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ABSTRACT OF THE DISSERTATION

Three Essays on Labor Economics

by

Fanghua Li

Doctor of Philosophy in Economics

University of California, Los Angeles, 2018

Professor Moshe Buchinsky, Chair

This thesis contribute towards the understanding of labor economics and applied economet-

rics; the thesis is made up of three chapters.

The first chapter explores the causal effect of parents’ social capital on the intergenera-

tional occupational inertia in addition to individuals’ labor market outcomes. A new data

extract was constructed by re-weighting and combining the Panel Study of Income Dynamics

(PSID) and the Survey of Income and Program Participation (SIPP) to correct the selection

biases induced by children’s endogenous moving behaviors post-graduation. By exploiting

the recent technological revolution and the resulting changes in occupational skill composi-

tions measured by Dictionary of Titles (DOT) and its successor O*NET, it became possible

to isolate the effect of inherited social capital from inherited human capital through a regres-

sion discontinuity design. Besides, a correction of the selection bias induced by the social

capital advantage through children’s occupational switching patterns after the first jobs was

made. The results indicate that around 30% of individuals choose the same occupation as

their parents for their first job; such people rely more on their parents’ social connections in

job hunting. Also, they enjoy a positive wage premium of about 5% of the percentile ranks

of annual labor income for entry-level jobs but this positive effect fades away in the long-run.

The second chapter studies the estimation and inference of nonlinear econometric model

when the economic variables are contained in different datasets. We show that the unknown

structural parameters of interest can be possibly uniquely identified if there are some com-

mon conditioning variables in different datasets. The identification result is constructive,
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which enables us to estimate the unknown parameters based on a simple minimum distance

(MD) estimator. We study the asymptotic properties of the MD estimator and provide in-

ference procedure. A simple model specification test on the key identification conditions is

also provided.

The third chapter provides an application example of the method developed in the sec-

ond chapter. It is a long-standing problem in the empirical research that the economic

variables are contained in different datasets. One well-accepted solution to this problem

is the imputation method, which serves as a crucial step in the seminal work, Blundell,

Pistaferri, and Preston (2008) studied the dynamic relationship between consumption and

income, with consumption data from CEX and income data from PSID. In this chapter, we

first prove that the imputation method is biased because they are significantly different from

those based on true data, which is the newly available PSID from 1999 which includes both

consumption and income data. Furthermore, we investigate the finite sample performance

of our new method with this new PSID data and show that our method delivers comparable

results with those based on the true data. We conclude that the imputation gives largely

biased estimation compared to the real data results and the new estimator developed in

Chapter 2 performs better.

The three chapters share the same interests in the long-lasting question that how we can

deal with the situation in which the economic variables or the study population is contained

in different datasets. The first chapter starts off from the simplest scenario that the data set

is complete in terms of variables but biased in terms of representativeness. The other two

chapters deal with the other more difficult and more usual case that the data set is incom-

plete in terms of economic variables. We not only contribute methodologically by providing

a new estimator but also implement the method in an important application case and discuss

the implications.
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CHAPTER 1

The Role of Social Capital and Intergenerational

Occupational Mobility on Labor Market Outcomes

1.1 Introduction

Economists and social scientists have long been interested in the persistence between parents

and children’s socio-economic outcomes, or the intergenerational immobility.1 To explain this

phenomenon, the current literature focuses on the channels which contribute to children’s

human capital increase through the automatic genetic transmission, education or/and other

hereditary endowments associated with the early years, like family values, preferences, and

other inherent characteristics like motivation. This paper proposes another possible explana-

tion that it could reflect the inherited social capital instead of the human capital advantage,

particularly the role of networks or direct control in the hiring process to influence employ-

ment opportunities in the labor market. More specifically, one individual could benefit by

choosing the same or a related job to that of their parents, especially for the individual’s first

job, which facilitates the transition from schooling to work. By doing this, they rely upon

the contacts and information their parents may share with them or on the direct or indirect

control parents may have in the hiring process at the chosen place of employment. This

benefit, sometimes referred to as nepotism or patronage in the literature, is studied only in

few research with small scale data in specific occupations (e.g., Xu, 2017; Bertrand, 2009;

Bennedsen et al., 2007) without taking the endogenous occupational choices into considera-

tion or generalizing to the entire labor market.2 To evaluate this causal effect in the whole

labor market is challenging due to the selection biases in the current available data and the

endogeneity of children’s occupational choices relative to their parents, since intergenera-

1See Solon’s 1999 and Black and Devereux’s 2011 handbook chapters for a review

2"Patronage" refers to the discretionary appointment of individuals to governmental or political positions
(WebsterâĂŹs II New College Dictionary 1995).
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tional occupational correlation may simply result from the intergenerational correlation in

innate ability.

The objective of this paper is to inform a discussion surrounding the above-described issue.

More specifically, in order to correct for selection biases induced by children’s endogenous

moving behaviors post-graduation of the currently available data sets, I construct a new

data extract for U.S.’s labor market by reweighting and combining Panel Study of Income

Dynamics (PSID) and Survey of and Survey of Income and Program Participation (SIPP).

With this new data extract, I’m the first in my knowledge to descriptively document the

stylized facts about the intergenerational occupational transmission and the linkage of which

to the inherited social network and lifetime wage inequality.

My main identification strategy relies on the recent technological revolution starting from the

late 1980s to the beginning of the 20th century. To be specific, the innate ability of people

can be described as a continuously distributed multidimensional random variable, and occu-

pations can be viewed as a categorical variable; hence, individuals’ occupational choices can

be seen as the assignment rules from the continuous variable to the discrete variable, which

is decided by the technology, occupational wage level, and other market factors. I show in

the paper that the technological revolution changes the assignment rules significantly enough

to give extra variation to disentangle the intergenerational correlation to innate ability and

occupations. Also, around the old innate ability cutoffs, there is a discontinuity of whether

they will stay in the same occupations as their parents, which enables a Regression Discon-

tinuity design.

Another identification strategy lies in the fact that if childrenâĂŹs true productivity is pri-

vate information when they enter the labor market, and they stay in the same occupations

as their parents only for the social network benefit instead of their true innate ability, as

their true abilities are revealed, those people have a higher probability of switching occupa-

tions later on. I show this relationship in the paper and these occupational transitions give

another variation for identification.

In this line of research, how finely occupation is defined is always believed to affect the results

significantly. For robustness, I use both the the broad category of 1990 Census Occupational

Classification System (COC) with 66 occupations and also the detailed category (3-digit) of

1980 Standard Occupational Classification (SOC) with 242 occupations. To construct com-

parable measurement for the occupational specific skills in different time periods, I exploit
2



the detailed occupational descriptions in Dictionary of Occupations (DOT) and its successor

Occupational Information Network (O*NET) and create a crosswalks between them two.

My empirical analysis yields the following results. First, for the broad category of COC,

around 30% of children choose the same occupations with their parents as their first jobs,

the this ratio is relatively higher in years of depression. Besides, the relationship of the oc-

cupational inheritance rate and the occupational income standing is a "U" shape, suggesting

higher inheritance rate for jobs with high prestige. Secondly, by OLS estimation, staying

in the same occupations in first jobs give children around 5% wage premium on the log of

yearly earing, while the RD and IV strategies which exploits the variation in occupational

specific skills and individuals’ occupational transitions gives us around 10% wage premium,

which is comparable to return of education. Third, in the long run, the wage premium on the

first jobs fade away with time, and the people who choose the same occupations as their first

jobs have higher income risks, risks of getting fired and instability in their lifetime. Those

results suggest that the social network benefit is not persistent in the long run and leads to

a misallocation of talents through distorts individuals’ optimal occupational choices when

they just enter the labor market.

The contribution of the paper is three-fold. First, since Gary Solon’s 1999 Chapter in the

Handbook of Labor Economics, the literature of intergenerational mobility has placed in-

creased emphasis on the causal mechanisms that underlie this relationship. The current

literature focuses more on education, which is emphasized by almost all the literatures on

intergenerational income and social class or status persistence (e.g. Solon, 2004), or/and

the automatic genetic transmission or other hereditary endowments associated with the

early years, like family values, preferences, and other inherent characteristics like motiva-

tion. Those papers emphasize on the human capital increase due to family background, and

suggest that children from better-off families and parents with better abilities and attributes

being better equipped with intellectual power or earning power to eventual success. As

stated in the most recent handbook chapter Black and Devereux (2011), "these phenomena

can hardly be regarded as inequality and the policy implications are unclear." This paper

explores another channel through the inherited social network instead of human capital in-

crease, and is, to the best of my knowledge, the first study that examines both the short term

and the long term casual effect of intergenerational occupational correlation on children’s

labor income.
3



Second, this paper sheds new light on the estimation of social network effect. Ever since the

seminal work of Granovetter (1973, 1995), there is growing interests on the social networks

in labor markets. Exploration in a large number of studies document positive effects for a

variety of occupations, skill levels, and socioeconomic backgrounds. But the simultaneous

nature of social network and individual characteristics and working experiences make it hard

to peel out the impact of social network on income. In this paper, inspired by the Ioannides

(2015)’s distinguishment between connections that are the outcome of deliberate decisions

by individuals and connections being given exogenously and beyond an individual’s control,

I try to isolate this simultaneous relationship by discussing later on, which is the initial social

network one inherited from their parents. My work is the first to use large scale individual

data to show the effect of inherited social network generally exists in the labor market.

Finally, this paper is also related to another growing body of literature that emphasizes the

importance of occupational matching for worker outcomes, e.g. Kambourov and Manovskii

(2009a, 2009b), Gathmann and Schonberg (2010), Groes et al. (2010) and Antonovics and

Golan (2012). If one chooses his/her occupation for the advantages he/she can get from their

parents instead of his/her own talent, this talent-occupation mismatch has implications for

economic efficiency if the talents of those are under-developed or not fully utilized, as those

people will not live up to their productive potential.

The rest of the paper is structured as follows. Section 1 describes the data limitation in the

currently available data sets and the construction of the new data extract. Section 2 de-

scribes the measurement of parents’ occupations and children’s occupations and the sample

selection. Section 3 presents the stylized facts of intergenerational occupational inheritance

and lifetime wage inequality. Section 4 analyzes the mechanism through which the inher-

ited social network affects children’s occupational choice and the wage premium. Section 5

provides a conceptional theoretical model and examines the propositions with the real data.

Section 6 presents the empirical framework and discusses the identification strategy. Section

7 presents robustness checks. Section 8 concludes.

1.2 Data

In this part, I’ll first show that the commonly used data sets in the literature of intergen-

erational mobility is problematic due to either severe measurement error or selection bias
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resulting from designs of the surveys. And then I describe the new data extract I create for

the following study.

In surveys with both children’s and parents’ working information available, there are two

types in terms of how parents’ working information are obtained. The first type is ret-

rospective data, in which only children are the targets of the survey and questions about

their parent, especially the parents’ main occupation and industry, are parts of the survey,

represented by International Social Survey Programme (ISSP). 3 And the other type is self-

reported data in which both parents and children are the interviewees and they are asked

to report their own job information during the survey, among them, the most commonly

used is the longitudinal house survey Panel Study of Income Dynamics (PSID), which began

in 1968 and continuously follows and collects the information of the individuals and their

descendants from the original sample families.4 I will discuss the data limitation of these

two kinds of data separately.

1.2.1 Problem of the Retrospective Survey Data

The first commonly used data set is the survey data with retrospective data on parents’

working information. In those retrospective surveys, people would be asked about their

parents’ main occupation and industry, and in most cases only one occupation/industry

would be listed. Hence the accuracy of those children-reported information is crucial with

this kind of data.

In PSID 1997 to 2015 surveys, retrospective questions about their parents were added into

the survey for all individuals in the sample, which gives us an opportunity to test the validity

of these data since for the people who are the second or third generation of PSID survey,

their parents’ lifetime working information is also available.5 I find that only 37.8% people

reported at least one of the occupations their parents’ ever took, and if we consider that fact

3See detailed introduction of ISSP in http://www.issp.org/menu-top/home/

4See detailed introduction of PSID in https://psidonline.isr.umich.edu/

5The 1-digit occupation information of head’s father’s is also available from 1970 to 1996. The corre-
sponding question is " What was your father/mother’s usual occupation when you were growing up?"

5
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that parents’ may have more than one main occupation, the accuracy rate is even lower. 6

This low rate of accuracy would cause significant measurement errors and induce bias.

1.2.2 Problem of PSID and SIPP

For the other type of data, even though we don’t have the accuracy problem as we mentioned

above, we will have the selection bias problem due to the survey design.

First, for the longitudinal survey data like PSID, even though the design of PSID is to track

everybody in the household, but the detailed employment information (occupation/industry

etc.) is only available for the heads and wives (in certain years). In other words, when

one child graduates from school, we will only observe his/her working information if he/she

moves out his/her parents’ home and become a head/wife.

Figure 1.1: Moving Behaviors after Graduation

Time t

Graduation Year T T + 1 T + 2 T + 3

n1

1− n1
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Notes: assume that n1 percent of individuals move out within one year of graduation, n2 percent of individ-

uals move out in the 2nd year, and n3 percent of individuals move out in the 3rd year and so on.

In Figure 1, I depict the individuals’ moving behaviors after graduation. We can see that, due

to PSID’s survey design, we can only observe n1 percent of individuals’ working information

6See Appendix Table B.1 for the sample construction and detailed statistics.
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from the 1st year of graduation, and (n1+n2) percent of individuals’ working information from

the 2nd year and so on. In other words, if our interest is to study children’s labor outcomes in

the first years after entering the labor market, the sample of PSID is constrained to those who

move out their parents’ home relatively earlier which is endogenously selected and highly

biased to highly-educated people, since only 10.62% of individuals who graduate at their

15-year-old would move out within the 1st year while that ratio for those who graduate at

their 26-year-old is 100% (Appendix Table B.2). 7

SIPP is another longitudinal data set which will follow people only about 2.5 to 5 years, and

all household members age 15 years and older are interviewed by self-response. Differently

from PSID, we will only observe both parents’ information and children’s information if they

stay in the same household. 8 As in Figure 1, from SIPP, we can obtain a sample of those

(1− n1) percent of individuals who don’t move out. 9 This is also true for census data.

Hence either data set separately would induce bias due to the selection sample.

1.2.3 New Data Extract by Data Combination

To solve the selection bias caused by children’s moving behavior, I construct a new data

extract by reweighting and combining PSID 1986 - 2013 rounds and SIPP 1986-1987, 1990-

1993, 1996, 2001, 2004 and 2008 panels. 10. In this part, I’m going to show that both data

sets are nationally representative of the whole U.S. population.

1.2.3.1 Representative of PSID and SIPP

Although both data sets take representative U.S. families as interview units and are con-

ducted by well respected organizations with delicate survey designs and implementations,

7Detailed age profile of moving out schedule is provided in Appendix Table B.2

8See detailed introduction of SIPP in https://www.census.gov/programs-surveys/sipp/about/
sipp-introduction-history.html

9SIPP also follows individuals if they move out, but the initial sample would be constrained to those who
live with their parents, and in this study, I will concentrate with those who keep staying in the same house
with with parents.

10The span of SIPP before 1993 is all 2.5 years, while around 4.5 years afterwards. The reason I discard
1988 is that the existing data dictionary is problematic, and for 1989 is that there is no available fully labeled
panel data. Before 1986 panels are discarded because they don’t have duration information of individuals
occupations.

7
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there are still some differences among them that should be taken care of when combining

them together.

Unit definition

The definition of the head of the household in the SIPP is the person or one of the per-

sons who owns or rents the unit; this definition is slightly different from the one adopted

in the PSID, where the head is always the husband in a couple. Following most previ-

ous research, our analysis makes the two definitions compatible. In our study, I’ll use both

the heads and wives’ data, hence the definition of who is the head is not crucial in this study.

Sampling issue of PSID

The genealogical and longitudinal designs of PSID make it a unique resource for addressing

particular questions, they nevertheless draw concerns about the sample representativeness

since the PSID sample keeps being replenished through births and marriage. Fitzgerald

et al.(1998) carefully studied this issue and found no strong evidence of distortion of the

representativeness through 1989, and showed with considerable evidence that PSID’s cross-

sectional representativeness has remained roughly intact from the sample replenishment.

Besides, a thorough subsampling procedure was conducted in 1997 in react to the growing

size resulted from family splits. Through setting aside entire linkages to a 1968 PSID sample

family and adding nationally representative sample of immigrant households and individuals

that would not be eligible for PSID under the original 1968 sample recruitment and sample

family following rules, this subsampling procedure managed to exemplify the PSID sample

while keeping the intergenerational ties in the core panel. Hence, in this study, we undertake

previous research results and assume that the PSID data is nationally representative with

family weights.

1.2.3.2 Comparison of Descriptive Statistics

Table 1 compares the individuals who don’t move out after graduation in these two datasets

in terms of average demographic and socioeconomic characteristics for selected years: 1986,
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Table 1.1: Summary statistics of PSID and SIPP in selected years

1986 1993 2008

SIPP PSID SIPP PSID SIPP PSID

Male 0.612 0.601 0.618 0.616 0.590 0.587

Married 0.093 0.101 0.103 0.096 0.097 0.090

White 0.865 0.881 0.840 0.856 0.804 0.791

Age 22.616 23.289 22.898 22.507 22.540 22.149

HS dropout 0.143 0.149 0.145 0.139 0.189 0.183

HS graduate 0.410 0.393 0.351 0.331 0.330 0.310

College dropout 0.363 0.381 0.412 0.444 0.401 0.442

College graduate 0.080 0.077 0.092 0.086 0.081 0.065

Northeast 0.220 0.205 0.206 0.201 0.186 0.200

Midwest 0.257 0.263 0.294 0.308 0.313 0.331

South 0.325 0.332 0.343 0.318 0.413 0.388

West 0.197 0.201 0.157 0.173 0.089 0.085

1993 and 200811. By pooling these two samples, we can test the difference of each variable

separately and all of them are insignificantly different.

Figure 2 depicts the age profile of rate of living with parents, from which we can see that

the moving behavior captured in both data sets are also comparable.

1.2.3.3 New Data Extract

By the above analysis, we can now combine these two data sets by taking PSID as the main

data set and pooling together with SIPP after reweighting. The adjusted SIPP weight is the

original weight adjusted by the summation of weights in the corresponding synthetic groups

defined by education level and years after graduation. 12

11Those three years are the beginning year of SIPP, the last year before SIPP reconstruction, and 2008 is
the last panel available. Those variables are the only demographic variables consistently available in PSID
individual data index. In PSID, there are only detailed information about the heads and wives, but for the
rest of the household, only those basic variables are covered.

12Theoretically, finer synthetic groups including age, gender, region and marital status can be constructed,
but the sample size of each group would be too small and by testing, these demographic variables are
comparable.
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Figure 1.2: Age profile of moving out rates

And the summary statistics in the pooled data set is in Table 2.

W SIPP
adjust = W SIPP ∗

∑
GW

PSID∑
GW

SIPP
(1.1)

Table 2 reports the descriptive statistics for the new data extract and two data sets sepa-

rately. We can see that PSID and SIPP cover quite different subsample in population. The

individuals in PSID are significantly higher educated, hence have higher annual labor income

and also higher rate of being married.
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Table 1.2: Summary Statistics for the New Data Extract

Full Sample in the New Data Extract PSID only SIPP only

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max

(log) Annual Labor Income 7.746 1.602 -2.926 12.725 8.989 1.086 -2.926 10.295 6.652 1.109 -1.708 12.725

HS Dropout 0.159 0.365 0 1 0.164 0.370 0 1 0.153 0.360 0 1

HS Graduate 0.405 0.491 0 1 0.383 0.486 0 1 0.429 0.495 0 1

College Dropout 0.327 0.469 0 1 0.249 0.433 0 1 0.415 0.493 0 1

College Graduate or Higher 0.109 0.312 0 1 0.204 0.403 0 1 0.002 0.049 0 1

Years of Experience 6.126 4.065 1 61 15.326 9.417 1 59 3.977 2.598 1 61

Female 0.442 0.497 0 1 0.477 0.499 0 1 0.408 0.492 0 1

White 0.715 0.451 0 1 0.614 0.487 0 1 0.811 0.391 0 1

Northeast 0.175 0.380 0 1 0.138 0.345 0 1 0.214 0.410 0 1

Midwest 0.269 0.444 0 1 0.248 0.432 0 1 0.292 0.455 0 1

South 0.418 0.493 0 1 0.454 0.498 0 1 0.379 0.485 0 1

West 0.138 0.345 0 1 0.160 0.366 0 1 0.116 0.320 0 1

Married 0.535 0.499 0 1 0.609 0.488 0 1 0.465 0.499 0 1

61,840 11,290 50,550

Notes: Columns 1, 2, 3, and 4 present, respectively, mean, standard deviation, minimum and maximum of characteristics and outcomes of all the 61,840 individuals

in the new data extract. Columns 58̃ and 91̃2 report those statistics of the same variables, separately, for the PSID sample in the data extract and the SIPP

sample in the data extract. For the total 50,550 in the SIPP data, there are 1,816, 1,852, 3,775, 2,156, 3,153, 2,765, 7,773, 5,394, 10,466, 11,400 from the 1986,

1987, 1990, 1991, 1992, 1993, 1996, 2001, 2004 and 2008 SIPP panels.



1.2.4 Description and Classification of Occupations

1.2.4.1 Occupational Classification

As stated in the handbook chapter Black and Devereux (2011), the intergenerational occupa-

tional correlation would be quite different if different level of classification system is used. In

our study, we don’t want the classification too broad hence cannot capture the occupational

specific characteristics and in the meantime not too detailed to put for example orthodontist

and periodontist in two different occupations. With this aim, the main body of this paper

uses the broad category (altogether 66) of the 1990 Census Occupational Classification Sys-

tem (the list of which is listed in Appendix Table B.3, and the crosswalks of different data

sets to this classification is in Appendix Table C.4). I also use the detailed 3-digit 1980

Standard Occupational Classification for robustness check.

1.2.4.2 Measuring the Occupational Specific Skills

The U.S. Department of Labor released the first edition of the DOT in 1939 to "furnish

public employment offices with information and techniques to facilitate proper classification

and placement of work seekers."13 Although the DOT was updated four times in the ensuing

five decades (1949, 1965, 1977 and 199114), its structure has been little altered. Based

upon first-hand observations of workplaces, DOT examiners using guidelines supplied by the

Handbook For Analyzing Jobs rate occupations along 44 objective and subjective dimensions

including training times, physical demands, and required worker aptitudes, temperaments,

and interests.

In 1998, the National Center for O*NET Development’s O*NET database15 replaced the US

Department of Labor’s Dictionary of Occupational Titles (DOT) as the primary source of

information about US job characteristics. Since then, O*NET has gathered information on

hundreds of variables for more than 800 SOC-defined occupations. Prior to 2003, O*NET

acquired its data from surveys administered to job analysts and experts. Beginning in 2003,

13U.S. Department of Labor (1939:xi) as quoted in Miller et al (1980).

14In 1991, based on the time of update, among the 12,741 detailed occupations, 80.76% were not updated,
and only 6% were updated after 1986. Hence this revise cannot fully qualify as the up-to-date description
in the 1990s.

15 data are available on website: https : //www.onetcenter.org/dbreleases.html
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however, information has come from job incumbent surveys. Compared with the predecessor,

the O*NET, offers potentially more up to date information on occupational characteristics by

updating twice a year. O*NET categorizes its variables into six distinct surveys, and we here

are interested in Abilities, Skills, Knowledge, Working content and Activities surveys. These

surveys ask respondents to evaluate the importance of particular abilities (skills, disciplines,

activities) required by his/her current job on a scale of 1 to 7.

In this paper, I match the two job description data sets and create longitudinal descriptions

of the occupations. From the view of the demand side of the labor market, each job can

be describes with a bundle of specific Activities and Working Contents, while from the view

of the supply side of the labor market, each worker offers a bundle of Abilities (Cognitive

skills, physical skills), Skills (language, communication, analytical skills etc.) and Knowledge

(physical, history etc.) to match with the demand of jobs. Hence each job should be

characterized by pairs of activity-ability. DOT provides only Aptitude, Physical Demands,

Temperaments and General educational development (GED), while O*NET provides much

more detailed characteristic descriptions. In order to construct time-series descriptions of

occupations, I was motivated by past literature and common practice, and aggregate the

abilities and activities to several categories, including interactive (or communication) skills,

analytical (or reasoning) skills, quantitative (or analytical) skills, routine cognitive skills,

routine and non-routine manual tasks and physical abilities. (The detailed matching table is

in Appendix Table B.5)16 Eventually, we can aggregate those categories one step more into

broader groups, for example, we can group into cognitive skills, routine skills, manual skills

and physical skills as Autor and Dorn (2013). 17 The detailed and major skill aggregation

of DOT and O*NET is listed in Table 3.

16Some parts of this aggregations are from Autor, Levy and Murnane (2008) and Peri and Sparber (2010)

17I’d like to clarify first that I use the term "routine" following Autor, Levy, and Murnane (2003), but
it meant the skills required for the "Routine-cognitive" tasks. For example, the description of "Clerk Per-
ception" is "The ability to see detail in manuscript or tabular material. The ability to observe differences
in copy, to proofread words and numbers, and to avoid misreading numbers in arithmetic computation.",
which requires scrupulousness and patience.
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Table 1.3: Aggregation of skills Definition

Detailed Major

Communication Interactive

Non-routine Cognitive

Analytical

Quantitative

Routine
Routine Cognitive

Routine Manual

Manual Non-routine Manual

Physical

Strength

Body Flexibility

Visual

Auditory

1.2.5 Sample Selection Problem

In the study about intergenerational occupational relationship, it’s crucial to measure par-

ents’ main occupations correctly and completely. Hence, ideally we need the whole working

history of parents. But even in the PSID with 60 years of history, the sample size of children

with the whole working history of parents is extremely small, let alone the SIPP only reports

parents’ current job and the last job.18 19 Hence in this part, I study people’s work transition

behavior, especially the occupational transition and show that individuals’ occupations are

relatively stable after 28-year-old, and conclude that even if only the later half of the working

history is available, we can still obtain parents’ main occupations in life without too much

information loss.

1.2.5.1 Occupational Transitions

First, we define the annual occupational transition rate as the ratio of individuals who work

in a new occupation in the given year.

18Appendix Figure B.1 depicts the sample sizes of individuals with different length of coverage in PSID

19In SIPP, the core files only report the current jobs and the last jobs are in the Employment History
Module
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But the above definition didn’t take into consideration of people who change into an old

occupation. This is important in the sense that, if people’s occupational change behavior

is like shopping, maybe he would have change back to the original occupation after trying

out other options. To control for this scenario, we need the employment history records for

adjustments. Figure 3 depicts the age profile of occupation changing rates on 1-digit and

2-digit levels for people who were recorded through 2008 to 2013.20 And we also use the 5

years history record of employment to adjust for those who got a new job in 2012 which was

different from the previous jobs but the same with an old job he/she took within 5 years. We

can see that the occupational transitional rate is especially high for people who just started

their jobs (over 20%) and drop to 5% in the mid-30s and 2% after 50. For those who start

working before 20 (20%) their job changing rate is as high as 50% on yearly base and 80%

of those job changes come with occupation changes.21 50% people working in their early 20s

when they just graduated from college, their job changes rates and occupation changes rates

are also pretty high.

With the large sample size of SIPP, we can statistically describe the duration of people

staying in the same line of jobs, which resembles our exercise before of 1-digit/2-digit oc-

cupation groups.22 Figure 4 depicts the average length of time in the same line of work for

different age bracket. Considering the individual heterogeneity, I also depict the confidence

interval of the average length. We can see that, the confidence interval becomes wider af-

ter 55, revealing the situation that people pick up different kinds of jobs after retirements.

But before retirement, we can see that the duration of occupation grows steadily with age,

which is consistent with the occupation changing rate we calculate before. We also generate

the average occupation starting time for different ages. we can see that occupation people

started in their 30’s last till 55, which is the common retirement time. In other words, the

jobs we see people doing in their 30s, are the ones that have very high changes of lasting the

20The reason I use the 2008 Panel of SIPP is because it follows the people the longest compared all other
SIPPs, which is 5 years and give us enough historical information to control for the old jobs. The reason I
choose SIPP over PSID is for the large data sample and the same length of months covered in SIPP.

21Here we only consider the people who graduated and take full time jobs

22In SIPP, there is a question phrased as " Considering ...’s entire working life, how many years has ...
been in this occupation or line of work? "
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major working time, or the jobs that we see people doing in their 40s and 50s, have high

probability of lasting 10-20 years. Hence we can define the jobs in the range 28 to 64 as the

main jobs. In other words, even if we only have a relatively small chunk of available working

history, it’s enough to define the main jobs. Hence I choose the sample to be those children

with their parents’ before-retirement working information available.
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Figure 1.3: The Age Profile of Occupational Transition Figure 1.4: The Average Duration of Occupations

Notes 1: The Figure 3 is based on data in SIPP 2008 Panel and Figure 4 is based on all panels in SIPP. In both of those two figures, the "age" on the x-axis

means 3-year age group, and each number means the starting age of this group, for example, "19" means 19-year-old to 21-year-old.

Notes 2: In Figure 4, the read line the average length of years that people spend on the current occupation for different ages. The two dotted blue lines around

the red line show the confident intervals of the estimation. And the dash lines shows the average starting age of occupations for different ages, calculated by the

age minus the average length of duration. For example, for age 55, the average duration is about 19 years, so the average starting age is around 36-year-old.

Notes 3: In Appendix Figure 2 and 3 I show that the job and occupational transitional rate follows the same pattern for different cohorts and along the time,

except the 2008 recession, the occupational transitional rates is comparable over the years.



1.3 Stylized Facts

1.3.1 Model Specification

Following the pioneering work by Solon (1992) and Zimmerman (1992), the existing literature

estimate the intergenerational income persistence by the Galton-Becker-Solon regression:

yc = α + βyp + us

in which y is the log income or percentile rank of income.

The primary objective of this paper is to empirically estimate the causal effect of one’s career

choice in response to his/her parents on labor market outcomes, controlling for the family

income and other family background factors. Hence, the main regression equation in this

paper is:

yc = α + τ1{OC == OP}+Xcτ + βyp + us (1.3)

in which 1{OC == OP} is a dummy variable which equals 1 if children’s occupation is the

same with their parents’, and yc can be log(income) or rank(income) as in the Galton-

Becker-Solon regression, or some other labor market outcomes, like unemployment rate or

variance. And Xc are other variables that already proved to influence one’s labor market

outcomes, like education level, and other family background variables.

The main threat to identification is the endogeneity of the occupational choice variable

1{OC == OP}. To be specific, there are two kinds of bias, one is the genetic correlation

with their parents or other hereditary/occupational training from parents, that the children

choose the same occupation with their parents because they are more talented or suitable

for the occupations. And the second one is the presence of individual heterogeneity and self-

selection giving rise to a sorting gain, which is another form of selection bias in the standard

estimator for the causal effect. In this part, I’ll show the OLS regression results and some

other stylized facts about the intergenerational occupational correlation. And I’ll talk about

identification in the following sections.

1.3.2 The effect on the entry-level labor markets

First, I concentrate only for the new graduates and their first jobs. Since in this newly

constructed data set, we can fully identify the starting and ending time (or still working for)
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of each job, we can then sample out those people whose first job information is available,

and construct the indicator of whether one chooses the same occupation with their parents’

as their first job. Also based on the parents’ starting and ending time of each job, we can

identify whether parents’ jobs are their major jobs. In the end, we limit our sample to those

who has major’ job informations of parents, and construct the following indicator:

1{OC
first == OP

major}

Estimation of Intergenerational Occupational Correlation

In this part, I estimate the intergenerational occupational correlation for U.S. along with

time and also for occupation with different income standings.

Figure 5 depicts the rate of new graduates who choose the same job as their parents (currently

have or ever worked in as the main occupation). We can see that, on average, around 30%

new graduates choose their parents occupations as their first jobs. In the literature of

intergenerational occupational correlation, either the very broad categories of occupations

are used or the firm level information is used, and children’s occupations are not constrained

only in first jobs (e.g. Hellerstein and Morrill, 2008 and Ferrie, 2005)23. So this paper cannot

be compared with the current literature due to different occupational classifications. Also

the ratio peeks when the unemployment level is high, for example year 1992 and 2008, even

though it is not perfectly correlated with the unemployment level in U.S. in time, considering

the choice of occupation is usually predetermined several years before graduation especially

for people with college or even higher education level.

The second figure in Figure 5 depicts people’s occupational inheritance behavior by parents’

occupational percentile rankings. We can see that, for the very low income group, children are

stuck at the low pay jobs. And the whole pattern fits out theory of the U shape inheritance

rate (The probit regression results in Appendix Table C.6).

Besides, in order to compare U.S. with other countries, I employ International Social Survey

Programme or ISSP, which is an annual program of cross-country surveys on various topics

23For example in Hellerstein and Morrill (2008), all jobs are grouped into only 6 categories, including
"Managerial and Professional Specialty", "Technical, Sales, and Admin. Support", "Service", "Farming,
Forestry, and Fishing", "Precision Production, Craft, and Repair" and "Operators, Fabricators, and Labor-
ers". And in Ferrie (2005), the grouping is even broader, including two "white collar" and "blue collar".
Hellerstein and Morrill (2008) show that, in recent cohorts, about 30% of sons and 20% of daughters work
in the same occupation as their father.
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of social science research, and the topics of which in the year 1999 and 2009 were social

inequality, covering 25 and 41 countries and territories respectively. In these two separate

years, ISSP provides both respondent’s occupation and respondent’s parents’ occupation,

with which we can calculate the rate of occupation inheritance for each region in that specific

year, defined as the rate of respondents sharing the same occupation with either hisher

mother or father24 25. The occupation classification both follows ISCO88, with 10 major

groups (1-digit level), 28 sub-major groups (2-digit level), 116 minor groups (3-digit level),

and 390 unit groups (4-digit level). Each survey was carried out around the same time

within one year in all the surveyed regions, making the results comparable across countries.

In Figure 6(a), I depict the occupation inheritance rate with 1-digit, 2-digit and 4-digit levels

of occupation with respect the per capita GDP level in 2009. As we can see, no matter which

level we use, the more developed an economy was, the lower the occupation inheritance rate.

For China, the 1-digit inheritance rate was as high as 0.56 while for Norway, the rate was

close to 0.2. 26. Since we are interested in the occupational inheritance only here, we want

to exclude the effect of the intergenerational education level correlation. Hence, I depict in

Figure 6(b) the normalized inheritance rate for 2-digit level by subtracting the inheritance

rate by a theoretical inheritance rate if everybody chooses their occupation randomly 27

24The corresponding questions are: What is your first occupation? and What is your current occupation?

25The corresponding question is: When you were 14-15-16 years old, what kind of work did your father
mother do?

26As a robust check, I exclude "farmers" from the sample, and have similar results

27The definition is
IRrandom = πedu �Nedu

in which πedu = [πedu=lowest, . . . , πedu=highest] represents the distribution of labor by education level, and
Nedu = [Nedu=lowest, . . . , Nedu=highest] represents the number of available occupations for each education
level.
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Figure 1.5: Occupational inheritance rate for first jobs (by year, by wage)

Notes: In the first figure, the blue line depicts the time series of the first job inheritance rate and the orange

line depicts the time series of the unemployment level in US in the same time period. The source of the

latter is Bureau of Labor Statistics Data.
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Figure 1.6: Economic Development and Occupational Inheritance Rate

(a) 2-digit, normalized

Notes: For normalization πedu is calibrated using ISSP and Nedu is calibrated with ACS 2009. This calibration is upward biased for less developed countries,

because for the same occupation, the education requirement should be lower in those countries due to lower technology level.



Income premium28

In this part, I’ll show the OLS regression results of Eq. (3) in Table 4 with the income (mea-

sured by the log and percentile rank of annual labor income) as the dependent variable, to

be specific, log of annual labor income and percentile ranks of annual labor incomes are used

as yc, and X includes the demographic variables including the gender, race, region dummy,

cohort dummy, year dummy, education level, marital status, children number, and this per-

son’s occupation category and the average parents’ income ranking yp is also controlled29.

Besides, Figure 2 depicts the quantile regression results of Eq. (3) with and without all the

control variables.30

Table 1.4: Regression results for the entry-level jobs

log(wage), full Rank(wage),full Rank(wage), HS Rank(wage), College

1{OC
first == OP

major} 0.358∗∗∗ 2.538∗∗∗ 2.278∗∗ 2.841∗∗∗

(0.0311) (0.520) (0.720) (0.756)

experience 0.0854∗∗∗ 0.965∗∗∗ 1.033∗∗∗ 1.080∗∗∗

(0.00217) (0.0397) (0.0542) (0.0558)

1 ∗ experience -0.0130∗∗ 0.0128 -0.00200 0.0323

(0.00447) (0.0705) (0.102) (0.0995)

Control Yes Yes Yes Yes

UniqueInd. 30,381 30,381 14,564 15,168

adj. R2 0.335 0.138 0.083 0.078

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The control variables are gender, race, region dummy, cohort dummy, year dummy, education level,

marital status, children number, and this person’s occupation category and the parents’ income ranking yp.

28In Appendix C.2, I also consider the industry choices as well.

29The percentile ranking of wage is calculated within each sample PSID and SIPP and within 3-year age
groups. In other words, this variable can be interpreted as the percentile ranking of annual labor income
within each age group.

30For robustness, I also show the regression results for the detailed groups of SOC (242 groups) in Appendix
Table C.6 and the quantile regression results for the percentile rank of annual labor income in Appendix
Figure C.4.
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Figure 1.7: Unconditional and conditional quantile regression results

We can see that the conditional difference of these two groups are significant and as high as

0.5 on log(wage) or 3.69% on rank(wage) in the median, and 0.357 on log(wage) or 2.54% on

rank(wage), suggests that children who choose their parents’ occupation as their first jobs

have an advantage in earning31. And from either scenario, we can see that the difference is

biggest around the median wage level. For subgroups of education level, we can see that,

this positive wage premium is significant for different education level and people who have

some college enjoy higher wage premium than the HS dropouts and HS graduates. The

average experience with the first job for this sum-sample is 4.81 years, and we can see that

on average, the premium will be persistent during this first job, decreasing slowly along the

31It worths mentioning that the log(wage) regression suggests that people who inherit their parents’ occu-
pation enjoy a positive wage premium as large as 30%, which is almost equivalent the 4-year college education
in the literature of return of education. This results is partly induced by the different income measurements
used in the two data sets. In PSID, the information is collected on annual or biannual base, and the labor
income definition I used here follows the literature (e.g Blundell, Pistaferri and Preston, 2008) that combines
all income from labor (salaries and wages, the labor part of business and farming, roomers and boarders and
market gardening. While SIPP collects data on quarter basis, and the composition of income is less clear
than PSID. But on average, the SIPP income is lower than PSID
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time though.

Lower Worker’s quality in terms of education level

Besides the wage level, I also compare these two groups on the education level when they

take the first jobs. Since the education level are ordered categorical variables, I change the

linear regression equation in Eq.(3) into Probit Model as in Eq.(4)

Pr(yi > s) = F (β1{OC
first == OP

major}it +Xitτ − εs) , s = 1, . . . , S − 1 (1.4)

and in this regression y is the education year, whether has some years of college, whether

graduated from high school, and the firm size (less than 25, 25-100, over 100).

Table 1.5: Education level, firm size and occupational inheritance

Education Whether college Graduate Whether HS graduate Firm size

I(Oc, Op) = 1 -0.139∗∗∗ -0.207∗∗∗ -0.232∗∗∗ -0.206∗∗∗

(-6.98) (-8.71) (-7.46) (-7.47)

Control Yes Yes Yes Yes

N 32,746 16,210 15,777 24,385

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The regression result is reported in Table 5. We can see that people who choose the same

occupation with their parents has 13.9% probability on average of having one year less of

education years. And this effect is even more bigger at the cutoff of education, among all

people with 12 years or more education, inheritors have 20.7% less probability to graduate

from college or obtain higher education, and among those who don’t go to college, inheritors

are 23.2% less likely to fully finish high school education. Also, those people are 20.6% more

likely to go to relatively smaller firm than those people who choose different occupations

with their parents.32 From those results, we can see that at least measured by the education

32For the firm size regression, because it’s only available in PSID in limited number of years, so the sample
size is smaller than the other regressions.
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level, the people who choose their parents’ occupations as their first jobs have lower quality.

1.3.3 The persistence of the entry premium

Income Premium

In this part, I expand the sample to the whole available working experience, aiming to study

the lifetime effect of occupational inheritance.

Table 6 reports the regression results of the Eq.(3), also for different subsample. Because

of the data problem, I run the regression with two different samples. The first sample is all

people with full working experience, which is the same with the sample in the first part. This

sample is the best to compare with last regression results, but due to the short time span

in SIPP, this sample will be oversampled by people with less than 2 years of experience and

exclude those in PSID but don’t have the first job information because of late move out33.

Hence I construct the second sample, and redefine the "first job" as the jobs before 25 year

old. In this way, I would be able to include more of PSID interviewers and longer working

experience. I depict the lifetime premium for high school graduates and people with some

college in Figure 7. From the results, we can see that the premium we observed in last part,

decreases to zero around 10 years of experience.

As we can notice that because of the smaller sample size of people with higher working

experience, the confidence interval is getting bigger. The persistent and magnitude of the

occupational inheritance premium is heterogeneous for different education level, which is

consistent with our finding in last part. We can see that high school graduates enjoy the

biggest premium, which is about 5% higher in percentile ranking within the same region

and age group. Compare the two samples, we can see that the second sample gives slightly

higher premium at the beginning and even higher decreasing speed because of including more

people with longer working experiences.

Besides, I also find that the persistence is different for people coming from different wealthy

level. In the last column of Table 4, I construct a cross variable of one’s parents’ average

income level and the inherit dummy. By calculation, we can see that the for the most

wealthy family (top 10%), the premium would disappear after over 30 years. I also run the

33In my new constructed data set, the number of people with one year’s experience is 10,617, that of 10
years’ is only 1,668, that of 20 years is 461, and that of 30 years is 62.
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regression with log(wage), and the cutoff point is around 40 years. Given the fact that the

longest experience in this data set is around 30 years, it’s safe to say that those people would

have life-long premium. And for the median family, the premium would disappear around

16 years, for the poorest family (lowest 10%), the premium would disappear after 3 years.

With all these heterogeneity, there is one fact that is consistent with all the groups. That is

on average, the people who started off with their parents’ job in their early ages would have

a premium at the beginning but this premium would decrease along with the time.

Income Risk and Stability

Besides the income level, we can also measure the income risk along with those people’s life

time.

There are different measurements we can use. The first one is the percentage of time that

one person is unemployed, or layoff, or absent from work without pay among all time in

labor force . We can see that people who choose their parents’ career path have significantly

1.28% higher unemployment time every year. Also, the probability of changing jobs in any

specific years is 40.8% higher for those people, and among those who change their jobs, the

probability of getting fired is 79.2% higher.

Another set of measurements is the variance of income. First, I run a regression of the

coefficient of variance on the inheritance indicator and other control variables as in Eq.(3).

As reported in Table 7 column 2, we can see that with a median of 1.07, the people who

inherit their parents’ job have 19.5 percent points higher in CV. Next, I follow the literature

of income risk and estimate the permanent and transitory risks of the two groups, with the

detailed model set up in Appendix C.2 and the results depicted in Figure 8-10 for overall,

transitory and permanent variance separately.

We can see that the overall variance is larger for people who choose their parents’ occupations

as their first jobs, which is mainly explained by higher transitory risk from estimation. All

of these suggest that the people in this group suffers higher income risk after their first jobs

in their overall life time.

In the last two columns of Table 7, I report the probability of people who choose the same

occupations with their parents switch away from their original choice of occupations. We

can see that they have much higher chances of switching away then others who don’t inherit
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their parents’ job, showing lower level of stability.

1.3.4 Summary

Now we can summarize the stylized facts we get from this section:

• There is a significant premium for people who choose the same job as their parents,

about 0.3 on average for log(wage) and 2.54% on percentile ranking of wage.

• This premium diminishes along with the lifetime, and the difference of the premium

at the entry-level and 20 years after working is about 6-8%.

• People who choose to stay in the same job have higher income risks, risks of getting

fired and lower level of stability in sense of employers, occupations and industries.
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Figure 1.8: The age profile of the premium Figure 1.9: Overall Pattern of Total Income Risks
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Figure 1.10: variance of transitory risk Figure 1.11: variance of permanent risk
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Table 1.6: Persistent effect

Full Sample No HS HS graduate Some college Sample 2 log(Wage) Continuous

1{OC
first = OP

major} = 1 1.088∗∗ -0.895 4.892∗∗∗ 2.375∗

(2.75) (-0.74) (8.98) (2.09)

I*experience -0.116∗∗ 0.135 -0.314∗∗∗ -0.232∗∗ -0.176∗∗∗

(-3.21) (1.21) (-6.93) (-2.92) (-6.27)

1{OC
before25 = OP

major} = 1 1.254∗∗ 0.0652∗

(2.59) (2.41)

I*experience -0.179∗∗∗ -0.00302

(-5.49) (-1.34)

I* Wealthy 5.746∗∗∗

(7.37)

control X X X X X X

UniqueInd. 20,072 4,394 6,639 9,930 31,572 31,572 31,572

adj. R2 0.167 0.100 0.071 0.193 0.224 0.435 0.168

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table 1.7: Income Risk

Unemploy Rate CV of Income Pr(Fired|job change) Pr(change jobs) Pr(change Occ.) Pr(change Ind.)

