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EPIGRAPH

When things go wrong as they sometimes will,
When the road you’re truding seems all uphill,
When the funds are low and the debts are high,
And you want to smile, but you have to sigh,
When care is pressing you down a bit,
Rest, if you must, but don’t you quit.

Life is queer with its twists and turns,

As everyone of us sometimes learns,
And many a failure turns about,
When he might have won if he’d stuck it out.
Don’t give up though the pace seems slow,
You might succeed with another blow.

Often the goal is nearer than,
It seems to a faint and faltering man,
Often the struggler has given up
When he might have captured the victor’s cup;
And he learned too late when the night came down,
How close he was to the golden crown.

Success is failure turned inside out,
The silver tint of the clouds of doubt,
And you never can tell just how close you are,
It may be near when it seems so far,
So stick to the fight when you’re hardest hit,
It’s when things seem worst that you must not quit!

- Author Unknown



TABLE OF CONTENTS

SIGNATURE PAGE ...ttt sttt st il
DEDICATION ...ttt ettt ettt ettt et sbe et st e bt enbesneenas v
EPIGRAPH ...ttt sttt st s v
TABLE OF CONTENTS ...ttt st ens vi
LIST OF FIGURES ...ttt sttt sttt et st viii
LIST OF TABLES ... .ottt ettt sttt et st X
ACKNOWLEDGEMENTS ..ottt sttt Xi
VT A e ettt e e et e st e e st e e ab e e e st e e enabeesabteesnbeeennbeesnabeeenneas Xiv
ABSTRACT OF THE DISSERTATION .....oooiiiiiiiieieieeesese et XV
CHAPTER 1: INtrOQUCHION ..c.vviiiiniieiieiiieieeiesiteie ettt sttt 1

CHAPTER 2: Molecular Dynamics of the R175H Mutant in the Full-Length p53
Tetramer Reveal Insight into the DNA Search and Recognition Mechanism.................. 77

CHAPTER 3: Enhancing Virtual Screening Performance of Protein Kinases with
Molecular Dynamics STMUIAtIONS.........cccveeruieiiieiieiiieiieeie et 118

CHAPTER 4: Knowledge-Based Methods to Train and Optimize Virtual Screening
ENSEMDIES ... 142

CHAPTER 5: Neural-Network Scoring Functions Identify Structurally Novel Estrogen-
ReCePtOr LIZANAS ......eeiiiiiiieeiieiiecie ettt ettt ettt et s e e eneeas 160

vi



LIST OF FIGURES

Figure 1.1: Six hallmarks of Cancer.........c..coceviiriiiiiiiiiiciieeeee e 5
Figure 1.2: Schematic of ATP-mediated phosphorylation of protein kinases.................. 16
Figure 1.3: Structure of the eukaryotic protein kinase domain............ccceecveeviienieenieennnnnn. 17
Figure 1.4: Assembly of the hydrophobic “spine” in active Kinases.............ccccueervvennnenne 19
Figure 1.5: The eukaryotic protein kinase (ePK) protein kinome tree ...........c.cccoeevuenene 21
Figure 1.6: Summary of the p53 pathway........ccccocieiiiiiiiieee e 28
Figure 1.7: Structure of full-length p53 .....ccooiiiiii e 30
Figure 1.8: Example free-energy landscape of proteins ..........ccoceeveevierieneenienneneeniennns 39
Figure 1.9: Example force field equation used in molecular dynamics simulations......... 42
Figure 2.1: Full-length p53 SYStem .....c.cccoiiiiiiiiiieiiiierieieeeeeeeeee e 82

Figure 2.2: Differences in the DNA binding mode between wildtype and R175H p53... 83

Figure 2.3: Effects of p53 R175H mutation on the L2 and L3 loops in the unique PC

CONFOTTIATIONS ..ttt ettt ettt ettt ettt sb et eatesb et e st e sbe e beeatesaeebeeatesaeenee 87
Figure 2.4: Solvent accessibility 0f pS3 DBD ....cc.coooiiiiiiiiieieeiieceeeeeee e 89
Figure 2.5: Footprint analysis of the CTD-DNA residues averaged across all three p53
A1 1S) 141U RUSRRUPPRRPPPNt 92
Figure 2.S1: Comparison between DNA binding modes of DBD...........c.cccccoeviennnnen. 112
Figure 2.S2: Analysis of the Q180-R174 salt-bridge..........cccoceeverieniiviniiniiinieeee, 113

Figure 2.S3: Root-mean-square fluctuations of DBD: compare wildtype to R175H with
ZINIC .ttt h e e h ettt ettt bt e h e bt ettt ettt aeeae e 114

Figure 2.S4: Root-mean-square fluctuations of DBD: compare wildtype to R175H

WIROUL ZINC....eiiiiiiiiici et 115
Figure 2.S5: CTD footprint analysis based on DNA contacts.........c..coceveeverveneennennne. 116
Figure 2.S6: DNA footprint analysis based on CTD contacts.........c..ceceevererveenvenneenne. 117

vii



Figure 3.1: Protein kinases involved in study ...........ccoceeverieniininieniiiciccceseeeen 120
Figure 3.2: Comparison between how RMSD and POVME clusters the MD trajectory 123

Figure 3.3: ROC-EF of the cluster centroids and crystal structures against training set for
€ACH PrOtEIN KINASE....cuiieiiiiiiiiiieeie ettt ettt ettt e teeebe e bt e sabeesaesasaens 123

Figure 3.4: Trained ensemble sizes and crystal structures ROC-EF (fpf = 0.001) values
against the training and test set across all six protein Kinases ...........cccceeeevervieneeneenne. 125

Figure 3.5: Docked pose of active compound, CHEMBL272309, reveals favorable
interactions with RMSD centroid 3 (purple) and steric clashes (circled in left figure) with

the crystal Structure (PINK) ....c.eeevieeiieiieeie et 128
Figure 3.S1: Comparison between the crystallographic and docked pose of the co-
CryStallized INRIDILOTS . ....cuiiiiiieiiecie ettt e eareens 133
Figure 3.S2: The cluster centroids and crystal’s AUC against the training set for each
PIOLEIN KINMASE .. .eiiiieiieeiiieiie ettt ettt ettt ettt et e st e eteessaeenbeesaaeenseesnseenseenens 134
Figure 3.S3: Comparison between all structural selection methods...........cccceceveeneeee. 134

Figure 3.S4: The RMSD and POVME cluster centroids and randomly selected frames
AUC values against the entire dataset of actives and decoys .........cccoveverierienenienene 135

Figure 3.S5: The RMSD and POVME cluster centroids and randomly selected frames
ROC-EF values against the entire dataset of actives and decoys .......cc.cceceevervierrennenne. 135

Figure 3.S6: The trained ensemble sizes and crystal structures AUC values against the
training and test set across all six protein kinases are ShOown .........c..cccceecvevviiinicneenne. 136

Figure 3.S7: The cluster centroids and crystal’s AUC against the test set for each protein
KINASE ..ttt bbbt sa et 136

Figure 3.S8: The cluster centroids and crystal’s ROC-EF against the test set for each
PIOLEIN KINASE ....eiiiieiieeiiieiie ettt ettt ettt et e st e et e e saaeenbeesaneenseesnseenseennns 137

Figure 3.S9: ROC-EF values at a later false positive fraction (fpf = 0.01) against the
training and test set for each ensemble combination using RMSD centroids across all six
PIOLEIN KINASES ..eoviieniieeiiieiieeie ettt ettt ettt et sit e et essaeebeessaeesbeesaaeenseesnseenseennns 138

Figure 3.S10: ROC-EF values at a later false positive fraction (fpf = 0.01) against the
training and test set for each ensemble combination using POVME centroids across all
SIX PIOTEIN KINASES .. .eeviieiiieiieeiieeiie et ettt ettt e et eite et e e bt e et esteesabeeseeesbeeseessseenseesaseans 138

Figure 3.S11: Comparison between crystal structures and MD conformations ............. 139

viii



Figure 4.1: AUC and EF hiStOZrams...........cccceviiviiriinienienienieeiestesiceieseesie e 148

Figure 4.2: Training set performance as a function of ensemble size for three proteins
USING DUD-E. ..ot ettt ettt e et e s e ebeesnbeenbeeenne 149

Figure 4.3: Receiver operating characteristic (ROC) curves for ensembles trained to
maximize the AUC of the ROC CUIVE .....c.ooiiriiiiiiiiiiiieeeeeeeeee e 150

Figure 4.4: Receiver operating characteristic (ROC) curves for ensembles trained to the
EF at @ FPF Of 0.001 ...coooiiiiiiiieeeeeeee e 151

Figure 4.5: Percentages of compounds whose graph frameworks (FWs) are unique to, and
shared between, training and tESt SELS ........cveriieriieriiiiieieeieerte et 152

Figure 4.6: Training method schematic: selecting the best performing ensemble from
three target CONTOTMNETS ........ccuiiiiiiiiieiieeie e ettt e e eeees 152

Figure 5.1: Computational/experimental protocol used to identify novel estrogen-receptor

JIANAS ..ttt sttt 162
Figure 5.2: ROC curves associated with each of the three high-performing virtual screens
......................................................................................................................................... 163
Figure 5.3: Crystallographic pose of estradiol...........cccocerieniininiiniiniiiecceeeee, 166
Figure 5.4: BINAING POSES ...ccuvieuieiiieiieiiieiieeieeite et eiteeteeteeseteeseassaeeseesnseenseessseenseas 167

X



LIST OF TABLES

Table 2.1: Hydrogen Bonding Interactions between loops in Monomers B and C........... 85
Table 2.S1: Summary of Simulated Model SyStems ...........cccoevveriienieeiiienieeieeiie s 109
Table 2.S2: Salt Bridge Footprint Analysis of CTD-DNA..........ccccceviriinienenienieneenen 109
Table 2.S3: L1/S3 Pocket Open Ratios in MD Simulations............cccceeeeveenienieeniennnnns 112
Table 3.1: Protein Kinase Systems Setup for MD Simulations and VS Training .......... 121
Table 3.2: Global Performance of the Virtual Screen (AUC) of the Optimal Trained
Ensemble against the TeSt Set........cceiieriiiiiiiiieiieeie e 125
Table 3.3: Early Chemical Enrichment of Actives (ROC-EFgy=0001) of the Optimal
Trained Ensemble against the TeSt Set ........ccceevieriiiiiiiiiieiieeeieeee e 125
Table 3.S1: Number of Crystal Structures used for PCA Comparison between MD and
Crystal Structure Conformations ..........ccceceerieeiiienieeiieenie et esieeeieesieeeaeesaeesreeseeseeeens 140
Table 4.1: Summary of Structures Used To Construct Ensembles ........c..cccccecevienenne. 147

Table 4.2: AUC Values Determined on Training and Test Sets of Best Performing
Ensembles Selected To Maximize AUC .........cccoceeieiiieiinienineneneeceeerereeese e 150

Table 4.3: EF at FPF of 0.001 Determined on Training and Test Sets of Best Performing
Ensembles Selected To Maximize EF at FPF of 0.001 ........c..ccccocooiiiiiiiiiiiiiinenn 151

Table 5.1: High-Affinity Compounds Found by Docking into ERa Structures in Both the
Antagonist- and Agonist-Bound Conformations, Sorted by the Experimentally Measured
EROUK ettt et b et 164

Table 5.2: Chemical-Diversity Analysis Using Molecular Graphs ............ccccceevieennnns 166

Table 5.S1: Additional compounds docked and evaluated using HTVS-SP-XP-NN2 into
an ER, structure in the antagonist-bound conformation ..........c..cceccevevvienieneniiencenennne. 171

Table 5.S2: Additional compounds docked and evaluated using HTVS into an ER,
structure in the agonist-bound conformation ..............cceevveeeiierieeiiienieeieeie e 172

Table 5.S3: Additional compounds docked and evaluated using HTVS-SP-XP-NNI1 into
an ER, structure in the agonist-bound conformation ..........ccccceeeeveeniriienienenieneeneenne. 173

Table 5.S4: Relative binding affinity (RBA) values..........cccccoerieiiiieniiniiiiecieeiees 174

Table 5.S5: Chemical diversity analysis using cumulative frequency scaffold plots..... 175



ACKNOWLEDGEMENTS

I would like to acknowledge my research advisor, Professor Rommie Amaro, for
her guidance, support, and mentorship throughout my graduate research. I am
appreciative of your willingness to allow me flexibility in my research, and your
optimism and enthusiasm when providing direction on my research projects. Thank you
for being an excellent role model; a person I can look up to as I pursue a career in
scientific research. There is so much that I have learned from you that I plan to carry into
my own research career.

I would like to thank all of my committee members, Professor Elizabeth Komives,
Professor Susan Taylor, Professor Andrew McCammon, Professor Roy Wollman,
Professor Arnold Rheingold, and Professor Ruben Abagyan. Thank you all for your
advice and candor on my research projects. I especially would like to thank Professor
Komives for being a great mentor on how to navigate graduate school. You took me
under your wing and supported me, and for this I am forever grateful.

I would like to thank Amaro group members, Dr. Robert Swift and Dr. Ozlem
Demir for being awesome mentors on my research projects. Robert, thanks for all the
discussions we had pertaining to the protein kinases work. You are such a great teacher,
and I learned a great deal from you. Ozlem, thanks for your guidance on the p53 work,
and for your willingness to share your knowledge. Both of you are brilliant scientists,
and I am very fortunate to have worked closely with both of you.

I would also like to thank all of my lab mates in the Amaro group, both past and

present. Thank you for being such supportive and friendly lab mates, and for all the

Xi



scientific discussions. I am grateful to have worked with such great people, and
appreciate all that I have learned from each and every one of you. A special thanks to
Victoria Feher for your willingness to share your expertise on protein kinases, and Robert
Malmstrom for your expertise and advice on Markov State Models. I would also like to
thank Dr. Jamie Schiffer who has been such a great friend. I feel like we tag teamed
graduate school together, and I couldn’t have done it without you. Also, thanks so much
for your support during this thesis writing process.

I would like to thank Professor Seth Cohen for his guidance, support, and
mentorship as a co-advisor during my initial graduate research projects. I would also like
to thank the Cohen group members for their support and friendship.

I would like to acknowledge family and friends who have provided emotional and
mental support throughout this process. First, I would like to thank my husband for his
support and personal investment in my accomplishing this monumental goal. I could not
have done it without you. I would like to thank my parents for instilling academic
excellence in me at a young age, and my siblings for setting a great example for me and
their love and support.

Also, I would like to acknowledge great mentors I have had throughout my entire
life. I would like to thank Cassaundra Taylor, my fifth grade teacher, for being such a
great role model early in my life, and for always encouraging me to dream big. I would
like to thank Dr. Lisa Rhodes and Kimberly Scott, for their love, support, and personal
investment in my personal growth. I am forever in depth to you all, and I hope that I am

as a great of a mentor to future young girls and women that you are to me.

Xii



Chapter 2, in part is currently being prepared for submission for publication of the
material. Offutt, Tavina L.; Ieong, Pek U.; Demir, Ozlem; Amaro, Rommie E. The
dissertation author is the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in Enhancing Virtual
Screening Performance of Protein Kinases with Molecular Dynamics Simulations 2016.
Offutt, Tavina L.; Swift, Robert, V.; Amaro, Rommie E., ] Chem Inf Mod, 2016. The
dissertation author was the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in Knowledge-Based
Methods To Train and Optimize Virtual Screening Ensembles 2015. Swift, Robert V.;
Jusoh, Siti A.; Offutt, Tavina L.; Li, Eric S.; Amaro, Rommie E., ] Chem Inf Mod, 2016.
The dissertation author was a secondary investigator and author of this paper.

Chapter 5, in full, is a reprint of the material as it appears in Neural-Network
Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands 2015. Durrant,
Jacob D.; Carlson, Kathryn E.; Martin, Teresa A.; Offutt, Tavina L.; Mayne, Christopher
G.; Katzenellenbogen, John A.; Amaro, Rommie E., ] Chem Inf Mod, 2015. The

dissertation author was a fourth investigator and author of this paper.

Xiii



VITA

Bachelor of Science, Spelman College

Massachusetts Institute for Technology B-cubed Post baccalaureate
Research Assistant, University of California, San Diego

Master of Science in Chemistry, University of California, San Diego

Doctor of Philosophy, University of California, San Diego

X1V

2010

2012

2012-2017

2014

2018



ABSTRACT OF THE DISSERTATION

Studying Proteins Implicated in Cancer with a Computational Toolbox

Tavina Lynn Offutt

Doctor of Philosophy in Chemistry

University of California, San Diego, 2018

Professor Rommie Amaro, Chair

Cancer formation is a complex, multi-step process that allows cells to grow

abnormally and potentially invade and spread throughout the body. A single genetic or

structural alteration of a single protein in a cellular physiological process is enough to

stimulate cancer formation. In treating cancer, a ‘targeted therapy’ approach is becoming
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increasingly common, where we can develop drugs that specifically target these altered
proteins implicated in cancer. Two proteins that are heavily involved in several human
cancers are protein kinases and p53, which are the focus of this dissertation work. I
chose to use molecular dynamics simulations and in silico virtual screening, two methods
from the computational chemistry toolbox in studying protein kinases and p53. 1
demonstrate that performing molecular dynamics is worthwhile in conducting virtual
screens against protein kinases, because it may result in that at least one conformation is
more predictive than the crystal structure. I also reveal key insight into the
transcriptional activation mechanism of p53, and show how this mechanism is altered as

a result of the R175H cancer mutation.
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Chapter 1: Introduction



Synopsis

In this dissertation, proteins that are implicated in human cancer are explored
using computational techniques, specifically molecular dynamics and virtual screening.
As an introduction to this dissertation, background on cancer is introduced. Following an
introduction to cancer, two cancer drug targets, protein kinases and tumor suppressor
p53, are introduced. Lastly, molecular dynamics is discussed in more detail and its utility
in studying protein kinases and p53 are highlighted.

For the background on cancer (“Introduction to Cancer”), the epidemic of cancer
is briefly discussed to highlight the broad impact of this dissertation work in Section i. In
Section ii, the biology involved in cancer formation is detailed to introduce the reader to
the many cellular processes impacted in tumor formation and progression
(tumorigenesis). In Section iii, the current cancer treatments are reviewed. This section
also discusses the limitations with traditional cancer treatments, and how ‘targeted cancer
therapy’ overcomes these limitations.

Next, protein kinases are introduced (“Protein Kinases”). In Section i, the role
protein kinases plays in cellular processes are introduced. In Section ii, the structure of
the protein kinase domain (the domain that contains the active site) is detailed. Next, the
reader is introduced to the classification of protein kinases in the human genome (Section
iii). In Section iv, protein kinases implication in cancer is discussed, followed by a brief
introduction of each of the six protein kinases studied in this dissertation (Section v).

Following discussion of protein kinases, the tumor suppressor p53 is introduced

(“Tumor Suppressor, p53”’). In Section i, the role p53 plays in biology is discussed. In



Section ii, the structure of full-length p53 and the function of each domain are detailed.
Next, the implication of p53 in cancer is presented (Section iii), followed by a discussion
of the various therapeutic approaches against p53 (Section iv).

Lastly, molecular dynamics simulations use in exploring protein dynamics is
introduced (“Molecular Dynamics Applied to Biological Macromolecules”). First, the
reader is introduced to the dynamic behavior of proteins to provide context for the reason
we use molecular dynamics in studying protein dynamics Section i. Next in Section ii,
the theory in molecular dynamics is discussed, followed by molecular dynamics utility in

drug discovery efforts, specifically in virtual screening methods (Section iii).



Introduction to Cancer
(i) Cancer Epidemics

Cancer diseases are the leading causes of morbidity and mortality worldwide.
According to the National Cancer Institute (NCI), there was an estimate of 1,685,210 new
cases of cancer in the United States, and 595,690 people were presumed to die from the
disease in 2016. In 2014, approximately 14.5 million people were diagnosed with cancer,
and this number is expected to rise to almost 19 million by 2024.> Due to this global
burden, there are great research efforts to both treat and prevent cancer diseases. While
there have been significant advancements in cancer research leading to a decline in the
number of cancer deaths each year, there are still several areas of improvement in

developing cancer treatments, which will be discussed in more detail in Section iii.

(ii) Cancer Biology

Cancer is a group of diseases that result from transformed normal cells that grow
and multiply uncontrollably. This transformation of normal cells to cancer cells is a
multistep process that involves genetic alterations. Six hallmarks or essential alterations
of cell physiology must occur in cancer formation: self-sufficiency in growth signals,
insensitivity to growth-inhibitory (antigrowth) signals, evasion of programmed cell death
(apoptosis), limitless replicative potential, sustained angiogenesis, and tissue invasion and
metastasis (Figure 1.1)." Cancer studies suggest that these six capabilities are shared in

common by all human types of cancer.



Evading
apoptosis

Sustained Tissue invasion
angiogenesis & metastasis

Figure 1.1: Six hallmarks of cancer. Most cancers
must acquire the same set of functional capabilities
during tumor formation. Adapted from Hanahan
and Weinberg.'

Acquired growth signaling autonomy was the first hallmark of cancer identified
by researchers. In normal cell growth and division, transmission of mitogenic growth
signals (GS) are required to allow cells to move from a quiescent to an active
proliferative state. This is accomplished in three steps: (i) one type of cell makes soluble
proteins, mitogenic growth factors (GF), (ii) these GFs bind to another cell surface
receptor (termed a growth factor receptor), and (iii) this GF receptor-binding event leads
to intracellular stimulatory signals that induces cell proliferation. Cancer cells achieve
GS autonomy via alteration of any of these three steps in mitogenic growth signaling.

Three common molecular strategies for achieving GS autonomy involve alteration
of extracellular GS, GF receptors, or intracellular signaling cascades that transduce the

GS signals into action. Cancer cells can manufacture their own GFs, preventing



dependence on GFs from other cells. Also, the GF receptors, which are often tyrosine
kinases (further discussion of protein kinases activity in cancer will be discussed in
Protein Kinases Section iv), are typically overexpressed in cancers, allowing ambient
levels of GF that normally would not trigger proliferation to bind cancer cell GF
receptors, triggering proliferation. Also, cancer cells may favor expression of
extracellular matrix receptors (integrins) that transmit progrowth signals. Lastly, proteins
that are involved in downstream cytoplasmic circuitry induced by GF receptor binding
are altered in cancer cells. For example, Ras proteins are structurally altered in 25% of
human cancers, and this structural deviation allows Ras to release mitogenic signals
without GF receptor binding.’

The second hallmark of cancer is evasion of anti-proliferative signals, which
maintains cellular quiescence and tissue homeostasis in normal tissue. Much of the
antigrowth signaling is associated with the cell cycle clock. Cells monitor their external
environment during the G1 phase (the first growth period of the cell cycle, where the cell
grows and cytoplasmic organelles are replicated) of its growth cycle, where sensed
signals dictate whether to proliferate, to be quiescent, or to enter into a postmitotic state.
Majority of the anti-proliferative signals are channeled through the retinoblastoma protein
(pRb), and its relatives, p107 and p130. Hypophosphorylation (removal of phosphate
groups) of pRb leads to sequestration with E2F transcription factors, which blocks E2F
activation of genes that promote cell progression from G1 to S phase, thereby inhibiting
proliferation.* pRb is inactivated via phosphorylation by cyclin:cyclin dependent kinase
(CDK) complexes, which leads to cell progression through the G1 phase. The soluble

signaling protein, TGFf, disrupts phosphorylation of pRb by inducing synthesis of



p15™%*® and p21 proteins, which block the cyclin:CDK complexes responsible for pRb

phosphorylation.™ ¢ In this way, TGFp governs the pRb signaling circuit.

In human tumors, the pRb signaling circuit can be disrupted in a variety of ways,’
allowing cancer cells to avoid antigrowth signals. TGFf} receptors may be
downregulated or mutated, causing cancer cells to lose TGFf} responsiveness. The

Smad4 cytoplasmic protein, which transduces signals from TGFB-TGFf receptor

binding, may be mutated, thereby disrupting the TGFB-mediated pRb signaling circuit.”

NK4B may be deleted’ or mutated,'® thereby allowing cyclin:CDK

The locus encoding p15
complex formation. Lastly, the function of pRb may be disrupted via mutation or
sequestration by viral oncoproteins, such as the E7 oncoprotein of human
papillomavirus.'' Through multiple avenues, the pRb antigrowth signaling circuit is
disrupted in a majority of human cancers.

There exists a significant amount of evidence that acquired resistance toward
apoptosis is a third hallmark of all cancer types. There are a variety of physiologic
signals that triggers apoptosis, which unfolds in a precise series of steps, resulting in the
cell being engulfed by nearby cells within 24 hours.'? The apoptotic machinery consists
of sensors whose job is to monitor the extracellular and intracellular environment for
conditions that influence whether a cell should live or die. These sensors signal effector
molecules, which bind either death or survival factors. There are various pathways in
which apoptosis can be initiated, in which we will only discuss two. One pathway
involves the insulin growth factor receptor 1 (IGF-1R). When the sensor molecules sense
normal extracellular and intracellular conditions, the survival factors, IGF1 and IGF2, are

signaled to bind IGF-1R, resulting in downstream antiapoptotic survival signaling.'> '



Another pathway involves the p53 tumor suppressor protein, which upregulates the
expression of Bax (a member of the Bcl-2 family of proteins that has proapoptotic
functions), which then stimulates the mitochondria to release cytochrome C, a potent
catalyst of apoptosis. '

Cancer cells can acquire resistance to apoptosis through different strategies.
Disruption of either pathway briefly described above can disrupt the apoptotic machinery.
Mutation of the IGF-1R can prevent initiation of the antiapoptotic survival signaling
cascade. Also any structural alteration of proteins involved in the downstream
antiapoptotic signaling can disrupt this pathway. For example, the PI3 kinase-AKT
pathway, which transmits antiapoptotic survival signals, is involved in abrogating
apoptosis in several human tumors. The most common way cancer cells develop
resistance to apoptosis is through mutation of the p53 tumor suppressor gene, thereby
preventing apoptosis even when the cell is damaged. Altering the apoptotic machinery is
essential for tumor progression, which can be achieved through various strategies.

In addition to disruption of cell-to-cell signaling as described in the first three
hallmarks, tumor cells must acquire immortality, which brings us to the fourth hallmark
of cancer. Work performed by Hayflick demonstrated that normal cells have a finite
replicative potential.'® Once normal cells progress through a predetermined number of
doublings (approximately 60-70), they stop growing — a process termed senescence.
Senescence can be circumvented through p53 or pRb tumor suppressor proteins, allowing
the cells to continue multiplying until they enter a second state termed crisis.

Massive cell death, end-to-end fusion of chromosomes resulting in karyotypic

disarray, and immortality of 1 in 10" cells are all characterizations of the crisis state.'’



Telomeres, the ends of chromosomes, are used as a counting device for cell generations.
With each cell replication cycle, telomeres become shortened. This erosion of telomeres
disrupts their ability to protect the ends of chromosomal DNA, resulting in the end-to-end
chromosomal fusions yielding the karyotypic disarray associated with the crisis state,
thereby leading to massive cell death.'®

Cancer cells avoid the crisis state through telomere maintenance, which is evident
in almost all types of cancers.'” Most cancer cells (85%-90%) obtain this through
upregulated expression of the telomerase enzyme, which adds hexanucleotide repeats
onto the ends of telomeric DNA.?® Other cancer cells achieve telomere maintenance by
an invented activation mechanism that involves recombination-based interchromosomal
exchanges of sequence information.”' Through either mechanism, the maintenance of
telomeres in cancer cells permits unlimited multiplication of descendent cells.

Extensive and compelling experimental studies suggest that induction of
angiogenesis, the fifth hallmark of cancer, may be an early to midstage event in many
cancers. Angiogenesis, the growth of new blood vessels, is essential for cell survival and
function as it provides oxygen and nutrients to cells. This process is carefully regulated
by positive and negative signals that either encourage or block angiogenesis. There is
over a dozen of growth factors that bind transmembrane tyrosine kinase receptors
displayed on the surface of endothelial cells, inducing angiogenesis-initiating signals.*> >
Alternatively, there are endogenous inhibitor proteins that block angiogenesis.

In addition to soluble factors and their receptors, integrin signaling is also
involved in angiogenesis regulation. Interference with signaling from sprouting

24,25

capillaries, one class of integrins, can inhibit angiogenesis. Extracellular proteases,



proteolytic enzymes, together with proangiogenic integrins, help dictate the invasive
capability of angiogenic endothelial cells.*

Since angiogenesis is critical for cell survival and function, cancer cells have
developed a strategy to induce angiogenesis during tumor progression. Tumors can
activate angiogenesis by shifting the balance between angiogenic inducers and inhibitors
(Hanahan and Folkman, 1996). Increased gene expression of the transmembrane tyrosine
kinase receptors that bind soluble growth factors is one common strategy for this shift.
Another strategy involves downregulation of endogenous angiogenic inhibitors. The
mechanisms involved in shifting the balance between angiogenic inducers and inhibitors
in cancer cells are still not completely elucidated. However, studies have shown how
gene alteration may occur. For example, Dameron et al. found that p53 regulates the
angiogenic inhibitor, thrombospondin-1.*" This loss of p53 function, which is common
in human tumors, would then lead to downregulation of thrombospondin-1, allowing
angiogenesis to take place. There are other examples, which all suggest that cancer cells
use different molecular strategies to activate the angiogenic switch.

The final hallmark of cancer, which depends upon the other five hallmark
capabilities, involves invasion and metastasis. In these two processes, tumor cells
produce cells that move and invade adjacent tissues, thereby succeeding in finding new
colonies. These distant settlements are the cause of about 90% of human cancer deaths.”®
Invasion and metastasis are very complex processes that involve several different
proteins such as proteases, cadherins, cell-cell adhesion molecules (CAMS), and

integrins. While research studies have shown that these protein expression levels are
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altered during tumor invasion and metastasis, the mechanistic role of these proteins
remain incompletely understood.** 2% 2%

With the large number of cancer diagnosis, there are significant efforts to improve
drug discovery against these diseases. Since tumor progression is a complicated multi-
step process, this poses many challenges in treating and preventing cancer. However, due
to the hallmarks involved in cancer, there are several avenues available in targeting
cancer with drug molecules. While the current commonly used treatment aims to kill
cancer cells, even though not specifically, more personalized treatment is becoming more
attractive. Due to our increasing knowledge of how tumors progress at a molecular level,

we are now able to identify particular proteins that are promoting cancer, and specifically

target them with drugs.

(iii) Treatments for Cancer

The landscape of cancer therapies has changed dramatically over the past five
decades. Initially, more classical treatments such as surgery, radiation, chemotherapy,
and endocrine therapy, were used to halt tumor growth. However, as researchers have
elucidated the various molecular features involved in tumor growth (as discussed
previously in Introduction to Cancer Section ii), a more targeted therapy approach has
emerged. While the use of these targeted therapies alone and in combination with the
classical approaches has increased the effectiveness of cancer treatments, due to various
limitations, a need for improved treatments still exist.

Surgery is the primary form of treatment when the cancer is a solid localized

tumor. During surgical procedures, the solid tumor is removed along with surrounding
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normal cells and in some cases, surrounding lymph nodes.** This treatment is extremely
effective in that 100% of the removed cancerous cells are killed.*' However, this does
not guarantee removal of all cancer cells. Also, surgery may not be effective for certain
types of cancers such as metastatic cancers and leukemia, where the cancer is found
throughout the blood and is not a solid localized tumor. Therefore, it is common practice
to perform surgery in combination with radiation and chemotherapy.

Radiation involves the use of ionizing radiation at high doses to kill cancer cells
and shrink tumors. This form of treatment may be used before, during, or after surgery.
Chemotherapy treatment encompasses two classes of drugs: alkylating agents and
antimetabolites, which disrupt biological processes essential for cell division in cancer
cells.*” Specificity and selectivity are major limitations of radiation therapy and
chemotherapy. Both forms of treatment are unable to select for cancer cells only, thereby
affecting normal cells, leading to unwanted side effects.

Endocrine or hormone-based therapies involve the manipulation of the endocrine
system by administering either exogenous hormones or drugs that inhibit the production
or activity of hormones implicated in cancers.”” Endocrine therapy consists of various
medication strategies, and was first applied to breast cancer patients, where ~80% of
breast cancers are hormone-dependent. Selective estrogen receptor modulators (SERMs)
block hormones from attaching to cancer cells; the most commonly used SERM is
tamoxifen which competitively inhibits coactivators from binding the estrogen receptor.
Aromatase inhibitors (drugs that disrupt aromatase enzyme function, thereby inhibiting
estrogen production) have become the state-of-the-art treatment for estrogen-dependent

breast cancer due to their favorable toxicity profile, unlike tamoxifen.** While hormone-
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based therapies have proven more efficacious in comparison to chemotherapy for
example, they are only able to treat cancers that are hormone-dependent, limiting their
use.

