for all 20 replicates). 

 

4.  Discussion 

Purely additive genetic effects coupled with non-additive interactions 

(“phenotypic epistasis”) among component traits of a complex trait (Fig. 1.1) under 

selection did not maintain VA at the selection limit (Fig. 1.4A).  Thus, the proposed 

model of phenotypic epistasis by itself is not a general explanation for selection 

experiments which reach limits despite maintenance of narrow-sense heritability (e.g., the 

selection limit of an artificial selection experiment for high voluntary wheel-running 

behavior in mice (Careau et al.  2013)).  

 When genetic effects other than purely additive were considered, our results 

generally confirmed predictions from quantitative genetics literature.  Within-family 

selection delayed reaching the selection limit (Hill 1971) by approximately 5-10 
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generations.  When allelic effects were drawn from a leptokurtic distribution (Turelli 

1984; Reeve 2000; Reeve and Fairbairn 2001), initial increases in genetic variance 

occurred, but again VA was not maintained at the selection limits.  Positive pleiotropic 

effects yielded similar results.  With antagonistic pleiotropy, however, simulations varied 

much more among replicates in mean trait value over 100 generations and in a few cases 

VA appeared to be maintained (h2 > 0.1) at the selection limit.  

 The magnitudes of effects were set arbitrarily in several of the complexities we 

added.  For example, pleiotropic correlation was set at +1, so that the loci shared in 

common had the exact same effects in the two traits they affected (Fig. 1.2, Positive 

pleiotropy).  This correlation could have been set at any number between 0 and +1 (or 0 

to -1 for antagonistic pleiotropy), and an intermediate correlation might have been more 

biologically relevant, although this would reduce the effect of pleiotropy.  Also, in 

models with pleiotropy (positive or antagonistic), the total number of loci were reduced 

from 40 to 26.  We could increase the number of loci which act in pleiotropy to maintain 

40 total loci, although this would necessarily increase the number of loci that affect each 

of the 4 lowest-level traits.  Thus, it is impossible in models with pleiotropy to maintain 

both the number of total loci at 40 and the number of loci which affect each of the four 

lowest-level traits at 10.   

Also, we chose only to have antagonistic pleiotropy for two of the 4 groups of 

pleiotropic loci (black and white loci in Fig. 1.2), partially because antagonistic genetic 

correlations between speed and duration have evolved in lines of mice selected for high 

voluntary wheel running (Garland et al. 2011).  Alternately or in addition, we could have 
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included antagonistic pleiotropy for loci which affect ability and motivation for speed 

(blue loci in Fig. 1.2) and/or for loci which affect ability and motivation for duration (red 

loci in Fig. 1.2).  Correlations between ability and motivation for physical activity are 

relevant in rodent and human studies (Lightfoot et al. 2008).  

 When adding dominance effects to the model, we coded dominance in the high 

direction only—that is, alleles which had more positive effects were dominant over 

alleles which had less positive or more negative effects.  Not all dominance effects 

should necessarily be for the high direction and we could have introduced models with 

differing numbers of loci with dominance in the high and low directions.  However, some 

rodent studies suggest that alleles which were selected for over long evolutionary history 

would have net dominance, such as high levels of physical activity in house mice (Bruell 

1964; Dohm et al. 1994; Nehrenberg et al. 2009). 

 In the future, we would like to add more biologically relevant complexities which 

might explain the selection limit with maintained genetic variance.  For example, coding 

for two sexes is of interest because the mice from HR lines are sexually dimorphic in 

total wheel running, speed, duration, and correlated traits like body size (Garland et al. 

2011).  The selection limit could be related to sex-specific effects, and selection could be 

fluctuating between these sex-specific effects (especially if they are negatively 

correlated).  Seasonal variation could also be included, as these mice show an increase in 

wheel running in Winter months and decrease in Summer months (Supplementary Fig. 

S4 in Careau et al. 2013).  That is, some loci could be coded to have opposite effects 

when individuals are tested during Winter vs. Summer (we would code a change in 
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season every generation because each generation in the HR experiment takes ~3-4 

months).  This would also cause fluctuation in selection pressure.  

 In conclusion, the phenotypic architectural model analyzed in the present study is 

a simplified but powerful tool for elucidating the complex interactions within and among 

loci, lower-level phenotypes, and individuals that occur during the evolution of a 

population.  We will continue to refine the model to allow simulations of a wide range of 

biologically relevant complexities.  In addition, ongoing genetic analyses of the High 

Runner and control lines of mice that motivated the present simulation models should 

help in parameterization (e.g., Xu and Garland 2017).  

 The simulation code used in this chapter is available in the Appendix of this 

dissertation. 
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Tables and Figures 
 
Table 1.1.  Heritability estimates at the selection limit from the 20 replicate simulations 
of the antagonistic pleiotropy model.  
The selection limit was defined as the mean revolutions run per day averaged over 
generations 91-100.  Then, we calculated the generation at which the simulation first 
reached 95% and 99% of this limit (“Generation”) and obtained the h2 estimates from 
breeding values at that generation for that replicate population.  Note that when lines had 
reached 99% of the selection limit, three of 20 replicates maintained substantial narrow-
sense heritability, with estimates ranging from 0.16 to 0.27.  This pattern matches what 
was observed for three of four replicates in the long-term High Runner mouse selection 
experiment (Careau et al. 2013). 
 

 

Limit 
Revolutions per 
day, average of 

generations  
91-100 

95% of Limit 99% of Limit 

Replicate  Generation h2 Generation h2 
1 16849 28 0.0590 37 0.0206 
2 16868 26 0.0768 32 0.0158 
3 16877 32 0.1289 51 0.0221 
4 16871 18 0.1238 25 0.0309 
5 14410 26 0.1254 53 0.0569 
6 15976 29 0.1050 34 0.0469 
7 16791 27 0.1320 37 0.0233 
8 16769 21 0.2139 25 0.0857 
9 16977 23 0.1359 32 0.0150 

10 16807 22 0.0943 28 0.0983 
11 16790 22 0.0943 24 0.0437 
12 16704 32 0.0986 52 0.0290 
13 16810 27 0.1179 35 0.0208 
14 16838 20 0.1434 27 0.0271 
15 16731 22 0.1876 26 0.0491 
16 14429 23 0.2349 27 0.1622 
17 14278 63 0.2079 91 0.2453 
18 16782 35 0.1178 55 0.0280 
19 16836 26 0.1536 33 0.0402 
20 14731 26 0.2696 26 0.2696 
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Figure Legends 
 
Fig. 1.1.  Complex interactions governing the expression of a behavioral trait, using daily 
running distance as an example.  Total running distance is the product of average running 
speed and duration.  Speed and duration are each affected by an individual’s physical 
ability and motivation to perform the trait.  The lower of the two, physical ability or 
motivation, will limit the expression of the composite traits of speed and duration. 
 
Fig. 1.2.  Models of positive and antagonistic pleiotropy, depicting loci (each pair of 2 
circles) that affect the 4 lowest-level traits (ability and motivation for speed and 
duration).  Each trait is affected by 10 loci total (= 20 alleles), but only 4 are unique to the 
trait (in black).  The other 6 loci are pleiotropic loci and they are color-coded: 3 blue loci 
affect both ability and motivation for speed, 3 red loci affect both ability and motivation 
for duration, 3 grey loci affect ability for both speed and duration, and 3 white loci affect 
motivation for both speed and duration.  Thus, even though each trait is affected by 10 
loci, in total only 28 loci are coded (4 unique x 4 traits + 3 common x 4 groups).  In the 
positive pleiotropy model, all pleiotropic loci have the same effect in the two traits they 
affect (all arrows are +).  In the antagonistic pleiotropy model, the blue and red loci 
have the same effects in the two traits they affect (all arrows are +), but the grey 
(“ability”) and white (“duration”) pleiotropic loci have opposite effects for speed vs. 
duration.  
 
Fig. 1.3.  Non-selected “Control” simulations: 4 models of increasing complexity 
(columns from left to right), with 20 replicates within each model.  The models tested 
were A) biallelic genetic model with no within-family selection, B) biallelic genetic 
model with within-family selection, C) leptokurtic distribution of allelic effects with no 
within-family selection, and D) leptokurtic model with within-family selection.  Mean ± 
standard error bars (se) of the 20 replicates are in bold, with the 20 simulations shown in 
lighter colors.  Panels A-D show mean wheel-running revolutions (in blue) and 
heritability estimates from variance in breeding values (in black) for 100 individuals per 
generation.  Panels E-H show heritability estimates from animal model analyses (h2 ± se, 
estimates inferred to the initial generation of each 10-generation block within each 
simulation).  
 
Fig. 1.4.  Selected “High-Runner” simulations: 4 models of increasing complexity 
(columns from left to right), with 20 replicates within each model.  The models tested 
were A) biallelic genetic model with no within-family selection, B) biallelic genetic 
model with within-family selection, C) leptokurtic distribution of allelic effects with no 
within-family selection, and D) leptokurtic model with within-family selection.  Mean ± 
standard error bars (se) of the 20 replicates are in bold, with the 20 simulations shown in 
lighter colors.  Panels A-D show mean wheel-running revolutions (in red) and heritability 
estimates from variance in breeding values (in black) for 100 individuals per generation.  
Panels E-H show heritability estimates from animal model analyses (h2 ± se, estimates 
inferred to the initial generation of each 10-generation block within each simulation).  
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Fig. 1.5.  Selected “High-Runner” simulations: 3 additional models of increasing 
complexity (columns from left to right), with 20 replicates within each model.  The 
models tested all used leptokurtic distributions of allelic effects and within-family 
selection, with A) dominance effects, B) positive pleiotropy, and C) antagonistic 
pleiotropy.  Mean ± standard error bars (se) of the 20 replicates are in bold, with the 20 
simulations shown in lighter colors.  Panels A-C show mean wheel-running revolutions 
(in red) and heritability estimates from variance in breeding values (in black) for 100 
individuals per generation.  Panels D-F show heritability estimates from animal model 
analyses (h2 ± se, estimates inferred to the initial generation of each 10-generation block 
within each simulation). 
 
Fig. 1.6.  Comparison of heritability estimates by breeding values and animal models for 
each model.  Top panels are the same models as Fig. 1.3, middle row panels are the same 
as Fig. 1.4, and bottom panels are the same as Fig. 1.5.  Each model has 20 replicate runs 
and the heritability for every 10-generation block is depicted in a monochromatic scale 
from black to light grey, corresponding to generation 1 to 91.  
 
Fig. 1.7.  Inbreeding coefficients (F) increasing over 100 generations as mean of 100 
individuals per generation, and then averaged across 20 replicates.  Coefficients were 
calculated from the pedigree of each replicate simulation.  Top panels are the same 
models as Fig. 1.3, middle row panels are the same as Fig. 1.4, and bottom panels are the 
same as Fig. 1.5.   
 
Fig. 1.8.  Phenotypic values and heritability estimates for one replicate (replicate #16) of 
the selected antagonistic pleiotropy model (Fig. 1.5C).  The top panels depict A) mean 
phenotype of 100 individuals in each generation for total wheel revolutions, B) mean 
speed, and C) mean duration.  The bottom panels depict D) heritability for total 
revolutions (in grey for estimates from breeding values and in blue for estimates from the 
animal model), E) mean phenotype of 100 individuals in each generation for ability (open 
square) and motivation (open circle) for running speed, and F) ability (filled square) and 
motivation (filled circle) for running duration.  This replicate had h2 estimates > 0.1 when 
it reached 95% and 99% of the selection limit (calculated as the mean trait value for 
generations 91-100; see Table 1.1). 
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Fig. 1.1.  Complex interactions governing the expression of a behavioral trait. 
 

 
 

Lower of the two limits Speed Lower of the two limits Duration

Distance

Ability Motivation Ability Motivation

Speed DurationX
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Fig. 1.2.  Models of positive and antagonistic pleiotropy 
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Fig. 1.3.  Non-selected “Control” simulations: 4 models of increasing complexity.   
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Fig. 1.4.  Selected “High-Runner” simulations: 4 models of increasing complexity.   
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Fig. 1.5.  Selected “High-Runner” simulations: 3 additional models of increasing complexity.   
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Fig. 1.6.  Comparison of heritability estimates by breeding values and animal models.  
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Fig. 1.7.  Inbreeding coefficients (F) increasing over 100 generations.  
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Fig. 1.8.  Phenotypic values and heritability estimates for one replicate (replicate #16) of the selected antagonistic pleiotropy 
model.   
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Abstract  
 

Artificial selection yielded four replicate high runner (HR) lines of mice that 

voluntarily run ~3-fold more wheel revolutions per day than four non-selected control 

lines.  HR lines and the sexes differed in the rate and magnitude of response to selection, 

although all four lines reached selection limits.  We attempted to break the limit by 

crossing two HR lines at generation 68, followed by continued selection for 10 

generations.  Hybrid F1 offspring showed heterosis for running distance, but this was lost 

in subsequent generations and the hybrid line did not break the limit.  Both male and 

female hybrids ran faster than the parental lines for most generations, but running 

duration was intermediate or reduced, indicating different genetic architecture for these 

traits.  The hybrid line had increased heritability for running speed and duration, but not 

total distance, compared with the parental lines.  The hybrid line inherited a negative 

genetic correlation between speed and duration, which had evolved in the parental lines 

from a positive genetic correlation in the base population.  The genetic trade-off between 

running duration and speed may explain the inability for the hybrid line to break the 

selection limit despite renewed additive genetic variance for component traits.
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1. Introduction 

Limits to selection (plateaus) are common in selection experiments and can result 

from various causes (Falconer and MacKay 1996; Garland and Rose 2009; Careau et al. 

2013).  Perhaps the most intuitive potential cause of a selection limit is simply exhaustion 

of additive genetic variance (i.e., the narrow-sense heritability is reduced to zero).  In a 

population under selection, both the selection regime and genetic drift would cause 

fixation of alleles, with the former fixing beneficial alleles and the latter fixing alleles 

without regard of their relevance for the selection regime (Falconer and MacKay 1996).  

Fixation of alleles is especially likely under strong selection and/or with small population 

sizes (Weber 1996), as is the case for most artificial selection experiments with rodents 

(e.g., Meyer and Hill 1991; Beniwal et al. 1992; Heath et al. 1995).    

 Another possible cause of selection limits is counterposing natural selection (e.g., 

selected lines suffer a dramatic decrease in fertility), which can be viewed as a 

consequence of adverse pleiotropic effects of alleles under selection (Barton and Turelli 

1989; Hill and Mbaga 1998).  For example, two selection experiments for body mass in 

mice resulted in decreased fertility and postnatal survival in lines at or near plateaus 

(Falconer 1955; Roberts 1966).  Inbreeding depression in small populations may also 

decrease reproductive success and other aspects of Darwinian fitness (Falconer and 

MacKay 1996; Birchler et al. 2006; Charlesworth and Willis 2009; Pemberton et al. 

2016).   

 One recent example of a selection experiment that reached clear limits involves 

selection for high voluntary wheel running in laboratory mice (Mus domesticus; Hsd:ICR 
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strain).  Replicated directional selection for wheel running produced four High Runner 

(HR) lines of mice that run ~3 times as much as four non-selected control (C) lines 

(Swallow et al. 1998; Careau et al. 2013).  Although all replicate HR lines show 

approximately the same increase in total wheel revolutions per day, they differ in the 

component traits of average running speed and running duration per day (Garland et al. 

2011), and an apparent trade-off between these components of running behavior has 

emerged (see Fig. 3 in Garland et al. 2011).  The HR lines have evolved a variety of 

differences when compared to the control lines, including reduced body mass and length 

(Swallow et al. 1999), higher endurance (tested on a treadmill; (Meek et al. 2009)) and 

maximal aerobic capacity (Rezende et al. 2006), and larger hearts and brains (Kolb et al. 

2013; Copes et al. 2015).  The HR lines also show an altered brain reward system, 

including in the dopamine (Rhodes and Garland 2003), serotonin (Claghorn et al. 2016), 

and endocannabinoid pathways (Thompson et al. 2017).   

 The HR lines reached selection limits between generations 17-25, differing 

slightly based on replicate line and sex within line (Careau et al. 2013).  The limit 

experienced in the HR lines was apparently not caused by depleted additive genetic 

variance or counterpoising natural selection (Careau et al. 2013).  The purpose of the 

present study was to break the selection limit experienced by the HR lines in order to 

understand the genetic architecture of voluntarily wheel running and the mechanisms 

underlying the selection limit.   

One way to break selection limits is through the use of a hybrid line of two 

replicate selected populations after they have reached limits.  Especially in small 
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populations, random genetic drift would result in the loss of some favorable alleles before 

selection could "recruit" them, and these lost alleles would likely differ among replicate 

populations.  Moreover, as mentioned previously, random genetic drift can potentially fix 

alleles with neutral or detrimental effects, and will, on average, cause populations to 

diverge genetically.  Thus, a cross of two replicate selected lines will inherit favorable 

genes from both, replenishing alleles lost by genetic drift (e.g., Ehiobu and Goddard 

1990; Bult and Lynch 1996; review in Lippman and Zamir 2007).   

This increase in a favored trait in hybrid offspring is termed heterosis (also known 

as hybrid vigor), and is measured as the increase in a trait value of hybrid offspring 

compared with either 1) the trait value of the higher of two parental populations 

(Charlesworth and Willis 2009), or 2) the intermediate value of two parental populations 

(Shull 1914).  Heterosis has been explained genetically as the result of potential 

dominance, overdominance, pseudo-dominance, and/or epistasis among alleles (Lippman 

and Zamir 2007; Charlesworth and Willis 2009; Schulthess et al. 2017).  Using crosses of 

numerous inbred strains of mice, heterosis has been observed for multiple behavioral 

traits including food competition (Manosevitz 1972), motor behavior (Guttman et al. 

1980), maze behavior (Wahlsten et al. 1991), and activity rhythms (Beau 1991).  Wheel 

running has also been reported to exhibit heterosis in crosses of multiple inbred strains 

(Bruell 1964), a cross of wild house mice and C mice (Dohm et al. 1994), a cross of HR 

line 8 and C57BL/6J (Nehrenberg et al. 2009), a cross of HR line 8 and one C line 

(Hannon 2010), and a cross of two of the four replicate HR lines (Hannon et al. 2011).  
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The presence of heterosis for a trait suggests that with continued selection, hybrids may 

break a selection limit previously experienced by parental lines. 

A selection experiment on nest building in mice gives evidence that this approach 

can indeed be used to break selection limits for behavioral traits.  Replicate lines bred for 

high and low nest-building reached selection limits at around generation 20 (Lynch 

1994).  Replicate hybrid lines were created at generation 46 for both the high and low 

selected lines, and all 4 hybrid lines broke selection limits after ~8-10 generations of 

renewed selection (Bult and Lynch 2000).  Thus, with renewed selection, hybrid 

populations could break the selection limit experienced in the parental populations.  

Because Hannon et al. (2011) observed heterosis for wheel running in male hybrids of 

two HR lines, continued selection on the hybrid line has the potential to break the 

selection limit faced in the replicate HR lines.   

The purpose of the present study was to attempt the paradigm outlined above to 

break the selection limit reached in the HR mice.  By breaking this limit, we might better 

understand the reason for the selection limit in the parental lines and further elucidate the 

underlying genetic architecture of wheel running and its component traits.  We crossed 

two of four replicate HR lines and continued selection on this hybrid line for 10 

generations.   

 

2. Materials and Methods 

All experiments were approved by the Institutional Animal Care and use 

Committee of the University of California, Riverside. 
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2.1. Original selected lines 

We used laboratory mice (Mus domesticus) that had undergone 68 generations of 

directional selection for high levels of voluntary wheel running (Swallow et al. 1998; 

Careau et al. 2013).  The base population for this long-term selection experiment was 224 

unrelated mice from the genetically variable, outbred Hsd:ICR strain (Harlan-Sprague-

Dawley, Institute of Cancer Research).  After 2 generations of random mating, we 

established 4 high-runner (HR) and 4 non-selected control (C) lines.  At all times 

throughout the experiment, mice were kept with a 12:12 light-dark cycle at 20-24 degrees 

Celsius, and food and water were provided ad libitum.  As young adults (~6-9 weeks of 

age), all mice were placed in new, individual home cages with access to wheels for 6 

days to measure their voluntary wheel running.  The wheels were 1.12 m in 

circumference and attached externally to the home cage, accessed via a tunnel (see Fig. 

S1 in Kelly et al. 2017).  HR lines were bred based on their total wheel revolutions on 

days 5 and 6.  Ten pairs per line were maintained using within-family selection, so that 

all families were represented in each generation and inbreeding was minimized (Ne ~ 35 

per line).  That is, we selected the highest running female and male from each family and 

mated them to the highest running male or female from other families.  We avoided 

pairing of siblings.  Only first litters were used.  The same testing and breeding protocols 

were followed in the current hybrid line experiment. 

  A sensor attached to each wheel counted every rotation, and a custom computer 

program recorded the number of rotations in 1-minute intervals for 23 hours/day.  Once a 
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day before starting the next test, we checked every cage for the health of the mouse and 

that the wheels were turning.  After 6 days, we took mice off wheels and placed them 

back in cages of 4.  Daily metrics of wheel running were: total revolutions, number of 1-

minute intervals active, average speed (total revolutions divided by number of 1-minute 

intervals active), and maximum speed (the highest number of revolutions in any 1-minute 

interval).  We weighed all mice before placing them in the wheel cages on day 1 and 

when we took them out of the wheel cages at the end of day 6. 

 

2.2. Hybrid line 

HR replicate lines 7 and 8 were chosen for this study due to the absence of the 

mini-muscle allele (fixed in HR line 3 and polymorphic in HR line 6; (Kelly et al. 2013)), 

which affects many traits, including wheel running and organ masses (see Garland et al. 

2002; Hannon et al. 2008).  At generation 68, in addition to breeding the replicate HR 

lines as usual, we bred a subset of females and males from lines 7 and 8 to create two 

reciprocal hybrid crosses (7 female × 8 male and 8 female × 7 male).   

In creating the next generation (F2) of the hybrid line, we used a factorial breeding 

design to maximize allele mixing and retain the ability to test for grand-parental effects.  

We bred females from one reciprocal cross to males from the same and different crosses: 

i.e., females from the F1 reciprocal 7F × 8M were bred to males from the F1 reciprocal 7F 

× 8M or males from the F1 reciprocal 8F × 7M, and the same for females from the F1 

reciprocal 8F × 7M.  In subsequent generations (F3+) of the hybrid line, we combined 

these crosses as one pool of breeders.  We continued selection in the following 
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generations for the parental and hybrid lines, following the usual selection protocol with 

within-family selection, for a total of 10 generations of the hybrid line.   

 

2.3. Comparison of lines and line crosses 

Analyses were performed separately by sex unless otherwise noted, because of 

many known differences between sexes (Garland et al. 2011; Hannon et al. 2011).  For 

each generation, we tested whether the hybrid line had diverged significantly from the 

parental lines using analysis of covariance (ANCOVA) in the Mixed procedure in SAS 

(version 23; SAS Institute, Cary, NC, USA).  Analyses of body mass used age as a 

covariate.  Analyses of wheel-running traits used age and wheel freeness as covariates.  

Wheel freeness was tested for each wheel by accelerating the wheel to a constant velocity 

and counting revolutions until the wheel stopped on its own (Copes et al. 2015).  For 

analysis, the square-root of wheel freeness was used to obtain a more homogenous spread 

of values.  We tested for the difference between the hybrid line and parental lines using 

three separate a priori contrasts: hybrid line 9 vs. HR line 7, hybrid line 9 vs. HR line 8, 

and hybrid line 9 vs. the average of HR line 7 and 8.  We used additional contrasts for F1 

reciprocal crosses: hybrids created from line 7 females crossed with line 8 males vs. 

hybrids created from line 8 females crossed with line 7 males.  We also used additional 

contrasts for F2 reciprocal crosses.   

 The hybrid line exhibited greater variance than parental lines, so we considered 6 

different models with (1) a single estimate for residual variance, (2) a single estimate for 

residual variance and a single estimate for variance among families (as a nested random 
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effect), (3) a single estimate for residual variance and separate estimates for family 

variance, (4) a separate estimate of residual variance for each cross-type and no variance 

among families, (5) a separate estimate of residual variance for each type and a single 

estimate for variance among families (see also Garland et al. 2011; Hannon et al. 2011). 

 

2.4. Heritability estimates by offspring-on-parent regressions  

We estimated the heritability of wheel running within each line as the slope of the 

linear regression of offspring-on-mid-parent or twice the slope of regressions of 

daughters-on-dams or sons-on-sires.  The slopes are doubled in the latter two cases 

because each parent contributes half of the additive genetic effects to its offspring.  Males 

contributed no parental care in this experiment, but they were paired with the female up 

to parturition, which may have conferred non-genetic effects on the offspring.  Also, 

common environments and maternal effects were shared among offspring in the same 

litter, which could inflate the estimate of heritability.  Thus, none of these estimates are 

good estimates of narrow-sense heritability per se.   

Values used for the regressions were residuals of wheel running (mean values for 

days 5+6) for all individuals (all 3 lines and all 10 hybrid generations) regressed on sex, 

age, wheel freeness, testing batch and room (8 dummy categories), line, generation, and 

the interactions of line and generation, sex and line, sex and generation, and sex and line 

and generation.  We also obtained residuals of running speed and duration (both as mean 

values for days 5+6) and body mass using the same regression factors, except for body 

mass which did not use wheel freeness and testing batch and room.  The values for 
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offspring in a given generation were then averaged for each litter, separately by sex in the 

case of single-sex regressions (i.e., averaged for daughters and sons separately).  These 

analyses included individuals pooled across all 10 hybrid generations, but we also 

analyzed heritability generation-by-generation (in both cases, heritabilities were 

estimated separately for each line).   

The estimate of heritability by offspring-on-parent regressions assumes equal 

litter sizes and no assortative mating, both of which we did not have.  To correct for 

unequal litter sizes, the regression was weighted by a score based on both the number of 

offspring in each litter and the intra-class correlation, using an iterative method described 

in Lynch and Walsh (1998) and the osw() function in R (Careau et al. 2013).  To correct 

for assortative mating, we used this equation from Roff (1997 p. 199): h2 = 2 x slope of 

regression / (1 + r).  We calculated r as the Pearson correlation of the residual values of 

wheel running (as above) between dams and sires, calculated separately for each line and 

generation, or pooled across generations.  The corresponding standard error was 

calculated as in Falconer (1981): se = se of regression slope x sqrt(1 + r).  Lastly, when 

the trait had unequal variances between the sexes, the mid-parent regression was not 

used.  Instead, heritability was calculated as the mean of the two sex-specific heritability 

estimates and the corresponding standard error was approximated by dividing the 

averages of the standard errors of the sexes by the square root of 2 (Bult and Lynch 

2000). 
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2.5. Heritability estimates by the animal model 

To estimate the heritability of wheel running and its components using an “animal 

model,” we first obtained the pedigree of the selection experiment.  We used the same 

pedigree for these mice as published previously up to generation 31 (Careau et al. 2013, 

2015) to which we added information up to generation 78.  The pedigree included data 

from the original 224 mice purchased from Harlan Sprague-Dawley, but no information 

before then (thus, these 224 mice were assumed to be unrelated (Careau et al. 2013, 

2015)).  Then, we obtained inbreeding coefficients (F) using the relationship matrix 

calculated from the pedigree (Butler et al. 2007).  For the parental generation used to 

create the hybrid line (i.e., generation 68 of the selection experiment), the average (± 

standard deviation) inbreeding coefficient for HR line 7 was F =0.7087 ± 0.0105 and for 

HR line 8 was F =0.7198 ± 0.0106. 