1{OC
before25 == OP

major} = 1 1.277∗∗ 0.195∗∗ 0.792∗∗∗ 0.408∗∗∗ 2.338∗∗∗ 1.901∗∗∗

(3.02) (2.72) (5.91) (6.81) (36.06) (29.65)

I*Experience -0.0257 -0.0157∗∗∗ -0.0353∗∗ -0.0274∗∗∗ -0.154∗∗∗ -0.121∗∗∗

(-0.90) (-3.58) (-3.27) (-4.89) (-24.04) (-19.69)

Control Yes Yes Yes Yes Yes Yes

UniqueInd. 31,572 31,572 22,228 31,572 31,572 31,572

adj. R2 0.050 0.011

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1.4 Mechanisms of wage premium and social Network

This section begins by documenting the difference of job searching behaviors between people

who inherit their parents’ job and who don’t. The theory developed in the next section is

based on the premise that choosing a different career path compared with their parents is

accompanied by a loss in these network services, connecting parents’ social networks to high

occupational inheritance rates, and accompanying labor misallocation, we have documented.

This connection will be subjected to greater scrutiny in the empirical analysis that completes

the paper.

1.4.1 Job hunting behavior

In the existing network theories, there are two potential channels for social network to

influence the labor market opportunities and outcomes. One is the weak tie or network-

transmitted information. Besides, favoritism is proved to be fairly common among relatives

and close friends who expect preferential treatment in all human societies (Rees, 1966).

In essence strong ties are favor-exchange ties (Bian, 2002) or instrumental particular ties

(Walder, 1986). These kinds of ties were mobilized to get a favorable job assignment from

state authorities before reforms (Bian, 1997), to help people move between employers for

better pay or career advancement in China’s emerging labor markets (Bian, 2002, 2008;

Bian & Huang, 2009), to secure reemployment opportunities after layoffs (Zhao, 2003), and

to obtain "soft-skill" jobs whose performance is hard to measure or monitor (Huang, 2008).

In PSID 1978 wave, specific questions about interviewers’ job hunting histories were added
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to the survey, including "Do you think there was anyone who may have helped you get the

job?" "If yes, what’s your relationship with this person?" "What kind of help you got from

this person?" etc.

Based on those questions and the existing network researches, I construct the strong-tie and

weak-tie variables as below:

IStrong−tie =


1 if Type = "Direct influence stated"

or Referee = "Very strong"

0 other situation

(1.5)

IRefererWeak−tie =


1 if Type = " Direct inferred, recommendation or mention"

or Referee = "Modest"

0 other situation

(1.6)

IInfoWeak−tie =


1 if Type = " "Told me to try for/about the job"

or Referee = "No"

0 other situation

(1.7)

The variable IStrong−tie is constructed based on the questions "How did they help?", and

"Could they have had some say in your getting the job? and How much". If the answer is

"Direct influence stated; gave me the job; got me the job" for the first one and "Very much;

a lot; gave me the job" for the second one, I define as get the job via strong ties. For the

weak ties, I construct two variables based on the mechanism. For the network-transmitted

information to the employer, I define as the IRefererWeak−tie. It is constructed also based on the

above two questions, if the answer is "Direct influence inferred; friend of the foreman" or

"Recommended me to employer" or "Told employer about me" for the first one and "Yes and

Moderate amount; some" for the second one, I consider the type information transmitted

towards the employer. If the answers are "Told me to try for job" or "Told me about job" for

the first question and "No" for the second one, I consider it as merely information towards

the potential employee.

To prove the relationship of career inheritance and the type of job hunting network usage, I

show the distribution of these three channels by the relationship of helpers and whether or

not the interviewer inherit his/her parents’ career path.

We can see from Figure 11 that for those who inherit their parents’ career path, about half
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Figure 1.12: Distribution of ties for job hunting

of them got the job through direct influence (strong ties) or direct reference (referrer), and

among those people, about 30% of them are through strong ties. Comparatively, strong

ties usage for those who chose a different career path with their parents is very limited,

only 5%.34 While for other jobs except the first jobs, the dependence on non labor market

channels is decreasing. Though though the difference between the people who inherit their

parents’ job as their first jobs and who don’t is persisting, in the sense that they triple the

usage rate of the strong ties even after their first jobs, the magnitude is much less. This is

consistent with our finding, that the positive wage premium exists in the entry-level jobs but

decreasing along with time.

34The distribution of sources of helps are in Appendix Table D.9
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1.4.2 The starting time of first jobs

Also, we can see that for people who choose their parents’ occupations as their first jobs,

the searching time is less compared with the counterparts. For new graduates, June is the

most frequent month for people to start their jobs (See details in Appendix Table D.10

the distribution of starting month for the first jobs) and we find that staying in the same

occupations give people 7% higher probability of starting their first jobs before or in June

compared to the counterparts, which suggests that those people have advantages in the labor

market which can make it faster to find a job, or in other words, shorten the waiting time

before a suitable job arrives (See the Probit Regression results in Appendix Table D.11).

1.4.3 Firm level evidence

The results we have in this paper also in line with the firm-level intergenerational transition

study, which also suggest the usage of parents’ social network in the job hunting process,

especially for entry-level jobs. For example Corak and Piraino (2011) using firm level data

from Canada and Denmark, proving that even in firm level, there is significant level of

intergenerational transmission, with 30 to 40% of young adults having at some point been

employed with a firm that also employed their fathers (Appendix Figure C.5) depicts the

rate of employed by the same employer of fathers from Corak and Piraino, 2011).

1.5 Conceptional Framework

I introduce a model of children’s occupational choices for the purpose to guide the interpre-

tation of the empirical analysis. I derive four predictions that guide the empirical analysis

in Sections 2 and 3.

This model is based on the occupation choice framework created by Hsieh, Hurst, Jones,

and Klenow (Hsieh et al. [2013], HHJK hereafter), which is basically a generalized version

of Roy model, initially used in the international trade in Eaton and Kortum(2002).
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1.5.1 Preferences and Incentives

There is a continuum of individuals in each generation, and each of them would have one off-

spring. There areM occupations in this economy and each individual chooses his occupation

i ∈ {1, 2, . . . ,M}, with wage wi as the per unit of efficiency labor. Assume that each occupa-

tion requires Si level of education, without loss of generality, the above occupations are or-

dered by the education level. Each individual is born with innate talent ε = (ε1, ε2, . . . , εM)35

and the realization of ε follows a Fréchet distribution, which is determined by his father’s

occupation:

Fj(ε) = exp
(
−
( N∑
i=1

Tijε
− θ̃

(1−ρ)
i

)1−ρ
)

(1.8)

The parameter Tij governs the location of the distribution; a larger Tij implies a larger

possibility of high talent in occupation i. The parameter ρ governs the correlation between

talents across different occupations for an individual. For the following analysis, I use θ =

θ̃
1−ρ . If ρ → 0, productivity levels of offspring are uncorrelated across occupations, while in

the limit as ρ → 1 they are perfectly correlated, so that productivity is independent of the

occupation.

Assume each individual lives 2 periods, human capital can only in accumulated in period

1 (childhood). In this model, innate talent is private information when a person started to

work reveal by certain probability in the second period. 36

Individual’s maximization problem is to choose an occupation in order to maximize the

expected income net the cost of education37:

max
i∈I,Ei

log(U) =
[
β log(

t+2∑
t=1

Ci(t))
]

+ log(1− Si) (1.9)

in which Ei is the cost of education if occupation i is chosen

Here C(t) is consumption in year t, 1 − s is leisure time during the pre-period when hu-

man capital investments are made. Note that we assume no discounting of consumption

35The reason I choose M occupational specific ability instead of just K abilities as in real life is because
with less types of abilities, we cannot get a unique solution for the choice of occupation mathematically. In
other words, the M different kinds of abilities can be seen as M different kinds of combination of abilities

36We can understand as if there are two sub-periods in the "Young" period, in which people first accumulate
human capital and then start to work.

37Why don’t model the whole life time: because ex-ante, people don’t know the whole path of the dynamics
of income, the probability of revealing in each year. So basically what they know is the expected advantage,
or ex-ante belief of the advantage they are going to get
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for simplicity. β parameterizes the tradeoff between lifetime consumption and time spent

accumulating human capital. Individuals borrow e in the first period to purchase e units of

human capital, a loan they repay over their lifetime, but I assume that there is no financial

market, and the amount they can borrow is subject to father’s occupation Yj. I assume the

credit constraint that occupation i <= ML1 cannot afford the education Si for i >= MH1,

and i <= ML2 cannot afford the education Si for i >= MH2 with L1 < L2 and H1 < H2.

This assumption can be understood as the high school education and college education. For

people in the lowest income occupation, their parents’ don’t have enough money to support

the children to finish high school while less lower income occupation family can support the

high school but not the college. This is the second difference of this model.

The effective labor unit is decided by both the education level and education expenditure

through the human capital production function:

hi = Sφii E
η
i

Hence the income of choosing occupation i is

Yi = wiεiThi

In the first period, assume that the innate ability is private information, for people who stay

in the related occupation with their parents, it will have an inflater τij > 0, and for others

there will not be any inflater. In the second period, for people who were masked with an

inflater in the first period will have p probability of hiding his true productivity, and (1− p)

reveals the true productivity.

The individual maximization problem implicitly defines an intergenerational occupation tran-

sition matrix , where pij is the probability of a son choosing occupation i conditional on the

fact that his father works in occupation j.

The total amount of efficient labor supply in occupation i thus can be written as:

Hi =
M∑
i=1

πLj pijE
[
εij|i

]
(1.10)

Assume there is a representative firm that hires all occupations of workers and produces final

goods according to the CES production function in each period:

maxY −
M∑
i=1

exp(1)wiHi (1.11)
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Y =
( M∑
i=1

(AiHi)
σ−1
σ

) σ
σ−1 (1.12)

where Ai is the occupational productivity.

1.5.2 Propositions

From the conceptional framework, we can have four propositions about the inheritance rate,

worker’s quality, income risk and the total labor productivity.

Proposition 1.5.1 (Occupational Inheritance Choice): The inheritance rate for the high

income and low income occupation is higher than the medium level income occupation. i.e.

pjj is decreasing along with wi and then after certain point, increasing with wi.

For the occupations without credit constraint, the higher the return to skill wi relative to

other occupations, the higher the inheritance rate. At the same time, for people from family

with credit constraint, the overall choices are limited, ending up with higher possibility of

staying at the same jobs. This proposition which predicts the "U" shape relationship of

occupational inheritance rate with respect to the occupational income standings fits our

empirical results from Section 2.2.

Proposition 1.5.2 (Average Quality of Workers): The average quality of workers in each

occupation, including both human capital and talent, is

E
[
hijεi|Father = j

]
≡ Ej

[
hijεi

]
=

T
1

θ(1−η)
ij

κijwi
[
(1− si)

] 1
2β

(
ηΦ

1
θ
j

) 1
1−η

Γ(1− 1

θ(1− η)
) (1.13)

or [
sφii

(
ηκijwi

)η
(

1

pij
)
1
θ

] 1
1−η

Γ(1− 1

θ(1− η)
)

This proposition predicts that the average quality is inversely related to the share of the

group working in the occupation pij, which fits our empirical results in Section 2.2 about

worker’s quality.

Proposition 1.5.3 (Occupational Wages): Let wageij(t) denote the average earnings in
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occupation i at age a of group j. Its value satisfies

Wageij(t) =


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in which γ = Γ(1− 1
θ(1−η)

)

From this proposition, we can see that since

exp(1 + pτjj)T (2)

κjj
< 1

and
exp(1 + τjj)T (1)

κjj
> 1

the people who inherit their parents’ job would have a wage premium when they are "young",

but negative premium when their true ability is revealed, which fits our stylized facts in

Section 2.

Based on the above proposition, we can get the following relationship:

exp(τjj) =
(Tjj
Tkj

)− 1
θ
(Wageij

Wagekj

)1−η( pjj
pkg

) 1
θ (1.15)

or

ln(Wagejj)− ln(Wagej,6=j) =
1

1− η

[
τjj +

1

θ
(Tjj − T̄j,6=j)−

1

θ
(pjj − p̄j,6=j)

]
This equation reveals the problem of OLS regression, in the sense that, it cannot give a

consistent estimation, because of the potential unbalanced distribution of innate ability T ,

and the consistent estimation of the wage difference in the equilibrium is τ
1−η , i.e. the true

wage premium adjusted by the return to investment in human capital η. If we average over

all the occupation, we can see that

ln(Wageinherit)− ln(Wagenot) = τ +
η

1− η
τ +

1

1− η

[1

θ
(T inherit − T not)−

1

θ
(pinherit − p̄not)

]
The mean has two effects on the average wage. First, τ has a direct effect on the average

wage, where the elasticity of the average wage to τ equals one. This effect is given by the

first term in the equation for the children who inherit their parents’ job. The mean of τ

also has an indirect effect on the average wage by changing the return to investment in
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human capital. The magnitude of this effect depends on η, and is captured by the third

term in the equation. The mechanism is that people stay in the same occupation with their

parents, which at the same time means that they choose a similar education level with their

parents, which may not be the optimal without this labor market friction. In other words,

the intergenerational educational correlation that we observe in the data is partially the

result of the credit constraint and partially the result of the occupational choices.

Proposition 1.5.4 (Inequalities): In the "Young" period, the variance of wage for any

occupation i from occupation j satisfies

var(wage)ij ∝
(exp(1 + τjj)T (1)

κjj

)2

> 1

This proposition suggests that group of those who stay in the same occupations have higher

income variance or in other words income risk compared to the counterparts, which fits our

prediction in Section 2.3.

Proposition 1.5.5 (Total Labor Productivity): In general equilibrium, the total labor pro-

ductivity is negative associated with the social network benefit τ , since the larger the benefit,

the larger the misallocation of talent in the economy.

Our cross-nation empirical result in Section 2.1 suggests that the larger the intergenerational

occupational inheritance rate, the lower the per capita GDP level. Though those countries

are not exactly the same in technology level, but it still sheds some lights in the relationship

of total labor productivity and intergenerational occupational correlation.

1.6 Identification

1.6.1 Intuition of Identification Strategy

This identification strategy aims at disentangling the relationship between the intergener-

ational correlation of innate abilities and that of occupational choices. In this paper, the

main explanatory variable is the dummy variable 1(OC = OP ), which measures how the chil-

dren’s occupational choice correlated with their parents’, hence the major concern is that

this variable is decided by the unobserved innate ability of children which is also correlated

with their parents, in which case, the parameter we estimates purely comes from the innate
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ability advantage of those people.

My identification comes from the recent Technology Revolution beginning from the late

1980s to the beginning of 20th century. If we assume that individuals’ innate abilities can

be described as a multidimensional continuously distributed variable, as depicted in Figure

13. And the occupations follow a categorical variable which can be seen as a partition in the

continuously distributed innate ability space, or in other words, individuals’ occupational

choices follow an assignment rules from the innate ability space to the discrete occupations.

The cutoffs of this assignment rules, as illustrated in Figure 13, are determined by market

factors like wage schedule and technology. If there is a significant change in market factors

leading to a significant change in the assignment rules, for example the Technological Rev-

olution, we will have extra variation to disentangle the co-movement of innate abilities and

occupational choices between the two generations.

1.6.2 Regression Discontinuity Design

This section presents the regression discontinuity design following the discussion in Hahn,

Todd and van der Klaauw (2001). In this paper, with parents’ in the same occupations are

the "treatment" and those children with 1(OC = OP ) = 1 are the "treated".

Following the notation of the potential outcome approach to causal inference, let (Y 1, Y 0)

be the two potential outcomes one would experience by choosing the same occupation and

not, respectively. In the context of this paper, Y1 and Y0 represent the labor market outcome

corresponding to the children staying in the same occupation and not, respectively. The

causal effect of intergenerational occupational inheritance on labor outcome is then defined

as the defference between these outcomes, τ = Y1 − Y0, which is not observable. Accord-

ingly, though not observable, τ represents the change in labor outcome corresponding to a

difference in the occupational choice, which is our quantity of interest.

Let 1(OC = OP ) be the binary variable denoting the intergenerational occupational inher-

itance status, with 1(OC = OP ) = 1 for the treated and 1(OC = OP ) = 0 otherwise. A

discontinuity design arises when 1(OC = OP ) depends on an observable variable S and there

exists a known point in the support of S where the probability of being treated changes

discontinuously. Formally, if s̄ is the discontinuity point, then a regression discontinuity is
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defined if

Pr{1(OC = OP ) = 1|s̄+} 6= Pr{1(OC = OP ) = 1|s̄−} (1.16)

Here and in the following s̄+ and s̄− refer to those individuals marginally above and below

s̄, respectively.
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Figure 1.13: Illustration of innate ability distribution and occupation partition

P (α) P (r)

Cognitive Skill Strength

P

r̂ANEWrA
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Cognitive Skill
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Notes: In this illustrative example, we assume there are two abilities, cognitive skills (α) and strength (r). The figure on the left hand depicts the continuous

distribution of the two abilities, with the joint p.d.f. on the z-axis. the color shows the density of combinations of those two abilities. The figure on the right hand

depicts the partition on the α - r surface, and αA and rA represent the cutoffs among the four different occupations. In the extreme case that children’s abilities

and their parents’ abilities are the same, then 1(OC = OP ) = 1 for the whole population. Assume that because of the technology changes, the new cutoffs move

to α̂A
NEW and r̂ANEW , then if for the extreme case, children can still end up in the same job even their parents’ jobs are different.



In the context of the paper, the expression in Eq.(16) implies that the probability of staying

in the same occupation varies discontinuously with an observable variable S. To fix ideas,

the assignment variable S is the innate ability. First let’s consider the extreme case in which

the innate ability of parents and children are exactly the same, then the old cutoffs (αA and

rA in Figure 13) are the s̄, and the children around these cutoffs would choose Job 1, i.e.,

the dummy variable 1(OC = OP ) = 1 for s̄− and 1(OC = OP ) = 0 for s̄+, constructing a

sharp RD design.

For the real case, if children’s innate ability is positive correlated with parents, as assumed

in the literature, children’s occupational choices neatly fits a fuzzy design conditional on SP .

To be specific, the assignment rule is no longer a deterministic one as in sharp RD design. As

a result of the eligibility rule and of self-selection, the probability of being treated for those

scoring a value of S above the threshold s̄ is zero by definition. The probability of staying in

the same occupations for those scoring below s̄ is smaller than one because children’s innate

ability is not the exact as their parents. This implies that the probability of 1(OC = OP )

is discontinuous at the threshold for eligibility and the size of the discontinuity is less than

one38.

In the rest of this section, I will first show in Section 5.3 that the recent Technological

Revolution indeed significantly change the skill composition of occupations in large scale.

Then in Section 5.4 I describe how I obtain the measurement of parents’ occupational specific

skills and cutoffs. In Section 5.5, I consider the measurement error and gives the assumption

needed for identification.

1.6.3 The technological Revolution

The major instrument variables in this paper build up on the idea that the rapid technology

changes starting in the 1980s, including but not limited to the personal computer (PC),

related technologies, and biology etc., reshape the ability requirements in occupations and

redefine the industrial structures in U.S.

Following Card and DiNardo’s seminal work in 2001 about skill-biased technical change, I

38In the whole analysis, I use "below" and "above" with the assumption that the new cutoff point is above
the old ones as illustrated in Figure 13. The opposite should apply if the cutoff decreases.
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depict the time series of computer usage at work and number of Internet Host in Appendix

E.6 as a measure which is not meant to accurately measure the technology change, but only

as an index of the major changes, which reshapes the labor market.

As stated in Section 1, I use the DOT and O*NET to measure the multidimensional skills

from 1970 to 2010. 39 Figure 14 depicts smoothed changes in the percentile ranking of

the detailed skill measures for all occupations between 1980 and 2000, and 1990 to 2010

separately.40 The 1980s and 1990s witness the spread of Internet, PCs and 2000s more on

automation. And in both comparison, we see that the physical demands of some used-to-be

high occupations, like visual, auditory, strength are significantly decreased due to the sub-

stitution effects of electric devices, and the ability and skills required for routine cognitive

tasks also see very big change in distributions.

Among the 321 occupations that are available through the whole time span from 1980 to

2010, only 13 of them only have less 10% changes in all dimension. 41.

To sum up, what we observe in the data is that there indeed exists significant changes

in occupational specific skills and the direction of the changes is that the physical, man-

ual and routine skills are largely substituted by machines/technology while relatively little

changes happen in the non-routine cognitive skills. Hence we can describe the skill changes

in each specific occupation by using the relative changes of physical, manual and routine

skills in terms of non-routine cognitive skills. To be specific, I construct the relative changes

of non-routine cognitive skills versus other skills for each occupation: ∆Cog_Physical,

∆Cog_routinecog, ∆Cog_routineman and ∆Cog_manual as:

∆Cog_Physical = Non-routine Cognitive Skill - Physical Skill (1.17)

∆Cog_routinecog = Non-routine Cognitive Skill - Routine cognitive Skill (1.18)

∆Cog_routineman = Non-routine Cognitive Skill - Routine manual Skill (1.19)

∆Cog_manual = Non-routine Cognitive Skill - Manual Skill (1.20)

39To be specific, I use DOT 1977 for 1970s - 1980s, and DOT 1991 for 1990s. I use O*NET version 3.1
for 2000s and 15.1 for 2010s, which are the most up-to-date version of O*NET for the corresponding census
year.

40Appendix Figure E.7, I also show the real changes vs. the smoothed changes for the four major skill
groups to show that the smoothed changes accurately pick up the trend instead of showing some extreme
values.

41We can also aggregate those multidimensional changes into one dimension, and I show the density of the
aggregate changes from 1980 to 2000 and 1990 to 2010 in Appendix Figure E.8.
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And the measurement of each skill can be the absolute measure (from scale 1-7) or the

percentile ranking of those skills (from scale 0-1). The distribution of these relative changes

in absolute values are depicted in Figure 16. 42. We can see this measurement conveys the

same message that the other skills change significant relative to the non-routine cognitive

skills. And among these skills, the relative changes of non-routine manual skills are the

smallest, the maximum of which is slightly larger than 1 (in scale of 7), while others are

around 3 (in scale of 7).

1.6.4 Constructing Individual Level Skill Measurements

The skill measurements we have now are for occupation level (means, std.dev, min, max

available), but what we need in the regression discontinuity design is a continuous variable

in individual level.

The Committee on Occupational Classification and Analysis of the National Academy of

Sciences conducted the surveys of DOT. The Committee also acquired a selection of variables

from the April 1971 Current Population Survey (CPS) that were gathered from a sample

of households which yielded 60,441 workers in the experienced civilian labor force. The

CPS survey provided detailed information about the workers and their family backgrounds,

education, and employment, with Dictionary of Occupational Titles (DOT) characteristics,

e.g., job classification and description, for each worker in the survey. In other words, we get

a data sets with demographic information, working information and job descriptions (CPS)

and our constructed new data extract with only the the demographic information and the

working information.

42The distribution of these relative changes in percentile rankings are depicted in Appendix Figure E.10
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Figure 1.14: Smoothed changes of percentile ranks for all detailed skill

groups between 1980 and 2000

Figure 1.15: Smoothed changes of percentile ranks for all detailed skill

groups between 1990 and 2010

Notes: Some of the extremely changes occupations include "Payroll and Timekeeping Clerks", "Billing and Posting Clerks", "Bank Tellers", "Cashiers", "Sec-

retaries and Administrative Assistants", "Agricultural Inspectors", "Bus and Ambulance Drivers and Attendants", "Police Officers and Detectives", "Physician

Assistants", "Securities, Commodities, and Financial Services Sales Agents".
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Figure 1.16: Relative Changes of Abilities Scores



For this several data sets problem, I use the nearest neighbor matching method based on

within-occupation-age income ranking, gender, region, marital status and education level.

For the sample selection, I limit the sample to children who take their first jobs after 1997,

(which is earliest year of which O*NET 3.0 builds on), given the age differences between

parents and children are normally 20-30 years, hence it’s safe to say that when their parents

chose their jobs in their 30s, the U.S. occupations were still described by the skills distri-

bution before the revolution. The basic assumption based on the matching is that people’s

relative income is decided by his/her occupational specific skills, along with other demo-

graphic variables, which is plausible especially for the later part of their working life. But

this method will introduce measurement errors into our assignment variables, which I will

discuss in the next part.

I then use the µability + / − 1.96σability of each occupation as the cutoffs of the ability for

each occupation. The reason that I don’t use the maximum and minimum is that I want to

exclude those outliers. The choice of the cutoffs introduces another measurement errors of

the discontinuity point (s̄), which I will discuss as well in the next part.

1.6.5 Measurement Errors and Estimation Methods

The above illustrative example is just a simplification of our problem, in which I assume

there is only a few occupations and two skills. In real life, there are over 60 of occupations

with more than two dimensions of skills. For skills that partition those distribution spaces

into occupations, we have four categories, including non-routine cognitive skills, routine,

manual and physical abilities.

If we assume that individuals’ occupational choices are based on all the categories, it would

be a MRD problem with Multiple assignment variables (or one assignment variable depends

on our choice of skill category)/dichotomous treatment. But as I describe in last part, the

trend of this technology is basically substitution of human being’s some physical and man-

ual abilities, for example strength, visual and auditory abilities, and the routine cognitive

abilities while the non-routine cognitive stay relatively stable or higher requirement for some

jobs. In other words, if we want to describe this technological revolution, the main charac-
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teristics is the relative importance of non-routine cognitive skills versus others, which would

theoretically give us the biggest change on the occupational choice cutoffs.

For the unidimensional composite distance measurement scenario, the RD problem in our

case is the conventional RD with one assignment variable/dichotomous treatment, with var-

ious cutoffs for each occupation in the sample instead of being equal for all units. In this

part, I’ll follow the commonly method, which normalizes the score variable and use the zero

cutoff on the normalized score for all observations to estimate a pooled RD treatment effect.

1.6.6 cutoffs of abilities

Based on this histograms of relative changes of occupations skill composition we discussed in

last part, I choose three indexes for the continuous assignment variables ∆Cog_Physical,

∆Cog_routinecog, ∆Cog_routineman, since the change in ∆Cog_manual is relatively

small.

Figure 17 depicts the inheritance rate of each occupation around the original cutoff points.

We can see from Figure 17 that there is a discontinuity around our pooled cutoff points. Since

most of the occupations have limited number of individuals to calculate the inheritance rate

around the cutoffs, hence I choose the one specific occupation with enough observations in

the data set (2881 observations) and shows for one occupation, there is also a significant

change in the relative non-routine cognitive and physical abilities. We can see that this

occupation change from physical ability as advantage to non-routine cognitive abilities as

advantage, and there is a clear discontinuity in inheritance rate around the old cutoff point.

As we discussed before, there are measurement errors of the assignment variables and the

cutoff points. In the Appendix F.1, I derive the conditions on the measurement error that

allow to retrieve the causal parameter E[τ |1(OC = OP ) = 1, s̄−] from raw data. The main

results can be summarized as follows. First, I show that mathematically, the measurement

error on the cutoff is the same with the measurement error on the assignment variable. And

second, I show that the evidence provided in this part is not consistent with the hypothesis

of having classical measurement error in S. A more general model for measurement error is

therefore needed. I do that by following Horowitz and Manski (1995) and Battistin et al.
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Figure 1.17: Discontinuity on the old cutoffs

(2009) and assuming that individuals whose observed value of the assignment variable is a

mixture of the true value S∗ and reported value S which is affected by measurement error.

Formmaly, the observed value Sobs is

Sobs = S∗Z + S(1− Z) (1.21)

where Z is a binary variable equal to one for the exact reporters and equal to zero otherwise

and S is the value contaminated by a measurement error. This is known as the contaminated

sampling model discussed, amongst others, by Horowitz and Manski (1995).

Finally, I show that even if in the presence of the measurement error the sample analogue

of (21) is inconsistent for the parameter of interest, the latter is nonetheless identifiable

provided that conditional on S∗ the process generating measurement errors is orthogonal to

the process of interest. In particular, if the latter condition is satisfied (see the Appendix

F.1 for further details) it is immediate to see that the following ratio

τ =
E
(
Y |Sobs = s̄−

)
− E

(
Y |Sobs = s̄+

)
E
(
1(OC = OP )|Sobs = s̄−

)
− E

(
1(OC = OP )|Sobs = s̄+

) (1.22)

identifies the causal effect of 1(OC = OP ) on children’s labor outcome at the cutoffs.
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1.7 Empirical Results

1.7.1 Conventional RD with multiple cutoffs

First, we take the manipulations tests and the Table 8 reports the manipulations tests results

for these three indexes. The key idea behind manipulation testing in this context is that,

in the absence of systematic manipulation of the unit’s index around the cutoff, the density

of units should be continuous near this cutoff value. Thus, a manipulation test seeks to

formally determine whether there is evidence of a discontinuity in the density of units at

the known cutoff. Presence of such evidence is usually interpreted as empirical evidence

of self-selection or non-random sorting of units into control and treatment status. All p-

values are in parentheses, the effective number of observations are different because of the

bandwidth choice, which is data-driven according to Cattaneo and Escanciano (2017), also

because I drop all the occupation with percentile changing within 20% or the absolute ability

score changing are the lowest 10% to exclude those occupations that don’t have large ability

composition changes. From the tests, we can see that all of them cannot reject the non

hypothesis, suggesting there is no manipulation around the cutoff points.

Table 1.8: Manipulation Tests

Index Test Result Sample size bandwidth

∆Cog_Physical 1.244

(0.213)

Left: N = 9,133

Right: N = 7,100

h = 0.455

h = 0.536

∆Cog_routinecog 0.985

(0.324)

Left: N = 2,194

Right: N = 2,774

h = 0.397

h = 0.521

∆Cog_routineman -1.296

(0.195)

Left: N = 1,072

Right: N = 1,677

h = 0.260

h = 0.510

Second, Table 9 reports the probit regression results for the three indexes. From the results,

we can see that all these three coefficients affect the inheritance rates around the cutoffs and

the ∆Cog_Physical affects the inheritance rate the most.
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Table 1.9: Probit Model Results

Coef. ∆Cog_Physical ∆Cog_routinecog ∆Cog_routineman

β −0.404∗∗∗ −.347∗∗∗ −.124∗∗∗

(-9.470) (-8.045) (-6.533)

t statistics is reported in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.10: ∆Cog_Routineman

All, p(1) All, p(2) ∆PR > .2,p(1) ∆PR > .2,p(2) High Income Jobs High Edu. Jobs

Conventional RD 4.974∗∗ 5.425∗∗∗ 3.369∗∗ 4.732∗∗∗ 6.99∗∗ 6.006∗∗∗

(2.027) (5.263) (2.457) (5.263) (2.678) (2.345)

Bias-corrected 5.527∗∗ 7.029∗∗∗ 4.371∗∗ 6.254∗∗∗ 7.48∗∗∗ 6.357∗∗∗

(2.310) (5.403) (2.310) (5.403) (2.981) (2.435)

Robust 5.527∗∗ 7.029∗∗∗ 4.371∗∗ 6.254∗∗∗ 7.48∗∗∗ 6.357∗∗

(2.161) (5.266) (2.161) (5.266) (2.630) (2.279)

UniqueInd. 9,122 9,122 9,122 9,122 2,294 3,500

Bandwidth 0.439 0.381 0.439 0.381 0.667 0.566

z statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.11: ∆Cog_Routinecog

All, p(2) All, p(1) ∆PR > .2,p(1) ∆PR > .2,p(2) High Income Jobs High Edu. Jobs

Conventional RD 3.671∗∗∗ 4.922∗∗ 5.721∗∗∗ 3.351∗∗ 6.624∗∗ 6.478∗∗∗

(2.931) (2.224) (2.931) (2.224) (2.038) (3.466)

Bias-corrected 4.685∗∗ 5.694∗∗ 6.683∗∗ 3.955∗∗ 7.902∗ 7.433∗∗∗

(2.000) (2.077) (2.000) (2.077) (1.680) (2.748)

Robust 4.685∗ 5.694∗ 6.683∗ 3.955∗ 7.902∗ 7.433∗∗

(1.747) (1.893) (1.747) (1.893) (1.5408) (2.401)

UniqueInd. 9,122 9,122 9,122 9,122 2,294 3,500

Bandwidth 0.469 0.589 0.469 0.589 0.885 0.595

z statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.12: ∆Cog_Physical

All, p(1) All, p(2) ∆PR > .2,p(1) ∆PR > .2,p(2) High Income Jobs High Edu. Jobs

Conventional RD 3.319∗∗ 4.519∗∗∗ 4.624∗∗∗ 4.967∗ 5.862∗∗ 5.693∗∗∗

(2.331) (2.624) (2.457) (1.836) (2.068) (3.162)

Bias-corrected 3.699∗∗∗ 4.776∗∗∗ 4.690∗∗∗ 4.068∗∗ 5.994∗∗ 5.764∗∗∗

(3.002) (3.069) (2.718) (2.028) (2.386) (3.295)

Robust 3.699∗∗∗ 4.776∗∗∗ 4.690∗∗ 4.068∗∗ 5.994∗∗ 5.764∗∗∗

(2.697) (3.069) (2.466) (1.934) (2.170) (3.034)

UniqueInd. 9,122 9,122 5,864 5,864 2,294 3,500

Bandwidth 0.566 0.589 0.612 0.778 1.014 0.828

z statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 10-12 report the results for the three indexes correspondingly. The optimal bandwidths

are chosen and used according to Calonico, Cattaneo, and Titiunik (2014). I use the total

sample, and the sample with at least 20% percentile changes, occupation income standing

larger than 50%,.e. high income jobs, and the occupation education standing larger than

50%, i.e. jobs required high level of education. And for the full sample and large change

sample, I report the results with order 1 and 2 for the local polynomial which is used to

construct the point estimator. Conventional RD estimator, bias-corrected estimator are

reported with also the robust confidence interval.

As we discussed before, this regression discontinuity design is only valid when there exist

significantly large economic condition changes which ended up with large changes in terms

of the ability compositions of occupations, in other words, the validity is questionable for

those with little changes. So, the results from large relative changes samples would be the

preferred results.

From these results, we can have two conclusions:

(1) On average, the marginal changes on parents’ ability profile would increase their children’s

entry level rank(wage) on average 4.5%.

(2) For the high income occupations and high educational requirement occupations, the

increase would be even larger, up to 7.24%.

As the same with all the regression discontinuity design, this estimation results are only

for people with parents whose ability profiles were on the boundary of the old cutoffs. For

people far away from the boundary, the effects should be smaller.

1.7.2 Frontier RD

The above summary just take the average over the three indexes we constructed, with the

assumption that each of them affects the assignment independently by oneself. There is

another potential possibility which is that we take into consideration the interactions effects.

In other words, we take the subsample of parents who were just lower than the old cutoffs of

one index, for example ∆Cov_physical, and compare purely the effect of ∆Cov_routinecog

being just lower than its cutoff.

We need to check the joint distribution of those three indexes, found out whether are moving
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in the same direction. As it turns out, for ∆Cov_routinecog < 0, 93.75% of individuals

would have also ∆Cov_physical < 0 as well, which suggests the comovement of the relative

changes between non-routine cognitive abilities and routine cognitive abilities and physical

abilities. Hence, we end up with ∆Cov_routinecog and ∆Cov_routineman. The Frontier

RD can be illustrated as in Figure 13. Before we calculated the average effects around the

old cutoffs αAs and rAs , separately. And for Frontier RD, we will calculate the the effect of

merely lower than αAs within the range of r < rAs and the effect of merely lower than rAs

within the range of α < αAs , in other words, we are calculating now if theses two index work

together on the occupation distribution, the effect of inheritance for occupation A compared

with parents from occupation B, the α advantaged occupation, and C the r advantaged

occupation.
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Table 1.13: Frontier RD results

Conventional Bias-corrected bandwidth N

Average effect of merely lower than

∆Cov_routinecog, for people with parents’

∆Cov_routineman within the old range

6.311∗∗∗ 7.231∗∗∗ 0.188 1,821

(3.906) (3.933)

(robust) (3.510)

Average effect of merely lower than

∆Cov_routineman, for people with parents’

∆Cov_routinecog within the old range

6.058∗∗ 6.997∗∗∗ 0.635 1,800

(2.367) (2.578)

(robust) (2.195)



In Table 14, I report this frontier RD results for these two groups. As expected, the first-

stage probit model gets more explanatory power to around −.509 and −.512 now, and the

results are comparable than the original results.

1.7.3 Discussions

In this part, I use the RD design to estimate the causal relationship of the endogenous

occupational choice 1(OC = OP ) on the labor outcomes, and obtain the results that the

staying in the same occupation will increase children’s income ranking around 5%. The

technological revolution we exploit here not only gives extra variation of the innate ability

but also the occupational related experience and within family training etc. since the change

of the skill composition of occupations will at the same time invalidate the occupational

related experience.

1.8 Conclusions

The intergenerational mobility of income has always be an active research area, though the

channels behind this phenomenon is still open to discussion. Most research emphasize the

genetic difference or/and other hereditary endowment difference or the education investment

induced by the income difference. All those factors contribute to the increase of children’s

human capital.

My paper contributes to answering the question, and exploring the channel which doesn’t

increase children’s human capital but through parents’ accumulated social capital in their

professional life. Instead of focusing on specific occupations without taking the occupational

choice into consideration, I construct a new national representative data extract with the aim

to fixing the selection bias in the commonly used survey data caused by children’s endogenous

moving behaviors after graduation. And I utilize the variation of occupational specific skills

induced by the Technological Revolution. This variation is crucial to my study because it

helps to disentangle the relationship of the intergenerational correlation in innate abilities

and that in occupational choice. At the same time, the significant technological changes we

observe in the data set remodeled the working content and activities of occupations, hence
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the potential explanation that children get benefit from their parents’ occupational related

experiences can also be excluded through this variation.

Three key findings emerge from my analysis. First, with the new data extract, I find that from

1986 to nowadays, around 30% of individuals would choose their parents’ main occupations

as their first jobs, and this ratio peaks at the recession. The children of parents with better-

off occupations are more likely to stay in the same occupations while the children of poor

families also have a high chance of taking the same occupations with their parents. Second,

by the regression discontinuity which is induced by the technological revolution, I find that at

the entry-level jobs, the individuals who stay in the same occupations with their parents rely

significantly more on the strong social connections to find their first jobs, and at the same

time, the rank of their annual income is around 5% higher than the counterparts. Third, I

find that this wage premium at the entry level jobs fade away slowing along with time, and

those people in the long run have higher income risk and instability.

1.9 Appendix

1.9.1 Acronyms List

In this part, I list all the acronyms I use in this paper, in the order of appearance in the

paper.

• PSID – Panel Study of Income Dynamics

• SIPP – Survey of and Survey of Income and Program Participation

• COC – 1990 Census Occupational Classification System

• SOC – 1980 Standard Occupational Classification

• DOT – Dictionary of Occupations

• O*NET – Occupational Information Network

• ISSP – International Social Survey Programme

• CPS – Current Population Survey
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1.9.2 Data Appendix

Table 1.14: Accuracy Rate of Retrospective Data of Parents’ Occupations

Individuals Jobs

Number of Matched 1,215 1,517

Number of Total 3,218 6,353

Match Rate 37.76% 23.87%

Notes: I constrain the sample to people whose parents’ working information is available since no later than

their 40s and before retirement. And the occupational category is COC broad category.

Table 1.15: Age Profile of Moving Out Schedule

Age of Graduation Move out within 1 year Move out after 2 years Move out after 4 years

15 10.62% 79.53% 52.02%

16 11.66% 75.16% 51.36%

17 16.56% 68.35% 45.40%

18 19.79% 66.75% 44.94%

19 26.16% 58.41% 34.95%

20 40.59% 43.04% 22.59%

21 50.90% 33.09% 14.88%

22 48.29% 32.52% 13.87%

23 54.59% 27.81% 13.80%

24 59.92% 20.94% 7.18%

25 87.33% 0.00% 0.00%

26 100.00% 0.00% 0.00%

Notes: this table is based on author’s calculation using PSID Individual and PSID Family Data Index from

1986 to 2013 rounds.
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Table 1.16: Occupation Categories (COC)

1. Executives, Administrative, & Managerial (1) 34. Police (12)

2. Management Related (2) 35. Guards (12)

3. Architects (3) 36. Food Preparation and Service

(13)

4. Engineers (3) 37. Health Service (6)

5. Math and Computer Science (3) 38. Cleaning and Building Service

(13)

6. Natural Science (4) 39. Personal Service (13)

7. Health Diagnosing (5) 40. Farm Managers (14)

8. Health Assessment (6) 41. Farm Non-Managers (14)

9. Therapists (6) 42. Related Agriculture (14)

10. Teachers, Postsecondary (7) 43. Forest, Logging, Fishers, and

Hunters (14)

11. Teachers, Non-Postsecondary (8) 44. Vehicle Mechanic (15)

12. Librarians and Curators (8) 45. Electronic Repairer (15)

13. Social Scientists and Urban Planners (4) 46. Misc. Repairer (15)

14. Social, Recreation, Religious Workers (4) 47. Construction Trade (15)

15. Lawyers and Judges (5) 48. Extractive Operation (14)

16. Arts and Athletes (4) 49. Precision Production, Supervi-

sor (16)

17. Health Technicians (9) 50. Precision Metal (16)

18. Engineering Technicians (9) 51. Precision Wood (16)

19. Science Technicians (9) 52. Precision Textile (16)

20. Technicians, Other (9) 53. Precision Other (16)

21. Sales, All (10) 54. Precision Food (16)

22. Secretaries (11) 55. Plant and System Operator (17)

23. Information Clerks (11) 56. Metal and Plastic Machine Op-

erator (17)

24. Records Processing, Non-Financial (11) 57. Metal & Plastic Processing Op-

erator (17)
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25. Records Processing, Financial (11) 58. Woodworking Machine Opera-

tor (17)

26. Office Machine Operator (11) 59. Textile Machine Operator (17)

27. Computer & Communication Equip. Operator

(11)

60. Printing Machine Operator (17)

28. Mail Distribution (11) 61. Machine Operator, Other (19)

29. Scheduling and Distributing Clerks (11) 62. Fabricators (18)

30. Adjusters and Investigators (11) 63. Production Inspectors (18)

31. Misc. Administrative Support (11) 64. Motor Vehicle Operator (19)

32. Private Household Occupations (13) 65. Non Motor Vehicle Operator

(19)

33. Firefighting (12) 66. Freight, Stock, and Material

Handlers (18)

67. Military (20)

Notes: Our 66 market occupations (except military occupations) are based on the 1990 Census

Occupational Classification System. We use the 66 sub-headings (shown in the table) to form our

occupational classification. Seehttp://www.bls.gov/nls/quex/r1/y97r1cbka1.pdf for the sub-

heading as well as detailed occupations that correspond to each sub-heading. The more broader

category including only twenty occupations are also provided for robust check. The number in

parentheses) refers to how we group these 67 occupations into the twenty broader occupations. For

example, all occupations with a 11 in parentheses refers to the fact that these occupations were

combined to make the 11th occupation in our broader occupation classification.
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Table 1.17: Definition of skill type in DOT and O*NET

Skill Type Survey Category Skill Description

Communication

Interactive 43

O*NET Abilities A.1.a Verbal Abilities

Activities A.4 Interacting with others

DOT Aptitude V Ability to understand and use words effec-

tively

Temperaments I Influencing people in their opinions, atti-

tudes and judgments

Temperaments P Dealing with people

Analytical O*NET Abilities A.1.b Idea Generation & Reasoning Abilities

Activities A.2.b Reasoning and decision making

DOT Aptitude G General ability to learn, reason, make

judgments

Temperaments D directing, controlling or planning activities

of others

Temperaments J Making judgment and decisions

Quantitative O*NET Abilities A.1.c Quantitative abilities

Activities A.2.a Information/Data Processing

DOT Aptitude N Ability to understand and perform math-

ematical functions

Routine Cog-

nitive

O*NET Abilities A.2.d Memorization

A.2.e Perceptual Abilities

Contents C.3.b.7Importance of repeating the same tasks

C.3.b.9Structured v. Unstructured work (reverse)

DOT Aptitude Q Clerical Perception

Continued on next page

43Notes: Interactive skills include the ability to comprehend and express both oral and written material.
They also include the importance of communicating with coworkers and people outside a person’s workplace.
Strictly speaking, quantitative and analytical skills are not synonymous. Lawyers, for example, require
very little mathematical acumen but a high degree of inductive reasoning ability. Nonetheless, we treat
quantitative and analytical skills as synonyms so that the terms represent the importance of performing
mathematical functions, analysis of data and information, and deductive and inductive reasoning tasks.
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Table 1.17 – Continued from previous page

Skill Type Survey Category Skill Description

Temperaments T Adaptability to situations requiring the

precise attainment of set limits, tolerances,

or standards

U Working under specific instructions

Routine Man-

ual

O*NET Abilities A.2.a Fine manipulative abilities

Activities A.3.a Performing physical & manual work activ.

