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Abstract of the Dissertation

Applications of the Link Surgery Formula in Heegaard
Floer Homology

by

Yajing Liu
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Ciprian Manolescu, Chair

Heegaard Floer homology is combinatorially computable, but a convenient computational

scheme in general is still missing, especially for HF − of hyperbolic manifolds. We aim to use

the Manolescu-Ozsváth the link surgery formula for computing Heegaard Floer homology of

surgeries on links and finding applications on L-space surgeries on links. The main difficulty

is to reduce the complexity of the algorithms.

We give a polynomial time algorithm to compute the whole package of the completed

Heegaard Floer homology HF− of all surgeries on a two-bridge link of slope q/p, L =

b(p, q), by using nice diagrams and some algebraic rigidity results to simplify the link surgery

formula.

We also initiate a general study of the definitions, properties, and examples of L-space

links. In particular, we find many hyperbolic L-space links, including some chain links

and two-bridge links; from them, we obtain many hyperbolic L-spaces by integral surgeries,

including the Weeks manifold. We give bounds on the ranks of the link Floer homology of

L-space links and on the coefficients in the multi-variable Alexander polynomials. We also

describe the Floer homology of surgeries on any L-space link using the link surgery formula

of Manolescu and Ozsváth.

As applications, we compute the graded Heegaard Floer homology of surgeries on 2-
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component L-space links in terms of only the Alexander polynomial and the surgery framing.

We also give a fast algorithm to classify L-space surgeries among them.

iii



The dissertation of Yajing Liu is approved.

Robert Brown

Eliezer Gafni

Ciprian Manolescu, Committee Chair

University of California, Los Angeles

2015

iv



To my parents

Xining Liu and Yuming Zhang

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Surgeries on Two-bridge Links. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The basic idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 L-space Links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 L-spaces and L-space knots. . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Main results on L-space links. . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Surgeries on L-space links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Review of the Manolescu-Ozsváth link surgery formula . . . . . . . . . . . 15

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Heegaard diagrams of links. . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Generalized Floer complexes. . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Polygon maps and homotopy equivalences between Floer complexes. . 19

2.2 Link surgery formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Hyperboxes of chain complexes. . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Link surgery formula for a two-component link −→
L = −→

L1 ∪ −→
L2. . . . . . 29

2.2.3 Inclusion maps and destabilization maps. . . . . . . . . . . . . . . . . 32

3 Applications to surgeries on two-bridge links . . . . . . . . . . . . . . . . . 43

3.1 Generalized Floer complexes of two-bridge links . . . . . . . . . . . . . . . . 43

3.1.1 Nice diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



3.1.2 Schubert normal form. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Heegaard diagrams of two-bridge links. . . . . . . . . . . . . . . . . . 46

3.1.4 The multi-variable Alexander polynomial of two-bridge links. . . . . . 49

3.1.5 The Floer complexes for two-bridge links. . . . . . . . . . . . . . . . . 51

3.2 Applying the surgery formula to two-bridge links . . . . . . . . . . . . . . . 56

3.2.1 Algebraic rigidity results. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Destabilization maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Perturbed surgery complex for two-bridge links. . . . . . . . . . . . . 62

3.2.4 Invariance of the perturbed surgery complex. . . . . . . . . . . . . . 65

3.2.5 Algorithm for computing HF−(S3
Λ(L)) for two-bridge links. . . . . . . 71

3.2.6 Further discussions of the perturbed surgery complex. . . . . . . . . . 73

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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3.3.4 ĈFLOS(b(8k, 4k ± 1)). On the left side, the figure illustrates the Alexander

grading of A, B, C, D summands, where k = 2. On the right side, it indicates

the filtered homotopy types of (A(i), ∂̂), (B(i), ∂̂), (C(i), ∂̂), (D(i), ∂̂), which all

have the filtered homotopy types as boxes, except for (D(1), ∂̂). . . . . . . . 81

3.3.5 The surgery complex for Λ = (0, 0). Every dot represents a complex

Cε
s which is a certain generalized Floer complex A−

s’ (Wh), and every arrow

represents a Φ-map according to the endpoints of the arrow. We only label

the four complexes Cε
s for the Spinc structure s = (0, 0), and the others are

similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.6 The surgery complex for Λ = (1, 0). Every dot represents a complex Cε
s

which is a certain generalized Floer complex A−
s’ (Wh), and in every shaded

circle the complexes Cε
s ’s have the same subscript s. Every arrow represents a

Φ-map according to the endpoints of the arrow, where we omit the subscripts.