Because we wanted to estimate heritability of wheel running in the first 

generation of the hybrid experiment (generation 69 = hybrid generation 1), we subset the 

pedigree to only the generations relevant to the hybrid line.  Thus, the pedigree used to 

estimate heritability did not include the first 68 generations of selection.  This allowed us 

to estimate additive genetic variance at generation 69 instead of implicitly inferring back 

to the base population of the selection experiment (Careau et al. 2013).  This procedure 

effectively assumes that individuals within a line at generation 69 are outbred, which is, 

of course, untrue (see above).  Therefore, we specified the inbreeding coefficient of all 

breeders at generation 69 when calculating the A-inverse matrix used in the animal 

model, to account for inbreeding.  The animal model assumes that individuals in the base 
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population of a pedigree are unrelated.  Although this is a reasonable assumption for the 

base population of the experiment, it is certainly not at generation 69.  Yet, violating this 

assumption is necessary to estimate additive genetic variance at a given time point in a 

pedigree (otherwise the animal model makes inference back to the base population of the 

experiment).   

For each trait for which we wanted to estimate heritability, we first standardized 

the trait to have mean = 0 and standard deviation = 1 separately in each line within each 

generation. This enabled us to pool generations together and directly compare estimates 

of variance and regression coefficients between lines.  Then, we estimated variance 

components for each line using linear mixed-effects models, which included fixed effects 

(age, sex, F coefficient, and wheel freeness) and variance components of common 

maternal environment (i.e., identity of the mouse’s dam), additive genetic variance (i.e., 

the identity of the mouse linked with the pedigree), and residual variance.  Narrow-sense 

heritability was calculated as the ratio of the additive genetic variance component divided 

by the sum of all variance components.  Confidence intervals for the variance 

components were estimated using profile likelihoods with the R package nadiv (Wolak 

2012). 

 We measured cumulative response to directional selection (i.e., selective gain) 

separately in the sexes as the deviation in each of the 3 lines from the mean of the four C 

lines, and as the deviation of line 9 from the average of lines 7 and 8. We also measured 

the cumulative selection differential in units of standard phenotypic deviation from 

hybrid generation 1.  
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2.6. Genetic correlation  

 We measured the genetic correlation between wheel-running speed and duration 

by using cross-covariances between offspring and mid-parent values and by use of the 

“animal model”.  In the first, we used the same residuals used in heritability estimates, 

with mean offspring values averaged for each family and mid-parent values averaged 

between the dam and sire.  Genetic correlation was calculated as the mean of two cross-

covariance estimates based on the equation below (Roff 1997 p. 81): 1, the covariance of 

offspring duration and mid-parent speed, and 2, the covariance of offspring speed and 

mid-parent duration. 

!"	$% =
'()$%

'()$$	×	'()%%
 

!"	%$ =
'()%$

'()$$	×	'()%%
 

Cov = covariances, X = duration of wheel running, Y = speed of wheel running. The first 

letter (X or Y) after Cov refers to the trait in offspring and the second character refers to 

the average trait of the parents.  The standard error for the genetic correlation was 

calculated as (Roff 1997): 
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We also estimated the genetic correlation between running speed and duration in 

the base population of the HR selection experiment (generation 0 in Swallow et al. 1998) 



 64 

by cross-covariance of generations 0 (parents) and 1 (offspring).  Values used were 

residuals of running speed and duration regressed on sex, number of toes cut for 

identification, age, z-transformed age squared, wheel freeness, z-transformed wheel 

freeness squared, testing batch and room, generation, and the interaction of sex and 

generation.  All but the last two factors in the regressions were used in previous estimates 

of heritability in the base population by offspring-on-parent regressions (Swallow et al. 

1998).  Note, the factors are different from those used to obtain residuals in lines 7, 8, and 

hybrid line 9 in the present study (for example, line was not included as a factor because 

the base population had not yet been separated into lines).  

 The second method to calculate genetic correlation was by use of the “animal 

model” to analyze wheel-running duration, speed, and the correlation between them by 

fixed effects of age, sex, measurement batch, F coefficient, and wheel freeness, and 

variance components of common maternal environment (i.e., identity of the mouse’s 

dam), additive genetic variance (i.e., the identity of the mouse linked with the pedigree), 

and residual variance.  The general variance component models used were general 

correlation models (“corgh”) or unstructured general covariance matrix models (“us”).  

Traits were standardized to z-scores (mean = 0, sd = 1) separately in each line within 

each generation.  Confidence intervals for the variance components were estimated using 

profile likelihoods with the R package nadiv (Wolak 2012).  Analyses were pooled for 

both sexes.  
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3. Results   

3.1. Parental effects in the F1 and grand-parental effects in the F2 

In the first generation of the hybrid line (F1), no parent-of-origin effect was 

apparent for wheel-running distance, duration, or speed (Fig. 2.1: left panels).  That is, 

the reciprocal crosses were not different from each other. 

 The F2 revealed interesting grand-parent-of-origin effects.  In particular, F2 

females had significantly increased speed (p = 0.0155) when the mother was from the F1 

cross 8F × 7M compared with F2 females with mothers from the F1 cross 7F × 8M (Fig. 

2.1: Revolutions per minute, right panel).  In addition, F2 males whose mothers were the 

F1 cross 8F × 7M and whose fathers were the F1 cross 7F × 8M tended to have reduced 

running distance (p = 0.0580) and had significantly reduced running speed (p = 0.0121) 

compared with males from the other three F2 crosses (Fig. 2.1: right panels).   

 Body mass had no apparent parent-of-origin or grand-parent-of-origin effects 

(Fig. 2.3).  All reciprocal groups were intermediate to the two purebred HR lines.   

 

3.2. Total wheel running 

In the F1 generation, the hybrid line had significantly increased total wheel 

revolutions per day compared to the average of lines 7 and 8, for both females and males 

(Figs. 1, 2).  In females, the hybrid line was also significantly different from each 

parental line, but in males, the hybrid line was only statistically different from parental 

HR line 7, not line 8. 
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 In successive generations, wheel running in the hybrid line generally declined to 

that of the parental lines (Fig. 2.2).  Specifically, in females, the hybrid line ran 

significantly more revolutions/day compared to the average of the parental lines in 

generation 3 and 7.  In males, the hybrid line ran statistically more revolutions than the 

average of the parental lines for the first 5 generations.  In generation 3, the hybrid line 

was also significantly different from both parental lines.  However, from generation 6 on, 

the males of the hybrid line did not differ in wheel running from the parental lines.   

Wheel running shows considerable variation across generations, with all three 

lines following the same pattern (e.g., dip in generations 7 and 10). This variation is 

assumed to be due to intergenerational environmental fluctuations of unknown origin, as 

well as some amount of apparently endogenous seasonal variation, which is also present 

in control lines (Careau et al. 2013).  One way to control for this variation is to calculate 

the selective gain by subtracting the average wheel running in control lines to the wheel 

running in each HR line, which reveal the same pattern either as function of generation 

(Fig. 2.4; top panels) or cumulative selection differential (Fig. 2.4; bottom panels).  That 

is, the hybrid line starts with higher selective gain than lines 7 and 8, but that difference 

gradually diminishes.  

 

3.3. Duration of wheel running 

Wheel-running duration (minutes per day) was measured as the number of 1-

minute intervals for which the mice showed at least one revolution (Swallow et al. 1998).  

Generally, the hybrid line was intermediate or lower than parental lines in running 
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duration (Fig. 2.2).  Specifically, in females, the hybrid line ran for significantly less time 

compared to the average of the parental lines in 6 of the 10 generations.  In generations 4 

and 10, the hybrid line ran significantly fewer minutes per day compared with each 

parental line.  In males, the hybrid line did not differ significantly from the average of the 

parental lines except in generation 6 (when they ran the same minutes per day as HR line 

7).   

 

3.4. Average speed of wheel running 

Average wheel-running speed (revolutions per minute) was measured as the 

number of revolutions per day divided by the number of 1-minute intervals for which the 

mice were active per day.  Generally, the hybrid line ran at higher speeds than the 

parental lines (Fig. 2.2).  Specifically, in females, the hybrid line ran at significantly 

higher average speed for all 10 generations compared to the average of the parental lines.  

At 5 of those time points (generation 1, 6, 7, 9, and 10), the hybrid line also had 

significantly higher speeds compared with each parental line.  In males, the hybrid line 

had higher average running speed for the first 9 generations compared with the average of 

the parental lines, but was intermediate in the 10th generation.  For 4 of those generations 

(1, 2, 3, and 5), the hybrid line was had significantly higher speeds compared with each 

parental line.   
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3.5. Maximum speed of wheel running 

The maximum wheel-running speed (maximum revolutions per minute) was 

measured as the highest number of revolutions run in any 1-minute interval, averaged 

between day 5 and 6.  Following the trend for average speed, the hybrid line had higher 

maximum running speed compared to the parental lines (Fig. 2.2).  In females, the hybrid 

line had significantly higher maximum speeds for all 10 generations compared to the 

average of the parental lines.  At 6 of those time points (generation 1, 2, 4, 5, 6, and 10), 

the hybrid line also had significantly higher speeds compared with each parental line.  

For males, the hybrid line also had significantly higher maximum speed for all 10 

generations.  For the first 7 generations, the hybrid line had significantly higher speeds 

than each parental line.     

 

3.6. Body mass 

Adult body mass (measured before wheel access) of the hybrid line was 

intermediate to the parental lines for most generations in both females and males (Fig. 

2.3).  Specifically, in females, the hybrid line did not differ significantly in body mass 

compared to the average of the parental lines, except in the last 3 generations.  For the 

last 3 generations of renewed selection, the hybrid line had higher body mass than the 

average of lines 7 and 8, but only differed significantly from line 7.   

In males, the hybrid line did not differ significantly in body mass compared to the 

average of the parental lines, except in 3 generations.  In generation 3, the hybrid line had 

lower body mass than the average of lines 7 and 8, but only differed significantly from 
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line 8.  In generations 8 and 9, the hybrid line had higher body mass compared to the 

average of the parental lines, but only differed significantly from line 7.   

 

3.7. Heritability estimates 

Considering data and pedigree information for generations 69 to 78, total daily 

wheel running was not significantly heritable for either parental line or for the hybrid 

line, except in females of HR line 7 (Table 2.1, 2.2).   

The two components of wheel running, duration and average speed, showed a 

more complicated pattern.  Overall, wheel-running duration was heritable for HR line 9 

(Table 2.1, 2.2; except females in Table 2.2) and line 8 males (Table 2.1, 2.2).  In 

estimates using offspring-on-parent regressions, duration was also heritable for line 8 

when sexes were pooled (Table 2.1).  In addition, in estimates using the animal model, 

duration was heritable for HR line 7 females (Table 2.2).   

Average wheel-running speed was heritable for HR line 7 females, line 8 males, 

and line 9 (pooled sexes; Table 2.1, 2.2).  In addition, the estimates of h2 for speed from 

offspring-on-mid-parent regression was significant for line 7 (pooled sexes), line 8 

(pooled sexes), and line 9 females (Table 2.1). 

Adult body mass prior to wheel testing was heritable for HR line 9 and line 8 

when sexes were pooled (Table 2.1, 2.2).  The estimate from daughters-on-dams 

regression was non-zero for line 8 females (Table 2.1).  In addition, heritability estimates 

from the animal model were non-zero for pooled sexes in line 7 (Table 2.2). 
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3.8. Genetic correlation 

Wheel-running duration and speed had a significant negative genetic correlation 

in hybrid line 9, estimated both by cross-covariances between offspring and mid-parent 

and by use of “animal models” (Table 2.3, 2.4).  For HR line 7, the genetic correlation 

could not be estimated due to negative (Table 2.1) or low (Table 2.2) genetic variance for 

duration of running (Table 2.3, 2.4).  For line 8, the estimated genetic correlation was 

negative, but the standard error was too large to bound the estimate away from zero in 

two of the three methodologies used (Table 2.3, 2.4).  Estimates of genetic correlation in 

the base population were positive with a large standard error (not significantly different 

from zero, Table 2.3, 2.4). 

 

4. Discussion 

The purpose of the present study was to attempt to break a selection limit reached 

in a long-term selection experiment for high voluntary wheel running in mice.  By 

breaking this limit, we might better understand the reason for the selection limit in the 

selected lines and further elucidate the underlying genetic architecture of wheel running 

and its component traits.  After crossing two of four replicate High Runner (HR) lines, 

heterosis for wheel-running distance was confirmed in the hybrid F1 for both sexes (as in 

Hannon et al. 2011).  However, even with subsequent selection, the hybrid line did not 

break the prevailing selection limit of the parental HR lines 7 and 8 (line numbers are lab 

designations).  Further examination of the component traits of wheel running, average 
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speed and duration, led to interesting hypotheses regarding their genetic architecture.  In 

addition, the observed patterns of heterosis were sex-specific, indicating underlying sex 

and line differences in the traits affecting wheel running in the parental lines, as reported 

previously (Garland et al. 2011). 

 

4.1. Parental and grand-parental effects 

Analyses of parental effects on wheel running (total, duration, average speed, and 

maximum speed) demonstrated no parent-of-origin effects in the F1 generation.  That is, 

the reciprocal F1 hybrids showed no statistical difference from one another.  Previous 

research reported parent-of-origin effects in a reciprocal cross between HR line 8 and a 

control line (Hannon 2010) and in an intercross population between HR line 8 and inbred 

C57BL/6J (Kelly et al. 2010a).  This discrepancy may be due to the fact that mice from 

HR line 8 were much more similar to those from HR line 7 than Control or C57BL/6J 

mice.   

In the F2 population, however, we found differences between reciprocal hybrids 

for total wheel running, speed, and maximum speed.  These grand-parental effects were 

further mediated by sex.  Specifically, F2 female mice whose mothers were 7F×8M 

hybrids had lower total wheel running and speed than mice whose mothers were 8F×7M 

hybrids (although these mothers themselves were did not show any differences in the F1), 

and this was true regardless of the father’s cross-type.  Reciprocal crosses of male F2 

hybrids were not different, expect for one specific cross-type (maternal 8F×7M × paternal 

7F×8M) which had reduced total wheel running and speed.  The mechanism for grand-
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parental effects in the absence of parent-of-origin effects is unclear and beyond the scope 

of the current study.  Some potential mechanisms to explain the sex differences in grand-

parental effects (i.e., female vs. male grand-offspring of the same cross-type) is that the 

allelic combinations (or regulating mechanisms of these combinations), might be found 

on the X chromosome, mitochondrial DNA, or modulated by epigenetic mechanisms. 

Discussion of these sex-dependent mechanisms can be found elsewhere (Kelly et al. 

2010a).   

 

4.2. Wheel-running duration vs. speed 

The heterosis observed for wheel running was apparently achieved via increase in 

average running speed, not the number of active minutes per day (i.e., duration).  This 

was also observed for the previous F1 cross (Hannon et al. 2011).  Previous QTL analyses 

with an advanced intercross population of mice generated from HR line 8 and C57BL/6J 

mice revealed that running speed and duration were affected by different loci in the 

genome (Kelly et al. 2010b).  (Others have reported co-localized QTL for running speed 

and duration, but they used a cross of two inbred strains (C57BL/6J and C3H/HeJ) and 

measured wheel running over 21 days instead of 6 days (Leamy et al. 2008; Lightfoot et 

al. 2008).) 

Running duration was intermediate in the hybrid line, or even lower in some 

generations in females.  The observed depression in running duration suggests separation 

of beneficial allele combinations via recombination (termed hybrid breakdown) and/or 
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that Dobzhansky-Muller incompatibilities were generated (termed outbreeding 

depression) (Charlesworth and Willis 2009).   

On the other hand, the hybrid line had increased average running speed compared 

with the two parental lines.  As outlined in the Introduction, this result suggests that the 

parental lines had some number of alleles fixed by genetic drift that were detrimental to 

running speed, but the two parental HR lines had different detrimental alleles.  Thus, the 

hybrid line inherited alleles that facilitate higher running speed from both parental lines 

and renewed selection on the hybrid line purged the deleterious alleles found in parental 

lines (Charlesworth and Willis 2009).  This possibility, however, should have allowed the 

hybrid line to break the selection limit, which was not observed.  One explanation for this 

contradiction is that hybrid vigor for wheel-running speed was equally matched with 

hybrid breakdown / outbreeding depression, but this rationalization remains highly 

speculative at this time.   

 

4.3. Heritability estimates  

Heritability for wheel running was mostly depleted in HR lines 7 and 8 by the 

start of the hybrid experiment (Table 2.1).  Although the estimate for females in line 7 

could be bounded away from zero (Table 2.1, 2.2), this may have been inflated by non-

genetic maternal effects.  Low heritabilities were not unexpected because these lines had 

undergone 68 generations of directional selection prior to the creation of the hybrid line, 

although they had maintained heritability at least up until generation ~20 (Careau et al. 



 74 

2013).  (Bult and Lynch (2000) had also estimated non-zero heritabilities for nest 

building in their selected lines at selection limits.)   

Contrary to our prediction, estimates from both offspring-on-parent and animal 

model analyses indicated that heritability for wheel running was not increased in the 

hybrid line, as compared with the two parental lines.  The lack of heritability would 

appear to be an obvious explanation for the lack of response to continued selection.  (Had 

we known heritability was not increasing above zero, we could have predicted no 

response, but that was not clear until after applying selection for at least a few 

generations.)  

Despite the lack of heritability in wheel running, heritability was actually 

increased in the hybrid line for both wheel-running duration and average speed (Table 

2.1, 2.2).  As total wheel running is the product of duration and average speed, the 

presence of heritability for each component trait might suggest heritability for the 

composite trait.  However, this was not found in our experiment.  

 

4.4. Evolution of negative genetic correlation between duration and speed of running 

In the base population of the selection experiment, wheel-running duration and 

speed were genetically uncorrelated or perhaps weakly positively correlated (Table 2.4). 

In the generations used in the present experiment, duration and speed in HR lines 7 and 8 

were negatively uncorrelated (Tables 2.3 and 2.4).  Using all three estimation methods, 

the genetic correlation between duration and speed was also negative for hybrid HR line 

9.  The negative genetic correlation could explain the presence of heritability for duration 
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and speed but not wheel running and thus the inability for hybrid line to break the 

selection limit despite renewed genetic variance.  The negative genetic correlation could 

be caused by linkage disequilibrium or pleiotropy of alleles with opposite effects for the 

component traits.  In both cases, alleles with positive effects for running duration and 

negative effects for running speed (or vice versa) would inherited together.  That is, the 

evolution of negative pleiotropy for two traits under selection might explain a selection 

limit even with the maintenance of additive genetic variance (Falconer 1981). 

 

4.5. Sex differences 

As mentioned above, wheel-running duration, which did not exhibit heterosis, 

was differentially affected in female vs. male hybrid mice.  In addition, sex-specific 

effects were observed in the heritability estimates, further indicating the different 

underlying genetic architecture of wheel running and its component traits between the 

two sexes.  One potential interpretation is that some alleles that affect running duration 

may be connected to sex chromosomes.  Counter to this hypothesis, no sex-specific QTL 

were found for wheel running and component traits in a study of an advanced intercross 

population of HR line 8 and C57BL/6J mice (Kelly et al. 2010b).  However, 

interpretation is limited because they used just 30 markers on the X chromosome and no 

markers on the Y chromosome (Kelly et al. 2010b).  Another study utilizing the same 

intercross at a later generation reported 10 QTL for exercise across 20 chromosomes 

(including the X chromosome), but none of these interacted with sex (Leamy et al. 2012).   
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Other potential mechanisms of sex differences (mitochondrial DNA, epigenetics, 

or environmental effects) are discussed elsewhere (Kelly et al. 2010).  Identifying the 

specific mechanism of the sex-specific heterosis is outside the scope of the current study, 

but future analyses of the genetic samples of these mice will yield insight into potential 

mechanisms of sex differences. 

 

4.6. Body mass 

In the first few generations, the hybrid line had intermediate values of body mass 

compared with HR line 7 and 8, indicating additive inheritance (Falconer 1955).  A 

hybrid cross study of wild house mice and ICR mice also reported intermediate values for 

body mass in the hybrids (only measured F1, (Dohm et al. 1994)).  After the first few 

generations, however, the hybrid line became more similar to HR line 8, implying net 

dominance of the alleles found in HR line 8 for body mass.  Heritability was found for 

body mass in HR line 8 (pooled sexes) and line 9 (pooled sexes and males; Table 2.1). 

 

4.7. Comparison with Bult and Lynch (2000)  

The current study was inspired by the hybrid cross experiments of Bult and Lynch 

(2000).  Similarities included long-term selection for a behavioral trait, similar population 

sizes and replicated selected lines, using within-family selection, selection limits being 

reached at generation ~20, and genetic variance being maintained at the limit.  At 

generation 46, they created hybrid lines by crossing their selected lines and were able to 

break the selection limits after 10 generations of renewed selection (Bult and Lynch 
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2000).  Despite the similarities in these studies, our hybrid line did not break the selection 

limit.  Aside from the obvious difference between these studies in the behavior under 

selection (nest building vs. wheel running) and direction of selection (high and low vs. 

only high selected lines), other discrepancies may have contributed to the difference in 

outcome.  Bult and Lynch (2000) used different mice for the base population of their 

experiment (outbred HS/Ibg stock of an eight-way cross among inbred strains vs. outbred 

Hsd:ICR mice) and used two replicate hybrid lines (for both high and low selected lines) 

once they renewed selection, whereas we only had one hybrid line.  

Perhaps most importantly, Bult and Lynch (2000) allowed random mating in the 

first 3 generations of the hybrid line before renewing selection for 10 more generations.  

In our experiment, we opted to select on the hybrid line from hybrid generation 1.  This 

was partly due to limitations based on the number of mice we could keep for this 

experiment while maintaining the other selected and control lines of the selection 

experiment.  Although we did not have random mating, the factorial design in creating 

the F2 allowed some allele mixing.  In addition, we tested these first few generations for 

wheel running and were able to test for the expected increase in variance in the first 3 

generations of the hybrid line, unlike Bult and Lynch (2000).   

 

4.8. Concluding remarks 

Genetic architecture (specifically negative genetic correlation between wheel-

running component traits duration and speed) constrained the hybrid line from increasing 

voluntary wheel running beyond the selection limit experienced by the parental lines.  
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Even with renewed genetic variation for duration and speed of wheel running, hybrids 

were not able to break the selection limit on total wheel running, because hybrid vigor 

was countered by one or more forms hybrid depression.  That is, the two benefits of a 

hybrid line (1. reduction of slightly deleterious homozygous alleles found in parental 

lines after generations of inbreeding, and 2. new, beneficial combinations of genes) may 

have been outweighed by breaking up good combinations (i.e., favored by past selection) 

that were already in each parental line or by the creation of new, harmful combinations of 

alleles.  Aside from the issue of hybrid vigor versus depression, the possible contributions 

of dominance, overdominance or pseudo-overdominance to the observed heterosis for 

wheel running in the first few generations are unknown.  Samples of breeders from all 10 

generations of the hybrid line have been preserved for future genomic analyses, which 

may uncover these genetic mechanisms.   
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Tables and Figures 
 
Table 2.1.  Heritability estimates ± standard errors from offspring-on-parent regressions, with numbers of parents and 
offspring in parentheses.  
 HR 7 HR 8 HR 9 
Total wheel running    
      Both sexes 0.10 ± 0.06 (115, 934) 0.12 ± 0.08 (119, 869) 0.07 ± 0.10 (126, 1072) 
      Females 0.24 ± 0.09 (114, 455) 0.13 ± 0.10 (117, 436) 0.12 ± 0.08 (124, 529) 
      Males -0.05 ± 0.08 (114, 479) 0.10 ± 0.12 (117, 433) 0.13 ± 0.10 (126, 543) 
Duration    
      Both sexes -0.09 ± 0.06 (115, 934) 0.14 ± 0.06 (119, 869) 0.24 ± 0.06 (126, 1072) 
      Females -0.09 ± 0.08 (114, 455) 0.08 ± 0.08 (117, 436) 0.16 ± 0.07 (124, 529) 
      Males -0.09 ± 0.08 (114, 479) 0.20 ± 0.09 (117, 433) 0.32 ± 0.09 (126, 543) 
Speed    
      Both sexes 0.16 ± 0.05 (115, 934) 0.13 ± 0.06 (119, 869) 0.15 ± 0.06 (126, 1072) 
      Females 0.22 ± 0.07 (114, 455) 0.04 ± 0.10 (117, 436) 0.22 ± 0.09 (124, 529) 
      Males 0.10 ± 0.07 (114, 479) 0.22 ± 0.09 (117, 433) 0.09 ± 0.09 (126, 543) 
Adult body mass    
      Both sexes -0.21 ± 0.07 (115, 934) 0.15 ± 0.07 (119, 869) 0.22 ± 0.06 (126, 1072) 
      Females -0.15 ± 0.10 (114, 455) 0.22 ± 0.10 (117, 436) 0.18 ± 0.09 (124, 529) 
      Males -0.26 ± 0.09 (114, 479) 0.08 ± 0.09 (117, 433) 0.26 ± 0.09 (126, 543) 

Analyses use all generations pooled and residuals from a fixed-effects model outlined in the Methods.  Analyses were done 
separately by sex (females = daughters and dams, males = sons and sires) or pooled for both sexes (offspring and mid-parent 
values; although if trait variances differed significantly by sex, the estimate given is the average of estimates from females and 
males).  In bold: Estimate is greater than zero and the 95% confidence interval (estimate ± 2 x standard error) excludes zero.   
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Table 2.2.  Narrow-sense heritability estimates ± standard errors from analyses of variance components using a pedigree-based 
linear mixed-model, with number of individuals in parentheses.   
Data were analyzed in the “animal model” with fixed effects (age, sex, measurement batch, F coefficient, and wheel freeness) 
and variance components of common maternal environment (i.e., identity of the mouse’s dam), additive genetic variance (i.e., 
the identity of the mouse linked with the pedigree), and residual variance.  The “animal model” makes inference back to the 
starting population, so the pedigree was cut to only include hybrid generation 1. To correct for known relatedness between 
individuals at hybrid generation 1, each individual in that generation was given the known starting inbreeding coefficient (F) 
according to analysis of the entire pedigree.  Traits were standardized to z-scores (mean=0, sd=1) separately in each line within 
each generation.  Narrow-sense heritability was calculated as the ratio of the additive genetic variance component divided by 
the sum of all variance components.  Confidence intervals for the variance components were estimated using profile 
likelihoods with the R package nadiv (Wolak 2012).  Analyses were done separately by sex or pooled for both sexes.  Total 
number of individuals used in the analyses are shown in parentheses.  In bold: Estimate is greater than zero and the 95% 
confidence interval (estimate ± 2 x standard error) excludes zero.  
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Table 2.2.  
 HR 7 HR 8 HR 9 
Total wheel running    
      Both sexes 0.02 ± 0.02 (863) 0.00 ± 0.02 (777) 0.07 ± 0.04 (917) 
      Females 0.22 ± 0.06 (420) Boundary (386) 0.10 ± 0.07 (455) 
      Males Boundary (443) 0.09 ± 0.05 (391) 0.12 ± 0.07 (462) 
Duration    
      Both sexes 0.00 ± 0.02 (863) 0.05 ± 0.04 (777) 0.16 ± 0.05 (917) 
      Females 0.15 ± 0.07 (420) 0.02 ± 0.05 (386) 0.12 ± 0.08 (455) 
      Males Boundary (443) 0.17 ± 0.07 (391) 0.28 ± 0.08 (462) 
Speed    
      Both sexes 0.07 ± 0.03 (863) 0.07 ± 0.05 (777) 0.10 ± 0.05 (917) 
      Females 0.14 ± 0.05 (420) 0.03 ± 0.05 (386) 0.14 ± 0.08 (455) 
      Males 0.01 ± 0.04 (443) 0.19 ± 0.06 (391) 0.06 ± 0.06 (462) 
Adult body mass    
      Both sexes 0.15 ± 0.06 (863) 0.24 ± 0.06 (777) 0.21 ± 0.07 (917) 
      Females 0.07 ± 0.08 (420) 0.13 ± 0.09 (386) 0.24 ± 0.09 (455) 
      Males 0.04 ± 0.07 (443) Boundary (391) 0.21 ± 0.10 (462) 

Boundary = Unable to be estimated because the additive variance component was getting pushed to be negative to fit the 
model, but are constrained to be positive.  
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Table 2.3.  Genetic correlation between speed and duration from analyses of offspring and mid-parent cross-covariances.  
 Covariance (Cov) between offspring and mid-parent Additive genetic correlation (rA) Standard 

error 

 

Duration 
in 
offspring 
and speed 
in parents 

Speed in 
offspring 
and 
duration in 
parents 

Duration in 
offspring 
and duration 
in parents 

Speed in 
offspring 
and speed 
in parents 

Duration 
in 
offspring 
and 
speed in 
parents 

Speed in 
offspring 
and 
duration 
in 
parents 

Duration 
vs 
speed 

 

 CovXY CovYX CovXX CovYY rA XY 
† rA YX 

† rA rA SE ‡ 
Base 
population 11.43 10.76 453.26 2.02 0.3776 0.3555 0.3666 0.2553 

Line 7 -16.82 -16.58 -389.44 2.36 Cannot 
compute 

Cannot 
compute NA NA 

Line 8 -17.59 0.16 794.87 0.79 -0.7030 0.0063 -0.3483 0.3830 
Line 9 -14.46 -55.30 1218.06 1.58 -0.3299 -1.2615 -0.7957 0.2520 

 

† rA XY = CovXY / sqrt (CovXX x CovYY) and rA XY = CovYX / sqrt (CovXX x CovYY) (Roff 1997) 
‡ SE = ((1 – r2

A)/sqrt(2)) * (sqrt(se.h2
X*se.h2

Y/(h2
X*h2

Y)) (Roff 1997) 
Genetic correlation between running speed and duration was significantly negative in line 9 (in bold; 95% confidence interval 
[estimate ± 2 x standard error] is bound away from zero).  In line 7, rA could not be computed because a negative CovXX forced 
a square-root of a negative number.  The estimate for line 8 was negative, but could not be bound away from zero.  The base 
population had a positive genetic correlation (although not bound away from zero), indicating that negative genetic correlation 
evolved in HR lines.  Analyses used all generations pooled and residuals from a fixed-effects model outlined in the Methods.  
Mean offspring values were used for each family and mid-parent values were the mean value of the dam and sire.  The overall 
genetic correlation was calculated as the average of two cross-correlations.  The first character after Cov refers to the trait in 
offspring and the second character refers to the average trait of the parents (X = duration, Y = speed). In bold: Estimate is 
greater than zero and the 95% confidence interval excludes zero.   
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Table 2.4.  Genetic correlation between speed and duration from animal model analyses. 
 