DOT Aptitude F Finger dexterity, ability to finger and ma-

nipulate small objects

M Ability to handle placing and turning mo-

tions

Temperaments R Performing repetitively or short cycle work

Non-routine

Manual

O*NET Abilities A.2.b Control movement abilities and reaction

time

I.A.1.f Spatial Abilities

Activities A.3.b Performing complex/technical activities

DOT Aptitude E eye/hand/foot coordination, motor re-

sponsiveness to visual stimuli

K Motor coordination, ability to coordinate

eyes, hands, fingers

S Ability to visualize three dimensional ob-

jects from two

Strength O*NET Abilities A.3.a Physical Strength Abilities

DOT Physical

Demands

1 Strength

Body

Flexibility

O*NET Abilities A.3.c Flexibility, Balance and Coordination

DOT Physical

Demands

2-10 Flexibility, Balance and Coordination

Visual O*NET Abilities A.4.a Visual Abilities

Continued on next page
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Table 1.17 – Continued from previous page

Skill Type Survey Category Skill Description

DOT Physical

Demands

15-

20

Visual Abilities

Aptitude C Color Discrimination

Aptitude P Form Perception

Auditory O*NET Abilities A.4.b Auditory and Speech Abilities

DOT Physical

Demands

13 Hearing

Figure 1.18: The Sample Size of PSID
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Figure 1.19: Occupational change rate

This figure depicts the annual average quarterly occupational change rate (3-digit) from 1984 to 2012. We

can see that the occupational change follows almost the same trend with job transition, and around 70%

of people who change their jobs would change their occupations at the same time. As to the time trend,

the occupational change rate increases higher than the job change rate and reached the peak around 88% in

2004. But after the 2008 Great Recession,the occupational change rate drops to the 1980s level. The above

pattern applies to the voluntary job changers as well.

1.9.3 Regression Appendix

1.9.3.1 Intergenerational Occupational Inheritance

1.9.3.2 Robustness check for Entry-level Regression
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Figure 1.20: The duration of occupations

Notes: This figure depicts the average length of time in the same line of work for different age groups and

different cohorts and shows that this occupation changing behaviors are consistent over different cohorts.

1.9.4 The effect of staying in the same industry

In the main body of the paper, I only consider the occupational choice, but a job consists both the

occupational choice and the industrial choice.

I observed in the data set that during the period 1986 to 2013, for people with full experience, for

those who choose their parents’ occupation as the first occupation, about half of them (13.93% in

the total sample) would at the same time choose a different industry, while the other half(11.76%

in the total sample) would stay in the same industry cluster. And 13.69% of the total population

would choose stay in the same industry cluster but choose a different line of work. Hence, we can
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Table 1.18: Children’s occupational choices (Probit Mode)

Occ. Only Occ. and Ind.

Income standing -4.004∗∗∗ -6.388∗∗∗

(-19.74) (-15.82)

Income standing2 3.678∗∗∗ 5.086∗∗∗

(15.55) (12.11)

change of income standing 2.774∗∗∗ 2.339∗∗∗

(10.02) (6.20)

Parents’ performance within occupation -0.0170 -0.223∗

(-0.25) (-2.06)

Control Yes Yes

Unique Ind. 30,381 30,381

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This is the regression results corresponding to the Figure 5 in Section 2 which depicts the relationship

of occupational inheritance with respect to the income standing. In the first regression, I consider only the

occupational choice, and in the second equation, the dependent variable equals to 1 if children choose the

same occupation or industry, and the income standing is the average of occupational income standing and

industry income standing.

categorize all people’s behavior using the following category variable:

Cjob =



1 if 1{OC == OP } = 1&1{IC == IP } = 1 : both same

2 if 1{OC == OP } = 1&1{IC == IP } = 0 : same occupation only

3 if 1{OC == OP } = 0&1{IC == IP } = 1 : same industry only

4 if 1{OC == OP } = 0&1{IC == IP } = 0 : totally different job

(1.23)

In this part, I’ll document the stylized facts for those people with the same industry.

I run the Eq.(3) within the sample that Cjob = 2 or Cjob = 4, in other words, I compare the people

with only the same industry and different occupation with the people with completely different
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Figure 1.21: Unconditional and conditional difference between the two groups

occupation and industry.

The regression results are listed in Appendix Table C.7, with the same control variables in the main

body of the paper. We can see that, these results are similar in magnitude with the occupational

inheritors.

And I then test the difference of log(wage) and rank(wage) between the group Cjob == 1 and

Cjob == 3, i.e., I compare the people who choose the same industry and same occupation with

people who choose the same industry but different occupation. Theoretically, if the genetic advance

in occupational choice is the main drive of the entry-level premium, then this premium would not

exist for people who choose a different occupation but just stays in the same industry. Appendix

Table C.8 reports the F test, From which we can see that, the two groups are comparable at least

for the entry-level jobs.
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Table 1.19: Regression results for the entry-level jobs (SOC 3-digit)

log(wage), full log(wage), HS log(wage), College Rank(wage),full

1{OC
first == OP

major} 0.321∗∗∗ 3.551∗∗∗ 2.472∗∗ 4.061∗∗∗

(0.0382) (0.580) (0.838) (0.826)

experience 0.0859∗∗∗ 1.009∗∗∗ 1.136∗∗∗ 1.038∗∗∗

(0.00197) (0.0384) (0.0572) (0.0513)

I ∗ experience -0.0165∗∗ -0.158∗ -0.184 -0.0631

(0.00566) (0.0778) (0.117) (0.108)

Control Yes Yes Yes Yes

UniqueInd. 30,381 30,381 14,564 15,168

adj. R2 0.361 0.138 0.081 0.082

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This is the regression results for Eq. (3), also a robustness check for Table 4, with the detailed SOC

categories to define the dummy variable 1{OC
first == OP

major}.

1.9.5 Model Specification for estimating income risks

Assume the real (log) income logY can be decomposed into a permanent component P and a

mean-reverting transitory component v. The income process for each household i is

logYi,t = Z′i,tϕt + Pi,t + vi,t

where t indexes time and Z is a set of income characteristics observables and known by consumers

at time t. We assume that the permanent component Pi,t follows a martingale process of the form

Pi,t = Pi,t−1 + ζi,t

where ζi,t is serially uncorrelated and the transitory component vi,t follows an MA(1) process:

vi,t = εi,t + θεi,t−1

Because of the PSID data problem, starting from 1997, the income data is available every two

years. Hence we can get the first difference for income before 1997 and second difference for income

afterwards. If we define yi,t = logYi,t−Z′i,tϕt as the log of real income net of predictable individual
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Table 1.20: Regression results for the entry-level job: Industry only

log(wage), Full sample log(wage), HS log(wage), college Rank(wage)

1{ICfirst = IPmajor} = 1 0.324∗∗∗ 0.280∗∗∗ 0.519∗∗∗ 2.530∗∗∗

(14.17) (7.46) (15.90) (6.45)

Experience 0.145∗∗∗ 0.170∗∗∗ 0.176∗∗∗ 1.589∗∗∗

(68.47) (55.40) (51.82) (41.02)

I*Experience 0.00445 0.0194∗∗ -0.0182∗∗ 0.00260

(0.96) (2.59) (-2.85) (0.04)

Control X X X X

UniqueInd. 12,753 5,755 6,506 12,753

adj. R2 0.502 0.386 0.393 0.289

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.21: F test WageCjob=1 −WageCjob=3

Test F-stat p_value

log(wage)Cjob=1 − log(wage)Cjob=3|X = 0 0.66 0.4166

rank(wage)Cjob=1 − rank(wage)Cjob=3|X = 0 2.60 2.60

components, then the available unexplained income growth is

∆yi,t = ζi,t + εi,t + (θ − 1)εi,t−1 − θεi,t−2, t <= 1997

∆2yi,t = (ζi,t + ζi,t−1) + (vi,t − vi,t−2) = (ζi,t + ζi,t−1) + ∆2vi,t, t >= 1999

Hence we can identify the MA coefficient θ, the variance of permanent and transitory income risk

before 1997, sums of two year of permanent income afterwards, and the average of two years of

transitory income risk afterwards.
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Table 1.22: Distribution of ties for job hunting by source of helps

Ties Friends Family Labor Market

Strong tie 5.97 22.41 0

Referee 46.77 49.79 8.97

Information 47.26 27.8 91.03

Total Percentage 35.96 21.57 42.49

Table 1.23: Month distributions of first jobs

Month Percentage Cumu. percentage

1 7.7 7.7

2 5.18 12.87

3 10.17 23.04

4 12.48 35.52

5 10.85 46.38

6 17.84 64.22

7 6.53 70.75

8 6.68 77.42

9 6.05 83.48

10 6.06 89.54

11 5.23 94.77

12 5.23 100

1.9.6 Social Network in Job hunting behavior

1.9.7 Derivations and Proofs

The propositions in the paper summarize the key results from the model. This appendix shows how

to derive the results. 44

44Here we assume there is only two periods, but it will give the same conclusion if we model the dynamics
of income more complicated, for example, with infinite periods, with probability of dying v at each period,
and the income level depends on the probability of true ability revealed. Since in this model, the probability
of death and timing of revealing is not the main part, so without loss of generality, I simply the whole life of
dynamics into two periods.
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Table 1.24: Probit Regression Results for starting month

June March April May

1{OC
first == OP

major} = 1 0.0709∗∗ -0.0148 0.00203 -0.0114

(2.62) (-0.52) (0.08) (-0.48)

Control X X X X

N 22,228 22,228 22,228 22,228

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This is the results of the probit model in Section 3.2

Figure 1.22: Proportion of sons currently employed or employed at some point with an employer

their fathers had worked for in the past: Corak and Piraino(2011)

Proposition 1.9.1 (Occupational Inheritance Choice)
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Proof. First, we can solve the individual’s maximization problem.

Each individual chooses occupation i and education spending Ei, the education level si is determined

automatically. The efficient labor unit is decided by the education level and the education cost,

this is to model the fact that even with same years of education, the type of school, for example

private or public high school, or medical major or mathematics major, the cost would be different,

and depends on the income level.

Si and Ei is solved by the FOC:

Si =
1

1 + 1−η
2βφi

E∗i = η(Y1,i + Y2,i)

Hence

E∗i =
(
ηκijwiεis

φi
i

) 1
1−η

in which

κij =
1

2

[
exp(1+τij)T (1)+exp(1+pτij)T (2)

]
=


1
2

[
exp(1 + τjj)T (1) + exp(1 + pτijj)T (2)

]
if i = j

1
2 exp(1)

[
T (1) + T (2)

]
if i 6= j

is the premium weighted experience in occupation i from group j, hence if the offspring choose a

different occupation, κij is the average experience in two periods.

If fathers’ occupation j >= L2, then the credit constraint doesn’t bind, (si, E
∗
i ) would be optimized

choice of education level and education cost.

On the other hand, if L1 < j <= L2, i.e. the initial education fund is not enough to support

the education higher than H2, then this person should choose another i∗∗ within {1, . . . ,M2}. For

fathers’ whose occupations are lower than L1, it’s likewise.

Then this person would choose the next optimal occupation with the si lower than the optimal

choice. After substituting the expression for human capital into the utility function, indirect utility

for an individual from group j working in occupation:

Ui|j = (w̃ijεi)
2β
1−η

in which

w̃ij ≡ κijwisφii [(1− si)]
1−η
2β

Without the labor market distortion, the above return of ability is

w̃ij = T̄wis
φi
i [(1− si)]

1−η
2β
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So to maximize the utility is equivalent to maximize the expression Wi = w̃ijεi and we can see that

it also follows the Fréchet distribution of as

Gi|j(Wi) = F (Wi <= u) = F (εi <=
u

w̃ij
) = exp

(
− Tijw̃θiju−θ

)
For people who choose the same job as their parents, I use the notation Gj|j for the distribution

if there were no distortion and Gτ,j|j as the one for the distortion case. And I use the notation

τj =
κjj
T̄

as the composite premium for taking the same occupation as their parents. 45

Then we can calculate each element in the transition matrix for different occupations, take i∗ = j

as an example

pjj = Pr(Always takers) + Pr(Compliers)

in which

Pr(Alway takers) = Pr(
1

τj
Wjj >= {maxWkj , k ∈ Ij}|j)

and

Pr(Compliers) = Pr(∃k, s.t. 1

τj
Wjj < Wkj < Wjj and Wkj >= {maxWgj , g 6= k, j}|j)

Hence to summarize, we get:

pij = Pr(Wij >= {maxWkj , k ∈ Ij}|j) =

∫ ∞
0

∏
k∈Ij

Gkj(u)dGij(u) =
Tijw̃ij

θ∑
Ij
Tkjw̃kj

θ
(1.24)

in which
∑

Ij
Tkjw̃kj

θ ≡ Φj is the total efficient labor from family with father’s occupation in j.

And of course we can have the inheritance rate for each occupation pjj which is higher for high

income jobs and low income jobs.

Proposition 1.9.2 (Average Quality of Workers)

Proof. The ε∗ follows also the Fréchet distribution that:

G|j(x) = Pr(ε∗ < x|j) = exp[−
∑
Ij

(
w̃s
w̃∗

)x−θ]

And combine with

hijεi|j =
(
sφii
) 1

1−η
(
ηκijwi

) η
1−η ε

1
1−η

45We assume τj > 1 for all occupations, i.e. there is some positive advantage if taking the parents’
occupations
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And the property of Fréchet distribution

E
[
ε

1
1−η | choose occupation i and father’s occupation is j

]
= (

1

pij
)
1
θ

1
1−ηΓ(1− 1

θ

1

1− η
)

The proofs the last three are simple algebra changes from Proposition 2

Solve the equilibrium

Given productivity Ai, human capital accumulation coefficient hij and labor market friction τij , the

competitive equilibrium is a set Cij ,si,pij ,wi,Hi such that:

• Given the innate talent draw and father’s occupation j, each individual chooses the optimal

occupation i , and makes optimal consumption decision Cij and study-leisure decision

• The labor market clears

Hdemand
i (t) = (

Ai(t)
σ−1
σ

wi(t)
)σY (t)

M∑
j=1

Hsupply
ij (t) =

M∑
j=1

πLj pijT (t)E
(
hijεi

)
• Goods market clears

1.9.8 The Technology Revolution

1.9.8.1 Changes in Occupational Specific Skills

78



Figure 1.23: Measure of technological change

Notes: this figure presents a time line of key events associated with the development of personal computers,

plotted along with two simple measures of the extent of computer-related technological change. Although

electronic computing devices were developed during World War II and the Apple II was released in 1977,

many observers date the beginning of the "computer revolution" to the introduction of the IBM-PC in 1981.

This was followed by the IBM-XT (the first PC with built-in disk storage) in 1982 and the IBM-AT in 1984.

As late as 1989, most personal computers used Microsoft’s DOS operating system. More advanced graphical

interface operating systems only gained widespread use with the introduction of Microsoft’s Windows 3.1 in

1990.

In characterizing the workplace changes associated with the computer revolution, some analysts have drawn

a sharp distinction between standalone computing tasks (such as word processing or database analysis)and

organization-related tasks (such as inventory control and supply-chain integration and Internet commerce),

and have argued that innovations in the latter domain are the major source of SBTC. This reasoning suggests

that the evolution of network technologies is at least as important as the development of PC technology.

The first network of mainframe computers (the Advances Research Projects Agency Network [ARPANET])

was organized in 1970 and had expanded to about 1,000 host machines by 1984. In the mid-1980s, the

National Science Foundation laid the backbone for the modern Internet by establishing the National Science

Foundation Network (NSFNET). Commercial restrictions on the use of the Internet were lifted in 1991, and

the first U.S. site on the World Wide Web was launched in December 1991. The use of the Internet grew

very rapidly after the introduction of Netscape’s Navigator program in 1994: the number of Internet hosts

rose from about 1 million in 1992 to 20 million in 1997, and to 100 million in 2000.
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Figure 1.24: True value and smoothed changes of percentile ranks between 1990 and 2010

Notes: These four figures depict the true values of changes in percentile ranks for the four major skill categories to show that the smoothed changes accurately

pick up the trend instead of showing some extreme values.



Figure 1.25: Aggregate changes of percentile ranks in 20 years

Notes: This figure shows the distribution of the aggregate change in percentile rankings of skills from 1980 to

2000 and 1990 to 2010. In Section 5.3, I show the changes in different skills separately, and the aggregation

is calculated by the commonly used distance measurement ∆PRA = [
∑J

j=1 ∆PR2
A,j ]

1/2 for J different skill

groups.

1.9.8.2 Technology Revolution, Skill Changes and Wages

In this part, I’d like to use one indicator of technological changes. the computer usage rate change

from 1984 to 1993, to directly test the relationship of technological changes to the skill percentile

ranks changes. Again, this indicator cannot present all the technological changes happening the la-

bor market, for example, the automation, electric device, biological breakthroughs etc. And it also

doesn’t show the causal relationship, since it’s likely that some occupations due to varies reasons
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Table 1.25: Change of computer usage rate and skill distribution

Major Group Detailed Group ∆Computer1984−1993 ∆Computer1984−2001

Abstract

Verbal 0.0644 -0.0081

Analytical -0.0464 0.0562

Quantitative 0.0445 -0.1323

Routine
Routine cognitive -0.1034 -0.0321

Routine manual 0.0322 0.0474

Manual Manual -0.0661 -0.1268

Physical

Strength 0.0933 0.0686

Flexibility 0.2900 0.0397

Auditory -0.089 -0.2061

Visual 0.0269 -0.1093

adapt computers earlier than other jobs. The computer usage rate comes from CPS supplements 46

the measurement is "Do you directly use computer at work?". The detailed usage includes emails,

word precessing etc. Hence here, in Table 3, I only show the correlation of the change of computer

usage rate with the change of each skill percentile ranks in the corresponding year. The change of

computer usage rate from 1984 to 1993 corresponds to change from 1980 to 1990, and that of 1984

to 2001 corresponds to change of skills from 1980 to 2000.

Again, I’d like to emphasize that the minor changes in DOT 1991 compared to its previous version,

and also some abilities like body flexibility and strength and manual have little to do with computer

usage. So it’s reasonable that the little correlation with those abilities and computer usage. But we

can still see that the quantitative ability decreases with the increase of computer usage, and also

the routine cognitive related skills, the visual and auditory abilities.

Now I’d like to look into the relationship of each skill level with the wage, i.e. the return rate of

each skill. In Figure E.9, I depict the wage (in log) of each occupation with respect to the percentile

of main ability demands. To to specific, I separate occupations by its main ability demands, which

is defined as the biggest ability demand among the four categories, and regress the log wage in 1970

46Questions regarding Computer and Internet Use have been sporadically included in Current Population
Survey supplements since 1984. The questions have primarily appeared as a portion of the October Education
supplement, but were also included as a separate supplement in the December 1998, August 2000, and
September 2001 samples.
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Table 1.26: Marginal value (β) of each skill in 1970 and 2000

Year Abstract Manual Routine Physical

1970 3.21***

(4.92)

2.76***

(4.31)

1.19**

(2.56)

1.51***

(3.22)

R2 0.424 0.412 0.265 0.398

# 76 123 51 20

2000 2.42***

(7.40)

1.24***

3.33

-0.52

(-0.51)

1.79***

(3.55)

R2 0.518 0.254 0.021 0.224

# 153

(+101.31%)

150

(+21.95%)

48

(-4%)

68

(+240%)

Example Chief man-

ager,

scientists

Chef,

technician

Clerk,

operator

Dancer,

police officer

against the percentile of that main ability demand. For example, if for occupation A, the demand

for the abstract ability is bigger than the other three categories, this occupation will be classified as

"Abstract job", and qualifies as an observation in the regression of log wage with respect to abstract

percentile of occupations. The regression equation is:

log(Wage)Y eari,j = αY earj + βY earj PRY eari,j + εi,j

in which i represents occupation, and j represent the skill type among Abstract, Routine, Manual,

Physics. And βj can be interpreted as the marginal value of the comparative advantage of each

skill. The regression results for 1970 and 2000 are in Table E.19.
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Figure 1.26: Skill percentiles and log(wage) in 1970



From the results, we can see that no matter in which time period, the "Abstract" ability is the

most valued, and compared with 1970, the number of jobs that advantaged in the abstract ability.

"Manual" ability still significantly affects the wage, but the marginal value decreased more compared

with 1970 than abstract ability. "Physical" ability is the only one increases in the marginal value,

and the increase of number of jobs is the most. Unsurprisingly, the "Routine" ability is no longer

significant.

1.9.8.3 Measurement of Skill changes

Figure 1.27: Relative Changes of percentile ranking of Abilities Scores

1.9.9 Allowing for measurement error in RD

Measurement error in the threshold

In a conventional sharp RD design, the econometricians observe the assignment variable X∗, eligi-

bility/treatment D∗ = 1[X∗ < 0] and outcome Y . Mathematically, the measurement error on the
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assignment variable and the threshold is equivalent. To see this, suppose the true eligibility assign-

ment mechanism is D∗ = 1[W ∗ < c∗], where W ∗ is the actual family income and c∗ the eligibility

threshold. Suppose the econometricians only see proxies W = W ∗ + u and c = c∗ + v. In this case,

we can rewrite the eligibility assignment mechanism as D∗ = 1[X − ũ < 0] where ũ ≡ u− v, hence

we have a model isomorphic to the original one.

Classical measurement error in Sharp RD

As seen in Appendix Figure F.11, the so-called first stage relationship with the noisy X, E[D∗|X],

is smooth at X = 0, and we can no longer rely on the discontinuity in that relationship to identify

a treatment effect. In a way, this is an extreme form of the attenuation bias, which is typically

associated with measurement error. Because of this lack of first stage discontinuity, we cannot

treat the problem as a fuzzy design either. In fact, the same force that smooths out the first stage

relationship also smooths out the outcome function E[Y |X], and the fuzzy RD simply becomes

undefined.

As we can see, this is in contrast to the case where a first stage discontinuity exists despite the

presence of measurement error in the assignment variable as in our case. 47

47See Card et al. (2015) for an analogous result in the regression kink design.
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Figure 1.28: Theoretical Effect of Classic Measurement Error in the Assignment Variable

Notes: The left panel plots the true first stage relationship E[D|X∗ = x∗] in a sharp RD. The right panel plots the observed first stage relationship E[D|X = x].

The right panel is generated by assuming that X∗ and u are both normally distributed.



REFERENCES

[AB17] N. Ashraf and O. Bandiera. Social Incentives in Organizations. In preparation for
the Annual Review of Economics, 2017.

[ABL16] N. Ashraf, O. Bandiera, and S. Lee. “Do-gooders and Go-getters: Career incen-
tives, Selection, and Performance in Public Service Delivery.” Working paper,
STICERD, 2016.

[AGR15] D. Acemoglu, C. Garcia-Jimeno, and J. A. Robinson. “State Capacity and
Economic Development: A Network Approach.” American Economic Review,
105:2364–2409, 2015.

[AJR01] D. Acemoglu, S. Johnson, and J. A. Robinson. “The Colonial Origins of Com-
parative Development: An Empirical Investigation.” American Economic Review,
91:1369–1401, 2001.

[AT97] P. Aghion and J. Tirole. “Formal and Real Authority in Organizations.” Journal
of Political Economy, 105:1–29, 1997.

[Ban08] M. Banton. “Administering the Empire.” pp. 1801–1968, 2008.

[BBR09] O. Bandiera, I. Barankay, and I. Rasul. “Social Connections and Incentives in the
Workplace: Evidence From Personnel Data.” Econometrica, 77(1047-1094):417–
458, 2009.

[BCD12] A. Banerjee, R. Chattopadhyay, E. Duflo, D. Keniston, and N. Singh. “Improving
Police Performance in Rajasthan, India: Experimental Evidence on Incentives,
Managerial Autonomy and Training.” Technical report, NBER Working Papers
17912, NBER, 2012.

[BEF17] Dal Bo, F. Finan E., O. Folke, T. Persson, and J. Rickne. “Who becomes a
politician?” e Quarterly Journal of Economics, 2017. Forthcoming.

[Ber09] M. Bertrand. “CEOs.” Annual Review of Economics, 1:121–150, 2009.

[BER13] Dal Bo, F. Finan E., and M. A. Rossi. “Strengthening State Capabilities: The
Role of Financial Incentives in the Call to Public Service.” The Quarterly Journal
of Economics, 128:1169–1218, 2013.

[BP09] T. Besley and T. Persson. “The Origins of State Capacity: Property Rights,
Taxation, and Politics.” American Economic Review, 99(1218-44):1–34, 2009.

[Bre16] E. Breza. Field Experiments, Social Networks, and Development. Handbook on
the Economics of Networks, Oxford, 2016.

[BS03] M. Bertrand and A. Schoar. “Managing with Style: The Effect of Managers on
Firm Policies.” The Quarterly Journal of Economics, 118:1169–1208, 2003.

[CH08] V. Chernozhukov and C. Hansen. “The Reduced Form: A Simple Approach to
Inference with Weak Instruments.” Economics Letters, 100:68–71, 2008.

88



[Des17] E. Deserranno. “Financial Incentives as Signals: Experimental Evidence from the
Recruitment of Village Promoters in Uganda.” mimeo, 2017.

[DH86] L. Davis and R. Huttenback. Mammon and the Pursuit of Empire: The Political
Economy of British Imperialism. 1860-1912, Cambridge University Press, 1986.

[DJT99] M. Dewatripont, I. Jewitt, and J. Tirole. “The Economics of Career Concerns,
Part II: Application to Missions and Accountability of Government Agencies.”
Review of Economic Studies, 66:199–217, 1999.

[DP12] M. Dincecco and M. Prado. “Warfare, Fiscal capacity, and Performance.” Journal
of Economic Growth, 17:171–203, 2012.

[Fis01] R. Fisman. “Estimating the Value of Political Connections.” American Economic
Review, 91:1095–1102, 2001.

[FOP15] F. Finan, B. A. Olken, and R. Pande. “The Personnel Economics of the State.”
Working Paper 21825, NBER, 2015.

[Fra92] M. Francis. “Governors and Settlers: Images of Authority in the British Colonies.”
pp. 1820–60, 1992.

[FW04] R. Fisman and S. j. Wei. “Tax Rates and Tax Evasion: Evidence from "Missing
Imports" in China.” Journal of Political Economy, 112:471–500, 2004.

[Gar12] L. Gardner. Taxing Colonial Africa: The Political Economy of British Imperial-
ism. Oxford University Press, 2012.

[GR12] R. Gibbons and J. Roberts. “The Handbook of Organizational Economics.” In
Princeton University Press. 1 ed, 2012.

[HHM12] B. Henn, L. Hon, M. Macpherson, N. Eriksson, S. Saxonov, I. Peter, and J. Moun-
tain. “Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan
Genetic Samples.” PLoS One, 7, 2012.

[IM12] L. Iyer and A. Mani. “Traveling Agents: Political Change and Bureaucratic
Turnover in India.” The Review of Economics and Statistics, 94:723–739, 2012.

[Jef38] C. Jeffries. The Colonial Empire and its Civil Service. Cambridge University
Press, 1938.

[Jia17] R. Jia. “Pollution for Promotion.” mimeo, 2017.

[JKS15] R. Jia, M. Kudamatsu, and D. Seim. “Political Selection in China: The Com-
plementary Roles of Connections and Performance.” Journal of the European
Economic Association, 13:631–668, 2015.

[JO05] B. F. Jones and B. A. Olken. “Do Leaders Matter? National Leadership and
Growth Since World War II.” The Quarterly Journal of Economics, 120:835–864,
2005.

[Kir00] A. Kirk-Greene. “Britain’s Imperial Administrators.” pp. 1858–1966, 2000.

89



[KKO15] A. Q. Khan, A. I. Khwaja, and B. A. Olken. Tax Farming Redux: Experimen-
tal Evidence on Performance Pay for Tax Collectors. The Quarterly Journal of
Economics, 2015.

[KKO16] A. Khan, A. Khwaja, and B. Olken. “Making Moves Matter: Experimental Evi-
dence on Incentivizing Bureaucrats through Performance-Based Postings.” mimeo,
2016.

[KT13] F. Kramarz and D. Thesmar. “Social Networks in the Boardroom.” Journal of the
European Economic Association, 11:780–807, 2013.

[Lai05] Z. Laidlaw. Colonial Connections 1815-1845: Patronage. the Information Revo-
lution and Colonial Government, Studies in Imperialism, Manchester University
Press, 2005.

[LO12] E. P. Lazear and P. Oyer. “Personnel Economics.” In The Handbook of Organiza-
tional Economics. Princeton University Press, 2012.

[MC99] S. Morris and S. Coate. “Policy Persistence.” American Economic Review,
89:1327–1336, 1999.

[NT54] S. Northcote and C. Trevelyan. Report on the Organization of the Permanent
Civil Service. HMS, 1854.

[NW89] D. North and B. Weingast. “Constitutions and Commitment: The Evolution of
Institutions Governing Public Choice.” The Journal of Economic History, 49:803–
832, 1989.

[PT96] C. Prendergast and R. H. Topel. “Favoritism in Organizations.” Journal of Polit-
ical Economy, 104:958–78, 1996.

[PZ16] P. Persson and E. Zhuravskaya. “The Limits of Career Concerns in Federalism:
Evidence from China.” Journal of the European Economic Association, 14:338–
374, 2016.

[RAJ05] J. A. Robinson, D. Acemoglu, and S. Johnson. “Institutions as a Fundamental
Cause of Long-Run Growth.” Handbook of Economic Growth, 1:386–472, 2005.

[RR17] I. Rasul and D. Rogger. “Management of Bureaucrats and Public Service Delivery:
Evidence from the Nigerian Civil Service.” The Economic Journal, pp. 1–34, 2017.

[SW16] E. Sanderson and F. Windmeijer. “A weak instrument F-test in linear IV models
with multiple endogenous variables.” Journal of Econometrics, 190:212–221, 2016.

90



CHAPTER 2

Estimation and Inference of Semiparametric Models

using Data from Several Sources

2.1 Introduction

There are many cases in empirical micro studies where data needed to analyze a particular phe-

nomenon is not always available in one data set. Typically, this hampers the possibility of meaningful

empirical research. In fact, a common phenomenon is to make some simplifying assumptions, which

would then permit the researcher to use information from more than one data source. For example,

as Blundell et al. (2006) note, this is a crucial difficulty when faced by those studying households’

consumption and saving behavior because of the lack of panel data on both household expenditures,

income, and saving.

An important data for studying consumption is, for example, the Panel Study of Income

Dynamics (PSID), a survey that provides longitudinal annual data for household that have been

followed since 1968. The PSID collects data on a subset of consumption items, namely food at home

and food away from home (with few gaps in some of the survey years) and income. However, the

PSID is that it does not provide data on wealth. In contrast, there are few data set that provide

detailed data on income and wealth (e.g. Health and Retirement Survey (HRS), or the National

Longitudinal Study (NLS)), these data sets provide no information on consumption.

Problems of similar nature exist in many other countries. For example, in the UK, the Family

Expenditure Survey (FES) provides comprehensive data on household expenditures, but this is

across-sectional data and thus the researcher does not get to observe households over time. In

contrast, the British Household Panel Survey (BHPS) is a Panel data set that collects data on

income or wealth, but it provides no information on consumption.1 This is quite puzzling, given

the vital need to study the consumption decisions jointly with the income and wealth processes.

1Similar problems exist for many other countries, in particular countries in Europe (e.g. France and
Spain) that collect detailed data on both consumption, income, and wealth, but the information never exists
in a single data set.
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Consequently, as is clearly and comprehensively explain in Blundell et al. (2006), studies the

aimed at understanding consumption behavior, and testing alternative theories, have resorted to

the limited data on food expenditure provided in the PSID. This includes, among others, Hall and

Mishkin (1982), Zeldes (1989), Runkle (1991), and Shea (1995), Cochrane (1991), Hayashi, Altonji

and Kotlikoff (1996), Cox, Ng and Waldkirch (2004), Martin (2003) and Hurst and Stafford (2004)

for tests of many alternative theories. The main problem with all these studies is that they use

consumption on limited number of goods (largely necessity goods), and thus putting into question

the external validity of the results.

One way that has been used in the literature is to form synthetic panel data sets from repeated

cross-section data sets in which consumption is reported (e.g. the CEX or the FES). This is done

in, for example, Browning, Deaton and Irish (1985) and Attanasio and Weber (1993).

An alternative empirical approach that have been used occasionally in the literature involve

imputation of consumption to the PSID households using information on consumption from the

CEX. Specifically, Skinner (1987) proposes to impute total consumption in the PSID using the

estimated coefficients of a regression of total consumption on a number of consumption items that

are reported in both the PSID and the CEX. While this method seems appealing at first sight, it

reduces any variation in total consumption, since it does not take into account the fact the there is

considerable idiosyncratic elements that goes into the individual decision making. Ziliak (1998) and

Browning and Leth-Petersen (2003) provided alternative method that are variants of that proposed

by Skinner (1987).

However, this method has a major weakness, in that it ignored, by construction, the dynamics of

the individuals’ consumption. Avoiding direct control of Individual’s heterogeneity has been shown

to provide major obstacle when modeling individual’s behavior in general.

The one paper in the literature that provides a method that is related in spirit to the method

proposed here is the paper by Blundell et al. (2006).2 The method is similar in nature to that

of Skinner (1987), in that the authors impute consumption data for the households in the PSID

using regression parameters estimated from the CEX data. The key difference, is that the authors

in Blundell et al. (2006) is that they use “structural” regression of a standard demand function

for food that depends not only on other consumption items, but also depend on prices and a

set of demographic and socio-economic variable of the household. Assuming monotonicity of the

demand for makes it possible to invert these function in order to obtain a structurally based formula

2This method is used extensively in Blundell, Pistaferri and Preston (2008).
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non-durable consumption, which exists in the CEX, but is missing in the PSID. Nevertheless, the

general problem with such an imputation method described above for Skinner’s method still apply.

If nothing else, the consumption data imputed in this fashion is likely to suffer from the well-known

error-in-variable problem. Most importantly, it ignores the inherent individual heterogeneity of

consumption.

In two recent papers Fan, Sherman and Shum (2014a, 2014b) address a special case of the

problem addressed in our paper, namely the case of treatment effect. Under this scenario, the

outcome variables and conditioning variable are observed in two separate data sets, so that the

treatment effect parameters are not point-identidfied. The authors provide sharp bounds on the

counterfactual distributions and parameter of interest (see Fan, Sherman and Shum (2014b)), and

the corresponding inference (see Fan, Sherman and Shum (2014a).

Our case is more general and encompass a more general situation in which some of the variables

are available only in one data set, while others are available in a separate data sets. The key insight

is that there are some variables that appear in both. Under relatively mild regularity conditions we

provide a method that allow one to point-identified the structural parameters of interest in the main

data of interest using the information provided in the other data set. The parameters of interest

and the “imputation equation” are estimated simultaneously. We also provide the necessary theory

for inference including cases in which the number of observation in “imputation” data set do not

diverge to infinity at the same rate as that for the main data of interest.

Notation of this paper is standard. For any square matrix A, λmin(A) and λmax(A) denote the

smallest and largest eigenvalues of A respectively. Throughout this paper, we use C to denote a

generic finite positive constant which is larger than 1. For any set of real vectors {al}l∈I where I =

{l1, . . . , ldI} is a index set with dI distinct natural numbers, we define (al)l∈I = (al1 , . . . , aldI ) and

(al)
′
l∈I = (al1 , . . . , aldI )′. The notation ‖·‖ denotes the Euclidean norm. A′ refers to the transpose of

any matrix A. Ik and 0l are used to denote k×k identity matrix and l× l zero matrices respectively.

The symbolism A ≡ B means that A is defined as B. the expression an = op(bn) signifies that

Pr (|an/bn| ≥ ε)→ 0 for all ε > 0 as n go to infinity; and an = Op(bn) when Pr (|an/bn| ≥M)→ 0 as

n andM go to infinity. As usual, "→p" and "→d" imply convergence in probability and convergence

in distribution, respectively.
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2.2 The Model and the Estimators

We are interested in estimating the following model

Y = g(X1, X2, θ0) + v (2.1)

where X1 and X2 are sets of regressors, g(·, ·, ·) : Rdx1 × Rdx2 × Rdθ → R is a known function,

θ0 is the unknown parameter of interest and v is a unobservable residual term. Two data sets

are available to estimate the unknown parameter: {(Yi, X ′2,i, X ′3,i)}i∈I1 and {(X1,i, X
′
2,i, X

′
3,i)}i∈I2 ,

where I1 and I2 are two index sets with cardinalities n1 and n2 respectively.

The unknown parameter θ0 could be conveniently estimated under the conditional moment re-

striction E [v|X1, X2] = 0, if we had the joint observations on (Y,X ′1, X
′
2). However, such straight-

forward method is not applicable here because Y and X1 are contained in different data sets. On

the other hand, the common variables X2 and X3 contained in both data sets can be useful for

identifying and estimating the unknown parameter θ0. For this purpose, we assume that

E [v|X2, X3] = 0. (2.2)

Using the expression in (2.1) and the conditional mean restriction in (2.2), we get

E [Y |X2, X3] = E [g(X1, X2, θ0)|X2, X3] , (2.3)

which is the key equation for the identification and estimation of θ0.

For ease of notations, we write X = (X ′1, X
′
2)′ and Z = (X ′2, X

′
3)′. Then the model can be

written as

Y = g(X, θ0) + v with E [v|Z] = 0. (2.4)

For any θ, we define the conditional expectation of g(X, θ) given Z as

φ(Z, θ) = E [g(X, θ)|Z] .

Then we can write

Y = φ(Z, θ0) + ε+ v = h0(Z) + u,

where ε = g(X, θ0)− φ(Z, θ0), u ≡ ε+ v and h0(Z) = φ(Z, θ0).

As the conditioning variable Z is available in both data sets, we have n (n = n1 + n2) ob-

servations: {Zi}i∈I = {(X ′2,i, X ′3,i)}i∈I where I = I1 ∪ I2. Let Pk(z) = [p1(z), . . . , pk(z)]
′ be a

k-dimensional vector of basis functions for any positive integer k. For any k and any n, we define

Pn,k = (Pk(Zi))i∈I which is an n × k matrix. Accordingly, we define Pn1,k1 = (Pk1(Zi))i∈I1 and

Pn2,k2 = (Pk2(Zi))i∈I2 which are n1 × k1 and n2 × k2 matrices respectively.
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The conditional mean function h0(Z) = E [Y |Z] can be estimated using the first data set by

ĥn1(z) = Pk1(z)′(P ′n1,k1Pn1,k1)−1P ′n1,k1Yn1 (2.5)

where Yn1 = (Yi)
′
i∈I1 . Using the second data set, we get the following estimator of the conditional

mean function φ(Z, θ) for any θ:

φ̂n2(Z, θ) = Pk2(Z)′(P ′n2,k2Pn2,k2)−1P ′n2,k2gn2(θ) (2.6)

where gn2(θ) = (g(Xi, θ))
′
i∈I2 . Using the estimators of h0(Z) and φ(Z, θ), we can construct the

estimator of θ0 via the minimum distance (MD) estimation:

θ̂n = arg min
θ∈Θ

n−1
∑
i∈I

[
ŵn(Zi)

∣∣∣ĥn1(Zi)− φ̂n2(Zi, θ)
∣∣∣2] (2.7)

where Θ denotes the parameter space containing θ0, and ŵn(·) is a non-negative weight function.

One simple and straightforward choice of the weight function ŵn(·) is the identity function, i.e.,

ŵn(z) = 1 for any z. However, as we will show later in this paper, the identity weighted MD

estimator may not have the smallest possible variance.

2.3 Asymptotic Properties of the MD Estimator

In this section, we establish the asymptotic properties of the MD estimator. For any positive integer

k, Let ξk = supz∈Z ‖Pk(z)‖ and Qk = E [Pk(Z)P ′k(Z)], where Z denotes the support of Z. We first

state the sufficient conditions for consistency.

Assumption 2.3.1 (i) {(Yi, Zi)}i∈I1 and {(Xi, Zi)}i∈I2 are independent with i.i.d. observations;

(ii) E [Y |Z] < C; (iii) C−1 ≤ λmin(Qk) ≤ λmax(Qk) ≤ C for all k; (iv) there exist βh,k ∈ Rk and

rh > 0 such that

sup
z∈Z

∣∣h0(z)− Pk(z)′βh,k
∣∣ = sup

z∈Z
|h0(z)− h0,k(z)| = O(k−rh); (2.8)

(v) maxj=1,2 ξ
2
kj

log(kj)n
−1
j = o(1) and k1n

−1
1 + k−1

1 = o(1).

Assumption 2.3.1 includes mild and standard conditions on nonparametric series estimation of

conditional mean function (see, e.g. Andrews (1991) and Newey (1997)).

Define

Ln(θ) = n−1
∑
i∈I

wn(Zi) |h0(Zi)− φ(Zi, θ)|2 and L∗n(θ) = E
[
wn(Z) |h0(Z)− φ(Z, θ)|2

]
for any θ ∈ Θ, where wn(·) is defined in Assumption 2.3.2(v) below.
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Assumption 2.3.2 (i) supθ∈ΘE
[
φ2(Z, θ)

]
< C; (ii) n−1

∑
i∈I |φ̂n2(Zi, θ) − φ(Zi, θ)|2 = op(1)

uniformly over θ; (iii) for any ε > 0, there is ηε > 0 such that

E
[
|h0(Z)− φ(Z, θ)|2

]
> ηε for any θ ∈ Θ with ||θ − θ0|| ≥ ε;

(iv) supθ∈Θ |Ln(θ)− L∗n(θ)| = op(1); (v) supz∈Z |ŵn(z)− wn(z)| = Op(δw,n) where δw,n = O(n
−1/4
1 +

n
−1/4
2 ) and wn(·) is a sequence of non-random functions with C−1 ≤ wn(z) ≤ C for any n and any

z ∈ Z.

Assumption 2.3.2(i) imposes uniform finite second moment condition on the function φ(Z, θ).

Assumption 2.3.2(ii) requires that the nonparametric estimator φ̂n2(Zi, θ) of φ(Zi, θ) is consis-

tent under the empirical L2-norm uniformly over θ ∈ Θ. Assumption 2.3.2(iii) is the identifi-

cation condition of θ0. Assumption 2.3.2(iv) is a uniform law of large numbers of the func-

tion w(Zi) |h0(Zi)− φ(Zi, θ)|2 indexed by θ. Assumption 2.3.2(v) requires that ŵn(·) is approx-

imated by a sequence of nonrandom function wn(·) uniformly over z. For the consistency of the

MD estimator, it is sufficient to have δw,n = o(1) in Assumption 2.3.2(v). The rate condition

δw,n = O(n
−1/4
1 + n

−1/4
2 ) is needed for deriving the asymptotic normality of the MD estimator. It

is clear that Assumption 2.3.2(v) holds trivially if ŵn(·) is the identity function.

Theorem 2.3.1 Under Assumptions 2.3.1 and 2.3.2, we have θ̂n = θ0 + op(1).

For ease of notations, we define

gθ(X, θ) = ∂g(X,θ)
∂θ , gθθ(X, θ) = ∂2g(X,θ)

∂θ∂θ′ ,

φθ(Z, θ) = E [gθ(X, θ)|Z] , φθθ(Z, θ) = E [gθθ(X, θ)|Z] ,

φ̂θ,n2(Z, θ) =
∂φ̂n2 (Z,θ)

∂θ , φ̂θθ,n2(Z, θ) =
∂2φ̂n2 (Z,θ)
∂θ∂θ′ .

By the consistency of θ̂n, there exists a positive sequence δn = o(1) such that θ̂n ∈ Nδn with probabil-

ity approaching 1, whereNδn = {θ ∈ Θ : ||θ − θ0|| ≤ δn}. DefineH0,n = E [wn(Z)φθ(Z, θ0)φ′θ(Z, θ0)].

Let φθj (z, θ) denote the j-th component of φθ(Z, θ).

We next state the sufficient conditions for asymptotic normality of θ̂n.

Assumption 2.3.3 The following conditions hold:

(i) supθ∈Nn n
−1
2

∑
i∈I2 ‖gθθ(Xi, θ)‖2 = Op(1);

(ii) λmin(H0,n) > C−1;

(iii) n−1
∑

i∈I ||φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)||2 = op(n
−1/2
2 );
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(iv) E
[
‖φθ(Z, θ0)‖4

]
<∞;

(v) E
[
u2
∣∣Z] > C−1, E

[
ε2
∣∣Z] > C−1 and E

[
u4 + ε4

∣∣Z] < C;

(vi) supz∈Z |wn(z)φθj (z, θ0)− P ′k(z)βwφj ,n,k| = o(1) where βwφj ,n,k ∈ Rk (j = 1, . . . , dθ);

(vii) maxj=1,2(kjn
−1/2
j + k−rhj n

1/2
j ) = o(1).