All the parallel arrows share the same type of Φ
−→
M , i.e. having the same

superscript −→
M . The arrows with circled numbers 1, 2, 3, 4 are Φ+L2

+∞,0 + Φ−L2
+∞,0,

Φ+L2∪+L1
0,0 + Φ−L2∪+L1

0,0 , Φ+L2
0,0 + Φ−L2

0,0 , and Φ+L2∪−L1
0,0 + Φ−L2∪−L1

0,0 respectively.

The regions R1, R2, R3 divided by the (thicker) lines are corresponded to the

acyclic subcomplexes R1,R2,R3. The shaded region Q corresponds to the

truncated complex Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.7 The surgery complex for Λ = (1, 1). The arrows with circled numbers

1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The

regions R1, R2, R3, R4 divided by the (thicker) lines are corresponded to the

acyclic subcomplexes R1,R2,R3,R4. The shaded region Q corresponds to the

truncated complex Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



3.3.8 The surgery complex for Λ = (1,−1). The arrows with circled numbers

1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The

regions R1, R2, R3, R4 divided by the (thicker) lines are corresponded to the

acyclic subcomplexes R1,R2,R3,R4. The shaded region Q corresponds to the

truncated complex Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.9 The surgery complex for Λ = (−1,−1). The arrows with circled numbers

1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The

regions R1, R2 divided by the (thicker) lines are corresponded to the acyclic

subcomplexes R1,R2. The shaded region Q corresponds to the truncated com-

plex Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 An example of weak L-space link. . . . . . . . . . . . . . . . . . . . . . 109

4.1.2 We illustrate the cases of the (p1, p2)-surgeries in Proposition 4.1.10 on the

(p1, p2) plane, where the case (3′) is similar to case (3). . . . . . . . . . . . . 112

4.2.1 The Borromean ring. The (1, 1, 1)-surgery on the Borromean link is the

Poincaré sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.2 An L-space link giving the Weeks manifold. . . . . . . . . . . . . . . 117

4.2.3 The (n + 1, n− 1)-surgery on T (2, 2n). Consider the surgery on the upper-

left link L, which is a plumbing of unknots. By blowing down the horizontal

unknots Hi’s, we get the surgery on the lower-left link T (2, 2n). While blowing

down the black unknots Vj’s, we can get the surgery on the lower-right link,

which is S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.4 The (n+1, n+1)-surgery on the T (2, 2n) torus link. Consider the surgery

on upper-middle link L, which is a plumbing of unknots. After blowing down

the horizontal (blue) unknots Hi’s, we get the (n + 1, n + 1)-surgery on the

upper-left link T (2, 2n). While after doing Rolfsen twists on the black unknots

Vj’s, we can get a rational surgery on the lower-middle link M , which is a lens

space by blowing-down the blue unknots using Rolfsen twists again. . . . . . 119

xi



4.2.5 The two-bridge link b(6n + 2,−3). . . . . . . . . . . . . . . . . . . . . . 121

4.2.6 The 4-plat presentations of two-bridge links. For any continued fraction

[a1, ..., am] = q/p, there is a 4-plat projection of the two-bridge link b(p, q).