Estimate of genetic correlation using general correlation models (“corgh”) 
 rA se Chi2 p-value 
Base population 0.4905 0.5535 0.4390 
Line 7 -1.0000† NA 0.9258 
Line 8 -1.0000† NA 0.0367 
Line 9 -0.5744 0.2482 0.0189 
Line 9 (F3+) -0.5664 0.3190 0.1020 
Estimate of genetic correlation using unstructured general covariance 
matrix models (“us”) 
 rA se Chi2 p-value 
Base population 0.4905 0.5535 0.4390  
Line 7 -0.9405† 0.8571 0.3612 
Line 8 -0.8619 0.4702 0.0310 
Line 9 -0.5774 0.2628 0.0113 
Line 9 (F3+) -0.5653 0.3577 0.0992 

†Low genetic variance in line 7 gives uncertainty to these estimates. The warning message from ASReml is: "Boundary parameter: 
confidence interval estimation may produce strange behavior - proceed with caution" 
 

Genetic correlations (rA) between speed and duration were positive in the base population and significantly negative in line 9 
(significance from chi-square tests).  Estimates for line 7 were unreliable due to low genetic variance.  For line 8, the estimate 
for genetic correlation was significantly negative.  Genetic correlations between speed and duration were analyzed in the 
“animal model” with fixed effects (age, sex, measurement batch, F coefficient, and wheel freeness) and variance components 
of common maternal environment (i.e., identity of the mouse’s dam), additive genetic variance (i.e., the identity of the mouse 
linked with the pedigree), and residual variance.  The general variance component models used were general correlation 
models (corgh) or unstructured general covariance matrix models (us).  The “animal model” makes inference back to the 
starting population, so the pedigree was cut to only include hybrid generation 1.  To correct for known relatedness between 
individuals at hybrid generation 1, each individual in that generation was given the known starting inbreeding coefficient (F) 
according to analysis of the entire pedigree.  Traits were standardized to z-scores (mean=0, sd=1) separately in each line within 
each generation.  Analyses were pooled for both sexes. 
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Figure Legends 

Fig. 2.1.  Wheel running and component traits for hybrid generations 1 and 2 (measured 
as mean of days 5+6 of a 6-day exposure to wheels).  Values are least-squares means ± 
standard errors from analysis of covariance models in SAS Procedure Mixed, performed 
separately for the two sexes.  7 × 7 and 8 × 8 denote purebred mice from HR lines 7 and 
8.  Left panels are mice from hybrid generation 1 and show purebred mice and reciprocal 
hybrid crosses.  Right panels are mice from hybrid generation 2 and show purebred mice 
and 4-way crosses of the reciprocal hybrid mice.  For example, 7Fx8M × 8Fx7M denotes 
offspring from crosses of females from the F1 reciprocal 7F × 8M with males from the F1 
reciprocal 8F × 7M.  No parent-of-origin effect was apparent for wheel-running distance 
or component traits in the reciprocal hybrids (p > 0.05 for contrast between 7F × 8M vs. 
8F × 7M in both sexes).  Grand-parental effects were apparent for females whose mothers 
were from the F1 cross 8F × 7M compared with females whose mothers were from the F1 
cross 7F × 8M, with significantly increased running speed (p = 0.0155), but no difference 
in total wheel-running distance (p = 0.1376) or duration (p = 0.7396).  Males whose 
mothers were the F1 cross 8F × 7M and fathers were the F1 cross 7F × 8M tended to have 
reduced running distance (p = 0.0580) and had significantly reduced speed (p = 0.0121) 
compared with males from the other three F2 crosses.   
 
Fig. 2.2.  Wheel-running activity for hybrid generations 1 through 10, measured as days 5 
and 6 of a 6-day exposure to wheels attached to standard housing cages.  Values are least-
squares means ± standard errors from analysis of covariance models in SAS Procedure 
Mixed, performed separately for the two sexes.  (Values for generation 1 are the same as 
in left panels from Figure 1; 2 markers indicate the reciprocal hybrid crosses.  Values for 
generation 2 are the same as in right panels from Figure 1; 4 markers indicate the 2-way 
crosses of the reciprocal hybrids.)   Parental lines are in grey (HR 7 open, HR 8 filled) 
and the hybrid line is in black.  Asterisks (*) indicate when hybrid line 9 was 
significantly different (P < 0.05) from line 7, line 8, and the average of lines 7+8.  
Ampersand (&) symbols indicate when hybrid line 9 was significantly different from one 
parental line and the average of lines 7+8.    
 
Fig. 2.3.  Body mass at the start of wheel exposure.  Values are least-squares means ± 
standard errors from analysis of covariance models in SAS Procedure Mixed, performed 
separately for the two sexes.  Top left) Mice from hybrid generation 1, showing purebred 
mice and reciprocal hybrid crosses.  Top right) Mice from hybrid generation 2, showing 
purebred mice and the 4-way crosses of the reciprocal hybrid mice.  Bottom panels) 
Body mass, separated by sex, for hybrid generations 1 through 10.  Note that values for 
generation 1 are the same as in top left panel of this figure and values for generation 2 are 
the same as in top right panel.  Body mass is missing for generation 5 due to a broken 
scale.  Parental lines are in grey (HR 7 open, HR 8 filled) and the hybrid line is in black.  
Asterisks (*) indicate when hybrid line 9 was significantly different (P < 0.05) from line 
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7, line 8, and the average of lines 7+8.  Ampersand (&) symbols indicate when hybrid 
line 9 was significantly different from one parental line and the average of lines 7+8. 
 
Fig. 2.4.  Cumulative response to directional selection (i.e., selective gain) as a function 
of hybrid generations 1 to 10 (top panels) or the cumulative selection differential (in 
units of standard phenotypic deviation; bottom panels).  Selective gain was measured 
separately by sex as the deviation of each selected line 7, 8, and 9 from the mean of the 
four control lines (panels “females” and “males”).  Selected gain in the hybrid line 9 was 
additionally measured as the deviation of line 9 from the average of lines 7 and 8 (panel 
“line 9 vs 7&8”). 
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Fig. 2.1.  Wheel running and component traits for hybrid generations 1 and 2.
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Fig. 2.2.  Wheel-running and component traits for hybrid generations 1 through 10. 
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Fig. 2.3.  Body mass at the start of wheel exposure.   
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Fig. 2.4.  Cumulative response to directional selection. 
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Abstract 
 

Physical activity is an important component of energy expenditure, and acute 

changes in activity can lead to energy imbalances that affect body composition, even 

under ad libitum food availability.  One example of acute increases in physical activity is 

found in four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily 

run ~3-fold more wheel revolution per day when given wheel access for six days, 

compared with four non-selected control (C) lines.  Mice from the HR lines have a 

number of correlated responses to selection that relate to energy balance, including 

increased home-cage activity when wheels are absent, increased food consumption, and 

reduced total body and fat masses.  The purpose of the present study was to (1) compare 

wheel running, cage activity, food consumption, and body composition between HR and 

C lines of both sexes (generation 77), (2) examine the interrelationships of those traits 

over a 6-day period of wheel access, and (3) determine if the phenotypic architecture of 

these traits differed between linetype and/or between the sexes.  In general, we expected 

that voluntary exercise would increase food consumption, build lean mass, and reduce fat 

mass, but that these effects would likely differ between the sexes or between HR and C 

lines of mice.  In addition, we expected the phenotypic architecture to differ among 

groups.  Before wheel testing, HR mice weighed less than C mice, primarily due to 

reduced lean mass, and females were lighter than males, entirely due to lower lean mass.  

Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but 

lose fat mass, resulting in overall loss of total body mass and altered body composition.  

Mice from HR lines lost less fat than those from C lines, resulting in a convergence to a 
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fat mass of ~1.7 g for all 4 groups.  HR mice lost less fat mass in spite of the fact that 

they were much more active on wheels (and slightly more active in home-cages).  HR 

mice consumed significantly more food than C mice over the six days (with body mass as 

a covariate in statistical models), and this was true when accounting for their higher 

activity levels by use of wheel running and cage activity as additional covariates.  No 

statistically significant sex-by-linetype interactions were observed for any of the 

foregoing traits.  Structural equation models showed that the four sex-by-linetype groups 

differed considerably in the complex phenotypic architecture of these traits.  Higher food 

consumption was associated with higher average running speeds in females, longer 

wheel-running duration in C males, and longer time spent active in home-cages in HR 

males.  Lean change was unaffected by food consumption or physical activity (except 

with wheel-running duration in HR females).  On the other hand, fat change was 

significantly increased by food consumption in all groups (all groups lost fat, so mice that 

ate more lost less fat) and affected by both voluntary exercise and cage activity, but these 

effects were different and sometimes conflicting among the four groups.  Differences 

among groups by genetic background and sex are complex and lend support to the 

growing attention on personalized medicine for humans, especially in physical activity.  

This long-term selection experiment offers a unique model for studying the effects of 

voluntary exercise and spontaneous physical activity on body composition, and how these 

effects may depend on the overall level of activity and differ between the sexes. 
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1. Introduction 

Imbalances between energy intake and expenditure cause changes in body mass 

and composition that can be mediated by body size, sex, and genetic background (Pomp 

et al. 2008; McAllister et al. 2009; Kelly et al. 2011).  One important factor of energy 

expenditure is physical activity, the major components of which are voluntary exercise 

(VE) and spontaneous physical activity (SPA) (Garland et al. 2011b; Thompson et al. 

2012; Teske et al. 2014).  The definitions of VE and SPA are not always clear (review in 

Garland et al. 2011b).  In humans, VE is generally self-evident and SPA is considered all 

other physical activity which is not VE, including fidgeting and pacing (although “gray 

areas” exist, e.g., physical education classes in primary school).  In rodents, VE is 

recorded by wheel running (Sherwin 1998) and SPA is recorded by home cage activity 

(Garland et al. 2011b).  The relative importance of VE and SPA as sources of energy 

expenditure varies among species and with environmental conditions, and also depending 

on whether variation in either type of activity is caused mainly by variation in frequency, 

duration or average intensity (e.g., Koteja et al. 1999; Copes et al. 2015).  

When the level of VE or SPA increases, animals may compensate by reducing 

energy expenditure related to the other component or during other aspects of the daily 

lifecycle; alternatively or in addition, they may increase food consumption (Westerterp 

and Plasqui 2004; King et al. 2008; Garland et al. 2011b).  Such adjustments may or may 

not lead to stability in body mass and composition, depending on how long the altered 

physical activity occurs and the availability of additional food, as well as the 

sophistication of the organism's homeostatic mechanisms, such as appetite (e.g., see 
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Blundell and King 1998; Piersma and Van Gils 2011).  In general, animals that have 

evolved with a history of short-term changes in energy demand, as through temporarily 

increased levels of physical activity, would be expected to cope with those changes better 

than animals that are not adapted to such conditions.  We tested this general proposition 

by comparison of lines of mice that vary genetically in levels of physical activity. 

Specifically, we compared four replicate High Runner (HR) lines of mice 

selectively bred for increased wheel running during days 5 and 6 of a 6-day period of 

wheel access with four non-selected Control lines (Swallow et al. 1998).  Mice from HR 

lines run 2.5-3 times more distance per day than C mice over the 6-day period of wheel 

access (e.g., Belter et al. 2004) and offer a unique model for studying the effects of acute 

increases in physical activity on (changes in) food consumption and body composition.  

Despite continued selection for increased levels of VE, all of the HR lines have been at a 

selection limit since generation 17-25, depending on line and sex (Careau et al. 2013).  In 

principle, these limits could be related to an inability to maintain energy balance and 

body composition during the 6-day trial.  Alternatively, the HR mice may have evolved 

mechanisms to compensate for the dramatically increased VE.   

In addition to much higher levels of VE, several other differences between HR 

and C lines (Garland et al. 2016; Wallace and Garland 2016) suggest differences in their 

ability to regulate body mass or composition.  For example, HR mice are more active in 

home-cages when wheels are not provided (Malisch et al. 2009; Copes et al. 2015), eat 

more as adults even when housed without wheels (Swallow et al. 2001; Copes et al. 

2015), are smaller in total body mass (Koteja et al. 1999; Swallow et al. 1999), with the 
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difference more pronounced in males than females (Swallow et al. 1999; Garland et al. 

2011a)), have reduced body fat (Swallow et al. 2001; Nehrenberg et al. 2009), reduced 

circulating leptin levels (Girard et al. 2007), and increased adiponectin levels (Vaanholt 

et al. 2007).  Moreover, the amount of wheel running does not reach a plateau within six 

days in either HR or C mice (e.g., Swallow et al. 2001; Acosta et al. 2017), and neither 

does the amount of cage activity, a measure of SPA (Acosta et al. 2017), or body mass 

(Swallow et al. 2001; Bronikowski et al. 2006). 

The purpose of the present study was to characterize the effect of sex and genetic 

background on the initial body composition and changes after 6 days of access to 

voluntary exercise.  Furthermore, within each of the four groups (C male, C female, HR 

male, HR female), we used structural equations to model the relative importance of 

various paths in the complex network of activity and body composition phenotypes at the 

level of individual variation (cf. King et al. 2008): initial body mass, intensity and 

duration of VE and SPA, food consumption, and changes in body composition (lean vs. 

fat mass).   

 
2.  Methods 

2.1.  Mouse model 

 The High Runner (HR) and Control (C) lines of mice were established from a 

base population of 224 outbred Hsd:ICR mice.  After two generations of random mating, 

we established 4 HR lines and 4 non-selected C lines (Swallow et al. 1998).  For the 

current study, we used 348 mice (approximately half C and half HR) from generation 77 

of the HR selection experiment.  Mice were weaned at 3 weeks of age into standard 
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mouse-size cages with up to 4 mice of the same sex and given ad libitum food and water.  

All mouse rooms were maintained at 20-24 degrees Celsius with 12:12 light-dark cycles.  

As young adults (range: 46-70 days old), mice were placed in new individual 

home cages (same size as regular cages) with access to wheels for 6 days to measure 

voluntary wheel running (with ad libitum food and water).  The wheels were 1.12 m in 

circumference and attached externally to the home cage, accessed via a tunnel (see Fig. 

S1 in Kelly et al. 2017).  Wheel running was recorded with an automated counting 

system in 1-minute increments for each day.  From this we obtained daily running 

distance (revolutions per day), duration (minutes per day), mean speed (revolutions per 

minute), and maximum speed (maximum number of revolutions in any 1-minute 

interval).  Mice were similarly monitored for activity in the home-cage by passive 

infrared motion-detection sensors connected to a digital I/O board (ICS 2313; ICS 

Electronics, Pleasanton, California, USA) interfaced with a custom software developed 

by Dr. Mark A. Chappell (Copes et al. 2015).  The software recorded ‘1’ (movement 

detected) or ‘0’ (no movement detected) 3 times per second from the sensor and saved 

the mean value (between 0 and 1) every minute.  From these we obtained daily activity 

levels (arbitrary activity units), duration, mean intensity (activity units per minute), and 

maximum intensity (maximum activity units in any 1-minute interval).  We analyzed 

wheel running and home-cage activity for the last two days of the 6-day trial (mean of 

days 5 and 6) because those are used in the selection protocol.   
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In addition to weighing mice before and after wheel access (±0.01 g), we weighed 

food hoppers (±0.01 g) of every mouse to measure food consumption, noting obvious 

signs of food wasting or shredding, in order to measure food consumption.   

To analyze body composition before and after wheel access, we used a non-

invasive, quantitative magnetic resonance whole body composition analyzer (EchoMRI-

100, Echo Medical Systems, Houston, TX), which independently determined lean and fat 

masses of each animal. 

 

2.2.  Conventional statistical analyses 

 Among-group differences were analyzed using covariance models with Type III 

tests of fixed effects in the Mixed Procedure in SAS 9.4M4 (SAS Institute, Cary, NC, 

USA).  Sex, linetype (HR or C), and their interaction were included in the model as fixed 

effects.  Random effects in the model were replicate lines nested within linetype, family 

identity nested within line and linetype, and sex-by-line interaction effects nested within 

linetype.   

Total, lean, and fat masses were analyzed separately for before and after wheel 

access, and change in mass was calculated as mass after wheel access minus mass before 

wheel access.  We also analyzed lean and fat masses as percent of body mass.  In 

addition, the masses were analyzed as repeated measures before and after wheel access.  

Analyses of masses included age and age-squared as covariates because mice were tested 

over a span of 4 weeks, which resulted in a curvilinear relationship.  We obtained age-
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squared by standardizing age to have mean = 0 and standard deviation = 1 and then 

squaring those standardized values. 

Analyses of food consumption used initial body mass as a covariate.  We also 

used a model with covariates of activity levels (both intensity and duration of wheel 

running and home-cage activity).   

Wheel running and component traits (duration, mean and maximum speed) were 

analyzed with age and wheel freeness as covariates.  Rotational freeness was measured 

for each wheel by accelerating it to a constant speed for 5 rotations and counting 

revolutions until the wheel stopped on its own.  Home-cage activity and component traits 

were analyzed similarly, but to obtain normality of residuals, total home-cage activity, 

duration, and mean intensity were log10-transformed and maximum intensity was raised 

to the 2.5th power.  We used covariates of age and infrared sensor sensitivity, which was 

calibrated by using a heating stick swung in the home-cage for 5 seconds and recording 

the activity reported by each sensor.  Sensor sensitivity and wheel freeness were each 

square-rooted to obtain a normal spread of values and the mean of measurements taken 

before and after wheel access (with two measures per time) was used as a covariate. 

 

2.3.  Structural equation modeling analyses 

 To determine the complex phenotypic architecture of activity and body 

composition with each group, we analyzed our data using structural equation modeling in 

Onyx version 1.0-937 (von Oertzen et al. 2015).  The variables tested were wheel-

running speed and duration, home-cage activity intensity and duration, initial body mass, 
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food consumption, change in fat mass and lean mass, and nuisance variables of age, age-

squared, square-rooted wheel freeness, and square-rooted sensor sensitivity.   We ran the 

same model separately for the four sex-and-linetype groups: female C, female HR, male 

C, and male HR.  To account for known differences between the replicate lines (Garland 

et al. 2011a), we centered every dependent variable to have the same mean among the 4 

replicate lines within sex-and-linetype groups.  In the model, each variable was z-

transformed with a variance fixed to 1.0, and every exogenous variable pair had 

covariances.  All paths except variances were unfixed (freed parameters).  Within each 

group, we used the parameter estimate and standard error (SE) for each path to obtain 

95% confidence intervals (estimate ± 2 x SE) and significance was determined by the 

confidence interval being bound away from zero.   

 

3. Results 

3.1.  Body, lean, and fat mass  

Before 6 days of wheel testing, body mass was significantly lower in HR mice 

than C mice (p = 0.0489, Table 3.1). This reduction was due mostly to reduced lean mass 

(p = 0.0631) as opposed to reduced fat mass (p = 0.1185, Table 3.1 and Fig. 3.1).  

Females also had significantly reduced body mass compared to males (p < 0.0001), 

which was entirely due to lower lean mass (p < 0.0001) and not fat mass (p = 0.3234, 

Table 3.1 and Fig. 3.1). Analyzed as percent body mass, lean mass was significantly 

lower (p = 0.0041) and fat mass was significantly higher (p = 0.0007) in females 

compared to males (Table 3.1 and Fig. 3.2). 
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All groups lost body mass after 6 days of wheel access (p = 0.0342) due to a 

significant loss in fat mass (p < 0.0001) and despite a tendency for increased lean mass 

(Table 3.2 and Fig. 3.1).  The loss in body mass and the gain in lean mass were not 

significantly affected by sex, linetype, or their interaction (p > 0.05, Table 3.1).  Wheel 

minutes, speed, and home-cage minutes were significant predictors of total body mass 

change (p < 0.05, Table 3.1), but using them as covariates did not change the main effects 

of sex and linetype.   

HR lost significantly less fat mass than C mice (p = 0.0133 in Table 3.1 and p = 

0.0141 in Table 3.2).  After accounting for activity levels, the effect of linetype was not 

significant (p = 0.2916), but females tended to lose less fat (p = 0.0518, Table 3.1).  

Higher wheel-running duration resulted in greater fat loss (p < 0.0001) while higher 

running speed and minutes spent in home-cage activity resulted in decreased fat loss (p < 

0.0001 and p = 0.0002, Table 3.1; see section 3.4. below for more detailed explanation of 

these effects). 

 

3.2.  Food consumption  

Adjusting for initial body mass before wheel access, HR mice consumed 

significantly more food than C mice (p < 0.0001), with no effect of sex.  Running speed, 

duration, and home-cage activity duration were significant positive predictors of food 

consumption, but adding them as covariates did not change the main effect of linetype (p 

= 0.0031) or sex (Table 3.3 and Fig. 3.3). 
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3.3.  Activity levels  

HR mice ran for significantly more distance (revolutions per day) than C mice (p 

< 0.0001) on days 5+6 of wheel access by running more minutes per day (p = 0.0480) at 

higher mean (p < 0.0001) and maximum speeds (p < 0.0001, Table 3.4 and Fig. 3.4).  

Females ran more than males (p = 0.0061) by running more minutes per day (p = 0.0005) 

but not at significantly higher speeds compared with males (Table 3.4 and Fig. 3.4). 

Total home-cage activity during days 5+6 of wheel access was not different 

among groups (Table 3.4 and Fig. 3.5).  Interestingly, females were active more minutes 

per day (p = 0.0013) but at lower intensities (p = 0.0321) compared with males (Table 3.4 

and Fig. 3.5).   

 

3.4.  Structural equation models  

We used structural equation models to determine the relative importance of 

different types of activity, initial body mass, and food consumption on lean and fat mass 

change.  The model was analyzed separately for each sex-by-linetype group (i.e., C 

females, C males, HR females, and HR males) in order to detect differences in 

phenotypic architecture.   

For all 4 groups, the intensity and duration of home-cage activity were positively 

related and food consumption decreased amount of fat lost over 6 days of wheel access 

(Fig. 3.6, note that all groups lost fat mass, so a positive relationship indicates reduced fat 

loss).  The only other paths shared by all groups were non-significant effects (e.g., wheel 

speed did not predict change in lean mass in any group, Fig. 3.6).  As expected, some 
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paths were linetype-specific (e.g., in C but not HR lines, wheel-running speed was 

positively related to wheel-running duration, Fig. 3.6) while other paths were sex-specific 

(e.g., wheel-running speed predicted food consumption in females but not males, Fig. 

3.6). 

Lean change was only affected by wheel-running duration and this effect was 

only significant in HR females (HR females with higher running duration gained less lean 

mass, Fig. 3.6).  On the other hand, change in fat mass was affected by running speed, 

decreased by running duration, and increased by home-cage duration in males, and 

decreased by running duration in HR females (note, decreased means more fat lost and 

increased means less fat lost; Fig. 3.6).  Interestingly, the effect of running speed on fat 

change was opposite in sign for C and HR males.  That is, C males that ran faster lost 

more fat, but HR males that ran faster lost less fat (Fig. 3.6 and Fig. 3.7-3.10 for 

parameter estimates). 

 Food consumption was significantly increased by initial body mass for all groups 

except HR females (Fig. 3.6; but HR females also had a positive estimate, see Fig. 3.7-

3.10) and the effect was greater in males than females (higher parameter estimates in 

males in Fig. 3.7-3.10).  Food consumption was also increased by wheel speed (females), 

running duration (C males), and home-cage duration (HR males; Fig. 3.6).  Intensity of 

home-cage activity did not affect food consumption in any group (Fig. 3.6).   
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4.  Discussion  

Body mass and composition are affected by physical activity.  Individuals might 

compensate for increased activity by increasing food consumption or decreasing other 

aspects of physical activity.  However, these effects may be different in genetic 

backgrounds predisposed to increased activity levels, and may differ between sexes.  

Because duration and intensity of activity might affect body composition differently, we 

partitioned voluntary exercise (wheel running) and spontaneous activity (home-cage 

activity) as minutes spent doing the activity per day and intensity of activity per minute. 

 

4.1.  Among-group differences 

Mice from HR lines ran more and had lower total body mass and tended to have 

lower lean and fat mass compared with C lines, even before wheel access (Table 3.1).  

These findings are consistent with multiple previous studies on these mice (Swallow et al. 

1999, 2001; Copes et al. 2015).   