Assumptions 2.3.3(i) holds when ‖gθθ(x, θ)‖2 < C for any x and any θ in the local neighborhood

of θ0. The lower bound of the eigenvalue of H0,n in Assumptions 2.3.3(ii) ensures the local identi-

fication of θ0. Assumptions 2.3.3(iii) requires that the convergence rate of φ̂θ,n2(Zi, θ0) under the

empirical L2-norm is faster than n−1/4
2 . Assumptions 2.3.3(iv) imposes finite second moment on the

derivative function φθ(Z, θ0). Assumption 2.3.3(v) imposes moment conditions on the projection

errors u and ε which are useful for deriving the asymptotic normality of the MD estimator. Assump-

tion 2.3.3(vi) requires that the function wn(z)φθj (z, θ0) can be approximated by the basis functions.

Assumption 2.3.3(vii) imposes restrictions on the number of basis functions and the smoothness of

the unknown function h0.

Let σ2
u(Z) = E

[
u2
∣∣Z], σ2

ε(Z) = E
[
ε2
∣∣Z] and φwθ,n = (wn(Zi)φθ(Zi, θ))i∈I . Define

Σn1 ≡
φwθ,nPn,k1Q

−1
n1,k1

Qn1,uQ
−1
n1,k1

P ′n,k1φ
′
wθ,n

n2n1

where Qn1,u = n−1
1

∑
i∈I1 σ

2
u(Zi)Pk1(Zi)P

′
k1

(Zi), and

Σn2 ≡
φwθ,nPn,k2Q

−1
n2,k2

Qn2,εQ
−1
n2,k2

P ′n,k2φ
′
wθ,n

n2n2

where Qn2,ε = n−1
2

∑
i∈I2 σ

2
ε(Zi)Pk2(Zi)P

′
k2

(Zi).

Theorem 2.3.2 Under Assumptions 2.3.1, 2.3.2 and 2.3.3, we have

θ̂n − θ0 = Op(n
−1/2
1 + n

−1/2
2 ) (2.9)

and moreover

γ′n(H0,n(Σn1 + Σn2)−1H0,n)1/2(θ̂n − θ0)→d N(0, 1) (2.10)

for any non-random sequence γn ∈ Rdθ with γ′nγn = 1.

Remark 3.1. The first result of Theorem 2.3.2, i.e., (2.9), implies that the convergence rate of

the MD estimator is of the order max{n−1/2
1 , n

−1/2
2 }.

Remark 3.2. By the Cramer-Wold device and Theorem 2.3.2, we know that

(H0,n(Σn1 + Σn2)−1H0,n)1/2(θ̂n − θ0)→d N(0dθ , Idθ), (2.11)
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which together with the continuous mapping theorem (CMT) implies that,

(θ̂n − θ0)′(H0,n(Σn1 + Σn2)−1H0,n)(θ̂n − θ0)→d χ
2(dθ). (2.12)

Moreover, let ι∗j be the dθ × 1 selection vector whose j-th (j = 1, . . . , dθ) component is 1 and rest

components are 0. Define

γj,n =
(H0,n(Σn1 + Σn2)−1H0,n)−1/2

(ι∗′j (H0,n(Σn1 + Σn2)−1H0,n)−1ι∗j )
1/2

ι∗j , for j = 1, . . . , dθ.

It is clear that γ′j,nγj,n = 1, and by Theorem 2.3.2, we have

γ′j,n(H0,n(Σn1 + Σn2)−1H0,n)1/2(θ̂n − θ0)

=
θ̂j,n − θj,0

(ι∗′j (H0,n(Σn1 + Σn2)−1H0,n)−1ι∗j )
1/2
→d N(0, 1) (2.13)

where θ̂j,n = ι∗′j θ̂n and θj,0 = ι∗′j θ0. Results in (2.12) and (2.13) can be used to conduct inference on

θj,0 and θ0 if the consistent estimators of H0,n, Σn1 and Σn2 are available.

2.4 Semiparametric Nonlinear GLS Estimator

In this section, we study the properties of the semiparametric nonlinear GLS (SNGLS) estimator:

θ̂ls = arg min
θ∈Θ

n−1
1

∑
i∈I1

[
ŵn(Zi)

∣∣∣Yi − φ̂n2(Zi, θ)
∣∣∣2] (2.14)

where Θ denotes the parameter space containing θ0, and ŵn(·) is a non-negative weight function.

Assumption 2.4.1 (i) {(Yi, Zi)}i∈I1 and {(Xi, Zi)}i∈I2 are independent with i.i.d. observations;

(ii) E
[
u4
∣∣Z] < C; (iii) C−1 ≤ λmin(Qk) ≤ λmax(Qk) ≤ C for all k; (iv) supθ∈ΘE

[
φ4(Z, θ)

]
< C;

(v) n−1
1

∑
i∈I1 |φ̂n2(Zi, θ) − φ(Zi, θ)|2 = op(1) uniformly over θ; (vi) for any ε > 0, there is ηε > 0

such that

E
[
|φ(Z, θ0)− φ(Z, θ)|2

]
> ηε for any θ ∈ Θ with ||θ − θ0|| ≥ ε;

(vii) supz∈Z |ŵn(z)− wn(z)| = op(1) where wn(·) is a sequence of non-random functions with C−1 ≤

wn(z) ≤ C for any n and any z ∈ Z.

Assumption 2.4.2 The following conditions hold:

(i) n−1
1

∑
i∈I1 ui(ŵn(Zi)− wn(Zi))φ̂θ,n2(Zi, θ0) = op(n

−1/2
1 );

(ii) n−1
1

∑
i∈I1(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))2 = op(1);
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(iii)

n−1
1

∑
i∈I1

ŵn(Zi)(φn(Zi, θ0)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1 φwθ,n1Pn2,k(P

′
n2,kPn2,k)

−1
∑
i∈I2

Pk(Zi)εi + op(n
−1/2
1 + n

−1/2
2 );

(iv) supθ∈Nn n
−1
1

∑
i∈I1 ŵn(Zi)uiφ̂θθ,n2(Zi, θ) = op(1).

Theorem 2.4.1 Under Assumption 2.4.1, we have θ̂ls = θ0 + op(1).

Lemma 2.4.1 Under Assumptions 2.3.1 and 2.3.2, we have

n−1
1

∑
i∈I1

ŵn(Zi)uiφ̂θ,n2(Zi, θ0) = n−1
1

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0) + op(n
−1/2
1 ). (2.15)

Lemma 2.4.2 Under Assumptions 2.3.1 and 2.3.2, we have

n−1
1

∑
i∈I1

ŵn(Zi)(φ(Zi, θ0)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1 φwθ,n1Pn2,k(P

′
n2,kPn2,k)

−1
∑
i∈I2

Pk(Zi)εi + op(n
−1/2
1 ). (2.16)

Proof of Lemma 2.4.2. By definition,

Let σ2
u(Z) = E

[
u2
∣∣Z], σ2

ε(Z) = E
[
ε2
∣∣Z] and φwθ,n = (wn(Zi)φθ(Zi, θ))i∈I . Define

Σn1 ≡ n−1
1

∑
i∈I1

w2
n(Zi)σ

2
u(Zi)φθ(Zi, θ0)φθ(Zi, θ0)′

and

Σn2 ≡
φwθ,n1Pn1,kQ

−1
n2,k

Qn2,εQ
−1
n2,k

P ′n1,k
φ′wθ,n1

n2
1n2

where Qn2,ε = n−1
2

∑
i∈I2 σ

2
ε(Zi)Pk(Zi)P

′
k(Zi).

By the definition of θ̂n, we have the following first order condition

n−1
1

∑
i∈I1

wn(Zi)(Yi − φ̂n2(Zi, θ̂n))φ̂θ,n2(Zi, θ̂n) = 0. (2.17)
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Applying the first order expansion to (2.17), we get

0 = n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

− n−1
1

∑
i∈I1

ŵn(Zi)φ̂θ,n2(Zi, θ̃n)φ̂θ,n2(Zi, θ̃n)′(θ̂n − θ0)

+ n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ̃n))φ̂θθ,n2(Zi, θ̃n)(θ̂n − θ0), (2.18)

where θ̃n is between θ̂n and θ0 and it may differ across rows. We next show that

n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0)

+ n−1
1 φwθ,n1Pn2,k(P

′
n2,kPn2,k)

−1
∑
i∈I2

Pk(Zi)εi

+ op(n
−1/2
1 + n

−1/2
2 ), (2.19)

and

n−1
1

∑
i∈I1

ŵn(Zi)φ̂θ,n2(Zi, θ̃n)′φ̂θ,n2(Zi, θ̃n) = H0,n + op(1), (2.20)

and

n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ̃n))φ̂θθ,n2(Zi, θ̃n) = op(1). (2.21)

By definition

n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1

∑
i∈I1

ŵn(Zi)uiφ̂θ,n2(Zi, θ0)

+ n−1
1

∑
i∈I1

ŵn(Zi)(φ(Zi, θ0)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0), (2.22)

which together with Assumption 2.4.2(iii) and Lemma 2.4.1 proves (2.19). (2.20) and (2.21) has

been proved in the proof of Theorem 2.3.2.

Therefore from (2.18), (2.19), (2.20) and (2.21), we have

(θ̂n − θ0) = n−1
1 H−1

0,n

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0)

+ n−1
1 H−1

0,nφwθ,n1Pn1,k(P
′
n2,kPn2,k)

−1
∑
i∈I2

Pk(Zi)εi

+ op(n
−1/2
1 + n−1

2 )
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We next show that

n−1
1

∑
i∈I1

ŵn(Zi)uiφ̂θ,n2(Zi, θ0) = n−1
1

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0) + op(n
−1/2
1 ) (2.23)

and

n−1
1

∑
i∈I1

ŵn(Zi)(φ(Zi, θ0)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= φwθ,n1Pn2,k(P
′
n2,kPn2,k)

−1
∑
i∈I2

Pk(Zi)εi + op(n
−1/2
1 + n

−1/2
2 ). (2.24)

n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0)

+ n−1
1

∑
i∈I1

(ŵn(Zi)− wn(Zi))uiφθ(Zi, θ0)

+ n−1
1

∑
i∈I1

ŵn(φ(Zi, θ0)− φ̂n2(Zi, θ0))φθ(Zi, θ0)

+ n−1
1

∑
i∈I1

ŵnφ̂n2(Zi, θ0)

n−1
1

∑
i∈I1

ŵn(Zi)(Yi − φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
1

∑
i∈I1

uiwn(Zi)φθ(Zi, θ0)

+ n−1
1

∑
i∈I1

wn(Zi)(φ(Zi, θ0)− φ̂n2(Zi, θ0))φθ(Zi, θ0)

Proof of Theorem 2.4.1. Define the empirical criterion function of the SNGLS estimation problem

as

L̂n1(θ) = n−1
1

∑
i∈I1

[
ŵn(Zi)

∣∣∣Yi − φ̂n2(Zi, θ)
∣∣∣2] for any θ ∈ Θ. (2.25)
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Define L∗n(θ) = E
[
wn(Z) |Y − φ(Z, θ)|2

]
. The conditional mean restriction E[u|Z] = 0 implies that

L∗n(θ) = E
[
wn(Z) |φ(Z, θ)− φ(Z, θ0)|2

]
+ E

[
wn(Z)u2

]
. (2.26)

By Assumptions 2.4.1(ii) and 2.4.1(vii), E
[
wn(Z)u2

]
≤ C for any n which together with Assumption

2.4.1(vi) implies that θ0 is uniquely identified as the minimizer of L∗n(θ). Hence, to prove the

consistency of θ̂n, it is sufficient to show that

sup
θ∈Θ

∣∣∣L̂n1(θ)− L∗n(θ)
∣∣∣ = op(1). (2.27)

Note that we can decompose Ln(θ) as

L̂n1(θ) = n−1
1

∑
i∈I1

ŵn(Zi)u
2
i

+ n−1
1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ0)|2

]
+ 2n−1

1

∑
i∈I1

ŵn(Zi)ui(φ̂n2(Zi, θ)− φ(Zi, θ0)). (2.28)

In the following, we show that

n−1
1

∑
i∈I1

ŵn(Zi)u
2
i − E

[
wn(Z)u2

]
= op(1), (2.29)

n−1
1

∑
i∈I1

ŵn(Zi)ui(φ̂n2(Zi, θ)− φ(Zi, θ0)) = op(1), (2.30)

and

n−1
1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ0)|2

]
−−E

[
wn(Z) |φ(Z, θ)− φ(Z, θ0)|2

]
= op(1) (2.31)

which together with (2.26) proves (2.27) and hence the claim of the theorem.

By the triangle inequality and Assumption 2.4.1(vii),

sup
z∈Z
|ŵn(z)| ≤ sup

z∈Z
|ŵn(z)− wn(z)|+ sup

z∈Z
|wn(z)| < 2C (2.32)

with probability approaching 1. By Assumptions 2.4.1(ii) and 2.4.1(v),∣∣∣∣∣∣n−1
1

∑
i∈I1

[
(ŵn(Zi)− wn(Zi))u

2
i

]∣∣∣∣∣∣
≤ sup

z∈Z
|ŵn(z)− wn(z)|n−1

1

∑
i∈I1

u2
i = op(1). (2.33)
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By Assumptions 2.4.1(i), 2.4.1(ii) and 2.4.1(v),

n−1
1

∑
i∈I1

[
wn(Zi)u

2
i − E

[
wn(Z)u2

]]
= op(1) (2.34)

which combined with (2.33) proves (2.29).

By Assumption 2.4.1(v) and (2.32)

n−1
1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ)|2

]
= op(1). (2.35)

Using similar arguments in proving (2.29) but replacing Assumption 2.4.1(ii) with Assumption

2.4.1(iv), we can show that

n−1
1

∑
i∈I1

[
ŵn(Zi)|φ(Zi, θ)− φ(Zi, θ0)|2

]
− E

[
wn(Z) |φ(Z, θ)− φ(Z, θ0)|2

]
= op(1), (2.36)

which together with Assumptions 2.4.1(iv) and 2.4.1(vii) implies that

n−1
1

∑
i∈I1

[
ŵn(Zi)|φ(Zi, θ)− φ(Zi, θ0)|2

]
= Op(1). (2.37)

By the Cauchy-Schwarz inequality,∣∣∣∣∣∣n−1
1

∑
i∈I1

[
ŵn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ))(φ(Zi, θ)− φ(Zi, θ0))

]∣∣∣∣∣∣
2

≤ n−1
1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ)|2

]
× n−1

1

∑
i∈I1

[
ŵn(Zi)|φ(Zi, θ)− φ(Zi, θ0)|2

]
= op(1) (2.38)

where the equality is by (2.35) and (2.37). Combining the results in (2.35), (2.36) and (2.38), we

deduce that

n−1
1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ0)|2

]
− E

[
wn(Z) |φ(Z, θ)− φ(Z, θ0)|2

]
= n−1

1

∑
i∈I1

[
ŵn(Zi)|φ̂n2(Zi, θ)− φ(Zi, θ)|2

]
− E

[
wn(Z) |φ(Z, θ)− φ(Z, θ0)|2

]
+ n−1

1

∑
i∈I1

[
ŵn(Zi)|φ(Zi, θ)− φ(Zi, θ0)|2

]
+ 2n−1

1

∑
i∈I1

[
ŵn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ))(φ(Zi, θ)− φ(Zi, θ0))

]
= op(1) (2.39)

which proves (2.31).
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By the Cauchy-Schwarz inequality,

n−1
1

∑
i∈I1

(φ̂n2(Zi, θ)− φ(Zi, θ0))2

≤ 2n−1
1

∑
i∈I1

(φ̂n2(Zi, θ)− φ(Zi, θ))
2

+ 2n−1
1

∑
i∈I1

(φ(Zi, θ)− φ(Zi, θ0))2 = Op(1) (2.40)

where the equality is by Assumptions 2.4.1(i), 2.4.1(iv) and 2.4.1(v). By the triangle inequality and

the Cauchy-Schwarz inequality,∣∣∣∣∣∣n−1
1

∑
i∈I1

(ŵn(Zi)− wn(Zi))ui(φ̂n2(Zi, θ)− φ(Zi, θ0))

∣∣∣∣∣∣
≤ sup

z∈Z
|ŵn(z)− wn(z)|

n−1
1

∑
i∈I1

u2
i

1/2

×

n−1
1

∑
i∈I1

(φ̂n2(Zi, θ)− φ(Zi, θ0))2

1/2

= op(1) (2.41)

where the equality is by Assumptions 2.4.1(i), 2.4.1(ii), 2.4.1(vii) and (2.40). By Assumption 2.4.1(i)

and the conditional restriction E[u|Z] = 0,

E

∣∣∣∣∣∣n−1
1

∑
i∈I1

uiwn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ0))

∣∣∣∣∣∣
2∣∣∣∣∣∣ I2, {Zi}i∈I1


= n−2

1

∑
i∈I1

E[u2
i |Zi](wn(Zi))

2(φ̂n2(Zi, θ)− φ(Zi, θ0))2

≤ Cn−2
1

∑
i∈I1

(φ̂n2(Zi, θ)− φ(Zi, θ0))2 = Op(n
−1
1 ) (2.42)

which together with the Markov inequality implies that

n−1
1

∑
i∈I1

uiwn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ0)) = op(1). (2.43)

Combining the results in (2.41) and (2.43) we proves (2.30). This finishes the proof of the theorem.
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Proof of Lemma 2.4.1. By Assumption 2.3.2.(i)

n−1
1

∑
i∈I1

ŵn(Zi)uiφ̂θ,n2(Zi, θ0)− n−1
1

∑
i∈I1

wn(Zi)uiφθ(Zi, θ0)

= n−1
1

∑
i∈I1

ui(ŵn(Zi)− wn(Zi))φ̂θ,n2(Zi, θ0)

+ n−1
1

∑
i∈I1

uiwn(Zi)(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))

= n−1
1

∑
i∈I1

uiwn(Zi)(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)) + op(n
−1/2
1 ). (2.44)

Therefore, it is sufficient to show that

n−1
1

∑
i∈I1

uiwn(Zi)(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)) = op(n
−1/2
1 ). (2.45)

By Assumption 2.4.1(i) and the conditional restriction E[u|Z] = 0,

E

∣∣∣∣∣∣n−1
1

∑
i∈I1

uiwn(Zi)(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))

∣∣∣∣∣∣
2∣∣∣∣∣∣ I2, {Zi}i∈I1


= n−2

1

∑
i∈I1

E[u2
i |Zi](wn(Zi))

2(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))2

≤ Cn−2
1

∑
i∈I1

(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))2 = op(n
−1
1 ) (2.46)

which together with the Markov inequality implies (2.45). This finishes the proof.

2.5 Optimal Weighting

In this section, we compare the MD estimators through their finite sample variances. The com-

parison leads to an optimal weight matrix which gives MD estimator with smallest finite sample

variance, as well as asymptotic variance, among all MD estimators. The following lemma simplifies

the finite sample variance-covariance matrix which facilitates the comparison of the MD estimators.

Lemma 2.5.1 Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.2(v) and 2.3.3(iv)-2.3.3(vi),

H−1
0,n(Σn1 + Σn2)H−1

0,n = Vn,θ(1 + op(1)).

where Vn,θ = H−1
0,nE

[
w2
n(Z)

(
n−1

1 σ2
u(Z) + n−1

2 σ2
ε(Z)

)
φθ(Z, θ0)φ′θ(Z, θ0)

]
H−1

0,n.

If the sequence of the weight function is set to be

w∗n(Z) = (n−1
1 + n−1

2 )(n−1
1 σ2

u(Z) + n−1
2 σ2

ε(Z))−1, (2.47)
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then the finite sample variance of the MD estimator becomes

V ∗n,θ =

(
E

[(
σ2
u(Z)

n1
+
σ2
ε(Z)

n2

)−1

φθ(Z, θ0)φ′θ(Z, θ0)

])−1

. (2.48)

The next lemma shows that V ∗θ is the smallest asymptotic variance-covariance of the MD estimator.

Theorem 2.5.1 For any sequence of weight functions wn(Z), we have Vn,θ ≥ V ∗n,θ for any n1 and

any n2.

We call the MD estimator whose finite sample variance-covariance matrix equals V ∗θ optimal

MD estimator. To ensure the optimal MD estimator is feasible, we have to: (i) show that C−1 <

w∗n(z) < C for any z ∈ Z and any n1, n2; and (ii) construct an empirical weight function ŵ∗n(z)

such that supz∈Z |ŵ∗n(z)− w∗n(z)| = Op(δw,n), where δw,n = O(n
−1/4
1 + n

−1/4
2 ). In the rest of this

section, we show that w∗n(z) is bounded from above and from below. Construction of the empirical

weight function ŵ∗n(·) is studied in the next section.

Lemma 2.5.2 Under Assumption 2.3.3(v), C−1 < w∗n(z) < C for any z ∈ Z and any n1, n2.

2.6 Estimation of the Variance and Optimal Weighting

The estimator of the variance-covariance matrix is constructed by its sample analog. Let ûi =

Yi − ĥn1(Zi) for any i ∈ I1, and ε̂i = g(Zi, θ̂n)− φ̂n2(Zi, θ̂n) for any i ∈ I2. Define

Ĥn = n−1
∑
i∈I

ŵn(Zi)φ̂θ,n2(Zi, θ̂n)φ̂θ,n2(Zi, θ̂n)′,

Σ̂n1 =
φ̂wθ,nPn,k1Q

−1
n1,k1

Q̂n1,uQ
−1
n1,k1

P ′n,k1 φ̂
′
wθ,n

n2n1
,

Σ̂n2 =
φ̂wθ,nPn,k2Q

−1
n2,k2

Q̂n2,εQ
−1
n2,k2

P ′n,k2 φ̂
′
wθ,n

n2n2
,

where φ̂wθ,n = (ŵn(Zi)φ̂θ,n2(Zi, θ̂n))i∈I , Q̂n1,u = n−1
1

∑
i∈I1 û

2
iPk1(Zi)P

′
k1

(Zi) and Q̂n2,ε = n−1
2

∑
i∈I2 ε̂

2
iPk2(Zi)P

′
k2

(Zi).

The variance estimator is defined as

V̂n = Ĥ−1
n (Σ̂n1 + Σ̂n1)Ĥ−1

n . (2.49)

The following conditions are needed to show the consistency of V̂n and the empirical optimal weight

function constructed later in this section.
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Assumption 2.6.1 (i) supθ∈Nn n
−1
2

∑
i∈I2 ‖gθ(Xi, θ)‖2 = Op(1); (ii) there exist βu,k ∈ Rk and

ru > 0 such that

sup
z∈Z

∣∣σ2
u(z)− Pk(z)′βu,k

∣∣ = O(k−ru); (2.50)

(iii) there exist βε,k ∈ Rk and rε > 0 such that

sup
z∈Z

∣∣σ2
ε(z)− Pk(z)′βε,k

∣∣ = O(k−rε); (2.51)

(iv) maxj=1,2(ξkjk
1/2
j n

−1/2
j + ξkjk

−rh
j ) = o(1); (v) E[‖gθ(X, θ0)‖4] ≤ C.

Assumption 2.6.1(i) requires that the sample average of ‖gθ(Xi, θ)‖ is stochastically bounded

uniformly over the local neighborhood of θ0. Assumptions 2.6.1(ii) and 2.6.1(iii) implies that the

conditional variances σ2
u(z) and σ2

ε(z) can be approximated by the basis functions Pk(z). Assump-

tion 2.6.1(iv) imposes restrictions on the numbers of basis functions and the smoothness of the

conditional variance functions. Assumption 2.6.1(v) imposes finite fourth moment on gθ(X, θ0).

Theorem 2.6.1 Suppose Assumptions 2.3.1, 2.3.2, 2.3.3, 2.6.1(i) and 2.6.1(iv) hold. If (k1 +

k2)δ2
w,n = o(1), then we have

Ĥ−1
n (Σ̂n1 + Σ̂n1)Ĥ−1

n = H−1
0,n(Σn1 + Σn2)H−1

0,n(1 + op(1) (2.52)

and moreover,

γ′n(Ĥn(Σ̂n1 + Σ̂n1)−1Ĥn)
1
2 (θ̂n − θ0)→d N(0, 1), (2.53)

for any non-random sequence γn ∈ Rdθ with γ′nγn = 1.

Remark 5.1. By the consistency of the Ĥn(Σ̂n1 + Σ̂n1)−1Ĥn and CMT,

(Ĥn(Σ̂n1 + Σ̂n1)−1Ĥ)1/2(θ̂n − θ0)→d N(0, Idθ),

which together with the CMT implies that

Wn(θ0) = (θ̂n − θ0)′(Ĥn(Σ̂n1 + Σ̂n1)−1Ĥ)(θ̂n − θ0)→d χ
2(dθ). (2.54)

Recall that ι∗j is the dθ × 1 selection vector whose j-th (j = 1, . . . , dθ) component is 1 and rest

components are 0. By the consistency of the Ĥn(Σ̂n1 + Σ̂n1)−1Ĥn, we have

ι∗′j Ĥn(Σ̂n1 + Σ̂n1)−1Ĥnι
∗
j = ι∗′j H

−1
0 (Σn1 + Σn2)H−1

0 ι∗j (1 + op(1)

which together with (2.13) and the CMT implies that

tj,n(θj,0) =
θ̂j,n − θj,0√

ι∗′j Ĥn(Σ̂n1 + Σ̂n1)−1Ĥι∗j

→d N(0, 1). (2.55)
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The Student-t statistic in (2.55) and the Wald-statistic in (2.54) can be applied to conduct inference

on θj,0 for j = 1, . . . , dθ and joint inference on θ0 respectively.

Remark 5.2. Theorem 2.6.1 can be applied to conduct inference on θ0 using the identity weighted

MD estimator θ̂1,n defined as

θ̂1,n = arg min
θ∈Θ

n−1
∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ))
2. (2.56)

As the identity weight function satisfies Assumption 2.3.2(v) and the condition (k1 +k2)δ2
w,n = o(1)

holds trivially, under Assumptions 2.3.1, 2.3.2(i)-(iv) and 2.3.3, Theorem 2.3.2 implies that

θ̂1,n − θ0 = Op(n
−1/2
1 + n

−1/2
2 ). (2.57)

The identity weighted MD estimator can be used to construct the empirical weight function which

enables us to construct the optimal MD estimator.

Let ûi = Yi − ĥn1(Zi) for any i ∈ I1, and ε̃i = g(Zi, θ̂1,n)− φ̂n2(Zi, θ̂1,n) for any i ∈ I2. Define

ŵ∗n(z) = (n−1
1 + n−1

2 )(n−1
1 σ̂2

n,u(z) + n−1
2 σ̂2

n,ε(z))
−1, (2.58)

where σ̂2
n,u(z) and σ̂2

n,ε(z) are the estimators of the conditional variances σ2
u(z) and σ2

ε(z):

σ̂2
n,u(z) = n−1

1 P ′k1(z)Q−1
n1,k1

P ′n1,k1Û2,n1 and σ̂2
n,ε(z) = n−1

2 P ′k2(z)Q−1
n2,k2

P ′n2,k2 ê2,n2 , (2.59)

where Û2,n1 = (û2
i )
′
i∈I1 and ê2,n2 = (ε̃2

i )
′
i∈I2 . The optimal MD estimator is defined as

θ̂∗n = arg min
θ∈Θ

n−1
∑
i∈I

ŵ∗n(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ))
2. (2.60)

To show the optimality of θ̂∗n, it is sufficient to show that ŵ∗n(Zi) satisfies the high level conditions in

Assumption 2.3.2(v). For this purpose, we first derive the convergence rates of σ̂2
n,u(z) and σ̂2

n,ε(z).

Lemma 2.6.1 Under Assumptions 2.3.1, 2.3.2(i)-(iv), 2.3.3 and 2.6.1, we have

sup
z∈Z

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣ = Op(ξk1(k

1/2
1 n

−1/2
1 + k−ru1 ) + ξ2

k1k
−2rh
1 ),

and

sup
z∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣ = Op(ξk2(k

1/2
2 n

−1/2
2 + k−rε2 ) + ξ2

k2(n−1
1 + k−2rh

2 )).

Remark 5.3. Under Assumption 2.6.1(iv) and

ξk1k
−ru
1 + ξk2k

−rε
2 + ξ2

k2n
−1
1 = o(1), (2.61)
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Lemma 2.6.1 implies that

sup
z∈Z

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣ = op(1) and sup

z∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣ = op(1), (2.62)

which means that σ̂2
n,u(z) and σ̂2

n,ε(z) are consistent estimators of σ2
u(z) and σ2

ε(z) under the uniform

metric.

Theorem 2.6.2 Under (2.61), Assumptions 2.3.1, 2.3.2(i)-(iv), 2.3.3 and 2.6.1, we have

sup
z∈Z
|ŵ∗n(z)− w∗(z)| = Op(δw,n)

where δw,n = maxj=1,2(ξkjk
1/2
j n

−1/2
j + ξ2

kj
k−2rh
j ) + ξk1k

−ru
1 + ξk2k

−rε
2 + ξ2

k2
n−1

1 .

Remark 5.4. When the power series are used as the basis functions Pk(z), we have ξkj ≤ Ckj .

Then the convergence rate of δw,n is simplified as

δw,n = max
j=1,2

(k
3/2
j n

−1/2
j + k2−2rh

j ) + k1−ru
1 + k1−rε

2 + k2
2n
−1
1 .

Hence in this case δw,n = o(1), if maxj=1,2 k
3
jn
−1
j + k2

2n
−1
1 = o(1), rh > 1, ru > 1 and rε > 1. The

condition δw,n = O(n
−1/4
1 + n

−1/4
2 ) hold when

max
j=1,2

k6
jn
−1
j + k

8/3
2 n−1

1 = O(1) and max
j=1,2

n
1/4
j k2−2rh

j + n
1/4
1 k1−ru

1 + n
1/4
2 k1−rε

2 = O(1). (2.63)

Moreover, (k1 + k2)δ2
w,n = o(1) holds under (2.63) and k2

2n
−1
1 = o(1).

Remark 5.5. When the splines or trigonometric functions are used as the basis functions Pk(z),

we have ξkj ≤ Ck
1/2
j . Then the convergence rate of δw,n is simplified as

δw,n = max
j=1,2

(kjn
−1/2
j + k1−2rh

j ) + k
1/2−ru
1 + k

1/2−rε
2 + k2n

−1
1 .

Hence in this case δw,n = o(1), if maxj=1,2 k
2
jn
−1
j + k2

2n
−1
1 = o(1), rh > 1/2, ru > 1/2 and rε > 1/2.

The condition δw,n = O(n
−1/4
1 + n

−1/4
2 ) hold when

max
j=1,2

k4
jn
−1
j + k

8/3
2 n−1

1 = O(1) and max
j=1,2

n
1/4
j k1−2rh

j + n
1/4
1 k1−ru

1 + n
1/4
2 k1−rε

2 = O(1). (2.64)

Moreover, (k1 + k2)δ2
w,n = o(1) holds under (2.64) and k2

2n
−1
1 = o(1).
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2.7 Monte Carlo Simulation

In this section, we study the finite sample performances of the MD estimator and the proposed

inference method. The simulated data is from the following model

Yi = g(Xi, θ0) + vi, (2.65)

where Yi, Xi and vi are scale random variables, g(Xi, θ0) is a function specified in the following

g(Xi, θ0) =

 Xiθ0 in Model 1

log(1 +X2
i θ0), in Model 2

, (2.66)

where θ0 = 1 is the unknown parameter.

To generate the simulated data, we first generate (X∗1,i, X
∗
2,i, vi)

′ from joint normal distribution

with mean zero and identity variance-covariance matrix. Let

Zi = X∗2,i(1 +X∗22,i)
−1/2 and Xi = Zi +X∗1,i log(Z2

i ). (2.67)

We assume that (Yi, Zi) are observed together and (Xi, Zi) are observed together. We generate the

first data set {(Yi, Zi)}i∈I1 with sample size n1, and then independently generate the second data

set {(Xi, Zi)}i∈I2 with sample size n2. As the both the magnitudes of n1, n2 and their relative

magnitude are important to the finite sample properties of the MD estimator, we consider two

sampling schemes (i.e., equal sampling and unequal sampling) separately. In the first scheme (equal

sampling), n1 = n2 = n0 where n0 starts from 50 with increment 50 and ends at 1000. In the second

scheme (unequal sampling), n1 + n2 = 1000 where n1 starts from 100 with increment 50 and ends

at 900. For each combination of n1 and n2, we generate 10000 simulated samples to evaluate the

performances of the MD estimator and the proposed inference procedure.

In addition to the MD estimator, we also study two alternative estimators based on data impu-

tation. The first estimator (which is called X-imputed estimator in this section) is defined as

θ̂X,n = arg min
θ∈Θ

n−1
1

∑
i∈I1

(Yi − g(X̂i, θ))
2 (2.68)

where X̂i = n−1
2 P ′k2(Zi)Q

−1
n2,k2

∑
i∈I2 XiPk2(Zi) for any i ∈ I1 is the predicted value of Xi in the first

data set based on nonparametric regression. The second estimator (which is called the Y -imputed

estimator in this section) is defined as

θ̂Y,n = arg min
θ∈Θ

n−1
2

∑
i∈I2

(Ŷi − g(Xi, θ))
2 (2.69)

where Ŷi = n−1
1 P ′k1(Zi)Q

−1
n1,k1

∑
i∈I1 YiPk1(Zi) for any i ∈ I2 is the predicted value of Yi in the

second data set based on nonparametric regression. In the simulation studies, we set k1 = k2 = 5

110



and Pk1(Z) = Pk2(Z) = (1, Z, Z2, Z3, Z4). The minimization problem in the MD estimation and

the nonlinear regressions (in (2.68) and (2.69)) are solved by grid search with Θ = [0, 2] and equally

spaced grid points with grid length 0.001).

The finite sample properties of the identity weighted MD estimator (the green dashed line), the

optimal weighted MD estimator (the black solid line), the X-imputed estimator (the blue dotted

line) and the Y -imputed estimator (the red dash-dotted line) are provided in Figures 6.1 and 6.2.

In Figure 6.1, we see that the bias and variance of the two MD estimators converge to zero with

the growth of two sample sizes n1 and n2. The optimal weighted MD estimator has smaller bias

and smaller variance, and hence smaller RMSE than the identity weighted MD estimator. The

improvement of the optimal MD estimator over the identity weighted MD estimator is particularly

clear in model 1. The X-imputed estimator has almost the same finite sample bias and variance

as the identity weighted MD estimator in the linear model (i.e., model 1). But it has large and

non-convergent finite sample bias in model 2 which indicates that it is inconsistent in the general

nonlinear model. The Y -imputed estimator has large and non-convergent finite sample bias in both

model 1 and model 2 which shows that it is an inconsistent estimator in general. The finite sample

performances of the MD estimators under unequal sampling scheme are presented in Figure 6.2.

In this figure, we see that when n1 (or n2) is small, the finite sample bias and variance of the

MD estimators are large regardless how big n2 (or n1) is. This means that the main part in the

estimation error of MD estimator is from the component estimated by the small sample, which is

implied by Theorem 2.3.2.

The finite sample properties of the inference procedure based on the identity weighted MD

estimator and the optimal weighted MD estimator are provided in Figures 6.3 and 6.4. In Figure 6.3,

we see that the finite coverage probabilities of the confidence intervals based on the MD estimators

converge to the nominal level 0.9 with both n1 and n2 increase to 1000. In model 1, the coverage

probability of the confidence interval based on the optimal MD estimator is closer to the nominal

level than that based on the identity weighted MD estimator in all sample sizes we considered. In

model 2, the confidence interval based on the optimal MD estimator is slightly worse than that based

on the identity weighted MD estimator when the sample sizes n1 and n2 are small, and the coverage

probabilities of the two confidence intervals are identical and close to the nominal level when n1 and

n2 are larger than 250. In both model 1 and model 2, the average length of the confidence interval

of the optimal MD estimator is much smaller than that of the confidence interval of the identity

weighted MD estimator, which is because the optimal MD estimator has smaller variance. The

finite sample performances of the confidence intervals based on the MD estimators under unequal
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Figure 2.1: Figure 6.1. Properties of the MD and the Imputation Estimators ( n1 = n2)
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Figure 2.2: Figure 6.2. Properties of the MD and the Imputation Estimators ( n1 + n2 = 1000)
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Figure 2.3: Figure 6.3. Properties of the Confidence Intervals (n1 = n2)
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Figure 2.4: Figure 6.4. Properties of the Confidence Intervals (n1 + n2 = 1000)
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sampling scheme are presented in Figure 6.4. In this figure, we see that when n1 (or n2) is small,

the coverage probabilities of the confidence intervals of the two MD estimators are away from the

nominal level. The performance of the inference based on the identity weighted MD estimator is

poor in model 1 when the sample size n2 is small regardless the size of the other sample n1 is big

(close to 1000). From Figure 6.4, we also see that the average length of the confidence intervals of

the MD estimators is large when n1 or n2 is small.

2.8 Conclusion

This paper studies estimation and inference of nonlinear econometric models when the economic

variables of the models are contained in different data sets in practice. We provide a semiparametric

MD estimator based on conditional moment restriction with common conditioning variables which

are contained in different data sets. The MD estimator is show to be consistent and has asymptotic

normal distribution. We provide the specific form of optimal weight for the MD estimation, and

show that the optimal weighted MD estimator has the smallest asymptotic variance among all MD

estimators. Consistent estimator of the variance-covariance matrix of the MD estimator, and hence

inference procedure of the unknown parameter is also provided. The finite sample performances of

the MD estimator and the inference procedure are investigated in simulation studies.
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2.9 Appendix

2.9.1 Proof of the Main Results in Section 2.3

Proof of Theorem 2.3.1. Define the empirical criterion function of the MD estimation problem

as

L̂n(θ) = n−1
∑
i∈I

[
ŵn(Zi)

∣∣∣ĥn1(Zi)− φ̂n2(Zi, θ)
∣∣∣2] for any θ ∈ Θ. (2.70)

By Assumptions 2.3.2(iii) and 2.3.2(v),

inf
{θ∈Θ: ||θ−θ0||≥ε}

L∗n(θ) ≥ ηC,ε (2.71)

where ηC,ε = Cηε > 0 is a fixed constant which only depends on ε. (2.71) implies that θ0 is uniquely

identified as the minimizer of L∗n(θ). Hence, to prove the consistency of θ̂n, it is sufficient to show

that

sup
θ∈Θ

∣∣∣L̂n(θ)− L∗n(θ)
∣∣∣ = op(1). (2.72)

Note that we can decompose Ln(θ) as

L̂n(θ) = n−1
∑
i∈I

ŵn(Zi)(|ĥn1(Zi)− h0(Zi)|2 + |φ̂n2(Zi, θ)− φ(Zi, θ)|2 + |h0(Zi)− φ(Zi, θ)|2)

− 2n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− h0(Zi))(φ̂n2(Zi, θ)− φ(Zi, θ))

− 2n−1
∑
i∈I

ŵn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ))(h0(Zi)− φ(Zi, θ))

+ 2n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− h0(Zi))(h0(Zi)− φ(Zi, θ)). (2.73)

Using Assumption 2.3.1(i), one can use Rudelson’s law of large numbers for matrices (see, e.g.,

Lemma 6.2 in Belloni, et. al. (2015)) to get

Qn,kj −Qkj = Op(n
−1/2ξkj (log(kj))

1/2) and Qnj ,kj −Qkj = Op(n
−1/2
j ξkj (log(kj))

1/2) (2.74)

where Qn,kj = n−1
∑

i∈I Pkj (Zi)P
′
kj

(Zi), Qnj ,kj = n−1
1

∑
i∈Ij Pkj (Zi)P

′
kj

(Zi) and the convergence is

under the operator norm of matrix. By (2.74), Assumptions 2.3.1(iii) and 2.3.1(v),

C−1 ≤ λmin(Qn,kj ) ≤ λmax(Qn,kj ) ≤ C and C−1 ≤ λmin(Qnj ,kj ) ≤ λmax(Qnj ,kj ) ≤ C, (2.75)

with probability approaching 1. Under Assumption 2.3.1 and (2.75), (A.2) in the proof of Theorem

1 in Newey (1997) implies that∥∥∥β̂k1,n1 − βh,k1
∥∥∥2

= Op(k1n
−1
1 + k−2rh

1 ). (2.76)
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By the triangle inequality,

n−1
∑
i∈I

∣∣∣ĥn1(Zi)− h0(Zi)
∣∣∣2

≤ 2n−1
∑
i∈I

∣∣∣ĥn1(Zi)− h0,k1(Zi)
∣∣∣2 + 2n−1

∑
i∈I
|h0,k1(Zi)− h0(Zi)|2

≤ 2(β̂k1,n1 − βh,k1)′Qk1,n(β̂k1,n1 − βh,k1) + 2 sup
z∈Z
|h0,k1(z)− h0(z)|2

≤ 2λmax(Qk1,n)
∥∥∥β̂k1,n1 − βh,k1

∥∥∥2
+ 2 sup

z∈Z
|h0,k1(z)− h0(z)|2

= Op(k1n
−1
1 + k−2rh

1 ) = op(1) (2.77)

where the first equality is by Assumption 2.3.1(iv), (2.75) and (2.76), the second equality is by

Assumption 2.3.1(v).

By the triangle inequality and Assumption 2.3.2(v),

sup
z∈Z
|ŵn(z)| ≤ sup

z∈Z
|ŵn(z)− wn(z)|+ sup

z∈Z
|wn(z)| < 2C (2.78)

with probability approaching 1. By (2.77) and (2.78),

n−1
∑
i∈I

ŵn(Zi)
∣∣∣ĥn1(Zi)− h0(Zi)

∣∣∣2 ≤ sup
z∈Z
|ŵn(z)|

∑
i∈I

∣∣∣ĥn1(Zi)− h0(Zi)
∣∣∣2 = op(1). (2.79)

By (2.78) and Assumption 2.3.2(ii),

sup
θ∈Θ

n−1
∑
i∈I

ŵn(Zi)
∣∣∣φ̂n2(Zi, θ)− φ(Zi, θ)

∣∣∣2
≤ sup

z∈Z
|ŵn(z)| sup

θ∈Θ
n−1

∑
i∈I

∣∣∣φ̂n2(Zi, θ)− φ(Zi, θ)
∣∣∣2 = op(1). (2.80)

Using (2.77), (2.78), Assumption 2.3.2(ii) and the Cauchy-Schwarz inequality, we get

sup
θ∈Θ

∣∣∣∣∣n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− h0(Zi))(φ̂n2(Zi, θ)− φ(Zi, θ))

∣∣∣∣∣
≤ sup

z∈Z
|ŵn(z)|

√
n−1

∑
i∈I

∣∣∣ĥn1(Zi)− h0(Zi)
∣∣∣2√sup

θ∈Θ
n−1

∑
i∈I

∣∣∣φ̂n2(Zi, θ)− φ(Zi, θ)
∣∣∣2 = op(1). (2.81)

By Assumption 2.3.1(ii), E
[
h2

0(Z)
]
< C, which together with Assumption 2.3.2(i) implies that

sup
θ∈Θ

E
[
|h0(Z)− φ(Z, θ)|2

]
≤ 2E

[
h2

0(Z)
]

+ 2 sup
θ∈Θ

E
[
φ2(Z, θ)

]
< C. (2.82)
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By (2.82), Assumptions 2.3.2.(iv) and 2.3.2.(v),

sup
θ∈Θ

n−1
∑
i∈I
|h0(Zi)− φ(Zi, θ)|2

≤ C sup
θ∈Θ

n−1
∑
i∈I

wn(Zi) |h0(Zi)− φ(Zi, θ)|2

≤ (C + op(1)) sup
θ∈Θ

E
[
wn(Zi) |h0(Zi)− φ(Zi, θ)|2

]
≤ (C + op(1)) sup

θ∈Θ
E
[
|h0(Zi)− φ(Zi, θ)|2

]
= Op(1). (2.83)

Using (2.78), (2.83), Assumptions 2.3.2(ii) and (iv), and the Cauchy-Schwarz inequality, we get

sup
θ∈Θ

∣∣∣∣∣n−1
∑
i∈I

ŵn(Zi)(φ̂n2(Zi, θ)− φ(Zi, θ))(h0(Zi)− φ(Zi, θ))

∣∣∣∣∣
≤ sup

z∈Z
|ŵn(z)| sup

θ∈Θ

√
n−1

∑
i∈I
|h0(Zi)− φ(Zi, θ)|2

√
n−1

∑
i∈I

∣∣∣φ̂n2(Zi, θ)− φ(Zi, θ)
∣∣∣2 = op(1). (2.84)

Similarly, using (2.78), (2.77), (2.83), Assumptions 2.3.2(iv) and the Cauchy-Schwarz inequality, we

get

sup
θ∈Θ

∣∣∣∣∣n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− h0(Zi))(h0(Zi)− φ(Zi, θ))

∣∣∣∣∣ = op(1). (2.85)

Collecting the results in (2.73), (2.79), (2.80), (2.81), (2.84) and (2.85), we get

sup
θ∈Θ

Ln(θ) = sup
θ∈Θ

n−1
∑
i∈I

ŵn(Zi) |h0(Zi)− φ(Zi, θ)|2 + op(1). (2.86)

By (2.83) and Assumption 2.3.2(v),

sup
θ∈Θ

∣∣∣∣∣n−1
∑
i∈I

(ŵn(Zi)− wn(Zi)) |h0(Zi)− φ(Zi, θ)|2
∣∣∣∣∣

≤ sup
z∈Z
|ŵn(z)− wn(z)| sup

θ∈Θ
n−1

∑
i∈I
|h0(Zi)− φ(Zi, θ)|2 = op(1) (2.87)

which together with (2.86) and Assumption 2.3.2(iv),

sup
θ∈Θ

∣∣∣L̂n(θ)− L∗n(θ)
∣∣∣ = sup

θ∈Θ
|Ln(θ)− L∗n(θ)|+ op(1) = op(1). (2.88)

This proves (2.72) and hence the claim of the theorem.