When m is odd, we use (a) to close the 4-braid B in the box; when m is even,

we use (b) to close the 4-braid B. . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.7 A 3-component link used to study the surgeries on b(6n + 2,−3). The

left link L is used to study the surgeries on b(6n+2,−3). After blowing down

the (−1)-framed L3, we can get the two-bridge link b(6n+2,−3). While if we

consider the (n+1, n+1, 1)-surgery on L, after blowing down the (+1)-framed

component L3, we get the (n, n)-surgery on T (2, 2n + 2), which is an L-space. 123

4.2.8 The (n+2, n+2)-surgery on the two-bridge link b(6n+2,−3). Consider

the (n + 1, n + 1,−1)-surgery on the left 3-component link L. After blowing

down the (−1)-framed component L3, we get the (n + 2, n + 2)-surgery on the

two-bridge link b(6n + 2,−3). . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.9 The (n + 1 + k, n + 1 + k)-surgery on the two-bridge link b(rq − 1,−q)

with r = 2n + 1, q = 2k + 1. Consider the (n + 1, n + 1,− 1
k
)-surgery on the

left 3-component link L. After doing the Rolfsen twists on the (−1)-framed

component L3, we get the (n+1+k, n+1+k)-surgery on the two-bridge link

b(rq − 1,−q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.10The 3-component link L7a7. The 3-component link L drawn above on the

left is the mirror of L7a7 drawn in the Thistlethwaite Link Table on Knot

Atlas. Consider the (n, n, 1)-surgery on L. After blowing down the 1-framed

component L3, we get the (n − 1, n − 1)-surgery on the Whitehead link Wh. 127

4.2.11A plumbing graph L-space link. Consider the link L = L1 ∪ ... ∪ L4 in

the figure which is a plumbing of unknots. By blowing down L2, L4, we see

that the surgery shown is S3. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



4.2.12A generalized (++++−)L-space link. Consider the link L = L1∪...∪L5 in

the figure which is a plumbing of unknots. The surgery shown is the Poincaré

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.13A linear plubming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.14A family of hyperbolic L-space chain links. The surgery labelled above

satisfies the positive L-space surgery criterion. . . . . . . . . . . . . . . . . . 131

4.2.15A linear plubming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.16Another family of hyperbolic L-space chain links. The surgery labelled

above satisfies the positive L-space surgery criterion, when n1, n2 are large

enough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.17Another sequence of generalized L-space link. Consider the link L(n)

used in the proof of Lemma 4.2.5. It is in fact a generalized L-space link. . . 134

5.2.1 The L-space surgeries on T (2, 20). We draw the L-space surgeries of

T (2, 20) on the x-y plane within the range [−40, 40] × [−40, 40]. Every dot

(p, q) represents an L-space surgery (p, q). The blue points are Seifert L-space

surgeries determined by the characterization of Lisca-Stipsicz, while the red

points are determined by induction. The six labelled regions correspond to the

six conditions (1) to (6) in Proposition 5.2.3. The drawn hyperbola indicates

the positions of the surgeries with b1 = 1. . . . . . . . . . . . . . . . . . . . . 157

5.2.2 The truncation. The vectors Λ1 and Λ2 are determined by the surgery

framing matrix. The edges of the parallelogram Q are parallel to Λ1 and Λ2,

and they indicate the border lines of various acyclic subcomplexes or quotient

complexes. Thus, the parallelogram Q roughly indicates the support of the

truncated complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xiii



List of Tables

3.3.1 A−
s (Wh) and generators of their homology. . . . . . . . . . . . . . . . . 87

4.2.1 Alexander polynomials of non-fibered hyperbolic L-space links. Here,

we consider the single variable Alexander polynomials for the two different ori-

entations on the above L-space links. None of them has leading coefficient 1,

although the multi-variable Alexander polynomials do have coefficients ±1.

Thus, they are not fibered with any orientation. . . . . . . . . . . . . . . . 126

4.2.2 Thistlethwaite Link Table with crossing number ≤ 7. Here, by "Yes" in

the column "L-space link", it means either the link or its mirror is an L-space

link; by "Yes" in the column "Alexander polynomial", it means the conditions

on the multi-variable Alexander polynomial in Theorem 1.3.15 are satisfied. . 135

xiv



Acknowledgments

I am never able to express my gratitude completely to my advisor Professor Manolescu for

his introduction and patient teaching on Floer homology and low-dimensional topology, for

his constant guidance and support from all aspects mentally and physically, and for setting

up an excellent model for me to learn from both inside and outside math for all my life.