Due to the elucidation of the molecular characteristics of cancer cells, new
therapeutic strategies that target these specific molecular features have been developed.
This has led to the era of ‘targeted therapy’, where medicines block cancer cell
proliferation by interfering with molecules (growth factors, signaling molecules, cell-
cycle proteins, apoptosis modulators, and molecules that promote angiogenesis) needed
for carcinogenesis and tumor growth, as opposed to disrupting all rapidly dividing cells
as seen in chemotherapy. The most successful examples of targeted therapies are
chemical entities that target a protein or enzyme that carries some genetic or structural
alteration in cancer cells and not normal cells. These chemical entities may be in the
form of antibodies, small molecules, antiangiogenics, or viral vectors. However, we limit
our discussion to the main categories of targeted therapies, which include monoclonal
antibodies and small molecules.

The first demonstration of successful targeted therapy involved the HER-2/neu
protein, a protein that belongs to a family of four transmembrane receptor tyrosine
kinases that mediate cell growth, differentiation, and survival.* HER-2/neu protein is
overexpressed in 20%-25% of breast cancers.*® The monoclonal antibody, trastuzumab,
received regulatory approval in treating Her-2 + positive breast cancer patients either in
isolation or combination with chemotherapy.

One of the most successful molecular targeted therapeutic is imatinib mesylate

(Gleevec), which is an inhibitor of the kinase BCR-ADI, a protein that promotes
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tumorigenesis in chronic myeloid leukemia.*’ It also inhibits the KIT tyrosine kinase and
platelet derived growth factor receptor-f3 in the treatment of gastrointestinal stromal
tumours and hypereosinophilic syndrome.

While targeted therapies allow us to treat cancer by targeting specific molecules
that are altered in cancer, there still remain limitations with these targeted approaches.
For starters, obtaining drug selectivity may be challenging for certain protein classes that
have similar active sites. For example, different protein kinases have high sequence
conservation and similar architecture, thus achieving drug selectivity is a major challenge
in the design of protein kinase inhibitors. Therefore, the drug may bind additional off-
target proteins, leading to adverse side effects. Drug resistance is another challenge
where the targeted protein may develop novel mutations. For example, p5S3 cancer

451 These new

mutations are the most common genetic event in human cancer.
mutations will shift the structure of the drug target, thereby preventing the drug from
binding. The use of computational tools and models can overcome these limitations by
allowing us to understand the dynamic properties of drug targets at an atomic level, and
using this information in designing drug molecules.

Computational methods such as molecular dynamics (MD) simulations can use a
3-dimensional structure of the drug target and apply physics-based principles to simulate
the target through time. We can use this dynamics information to enhance drug
selectivity. While the structural architecture of protein kinases for example may be
similar, their dynamic characteristics should differ and may even reveal novel pockets to

target with drugs that are specific to one particular protein kinase. Computational

approaches can also model mutant forms of proteins that yield drug resistance. MD
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simulations can be performed on both the normal wildtype and mutant forms of a drug
target such as p53. These MD snapshots can reveal unique mutant conformations, which
can be used in drug discovery methods targeting these drug resistant mutants. Later in
Section (iii) of Molecular Dynamics Applied to Biological Macromolecules, there will be
more detailed discussion on the use of MD simulations in modeling protein dynamics and
its application to drug discovery.

This dissertation work focuses on two important classes of enzymes that are
heavily involved in tumorigenesis: protein kinases and p53. Protein kinases
phosphorylate substrates in several cellular processes, many of which are processes that
are impacted in tumorigenesis. Therefore, protein kinases are the most sought-after
targets for cancer treatments.’> The ‘guardian of the genome’ as it is commonly referred
to as, p53, functions as a tumor suppressor. It is the most frequently mutated gene in
human cancer, highlighting its potential as a cancer drug target. Both of these cancer
targets will be discussed in detail next, highlighting their biological function, structure,
and implication in cancer. Proceeding discussion of protein kinases and p53, the role of
computational modeling in understanding their dynamic behavior and its application to

drug discovery efforts will be presented.
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Protein Kinases

(i) Biology of Protein Kinases

Protein kinases are a large and diverse class of proteins that mediate most of the
signal transduction in eukaryotic cells via phosphorylation of substrates (Figure 1.2).>
Adenosine triphosphate (ATP)-mediated phosphorylation occurs on tyrosine, threonine,
and serine residues, with tyrosine being the dominant phosphorylation site.* Through
modification of substrate activity, protein kinases control many cellular processes
including: metabolism, transcription, cell cycle progression, cytoskeletal rearrangement
and cell movement, apoptosis, and differentiation.” Protein phosphorylation also plays a
role in intercellular communication during development, physiological responses and in
homeostasis, and in the nervous and immune systems. There exists a large amount of

studies on protein kinases, as they are among the largest families of genes.”®®
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Figure 1.2: Schematic of ATP-mediated phosphorylation of protein kinases. First, an ATP
molecule binds the active site of the protein kinase (1). The protein substrate binds near the
ATP-binding site, where the y phosphate group from ATP is transferred to either a threonine,
tyrosine, or serine residue on the protein substrate (2), resulting in a phosphorylated protein
substrate and adenine disphosphate (ADP)-bound protein kinase (3).
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(ii) Structure of Protein Kinase Domain

The canonical protein kinase domain contains approximately 250 amino acids, is
highly flexible, and consists of two lobes.®’ The lobe located at the N-terminus (N-lobe)
and the other lobe at the C-terminus (C-lobe) is separated by a cleft that contains the
catalytic site, where ATP binding and phosphate transfer takes place (Figure 1.3). There
is a short linker known as the hinge region between the two lobes, which forms
hydrogen-bonding interactions with the adenine ring of ATP. This overall spatial
architecture and general function of protein kinases is highly conserved across all

families of protein kinases.

N-lobe

Asp1150
Phel151

Tyr1158

Active insulin receptor kinase Inactive insulin receptor kinase

Figure 1.3: Structure of the eukaryotic protein kinase domain. The conformation of the active
(PDB 11R3) and inactive (PDB 1IRK) states of the insulin receptor kinase are shown. The
kinase domain is depicted as a silver ribbon, with the C-helix, P-loop, hinge region, catalytic
loop, and activation loop highlighted in yellow, red, orange, blue, and purple respectively. The
binding of an ATP analog, adenylylimidodiphosphate (AMP-PNP), is shown in green sticks in
the active conformation. The DFG motif is shown as purple sticks, where its orientation is away
from the ATP-binding pocket in the active state and flipped into the ATP-binding pocket in the
inactive state. The dashed lines indicate the salt bridge between Glul1047 in the C-helix and
Lys1030 in the p3-strand. Modified from Duong-Ly and Peterson.>
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The smaller N-lobe is made up of mostly beta strands (f1-p5), with one long
alpha helix, known as the C-helix (Figure 1.3). Experimental site-directed mutagenesis
studies suggest that protein-protein interactions take place in this region.”> p strands 1
and 2 contain the conserved glycine-rich sequence, which is commonly termed the
phosphate-binding loop (P-loop). The P-loop coordinates one of the ATP phosphates,
and is thought to contribute in several ways to protein kinase function.”> There is a salt-
bridge between a glutamic acid residue (Glu) at the beginning of the C-helix and a lysine
residue (Lys) in the B3-strand that is conserved in the active conformation, and missing in
some inactive conformations of protein kinase crystal structures. Protein kinases are
most sensitive to mutations of this Lys residue, which contains the a- and -phosphoryl
groups of the bound ATP.** %

The larger C-lobe is predominately o helical, and contains residues that form
interactions with the phosphate acceptor (Figure 1.3). There are several residues that
interact with the triphosphate group of ATP in this lobe. The catalytic loop (residues 165
to 171 are directly involved in catalysis) is located between f strands 6 and 7, and forms
the base of the active site. The C-lobe also contains the activation loop, which is flanked
by the conserved DFG (Asp184-Phel185-Gly186) moiety, which can adopt a ‘DFG-in’ or
‘DFG-out’ conformation (Figure 1.3). Protein kinase inhibitors are classified based on
the conformation the DFG moiety adopts when the inhibitors are bound (further
discussion of inhibitor types will take place in Section iv).

The Asp184 in the DFG motif is one of the most important residues for catalysis.

It is a coordination ligand of a magnesium ion, which positions the phosphate groups of
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ATP for catalysis. The DFG phenylalanine forms hydrophobic contacts with the C-helix
and the His-Arg-Asp (HRD) motif (conserved motif throughout the protein kinases
family) in the catalytic loop. The DFG phenylalanine is also a member of the
hydrophobic spine (Leul06-Leu95-Phel85-Tyr164), which is ordered in the active
conformation and disordered in the inactive conformation of protein kinases (Figure
1.4).%° The DFG glycine is highly conserved across protein kinases, and Kornev et al has
shown that this residue acts as a bi-positional switch that reorients the DFG aspartate into

. . . .. 66
active and inactive positions.

Figure 1.4: Assembly of the hydrophobic “spine” in
active kinases. Alignment of the hydrophobic spine,
which consists of four residues corresponding four PKA
residues, L95, L106, Y164, and FISS, are shown. Adapted
from Kornev et al.*’
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(iii) Human Kinome
A comprehensive genomewide study found that there are ~518 protein kinases in

68,69 that make

humans,®” comprising ~1.7% of the human genome, and ~20 lipid kinases
up the human kinome. Of the protein kinases, 478 contain a eukaryotic kinase (ePK)
domain and the 40 remaining kinases are classified as atypical protein kinases (aPKs)
because they lack sequence similarity to the ePK domain, but they have kinase activity.®’
The ePKs are classified into eight major groups (Figure 1.5): (i) tyrosine kinases (TK),
(i1) protein kinases A, G, and C (AGC), (iii) cyclin-dependent kinases (CDKs) and CDK-
like kinases (CMGC), (iv) serine/threonine kinases (TKL), (v) kinases homologous to
yeast proteins STE20, STE11, and STE7 (STE), (vi) casein kinase 1 and homologous
kinases (CK1), (vii) kinases involved in calcium signaling (CAMK), and (viii) receptor
guanylyl cyclases (RGC), in which this dissertation focuses on protein kinases within the
first three kinome groups.

The TK group consists of receptor tyrosine kinases (RTKs) and cytosolic tyrosine
kinases. RTKs are transmembrane proteins, with an extracellular domain that binds
ligands that transmit signals across the cell membrane into the cytoplasm. Examples of
RTKs include the insulin receptor (IR) and the closely related insulin-like growth factor 1
receptor (IGF1R), the human epidermal growth factor receptor (HER/EGFR), the
platelet-derived growth factor receptors (PDGFRs), and the fibroblast growth factor
receptors (FGFRs). All of these RTKs have been associated with cancer progression,
where alteration of these RTKs allows cancer cells to acquire growth-signaling autonomy

(recall the first hallmark of cancer identified in Introduction to Cancer Section ii). The

remainder of the TK is made up of soluble protein kinases in the cytoplasm. Examples
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include Src (the first identified protein kinase), Abl, and JAK kinases. It is important to
note that the TK group, specifically RTKs, contains majority of the drug targets that have

inhibitors on the market.

TKL
RGC b
/ ) | -

CMGC . /.

CK1

AGC

Figure 1.5: The eukaryotic protein kinase (ePK) protein kinome
tree. Human ePK’s are classified into 8 groups based on
sequence similarity in the kinase domain, which are colored by
group. Adapted from Duong-Ly and Peterson.™

The AGC group is named after the enzyme families, protein kinase A (PKA),
protein kinase G (PKG), and protein kinase C (PKC).”” These enzymes are
serine/threonine kinases regulated by cyclic adenosine monophosphate (cAMP) or lipids.
A member within this group include AKT (PKB) kinases, which are particularly
important for regulating cell growth, proliferation, protein synthesis, glucose metabolism,

and survival.
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The CMGC group is a diverse group of kinases. This includes the cyclin-
dependent kinases (CDKs) and CDK-like kinases, which are central regulators of cell
cycle progression. Since the second hallmark of cancer involves evasion of anti-
proliferative signals (discussed in Introduction to Cancer Section ii), genetic or structural
alteration of CDKs can promote tumorigenesis.' Also included in this group are the
mitogen-activated protein kinases (MAPKs), which are involved in cell proliferation,
differentiation, and apoptosis. Therefore, mutation of these enzymes will allow cancer
cells to develop resistance towards apoptosis (refer to third hallmark of cancer in
Introduction to Cancer Section ii). Lastly, the CMGC also consists of glycogen synthase
kinases (GSKs), which are involved in inflammation and glycogen metabolism.

The TKL group consists mostly of serine/threonine kinases. They are named
tyrosine kinase-like because they have sequences resembling those of the TK group. This
group also contains receptor and non-receptor (cytosolic) protein kinases. Examples of
protein kinases within this group include the interleukinl (IL1) receptor-associated kinase
and the transforming growth factor beta (TGFf) receptors.

The STE group comprises kinases that are homologous to the yeast proteins
STE20, STE11, and STE7. Members within this group include the p21-activated kinases
(Paks), which are critical regulators of diverse signaling pathways.

The CK1 group includes casein kinase 1 and homologous kinases. These protein
kinases are also serine/threonine kinases that are constitutively expressed. They
phosphorylate a diverse array of substrate molecules involved in cytoskeletal function

and transcriptional regulation.
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Kinases in the CAMK group are involved in calcium signaling and are basally
auto-inhibited. Examples of kinases in this group includes the cell cycle checkpoint
kinases, CHK1 and CHK2, which initiate a phosphorylation cascade leading to cell cycle
arrest and repair of damaged DNA.

The smallest kinome group, RGC, is the receptor guanylyl cyclases. These
kinases convert guanosine triphosphate (GTP) to cyclic guanine monophosphate (GMP).
These kinases are termed pseudokinases because they lack certain residues that are
critical for phosphate transfer.®’

Classification of kinases into the human kinome reveals how these enzymes are
involved in a diverse array of cellular processes, most of which prevents transformation
of normal cells to cancer cells. Therefore, protein kinases are commonly altered in some

manner in various types of cancers, making protein kinases an important drug target.

(iv) Implication in Cancer

Due to their role in so many cellular processes, it is not surprising that abnormal
phosphorylation can lead to the hallmarks of cancers,’”'”” cardiovascular diseases,
neurodegenerative diseases,”” inflammatory diseases,”® '’ and diabetes.”® The Cancer
Gene Consensus (a literature-based consensus of genes that are mutated and causally
implicated in cancer development) revealed that protein kinases were the most common
protein domain encoded by cancer genes, with 27 of the 291 cancer genes encoding
protein kinases.” Consistently, an analysis of the US Food and Drug Administration
(FDA)-approved drugs since the 1980s indicated that kinases have surpassed GPCRs, a

common important cancer drug target, as the most sought-after targets for cancer
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treatment.’”> To date, the U.S. Food and Drug Administration has approved 27 small
molecule protein kinase inhibitors and 1 lipid kinase inhibitor.** These small molecule
protein kinase inhibitors can be classified into two broad categories for inhibition type:
ATP-competitive inhibitors and non-ATP-competitive inhibitors.

ATP-competitive inhibitors are kinase inhibitors whose potency depends on ATP
concentrations, and are further classified as type I or type II inhibitors.*' Type I
inhibitors bind to the protein kinase active DFG-in conformation whereas type 11
inhibitors bind the inactive DFG-out conformation.*> These inhibitors may contain a
group that mimics the adenosine base of ATP, as seen in the type I inhibitors, erlotinib
and gefitinib, which target EGFR. An example of a type II inhibitor is imatinib
(previously discussed in Introduction to Cancer Section iii), which occupies the adenine
pocket of the ATP binding site and a back hydrophobic pocket.

Non-ATP-competitive inhibitors potency does not vary with ATP concentration
because they bind an allosteric site. Many of these allosteric inhibitors bind to regions
outside of the kinase domain and regions unique to a particular kinase. Therefore, non-
ATP-competitive inhibitors are often more selective than ATP-competitive inhibitors.

Although drug discovery for protein kinases has achieved a great deal of success,
several significant challenges remain in the development of future drugs. First,
evolutionary pressure results in the accumulation of point mutations in the kinase
domain, which compromises inhibitor potency and leads to long-term drug resistance.*
Second, the conserved architecture of the kinase domain within a class of protein kinases

76, 84

makes obtaining selectivity a challenge. Third, the current kinase inhibitors on the

market only covers a small subset of the human kinome, with 18 of the 27 approved
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drugs covering only three out of more than 90 groups of tyrosine kinases, BCR-Ab],
ErbBs, and VEGFRs. Given these shortcomings, and the importance of the target, there
is a need to improve kinase drug discovery, where optimizing the enrichment of actives
in virtual screening (VS) methods by using ensemble docking is one important avenue
and one focus of this dissertation (virtual screening will be discussed in more detail in
Section iii of “MD Applied to Biological Macromolecules”). In this work, six different
protein kinases are used as a case study to determine the impact of using ensemble

docking in enhancing VS performance against protein kinases.

(v) Protein Kinases in Study

Herein this dissertation, a case study of six protein kinases that span three kinome
classes, CMGC, AGC, and TK, are utilized in benchmarking VS performance. We
generate ensembles from molecular dynamics simulations in order to incorporate protein
kinase dynamics into virtual screens. The utility of MD simulations in integrating protein
dynamics into the drug discovery pipeline will be further discussed in Section iii of
Molecular Dynamics Applied to Biological Macromolecules.

The mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2;
MAPKAP2) has emerged as a desirable target for safe anti-inflammatory drugs. MK2
belongs to the CMGC kinome family.®” MK2 is one of several kinases directly

phosphorylated and activated by the p38 MAP kinase. The activated MK2 activates

85-87 88-91

substrates in both the nucleus, " and cytoplasm. Through these phosphorylation

events in the nucleus and cytoplasm, MK2 is involved in several cellular processes

25



including stress and inflammatory responses, nuclear export, gene expression regulation,
and cell proliferation.

Cyclin-dependent kinase 2 (CDK?2) is also found within the CMGC kinome
class.”” CDKs are involved in cell cycle progression and transcription. CDK2 is a
catalytic subunit in the CDK complex, whose formation is required to allow cells to
progress from the G1 to S phase. Cyclin E binds CDK2, which allows cells to transition
from G1 to S phase, and binding of cyclin A allows cells to progress through the S
phase.*** Since alterations in cell checkpoint regulation can lead to aberrant cell division,
CDK2 is an attractive target for therapeutics designed to arrest or recover control of the
cell cycle, such as cancer and Alzheimers disease.” ™

Rho-associated protein kinase 1 (ROCKI1) is a member of the AGC kinome
family.®” ROCKI is activated when GTP-bound RhoA” binds it, and is involved in
cytoskeleton assembly and cell motility and contraction. Activated ROCK1 regulates the
activity of muscle myosin regulatory light chain (MLC) protein via direct

phosphorylation”®*’

and by phosphorylation and inhibition of the myosin binding subunit
of myosin phosphatase. This in turn leads to increased levels of phosphorylated MLC
and subsequent muscle contraction.” ROCKI is also involved in nonmuscle myosin
regulation and has been implicated in stress fiber and focal adhesion formation,” neurite

retraction,'* and tumor cell invasion.'"'

ROCKI1 has several therapeutic indications

including, cancer,'* ' hypertension,'** atherosclerosis,'”” and immunosuppression.'
Protein kinase B (PKB or AKT) is also a member of the AGC kinome class.®’

AKT is a key player in the phosphoinositide3-kinase (PI3K) —AKT signaling pathway.

AKTT1 is activated via 3-phosphoinositide-dependent protein kinase 1 (PDK1)
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phosphorylation at the plasma membrane. Activated AKT]1 leads to activating a large
number of substrates'’” involved in cell growth, proliferation, motility, and survival'®.
The PI3K-AKT signaling pathway is one of the most frequently deregulated signaling
pathways in human cancers and has been shown to mediate resistance of therapeutics.'”

Insulin-like growth factor-1 receptor (IGF-1R) is a member of the TK kinome
class.”” The IGFIR is a transmembrane receptor that is activated by the insulin-like
growth factor 1 (IGF-1) hormone with high affinity, and a related hormone called IGF-2
and insulin with lower affinity. Activated IGF-1R activates several downstream cell-
signaling cascades in the Ras/Raf/MAPK, PI3K/AKT pathways,''*''® and JAK/STAT
pathway''’. Activation of the MAPK pathway induces cellular proliferation, and
PI3K/AKT pathway inhibits apoptosis and stimulates protein synthesis. Activation of the
JAK/STAT pathway via phosphorylation of Janus kinases phosphorylates and activates
signal transducers and activators of transcription (STAT) proteins.

The Abelson murine leukemia viral oncogene homolog 1 (ABL) non-receptor
tyrosine kinase is found within the TK kinome class.’” Phosphorylation of ABL1 via cell
division cycle protein 2 (CDC2) allows ABLI to bind DNA, suggesting a role in the cell

118
cycle.

Phosphorylation of nuclear and cytoplasmic substrates implicates ABL1 in cell
differentiation, cell division, cell adhesion, and stress response.119 ABLI1 contains an
SH3 domain that negatively regulates it activity. Deletion of the SH3 domain turns
ABLI into an oncogene, a gene that has the potential to cause cancer.'*’ For example,
the ABL1 (deleted SH3) may fuse with the breakpoint cluster region (BCR), leading to a

fusion gene, BCR-ABLI, which is present in many cases of chronic myelogenous

. 121
leukemia.'
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Tumor Suppressor, p53

(i) Biology of p53

The tumor suppressor p53 responds to several environmental stressors and induce
either the expression or activation of proteins involved in stress response pathways
(Figure 1.6). Under normal unstressed conditions, p53 exists in low concentrations
through rapid ubiquitination and degradation via the E3 ubiquitin ligase, mouse double
minute protein 2 (MDM2)."**"2® A homolog of MDM2, MDM4, also serves as a
negative regulator of p53.'*” Also, p53 mainly exists as a monomer (~30%) or dimer

(~60%) under normal cellular conditions.'*®
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Figure 1.6: Summary of the p53 pathway.'” p53 is at the center of the stress response pathway.
Under normal unstressed cellular conditions, p53 is targeted for ubiquitination by MDM?2 and
MDM4. When the cell becomes stressed via DNA damage, UV radiation, or oncogene
upregulation, the p53 complex with MDM?2 and MDM4 is blocked, and p53 is upregulated.
Upregulation of p53 leads to activation or expression of signaling molecules involved in stress
in the stress response pathway, such as growth arrest, apoptosis, inhibition of angiogenesis,
translation, and DNA repair.

When the cell experiences DNA damage, stress, or expression of oncogenes, the

MDM2 interaction with p53 is disrupted (Figure 1.6). Several protein kinases are up
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regulated and extensively phosphorylate the N-terminus of p53, which destabilizes p53
interaction with MDM2."%**! This blocks proteosomal degradation of p53, leading to up
regulation of p53. This increase in concentration shifts p53 monomers and dimers into a

128

tetrameric state (>90%). = p53 can then activate stress response signals through either

non-transcriptional or transcriptional pathways (Figure 1.6)."*

While p53 can engage in direct protein-protein interactions in inducing stress
response pathways, for example interactions between p53 and the apoptotic effector
protein BAX;** '** majority of the p53-regulated stress responses occur through p53-
directed activation of transcription. The genes activated by p53 range from those that
activate apoptosis via p53 interactions with Bax and PUMA DNA response elements, to
genes that induce senescence, cell cycle arrest, and DNA repair via interactions with p21,
GADDA45, PML, and PCNA response elements.”™ '** The negative regulator, MDM2, is
also included in the DNA response genes activated via p53, whose function is to down
regulate p53. The mechanism by which p53 searches and recognizes its response
elements remains a topic of debate.'”> " Studies suggest that in addition to the DNA

binding domain, the C-terminal domain also plays a role in DNA search and recognition,

which will be discussed in more detail next in Section ii.
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(ii) Structure of p53

The full-length p53 protein (fl-p53) is a multi-domain, partially intrinsically
disordered protein that binds DNA as a tetramer.">’ F1-p53 consists of 393 amino acid
residues that form a flexible N-terminal domain (NTD), a core DNA binding domain
(DBD), a flexible linker region, a tetramerization domain (TET), and a flexible C-

terminal domain (CTD) (Figure 1.7).

COOH

1 94 294 323 360 393

Figure 1.7: Structure of full-length p53. Each fl-p53 domain is shown in ribbon
representation and colored cyan, purple, black, green, and red for the NTD, DBD,
linker, TET, and CTD respectively (a). A simplified schematic representation of
each domain is shown, with the mutation frequency within the DBD shown; the
six hotspot mutations are labeled (b).
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The first 94 residues comprise the highly dynamic NTD. Within the NTD, the
transactivation domain (residues 1 to 61) is responsible for activating transcription factors
and interacts with a wide variety of p53 targets.”®'* Specifically, the NTD contains two
amphipathic subdomains, termed AD1 and AD2, where p53 target proteins bind in a ‘fly-
casting’” mechanism'*® (describes how a disordered protein binds weakly and non-
specifically to its target and folds as it approaches the cognate binding site).'*” '**
Following the transactivation domain, the proline rich domain (PRD) comprises of
residues 62 to 94. The PRD contains a series of PAAP repeats, where the amino acid
composition is poorly conserved between species, but the overall length is conserved.
Mouse model studies of p53 have suggested that the PRD plays a role in apoptosis.'*
The C-terminal region of the PRD (residues 90-94) forms stable intramolecular
interactions with the DBD, which helps stabilize the p53 DBD and decrease aggregation
propensity. '

Following the NTD is the DBD (residues 95 to 294), which is the largest p53
domain, and has a defined secondary and tertiary structure. Due to this discrete fold
within the DBD, there are many available crystal and NMR structures that reveal a well-
defined B-sandwich fold that contains two large loops and a loop-sheet-helix motif."*"'**
The DBD is the primary DNA interaction site of p53, binding DNA cooperatively to

DNA response elements with a 4:1 p53:DNA stoichiometry.>* '

Response elements
are comprised of two 10-bp half-sites with the sequence, RRRCWWGYY'Y, where R is
adenine or guanine, W is adenine or thymine, and Y is cytosine or thymine.'”® The fl-p53

. . . . 15
tetramer is a dimer of dimers and each monomer binds to a pentamer repeat.'>’
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Within the DBD, sequence-specific DNA contacts are made through hydrophobic
and electrostatic interactions. Residues in the L1 loop (Lys 120), S2, S2°, and S10 -
strands, and the H2 helix contacts the major groove of DNA.'*"°!-1* Residues in the L3
loop (Ser 241 and R248) interact with the minor groove of the DNA, which is stabilized
by a zinc ion that is situated between loops L2 and L3. While the L2 loop does not
engage in direct DNA contacts, it stabilizes the L3 loop-DNA contacts via salt-bridges
and the zinc ion, which is coordinated by residues from the L2 and L3 loops. Several X-
ray crystal and electron microscopy (EM) structures have shown that the DBD tetramer
binds on the same side of the DNA.

p53 binds specific response elements with low nanomolar affinity;'>> 1> 198160

however, binding affinities to non-specific DNA are an order of magnitude higher."”> '>°
This suggest that the interactions between the DNA response elements and p53 DBD are
crucial. Interestingly, the DBD contains majority of the p53 mutations found in human
tumors (Figure 1.7).'°" Therefore, the DBD holds the key to understanding how p53
binds DNA, and how tumorigenic mutations disrupt this DNA binding.

Located between the DBD and TET domains in p53 is a disordered linker region
that comprises residues 295 to 322, and contains the dominant p53 nuclear localization
signal (NLS)."?* 1% 16 The NLS consists of residues 316-322 and 304-305.'® Three
Lys residues within the NLS (319-321) are ubiquitinated under normal unstressed cellular

164

conditions, which inhibits p53 nuclear import. ™ When the cell becomes stressed,

ubiquitination is blocked as a result of the disrupted p53:MDM2 interaction, which then

allows p53 nuclear import.'** '
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Following the linker region is the TET domain, which consists of residues 323-
360, and contains a short N-terminal 3-strand followed by a a-helix. The TET subunits
associate in forming the tetrameric p53 state. Due to its stable fold, the TET domain has

1171 Each TET subunit assembles

been well characterized by NMR and X-ray studies.
as a dimer of dimers through strong anti-parallel association of the -strand and the a-
helix, with a Kp of 500 pM.172 Both dimers further interact to form a tetramer of D2
symmetry through hydrophobic contacts, with a Kp of ~50nM.'"*

The last 32 residues (361-393) of fl-p53 make up the CTD, a highly dynamic
domain that engages in p53 target protein and DNA interactions."”> '*” Under stable
cellular conditions, the CTD is ubiquitinated via p53 NTD:MDM2 interactions, inducing

p53 down regulation and degradation." '** 17

In response to the cellular stress
response, disruption of the p53 NTD:MDM2 interactions leads to decreased CTD
ubiquitination, leading to up regulation of p53 and activation of proteins involved in
stress pathways. During p53-mediated transcriptional activation, the CTD is involved in
extensive DNA interactions.'*” '7*17

While experimental studies have shown that the CTD plays a role in p53-DNA
binding, the exact role of the CTD has remained controversial.'”® Initial studies
suggested that the CTD acts as a negative regulator by blocking DBD tetramers from
binding DNA.""'® Contrarily, further research suggested that the CTD promotes
binding to both linear and non-linear DNA, suggesting a positive regulator role for the
CTD."?> 1 181186 One study proposed a search and recognition binding mode for DNA,
in which the CTDs facilitate target search by sliding along the DNA making non-specific

interactions, while the DBDs engage in frequent association and dissociation.'®" ' 1% n
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addition, computational studies of the fl-p53 bound to three different DNA response
elements revealed that positively-charged residues (Lys and Arg) within the CTD
approached and directly contacted the DNA independent of the response element.' ™
Interestingly, experimental studies where Lys residues within the CTD (372, 373, 381,
382) were acetylated showed decreased DNA binding by the isolated CTD in vitro,'”

providing further evidence for CTD’s positive regulation in p53 DNA binding.

(iii) Implication in Cancer

With more than a thousand p53 mutations in human tumors, it is now widely
accepted that p53 mutations are the most common genetic event in human cancer.**”"!
The majority of these p5S3 mutations (>90%) occur in the DBD in which there exist six
hotspot mutations (R175, G245, R248, R249, R273, and R282) that occur at an unusual
high frequency (Figure 1.7)."" '*1° While wildtype p53 has a short-lived half-life,

Pl The effect of each mutant is different, and why

mutant p53 has a pro-longed half-life.
tumors select for one mutation over another is still unclear. However, p53 mutants are
broadly categorized into two classes.'”> One class of mutations is contact mutants, which
involves residues that directly contact DNA, and loss of the contact leads to disrupted
DNA binding. The other class of mutations is structural mutants, which includes residues
that are important for the stable folding of the DBD, and loss of DNA binding is due to
structural defects.

The best example of a structural mutant and the focus of this dissertation is the

R175 mutation because R175 plays a critical role in stabilizing loops L2 and L3, which

contain residues that make crucial DNA contacts. Several experimental studies suggest
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that the R175 mutants are unfolded. One study found that R175 mutants associate with
heat shock protein, hsp70, suggesting their partial denaturation.'”® Also, R175 mutants
bind an antibody, Pab240, which recognizes mutant p53 or denatured p53 and not

wildtype p53."*

The mutant epitopes within the DBD are buried in wildtype p53;
therefore, denatured p53 recognizes the Pab240 antibody. Third, R175 mutants are very
sensitive to proteolytic enzymes, unlike wildtype p53.">'*® Lastly, fusion proteins
containing the full-length R175 mutant and DBD of GAL4 does not activate
transcription, suggesting long-range denaturation effects in the NTD transactivation
domain."”’

The actual mechanism of the pro-oncogenic effects of p53 mutants may vary, in
which three are proposed.'”® First, tumors may select for p53 mutations that solely result
in the loss of p53 tumor-suppressive functions. Second, p5S3 mutations may result in the
loss of certain p53 tumor suppressive functions, while retaining or exaggerating other
aspects of wildtype p53 function. Lastly, p53 mutants may acquire novel p53 functions
that specifically promote tumorigenesis; this neomorphic activity describes p5S3 mutations
gain-of-function abilities. Mutant p53 can acquire additional functions to promote cancer
progression through both non-transcriptional and transcriptional interactions.

Mutant p53 can form aberrant protein complexes with several proteins. The most
widely studied mutant p53-interacting partners include the p53 family members, p63 and
p73. Several studies showed that mutant p53 forms heterotetramers with p63 and p73,"””"
2% and this heterotetramer formation has been linked to promotion of chemoresistance,

204-206

migration, invasion, and metastasis. This was quite surprising as wildtype p53 is
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unable to form heterotetramers with neither p63 nor p73,%"’ suggesting that the gain-of-
function of mutant p53 leads to inhibition of p63 and p73.