Lemma 2.9.1 By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v) and 2.3.3(i), we have

sup
θ∈Nδn

n−1
∑
i∈I

∥∥∥φ̂θθ,n2(Zi, θ)
∥∥∥2

= Op(1).
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Proof of Lemma 2.9.1. By definition,

φ̂θθ,n2(z, θ) = n−1
2 Pk2(z)′Q−1

n2,k2

∑
i∈I

Pk2(Zi)gθθ(Xi, θ).

Let gθj1θj2 (Xi, θ) denote the (j1, j2)-th component of gθθ(Xi, θ), for any j1 = 1, . . . , dθ and any

j2 = 1, . . . , dθ. Let

φ̂θj1θj2 ,n2(z, θ) = n−1
2 P ′k2(z)Q−1

n2,k2
P ′n2,k2gθj1θj2 ,n2(θ),

where gθj1θj2 ,n2(θ) = (gθj1θj2 (Xi, θ))
′
i∈I2 . Then by definition,

n−1
∑
i∈I

φ̂2
θj1θj2 ,n2

(Zi, θ) = gθj1θj2 ,n2(θ)′Pn2,k2Q
−1
n2,k2

Qn,k2Q
−1
n2,k2

P ′n2,k2gθj1θj2 ,n2(θ)

≤
λmax(Qn,k2)

λmin(Qn1,k2)

gθj1θj2 ,n2(θ)′Pn2,k2(P ′n2,k2
Pn2,k2)−1P ′n2,k2

gθj1θj2 ,n2(θ)

n2

≤
λmax(Qn,k2)

λmin(Qn1,k2)
n−1

2

∑
i∈I2

(gθj1θj2 (Xi, θ))
2

which together with (2.75) (which holds under Assumptions 2.3.1(i), 2.3.1(iii) and 2.3.1(v)), and

Assumption 2.3.3(i) implies that

sup
θ∈Nδn

n−1
∑
i∈I

φ̂2
θj1θj2 ,n2

(Zi, θ) ≤
λmax(Qn,k2)

λmin(Qn1,k2)
sup
θ∈Nδn

n−1
2

∑
i∈I2

(gθj1θj2 (Xi, θ))
2 = Op(1)

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ. This finishes the proof.

Lemma 2.9.2 By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(iv), 2.3.1(v), 2.3.3(v) and 2.3.3(vii), we

have

n−1
∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ0))2 = op(n
−1/2
1 + n

−1/2
2 ).

Proof of Lemma 2.9.2. By (2.77) (which holds under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(iv)

and 2.3.1(v)),

n−1
∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ0))2

≤ 2n−1
∑
i∈I

(ĥn1(Zi)− h0(Zi))
2 + 2n−1

∑
i∈I

(φ̂n2(Zi, θ0)− h0(Zi))
2

= 2n−1
∑
i∈I

(φ̂n2(Zi, θ0)− h0(Zi))
2 +Op(k1n

−1
1 + k−2rh

1 ). (2.89)

Let β̂φ,n2 = (P ′n2,k2
Pn2,k2)−1P ′n2,k2

gn2(θ0), where gn2(θ0) = (g(Xi, θ0))′i∈I2 . Then∥∥∥β̂φ,n2 − βh,k2
∥∥∥2

= (gn2(θ0)−Hn2,k2)′Pn2,k2(P ′n2,k2Pn2,k2)−2P ′n2,k2(gn2(θ0)−Hn2,k2)

≤
(gn2(θ0)−Hn2,k2)′Pn2,k2(P ′n2,k2

Pn2,k2)−1P ′n2,k2
(gn2(θ0)−Hn2,k2)

n2λmin(Qn2,k2)
, (2.90)
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where Hn2,k2 = (h0,k2(Zi))
′
i∈I2 . By Assumptions 2.3.1(iv),

n−1
2 (Hn2 −Hn2,k2)′Pn2,k2(P ′n2,k2Pn2,k2)−1P ′n2,k2(Hn2 −Hn2,k2)

≤ n−1
2 (Hn2 −Hn2,k2)′(Hn2 −Hn2,k2) = O(k−2rh

2 ), (2.91)

where Hn2 = (h0(Zi))
′
i∈I2 . By Assumptions 2.3.1(i), 2.3.1(iii) and 2.3.3(v),

E
[
n−1

2 (gn2(θ0)−Hn2)′Pn2,k2(P ′n2,k2Pn2,k2)−1P ′n2,k2(gn2(θ0)−Hn2)
∣∣ {Zi}i∈I2]

= n−1
2 tr

(
(P ′n2,k2Pn2,k2)−1P ′n2,k2E

[
(gn2(θ0)−Hn2)(gn2(θ0)−Hn2)′

∣∣ {Zi}i∈I2]Pn2,k2

)
≤ sup

z∈Z
σ2
ε(z)k2n

−1
2 = O(k2n

−1
2 )

which together with the Markov inequality implies that

n−1
2 (gn2(θ0)−Hn2)′Pn2,k2(P ′n2,k2Pn2,k2)−1P ′n2,k2(gn2(θ0)−Hn2) = Op(k2n

−1
2 ). (2.92)

Combining the results in (2.90), (2.91) and (2.92), and then applying (2.75), we get∥∥∥β̂φ,n2 − βh,k2
∥∥∥2

= Op(k2n
−1
2 + k−2rh

2 ). (2.93)

By (2.75) and (2.93)

n−1
∑
i∈I

(φ̂n2(Zi, θ0)− h0,k2(Zi))
2

= (β̂φ,n2 − βh,k2)′Qn,k2(β̂φ,n2 − βh,k2)

≤ λmax(Qn,k2)
∥∥∥β̂φ,n2 − βh,k2

∥∥∥2
= Op(k2n

−1
2 + k−2rh

2 ) (2.94)

which together with (2.89) and Assumption 2.3.3(vii) proves the claim of the lemma.

Lemma 2.9.3 Under Assumptions 2.3.1(i), 2.3.2(v), 2.3.3(iv) and 2.3.3(vi), we have

n−1φwθ,nPn,k1(P ′n,k1Pn,k1)−1P ′n,k1φ
′
wθ,n = E

[
w2
n(Z)φθ(Z, θ0)φ′θ(Z, θ0)

]
+ op(1).

Proof of Lemma 2.9.3. For j = 1, . . . , dθ, let φwθj ,k1,n(z, θ0) = P ′k(z)βwφj ,k1 , φwθj ,k1,n =

(φwθj ,k1,n(Zi, θ0))i∈I and φwθ,k1,n = (φ′wθj ,k1,n)′j=1,...,dθ
. For ease of notations, we define Mk1,n =

Pn,k1(P ′n,k1Pn,k1)−1P ′n,k1 .

By definition,

φwθ,nMk1,nφ
′
wθ,n = φwθ,k1,nMk1,nφ

′
wθ,k1,n + (φwθ,n − φwθ,k1,n)Mk1,n (φwθ,n − φwθ,k1,n)′

+ (φwθ,n − φwθ,k1,n)Mk1,nφ
′
wθ,k1,n + φwθ,k1,nMk1,n (φwθ,n − φwθ,k1,n)′ . (2.95)
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For any j = 1, . . . , dθ, let φwθj ,n denote the j-th row of φwθ,n. By the Cauchy-Schwarz inequality,

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ,∣∣∣n−1(φwθj1 ,n − φwθj ,k1,n)Mk1,n(φwθj2 ,n − φwθj2 ,k1,n)′
∣∣∣2

≤ n−1(φwθj1 ,n − φwθj ,k1,n)Mk1,n(φwθj1 ,n − φwθj ,k1,n)′

× n−1(φwθj2 ,n − φwθj2 ,k1,n)Mk1,n(φwθj2 ,n − φwθj2 ,k1,n)′

≤ n−1
∑
i∈I

∣∣∣wn(Zi)φθj1 (Zi, θ0)− φwθj1 ,k1(Zi, θ0)
∣∣∣2

× n−1
∑
i∈I

∣∣∣wn(Zi)φθj2 (Zi, θ0)− φwθj2 ,k1(Zi, θ0)
∣∣∣2 = o(1) (2.96)

where the last equality is by Assumption 2.3.3(vi), and the fact thatMk1,n is an idempotent matrix.

(2.96) then implies that

n−1 (φwθ,n − φwθ,k1,n)Mk1,n (φwθ,n − φwθ,k1,n) = o(1). (2.97)

For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, by definition we can write

n−1φwθj1 ,k1,nMk1,nφ
′
wθj2 ,k1,n

= n−1β′wφj1 ,k
P ′n,k1Pn,k1(P ′n,k1Pn,k1)−1P ′n,k1φ

′
wθj2 ,k1,n

= n−1
∑
i∈I

φwθj1 ,k1,n(Zi, θ0)φwθj2 ,k1,n(Zi, θ0)

= n−1
∑
i∈I

w2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

+ n−1
∑
i∈I

(φwθj1 ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))φwθj2 ,k1,n(Zi, θ0)

+ n−1
∑
i∈I

wn(Zi)φθj1 (Zi, θ0)(φwθj2 ,k1(Zi, θ0)− wn(Zi)φθj2 (Zi, θ0)). (2.98)

By Assumptions 2.3.1(i), 2.3.2(v), 2.3.3(iv) and the Markov inequality, we have

n−1
∑
i∈I

w2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)− E

[
w2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

]
= Op(n

−1/2), (2.99)

where under Assumptions 2.3.2(v) and 2.3.3(iv)∣∣∣E [w2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

]∣∣∣ < C. (2.100)

By Assumption 2.3.3(vi),∣∣∣∣∣n−1
∑
i∈I

(φwθj1 ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))(φwθj2 ,k1,n(Zi, θ0)− wn(Zi)φθj2 (Zi, θ0))

∣∣∣∣∣
≤
(

max
j=1,...,dθ

sup
z∈Z
|φwθj ,k1,n(z, θ0)− wn(z)φθj (z, θ0)|

)2

= o(1), (2.101)
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which implies that

n−1
∑
i∈I

(φwθj ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))φwθj2 ,k1,n(Zi, θ0)

= n−1
∑
i∈I

(φwθj ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))wn(Zi)φθj2 (Zi, θ0) + op(1). (2.102)

By the Cauchy-Schwarz inequality,∣∣∣∣∣n−1
∑
i∈I

(φwθj ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))wn(Zi)φθj2 (Zi, θ0)

∣∣∣∣∣
2

≤ n−1
∑
i∈I

∣∣∣φwθj ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0)
∣∣∣2 n−1

∑
i∈I

w2
n(Zi)φ

2
θj2

(Zi, θ0) = op(1) (2.103)

where the equality is by Assumption 2.3.3(vi), (2.99) and (2.100). Combining the results in (2.102)

and (2.103), we get

n−1
∑
i∈I

(φwθj ,k1,n(Zi, θ0)− wn(Zi)φθj1 (Zi, θ0))φwθj2 ,k1,n(Zi, θ0) = op(1). (2.104)

Similarly, we can show that

n−1
∑
i∈I

wn(Zi)φθj1 (Zi, θ0)(φwθj2 ,k1,n(Zi, θ0)− wn(Zi)φθj2 (Zi, θ0)) = op(1). (2.105)

Collecting the results in (2.98), (2.99), (2.104) and (2.105), we have

n−1φwθj1 ,k1,nMk1,nφ
′
wθj2 ,k1,n

= E
[
w2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

]
+ op(1) (2.106)

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, which implies that

n−1φwθ,k1,nMk1,nφ
′
wθ,k1,n = E

[
w2
n(Zi)φθ(Zi, θ0)φ′θ(Zi, θ0)

]
+ op(1). (2.107)

By the Cauchy-Schwarz inequality, for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ,∣∣∣∣∣(φwθj1 ,n − φwθj1 ,k1,n)Mk1,nφ
′
wθj2 ,k1,n

n

∣∣∣∣∣
2

≤
(φwθj1 ,n − φwθj1 ,k1,n)Mk1,n(φwθj1 ,n − φwθj1 ,k1,n)′

n

φwθj2 ,k1,nMk1,nφ
′
wθj2 ,k1,n

n
= op(1) (2.108)

where the equality is by (2.96), (2.100) and (2.106). (2.108) then implies that

n−1 (φwθ,n − φwθ,k1,n)Mk1,nφ
′
wθ,k1,n = op(1) (2.109)

and similarly

n−1φwθ,k1,nMk1,n (φwθ,n − φwθ,k1,n)′ = op(1). (2.110)

Combining the results in (2.95), (2.97), (2.107), (2.109) and (2.110), we immediately get the claimed

result.
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Proof of Theorem 2.3.2. By the definition of θ̂n, we have the following first order condition

n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ̂n))φ̂θ,n2(Zi, θ̂n) = 0. (2.111)

Applying the first order expansion to (2.111), we get

0 = n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

− n−1
∑
i∈I

ŵn(Zi)φ̂θ,n2(Zi, θ̃n)φ̂θ,n2(Zi, θ̃n)′(θ̂n − θ0)

+ n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ̃n))φ̂θθ,n2(Zi, θ̃n)(θ̂n − θ0), (2.112)

where θ̃n is between θ̂n and θ0 and it may differ across rows.

For any j = 1, . . . , dθ, by the mean value expansion and the Cauchy-Schwarz inequality,∣∣∣φ̂θj ,n2(Zi, θ̃j,n)− φ̂θj ,n2(Zi, θ0)
∣∣∣ ≤ sup

θ∈Nδn

∥∥∥φ̂θjθ,n2(Zi, θ)
∥∥∥∥∥∥θ̃j,n − θ0

∥∥∥
which together with the triangle inequality and Lemma 2.9.1 implies that

n−1
∑
i∈I

(φ̂θj ,n2(Zi, θ̃j,n)− φ̂θj ,n2(Zi, θ0))2 ≤ sup
θ∈Nδn

n−1
∑
i∈I

∥∥∥φ̂θjθ,n2(Zi, θ)
∥∥∥2 ∥∥∥θ̃j,n − θ0

∥∥∥2
= op(1).

(2.113)

By Assumption 2.3.3(iii) and (2.113),

n−1
∑
i∈I

(φ̂θj ,n2(Zi, θ̃j,n)− φθj (Zi, θ0))2

≤ 2n−1
∑
i∈I

(φ̂θj ,n2(Ziθ̃j,n)− φ̂θj ,n2(Zi, θ0))2 + 2n−1
∑
i∈I

(φ̂θj ,n2(Zi, θ0)− φθj (Zi, θ0))2 = op(1).

(2.114)

By Assumption 2.3.3(iv) and the Markov inequality,

n−1
∑
i∈I

(φθj (Zi, θ0))2 = Op(1), (2.115)

which together with (2.114) implies that

n−1
∑
i∈I

(φ̂θj ,n2(Zi, θ̃n))2 = Op(1) (2.116)

for any j = 1, . . . , dθ. For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, we can use the triangle

inequality and the Cauchy-Schwarz inequality, Assumptions 2.3.2(v), (2.114), (2.115) and (2.116)
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to deduce that∣∣∣∣∣n−1
∑
i∈I

ŵn(Zi)φ̂θj1 ,n2(Zi, θ̃j1,n)φ̂θj2 ,n2(Zi, θ̃j2,n)− n−1
∑
i∈I

wn(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

∣∣∣∣∣
≤

∣∣∣∣∣n−1
∑
i∈I

(ŵn(Zi)− wn(Zi))φ̂θj1 ,n2(Zi, θ̃j1,n)φ̂θj2 ,n2(Zi, θ̃j2,n)

∣∣∣∣∣
+

∣∣∣∣∣n−1
∑
i∈I

wn(Zi)(φ̂θj1 ,n2(Zi, θ̃j1,n)− φθj1 (Zi, θ0))φ̂θj2 ,n2(Zi, θ0)

∣∣∣∣∣
+

∣∣∣∣∣n−1
∑
i∈I

wn(Zi)φθj1 (Zi, θ0)(φ̂θj2 ,n2(Zi, θ̃j2,n)− φθj2 (Zi, θ0))

∣∣∣∣∣ = op(1). (2.117)

Under Assumptions 2.3.1(i), 2.3.2(v) and 2.3.3(iv), we can the Markov inequality to deduce that

n−1
∑
i∈I

wn(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0) = E
[
wn(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

]
+ op(1) (2.118)

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ. Collecting the results in (2.117) and (2.118), we get

n−1
∑
i∈I

ŵn(Zi)φ̂θ,n2(Zi, θ̃n)φ̂θ,n2(Zi, θ̃n)′ = H0 + op(1). (2.119)

By the second order Taylor expansion and the triangle inequality and the Cauchy-Schwarz

inequality,

n−1
∑
i∈I

∣∣∣φ(Zi, θ̃j,n)− φ(Zi, θ0)
∣∣∣2

≤ 2n−1
∑
i∈I
‖φθ(Zi, θ0)‖2 ||θ̃j,n − θ0||2

+ 2−1 sup
θ∈Nδn

n−1
∑
i∈I
‖φθθ(Zi, θ)‖2 ||θ̃j,n − θ0||4 = op(1) (2.120)

where the equality is by (2.115), Lemma 2.9.1 and ||θ̃j,n− θ0|| = op(1) for any j = 1, . . . , dθ. (2.120)

together with Assumptions 2.3.2(ii) then implies that

n−1
∑
i∈I

∣∣∣φ̂n2(Zi, θ̃j,n)− φ(Zi, θ0)
∣∣∣2

≤ 2n−1
∑
i∈I

∣∣∣φ̂n2(Zi, θ̃j,n)− φ(Zi, θ̃n)
∣∣∣2 + 2n−1

∑
i∈I

∣∣∣φ(Zi, θ̃j,n)− φ(Zi, θ0)
∣∣∣2 = op(1) (2.121)

for any j = 1, . . . , dθ. By the Cauchy-Schwarz inequality,∥∥∥∥∥n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ̃n))φ̂θθ,n2(Zi, θ̃n)

∥∥∥∥∥
≤ sup

z
|ŵn(z)|

√
max

j=1,...,dθ
n−1

∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ̃j,n))2

√
max

j=1,...,dθ
n−1

∑
i∈I

∥∥∥φ̂θθ,n2(Zi, θ̃j,n)
∥∥∥2

≤ 2 sup
z
|ŵn(z)|

√
max

j=1,...,dθ
n−1

∑
i∈I

∥∥∥φ̂θθ,n2(Zi, θ̃n)
∥∥∥2

×
√
n−1

∑
i∈I

∣∣∣ĥn1(Zi)− h0(Zi)
∣∣∣2 + max

j=1,...,dθ
n−1

∑
i∈I

∣∣∣φ̂n2(Zi, θ̃j,n)− φ(Zi, θ0)
∣∣∣2 = op(1) (2.122)
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where the last equality is by (2.77), (2.78), Lemma 2.9.1 and (2.121).

By definition,

n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φθ(Zi, θ0)

+ n−1
∑
i∈I

(ŵn(Zi)− wn(Zi))(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

+ n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)). (2.123)

By Assumptions 2.3.3(iv) and 2.3.3(v), and the Markov inequality

n−1
∑
i∈I
||φ̂θ,n2(Zi, θ0)||2 ≤ 2n−1

∑
i∈I
||φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)||2 + 2n−1

∑
i∈I
‖φθ(Zi, θ0)‖2 = Op(1).

(2.124)

By the triangle inequality and the Cauchy-Schwarz inequality, (2.124), Lemma 2.9.2, Assumptions

2.3.2(v) and 2.3.3(vii),∥∥∥∥∥n−1
∑
i∈I

(ŵn(Zi)− wn(Zi))(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

∥∥∥∥∥
≤ sup

z∈Z
|ŵn(z)− wn(z)|

√
n−1

∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ0))2

√
n−1

∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ0)
∥∥∥2

= op(n
−1/2
1 + n

−1/2
2 )

√
n−1

∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ0)
∥∥∥2

= op(n
−1/2
1 + n

−1/2
2 ). (2.125)

By the triangle inequality and the Cauchy-Schwarz inequality, Lemma 2.9.2, Assumptions 2.3.2(v),

2.3.3(iii) and 2.3.3(vii),∥∥∥∥∥n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))(φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0))

∥∥∥∥∥
≤ sup

z∈Z
|wn(z)|

√
n−1

∑
i∈I

(ĥn1(Zi)− φ̂n2(Zi, θ0))2

√
n−1

∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)
∥∥∥2

= op(n
−1/2
1 + n

−1/2
2 ). (2.126)
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Combining the results in (2.123), (2.125) and (2.126), we get

n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

= n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φθ(Zi, θ0) + op(n
−1/2
1 + n

−1/2
2 )

= n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− h0(Zi))φθ(Zi, θ0)

− n−1
∑
i∈I

wn(Zi)(φ̂n2(Zi, θ0)− h0(Zi))φθ(Zi, θ0) + op(n
−1/2
1 + n

−1/2
2 ). (2.127)

By the definition of ĥn1(Zi), we can write

n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− h0(Zi))φθ(Zi, θ0)

=
φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1P ′n1,k1
Un1

n

+
φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1P ′n1,k1
(Hn1 −Hn1,k1)

n
+
φwθ,n(Hn −Hn,k1)

n
. (2.128)

where Hn = (h0(Zi))
′
i∈I , Hn1 = (h0(Zi))

′
i∈I1 , Un1 = (ui)

′
i∈I1 , Hn,k1 = (h0,k1(Zi))

′
i∈I , Hn1,k1 =

(h0,k1(Zi))
′
i∈I1 and φwθ,n = (wn(Zi)φθ(Zi, θ0))i∈I . By the Cauchy-Schwarz inequality,∣∣∣φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1P ′n1,k1
(Hn1 −Hn1,k1)

∣∣∣2
n2

≤
φwθ,nPn,k1P

′
n,k1

φ′wθ,n
n2

(Hn1 −Hn1,k1)′Pn1,k1(P ′n1,k1Pn1,k1)−2P ′n1,k1(Hn1 −Hn1,k1)

≤
λmax(Qn,k1)

λmin(Qn1,k1)

φwθ,nPn,k1(P ′n,k1Pn,k1)−1P ′n,k1φ
′
wθ,n

n

×
(Hn1 −Hn1,k1)′Pn1,k1(P ′n1,k1

Pn1,k1)−1P ′n1,k1
(Hn1 −Hn1,k1)

n1

≤
supz∈Z

∣∣w2
n(z)

∣∣λmax(Qk1,n)

λmin(Qk1,n1)
n−1

∑
i∈I
‖φθ(Zi, θ0)‖2 × n−1

1

∑
i∈I1

|h0,k1(Zi)− h0(Zi)|2 = Op(k
−2rh
1 ),

(2.129)

where the last equality is by (2.75), (2.115), Assumptions 2.3.1(iv) and 2.3.2(v). By the triangle

inequality, ∥∥∥∥∥n−1
∑
i∈I

wn(Zi)(h0,k1(Zi)− h0(Zi))φθ(Zi, θ0)

∥∥∥∥∥
≤ sup

z∈Z
|wn(z)|n−1

∑
i∈I
‖(h0,k1(Zi)− h0(Zi))φθ(Zi, θ0)‖

≤ C supz |h0(z)− hk1(z)|
n

∑
i∈I
‖φθ(Zi, θ0)‖ = Op(k

−rh
1 ), (2.130)
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where the last equality is by (2.115), Assumptions 2.3.1(iv) and 2.3.2(v). Combining the results in

(2.128), (2.129) and (2.130), we get

n−1
∑
i∈I

wn(Zi)(ĥn1(Zi)− h0(Zi))φθ(Zi, θ0)

=
φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1

n

∑
i∈I1

uiPk1(Zi) +Op(k
−rh
1 ). (2.131)

By the definition of φ̂n2(Zi, θ0), we can write

n−1
∑
i∈I

wn(Zi)(φ̂n2(Zi, θ0)− h0(Zi))φθ(Zi, θ0)

=
φwθ,nPn,k2(P ′n2,k2

Pn2,k2)−1

n

∑
i∈I2

εiPk2(Zi)

+
φwθ,nPn,k2(P ′n2,k2

Pn2,k2)−1(Hn2 −Hn2,k2)

n
+
φwθ,n(Hn −Hn,k2)

n
(2.132)

where Hn2,k2 = (h0,k2(Zi))
′
i∈I2 and Hn,k2 = (h0,k2(Zi))i∈I . Using similar arguments in showing

(2.129) and (2.130), we get

φwθ,nPn,k2(P ′n2,k2
Pn2,k2)−1(Hn2 −Hn2,k2)

n
= Op(k

−rh
2 ) and

φwθ,n(Hn −Hn,k2)

n
= Op(k

−rh
2 ),

which together with (2.132) implies that

n−1
∑
i∈I

wn(Zi)(φ̂n2(Zi, θ0)− h0(Zi))φθ(Zi, θ0)

=
φwθ,nPn,k2(P ′n2,k2

Pn2,k2)−1

n

∑
i∈I2

εiPk2(Zi) +Op(k
−rh
2 ). (2.133)

By Assumption 2.3.3(v), C−1Qn1,k1 ≤ n1
∑

i∈I1 σ
2
u(Zi)Pk1(Zi)Pk1(Zi)

′ ≤ CQn1,k1 , which to-

gether with (2.75) implies that

C−1 < λmin(Qn1,u) ≤ λmax(Qn1,u) < C, (2.134)

with probability approaching 1. Similarly, we can show that

C−1 ≤ λmin(Qn2,ε) ≤ λmax(Qn2,ε) ≤ C (2.135)

with probability approaching 1.
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Under the i.i.d. assumption,

E

∣∣∣∣∣∣φwθ,nPn,k1(P ′n1,k1
Pn1,k1)−1

n

∑
i∈I1

uiPk1(Zi)

∣∣∣∣∣∣
2∣∣∣∣∣∣ {Zi}i∈I


=
φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1Qn1,u(P ′n1,k1
Pn1,k1)−1P ′n,k1φ

′
wθ,n

n2n−1
1

≤ Cλmax(Qn1,u)

λ2
min(Qk1,n1)

φwθ,nPn,k1P
′
n,k1

φ′wθ,n
n2n1

≤
λmax(Qn1,u)λmax(Qn,k1)

n1λ2
min(Qn1,k1)

φwθ,nPn,k1(P ′n,k1Pn,k1)−1P ′n,k1φ
′
wθ,n

n

≤ sup
z∈Z

∣∣w2
n(z)

∣∣ λmax(Qn1,u)λmax(Qn,k1)

n1λ2
min(Qn1,k1)

n−1
∑
i∈I
‖φθ(Zi, θ0)‖2 = Op(n

−1
1 ), (2.136)

where the last equality is by (2.134), (2.75), (2.115), Assumptions 2.3.2(v) and 2.3.3(iv). Combined

with the Markov inequality, (2.136) implies that

φwθ,nPn,k1(P ′n1,k1
Pn1,k1)−1

n

∑
i∈I1

uiPk1(Zi) = Op(n
−1/2
1 ). (2.137)

Similarly, we can show that

φwθ,nPn,k2(P ′n2,k2
Pn2,k2)−1

n

∑
i∈I2

εiPk2(Zi) = Op(n
−1/2
2 ). (2.138)

By (2.119) and (2.122),

n−1
∑
i∈I

ŵn(Zi)(φ̂θ,n2(Zi, θ̃n)φ̂′θ,n2
(Zi, θ̃n) + (ĥn1(Zi)− φ̂n2(Zi, θ̃n))φ̂θθ,n2(Zi, θ̃n)) = H0,n + op(1),

(2.139)

which together with (2.112) implies that

[H0,n + op(1)] (θ̂n − θ0) = −n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0). (2.140)

By (2.127), (2.131) and (2.133), and Assumption 2.3.3(vii),

n−1
∑
i∈I

ŵn(Zi)(ĥn1(Zi)− φ̂n2(Zi, θ0))φ̂θ,n2(Zi, θ0)

=
φwθ,nPn,k1(P ′n1,k1

Pn1,k1)−1

n

∑
i∈I1

uiPk1(Zi)

−
φwθ,nPn,k2(P ′n2,k2

Pn2,k2)−1

n

∑
i∈I2

εiPk2(Zi) + op(n
−1/2
1 + n

−1/2
2 ) (2.141)

which together with (2.137) and (2.138) implies that

1

n

∑
i∈I

[
ĥn1(Zi)− φ̂n2(Zi, θ0)

]
φ̂θ,n2(Zi, θ0) = Op(n

−1/2
1 + n

−1/2
2 ). (2.142)
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Using (2.140), (2.141) and (2.142), and then applying Assumption 2.3.3(ii), we get

(θ̂n − θ0) =
−H−1

0 φwθ,nPn,k1Q
−1
n1,k1

nn1

∑
i∈I1

uiPk1(Zi)

+
H−1

0 φwθ,nPn,k2Q
−1
n2,k2

nn2

∑
i∈I2

εiPk2(Zi) + op(n
−1/2
1 + n

−1/2
2 ), (2.143)

which together with Assumption 2.3.3(ii), (2.137) and (2.138) implies that θ̂n − θ0 = Op(n
−1/2
1 +

n
−1/2
2 ).

By Assumption 2.3.3(v), Qn1,u ≥ C−1Qn1,k1 which implies that

n1Σn1 =
φwθ,nPn,k1Q

−1
n1,k1

Qn1,uQ
−1
n1,k1

P ′n,k1φ
′
wθ,n

n2

≥
φwθ,nPn,k1Q

−1
n1,k1

P ′n,k1φwθ,n

Cn2n−1
1

≥
λmin(Qn,k1)

Cλmax(Qn1,k1)

φwθ,nPn,k1(P ′n,k1Pn,k1)−1P ′n,k1φwθ,n

n

≥
λmin(Qn,k1)

Cλmax(Qn1,k1)
H0,n + op(1) (2.144)

where the last equality is by (2.75), Assumption 2.3.2(v) and Lemma 2.9.3. Using (2.75), (2.144)

and Assumption 2.3.3(ii), we have

λmin(n1Σn1) ≥ C−1 (2.145)

with probability approaching 1. Similarly, we can show that

λmin(n2Σn2) ≥ C−1 (2.146)

with probability approaching 1. By (2.145),

λmax

(
(n−1

1 + n−1
2 )(Σn1 + Σn2)−1

)
≤ λ−1

min(n1Σn1) + λ−1
min(n2Σn2) ≤ 2C (2.147)

with probability approaching 1. Combining the results in (2.143), (2.147) and λmin(H0) > 0 in

Assumption 2.3.3(ii), we get

(H0,n(Σn1 + Σn2)−1H0,n)1/2(θ̂n − θ0)

=
−(H0,n(Σn1 + Σn2)−1H0,n)1/2H−1

0.nφwθ,nPn,k1Q
−1
n1,k1

nn1

∑
i∈I1

uiPk1(Zi)

+
(H0,n(Σn1 + Σn2)−1H0,n)1/2H−1

0.nφwθ,nPn,k2Q
−1
n2,k2

nn2

∑
i∈I2

εiPk2(Zi) + op(n
−1/2
1 + n

−1/2
2 ). (2.148)

Define

ωi,n =


−(H0,n(Σn1+Σn2 )−1H0,n)1/2H−1

0.nφwθ,nPn,k1Q
−1
n1,k1

Pk1 (Zi)ui

nn1
, 1 ≤ i ≤ n1

(H0,n(Σn1+Σn2 )−1H0,n)1/2H−1
0.nφwθ,nPn,k2Q

−1
n2,k2

Pk2 (Zi)εi

nn2
, n1 < i ≤ n

.
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Then by (2.143), we can write

(H0,n(Σn1 + Σn2)−1H0,n)1/2(θ̂n − θ0) =
n∑
i=1

ωi,n + op(n
−1/2
1 + n

−1/2
2 ). (2.149)

Let Fi,n be the sigma field generated by {ω1,n, . . . , ωi,n, {Zi}i∈I} for i = 1, . . . , n. Then under

Assumption 2.3.1(i), E [γ′nωi,n| Fi−1,n] = 0 which means that {γ′nωi,n}ni=1 is a martingale difference

array. We next use the Martingale CLT to show the claim. There are two sufficient conditions to

verify:

n∑
i=1

E
[
(γ′nωi,n)2

∣∣Fi,n]→p 1; and (2.150)

n∑
i=1

E
[
(γ′nωi,n)2I

{∣∣γ′nωi,n∣∣ > ε
}∣∣Fi,n]→p 0 for ∀ε > 0. (2.151)

For ease of notations, we define Dn = (H0,n(Σn1 + Σn2)−1H0,n)1/2H−1
0.n. By definition, we have

n∑
i=1

E
[
(γ′nωi,n)2

∣∣Fi,n] =
n∑
i=1

γ′nE
[
ωi,nω

′
i,n

∣∣Fi,n] γn
= γ′n

Dnφwθ,nPn,k1Q
−1
n1,k1

Qn1,uQ
−1
n1,k1

P ′n,k1φ
′
wθ,nD

′
n

n2n1
γn

+ γ′n
Dnφwθ,nPn,k2Q

−1
n2,k2

Qn2,εQ
−1
n2,k2

P ′n,k2φ
′
wθ,nD

′
n

n2n2
γn

= γ′nDn(Σn1 + Σn2)D′nγn = γ′nγn = 1 (2.152)

which proves (2.150). By the monotonicity of expectation,

n∑
i=1

E
[
(γ′nωi,n)2I

{∣∣γ′nωi,n∣∣ > ε
}∣∣Fi,n]

≤ 1

ε2

n∑
i=1

E
[
(γ′nωi,n)4

∣∣Fi,n]

=
1

ε2

∑
i∈I1

E


∣∣∣γ′nDnφwθ,nPn,k1Q

−1
n1,k1

Pk1(Zi)ui

∣∣∣4
n4n4

1

∣∣∣∣∣∣∣Fi,n


+
1

ε2

∑
i∈I2

E


∣∣∣γ′nDnφwθ,nPn,k2Q

−1
n2,k2

Pk2(Zi)εi

∣∣∣4
n4n4

2

∣∣∣∣∣∣∣Fi,n
 . (2.153)

By Assumptions 2.3.2(v) and 2.3.3(iv),

H0,n = E
[
wn(Zi)φθ(Zi, θ0)φ′θ(Zi, θ0)

]
≤ C. (2.154)

By (2.99) in the proof of Lemma 2.9.3,

n−1φwθ,nφ
′
wθ,n = E

[
w2
n(Zi)φθ(Zi, θ0)φ′θ(Zi, θ0)

]
+ op(1), (2.155)
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which together with (2.154), Assumptions 2.3.2(v) and 2.3.3(ii) implies that

C−1 < λmax(n−1φwθ,nφ
′
wθ,n) < C (2.156)

with probability approaching 1. By (2.145),

λmin(n1(Σn1 + Σn2)) ≥ λmin(n1Σn1) > C−1. (2.157)

For any γ ∈ Rdθ , we have

γ′DnD
′
nγ

n1
=
γ′(H0,n(Σn1 + Σn2)−1H0,n)1/2H−2

0,n(H0(Σn1 + Σn2)−1H0)1/2γ

n1

≤ 1

λ2
min(H0,n)

γ′H0,n(Σn1 + Σn2)−1H0,nγ

n1

≤
γ′H2

0,nγ

λ2
min(H0,n)λmin(n1(Σn1 + Σn2)

≤ λ2
max(H0,n)

λ2
min(H0,n)λmin(n1(Σn1 + Σn2)

, (2.158)

which combined with Assumption 2.3.3(ii), (2.154) and (2.157) implies that

λmax(n−1
1 DnD

′
n) ≤ C (2.159)

with probability approaching 1. By Assumption 2.6.1(v) and the Cauchy-Schwarz inequality,

1

ε2

∑
i∈I1

E


∣∣∣γ′nDnφwθ,nPn,k1Q

−1
n1,k1

Pk1(Zi)ui

∣∣∣4
n4n4

1

∣∣∣∣∣∣∣Fi,n


≤ C

ε2

∑
i∈I1

∣∣∣γ′nDnφwθ,nPn,k1Q
−1
n1,k1

Pk1(Zi)
∣∣∣4

n4n4
1

≤
Cξ2

k1
γ′nDnφwθ,nPn,k1Q

−2
n1,k1

P ′n,k1φ
′
wθ,nD

′
nγn

ε2

∑
i∈I1

∣∣∣γ′nDnφwθ,nPn,k1Q
−1
n1,k1

Pk1(Zi)
∣∣∣2

n4n4
1

≤
Cλmax(Qn,k1)

ε2λ2
min(Qn1,k1)

ξ2
k1

n2n4
1

γ′nDnφwθ,nφ
′
wθ,nD

′
nγn

n

∑
i∈I1

∣∣∣γ′nDnφwθ,nPn,k1Q
−1
n1,k1

Pk1(Zi)
∣∣∣2

=
Cλmax(Qn,k1)

ε2λ2
min(Qn1,k1)

ξ2
k1

n1

γ′nDnφwθ,nφ
′
wθ,nD

′
nγn

nn1

γ′nDnφwθ,nPn,k1Q
−1
n1,k1

P ′n,k1φ
′
wθ,nD

′
nγn

n2n1

≤
Cλ2

max(Qn,k1)

ε2λ3
min(Qn1,k1)

ξ2
k1

n1

∣∣∣∣∣γ′nDnφwθ,nφ
′
wθ,nD

′
nγn

nn1

∣∣∣∣∣
2

≤
Cλ2

max(Qn,k1)λ2
max(n−1φwθ,nφ

′
wθ,n)

ε2λ2
min(Qn1,k1)

ξ2
k1

n1

∣∣∣∣γ′nDnD
′
nγn

n1

∣∣∣∣2 = op(1), (2.160)

where the last equality is by (2.75), (2.156), (2.159) and Assumptions 2.3.1(v). Similarly, we can

show that

1

ε2

∑
i∈I2

E


∣∣∣γ′nDnφwθ,nPn,k2Q

−1
n2,k2

Pk2(Zi)εi

∣∣∣4
n4n4

2

∣∣∣∣∣∣∣Fi,n
 = op(1), (2.161)
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which together with (2.153) and (2.160) proves (2.151). As a result, the asymptotic normality of θ̂n

follows by the martingale CLT.

2.9.2 Proof of the Main Results in Section 2.5

Lemma 2.9.4 Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.2(v) and 2.3.3(iv)-2.3.3(vi),

we have

n1Σn1 = E
[
u2w2

n(Z)φθ(Z, θ0)φθ(Z, θ0)′
]

+ op(1),

and n2Σn2 = E
[
ε2w2

n(Z)φθ(Z, θ0)φθ(Z, θ0)′
]

+ op(1).

Proof of Lemma 2.9.4. For j = 1, . . . , dθ, let φ̃wθj ,k1,n(z) = Pk1(z)′Q−1
n1,k1

P ′n,k1φ
′
wθj ,n

where φwθj ,n

denotes the j-th row of φwθ,n. We first show that

n−1
∑
i∈I
|φ̃wθj ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0)|2 = op(1) (2.162)

for any j = 1, . . . , dθ. Let β̃wφj ,k1 = Q−1
n1,k1

P ′n,k1φ
′
wθj ,n

. Then

n−1
∑
i∈I
|φ̃wθj ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0)|2

≤ 2n−1
∑
i∈I
|P ′k1(Zi)β̃wφj ,k1 − P

′
k1(Zi)βwφj ,k1,n|

2

+ 2n−1
∑
i∈I
|P ′k1(Zi)βwφj ,k1,n − wn(Zi)φθ(Zi, θ0)|2

= (β̃wφj ,k1 − βwφj ,k1,n)′Qn,k1(β̃wφj ,k1 − βwφj ,k1,n) + o(1) (2.163)

where the equality is by Assumption 2.3.3(vi). Moreover

β̃wφj ,k1 − βwφj ,k1,n = Q−1
n1,k1

P ′n,k1(φwθj ,n − φwθj ,n,k1)′ (2.164)

where φwθj ,n,k1 = (P ′k1(Zi)βwφj ,k1,n)i∈I , which implies that

(β̃wφj ,k1 − βwφj ,k1,n)′Qn,k1(β̃wφj ,k1 − βwφj ,k1,n)

≤
λ2

max(Qn,k1)

nλ2
min(Qn1,k1)

(φwθj ,n − φwθj ,n,k1)Pn,k1(P ′n,k1Pn,k1)−1P ′n,k1(φwθj ,n − φwθj ,n,k1)′

≤
λ2

max(Qn,k1)

λ2
min(Qn1,k1)

n−1
∑
i∈I
|P ′k1(Zi)βwφj ,k1,n − wn(Zi)φθ(Zi, θ0)|2 = op(1) (2.165)

where the equality is by Assumption 2.3.3(vi) and (2.75). Combining the results in (2.163) and

(2.165), we immediately get (2.162).
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Recall that σ2
u(z) = E

[
u2
∣∣Z = z

]
. By definition

n1Σn1 = n−1
1

∑
i∈I1

σ2
u(Zi)φ̃wθ,k1(Zi)φ̃wθ,k1(Zi)

′ (2.166)

where φ̃wθ,k1,n(z) = (φ̃wθj ,k1,n(z))′j=1,...,dθ
. First note that

n−1
1

∑
i∈I1

σ2
u(Zi)φ̃wθ,k1,n(Zi)φ̃wθ,k1,n(Zi)

′ − n−1
1

∑
i∈I1

σ2
u(Zi)w

2
n(Zi)φθ(Zi, θ0)φθ(Zi, θ0)′

= n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))wn(Zi)φθ(Zi, θ0)′

+ n−1
1

∑
i∈I1

σ2
u(Zi)wn(Zi)φθ(Zi, θ0)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))′

+ n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))′. (2.167)

For any any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, by the Cauchy-Schwarz inequality∣∣∣∣∣∣n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθj1 ,k1,n(Zi)− wn(Zi)φθj1 (Zi, θ0))(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))

∣∣∣∣∣∣
2

≤ n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθj1 ,k1,n(Zi)− wn(Zi)φθj1 (Zi, θ0))2

× n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))2

≤ Cn−1
1

∑
i∈I1

(φ̃wθj1 ,k1,n(Zi)− wn(Zi)φθj1 (Zi, θ0))2

× n−1
1

∑
i∈I1

(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))2 = op(1) (2.168)

where the second inequality is by Assumption 2.3.3(v), the equality is by (2.162). (2.168) then

implies that

n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))′ = op(1). (2.169)

For any any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, by the Cauchy-Schwarz inequality∣∣∣∣∣∣n−1
1

∑
i∈I1

σ2
u(Zi)wn(Zi)φθj1 (Zi, θ0)(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))

∣∣∣∣∣∣
2

≤ n−1
1

∑
i∈I1

σ2
u(Zi)w

2
n(Zi)φ

2
θj1

(Zi, θ0)× n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))2

≤ Cn−1
1

∑
i∈I1

φ2
θj1

(Zi, θ0)× n−1
1

∑
i∈I1

(φ̃wθj2 ,k1,n(Zi)− wn(Zi)φθj2 (Zi, θ0))2 = op(1) (2.170)

where the second inequality is by Assumptions 2.3.2(v) and 2.3.3(v), the equality is by (2.162) and

(2.115). (2.170) implies that

n−1
1

∑
i∈I1

σ2
u(Zi)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))wn(Zi)φθ(Zi, θ0)′ = op(1) (2.171)
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and

n−1
1

∑
i∈I1

σ2
u(Zi)wn(Zi)φθ(Zi, θ0)(φ̃wθ,k1,n(Zi)− wn(Zi)φθ(Zi, θ0))′ = op(1). (2.172)

Combining the results in (2.167), (2.169), (2.171) and (2.172), we have

n−1
1

∑
i∈I1

σ2
u(Zi)φ̃wθ,k1,n(Zi)φ̃wθ,k1,n(Zi)

′ − n−1
1

∑
i∈I1

σ2
u(Zi)w

2
n(Zi)φθ(Zi, θ0)φθ(Zi, θ0)′ = op(1).