Over 6 days of wheel access, all groups lost total mass and tended to gain lean 

mass, and these effects were not statistically different between the sexes or linetypes.  On 

the other hand, HR mice lost significantly less fat than C mice despite their higher 

activity in wheels.  At the end of 6 days of wheel access, all groups had converged to 

approximately 1.7 grams of fat (Fig. 3.1), or 6% body fat for males and 7.5% body fat for 

females (Fig. 3. 2).  This amount of fat is potentially a lower limit to healthy adult fat 
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mass in these mice.  A previous study also reported fat mass of ~2 grams in C and HR 

mice after 6 days of wheel access (Hiramatsu et al. 2017).  

Food consumption was higher in HR than C mice (adjusted for their smaller body 

mass; Fig. 3.3; (also found in Koteja et al. 1999; Swallow et al. 2001)), suggesting that 

HR mice compensated for increased energy expenditure by increasing energy intake.  

Rodent and human studies often report increased food intake to compensate increased 

voluntary exercise (review in Garland et al. 2011b), although in humans, some 

individuals are “compensators” and others not (see King et al. 2008).  The increase in 

food consumption in HR mice was statistically significant even in models that used four 

separate metrics of physical activity as covariates (Table 3.3).  Thus, HR mice are eating 

more than C even after compensating for their increased physical activity, but they still 

lose fat.  Our finding conflicts with a previous study that reported no difference in food 

consumption between HR and C mice when using activity metrics (the same 4 as ours) as 

covariates (only females tested, Copes et al. 2015; our results did not change when we 

analyzed the sexes separately [results not shown]).  The discrepancy is likely due to the 

fact that the mice they studied were given wheel access for 8 weeks prior to one week of 

food consumption measurements (Copes et al. 2015), which is well after stabilization of 

wheel running which occur after about two weeks (Acosta et al. 2017).  The mice we 

studied were younger and were not acclimated to having access to wheels, which likely 

resulted in short-term physiological differences for HR vs. C.  These differences between 

HR and C in short-term energy balance could be related to previously reported 
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differences in circulating leptin and adiponectin hormone levels (Girard et al. 2007; 

Vaanholt et al. 2007; Garland et al. 2016). 

If a minimum amount of body fat is required to sustain high levels of physical 

activity over the 6 days of wheel access, then HR mice may be at a limit for activity 

because of their low body fat.  That is, despite compensatory eating, HR mice still lose 

fat, so they may be unable to increase their activity beyond current levels.  This limit in 

energy balance could be a general explanation for the selection limits experienced in HR 

lines (Careau et al. 2013).  

It is important to note that the mice do not seem to be limited in how much food 

they can consume over these 6 days.  Food is available ad libitum and time is available 

each day for eating, even in HR lines which spend more minutes on wheels (Fig. 3.4).  

(In fact, wheel-running duration is a positive predictor of food consumption when used as 

a covariate; Table 3.3).  HR and C mice (of both sexes) did increase food consumption 

during cold exposure (over 3-6 days) to an average of ~10 g per day, which was 

sufficient to maintain body mass even in ambient temperatures at -15°C (Koteja et al. 

2001).  In comparison, food consumption during 6 days of wheel access was ~ 4 g in C 

mice and ~ 6 g in HR mice and all groups lost fat mass (Fig. 3.6). 

 

4.2.  Structural equation modeling 

At the level of individual variation within each of the four sex-by-linetype groups, 

food consumption was positively related to initial body mass and the duration and 

intensity of both VE and SPA.  The four sex-by-linetype groups differed in which type of 
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activity (duration or intensity, in wheels or home-cages) significantly predicted the 

increase in food consumption, but overall the path estimates from activity to food 

consumption were always positive (Fig. 3.6; and also reported by Copes et al. 2015). 

We expected that both duration and intensity of physical activity (especially VE) 

would affect both lean and fat masses.  However, we found that lean mass was only 

affected by the duration of exercise on wheels, and only in HR females (Fig. 3.6).  

Furthermore, the effect of wheel duration was negative, i.e., HR females that exercised 

for more minutes per day gained less lean mass over 6 days of wheel access (Fig. 3.6).  

Among groups, HR females also tended to run the most minutes on wheels (Fig. 3.4) and 

to gain the least mass (Fig. 3.1) although these results were not statistically significant 

(Tables 1 and 4).  

We expected that the change in fat mass would be negatively affected by activity 

duration and intensity (or not affected at all, if mice were compensating by increased 

food intake).  Fat mass was affected by activity metrics in males (but only in one case in 

females), but not always negatively (Fig. 3.6).  For example, HR males lost more fat mass 

with increased wheel duration (as expected), but lost less fat with increased wheel speed 

and increased duration of home-cage activity (Fig. 3.6).  The conflicting results might be 

explained by a negative relationship between wheel duration and home-cage duration 

(i.e., mice with increased home-cage duration may be spending less time on wheels, thus 

losing less fat), but the relationship was positive in HR males (Fig. 3.6).  

 Although we tried to account for multiple factors affecting lean and fat change, 

the structured equation models could be further improved.  For example, had we 
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measured body lengths, we could have used it in the model to account for body size as a 

separate metric from body mass.  Also, as stated above, differences in circulating 

hormone levels could be mediating changes to body fat.  

 

4.3.  Future directions 

 We chose to do a short-term exposure to voluntary exercise in the present study 

because that was used in the selection experiment and may answer questions about the 

selection limit.  However, day-to-day increases in wheel running and simultaneous 

decreases in home-cage activity are still occurring during and after 6 days, with neither 

measure of activity reaching a plateau until approximately two weeks (Acosta et al. 

2017).  Thus, an interesting future direction would be to give access to wheels for several 

weeks and measure changes in body composition when activity levels stabilize.  

Compensation behaviors may be more or less efficient when given longer-term exercise, 

and may differ between the sexes or linetypes.  A related question would be how the 

starting age of exercise regimes might affect compensation behaviors and changes in 

body mass and composition. 

 

4.4.  Concluding remarks 

Overall, the results of this study suggest that the complex relationships between 

mass, activity levels, food consumption, and body composition are differentially 

controlled in the sexes and heavily dependent on genetic background.  These potential 

differences in biological and genetic regulation need to be incorporated into studies of the 
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effects of physical activity, especially in human studies where environmental 

determinants are more commonly assumed (Lightfoot et al. in press).  In HR lines 

selectively bred for increased exercise, changes to the regulation of energy balance have 

resulted in less fat lost despite increased activity by compensatory increases in energy 

intake.  However, HR mice still lost fat over 6 days, suggesting that the compensation by 

increased food consumption is not adequate to regulate energy balance.  Furthermore, this 

need to conserve fat mass may explain the selection limit reached in the HR mice.  As 

reported in the present study, elucidating the phenotypic architecture governing complex 

traits requires detailed analysis of different genetic backgrounds and sexes.  This study 

lends support for personalized medicine for humans, especially in prescribing physical 

activity as duration and intensity of VE and SPA. 
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Tables and Figures  
 
Table 3.1.  Body mass and composition before and after 6 days of wheel access. 
Significance levels (P values) from statistical analyses with main effects of sex (female or 
male), linetype (C or HR), and their interactions (“Sex x C vs HR”).  Covariates used 
were age and age-squared (first standardized and then squared). For analyses of change in 
masses, additional covariates indicating activity metrics were used.  All statistically 
significant P values (<0.05) are in bold and signs following the value indicate direction of 
effect.  Note, since all mice lost fat, the + sign after the linetype effect (C vs HR) means 
that HR lines lost less fat mass.



 

 

119 

Table 3.1. 
 

Trait N Sex C vs HR Sex x  
C vs HR Age Age2 Wheel 

minutes 
Wheel 
speed 

Home-
cage 

minutes 

Home-
cage 

intensity 
Total mass 

    Before wheel access 333 <0.0001 + 0.0489 - 0.1587  <0.0001 + 0.3841          
    After wheel access 334 <0.0001 + 0.0585  0.1191  <0.0001 + 0.0276 -         
    Change 321 0.8304  0.3174  0.2134  0.4897  0.0840          
    Change with activity 321 0.5402  0.8687  0.4028  0.3412  0.0122 - <0.0001 - 0.0005 + 0.0009 + 0.8732  
Lean mass 
    Before wheel access 333 <0.0001 + 0.0631  0.1763  <0.0001 + 0.5333          
    After wheel access 333 <0.0001 + 0.0507  0.1125  <0.0001 + 0.0039 -         
    Change 320 0.5397  0.2146  0.2816  <0.0001 + <0.0001 -         
    Change with activity 320 0.5620  0.1577  0.3584  0.0001  <0.0001 - 0.0052 - 0.2098  0.0473 + 0.9948  
Fat mass 
    Before wheel access 333 0.3234  0.1185  0.9132  0.1597  0.1207          
    After wheel access 333 0.3455  0.7954  0.3410  0.1472  0.1523          
    Change 320 0.1412  0.0133 + 0.3428  0.0050 - 0.0044 +         
    Change with activity 320 0.0518  0.2916  0.8877  0.0122 - 0.0167 + <0.0001 - <0.0001 + 0.0002 + 0.3545  
Lean mass as percent of body mass  
    Before wheel access 333 0.0003 + 0.5488  0.4773  0.6379  0.3190          
    After wheel access 326 <0.0001 + 0.5517  0.4920  <0.0001 + 0.0054 -         
    Change 320 0.8582  0.0162 - 0.3975  <0.0001 + 0.0004 -         
Fat mass as percent of body mass 
    Before wheel access 333 0.0041 - 0.2772  0.3745  0.2529  0.1795          
    After wheel access 332 0.0007 - 0.8106  0.4769  0.0004 - 0.0290 +         
    Change 322 0.9312  0.0139 + 0.2705  0.0233 - 0.0006 +         
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Table 3.2.  Repeated-measures analyses of body mass and composition before and after wheel access.   
Main effects were sex (female or male), linetype (C or HR), wheel access (before vs after access), and all possible interactions 
of the three main effects.  Covariates used were age and age-squared (first standardized and then squared).  For lean mass, 
analyses were run separately be sex and analysis of females did not include age in the model.  All statistically significant P 
values (<0.05) are in bold and signs following the value indicate direction of effect.  Sample sizes (N) are approximately 
doubled because each mouse had two measurements of mass (before and after wheel access). 
 
       Interactions 

Trait N Sex C vs HR After 
wheels Age Age2 Sex x  

C vs HR 

Sex x 
After 

wheels 

C vs HR  
x After 
wheels 

Sex x  
C vs HR x 

After 
wheels 

Total mass 640 <0.0001 + 0.0567  0.0342 - <0.0001 + 0.1955  0.2262  0.8373  0.3261  0.1919  
Total mass – males 315   0.0397 - 0.1219  <0.0001 + 0.5600      0.8459    
Total mass – females 325   0.1324  0.0515  †  †      0.0587    
Lean mass†                     
Lean mass – males 314   0.0468 - 0.0411 + <0.0001 + 0.2768      0.0902    
Lean mass – females 325   0.1371  0.1355  †  †      0.6902    

Fat mass 637 0.7679  0.3510  <0.0001 - 0.9104  0.8507  0.8649  0.1160  0.0141 - 0.3068  
Fat mass – males 314   0.3697  <0.0001 - 0.4825  0.1854      0.0043 -   
Fat mass – females 331   0.3557  0.0013 - 0.6957  0.5284      0.0464 -   
†Unable to estimate due to infinite likelihood. Models with repeated measures for lean mass could not be analyzed for both 
sexes pooled. Female-specific models for total and lean mass repeated measures could not be analyzed when age or age2 was 
included.  Because total mass and lean mass were significantly affected by age, these estimates in the females may be 
unreliable. 
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Table 3.3.  Food consumption, measured over 6 days of wheel access.   
Main effects were sex (female or male), linetype (C or HR), and their interactions (“Sex x C vs HR”).  Covariates used were 
age and age-squared (first standardized and then squared).  An additional model included covariates of activity metrics.  
Statistically significant P values (<0.05) are in bold and signs following the value indicate direction of effect.    
 

Trait N Sex  C vs HR Sex x  
C vs HR Age Age2 Wheel 

minutes 
Wheel 
speed 

Home-
cage 

minutes 

Home-
cage 

intensity 

Mean 
mass  

Food consumption 312 0.1493  <0.0001 + 0.3836  0.0267 - 0.2274          <0.0001 + 
    With activity  306 0.8089  0.0031 + 0.3946  0.2325  0.1586  0.0469 + <0.0001 + 0.0033 + 0.9975  <0.0001 + 
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Table 3.4.  Activity level metrics on as means of days 5+6 of a 6-day test.   
Home-cage total activity, duration, and mean intensity were log10 transformed and maximum intensity was square-rooted prior 
to analyses to obtain normality of residuals.  Main effects were sex (female or male), linetype (C or HR), and their interactions 
(“Sex x C vs HR”).  Covariates used were age and a measure of wheel freeness (for wheel traits) or sensor sensitivity (for 
home-cage traits).  All statistically significant P values (<0.05) are in bold and signs following the value indicate direction of 
effect.    
 
Trait  N Sex C vs HR Sex x  

C vs HR Age Wheel 
freeness 

Sensor 
sensitivity 

Total wheel running 341 0.0061 - <0.0001 + 0.5188  <0.0001 - 0.0002 +   
     Duration 338 0.0005 - 0.0480 + 0.0287  0.0262 - 0.0041 +   
     Mean speed 340 0.0819  <0.0001 + 0.5339  <0.0001 - 0.1154    
     Maximum speed  337 0.1155  <0.0001 + 0.7363  0.0005 - 0.0834    
Total home-cage activity  343 0.5049  0.2651  0.7191  0.9082    0.0272 + 
     Duration  346 0.0013 - 0.1889  0.3753  0.4836    0.6169  
     Mean intensity  344 0.0321 + 0.6639  0.1587  0.9935    0.0014 + 
     Maximum intensity 346 0.2222  0.5421  0.6252  0.8929    0.0005 + 
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Figure Legends 
 
Fig. 3.1.  Total, lean, and body mass measured for each mouse before and after 6 days of 
wheel exposure.  Males had higher total and lean mass before and after the 6 days of 
wheel access.  On average, mice lost body mass, gained lean mass, and lost fat mass over 
6 days.  Values are least-squares means ± standard errors from analyses of covariance in 
SAS Procedure Mixed.  Corresponding P values are in Table 3.I.  Analyses included 
covariates of age and age-squared.  Each point represents ~80 mice.  Markers are males = 
square, females = circle, C = grey and HR = black.   
 
Fig. 3.2.  Lean and fat as percent of total body mass, before and after 6 days of wheel 
exposure.  Males had higher lean % and females had higher fat % before and after the 6 
days of wheel access.  On average, mice gained lean % and lost fat % over 6 days.  
Values are least-squares means ± standard errors from analyses of covariance in SAS 
Procedure Mixed.  Corresponding P values are in Table 3.1.  Analyses included 
covariates of age and age-squared.  Each point represents ~80 mice.  Markers are males = 
square, females = circle, C = grey and HR = black. 
 
Fig. 3.3.  Food consumption over 6 days of wheel access, adjusted for body mass and 
activity metrics.  HR mice ate more food than C mice (top panel), even accounting for 
their increased activity levels (bottom panel).  Activity metrics used as covariates were 
duration and intensity of wheel running and home-cage activity.  Values are least-squares 
means + 1 standard error from analyses of covariance in SAS Procedure Mixed.  
Corresponding P values are in Table 3.3.  Analyses included covariates of age and age-
squared.  Each point represents ~80 mice.  Linetype is represented as C = grey and HR = 
black. 
 
Fig. 3.4.  Wheel running and component traits on days 5+6 of a 6-day wheel test.  HR 
mice ran 2.6-3.1 times more than C by running for more minutes per day and at higher 
speeds.  Females ran more than males by running for more minutes per day.  Values are 
least-squares means + 1 standard error from analyses of covariance in SAS Procedure 
Mixed.  Corresponding P values are in Table 3.4.  Analyses included covariates of age 
and wheel freeness.  Each point represents ~80 mice.  Linetype is represented as C = grey 
and HR = black. 
 
Fig. 3.5.  Home-cage activity and component traits on days 5+6 of a 6-day wheel test.  
HR were not more active in their home-cages than C.  Males had reduced duration but 
increased intensity of home-cage activity.  Total activity, duration, and intensity were 
log10-transformed and maximum activity was square-rooted before doing analyses of 
covariance in SAS Procedure Mixed.  The values presented here were back-transformed.  
Error bars represent the back-transformed upper 95% confidence interval calculated from 
the mean and standard error of transformed values.  Corresponding P values are in Table 
3.4.  Analyses included covariates of age and sensor sensitivity.  Each point represents 
~80 mice.  Linetype is represented as C = grey and HR = black. 
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Fig. 3.6.  Structural equation model of activity levels and body mass effects on food 
consumption and lean and fat mass changes, compiled for 4 groups separated by sex and 
genetic background.  As shown in Fig. 3.1, all groups on average gained lean mass and 
lost fat mass.  However, within each group, the predictors of the lean and mass change 
varied.  Only two relationships were consistently significant in all 4 groups: the positive 
relationship between intensity and duration of home-cage activity and the positive effect 
of food consumption on fat change.  Since all mice lost fast, this positive effect means 
that mice that ate more food lost less fat.  Analyses were run in the structural equation 
modeling software Onyx.  Line color (black, blue, red, or grey) and style (solid, dotted, or 
dashed) represent significant paths for different combinations of groups.  Significance 
was determined by the 95% confidence interval being bound away from zero, which was 
calculated from the parameter estimates and corresponding standard errors obtained in 
Onyx.  Significant paths had positive effects unless otherwise indicated on path with a 
minus (-) sign.  Where two signs (- +) are indicated, C in blue and HR in red had opposite 
effects.  Traits with known or possible differences among replicate lines (activity levels, 
body mass, food consumption, and mass changes) were centered to have the same mean 
among the 4 replicate lines within each group.  Nuisance variables (age, age2, wheel 
freeness, and sensor sensitivity) were included in the models but are not shown here (but 
shown in Figs. 3.7-10).  Each group was represented by ~80 mice.  The actual parameter 
estimates for each group can be found in Figs. 3.7-10. 
 
Figs. 3.7.  Structural equation model of activity levels and body mass effects on food 
consumption and lean and fat mass changes for females from C lines. Analyses were run 
in the structural equation modeling software Onyx.  Thicker lines indicate stronger paths 
(positive or negative).  N ~80 mice.  
 
Figs. 3.8.  Structural equation model of activity levels and body mass effects on food 
consumption and lean and fat mass changes for females from HR lines. Analyses were 
run in the structural equation modeling software Onyx.  Thicker lines indicate stronger 
paths (positive or negative).  N ~80 mice.  
 
Figs. 3.9.  Structural equation model of activity levels and body mass effects on food 
consumption and lean and fat mass changes for males from C lines. Analyses were run in 
the structural equation modeling software Onyx.  Thicker lines indicate stronger paths 
(positive or negative).  N ~80 mice.  
 
Figs. 3.10.  Structural equation model of activity levels and body mass effects on food 
consumption and lean and fat mass changes for males from HR lines. Analyses were run 
in the structural equation modeling software Onyx.  Thicker lines indicate stronger paths 
(positive or negative).  N ~80 mice.  
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Fig. 3.1.  Total, lean, and body mass before and after 6 days of wheel exposure.   

 

21
22
23
24
25
26
27
28
29
30
31
32
33

before after

Body	mass
repeated

male control

male HR

female 
control
female HR

18
19
20
21
22
23
24
25
26
27
28
29

before after

Lean	mass
repeated

xx	males	and	
females	separate!

male	
control
male	HR

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

before after

Fat	mass
repeated

Male C

Male HR

Female C

Female HR

6 days of wheel access

Bo
dy

 m
as

s 
(g

)
Le

an
 m

as
s 

(g
)

Fa
t m

as
s 

(g
)



 

 126 

Fig. 3.2.  Lean and fat as percent of total body mass, before and after 6 days of wheel 
exposure.   
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Fig. 3.3.  Food consumption over 6 days of wheel access. 
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Fig. 3.4.  Wheel running and component traits on days 5+6 of a 6-day wheel test. 
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Fig. 3.5.  Home-cage activity and component traits on days 5+6 of a 6-day wheel test. 
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Fig. 3.6.  Structural equation model of activity levels and body mass effects on food consumption and lean and fat mass 
changes, compiled for 4 groups separated by sex and genetic background. 
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Fig. 3.7.  Structural equation model results from Onyx – Control females 
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Fig. 3.8.  Structural equation model results from Onyx – High-Runner females 
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WHLSTAG2: standardized and squared age   HAPMMEAN: average home-cage intensity FOODMEAN: food consumed over 6 days 
THCAL: home-cage sensor sensitivity  HINTMEAN: home-cage duration  MASSONMN: mass at start of wheel access 
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Fig. 3.9.  Structural equation model results from Onyx – Control males 
 

 
TRES: wheel freeness    RPMMEAN: average wheel speed  LNCHGMN: change in lean mass over 6 days 
WHLSTAGE: age at start of wheel access   INTMEAN: wheel duration    FATCHGMN: change in fat mass over 6 days  
WHLSTAG2: standardized and squared age   HAPMMEAN: average home-cage intensity FOODMEAN: food consumed over 6 days 
THCAL: home-cage sensor sensitivity  HINTMEAN: home-cage duration  MASSONMN: mass at wheel access 
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Fig. 3.10.  Structural equation model results from Onyx – High-Runner males 
 

 
 
TRES: wheel freeness    RPMMEAN: average wheel speed  LNCHGMN: change in lean mass over 6 days 
WHLSTAGE: age at start of wheel access   INTMEAN: wheel duration    FATCHGMN: change in fat mass over 6 days  
WHLSTAG2: standardized and squared age   HAPMMEAN: average home-cage intensity FOODMEAN: food consumed over 6 days 
THCAL: home-cage sensor sensitivity  HINTMEAN: home-cage duration  MASSONMN: mass at wheel access 



 

 135 

 
 
 
 
 

Chapter 4 
 
 
Maternal exposure to Western diet affects adult body 
composition and voluntary wheel running in a genotype-
specific manner in mice   
 
 
Layla Hiramatsua, Jarren Kaya, Zoe Thompsonb, Jennifer Singletona, Gerald Claghorna, 
Ralph Lacerda de Albuquerquea, Brittany Hoa, Brett Hoa, Gabriela Sancheza, Theodore 
Garland, Jr.a 
 
aDepartment of Biology, University of California, Riverside, CA 92521, USA. 
bNeuroscience Graduate Program, University of California, Riverside, CA 92521, USA. 
 
 
 
 
Author Contributions: LH, JK, ZT, JS, GC, RLA, and TG designed the research. LH, JK, 
ZT, JS, GC, RLA, BH, BH, and GS collected data. LH, JK, and TG designed the 
analysis. LH, JK, and TG performed the analysis. LH wrote the initial draft. All authors 
reviewed and edited the final manuscript.  
 
 
This work was supported in part by US NSF grant IOS-1121273 to T.G. and US NIH 
grant R21HD084856 to T.G. and Wendy Saltzman. 



 

 136 

Abstract 
 
 Some human diseases, including obesity, Type II diabetes, and numerous cancers, 

are thought to be influenced by environments experienced in early life, including in 

utero. Maternal diet during the perinatal period may be especially important for adult 

offspring energy balance, potentially affecting both body composition and physical 

activity. This effect may be mediated by the genetic background of individuals, 

including, for example, potential “protective” mechanisms for individuals with inherently 

high levels of physical activity or high basal metabolic rates. To examine some of the 

genetic and environmental factors that influence adult activity levels, we used an ongoing 

selection experiment with 4 replicate lines of mice bred for high voluntary wheel running 

(HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed 

a high-fat, high-sugar “Western” diet (WD) or a standard diet (SD) from 2 weeks prior to 

mating until their pups could feed on solid food (14 days of age). We analyzed dam and 

litter characteristics from birth to weaning, and offspring mass and physical activity into 

adulthood. One male offspring from each litter received additional metabolic and 

behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C 

litters, but not for HR litters (interaction of maternal environment and genotype). With 

dam mass as a covariate, mean pup mass was increased by maternal WD but litter size 

was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. 

Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean 

mass, fat mass, and fat percent were also increased by maternal WD, but food 

consumption (with body mass as a covariate) was unaffected (measured only for focal 
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males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected 

by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal 

WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses 

were significantly increased by maternal WD, with greater increase for fat than for lean 

mass. Overall, no aspect of adult wheel running (total distance, duration, average running 

speed, maximum speed) or home-cage activity was statistically affected by maternal WD. 

However, analysis of the 8 individual lines revealed that maternal WD significantly 

increased wheel running for females in one of the 4 HR lines. On average, all groups lost 

fat mass after 6 days of voluntary wheel running, but the absolute amount lost was greater 

for mice with maternal WD, resulting in no effect of maternal WD on absolute or % body 

fat after wheel access. All groups gained lean and total body mass during wheel access, 

regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, 

adiponectin, and corticosterone concentrations were unaffected by maternal WD and did 

not differ between HR and C mice. With body mass as a covariate, heart ventricle mass 

was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and 

brain masses were unaffected. As found previously, HR mice had larger brains than C 

mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-

offspring wheel running was significantly increased for females of one HR line and 

decreased for females of another HR line by grand-maternal WD. In summary, maternal 

Western diet had long-lasting and general effects on offspring adult morphology, but 

effects on adult behavior were limited and contingent on sex and genetic background. 
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1. Introduction 

The obesity epidemic has been expanding at an alarming rate. Poor diet and lack 

of physical activity are generally viewed as key components contributing to the increase, 

but recent research highlights the importance of several other factors, including 

environmental experiences in early life (McAllister et al. 2009). Specifically, maternal 

overnutrition during the perinatal stage (gestation + lactation) has been associated with 

increased risk for childhood obesity, cardiovascular diseases, and other ailments, with 

effects often lasting into adulthood. Changes to epigenetic regulation of these traits might 

be passed on to further generations, compounding the epidemic. 

Rodent models have reported that maternal high-fat diet induces offspring leptin 

insensitivity and altered hypothalamic and hippocampal function through direct and 

epigenetic effects (Peleg-Raibstein et al. 2012; Sun et al. 2012; Williams et al. 2014; 

review in Moody et al. 2017). Maternal high-fat diets have also been reported to decrease 

offspring birth mass in mice (Sasson et al. 2015) and rats (Howie et al. 2009; Cunha et al. 

2015), but increase offspring mass (with increase in fat and lean mass) from weaning into 

adulthood (Howie et al. 2009; Chambers et al. 2016; Guidotti et al. 2016). Studies of 

laboratory rats found that dams fed a high-fat diet have greater fat content in their milk 

after the first week of lactation (no difference in the first week) and increased milk 

production (Rolls et al. 1986; Purcell et al. 2011).  

Maternal high-fat diet alters the glucocorticoid pathway of the dam, affecting 

offspring in utero and in later development in mice (Sasaki et al. 2014). Offspring of 

dams receiving a high-fat diet may have higher corticosterone levels as adults (Grissom 
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et al. 2017). Maternal high-fat diets may also lead to increased adult leptin (Masuyama 

and Hiramatsu 2012; Guidotti et al. 2016; Taylor 2016) and decreased adiponectin 

(Masuyama and Hiramatsu 2012). Maternal overnutrition during the perinatal stage has 

also been reported to alter neurobiological processes, including dietary preferences, 

reward signaling, learning, and memory (e.g., Frazier et al. 2008; Teegarden et al. 2009; 

Vucetic et al. 2010; Ozanne and Siddle 2011). Changes in maternal care have been 

reported to impact stress responses of offspring as juveniles to adults. Maternal high-fat 

diet increased anxiety-related behaviors of offspring in an elevated plus maze in mice 

(Peleg-Raibstein et al. 2012) and rats (Bilbo and Tsang 2010). In another rat study, 

maternal high-fat diet decreased adolescent offspring anxiety, but increased adult 

offspring anxiety (Sasaki et al. 2014), suggesting potential differences in the effect of 

maternal diet at various offspring ages. 