In addition to non-transcriptional mediated gain-of-function activities, mutant p53
has also been shown to transactivate genes involved in many different aspects of

191, 198,208 "£or example, mutant p53 can transactivate genes that promote

tumorigenesis.
proliferation of cancer cells, IGF-1R for example (From Freed-Pastor paper: Werner et al.
1996). Mutant p53 can also upregulate genes that inhibit apoptosis or promote

204,209218 411 of which can inhibit cell death of cancer cells.

chemoresistance,
(iv) p53 Drug discovery
In vivo studies have shown that reactivation of wildtype p53 in p53-null or p53

mutant tumors are sufficient to regress tumor progression.”'” >

Therefore, multiple
approaches to restore wildtype p53 in tumor cells are being utilized in developing
therapies. One strategy involves developing small molecules that block p53 interaction
with its negative regulators (MDM2 for example) and block the activity of cellular
factors that inhibit wildtype functionality, leading to upregulation of wildtype p53 in
tumors.”****" Another approach includes gene therapy, where wildtype p53 is delivered
to tumors.”>***” An alternative therapeutic approach includes small molecules that
specifically reactivate mutant p53 to wildtype conformation or destabilize mutant p53.
The first example of a small molecule that specifically targeted mutant p53 was
CP31398, which induces expression of canonical p53 target genes or drive expression

from a p53 reporter construct in cells expressing mutant p53, impairing tumor growth.**®

However, this molecule was later found to intercalate DNA instead of binding mutant
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p53.7* The most well advanced example of a small molecule that specifically targeted
mutant p53 is PRIMA-1, which reactivates missense mutations of p5S3 which regains
some wildtype functions of p53 and halt tumor growth.>***! PRIMA-1 is currently in
clinical trials as a treatment for ovarian and myeloma cancers.>

In addition to binding mutant p53 in order to reactivate wildtype p53 function,
another approach to targeting p53 in human cancers involves designing small molecules
to destabilize mutant p53 gain-of-function conformations. One example of destabilizing
mutant p53 is to disrupt the p53:p63/p73 interaction, which has been implicated in many
pro-oncogenic effects of mutant p53. An example of such a small molecule is RETRA
(reactivation of transcriptional reporter activity), where studies have shown that it blocks
mutant p53 interaction with p73, and prevents xenografted tumor cell growth.”> Another
approach in destabilizing p53 mutants involves inhibiting factors that function to stabilize
mutant p53 in tumors, such as HDAC6 or Hsp60.2***

The last therapeutic approach that will be discussed and applies to this dissertation
work involves developing a structure-based ‘mutant-specific’ drug. For example,
PhiKan083 is small molecule that binds the C-terminus of the Y220C p53 mutant, which
stabilizes the DBD and restores transactivation of p53 target genes.”® Another example
involves Stictic acid, which has been shown to reactivate the R175H p53 mutant in both
in vitro and in vivo studies.”’ The utility of these small molecules as actual drugs are
still being explored. However, both provide excellent proof of principles for rational
drug discovery targeting specific p53 mutants.

While there are multiple avenues being explored in developing therapies for p53,

there still exist major challenges. For starters, there are not experimental structures for
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most p53 mutants, especially structural mutants. In the case of the Y220C mutant, there
are multiple crystal structures of the Y220C p53 mutant, which was used in the design of
PhiKan083 as discussed previously. However, for other mutants such as R175H, no
experimental structures are available due to the denaturation effects of this mutant.
Although experiments do in fact show reactivation of the R175H mutant to wildtype after
Stictic acid binding, we are not entirely clear if and how Stictic acid binds the R175H p53
mutant. Second, we don’t fully understand the dynamic behavior of p53 mutations and
how their dynamic behaviors differ from wildtype p53. Delineating the dynamic
characteristics of both wildtype and mutant p53 will allow us to target specific
conformational states explored by the mutant and not wildtype with drug molecules.
Third, we still do not understand the p5S3-DNA binding mechanism under normal
wildtype p53 conditions at a molecular level. Therefore, we do not understand how this
DNA binding mechanism is disrupted as a result of p53 mutations. Computational
studies have revealed a clamping and symmetric quaternary binding mode of the DBD’s

when binding DNA response elements.'”

In this dissertation, I aim to understand how
p53 cancer mutations, R175H specifically, alters this DNA binding mode in aiding in the
development of future p53 reactivation molecules. Molecular dynamics is used to

explore and compare wildtype and R175H mutant fl-pS3 dynamics. The theory and

application of molecular dynamics is discussed in more detail next.
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Molecular Dynamics Applied to Biological Macromolecules

(i) Protein Dynamics

Proteins do not function as static systems, but are dynamic.Bg'241 In fact, Weber
characterized proteins as “screaming and kicking”.*** Protein dynamics are represented
as an ensemble in an energy landscape, which describes the potential energy of a protein
as a function of the conformational coordinates of a protein (Figure 1.8).** Each basin
represents a ‘conformational substate’ or ‘microstate’ that the protein hops between at
any given moment. Protein motions can be defined as transitions between these

microstates, and the energy barrier between different microstates determines the

transition rate between microstates.

Free Energy

Conformational coordinate

Figure 1.8: Example free-energy landscape of proteins. Each basin represents
different microstates, where minima correspond to well-defined, stable states, and
maxima reflect short-lived transition states. The height of the activation energy
barriers is proportional to the timescale that is necessary to transition between
microstates. The volume of the red spheres depicts the hypothetical population of
conformers. Extracted from Gobl and Tjandra.**!
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Protein motions are directly related to the function of proteins, permitting ligands
to bind a protein, substrates to reach the active center of enzymes, and catalytic groups to
come together.*****” Chemical modifications and mutations of proteins can affect the

populations of their ensemble.*****!

Many experimental techniques allow us to study
protein motions, where X-ray crystallography and nuclear magnetic resonance (NMR)
provide information about protein fluctuations with atomistic resolution.

X-ray crystallography is commonly used for atomistic structure determination of
well-folded biomolecules. Dynamic information about a protein can be provided via
protein crystallization of two endpoints of a reaction, such as the unbound and ligand-
bound state of a protein. The crystals of both protein states would allow a linear
interpretation of rearrangements that take place during ligand binding. While X-ray
crystallography provides atomic level resolution of protein structures, where dynamic
information can be inferred, nuclear magnetic resonance (NMR) spectroscopy reveals
both the structure and dynamics of proteins. NMR measures both internal distances
between atoms and atomic motions in a protein using the nuclear spin magnetic moments
of 'H, 1°C, and "°N, atoms that make up the backbone of proteins. Unlike X-ray
crystallography, an NMR structure of a protein contains multiple frames or snapshots of a
protein that provides information about the dynamic characteristics of the protein.

X-ray crystallography and NMR may reveal insight into how structural alterations
of a protein, such as a cancer mutation, impact the structure and dynamics of a protein.
For example, protein crystallization and NMR can be used to resolve the normal wildtype

and mutant state of a protein. Comparison of these structures may reveal how the

mutation alters the structure and impede the function of the protein. However, the
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changes may be too subtle or no structural change may occur at all. In addition, X-ray
crystallography and NMR studies may not be sufficient in resolving the structures if the
protein is intrinsically disordered or if the mutation denatures the protein (recall R175H
mutation as discussed previously). Also, the process of generating these structures is
expensive and labor intensive. Therefore, the use of molecular dynamics is an attractive
alternative as it is the only method where the structure and dynamics can be studied

simultaneously at atomistic resolution.

(ii) Theory of Molecular Dynamics

Molecular dynamics (MD) simulations provide a dynamic evolution of atoms
within a protein through the use of molecular mechanics force fields. In molecular
mechanics, the atoms are represented as nodes in space based on their Cartesian
coordinates in the x-, y-, and z- direction, and bonds are represented as edges connecting

the nodes.?*

The nodes are described based on their atom type and hybridization, and
the length of the edges is based on the bond lengths. The reason we are able to apply
molecular mechanics or empirical force fields to large systems, such as proteins, is due to
the validity of several assumptions. The first assumption is the Born-Oppenheimer
approximation, which allows us to separate the electronic and nuclear motions.
Therefore, we are able to simplify molecular motions calculations in MD simulations by
ignoring the electronic motions, the focus of quantum mechanical models, and calculate

the energy of the system as a function of the nuclear positions only. The result is a

simplified model of the interactions within the system with contributions from bond
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stretching, opening and closing of angles, rotations around single bonds, and long-range
atomic interactions.*”
The force fields used in MD simulations can be described as a relatively simple

four-component picture of intra- and inter-molecular forces within the system (Figure

1'9)'254, 255
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Figure 1.9: Example force field equation used in molecular dynamics simulations. The total
potential energy can be divided into both the bonded and non-bonded interactions. The chemical
bonds and atomic angles are modeled using simple springs (first and second terms), and dihedral
angles are modeled using a sinusoidal function that approximates energy differences between
eclipsed and staggered conformations (third term). The van der Waals interactions are modeled
using the Lennard-Jones potential, and electrostatic interactions are modeled using Coulomb’s law.
Extracted from Durrant and McCammon.>'

Ewia 1s the total potential energy, which is a function of the atomic positions (r) of N
atoms. The first term in the equation shown in Figure 1.9 sums over all the interactions
between bonded atoms, which is modeled by a harmonic potential that measures the
increase in energy as the bond length, r, deviates from the reference bond length, r.,. The
second term is a summation over all angles also modeled using a harmonic potential,
where 0 is the deviation from the reference angle, 6.,. In the bonds and angles
summations, K, and Ky are the spring constants. The third term is a summation over all

the dihedral angles, where V, is a weighting factor used in measuring the deviation, ¢,
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from the reference dihedral angle, y. The fourth contribution to the potential energy
function includes the non-bonded atomic interactions. The Lennard-Jones potential®® is
used to model the van der Waals interaction, where A and B are experimentally
determined values, and R is the distance between atoms. The Coulomb potential term
measures the electrostatic potential, which is proportional to the charges of the two

atoms, ¢;q;, and inversely proportional to the distance between the atoms R;;. Several

force fields are used in MD simulations such as, AMBER,>* %7 CHARMM,**® and
GROMOS*”. While different force fields used in MD simulations all use the general
form described in equation 1, there are different parameters and weighting factors used,
and generally yield similar results.”®

There remain two main limitations associated with MD simulations: (i) the
amount of simulation time accessible with available computer resources and sampling
algorithms (sampling problem), and (ii) the accuracy of the potential energy function
(force field problem). The development of enhanced MD sampling methods such as
accelerated MD, metadynamics, temperature enhanced MD, replica exchange MD, and
more*®' allows us to simulate more phase space than conventional MD methods. Also,
the design of computational hardware for speeding up simulation calculations is the most
effective means in increasing the sampling limit of MD simulations. An example of this
includes the use of Graphics Processing Units (GPUs), which were used to perform MD
simulations in this dissertation. Interestingly, the advances in the sampling problem
highlighted the inaccuracies in force fields, as many force field defects only became

apparent with longer simulations.”***"!

43



These findings have led to a series of reparametrizations in all the major protein
force fields. For example, the parameters for the ¢- and - torsion angles were altered in
the OPLS-AA/L*”* and AMBER force field**®?”*, whereas in the CHARMM force field,
a grid-based energy correction for the ¢~ plane was introduced®’**”. More recently,
updated parameters for the y; torsion angle were published for the AMBER and
CHARMM force fields*”"27**"® the two most commonly used force fields.””>**” These
reparametrized force fields show significant improved agreement with experimental

277,280, 281
data.?7"- 280

(iii) MD Simulations Utility in Drug Discovery

With constant improvements in the sampling problem and MD force fields, MD
simulations are likely to play an increasingly important role in the drug discovery
pipeline. For starters, MD simulations may identify cryptic or allosteric binding sites that
experimental structures may not capture. For example, Schames et al. performed MD
simulations on HIV integrase,”** an enzyme produced by HIV that enables its genetic
material to be integrated into the DNA of the infected cell. The simulations revealed a
novel pocket that was not evident from available X-ray crystal structures. Later, X-ray
crystal structures demonstrated that known HIV integrase inhibitors do in fact bind this
cryptic site. These results led to experimental studies at Merck & Co™*, where further
development yielded production of the first US FDA-approved highly effective
antiretroviral drug raltegravir.”**

Another example of identification of a cryptic pocket from MD that served as the

foundation for this dissertation involves the tumor suppressor p53. Wassman and
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coworkers performed MD simulations of wildtype and various cancer mutants of p53.>’
The simulations revealed a transiently open binding pocket in the DNA binding domain
between loop L1 (a loop that makes crucial DNA contacts) and beta strand 3. Virtual
screening against this novel pocket and in vivo experimental studies yielded Stictic acid
as a potential p53 reactivation compound. These promising results contributed to the
founding of the company, Actavalon.**

In addition to identification of cryptic binding pockets, MD can enhance in silico
traditional VS methods. A docking program is used to predict the binding pose and
binding affinity of small molecules within a selected receptor-binding pocket. Typically,
ligand databases of compounds that are commercially available and synthetically
accessible are docked into a single static receptor structure, as determined from NMR or
X-ray crystallography. The best predicted ligands are selected for further experimental
testing. Unfortunately, traditional docking neglects the dynamic characteristics of
receptors. Some small molecule ligands may in fact bind the single receptor structure
selected, but in reality receptors have many conformational states, where any of them
may be druggable. Therefore, true ligands (that may be potential drug candidates) are
often discarded because they bind a receptor conformation different from that of the
single static structure chosen. In order to better accommodate receptor flexibility in
virtual screens, a new VS protocol has been developed called the relaxed complex
scheme (RSC). 2% 2%

In the RSC protocol, each ligand is docked into multiple protein conformations
typically extracted from MD simulations as opposed to docking into a single static

structure. Thus, a range of docking scores is assigned to each ligand instead of one single
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score. Ligands can then be ranked by several characteristics, such as the average score
over all receptor conformations. Alternatively, the range of docking scores can be used
to train receptor conformations as performed in this dissertation using the method,

*8 RSC has been successful in identifying a number of protein

Ensemble Builder.
inhibitors, including inhibitors of FK506 binding proteins,” HIV integrase,”**
Trypanosoma brucei RNA editing ligase 1,2%?' T brucei GalE,”** T. brucei FPPS,**
Mycobacterium tuberculosis dTDP-6-deoxy-L-lyxo-4-hexulose,”* and p53**’. While
these successes are promising, the RSC protocol relies on docking scoring functions that
are optimized for speed at the expense of accuracy. These scoring functions do not
accurately account for conformational entropy and solvation energy in binding

293.2% thereby sacrificing accuracy in predicting binding affinities. One way to

energies,
overcome the limitations of docking scoring functions is through advanced free energy
calculations using MD.

Although they are computationally expensive, techniques for predicting binding
affinities more accurately do exist. These techniques include thermodynamic
integration,”®' single-step perturbation,”” and free energy perturbation®®. Since free
energy is a state function, the free energy depends only on the initial energy in solution
and the final energy following the binding event. The path of ligand binding only
influences receptor-ligand kinetics, but it has no bearing on the free energy. Therefore
simulating an entire ligand-binding event is not necessary in obtaining the free energy.
Instead, a drug’s binding affinity is calculated using a technique called ‘alchemical

» 299

transformation’.”” During the MD simulation, the electrostatic and van der Waals

produced by ligand atoms are turned down gradually, eventually annihilating the ligand
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from the receptor-binding site. The successful application of alchemical techniques has
made these techniques promising in accurately predicting binding affinities.’?*~
However, it is important to highlight that alchemical techniques are uniquely sensitive to
inadequate conformational sampling.*®” If MD simulations fail to sample system
conformations in silico that are in fact sampled under biological conditions, predicted
binding affinities will be incorrect.

This is not the case when inadequate MD sampling is used to identify cryptic
pockets, allosteric sites, or pharmacologically relevant binding pocket conformations for
VS. In these cases, some suitable receptor conformations may be missed; however, the
conformations that are identified are still useful. Therefore, the results of the simulations
are therefore incomplete, but not necessarily wrong. Short timescale MD simulations in
this dissertation are used in two applications: (i) to explore and compare the

conformational dynamics of p53 under normal wildtype and mutant conditions, and (ii) to

enhance VS performance against protein kinases.
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ABSTRACT

The “guardian of the genome”, p53, functions as a tumor suppressor that responds
to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-
cycle arrest, senescence, or apoptosis. Mutation of p53 disrupts its tumor suppressor
function, leading to various types of human cancers. One particular mutant, R175H, is a
structural mutant that inactivates the DNA damage response pathway and acquires
oncogenic functions that promotes both cancer and drug resistance. Our current work
aims to understand how p53 wild type function is disrupted due to the R175H mutation.
We use a series of atomistic integrative models built previously from crystal structures of
the full-length p53 tetramer bound to DNA and model the R175H mutant using in silico
site-directed mutagenesis. Explicitly solvated all-atom molecular dynamics (MD)
simulations are performed on wild type and the R175H mutant p53. Analysis of the MD
trajectories reveal insight into how wildtype p53 searches and recognizes DNA, and how
this mechanism is disrupted as a result of the R175H mutation. Specifically, the optimal
quaternary DNA binding mode of the DNA binding domain and how this binding mode
is altered as a result of the R175H mutation in combination with zinc loss is revealed.
We explain these differences in the binding modes due to differences in the dynamic

characteristics of the DNA binding domain and the C-terminal domain.
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INTRODUCTION

p53, commonly referred to as the “guardian of the genome,” functions as a tumor
suppressor. p53 responds to various environmental stressors such as DNA damage,
hypoxia, and tumor formation.! Once activated, p53 induces cell-cycle arrest,
senescence, or apoptosis via either transcriptional or non-transcriptional pathways.* > *
Mutation of p53 disrupts its tumor suppressor function, leading to various types of human
cancers, thereby making p53 a major drug target. Our previous computational and
experimental studies have revealed stictic acid as a reactivation compound for the R175H
p53 mutant.” In an effort to expand on this work, we glean insight into how the R175H
alters the dynamics of p53 and abrogates it DNA binding abilities. Understanding how
full-length p53 (fl-p53) binds DNA and how this binding is disrupted via oncogenic
mutations at an atomic level can aid in the discovery of novel reactivation compounds.

Fl-p53 contains intrinsically disordered regions and binds DNA as a
homotetramer in cells.’ Fl-p53 comprises 393 residues that form a N-terminal domain
(NTD), proline-rich domain, core DNA-binding domain (DBD), flexible linker region,
tetramerization domain (TET), and a C-terminal domain (CTD).” The flexible NTD is
responsible for activating transcription factors. The proline-rich domain has been
implicated in apoptotic activity. The DBD is involved in DNA binding, and the TET
domain is crucial for tetramer formation. There remains controversy in the role of the
CTD in fl-p53 DNA binding.® Some studies suggest that the CTD serves as a negative
regulator by blocking DBD binding to short strands of specific response elements (REs).’
On the other hand, other studies suggest that the CTD acts as a positive regulator of DNA

binding by assisting the DBD in target site recognition in long or circular DNA.' Our
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previous computational studies of the fl-p53 bound to three different DNA response
elements revealed that the CTDs approach and directly contact the DNA independent of
the DNA sequence.'!

Due to the highly dynamic nature of p53, obtaining an experimental three-
dimensional structure of fl-p53 is a challenge. The p53 DBD is the most studied due to
its defined secondary and tertiary structural elements, allowing for structural
characterization. Also, this region contains the majority of oncogenic mutations.'> While
these experimental structures of the DBD has provided useful information about p53
function, it is crucial to model fl-p53 in order to fully elucidate the DNA-binding
mechanism under normal biological conditions. For example, how p53 searches and
recognizes specific REs remains unclear. Therefore, the disruption of this search and
recognition process due to pS3-inactivating mutations is also not well understood.

In an effort to gain insight into the DNA binding mechanism, researchers
elucidated a crystal structure of the tetrameric p53 DBD and TET with truncated linker
regions bound to a short strand of DNA."*" In previous work, we utilized this crystal
structure to build atomistic integrative models of fl-p53 bound to 3 DNA sequences (two
REs and a non-specific DNA), to explore their dynamics via molecular dynamics (MD)
simulations.'" MD-generated ensembles agreed well with previously determined electron
microscopy maps and revealed different quaternary binding modes of the fl-p53 bound to
different DNA response elements. Our current study expands this work by investigating
how oncogenic mutations, specifically the R175H mutation, perturbs the DNA binding

interactions of fl-p53.
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The R175H mutation results in inactivation of the Mrel 1/ATM-dependent
pathway involved in DNA damage response.'® This structural mutant also results in
abrogation of DNA-binding and perturbs the structure of the p53 DBD.!” It is also
important to note that R175H is a gain-of-function mutant; it not only disrupts normal
p53 tumor suppressor function, but also acquires alternative functions necessary for
promoting cancer activities. Since this mutation is located in the L2 loop adjacent to the

zinc-coordination site, zinc loss is common.'® "’

Zinc is important for obtaining DNA-
binding specificity, and prevents aggregation of the core domain via L2 loop
stabilization.”® Also, in the absence of zinc, the p53 DBD is destabilized by 3.2

kcal/mol.?!

Therefore, we hypothesize that zinc loss exacerbates the effects of the
R175H mutation on the DBD. In an effort to monitor this, we use MD simulations to
model the p53 DBD R175H mutant with and without zinc.

In the current study, we use a series of atomistic integrative models built
previously with available crystal structures of the fl-p53 tetramer bound to DNA (Figure
2.1)."" We model the R175H mutant using in silico site-directed mutagenesis. Explicitly
solvated all-atom MD simulations are performed in duplicate on the following three fl-
p53 systems: (i) wildtype, (ii) R175H mutant with zinc, and (iii) R175H mutant without
zinc. Their analysis reveal differences in the conformations of the DNA binding domain

and provide insight into how the R175H mutation destabilizes p53 and abrogates DNA

binding.
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Figure 2.1: Full-length p53 System. The fl-pS3 bound to DNA is shown,
where the NTD, DBD, linker, TET, and CTD are colored purple, blue,
silver, green, and red, respectively. DNA is depicted as a black ribbon. In
the upper right panel, a monomer DBD (transparent blue ribbon) is shown
with the L1, L2, and L3 loops highlighted in cyan, orange, and magenta
respectively. The zinc ion is shown as a silver sphere, and the H175 residue
is shown in licorice colored by atom type (C: silver, O: red, N: blue, H:
white).

RESULTS

We performed 200 ns of MD simulations of all three wildtype and R175H mutant
fl-p53 systems, resulting in a total simulation time of 600 ns (Table 2.S1). We explored
how the R175H structural mutation with and without zinc changes the dynamic behavior
of f1-p53 both globally and locally. Ultimately, we glean insight into how these changes

in flexibility destabilizes the DBD and alters DNA binding in R175H p53.

Unique Binding Modes of Wildtype and R175H p53 DBD Tetramer to DNA
When projected onto 2D principal component (PC) space, the DBD tetramer for
each fl-p53 system differs in DNA binding modes (Figure 2.2 and 2.S1). Interestingly,

first principal motion (PC1) described a global conformational change going from an
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asymmetric mode (low PC1) where monomers A and D are pushed away from the DNA

and monomers B and C are close together to a symmetric binding mode (high PC1) in

which all four monomers are in close proximity to DNA (Figure 2.2a). In our

simulations, the wildtype and R175H with zinc tetramer systems solely sampled high

PC1 values and the R175H without zinc mostly sampled low PC1 values. This means

zinc loss is far more important in DNA binding failure of p53 than the R175H mutation

itself.
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Figure 2.1: Quaternary binding mode of the DNA binding domain in wildtype and R175H p53. The
eigenvalues along PC1 are shown as a density plot for each fl-p53 system (a), where the asymmetric
binding mode corresponds to low PC1 (R175H without zinc) and the symmetric binding mode
corresponds to maximum PC1 (wildtype and R175H with zinc). The alpha carbons of the DBD for
low and high PC1 are shown as spheres, where monomers A and D are colored cyan, and monomers
B and C are colored pink. A histogram plot of the DNA grip volume is shown for all three fl-p53
systems (b).
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In addition to the change in symmetry of the DBD monomers, the PC1 motion
also revealed differences in the DNA grip volume, which is the space in between the four
p53 DBD monomers that accommodates the DNA. This volume is largest for R175H
with zinc, smaller for wildtype, and smallest for R175H without zinc (Figure 2.2b). The
large difference in the DNA grip volume is due to changes in the L2 loop conformations
of monomers B and C. When the grip volume is small in R175H without zinc system,
the L2 loops in these two monomers are stabilized via hydrogen bonding interactions
(Table 2.1). In the wildtype system, one hydrogen bond is seen in the wild type p53
system in only 0.05% of the trajectory (Table 2.1), and no hydrogen bonds are observed
for the R175H with zinc system. There are also differences seen in a salt-bridge near the
mutation site in the L2 loop between residues Q180 and R174 (Figure 2.S2). In the
wildtype system, this salt-bridge is persistent throughout the simulation, where it occurs
66.4+5.80% of the time across both MD copies. However, in the mutant systems, this
salt-bridge is less persistent with one exception. In the R175H with zinc system, this salt
bridge forms 43.8+1.20% of the time across both MD copies. For R175H without zinc,
this salt-bridge only forms 47.9+43.8% of the time across both MD copies; it should be
noted that the large standard deviation for the R175H without zinc system is due to the

fact that the disrupted salt-bridge is seen in only one MD copy.
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Table 2.1: Hydrogen Bonding Interactions between L2 loops in Monomers B and C

Wildtype MD copy 1

Monomer B L2 Residue | Monomer C L2 Residue % interaction
194 183 0.05%
186 183 0.05%

R175H without zinc MD copy 1

184 183 39.6%
182 184 20.3%
182 183 11.4%
185 181 8.15%
183 183 3.55%

PC2 appears to be similar to PC1, but shows more local motion of the global
symmetry motion seen in PC1. In PC2, monomers A and D rotate in opposite directions
(Figure 2.S1). As seen in PC1 motion, monomers B and C move closer to each other
going from low PC2 to high PC2.

Each fl-p53 system sampled conformations not sampled by the other two systems,
which can be defined as unique conformations. In order to further visualize the
differences in these unique conformations, root-mean-square deviation (RMSD)
clustering was performed on the L2 and L3 loops since these regions are local to the
R175H mutation site, and the L2 loop stabilizes the L3 loop. The representative frame
from the most-populated cluster was used for comparison. When clustering on the L2

loop, the differences in the L2 loop were similar to those seen in the PC1 motion, where
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the L2 loops of monomers B and C formed direct contacts in the R175H without zinc
system, unlike the R175H with zinc and wildtype systems (Figure 2.3a).

When clustering on the L3 loop, the conformation of R248 residue, a crucial
DNA contact, in monomer C differ (Figure 2.3b). In the wildtype cluster representative,
R248 sticks directly into the DNA minor groove as seen in the crystal structure (PDB
ITSR). In the R175H with zinc cluster representative frame, R248 adopts an alternate
conformation that does not intercalate into the DNA minor groove. In the R175H
without zinc cluster representative frame, R248 residue remains on the surface, but is
completely flipped out of the minor groove. The conformation of R248 in monomers A,
B, and D in the top cluster representative is similar across all three fl-p53 systems. In
order to explain the differences in the quaternary binding modes, we explore the

dynamics of the DBD, which will be discussed next.
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Figure 2.2: Effects of p53 R175H mutation on the L2 and L3 loops in the
Unique PC Conformations. The most-populated cluster representative
frame for each fl-p53 system reveals differences in the L2 loop
conformation (a) and R248 residue in the L3 loop (b). In (a), the DNA
binding domain for wildtype, R175H with zinc, and R175H without
systems are shown as black, red, and blue ribbons, respectively; the L2 loop
atoms are shown as van der Waals sphere. In (b), the conformation of
Arg248 is shown in sticks and colored by atom type (H: white, C: silver, N:
blue, O: red). The DNA for wildtype, R175H with zinc, and R175H
without zinc systems are depicted as a van der Waals sphere colored black,
red, and blue, respectively.

Comparison of atomic fluctuations within the DBD

Increased fluctuations of motifs within the DBD are seen for the R175H with zinc
system in monomers B, C, and D (Figure 2.S3). For the two inner monomers, B and C,
the L2 and L3 loops are more dynamic in the R175H with zinc system compared to the
wildtype system. Among the outer monomers, monomer D becomes more flexible at the
loop between beta strands 7 and 8 in the R175H with zinc system. Surprisingly, the

dynamic behavior of monomer A is similar in the R175H with zinc and wildtype systems.
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Similar to the R175H with zinc system, an increase in atomic fluctuations is seen
in the R175H without zinc system compared to the wildtype system (Figure 2.S4). This
difference in flexibility is seen in the L2 and L3 loops for the inner monomers B and C.
Interestingly, the L1 loop and H2 helix in monomer C also show greater fluctuations in
the R175H without zinc system. Among the outer monomers, monomer D also shows
increased flexibility at the L2 and L3 loops. In monomer A, the only RMSF variation is
observed at the loop between beta strands 7 and 8.

While we don’t see more flexibility in the R175H mutant systems across the
entire tetramer DBD or even an entire monomer, we do observe increased fluctuations
local to the R175H mutation site in monomers B, C, and D. It is striking that we do
observe fluctuations distal to the mutation site as seen in monomer D in R175H with zinc
system and monomer C in R175H without zinc system. In an effort to explore the global
effects of this local increased flexibility, we measured and compared the solvent exposure

of the DBD.

Comparison of the solvent accessible surface area of the DBD Tetramer

Protein fluorescence experimental studies have revealed differences in
fluorescence spectra between wildtype and mutant p53, which is attributed to increased
solvent accessibility in mutants.”’ When comparing the SASA for the entire DBD
tetramer, the SASA is higher for both R175H mutant systems than wildtype p53 as
expected (Figure 2.4a). When calculating the average SASA across the entire simulation,
increased solvent accessibility is seen for both R175H mutant systems (SSASA>yigtype =

33362+761 A%, <SASA>R175H with zinc = 34852604 A%, <SASA>R175H without zinc =
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33913+651 A%), where this increase is significantly higher for the R175H with zinc
system. Next, we focused on determining the solvent exposure of only the mutant
epitope residues (residues 213-217) that are known to bind an antibody that selectively
recognizes the mutant conformation of p53, Pab240.* These residues are buried in the

crystal structure, and must become more solvent exposed for antibody binding.
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Figure 2.4: Solvent accessibility of p53 DBD. The
average solvent accessible surface area of the DBD (a)
and mutant epitopes that bind the mutant pS3 antibody
(b) are shown and reveal the R175H mutant systems
have increased solvent accessibility.

Similar to the entire DBD tetramer, when we focus only on the mutant epitopes,
the average SASA is higher for both R175H mutant systems compared to the wildtype
(Figure 2.4b). When calculating the average SASA across all MD trajectories, increased

solvent accessibility is seen for both mutant systems (SSASA>yiigype = 221462 A%,
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<SASA>R175H with zine = 249453 A%, <SASA>R175H without zine = 254472 A?), although this
increase is not statistically significant. Taken together, the SASA results for the entire
DBD tetramer and mutant epitopes corroborate experimental evidence that suggest that

the R175H mutant form has increased solvent accessibility.

Comparison of C-terminal domain contacts with DNA

Previous computational models'' have shown that the CTDs form direct DNA
contacts regardless of the DNA response element. In addition, Friedler et al. suggest
these CTD-DNA contacts are likely due to low affinity electrostatic interactions between
positively charged residues in the CTD and the negatively charged DNA phosphate
backbone.” As a result of these studies, we explore if these CTD-DNA contacts change
as a result of the R175H mutation. Our MD simulations revealed there are in fact
differences in the CTD-DNA contacts, with the largest change seen in the R175H without
zinc system (Table 2.S2). In all three fl-p53 systems, all the positively charged CTD
residues’ (Lys, His, Arg) interactions with the negatively charged DNA phosphates were
monitored. In monomer C, the CTD forms contacts with the DNA throughout the entire
simulation across all three fl-p53 systems. These contacts are transient, in which the
positive CTD residues change the phosphate groups they contact. It should be noted that
the initial starting structure for the MD simulations across all three fl-p53 systems already
had this CTD-DNA contact while the CTD in the other monomers start far away from the
DNA. In the wildtype and R175H with zinc systems, the CTD in monomers A and D
move closer to and forms DNA contacts. Remarkably, other than the CTD in monomer

C, no additional CTD-DNA contacts are observed in the R175H without zinc simulations,
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suggesting that the loss of zinc due to the R175H mutation disrupts CTD-DNA
interactions.

Next, we closely monitored if certain positively charged CTD residues were
responsible for the transient salt-bridge interactions with DNA, and identified four
residues (Figures 2.5a and 2.S5). A cutoff value of 600 was chosen since this is half of
the maximum number of CTD-DNA salt-bridge contacts. For both wildtype and R175H
with zinc systems, CTD residues K370, R379, K381, and K382 form at least 600 DNA
contacts. For R175H without zinc, only residues H368 and R379 engage in at least 600
DNA contacts. Interestingly, residues K370, K381, and K382 have reduced DNA contact
when compared to wildtype and R175H with zinc. When looking at the average across all
three p53 systems, K370, R379, K381, and K382 form at least half of the maximum
contacts (Figures 2.5a and 2.S5).

Similarly to the CTD, we also identified the DNA residues that the CTD residues
interact with, and found that salt bridges formed both inside and outside the response
element (Figures 2.5b and 2.S6). Across all three p53 systems, only a few contacts are
made within the response element (residues 1599-1602, 1665, 1681-1684) (black box in
Figures 2.5b and S6). Majority of the CTD-DNA interactions occur outside the DNA
response element, interacting with DNA nucleotides up 10 base pairs to the right and 14
base pairs to the left away from the response element (Figure 2.5b). The CTD searches

furthest along the DNA in the R175H mutant systems (Figure 2.S6).
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Figure 2.5: Footprint analysis of the CTD-DNA contact residues averaged across all three p53
systems. The residues in the CTD that come within 3.5A of the DNA were averaged across each
monomer and all three p53 systems (a). The positively charged CTD residues are highlighted in red.