(2.173)

For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ,

E

[∣∣∣σ2
u(Zi)w

2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)

∣∣∣2]
≤ CE

[∣∣∣φθj1 (Zi, θ0)φθj2 (Zi, θ0)
∣∣∣2]

≤ CE
[
φ4
θj1

(Zi, θ0)
]
E
[
φ4
θj2

(Zi, θ0)
]
< C (2.174)

where the first inequality is by Assumptions 2.3.2(v) and 2.3.3(v), the second inequality is by the

Hölder inequality, and the last inequality is by Assumption 2.3.3(iv). The i.i.d. assumption together

with (2.174) and the Markov inequality implies that

n−1
1

∑
i∈I1

σ2
u(Zi)w

2
n(Zi)φθj1 (Zi, θ0)φθj2 (Zi, θ0)− E

[
σ2
u(Z)w2

n(Z)φθj1 (Z, θ0)φθj2 (Z, θ0)
]

= op(1).

(2.175)

Collecting the results in (2.173) and (2.175), we have

n1Σn1 = E
[
u2w2

n(Z)φθ(Z, θ0)φθ(Z, θ0)′
]

+ op(1) (2.176)

which proves the first claim of the lemma. The proof of the second claim of the lemma is similar

and hence omitted.

Proof of Lemma 2.5.1. By Lemma 2.9.4,

Σn1 + Σn2 = E

[
w2
n(Z)

(
σ2
u(Z)

n1
+
σ2
ε(Z)

n2

)
φθ(Z, θ0)φ′θ(Z, θ0)

]
+ op(n

−1
1 + n−1

2 ). (2.177)

By Assumptions 2.3.2(v), 2.3.3(ii) and 2.3.3(v),

E

[
w2
n(Z)

(
σ2
u(Z)

n1
+
σ2
ε(Z)

n2

)
φθ(Z, θ0)φ′θ(Z, θ0)

]
> C−1(n−1

1 + n−1
2 ) (2.178)

which together with (2.177) implies that

Σn1 + Σn2 = E

[
w2
n(Z)

(
σ2
u(Z)

n1
+
σ2
ε(Z)

n2

)
φθ(Z, θ0)φ′θ(Z, θ0)

]
(1 + op(1)). (2.179)

The claim of the lemma then follows by combining (2.179) and Assumption 2.3.3(ii).
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Proof of Theorem 2.5.1. Let w∗n(Z) = (n−1
1 + n−1

2 )(n−1
1 σ2

u(Z) + n−1
2 σ2

ε(Z))−1 and H∗0,n =

E [w∗n(Z)φθ(Z, θ0)φ′θ(Z, θ0)]. Then by definition

V ∗n,θ = (n−1
1 + n−1

2 )(H∗0,n)−1. (2.180)

For any wn(·), define

An(Z,wn) = H−1
0,nφθ(Z, θ0)wn(Z)−H∗−1

0,n φθ(Z, θ0)w∗n(Z). (2.181)

Then we have

Vn,θ − V ∗n,θ = E
[
An(Z,wn)Ωn(Z)An(Z,wn)′

]
≥ 0, (2.182)

for any n1 and any n2, where Ωn(Z) = n−1
1 σ2

u(Z) +n−1
2 σ2

ε(Z) and the inequality is by the fact that

Ωn(Z) ∈ (0,∞) and An(Z,wn)Ωn(Z)An(Z,wn)′ is a positive semidefinite matrix almost surely.

Proof of Lemma 2.5.2. By definition w∗n(z)−1 = (n−1
1 σ2

u(z) +n−1
2 σ2

ε(z))(n
−1
1 +n−1

2 )−1. Then for

any n1, n2,

min

{
inf
z∈Z

σ2
u(z), inf

z∈Z
σ2
ε(z)

}
≤ w∗n(z)−1 ≤ max

{
sup
z∈Z

σ2
u(z), sup

z∈Z
σ2
ε(z)

}
which together with Assumption 2.3.3(v) proves the claim of the lemma.

2.9.3 Proof of the Main Results in Section 2.6

Lemma 2.9.5 Under Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.6.1(i), we have

n−1
2

∑
i∈I2

∣∣∣φ̂n2(Zi, θ̂n)− φ(Zi, θ0)
∣∣∣2 = Op(n

−1
1 + k2n

−1
2 + k−2rh

2 ) (2.183)

and moreover,

sup
z∈Z

∣∣∣φ̂n2(z, θ̂n)− φ(z, θ0)
∣∣∣ = Op(ξk2n

−1/2
1 + ξk2k

1/2
2 n

−1/2
2 + ξk2k

−rh
2 ). (2.184)

Proof of Lemma 2.9.5. By definition,

φ̂n2(z, θ̂n) = P ′k2(z)(P ′k2,n2
Pk2,n2)−1P ′k2,n2

gn2(θ̂n);

φ̂n2(z, θ0) = P ′k2(z)(P ′k2,n2
Pk2,n2)−1P ′k2,n2

gn2(θ0),

where gn2(θ̂n) = (g(Zi, θ̂n))′i∈I2 and gn2(θ0) = (g(Zi, θ0))′i∈I2 . By the triangle inequality, for any z,∣∣∣φ̂n2(z, θ̂n)− φ(z, θ0)
∣∣∣ ≤ ∣∣∣φ̂n2(z, θ̂n)− φ̂n2(z, θ0)

∣∣∣
+
∣∣∣φ̂n2(z, θ0)− h0,k2(z)

∣∣∣+ |h0,k2(z)− h0(z)| . (2.185)
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By the mean value expansion and the Cauchy-Schwarz inequality,∣∣∣g(Xi, θ̂n)− g(Xi, θ0)
∣∣∣ ≤ sup

θ∈Nn
‖gθ(Xi, θ)‖

∥∥∥θ̂n − θ0

∥∥∥ (2.186)

which together with Assumption 2.6.1(i) and (2.9) in Theorem 2.3.2 implies that

n−1
2

∑
i∈I2

∣∣∣g(Zi, θ̂n)− g(Zi, θ0)
∣∣∣2 ≤ sup

θ∈Nn
n−1

2

∑
i∈I2

‖gθ(Xi, θ)‖2
∥∥∥θ̂n − θ0

∥∥∥2
= Op(n

−1
1 + n−1

2 ). (2.187)

Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(iv) and 2.3.3(v), we can use similar arguments in

proving (2.94) to show that

n−1
2

∑
i∈I2

(φ̂n2(Zi, θ0)− h0,k2(Zi))
2 = Op(k2n

−1
2 + k−2rh

2 ). (2.188)

Using (2.187), we get

n−1
2

∑
i∈I2

∣∣∣φ̂n2(Zi, θ̂n)− φ̂n2(Zi, θ0)
∣∣∣2

=
[gn2(θ̂n)− gn2(θ0)]′Pk2,n2(P ′k2,n2

Pk2,n2)−1P ′k2,n2
[gn2(θ̂n)− gn2(θ0)]

n2

≤ n−1
2

∑
i∈I2

∣∣∣g(Zi, θ̂n)− g(Zi, θ0)
∣∣∣2 = Op(n

−1
1 + n−1

2 ), (2.189)

which together with (2.185), (2.188) and Assumption 2.3.1(iv) implies that

n−1
2

∑
i∈I2

∣∣∣φ̂n2(Zi, θ̂n)− φ(Zi, θ0)
∣∣∣2 = Op(n

−1
1 + k2n

−1
2 + k−2rh

2 ). (2.190)

This proves the first claim of the lemma.

By (2.93) and the Cauchy-Schwarz inequality,

sup
z∈Z

∣∣∣φ̂n2(z, θ0)− h0,k2(z)
∣∣∣ = Op(ξk2k

1/2
2 n

−1/2
2 + ξk2k

−rh
2 ). (2.191)

Using (2.187), we get

sup
z∈Z

∣∣∣φ̂n2(z, θ̂n)− φ̂n2(z, θ0)
∣∣∣

≤ ξk2
∥∥∥[gn2(θ̂n)− gn2(θ0)]′Pk2,n2(P ′k2,n2

Pk2,n2)−1
∥∥∥

≤ ξk2

n−1
2

∑
i∈I2

∣∣∣g(Zi, θ̂n)− g(Zi, θ0)
∣∣∣2
1/2

= Op(ξk2n
−1/2
1 + ξk2n

−1/2
2 ) (2.192)

which together with (2.185), (2.191) and Assumption 2.3.1(iv) implies that

sup
z∈Z

∣∣∣φ̂n2(z, θ̂n)− φ(z, θ0)
∣∣∣ = Op(ξk2n

−1/2
1 + ξk2k

1/2
2 n

−1/2
2 + ξk2k

−rh
2 ). (2.193)

This proves the second claim of the lemma.
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Lemma 2.9.6 Under the conditions of Theorem 2.6.1, we have

(i) Ĥn = H0,n + op(1);

(ii) n−1(φ̂wθ,n − φwθ,n)′Pn,k1 = op(1);

(iii) n−1(φ̂wθ,n − φwθ,n)′Pn,k2 = op(1);

(iv) sup{γk∈Rk: γ′kγk=1}

[
γ′k(Q̂n1,u −Qn1,u)γk

]
= op(1);

(v) sup{γk∈Rk: γ′kγk=1}

[
γ′k(Q̂n2,ε −Qn2,ε)γk

]
= op(1).

Proof of Lemma 2.9.6. (i) The proof of the first claim follows by the consistency of θ̂n and similar

arguments in deriving (2.119). Hence it is omitted.

(ii) By definition,

n−1(φ̂wθ,n − φwθ,n)′Pn,k1 = n−1
∑
i∈I

(ŵn(Zi)− wn(Zi))φ̂θ,n2(Zi, θ̂n)Pk1(Zi)

+ n−1
∑
i∈I

wn(Zi)(φ̂θ,n2(Zi, θ̂n)− φθ(Zi, θ0))Pk1(Zi). (2.194)

By (2.9) in Theorem 2.3.2, Lemma 2.9.1 and similar arguments in showing (2.113),

n−1
∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)− φ̂θ,n2(Zi, θ0)
∥∥∥2

≤ sup
θ∈Nδn

n−1
∑
i∈I

∥∥∥φ̂θjθ,n2(Zi, θ)
∥∥∥2 ∥∥∥θ̂n − θ0

∥∥∥2
= Op(n

−1
1 + n−1

2 ), (2.195)

which together with Assumption 2.3.3(iii) implies that

n−1
∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)− φθ(Zi, θ0)
∥∥∥2

≤ 2n−1
∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)− φ̂θ,n2(Zi, θ0)
∥∥∥2

+ 2n−1
∑
i∈I
||φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)||2 = op(n

−1/2
1 + n

−1/2
2 ). (2.196)

By (2.75), (2.115), (2.196), Assumption 2.6.1(iv), and the Cauchy-Schwarz inequality,∥∥∥∥∥n−1
∑
i∈I

(ŵn(Zi)− wn(Zi))φ̂θ,n2(Zi, θ̂n)Pk1(Zi)

∥∥∥∥∥
2

≤ sup
z∈Z
|ŵn(z)− wn(z)|2

(
n−1

∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)
∥∥∥2
)
n−1

∑
i∈I
‖Pk1(Zi)‖2

= op(k1δ
2
w,n) = op(1), (2.197)
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where the n−1
∑

i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)
∥∥∥2

= Op(1) is used in the first equality which is by (2.115) and

(2.196). By Assumptions 2.3.2(v) and 2.3.3(vii), (2.196) and the Cauchy-Schwarz inequality,∥∥∥∥∥n−1
∑
i∈I

wn(Zi)(φ̂θ,n2(Zi, θ̂n)− φθ(Zi, θ0))Pk1(Zi)

∥∥∥∥∥
2

≤ sup
z∈Z
|wn(z)|n−1

∑
i∈I

∥∥∥φ̂θ,n2(Zi, θ̂n)− φθ(Zi, θ0)
∥∥∥2
n−1

∑
i∈I
‖Pk1(Zi)‖2 = op(1). (2.198)

Collecting the results in (2.194), (2.197) and (2.198), we immediately prove the second claim of the

lemma.

(iii) The proof of this result is similar to the arguments in the proof in (ii) and hence is omitted.

(iv) By definition,

Q̂n1,u −Qn1,u = n−1
1

∑
i∈I1

(Yi − ĥn1(Zi))
2Pk1(Zi)P

′
k1(Zi)−Qn1,u

= n−1
1

∑
i∈I1

(
u2
i − σ2

u(Zi)
)
Pk1(Zi)P

′
k1(Zi)

+ n−1
1

∑
i∈I1

(ĥn1(Zi)− h0(Zi))
2Pk1(Zi)P

′
k1(Zi)

− 2n−1
1

∑
i∈I1

(ĥn1(Zi)− h0(Zi))uiPk1(Zi)P
′
k1(Zi). (2.199)

By (2.75), Assumptions 2.3.1(i), 2.3.3(v),

E

∥∥∥∥∥∥n−1
1

∑
i∈I1

(
u2
i − σ2

u(Zi)
)
Pk1(Zi)P

′
k1(Zi)

∥∥∥∥∥∥
2∣∣∣∣∣∣ {Zi}i∈I1


= n−2

1

∑
i∈I1

E
[(
u2
i − σ2

u(Zi)
)2∣∣∣Zi] ∣∣P ′k1(Zi)Pk1(Zi)

∣∣2
≤ Cξ2

k1n
−2
1

∑
i∈I1

P ′k1(Zi)Pk1(Zi)

≤ Cλmax(Qk1,n1)ξ2
k1k1n

−1
1 = Op(ξ

2
k1k1n

−1
1 ), (2.200)

which together with the Markov inequality and Assumption 2.6.1(iv) implies that

n−1
1

∑
i∈I1

(
u2
i − σ2

u(Zi)
)
Pk1(Zi)P

′
k1(Zi) = op(1). (2.201)

Using Assumption 2.3.1(iv), (2.76), we get

sup
z∈Z

∣∣∣ĥn1(z)− h0(z)
∣∣∣ ≤ sup

z∈Z

∣∣∣ĥn1(z)− hk1(z)
∣∣∣+ sup

z∈Z
|h0,k1(z)− h0(z)|

≤ sup
z∈Z

∣∣∣(β̂k1,n1 − βh,k1)′Pk1(z)
∣∣∣+ sup

z∈Z
|h0,k1(z)− h0(z)|

≤
∥∥∥β̂k1,n1 − βh,k1

∥∥∥ ξk1 + sup
z∈Z
|h0,k1(z)− h0(z)|

= Op(ξk1k
1/2
1 n

−1/2
1 + ξk1k

−rh
1 ), (2.202)
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where the first inequality is by the triangle inequality, the second inequality is by the Cauchy-

Schwarz inequality. For any γk ∈ Rk with γ′kγk = 1, we have

sup
{γk∈Rk: γ′kγk=1}

n−1
1

∑
i∈I1

(ĥn1(Zi)− h0(Zi))
2γ′kPk1(Zi)P

′
k1(Zi)γk

≤ sup
z

∣∣∣ĥn1(z)− h0(z)
∣∣∣2 sup
{γk∈Rk: γ′kγk=1}

1

n1

∑
i∈I1

γ′kPk1(Zi)P
′
k1(Zi)γk

≤ sup
z

∣∣∣ĥn1(z)− h0(z)
∣∣∣2 λmax(Qk1,n1)

= Op(ξ
2
k1k1n

−1
1 + ξ2

k1k
−2rh
1 ) = op(1) (2.203)

where the first equality is by (2.75) and (2.202), the last equality is by Assumption 2.6.1(iv). By

the triangle inequality,

sup
{γk∈Rk: γ′kγk=1}

∥∥∥∥∥∥n−1
1

∑
i∈I1

(h0,k1(Zi)− h0(Zi))uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∥∥∥∥∥∥
≤

∥∥∥∥∥∥n−1
1

∑
i∈I1

(h0,k1(Zi)− h0(Zi))uiPk1(Zi)P
′
k1(Zi)

∥∥∥∥∥∥ . (2.204)

By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(iv) and 2.3.3(v),

E

∥∥∥∥∥∥n−1
1

∑
i∈I1

(h0,k1(Zi)− h0(Zi))uiPk1(Zi)P
′
k1(Zi)

∥∥∥∥∥∥
2

= n−1
1 E

∑
i∈I1

(h0,k1(Zi)− h0(Zi))
2u2
i

∣∣P ′k1(Zi)Pk1(Zi)
∣∣2

≤ Cn−1
1 sup

z∈Z
|h0,k1(z)− h0(z)|2 ξ2

k1E
[
P ′k1(Zi)Pk1(Zi)

]
= Op(ξ

2
k1k

1−2rh
1 n−1

1 ) (2.205)

which together with (2.204), Assumption 2.6.1(iv), and the Markov inequality implies that

sup
{γk∈Rk: γ′kγk=1}

∥∥∥∥∥∥n−1
1

∑
i∈I1

(h0,k1(Zi)− h0(Zi))uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∥∥∥∥∥∥ = op(1). (2.206)

By the Cauchy-Schwarz inequality,

sup
{γk∈Rk: γ′kγk=1}

∥∥∥∥∥∥n−1
1

∑
i∈I1

(ĥn1(Zi)− h0,k1(Zi))uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∥∥∥∥∥∥
2

≤
∥∥∥β̂k1,n1 − βh,k1

∥∥∥2
sup

{γk∈Rk: γ′kγk=1}

k1∑
j=1

∣∣∣∣∣∣n−1
1

∑
i∈I1

pj(Zi)uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∣∣∣∣∣∣
2

≤
∥∥∥β̂k1,n1 − βh,k1

∥∥∥2
k1∑
j=1

||n−1
1

∑
i∈I1

pj(Zi)uiPk1(Zi)P
′
k1(Zi)||2. (2.207)
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By Assumptions 2.3.1(i), 2.3.1(iii) and 2.3.3(v),

E

 k1∑
j=1

||n−1
1

∑
i∈I1

pj(Zi)uiPk1(Zi)P
′
k1(Zi)||2


=

k1∑
j=1

n−1
1 E

[
p2
j (Zi)u

2
i

∣∣P ′k1(Zi)Pk1(Zi)
∣∣2]

≤ Cn−1
1 ξ4

k1

k1∑
j=1

E
[
p2
j (Zi)

]
= O(ξ4

k1k1n
−1
1 ), (2.208)

which together with (2.76), (2.207), Assumption 2.6.1(iv), and the Markov inequality implies that

sup
{γk∈Rk: γ′kγk=1}

∥∥∥∥∥∥n−1
1

∑
i∈I1

(ĥn1(Zi)− h0,k1(Zi))uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∥∥∥∥∥∥
= Op(ξ

2
k1k

1/2
1 n

−1/2
1 (k

1/2
1 n

−1/2
1 + k−rh1 )) = op(1). (2.209)

Combining the results in (2.206), (2.209) and the triangle inequality, we get

sup
{γk∈Rk: γ′kγk=1}

∥∥∥∥∥∥n−1
1

∑
i∈I1

(ĥn1(Zi)− h0(Zi))uiγ
′
kPk1(Zi)P

′
k1(Zi)γk

∥∥∥∥∥∥ = op(1). (2.210)

Combining the results in (2.199), (2.201), (2.203) and (2.210), we prove the fourth claim of the

lemma.

(v) By definition,

Q̂n2,ε −Qn2,ε = n−1
2

∑
i∈I2

(
ε2
i − σ2

ε(Zi)
)
Pk2(Zi)P

′
k2(Zi)

+ 2n−1
2

∑
i∈I2

[
g(Xi, θ̂n)− φ̂(Zi, θ̂n)− g(Xi, θ0) + φ(Zi, θ0)

]
εiPk2(Zi)P

′
k2(Zi)

+ n−1
2

∑
i∈I2

[∣∣∣g(Xi, θ̂n)− φ̂(Zi, θ̂n)− g(Xi, θ0) + φ(Zi, θ0)
∣∣∣2]Pk2(Zi)P

′
k2(Zi). (2.211)

Using similar arguments in showing (2.201), we get

n−1
2

∑
i∈I2

(
ε2
i − E[ε2

i |Zi]
)
Pk2(Zi)P

′
k2(Zi) = Op(ξk2k

1/2
2 n

−1/2
2 ) = op(1). (2.212)

By the Cauchy-Schwarz inequality,

sup
{γk∈Rk: γ′kγk=1}

n−1
2

∑
i∈I2

(g(Xi, θ̂n)− g(Xi, θ0))2γ′kPk2(Zi)P
′
k2(Zi)γk

≤ ξ2
k2n
−1
2

∑
i∈I2

(g(Xi, θ̂n)− g(Xi, θ0))2 = Op(ξ
2
k2n
−1
1 + ξ2

k2n
−1
2 ) = op(1) (2.213)
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where the first equality is by (2.187), the second equality is by Assumption 2.6.1(iv). Similarly

sup
{γk∈Rk: γ′kγk=1}

n−1
2

∑
i∈I2

(φ̂(Zi, θ̂n)− φ(Zi, θ0))2γ′kPk2(Zi)P
′
k2(Zi)γk

≤ ξ2
k2n
−1
2

∑
i∈I2

(φ̂(Zi, θ̂n)− φ(Zi, θ0))2 = Op(ξ
2
k2k2n

−1
2 + ξ2

k2k
−2rh
2 ) = op(1) (2.214)

where the first equality is by (2.183), the second equality is by Assumption 2.6.1(iv). Collecting the

results in (2.213) and (2.214), we have

sup
{γk∈Rk: γ′kγk=1}

n−1
2

∑
i∈I2

[∣∣∣g(Xi, θ̂n)− φ̂(Zi, θ̂n)− g(Xi, θ0)− φ(Zi, θ0)
∣∣∣2] γ′kPk2(Zi)P

′
k2(Zi)γk

≤ sup
{γk∈Rk: γ′kγk=1}

2n−1
2

∑
i∈I2

[∣∣∣g(Xi, θ̂n)− g(Xi, θ0)
∣∣∣2] γ′kPk2(Zi)P

′
k2(Zi)γk

+ sup
{γk∈Rk: γ′kγk=1}

2n−1
2

∑
i∈I2

[∣∣∣φ̂(Zi, θ̂n)− φ(Zi, θ0)
∣∣∣2] γ′kPk2(Zi)P

′
k2(Zi)γk = op(1). (2.215)

Next, note that by the Cauchy-Schwarz inequality and the triangle inequality,∣∣∣∣∣∣n−1
2

∑
i∈I2

(g(Xi, θ̂n)− φ̂(Zi, θ̂n)− g(Xi, θ0)− φ(Zi, θ0))εiγ
′
kPk2(Zi)P

′
k2(Zi)γk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣n−1
2

∑
i∈I2

(g(Xi, θ̂n)− g(Xi, θ0))εiγ
′
kPk2(Zi)P

′
k2(Zi)γk

∣∣∣∣∣∣
+

∣∣∣∣∣∣n−1
2

∑
i∈I2

(φ̂(Zi, θ̂n)− φ(Zi, θ0))εiγ
′
kPk2(Zi)P

′
k2(Zi)γk

∣∣∣∣∣∣ . (2.216)

By the definition of γk, we can use the Cauchy-Schwarz inequality to show that

sup
{γk∈Rk: γ′kγk=1}

n−1
2

∑
i∈I2

ε2
i

∣∣γ′kPk2(Zi)P
′
k2(Zi)γk

∣∣2
≤ sup
{γk∈Rk: γ′kγk=1}

ξ2
k2γ
′
k

n−1
2

∑
i∈I2

ε2
iPk2(Zi)P

′
k2(Zi)

 γk

≤ ξ2
k2λmax

n−1
2

∑
i∈I2

ε2
iPk2(Zi)P

′
k2(Zi)

 . (2.217)

By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.3(v),

E

∥∥∥∥∥∥n1

∑
i∈I1

(ε2
i − σ2

ε(Zi))Pk1(Zi)Pk1(Zi)
′

∥∥∥∥∥∥
2

= n−1
1 E

[
(ε2
i − σ2

ε(Zi))
2
∣∣Pk1(Zi)

′Pk1(Zi)
∣∣2]

≤ Cn−1
1 ξ2

k1E
[
Pk1(Zi)

′Pk1(Zi)
]
≤ Ck1ξ

2
k1n
−1
1 (2.218)

142



which together with the Markov inequality and Assumption 2.6.1(iv) implies that

n1

∑
i∈I1

ε2
iPk1(Zi)Pk1(Zi)

′ −Qn1,ε = op(1). (2.219)

By (2.135) and (2.219), we have

λmax

n−1
2

∑
i∈I2

ε2
iPk2(Zi)P

′
k2(Zi)

 ≤ C (2.220)

with probability approaching 1, which together with (2.187), (2.217) and Assumption 2.6.1(iv),

implies that n−1
2

∑
i∈I2

(g(Xi, θ̂n)− g(Xi, θ0))2 × n−1
2

∑
i∈I2

ε2
i

∣∣γ′kPk2(Zi)P
′
k2(Zi)γk

∣∣21/2

= Op(ξk2n
−1/2
1 + ξk2n

−1/2
2 ) = op(1). (2.221)

Similarly, by (2.183), (2.217), (2.220) and Assumption 2.6.1(iv)n−1
2

∑
i∈I2

(φ̂(Zi, θ̂n)− φ(Zi, θ0))2 × n−1
2

∑
i∈I2

ε2
i

∣∣γ′kPk2(Zi)P
′
k2(Zi)γk

∣∣21/2

= Op(ξk2k
1/2
2 n

−1/2
2 + ξk2k

−rh
2 ) = op(1), (2.222)

which together with (2.216), (2.221), (2.222) and the Cauchy-Schwarz inequality implies that

n−1
2

∑
i∈I2

(g(Xi, θ̂n)− φ̂(Zi, θ̂n)− g(Xi, θ0)− φ(Zi, θ0))εiγ
′
kPk2(Zi)P

′
k2(Zi)γk = op(1) (2.223)

uniformly over γk with γ′kγk = 1. Collecting the results in (2.211), (2.212), (2.215) and (2.223), we

prove the last claim of the theorem.

Proof of Theorem 2.6.1. By definition,

Σ̂n1 − Σn1 =
φ̂wθ,nPn,k1 − φwθ,nPn,k1

n

Q−1
n1,k1

Q̂n1,uQ
−1
n1,k1

n1

P ′n,k1 φ̂
′
wθ,n

n

+
φwθ,nPn,k1

n
Q−1
n1,k1

Q̂n1,u −Qn1,u

n1
Q−1
n1,k1

P ′n,k1 φ̂
′
wθ,n

n

+
φwθ,nPn,k1

n
Q−1
n1,k1

Qn1,u

n1
Q−1
n1,k1

P ′n,k1 φ̂
′
wθ,n − P ′n,k1φ

′
wθ,n

n
. (2.224)

For any j = 1, . . . , dθ,

φwθj ,nPn,k1
n

P ′n,k1φ
′
wθj ,n

n
≤ λmax(Qn,k1)n−1φ′wθj ,nφwθj ,n

≤ λmax(Qn,k1)n−1
∑
i∈I

w2
n(Zi)φ

2
θj

(Zi, θ0)

= λmax(Qn,k1)E[w2
n(Zi)φ

2
θj

(Zi, θ0)] + op(1) = Op(1) (2.225)
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where the first equality is by (2.75) and (2.99), the second equality is by (2.75) and (2.100). More-

over,

φ̂wθj ,nPn,k1
n

P ′n,k1 φ̂
′
wθj ,n

n
≤ 2

(φ̂wθj ,n − φwθj ,n)Pn,k1
n

P ′n,k1(φ̂wθj ,n − φwθj ,n)

n

+ 2
φwθj ,nPn,k1

n

P ′n,k1φ
′
wθj ,n

n
= Op(1) (2.226)

where the equality is by Lemma 2.9.6(ii) and (2.225). By Lemma 2.9.6(iv) and (2.134), we know

that

C−1 ≤ λmin(Q̂n1,u) ≤ λmax(Q̂n1,u) ≤ C (2.227)

with probability approaching 1. For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, by the Cauchy-

Schwarz inequality∣∣∣∣∣∣ φ̂wθj1 ,nPn,k1 − φwθj1 ,nPn,k1n

Q−1
n1,k1

Q̂n1,uQ
−1
n1,k1

n1

P ′n,k1 φ̂
′
wθj2 ,n

n

∣∣∣∣∣∣
≤ n−1

1

∥∥∥n−1(φ̂wθj1 ,n − φwθj1 ,n)Pn,k1)
∥∥∥
√
φ̂wθj2 ,nPn,k1

n

(
Q−1
n1,k1

Q̂n1,uQ
−1
n1,k1

)2 P ′n,k1 φ̂
′
wθj2 ,n

n

≤ λmax(Q̂n1,u)

n1λ2
min (Qk1,n1)

∥∥∥n−1(φ̂wθj1 ,n − φwθj1 ,n)Pn,k1)
∥∥∥
√
φ̂wθj2 ,nPn,k1

n

P ′n,k1 φ̂
′
wθj2 ,n

n
= op(n

−1
1 ) (2.228)

where the equality is by (2.75), (2.227), Lemma 2.9.6(ii) and (2.226). Similarly for any j1 = 1, . . . , dθ

and any j2 = 1, . . . , dθ,∣∣∣∣∣∣φwθj1 ,nPn,k1n
Q−1
n1,k1

Q̂n1,u −Qn1,u

n1
Q−1
n1,k1

P ′n,k1 φ̂
′
wθj2 ,n

n

∣∣∣∣∣∣
≤

sup{γk∈Rk: γ′kγk=1}

[
γ′k(Q̂n1,u −Qn1,u)γk

]
n1

√
φwθj1 ,nPn,k1

n
Q−2
n1,k1

P ′n,k1φ
′
wθj1 ,n

n

×

√
φ̂wθj2 ,nPn,k1

n
Q−2
n1,k1

P ′n,k1 φ̂
′
wθj2 ,n

n

≤
sup{γk∈Rk: γ′kγk=1}

[
γ′k(Q̂n1,u −Qn1,u)γk

]
n1λ2

min (Qn1,k1)

×

√
φwθj1 ,nPn,k1

n

P ′n,k1φ
′
wθj1 ,n

n

√
φ̂wθj2 ,nPn,k1

n

P ′n,k1 φ̂
′
wθj2 ,n

n
= op(n

−1
1 ) (2.229)

where the equality is by (2.75), Lemma 2.9.6(iv), (2.225) and (2.226). Similarly for any j1 = 1, . . . , dθ
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and any j2 = 1, . . . , dθ,∣∣∣∣∣∣φwθj1 ,nPn,k1n
Q−1
n1,k1

Qn1,u

n1
Q−1
n1,k1

P ′n,k1 φ̂
′
wθj2 ,n

− P ′n,k1φwθj2 ,n
n

∣∣∣∣∣∣
≤

√
φwθj1 ,nPn,k1

n
Q−1
n1,k1

Qn1,u

n1
Q−2
n1,k1

Qn1,u

n1
Q−1
n1,k1

P ′n,k1φ
′
wθj1 ,n

n

∥∥∥n−1P ′k1,n(φ̂θj2 ,n − φθj2 ,n)
∥∥∥

≤ λmax (Qn1,u)

n1λ2
min (Qn1,k1)

√
φwθj1 ,nPn,k1

n

P ′n,k1φ
′
wθj1 ,n

n

∥∥∥n−1P ′k1,n(φ̂θj2 ,n − φθj2 ,n)
∥∥∥ = op(n

−1
1 ) (2.230)

where the equality is by (2.75), (2.134), Lemma 2.9.6(ii) and (2.225). Collecting the results in

(2.224), (2.228), (2.229) and (2.230), we get

Σ̂n1 − Σn1 = op(n
−1
1 ). (2.231)

Using similar arguments in proving (2.231), we can show that

Σ̂n2 − Σn2 = op(n
−1
2 ). (2.232)

By (2.145), (2.146), (2.231) and (2.232),

Σ̂n1 + Σ̂n2 = (Σn1 + Σn2)(1 + op(1)). (2.233)

By (2.232), we deduce that

H−1
0 (Σn1 + Σn2)H−1

0 Ĥn(Σ̂n1 + Σ̂n2)−1Ĥn

= H−1
0 (Σn1 + Σn2)H−1

0 Ĥn(Σn1 + Σn2)−1Ĥn(1 + op(1))

= H−1
0 (Σn1 + Σn2)H−1

0 (Ĥn −H0)(Σn1 + Σn2)−1Ĥn(1 + op(1))

+H−1
0 (Ĥn −H0)(1 + op(1)) + Idθ(1 + op(1))

= Idθ +H−1
0 (Σn1 + Σn2)H−1

0 (Ĥn −H0)(Σn1 + Σn2)−1H0(1 + op(1)) + op(1) (2.234)

where the last equality is by Lemma 2.9.6(i). Using (2.75), (2.134), (2.135) and Lemma 2.9.3, we

have

λmax(n1Σn1) ≤ C and λmax(n2Σn2) ≤ C (2.235)

with probability approaching 1. For any γ1, γ2 ∈ Rdθ with γ′1γ1 = 1 and γ′2γ2 = 1, by the Cauchy-

Schwarz inequality we have∣∣∣γ′1Σn1H
−1
0 (Ĥn −H0)(Σn1 + Σn2)−1H0γ2

∣∣∣
≤ (γ′1(n1Σn1)H−1

0 (Ĥn −H0)2H−1
0 (n1Σn1)γ1)1/2(γ′2H0(n1Σn1 + n1Σn2)−2H0γ2)1/2

≤ Cλmax(n1Σn1)||Ĥn −H0||
λmin(H0)λmin(n1Σn1 + n1Σn2)

= op(1) (2.236)
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where the equality is by Assumptions 2.3.3(ii), Lemma 2.9.6(i), (2.145) and (2.235). Similarly, we

can show that ∣∣∣γ′1Σn2H
−1
0 (Ĥn −H0)(Σn1 + Σn2)−1H0γ2

∣∣∣ = op(1). (2.237)

Let γ′1 be any row of H−1
0 and γ2 be any column of H0. Then we can use (2.236) and (2.237) to

deduce that

H−1
0 (Σn1 + Σn2)H−1

0 (Ĥn −H0)(Σn1 + Σn2)−1H0 = op(1) (2.238)

which together with (2.234) implies that

Ĥn(Σ̂n1 + Σ̂n2)−1Ĥn = (H0(Σn1 + Σn2)−1H0)(Idθ + op(1)). (2.239)

This shows (2.52). Using (2.52) and Theorem 2.3.2, and then applying CMT, we immediately prove

the claim of the theorem.

Proof of Lemma 2.6.1. By definition,

ûi = Yi − ĥn1(Zi) = ui + h0(Zi)− ĥn1(Zi) (2.240)

which implies that

û2
i = u2

i + (h0(Zi)− ĥn1(Zi))
2 + 2ui(h0(Zi)− ĥn1(Zi)). (2.241)

Hence,

σ̂2
n,u(z) = n−1

1 P ′k1(z)Q−1
n1,k1

∑
i∈I1

u2
iPk1(Zi) + n−1

1 P ′k1(z)Q−1
n1,k1

∑
i∈I1

(h0(Zi)− ĥn1(Zi))
2Pk1(Zi)

+ 2n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

ui(h0(Zi)− ĥn1(Zi))Pk1(Zi). (2.242)

Let β̂u,n1 = n−1
1 Q−1

k,n1

∑
i∈I1 u

2
iPk(Zi). By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.3(v) and

2.6.1(i), we can use similar arguments in showing (2.76) to deduce that∥∥∥β̂u,n1 − βu,k
∥∥∥2

= Op(k1n
−1
1 + k−2ru

1 ). (2.243)

By (2.243) and Assumptions 2.6.1(ii),

sup
z∈Z

∣∣∣P ′k1(z)β̂u,n1 − σ2
u(z)

∣∣∣ = Op(ξk1k
1/2
1 n

−1/2
1 + ξk1k

−ru
1 ). (2.244)

By the triangle inequality, the Cauchy-Schwarz inequality, (2.75) and (2.77),∣∣∣∣∣∣n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

(h0(Zi)− ĥn1(Zi))
2Pk(Zi)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k1(z)Q−1

n1,k1
Pk1(z))2n−1

1

∑
i∈I1

(h0(Zi)− ĥn1(Zi))
2

= Op(ξ
2
k1k1n

−1
1 + ξ2

k1k
−2rh
1 ). (2.245)

146



By definition,

n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

ui(h0(Zi)− ĥn1(Zi))Pk(Zi)

= n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

ui(h0(Zi)− h0,k1(Zi))Pk(Zi)

+ n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

uiPk(Zi)P
′
k(Zi)(β̂k1,n1 − βh,k1). (2.246)

By Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(iv) and 2.3.3(v),

E

∥∥∥∥∥∥n−1
1

∑
i∈I1

ui(h0(Zi)− h0,k1(Zi))Pk1(Zi)

∥∥∥∥∥∥
2

= n−1
1 E

[
u2(h0(Z)− h0,k1(Z))2Pk1(Z)′Pk1(Z)

]
≤ Cn−1

1 sup
z∈Z
|h0(z)− h0,k1(z)|2E

[
Pk1(Z)′Pk1(Z)

]
= O(k1−2rh

1 n−1
1 ) (2.247)

which together with the Markov inequality implies that

n−1
1

∑
i∈I1

ui(h0(Zi)− h0,k1(Zi))Pk1(Zi) = Op(k
1/2−rh
1 n

−1/2
1 ). (2.248)

By (2.75), (2.77), (2.248) and the Cauchy-Schwarz inequality,

sup
z∈Z

∣∣∣∣∣∣n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

ui(h0(Zi)− h0,k1(Zi))Pk(Zi)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k1(z)Q−2

n1,k1
Pk1(z))1/2

∥∥∥∥∥∥n−1
1

∑
i∈I1

ui(h0(Zi)− h0,k1(Zi))Pk1(Zi)

∥∥∥∥∥∥
= Op(ξk1n

−1/2
1 k

1/2−rh
1 ). (2.249)

By Assumptions 2.3.1(i), 2.3.1(iii) and 2.3.3(vi),

E

∥∥∥∥∥∥n−1
1

∑
i∈I1

uiPk(Zi)P
′
k(Zi)

∥∥∥∥∥∥
2 =

E
[
u2(Pk1(Z)′Pk1(Z))2

]
n1

≤
Cξ2

k1
E [Pk1(Z)′Pk1(Z)]

n1
= Cξ2

k1k1n
−1
1

which together with the Markov inequality implies that∥∥∥∥∥∥n−1
1

∑
i∈I1

uiPk(Zi)P
′
k(Zi)

∥∥∥∥∥∥ = Op(ξk1k
1/2
1 n

−1/2
1 ). (2.250)

By (2.75), (2.76), (2.250) and the Cauchy-Schwarz inequality,∣∣∣∣∣∣n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

uiPk(Zi)P
′
k(Zi)(β̂k1,n1 − βh,k1)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k1(z)Q−2

n1,k1
Pk1(z))1/2

∥∥∥∥∥∥n−1
1

∑
i∈I1

uiPk(Zi)P
′
k(Zi)

∥∥∥∥∥∥
∥∥∥β̂k1,n1 − βh,k1

∥∥∥
= Op(ξ

2
k1k

1/2
1 n

−1/2
1 (k

1/2
1 n

−1/2
1 + k−rh1 )). (2.251)
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Combining the results in (2.246), (2.249) and (2.251), we get

sup
z∈Z

∣∣∣∣∣∣n−1
1 P ′k1(z)Q−1

n1,k1

∑
i∈I1

ui(h0(Zi)− ĥn1(Zi))Pk(Zi)

∣∣∣∣∣∣ = Op(ξ
2
k1k1n

−1
1 + ξ2

k1k
−2rh
1 ), (2.252)

which together with (2.242), (2.244) and (2.245) implies that

sup
z∈Z

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣ = Op(ξk1(k

1/2
1 n

−1/2
1 + k−ru1 ) + ξ2

k1(k1n
−1
1 + k−2rh

1 )). (2.253)

This together with Assumptions 2.6.1(iv) proves the first claim of the lemma.

By definition,

ε̃i = g(Xi, θ̂1,n)− φ̂n2(Zi, θ̂1,n) = εi + (g(Xi, θ̂1,n)− g(Xi, θ0))− (φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0)).

Hence,

σ̂2
n,ε(z) = n−1

2 P ′k2(z)Q−1
n2,k2

∑
i∈I2

ε2
iPk2(Zi) + n−1

2 P ′k2(z)Q−1
n2,k2

∑
i∈I2

(g(Xi, θ̂1,n)− g(Xi, θ0))2Pk2(Zi)

+ n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))2Pk2(Zi)

+ 2n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(g(Xi, θ̂1,n)− g(Xi, θ0))Pk2(Zi)

− 2n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))Pk2(Zi)

− 2n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

(g(Xi, θ̂1,n)− g(Xi, θ0))(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))Pk2(Zi). (2.254)

Using similar arguments in showing (2.244), we can show that

sup
z∈Z

∣∣∣P ′k2(z)β̂ε,n2 − σ2
ε(z)

∣∣∣ = Op(ξk2k
1/2
2 n

−1/2
2 + ξk2k

−rε
2 ). (2.255)

By the Cauchy-Schwarz inequality, (2.75) and (2.187)∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

(g(Xi, θ̂1,n)− g(Xi, θ0))2Pk2(Zi)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−1

n2,k2
Pk2(z))n−1

2

∑
i∈I2

(g(Xi, θ̂1,n)− g(Xi, θ0))2

= Op(ξ
2
k2n
−1
1 + ξ2

k2n
−1
2 ). (2.256)

Similarly, by the Cauchy-Schwarz inequality, (2.75) and (2.190)∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))2Pk2(Zi)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−1

n2,k2
Pk2(z))n−1

2

∑
i∈I2

(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))2

= Op(ξ
2
k2n
−1
1 + ξ2

k2k2n
−1
2 + ξ2

k2k
−2rh
2 ). (2.257)
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By the Cauchy-Schwarz inequality, (2.75), (2.187) and (2.190)∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

(g(Zi, θ̂1,n)− g(Zi, θ0))(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))Pk2(Zi)

∣∣∣∣∣∣
2

≤ sup
z∈Z

(P ′k2(z)Q−1
n2,k2

Pk2(z))2n−1
2

∑
i∈I2

(g(Zi, θ̂1,n)− g(Zi, θ0))2

× n−1
2

∑
i∈I2

(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))2

= Op(ξ
4
k2(n−1

1 + n−1
2 )(n−1

1 + k2n
−1
2 + k−2rh

2 )). (2.258)

By the second order expansion,

g(Xi, θ̂1,n)− g(Xi, θ0) = gθ(Xi, θ0)′(θ̂1,n − θ0) + 2−1(θ̂1,n − θ0)′gθθ(Xi, θ̃i,n)(θ̂1,n − θ0) (2.259)

where θ̃i,n is between θ̂n and θ0. By Assumption 2.3.1(i), 2.3.3(v) and 2.6.1(v)

E

∥∥∥∥∥∥n−1
2

∑
i∈I2

εiPk2(Zi)gθ(Xi, θ0)′

∥∥∥∥∥∥
2 = n−1

2 E
[
ε2
i

∥∥Pk2(Zi)gθ(Xi, θ0)′
∥∥2
]

≤ n−1
2 ξ2

k2E
[
ε2
i ‖gθ(Xi, θ0)‖2

]
≤ n−1

2 ξ2
k2

√
E
[
ε4
i

]
E
[
‖gθ(Xi, θ0)‖4

]
= O(ξ2

k2n
−1
2 ) (2.260)

which together with the Markov inequality implies that

n−1
2

∑
i∈I2

εiPk2(Zi)gθ(Xi, θ0)′ = Op(ξk2n
−1/2
2 ). (2.261)

By (2.57), (2.75), the triangle inequality and the Cauchy-Schwarz inequality,

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εiPk2(Zi)gθ(Xi, θ0)′(θ̂1,n − θ0)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−2

n2,k2
Pk2(z))1/2

∥∥∥∥∥∥n−1
2

∑
i∈I2

εiPk2(Zi)gθ(Xi, θ0)′

∥∥∥∥∥∥
∥∥∥θ̂1,n − θ0

∥∥∥
= Op(ξ

2
k2n
−1/2
2 (n

−1/2
1 + n

−1/2
2 )). (2.262)

By Assumptions 2.3.1(i), 2.3.3(i) and 2.3.3(v), and the Cauchy-Schwarz inequality,

max
i∈I2

∥∥∥∥∥∥n−1
2

∑
i∈I2

|εi|gθθ(Xi, θ̃i,n)

∥∥∥∥∥∥
2

≤ n−1
2

∑
i∈I2

ε2
i × sup

θ∈Nn
n−1

2

∑
i∈I2

‖gθθ(Xi, θ)‖2 = Op(1). (2.263)
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By (2.57), the triangle inequality and the Cauchy-Schwarz inequality,

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εiPk2(Zi)(θ̂1,n − θ0)′gθθ(Xi, θ̃i,n)(θ̂1,n − θ0)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−1

n2,k2
Pk2(z)) max

i∈I2

∥∥∥∥∥∥n−1
2

∑
i∈I2

|εi|gθθ(Xi, θ̃i,n)

∥∥∥∥∥∥
∥∥∥θ̂1,n − θ0

∥∥∥2

= Op(ξ
2
k2(n−1

1 + n−1
2 )). (2.264)

Combining the results in (2.259), (2.262) and (2.254), we get

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(g(Xi, θ̂1,n)− g(Xi, θ0))Pk2(Zi)

∣∣∣∣∣∣ = Op(ξ
2
k2(n−1

1 + n−1
2 )). (2.265)

By (2.75), (2.188), Assumptions 2.3.1(i), 2.3.1(iv) and 2.3.3(v),

E

∥∥∥∥∥∥n−1
2

∑
i∈I2

εi(φ̂n2(Zi, θ0)− φ(Zi, θ0))Pk2(Zi)

∥∥∥∥∥∥
2∣∣∣∣∣∣ {Zi}i∈I2


= n−2

2

∑
i∈I2

σ2
ε(Zi)(φ̂n2(Zi, θ0)− φ(Zi, θ0))2Pk2(Zi)

′Pk2(Zi)

≤ Cξ2
k2n
−2
2

∑
i∈I2

(φ̂n2(Zi, θ0)− φ(Zi, θ0))2 = Op(ξ
2
k2n
−1
2 (k2n

−1
2 + k−2rh

2 )), (2.266)

which together with (2.75), the Markov inequality, the triangle inequality and the Cauchy-Schwarz

inequality implies that

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(φ̂n2(Zi, θ0)− φ(Zi, θ0))Pk2(Zi)

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−2

n2,k2
Pk2(z))1/2

∥∥∥∥∥∥n−1
2

∑
i∈I2

εi(φ̂n2(Zi, θ0)− φ(Zi, θ0))Pk2(Zi)

∥∥∥∥∥∥
= Op(ξ

2
k2n
−1/2
2 (k

1/2
2 n

−1/2
2 + k−rh2 )). (2.267)

By Assumptions 2.3.1(i) and 2.3.1(iii),

E

∥∥∥∥∥∥n−1
2

∑
i∈I2

εiPk2(Zi)Pk2(Zi)
′

∥∥∥∥∥∥
2 = n−1

2 E
[
σ2
ε(Zi)|Pk2(Zi)

′Pk2(Zi)|2
]

= O(ξ2
k2k2n

−1
2 ), (2.268)

which together with the Markov inequality implies that∥∥∥∥∥∥n−1
2

∑
i∈I2

εiPk2(Zi)Pk2(Zi)
′

∥∥∥∥∥∥ = Op(ξk2k
1/2
2 n

−1/2
2 ). (2.269)
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Recall that gn2(θ̂1,n) = (g(Xi, θ̂1,n))′i∈I2 and gn2(θ0) = (g(Xi, θ0))′i∈I2 . By (2.75), (2.187), (2.269),

the triangle inequality and the Cauchy-Schwarz inequality

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(φ̂n2(Zi, θ̂1,n)− φ̂n2(Zi, θ0))Pk2(Zi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εiPk2(Zi)Pk2(Zi)
′(P ′n2,k2Pn2,k2)−1P ′n2,k2(gn2(θ̂1,n)− gn2(θ0))

∣∣∣∣∣∣
≤ sup

z∈Z
(P ′k2(z)Q−2

n2,k2
Pk2(z))1/2

∥∥∥∥∥∥n−1
2

∑
i∈I2

εiPk2(Zi)Pk2(Zi)
′

∥∥∥∥∥∥
×
√

(gn2(θ̂1,n)− gn2(θ0))′Pn2,k2(P ′n2,k2
Pn2,k2)−2P ′n2,k2

(gn2(θ̂1,n)− gn2(θ0))

= Op(ξ
2
k2k

1/2
2 n

−1/2
2 )

√
n−1

2

∑
i∈I2

(g(Xi, θ̂1,n)− g(Xi, θ0))2 (2.270)

= Op(ξ
2
k2k

1/2
2 n

−1/2
2 (n

−1/2
1 + n

−1/2
2 )).