High levels of physical activity reduce risks for various diseases and promote 

mental health and physical fitness. Levels of physical activity are likely influenced by 

maternal diet. In mice, a cross-fostering study found decreased spontaneous physical 

activity (SPA) and increased obesity in female pups of genetically obese (Avy/a) dams, 

even when they were fostered from birth to lean (a/a) dams (Baker et al. 2015). Similarly, 

cross-fostering mice to smaller litters at birth increased body mass and adiposity and 

decreased physical activity and energy expenditure, apparently related to sex-specific 

alterations in hypothalamic DNA methylation and gene expression (Li et al. 2013). 

Another study of mice found that maternal Western diet (WD; various formulae, but high 

in fat and sugar compared with standard chow) decreased adult offspring activity in their 
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home cage (Samuelsson et al. 2008), although a similar study of rats observed no 

significant effect (Samuelsson et al. 2010). Maternal diet with added sunflower oil 

elevated SPA of offspring at 20 and >65 days of age in one rat study (Brenneman and 

Rutledge 1982). Another study found that adult offspring of mice given high 

carbohydrate diets were hyperactive in their home cage (Samuelsson et al. 2008; Roghair 

et al. 2009). Voluntary exercise was decreased by maternal WD in a study of mice 

(Johnson et al. 2016). Clearly, maternal diet (and potentially other environmental factors, 

(Wahlqvist et al. 2015; Sutton et al. 2016)) can affect offspring physical activity and 

related traits. (At least one other study found effects of maternal over-nutrition on 

measures of locomotor behavior that have little to do with habitual spontaneous physical 

activity in home cages or voluntary exercise on wheels (Khan et al. 2003).) 

Effects of maternal diet are likely dependent on the genetic background and 

associated behavioral and physiological traits of both the mother and her offspring. For 

example, individuals with inherently high levels of physical activity or high basal 

metabolic rates might experience some degree of "protection" from the adverse effects of 

maternal Western diet. This possibility could be addressed in various ways, such as 

through comparisons of strains of rodents that vary in activity levels (e.g., Lightfoot et al. 

2004). Here, we used the high runner (HR) mouse lines that have been bred for increased 

voluntary wheel running for 70+ generations and compared them with non-selected 

control lines. HR lines run 2.5 to 3 times more revolutions per day when given wheel 

access (review in Swallow et al. 2009) and are more active in their home-cage without 

wheels (Malisch et al. 2009). The HR lines have also been reported to increase adult 
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wheel running when given Western diet from weaning through adulthood, indicating 

changes in energy balance as compared with the C lines (Meek et al. 2010). HR lines 

show changes in other relevant lower-level traits, including increased heart mass, 

increased VO2max, increased circulating corticosterone and adiponectin concentrations, 

but reduced leptin levels, and an altered brain reward system (Swallow et al. 2005; 

Rezende et al. 2006; Garland et al. 2016; Thompson et al. 2017).  

 We tested the overarching hypothesis that the early-life environment can affect 

both spontaneous physical activity and voluntary exercise of adults, but that these effects 

would be different for HR and control lines of mice. We hypothesized that the genetic 

predisposition for high voluntary wheel running in HR mice would be protective against 

negative consequences of a maternal high-fat, high-sucrose diet. We further predicted 

that these effects could be mediated by changes in epigenetic regulation of genes as 

described above, in which case we could see the effects in the grand-offspring of dams 

fed WD. The replication of selected HR lines (N = 4) and non-selected C lines (N = 4) in 

this selection experiment helps to mimic the polygenic nature of human population 

differences in such complex traits as physical activity.  

 

2. Materials and methods 

All experiments and methods were approved by the Institutional Animal Use and 

Care Committee of the University of California, Riverside. 
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2.1.1 Experimental animals 

 Mice used for this experiment were from generation 73 of an ongoing, long-term 

artificial selection experiment that breeds for high voluntary wheel running (for reviews, 

see Rhodes et al. 2005; Swallow et al. 2009). A base population of 224 outbred 

individuals from the Hsd:ICR strain of house mice was randomly bred for 2 generations, 

then separated into 8 closed lines, each starting with 10 breeding pairs. The 8 lines were 

randomly designated into 4 lines bred for high voluntary wheel running (HR: lab 

designated as lines 3, 6, 7, 8) and 4 control lines bred without regard to wheel running (C: 

lab designated as 1, 2, 4, 5). Each generation, 2 males and 2 females were saved for C 

litters and up to 5 males and 5 females were saved for HR litters for effective within-

family selection.  At 6-8 week of age, mice from HR and C lines were individually 

housed for 6 days in cages attached to a Wahman-type activity wheel (1.12 m 

circumference, 35.7 cm diameter, 10 cm wide wire mesh running surface) with a 

recording device to count revolutions of the wheel in 1-min intervals for the duration of 

the experiment. In the HR lines, the highest running female and male from each family 

were chosen as breeders for the next generation based on their wheel running on days 5 

and 6. Breeders were chosen randomly for C lines. All families were represented in the 

breeders to the next generation (termed “within-family selection”) and sibling pairs were 

disallowed. Room temperatures were maintained at approximately 22°C, with lights on at 

0700 for a 12:12 photoperiod, and ad libitum water and standard diet (SD: Teklad Rodent 

Diet W-8604, 14% kJ from fat, 54% kJ from carbohydrates, and 32% kJ from protein, no 

added sugars [less than ~9% naturally occurring sugars by weight, mostly from grains]). 
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2.1.2 Litter characteristics 

 In the present study, we manipulated the diet of dams (from generation 72 of the 

selection experiment) from 2 weeks before mating until pups were observed attempting to 

feed on solid food (~14 days after birth).  All dams were given wheel access as young 

adults prior to diet manipulation as a normal selection generation. Dams were 14-16 

weeks old when they gave birth. 100 dams (50 HR, 50 C) were fed a “Western” diet 

(WD: Harlan Teklad TD.88137, 42% kJ from fat, 42.7% kJ from carbohydrates, 15.2% 

kJ from protein, 34.1% added sucrose by weight) and another 100 dams (50 HR, 50 C) 

stayed on SD. The source of fat in WD was anhydrous milk fat, the source of protein was 

casein, and the sources of carbohydrates were sucrose and cornstarch (34.1 and 15.0 

g/100 g, respectively). In addition, the high-fat diet contained 0.15% cholesterol.  

 Starting from birth and continuing until the pups were weaned at 3 weeks of age, 

100 families (50 WD, 50 SD) were observed twice daily for developmental markers of 

the pups (i.e., first day for eye opening, moving, and feeding on solid food). Each cage 

was observed with a quick look (“spot check”). When pups were 15 days old, dams and 

litters were all switched to SD. Pups were weaned at 21 days of age and weighed.  Since 

these mice were used as breeders as usual for the selection experiment, 2 males and 2 

females were saved for C litters and up to 5 males and 5 females were saved for HR 

litters.  One additional male pup from 50 WD dams and 50 SD dams (half C and HR in 

each group) were considered focal mice and received various additional tests (Fig. 4.1).  
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Males were chosen as focal mice in this study to avoid variation related to the estrus 

cycle (e.g., Gomes et al. 2009). 

 

2.2. Body mass and body composition 

All mice were weighed at weaning (3 weeks old) and before and after 6 days of 

wheel access (7-11 weeks old).  

Focal males were additionally weighed at ~4.5 weeks and ~5.5 weeks of age. 

Focal male body composition was also measured by non-invasive quantitative magnetic 

resonance (EchoMRI-100; Echo Medical Systems LLC, Houston, Texas, USA). The 

body composition scanner independently calculated fat mass and lean mass in grams. Fat 

mass was analyzed as such and as a percentage of total body mass.  

Change in body mass after wheel access was calculated as an absolute change 

(post-exercise minus pre-exercise mass) and as percent change according to the equation: 

 

Similarly, change in lean mass was calculated as an absolute change and using the 

equation above. Change in fat mass was calculated as an absolute change in grams, 

change in percent fat mass, and using the equation above with fat mass in grams and 

percent fat mass. 

 

2.3. Food consumption 

For focal males, juvenile food consumption of SD (grams/day) was measured 

from 3 to 6 weeks of age. Food hoppers were weighed and any obvious shredding or 

post-exercise mass− pre-exercise mass
pre-exercise mass

 × 100 
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wasting of food was noted. Food consumption was calculated as the absolute change in 

grams from 3 to 4.5 weeks of age and again from 4.5 to 6 weeks of age. 

 

2.4. Maximal aerobic capacity (VO2max) 

 VO2max was measured during forced exercise in a 900 ml enclosed wheel 

metabolic chamber as described previously (Dlugosz et al. 2012; Claghorn et al. 2017). 

Each trial lasted 5 min and each mouse was tested twice, with a rest day in between. 

Trials started by placing a mouse in the wheel chamber and manually spinning the wheel, 

slowly increasing the spinning speed over the trial. Air was pumped into the wheel at 

2000 ml per min. A subsample of air (150ml) was pumped out, ran through Drierite and 

soda lime to remove moisture and CO2, and then the volume of O2 was measured in an 

oxygen analyzer (S-3A Applied Electrochemistry INC. Sunnyvale, CA). Outputs from 

the instruments were digitized by an analog-to-digital converter (ADAM-4017 data 

Acquisition Module) and recorded every second on a computer using LabHelper software 

(Warthog Systems, www.warthog.ucr.edu). The highest 1-min interval of oxygen 

consumption in either trial was used to measure VO2max per mouse.  The wheel 

apparatus for measuring VO2max was chosen over the more traditional treadmill-based 

test because they obtain equivalent values and the wheel apparatus closely mimics the 

behavior for which HR mice have been bred (Dlugosz et al. 2013). 
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2.5. Behavior in the elevated plus maze 

As adults, focal males were tested for their behavior in an elevated plus maze. The 

maze consists of a plus-sign shaped platform, 1 m off the ground, with two exposed and 

two enclosed arms (length: 100 cm, width: 9 cm) joined to a central square platform (9 

cm x 9 cm). Each trial lasted 5 min.  The percentage of time a mouse spends in the 

enclosed arms is often used as a measure of anxiety (Mitra and Sapolsky 2008). Behavior 

in the maze was obtained at 1000 h-1400 h (3-7 h after lights on) in a lit room, recorded 

with HD Webcam C525 (Logitech International S.A., Lausanne, Switzerland) and 

analyzed using TopScan LITE software (Clever Sys, Inc., Reston, Virginia, USA). The 

surface of the maze was cleaned before each trial and mice were placed in the center 

square at the beginning of the trial. 

 

2.6. Spontaneous physical activity 

From weaning to 6 weeks of age, focal males were housed individually and 

monitored daily for home-cage activity using passive infrared motion-detector sensors 

(Acosta et al. 2015; Copes et al. 2015). A computer with custom Activity Recording 

Software (developed by Dr. Mark A. Chappell, UC Riverside) measured activity per 1-

min intervals for 23 h (Thompson et al. 2017). Activity in home cages was also measured 

during wheel testing (described in 2.1.1.). 

 

 

 



 

 147 

2.7. Organ masses and plasma hormone concentrations  

 Focal males were sacrificed by decapitation 6-16 days post wheel access 

(counterbalanced by diet and linetype). Analyses of organs and hormones used as a 

covariate the number of days between the end of wheel access and sacrifice. Blood 

samples and various organs and tissues were dissected and weighed: posterior 

subcutaneous fat pads, caudal portions of the abdominal pelvic fat pad (Cinti 2007), heart 

ventricles, livers, spleens, and brains. Heparinized blood samples were spun at 13,000 

RPM for 12 min and collected plasma was stored at -20°C.  

Plasma leptin was measured using a Crystal Chem Enzyme-linked 

Immunosorbent Assay (ELISA) kit (Mouse Leptin Assay Catalog #90030), without 

dilution and measured in duplicate in 96-well plates. Absorbances were read at 450 nm in 

an EPOCH2 microplate reader, using GEN5 2.07 reading software (microplate and 

reading software: BioTek Instruments, Inc., Winooski, VT, USA) and compared with a 

standard curve generated individually for each plate. Plasma adiponectin was measured 

similarly with an AssayPro ELISA kit (Mouse Adiponectin ACRP30 Catalog #EMA 

2500-1), diluted 400-fold and measured in duplicate. Plasma corticosterone was 

measured similarly with an Arbor Assays ELISA kit (Corticosterone EIA kit Catalog 

#K014-H1), diluted 150-fold and measured in duplicate.  

Leptin and adiponectin hormone concentrations were analyzed with covariates of 

fat percent of body mass.  
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2.8.  Grand-offspring characteristics 

 To measure the effects of grand-maternal diet, males and females whose dams 

had the same diet (SD or WD) were paired to breed following the same protocol as the 

normal selection experiment. That is, for each HR line, we chose the highest-running 

male and female from each family and paired them to the highest runners from other 

families, but in this case only to mice whose mothers had the same diet. In each C line, 

we chose breeders without regard to their wheel running, but also paired based on 

maternal diet and disallowed mating between siblings. Then, the offspring of these 

pairings (i.e., grand-offspring of dams fed SD or WD) were given 6 days of wheel access 

as adults and weighed before and after. 

 

2.9.  Statistical analyses 

 All analyses were performed using the Mixed Procedure in SAS 9.1.3 (SAS 

Institute, Cary, NC, USA) to apply analysis of covariance models with Type III tests of 

fixed effects and REML estimation. Linetype (HR or C) and maternal diet were fixed 

effects; replicate lines were nested within linetype as a random effect. Effects of linetype, 

maternal diet, and their interaction were tested relative to the variance among replicate 

lines, and degrees of freedom were always 1 and 6 for these effects. The foregoing 

description applies to both the 100 focal males and the ~560 male and female offspring 

for which we obtained data on body mass at weaning, before and after adult wheel 

access, as well as adult wheel running for 6 days (Fig. 4.1). For the latter set of mice, we 
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also used dam as a random effect nested within linetype to allow for possible litter 

effects. 

 Covariates depended on the trait being analyzed and included age, body mass, 

wheel freeness (inverse measure of rotational resistance), home cage sensor sensitivity 

(Copes et al. 2015), total wheel running (revolutions), and/or time from end of wheel 

access to sacrifice. In the results when we refer to traits being “adjusted for” by various 

variables, we mean that these variables were used as covariates in ANCOVA. Dependent 

variables were transformed as necessary to improve normality of residuals. All P values 

are 2-tailed unless otherwise indicated.  

 Body mass and voluntary wheel running were further analyzed by line to measure 

differences among replicate populations. Although HR lines experienced the same 

directional selection, each replicate line (and sexes within lines) differed somewhat in the 

rate and magnitude of response to selection (Careau et al. 2013), as well as other 

phenotypes (e.g., Rhodes et al. 2005; Swallow et al. 2009; Wallace and Garland 2016). 

Thus, the replicate HR lines have had "multiple solutions" (Garland et al. 2011) and may 

be expected to differ in response to manipulation of maternal diet. When the interaction 

between diet and line was statistically significant, we checked the P value for differences 

of least-squares means for effect of diet on each line (SAS Procedure Mixed). 

 Mini-muscle status was also included as a cofactor in some analyses for focal 

males. Mini-muscle is a simple Mendelian genetic trait (Garland et al. 2002; Kelly et al. 

2013) that causes ~50% reduced hindlimb muscle mass in two HR lines (all mice in line 

3 and a subset in line 6). Mini-muscle status was determined for focal males at the end of 
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the study by inspection of triceps surae muscle mass regressed on body mass. All 10 focal 

males in line 3 (4 SD and 6 WD) and 3 of the 15 focal males in line 6 (1 SD and 2 WD) 

were mini-muscle individuals.  Among several other phenotypic effects observed in adult 

mice, mini-muscle individuals were reported previously to have enlarged internal organs 

(e.g., Swallow et al. 2005; Kolb et al. 2010; Templeman et al. 2012) and an elevated cost 

of transport during voluntary wheel running (Dlugosz et al. 2009). 

 

3.  Results 

 Western diet had a variety of effects on the behavior and body mass of both dams 

and their offspring, and some of these effects were specific to mice from replicate lines 

(genotype-by-environment interaction). 

 

3.1.  Litter characteristics 

All analyses of litter characteristics used age of the dam as a covariate. Analyses 

of pup behaviors were performed with and without litter size as a covariate. Litter size 

was not significant (P > 0.05) when used as a covariate, so the results without litter size 

are presented here (Fig. 4.2 A, B, and C; see Table 4.2 for results when litter size was 

included). The timing of the first occurrences for any pup of a litter to move on their own 

or open their eyes were not significantly affected by maternal WD and did not differ 

between HR and C lines (Fig. 4.2A and B, respectively). The first sighting for a pup to 

eat solid food was earlier for C litters with maternal WD (Diet-by-linetype interaction; 

Fig. 4.2C). 
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 Adjusted for dam age, dam mass at weaning was not significantly affected by 

maternal WD and did not differ between HR and C (Table 4.2). Analyses of litter size, 

total litter mass, and mean litter mass are shown in Fig. 4.2 (D, E, and F). Adjusted for 

dam mass and age, the number of pups per litter at weaning was not significantly affected 

by maternal WD but was greater for HR than C dams (Fig. 4.2D). Total litter mass was 

increased by maternal WD but did not differ between HR and C families (Fig. 4.2E). 

Mean pup mass was increased by maternal WD and tended to be lower for HR than C 

(Fig. 4.2F). Adjusting for dam age, time from pairing to birthing pups was not affected by 

maternal WD and did not differ between HR and C mice (Table 4.2). Sex ratio of pups 

(measured as number of female pups divided by total number of pups) was also not 

affected by maternal WD and did not differ between HR and C mice (Table 4.2).  

 

3.2.  Body mass 

 Body mass at weaning was increased by maternal Western diet for both female 

and male offspring (Fig. 4.3A and B), and HR males were smaller than C males (Fig. 

4.3B). Juvenile male mass was also increased by maternal WD at ~5 weeks of age and ~6 

weeks of age (Fig. 4.4). Females were not weighed as juveniles.  

 Body mass at the start of wheel testing (~10 weeks of age) was increased for both 

females and males by maternal WD (Fig. 4.3C and D), and HR males were significantly 

smaller than C males (Fig. 4.3D). All groups significantly gained body mass during 

wheel access, regardless of maternal WD or linetype. However, the amount of increase in 
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body mass after 6 days of wheel access was not affected by maternal WD or linetype 

(Table 4.2). Analyses of body mass by replicate lines are presented in (Fig. 4.12).  

 

3.3.  Focal male body composition 

Both lean and fat masses were increased by maternal WD at all measurements 

from weaning to adulthood (Fig. 4.4). The increase for fat mass was greater than for lean 

mass in terms of both absolute and relative (% increase) values (results not shown). All 

groups gained lean mass during wheel access (all P < 0.05 except HR whose mothers had 

SD, for which P = 0.0841). However, the amount of increase in lean mass after 6 days of 

wheel access was not affected by maternal WD or linetype (Table 4.2). Absolute and 

percent change in lean mass after 6 days of wheel access was not affected by maternal 

WD and did not differ between HR and C mice (Table 4.2).  

Regardless of maternal diet or linetype, mice lost fat after 6 days of wheel access. 

The decrease in absolute fat mass was significantly greater for mice whose mothers had 

WD (P = 0.0340), though percent change in fat percentage was not affected by maternal 

WD and did not differ between HR and C mice (Table 4.2). 

 

3.4.  Food consumption 

 Food consumption of SD was measured for juvenile focal males from 3-6 weeks 

of age. Using body mass as a covariate, food consumption was not affected by maternal 

WD or linetype, with no interaction (Table 4.2). 
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3.5.  Maximal aerobic capacity (VO2max) 

 For focal male mice, mass- and age-adjusted VO2max was unaffected by maternal 

WD, but HR had higher VO2max than C mice (Fig. 4.5). Mini-muscle individuals had 

elevated VO2max. 

 

3.6.  Behavior in the elevated plus maze 

Total duration in the maze varied slightly (range = 293 - 314 seconds), so trial 

duration was used as a covariate in all analyses. Mice spent 54.4% ± 13.6% (mean ± 

standard deviation) of the 5-min test in the closed arms of the maze, compared with 

23.7% ± 12.5% in the open arms and 21.7% ± 9.2% in the center. They moved on 

average 15.9 m total (range: 4.00 – 20.66 m). Distance moved in each section was 11.2 ± 

3.2 m in the closed arms, 2.6 ± 2.1 m in the open arms, and 2.1 ± 0.9 m in the center 

square. 

We analyzed measures putatively related to anxiety, including percent entries into 

open arms and percent of time spent in open arms (Mitra and Sapolsky 2008), as well as 

number of fecal pellets and urine pools at the end of the trial. We also analyzed, for each 

zone of the elevated plus maze (closed arms, open arms, and the center): latency to enter 

from the start of the test, number of entries, time spent, distance moved, and velocity. 

None of the above measurements of behavior were significantly affected by maternal WD 

or linetype, with no interaction and no effect of mini-muscle status (Table 4.2 presents a 

subset of these analyses). 
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3.7.  Spontaneous physical activity  

Maternal WD significantly increased home-cage activity of focal HR and C males 

at 3-4 and at 4-5 weeks of age, but by 5-6 weeks of age the effect was no longer 

statistically significant (Fig. 4.6). At 5-6 weeks of age, HR mice tended to be somewhat 

more active than C mice, but this effect was not statistically significant. Adding body 

mass to the models did not change statistical results in any important way (results not 

shown).  

 Adult focal male home-cage activity (measured during the 6 days of wheel 

access) was statistically unaffected by maternal WD, linetype, or their interaction. 

Additional analyses with amount of wheel running on days 5 and 6 as covariates did not 

change results (Table 4.2).  

 

3.8.  Voluntary exercise 

 Wheel running of adult females was 3-fold higher in HR than C and 3.1-fold 

higher in adult male HR than C (Fig. 4.7 A and B). Average number of minutes spent 

running per day was not significantly different between HR and C females, but HR males 

ran for more minutes than C males (Fig. 4.7 C and D). Average speed of wheel running 

was higher in HR females than C females and higher in HR males than C males (Fig. 4.7 

E and F). No aspect of adult wheel running (total distance, duration, average running 

speed, maximum speed in any one-min interval [results not shown]) was statistically 

affected by maternal WD, with no interaction between linetype and WD. Analysis of 

wheel running by replicate lines are presented in section 3.11. 
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3.9.  Organ masses 

 Adjusting for body mass and age, heart ventricle mass was increased by maternal 

WD, with no effect of linetype and no interaction (Table 4.1). Posterior subcutaneous fat 

pad, abdominal pelvic fat pad, liver, spleen, and brain masses were unaffected by 

maternal WD (Table 4.1). As reported previously (Kolb et al. 2013), HR mice tended to 

have larger brains than C mice.  Mice with the mini-muscle phenotype had larger hearts, 

livers, spleens, and both fat pads (Table 4.1), with several of these effects being reported 

previously (see Discussion). 

 

3.10.  Plasma hormone concentrations 

 With age and days from the end of wheel access to sacrifice as covariates, plasma 

leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD 

and did not differ between HR and C lines, with no interaction (Table 4.3). 

 

3.11. Line analyses of wheel running 

 Analyses of variation among replicate lines were performed separately by sex and 

linetype (Fig. 4.8). These analyses revealed that replicate lines of C (N = 4) and HR (N = 

4) mice responded differently to maternal WD, and that these responses were influenced 

by sex.  

For wheel running (mean revolutions/day on days 5 & 6) by C females, maternal 

WD had no statistical effect and replicate lines did not differ significantly (Fig. 4.8). In 

HR females, however, maternal WD significantly increased wheel running in one line 
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(HR line 7). In C males, maternal WD increased wheel running, and lines differed 

significantly. In HR males, maternal WD did not significantly affect wheel running, but 

lines differed significantly. 

 We analyzed the number of intervals run per day (1-min intervals containing at 

least one revolution), the mean wheel-running speed (revolutions/intervals), and the 

maximum speed (single highest 1-min interval), as averages of days 5 & 6 (Figs. 9-11).  

We also analyzed body mass by replicate line (Fig. 4.12).  

 

3.12.  Effects on grand-offspring 

 To measure the effects of grand-maternal diet, males and females whose dams 

had the same diet (SD or WD) were paired to breed. Grand-offspring body mass and 

wheel running as adults were unaffected by grand-maternal WD when analyzed by 

linetype (Table 4.4).  

Line analyses of grand-offspring wheel running revealed that replicate lines of 

HR mice were affected by grand-maternal WD, but only in female mice (Fig. 4.13). 

Specifically, maternal WD significantly increased wheel running for females in HR line 7 

and significantly decreased it for females in HR line 3 (differences of least squares means 

from SAS Procedure Mixed). C females were not affected by grand-maternal WD and 

replicate lines did not differ significantly. In C and HR males, maternal WD did not 

affect wheel running but replicate lines differed significantly. We also analyzed grand-

offspring body mass by sex and replicate line, but found no differences due to grand-

maternal diet (Fig. 4.14). 
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4.  Discussion 

 We tested the general hypothesis that early-life exposure to maternal Western diet 

(beginning prior to conception and lasting through ~2/3 of the lactation period) would 

affect adult offspring body composition, levels of physical activity, and associated 

subordinate traits (e.g., organ masses and hormone levels). We expected that any such 

effects would be mediated by genetic background; in particular, we predicted that the 

four selectively bred High Runner (HR) lines of mice would be somewhat protected 

against negative consequences of maternal overnutrition as compared with the four non-

selected Control lines. For most measures, we obtained data on ~100 focal adult males, 

but for adult wheel running and body mass we also obtained data for ~200 additional 

males and ~300 total females. 

 

4.1.  Maternal diet changes offspring body composition 

Maternal WD had long-lasting effects on the morphology of offspring, increasing 

fat mass, lean mass, and percent fat of body mass well into adulthood (Fig. 4.4). Fat % 

has been found to be increased by maternal high-fat diets in rats (Howie et al. 2009; 

Chambers et al. 2016), but to our knowledge, our study is the first to report increased lean 

mass. As illustrated in Fig. 4.4 and in Table 4.2, maternal WD significantly increased 

absolute fat mass at weaning, at 4.5 weeks of age, at 5.5 weeks of age, and at ~10 weeks 

of age (all P < 0.01), which was immediately prior to the start of wheel access.  However, 

the effect on fat mass was no longer statistically significant after wheel access (P = 0.28).  

Moreover, the absolute amount of fat lost during wheel access was significantly greater 
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for mice whose dams had experienced WD (Table 4.2). Thus, even acute exercise can 

reverse the effect of maternal WD on fat mass, and this occurred for both HR and C mice. 

In future studies, it would be of considerable interest to determine if the effect of acute 

adult exercise persists. 

Maternal WD increased adult heart ventricle mass, even after adjusting for 

variation in body mass by ANCOVA. Although we have not tested whether this increase 

was beneficial (physiological) or detrimental (pathological), other studies of mice have 

reported that maternal high-fat, high-sugar diet caused pathological increases in ventricle 

mass (Fernandez-Twinn et al. 2012; Blackmore et al. 2014). In any case, maternal WD 

did not increase offspring maximal aerobic capacity, which should generally correlate 

positively with heart size (e.g., Rezende et al. 2006). Interestingly, we found that 

individuals with the mini-muscle phenotype (found only in two of the HR lines in the 

present sample of mice) had statistically higher VO2max.  Previous studies have 

generally not found this to be the case (Kolb et al. 2010; Dlugosz et al. 2013), although 

mini-muscle individuals did have higher VO2max when tested in hypoxia (Rezende et al. 