A value cutoff for the number of DNA contacts formed of 600 is selected (dashed blue line) since it is
at least half of the maximum CTD-DNA contacts. The four positively charged CTD residues that meet
this cutoff are labeled. The same footprint analysis is done from the perspective of the DNA, in which
the number of CTD contacts is mapped onto the DNA (b). The number of CTD contacts are
normalized, ranging from 0 (no CTD contacts) to 1 (maximum number of CTD contacts). A cartoon
of the DBD, TET, and CTD domains are depicted to highlight the orientation of the DNA, and the
DNA response element is highlighted with a black box.

L1/S3 Pocket Opening

In an earlier study, MD simulations of wildtype and various p53 mutant DBDs
revealed a druggable L1/S3 pocket.” Using several geometric criteria as a filter for
determining the pocket-open state, the pocket was found to be open only about 6% of the
time in a 30 ns simulation. In the same study, virtual screening against the L.1/S3 pocket
in MD-generated conformations revealed a novel R175H reactivation compound, stictic

acid.
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In the current study, we compute the pocket opening of R175H mutants under
normal physiological conditions using the same geometric criteria outlined in Ref 5
(Table 2.S3). For the inner monomers B and C, the L1/S3 pocket is open only 4% to
13% of the time for wildtype, 7% to 24% for R175H with zinc, and 4% to 15% for
R175H without zinc. The pocket is open for majority of the simulation in the outer
monomers, A and D, for all three systems with two exceptions (24% to 95% for wildtype,
67% to 96% for R175H with zinc, and 21% to 96% for R175H without zinc). These
results are promising because they show that in the R175H fl-p53 mutant, the L1/S3
pocket is in fact open and available for reactivation molecules to bind in restoring p53

wildtype function.

DISCUSSION

We report here three different integrative atomistic models of the wildtype and
R175H mutant fl-p53 tetramer bound to the p21 response element and their dynamics via
MD simulations. Experimental studies have shown that the R175H mutation accelerates

the rate of zinc loss in the DBD.'® ¥

However, the timescale of zinc loss remains
unclear. Therefore, we model the R175H mutation in both the presence and absence of
zinc. There are no available experimental structures of the R175H mutant even in the
DBD of p53 due to the denaturing effects of the mutation. To our knowledge, the
dynamics of the R175H mutation in the fl-p53 and its effects on DNA binding have not

been explored.
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R175H shifts the DBD Quaternary Binding Mode to Resemble p53 binding to Non-
specific DNA

In order to provide context for the DBD quaternary binding modes revealed in the
current work, we discuss our previous computational study where fl-p53 was bound to
three different DNA response elements (p21 RE, puma RE, and non-specific DNA)."'
The binding affinity for fl-p53 for known REs, p21 and puma for example, are an order
of magnitude lower than the Kp values of non-specific DNAs under physiological
conditions.”* Previous work revealed different quaternary binding modes for fl-p53
bound to different types of DNA in an effort to explain the different Kp values.

The PC1 motion revealed in the current work is the same global motion that was
seen as PC2 in our previous computational studies.'' In the previous work, the p21-
bound wildtype p53 tetramer system sampled only high PC2 values corresponding to a
symmetric binding mode. The same binding mode is seen in our current wild type
simulations (Figure 2.2). The only difference between the p21-bound p53 tetramer in the
previous work and our current p21-bound p53 tetramer system (referred to as wildtype) is
the starting conformation for the MD simulations. In the previous model, the fl-p53
started from a conformation where the CTDs and NTDs were extended, and then relaxed
to a more compact structure where the CTDs moved closer to the DNA."" Our current
wildtype system started from the more compact fl-p53 structure. Our current
computational models with additional MD sampling corroborate the results from previous
studies that a symmetric DBD tetramer is ideal for p53 binding to known DNA response

elements.
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The PC motions of the quaternary binding modes of the mutant fl-p53 systems
suggest how the R175H disrupts DNA binding. In the previous computational models,
the p53 tetramer bound to nonspecific-DNA solely sampled the asymmetric binding
mode.'" Remarkably, the R175H mutant without zinc system mostly samples this same
asymmetric quaternary binding mode, suggesting that the R175H mutant disrupts DNA
binding by shifting the cooperative binding mode of the DBD tetramer to resemble non-
specific DNA bound conformation.

As for the DNA grip volume change revealed in the PC motions, there are both
similarities and differences when compared to the previous computational studies (Figure
2.2). The small grip volume seen in the R175H without zinc system is comparable to that
seen for the non-specific DNA bound DBD tetramer. Also, as seen in the previous work,
the wildtype system does have a larger DNA grip volume (ranging between 8000 and
9000 A’)to accommodate the DNA than the DBD tetramer bound to non-specific DNA
and the R175H without zinc mutant. Surprisingly, the R175H with zinc system has the

largest DNA grip volume, which may be too loose to bind the DNA tightly.

Local and Global Increased Flexibility in R175SH Mutant DBD Disrupt Crucial
DBD-DNA Contacts

It is interesting that the motifs within the DBD with increased flexibility in the
R175H mutant systems are regions known to make important DNA contacts either
directly or indirectly (Figures 2.S3 and 2.S4). In the L2 loop of wildtype p53, R175
forms a salt-bridge with D184, which is thought to aid in the L2 loop stabilization as seen

in various crystal structures of the wildtype DBD.*>*® Therefore, the R175H mutation
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disrupts this R175-D184 salt-bridge, and we also identify another salt bridge, Q180-
R174, that is persistent in the wildtype simulations and disrupted in both R175H mutant
simulations. Disruptions of these two salt-bridges increase the flexibility of the L2 loop
(Figures 2.S3 and 2.54). This increased flexibility in the L2 loop destabilizes the L3
loop, which does make direct contacts with the DNA via two residues, S241 and R248.
Although we do not see any changes in S241-DNA contacts, we do see a difference in the
R248-DNA contact, where the R248 doesn’t intercalate the DNA minor groove in the
R175H mutant system but does in the wildtype system (Figure 2.3b). R248 is thought to
play a critical role in DNA binding because it is the most frequently mutated p53 residue

. 27-29
in human cancers.?’

Therefore, the loss of this DNA contact may impede DNA binding
of the R175H mutant. Even though this difference in R248 conformation is only
observed in one DBD monomer (monomer C), experimental studies have shown that a
heterotetramer with only one mutant pS3 monomer is enough to shift the wildtype p53 to

30-32 1 addition to the

resemble a mutant conformation and disrupt DNA binding.
increased flexibility of motifs local to the R175H site, it is noteworthy that we see the

effect of the mutation on long-range motions such as the H2 helix, L1 loop, and S7/S8
loop, especially in such short MD sampling (Figures 2.S3 and 2.S4). With our limited

computational sampling, we are already beginning to see the destabilization of the DBD

both locally at the R175H mutation site and globally.

R175H Mutation and Zinc Loss Together Disrupt C-terminal interactions with DNA

The role of the CTD in DNA binding remains controversial. Previous studies

have suggested three possible theories as to how the CTD of p53 regulates sequence-
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specific DNA binding.® One theory suggests that the DBD tetramers only bind the DNA
when it undergoes a conformational change induced by chemical modification
(acetylation or phosphorylation) or protein binding of the C-terminus. Another
hypothesis suggests that CTD binding to the DNA prevents the DBD tetramers from
binding, and chemical modification of CTD disrupts DNA binding, thereby allowing the
DBD to bind DNA. Both of these theories suggest that the CTD functions as a negative
regulator for p53 binding. The third theory implies that the CTD acts as a positive
regulator for DBD binding; our previous and current computational models support this
theory.

In our simulations within this current study, we see transient CTD interactions
with DNA (Table 2.S2). These observations are in agreement with experimental studies
that reveal that the CTD forms sequence-independent contacts with DNA.**** It is
particularly interesting that the CTD monomers (A and D) that were extended far away
from the DNA move closer to the DNA and form direct contacts in wildtype and R175H
with zinc simulations centered on CTD residues K370, R379, K381, and K382. This
direct CTD-DNA contact was also seen in our previous computational models where the
CTDs started from an extended conformation far from the DNA; in every simulation
regardless of the DNA response element, the CTD moved closer to and directly contacted
the DNA, suggesting that the CTD assists the DBD in binding DNA."" In the R175H
without zinc system, the only CTD monomer that forms DNA contacts is monomer C
since the starting structure involved these contacts. Unlike the other 2 systems, no other

CTDs approach DNA to form contacts, and reduced DNA contacts are seen for residues
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K370, K381, and K382. Taken together, the combination of R175H mutation and zinc

loss disrupt disrupts CTD-DNA contacts.

CONCLUSION

In this study, we used MD simulations to explore the effects of the R175H cancer
mutation on the dynamic characteristics of p53, and how these changes disrupt DNA
binding. Results reveal increased flexibility of motifs within the DBD both local and
distal to the R175H mutation site. Interestingly, these motifs are regions that form
important DNA contacts. The increased dynamics disrupt the DBD from adopting an
optimal DNA binding mode and alters the CTD-DNA contacts. Taken together our
mutant models in the current work and previous models with fl-p53 bound to different
DNA response elements allow us to glean insight into the DNA search and recognition
mechanism even with limited MD sampling. Under normal wildtype p53 conditions, the
DBD adopts a symmetric binding mode around the DNA, and the CTD centered on three
Lys residues and 1 Arg residue aids in DNA binding by forming contacts with the DNA
mostly outside the response element region. When p53 has the R175H cancer mutation
in combination with zinc loss, the DBDs shift to an asymmetric binding mode around the
DNA, and the CTD-DNA contacts are disrupted. The results of our computational
models support our hypothesis that zinc loss exacerbates the effects of the R175H

mutation in destabilizing the DBD and abrogating DNA binding.

MATERIALS AND METHODS

Construction of Models
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The full-length p53 system was generated as described in previous work.'' The
last frame of the previously simulated wild type (WT) p53 system bound to the p21
response element was selected for the current study, in which the fI-p53 fully relaxed into
a compact structure. All ions and water molecules were removed with the exception of
waters within 4 A of the protein. Three systems were built from the previously simulated
p53-p21 system: (i) wildtype, (ii) R175H with zinc, and (iii) R175H without zinc. The
R175H mutation was modeled using in silico site-directed mutagenesis in all four
monomers. Zinc’s tetrahedral geometry was modeled using the dummy cationic atom in
the wild type and R175H mutant with zinc systems.”® The coordinating cysteine and
histidine residues were deprotonated, bearing a negative charge to model zinc-protein
coordination. In the R175H mutant without zinc, the correct protonation states for
cysteine and histidine residues were determined in the absence of the zinc ion using the
online PDB2PQR webserver.*®

After all three models were built, sodium ions were added to neutralize each
system. Using the TIP3P water model,’’ the systems were solvated in a 226 X 193 X 234
box (10 A in the x-, y-, and z- direction). Each system consisted of ~960,000 atoms and

was built using the Amber FF14SB force field.”®

Molecular Dynamics Simulations

All-atom explicit-solvent molecular dynamics (MD) simulations were performed
for the four systems using NAMD?2.12.** The general MD workflow consisted of three
stages: minimization, equilibration, and production. The prepared systems were

minimized in five steps as follows: (i) minimization of the protons while restraining the
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protein, DNA, and solvent for 2000 steps; (ii) minimization of protons, water and ions,
while restraining the DNA and protein for 2000 steps; (iii) minimization of the protein
and DNA side chains only while restraining the backbone and zinc ion for 2000 steps;
(iv) minimization of the zinc coordinating residues only while restraining the non-zinc
coordinating protein residues and DNA for 10000 steps; (v) minimization of all atoms in
system for 20000 steps. The non-bonded energy was calculated every minimization step.
Long-range interactions were calculated using the Particle Mesh Ewald method with a
cut-off distance of 10A.* At 8A, a switching function was applied to improve energy
conservation.

The minimized systems were then equilibrated using the NVT ensemble in four
steps. All heavy atoms were restrained starting from a weight of 4kcal/mol and reduced
gradually to lkcal/mol. The systems were heated to a temperature of 310K and
maintained with Langevin dynamics with a damping coefficient of 5
picoseconds/terahertz. Following equilibration, an NPT ensemble was performed with no
positional constraints. A Langevin piston barostat was used to hold the pressure constant
at 1 atm with an oscillation period of 100 femtoseconds (fs) and a damping time scale of
50 fs. Two production runs were performed, resulting in a total simulation time of 200ns

for each system. Every 5™ frame for the simulation was saved and used for analysis.

Principal Components Analysis
The Amber tools cpptraj package was used to perform principal component
analysis on the DNA binding domain of p53.*"** The trajectories across all three

systems were concatenated and aligned on the a-carbons in the DBD (residues 89 to 291)

100



to remove translation and rotation. The variances of the a-carbon coordinates were
determined using the starting conformation for MD as a reference. These variances were
used to generate a covariance matrix, A, which was then diagonalized to reveal
eigenvectors 1 and 2. Calculation of the covariance matrix A was conducted as follows,
yielding the eigenvalues, A: Au = Au. These eigenvalues along eigenvectors 1 and 2
were plotted using gnuplot,* and used to compare the conformational space of the DBD
in the wild type and mutant p5S3 MD simulations. Pseudotrajectories were generated to

visualize the motion of each eigenvector.

RMSD Clustering Analysis

MD frames unique to each p53 system were extracted and clustered in order to
further visualize and analyze PCA results. ‘Unique frames’ are frames that when
projected into PC space, do not overlap with conformations from the other p53 systems.
The unique frames were extracted using a python script that selected frames within
certain eigenvalue cutoffs (Figure 2.S1), resulting in 650 frames for clustering per
system. The extracted frames were aligned to the starting structure for MD on the o.-

carbons in the DBD. Using the Gromos algorithm,** *

pairwise root-mean-square
deviations were calculated and used for clustering the heavy atoms in the L2 and L3
loops L3 loop. The following cutoffs were selected for the L2 and L3 loops respectively:

1.1 A and 0.9 A. The top cluster representative for each p53 system was used to visualize

differences in the three DBD motifs.

Root-mean-square fluctuation Analysis
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The root-mean-square fluctuations (RMSF) of the DBD residues for each
monomer were calculated using cpptraj.*’-** RMSF is a measure of how a system
fluctuates about a well-defined average position. For each p53 system, the MD
trajectories were aligned to the starting MD structure using the DBD backbone atoms
(N,Ca,C,0) for each monomer, and an average structure was calculated. Using this

average structure as the reference, the RMSF of the DBD residues (using only the atoms

that make up the backbone) was calculated and plotted using gnuplot.*

Volume Calculation

The grab volume between the four DBD monomers that accommodates DNA
binding was calculated using POVME 2.0.*® The visual molecular dynamics (VMD)
program”’ was used to generate an inclusion sphere that centered at Cartesian coordinates
(128, 135, 115) with a radius of 17 A, which fully engulfed the volume between the four
monomers. A seed was planted in the center of the sphere and extended for 4 A.
POVME 2.0 calculated the grab volume starting from the seed and continued until it
reached the inclusion region boundary. The volume was calculated for every MD

snapshot, and the volume distribution was plotted as a histogram using the R program.*®

Solvent Accessible Surface Area Analysis

The solvent accessible surface area (SASA), or the exposed areas of atoms, of the
tetramer core domain was measured for each p53 system using cpptraj.*> The SASA is
described as rolling a solvent sphere over the van der Waals surface of a protein. The

SASA was calculated in A* using the linear combinations of pairwise overlaps (LCPO)
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algorithm.” In the LCPO method, each atom in the protein is represented as a hard
sphere. The SASA of each atom sphere was calculated as the difference between the

surface area of the atom and the area of atom overlap.

Salt-Bridge Interactions between C-terminal domain and DNA

In order to investigate the C-terminal domain (CTD) - DNA contacts, we
measured salt bridges between the positive residues on fl-p53 CTD and the negative
DNA phosphate atoms. First, we identified all fl-p53 CTD Lys, Arg, and His residues
that came within 5 A of the DNA at any point of the MD simulation using a tool
command language (tcl) script executed in VMD.*” The trajectories were then loaded
into VMD" and visual inspection was used to identify salt bridges between the selected
Lys/Arg/His residues and DNA phosphate atoms. The distance between the positive
nitrogen atoms and negative DNA phosphate oxygen atom throughout the MD trajectory
were manually extracted. A python script was used to calculate the percent of the salt-

bridge interaction using a distance cutoff of 3.5 A.*

L1/83 Pocket Open Ratio Calculation

In order to calculate the percentage of the L1/S3 pocket opening, the same
distance and angle criteria outlined in Wassman ez al.” was used. First, we used cpptraj*
to define the four distances and one dihedral angle associated with the L1/S3 pocket that
served as input for the calculation. Next, using an in-house python script, the frames that
satisfied the distance and angle criteria were identified, and used in calculating the

percentage of the time the pocket was open.
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Supporting Information

Table 2.S1: Summary of Simulated Model Systems

Model Total Atoms Simulated Total Simulation Time
Wildtype 967,380 100ns x 2copies = 200ns
R175H with zinc 966,873 100ns x 2copies = 200ns
R175H without zinc 954,048 100ns x 2copies = 200ns

Table 2.S2: Salt Bridge Footprint Analysis of CTD-DNA
p53 Residue | DNA % interaction | pS3 Residue | DNA %
counterpart counterpart | interaction
Wild type MD copyl Wild type MD Copy2

372 DC1665 1.65% 363 DA1599 8.65%
DC1660 0.200% DA1600 10.75%

373 DC1665 0.800% 368 DT1686 7.85%

363 DA1600 6.90% 370 DT1686 63.0%
DA1602 1.00% DT1687 16.75%

370 DT1686 44.7% 373 DC1592 26.0%
DT1687 42.9% DT1686 3.25%

DT1687 5.30%

373 DT1686 12.5% 379 DA1689 54.8%
DT1687 22.1% DA1690 27.7%

379 DA1687 37.0% 381 DA1688 25.8%
DA1688 36.8% DA1689 40.7%
DA1689 17.1%
DT1690 14.60%

381 DC1589 10.5% 382 DT1687 5.4%
DA1590 2.25% DT1688 90.9%
DA1689 19.6%

382 DA1590 3.20% 368 DC1587 0.350%
DT1687 10.40%
DT1688 47.3%
DT1689 38.8%

368 DC1589 15.2%
DC1590 16.4%
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Table 2.S2 con’t: Salt Bridge Footprint Analysis of CTD-DNA

p53 Residue | DNA % interaction | pS3 Residue | DNA %
counterpart counterpart | interaction
R175H with zinc MD Copy 1 R175H with zinc MD Copy 2
363 DG1654 1.35% 370 DC1665 1.25%
DG1655 12.5%
DG1656 1.25%
370 DA1622 8.90% 372 DC1665 3.55%
DA1623 10.7% DT1664 3.00%
372 DA1622 1.50% 373 DT1664 4.70%
DA1623 5.00% DC1665 10.4%
DA1624 19.2% DA1666 2.15%
DA1625 4.85%
DG1654 2.70%
DA1663 2.35%
373 DA1623 4.20% 363 DA1601 14.8%
DA1624 1.00%
DA1653 3.85%
DG1654 4.40%
379 DG1654 10.0% 365 DA1600 1.00%
DG1655 33.5% DA1601 2.25%
370 DT1686 9.05% 370 DT1686 2.60%
DT1687 1.20% DT1687 89.7%
373 DT1685 28.9% 372 DC1589 38.1%
DT1686 40.2% DA1590 45.8%
DT1687 33.1%
379 DA1689 86.4% 373 DT1686 7.45%
DT1690 44.9% DT1687 19.4%
380 DA1591 5.35% 379 DA1689 29.0%
DT1690 30.0%
381 DA1689 59.9% 380 DA1590 51.1%
382 DT1687 36.8% 381 DA1688 4.70%
DT1688 73.0% DA1689 62.4%
368 DC1589 0.250%

110




Table 2.S2 con’t: Salt Bridge Footprint Analysis of CTD-DNA

p53 Residue | DNA % interaction | pS3 Residue | DNA %
counterpart counterpart | interaction
R175H without zinc MD copy 1 R175H without zinc MD copy 2
368 DT1682 4.95% 365 DA1596 16.0%
DA1597 36.0%
370 DT1682 88.5% 368 DA1597 25.4%
DT1683 9.10%
372 DA1586 2.55% 370 DT1682 17.2%
DA1685 5.90% DT1683 75.6%
373 DC1588 17.5% 373 DT1682 75.9%
DT1682 7.35% DT1683 28.4%
DT1683 7.30%
379 DA1685 15.2% 379 DA1685 21.3%
DT1686 23.9% DA1686 26.3%
380 DC1585 8.80% 380 DA1585 3.40%
DC1586 1.30%
381 DT1684 7.40% 381 DT1684 1.30%
DA1685 59.5% DA1685 70.4%
DT1686 1.25%
382 DT1683 50.0%
DT1684 46.9%
DT1685 1.45%

The residues highlighted in pink, orange, and blue are from monomers A, C, and D
respectively. The DNA bases in the response element region are boldened.
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Table 2.S3: L1/S3 Pocket Open Ratios in MD Simulations

Monomer A
Wildtype R175H with zinc R175H without zinc
Copy 1 24 8% 96.2% 21.2%
Copy 2 8.70% 77.4% 53.5%
Monomer B
Copy 1 4.70% 7.55% 12.4%
Copy 2 9.60% 10.2% 4.65%
Monomer C
Copy 1 12.0% 12.4% 10.4%
Copy 2 13.1% 24.6% 15.0%
Monomer D
Copy 1 93.6% 80.4% 96.0%
Copy 2 95.4% 67.4% 69.4%
40 - !
— Wild type
= R175H with zinc
30 - E
R175H without zine
20 - E
10 |
9
0 - 1
10 -
20 -
30 - 1

PC1

20 40

Figure 2.S1: Comparison between DNA binding modes of DBD. The eigenvalues for
principal components 1 and 2 of the DBD for all three fl-p53 systems are shown. The
boxed frames in yellow are the unique frames selected and extracted for RMSD clustering
in order to visualize differences in the L2 and L3 loops.

112




10 10
8 8
6 6
39 400 800 1200 1600 2000 ° 0 400 800 1200 1600 2000
g 10
[/}
[¥]
=
(1}
® 8 8
a
=
= 6 ' 6
I' |
g it
(-]
5 3 3
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
10 10
8 8
6 6
3 3
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

Frame Number

Figure 2.S2: Analysis of the Q180-R174 salt-bridge. The distance between the negatively- and
positively-charged atoms in the Q180 and R174 residues are shown, where a stable salt-bridge is
defined as 3.5A. The salt-bridge in wildtype, R175H with zinc, and R175 without zinc are shown as a
black, red, and blue line respectively for each individual M copy. Disruption of this salt bridge is seen
in the R175H mutant systems.
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Figure 2.S3: Root-mean-square fluctuations of DBD: compare wildtype to R175H with zinc. The motifs
of the DBD with increased flexibility in the R175H with zinc system are labeled.

114



Monomer A Wild type Monomer B

R175H without zinc

5 5
3 3
0 0
2’ 100 150 200 250 100 150 200 250

6 7 7

E Monomer C Monomer D
5 5

L2 loop L2 loop
H2 helix 3

L1 loop \
L3 loop \

) 1

100 150 200 250 100 150 200 250

Residue Number

Figure 2.S4: Root-mean-square fluctuations of DBD: compare wildtype to R175H without zinc.
The RMSF is shown for each monomer, and the motifs within the DBD where increased
flexibility is seen for R175H without zinc system are labeled.
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Figure 2.S5: CTD footprint analysis based on DNA contacts. The number of DNA contacts (CTD
residues that come within 3.5A of DNA) across all 4 monomers made for each CTD residue number is
shown for each system. The average across all three p53 systems is also shown is the lower right panel.
The positively charged residues in the CTD are highlighted in red. A value cutoff for the number of DNA
contacts formed of 600 is selected (dashed blue line) since it is at least half of the maximum CTD-DNA
contacts. The positively charged CTD residues that meet this cutoff are labeled.
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Figure 2.86: DNA footprint analysis based on CTD contacts. The DNA bases that come within 3.5 A
of the CTD residues are mapped onto the DNA for each p53 system. The numbers of CTD contacts
are normalized, ranging from 0 (no CTD contacts) to 1 (maximum number of CTD contacts). A
cartoon of the DBD and TET domains are depicted to highlight the orientation of the DNA, and the
DNA response element is highlighted with a black box.

Chapter 2, in part is currently being prepared for submission for publication of the
material. Offutt, Tavina L.; Ieong, Pek U.; Demir, Ozlem; Amaro, Rommie E. The

dissertation author is the primary investigator and author of this paper.
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Chapter 3
Enhancing Virtual Screening Performance of Protein Kinases with Molecular Dynamics

Simulations
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ABSTRACT: In silico virtual sc ,(VS)isa, rful hit o

identification technique used in drug discovery projects that
aims to effectively distinguish true actives from inactive or

decoy molecules. To better cap the dynamic beh of
protein drug targets, compound databases may be screened
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virtual screens on a kinase-by-kinase basis to improve the likelihood of success.

B INTRODUCTION

In drug discovery projects, high-throughput biochemical
screens (HTS) are commonly used to ldenufy pharmacolog-
ically active compounds. Despite these
screens still require expensi i and labor, ¢
ting to the ~$1.8 billion cost to bnng a drug to market.”
Therefore, improving the efficacy of the hit discovery process
has the potential to benefit multiple stakeholders, from pati
to pharmaceutical companies. Structure-based virtual screening
(SBVS) utilizes structural information from the drug target to
predict ligand-protein interactions and can be more cost-
effective than traditional HTS alone.” During SBVS, ligand—
protein interactions are used in a scoring function that predicts
the binding affinities of a database of compounds against a drug
target. These predicted affinities can then be used to prioritize a
smaller subset of compounds for experimental testing.* A good
scoring function reliably distinguishes known active compounds
from inactive compounds.

While it is common practice to use a receptor whose
coordinates are determined by X-ray crystallography for VS, the
approach has limi For ple, a single crystal structure

a2

that ligand binding induces a c ional change in its
cognate target that enhances ligand-binding affinity.* With the
advent of energy landscape theory, this concept was extended
to the conformational selecnon method. which states that
ligand binding biases « populati toward a
single state"'® Consistently ignoring the i p e of
protein dynamics can have a detrimental impact on VS
outcotnes.ﬂusanoocurwhend\eaystzﬂogzplmbmdmg
site ion is not predictive, and large numbers of false
positives and false negam'es result. Thenfore, it is important to
consider the dy perties of proteins when predicting
ligand-binding aﬁmns. To address the importance of protein
flexibility in SBVS, ensemble docking, which docks ligands into

tiple target conformations, was developed

There are several ways to g protein conft ions for
ensemble docking. One can use experimentally determined
protein structures solved using X- ﬂ)’ crysullogaph or NMR,
in various ligand-bound and unb es. ' H , the
amount of time and d to perfc these
expenmenls limits theu' uullty Ahemanvely, molecular
dynamics (MD) simulati can reveal novel protein

only captures one conformation and provides limited
information about a protein’s dynamic behavior, which can be
an important regulator of ligand binding, as explained in two
contemporary models. In the late 1950s, Koshland suggested
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assembly of the hydrophobic spine residues*® (shounsgmbaﬂs)muwdlodﬂnmmethemnfommﬂmoﬁheptmhnm.

screens. A number of studies have successfully used MD-
generated ensembles to identify active compounds.”'”*’
Nevertheless, despite efforts to determine how the use of
MD structures affects chemlcal database enrichment,”™"'

i Is for selecting MD across various
prolmwgetsforvlrtualsavensmmzmsdlﬂiadt.Mso it is
challenging to know, a pnon, which protein targets will benefit
from incorporating multiple target conformations in virtual
screening experiments.

Here, we determine if MD-generated ensembles can be
trained to maximize VS performance for six protein kinases. By
analyzing the trained bles on an independent test set, we
determine whether the addition of MD snapshots boosts the
VS performance compared to the crystal structure alone.
Speclﬁa.lly we explore the impact of protein dynamics and

ining on VS perf e for a set of kinase targets.

JAK kinases), makes obtaining selectivity challenging.“**® This
hd:ofsyeaﬁatysomeumesludstoadvmsdteﬂmﬂurd.
the current kinase inhibitors on the market only cover a small
subset of the human kinome, with 18 of the 27 approved
covering only three out of more than 90 groups of tyrosine
kinases, BCR-Abl, ErbBs, and VEGFRs. Given these short-
comings and the imp of the target, there is a need to
unpmvekmasedmgdlscovery—opnmlzmgtheenndmentof
actives in virtual sc g methods by using ble docking
is one important avenue.

In the present study, wedetunun:lfMDmuctummmhm
enhanced virtual sc pared to the
crystal structure alone. Thcdfedofamauralsdecbonns

ined by considering three methods: RMSD dlustering,
voiumebascddustemgandnndomsekchouTb:mpmof
g bles that consist of both MD
conf jons and a crystal structure is also considered.

Protein kinases mediate most of the signal duction in
eukaryotic cells via phosphorylation of substrates.’” A
comprehensive genomewide study found that there are ~500
protein lunases in humans, comprising ~1.7% of the human
genome.” They are involved in many cellular processes
including: metabolism, transcription, cell cycle progression,
cytoskeletal rearrangement and cell movement, apoptosis, and
differentiation.”* Given the importance of phosphorylation, it is
not surgnsxng that abnormal phospboryhuon an lead to

cancers, ' cardxovascuhr ive
. 041 204 diab 7: hereby

making protein lunases an important drug target. Conszstenlly.
an analysis of FDA-approved drugs since the 1980s indicated
that kinases have surpased GPCRs as the most sought-after
m'gets for cancer treatments.* To date, the US Food and Drug

inistration have app d 27 small molecule protein kinase
inhibitors and 1 lipid kinase inhibitor.**

Although drug discovery for protein kinases has achieved a
great deal of success, several significant challenges remain in the
development of future drugs. First, evolutionary pressure results
in the lation of point ions in the kinase domain,
which compromxses inhibitor potency and leads to long-term
drug resistance.”* Second, the conserved architecture of the
kinase domain within a class of protein kinases (for example,

1

Performance analysis is conducted using receiver
characteristic (ROC) curve metrics, and the analysis is
conducted for six protein kinases that cover three different
kinase classes.

B MATERIALS AND METHODS

Protein Kinase Systems. Snprotmhnasesﬁ'omtbe
directory of useful decoys-enhanced (DUD-E)*” were included
in this study. These include: (1) MK2 inactive conformation of
MAP-kinase-activated protein kinase 2 (PDB code: 3M2W),
(2) CDK2 inactive conformation of cyclin-dependent protein
kinase 2 (PDB code: 4GC]J), (3) ROCKI active conformation
of rho-associated protein kinase 1 (PDB code: zm), (4)
AKT]1 inactive confc ion of serine/threoni tein kinase
AKT1 (PDB code 4GV1), (5) IGFIR inactive nonfotmmon of
insulin-like growth factor l-receptor (PDB code: 20J9), and
(6) ABL inactive conformation ofnonmceptot tyrosine kinase
ABLI (PDB code 2HZI). The y of the hydrophobi
spine was used to d ine the conf ional state of each
protein kinase (Figure 1).** Each protein hnase was ahgwd to
the sequence of the cyclic ad
ent protein kinase (PDB 2CPK) to determine the rendus d\al
make up the hydrophobic spine. Visual analysis of the
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hydrophobw spme assembly was conducted to determine the

i sutean dered hydrophobic spine indicates
an active confc d spine reveals an
inactive conformation.**

The human kinome organizes all human kinases into 7 major
groups, and the 6 kinases shown in Figure 1 cover three of
these classes.”’ The CMGC kinome class, including MK2 and
CDK2, consists of a diverse group of kinases named after
cyclin-dependent kinases, mitogen-activated protein kinases,
glycogen synthases, and CDK-like kinases. The AGC kinome
class, including ROCKI and AKT], ¢ serine/th i

ydrop
and a disord

loop region, and three residues in the C- issing. For
IGFIR, there were four missi idues within the N-
mdm@!nusmgmduﬁmaloomeorABLkmase,
ﬂlertw:nseven idues at the N i The
N-termi id i d since they were
loatedatdnbegmnmgandwmfarﬁ'omd\emm
Hi , the missing residues within a loop region were built
musinanme
During the second preparation step, crystallization molecules
andnonswemdclctcd (MK2 magnesium ion; CDK2 four 1,2-

kinases regulated by cyclic AMP or lipids. The TK dlass,
including IGFIR and ABLI, contains both receptor and
cytosolic tyrosine kinases.

For all protein kinases, the crystal structures were chosen
such that all activation loop residues were d with a
resolution better than 3.0 A (Table 1). For all protein kinases

Table 1. Protein Kinase Systems Setup for MD Simulati

diol molecules; AKT1 four glycerol molecules; ROCK1,
IGFIR, and ABL no crystallization molecules or ions present).
AKT] contained a phosphorylated threonine residue (Thr308-
phospo), which was mutated back to threonine.
During the final preparation step, water molecules with less
dnnthmhydmgenbonds(oplmeinmmddmd.