Without his help, I could not have finished my Ph.D. study.

I also wish to thank all the other members in the topology group in UCLA, including

Professor Brown, Professor Honda, Kristen Hendricks , Jianfeng Lin, Christopher Scaduto,

Matthew Stoffregen, and Ian Zemke (together with the former members Tova Brown, Allison

Gilmore, Eamonn Tweedy and Tye Lidman). The UCLA topology group has been as my

family during my stay in UCLA and has enhanced my knowledge and skills through all the

stimulating conversations.

All the time I thank my parents for their love for me.

xv



Vita

2003–2007 Undergraduate Student in Mathematics, Class in honor of S.S. Chern, De-

partment of Mathematical Sciences, Nankai University, China.

2007–2010 Master of Science in Mathematics, Department of Mathematics, Peking

University, China.

2010–present Ph.D. Candidate, Teaching Assistant and Research Assistant, Department

of Mathematics, UCLA, Los Angeles, California.

Publications

Liu, Y., L-space surgeries on links, arXiv:1409.0075, accepted by Journal of Quantum Topol-

ogy.

Liu, Y., Heegaard Floer homology of surgeries on two-bridge links, arXiv:1402.5727, sub-

mitted for publication.

xvi



CHAPTER 1

Introduction

1.1 Background and Motivation.

The study of the topology of 4-manifolds was revolutionized in 1982 by the work of Donald-

son, who has initiated the study of smooth structures on 4-manifolds using Yang-Mills theory.

In order to distinguish different smooth structures on the same topological 4-manifold, the

idea is to study the moduli space of solutions of certain PDE’s on the smooth manifold,

with some additional geometric structures prefixed such as a Riemannian metric. If one

can derive some quantities from the moduli space of solutions which only depend on the

smooth structure of the underlying 4-manifold, one call these quantities smooth 4-manifold

invariants. However, it is usually hard to compute these invariants from the definitions and

hard to see the internal relationship between these invariants and the smooth topology of

the underlying manifold.

Instead of considering Yang-Mills equations, Seiberg and Witten wrote down a different

set of equations, which are easier to work with. They defined their invariants and conjectured

a relationship between their invariants and the Donaldson polynomial invariants. In order to

better understand the Seiberg-Witten invariants, Ozsváth and Szabó defined Heegaard Floer

homology for connected oriented closed 3-manifolds, which potentially are more computable.

Heegaard Floer homology is a package of invariants of 3-manifolds, and they are defined

by using holomorphic disks and Heegaard splittings of the 3-manifold [39, 38]. Furthermore,

it fits into a kind of 3+1 dimensional topological quantum field theory, which is important

in the study of smooth structures on 4-manifolds. It also detects the Thurston norm and

1



fiberedness of a 3-manifold [36, 8, 30]. Unlike other Floer homological invariants, Heegaard

Floer homology is combinatorially computable, and there are several algorithms for comput-

ing various versions of it. Manolescu, Ozsváth and Sarkar described knot Floer homology

combinatorially using grid diagrams in [48]. Sarkar and Wang in [48] found an algorithm

for computing ĤF (M3) over Z/2Z by using nice Heegaard diagrams. Lipshitz, Ozsváth and

Thurston used bordered Floer homology to give another algorithm for computing ĤF (M3)

in [19]. In [26], Manolescu, Ozsváth and Thurston showed that the plus and minus ver-

sions of Heegaard Floer homology (over Z/2Z[[U ]]) can also be described combinatorially,

by using link surgery and grid diagrams. (Admittedly, the MOT algorithm has a high time

complexity.)

Despite these combinatorial algorithms, a convenient computational scheme in general is

still missing, especially for HF − of hyperbolic manifolds. Hence, improving these algorithms

and developing new methods for computations are still important and interesting questions.

Throughout this paper, we use F = Z/2Z coefficients and consider the completed version

HF−.