2006) and in a comparison of only one control and two HR lines (Templeman et al. 

2012). 

 

4.2.  Maternal diet apparently changes offspring energy balance 

 Maternal WD increased juvenile (3-6 week old) home-cage activity. All mice 

became more active with age, and at 5-6 weeks HR tended to be more active than C, as 

expected from previous studies when these mice are housed without wheels (Rhodes et 
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al. 2001; Malisch et al. 2009; Acosta et al. 2015; Copes et al. 2015). However, 

consumption of standard chow, measured only during the juvenile stage for focal males 

and analyzed using body mass as a covariate, was not affected by maternal WD and did 

not differ between HR and C mice (Table 4.2). This result is consistent with a previous 

study of mice which reported that maternal over-nutrition increased offspring preference 

for high-fat food but did not change intake of control food (Sasaki et al. 2016). Given that 

offspring spontaneous physical activity was increased by maternal WD, coincident with 

increased offspring body mass (Fig. 4.4, weeks 3-6) but no change in juvenile food 

consumption (adjusted for variation in body mass), it is possible that basal or resting 

metabolic rate was reduced by maternal WD. 

In general, maternal Western diet did not affect voluntary exercise on wheels by 

adult offspring. However, we did find line- and sex-specific effects. Specifically, 

maternal WD increased wheel running for female offspring of HR line 7, which 

emphasizes our previous findings that the replicate HR lines and the two sexes have 

undergone somewhat different evolutionary paths under the same selection regime 

(Garland et al. 2002, 2011; Wallace and Garland 2016). A sex-specific effect was also 

found in a study of rats with maternal high-fat diet, which reported less active male and 

more active female offspring when given free wheel access for one week (Cunha et al. 

2015). Furthermore, grand-offspring of the dams fed WD had significantly altered wheel 

running in two HR lines (Fig. 4.13). Maternal WD significantly increased wheel running 

in HR line 7 offspring and grand-offspring. In HR line 3, maternal WD only tended to 

decrease running in the offspring, but significantly decreased running in the grand-
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offspring, showing an “amplifying” effect through two generations. (Interestingly, line 3 

is fixed for the mini-muscle allele (Kelly et al. 2013).) Transgenerational amplification of 

obesity in mice can be mediated by epigenetic alterations via DNA methylation 

(Waterland et al. 2008), which could be the case for activity levels as well.  

 Two previous studies on these lines of mice have reported that cage activity is 

reduced when rodents are housed with wheels (Acosta et al. 2015; Copes et al. 2015). In 

the present study, we only measured home-cage activity of adults with wheel access and 

found no statistical effect of maternal WD and no difference between HR and C mice 

(Table 4.2), the latter result consistent with previous reports (Acosta et al. 2015; Copes et 

al. 2015). Another study of mice, housed without wheels, reported that a maternal high-

fat, high-sugar diet decreased spontaneous physical activity of adult offspring measured 

over one week via telemetry (Samuelsson et al. 2008).  

 

4.3.  No apparent effects of maternal diet on offspring hormone levels 

Hormone concentrations of offspring were measured 6-16 days after 6 days of 

adult wheel access, which may have influenced results. As stated in section 4.1, after 6 

days of wheel access, fat mass no longer differed between groups.  Additionally, we 

found no effect of maternal WD on fat pad masses measured at dissection (Table 4.1). In 

general, body fat is a positive predictor of leptin levels in mice, including in previous 

studies of the lines we studied (Girard et al. 2007; Acosta et al. 2015). As expected, we 

found that leptin levels were positively associated with the masses of both posterior 

subcutaneous fat pads and abdominal pelvic fat pads (Table 4.3). Therefore, leptin levels 
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may have been affected by maternal WD before adult wheel access, but been returned to 

"baseline" values due to exercise-related fat loss. Alternatively, the lack of effect of 

maternal WD might be a common outcome, as a review of rat studies with maternal high-

fat diet reported that 4 of 8 studies did not find significant effects on plasma leptin levels 

(Ainge et al. 2011). 

One previous study of ICR mice (the base population for our selection 

experiment) found that maternal WD decreased circulating adiponectin concentrations in 

adult offspring (Masuyama and Hiramatsu 2012), but we did not observe such an effect. 

Circulating adiponectin concentration is expected to be strongly negatively related with 

body fat (e.g., Matsubara et al. 2002; Stefan et al. 2002), which, as noted in the previous 

paragraph, was not affected by maternal WD after 6 days of adult wheel access. 

Furthermore, we did not replicate the finding of a previous study that showed higher 

plasma adiponectin in HR versus C males (Vaanholt et al. 2007). 

 Maternal high-fat diet has been reported to lower offspring circulating 

corticosterone levels in mice (Sasaki et al. 2014; Grissom et al. 2017), but we did not 

observe this effect. Previous studies have reported that HR mice have higher circulating 

corticosterone levels than C mice (e.g., Malisch et al. 2009, 2016), but we did not obtain 

this result (Table 4.3), possibly because mice were measured after 6 days of wheel 

access, followed by several days of sedentary housing.  

 Physical activity is frequently a confounding factor in measurements of 

circulating hormone levels. Ideally, we would have taken blood samples prior to adult 

wheel testing, but we chose not take any blood samples at that time because we did not 
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want to risk affecting the wheel-running phenotype that was a crucial outcome variable 

for this study. Therefore, we cannot definitively conclude the lack of endocrine effects 

due to maternal WD. (Similar cautions would apply to organ masses, although we did 

find an effect of maternal WD on heart size.) Future studies should examine hormone 

levels at different stages of development for offspring of mothers with high-fat, high-

sugar diets while including treatments of sedentary vs. active. Another approach would 

be to examine the density of central leptin receptors in the hypothalamus, given the 

differences in body fat mass resulting from maternal diet (Fig. 4.4, Table 4.2).  

 

4.4.  Concluding remarks 

 In summary, we found that maternal Western diet can have long-lasting effects on 

offspring adult morphology and behavior, although these effects can be mediated by sex 

and genetic background. However, some effects, such as that observed for body fat (Fig. 

4.4), can be reversed by as little as 6 days of wheel access. Use of the polygenic high 

runner mouse lines and their control counterparts allows for a wide scope of exploration 

of variation in the complex phenotypes related to activity levels, including the importance 

of population differences and effects of genetic background in interacting with 

environmental factors. To our knowledge, ours is the first study to characterize effects of 

maternal WD on mouse strains with inherent propensity for high levels of physical 

activity.   
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Tables and Figures 
 
Table 4.1.  Adult internal organ masses of mice after 6 days of wheel access.  
Log10 body mass, age, and days from the end of wheel access to sacrifice were used as 
covariates (results not shown). The grand mean of body mass was 29.90 g with standard 
deviation = 3.16 g (N = 92). Groups were approximately equal HR and C, with maternal 
SD or WD. Signs following P values indicate direction of effect: for diet, “+” indicates 
Western diet > standard diet; for linetype, “+” indicates high runner lines > control lines. 
 
  P values of effects 
Organ mass 
(log10 transformed) N 

Body 
mass  Diet Linetype Interaction Mini 

Abdominal pelvic fat pad 92 <0.0001+ 0.8054- 0.7513- 0.4243 0.0380+ 
Posterior subcutaneous 
fat pad 91 <0.0001+ 0.6195+ 0.9624- 0.4475 0.0371+ 

Heart ventricle 92 <0.0001+ 0.0050+ 0.2327+ 0.4932 0.0005+ 
Liver 92 <0.0001+ 0.1638- 0.9518- 0.9902 0.0070+ 
Spleen  89 <0.0001+ 0.0578- 0.6383- 0.0932 0.0014+ 
Total brain 91 <0.0001+ 0.3560+ 0.0680+ 0.3159 0.1455+ 
Cerebellum 91 0.0101+ 0.6049- 0.2192+ 0.2955 0.9785+ 
Non-cerebellar brain 91 0.0001+ 0.2636+ 0.1516+ 0.7370 0.0825+ 
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Table 4.2.  Various physiological and behavioral tests on mice whose dams were given Western.  
Main effects were maternal diet (WD or SD), linetype (HR or C), and their interaction. Signs indicate direction of effect 
(indicated only for P < 0.1) and all statistically significant P values (<0 .05) are in bold. All analyses included age as a random 
variable, and additional covariates were used where appropriate, including body mass, mini-muscle status, litter size, and 
sensitivity of home-cage sensors. All analyses included covariates of age (not shown).  
 
   P values of effects  
Trait Sex N Diet Linetype Interaction Body mass Mini Other 
Litter characteristics        
First pup move on own Both 97 0.9411 0.9547 0.9096   litter size 0.0713- 

First pup feed on own Both 95 0.0010+ 0.0155- 0.0054   litter size 0.0983+ 

First pup with eyes open  Both 93 0.0588+ 0.3041 0.9398   litter size 0.2845 

Dam mass at weaning Dams 95 0.2052 0.6342 0.6527   litter size 0.0026+ 

Pair-to-birth interval Dams 100 0.9639 0.0941+ 0.2730    

Pup sex ratio  Dams 119 0.1274 0.7159 0.4033    

Focal male body composition  
Body mass at weaning  Male 97 0.0134+ 0.1629 0.9492  0.9817  

   4.5 weeks Male 96 0.0018+ 0.1383 0.5199  0.7189  

   5.5 weeks Male 97 0.0021+ 0.0828- 0.7811  0.2379  

   Start of wheel access Male 95 0.0017+ 0.1403 0.8796  0.0704-  

   After wheel access Male 94 0.0026+ 0.1592 0.5201  0.2391  

   Sacrifice Male 93 0.0027+ 0.1386 0.5675  0.1219  

Lean mass at weaning Male 95 0.0088+ 0.0738- 0.8130  0.7121  

   4.5 weeks Male 96 0.0021+ 0.1856 0.9002  0.5158  

   5.5 weeks Male 95 0.0027+ 0.0822- 0.8247  0.0780-  

   Start of wheel access Male 94 0.0059+ 0.1589 0.8463  0.0221-  

   After wheel access Male 93 0.0031+ 0.1574 0.9127  0.0472-  
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Table 4.2 continued. 
 
Fat mass at weaning Male 97 0.0097+ 0.3084 0.5841  0.7222  

   4.5 weeks Male 93 0.0003+ 0.7204 0.6346  0.0560+  

   5.5 weeks Male 96 0.0023+ 0.3663 0.8681  0.1207  

   Start of wheel access Male 94 0.0098+ 0.5263 0.3842  0.8503  

   After wheel access Male 93 0.2839 0.3912 0.9503  0.0018+  

Fat percent at weaning Male 91 0.0003+ 0.5160 0.5333  0.4877  

   4.5 weeks Male 94 0.0889+ 0.4018 0.9746  0.0155+  

   5.5 weeks Male 94 0.0168+ 0.6965 0.9106  0.0655+  

   Start of wheel access Male 94 0.0566+ 0.7649 0.2822  0.4864  

   After wheel access Male 93 0.9614 0.6383 0.9524  <0.0001+  

Change in body composition before vs. after 6 days of wheel access    

Total mass (absolute) Female 308 0.7503 0.6913 0.7943    

Total mass (% change) Female 305 0.8806 0.8680 0.7911    

Total mass (absolute) Male 341 0.1537 0.7070 0.8513    

Total mass (% change) Male 341 0.1308 0.7254 0.8372    

Lean mass (absolute) Male 93 0.3164 0.4462 0.9463  0.2976  

Lean mass (% change) Male 93 0.4140 0.4625 0.9470  0.1654  

Fat mass (absolute) Male 93 0.0340+$ 0.3683 0.3728  0.0297-  
Fat mass (% change) Male 93 0.0911+ 0.6388 0.1649  0.0047-  
Fat % (absolute) Male 93 0.0636+ 0.4480 0.3038  0.1019  

Fat % (% change) Male 93 0.0938+ 0.5944 0.1835  0.0091-  
Juvenile food consumption    
   3-4.5wks  Male 92 0.5656 0.1443 0.3487 <0.0001 0.6453 

 

   4.5-6wks  Male 91 0.4173 0.2233 0.5197 <0.0001 0.1410  
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Table 4.2 continued. 
 
Elevated plus maze         

  Total distance Male 94 0.4745 0.2298 0.4452  0.6977  

  % time in center  Male 94 0.8482 0.6350 0.7149  0.1451  

  % time in open arms Male 94 0.5962 0.8614 0.2095  0.4891  

  % entries into open arms Male 93 0.5828 0.6667 0.5474  0.4763  

  % distance in open arms Male 93 0.5752 0.9566 0.2927   0.7151  

  Velocity in open arms Male 92 0.2388 0.6103 0.7097  0.4973  

  Velocity in closed arms Male 93 0.3473 0.2542 0.4156  0.7114  

  Fecal pellets Male 93 0.7894 0.0784 0.9984  0.8283  

  Fecal pellets + urine pools Male 93 0.8721 0.3054 0.7111  0.9174  

Adult home-cage activity Male 89 0.5770 0.8249 0.2431  0.1219 
Sensor sensitivity 

0.5178 

   with wheel revolutions& Male 65 0.5474 0.5538 0.1175  0.1325 0.2757 

 $ All mice lost fat, and mice with maternal WD lost more fat. 
 &Wheel revolutions per day was an additional covariate (P = 03795), missing for a quarter of the mice. 
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Table 4.3.  Plasma concentrations of three hormones: leptin, adiponectin, and corticosterone.  
All analyses used age and number of days from the end of wheel access to sacrifice as covariates (results not shown). Bleed 
delay time was less than 2 minutes, and did not significantly affect corticosterone concentrations (results not shown). Sample 
size was N = 91-93, approximately equally distributed among experimental groups. Sign after significant P values indicates 
direction of effect. 
 
 P values of effects 

Hormone Diet Linetype Interaction Mini Other 

Leptin (square root ng/ml) 0.2811 0.3424 0.4349 0.1012  
   with body mass 0.7169 0.8420 0.2817 0.0150+ Mass P<0.0001+ 
   with posterior subcutaneous (PS) fat pad 0.5476 0.6213 0.2284 0.2548 PS P<0.0001+ 
   with abdominal pelvic (AP) fat pad  0.9944 0.9385 0.4316 0.1530 AP P<0.0001+ 
   with PS and AP fat pads 0.9899 0.8781 0.2367 0.2558 PS P=0.0002+ 

AP P=0.0023+ 

Adiponectin (square root mg/ml) 0.6008 0.3579 0.3873 0.1829  

   with body mass 0.8277 0.5793 0.4354 0.2620 Mass P=0.1361 

   with posterior subcutaneous (PS) fat pad  0.7617 0.3486 0.3335 0.1982 PS P<0.7426 

   with abdominal pelvic (AP) fat pad 0.5159 0.3146 0.3951 0.2042 AP P<0.5999 

   with PS and AP fat pads 0.6288 0.3107 0.3602 0.1888 PS P=0.4643 
AP P=0.3296 

Corticosterone (log10 ng/ml) 0.7406 0.1504 0.2525 0.3257  
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Table 4.4.  Grand-offspring body mass and wheel running as adults.  
Grand-offspring were produced by mating males and females within each line whose dams had the same diet. All analyses 
used age as a covariate and wheel-running analyses also used wheel freeness. Groups were approximately equally HR and C, 
with maternal SD and WD. 
 
  P values of effects 

Trait N Diet Linetype Interaction Age 
Wheel 

Freeness 

Female grand-offspring        
   Wheel running (day 5&6) 276 0.8083- <0.0001+ 0.3742 0.1758- 0.0015+ 
   Adult body mass 283 0.9777- 0.0772- 0.8924 <0.0001+  
   Adult body mass after wheel access 282 0.3610- 0.2118- 0.9095 0.0027+  

Male grand-offspring        
   Wheel running (day 5&6) 267 0.6984- 0.0002+ 0.8705 0.0079- 0.6541+ 

   Adult body mass 331 0.7675- 0.0460- 0.2688 <0.0001+  
   Adult body mass after wheel access 270 0.3022- 0.0242- 0.3968 <0.0001+  
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Figure Legends 
 
Fig. 4.1. Timeline of experimental design. Above the line are procedures given to all 
mice (N = 560), which include maternal diet manipulation (SD = standard diet, WD = 
Western diet), weaning at 3 weeks and 6 days of wheel access in adulthood. Below the 
line are procedures for 100 “focal” families and one male offspring from each of those 
families, which includes twice-daily behavior checks during the first 3 weeks, monitoring 
of home-cage activity and food consumption, behavioral testing on an elevated plus 
maze, and maximal aerobic capacity (VO2max). Each tick mark represents one week and 
asterisks indicate when mice were weighed (in black) and measured for fat and lean 
composition (in grey). 
 
Fig. 4.2.  Litter characteristics. A-C: for each litter, the first day that developmental 
markers were observed for at least one pup. D-F: number of pups per litter and total and 
mean pup mass at weaning (3 weeks after birth), adjusted for dam mass (grand mean = 
29.34g, standard deviation = 3.38g). N = 25 per group. Bars represent least-squares 
means (LSM) + standard error (SE). Striped bars indicate maternal standard diet, solid 
bars indicate maternal Western diet, grey bars are control mice, and black bars are high 
runner (HR) mice. Results of statistical analyses (fixed effects) are shown above each 
graph. All analyses included dam age as a covariate (P values not shown).  
 
Fig. 4.3. Body mass at weaning (3 weeks of age) and as adults (just prior to wheel 
testing, 7-11 weeks of age) of C and HR mice given maternal SD or WD, with separate 
analyses for females and males. Bars are age-adjusted LSM + SE, and N were 
approximately equal for each group. Striped bars indicate maternal standard diet, solid 
bars indicate maternal Western diet, grey bars are control mice, and black bars are high 
runner (HR) mice. Results of statistical analyses (fixed effects) are shown above each 
graph. All analyses included age as a covariate (P values not shown). 
 
Fig. 4.4. Focal male body composition (total body mass, lean mass, and fat mass), 
adjusted for age. 3 weeks of age corresponds to weaning and 10 weeks of age represents 
measurements when mice were first granted adult wheel access (though this ranged from 
9-10 weeks old), and 11 weeks represents measurements after 6 days of wheel access. 
Age at approximately 11.5 weeks represents measurements at sacrifice (top panel only). 
Each point represents a LSM for ~25 males and error bars are standard errors. Open 
points and dashed lines indicate maternal standard diet, solid points and lines indicate 
maternal Western diet, control mice are in grey, and high runner mice are in black. 2-
tailed P < 0.05 for effect of maternal diet at the time points indicated by an asterisk (*).  
 
Fig. 4.5. Maximal aerobic capacity (VO2max) measured at ~8 weeks of age for focal 
males. N = 91, approximately equal number in each group. Open points indicate maternal 
standard diet, solid points indicate maternal Western diet, control mice are in grey, and 
high runner (HR) mice are in black. Results of statistical analyses (fixed effects) are 
shown on the right. All analyses included covariates of age (not shown). 
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Fig. 4.6. Juvenile home-cage activity (measure of spontaneous physical activity, in 
arbitrary units, averaged across days in the week) for focal males. Panels show 3 
consecutive weeks. Bars are age-adjusted LSM + SE, N = 25 in each group. Striped bars 
indicate maternal standard diet, solid bars indicate maternal Western diet, grey bars are 
control mice, and black bars are high runner (HR) mice. Results of statistical analyses 
(fixed effects) are shown above each graph. All analyses included age as a covariate (P 
values not shown). 
 
Fig. 4.7. Total voluntary wheel running revolutions, duration (number of 1-min intervals 
with at least one revolution), and average speed of days 5+6 of 6 days of wheel access of 
adult C and HR mice given maternal SD or WD, with separate analyses for females and 
males. Bars are age- and wheel-freeness-adjusted LSM + SE and N were approximately 
equal for each group. Striped bars indicate maternal standard diet, solid bars indicate 
maternal Western diet, grey bars are control mice, and black bars are high runner (HR) 
mice. Results of statistical analyses (fixed effects) are shown above each graph. All 
analyses included age as a covariate (P values not shown). 
 
Fig. 4.8. Total wheel revolutions of adult mice given maternal standard diet (striped bars) 
or Western diet (solid bars), with separate analyses for sex and replicate control (in grey) 
and high runner (in black) lines. Bars are LSM + SE (age and wheel freeness used as 
covariates). Total N is shown in the upper left-hand corner, and Ns were approximately 
equal for each line within linetype and diet within line. Results of statistical analyses 
(fixed effects) are shown above each graph. Asterisks indicate differences of LSM within 
each line between diets (P < 0.05) from SAS Procedure Mixed.  
 
Fig. 4.9. Wheel running intervals per day, line analyses. Maternal WD did not overall 
affect C and HR females and males, but lines were significantly different in each group 
(P < 0.007), and HR females had an interaction between diet and line, with maternal WD 
significantly increasing intervals in HR line 7 (P < 0.05). LSM + SE adjusted for age and 
wheel freeness. Asterisks indicate differences of LSM within each line between diets (P < 
0.05) from SAS Procedure Mixed. All analyses included covariates of age (not shown). 
 
Fig. 4.10. Average wheel running speed (revolutions per minute), line analyses. Average 
speed in C males was unaffected by diet or line but C female, HR female, and HR male 
lines differed significantly within each group (P < 0.05). HR females had a significant 
interaction between diet and line (P = 0.0323), with maternal WD significantly 
decreasing average speed in HR line 3 (P < 0.05). LSM + SE adjusted for age and wheel 
freeness. Asterisks indicate differences of LSM within each line between diets (P < 0.05) 
from SAS Procedure Mixed. All analyses included covariates of age (not shown). 
 
Fig. 4.11. Maximum wheel running speed (revolutions per minute), line analyses. 
Maximum speed in C males was unaffected by diet or line, but C female, HR female, and 
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HR male lines differed significantly within each group (P < 0.05). LSM + SE adjusted for 
age and wheel freeness. All analyses included covariates of age (not shown). 
 
Fig. 4.12. Body mass of adult mice given maternal standard diet (striped bars) or Western 
diet (solid bars), with separate analyses for sex and replicate control (in grey) and high 
runner (in black) lines. Bars are LSM + SE (age used as covariate). Total N is shown in 
the upper left-hand corner, and Ns were approximately equal for each group. Results of 
statistical analyses (fixed effects) are shown above each graph. Asterisks indicate 
differences of LSM within each line between diets (P < 0.05) from SAS Procedure 
Mixed. All analyses included covariates of age (not shown). 
 
Fig. 4.13. Total wheel revolutions of grand-offspring of dams given standard diet (striped 
bars) or Western diet (solid bars), with separate analyses for sex and replicate control (in 
grey) and high runner (in black) lines. Grand-offspring were produced by mating males 
and females within each line whose dams had the same diet. Bars are LSM + SE (age and 
wheel freeness used as covariates). Total N is shown in the upper left-hand corner, and 
Ns were approximately equal for each subgroup. Results of statistical analyses (fixed 
effects) are shown above each graph. Asterisks indicate differences of LSM within each 
line between diets (P < 0.05) from SAS Procedure Mixed.  
 
Fig. 4.14. Adult body mass of grand-offspring of dams given standard diet (striped bars) 
or Western diet (solid bars), with separate analyses for sex and replicate control (in grey) 
and high runner (in black) lines. Grand-offspring were produced by mating males and 
females within each line whose dams had the same diet. Bars are LSM + SE (age used as 
a covariate). Total N is shown in the upper left-hand corner, and Ns were approximately 
equal for each group. Results of statistical analyses (fixed effects) are shown above each 
graph. Asterisks indicate differences of LSM within each line between diets (P < 0.05) 
from SAS Procedure Mixed. All analyses included covariates of age (not shown). 
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Fig. 4.1.  Timeline of experimental design. 
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Fig. 4.2.  Litter characteristics. 
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Fig. 4.3.  Body mass at weaning and as adults. 
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Fig. 4.4.  Focal male body composition. 
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Fig. 4.5.  Maximal aerobic capacity (VO2max). 
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Fig. 4.6.  Juvenile home-cage activity. 
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Fig. 4.7.  Wheel running and component traits.  
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Fig. 4.8.  Wheel running revolutions by replicate lines. 
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Fig. 4.9.  Running duration by replicate lines. 
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Fig. 4.10.  Average running speed by replicate lines. 
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 Fig. 4.11.  Maximal running speed by replicate lines. 
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Fig. 4.12.  Adult body mass by replicate lines. 
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Fig. 4.13.  Grand-offspring wheel revolutions by replicate lines. 
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Fig. 4.14.  Grand-offspring body mass by replicate lines. 
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Conclusions 
 

Artificial selection for increased wheel-running behavior in mice produced 4 

replicate High-Runner (HR) lines that run 2.5 to 3 times more revolutions on wheels on 

days 5 and 6 of a 6-day test compared with 4 replicate control (C) lines.  Despite 

continued selection, the HR lines have been at a selection limit since generations 17-25 

(differing by replicate line and sex) (Careau et al. 2013).  Contrary to expectations from 

quantitative genetic theory, additive genetic variance (VA) had not been depleted, 

selection differentials and realized selection differentials had not gone to zero, and no 

clear evidence of counterpoising natural selection was observed at their selection limits 

(Careau et al. 2013).  This dissertation attempted to uncovered other potential 

mechanisms of the selection limits observed in the HR lines, and in so doing contributed 

more broadly to the understanding of complex behavioral traits and their evolution.  

Chapter 1 demonstrated that “phenotypic epistasis" (non-additive interactions 

among the hierarchical component traits of a complex behavior) alone apparently does 

not allow the maintenance of additive genetic variance at a selection limit.  However, 

antagonistic pleiotropy at the genetic level (with alleles segregating at some loci having 

opposite effects on motivation for speed vs. motivation for duration of running, and 

another set of alleles jointly affecting ability for both speed and duration), can lead to 

maintenance of VA at a selection limit for running distance.  Future studies should 

examine the evolution of the genetic correlations between and among the component 

traits through further simulations, attempt to identify genes that have these sorts of effects 
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in mice, and then determine whether their frequencies have changed in ways that could 

explain the selection limits in the HR lines. 

Chapter 2 explored one of the possible genetic constraints on the evolution of 

wheel running by use of a hybrid cross with continued selection on it and the parental HR 

lines.  Hybrid F1 offspring showed heterosis for running distance, but this was lost in 

subsequent generations and the hybrid line did not break the limit.  Both male and female 

hybrids ran faster than the parental lines for most generations, but running duration was 

intermediate or reduced, indicating different genetic architecture for these traits.  The 

hybrid line had increased heritability for running speed and duration, but not for total 

distance, compared with the parental lines.  The genetic correlation between running 

duration and speed evolved from positive in the starting (base) population to negative in 

the parental lines, and remained so in the hybrid line.  This result, which represents a type 

of genetic constraint, could be caused by antagonistic pleiotropy, as suggested by the 

simulation results from Chapter 1.  Together, Chapters 1 and 2 advance our 

understanding of the potential genetic mechanisms of selection limits. 