The p states of were d at pH 7 using
PROPI(A3 S Hydmgtnbondswmopumued.followedby
an all-at with ion based on con-

and VS Training

m PDB _ atoms total llmhw B -

code simulated” actives”  decoys
MK2 3m2w S4161 100 ns 50 3050
CDK2 489 50644 100 ns 236 13688
ROCK1 2etr 74700 100 ns 49 3038
AKT1 4gvl 52854 100 ns 146 8030
IGFIR 20j9 54844 100 ns 73 4526
ABL 2hzi %0

ions, and explicit water molecules.
used in the trained models are shown. These numbers are the same
across the training and test sets for both clustering methods.

vergence or reaching a heavy atom RMSD of 0.30 A using the
OPLS_2005 force field."” The resulting inhibitor—protein
complexes were built for MD simulations in Amberl4
xLeap.**** Antechamber was used to determine the atom
types, bond orders, atomic partial charges, and assign force field
panmetets to the mhiblmls using the galf force field.***' The
kinase—inhibi was using chloride or
sodium ions as desmbed by)oung and Cheatham.”* The
TIP4PEWBOX water model®* was used to solvate the inhibitor
10 A in the x-, y-, and z-direction.

MD Workflow. All-atom explicit-solvent MD simulations
were performed for each inhibitor-bound protein kinase on
GPUs using the CUDA version of pmemd in AMBER14.*
The genera] MD workflow consisted of three stages:

equilibration, and production. The prepared

except CDK2 and AKTI, the inhibitor-bound complex
referenced in the DUD-E data set was used for the study,
whose kinase conformation state matched the actives in the
dataseLlnthemeofCDKZandAKTl whoseDUDEa'ysul
structure contained i

crystal structures that malched the conformational states of the
DUD-E crystal structures were selected. Also, it should be
noted that the ROCKI kinase also included the N- tenmnal

systemsmmmmunmdmfmusupsunngﬂnsuepest
descent minimi: hod as foll (i) mini
lheprotons.wlukmlnmmgthcpmum,hpnd.mdsohent,
(ii) minimization of the solvent, while restraining the protein
andliynd;(iii)minimiu!ionofthel@mdandsolvem,vdiﬂe
the p ; (iv) minimization of the protein side
chnnsand water, whﬂermnmsthepro(ﬂnbackb(mr(v)
of all atoms in the system. Harmonic force

domain; for the remaining five kinases, the N-terminal d

was excluded, and only included the catalytic domain.
Preparation of Systems for MD Simulations. The six

inhibitor-bound protein kinase crystal structures were obtained

constraint energy of 10 kcal/mol-A” was used for the restrained
minimizations. The systems were then equilibrated at 300 K
and 1 atm for 200 ps with backbone restraints using the NPT

from the Protein Data Bank (PDB).” Using Schridinger’s
Protein Preparation wizard version 2014-4, all six pmteln
kinases were prepared.”’ Both ABL and ROCK1 kinases were
crystallized as dimers; chain B was deleted and chain A was
retained for both crystal structures. The remaining protein
kinases were crystallized as monomers.

During the import and process step, the following boxes were
checked for all six crystal structures: assign bond order, add
hydrogens, create zero—order bonds ho metzls create disulfide
bonds, convert sel i delete
waters beyond § A from heteroatom groups, fill in missing
side chains using ane, and ﬁll in nussmg loops using
Prime*' ™ MK2 d two in the N-
terminus region and seven in a Ioop region. CDK2 only

ble. The backb were then removed, and the
system was allowed to equilibrate for an additional 200 ps. MD
was run for 5 ns in the NVT ensemble using the SHAKE
dgod&m,“mdmmﬁlsmwﬁnmmylnsw
restart files were used to begin five 20 ns NPT simulations at
300 K and 1 atm with a 2 fs time step. A total simulation time
of 100 ns was generated for each protein kinase target.
Selection of Protein Conformations. After the MD
simulations, the solvent and neutralizing ions were removed
from each system. The 20 ns MD trajectories were loaded every
40 ps, resulting in 2500 MD or frames, for each
protein target. Residues within 10 A of the inhibitor were
selected and defined as the active site. MD trajectories were
aligned on active site @ carbon atoms using cpptraj.”™*” The
aligned trajectories were clustered using two different clustering
(1) a Gromos RMSD-based method®“* and (2)

d two missi id FotROCKl there
were five N-terminus and ten C-terminus resid issing. For thod:
AKT], there were two N-termi idues, five residues ina  POVME 2.0.”
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Using the Gromos algorithm, pairwise root-mean-square
deviations were calculated for all the active site heavy atoms for
each frame. MD frames were clustered together if their RMSD
value was below the specified cutoff. The cutoff value for each
protein kinase system was selected using the following criteria:
(i) there were no more than 40 dlusters, (ii) 90% of the
trajectory was within the first 10 clusters, and (iii) there were
no more than 5 clusters with 1 single frame. The cluster
c ids, or the rep ive for each cluster, of the number
of clusters that contained at least 80% of the MD trajectory
were selected to make up the ble for virtual sc

The active site was also clustered based on its volume and
shape using POVME 2.0. POVME 2.0 flooded the active site
with equidistant grid points, and removed points that clashed
with the receptor. The resulting grid points were used to
ulcula(e the acuve-sne volume. These grid points were
d the same ber of clusters as in the
RMSD-based method using their Tanimoto similarity scores.
The cluster centroids were extracted for virtual screening.

Frames were also randomly selected from the MD trajectory
in which the ber of random frames hed the same
number of RMSD and POVME cluster ¢ ids. For 1

retained for docking. The inhibitor was used to generate the
receptor grid, using the default settings.
T'heDUDEdatabaseofcompoun&forudiprotmhm
target was used for the virtual screen.”” This database consists
of experimentally determined actives and property-matched
decoys. For every active compound, 50 decoys are selected to
ensure physicochemical similarity and topologically dissimilarity
to each active. The bond orders, stereochemistry, hydrogen
atoms, and protonation states were for the actives
and _cgeooys using Schrodinger’s LigPrep OPLS_2005 force
field.’

The prepared active and decoy molecules were docked into
their respective crystal structure and ensemble of cluster

ids using Schrodinger’s Glide single precision (SP)
sconng =7 The crystallographic pose of the inhibitor
in the i kinase compl duced to validate the

useofﬂleGhdesoonngﬁmcuon(FxgumSl)

e. To ensure adequate VS
performanoe,theabllnylodxsungmshamveandm“or
decoy, molecules should be d ined before perf g a

pmspecuvewrmalscreen.\‘b’hﬂcthmmnnommeuics

for systems with five cluster centroids, every 500th frame was
selected. It is important to note that frames are not extracted in
a time-dependent manner since one long 100 ns trajectory was
not run; instead five 20 ns trajectories were gmuped together.

Principal Components Analysis. GROMACS ™ was used
to determine the two most dominant modes of motion of the
active site of the MD conformations using principal
components analysis (PCA). The trajectories ;hgned on the

ilable to d how well a virtual screen performs, this
study focuses on two metrics: (1) the area under the receiver
operating characteristic curve (AUC) and (2) ROC-enrichment
factor (ROC-EF). Both the AUC and ROC-EF are determined
from the ROC curve, which plots the true positive fraction
(TPF)agamstLhe.falseposmveﬁm(FPF)avm
threshold settings.””" The global classification ability of a
virtual screen is given by the AUC, which is identical to the
probability that an active will be ranked ahead of a decoy.

active site heavy atoms were used to and
rotation before gencranng PCA. The variances of the atomic

H , the ability of a VS to enrich actives ahead of decoys
early in the ranked list is often of more interest in

discovery applications and enrichment factors (EF) are used to
this ability. “Traditional” EF measures the ratio of

coordi were ined using the first MD frame as the
reference; these variances were used to g the ¢ e
matrix A. Di i of the e matrix was used to

identify eigenvectors 1 and 2. In other words, these variances
were projected onto 2D space corresponding to the first two
principal comp or the ¢ with the gr

actives in an early portion of the ranked list to the ratio of total
amvesm!hedatabasesa'cencd. While this commonly used
metric provides a useful i jion of early enrich its

amount of variance. Calculation of the covariance matrix A was
conducted as follows, yielding the eigenvalues, 4: Ay = Au. A
plot of these eigenvalues along eig tors 1 and 2 was used to
compare how the cluster centroids represented the structural
changes thmughout the MD trajectory.

Bio3D”' was used to determine the principal modes of
motion for the MD conformations and crystal structures. A
PDB search using the UniProt ID and a BLAST search in the
Bio3D R package was used to find all available inhibitor-bound
crystal structures for all six protein kinases. A consensus-
binding site was found between all crystal structures and MD
conformations, and the conserved binding site mdues were

value depends on the ratio of decoy to active
molecules in the database.” This can be problematic when
making performance comparisons across targets where the
decoy to active ratio varies, as is the case for each of the targets
considered in this work. Therefore, the ROC-EF metric does
not suffer from the same liability. It is determined by calculating
the ratio of the TPF (at a given FPF) to the FPF, TPF(FPF)/
FPE." Random classification is indicated by a value of 1 and
perfect separation of actives and decoys is indicated by a value
of FPF™\. We select a2 FPF of 0.001 in measuring the early
chemical enrichment. However, it should be noted that an
alternative FPF can be used, and to our knowledge there is no
standard or generally accepted protocol for selecting a FPF.

was used to train

used for protein alig; The C of the Tralmng Ensembles to Optimize VS Performance. A
aligned conserved binding site residues were the el of ly P thod, EnsembleBuild
the covariance matrix. Diag gonali of the covariance matrix bles to imize AUC or ROC-EF.* The docking

was used to derive principal components 1 and 2, and
calculation of the matrix resulted in the eigenvalues. A plot of
these eig along 1 and 2 was used to
compare the PC space of the MD pled and availabl

results of each centroid and crystal structure were merged
together and randomly split into a training and test set,
maintaining the same active-to-decoy ratio (Table 1). Using the

inhibitor-bound crystal structures.
Ensemble Docking. For all cluster centroids from the MD
water 1 and lons were removed.
's M protein prep wizard was used to
determine the correct atom types of the cluster ids.”

Schradi

g set, all combi ial possibilities at each ensemble size
wasoonsmmdandeithe:AUCorROC-EFnlusmmed
to rank the e of the Iti bles. For

example, gv:ntwodusteromtmodsandducrysnlmn,
(labeled A, B, and xtal, respectively), there are seven possible
bles: three of ble size one (A, B, or xtal), three of

The protonation states used during MD simulations were

sizes two (AB, A and xtal, and B and xtal), and one of ensemble

DO 10.1021/a¢s cim.6000261
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Figure 3. ROC-EF of the cluster centroids and crystal structures against the training set for each protein kinase. The ROC-EF of the optimal trained
ensemble (the ensemble with the highest ROC-EF) using RMSD and POVME centroids reveal an increase in ROC-EF compared to the cluster

centroids.

size three (A, B, and xtal). For each ensemble size, the best
docking score value across all ensemble members was used to
rank each compound,'® and AUC and ROC-EF values were
determined from the resulting ranked lists. Finally, the
ensemble combination with the largest AUC or ROC-EF was
identified and retained. These best-performing ensemble
combinations were used to screen the test set, and the resulting
AUC and ROC-EF values were used to gauge prospective VS
performance.

Quantifying VS Performance Gain. To compare the VS
performance between the cluster centroids (or trained
ensembles) and the crystal structure, the gain in AUC or
ROC-EF was calculated as follows:

AUCgain (%) = [AUC, o /ensemttc = AUC,ppa] X 100

ROCEFgain (%) = (ROCEE,.,ois/enemtic — ROCEE, )
X 100/1000

To ensure the percent gain values are between 1 and 100, the
ROC-EF is scaled by the FPF of interest.

B RESULTS

We performed 100 ns of MD on each protein kinase and wrote
out snapshots every 40 ps, which resulted in a total of 2500
fnmes.Dodungm(omryhﬁ)fnmscompuunomﬂy

ive, and b of long confc laxation times,
llkely unnecessary. Therefore, various metrics are available to
reduce the MD ble in a ingful ithout losing
critical structural inf -nnabomthel ic behavior of

DO 10.1021/a¢s im.6000261
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the protein. In this study, we utilized three methods for
reducing the MD m;ectones RMSD and POVME dustenng in
addition to rand The g cluster

and random frames were used for VS cxpenments. The VS

to the crystal structure (Figure 3). For IGFIR, where all
centroids perform worse than the crystal structure, we note that
the PCA plots of the crystal relative to the MD frames indicates
lndeavedzp whlchmyuphmdnsROCEFdlﬁemwe

performances of the individual cluster id Methods and Rand
to the crystal structure and random frames performanoe Las'.ly Selecuon The randomly seleded frames sample oonfomunons
the perf e of bles trained to either the that collectively the confc

AUC or ROC-EF was also considered.

Comparison Between Structural Selection Methods.
Comparison between RMSD and POVME Clustenng
Methods. Both RMSD and POVME c¢

P | space sp
the first two principal components for AKT1 (F|gune S3).
However, for the remaining five kinases, the random
ﬁ’amasunplsasubselofPCspmSlmdaﬂyw!hedumng

capture large-scale conformational changes of “the bmdmg
pocket that occur during the MD s:mulahons (Figure 2) Each
method samples a collecuon of confi that i

hods, the ¢ of the rand
fnmesmumquandd:ﬂ'erﬁmnboanMSDand POVME
cluster ¢ ids. To d ine if cl g the MD simulati

p the conf | space sp ‘bytheﬁmtwo

ina ;"w:yvemlsnndomlysdcamgfnmﬁhsm
impact on the VS performance, the VS performance of the

principal H , the conf¢

tation used by each (binding pod:et RMSD and slnpe) is
different and results in a unique pool of cluster centroids for
each method. To determine how these differences impact VS
performance, we compared the VS performance of each cluster
centroid to the corresponding crystal structure using the
training set.

When considering global classification ability, as measured by
the AUC, POVME yields the highest individual performing
conformation (Figure S2), but this result is not consistent
across all targets; both RMSD and POVME clustering return
centroids with VS unhty For instance, RMSD and POVME

dom frames were compared to the cluster centroids against
the entire data set.

When considering global VS perfc ux,dxeAUCoftbe
nndomﬁzmsandduster ids are g
as i d by the lapping confid rmttrnls(Flgure

$4). For two systems, ROCK1 and IGFIR, the randomly
selected frames yield the single highest MD conformer.
However, tlmeAUCvzluesmnotstzusnaﬂyh@erdun
the single cluster id we
cnndudelhald‘usuucmnlselecmnmﬁhoddoano(mpm
global VS performance. Next, we considered the early
enrichment metric in comparing the structural selection

both yield high p MK2 ¢ ids that perfc

identically (AUC = 097) and. marginally outperfonn the crystal
structure (AUC = 0.96), rep ing a 1% p e gain.
This small gain is not surprising: thehrgecrysnlstmame
AUC value leaves little margin for improvement, and any
performance gain must necessarily be small. Also while
performance gains varied across targets, high crystal

Sunﬂar(ogiobalVSperfonnm,wheneaﬂymndlmemn

lected frames yield similar ROC-EF
valuﬁlothedustercenumdsformapntyoﬁhewgeu,m!h
the exception of AKT1 and IGFIR (Figure S5). For AKT, there
mfournndomﬁmnesdmluveahn@mEqunaﬂduster

AUC values and small performance gains were the norm. For
instance, while AKT1 and ABL realize the largest AUC gains
using the highest performing conformer, these gains were only
5.53% and 5.51%, respectively. Similarly, the highest perform-
ing conformations of CDK2, ROCKI, and IGFIR resulted in
AUC gains of 3.62%, 3.67%, and 2.83%, respectively. While
baseline crystal structure AUC values were high across all
targets, this was not the case for early enrichment, where crystal
structure performance was less than perfect, a case we consider
next.

Similar to the global classification results, when early
enrichment is considered, as measured by ROC-EF values,
the clustering method that identifies the highest performing
conf ion is target dependent, and both methods reveal
centroids with VS uhlxty (Figure 3). For instance RMSD
produces the highest performing cluster ids for MK2,
ROCK]I, and ABL, whlle POVME yields the best petformﬂ's
for CDK2 and IGFIR. For AKT]I, both dl

c , this i is not statistically significant.
For IGFIR, the smgk best MD conformer comes from the
random selection method, which is not statistically higher than
the single highest cluster centroid. Similarly to the results seen
with AUC, the structural selection method does not impact the
early enrichment of VS.

Eventhoughommstﬂtsshwthnd)emofdmmng
methods does not boost VS perfe e over
selection, the clustering methods does a better job in
representing the MD conformations as shown with PCA.
Therefore,wehnutd’-emofnndonﬂysel«tedfrumhem
and only consader the duster ids for
To d i b cluster ¢ ids and
thecrystzlm:cture:ouldresultmperfommwedmmedcd
that of any individual conformation, we used these structures to
train ensembles.

Comparing Trained Ensemble and Crystal Structure
VS Performance. Training ensembles on AUC yielded at least
one ble with a higher AUC than the crystal structure

yield a conformer with the same ROC-EF “of 95.89.
Additionally, for four out of six targets (MK2, CDK2, AKTI,
and ABL), both methods were able to identify conformations
that outperformed the crystal At 10%, the largest gain
in early enrichment ability was realized by an MK2 centroid,
which was identified by RMSD clustering. For CDK2, AKT1,
and ABL, gains using the highest performing conformer are
4.66%, 3.42%, and 5.49%, respectively. In contrast to these
performance gains, neither ROCKI1 nor IGFIR yielded

ids that ric d the crystal structure. However,
the highest perfom'nng ROCKI centroid performed identically

against the training set (Figure S6). The optimal trained
ensembles contained no more than four members across all six
targets (Table 2). For MK2 and CDK2, the members consist of
RMSD centroids, and POVME centroids for the

targets. | ingly, the optimal trained ble’s AUC value
ustansmllysngmﬁandyh:gherdnndzcrymlm
across all six targets (p < 0.05). The largest AUC gain using the
optimal ensemble over the crystal is seen with ABL with a gain
of 8.62%, while the smallest AUC gain (1.71%) is seen with
MK2. For CDK2, ROCKI1, AKT1, and IGFIR, the AUC gains
are 5.20%, 6.93%, 7.06%, and 3.09% respectively. Next, we
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Table 2. Global Performance of the Virtual Screen (AUC) of
the Optimal Trained Ensemble against the Test Set

s

ensemble  cluster

kinase size method members” xtal?  significant”

MK2 3 RMSD  centroids 1, 3, yes yes
and xtal

CDK2 3 RMSD  centroids 2,3,  yes yes
and 4

ROCKI 3 POVME centroids 2,3,  yes yes
and xtal

AKTI Rl POVME  centroids 4, 5, yes yes
6, and

IGFIR 2 POVME  centroids 2 yes yes
and 3

ABL 3 POVME  centroids 2, 3, yes yes
and 4

“Statistical signif is & d at the 95% confid level; p <

0.05. "The ids highlighted in bold ibuted the most to the

VS performance.

d ined if bles on ROC-EF would result in

increased early enrichment performance over that of the crystal
structure.

Similarly to training on AUC, ensembles trained on ROC-EF
resulted in at least one ensemble that onrperfonncd the aystal
using the training set (Figure 4). All optimal trained

Table 3. Early Chemical Enrichment of Actives (ROC-
EFgt.0001) Of the Optimal Trained Ensemble against the Test
Set

=

ensemble  cluster ensemble st
kinase size method members* xtal? )
MK2 1 RMSD centroid 3 yes yes
CDK2 2 POVME  centroids 1 yes no
and 4
ROCK1 2 POVME  centroid 2 no no
and xtal
AKT1" 2 POVME  centroids 4 yes no
and §
3 RMSD centroids S, yes no
6,and 7
IGFIR 3 POVME  centroids 2, yes no
3, and xtal
ABL 2 RMSD centroids 2 yes yes
and 4

ag, 1 3 4

d at the 95% confidence level; p <
Q%ﬁmm&mmdmbem:bcdnmﬂlmdnm
ROC-EF value which is the highest. “The centroids highlighted in bold
contributed the most to the VS performance.

the g crystal yielded VS
ﬂutexaedsthaoftheaysulmmTodetumde&e

contained no more than three members (Table 3). The
members consist of RMSD centroids for MK2 and ABL, and
POVME centroids for CDK2, ROCKI1, and IGFIR.

For AKT1, there are two optimal trained ensembles (RMSD
size 3 and POVME size 2) as they have the same ROC-EF
value. The optimal trained ensembles’ ROC-EF is statistically
significantly higher than the crystal for CDK2 and AKT1 (p <
0.05), with a gain of 6.36% and 6.16% respectively. For MK2,
ROCKI, IGFIR, and ABL, the ROC-EF gains are 10.00%,
6.00%, 4.05%, and 6.59%, although these gains are not
statistically significant (p > 0.05). Interestingly, results
demonstrate that trained ensembles of cluster centroids and

| trained bl was due to synergism
betwemstrucmresorduemosﬂympantoamgleh@
we also

ensemblesVSperfonmncztodnsmgkhlglmp«formmg
MD conformer.

VS Performance of Trained Ensembles vs Cluster
Centroids. Ensembles trained on AUC resulted in at least one
ensemble with a higher AUC than the cluster centroids agai
the training set (Figure S2). However, this increase in AUC
mgtheopumalmmedenmbleomthemﬂehw
performing conf is not stati significant for any
hxgets(p)0.0S),md\gamsofonlyO.SS% 1.58%, 3.26%,
1.53%, 0.26%, and 3.11% for MK2, CDK2, ROCKI1, AKT]1,

e RMSD Train RMSD Test  mmmme Crystal Train =mmm= Crystal Test  mmmmmme POVME Train ===== POVME Test
POVME
000 Cdk2 s00  Mk2 00 Cdk2
00 '=-.‘--a.-¢.-.a wl{T I v 1 71 300 1
- 1 + ; 1 _q 200 — = —
200 e
= 0 ° °
g 12 3 4 s 1.2 3 4 5 6 1.2 3 4 5 6
.}m Rock1 200 ARt 00 Rock‘1 220 Alm' o
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Figure 4. Tmnedenumbk:wuﬂayﬁdmmkocﬂ(fpf 0.001) values against the training and test set across all six protein kinases.

£

The 95% overlap b

the training and test set, validating the training method.
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IGFIR, and ABL mpecuvely Howem, it is noteworthy that
the highest indivi isa ber of the
optimal trained ensemble for all targets except CDK2 (Table
2). Recall for CDK2, POVME yields the smgk highest
performing conformati , the optimal trained
ensemble consists of RMSD duster c ids. Therefore, if

EF of the optimal trained ensembles’ and crystal against the test
set.

The optimal trained bl Ited in a higher ROC-EF
tlnntheaystalsmmagamst(het&mforaﬂh:gﬂs
except ROCK1 (Table 3). The enhancement in ROC-EF is

istically significant for MK2 and ABL only (p < 0.05),

we look within the RMSD cluster centroids only, we see that
the optimal ble contains the highest perfc g RMSD

conformer, thereby supporting the results seen with the other
five targets. In addition to being a ber of the optimal

differing from the results against the training set where the
ROC-EF is statistically significantly higher for CDK2 and
AKT]. Similar to the early enrichment performance against the
ining set, the largest ROC-EF gain is seen for MK2 with a

ensemble, the single highest performing conformation contrib-
utes the most to the VS performance of the optimal trained

gain of 14%. Differing from the performance against the
training set, no ROC-EF gain is seen for ROCKI, and the

ensemble for all targets except AKT1 (Table 2, id
highlighted in bold). This means that the single highest
performing conformer was more successful at correctly ranking
actives ahead of decoys than any other ensemble member.
While results suggested that the global performance of the
trained ensembles is due to the single highest performing
c id, next we i igated if the same was true for early
enrichment.

£ .

trained to ROC-EF resulted in at least
one ensemble with a higher ROC-EF than the cluster centroids
against the training set for all targets except MK2 (Figure 3).
This exception is due to the fact that the single highest
performing conformation yields a higher ROC-EF than all
trained ensembles. A statistically significantly (p > 0.05) higher
gain in ROC-EF using the optimal trained ensemble over the
single highest performing conformation is seen for IGFIR only,
with a gain of 10.81%. For the remaining four targets, CDK2,
ROCKI, AKTI, and ABL, the gains in ROC-EF are 1.69%,
6.00%, 2.74%, and 1.10% respectively, although this enhance-
ment is not suusncally sn.gmﬁam (p > 0.05). Similarly to the

bers of the trained on AUC, the

bers of the optimal trained bles on ROC-EF contain
the single highest performing oonfom\auon across all six wgets

P

| trained ble and crystal identically
(anure 4). The gains in ROC-EF for CDK2, AKT]1, IGFIR,
and ABL are 3.81%, 2.74%, 8.22% and 13.33%, tespecuvdy
We also ¢ d the VS p e of the optimal
ensembles to the single hi conformer agzmst
the test set. The AUC and ROC-EF of the optimal trained
ensemble was either the same or higher than the single highest
performer against the test set (Figures S7 and S8). However,
this increase is not statistically significant (p > 0.05) for any
target, so we limit discussion of our results here.

B DISCUSSION

AIISuucturaISelecﬂonM“ ds Yield Conf
that Enhance VS Perfi €. The impact that RMSD and
POVME clustering methods have on VS performance is
c ble. Both clustering methods selected at least one
oonfomtr(hz(perfomneduwdlotbe«erdundncrysul
structure, as judged by both AUC and ROC-EF values. While
POVME identified the single conformer with the highest AUC
across all targets, the improvement was not statistically
significantly higher than the AUC of the best performing
RMSD conformer. Therefore, we cannot conclude that
POVME identifies conformers that result in meaningful

(Table 3). Also, the single highest p

pe.J e gams lative to RMSD clustering. Either

the largest ¢ to the optimal bl forallldnzs«
except CDK2, suggesting the early enrichment performance of
the opumal trained ensembles is due to the smgle highest

g conf (Table 3, ids highlighted in bold).
Next we measured the VS performance of the trained
ensembles against a test set of compounds it has never seen
before in order to predict how the trained ensembles would
perform prospectively.

Performance of Trained Ensembles Against the Test
Sets. The VS performance of the tramed ensembles against the
test set validates the thod (Figures 4 and
S6). Since the AUC and ROC-EF values on the test set are
within the confidence intervals of the values against the

hod can successfully cluster the MD trajectory
andrevea]oonfonnctsdmmllbe sful in VS exp
thednmpaathadustenngmdnndondyselemngMD
frames have on VS e is
differences with how the P the MD ¢ ‘
tional space. The use of clustering methods ensures that the
large-scale conformational changes of the binding site are
aptured in the VS i which held true for all six
targets. mer,nndomlyselec‘ungﬁ'amﬁmayormzynm
these as seen with majority of
!heprotemhnasamd\mthxsmsdy Since, them:snowayof

thod

set, this suggests that the trained models may perform similarly
prospectively. Similar to the analysis against the lralmng set, we
compared the VS performance of the i

knomngapnondmem- lati P e and
',,snten jon, it is imp to all

g conff “dunngMDmVSmetbods.Tlmefore,
we still conclude that I g on some physical y of

the bmdmg pocket is unponan( in ensunng that all

ensembles’ and crystal structure against the test set.

The optimal trained bl "inshghdylngher
AUC values than the crystal structures the test set
across all six protein kinases (Table 2). This enhancement in
AUC is statistically sngmﬁcant across all su targets (p < 0.05),
similar to the opti ble’s perfc e against the

ing set. The AUC gains are 2.16%, 7.26%, 2.61, 5.73,
6.03%, and 3.38% for MK2, CDK2, ROCKI, AKT], IGFIR,
and ABL respectively; these gains are modest as expected due
to the large crystal AUC values. Next, we compared the ROC-

confor "dunngMDmrepmenlediS
experiments. In choosing which « g method to utilize,
factorsotberdunVSperfomncecompa.monshouldbe
considered.

In order to reduce computational cost and time, it is optimal
to choose one clustering method; this decision may be made
based on the advantages and limitations with each method.
RMSDbased dus(ennglscommotﬂyuscd:ndhasprvm

l in that enriched novel active
y may be a major
Inmntzhon Two conformers wnhthe same RMSD would be

=
3. 21,2781 H
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grouped into the same cluster, even though visual inspection
may reveal key structural differences. To overcome this
limitation, clustering on the volume and shape of the active
site may be an attractive alternative. Also, it may be easier to
visualize differences in active site shapes and volumes as
opposed to changes in s:dc chain positions.

hances VS Performance. Train-
mg ensembles improved the early enrichment of actives.
Although we saw a statistically significant increase in AUC with
the trained ensembles, it is important to highlight that the
crystal structures yielded high AUC values (>0.9 for one kinase,
>0.8 for three kinases). Therefore, there was little room for
improvement in the global VS performance. Based on the
ROC-EF values of the crystal structure, which were further
from the maximum value, there was greater potential to realize
improved early enrichment.

While it is important to optimize the overall performance of
the virtual screen (AUC), very often in drug discovery projects
the ability of the VS method to enrich actives early in the
ranking lists is an important feature. This is especially critical in
cases where thousands or even millions of compounds are
screened in silico, and only a small subset of compounds can be
experimentally tested (i.e., in academic laboratories or limited
resource settings, or for mgets that do not yet have their assays

ported to_high throughp rks). In providing a top
fraction of compounds for exp taun&nucmcnllo
reduce the ber of rec ded false and

enhance the hit rate. Aboostmdnseaﬂyennd\mentof
actives is seen when ensembles are trained on ROC-EF.
H , in the les p d here, this performance
boost is only suumdly significant for MK2 and ABL,
suggesting that the ROC-EF values of the trained ensembles
are comparable to the crystal structure for the remaining four
protein kinases at a false positive fraction of 0.001. At this false
positive fraction, the total numbers of compounds enriched in
the early ranking lists were 18, 20, 8, 22, 19, and 23 for MK2,
CDK2, ROCK2, AKT], IGFIR, and ABL kinases. To the best
of our knowledge, there does not appear to be a general
protocol established for choosing false positive fractions with
early enrichment. Therefore, it may make sense to choose a
false positive fraction based on the available resources for

on protein kinases may be worthwhile in virtual screens as one
single MD conformation may significantly enhance virtual
screening performance. While ndenufymg a smgie hxgh
performing MD ¢ ion may be p identi
nrequmsdockmgtomryMDsmpshotordumcenlmtd,
which is limiting. It would be more straightforward to select the
highest performing centroid a priori; however, there is little
consensus about the target descriptors that would allow such a
conformation to be identified. In an effort to address this, we
uplored whether there was a correlation between VS

e and the bi site vol and found no
conelauon. Ellingson et al. mvmgzted whether there was a
correlation between several physicochemical and thermody
namics properties and descriptors of MD snapshots and
enrichment factors.*” Some of these properties included the
number of MD snapshots that make up the cluster, the
lniectoryﬁznwnumberofdwlngestneighbaconfomuﬁon
that is used as the representative conformation, largest pairwise
RMSDm!hmtheduster,anddxhlngMSDmd:mdxe
cluster to the rep Additional proper-
uesmdudeddunumbefofoonuaawmsmdnbmdmgm,

y for ligand binding, number of hydrophobic contact
atoms in the binding site, number of side cham contact atoms
in the binding site, the number of contact residues in the
binding site, the van der Waals (vdW) surface area, hydrophilic
nuﬁceama.hydmphoblcnuﬁoemmdvdeohme.
However, this attempt to identify a meaningful feature set that
could reliably recognize high performing MD snapshots was
unsuccessful. Future studies that elucidate MD snapshot
selection for enhanced VS performance will be groundbreaking
and greatly enable the use of MD-g d ble docki
approaches.

While MD simulations within this study revealed a single
high performing conformation, NMR and X-ray crystal
structures may have also reveal a single high performing
conformer. Although, we did not explore the use of NMR or
crystallographic ensembles, we speculate that the virtual
screening performance would be similar to the results seen
using MD-generated ensembles for different reasons.

NMR experiments provide an ble of
conformauons where each conformer could be extracted for
prospective VS exp Hi , we that training an ensemble

experimental testing. For example, if in future
studies we are able to screen 80—100 compounds, we can select
an optimal ensemble that gives a higher ROC-EF at a later false
positive fraction, 0.01 for example. If we look at the ROC-EF
for CDK2, ROCK]1, IGFIR, and AKT at a later false positive
fraction of 0.01, there are trained ensembles with a statistically
significantly higher ROC-EF than the crystal structure (Figures
$9 and $10).