Combining the results in (2.267) and (2.270), we get

sup
z∈Z

∣∣∣∣∣∣n−1
2 P ′k2(z)Q−1

n2,k2

∑
i∈I2

εi(φ̂n2(Zi, θ̂1,n)− φ(Zi, θ0))Pk2(Zi)

∣∣∣∣∣∣
= Op(ξ

2
k2k

1/2
2 n−1

2 + ξ2
k2n
−1/2
2 k−rh2 + ξ2

k2k
1/2
2 n

−1/2
2 n

−1/2
1 ). (2.271)

Combining the results in (2.254), (2.255), (2.256), (2.257), (2.258), (2.265) and (2.271), and

then applying Assumption 2.6.1(iv), we get

sup
z∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣ = Op(ξ

2
k2n
−1
1 + ξ2

k2k
−2rh
2 + ξk2k

1/2
2 n

−1/2
2 + ξk2k

−rε
2 ).

Proof of Theorem 2.6.2. By the triangle inequality,

|ŵ∗n(z)− w∗(z)| = (n−1
1 + n−1

2 )
∣∣(n−1

1 σ̂2
n,u(z) + n−1

2 σ̂2
n,ε(z))

−1 − (n−1
1 σ2

u(z) + n−1
2 σ2

ε(z))
∣∣

≤ (n−1
1 + n−1

2 )
n−1

1

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣+ n−1

2

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣∣∣(n−1

1 σ̂2
n,u(z) + n−1

2 σ̂2
n,ε(z))(n

−1
1 σ2

u(z) + n−1
2 σ2

ε(z))
∣∣

≤ (n−1
1 + n−1

2 )2

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣+
∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣∣∣(n−1

1 σ̂2
n,u(z) + n−1

2 σ̂2
n,ε(z))(n

−1
1 σ2

u(z) + n−1
2 σ2

ε(z))
∣∣ .

(2.272)

151



By Lemma 2.6.1 and the triangle inequality

sup
z∈Z

∣∣n−1
1 σ̂2

n,u(z) + n−1
2 σ̂2

n,ε(z)− (n−1
1 σ2

u(z) + n−1
2 σ2

ε(z))
∣∣

≤ n−1
1 sup

z∈Z

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣+ n−1

2 sup
z∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣

= Op(δw,n(n−1
1 + n−1

2 )). (2.273)

By Assumption 2.3.3(v),

n−1
1 σ2

u(z) + n−1
2 σ2

ε(z) ≥ (n−1
1 + n−1

2 )C−1 (2.274)

for any z ∈ Z, which together with (2.273) and δw,n = o(1) implies that

n−1
1 σ̂2

n,u(z) + n−1
2 σ̂2

n,ε(z) = (n−1
1 σ2

u(z) + n−1
2 σ2

ε(z))(1 + op(1) (2.275)

uniformly over z ∈ Z. Combining Lemma 2.6.1, the results in (2.272), (2.273) and (2.275), we have

sup
z∈Z
|ŵ∗n(z)− w∗(z)| ≤ (n−1

1 + n−1
2 )2

supz∈Z
∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣+ supz∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣

infz∈Z(n−1
1 σ2

u(z) + n−1
2 σ2

ε(z))
2(1 + op(1))

≤ sup
z∈Z

∣∣σ̂2
n,u(z)− σ2

u(z)
∣∣+ sup

z∈Z

∣∣σ̂2
n,ε(z)− σ2

ε(z)
∣∣ = Op(δw,n) (2.276)

which finishes the proof.

2.10 Low-level Sufficient Conditions

In this section, we provide low-level sufficient conditions for Assumptions 2.3.2(i), 2.3.2(ii), 2.3.2(iv),

2.3.3(i), 2.3.3(iii)-(iv), 2.6.1(i) and 2.6.1(v).

Assumption 2.10.1 (i) For any θ, there exist βθ,k ∈ Rk and rϕ > 0, such that

sup
z∈Z

∣∣ϕ(z, θ)− Pk(z)′βθ,k
∣∣ = O(k−rϕ)

uniformly over θ ∈ Θ; (ii) supx,θ [‖g(x, θ)‖+ ‖gθ(x, θ)‖+ ‖gθθ(x, θ)‖] ≤ C; (iii) Θ is a compact

subspace of Rdθ ; (iv) there exist βϕθ.j,k ∈ Rk and rϕθ,j > 0, such that

sup
z∈Z

∣∣ϕθj (z, θ0)− Pk(z)′βϕθ.j,k
∣∣ = O(k−rϕθ,j )

for any j = 1, . . . , dθ; (v) maxj=1,...,dθ n
−1/4
2 k

−rϕθ,j
2 = o(1).

It is clear that Assumption 2.10.1(ii) implies that Assumptions 2.3.2(i), 2.3.3(i), 2.3.3(iv), 2.6.1(i)

and 2.6.1(v) hold. In the rest of the section, we verify Assumptions 2.3.2(ii), 2.3.2(iv) and 2.3.3(iii).
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Lemma 2.10.1 Under Assumptions 2.3.1(i), 2.3.3(v), 2.3.3(vii), 2.10.1(ii) and 2.10.1(iii),

sup
γk2∈Uk2

∣∣∣∣∣∣n−1
2

∑
i∈I2

γ′k2Pk2(Zi) (g(Xi, θ)− ϕ(Zi, θ))

∣∣∣∣∣∣ = Op(log1/2(n2)k
1/2
2 n

−1/2
2 ),

uniformly over θ ∈ Θ, where Uk2 = {γk2 ∈ Rk2 : γ′k2γk2 = 1}

Proof of Lemma 2.10.1. For any γ1,k2 , γ2,k2 ∈ Uk2 and any θ1, θ2 ∈ Θ, using the triangle inequality

we get

∣∣γ′1,k2Pk2(Zi) (g(Xi, θ1)− ϕ(Zi, θ1))− γ′2,k2Pk2(Zi) (g(Xi, θ2)− ϕ(Zi, θ2))
∣∣

≤
∣∣(γ1,k2 − γ2,k2)′Pk2(Zi) (g(Xi, θ1)− ϕ(Zi, θ1))

∣∣
+
∣∣γ′2,k2Pk2(Zi)(g(Xi, θ1)− ϕ(Zi, θ1)− g(Xi, θ2) + ϕ(Zi, θ2))

∣∣ . (2.277)

By the Cauchy-Schwarz inequality,

∣∣(γ1,k2 − γ2,k2)′Pk2(Zi) (g(Xi, θ1)− ϕ(Zi, θ1))
∣∣

≤ ‖γ1,k2 − γ2,k2‖
√

(g(Xi, θ1)− ϕ(Zi, θ1))2 P ′k2(Zi)Pk2(Zi)

≤ Cξk1 ‖γ1,k1 − γ2,k1‖ (2.278)

where the second inequality is by Assumptions 2.10.1(ii) and the definition of ϕ(z, θ). By the mean

value theorem,

g(Xi, θ1)− g(Xi, θ2) = gθ(Xi, θ̃i)
′(θ1 − θ2), (2.279)

which together with the Cauchy-Schwarz inequality and Assumptions 2.10.1(ii) implies that for any

x,

|g(x, θ1)− g(x, θ2)| ≤ C ‖θ1 − θ2‖ . (2.280)

Similarly, we can show that for any z,

|ϕ(z, θ1)− ϕ(z, θ2)| ≤ C ‖θ1 − θ2‖ . (2.281)

By the Cauchy-Schwarz inequality, the triangle inequality, (2.280) and (2.281),

∣∣γ′2,k2Pk2(Zi)(g(Xi, θ1)− ϕ(Zi, θ1)− g(Xi, θ2) + ϕ(Zi, θ2))
∣∣ ≤ C ‖θ1 − θ2‖ . (2.282)

Combining the results in (2.277), (2.278) and (2.282), we get

∣∣γ′1,k2Pk2(Zi) (g(Xi, θ1)− ϕ(Zi, θ1))− γ′2,k2Pk2(Zi) (g(Xi, θ2)− ϕ(Zi, θ2))
∣∣

≤ Cξk1 [‖γ1,k1 − γ2,k1‖+ ‖θ1 − θ2‖] . (2.283)
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Let γm0,k2 (m0 = 1, . . . ,Mγ,n) be a set of points such that minm0≤Mγ,n ‖γk2 − γm0,k2‖ ≤

C−1 log1/2(n2)k
1/2
2 n

−1/2
2 ξ−1

k2
for any γk2 ∈ Uk2 . Similarly, let θm1 (m1 = 1, . . . ,Mθ,n) be a set

of points in × such that minm1≤Mθ,n
‖θ − θm1‖ ≤ C−1 log1/2(n2)k

1/2
2 n

−1/2
2 ξ−1

k2
for any θ ∈ ×. As

Uk2 is compact in Rk2 , we know that Mγ,n ≤ C(n
1/2
2 ξk2 log−1/2(n2)k

−1/2
2 )k2 . Similarly, Mθ,n ≤

C(n
1/2
2 ξk2 log−1/2(n2)k

−1/2
2 )dθ , which implies that

Mγ,nMθ,n ≤ C(n
1/2
2 ξk2 log−1/2(n2)k

−1/2
2 )k2+dθ . (2.284)

Hence, by the triangle inequality,

sup
θ∈×, γk2∈Uk2

∣∣∣∣∣∣n−1
2

∑
i∈I2

γ′k2Pk2(Zi) (g(Xi, θ)− ϕ(Zi, θ))

∣∣∣∣∣∣
≤ 2C log1/2(n2)k

1/2
2 n

−1/2
2

+ max
m0≤Mγ,n,m1≤Mθ,n

∣∣∣∣∣∣n−1
2 γ′m0,k2

∑
i∈I2

Pk2(Zi) [g(Xi, θm1)− ϕ(Zi, θm1)]

∣∣∣∣∣∣ . (2.285)

For any m0 and m1 and for any i, by the Cauchy-Schwarz inequality, and Assumption 2.10.1(i)

∣∣n−1
2 γ′m0,k2Pk2(Zi) [g(Xi, θm1)− ϕ(Zi, θm1)]

∣∣ ≤ Cξk2n−1
2 . (2.286)

By Assumptions 2.3.1(i) and 2.3.3(v)

E
[∣∣n−1

2 γ′m0,k2Pk2(Zi) [g(Xi, θm1)− ϕ(Zi, θm1)]
∣∣2]

≤ Cn−2
2 γ′m0,k2E[Pk2(Zi)P

′
k2(Zi)]γm0,k2 ≤ Cλmax(Qk2)n−2

2 ≤ Cn−2
2 . (2.287)

By (2.286) and (2.287), we can apply the Bernstein inequality to get

Pr

∣∣∣∣∣∣n−1
2

∑
i∈I2

γ′m0,k2Pk2(Zi)(g(Xi, θm1)− ϕ(Zi, θm1))

∣∣∣∣∣∣ > B log1/2(n2)k
1/2
2 n

−1/2
2


≤ 2 exp

[
− B2 log(n2)k2n

−1
2

2C(n−1
2 +B log1/2(n2)k

1/2
2 n

−3/2
2 )

]

= 2 exp

− B2 log(n2)k2

2C
(

1 +B log1/2(n2)k
1/2
2 n

−1/2
2

)
 ≤ 2 exp

[
−B log(n2)k2

2C

]
, (2.288)

where the last inequality is by Assumption 2.3.3(vii). (2.288) together with the Bonferroni inequality
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implies that

Pr

(
max

m0≤Mγ,n,m1≤Mθ,n

∣∣n−1
2 γ′m0,k2P

′
n2,k2(gn2(θm1)− ϕn2(θm1))

∣∣ > B log1/2(n2)k
1/2
2 n

−1/2
2

)
≤ 2Mγ,nMθ,n exp

[
−B log(n2)k2

2C

]
≤ 2C(n

1/2
2 ξk2 log−1/2(n2)k

−1/2
2 )k2+dθ exp

[
−B log(n2)k2

2C

]
≤ 2C exp

[
−B log(n2)k2

2C
+ (k2 + dθ)

(
2−1 log(n2) + log(ξk2)− 2−1 log(k2)

)]
≤ 2C exp

[
−B log(n2)k2

8C

]
, (2.289)

where the last inequality is by the assumption that k2 →∞, as n2 →∞. As C is a fixed constant,

from (2.289), we can choose B sufficiently large such that for any (fixed but) small ε > 0, there is

Pr

(
max

m0≤Mγ,n,m1≤Mθ,n

∣∣n−1
2 γ′m0,k2P

′
n2,k2(gn2(θm1)− ϕn2(θm1))

∣∣ > B log1/2(n2)k
1/2
2 n

−1/2
2

)
≤ ε

for all large n2, which implies that

max
m0≤Mγ,n,m1≤Mθ,n

∣∣n−1
2 γ′m0,k2P

′
n2,k2(gn2(θm1)− ϕn2(θm1))

∣∣ = Op(log1/2(n2)k
1/2
2 n

−1/2
2 ). (2.290)

Combining the results in (2.285) and (2.290), the claimed result immediately follows.

Lemma 2.10.2 Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.3(v), 2.3.3(vii), 2.10.1(i)-

2.10.1(iii),

sup
θ∈Θ

n−1
2

∑
i∈I
|φ̂n2(Zi, θ)− φ(Zi, θ)|2 = op(1).

Proof of Lemma 2.10.2. Let ϕk2(z, θ) = Pk2(z)′βθ,k2 . By the triangle inequality and Assumption

2.10.1(i),

n−1
∑
i∈I
|φ̂n2(Zi, θ)− φ(Zi, θ)|2

≤ 2n−1
∑
i∈I
|φ̂n2(Zi, θ)− ϕk2(Zi, θ)|2 + 2n−1

2

∑
i∈I
|ϕk2(Zi, θ)− ϕ(Zi, θ)|2

≤ (β̂θ,k2 − βθ,k2)′Qn,k2(β̂θ,k2 − βθ,k2) + o(1)

≤ λmax(Qn,k2)
∥∥∥β̂θ,k2 − βθ,k2∥∥∥2

+ o(1). (2.291)
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By definition, β̂θ,k2 − βθ,k2 = n−1Q−1
n,k2

∑
i∈I Pk2(Zi)(g(Xi, θ)− ϕk2(Zi, θ)). Hence

n−1
2

∑
i∈I
|φ̂n2(Zi, θ)− φ(Zi, θ)|2

≤ 2(gn(θ)− ϕn(θ))′Pn,k2(P ′n,k2Pn,k2)−2P ′n,k2(gn(θ)− ϕn(θ))

+ 2(ϕk2,n(θ)− ϕn(θ))′Pn,k2(P ′n,k2Pn,k2)−2P ′n,k2(ϕk2,n(θ)− ϕn(θ))

≤ 2λ−2
min(Qn,k2)n−2(gn(θ)− ϕn(θ))′Pn,k2P

′
n,k2(gn(θ)− ϕn(θ))

+ 2n−1
∑
i∈I
|ϕk2(Zi, θ)− ϕ(Zi, θ)|2. (2.292)

By Lemma 2.10.1, we have

n−2(gn(θ)− ϕn(θ))′Pn,k2P
′
n,k2(gn(θ)− ϕn(θ))

≤
∥∥n−1P ′n,k2(gn(θ)− ϕn(θ))

∥∥ sup
γk2∈Uk2

∣∣∣∣∣∣n−1
2

∑
i∈I2

γ′k2Pk2(Zi) (g(Xi, θ)− ϕ(Zi, θ))

∣∣∣∣∣∣
=
∥∥n−1P ′n,k2(gn(θ)− ϕn(θ))

∥∥Op(log1/2(n2)k
1/2
2 n

−1/2
2 ) (2.293)

uniformly over θ ∈ Θ. (2.293) together with Assumption 2.3.3(v) then implies that

sup
θ∈Θ

∥∥n−1P ′n,k2(gn(θ)− ϕn(θ))
∥∥ = op(1). (2.294)

Combining the results in (2.291), (2.292) and (2.294), and then applying Assumption 2.10.1(i), we

immediately prove the claim of the lemma.

Lemma 2.10.3 Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.2(v), 2.3.3(v), 2.3.3(vii), 2.10.1(i)-

2.10.1(iii),

sup
θ∈Θ
|Ln(θ)− L∗n(θ)| = op(1).

Proof of Lemma 2.10.3. For any θ1, θ2 ∈ Θ, using the triangle inequality and Assumption

2.10.1(ii), we get∣∣∣wn(Zi) |h0(Zi)− φ(Zi, θ1)|2 − wn(Zi) |h0(Zi)− φ(Zi, θ2)|2
∣∣∣

≤ wn(Zi) |(2h0(Zi)− φ(Zi, θ1))(φ(Zi, θ2)− φ(Zi, θ1))|

+ wn(Zi)
∣∣(φ(Zi, θ2)− φ(Zi, θ1))2

∣∣
≤ C |φ(Zi, θ2)− φ(Zi, θ1)|+ C |φ(Zi, θ2)− φ(Zi, θ1)|2 ≤ C ‖θ2 − θ1‖ . (2.295)

let θm1 (m1 = 1, . . . ,Mθ,n) be a set of points in × such that minm1≤Mθ,n
‖θ − θm1‖ ≤ n−1/2 log(n)

for any θ ∈ ×. As × is compact in Rdθ , we know that Mθ,n ≤ C(n1/2 log(n))dθ . Hence, by the
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triangle inequality,

sup
θ∈×
|Ln(θ)− L∗n(θ)| ≤ 2Cn−1/2 log(n) + max

m1≤Mθ,n

|Ln(θm1)− L∗n(θm1)| . (2.296)

For any m1 and for any i, by Assumptions 2.3.2(v) and 2.10.1(ii)

n−1wn(Zi) |h0(Zi)− φ(Zi, θm1)|2 ≤ Cn−1. (2.297)

By Assumptions 2.3.1(i), 2.3.2(v) and 2.10.1(ii),

Var
[
n−1wn(Zi) |h0(Zi)− φ(Zi, θm1)|2

]
≤ n−2E

[
w2
n(Zi) |h0(Zi)− φ(Zi, θm1)|4

]
≤ Cn−2. (2.298)

By (2.297) and (2.298), we can apply the Bernstein inequality to get

Pr
(
|Ln(θm1)− L∗n(θm1)| > Bn−1/2 log(n)

)
≤ 2 exp

[
− B2 log2(n)n−1

2C(n−1 +B log(n)n−3/2)

]
= 2 exp

[
− B2 log2(n)

2C
(
1 +B log(n)n−1/2

)] ≤ 2 exp

[
−B log(n)

2C

]
, (2.299)

where the last inequality is by Assumption 2.3.3(vii). (2.299) together with the Bonferroni inequality

implies that

Pr

(
max

m1≤Mθ,n

|Ln(θm1)− L∗n(θm1)| > Bn−1/2 log(n)

)
≤ 2Mθ,n exp

[
−B log(n)

2C

]
≤ 2C(n1/2 log(n))dθ exp

[
−B log(n)

2C

]
≤ 2C exp

[
−B log(n)

2C
+ 2dθ log(n)

]
≤ 2C exp

[
− B

8C
log(n)

]
, (2.300)

As C is a fixed constant, from (2.300), we can choose B sufficiently large such that for any (fixed

but) small ε > 0, there is

Pr

(
max

m1≤Mθ,n

|Ln(θm1)− L∗n(θm1)| > Bn−1/2 log(n)

)
≤ ε

for all large n2, which implies that

max
m1≤Mθ,n

|Ln(θm1)− L∗n(θm1)| = Op(n
−1/2 log(n)). (2.301)

Combining the results in (2.296) and (2.301), the claimed result immediately follows.
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Lemma 2.10.4 Under Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.3.2(v), 2.3.3(v), 2.3.3(vii), 2.10.1(i)-

2.10.1(iv),

n−1
∑
i∈I
||φ̂θ,n2(Zi, θ0)− φθ(Zi, θ0)||2 = op(n

−1/2
2 ).

Proof of Lemma 2.10.4. By Assumption 2.10.1(ii),

E
[
‖gθ(X, θ0)− φθ(Z, θ0)‖2

∣∣∣Z] ≤ E [‖gθ(X, θ0)‖2
∣∣∣Z] < C (2.302)

for any Z. Using Assumptions 2.3.1(i), 2.3.1(iii), 2.3.1(v), 2.10.1(iv) and (2.302), we can use similar

arguments in showing (2.94) to show that

n−1
∑
i∈I

∣∣∣φ̂θj ,n2(Zi, θ0)− φθj ,k2(Zi, θ0)
∣∣∣2 = Op(k2n

−1
2 + k

−2rϕθ,j
2 ) (2.303)

for any j = 1, . . . , dθ, where φθj ,k2(z, θ0) = Pk(z)
′βϕθ.j,k2 . By Assumption 2.10.1(iv) and (2.303),

n−1
∑
i∈I

∣∣∣φ̂θj ,n2(Zi, θ0)− φθj (Zi, θ0)
∣∣∣2

≤ 2n−1
∑
i∈I

∣∣∣φ̂θj ,n2(Zi, θ0)− φθj ,k2(Zi, θ0)
∣∣∣2

+ 2n−1
∑
i∈I

∣∣φθj ,k2(Zi, θ0)− φθj (Zi, θ0)
∣∣2 = Op(k2n

−1
2 + k

−2rϕθ,j
2 ) (2.304)

for any j = 1, . . . , dθ. Using the result in (2.304), Assumptions 2.3.3(vii) and 2.10.1(v), we prove

the claim of the lemma.
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CHAPTER 3

Consumption Inequality and Partial Insurance: A Revisit

with New Estimation Methods

3.1 Introduction

There has been a long-lasting interest in the dynamic relationship between consumption and income.

This line of research started from primary descriptions in Cutler and Katz (1992) and Johnson and

Smeeding (1998), then was comprehensively explained by Blundell, Pistaferri and Preston in their

seminal work in 2008 (we refer to this as BPP in the following paper) and has been growing rapidly

ever since. The intensive academic attention on this topic is drawn from both the theoretical and

empirical spheres. Theoretically, the joint evolution of consumption distribution and income distri-

bution serves as a primary key to disentangle competing hypotheses. On one hand, it is assumed that

consumption is fully insured against idiosyncratic shocks, both transitory and permanent, to income

in the complete markets hypothesis. On the other hand, in permanent income hypothesis, only the

former shock, i.e. the transitory shock can be smoothed by self-insurance behaviors (Deaton(1992)).

Unfortunately, neither of these two mainstream hypotheses possesses indisputable support from real

data. Attanasio and Davis (1996) constructed synthetic panel data of consumption, label supply,

and wages in the 1980s for the U.S. but failed to find any between-group consumption insurance.

Besides, a series of work also discovered that consumption appears to react little towards permanent

income shocks (Campbell and Deaton (1989); Attanasio and Pavoni 2006) but sensitive to transi-

tory shocks (Hall and Mishkin (1982)). Empirically, this relationship builds up the foundations of

several policy-oriented questions. From the micro perspective, this question is closely related to the

transmission of inequality over the life cycle, hence can be used to answer questions like "how should

government insurance programs be optimally designed?" in Low and Pistaferri (2010). Meanwhile,

the macro perspective of this question can be rephrased as the relationship in aggregate savings,

consumption and economic growth, hence can be used to answer questions like "What are the likely

effectiveness of stabilization or stimulus policies?" in Hacker (2006).
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Despite the importance and ever-lasting fever surrounding this topic, the data problem hampers the

possibility of meaningful empirical research. To be specific, the lack of individual-level longitudinal

panel data on both household expenditures, income, and saving gives rise to crucial difficulty in

this study; Bundell (2014) stated "...With repeated cross-section measurements of income alone

we cannot distinguish permanent from transitory income shocks, let alone identify the evolution

of those variances and the insurance parameters...". For instance, in the US, the Panel Study of

Income Dynamics (PSID) provides longitudinal annual income data for all households since 1968.

Unfortunately, the PSID only collected data on a limited subset of consumption items, to be precise,

it only contains food data (with few gaps in some of the survey years) till 1998. In contrast, there

are a few datasets that provide detailed data on the spending habits of US households, like the Con-

sumer Expenditure Survey (CEX), which are all repeated cross-sectional data by design. Problems

of similar nature exist in many other countries, in the UK, the Family Expenditure Survey (FES)

provides comprehensive data on household expenditures, but this is a cross-sectional data and thus

the researcher does not get to observe households over time. In contrast, the British Household

Panel Survey (BHPS) is a Panel dataset that collects data on income or wealth but provides no

information on consumption.1

With this data constraint, various empirical methods have been proposed when confronting this

difficulty. Hall and Mishkin (1982) were the first to take up the challenge, they utilized the food

consumption data as an index of the total consumption. This method of using limited number

of goods (largely necessity goods) was also employed by Zeldes (1989), Runkle (1991), Cochrane

(1991), Shea (1995), Altonji, Hayashi and Kotlikof (1996), Martin (2003), Cox, Ng and Waldkirch

(2004) and Hurst and Stafford (2004) and they all suffered the questioning of the validity of this

substitution due to the different dynamics between food (or other necessities ) and total consump-

tion. Browning, Deaton and Irish (1985) and Attanasio and Weber (1993) contributed another

method which involves forming of synthetic panel data sets from repeated cross-section data sets in

which consumption is reported (e.g. the CEX or the FES). But in this case, the common employed

mean-based construction method (proposed by Bourguignon, Goh and Kim (2004)) would iron out

the individual differences in shocks that are of interest to us. Lastly, Jonathan Skinner was the first

to propose imputation in 1987 and this was quickly accepted in the empirical world and hence devel-

oped by his followers Ziliak (1998) and Browning, Leth-Petersen (2003) and the seminal work BPP.

1Similar problems exist for many other countries, in particular countries in Europe (e.g. France and
Spain) that collect detailed data on both consumption, income, and wealth, but the information never exists
in a single data set.
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Specifically, this method obtains total consumption in the PSID using the estimated relationship

between total consumption and some other consumption items that are reported in both the PSID

and the CEX. The difference between the original imputation method by Skinner (1987) and the

BPP method is that the original method regresses total consumption on other consumption items

while the BPP used “structural” regression of a standard demand function for food that depends not

only on other consumption items, but also on prices and a set of demographic and socio-economic

variable of the household. Assuming monotonicity of the demand for food makes it possible to in-

vert these function in order to obtain a structurally based formula total consumption, which exists

in the CEX, but is missing in the PSID. In one sentence, the original method treats the missing

variable as the "Y" while the developed BPP method treats it as an "X". Though this imputation

method seems appealing, at first sight, it has a major weakness since it reduces any variation in

total consumption; it does not take into account the fact the there is considerable idiosyncratic

elements that go into the individual decision making. Besides, the BPP method also suffers from

the well-known error-in-variable problem and gives biased results. We will discuss those problems

in details later. This method is so well accepted that Heathcote, Storesletten, and Violante (2014)

directly used the imputed data by BPP in the calibration of their structural model.

To deal with the lack of complete data set in this topic and other similar circumstances in other

research fields, we follow the work of Klevmarken (1982), Angrist and Krueger (1992), Arellano

and Meghir (1992) to study the estimation and inference of nonlinear econometric model when the

economic variables are contained in different data sets in Buchinsky, Li and Liao (2016,a). In that

paper, a minimum distance (MD) estimator of the unknown structural parameter of interest was

constructed with some common containing variables in different data sets to provide the specific

form of optimal weight for the MD estimation. Hence, in utilizing this new method, we would like

to join the efforts and re-evaluate the relationship of the dynamic processes of consumption and

income. At the same time, the inclusion of more consumption data in PSID starting from 1999 wave

gives us a wonderful chance to verify our new method with empirical data. The validity of the new

method makes it possible for us to revisit the topic using the historical incomplete data in this topic

and also gives confidence for application of the new method to other topics with similar data obstacle.

It’s worth mentioning that the new PSID consumption data is still not sufficient for the estimation

of the insurance parameter. The reason lies in the fact that the PSID consumption only contains

several but not all categories of the nondurables. A study by Blundell, Pistaferri, and Saporta

(2012) shows that the average of PSID nondurables is only about 55% of the total nondurable
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consumption. Theoretically, if we treat PSID consumption as a constant fraction of nondurable

expenditure (which is true by real data), the degree of insurance of this partial consumption with

respect to income shocks reflects partly the true degree of insurance of nondurable consumption

and partly the relationship between this partial consumption and total nondurable consumption

(i.e. the budget elasticity). Hence what we can estimate with this consumption measurement is

just a part of the parameter that we are truly interested in. But this estimation can still serve as

a verification baseline for BPP and our method. The logic here is that if we construct an identi-

cal partial consumption measurement in CEX, then an accurate multi-dataset estimation method

should give similar results with that from the true PSID data. After the method verification, we

can, therefore, employ the true total CEX consumption to estimate the parameters that we are

interested in, employing the validated estimation method.

Hence we will follow the idea in the seminal BPP paper by assuming some, but not necessarily

in regards to insurance as well as taking into consideration the distinctions between transitory and

permanent shocks. Section II introduces the new available PSID biannual panel data of some cat-

egories of consumption from 1999 wave and discusses various data problems. Also, the descriptive

empirical results based on the new data will be provided at the end. In section III, we will restate

the consumption model formulated in BPP and provide identification strategy for both our new

method and the imputation method. Section IV gives the estimation results using both methods

without the newly available longitudinal consumption data, and the result with the complete data.

If we consider the latter as the "true" result, the comparison of former with the latter can be used as

a test of the validity of different empirical strategies. Section VI discusses the theoretical hypotheses

with the empirical results and conclusion.

3.2 Introduction of new PSID and CEX

Panel Study of Income Dynamics (PSID)2

As already stated in the introduction, the Panel Study of Income Dynamics (PSID) is a survey that

provides longitudinal data describing roughly 5,000 households that have been followed since 1968.

It has been used as the major data set in researches regarding of income due to its excellency in

providing information on income and also various socioeconomic micro-level data. However it’s also

2Please see Martha Hill (1992) for a more detailed description of the PSID. We only provide
basic facts and related information about the 1999 reform here.
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known as its lack in consumption data. Only food consumption and rental data3 is consistently

available (with the exception of 1973, 1988, and 1989) while other categories of consumptions are

all missing.4

Starting with the 1999 wave, however, two major reforms were made. First, the original annual

survey was switched to a biannual survey. Second, the PSID began collecting more consumption

information, including health expenditures, utilities, transportation related expenditure, education

and child care, which covers almost 70% of nondurable expenditure from national accounts. Another

minor change is implemented in 2005 with a few additional consumption categories added (such as

clothing and entertainment).

The Consumer Expenditure Survey (CEX)5

The Consumer Expenditure Survey, on the other hand, is intended to investigate the expenditure

habits of American consumers, and used primarily for revising the CPI6. This data contains two

components, the Diary Survey, which is designed to obtain detailed expenditures data on small

and frequently purchased items, and the Interview Survey which on the other hand follows survey

households for a maximum of five consecutive quarters, and is designed to capture large purchases,

such as spending on rent property and vehicles, as well as those expenditures that occur on a regular

basis such as rent or utility payments.

Data comparison in PSID and CEX

Although both data sets take representative U.S. families as interview units and are conducted by

well-respected organizations with delicate survey designs and implementations, there are still some

differences among them that should be taken considered when combining them. And no matter

3Only rental consumption data is available but not the rent equivalents for non-homeowners, so it’s
impossible to construct a consistent rent consumption for all households

4Before 1999, the survey occasionally collected other consumption data, such as home insurance etc..

5Please see "Chapter 16: Consumer Expenditures and Income" from BLS Handbook of
Methods for a detailed description of the survey, including sample design, interview procedures,
etc.

6A description of the survey, including more details on sample design, interview procedures, etc., may be
found in "Chapter 16: Consumer Expenditures and Income," from the BLS Handbook of Methods.
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which method we use, the BPP method or our proposed method, the comparability of the two data

sets is crucial. In this section, we explain the adjustments made to the two data sets for later use.

Unit definition

In those two surveys, the basic unit is always household but the unit head is defined differently.

In PSID, the head of one unit or household is the husband in a couple while that in CEX is the

person or one of the persons who owns or rents the unit. Following most of the previous research,

our analysis makes the two definitions compatible.

Sampling issue of PSID

The genealogical and longitudinal designs of the PSID make it a unique resource for addressing

particular questions; nevertheless there are concerns about the sample representativeness since the

PSID sample is continually replenished through births and marriage. Fitzgerald et al.(1998) care-

fully studied this issue and found no strong evidence of distortion in the representativeness through

1989, and showed with considerable evidence that the PSID’s cross-sectional representativeness has

remained roughly intact from the sample replenishment. In addition, a thorough subsampling pro-

cedure was conducted in 1997 in reaction to the growth of the sample size resulting from family

splits. By setting aside entire linkages to a 1968 PSID sample family and adding a nationally repre-

sentative sample of immigrant households and individuals that would not be eligible for the PSID

under the original 1968 sample recruitment and sample family following rules, this subsampling

procedure managed to exemplify the PSID sample while maintaining the intergenerational ties in

the core panel. Hence, in this study, we undertake previous research results and assume that the

PSID data is nationally representative with family weights.7

Construction of PSID equivalent CEX consumption

PSID has two major changes with respect to consumption data after 1999. The first change added

most consumption categories including housing, transportation, health, education and child care,

while the second change completed the consumption data even more by adding clothing, recreation,

etc. According to Blundell, Pistaferri and Saporta (2012), the data collected from the 1999 wave

to 2003 wave accounted for about 66% of the NIPA data while the percentage for the 2005 to 2009

wave was about 70%. Since the topic of this research is estimating the relationship between con-

sumption and income, no matter what definition of consumption we use, the consumption data has

7In BPP, weighting was not considered for both the CEX data set and PSID data set, and this is one of
the minor changes we made when we implemented their method.
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to be consistent among different years, in the sense that for those years after 2005, even when new

categories were added, we still used the categories existing in all of the years starting from 1999

wave.

Table 3.1: Comparison of PSID data with NIPA

1998 2000 2002 2004 2006 2008

PSID Total 3,276 3,769 4,285 5,058 5,926 5,736

NIPA Total 5,139 5,915 6,447 7,224 8,190 9,021

Ratio 0.64 0.64 0.66 0.7 0.72 0.64

PSID Nondurables 746 855 867 1,015 1,188 1,146

NIPA Nondurables 1,330 1,543 1,618 1,831 2,089 2,296

Ratio 0.56 0.55 0.55 0.55 0.57 0.5

PSID Services 2,530 2,914 3,398 4,043 4,739 4,590

NIPA Services 3,809 4,371 4,829 5,393 6,101 6,725

Ratio 0.66 0.67 0.7 0.75 0.78 0.68

• This table is from Blundell,Pistaferri and Saporta (2012).

• PSID weights are applied for the non-sampled PSID data.

• Total consumption is defined as Non-durables + Services, PSID consumption categories include food,

gasoline, utilities, health, rent (or rent equivalent), transportation, child care, education and other

insurance.

• NIPA numbers are from NIPA table 2.3.5.

• All numbers are nominal.
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In addition to the time consistency of consumption data, we also needed to ensure that the con-

sumption data was comparable in the two data sets. Here, we borrowed from the wisdom of Charles

et.al (2007) and Cooper (2010) who did an excellently job of matching the CEX categories (UCC

coded) with their counterparts in the PSID for the 1999-2006 waves and the post 2006 waves sepa-

rately. (See the mapping table 2 below).

Table 3.2: Mapping of CE UCC codes into PSID categories

PSID Consumption Category CE UCC Code

Food

At home 190904, 790220, 790230

Delivered

Away from home 190902, 190903, 790410, 790420, 800700

Health Care

Hospital & nursing home 570110, 570210, 570220, 570230

Doctor 560110, 560210, 560310, 560330, 560400

Prescription drugs 340906, 540000, 550110, 550320, 550340, 570901,

570903, 570240

Insurance 580111, 580112, 580113, 580114, 580311, 580312,

580901, 580903, 580904, 580905, 580906

Housing

Mortgage 220311, 220312, 220321, 220322, 830201, 830202

Rent 210110, 800710

Insurance 220121, 220122

Property Tax 220211, 220212

Utility 250111, 250112, 250113, 250114, 250211, 250212,

250213, 250214, 250221, 250222, 250223, 250224,

250901, 250902, 250903, 250904, 260111, 260112,

260113, 260114, 260211, 260212, 260213, 260214,

270211, 270212, 270213, 270214, 270310, 270411,

270412, 270413, 270414, 270901, 270902, 270903,

270904

Transportation
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Vehicle Loan Payment 870103, 8701014, 8702023, 870204, 850300

Down Payment 870101, 870102, 870201, 870202, 870801

Vehicle Lease Payment 450310, 450313, 450314, 450410, 450413, 450414

Insurance 450311, 450411, 500110

Gasoline 470220, 470211, 470212, 480110, 480213, 480214,

490110, 490211, 490212, 490221, 490231, 490232,

490311, 490312, 490313, 490314, 490318, 490319,

490411, 490412, 490413, 490501, 490502, 490900,

520410

Other Vehicle Payments

Parking 520531, 520532

Bus 530311, 530312, 530501, 530902, 530210

Taxicab 530411, 530412

Other Transportation 520511, 520512, 520521, 520522, 520542, 520902,

520903, 520904, 520905, 520906, 520907, 530110,

530901

Education

Schooling 190901, 210310, 370903, 390901, 660110, 660210,

660310, 660900, 670110, 670210, 670901, 670902,

800802, 800804

Other School-related 690111, 690112

Child Care 340211, 340212, 670310

Clothing 360110 - 370902, 370904 - 390322, 390902 - 430120,

640130

Trips & Vacations 470113, 470212, 520212, 520522, 520532, 520542,

520905 - 530210, 530312, 530411, 530510, 530901,

610900, 620122, 620212, 620222, 620903, 620909,

620919, 290116, 810400

Other Recreation 310240, 310340 - 310350, 590111 - 590410, 600210

- 610320, 620111, 620121, 620211, 620221, 620310,

620330, 620904 - 620908, 620912, 620921 - 620930
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Household Furnishing

& Equipment

220612, 220615, 220616, 230133, 230134, 280110,

280120 - 310230, 310311 - 310334, 320111 - 320522,

320633 -320904, 340902, 340904, 340905, 340907,

990900, 230117, 230118, 790611

Home Repair &

Maintenance

230112 - 230115, 230121, 230122, 230123, 230142 -

230150, 240111 - 240323, 270211 - 270214, 270901

- 270904, 320611 - 320633, 330511, 340620, 340630,

340901, 340903, 340914, 790600, 990930, 990940

• Categories from Food to Child Care are for pre-2005 mapping from Charles et.al (2007). The remaining

categories are for the post-2005 mapping from Cooper (2010).

• 200900, 790310, 790320, and 790410 (alcohol) are included in the total food expenditures.

• 270101 and 270102 (telephone) are included for the total housing expenses.
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For comparison purpose, we consider several consumption measurements in our paper: non-durable8-

durable with services from some durable (housing and vehicles), non-durable with health care,

education and total consumption. We calculate the ratio of CEX and adjusted CEX consumption

with PSID consumption as a measure of the comparability between these two data sets and the

result is in Table 3. Each number is defined as follows:

RatioBefore =
CEX consumption
PSID consumption

RatioAfter =
PSID-equivalent CEX consumption

PSID consumption

We can see that the adjustment significantly decreases the differences between these two data sets.

For example, before the adjustment, the consumption calculated using CEX category is significantly

larger than the PSID counterpart, the difference between these two measurements is as large as 72%

and the adjustment shrinks this difference to around 10%. And among those different definitions,

the total consumption matched the best for all years (the difference between measures from these

two data sets is around 2%), which suggests that we should have the result with the least noise by

employing this consumption definition.

In addition, we also provide the matching results by category. And we can see that, even with

careful matching, there are still quite a few differences between these two data sets which maybe

due to the wording differences in the questionnaires, for example. Also, the differences between

these two data sets are not time consistent. Although we could not do better with the matching for

each category, fortunately we didn’t really need the detailed consumption data but rather the total

consumption.

The last minor problem was that the PSID survey has been conducted every other year since 1999

while the CEX has been collected on annual base. Therefore, to make the consumption data in the

PSID comparable to the imputed consumption data based on BPP and the CEX data used in BLL,

for both the imputation and our proposed method, we only chose those years in which PSID data

was available.

8defined in Attanasio and Guglielmo Weber (1995), which is the sum of food (defined above), alcohol,
tobacco, and expenditure on other nondurable goods, such as services, heating fuel, public and private
transport (including gasoline), personal care, and semi-durables, defined as clothing and footwear. Since the
semi-durables are only available after 2005, we don’t include them in our calculation.
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Table 3.3: Comparison of PSID data with CEX, PSID-equivalent CEX consumption

Non-durables
Non-durables

with edu&health

Non-durables

with housing
Total

Before After Before After Before After Before After

1998 120.95% 84.31% 107.87% 95.47% 98.11 % 89.57% 108.47% 97.48%

2000 142.80% 88.20% 119.61% 97.68% 113.48% 93.62% 120.51% 99.91%

2002 129.90% 84.47% 111.69% 94.14% 99.27% 90.39% 109.16% 96.53%

2004 172.26% 94.78% 135.18% 99.65% 127.14% 100.27% 132.16% 102.50%

2006 155.56% 97.63% 125.05% 101.25% 113.95% 103.68% 118.44% 104.73%

2008 117.42% 97.59% 101.30% 99.33% 90.57% 101.16% 97.70% 101.33%

2010 131.07% 105.52% 105.03% 102.54% 97.17% 106.36% 101.05% 103.59%

• "Before" here means before the matching process and each number is the ratio of CEX consumption

and PSID consumption under that specific definition.