Chapter 3 studied body composition (i.e., lean and fat mass) of mice before and 

after 6 days of wheel access, and its relationship to food consumption, wheel running, 

and home-cage activity.  Before wheel testing, HR mice weighed less than C mice, 

primarily due to reduced lean mass, and females were lighter than males, entirely due to 

lower lean mass.  Over 6 days of wheel access, all groups tended to gain small amounts 

of lean mass, but lose fat mass, resulting in overall loss of total body mass and altered 

body composition.  HR mice lost less fat compared with C mice, apparently caused by 
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higher food consumption, in spite of the fact that they were much more active on wheels 

(and slightly more active in home-cages).  All 4 groups by sex and linetype converged to 

a fat mass of ~1.7 g, suggesting an optimal body fat for these mice.  If this optimal 

amount of body fat is required to sustain high levels of physical activity near the end of 

the 6 days of wheel access, then HR mice may be at a limit for wheel running related to 

their initial low body fat.  That is, despite some amount of compensatory eating, HR mice 

still lose fat, so they may be unable to increase their activity beyond current levels, 

despite continued directional selection.  This limit related to energy balance could be a 

general explanation for the selection limits experienced in HR lines.  Analyses of 

individual variation within groups suggested that the complex relationships between body 

mass, activity levels, food consumption, and body composition differ between the sexes 

and between HR and C lines.   

Chapter 4 examined energetic perturbations imposed in early-life.  Dams were 

given high-fat, high-sugar "Western" diet (WD) or standard chow from 2 weeks prior to 

pairing until pups were 14 days of age, when all mice were switched to standard chow.  

From weaning to adulthood, offspring received physiological and behavioral tests.  

Maternal WD increased juvenile home-cage activity for both HR and C mice (only males 

tested).  Maternal WD also increased fat and lean masses of offspring from weaning to 

adulthood.  Maternal WD did not increase wheel running of adult offspring, indicating 

that fat availability itself does not increase wheel running.  Thus, the previously observed 

increase in wheel running for WD-fed mice (from weaning to adulthood; Meek et al. 

2010) may be due to effects of WD other than increased fat storage, such as changes in 
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the reward system (Acosta et al. 2017).  The selection limit for wheel running may be 

more closely associated with limits to motivation for running compared with limits to 

physical ability.  On average, all groups lost fat mass after 6 days of voluntary wheel 

running, but the absolute amount lost was greater for mice with maternal WD, resulting 

in a convergence of all mice to ~2 g of body fat, similar to the result in Chapter 3.  

Together, Chapters 3 and 4 suggest that the selection limits observed in the HR lines 

could be related to physiological constraints, specifically involving body fat.    

Overall, these studies elucidate mechanisms underlying the evolution of complex 

behavioral traits.   
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Appendix 
 
Genetic Model Code 
 
Instructions for using the genetic model simulation code in R. 

1. Open R (I used version 3.4.1) 
2. File > New Document 
3. Copy + Paste the entire code below 
4. Edit > Execute to run the entire code 

a. Or, right click “Run line or selection” [Windows] 
b. Or, press Command + return [Mac] 
c. Alternatively, copy + paste into the R Console 

5. Answer questions/prompts to set the working directory and parameters of the 
model 

6. When finished, several output CSV files will be in your working directory 
 
##################### CODE BEGINS HERE ##################### 
# file: "Dropbox/1 genetic model/model_5.R 
 
# If want to re-create a run, uncomment the next line 
# and select the random seed CSV file 
# .Random.seed <-read.csv(file.choose()) 
 
# Remove current memory in R 
rm(list=ls())   
# To install packages, uncomment the next line  
# install.packages("MASS");install.packages("moments") 
# Call packages to generate random numbers 
library(MASS);library(moments)   
 
# This opening bracket ensures that the prompts work. 
{      
##################### PROMPTS ##################### 
  readline("Press enter to set the working directory. Select any 
file within the working folder.") 
  setwd(dirname(file.choose()))  
  cat(paste("Files will be saved to ",getwd())) 
 
  # Ask for replication number, default to 1 
  RUN <- as.integer(readline("What number replication are you 
running? (default:1)"))  

if (is.na(RUN)) {RUN <- 1}  
maxrun <- as.integer(readline("How many replicates do you want 

to run? (default:1) "))  
if(is.na(maxrun)) {maxrun <- 1} 
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# Ask for number of generations, default to 100 
Maxgen <- as.integer(readline("Enter the number of generations 

(default: 100):"))  
if (is.na(Maxgen)) {Maxgen <- 100}  
 
# Ask for selection, default to yes 

  sel <- readline("Do you want selection? y/n (default: y)")  
if(sel == "n"){sel <- "cont"} else {sel <- "sel"}  
 
# Ask for number of breeding pairs, default to 20 

  pairs <- as.integer(readline("Enter the number of breeder pairs 
(default: 20):"))  

if(is.na(pairs)){pairs <- 20}  
 
# Ask for litter size, defalut to 5 

  litter <- as.integer(readline("Enter the litter size (per 
family) (default: 5):"))  

if(is.na(litter)){litter <- 5}  
 
# Ask for allelic effects, default to leptokurtic 

  biallele <- readline("Do you want a biallelic, leptokurtic, or 
gaussian design? b/l/g (default: l)")  
  if(biallele == "b"){biallele <- "y"} else if(biallele == 
"g"){biallele <- "g"} else {biallele <- "l"} 
 
  # Ask for number of loci for each trait, default to 10 
  total.loci <- as.integer(readline("How many loci are there for 
each of the the lowest traits? (default: 10)"))  

if(is.na(total.loci)){total.loci <- 10}  
 
# Ask for overlap between loci, default to no 
# Note, if there are loci in common, they are: common for 

speed, common for duration, common for ability, common for 
motivation 

common.loci <- readline("Is there overlap between loci 
(pleitropy)? y/n (default: n)")  

  # If loci do overlap, ask for number of overlapping loci 
  # If this option is left blank, default to zero 

    if (common.loci == "y"){ 
    common.loci <- as.integer(readline("How many loci are there 
in overlap (will be subtracted from total)?"))  
    if (is.na(common.loci)){common.loci<-0} 
    # If loci do overlap, ask for antagonistic pleiotropy 
    # Note: antagonistic pleiotropy will result in 
    # ability loci are + in speed and - in duration, 
    # motivation loci are + in duration and - in speed. 
    common.loci.neg <- readline("Are the effects of pleiotropic 
loci opposite in speed vs duration? y/n (default:n)") 
      } else {common.loci <- 0}  
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# Ask for varying allele frequencies, default no 
# Note, currently they can only vary for biallelic models  
# with 10 total and 3 common loci models. 

  if (biallele=="y" & total.loci==10 & common.loci==3){  
    allele.freq <- readline("Do the allele frequencies vary? y/n 
(default:n)") 
    if(allele.freq=="y"){allele.freq <- "y" 
    }else{allele.freq <- "n"} 

} else {allele.freq <- "n"} 
 
# Ask for within-family selection, dafult yes 
# Note, within-family selection changes number of pairs 

  within.fam <- readline("Is there within-family selection? y/n 
(default: y)\nNOTE: if y, pairs and litter = 10")  
  if(within.fam == ""){within.fam <- "y"}  
  if(within.fam == "y"){pairs <- 10; litter <- 10} 

 
# Ask for genetic dominance, default to no 

  dom <- readline("Are there dominance effects at the lowest 
level loci? y/n (default: n)")  
    # If dominanc, ask for on which loci  
    if (dom == "y") {dom <- 1 

  } else if (dom == "y" &common.loci==3 & total.loci==10){  
    domy <- readline("On all loci? y/n (default: y)")  
    if(domy=="y") {dom <- 1} else {dom <- 2}  
  } else {dom <- 0}  
 
  # Ask to measure breeding values, dafult no  
  bv <- readline("Do you want to measure breeding values? y/n 
(default: n)")  
  if (is.na(bv)) {bv <- "n"} else if (bv == "y") {bv <- "y"} else 
{bv <- "n"} 
   
  # Population size = number of pairs x litter size 

N.Pop <- pairs*litter  
cat(c("Your population size is",N.Pop,".")) 
# Number of pairs = number of parents x 2 
np <- pairs*2  
# Number of unique loci = total minus 2xcommon loci 

  unique.loci <- total.loci - 2*common.loci 
   
##################### FUNCTIONS ##################### 
# Function to assign loci based on allelic effects 
# P = vector of initial allele frequencies of +’s 
ASSIGN <- function(G.loci, N.Pop,P,biallele)  
  # For allelic effects of +1 and -1 
    {if(biallele == "y"){ 
    Total.loci <- N.Pop*2*G.loci # total number of alleles 
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    Alleles <- runif(Total.loci) # generate random numbers 
    # Create + or - alleles based on P vector 
    temp <- matrix(0,2*N.Pop,length(P))  
    for(p in 1:length(P)) 
      temp[,p] <- sapply(((p-1)*2*N.Pop+1):((p-1)*2*N.Pop + 
2*N.Pop), FUN=function(x) {if (Alleles[x]<P[p]){1} else {-1}}) 
    Alleles <- as.vector(temp)  
    return(matrix(Alleles, N.Pop, 2*G.loci)) 
  # For allelic effects from a normal distribution 
    } else if(biallele == "g") { 
   return(matrix(rnorm(N.Pop*2*G.loci,0,1),N.Pop,2*G.loci)) 
  # For allelic effects from a leptokurtic distribution 
    } else if(biallele == "l") { 
    return(matrix(sample(c(rnorm(1320,0,0.26), 
      rnorm(500,0,1.39),rnorm(150,0,2),rnorm(30,0,3)), 
      replace=T,size=N.Pop*2*G.loci),N.Pop,2*G.loci)) 
  }} 
 
# Function to allow mutations (change sign of effect) 
# based on poisson distribution, with lambda = Pmut  
MUTATION <- function(MS, Pmut, loci, N)  
  {T.genes <- N*2*loci  
  lambda <- Pmut*T.genes  
  N.mutations <- rpois(1,lambda) 
  Row  <- ceiling(runif(N.mutations, min=0, max=T.genes)) 
  Temp  <- matrix(MS)  
  Temp[Row] <- ((-1)*Temp[Row])  
  Temp <- c(N.mutations,Temp)  
  return(Temp)}  
   
# Function for dominance 
# Affects the first half of the number of loci (rounded up) 
dom.plus <-function(MS.loci,MSmatrix)  
  {sapply(1:length(MSmatrix[,1]),function(y) 
  {gms<-sum(sapply(seq(1,MS.loci*2,2),FUN=function(x) 
  {if(x<MS.loci) {2*max(MSmatrix[y,x],MSmatrix[y,(x+1)]) 
    } else {sum(MSmatrix[y,x],MSmatrix[y,(x+1)])}}))})} 
dom.minus <-function(MS.loci,MSmatrix)  
  {sapply(1:length(MSmatrix[,1]),function(y) 
  {gms<-sum(sapply(seq(1,MS.loci*2,2),FUN=function(x) 
  {if(x<MS.loci) {2*min(MSmatrix[y,x],MSmatrix[y,(x+1)]) 
    } else {sum(MSmatrix[y,x],MSmatrix[y,(x+1)])}}))})} 
 
# Function to create offspring’s genetic matrices 
offspring <- function(G.matrix,loci,i,parent,P1,P2) 
  { for(j in 1:litter){ 
    G.matrix[((i-1)*litter+j), 
      seq(1,loci*2,2)] <-sapply(seq(1,loci*2,2), 
      FUN=function(x){sample(parent[P1,x:(x+1)],1)}) 
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    G.matrix[((i-1)*litter+j), 
seq(2,loci*2,2)] <- sapply(seq(1,loci*2,2), 
FUN=function(x){sample(parent[P2,x:(x+1)],1)})} 

  return(G.matrix)} 
 
# Function to create all possible matings  
# used for calculating breeding values 
MATE <- function(offspring,N,loci,matrix,p1,p2) 
  {offspring <- matrix(0,N,loci*2) 
   for(i in 1:N){ 
     offspring[i,seq(1,loci*2,2)]<- sapply(seq(1,loci*2,2), 
     FUN=function(x){sample(matrix[p1,x:(x+1)],1)}) 
     offspring[i,seq(2,loci*2,2)]<- sapply(seq(1,loci*2,2), 
     FUN=function(x){sample(matrix[p2,x:(x+1)],1)})} 
   return(offspring)} 
 
# Function to calculate phenotypes 
RUNNING <-function(MSmatrix,ASmatrix,MDmatrix,ADmatrix, 
  CSmatrix,CDmatrix,CAmatrix,CMmatrix) 
{ 
### Genotype to phenotype – Motivation for Speed ### 
# Add up alleles to get a genotypic score, 
# depending on pleiotropy and genetic dominance 
if(common.loci > 0){ 
 if(common.loci.neg == "y"){ 

 if(dom == 0){ 
     G.MS <- 16+rowSums(MSmatrix)+ 
      rowSums(CSmatrix)-rowSums(CMmatrix) 
   }else if(dom == 1){ 
     G.MS <- 16+dom.plus(MS.loci,MSmatrix)+ 
      dom.plus(CS.loci,CSmatrix)-dom.plus(CM.loci,CMmatrix) 

}else if(dom == 2) { 
  G.MS <-16+rowSums(MSmatrix[,c(1:2,7:8)])+ 

      rowSums(CSmatrix[,5:6])-rowSums(CMmatrix[,1:2])+  
      dom.plus(1,MSmatrix[,5:6])+ 
      dom.plus(1,CSmatrix[,1:2])- 
      dom.plus(1,CMmatrix[,5:6])+ 

dom.minus(1,MSmatrix[,3:4])+    
dom.minus(1,CSmatrix[,3:4])- 

      dom.minus(1,CMmatrix[,3:4])} 
  }else{ 

if(dom == 0){ 
 G.MS <- 16+rowSums(MSmatrix)+  
  rowSums(CSmatrix)+ rowSums(CMmatrix) 
}else if(dom == 1){ 
 G.MS <- 16+dom.plus(MS.loci,MSmatrix)+  

dom.plus(CS.loci,CSmatrix)+dom.plus(CM.loci,CMmatrix) 
}else if(dom == 2){ 
 G.MS <- 16 + rowSums(MSmatrix[,c(1:2,7:8)]) + 
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rowSums(CSmatrix[,5:6])+rowSums(CMmatrix[,1:2])+  
dom.plus(1,MSmatrix[,5:6]) +  
dom.plus(1,CSmatrix[,1:2]) +  
dom.plus(1,CMmatrix[,5:6]) + 
dom.minus(1,MSmatrix[,3:4]) + 
dom.minus(1,CSmatrix[,3:4]) + 
dom.minus(1,CMmatrix[,3:4])} 

 }} else { 
   if(dom == 0){ 
    G.MS <- 16+ rowSums(MSmatrix) 
   }else if (dom == 1){ 
    G.MS <- 16 +dom.plus(MS.loci,MSmatrix)} 
}    
# Truncate motivation speed genotype, min 1 and max 39 
G.MS  <- sapply(seq(1,length(G.MS)), FUN = function(x)  
  {if(G.MS[x]<1){1} else if(G.MS[x]>39){39 
  }else{G.MS[x]}})  
# Environmental effects with a mean of zero 
Env <- mvrnorm(n=length(G.MS), mu=c(0,0), Sigma=diag(2))  
# Add genotype + enviroment, with arbitrary scaling 
P.MS  <- 0.7*G.MS + 3*Env[,1]  
# Truncate motivation speed phenotype, min 1 max 39 
P.MS  <- sapply(seq(1,length(P.MS)), FUN = function(x)  
  {if(P.MS[x]<1){1} else if(P.MS[x]>39){39 
  }else{P.MS[x]}})  
 
### Genotype to phenotype – Ability for Speed ### 
# Add up alleles to get a genotypic score, 
# depending on pleiotropy and genetic dominance 
if(common.loci>0){ 
 if(common.loci.neg == "y"){ 

if(dom == 0){ 
  G.AS <- 16 + rowSums(ASmatrix) +  
   rowSums(CSmatrix) + rowSums(CAmatrix) 
}else if(dom == 1){ 
  G.AS <- 16 + dom.plus(AS.loci,ASmatrix) + 
   dom.plus(CS.loci,CSmatrix) + dom.plus(CA.loci,CAmatrix) 
}else if(dom == 2){ 
  G.AS <- 16+ rowSums(ASmatrix[,c(1:2,3:4)]) + 
   rowSums(CSmatrix[,5:6]) + rowSums(CAmatrix[,1:2]) +  

     dom.plus(1,ASmatrix[,7:8])+ 
     dom.plus(1,CSmatrix[,1:2])+ 
     dom.plus(1,CAmatrix[,3:4])+ 
     dom.minus(1,ASmatrix[,5:6])+ 
     dom.minus(1,CSmatrix[,3:4]) +  
     dom.minus(1,CAmatrix[,5:6])} 
  }else{ 

if(dom == 0){ 
 G.AS <- 16 + rowSums(ASmatrix)+ 
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  rowSums(CSmatrix) + rowSums(CAmatrix) 
}else if(dom == 1){ 
 G.AS <- 16 + dom.plus(AS.loci,ASmatrix) +  
  dom.plus(CS.loci,CSmatrix)+dom.plus(CA.loci,CAmatrix) 
}else if(dom == 2){ 
 G.AS <- 16+ rowSums(ASmatrix[,c(1:2,3:4)]) +  
  rowSums(CSmatrix[,5:6]) + rowSums(CAmatrix[,1:2]) +  
  dom.plus(1,ASmatrix[,7:8]) + 
  dom.plus(1,CSmatrix[,1:2]) + 
  dom.plus(1,CAmatrix[,3:4]) + 
  dom.minus(1,ASmatrix[,5:6]) +  
  dom.minus(1,CSmatrix[,3:4]) +  
  dom.minus(1,CAmatrix[,5:6])} 

 }} else { 
if(dom == 0){ 
 G.AS <- 16+ rowSums(ASmatrix) 
}else if(dom == 1){ 
 G.AS <- 16 + dom.plus(AS.loci,ASmatrix)} 

}  
# Truncate ability speed genotype, min 1 and max 39 
G.AS  <- sapply(seq(1,length(G.AS)), FUN = function(x)  

{if(G.AS[x]<1){1} else if(G.AS[x]>39){39 
}else{G.AS[x]}})  

# Add genotype + enviroment, with arbitrary scaling 
P.AS  <- 0.7*G.AS + 3*Env[,2]  
# Truncate ability speed phenotype, min 1 and max 39 
P.AS  <- sapply(seq(1,length(P.AS)), FUN = function(x)  

{if(P.AS[x]<1){1} else if(P.AS[x]>39){39 
}else{P.AS[x]}})  

 
# Save variances for motivation and ability for speed 
VeMS <- var(Env[,1]) # Environmental variance of motivation 
VgMS <- var(G.MS)    # Genotypic variance of motivation 
VeAS <- var(Env[,2]) # Environmental variance of ability 
VgAS <- var(G.AS)    # Genotypic variance of ability 
 
# Speed phenotype = lower of motivation or ability 
P.S <- sapply(seq(1, length(P.MS)), FUN = function(x)  
  ifelse(P.MS[x] <= P.AS[x], P.MS[x], P.AS[x]))  
 
 
### Genotype to phenotype – Motivation for Duration #### 
if(common.loci>0){ 
 if(common.loci.neg == "y"){ 

 if(dom == 0){ 
  G.MD <- 500 + 20*(rowSums(MDmatrix) +  
   rowSums(CDmatrix) + rowSums(CMmatrix)) 
}else if(dom == 1){ 
 G.MD <- 500 + 20*(dom.plus(MD.loci,MDmatrix) +  
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  dom.plus(CD.loci,CDmatrix)+dom.plus(CM.loci,CMmatrix)) 
}else if(dom == 2){ 
 G.MD <- 500+ 20*(rowSums(MDmatrix[,c(1:2,7:8)]) +  
  rowSums(CDmatrix[,5:6]) + rowSums(CMmatrix[,1:2]) +  

     dom.plus(1,MDmatrix[,5:6])+  
     dom.plus(1,CDmatrix[,1:2]) + 
     dom.plus(1,CMmatrix[,5:6]) + 
     dom.minus(1,MDmatrix[,3:4]) + 
     dom.minus(1,CDmatrix[,3:4]) + 
     dom.minus(1,CMmatrix[,3:4]))} 
 }else{ 

if(dom == 0){ 
 G.MD <- 500 + 20*(rowSums(MDmatrix) +  
  rowSums(CDmatrix) + rowSums(CMmatrix)) 
}else if(dom == 1){ 
 G.MD <- 500 + 20*(dom.plus(MD.loci,MDmatrix) + 
  dom.plus(CD.loci,CDmatrix)+dom.plus(CM.loci,CMmatrix)) 
}else if(dom == 2){ 
 G.MD <- 500+ 20*(rowSums(MDmatrix[,c(1:2,7:8)]) + 
  rowSums(CDmatrix[,5:6]) + rowSums(CMmatrix[,1:2]) +  
  dom.plus(1,MDmatrix[,5:6]) + 
  dom.plus(1,CDmatrix[,1:2]) + 
  dom.plus(1,CMmatrix[,5:6]) + 
  dom.minus(1,MDmatrix[,3:4]) + 
  dom.minus(1,CDmatrix[,3:4]) + 
  dom.minus(1,CMmatrix[,3:4]))} 

 }} else { 
if(dom == 0){ 
 G.MD <- 500 + 20*rowSums(MDmatrix) 
}else if(dom == 1){ 
 G.MD <- 500 + 20*dom.plus(MD.loci,MDmatrix)} 

}  
# Truncate motivation duration genotype, min 10 and max 960 
G.MD  <- sapply(seq(1,length(G.MD)), FUN = function(x)  

{if(G.MD[x]<10){10} else if(G.MD[x]>960){960 
}else {G.MD[x]}})  

# Environmental effects with a mean of zero 
EnvD <- mvrnorm(n=length(G.MS), mu=c(0,0), Sigma=diag(2)) 
# Add genotype + enviroment, with arbitrary scaling 
P.MD  <- 0.7*G.MD + 25*EnvD[,1]  
# Truncate motivation duration phenotype, min 10 max 960 
P.MD  <- sapply(seq(1,length(P.MD)), FUN = function(x)  

{if(P.MD[x]<10){10} else if(P.MD[x]>960){960 
}else{P.MD[x]}})  

 
### Genotype to phenotype – Ability for Duration #### 
if(common.loci>0){ 
 if(common.loci.neg == "y"){ 

if(dom == 0){ 
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 G.AD <- 500 + 20*(rowSums(ADmatrix) +  
  rowSums(CDmatrix) - rowSums(CAmatrix)) 
}else if(dom == 1){ 
 G.AD <- 500 + 20*(dom.plus(AD.loci,ADmatrix) + 
  dom.plus(CD.loci,CDmatrix)-dom.plus(CA.loci,CAmatrix)) 
}else if(dom == 2){ 
 G.AD <- 500+ 20*(rowSums(ADmatrix[,c(1:2,3:4)]) +  
  rowSums(CDmatrix[,5:6]) - rowSums(CAmatrix[,1:2]) +  
  dom.plus(1,ADmatrix[,5:6]) +  
  dom.plus(1,CDmatrix[,1:2]) - 
  dom.plus(1,CAmatrix[,3:4]) + 
  dom.minus(1,ADmatrix[,7:8]) + 
  dom.minus(1,CDmatrix[,3:4]) - 
  dom.minus(1,CAmatrix[,5:6]))} 

 }else{ 
if(dom == 0){ 
 G.AD <- 500 + 20*(rowSums(ADmatrix) +  
  rowSums(CDmatrix) + rowSums(CAmatrix)) 
}else if(dom == 1){ 
 G.AD <- 500 + 20*(dom.plus(AD.loci,ADmatrix) + 
  dom.plus(CD.loci,CDmatrix)+dom.plus(CA.loci,CAmatrix)) 
}else if(dom == 2){ 
 G.AD <- 500+ 20*(rowSums(ADmatrix[,c(1:2,3:4)]) + 
  rowSums(CDmatrix[,5:6]) + rowSums(CAmatrix[,1:2]) +  
  dom.plus(1,ADmatrix[,5:6]) + 
  dom.plus(1,CDmatrix[,1:2]) + 
  dom.plus(1,CAmatrix[,3:4]) + 
  dom.minus(1,ADmatrix[,7:8]) + 
  dom.minus(1,CDmatrix[,3:4]) + 
  dom.minus(1,CAmatrix[,5:6]))} 

}}else{ 
if(dom == 0){ 
 G.AD <- 500 + 20* rowSums(ADmatrix) 
}else if(dom == 1){ 
 G.AD <- 500 + 20*dom.plus(AD.loci,ADmatrix)} 

} 
# Truncate ability duration genotype, min 10 and max 960 
G.AD  <- sapply(seq(1,length(G.AD)), FUN = function(x)  

{if(G.AD[x]<10){10} else if(G.AD[x]>960){960 
}else{G.AD[x]}})  

# Add genotype + enviroment, with arbitrary scaling 
P.AD  <- 0.7*G.AD + 25*EnvD[,2] 
# Truncate ability duration phenotype, min 10 and max 960 
P.AD  <- sapply(seq(1,length(P.AD)), FUN = function(x)  

{if(P.AD[x]<10){10} else if(P.AD[x]>960){960 
}else{P.AD[x]}})  

 
# Save variances for motivation and ability for duration 
VeMD <- var(EnvD[,1])# Environmental variance of motivation 
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VgMD <- var(G.MD)    # Genotypic variance of motivation 
VeAD <- var(EnvD[,2])# Environmental variance of ability 
VgAD <- var(G.AD)    # Genotypic variance of ability 
 
# Duration phenotype = lower of motivation or ability 
P.D <- sapply(seq(1, length(P.MD)), FUN = function(x) 
  ifelse(P.MD[x] <= P.AD[x], P.MD[x], P.AD[x]))  
 
# Running phenotype = mulitply speed and duration 
P.R <- P.S*P.D 
   
return(c(P.S,P.D,P.R,P.MS,P.AS,P.MD,P.AD,VeMS,VgMS,VeAS,VgAS,VeMD
,VgMD,VeAD,VgAD)) 
} 
   
   
##################### ACTION ##################### 
for(RUN in RUN:(RUN+maxrun-1)){ 
runif(1) 
randomseed <- .Random.seed 
 
# Number of loci per each lowest-level trait 
MS.loci <- unique.loci # Motivation for speed 
AS.loci <- unique.loci # Ability for speed 
CS.loci <- common.loci # Common for ability and motivation for 
speed 
MD.loci <- unique.loci # Motivation for duration 
AD.loci <- unique.loci # Ability for duration 
CD.loci <- common.loci # Common for ability and motivation for 
duration 
CM.loci <- common.loci # Common for speed motivation and duration 
motivation 
CA.loci <- common.loci # Common for speed ability and duration 
ability 
 
# Create genetic matrices for each trait 
MSmatrix<-ASSIGN(MS.loci,N.Pop,c(rep(.5,MS.loci)),biallele) 
ASmatrix<-ASSIGN(AS.loci,N.Pop,c(rep(.5,AS.loci)),biallele) 
MDmatrix<-ASSIGN(MD.loci,N.Pop,c(rep(.5,MD.loci)),biallele) 
ADmatrix<-ASSIGN(AD.loci,N.Pop,c(rep(.5,AD.loci)),biallele) 
# Create genetic matrices for each trait, loci in common 
if(common.loci >0){ 
(CSmatrix<-ASSIGN(CS.loci,N.Pop,c(rep(.5,CS.loci)),biallele))& 
(CDmatrix<-ASSIGN(CD.loci,N.Pop,c(rep(.5,CD.loci)),biallele))& 
(CAmatrix<-ASSIGN(CA.loci,N.Pop,c(rep(.5,CA.loci)),biallele))& 
(CMmatrix<-ASSIGN(CM.loci,N.Pop,c(rep(.5,CM.loci)),biallele))} 
# Create genetic matrices for each trait, vary allele frequency 
if(allele.freq == "y" & common.loci == 3 & unique.loci == 4){ 
MSmatrix<-ASSIGN(MS.loci, N.Pop ,c(.65,.55,.45,.35),biallele) 
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ASmatrix<-ASSIGN(AS.loci, N.Pop, c(.35,.95,.85,.75),biallele) 
MDmatrix<-ASSIGN(MD.loci, N.Pop, c(.65,.55,.45,.35),biallele)  
ADmatrix<-ASSIGN(AD.loci, N.Pop, c(.95,.85,.75,.35),biallele)  
CSmatrix<-ASSIGN(CS.loci, N.Pop, c(.25,.15,.05),biallele)  
CDmatrix<-ASSIGN(CD.loci, N.Pop, c(.25,.15,.05),biallele)  
CMmatrix<-ASSIGN(CM.loci, N.Pop, c(.95,.85,.75),biallele)  
CAmatrix<-ASSIGN(CA.loci, N.Pop, c(.65,.55,.45),biallele)} 
   