MD Simulations Reveal at Least One Better Predictive
Conformation than the Crystal Structure. One hypothesis
for why trained ensembles enhance the virtual screening
performance over the crystal structure is because the MD
simulation finds at least one single conformation that is more

ofoonformzhons obtained from NMR would yield similar VS
performance as the MD-generated ensembles since both
methods explore protein dynamics. Damm and Carlson make
a similar conclusion in a study where they found that both MD
and NMR captured similar structural variations of HIV-1
protease as indicated in their similar models.™

While multiple crystallographic structures are not always
available for proteins, this is not the case for protein kinases,
with over 300 crystal structures for Cdk2 for example
(Supporting Table S1). Therefore, all the available crystallo-
graphic structures for each protein kinase could be used to
generate an ensemble to train for VS performance. It is in fact

predictive than the crystal structure. (' i ly, the 1
trained ensembles contained the hlghest performing
centroid for majority of the targets. It is interesting that the
conformer that contributed the most to the optimal trained
ensemble’s performance is never the crystal structure and
always an MD centroid (Tables 2 and 3). These results align
with the studies of Barril et al, who observed that ensemble
member’s that performed well alone also did well in bl

possibl dmtheVSperfonmnceofaysulmmmblu
may differ from the MD-g bles. Hi
PCAanalysnsrevealsanovedapbetweendnbmdmgsneofdn
crystal structures and the MD conformations (Figure S11), we
conjecture that the ensemble of crystal structures would
perform similarly to the MD ensemble and limit our studies
to MD'generaled ensembles.

bl Sizes Result in Opti

I Vs

docking.'® Our results suggest that performing MD simulations

values of

Performance. When looking at the perf
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DOCKED POSE OF ACTIVE COMPOUND CHEMBL
272309 IN THE
OF MK2

AND

Figure $. Docked pose of active compound, CHEMBL272309, reveals favorable interactions with RMSD centroid 3 (purple) and steric clashes
(circled in left figure) with the crystal structure (pink). The compound makes H-bonding interactions with active site residues in the RMSD centroid
3, but interactions with the Glu, Asp, and Asn residues are lost when bound to the crystal structure. CHEMBL272309 is shown as licorice and is

colored by atom type (C gray, N blue, O red, S yellow, H white).

IR}

trained to either the AUC or ROC-EF, it
is interesting to note that the optimal ensemble size is fairly
small. For some protein kinases, adding more conformations
cither left the perf e Itered or degraded it. For
example, if we look at the results of training AKT1 ensembles
to maximize ROC-EF values (see Figure 4), the RMSD optimal
ensemble was of size 3. For ensemble sizes 4, 5, and 6, the
ROC-EF is the same as ensemble size 3; adding 3 additional
MD centroids did not alter the early enrichment of actives.
Furthermore, for ensemble sizes 7 and 8, the ROC-EF value
decreases. Previous studies have shown similar results—the
addition of more conformers can degrade perform-
ance.' ' #719%=5 While ensemble docking studies, ours
included, consistently highlight the importance of incorporating
multiple protein conformations in VS experiments, that
performance does not necessarily scale with ensemble size.
Clearly, even though protein kinases may adopt multiple
conformations, it appears that only a small number of
conformations (1—4) are important for ligand binding, at
least in the context of ensemble docking. The key to fully
leveraging the power of ensemble docking will be developing
strategies and protocols to find these crucial conformations,
which ins an ¢ ding challenge to the field.
Structural Comparison between MD Conformer and
Crystal Structure for MK2. To gain insight into why a MD
cluster centroid may result in greater enrichment than the
crystal structure, we analyzed key structural differences in an
exemplar case. We determined several key structural differences
that exist between the third RMSD centroid and the crystal
structure of MK2. First, when we compare the actives enriched
in the ranking lists at a false positive fraction of 0.001, we see
that RMSD centroid 3 enriches an additional eight classes of
actives that are not enriched by the crystal structure. One of
these actives, CHEMBL272309, is unable to fit in the active site
of the crystal structure, indicated by the steric clashes made
with the crystal structure (Figure S). Interactions between the
active compound and the hinge region (Leu) and a C-lobe beta
strand (Lys) are seen when bound to both the MD
conformation and the crystal structure. However, three
hydrogen-bonding interactions are lost with residues Asp,
Glu, and Asn when bound to the crystal structure, which
compounds the steric clash and greatly lowers the predicted
binding affinity. Although the docked pose is shown for one
active, the steric clash and suboptimal-hydrogen-bonding

network observed with the crystal structure is consistently
observed for all of the actives uniquely enriched by the third
RMSD centroid. These side-chain movements help explain the
difference in early enrichment between the MD conformer and
the crystal structure, and the subtle rearrangement underscores
the difficulty of identifying a general set of structural features
that reliably predicts conformations with strong classification
ability.

B CONCLUSIONS

In this study, we analyzed the VS performance of MD
structures against six protein kinases in three different kinome
classes. We compared two clustering methods to determine
whether clustering the RMSD values of active site heavy atoms
resulted in a significant advantage over clustering the active-site
shape. We compared these clustering methods to random
selection of MD conformations. We also determined if
ensembles of MD structures and crystal structures could be
trained to optimize AUC and ROC-EF, and we analyzed their
performance on a test set of compounds.

Results from this study suggest that running MD is
worthwhile in conducting virtual screens against protein
kinases, because it may result in that at least one conformation
is more predictive than the crystal structure. Further, ensembles
trained to maximize the AUC or ROC-EF can result in better
performance than using the crystal structure alone. However,
the extent of this enhancement is system dependent. For the
majority of the protein kinases in this study, it does not seem to
matter whether MD structures are selected using RMSD or
POVME clustering. We find that the virtual screening
performance differs between targets. This held true for
members of the same protein class and for members of the
same kinome class. The performance variability across targets
implies that optimizing virtual screening protocols on a target-
by-target basis is a reliable way to improve the likelihood of a
successful prospective virtual screen.

Although the results presented are encouraging, they are
limited to the six protein kinases within this study. Exploring
larger data sets will ultimately lead to a greater understanding of
the fund | promise and 1 of applying ensemble
docking to kinase drug discovery. Parallel studies within our
group are focusing similar analysis on nuclear hormone
receptors. Consistent with our conclusions here, the VS
performance within the same nuclear hormone receptor class
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differs between each target, which supports the case for target-
specific optimization prior to applying a VS method
prospectively.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.6b00261.

Additional data (as described in the text) provided in
supporting Figures S1-S11 and Table S1 (PDF)
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SUPPORTING FIGURES

Crystallographic pose
Docked pose
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Supporting Figure S1. Comparison between the crystallographic and docked pose of the co-
crystallized inhibitors. The inhibitors are colored by atom type (C: green for crystallographic
pose, and gray for the docked pose; N: blue; O: red: S: yellow; F: light green; CI: dark green.
The RMSD between each heavy atom pair was calculated using Schrodinger's Maestro
superposition tool.
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Supporting Figure S2. The cluster centroids and crystal’'s AUC against the training set for
each protein kinase. The AUC of the optimal trained ensembles (the ensemble with the
highest AUC) using RMSD and POVME centroids are shown for comparison.
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Supporting Figure S3.. Comparison between all structural selection methods. Principal
components 1 and 2 of the MD snapshots, cluster representatives (centroids), randomly
selected MD frames, and the crystal structure projected onto 2D space for each protein kinase
are shown.
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Supporting Figure S4. The RMSD and POVME cluster centroids and randomly selected frames
AUC values against the entire dataset of actives and decoys. The AUC of the crystal structure is
shown for comparison.
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Supporting Figure S5. The RMSD and POVME cluster centroids and randomly selected frames
ROC-EF values against the entire dataset of actives and decoys. The ROC-EF of the crystal
structure is shown for comparison.
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Supporting Figure S6. The trained ensemble sizes and crystal structures AUC values against the
training and test set across all six protein kinases are shown. The 95% confidence intervals overlap

between the training and test set, validating the training method.
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Supporting Figure S7. The cluster centroids and crystal's AUC against the test set for each
protein kinase. The AUC of the optimal trained ensembles (the ensemble with the highest
AUC) using RMSD and POVME centroids are shown for comparison.

136



—  RMSD — POVME w— Optimal RMSD ensemble w= == == = Optimal POVME ensemble
400 Cdk2

9 Mk2 300
300 - - —— - - —— - -
200 200

E n g

0 0

1 2 3 4 5 xtal 1 2 3 4 xtal

ROC'EF'PmoM
~8888EE
= i
' =
I :
&
)
]
]
I: |
]
i
g 8 2

1 2 3 4 xtal 1 2 3 4 5 6 7 xtal

300 1gfir 250 Abl
250 I 200 I T
f: ___________ [ mpp—— 150
B 1: “ ‘
2 e

) 0

1 2 3 xtal 1 2 3 4 5 xtal

Cluster Centroid #

Supporting Figure S8. The cluster centroids and crystal's ROC-EF against the test set for
each protein kinase. The ROC-EF of the optimal trained ensemble (the ensemble with the
highest ROC-EF) using RMSD and POVME centroids are shown for comparison.
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Supporting Figure $9. ROC-EF values at a later false positive fraction (fpf=0.01) against the training
and test set for each ensemble combination using RMSD centroids across all six protein kinases. The
training set is shown as light red bars and the test set is shown as dark red bars. The 95% confidence
intervals are shown above each bar.

100 60 60
80 50 50
bl O 40 ] I
30 30 I
40 20 20
20 10 10
s o . 0 0
i 1 2 3 4 5 6 xal 1 2 3 4 5 xal 1 2 3 4 xa
w Mk2 Rock1 Igftr
9 7
€ w 40 50
50 20 40
40 . 30
ot 20
10 10 ]i 10
(] 0 0 . -1
1 2 3 4 5 xal 123456 7 8xtal 1 2 3 4 5 6 xal
Cdk2 Akt1 Abl
Ensemble size

Supporting Figure S$10. ROC-EF values at a later false positive fraction (fpf=0.01) against the
training and test set for each ensemble combination using POVME centroids across all six protein
kinases. The training set is shown as light red bars and the test set is shown as dark red bars. The
95% confidence intervals are shown above each bar.
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Supporting Figure $11. Comparison between Crystgl Structures and MD Conformations.
Principal components 1 and 2 of the binding site for all available crystal structures and the MD
frames are shown.
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Supporting Table S1. Number of Crystal Structures used for
PCA Comparison between MD and Crystal Structure

Conformations

CDK2 369 234
ROCK1 18 13
AKT1 31 1"
IGF1IR 21 20

ABL 49 20

°A PDB search using the UniProt ID and a BLAST search in the Bio3D R

gackage was used to find all crystal structures for all six protein kinases.
Only inhibitor-bound crystal structures were extracted from the PDB and
BLAST search results. Within the inhibitor-bound structures, inhibitor that

were bound to an alternate site were also eliminated.
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Chapter 3, in full, is a reprint of the material as it appears in Enhancing Virtual
Screening Performance of Protein Kinases with Molecular Dynamics Simulations 2016.
Offutt, Tavina L.; Swift, Robert, V.; Amaro, Rommie E., ] Chem Inf Mod, 2016. The

dissertation author was the primary investigator and author of this paper.
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increasing trend toward miniaturization and greater well plate
density, reagents and other consumables drive up HTS costs,
pamaxlarlywhen large corp or ¢ ial datat
screened.’ Rationally prioritizing compounds for experi |
!estmg can reduce costs. For enmple, during a virtual high
ghput screen, a comp moddlsdevelopedand
applied to rank compounds for testing.””* When paired with
high quality compound libraries, carefully constructed comp
tional models can generate hit rates nuny fold above random.™*
This can result in novel, structurally diverse actives from which
several lead series can be selected. Structural diversity ultimately
helps circumvent ADME-Tox and patent liabilities that can
increase lead optlmmuon costs.”

C | virtual sc g models primarily fall into
two dasm. ligand-based” and structure based, or docking
methods.” Ligand-based methods predict the activity of novel
compounds by assessing their similarity to known actives.
Docking methods, on the other hand, use predicted
interactions between a small molecule and a target receptor
to predict activity. Numerous benchmarking studies have
reported that ligand-based methods yield greater hit rates

<7 ACS Publications —© 2016 American Chemicai Society

aysulmxtmsmumdmfomPPAR-éememble&Forachnrgd,wshowM
ther on both the training and test sets.

hode #1011 H

than struc based , a reliance on
chemncdsxmxhntymaylumtdmrahhtytondmnfynovd
chemical matter. In ¢ the di y of actives d
usingdockmgmethodsisonlyconmnedbydnshapeofd:e
receptor-binding pocket. In principal, docking can enable the
discovery of actives more novel and diverse than ligand-based
methods. Consistently, numerous successful examples of
docking in early stage discovery can be found in the
literature.'*~"

Despite these successes, docking has traditionally been to a
single static representation of the target. This static view is far
from reality. In solution, a drug target is highly dynamic, and
two notable models have been advanced that suggest a tight
coupling between protein motion and small molecule binding.
1nl958,l(oshlandproposedthemd\xcdﬁlmodd,wbxh
suggests that ligand binding induces a conf | change of
the protein that enhances its affinity for the ligand."”
Conformational selection is a more recent exphnanon of
small molecule binding that incorp energy
dnory'“ltpmpom!ha!bmdmgsubdnumofmny

g ¢ of the unbound target.'”* Both models
unply that the collection of low-energy receptor conformers
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defining the bound state depend upon ligand identity; by
extension, successful docking requires the receptor to be in, or
at least near, the appropriate ligand-dependent bound state.
Ensemble docking, in which each ligand is docked to a set of
receptor confon-ncts, was introduced in an effort to address this

requirement."”
Th«emavamwofmeanstogenentesuuctumfor
. 21
e docki duding crystallography®® and NMR
techni H , while experi | methods have shown

promlse, the matemls ume, and expertise required to

and typically can be found in greater abundance than careful
binding affinity

For example, following a slightly different approach, Xu and
Lill developed a knowledge-based ensemble selection (edmlque
that can be used with any type of affinity measurement.™ In it,
receptor conformers are first ranked by their ability to separate
the average docking scores of active and inactive compounds.
Then, by assuming that effective ensembles must be
constmcted from effective conformations, ensembles of
ly larger size are formed by aggregating conformers

determine multiple, high quality structures is a sxgmﬁmn!

ﬁomhg)mltolomnnk%ﬂednmm:puonm:&dn

bottleneck. In ¢ molecular dynamics (MD) simul blem, its ity went d. For
offer a relatively inexpensive alternative to generate diverse, le, does the dure ignore bles with signifi-
realistic conformational states. This is largely d:e msul( of d\e can!ly greater dlasification power? While the underlying
recent implementation of MD codes on p went ined, the promis-
processor units (GPUs)**** and the dramatic speedup of ing. When classification ability was examined as a function of
simulation benchmarks. ble size, the perf of the trained ensembles were

Reprdlessofwhelherstmcturesm d by experi c ble or better than the those of ensembles selected by
or ion, for ble docking to be sful, a subset of aggregating diverse receptor conforms.

conformations likely to offer the best VS performance must be
identified. Though several studies have provnded hmts e
others have been unable to d ine a i
between observabl_e receptor characteristics and virtual screen-
ing performance.”””* Even with insights from a growing body
of careful studies, it remains difficult or impossible to know a
priori which receptor conformations will result in an ensemble
with virtual screening utility.

The dlfﬁcultles of selectmg effective vutual screening

are the ial nature

of the ble sel P When the ber of

P

structurally

A final approach, developed and widely applied by the
Cavasotto and Abagyan groups, utilizes virtual screening
performance on a small training set to select the most
promxsmgstmctumﬁomanensemblegena‘atedmgeﬁher
Monte Carlo side-chain sampling or normal-mode analysis.*’
By including a ligand with the desired properties, for example, 2
high affinity binder or a receptor agonist/antagonist, the search
may be biased toward structures that enrich ligands with similar
pmpemes.Dunngmodclg:nuabon,lheVSahlnyofudl
target and P

receptor conformations is large, the problem results in a
significant number of possibilities, and it can be difficult or
impossible to know which of these ensembles will produce the
best virtual scteemng perfonmnce

Though sy g and data-fusi exist
that address similar issues in ligand-based VS, there is a relative
paucity of knowledge-based structural selection methods.
Despite this, other knowledge-based ensemble selection
methods have been described in the literature. For example,
Yoon and Welsh®” proposed an ble docking method in
which ensemble members are selected to maximize the

thod

conti until VS P e ¢ ges. Following mn
vetgence,ashgjebestperfotmingsmmnmbedmwdand
used for cross docking, selectivity studies, or VS. Alternatively,
multiple conformers may be extracted and combined into
useful bles, and the methods we introduce here may
prove useful in such an approach.

In this work, we present three new trai methods that
select structure-based ensembles for VS use. All three methods
construct ensembles by optimizing one of two binary
classification metrics, which makes them flexible and enables
their use with single-point data, competition assay data (eg,
ICy, values), or other binding data. To address the

correl b the exp 1 and pmd!ctcd bmdmg oombmatoml problem, the population of ensembles is
affinities. The combi ial problem was b)' comp i and two different

igning each compound an ble score that ¢ d of ics are designed to les biased
a linear combi of score weights to each receptor to exclude low pexformmgensembles.'l‘hﬁewoacbﬁleadw

conformation using a Monte Carlo scheme. Using estrogen
a, they di d that the ap h leads to more
accurate classification than docking to the crystal structure
alone.
Wlule Yoon’s and Welshs method can produce stronger
correl with | binding affinities and result in

different asymptotic scaling as the number of receptor
conformations becomes large, and they allow us to examine
the ity of the approximati isti
relative to the enumerative solution.

Each method is evaluated on three different target proteins
with active and decoy molecules taken from the DUD-E:* the

drogen nuclear h ptor (AR), the cyclin-depend-

enhanced VS perf exp tal binding
are required. This precludes the use of single-point HTS data
and limits the method to compounds whose binding affinities
have been measured or to those with dose—response curves,
from which binding afﬁmnes may be mfemd.

Rather than opti the with i I
binding affinities, selecnng ensembles to maximize the value of
a binary classification metric offers greater flexibility. Since

ent kinase 2 (CDK2), and the peroxisome proliferator-activated
receptor & (PPAR-3). Target conformations were selected from
arangeofsowas,mdudngMSDandvohmmdumlg
of ¢ I MD lati as well as multiple crystal
structures.

B METHODS

binary classification is categorical, once an appropriate activity Dm Sets and Target Proteins. The knowledge-based
!hresholdhasbeendetmmned,any:ssaytlm" an ‘*‘wmlestedon!hmptuemwgetsdn
activity measurement can be used. This opens the door to the drog; ptor, the cyclin-dependent kinase 2 (CDK2), and

use of single-point data, which is less exp to d the p proliferator-activated receptor § (PPAR-5).
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Confe . 3 1 ie d g of conven-
tional MD myectones along wnth the crystal structure PDBID

protonated crystal structures were built for MD simulation
using the xLEaP program that accompanies AMBER14.*’ The

2AM9 were used to train

Similarly, conformations generated by RMSD clustering of
MD trajectories, along with the crystal structure PDBID 4GC]J,
were used to train ensembles of CDK2. Clustering and
simulation details are provided in subsequent sections. For
PPAR-S, ensemble training was performed using 12 crystal
structure conft with the following PDBIDs (Uniprot
QO03181): 2AWH, 2B50, 2J14, 2Q5G, 2XY], 2ZNP, 3DY6,
3ET2, 3GZ9, 3PEQ, 3SP9, and 3TKM. Structures were
selected to ensure a resolution of 3.0 A or lower and to ensure
that each ligand was unique. Additionally, allofdnstmotum
are antagonist bound, which is consi with the g

that make up the actives of the training and test sets, as
described below.

Active and decoy ligand sets from the Directory of Useful
Decoys-Ehanced (DUD-E)** were used to perform virtual
screening for each target. While a complete description of
ligand set curation can be found in the original reference, we
briefly describe the process here. Compounds in ChEMBL
whose affinities (ICg, ECyq, K, K;) were less than or equal to 1
#M were clustered by their Bemis Murcko (BM) fra rks.

chol | and RC-3-89 ligand parameters were generated
using the Antechamber program in AMBERI14. Ligand atomic
partial charges were determined from the crystallographic
conformations using the AM1-BCC method,”’ and all other
forceﬁddtennsw«eam?\edmdmgtodngenaﬂmd
Amber force field (GAFF).”* Each system was immersed in a
box of pre-equilibrated TIP4PEW water'® that provided a
minimum 10 A water pad between the protein and the
boundary of the periodic box in the x-, y-, and z-directions.
Each system was brought to electric neutrality by the addition
of an appropriate number of chloride or sodium ions, modeled
using the parameters developed by Joung and Cheatham.** The
androgen receptor system was comprised of 54,014 atoms, and
the CDK2 system was composed of 50,644 atoms. The
potential enetgywasdescnbedb!dleAMBERH force field
with the Stony Brook correction.*” A 20,000-step minimization
was performed with 2 kcal mol™ A™* heavy atom backbone
mmm!mlwomges.Durmglheﬁmmepalﬁsm-stupm
was condt ‘Theseoondstepenmled
a 500-step conjug; izati Following

Compounds with the highest affinity from each cluster were
pooled and resulted in sets of actives with unique BM
frameworks. For each active, 50 decoys were selected from
the Zinc database by matching the molecular weight, logP,
ber of ble bonds, hydrogen bond donor and acceptor
counts, and net formal charge (determined in a pH range from
6 to 8) of the active. To reduce the number of false negatives,
only the 25% most dissimilar decoys, as judged by Tanimoto
scores using ECF4P fingerprints, were retained.
Evaluating the classification p e of a

1 dod,

based model on the training set will g lly provid anovedy
optimistic estimate of the model’s ability to correctly
distinguish active and inacti lecules.” To ide a

more realistic estimate of the trained model’s classification
ability, DUD-E compounds were randomly split in half, while
maintaining the decoy-to-active rauo, forming training and test

sets. The and P and test sets were
comp d of 7150 c p ‘,133ofwlnd1wereacuve
ds. The CDK2 andustsetswmcomposed

of 14 162 compounds, 237 of wl'udl were active ¢

a 200 ps NPT simulation was carried out at
300 K and 1 atm. Pressure was maintained with a Monte Carlo
barostat with 100 steps between volume changes and a pressure
relaxation time of 2 ps™". Following the NPT simulation, 2 5 ns
NVT simulation was conducted, and restart files were written
every 1 ns. These restart files were used to initiate five 20 ns
NVT simulations, and frames were written every 2000 fs. All
50,000 frames were concatenated yielding a 100 ns trajectory.

During NPT and all NVT simulations, hydrogen heavy atom
bonds were constrained using the SHAKE algorithm,* and 2 2
fsume step was used. Temp was mai d in all

! usmg a Langevin th with a collision

frequency of 2 ps™" ThePam:kMeshaaldmdhodwxmed
to treat long-range elec ¥ and were
performed using pmemd.cuda on a GeForce GTX TITAN
card from NVIDIA. During NVT production runs, the
lation setup Ited in an age timing of 30.29 ns/
day on the androgen receptor system and 31 ns/day on the
CDK2 system.
Binding Site Clustering. The 100 ns trajectories were each

The PPAR-3 training and test sets were composed of 6245
compounds, 120 of which were active.
Molecular Dynamucs. Except as noted, CDK2 and

bsampled at an interval of 40 ps, or every 20th frame,
resulungma(otaloflsoofnmwhndlmd\endu«ed.
Prior to o ing, external lation and were

removed from each trajectory by minimizing the RMSD

were perf d identically. Simulati

di of the Ca backbone atoms to the equivalent atoms of

were mlhatcd from a structure of either the an

receptor (PDBID 2AM9) or CDK2 (PDBID 4GCJ). The
sulfate ion, glycerol, and the dithiotheritol molecule were
deleted from 2AM9, while four molecules of ethanediol were
deleted from 4GC]J. In 2AM9, K836, K846, N848, and E893 are
far from the receptor-binding pocket and have unresolved side-
chain atoms. Schrédinger’s Prime*** was used to add them. In

the first sampled frame of the trajectory.

For the androgen receptor m;ectoty,&nbmdmgsnteslupe
ofead:sampledstmctumwasdﬂmmdmgl’omz.o
Inclusion regions were d using the
ligand as input. Following binding site ch ization, the
Tuﬁmotovolunwoveﬂapbetwenallpainofm:resm
ca!adated,fromwludunomuﬁzedvohmondaymuixwas

4CG]J, atoms from the following resid had multipl
occupancy values: D38, $46, D127, K129, R169, 1212, MB}
K237, K250, $264, and H268. In each case, the position with

d. Finally, b 1l o g was to the
ovefhpmatrlx, lOdustersmgmcnlcd,andﬂhemns
g to each of the cluster centroids were retained for

the larger value was retained. Protonation states for both 2AM9
and 4GC] were predicted at pH 7.0 using the program
PROPKA3,”~* and hydrogen atom positions were assigned
and optimized usmg Schmdmgers Protein Preparation Wizard.
Following p water les with fewer than three
hydrogen bonds to nonwater molecules were removed. The

docking. Ligznd-b&d autodetection of inclusion regions and
hierarchical clustering are features that will be released in the
forthcoming version of POVME.
For the CDK2 trajectory, RMSD was performed
using the algorithm described in Daura et al.™ as implemented
in version 5.0.3 of the GROMACS g_cluster program.
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Clustering was performed on the heavy atoms of all residues
within 10 A of the bound inhibitor RC-3-89 in the crystal
structure PDBID 4GCJ. A cutoff of 1.6 A resulted in five
clusters, and cluster centroids were retained for docking.

Docking. The Glide SP algorithm, from Schrodinger, was
used to perform docking to all target conformations.”” The
algorithm generates a series of ligand poses. Relative to the
protein receptor, each pose has a unique position and
orientation. Each pose is also d:snngmshed by a unique
confi ion. Following g all poses are independ-
ently subjected to a set of hierarchical filters that utilize
precomputed grids to esti ligand—receptor interaction
energies. In the initial filter, the steric complementarities of
ligand poses with the receptor are computed using a grid-based
version of ChemScore. Poses that pass the initial filter are
minimized in a grid-based approximation of the OPLS pose—
receptor interaction energy. Following minimization, Emodel,
an empirical scoring function optimized to compare pose
energetics, is used to identify the best pose for each ligand.
Finally, a “docking score” is reported for each ligand. The
docking score is an empirical ligand binding affinity estimate,
which incorporates Epik state penalties that are based on the
predicted populations of alternative ligand protonation and
tautomerization states.”’

Prior to docking, two-di ional of active
and decoy molecules were downl ded from the DUD-E in
SDF format. Schrésdinger's LigPrep program®’ was used to add
hydrogen atoms and g three-di I ligand
tr Al ive p ion and states were
determmed at pH 7 using the Ep:k program, with de&u.ll

Al ring were not
since these are produced by Glide during dochng. Input
chiralities were retained, and all other options were set to their
default values.

Receptor confor were prepared for docking as
follows. TIPAPEW water and chloride ions were
from the MD trajectory. The resulting trajectory, which
consisted of either the androgen receptor and the testosterone
ligand or CDK2 and the inhibitor RC-3-89 were clustered as
described above, resulting in 10 and 6 cluster centroids,
respectively. Schrodinger’s Protein Preparation Wizard was
used to generate correct atom types for Glide grid generation.
Atom coordinates were not altered in the process. Protonation
states from the MD simulation were retained, and neither
hydrogen bond network optimization nor structural minimiza-
tions were conducted. For each cluster centroid, the grid center
was positioned on the center of geometry of the ligand; all
other options were set to their default values.

Docking was performed using Glide with the SP scoring
function. All other options were set to their default values.
Docking was conducted locally on a Dell Precision T7500n
workstation with a dual six-core Intel X5680 processor, and
each oompound rcquucd mughly 15sto dodt.

Receiver g characteristic,
or ROC curves were used to evaluate the performanoe of eadl
ensemble. ROC curves provide two useful of

classification performanoe the area under the curve (AUC) and
the ROC enrichment factor (EF)

A ROC curve is d ined by succ ing a
hreshold tk pounds ranked by their dochng soores.
By assuming al compounds with scores better than the
threshold are active, a true positive fraction (TPF) and false
positive fraction (FPF) can be calculated at each threshold. For

example, the TPF is the fraction of active compounds whose
docking scores are equal to or better than the threshold, AGy.
TPF can be calculated as an average over an indicator function,
7, as described by eq 1.

TPF(AG,) = (1) = — Z T
A i=1
{1 if AG, < AG;
where =
0 otherwise 1)

In eq 1, N, is the total number of active compounds. For a
i active, the indicator function 7 takes a value of 1 if the
value of the docking score, AG, is better than or identical to
the threshold and a value of 0 otherwise. Similarly, the FPF is
the fraction of inactive compounds whose docking scores are

equal to or better than the threshold. It is also d dasan
average of 7, but over the inactive compounds.
N,
FPF(AGT)-(Y)I—_ZY,
N =
{anc,sAc,
where y =
0 otherwise )
In eq 2, N; is the total ber of i ds, and all

other terms are defined identically to eq 1. OnoetheTPFand
FPF values have been calculated at each threshold, they are
plotted along the y-axis and x-axis, respectively, resulting in a
ROC curve.

The area under the ROC curve (AUC) is equivalent to the
probability that a virtual screening protocol will rank a
randomlyselectedacuvecmnpmmdahmdofamdomly
selected inactive compound.”” An AUC value of 0.5
corresponds to random selection, or a method with no
classification power, while a value of 1 indicates perfect
separation of active and inactive Additionally, the
value of the AUC is independent of the fraction of actives in the
database, it has no free parameters, and an analytic estimate of
its standard error is known.*” The AUC value can be estimated
using a left-handed Riemann sum, which is equivalent to
averaging the TPF values at each inactive compound of the
ranked list.

AUC = (TPF), 3)

While the AUC is a useful measure of global classification
performance, the early enrichment, or the preferential ranking
of active compounds early in the ranked list, is often used to
judge the quality of a virtual screen. Enrichment factors are
frequently calculated as the ratio of the fraction of actives found
in a given percent of the ranked database to the fraction of
actives in the total database. Unfc ly, the maxi value
of this popular metric depends on the ratio of inactive to active
compounds in the screened database.” This makes retro-
spective method comparison difficult. To circumvent this
oompllcahng factor,weusetheso—alled “ROC enrichment”,
whose e is ind dent of the ratio of decoy to
active compounds. The ROC enrichment factor (EF) is the
ratio of the TPF, determined at some FPF of interest, to the
FPF of interest.””

TPE(FPF)
FPF (4)

EF(FPF) =
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Random classification is indicated by an EF value of 1, and
perfect separation of actives and decoys is given by a maximum
value of FPF™". Like the AUC, the standard error of the ROC
enrichment factor may be calculated analytically, which
facilitates statistical analysis.**

Statistical Analysis. For any VS protocol, damﬁatmn

In the “slow heuristic” hod bles are bled
recursively. In the first step, the performance of each receptor
conformation is considered individually, and the best performer
b the first bl ber. Next, the remaining
receptor conformations are added in turn, forming a series of
two-membered ensembles, andthebmensemblexsmamed.

performance will vary as a result of having different comp

in the screened database. Confidence intervals capture the
magnitude of this variability. For example, assuming repeated
screens are performed identically on different databases, the
true mean should be found within identically constructed 95%
confidence intervals (Cly) in 95% of the measurements. Clyg
values were constructed according eq 5.%

Clge =1 X SE (s)

The standard error, SE, of the calculated classification metric
(AUC or EF) is given and is calculated differently for AUC and
ROC-EF values. The exact form that each takes is provided in
the Supporting Information. The value of [ is selected such that
4+ | bounds 95% of Student’s t-distribution, where the b
of degrees of freedom was determined by subtracting one from
the sum of the number of active and inactive compounds.
Ensemble Scoring. Several different methods for combin-
ing multiple docking scores into a single docking score have
been suggested. Reported pmmools include auung composnte

The p is repeated until all [ have
been added to the bl anddtewp of any size
is identified. In the Supporting lnl'onmuan,weshowlhalhe
slow heuristic method generates N(N + 1)/2 ensembles. Using
big O notation, this is expressed as O(N®). For example, given
three conformations A, B, and C, three one-membered
ensembles (A, B, C) will be considered, and the best performer
wnllberemned.lfBlstheloppexformngone-member
ble, then two tv bles (BA and BC)
will be constructed, and one three-membered ensemble (ABC)
will be constructed. Thus, the slow heuristic method is designed
to construct a biased sample of the ensemble population that
excludes individuals that do not contain the best performing
ensembles of smaller sizes.

Like the slow h hod, the “fast heuristic™
also bl bl ively. First, the classification
performance of each individual conformation is ranked by
cither AUC or EF. Ensemblsofmaemgs:nmdm
constructed by conf of successively decreasing
performanoe The performanoe of each oonfomuhon is

thod

grids of all bl

an independent variables during dodnng. % and usmg
dlﬂ'erent welghted averages, which include arithmetic'” and
ages,”” as well as averages using
weights determined by knowledge-based methods.”” One
simple approach, and the one used in this work, takes the
best scoring function value across all bl bers. For

idered only once. To identify the ensemble that performs
be‘t,eadlofthe remltmgensemblesmunakobemhuled
once. Thus, for N confc 2N-1p
are required, and the scaling is linear. UsnngbngOnounon,dm
is expressed as O(N). For example, if the performance of three
conformations is given as A > B > C, then one one-membered

example, a compound docked to an ensemble composed of N
protein conf ions will have N docking scores, {AG,, AG,,
s AGy}, and the ensemble score of the compound is defined
as the smallest score of the set, ie, min{AG,, AG,, .., AGy}. If
a compound has more than one protonation or tautomer state,
the state with the lowest docking score is retained.

W RESULTS

Given an arbitrary collection of target conformations, it is
difficult to know which set will result in the best VS

(A), one tv bered ble (AB), and one
three-membered ensemble (ABC) are formed. The fast
heuristic results in a small biased sample that neglects the
worst performing conft at each ble size.