1.2 Surgeries on Two-bridge Links.

1.2.1 The basic idea.

We are aiming to compute the full package of Heegaard Floer homologies of surgeries on two-

bridge links using the link surgery formula due to Manolescu and Ozsváth. As a consequence,

we provide new examples of hyperbolic 3-manifolds for which we can compute their Heegaard

Floer homology.

When −→
L is a two-bridge link b(p, q), we find a fast algorithm for computing the Floer

homology of surgeries on L, HF−(S3
Λ(−→L )) over F = Z/2Z, where Λ is the framing matrix

of a surgery. (Here, HF−(S3
Λ(−→L )) is the U -completion of HF −. See [24] Section 2.) This

algorithm uses genus-0 nice diagrams and algebraic arguments to simplify the Manolescu-
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Ozsváth surgery formula. Its worst-case time complexity is a polynomial of p and det(Λ).

Let us mention some related work. In [45], Rasmussen studied Heegaard Floer homology

of surgeries on two-bridge knots. In [43], Ozsváth and Szabó developed a formula for the

Heegaard Floer homology of surgeries on knots. The paper [24] presents a generalization of

this formula to the case of links. Two sets of data are needed in the surgery formula in [24]:

the generalized Floer complexes A−
s (−→L )’s and the maps in the surgery formula, namely the

maps I−→
L ′

s , D
−→
L ′
s connecting the complexes associated to oriented sublinks. In general, the

Heegaard Floer homology of link surgeries is more difficult to compute, due to more involved

algebraic structures. However, in some cases, computations using this surgery formula can

be simplified.

The main complexity in the link surgery formula is the counting of the holomorphic

domains on the Heegaard surface, which corresponds to holomorphic bigons and polygons in

the symmetric product. For the special case of two-bridge links, we directly find a formula

for the counts of holomorphic bigons. Furthermore, the general link surgery formula involves

counting holomorphic polygons in the symmetric product for computing some cobordism

maps, and this is of considerably high time complexity. Here we notice that, for two-bridge

links, all these maps can be determined algebraically.

1.2.2 Main results.

Using the Schubert normal form of two-bridge links we get a class of nice Heegaard diagrams

called Schubert Heegaard diagrams, in which every region is either a bigon or a square.

We can explicitly describe all the composite bigons on a Schubert Heegaard diagram, and

hence the Floer differentials. Further, we get a formula for the Alexander gradings of all

intersection points, thus giving a formula for the multi-variable Alexander polynomial of a

two-bridge link b(p, q) in terms of p, q. See Theorem 3.1.22 and Proposition 3.1.17 below

for the precise statements. This implies that A−
s (−→L ) can be directly computed from this

diagram. For a two-bridge link −→
L = b(p, q), we get an O(p2) time algorithm for computing
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A−
s (−→L ). We also found different two-bridge links (modulo mirror and reorientation) sharing

the same multi-variable Alexander polynomial, signature, and linking number.

Using algebraic arguments, we show some rigidity results of the destabilization maps

D
−→
M
s ’s, M ⊂ L up to chain homotopy, for two-bridge links. Further, if we perturb the desta-

bilization maps D±Li
s ’s by chain homotopy, i.e. replace D±Li

s by D̃±Li
s � D±Li

s , we can

construct a new square of chain complexes called the perturbed surgery complex. Using the

rigidity results, we show that the perturbed surgery complex is isomorphic to the original

complex in the link surgery formula. Based on the perturbed surgery complex, we give the

algorithm for computing HF−(S3
Λ(−→L )) mentioned before.

The main result we obtain is the following:

Theorem 1.2.1. Suppose −→
L is an oriented two-bridge link with framing Λ. Let HL be a

basic Heegaard diagram of −→
L and let H be a primitive system induced by HL. After we

determine the F[[U1, U2]]-modules A−
s (−→L )’s sitting at the vertices of the square in the link

surgery formula, any choices of

• F[[U1]]-linear chain homotopy equivalences D̃−Li
s1,s2 for the edge maps,

• F[[U1]]-linear chain homotopies for the diagonal maps

yield a perturbed surgery complex (C̃−(HL, Λ), D̃−) which is isomorphic to the original surgery

complex in [24] as an F[[U1]]-module. By imposing the U2-action to be the same as the

U1-action, the F[[U1, U2]]-module H∗(C̃−(H, Λ), D̃−) becomes isomorphic to the homology

HF−(S3
Λ(−→L )). This isomorphism preserves the absolute grading.