   
# Set up data tables which will be filled up later 
P <- matrix(0,(np/2),2) 
all <-matrix(0,N.Pop*Maxgen,11, 
  dimnames=list(1:(N.Pop*Maxgen),rbind("ID","SireID","DamID", 

"Gen","running","speed","duration","ms","as","md","ad"))) 
Output.phenotype <- matrix(0, Maxgen,8,dimnames=list(1:Maxgen, 
  rbind("Igen","P.MS","P.AS","P.MD","P.AD","P.S","P.D","P.R"))) 
Output.h2 <- matrix(0, Maxgen, 35, dimnames=list(1:Maxgen, 
  rbind("Igen","VpR","VpS","VpD","VpMS","VeMS","VgMS","h2_MS", 
  "VpAS","VeAS","VgAS","h2_AS","VpMD","VeMD","VgMD","h2_MD", 
  "VpAD","VeAD","VgAD","h2_AD","pcorRS","pcorRD","pcorSD", 
  "pcorRMS","pcorRAS","pcorRMD","pcorRAD","pcorSMS","pcorSAS", 
  "pcorDMD","pcorDAD","pcorMSAS","pcorMDAD","pcorMSMD", 
  "pcorASAD"))) 
Output.slopes<-matrix(0,Maxgen,2,dimnames=list(1:Maxgen, 
  rbind("slope","std error"))) 
Output.mutations <- matrix(0,Maxgen,9,dimnames=list(1:Maxgen, 
  rbind("Igen","MS","AS","MD","AD","CS","CD","CA","CM"))) 
if (bv == "y") {Output.breedingvalue <- matrix(0,Maxgen,3, 
  dimnames=list(1:Maxgen,rbind("breeding.value.S", 
  "breeding.value.D","breeding.value.R")))} 
dev.new() 
   
###### Iterate over generations ###### 
# Generation 1 is the base population 
for (Igen in 1:Maxgen)   
{ 
 
# Caluclate breeding values  
if(bv == "y" & Igen > 1){   
  offspring.means.S<-matrix(0,N.Pop,N.Pop) 
  offspring.means.D<-matrix(0,N.Pop,N.Pop) 
  offspring.means.R<-matrix(0,N.Pop,N.Pop) 
  N.bv <- 5 
  for(i in 1:(N.Pop-1)){ 
    for(j in (i+1):N.Pop){ 
     offspringMS <- MATE(offspringMS,N.bv,MS.loci,MSmatrix,i,j) 
     offspringAS <- MATE(offspringAS,N.bv,AS.loci,ASmatrix,i,j) 
     offspringMD <- MATE(offspringMD,N.bv,MD.loci,MDmatrix,i,j) 
     offspringAD <- MATE(offspringAD,N.bv,AD.loci,ADmatrix,i,j) 
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  if(common.loci >0){ 
 (offspringCS <- MATE(offspringCS,N.bv,CS.loci,CSmatrix,i,j)) & 
 (offspringCD <- MATE(offspringCD,N.bv,CD.loci,CDmatrix,i,j)) & 
 (offspringCM <- MATE(offspringCM,N.bv,CM.loci,CMmatrix,i,j)) & 
 (offspringCA <- MATE(offspringCA,N.bv,CA.loci,CAmatrix,i,j))} 
 running <- RUNNING(offspringMS,offspringAS,offspringMD, 
   offspringAD,offspringCS,offspringCD,offspringCA,offspringCM) 
  offspring.means.S[i,j]<- mean(running[1:N.bv]) 
  offspring.means.S[j,i]<- mean(running[1:N.bv]) 
  offspring.means.D[i,j]<- mean(running[(N.bv+1):(2*N.bv)]) 
  offspring.means.D[j,i]<- mean(running[(N.bv+1):(2*N.bv)]) 
  offspring.means.R[i,j]<- mean(running[(2*N.bv+1):(3*N.bv)]) 
  offspring.means.R[j,i]<- mean(running[(2*N.bv+1):(3*N.bv)])}} 
breeding.value.S <- 1:N.Pop 
pop.mean.S<-mean(offspring.means.S[upper.tri(offspring.means.S)]) 
for(b in 1:N.Pop){breeding.value.S[b]<-2*(pop.mean.S- 
  mean(offspring.means.S[b,-b]))} 
Output.breedingvalue[Igen,1] <- var(breeding.value.S) 
breeding.value.D <- 1:N.Pop 
pop.mean.D<-mean(offspring.means.D[upper.tri(offspring.means.D)]) 
for(b in 1:N.Pop) {breeding.value.D[b] <- 2*(pop.mean.D- 
  mean(offspring.means.D[b,-b]))} 
Output.breedingvalue[Igen,2] <- var(breeding.value.D) 
breeding.value.R <- 1:N.Pop 
pop.mean.R<-mean(offspring.means.R[upper.tri(offspring.means.R)]) 
for(b in 1:N.Pop) {breeding.value.R[b] <- 2*(pop.mean.R- 
  mean(offspring.means.R[b,-b]))} 
Output.breedingvalue[Igen,3] <- var(breeding.value.R) 
} 
     
 
# Calculate running phenotype 
running <- RUNNING(MSmatrix,ASmatrix,MDmatrix,ADmatrix, 
  CSmatrix,CDmatrix,CAmatrix,CMmatrix) 
 
# Extract phenotypes from running matrix 
P.S <- running[1:N.Pop] 
P.D <- running[(N.Pop+1):(2*N.Pop)] 
P.R <- running[(2*N.Pop+1):(3*N.Pop)] 
P.MS <- running[(3*N.Pop+1):(4*N.Pop)] 
P.AS <- running[(4*N.Pop+1):(5*N.Pop)] 
P.MD <- running[(5*N.Pop+1):(6*N.Pop)] 
P.AD <- running[(6*N.Pop+1):(7*N.Pop)] 
# Calculate phenotypic variances 
VpS <- var(P.S) 
VpD <- var(P.D) 
VpR<- var(P.R)   
VpMS <- var(P.MS) 
VpAS <- var(P.AS) 
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VpMD <- var(P.MD) 
VpAD <- var(P.AD) 
# Extract genetic and environmental variances from running matrix 
VeMS <- running[(7*N.Pop+1)] 
VgMS <- running[(7*N.Pop+2)] 
VeAS <- running[(7*N.Pop+3)] 
VgAS <- running[(7*N.Pop+4)] 
VeMD <- running[(7*N.Pop+5)] 
VgMD <- running[(7*N.Pop+6)] 
VeAD <- running[(7*N.Pop+7)] 
VgAD <- running[(7*N.Pop+8)] 
# Caluclate heritabilities for lowest-level traits 
h2_MS <- VgMS/VpMS 
h2_AS <- VgAS/VpAS 
h2_MD <- VgMD/VpMD 
h2_AD <- VgAD/VpAD 
     
# Calculate phenotypic correlations 
pcorRS <- cor(P.R,P.S)  # running and speed 
pcorRD <- cor(P.R,P.D)  # running and duration 
pcorSD <- cor(P.S,P.D)  # speed and duration 
     
pcorRMS <- cor(P.R,P.MS) # running and motivation for speed 
pcorRAS <- cor(P.R,P.AS) # running and ability for speed 
pcorRMD <- cor(P.R,P.MD) # running and motivation for duration 
pcorRAD <- cor(P.R,P.AD) # running and ability for duration 
     
pcorSMS <- cor(P.S,P.MS) # speed and motivation for speed 
pcorSAS <- cor(P.S,P.AS) # speed and ability for speed 
pcorDMD <- cor(P.D,P.MD) # duration and motivation for duration 
pcorDAD <- cor(P.D,P.AD) # duration and ability for duration 
     
pcorMSAS <- cor(P.MS,P.AS) # motivation and ability for speed 
pcorMDAD <- cor(P.MD,P.AD) # motivation and ability for duration 
pcorMSMD <- cor(P.MS,P.MD) # motivation for speed and duration 
pcorASAD <- cor(P.AS,P.AD) # ability for speed and duration 
     
# Save phenotypes, variances, and correlations 
if(np>2){ 
all[(Igen*N.Pop-(N.Pop-1)):(Igen*N.Pop),1:11] <- 

cbind(seq((Igen*N.Pop-(N.Pop-1)),Igen*N.Pop), 
rep(P[,1],each=litter),rep(P[,2],each=litter), 
Igen,P.R,P.S,P.D,P.MS,P.AS,P.MD,P.AD) 

}else{ 
all[(Igen*N.Pop-(N.Pop-1)):(Igen*N.Pop),1:11] <- 

cbind(seq((Igen*N.Pop-(N.Pop-1)),Igen*N.Pop), 
rep(P[1],each=litter),rep(P[2],each=litter), 
Igen,P.R,P.S,P.D,P.MS,P.AS,P.MD,P.AD)} 
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# Mid-parent-on-offspring regressions 
if (Igen > 1){ 

reg <- matrix(rep(Parent,each=(litter)),N.Pop,2) 
  mean <- sapply(seq(1,np,2),FUN=function(x){ 
     (ParentP.R[x]+ParentP.R[x+1])/2}) 
  reg <- cbind(reg,rep(mean,each=litter),P.R) 
  plot(reg[,3],reg[,4],xlab='avgparents',ylab='offspring', 
     main="offspring-on-parent regression", 
     xlim=c(0,20000),ylim=c(0,20000)) 
  legend("topleft",legend=Igen) 
  res=lm(reg[,4]~reg[,3]) 
  abline(res) 
Output.slopes[Igen,]<-summary(res)$coefficients[2,1:2]} 
     
# Store results 
Output.phenotype[Igen,1:8] <- c(Igen,mean(P.MS),mean(P.AS), 
  mean(P.MD),mean(P.AD),mean(P.S),mean(P.D),mean(P.R)) 
Output.h2[Igen,1:35] <- c(Igen,VpR,VpS,VpD,VpMS,VeMS,VgMS, 
  h2_MS,VpAS,VeAS,VgAS,h2_AS,VpMD,VeMD,VgMD, 
  h2_MD,VpAD,VeAD,VgAD,h2_AD,pcorRS,pcorRD,pcorSD, 
  pcorRMS,pcorRAS,pcorRMD,pcorRAD,pcorSMS, 
  pcorSAS,pcorDMD,pcorDAD,pcorMSAS,pcorMDAD,pcorMSMD,pcorASAD) 
     
     
# Mutations 
Pmut <- .0001 
MStemp <- MUTATION(MSmatrix, Pmut, MS.loci, N.Pop)  
MSmatrix <- matrix(MStemp[2:length(MStemp)],N.Pop,2*MS.loci) 
AStemp <- MUTATION(ASmatrix, Pmut, AS.loci, N.Pop)  
ASmatrix <- matrix(AStemp[2:length(AStemp)],N.Pop,2*AS.loci) 
MDtemp <- MUTATION(MDmatrix, Pmut, MD.loci, N.Pop)  
MDmatrix <- matrix(MDtemp[2:length(MDtemp)],N.Pop,2*MD.loci) 
ADtemp <- MUTATION(ADmatrix, Pmut, AD.loci, N.Pop)  
ADmatrix <- matrix(ADtemp[2:length(ADtemp)],N.Pop,2*AD.loci) 
if(common.loci>0){ 
  (CStemp <- MUTATION(CSmatrix, Pmut, CS.loci, N.Pop))& 
  (CDtemp <- MUTATION(CDmatrix, Pmut, CD.loci, N.Pop))& 
  (CAtemp <- MUTATION(CAmatrix, Pmut, CA.loci, N.Pop))& 
  (CMtemp <- MUTATION(CMmatrix, Pmut, CM.loci, N.Pop))& 
  (CSmatrix <- matrix(CStemp[2:length(CStemp)],N.Pop,2*CS.loci))& 
  (CDmatrix <- matrix(CDtemp[2:length(CDtemp)],N.Pop,2*CD.loci))& 
  (CAmatrix <- matrix(CAtemp[2:length(CAtemp)],N.Pop,2*CA.loci))& 
  (CMmatrix <- matrix(CMtemp[2:length(CMtemp)],N.Pop,2*CM.loci)) 
}else{(CStemp<-CDtemp<-CAtemp<-CMtemp<-0)} 
# Save number of mutations per trait per generation 
Output.mutations[Igen,1:9] <- c(Igen,MStemp[1],AStemp[1], 
  MDtemp[1],ADtemp[1],CStemp[1],CDtemp[1],CAtemp[1],CMtemp[1])  
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# Make breeding pairs  
if(within.fam == "y"){ 
 if(sel == "sel") {  

# Select highest running individuals within families  
preParent <- c(sapply(seq(1,N.Pop,litter), 
  FUN = function(i) {order(P.R[i:(i+litter-1)], 
    decreasing=TRUE)[1:2]+(i-1)}))  
} else { 
# Randomly select breeders within families 
preParent <- c(sapply(seq(1,N.Pop,litter), 
  FUN = function(i) {sample(i:(i+litter-1),2,replace=F)}))}  

} else { 
 if(sel == "sel"){ 
  # Select highest running individuals, mass selection 
  preParent <- order(P.R,decreasing=TRUE) 
 } else { 

# Randomly select individuals 
preParent <- sample(N.Pop,N.Pop,replace=FALSE)} 

} 
# Create matrices of parental alleles 
ParentMS <- MSmatrix 
ParentAS <- ASmatrix 
ParentMD <- MDmatrix 
ParentAD <- ADmatrix 
if(common.loci >0){ 
  (ParentCS <- CSmatrix) & 
  (ParentCM <- CDmatrix) & 
  (ParentCA <- CAmatrix) & 
  (ParentCD <- CDmatrix)} 
# Make preliminary pairings, but these are all sib-pairs 
P <- matrix(preParent,np/2,2, byrow=TRUE)  
# Randomize 2nd column so that pairings are now random  
P <- cbind(P,sample(P[,2],np/2,replace=F))  
# Check if any pairs are still sib-pairs 
same <- which((P[,2] - P[,3])== 0)  
if(length(same)>0){  
 if(length(same)==1){  
   # If there is one sib-pair  
   # switch partners with the first non-sib-pair 
   switcheroo <- which((P[,2] - P[,3]) != 0)[1]  
   P[c(same,switcheroo),3] <- P[c(switcheroo,same),3]  
 }else{  

# If there is more than one sib-pair 
# Take only the sib-pairs and rotate them 

   tmp2 <- c(same[length(same)],same[-length(same)])  
   P[same,3] <- P[tmp2,3]}} 
# Now we have the non-sib pairs IDs  
P <- P[,c(1,3)]  
# Parents as in P, by column 
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Parent <- c(P)  
# Phenotypes of parents in order of offspring IDs  
if(np > 2) { 
  ParentP.R <- c(sapply(1:(np/2), 
    FUN=function(x){c(P.R[P[x,1]],P.R[P[x,2]])}))  
}else{ 

ParentP.R <- c(sapply(1:(np/2), 
  FUN=function(x){c(P.R[P[1]],P.R[P[2]])}))} 

     
# Make matrices of offspring genotypes 
for(i in 1:(N.Pop/litter)) { 
if(np > 2){ 
  MSmatrix<-offspring(MSmatrix,MS.loci,i,ParentMS,P[i,1],P[i,2]) 
  ASmatrix<-offspring(ASmatrix,AS.loci,i,ParentAS,P[i,1],P[i,2]) 
  MDmatrix<-offspring(MDmatrix,MD.loci,i,ParentMD,P[i,1],P[i,2]) 
  ADmatrix<-offspring(ADmatrix,AD.loci,i,ParentAD,P[i,1],P[i,2]) 
if(common.loci >0){ 
(CSmatrix<-offspring(CSmatrix,CS.loci,i,ParentCS,P[i,1],P[i,2]))& 
(CDmatrix<-offspring(CDmatrix,CD.loci,i,ParentCD,P[i,1],P[i,2]))& 
(CMmatrix<-offspring(CMmatrix,CM.loci,i,ParentCM,P[i,1],P[i,2]))& 
(CAmatrix<-offspring(CAmatrix,CA.loci,i,ParentCA,P[i,1],P[i,2]))} 
}else{ 
  MSmatrix <- offspring(MSmatrix,MS.loci,i,ParentMS,P[1],P[2]) 
  ASmatrix <- offspring(ASmatrix,AS.loci,i,ParentAS,P[1],P[2]) 
  MDmatrix <- offspring(MDmatrix,MD.loci,i,ParentMD,P[1],P[2]) 
  ADmatrix <- offspring(ADmatrix,AD.loci,i,ParentAD,P[1],P[2]) 
  if(common.loci >0){ 
   (CSmatrix<-offspring(CSmatrix,CS.loci,i,ParentCS,P[1],P[2]))& 
   (CDmatrix<-offspring(CDmatrix,CD.loci,i,ParentCD,P[1],P[2]))& 
   (CMmatrix<-offspring(CMmatrix,CM.loci,i,ParentCM,P[1],P[2]))& 

(CAmatrix<-offspring(CAmatrix,CA.loci,i,ParentCA,P[1],P[2])) 
}}} 
 
print(paste("Finished generation",Igen,"of",Maxgen,"of RUN",RUN)) 
# The following bracket is the end of each generation 
} 
   
 
##################### GRAPHS ##################### 
 
##### Parent-on-offspring regression ##### 
dev.new() 
par(mfrow=c(1,1)) 
plot(1:Maxgen,Output.slopes[,1],type='l', xlab="Generation",  

ylab="midparent-on-offspring regression slope",  
main = "Midparent-on-Offspring Regression Slopes",  
ylim=c(-1,1)) 

abline(h = 0, lty=3, col="light gray") 
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##### Phenotypes panel-running, speed, duration, MS,AS,MD,AD) 
dev.new() 
par(mfrow=c(2,3), oma=c(0,0,2,0), mar=c(1.5,1.5,2,0.5)) 
# Running 
plot(Output.phenotype[,"Igen"],Output.phenotype[,"P.R"], 

xlab='Generation', ylab="revolutions per day", 
type="l",main="Revolutions")  

abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Speed  
plot(Output.phenotype[,"Igen"],Output.phenotype[,"P.S"], 

xlab='Generation', ylab="Speed (revolutions per minute)",  
type="l",main="Mean Speed") #plot speed phenotype 

abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Duration  
plot(Output.phenotype[,"Igen"],Output.phenotype[,"P.D"], 

xlab='Generation', ylab="Duration (minutes per day)", 
type="l",main="Duration")  

abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Blank space in panel 
frame() 
# Motivation and ability for speed 
plot(Output.phenotype[,"Igen"],Output.phenotype[,"P.AS"],  

xlab="Generation", ylab="speed (revolutions per minute)", 
main="Mean MS and AS", type="l", ylim = c(5,40)) 

points(Output.phenotype[,"Igen"], 
  Output.phenotype[,"P.AS"], pch=0)  # Open square = AS 
lines(Output.phenotype[,"Igen"],Output.phenotype[,"P.MS"]) 
points(Output.phenotype[,"Igen"], 
  Output.phenotype[,"P.MS"], pch=1)  # Open circle = MS 
legend("bottomright",legend=c("ability","motivation"),pch=c(0,1), 
title="legend",  bty="n",cex=.9) 
abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Motivation and ability for duration 
plot(Output.phenotype[,"Igen"],Output.phenotype[,"P.AD"],  
  xlab="Generation", main="mean MD and AD", 
  ylab="duration (minutes per day)", type="l", ylim=c(300,700))  
points(Output.phenotype[,"Igen"], 
  Output.phenotype[,"P.AD"],pch=15)  # Closed square = AD 
lines(Output.phenotype[,"Igen"],Output.phenotype[,"P.MD"]) 
points(Output.phenotype[,"Igen"], 
  Output.phenotype[,"P.MD"], pch=16) # Closed circle = MD 
legend("bottomright",legend=c("ability","motivation"),  
  pch = c(15,16), title="legend",bty="n", cex=.9) 
abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
title(main = list("Phenotypes", cex =2), outer = TRUE) 
   
##### breeding value ###### 
if (bv == "y"){ 
h2_R<-Output.breedingvalue[,"breeding.value.R"]/Output.h2[,"VpR"] 
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h2_S<-Output.breedingvalue[,"breeding.value.S"]/Output.h2[,"VpS"] 
h2_D<-Output.breedingvalue[,"breeding.value.D"]/Output.h2[,"VpD"] 
 
dev.new() 
par(mfrow=c(3,4), oma=c(0,0,2,0)) #plot in a 3x3 
# Running 
plot(Output.breedingvalue[,"breeding.value.R"],  

xlab="Generation", ylab = "Va - Running",  
type = "l", main = "Va") 

plot(Output.h2[,"Igen"],Output.h2[,"VpR"],xlab="Generation", 
  ylab="Vp - Running",type="l", main="Vp") 
plot(Output.h2[,"Igen"], 
  Output.breedingvalue[,"breeding.value.R"], 
  xlab='Generation', main="Vg",ylab="Vg - Running",type="l")  
plot(Output.h2[,"Igen"],h2_R,xlab='Generation',  
  main="H2",ylab="H2 - Running",type="l")  
abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Speed 
plot(Output.breedingvalue[,"breeding.value.S"],  
  xlab="Generation", ylab = "Va - Speed", type = "l") 
plot(Output.h2[,"Igen"],Output.h2[,"VpS"],xlab="Generation", 
  ylab="Vp - Speed",type="l") 
plot(Output.h2[,"Igen"], 

Output.breedingvalue[,"breeding.value.S"],xlab='Generation',  
ylab="Vg - Speed",type="l")  

plot(Output.h2[,"Igen"],h2_S,xlab='Generation',  
  ylab="H2 - Speed",type="l")  
abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
# Duration 
plot(Output.breedingvalue[,"breeding.value.D"],  
  xlab="Generation", ylab = "Va - Duration", type = "l") 
plot(Output.h2[,"Igen"],Output.h2[,"VpD"],xlab="Generation", 
  ylab="Vp - Duration",type="l") 
plot(Output.h2[,"Igen"], 
  Output.breedingvalue[,"breeding.value.D"], 
  xlab='Generation',ylab="Vg - Duration",type="l") 
plot(Output.h2[,"Igen"],h2_D,xlab='Generation', 
  ylab="H2 - Duration",type="l")  
abline(v=seq(0,Maxgen,10),lty=3,col="light gray") 
title(main = list("heritabilities of composite traits (from 
breeding values)", cex =2), outer = TRUE) 
} 
   
##### Vg, Ve, Vp, and h2 for MS, AS, MD, AD ##### 
dev.new() 
par(mfrow=c(4,4), oma=c(0,0,2,0)) #plot in a 4x4 
#MS 
plot(Output.h2[,"Igen"],Output.h2[,"VpMS"],xlab="Generation", 
  ylab="Vp - motivation for speed",type="l", main="Vp") 
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plot(Output.h2[,"Igen"],Output.h2[,"VeMS"],xlab='Generation',  
  main="Ve", ylab="Ve - MS",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VgMS"],xlab='Generation',  
  main="Va",ylab="Va - MS",type="l")  
plot(Output.h2[,"Igen"],Output.h2[,"h2_MS"],xlab='Generation',  
  main="h2", ylab="h2 - MS",type="l")  
#AS  
plot(Output.h2[,"Igen"],Output.h2[,"VpAS"],xlab="Generation", 
  ylab="Vp - ability for speed",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VeAS"],xlab='Generation',  
  ylab="Ve - AS",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VgAS"],xlab='Generation', 
  ylab="Va - AS",type="l")  
plot(Output.h2[,"Igen"],Output.h2[,"h2_AS"],xlab='Generation',  
  ylab="h2 - AS",type="l") 
#MD 
plot(Output.h2[,"Igen"],Output.h2[,"VpMD"],xlab="Generation", 
  ylab="Vp - motivation for duration",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VeMD"],xlab='Generation',  
  ylab="Ve - MD",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VgMD"],xlab='Generation',  
  ylab="Va - MD",type="l")  
plot(Output.h2[,"Igen"],Output.h2[,"h2_MD"],xlab='Generation',  
  ylab="h2 - MD",type="l") 
#AD 
plot(Output.h2[,"Igen"],Output.h2[,"VpAD"],xlab="Generation", 
  ylab="Vp - ability for duration",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VeAD"],xlab='Generation',  
  ylab="Ve - AD",type="l") 
plot(Output.h2[,"Igen"],Output.h2[,"VgAD"],xlab='Generation',    
  ylab="Va - AD",type="l")  
plot(Output.h2[,"Igen"],Output.h2[,"h2_AD"],xlab='Generation',  
  ylab="h2 - AD",type="l") 
title(main = list("heritabilities of lowest level traits from 
direct allelic calculations", cex =2), sub = "warning: the 
heritabilities do not make sense because of the way they interact 
/ epistasis", outer = TRUE) 
   
 
##################### SAVE CSV FILES ##################### 
 
# Name files according to parameters used 
file <- paste("model3_",sel,"_",biallele,"biallele_", 
  common.loci,"common_",allele.freq,"freq_", 
  within.fam,"wfam_",dom,"dom_",N.Pop,"pop_run",RUN,sep="") 
 
# Save file of variance estimates from breeding values 
if (bv == "y"){    
write.csv(Output.breedingvalue, 
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file=paste(file,"_Output.breedingvalue.csv",sep=""), 
  row.names = F)} 

   
# Save file of variances 
write.csv(Output.h2,file=paste(file,"_Output.h2.csv",sep=""), 
  row.names = F) 
 
# Save file of phenotypes   
write.csv(Output.phenotype, 
  file=paste(file,"_Output.phenotype.csv",sep=""),row.names = F) 
  
# Save file of parent-offspring regression slopes 
write.csv(Output.slopes,file=paste(file,"_","Output.slopes.csv", 
  sep=""),row.names = F) 
 
# Save file of pedigree + phenotypes of every individual  
all[(N.Pop+1):(N.Pop*Maxgen),"SireID"] <-    
  sapply((N.Pop+1):(N.Pop*Maxgen), 
   FUN=function(x){(all[x,"Gen"]-2)*N.Pop+all[x,"SireID"]}) 
all[(N.Pop+1):(N.Pop*Maxgen),"DamID"] <-  

sapply((N.Pop+1):(N.Pop*Maxgen), 
 FUN=function(x){(all[x,"Gen"]-2)*N.Pop+all[x,"DamID"]}) 

write.csv(all,file=paste(file,"_all.csv",sep=""),row.names = F) 
 
# Save file of random seed 
sampleseed <- sample(1:10,1) 
attr(sampleseed,"seed") <- randomseed 
write.csv(attr(sampleseed,"seed"), 
  file=paste(file,"_RandomSeed.csv",sep=""),row.names=F) 
 
# These two brackets sign the end of the code.  
# The enable the prompts at the beginning to work. 
# Do not leave any lines after the bracket. 
}} 
 
 