Each hod was impl d in a progr called
“Ensemble Builder,” which was written in the Python

language**™ and was used to produce the results reponed

here. An alph of the E ble Builder is
freely available for download through PyPi.
The perfc e of the three methods was evaluated on the

androgen receptor, CDK2, and PPAR-. Conformations for
these targets were selected from a variety of sources, as
ized in Table 1. Androgen receptor and CDK2

performance Here, we p three knowledge-based
designed to sy ize the selection p : the
hausti ethod, the slow heuri hod, and the fast

heuristic method, which are each introduced below.
Knowledge-Based Ensemble Selection. In the “exhaus-
tive” method, at each ensemble size, all combinatorial
possibilities are d, and the compl bl
population is constructed. As shown in the Suppomng

Information, if N is the loul ber of target conf

considered, the h N -1
ensembles. Using big O notanon, this is upn:ssed as O(2%).
For ple, given three ¢ ions, labeled A, B, and C,

seven ensembles can be constructed: thnee of size one (A, B,
C), three of size two (AB, AC, BC), and one of size three
(ABC). Both AUC and EF values are used to rank the

Table 1. Summary of Structures Used To Construct
Ensembles

number of
target structural source structures
androgen  volumetric clustering of five 20 ns MD 1
receptor simulations; one crystal structure
CDK2 RMSD dustering of five 20 ns MD simulations; 6
one crystal structure
PPAR-§ wwPDB; Uniprot Q03181 12

suuctumwereselectedﬁompoolso(ﬁvemnsMD
sumulahons using two different cl g methods. Vi

performance of each, and d:e best perfonnmg ble is
retained. Thus, the exh the entire
lation of bl aoensuu,andonlyreums

the individual member wnh the desired performance character-
istics.

was performed on the binding pocket of the
andmgen recep(or to select 10 conformations, and RMSD
clustering was performed on the active site of CDK2, which
lead to the selection of five conformations. The crystal
structures used to initiate the simulations were also included
DO 10,1021 /acs cim Sb00684
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Figure 1. AUC and EF histograms. The exhaustive method was used to all possible bl

and the AUC and EF values of the

corresponding population were sorted into 10 bins and plotted in light blue. m:bwheunmcnndwdwsusedwampkamddnmbk

population, and the AUC and EF values were sorted into 10 bins and plotted in dark blue. Insets

views for the androgen receptor

and PPAR-. AUC values for ensembles trained to maximize the AUC are reported as vertical lines in (A)—(C), and EF values for ensembles trained

to maximize the EF are reported as vertical lines in (D)—(F).

and resulted in heterogeneous collections of simulation and
experimentally determined conformations of sizes 11 and 6 for
the androgen receptor and CDK2, respectively. Twelve human
PPAR-6 crystal structures were selected from the protein data
bank.®" Sets of active and decoy compounds for each target
were taken from the DUD-E.

The remainder of the Results section is organized as follows.
First, the relationship between the ensemble selection
algorithms, the anticipated results, and the actual results are

ined in the Population and Heuristic Samples section. The
dependence of the classification ability on ensemble size is then
assessed in the Performance vs Size section, and the results
conclude with a ¢ of each method on ing and
test sets in the section entitled Comparing Ensemble
Performance on Training and Sets.

Population and Heuristic Samples. Given docking
mults for an arbllnry collection of target conformers, the

the lation of all possibl

corresponding training set perfc e values (AUC or EF)
were sorted into 10 hi ins. The resulting distributi
are shown in light blue in Figure 1.

Consistent with expectations, the values of the ensembles
identified by the exhaustive method appear at the edges of the
dnstribuhons.'l’hlslstmemallthemg«sconnd«ed.
dependent of wheth i came from

simulation or experiment (Table 1) and provides some
mnﬁdm«mdxegmmlnyofdnappmadx

the thod can be  onalls
, we have developed amomeﬁomlappmadl,aﬂed

the slowhelmsucmethod, which may have greater utility. To
reduce expense, the slow heuristi that the next largest
ensanblemmoonmn!heamlmsemﬂe.l:oﬂomng!hu
ption, target conf not yet bl are

each grouped with the current best performing ensemble, and
the resulting collections are ranked by the values of their
bjective functions. Hence, the heuristic should result in a

POP

ensembles and identifies the ensemble with the largest objecuve
function value (AUC or EF al a false positive fraction of 0.001).
Since the exhausti fc a census on the
ensemble population and records the performance of each
individual, it is guaranteed to identify the best performing
msemble. It follows dut if the performance values of the
d as a distribution, the value of the

bes! ensemble should reside on the edge of the distribution.
Toverfythatd:ebes‘c:mbkxsfoundontheedgeofﬂm
bles were d, and the

POP

population sample biased to favor higher performing
ensembles.

To confirm the slow heuristic results in a biased sample that
favors higher performance, it was used to construct ensembles,
and the corresponding training set AUC and EF values were
sorted into 10 bins. The resulting distributions are shown in
dark blue in Figure 1.

For each target and both objective functions, the majority of
the slow h ic sample distributi madeonthendnsnde
of the ¢ di lation distrib which corre-

P 5 POP
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Figure 2. Training set perfc as a function of ble size for three proteins using DUD-E. AUC is the area under the ROC curve. EF is the

ROC enrichment factor at a false positive fraction of 0.001. AUC values for ensembles trained to maximize the AUC are shown in (A)—(C), and EF
values for ensembles trained to maximize the EF are reported in (D)—(F). Shown are 95% confidence intervals.

spond to higher perfomunce values. This is consistent with
expectations and i that recursively g ensem-
bles from high performing target conf

sample biased to favor p erf The « Y
mdtaaosswgetsandbod\AUC and EF values suggests that
the approach is iy licable for a variety targets and

ROC-based obycctm functions.

To further confirm that the slow heuristic produces biased
samples, we plotted the performance values of the best
ensembles identified by the method as dashed red vertical
lines in Figure 1. In five of the six cases considered, the slow
heuristic and exhaustive methods result in ensembles that
perform identically. In the last case (Figure 1A), the difference
was small: an AUC of 0.893 for the slow heuristi pared to

eadmnxgetmnfonnmononce“’hkdmmhsmdxgxu&m
computational efficiency, the method ¢ the
numberofmsembles,andd\ehkd:hoodofﬁlhngtosample
the best perfc g bl o(the
Our results indi that considering a d "'“smaller
sunpleofetmbleswndldxefasthturmappmad:doanot
significantly alter the performance of the best determined
ensemble(Flguml)lnfouroutofsumﬂ\efalmn'lstx
fails to sample the highest perfc g ble. H , in
all cases, the diffe: in perfc are relati small,and
thefasthemlsncpetfonnanoenlusrendznardnedgsof
!hedmnbuoon&'l'hxsmdlaleuhntbefaheunstxsablelo
sample bles that ilarly to the best p
ble of the lati

a value of 0.894 for the exh hod. Since identical
results imply that the edges of the samples and populations
overlap, these results provide additional evidence that the slow
heunsuczsabletosamplecnsemblesbnsedloperfonnwdl.
C d to the p d by the exh
me!hod, the dark blue slow heuristic sample is smaller. The
discrepancy between sample and population size becornes

Performance vs Size. When performance is measured as a
function of ensemble size (Figure 2), it is notable that for each
target the exhaustive method provides an upper bound: this is

since the exh hod identifies bles by
selecﬁngthe(oppetfomerﬁ’omdnmﬁrepopdaﬁonofa
size.

The slow heuristic and

hod: e

larger when a greater ber of target conf i
considered. For example, of the three targets, the gmeatesl
ber of confi ions (12) was considered for PPAR-, and
the difference between the sample and population sizes is
largest. This observation is consistent with the sulmg ofead\
method: given N confor the exh
enumerates a population of size 2V — 1, and the slow heuristic
method considers samples of size N(N + 1)/2.
By assummg |hat ensembles can be constructed by
ging target confor of decreasing
perfonnanoe, the of bles considered is reduced
further still, and an approach we call the fast heuristic method is
the result. The fast h ic only iders the perfc e of

identically, or nearly identically, mtbenngeofensemble
sizuandmgetsconndemd.'l‘huemﬂummmemwnh
the distributions shown in Figure 1. However, the trends in
FlgureZgnf\mhertoimplydnttheslowhnmcis:bkto
sample the best p i ble of the p at each
suzeoranensemblethatpelformsnudyldenhaﬂy

W'hlletheﬁstheunsucuahuslxmrsalmgbydnsuuﬂy
reducing the b of bl d during

it is the p P i “’parmxhﬂyforPPAR—é
where the deviati mlarg&l’ , across all targets and
for the majority of the sizes considered, the performance values
of the fast heuristic fall within the confidence intervals of the

| 4

ch and slow heuristi ethods. Since this implies
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Table 2. AUC Values Determined on Training and Test Sets of Best Performing E bles Selected To Maximize AUC”
androgen receptor CDK2 PPAR-S
method size training test size training test size training test
exhaustive 6 0594 + 005 0.850 + 0.04 4+ 0934 + 0014 0919 = 0019 6 0950 = 0.020 0923 = 0.023
slow heuristic N 0593 + 0.04 0.850 + 0.04 4 0934 + 0014 0919 + 0019 6 0950 + 0.020 0923 + 0.02
fast heuristic 3 0.590 + 0.03 0.850 + 0.04 4 0934 + 0014 0919 = 0019 8 0942 £ 0.022 0928 + 0.03
"Thecolmunhbelednugvs!henumbﬁo(mgﬂ f in the optimall fi g "n‘bnﬁedbyud!mﬂhod,%%

i Is are given. Androg; were 4 from 10 MD conf ions identified using pocket volume dlustering
and a crystal CDK2 bles were ﬁvmﬁwMDmnfommonsndennﬁcdngMSDMpochldmtﬂmsmdaaysnl
PPAR-6 bles were d from 12 crystal structures.
A) Training set D) Test set
1} androgen receptor 1+ androgen receptor
08
o 06 H
04
0.2) o 1
o oo las heurstc

[ 02 04 0.6 08 1
FPI

FPF
3. Recei oo ch

o .- oo fost hourntc o2 | P g e
ol--
02 04 0.6 0s [ 02 04 0.6 0s 1

FPF

ic (ROC) curves for ensembles trained to maximize the AUC of the ROC curve. Dashed black lines

illumcnndomdamﬁaanmmgsdvahesmshcvmm(A) —(C). Test set values are shown in (D)—(F).

performance differences may be attnbuted to training set
variability, the fast heuristic p bly well in
comparison to the other two methods.

For a given target and objective function, the smallest and
largest ensembles identified by each method perform
identically, as the identical bounds of the plots shown in
Figure 2 indicate. This behavior is anticipated. Each method
forms one-membered ensembles from the single best perform-

theensemblswmusedtoscreenmmdependmustm,and

the test and training set perf es were comp
As can be seen by g the androg, ptor entry in
Table 2, despite variations in ble size and training set

perfonnance,thelestsetmuhsmldtnualfot«d:medmd
when ensembles are trained using the AUC as an objective
ﬁlnmﬁembmumememﬂemmplythadn

ing target conformer, and the largest ensembles are formed by
merging all target conformations.

Finally, the EF confid intervals reported in (D)—(F) are
larger than those reported for the AUC values in (A) (C)
Because enrichment factors quantify classification p

P B

’bytheslowmd&ahemstxdonotconwn
the best performii ble of the p ion. H , the
mnmgsetperfonmnces.whthmd\mconﬁdenoemlmk
of each other, imply that the best performing members of the
sampleshawdamﬁauonahhﬂesﬂnlmnmﬂzrlo!hebeﬂ

on a smaller subset of the total data, the larger vambillty is
expected: smaller sample sizes lead to greater standard errors

and, by extension, larger confidence intervals.
Comparing Ensemble Performance on Training and
Test Sets When dcvclopmg knowledge-based classification
g the p e of the uzlned model on

ber. This is with the
ROCmrvestllumtedelg\MSAandD which illustrate that

the three methods result in bles with nearly identical

global classification abilities.

SumlarmtltsmrulucdﬁnCDKZ.wbenlhe!hm
g methods result in identically sized ensembles with

values on both training and test sets;

anmdependzntlensetlsa, i o perf
prospective screen. Doing s ensures dm ﬂ\e model can
correctly dassnfy disti from the traini

compounds.”* To further validate the classification ability of

oonsustendy, the ROC curves in Figure 3B and E overlap.
Collectively, these results imply that the slow and fast heuristic
methods were able to sample the best performing ensemble of
the )

the highest performing ensembles identified by each method

PopP
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Table 3. EF at FPF of 0.001 Determined on Training and Test Sets of Best Performing E bles Selected To Maximize EF at
FPF of 0.001”
androgen receptor CDK2 PPAR-S
exhaustive 4 2321 £ 872 1518 £ 739 2 2119 £ 579 1483 + 503 3 1833 + 830 1167 + 6404
slow heuristic 4 2321 £ 872 1518 £ 739 2 2119 £ 579 1483 £ 503 3 1833 + 830 1167 £ 64.04
fast heuristic 3 2321 £ 872 1339 £ 70.1 1 20763 + 575 1515150.9 2 1750 £ 76.6 1250 + 622
in the Il g bl inbuﬁed by each method; 95%

"’I'Iuoolunmhbeledmgvsthenmberofmw f
. )

idanee. 3

Is are given. Androg; reoepto were d from 10 MD conf pocket volume
and a crystal CDK2 bl d from five MD conformations identified using RMSD-based pocket clustering and a crystal
PPAR & bles were d from 12 crystal structures.
A) - Training set D) - Test set
& 015 . go1s
: o1 o o~ |
X b L=
° 03 i 3 2
FPF =10
2 opars
02
Boas B it |
F o1 .--'" exrasive
005, .3 T
N 03 i 15 2 “ 05 i 15 2
FPF =10° FPF =10"
Figure 4. Recei ing ch ic (ROC) curves for ensembles trained to maximize the EF at a FPF of 0.001. Dotted black lines illustrate

nndomdassaﬁanon Tmnmgsdv:luesmshownm(A) —(C). Test set values are shown in (D)—(F). To be consistent with the training
condition, the early portion of the ROC curve, with FPF values between 0 and 0.002, is shown.

Consi with the androgen receptor and CDK2 results,
the three methods perform nearly identically on PPAR-S. By
comparing training and test set entries in Table 3, along with
Figure 3C and F, it is apparent that the slow heuristic method
was able to sample the best pcrforrnmg ensemble from the
population, but the fast heuri hod was not. C d to
the best ble of the pop , the best bl
sampled by the fast heuristic is slightly larger and performs
slightly worse on the training set but slightly better on the test
set. However, for both training and test sets, the differences in
performance are small, and the AUC values of each method are
within confidence intervals of one another. In other words, the
best performing ensemble in the fast heuristic sample has
similar classification ability as the best performing member of
the ensemble population.
Similar to the results pmduoed when using an AUC objectnm
each method
that perform ndenucally or nearly so, when ensembles are
selected by maximizing the EF. For example, Table 3 shows
du( the ensembles identified by the exhaustive and slow
isti thods have ids | sizes and perfc e values.
Consistently, Figure 4A and D, which show the early portion of
the ROC curves d ined on the training and test sets,

functi

respectively, are identical for the exhaustive and slow heuristic
medmds.Whllctheﬁstheunsucsampkdldno!oonumtbe

'N ﬁ‘ othod Ijm hl,
thatpexformed parably: the perf e was identical on
dnmnmgmmdwnhmwnﬁdammt«vﬂsmdnt&set

Thepattemssumhrwhenﬂnl’fnsmmmnedtoldmhfy

CDK2 and PPAR-§ bl theslowL the
besl,’ ing ber of the p and the fast
i les an ble that p bly. In all

wes,dnperfmmmcedlﬂ'efmmmmuﬂ.mddnmnga
are within confidence intervals of one another. Collectively,
these results provide further evidence that the fast and slow
heunstncmedmdsdfecﬂvdysampkennmbkshmdtofam
i rfi bers of the p i
Aaossallthenrgetsoonndered,dnmngmdmm
performances are similar for each method, and similar
classification accuracy implies an underlying similarity in the
structure of the compounds that make up each set. That is, if
training and test set compounds are chemically similar, then
they should be classified similarly. To analyze the extent of
uumngandtestsetov:ﬂzp we utilize a popular invariant
scaffold rep i fra rks.** A graph frame-
workcanbegenmtedfrommymoleaﬂebymmngall

DO 10.1021/a¢s i SHO0684.
4 Chem. Inf Model 2016, 56, 830-842

151



Journal of Chemical Infor and Modeli

3

atoms to Sp3 hybridized carbon atoms and removing acydlic
substructures that do not connect ring systems.

Training and test set similarity was estimated by determining
the percentage of molecules whose graph frameworks were
unique to each set and the percentage that was shared by each
set (Figure 5). Across the three targets, between 65% and 76%

A) androgen receptor
1

W cMpds. whose
graph FWs are
unique 1o the

B) CDK2
1 = cmpds. whose
graph FWs are
unique 10 the
test sot
cmpds. whose
= MF\mn

PPAR-3
C) 1

6%
Figure S. Percentages of compounds whose graph frameworks (FWs)
are unique to, and shared between, training and test sets. Percentages
are given for (A) androgen receptor, (B) CDK2, and (C) PPAR-4.

g\nranteedtoldznnfyd:ebestpuformmsnmnberof&le

lation. This is il d ically in the “Exh
oolumn of Figure 6. Three mctptor conformers, colored red,
Size Exhaustive Slow heursste Fast heurste
&R R (k- % |R-% - %
%% &% 4%|ed 4% S8 fee £33 £8
3 ®%% %% %%
Figure 6. Training method schematic: selecting the best perf

ensembkﬁmn(hmuxgﬁmfomﬂs.hsmdwedbydnm«
than symbols, the VS perfc d by either the AUC or
EF,kyemforﬁ\endeorxﬁonnu,folbndbydneymmn‘wma,
and the blue conformer is the poorest performer. Each method is
found in a column, and all combinatorial possibilities are shown. The
VSperfonmnuofenumnonsmrkedwuhm X'mnaexphdy
evaluated. Hence, the method all

possibilities. The slow heuristic assumes the next largest optimal
ensemble is formed only from a combination of the current ensemble
and one of the remaining conformers. The fast heuristic method ranks
theVSpetfonmnaofndnm;ﬁconfotmmdmblu

bles by . .

of d
performance.

green, and blue are shown, and the ensembles that can be
constructed at each size are also shown. The population

aﬂofdle bles at each size, and in the simple
sch i seven bers. By perfc g a census of
the populauon, the best performmg enscmble is readily
ldennﬁcd.Thlswasrealucdforadhmgetconsadertdhem

Applying confc ion to g
:snotnew,andhheldeahasappwtdmthehtme.For
to tively the VS e of

of molecules can be represented by frameworks that are found
in both the training and test sets, and between 12% and 18% of
molecules are represented by graph frameworks found only in
the training or test sets. Hence, the underlying chemical
similarities shared by the training and test sets help explain the
similar classification performance observed for these sets.

ensembleandsmgiecrysnlsmactureVSpmtocols,Korbe(aLv
usedanmdaxenumennveappmadl.ﬂmr,mﬂ:awk,
enumeration was not tied to ensemble and we later
pmposcddmenumeranonoouldbemcdtoldennfyemembles
with the greatest VS utility™® It is that concept that we

However, the existence of molecules whose graph fra rk

are unique suggests that the trained ensembles are able to

correctly classify molecules structurally distinct from those used

during training.

W DISCUSSION

Given a collection of target conformations generated either by
xperi or by simulation, it is difficult or impossible to

demonstrated here.
Slow Heuristic. Perf census, as the
xhausti thod thnd)ebestp«formmg
exmbkwdlbeldennﬁed.hndnytocmns

ive. To reduce exp , we du dl:slow
l h build bles recursivelv. B

chy. Beg wnhthebm

ing target ¢
asngnedtoanensemblesgmupedwuh!heb&perfomng
ensemble of the current size. This produces 2 sample of
bles, each with one additional conformation and a

know a priori which subset will result in the best VS
performance. The problem becomes increasingly challenging
as the ber of target ions grows, and this is the
result of the combinatorial nature of the problem. To address
this P blem, we p d three k 1 1 based
lecti hods: the exh hod, the slow heuristic
hod, and the fast h hod. For each method, the
discussion includes schematic illustrations dut de:cnbe the
underlying selection algorithm and an i

characteristic VS performance, from which the best ensemble is

selected. The process ¢ until all conf have been
included in an ble, and the ble that perfc best
overall is retained. Following this heuristic a biased

sample that neglects population members that do not contain
the best performing ensembles of smaller sizes.

To clarify how the slow heuristic results in biased samples,
wehavexllusﬂzteddwpmoussd\euuhaﬂymdw “Slow
istic” column in Figure 6. Of the three conformations, the

ance, scaling, and limitations; results from the andmgen
receptor, CDKZ, and PPAR-$ provide context.

red one performs best, the green next best, and the blue
conformation performs worst. Theone-membend ensemble is

Exh. Method. By of all possibl madeupofd\esmglebs( forming target confc or the
binations of confc the exh hod red mdnsase.M'ﬁer ifying the bered
the 1 bl and onlymamlhch@est ble, two tv b bles are then g d
perfon'nmg individual; " that is, the exhaustive method is Each ¢ the best bered ble: red-blue and
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ndgnen Smoe the blue«guen ensemble does not contain the
best perf ble, it is neglected.
Whlleltlsnotagventhatdnslowheunsucmllmth
samples biased to favor high performing ensembles, that did
prove to be the case in the three targets considered in this work.
This was illustrated in part by the overlap of the population and

slow h ic sample di in Figure 1 and in part by
the ability of the method to identify the best performing

ble from the p P lation. For in Figure 1, the
slow h i sample d bles that prod

values of both classification metrics oonssdered, and this was
true across all three targets. Additionally, the slow heunstnc
identified the best performing ble from the pop
five out of the six cases considered (Tables 2 and 3). These
observanons provnde further support for the claim that the
biased favoring high performing
ensembls, and they suggest that the method may be generally
applicable across different target classes and ROC-based
objective functions.
Nevertheless, because the slow heunsuc samples the

Tati hl

The green-blue ensemble is ignored, just as it is by the slow
heuristic, but the red-blue ensemble is also ignored, which
results in a smaller sample.

Relative to the exhausti lution, which g the
entire bl lation, the fast h sample is
ngmﬁcandysmzller Ingenenl,gvanu:getoonformanons,
the ensemble population has a size 2V — 1, and the fast heuristic
only considers 2N — 1 of these. In practice, tlusanqmck}y
amount to thousands of possibilities. For example, with 11

o ; the fast h thod
|gtom 2026 of the 2047 possnbleemmbles.
The fast h ic is nearly id | to the method of Xu and

Lill,** which was described in the Introduction. However, rather
than using the value of a ROC dassification metric, they ranked
target conformations by the differences in average docking
scores of decoy and active molecules to each conformer. While
Xu'’s and Lill's results were promising, the effect of ignoring a
significant fraction of the ensemble population was not
assessed.
Topmv:demsxghtm(odlescmltyoﬁbebammhmw
the the exhaustive and fast

pop it may miss in

poor performing conformations can lead to a hlgher
ensemble. To help clarify this, consider the blue and green
conformations in Figure 6. Despite their poorer individ

heuristic results. C mﬂlﬂ\enna.llsunpleslzc,ﬂ\ef&
heunsuc was only able to identify the best performing
b moneof(hes:xassoonsld«ed(Tables

performances, if they pair to form a rming two-
mcmbered ensetnble, it will nol be sampled by !he slow
i , while
possible, when the sample is biased toward hrgh perfumung
bles, the best performi sample ber may p
comparably to the hnghﬁ( perf lati
This proved true in this study. Formmple when the slow
heuristic was used to train and receptor bles to
maximize the AUC, the sample did not conwn the optimal
ble from the p , the p es of
the best ensemble from the sample and lbe best ensemble from
the population were within confidence intervals of one another
(Table 2).

The slow h ppears to offer a ble comp
between computational efficiency and performance. To
illustrate the computationally efficiency, in the Supporting
Information, we show that the exhaustive method scales as
0(2"), given N target conformations, while the slow heunsuc
scalsasO(N’) Formmpk leJneoeptor- fe

2 and 3). Despite dus, lhe bles identified p
similarly to the best p ble of the p

fast heuristic perfonnance values were within oonﬁdence
intervals of the best p i bers of the p i

forallthreetugetsandboth ob)ecuveﬁmchochprted\e
much smaller sample size, the fast heuristic may be a generally
applicable approach that offers linear scaling without a dramatic
sacrifice in classification ability.

B CONCLUSIONS

Docking to structural ensembles is a promising means of
identifying novel, structurally diverse active compounds.
Despneﬂ)epolenualofensembkdodmg,nlsdlﬁmhm
know which gize and perfi wdldunng
virtual screen. This probl ges from the bi

nature of ensemble selection. To address the selection pmblem.
we presented three promising knowledge-based methods. Each
method scales differently in the limit of a large number of

c , the exh ghly 83
million ensembles, while the slow heunst:c method only
\! 264 bl H A since each of the
d bles can be evaluated on a single p
it is noteworthy to pomt out that the exhaustive method is
embarrassingly paralle
Fast Heuristic. By constructing ¢ ensembles of i mcreasmg size
by ively merging conf of d P
ance, the fast heuristic ignores the pools of ¢

11

confor bu(mn rfc imilarly, which was

demo d by ¢ bles of the androgen
receptors, CDK2, and PPAR-5 and with either X-ray crystallo-
graphic structures or snapshots from all-atom molecular

dynzrmcs trajectories. As
those p

theav::labdnyofhxgh quahtyhgandsets.Nevenhdas,nmul
screens are often carried out on targets for which active and
mactwemoleaxlesmknomlndwsemes,dnetlsembk

generated at each size by the slow heuristic and further red
computational expense. Thus, the fast heuristic produces a
small, biased sample that neglects the poorest performing
ions at each ble size.
To clarify how the fast heuristic produces biased les, we
have illustrated the process schematically in the “Fast heuristic”
column in Flgurc 6. Since the red oonformahon performs best,
it is selected as the bl andthepoom
performing conformations are neglected. By merging the one-

membercd ensemble with the next best performmg con-
formation, the tv bered red-green ble is produced.

confor

hod d have broad applicability.

B ASSOCIATED CONTENT

© Supporting Information

The Sup Information is available free of charge on the

ACS Publications website at DOI: 10.1021/acs.jcim.Sb00684.
E ions used to d ine the standard error of the
mponedAUCandEFva!uu.Dmvanonso(!hebgO
scaling reported for the exhaustive and slow heuristic
methods. (PDE)
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Standard Error of the AUC

As given in equation 3 of the paper, the AUC can be expressed by averaging
TPF values determined at each inactive compound in the ranked list. Equivalently, the
AUC can be determined from an average of the FPF values determined at each active
compound in the ranked list; i.e. AUC = 1 — (FPF),. Since the AUC can be determined
by averaging over both active and inactive compounds, the numbers of each will
contribute to the errors, and each average will have its own distribution. The standard
error given in equation 5 of the paper, labeled equation S1 here in the supplementary
information, incorporates both error sources.

SE= |A+lL (S1)

The variance due to active and inactive compounds are given as o7 and o},
respectively, while the number of active and inactive compounds included in the
estimate are given N, and N, respectively.

The variance due to actives is given by equation S2

0?4 = ((FPF — (FPF)4)*), (S2)

The A subscripts instruct that the averages should be carried out using FPF values
determined at each active compound in the ranked list. Similarly, to determine the
contribution from the inactive compounds, the following equation is used.

o = ((TPF = (TPF)})?), (S3)

Standard Error of the ROC Enrichment Factor
The value of the ROC enrichment, equation 4 of the paper, is dependent on the
active compounds, through the TPF, and the inactive compounds through the FPF. As a

result, error arises from both active and inactive compounds. The standard error can be
derived' and takes the form giving in equation S4.

=L {si L/
SE= FPFA[Ny + Ny (S4)

Similarly to equation S1, the variances of the active and inactive compounds are given
o and o/, respectively, while the number of active and inactive compounds included in
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the estimate are given N, and N, respectively. The FPF value is the value at which the
EF is determined. The variance due to the active compounds is given by equation S5.

62, =1 (TPF(I—TPF)) (S5)

A~ Fpr? Na

Similarly, the variance due to the inactive compounds is given by equation S6

2 _ 1 g (FPF(1—FPF)
o1 = S ( Ny ) (S6)

In equation S6, S° is the square of an approximation to the slope of the ROC curve, S,
tangent to the point where the EF value was determined. The approximation is derived
from an analytic estimate of the ROC curve due to Hanley?, Y = X(1-AUC)/AUC = ag
described by Nichols'.

_ log(EF)
S=EF (1 + log(FPF)) (S8)

Training Method Scaling
Exhaustive training. For N conformations, the exhaustive method forms all possible

ensembles at each ensemble size from 1 to N. For an ensemble size of k, with 1< k <N,
the number of ensembles that can be constructed is given by the binomial coefficient,

() = w (S8)

The total number of ensembles constructed, T, can be determined by summing the
values of the binomial coefficient from 1 to N.

T=%a(}) (S9)

Equation S9 can be simplified by writing the binomial formula as follows.
(x+y)VN=xN= ):,';’ﬂ(:)x”"‘ yk (S10)

If we set both x and y to a value of 1 in equation S10 and compare the results to S9, it
follows that the total number of constructed ensembles grows exponentially with the
number of conformations, as described by equation S11. This growth can be expressed
using big O notation as, O(2").

T=2V-1 (s11)
Slow heuristic training. If there are N conformations, in the first step of the slow heuristic
method, N one-membered ensembles are considered, and the best performer is
retained. In the second step, N — 7 two-membered ensembles are considered and the
best performer is retained. This process is repeated until a 7 N-membered ensemble is
determined. The total number of ensembles constructed, T, is given by equation S12.

T=N+N-1+N-2+-+1=3N_ N-(k—-1) (812)
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Equation S12 can be re-written as equation S13.
T=NN+1)-3¥_,k (813)

The sum in the second term of S13 is known as a triangular number and can be re-
written as N(N + 1)/2, and equation S13 can be simplified.

T = Mo (S14)

In }CE limit of large N, S14 approaches N?/2. Using big O notation, this is expressed as
O(N°).
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ABSTRACT: The de of dn i d to bling

a drug to the market hi di iri
of millions of dollars andyean of research and dtvdopmmt. Any
innovation that improves the efficiency of the drug-discovery
pmh&thepotenmltowcelmlednddwuyo(ncw
to i in need. “Virtual screening,”

wherein moleaﬂesmﬁrstlestedmsuhoomordermptmm
ds for sub i | testing, is one such
innovation. Although the traditional scoring functions used in
virtual screens have proven useful, improved accuracy requires
novel approaches. In the current work, we use the estrogen
receptor to demonstrate that neural networks are adept at
identifying structurally novel small molecules that bind to a

selected drug target, ultimately allowing experimentalists to test

input “decoy” poses 3
QA

fewercompoundsmtheeadmshgesofleadmnuﬁmmnwhdeohanmgh@erhtnta.w:desaibe”wvﬂeﬁmgm

receptor ligands identified in silico with exp

the first time.

B INTRODUCTION

There is an urgent need for innovative approaches to improve
the efficiency of the drug-discovery process. The purpose of the
current work is to highligh | benefits of applying
machine learning, specifically neunl networks, to structure-
based drug discovery. Artificial neural networks (ANN), first
conceived in the 1950s,° have become popular in recent
decades thanks to algorithmic and hardware advances.
Although ANN have been applied to drug discovery in the
context of ligand-based QSAR (see, for example, ref 6), they
have not traditionally been used in structure-based virtual-
screening methods. We here confirm that they are well suited
to this important task. Given the ever-growing amount of data
available for training’™” and the recent evolution of GPU-
accelerated computation, we believe neural-network-based
techniques have the potential to transform the in silico
prediction of molecular recognition.

High-throughput biochemical screens are often used to

identify ph logically active ds. Although highly
au(omaled these screens require specialized hardware, labor,
and fully bles, making them nontrivial

and cost-intensive endeavors that are inaccessible to many
researchers in academia and industry. In silico techmqm such
as virtual screening require only d

d K; values g from 460 nM to 20 uM, presented here for

infrastructure and have become an attractive alternative for
lead identification.

Structure-based virtual screening is a two-step process in
which a molecule is first docked (ie., positioned) mlo a
receptor pocket and then evaluated using a scoring
that predicts activity. Reliable scoring functions are required to
effectively enrich a set of top-predicted binders with potential
hits.'"~'® Great effort has been dedicated to improving their
accuracy, although much room for improvement remains.

Durrant et al. recently created two fast and accurate neural-
network scoring functions for rescoring docked ligand poses
(NNScore 1.0 and 2.0).""~"® Unlike traditional docking scoring
funcuons these nonpanmemc funcnons are not constrained to

< od physi 1 ical amalyses; rather,

they'leam duecdyﬁomenstmgexpenmamldnahwbe«

topredxctbmdmgandsocan,mtheory,benerap(und:e

hips among binding determi-

nants. To our knowlcdge, these are the first neural-network

scoring functions that predict affinity by directly examining
atomic-resolution ligand—protein interactions.