• "After" means after the matching process and each number is the ratio of adjusted CEX consumption

and PSID consumption under that specific definition.

Table 3.4: Comparison of PSID data with PSID-equivalent CEX consumption, by category

Food Health Housing Transport Education Child

care

1998 91.96% 84.15% 108.42% 82.25% 163.38% 148.02%

2000 92.24% 96.93% 113.02% 86.29% 145.02% 98.95%

2002 91.44% 94.71% 100.84% 88.61% 143.98% 103.86%

2004 94.47% 118.70% 117.83% 84.0% 122.37% 111.95%

2006 106.52% 120.67% 117.85% 81.19% 141.36% 62.87%

2008 133.95% 117.43% 117.88% 62.70% 105.00% 75.82%

2010 132.41% 117.12% 108.25% 78.77% 97.36% 61.22%
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Characteristics of Consumption and Income Inequality

As stated in the introduction, the scarcity of consumption data in any longitudinal dataset used

to make it impossible to study the comovement of consumption and income. The new PSID data

for the first time gives us the possibility of documenting some basic features of the evolution of

consumption and income inequality with more precision.

From Figure 1, which uses PSID data on log income and log consumption for the year 1998 onward,

and CEX data on log consumption from 1980 to 2010, we plot both the point estimators of the

variances and the polynomial smoothing lines through those. The income we used here is the after

tax non-financial income (non-financial income - taxes on non-financial income), and the after tax

total income gives the exactly same trend. The consumption is the PSID total consumption, BPP

defined CEX total consumption and adjusted CEX consumption as we defined before (We also de-

pict the non durable consumption trends and present it in the Figure 2 of Appendix 1).

Before our discussion of the evolution of consumption and income equality in the 21st century,

it seems necessary to take a closer look at the different definitions of consumption. CEX provides

detailed expenditure data for each quarter on the UCC level, and at the same time provides ex-

penditures by category in the family characteristics, income and consumption files (except for 1982

and 1983), in which the consumption is aggregated using the detailed expenditure file by formula.

But this formula changes every year due to the adjustments to the UCC system. In other words,

if we directly use the total consumption defined by CEX, we actually get time-inconsistent defined

consumption data, for which the time trend analysis is meaningless. This is the reason that BPP

calculated time-consistent consumption by applying one year’s definition of consumption to all of the

years that they were interested in. In other words, the BPP defined consumption is also a "partial"

consumption, and we sacrifice some expenditure items for the consistency of the consumption panel.

We also calculated the mean and variance of the CEX published consumption by various definitions,

and put them in Appendix 1 for reference . The CEX adjusted consumption is the trimmed CEX

consumption adjusted to match the PSID definition and available consumption categories. We can

understand it as another "partial" consumption with even fewer categories (clothing, recreation and

furnishing etc.) So understandably, the variance of the adjusted CEX consumption is smaller than

the BPP-defined CEX consumption. Fortunately, they two follow very similar patterns and are both

quite flat during the period under study. In fact, the former is just a downward-translated version

(by about 0.05 units) of the latter. And most importantly, we can see that the PSID consumption

and the the CEX adjusted consumption share a similar flat pattern as well, which serves as the base
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Figure 3.1: Overall Pattern of Inequality

• The income data comes from PSID 1998 onward, and here we use the after-tax, non-financial income

(i.e., non-financial income - taxes on non-financial income). We also checked with the after-tax total

income, and put it in Appendix 1.

• The consumption data also comes from PSID 1998 onward.

• There are two CEX consumptions here; the one labeled "log(C), CEX" is the same one employed by

BPP, which includes all categories of consumption. The other, which labeled as "log(C), CEX ADJ",

is the adjusted CEX consumption we use in this paper, which aims at matching the exact categories

of consumption included by the PSID.

• Since CEX data is collected annually, and is collected PSID biannually, the PSID income and con-

sumption trends have only 7 samples while the CEX consumption trends have 14.
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Figure 3.2: Overall Pattern of Inequality from 1980 to 2010

• We use Lowess smoothing for the long income series from the PSID and the long consumption series

from the CEX

• We use linear fit for the short consumption series from the PSID. The reasoning behind this is that,

with a much shorter length of time, each point would have a larger weight when smoothed compared

to the long consumption series from the CEX.

176



Figure 3.3: Overall Pattern of Inequality - Nondurable
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Figure 3.4: Overall Pattern of Inequality from 1980 to 1992, from BPP

• They use Lowess smoothing for the long income series from the PSID and the long consumption series

from the CEX

• They didn’t use the weight of either survey, which leads to a slightly different result than ours.
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of our estimation using the two data sets.

There are two distinct features of the evolution of consumption and income inequality in the 21st

century that are worth noting. The first distinct feature is that the scale of the income variance

is greater than that of the consumption variance which suggests a certain degree of self-insurance

against income shocks. The second is that both income and consumption inequality are quite flat

during these periods. There are indeed some small fluctuations, for example, income equality was

relatively high in 1998 and 2008, possibly due to the financial crisis. But if we pool data from a

longer period, from 1980 to 2010 (as shown in Figure 2), we can obtain a clearer picture of the trend

in which the consumption inequality turns to completely flat in the late 1990s, whereas income

inequality slows down the rising trend in the 1980s.

The nondurable consumption gives a slightly different pattern, which we can see clearly in Fig-

ure 3. The non-durables start to flatten out in the late 1980s and started to increase again in the

2000s. This is slightly different from BPP’s observations due to the availability of longer time series

(we attach the BPP result here for comparison). But one problem with non-durables is that the

CEX and the PSID give two different patterns after 2000. The PSID is almost flat, very similar

to the total consumption, while the CEX consumption inequality increases. This is one reason we

use total consumption as our main result. But in either case, we can see that the relationship of

income and consumption is quite stable after 2000, no matter which definition of consumption we

use. This is the first time that we can use the real data to do the above exercise, though there has

been a lot of attempts for the pre-1999 period with the defective data. We can see that the original

BPP’s work gives a similar trend for the pre-1999 period, but they concludes that both consumption

in late 1980s while in the larger picture, we can see that actually consumption inequality was still

rising in that period but flattens out in the late 1990s instead.

3.3 The income and consumption process

Here we completely follows the setting in BPP. Suppose real (log) income, logY can be decomposed

into a permanent component P and a mean-reverting transitory component v. The income process

for each household i is

logYi,t = Z ′i,tϕt + Pi,t + vi,t
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where t indexes time and Z is a set of income characteristics observable and known by consumers

at time t. These will include demographic, education, ethnic, and other variables.

Assume the permanent component Pi,t follows a martingale process of the form

Pi,t = Pi,t−1 + ζi,t

where ζi,t is serially uncorrelated, and the transitory component vi,t follows an MA(q) process, where

the order of q is set to 1 as it is in Blundell et al. (2008)

vi,t = εi,t + θεi,t−1

It follows that the unexplained income growth is

∆yi,t = ζi,t + εi,t + (θ − 1)εi,t−1 − θεi,t−2 (3.1)

Suppose the real log consumption logC follows the process

logCi,t = Z ′i,tϕ
c
t + P ci,t

and the error component follows

P ci,t = P ci,t−1 + φζi,t + ψεi,t + ξi,t

in other words, we can write (unexplained) change in log consumption as follows:

∆ci,t = φζi,t + ψεi,t + ξi,t. (3.2)

We allow permanent income shocks ζi,t to have an impact on consumption with a loading factor

of φi,t, which may potentially vary across individuals and time; the impact of transitory income

shocks εi,t is measured by the loading factor ψi,t. The random term ξi,t represents innovations in

consumption that are independent of those in income. This may capture the measurement error

in consumption, preference shocks, innovation to higher moments of the income process, etc. We

call φi,t and ψi,t partial insurance parameters. Equation (2) nests the two extreme cases of full

insurance of income shocks (φi,t = ψi,t = 0) as contemplated by the complete markets hypothesis,

and no insurance (φi,t = ψi,t = 1) as in autarky, as well as intermediate cases in which 0 < φi,t < 1

and 0 < ψi,t < 1. The closer the coefficient is to zero, the higher the degree of insurance.

In Appendix we discuss identification details of the model in more in detail; it is similar to BPP in

most respects, but slightly different because we have biannual data instead of the annual data they

used.
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3.3.1 Skinner method

In his 1987 paper, Jonathan Skinner was the first to propose the imputation method. The proce-

dure he proposed is that firstly run a regression of total consumption on all commonly presented

individual consumption categories with CEX data set, then with the PSID data, consumption is

constructed with the estimated parameter and the corresponding PSID consumption categories.

Consider the following total consumption equation in the CEX:

ci,x = D′i,xβ + γfi,x + ei,x

in which c is the total consumption (or non-durable consumption), f is the food consumption, and

D contains prices and a set of conditioning variables (also available in both data sets). For simplic-

ity, we follow Skinner’s linear assumption and notification that we have one input data set (in this

case is CEX) and one target data set (in this case is PSID), and we use the subscript x to indicate

an input data set variable and the subscript p to indicate a target data set variable. We assume

that x and p are two random samples drawn from the same underlying population. Then Skinner’s

method will generate the following imputed consumption in PSID:

cIMi,p = D′i,pβ̂ + γ̂fi,p = ci,p − êi,p

In other words, the imputed consumption can be viewed as error-ridden measurement of the true

consumption ci,p, but the measurement error êi,p is uncorrelated with cIMi,p .9 Then if the imputed

consumption were used as a variable in a linear regression model, the OLS regression would still give

us an unbiased and consistent estimation for the parameters, but would fail if the linear assumption

doesn’t hold.

Alternatively, the BPP method proposed a structural model for the food consumption, in other

words, they assume the following:

fi,x = D′i,xβ + γci,x + ei,x

9In the original regression, we have that the fitted values and residuals are uncorrelated, i.e., ĉ′xêx = 0.
Since the CEX and the PSID are random samples from the same population, ĉ′pêp = 0.
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Again, we assume linearity for simplicity. Then the imputed consumption by BPP would be

cIMi,p =
1

γ̂
(fi,p −D′i,pβ̂) = ci,p +

êi,p
γ̂

where êi,p is the residual from the original food consumption structural regression equation. This

imputation would also produce a measurement error but the measurement error êi,p
γ̂ would be

correlated with cIMi,p . Hence, even with linear assumption, any regression employing the imputed

consumption as a variable would fail to generate an unbiased and consistent estimation.

3.3.2 BPP method

Panel consumption Data

We follows the BPP imputation methodology and compare the average of variance of the imputed

consumption with the true PSID consumption. The result is presented in Figure 3, in which we can

see the following two distinct characteristics. The first is that the averages of these two measurements

are similar, which is also proven in Cooper (2010). This is easy to understand: after averaging out

the individual idiosyncratic errors, the imputation can provide a good semblance of the population.

The second is that the variance of the imputation consumption is significantly smaller than the

true ones and gives totally different trend. This is because the imputation rules out the individual

differences, and hence decreases the variation of the sample.

We can observe the above conclusion more clearly by comparing the kernel density of the true

consumption from the PSID and the imputed consumption. Or we can also turn to the kernel

density of the individual difference between the true consumption and the imputed ones. We can

draw very similar conclusions from Table 5 in the sense that the mean of the difference is very small

compared to the mean of log(C), for example; the smallest difference is in 2006, which is only 0.3%

of the mean of log(C). This suggests that the imputation can do a very good job in predicting the

sample mean. But the variance of the difference is comparable to log(C), implying the imputation

cannot capture the individual idiosyncrasy.

In the figure below, we also provide the kernel density of the difference by year.
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Figure 3.5: Mean of the true and imputed consumption

3.4 BLL and BPP

BPP

In this part, we first estimate the model with the real PSID consumption data and the BPP imputed

consumption data and then compare the two results. In Table 6, we show the estimation results

for three different definitions of non-durables that were defined in last section. We choose to follow

BPP’s main sample selection, which is a sample of continuously married couples headed by a male

( with or without children) aged 30 to 65. Hence we eliminate households in which the head or the

head’s spouse changes; therefore we can focus on income risk without modeling divorce, widowhood

or other household breaking-up factors.

Table 3.6: Optimal Minumum Distance Estimates

Non-durables Non-durables + Hous. Non-durables + Edu.

Real BPP Real BPP Real BPP

Variance of Permanent Shocks

Year = 2000 0.081 0.043 0.062 0.115 0.047 0.109
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(0.017) (0.014) (0.014) (0.017) (0.012) (0.017)

Year = 2002 0.059 0.027 0.056 0.087 0.048 0.09

(0.013) (0.01) (0.013) (0.012) (0.013) (0.012)

Year = 2004 0.037 0.039 0.039 0.057 0.039 0.055

(0.009) (0.009) (0.009) (0.006) (0.009) (0.006)

Year = 2006 0.031 0.029 0.033 0.041 0.032 0.039

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)

Year = 2008 0.043 0.042 0.044 0.042 0.044 0.042

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Year = 2010 0.092 0.06 0.017 0.015 0.077 0.042

(2.252) (0.331) (0.279) (0.018) (0.409) (0.012)

Variance of Transitory Shocks

Year = 1999 0.271 0.493 0.277 0.089 0.151 0.044

(2.48) (0.369) (0.424) (0.183) (0.463) (0.078)

Year = 2000 0.028 0.042 0.032 0.017 0.034 0.015

(0.032) (0.006) (0.008) (0.007) (0.018) (0.007)

Year = 2001 0.345 1.01 0.387 0.229 0.218 0.106

(2.966) (1.002) (0.614) (0.504) (0.733) (0.18)

Year = 2002 0.042 0.05 0.042 0.024 0.04 0.022

(0.045) (0.009) (0.01) (0.005) (0.021) (0.006)

Year = 2003 0.314 1.802 0.26 0.293 0.185 0.144

(2.335) (2.572) (0.298) (0.658) (0.527) (0.247)

Year = 2004 0.055 0.058 0.055 0.031 0.053 0.031

(0.051) (0.015) (0.018) (0.007) (0.028) (0.008)

Year = 2005 0.016 1.926 0.147 0.234 0.06 0.125

(0.94) (2.898) (0.136) (0.518) (0.186) (0.212)

Year = 2006 0.041 0.037 0.038 0.026 0.038 0.027

(0.028) (0.005) (0.007) (0.006) (0.016) (0.007)

Year = 2007 0.043 1.23 0.045 0.441 0.007 0.171

(0.66) (1.498) (0.289) (1.002) (0.382) (0.291)

Year = 2008 0.04 0.045 0.041 0.051 0.041 0.044

(0.028) (0.006) (0.009) (0.012) (0.018) (0.013)

Year = 2009 0.033 0.712 0.005 0.591 0.051 0.181
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(1.23) (0.576) (0.455) (1.359) (0.349) (0.307)

Year = 2010 0.003 0.026 0.077 0.065 0.014 0.043

(2.284) (0.328) (0.283) (0.018) (0.425) (0.012)

Partial insurance permanent shock

φ 0.128 0.198 0.2 0.067 0.244 0.054

(0.041) (0.054) (0.051) (0.023) (0.057) (0.025)

Partial insurance transitory shock

ψ 0.116 0.219 0.251 0.67 0.202 1.019

(0.572) (0.219) (0.354) (0.729) (0.504) (0.744)

Serial correlation of transitory shock

θ -0.157 -0.036 -0.136 -0.109 -0.206 -0.218

(1.074) (0.041) (0.167) (0.227) (0.567) (0.325)

Variance of unobservables (slope heterogeneity)

σ2
ξ 0.071 0.019 0.059 0.013 0.061 0.012

(0.011) (0.029) (0.019) (0.021) (0.015) (0.021)

From the results based on the real consumption data, we can arrive at the following conclusions.

First, the estimate of φ, the partial insurance coefficient for the permanent shock, which is sig-

nificant in all the three measurements, provides evidence in favor of some partial insurance. In

particular, a 10 percent permanent income shock induces a 1.28 percent permanent change in con-

sumption. The estimates on ψ are all insignificant, which accords with a simple PIH model. Here

we have to keep in mind that these parameters are not comparable with the results from BPP or

any other research performed on this topic since the "consumption" we defined using the PSID data

is only partial consumption; hence this parameter only reflects the relationship based on this partial

consumption and income instead of the total non-durable consumption. We defer the discussion

of the economic implication to the next part. Second, with more "durable" components in the

consumption definition, the estimate of φ is higher than the baseline estimation, indicating that the

health, education and durable related service consumption are more difficult to insure compared to

common non-durables. Third, we can see that the estimation of both permanent shock variances

and transitory shock variances are not sensitive to the use of different consumption definitions, and

are relatively stable within these periods. The MA parameter for the transitory shock is stably
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Figure 3.6: Variance of the true and imputed consumption

small and insignificant. The variance of unobserved heterogeneity in the consumption is significant

and comparable in amount with the variances of shocks.

We can then verify the validity of the BPP method by comparing the results from the imputed

consumption with those from the real consumption. First, the comparison based on non-durables

plus are more reliable given the comparability of the PSID and CEX data sets we discussed in last

section. And the results differ most with the non-durable plus education and health definition, which

is the most comparable definition; for example, the estimate of φ, which we are most interested in, is

about 1/5 of the real estimate. But notably that the estimates of the variance of permanent shocks,

except for the beginning and ending periods, are fairly close when the BPP method is compared

with the real data. This is due to the fact that the identification of the permanent shocks âĂŞ aside

from the beginning and ending periods âĂŞ comes from the income data, which are identical in the

two methods.

The BPP paper claims that the imputation error can be included in the model setup as a measure-

ment error in the consumption, and that the variances of those errors can be precisely measured.

Hence, we can compare the estimation based on the real data with that based on the imputation

data with measurement errors. For a more reliable comparison, we provide the results based on
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Figure 3.7: Kernel Density of the true and imputed consumption
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Table 3.5: Summary statistics of the difference

Year 1998 2000 2002 2004 2006 2008 2010

Obs 1,629 1,792 1,832 1,827 1,841 1,825 1,661

Mean of ∆log(C) 0.105 0.044 0.082 -0.038 -0.029 1.124 -0.563

Mean of log(C) 8.777 8.856 8.838 8.975 9.010 8.955 9.024

Var of ∆log(C) 0.360 0.367 0.393 0.416 0.385 0.445 0.396

Var of log(C) 0.489 0.482 0.504 0.524 0.498 0.491 0.500

Min of ∆log(C) -2.038 -2.255 -2.750 -4.667 -2.327 -1.711 -2.788

Max of ∆log(C) 1.122 0.995 1.361 0.933 1.500 2.283 0.632

Figure 3.8: Kernel Density of difference between the true and imputed consumption
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the non-durable plus here. We can see that with the extra assumption that the two ending periods

share the same permanent variances with the third and fourth last periods, and that the the last

period shares the same transitory variances with the second last periods decreases the estimates of

the partial insurances. But the inclusion of the measurement errors does not necessarily improve

the estimations; for example, for the first definition, including measurement errors makes the BPP

estimation differ more from the real results, though not significantly.

Table 3.7: Estimates with Measurement Errors

Nondurables + Hous. Nondurables + Edu.

Real BPP BPP with m.e. Real BPP BPP with m.e.

Variance of Permanent Shocks

Year = 2000 0.067 0.084 0.074 0.056 0.096 0.074

(0.015) (0.017) (0.017) (0.013) (0.016) (0.017)

Year = 2002 0.053 0.042 0.048 0.048 0.052 0.05

(0.013) (0.012) (0.013) (0.013) (0.012) (0.013)

Year = 2004 0.038 0.038 0.04 0.038 0.046 0.038

(0.009) (0.008) (0.009) (0.009) (0.006) (0.009)

Year = 2006 0.03 0.035 0.033 0.028 0.033 0.033

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005)

Year = 2008 0.047 0.044 0.043 0.048 0.042 0.044

(0.006) (0.007) (0.007) (0.006) (0.006) (0.006)

Variance of Transitory Shocks

Year = 2000 1.65 0.423 0.003 0.336 0.085 0.206

(6.702) (0.626) (0.935) (1.827) (0.09) (0.466)

Year = 2001 0.037 0.031 0.035 0.038 0.022 0.034

(0.007) (0.006) (0.077) (0.02) (0.006) (0.013)

Year = 2002 1.872 1.432 0.13 0.466 0.147 0.831

(7.366) (1.658) (1.817) (2.888) (0.16) (4.789)

Year = 2003 0.046 0.05 0.039 0.043 0.033 0.044

(0.009) (0.008) (0.101) (0.022) (0.007) (0.019)
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Year = 2004 0.368 2.463 0.12 0.313 0.18 0.593

(5.143) (3.556) (1.395) (1.53) (0.202) (2.665)

Year = 2005 0.057 0.059 0.047 0.052 0.04 0.057

(0.016) (0.014) (0.117) (0.03) (0.01) (0.025)

Year = 2006 1.027 1.937 0.047 0.032 0.164 0.097

(2.576) (2.697) (0.215) (2.277) (0.179) (0.698)

Year = 2007 0.037 0.033 0.033 0.037 0.032 0.037

(0.006) (0.005) (0.079) (0.022) (0.006) (0.012)

Year = 2008 0.5 0.512 0.008 0.235 0.123 0.005

(2.324) (0.689) (1.076) (1.149) (0.129) (1.565)

Year = 2009 0.037 0.043 0.044 0.034 0.038 0.045

(0.007) (0.005) (0.097) (0.018) (0.008) (0.014)

Partial insurance of permanent shock

φ 0.155 0.089 0.087 0.192 0.105 0.13

(0.043) (0.033) (0.036) (0.047) (0.032) (0.041)

Partial insurance of transitory shock

ψ 0.091 0.183 0.109 0.105 0.874 0.103

(0.368) (0.167) (1.096) (0.735) (0.471) (0.365)

Serial correlation of transitory shock

θ -0.029 -0.026 -0.277 -0.092 -0.223 -0.09

(0.092) (0.033) (3.342) (0.534) (0.205) (0.371)

Variance unobservable (slope heterogeneity)

σ2
ξ 0.059 0.026 0.005 0.061 0 0.003

(0.031) (0.021) (0.011) (0.025) (0.028) (0.009)

We can also test the fit of the model to determine how far the BPP estimation is from the true data.

In Figure 9, we plot the actual variances of income growth, consumption growth and the covariance

of income growth and consumption growth together with their predicted values using the real data

and imputed consumption data respectively. We repeat this exercise for all three definitions of

consumption and we can observe a quite obvious divergence from the BPP estimation and the real
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data. It’s worth mentioning that this doesn’t mean the BPP method doesn’t do a good job in terms

of fitting the model, only that the data it is fitted to is inaccurate. In Figure 10, we provide the

comparison of the variance of the imputed consumption and the covariance of imputed consumption

with income to their estimated counterparts respectively for all three consumption definitions. In

this figure, we can see that the BPP estimation did a very good job fitting the imputed data.
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Figure 3.9: Goodness of fit of BPP

Figure 3.10: Goodness of fit of BPP
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BLL

Now, we turn to our proposed method, which we refer to as BLL. Due to the fact that the con-

sumption data and income data are not in the same data sets âĂŞ and what’s worse is that the

consumption data in CEX is repeated cross-sectional data âĂŞ the consumption data for the differ-

ent years are also not in the same data set. This means that there is a situation in which there is

no way to calculate cov(∆log(C),∆log(y)). With the lack of the series of cov(∆log(C),∆log(y)),

we can no longer identify all the variance in the model (see Appendix 2 for details), but we can still

identify the parameters that we are interested in, which are the two insurance parameters.

Partial Insurance for the Permanent Shock

From Eq.(3.1), we can write

ζi,t + ζi,t−1 = ∆2yi,t −∆2vi,t

which together with (3.2) implies that

∆2ci,t = φ∆2yi,t + ηi,t (3.3)

where we define

ηi,t = (ξi,t + ξi,t−1) + ψ(εi,t + εi,t−1)− φ∆2vi,t

= (ξi,t + ξi,t−1) + (ψ − φ)εi,t + (ψ − φθ)εi,t−1 − φ(εi,t−2 + θεi,t−3)

Because in our case ∆2ci,t is unavailable since P ci,t and P ci,t−2 are in two different data sets, we

rewrite the above equation as

Pc
i,t −Pc

i,t−2 = φ∆2yi,t + ηi,t (3.4)

The permanent income component ζ is in both ∆2ci,t and ∆2yi,t, while it is not in ηi,t. Hence,

valid IVs zy;i;t for estimating equation (8) could be the variables that are correlated with ζi,t but

uncorrelated with εi,t and ξi,t, and at the same time, contained in any two successive CEX datasets

and also in the PSID dataset. Here we choose wives’ characteristics (wives’ ages). And we can

prove that φ can be identified as follows:

φ =
E
[
Pc
i,tz

CEXt
y,i,t

]
− E

[
Pc
i,t−2z

CEXt−1

y,i,t

]
E
[
∆2yi,tzPSIDy,i,t

] (3.5)
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As the instrument variable zy is available in all three data sets, we have n observations: {zy,i,t}i∈I
where I = I1 ∪ I2 ∪ I3. Let Pk(z) = [p1(z), . . . , pk(z)]

′ be a k-dimensional vector of basis functions

for any positive integer k. For any k and any n, we define

Pn,k = [Pk(Z1), . . . , Pk(Zn)]′ .

It is clear that Pn,k is an n × k matrix. Accordingly, we define Pn1,k1 , Pn2,k2and Pn3,k3 which are

n1 × k1, n2 × k2 and n3 × k3 matrices respectively.

The conditional mean h0(Z) = E [Y |Z] can be estimated by

ĥn1,n2(Z) = Pk1(Z)′(P ′n1,k1Pn1,k1)−1P ′n1,k1P
c
n1,t − Pk2(Z)′(P ′n2,k2Pn2,k2)−1P ′n2,k2P

c
n2,t−2 (3.6)

Using the third data set, we get the following estimator of the conditional mean function φ0(Z, θ) =

E [g(X, θ)|Z] for any θ:

φ̂n3(Z, φ) = Pk3(Z)′(P ′n3,k3Pn3,k3)−1P ′n3,k3φ∆2yn3,t (3.7)

Using the estimators of h0(Z) and φ0(Z, φ), we can construct the estimator of φ0 via the minimum

distance (MD) estimation:

θ̂n = arg min
θ∈Θ

n−1
∑
i∈I

[∣∣∣ĥn1,n2(Zi)− φ̂n3(Zi, φ)
∣∣∣2] (3.8)

where Θ denote some subspace of Rdθ .

Results Comparison and Discussion

In Table 8, we report the results from the BPP and BLL methods, and compare them with the

results from the true data.

Due to the identification problem we mentioned earlier, we can only compare the parameters of the

two kinds of partial insurance shocks, which are the ones of greatest interest in this study. We can

see that the BLL method provides results that are very similar to the results from the true data,

implying the reliance of this new method.

We can see from the results that, the estimate of φ, which is the partial insurance coefficient for the

permanent shock, is significantly positive but significantly smaller than 1, indicates that if consump-

tion is only partially insured from the permanent shock. In particular, we find that a 10 percent

permanent income shock induces a 1.3 percent permanent change in consumption. This finding is
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consistent with the excessively smooth consumption discovered in both aggregate and micro data,

i.e., it reacts insufficiently to permanent income shocks to be consistent with the theory (Campbell

and Deaton (1989); Attanasio and Pavoni (2006)).

In the original BPP work, the parameter is as high as 0.64, which means that a 10 percent permanent

income shock induces a 6.4 percent permanent change in consumption. Hence in their work, they

conclude that their results can be simply explained by PIH but not support the excessively smooth

consumption phenomenon. Through this comparison, we can see that the imputation method de-

livers a significantly higher (almost double the size) estimation results compared to those based

on true data. Although, it’s hard to identify the direction of the estimation bias of their method

theoretically from the estimation process, this comparison gives us a rough estimation of the size of

the overestimation in their original work. An overestimation at this degree would completely change

the supporting theories and lead to totally different results. As to the source of the bias, it may

included several aspects, but one most important of these is misspecification of the consumption

variance. In contrast, our estimation differs slightly with the real data result, but gives a much

closer estimation with less than 10% upscaling.

For the partial insurance for transitory shock ( i.e., ψ), all three columns show that the parameter is

insignificant. But again, the point estimator of BPP varies largely with the read data results. This

evidence accords with a simple PIH model and we cannot reject the null that there is full insuring

behavior with respect to transitory shocks.

3.5 Conclusion

In this paper, we re-evaluate the relationship between the dynamic processes of consumption and

income with a new estimation method described in Buchinsky, Li and Liao (2016,a) which deals

with the data problem of having common containing variables in different data sets. The inclusion

of additional consumption data in the PSID starting with the 1999 wave grants us with an precious

opportunity to verify our new method with empirical data. The validity of the new method makes

it possible for us to revisit the topic using the historical incomplete data in this topic and also gives

confidence for application of the new method to other topics with similar data obstacle.

We proceeded in the same spirit as the seminal BPP paper by assuming some, but not necessarily

full, insurance and taking into consideration the distinctions between transitory and permanent

shocks. We show in our paper that the BPP method gives biased estimation results compared with
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those from the true data, while the BLL succeeds in giving similar results. If we consider the results

based on true data as the "true" result, the comparison of estimators with those based on true data

can be used as a test of the validity for different empirical strategies. After theoretically proving the

commonly used BPP method is biased, We support our theoretical finding by making comparisons

among the estimation results of BPP, BLL and the true data and concluding that BLL gives much

closer results compared to the true data results while BPP differs to that significantly. This results

suggest the validity of the newly introduced BLL result. In the future, we will employ this method

to revisit the dynamic relationship of consumption and income between 1980 to the most current

in the hope of shedding more lights in this line of reseach.

3.6 Appendix

3.6.1 The income and consumption process

In line with BPP(2008), we assume the real (log) income logY can be decomposed into a permanent

component P and a mean-reverting transitory component v. The income process for each household

i is

logYi,t = Z′i,tϕt + Pi,t + vi,t

where t indexes time and Z is a set of income characteristics observables and known by consumers

at time t. We assume that the permanent component Pi,t follows a martingale process of the form

Pi,t = Pi,t−1 + ζi,t

where ζi,t is serially uncorrelated and the transitory component vi,t follows an MA(1) process:

vi,t = εi,t + θεi,t−1

If we define yi,t = logYi,t−Z′i,tϕt as the log of real income net of predictable individual components,

then the unexplained two-period income growth is

∆2yi,t = (ζi,t + ζi,t−1) + (vi,t − vi,t−2) = (ζi,t + ζi,t−1) + ∆2vi,t

Similarly, we write the unexplained two-period consumption growth as

∆2ci,t = φ(ζi,t + ζi,t−1) + ψ(εi,t + εi,t−1) + (ξi,t + ξi,t−1)

where the random term ξi,t presents innovations in consumption that are independent of those

in income, this may capture measurement error in consumption, preference shocks, innovation to
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higher moments of the income process, etc.

In other words, we assume the consumption follows the process:

logCi,t = Z′i,tϕ
c
t + Pc

i,t

where

Pc
i,t = Pc

i,t−1 + φζi,t + ψεi,t + ξi,t

We as well assume that ζi,t,εi,t and ξi,t are mutually uncorrelated processes. then we can impose

covariance restrictions on the bivariate process to identify the parameters of interest. In particular,

equation (1) can be used to derive the following covariance restrictions in panel data:

cov(∆2yt,∆2yt+s) =


σ2
ζ,t + σ2

ζ,t−1 + σ2
v,t + σ2

v,t−2 if s = 0

σ2
v,t if s = 2

0 if s > 2

(3.9)

in which

σ2
v,t = σ2

ε,t + θ2σ2
ε,t−1

The panel data restrictions on consumption growth from equation (2) are as follows:

cov(∆2ct,∆2ct+s) =

 φ2(σ2
ζ,t + σ2

ζ,t−1) + ψ2(σ2
ε,t + σ2

ε,t−1) + (σ2
ξ,t + σ2

ξ,t−1) if s = 0

0 otherwise
(3.10)

Finally, the covariance between income growth and consumption growth at various lags is

cov(∆2ct,∆2yt+s) =


φ(σ2

ζ,t + σ2
ζ,t−1) + ψ(σ2

ε,t + θσ2
ε,t−1) if s = 0

−ψ(σ2
ε,t + θσ2

ε,t−1) if s = 2

0 if s > 2 or s < 0

(3.11)

3.6.2 Identification

From the Eq.(1) and Eq.(2), we can see that the parameters to identify are:θ,σ2
ζ ,σ

2
ε ,σ2

ξ ,φ and ψ. Here

I show how the model can be identified with N years of biannual panel data (label as l = 2t− 1 for

t = 1, . . . , N), or N − 1 years of biannual differences, {∆2yi,t,∆2ci,t} for and discuss the extension

with measure errors on consumption.

I start with the simplest model with MA(1) process of transitory component and no measurement

error.

1. Identification of (σ2
ζt

+ σ2
ζt−1

)
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It’s clear that σ2
ζt

and σ2
ζt−1

cannot be identified separately, but can be identified as a unit.

From Eq. (3)

σ2
ζt + σ2

ζt−1
= E[∆2yt] + cov(∆2yt−2,∆2yt) + cov(∆2yt,∆2yt+2) (3.12)

for t ∈ {5, . . . , 2N − 3}

2. Identification of φ

From Eq.(3) and (5), we can have

φ =
cov(∆2ct,∆2yt) + cov(∆2ct,∆2yt+2)

σ2
ζt

+ σ2
ζt−1

(3.13)

which in turn gives us

σ2
ζt−2

+ σ2
ζt−3

=
cov(∆2ct−2,∆2yt−2) + cov(∆2ct−2,∆2yt)

φ

so we can identify σ2
ζt

+ σ2
ζt−1

for t = 3

3. Identification of ψ, θ and σ2
εt

After identifying (σ2
ζt

+ σ2
ζt−1

) for the first two periods and φ, we have the following 2 ∗ (N −

2) + (N − 1) equations with 3 + 2 ∗ (N − 2) unknowns {ψ, θ, σ2
ξ , σ

2
εl
} for l ∈ [1, 2N − 3]

−ψ(σ2
εl

+ θσ2
εl−1

) = cov(∆2cl,∆2yl+2) l = 3, . . . , 2N − 3

−(σ2
εl

+ θ2σ2
εl−1

) = cov(∆2yl,∆2yl+2) l = 3, . . . , 2N − 3

ψ2(σ2
εl

+ σ2
εl−1

) + 2σ2
ξ = E(∆2c

2
l )− φ2(σ2

ζl
+ σ2

ζl−1
) l = 3, . . . , 2N − 3

(3.14)

It’s an overidentification problem if N > 4, an exact-identification problem if N = 4, and

under-identified if N < 4

4. Identification of the variances of the last period

For the last period, the only available covariances are E(∆2yt), E(∆2c
2
t ) and cov(∆2yt,∆2ct),

but since we’ve already identified all the insurance coefficients ψ, φ and also the MA(1) coef-

ficient θ and the idiosyncratic variance σ2
ξ , the only unknown left are three: (σ2

ζt
+ σ2

ζt−1
), σ2

εt

and σ2
εt−1

. So these three can be exact identified with the last three covariances.

5. Identification with time-varying measurement errors

If instead of the above consumption process, we assume there is a time-varying measurement

error for consumption, i.e.

logC∗i,t = logCi,t + uci,t
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where C∗ denote measured consumption, C is true consumption, and uc the measurement

error, which is a draw from a distribution with variance σ2
uct
.

Then the Eq. (2) becomes

∆2c
∗
i,t = φ(ζi,t + ζi,t−2) + ψ(εi,t + εi,t−1) + (ξi,t + ξi,t−1) + (uct − uct−2) (2∗)

and the covariance of consumption growth, i.e. Eq.(4), becomes

cov(∆2c
∗
t ,∆2c

∗
t+s) =


E(∆2c

2
t ) + σ2

uc,t + σ2
uc,t−2 if s = 0

−σ2
uc,t if s = 2

0 otherwise

Then at Step 3, first of all, with N − 2 equations of cov(∆2c
∗
t ,∆2c

∗
t+2), we can identify {σ2

uct
},

for t = 3, . . . , 2N − 3, then with the other 2 ∗ (N − 2) + (N − 1) equations, we have the old

2 ∗ (N − 2) + 3 unknowns, and 1 extra unknowns to identify {σ2
uc,1}, which means the system

is still overidentified if N > 5, exact-identified if N = 5 and under-identified if N < 5.

But for the last period, with still three equations for covariances E(∆2yt), E(∆2c
∗2
t ) and

cov(∆2yt,∆2c
∗
t ), we now have four unknowns: (σ2

ζt
+σ2

ζt−1
), σ2

εt , σ
2
ζt−1

and σ2
uct
. So we cannot

identify all the parameters of the last period.

3.6.3 Identification with consumption and income growths are in separate data

sets

Now with the income growth {∆2yt} and the consumption growth {∆2ct}, we can still identify

(σ2
ζt

+σ2
ζt−1

) for t = 5, . . . , 2N −3 as we did in Step 1 before, the major differences are for insurance

parameters φ and ψ.

1. Identification of φ

From Eq.(3.1), we can write

ζi,t + ζi,t−1 = ∆2yi,t −∆2vi,t

which together with (3.2) implies that

∆2ci,t = φ∆2yi,t + ηi,t (3.15)

where we define
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ηi,t = (ξi,t + ξi,t−1) + ψ(εi,t + εi,t−1)− φ∆2vi,t

= (ξi,t + ξi,t−1) + (ψ − φ)εi,t + (ψ − φθ)εi,t−1 − φ(εi,t−2 + θεi,t−3)

Because in our case, ∆2ci,t is unavailable since P ci,t and P
c
i,t−2 are in two different data sets,

we rewrite the above equation into

Pc
i,t −Pc

i,t−2 = φ∆2yi,t + ηi,t (3.16)

Since the permanent income component ζ is in both ∆2ci,t and ∆2yi,t, while it is not in ηi,t.

Hence, valid IVs zy;i;t for estimating equation (8) could be the variables which are correlated

with ζi,t but uncorrelated with εi,t and ξi,t, and in the same time, contained in any two

successive CEX datasets and also in PSID dataset. Here we choose wives’ characteristics

(wives’ ages).

Then one can prove:

φ =
E
[
Pc
i,tz

CEXt
y,i,t

]
− E

[
Pc
i,t−2z

CEXt−1

y,i,t

]
E
[
∆2yi,tzPSIDy,i,t

] (3.17)

2. Identification of ψ and θ

Similarly, from the equation (3.2),

εi,t + εi,t−1 =
∆2ci,t − φ(ζi,t + ζi,t−1)− (ξi,t + ξi,t−1)

ψ

which together with (3.1) implies that

∆2yi,t =
∆2ci,t
ψ
− θ∆2ci,t−2

ψ
+ ui,t

=
Pc
i,t −Pc

i,t−2

ψ
−
θ(Pc

i,t−2 −Pc
i,t−4)

ψ
+ ui,t

(3.18)

where we define

ui,t =
(ψ − φ)(ζi,t + ζi,t−1)

ψ
+
θφ(ζi,t−2 + ζi,t−3)

ψ
− ξi,t + ξi,t−1

ψ

+
θ(ξi,t−2 + ξi,t−3)

ψ
+ (θ − 1)(εi,t−1 + εi,t−2). (3.19)

It is clear that the transitory income components εi,t and εi,t−3 are in ∆2yi;t, ∆2ci;t and

∆2ci;t−2, while they are not in ui;t. Hence, valid IVs zc;i;t for estimating equation (13) could

be the variables which are correlated with εi,t and εi,t−3 but uncorrelated with ζi,t, ξi,t or
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εi,t−1, εi,t−2. But it’s potentially hard to find any variables correlated with εi,t but not with

the lagged ones. For example, the change of per capita GDP growth rate of the residential

states would be a potential choice, but it’s hard to argue that is not correlated with last two

periods’ transitory income shocks . But supposedly we are lucky enough to find at least two

valid instruments zPSIDc,i,t , we can identify ψ and θ at the same time through the following

moment conditions.

ψE[∆2yi,tz
PSID
c;i;t ] = E[Pc

i,tz
CEX
c;i;t ]− (θ + 1)[Pc

i,t−2z
CEX
c;i;t ] + θ[Pc

i,t−4z
CEX
c;i;t ]

3. Identification of σ2
ε and σ2

ξ

After identifying (σ2
ζt

+σ2
ζt−1

) for the first two periods and φ, we have the following 2∗(N−4)

equations with 2 ∗ (N − 4) + 1 unknowns {σ2
ξ , σ

2
εl
} for l ∈ [5, 2N − 3]

−(σ2
εl

+ θ2σ2
εl−1

) = cov(∆2yl,∆2yl+2) l = 5, . . . , 2N − 3

ψ2(σ2
εl

+ σ2
εl−1

) + 2σ2
ξ + φ2(σ2

ζl
+ σ2

ζl−1
) = E(∆2c

2
l ) l = 5, . . . , 2N − 3

(3.20)

in which

E(∆2c
2
l ) = σ2

Pct
− σ2

Pct−2

The system is under-identified.This failure of

3.6.4 Identification of the starting and ending periods

Both in BPP and in our paper, it’s been shown that with four biannual data, the parameters

{θ, σ2
ζt
, σ2

εt , σ
2
ξ , φ, ψ} can be identified. And in BPP, and I quote, "if one has T years of data,

only T − 3 variances of the permanent shock can be identified and only T − 2 variances of the

i.i.d. transitory shock can be identified". But actually with more than four periods’ data, it’s an

overidentified problem for {θ, φ, ψ, σ2
ξ}. Here we can show that that the variances at the starting

and ending periods can also be identified.

Let’s take BPP data as an example, i.e. we have data from 1978 to 1992 or we can say that we

have first difference data from 1979 to 1992. Then with data from 1979 to 1982, the parameters

{θ, φ, ψ, σ2
ξ} are already identified, together with σ2

ζ1981
, σ2

ε1981 . Then with θ known and the following

two equations:

σ2
ε =

E [∆yi,t∆yi,t+1]

θ − 1
− E [∆yi,t+1∆yi,t−1] (3.21)
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σ2
ζ = E

[
∆yi,t(∆yi,t +

∆yi,t+1 − θ∆yi,t−1

θ − 1
)− (θ +

1

θ
)∆yi,t+1∆yi,t−1)

]
(3.22)

σ2
ζ1980

, σ2
ε1980 are also identified. With the second moment of ∆y:

E [∆yi,t∆yi,t−2] = −θσ2
ε,t−2

σ2
ε1979 is also identified (t−2 = 1979). And together with another second moment of ∆y as followed

E [∆yi,t∆yi,t−1] = (θ − 1)σ2
ε,t−1 − θ(θ − 1)σ2

ε,t−2

σ2
ε1978 is also identified (t− 1 = 1979). If together with the second moment of ∆c

E
[
∆c2

i,t

]
= φ2σ2

ζt + ψ2σ2
εt + σ2

ξ

σ2
ζ1979

can be identified (t = 1979). The last step is to go back to the second moment of ∆y:

E
[
∆y2

i,t

]
= σ2

ζ,t + σ2
ε,t + (θ − 1)2σ2

ε,t−1 + θ2σ2
ε,t−2

σ2
ε1977 is also identified (t = 1979). For the ending periods, there are two unknowns left σ2

ε1992 and

σ2
ζ1992

with two equations of E
[
∆y2

i,t

]
and E

[
∆c2

i,t

]
(t = 1992), so clearly those two are also iden-

tified.

To sum up, with T periods of first difference data, T variances of permanent shocks can be identi-

fied, and T + 2 variances of transitory shocks can be identified.

If there is measurement errors, which can be identified by

E(∆c∗t∆c
∗
t+1) = −σ2

uct

for all the periods but the first and last ones.

For the last period, we have not two but three unknowns σ2
ε1992 , σ

2
ζ1992

and σ2
uc1992

with still two

equations. Then the last three are underidentified.

The same applies to the first period, we have two equations, but now we have an extra σ2
uc1978

.

So to make the results comparable, let’s assume the last periods variances equal to penultimate

ones, in other words, we assume there are T − 1 permanent shocks, T + 1 transitory shocks and

T − 1 measurement errors to identify.

202



Table 3.8: Comparisons of BLL and BPP

Real BLL BPP

φ 0.1331 0.1407 0.2404

(Partial insurance perm. shock) (0.0432) (0.0453) (0.0592)

ψ 0.1584 0.1922 -0.0981

(Partial insurance trans. shock) (0.9839) (1.0290) (0.2523)
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