Machine-learning docking rescoring functions in general, and
NNScore in particular, have only recently been described in the
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literature. Initial studies have shown that this class of scoring
functions performs well in rmvsptc:m studles. as )udged by the
ability to pmdxct i
affinities™” or to separate known hgands from a larger library of
presumed nonbinding decoy molecules.”” However, with some
notable exceptions (see, for example, refs 21—23), these kinds
of functions have not been ively used to p
identify novel ligands, as required for drug discovery.

The purpose of the current work is to provide additional
evidence that NNScore is in fact well suited to pmspechve drug
discovery. Building on one of our previous studies,’” we here
use NNScore to identify 39 novel ligands of the estrogen
receptor (ER), the target of sevtral dmgs used duuca.lly to treat
breast cancer,”***

and male hyposonadxsm.

ivels
r o4

J o 4

W RESULTS AND DISCUSSION

Background: Neural Networks. The NNScore scoring
function is based on artificial neural networks, machine-learning
modules that are designed to mimic, albeit inadequately, the
microscopic architecture of the brain. Virtual neurons, called
neurodes, are connected by virtual axons, called connections. In
brief, information to be analyzed is encoded on a set of
neurodes called the input layer. This information is processed
as it cascades through the des of the rk. The final
analysis is encoded on a group of neurodes called the output
layer. Neural networks are trained by gradually adjusting the
connection strengths until the networks can reliably predict the
correct output from a given input.

In previous studies, we trained neural networks to predict
small-molecule/receptor binding by first generating numeric

dcscngtors of thousands of crystallographic binding
'? The descriptors used to train NNScore 1.0 included
tall.m and categomauons of juxtaposed ligand/receptor atoms,
d elec gies, ligand atom types, and
rotatable-bonds counts. Tmmng NNScore 2.0 similarly relied
on tallies and categ of juxtaposed ligand/receptor
atoms and d elec gies, as well as (1)
additional molecular mtmmons/propema as determined by
the BINANA algorithm™ and (2) physics-based terms
borrowed from the AutoDock Vina scoring function.™
Neural networks were trained to predict the gth of

A Multiple Virtual Screens
Diverse Targets / Diverse Methods.
All Screens Included Known Ligands,
as well as Presumed Non-Binders
("Decoys”).

v

B [Six ER Screens were Particularly Pntldln]

They Tended to Rank Known ER Ligands Higher
than the Decoys.

¥

C Three High-Performing ER Screens
Three ER Screens were Eliminated to Reduce the
Chances of ldentifying False Positives andior
Binders.

The Activity of All 41 Predicted Ligands.
was Confirmed in an Experimental Assay

Figare 1. Computational/experimentl p
mogmmptorhgmds.

Background: NNScore Performance against the Estro-
gen Receptor. The estrogen receptor alpha (ERa) was among
the ~40 diverse receptors considered ."” Both ERa
and the highly homologous ERp, which differ by only two
binding-pocket amino ac:ds (56% sequence ndtnhtz
ligand-! bmdmgdomam ),maltncuv!dmg .
transcription factors are activated by the endogcnous steroid
hormone 17f-estradiol, leading to gene regulation via binding
lospeaﬁcDNAwgetstqucnoe&AnumberofERahgmds,

| used to identify novel

many of which are dal, are ¢ ly FDA ap
for the tr of is,”* breast cancer." =
anovulation,™ dyspareunia,”” and male hypogonadism.”™ ERS

is ingas ap

binding from these descriptors by fitting against experimentally
measured binding affinities. Specifically, NNScore 1.0 was
trained to categorize ligands by potency (high-affinity vs low-
affinity binder). In contrast, NNScore 2.0 was trained to predict
the binding affinity directly.

Following this training phase, other small-molecule/receptor
binding poses to which the networks had never been previously
exposed (e.g, from docking studies) could be similarly
analyzed. For a given set of binding-pose descriptors, the
networks return a score that correlates with the likelihood of
high-affinity binding. When a list of docked compounds is
ordered by this score, the set of top-ranked molecules is often
enriched for true ligands.

In a recent study, we compared the retrospective virtual-
screening performance of NNScore 1.0 and 2.0 across ~40
diverse protein receptors (Figure 1A). This benchmark study
suggested that the average performance of NNScore 1.0 is
better than that of NNScore 2.0. Howem, NNScore 2.0 was
the ior function for some highlighting the
utility Cof employing multiple scoring functions in any
computer-aided drug-discovery (CADD) project.

g g cancer, cardiovascular, ory,
and central-nervous- system dmg target.”>** Various small
molecules, including some approved drugs, act as agonists,
antagonists, or mixed- funmon partial agomst/mugonm. Tbe
level of agonist vs g activity d
induced ER-receptor oonformzboml dungs, as weIl as on
the cellular and even tissue context.™

In the p pective virtual g study, we used
a small-molecule library consisting of known ERa ligands and
presumed decoys (e.g, molecules presumed to be nonbinders
for testing though without ental conforma-
tion) taken from the Directory of Useful Decoys (DUD)™ and
the NCI diversity set Il (http://dtp.ncinih.gov/), respectively.
The DUD-set ERa agonists and antagonists were docked into
their respective ERa structures in the agonist- or antagonist-
bound conf i the same set of NCI
decoys was used for both rectp(ocs. For each conformation,
seven distinct docking/scoring ?ro(ocok involving AutoDock
Vina,™® Schrodinger’s Glide,” and NNScorew ¥ were
employed.

In six of these virtual screens, over ~75% of the known
ligands were contained in the set of top-ranking compounds
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large enough to include 5% of the presumed decoys (ie., the
true positive rate was >~75% when the false-positive rate was
fixed at 5%, Figures 1B and 2). This metric, which we call the
“metric of early performance,”"” indicates how well a given
scoring function is able to enrich the top-ranking compounds
with true ligands.

-
o

o
©

4
£

True Positive Rate

04 3 hindi
e HTVS-SP-XP-NN2

02 — HTVS-HTVS
e HTVS-SP-XP-NN1

0.0 i L

performing ERa screens that were less affected. These screens
used the following protocols: (1) compounds were docked with
a three-tiered Glide protocol (HTVS/SP/XP) into the ERa
antagonist conformation and then rescored with NNScore 2.0
(HTVS-SP-XP-NN2/Antagonist); (2) comp ds were
docked and scored with Glide HTVS into the ERa agomist
conformation (HTVS/Agonist); and (3) compounds were
docked with a three-tiered Glide protocol into the ERa agonist
conformation and then rescored with NNScore 1.0 (HTVS-SP-
XP-NN1/Agonist).

It was fortunate that virtual screens against both the agonist-
and antagonist-bound ERa structures performed well. When a
small molecule approaches its receptor in vivo, it encounters a
flexible binding pocket in constant motion, not a si
crystzllmeconfonnauon. This is especially true of the highly

g pocket, which can assume
d:ﬂ'erentgeomemadcpendmgondlememdslnpeofdn
bound ligand.™** Even a scoring function with perfect accuracy
could nol ldenufy ligands that bind to pockets with

unc g i By mdudmg muluple stmcmnlly

0.0 0.2 04 o:s o:a 1.0
False Positive Rate

Figure 2. ROC curves associated with each of the three high-
performing virtual screens. The data points corresponding to the
known ER ligands are shown as cirdes. The vertical dotted line
corresponds to a false positive rate of 5%, used to calculate the early
performance metric.

While the vast majority of the top-ranking “decoy” molecul
used in the initial study were cemnnly not true ERa ligands, in
the current study we hypothesize that some might in fact be
true binders. By showing that this hypothesis is correct, we
provide evidence that NNScore can prospectively identify novel
ligands from among decoys and therefore has potential for use
in structure-based computer-aided drug discovery.

Ignoring Pomntially Prorniscuous Top-Rankgd Com-

ds. In p virtual- g studies, we have noted
that certain molecules have a !cndency to frequently appear
among the top-ranked compounds, even when targeting diverse
and unrelated receptors. There are two possible explanations

for this ph First, these compounds may in fact bind
tomanydxvemuxgets,mwhxchcasetheympmmmcus
and so are poor candidates for drug d y. Second, they

may in fact be nonbinders (false positives) that the scoring
functions incorrectly identify as ligands due to inappropriate
biases. In either case, such compounds are arguably not worth
pursuing.

The six high-performing ERa vu'tuzl screens described above
identified a ber of p iscuous and/or false-
positive compounds. Several of the top-ranked compounds
were also frequently present among the top-ranked compounds
of other high-performing screens from the previously published
retrospec(lve study, even though those screens targeted

To enh our ch of identifying
hueandusefulERahgands we therefore discarded all virtual
“hits” that were found among the top compounds in more than
three of the high-performing virtual screens (Figure 1C).

This filtering process had a substantial impact on three of the
six high-performing ERa virtual screens. Of the top-ranked
compounds from these screens, 14/15 or 15/15 were judged
problematic. Given that our goal was to ultimately submit only
the top compounds from each screen for experimental testing,
we opted to focus exclusively on the other three high-

diverse confor virtual-:
hgzndsmthabroaderdwemtyofbmdmgposesanpotenmﬂy
be identified.*’

Evid for the predictive utility of these three virtual

screens was apparent even prior to experimental testing, as two
known ERa ligands inadvertently included among the 1560
presumed decoys were correctly identified (genistein, identified
by HTVS, and naringenin, identified by both HTVS and
HTVS-SP-XP-NN1).

Experimental Confir Forty-one compounds,
including genistein and naringenin, were lested expenmcnhll’y
for ERa binding using a competiti
assay with an operational sensitivity (limit of detection) of K, <
20 uM (Figure 1D).** Remarkably, all molecules predicted to
beERnhgandsmsnhcohadexp«mnulK,valuesks!th
H#M. Excludi in and naringenin, the most potent novel
ERa ligands ‘were NCI-19136, NCI-33005, and NCI-13151,
with K, values of 460, 780, and 1380 nM, respectively (Table
1). Each of these compounds was coincidentally found
different docking protocol, suggesting that applymg muluple
CADD techniques to a given target can also increase the
diversity of the identified hgands." Though the virtual screens
targeted ERa, a similar experimental assay revealed that all 41
compounds bound to ERf as well (K, values <20 uM). NCI-
33005, NCI-13151, and NCI-19136 were notable ERS binders,
with K; values of 330, 1540, and 2000 nM, respectively (Figure
1D).

These results suggest that (1) NNScore is well suited to

prospective drug-discovery projects targeting this system and
(2) NNScore can complement more classical scoring functions.

Comparison of Docking Methods. Twenty-nine of the
39 novel ligands presented here for the first time were initially
identified using one of the two NNScore protocols, 15 were
identified using HTVS, and 3 were identified by both methods.
The average K; values of the compounds found using the
HTVS-SP-XP-NN2/Antagonist, HTVS/Agonist, and HTVS-
SP-XP-NN1/Agonist protocols were 4.12, 3.68, and 4.10 uM,
respectively. A one-way ANOVA analysis led us to reject the
null hypothesis that these average K, values were statistically
different (p = 0.76), suggesting that the three protocols
performed comparably.

Multiple studies have demonstrated that scoring functions
are remarkably receptor specific (see, for example, refs 17 and
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Table 1. High-Affinity Compounds Found by Docking into ERa Stru in Both the A

Conformations, Sorted by the Experimentally Measured ERax K

Compound Structure ERa K, (M) ERP K, (uM)
NCI-19136 (Figure 4A) a 0.46 £ 0.004 20004
0
™ N
N L
NCI-33005 (Figure 4B) 'O_Q_‘:Ig 078202 03301
o

NC1-36586 (Genistein) OH 079201 0.008 + 0.00008
W
WO o

NCI-13151 (Figure 4C) W@\'(:Ij 138403 154403

o
NCI-308849 o N 138201 48301
N
o
o
NCI-17128 o 181204 49114
MO, ; 2
o
NCI-122253 o 198402 529£09
N
]
NCI-130847 ©, 205402 67515
ON
: ~ t ]
NCI-165701 N 24720 31609
/_<
HN -O—S N
NCI-34875 (Naringenin) oMo 256405 310£09

NCI-78623 ° o 278208 3906

NS~ o
080
L
NCI-351674 282206 825+14
»
u é

164

HTVS.SP.

XP-NN2

Percentile

338

(5.0m)

9.69)

(>12.50)

(>12.30)

(>12.50)

(>12.50)

499

(11.76)

(5.13)

HTVS

947)

295

(25.5%)

(10.76)

(9.40)

141

(3374)

338

369

HTVS-SP.
Percentile  XP-NN1
Percentile

>12.10)

(10.5%)

5.109)

320

(5.78)

=12.10)

(5.96)

393

(11.2%)

(7.6%)
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Table 1. continued

Compound Structure ERa K, (uM) ERB K, (uM) HTVS-SP-  HTVS HTVS-SP-
XP-NN2 Percentile  XP-NNI
Percentile Percentile
NCI-12262 ._(0 30810 1190=0 (>12.50) (37.86) 34
< b o
on A\
NCI-201863 o 31802 70004 1.38 (>49.90) >12.10)
@ N
L
o
NCI-95%09 o 374209 748214 (>12.50) (5.10) 197
SORSs
o™ N0
NCI-112541 '™ 414209 526213 263 (1549) (479
N
NCI1-246999 43210 37801 313 (>49.90) (>12.10)
NCI-319709 520212 688207 294 (>49.90) 12.10)
NCI-117554 525+1.1 JAs+ 14 (5.63) 547 338
NCI-111847 ( ) 542204 743205 1.63 “12) 387
N
-
“Additional lly validated ligands are described in the Sup Infc ion. Note that the ds th Ives were tested only for

bmdmg.notforagonmnvsmngonmF«ud:dodmgptﬂood/mpwnd,weupoﬂdnp«mﬁlennk(NClmdDUDmnwmds
i | follow

considered together). When a given compound did not rank high enough

to warrant exp ik

up, the p is given in p

Additionally, a lower bound on the p ile is given for ‘lhncmddno(bedochd/mtdnaﬂ.woomdsmhudn
Tables S1, S2, and S3.

44). Similarly, g-function perfc e may be affected by sconngﬁmctwntha! nappropriately favors compounds with
certain chemical features of the small molecules being d perties that are independ (e.g,,hxyl
especially features used to train the scoring functions moleculzr weight, hydrophobicity, etc.) could ctly

themselves. One crude way of measuring potential ligand-
based biases is to assess the structural diversity of the ligands

identify false-positive 'hm that are nonetheless structurally
dlvelse Bmwedobehmdwammlhcko(dnmnd

not

identiﬁedmagvenwmulscreen.Whilesooﬁngﬁmcﬁonsm pound clusters may in some cases

ly trained to maximi; d diversity, functions that indi !ha!the iated scoring fu have been over
ldcnufy a set of validated ligands with substantially reduced fitted to favor the known, _" d, and p table
structural diversity relative to the source library are perhaps ch ypes that g Iy scoring-fu

thehltdxversllycanbeauseﬁ:lperformammemc,we
wish to emphasize its li S with low hit d Y
are not necessary flawed. One might expect a virtual screen to
pull out clusters of structurally analogous true ligands. Similarly,
screens with high hit diversity are not necessarily free of bias. A

sets.Gmerallyspeahn&anldealmualsamdmlldldznnfy
diverse and unique molecules, in addition to identifying high-
a!ﬁnityoompounds,

PRI d by
damfymg compounds n‘lmgtomoleaﬂ.arsaﬂol&(
molecular graphs).**™*’ The NCI Diversity Set Il (NCIDSIII),

can be

Y
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Table 2. Chemical-Diversity Analysis Using Molecular Graphs®
compound set N [number] N [molecular graphs] Ng/N [diversity ratio] N, [singleton graphs] N,/N [singleton ratio]
NCI Diversity Set 11l 1560 652 042 475 031
HTVS-SP-XP-NN2/Antagonist 15 15 10 15 10
HTVS/Agonist 15 14 093 13 087
HTVS-SP-XP-NN1/Agonist 15 13 087 2 0s0

"N-tonlnumbttofoompoundsm!hehbnry NG number of molecular graphs in the library, Ng/N =

graph scaffolds, N,/N = sing

diversity ratio, N, = number of singleton

which contained the structurally diverse presumed decoys used
in the retrospective virtual screens, spanned 652 molecular
graphs (Table 2). To facilitate subsequent comparison with
other compound sets, this count was normalized by the total
number of library compounds, giving a unique-framework
(diversity) ratio (ie., structurally distinct scaffolds,,,/total
number of compounds,,,) of 0.42. To put this number into
perspective, if each library compound had a unique graph (i,
optimal diversity), this ratio would be 1.0. In contrast, if all
compounds were analogs with the same scaffold (minimal
diversity), the ratio would be close to zero.

As a complementary metric, we also measured the unique-
ness of the NCI compounds. 475 molecular hs were
associated with a single compound (i.e., singletons, Table 2). A
NCIDS[[I smgﬂclon ratio of 0.31 was calculated by dmdmg the

of singl by the total b

Wenenmemmdthedwemtyofthethmsetsofhns
identified using the HTVS-SP-XP-NN2/Antagonist, HTVS/
Agonist, and HTVS-SP-XP-NN1/Agonist virtual-screening
protocols, respectively. The top hits found using these three
methods were comparably diverse. The diversity ratios were
1.0, 0.93, and 0.87, respectively (Table 2). Similarly, the
singleton ratios were 1.0, 0.87, and 0.80 for the HTVS-SP-XP-
NN2/Antag HTVS/Ag and HTVS-SP-XP-NN1/
Agonist hits, respectively (Table 2). In all cases, the hits were

A % LA

E3S3

Figure 3. Crystallographic pose
1 (D) Sch : of 12, ||~ l. e ﬁm‘
generated by PoseView.*

judged to be even more diverse and enriched in singl than
the NCIDSIII compounds generally.

The fact that our top hits were more diverse and unique than
the broader NCIDSIII suggests that the docking protocols used
do not unduly favor certain molecular scaffolds.

Binding Poses. The BINANA algorithm™ was used to
ldenhfy potentnl m:eptor—l:gand interactions between the

pose of diol (Figure 3), the native ligand,
and the docked poses of NCI-19136, NCI-33005, and NCI-
13151 (Figure 4), the three highest affinity novel ERa ligands
identified. NCI-33005 and NCI-13151 had very similar docked
poses, as did NCI-19136 when the 2H-pyrazol was

characteristic of estradiol binding. Both ligands do extend
aromatic moieties in the direction of H524, however. Modifying
these moieties so they can approach and interact with H524
may be an effective drug-optimization strategy, though we do
note that a number of other ER ligands (e.g, afimoxifene” and
raloxifene™’) have high binding affinities even in the absence of
this interaction.

Conclusion. Although the novel scaffolds presented here
may be useful for future drug development, ERa has been

considered. Like the native ligand estradiol, NCI-19136 and
NCI-33005 are predicted to form hydrogen bonds with residue
E353. In contrast, the NCI-13151 pose forms a hydrogen bond
with the L387 backbone carbonyl oxygen atom, though a
simple rotation of the NCI-13151 hydroxyl group would easily
permit a hydrogen bond with E353. Like estradiol, all three
ligands may also form T-shaped x—x interactions with F404.
NCI-33005 and NCI-13151 may also form hydrogen bonds
with R394, just as the estradiol phenyl hydroxyl group does.
In other ways, the three novel ligands have predicted binding
poses unlike that of estradiol. For example, NCI-19136 and
NCI-33005 may form additional hydrogen bonds with the
L346 backbone carbonyl oxygen atom, and NCI-13151 may
form a hydrogen bond with L387, as mentioned above. Also,
neither of the novel ligands appears to form a hydrogen bond
with H524, apparently failing to exploit one of the interactions

ly studied and is already the target of several highly
optimized FDA-approved drugs (eg, tamoxifen, fulvestrant,
and raloxifene). Thepnmzryuuhtyofd\ewnentwodms

herefore to d the kabl e of two
ly developed \| rk docking rescoring func-
uons,'iw wlnch, according to a recent retrospective study, are

effective against this target as well as a number of others."”
Herein, we have shown by further computational and
experimental analyses that several high-scoring presumed
“decoys” indeed bind the receptor target with low micromolar
affinity, indicating that these scoring functions are effective

whenemployedpmsyecuvely
mac techniques such as neural
networksmoﬁenusedmlngandbasedQSAR,bm!hﬂr
i -centric dockil is

Py

less oommon"‘ 2051 These scoring functions take a novel
approach to predicting molecular recognition. We believe they
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A

NCI-13151

Figure 4. Binding poses. (A) NCI-19136 docked into the 3ERT
antagonist structure.” Dotted black lines represent hydrogen bonds.
(B) NCI-33005, docked into the 1L2I agonist structure.” (C) NCI-
13151, docked into the 1L2I agonist structure. A potential hydrogen
bond with E353 is less certain and so is not shown.

ditional f

more scoring helping to
ldenufy lxgand scaffolds that might not be found otherwise.

B MATERIALS AND METHODS

Computational Details. Durrant et al. performed a
pective virtual-sc g benchmark study in 2013 to
assess the performance of two novel rk-based

the ~40 diverse receptors considered. In brief, models of

and ER, o Were from published crystal
structures (PDB IDs 1L2I° and 3ERT,” respectively).
Molecular models of known ERa agonists and mh&onm
obtained from the Directory of Useful Decoys (DUD) ™ were
docked into the relevant receptor, together with 1560 diverse
small molecules from the NCI diversity set III (http://dtp.nci.
nih.gov/) that served as presumed decoys.

TwohlghperfonmngERavmmlsaeensmgmngERv_
and E ively, used a multi
Compounds were first docked into each neoep!ot using
Sdmbdmgers Glide HTVS af&prognmdsagnedforhngh

4 virtual sc ds were then
ranked by the docking scom, and the top 50% were
subsequently docked using Glide SP, a more computationally
demanding program thought to be more accurate. The top 50%
of the Glide-SP-docked compounds were then docked using
Glide XP, Schrodinger’s most rigorous program. Finally, the XP
F_Rﬂm‘l and poses were rescored using NNScore
1.0 and NNScore 2.0,' respectively. These two docking
protocols are here called HTVS-SP-XP-NN1/Agonist and
HTVS-SP-XP-NN2/Antagonist, rupechvely _Durrant et al
also obtained an early performance metric'” of 79% when
Glide HTVS alone was used to dock compounds into ER, ..
(HTVS/Agonist).

ﬁeeaﬂypcdommameurusedlomlhm!hm
virtual screens was predicated on the ption that the NCI
oomponndsdonotmfaabmdloERa.Thismmpuonls
certainly true for the vast majority of these structurally diverse
compounds, but it is likely that at least some of the NCI
compounds are in fact true ERa ligands. We therefore selected
the 15 top-ranked iscuous NCI ds from
ead\ofdlethxeelughpetfonnngRavmualsatcnsfor
subsequent experimental testing. As some compounds ranked
well in multiple screens, forty-one molecules were advanced in
total.

Experimeﬂtal Detalls Rdanve binding affinities were

dbyac ic binding assay with 2
nM [*H]estradiol as ‘tracer (Perhnﬂm« Wahham, MA), as
described previously.” Full-length purified human ERa and
ERf were purchased from Pan Vera/Invitrogen (Carlsbad,
CA). Following incubation for 18—24 h at 0 °C, the receptor—
ligand compl were absorbed onto hydroxyapatite (BioRad,
Hercules, CA) and unbound ligand was washed away.** All
small molecules tested were taken from the NCI Diversity Set
111 and have purities over 90% per LC/Mass Spec.

Affinities were initially expressed as relative binding affinity
(RBA) values, where the RBA of estradiol is set at 100%. Under
these conditions, the K values of estradiol are ~0.2 and ~0.5
nM forERaandERﬂ,respecmdy TheseRBAmasm:menIs

d in with coefficients of
vanabonof03 'l'hev:luashowanabIeS—lrept&ntd’:e
average plus or minus thc standard deviation, calculated mmg
two or more ind t The K, values
reported in Table Iwzrealaulal:dbydmdmgdnavenge
K; of estradiol by the RBA and then multiplying by 100.™*

Chemical Diversity of the Hits. To analyze the chemical
diversity and uniqueness of the NCI Diversity Set III, as well as
the novel hits identified using the HTVS-SP-XP-NN2/

scoring functions, NNScore 1.0 and NNScore 2.0. =1 Human

estrogen receptor alpha (ERa) in bolh the agonist- (ER,gonie)
and antagonist-bound (ER, ) c were among

A ist, HTVS/Agonist, and HTVS-SP-XP-NN1/Agonist
dockmg protocols, we considered two distinct scaffold

c Murcko fea ‘L(seetheSuppon
mg Information) and molecular graphs (described in the main
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text). Bemis-Murcko frameworks consist of any ring system and
linker groups,** and molecular graphs consist of nodes (carbon
atoms) connected via edges (single bonds). Unlike Bemis-
Murcko frameworks, molecular graphs exclude any atom-type
or bond-order information. Both the frameworks and

were generated using the RDKit package MurckoScaffold.”

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the

ACS Publications website at DOI: 10.1021/acs.jcim.5b00241.
The Supporting Information lists additional experimen-
tally validated ER ligands beyond those found in Table 1.
Further expenmentzl results and analyses of molecular

are also provided. (PDF)
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Additional Experimentally Validated ER Inhibitors

Table S1. Additional compounds docked and evaluated using HTVS-SP-XP-NN2 into an ER, structure
in the antagonist-bound conformation.'

Compound Structure ER, K; ER; K; HTVS-SP-
(uM) (nM) XP-NN2
NCI-118628 o 3.28 3.39 8.50
OH OH QJ\
® ]
Z “u
o
NCI-37433 o 3.45 3.45 8.53
ROANS
HO HO
NCI-116397 6_"0 3.45 3.85 8.55
_0
N\
NCI-332670 4 HO 4.76 3.64 7.87
L~
| P N/
| Z
NCI-317605 LN/\ H . 6.25 6.06 7.98
7\ -
\_ N r"
-0
NCI-134199 Ho— >N 0 6.67 20.00 8.03
NZ ‘N@—;{;—NHZ
OH o
NCI-277184 Iﬁ?’ 7.69 5.88 8.08
o N Vo @
o
N

Note that the compounds themselves were tested only for binding, not for agonism vs. antagonism.
Docking scores are meant to represent pK;, with higher scores corresponding to more potent binders.
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Table S2. Additional compounds docked and evaluated using HTVS into an ER, structure in the agonist-
bound conformation.?

Compound Structure ER.K; | ERyK; HTVS
(M) (uM)
NCI-40269 N’\=\N 3.23 3.28 -8.36
o] O
z Z
NCI-108750 @ 4.17 3.77 -8.90
sesy
C~
NH,
NCI-275428 (R 5.13 4.76 -8.42
o N N_O
YA
N
NCI-100058 5.26 4.55 -8.34
NCI-76988 5.56 3.28 -8.94
NCI-117987 5.71 4.35 -8.46
NCI-343344 o 6.06 3.85 -8.36
= =
P /
HN" N s
NCI-48422 N, 6.45 541 -8.54
OO )

Note that the compounds themselves were tested only for binding, not for agonism vs. antagonism.
Docking scores are in kcal/mol, with lower scores corresponding to more potent binders.
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Table S3. Additional compounds docked and evaluated using HTVS-SP-XP-NNI into an ER, structure
in the agonist-bound conformation.”

Compound Structure ER.K; | ERgK; | HTVS-SP-
(uM) (uM) XP-NN1

{ N
NCI-660151 . N J 4.76 7.69 0.88
| o
=z ‘;AO\/
)
NCI-335504 S 5.00 541 0.85
I =
_N__NH oH
(\LTO\/-\/OH
o
NCI-3753 NH, 5.26 3.92 0.78
\@ o | S
o's 0N’
NCI-43308 N o 541 5.00 0.93
c N.
" e Ao L
o
NCI-76988 OH O 5.56 3.28 0.80

NCI-269904 c 1/ 5.56 4.76 0.91
NN
N
e
OH
NCI-144694 6.25 5.26 0.95
a8 ]
NeZ 0P NS

Note that the compounds themselves were tested only for binding, not for agonism vs. antagonism.
Higher docking scores correspond to more potent binders.
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Full Experimental Results

Table S4. Relative binding affinity (RBA) values.

Ligand RBA ERa RBA ERB Bla
NCI-3753 0.0038 = 0.001 0.0051 = 0.001 1.8
NCI-12262 0.0069 = 0.003 0.0042 =0 0.61
NCI-13151 0.0148 +0.003 0.0331 + 0.006 22
NCI-17128 0.0114 = 0.002 0.0106 = 0.003 0.93
NCI-19136 0.0439 = 0.0004 0.0256 + 0.005 0.58
NCI-33005 0.026 = 0.005 0.154 +0.028 5.9
NCI-34875 0.009 = 0.002 0.020 + 0.005 22
Naringenin UIUC previous data UIUC previous data UIUC previous data
0.0069 0.0135 2.0
NCI-36586 0.024 = 0.009 6.14+1.6 256
Genistein UIUC previous data UIUC previous data UIUC previous data
0.027 6.06 224
NCI-37433 0.0058 = 0.002 0.0058 + 0.0004 1.0
NCI-40269 0.0062 = 0.0003 0.0061 = 0.001 0.98
NCI-43308 0.0037 £ 0.001 0.0040 + 0.001 1.1
NCI-48422 0.0031 = 0.001 0.0037 = 0.001 1.2
NCI-76988 0.0036 = 0.001 0.0061 £ 0.0006 1.7
NCI-78623 0.0076 = 0.002 0.0127 + 0.002 1.7
NCI-95909 0.0055 = 0.001 0.0068 + 0.001 1.2
NCI-100058 0.0038 = 0.0003 0.0044 +0.0011 1.2
NCI-108750 0.0048 = 0.001 0.0053 +0.001 1.1
NCI-111847 0.0037 = 0.0003 0.0068 = 0.0005 1.8
NCI-112541 0.0050 £ 0.001 0.0098 + 0.002 2.0
NCI-116397 0.0058 = 0.002 0.0052 = 0.001 0.90
NCI-117544 0.0039 = 0.001 0.0068 = 0.001 1.7
NCI-117987 0.0035 = 0.001 0.0046 + 0.001 1.3
NCI-118628 0.0061 = 0.001 0.0059 + 0.002 0.97
NCI-122253 0.0102 = 0.001 0.0096 + 0.002 0.94
NCI-130847 0.0098 = 0.001 0.0076 = 0.002 0.78
NCI-134199 0.0030 £ 0 0.0010 £ 0.0001 0.33
NCI-144694 0.0032 £ 0.001 0.0038 = 0.001 1.2
NCI-165701 0.0081 =0 0.0165 = 0.005 2.0
NCI-201863 0.0063 = 0.0004 0.0072 + 0.0004 1.1
NCI-246999 0.0048 = 0.001 0.0133 £ 0.0005 2.8
NCI-269904 0.0036 = 0.0003 0.0042 = 0.001 1.2
NCI-275428 0.0039 = 0.001 0.0042 = 0.001 1.1
NCI-277184 0.0026 = 0.0001 0.0034 + 0.0004 1.3
NCI-308849 0.0146 = 0.001 0.0104 = 0.0002 0.71
NCI-317605 0.0032 = 0.001 0.0033 + 0.001 1.0
NCI-319709 0.0040 = 0.001 0.0073 = 0.001 1.8
NCI-332670 0.0042 = 0.0005 0.0055 + 0.0002 1.3
NCI-335504 0.0040 = 0.001 0.0037 = 0.001 0.93
NCI-343344 0.0033 = 0.001 0.0052 = 0.001 1.6
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NCI-351674 0.0073 £ 0.001 0.0062 = 0.001 0.85

NCI-660151 0.0042 = 0.001 0.0026 + 0.0003 0.62

The RBA of estradiol is 100%. Under these conditions, the K, of estradiol is ~0.2 and ~0.5 nM for ER,,
and ERg, respectively. The values shown represent the average plus or minus the standard deviation,
calculated using two or more independent measurements. The K; values reported in Tables 1, 2, and 3
were calculated by dividing the average K, of estradiol by the RBA, and then multiplying by 100.

Additional Chemoinformatics Analyses

We generated cumulative frequency scaffold plots (CFSPs) to analyze the distribution of
compounds over scaffolds.” To generate these plots, the scaffolds are sorted by their frequency. The
cumulative percentage of scaffolds (as a percentage of the total molecules) is then plotted against the
cumulative scaffold frequency. An even distribution of compounds appears as a diagonal line and
therefore has an area under the curve (AUC) equal to 0.5. If multiple compounds share a common
scaffold, the curve is deflected upward. The AUC approaches 1.0 as fewer and fewer scaffolds are
required to describe all molecules.

The CFSP AUC values for both the NCI Diversity Set 111 and the hits identified using each of the
three docking protocols were all close to 0.5, regardless of the scaffold method used (Table S5). The
scaffolds of the original library were evenly distributed, and the scoring functions did not substantially
alter that distribution.

Table S5. Chemical diversity analysis using cumulative frequency scaffold plots.

Compound Database AUC AUC
(Bemis-Murcko) (Molecular Graph)

NCI Diversity Set 111 0.63 0.76

HTVS-SP-XP-NN2/Antagonist 0.53 0.53

HTVS/Agonist 0.53 0.57

HTVS-SP-XP-NN1/Agonist 0.53 0.59

N = total number of compounds in library, AUC = area under the curve from the cumulative frequency scaffold plot.
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