See Theorem 3.2.13 below for a more precise statement and the proof.

Corollary 1.2.2. For a two-bridge link −→
L , knowledge of the A−

s (−→L ) determines HF− of all

the surgeries on L.

We also compute some examples explicitly: the surgeries on b(4n, 2n + 1), n ∈ N, which

are two sequences of hyperbolic two-bridge links generalizing the Whitehead link and the
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torus link T (2, 4). See Proposition 3.3.9 and Theorem 3.3.10. Actually in the course of the

computation, we also show that the Whitehead link is an L-space link, which means all of

its large surgeries are L-spaces, i.e. A−
s1,s2(Wh)’s all have homology F[[U ]]. This provides

examples of hyperbolic L-spaces.

To compute these examples, we study the filtered homotopy type of CFL−(L). We prove

that when L = b(4n, 2n + 1), the filtered chain homotopy type of CFL−(L) is determined

by the filtered chain homotopy type of ĈFL(L). See Proposition 3.3.5 and Proposition 3.3.6

for the precise statements. Basically, this is based on an observation that the Alexander

polytope is simple and there are several symmetries on CFL−(L), which give constraints for

the differentials in CFL−(L). From CFL−(L) we derive all the A−
s (L)’s and the inclusion

maps. Finally, using the perturbed surgery complex, we compute the Floer homology of

their surgeries and the associated d-invariants.

Since CFL−(L) is the same as A−
+∞,+∞(L) viewed as a Z⊕Z-filtered chain complex (with

the Alexander filtration), Corollary 1.2.2 means the filtered homotopy type of CFL−(L)

contains all the information about the Floer homology of the surgeries on L, when L is

a two-bridge link. In [42], it is shown that, for an alternating two-component link L, the

filtered chain homotopy type of ĈFL(L) is determined by the set of data:

• the multi-variable Alexander polynomial ΔL(x, y),

• the signature σ(L),

• the linking number lk(L),

• the filtered homotopy type of ĈFK(Li) of each component.

However, it is hard to determine the filtered homotopy type of CFL−(L) in general. For two-

bridge links, the Schubert Heegaard diagrams show that the U1, U2-differentials in CFL−(L)

are quite simple, since the bigons always contain exactly one basepoint. In addition, every

component of a two-bridge link is the unknot. Thus, for two-bridge links, we raise the

following question:
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Question 1.2.3. Given an oriented two-bridge link L, is the filtered homotopy type of

CFL−(L) determined by the set of data {ΔL(x, y), σ(L), lk(L)}?

We notice that HF− of surgeries on two-bridge links may also be computed by other

methods. For example, as long as one of the framing coefficients is not 0, one can view one

component as a knot in a lens space and compute using the grid diagram methods in [1].

Another method is to consider these surgeries as surgeries on (1,1)-knots in lens spaces and

use the method of [9]. Nevertheless, the method in this paper is more conceptual. Some of

the arguments here could be potentially used for other classes of links. In fact, Theorem

1.2.1 and Corollary 1.2.2 can be directly generalized to the two-component links with every

component being an L-space knot.

1.3 L-space Links.

1.3.1 L-spaces and L-space knots.

Definition 1.3.1 (Z/2Z-L-space). A 3-manifold M is called an L-space, if it is a rational

homology sphere and dimF(ĤF (M)) = |H1(M)|.

Examples of L-spaces include all 3-manifolds with elliptic geometry and double branched

covers over quasi-alternating links. L-spaces are of interests in 3-manifold topology. An

L-space does not admit any co-oriented C2 taut foliations; see Theorem 1.4 from [36]. While

examples of closed hyperbolic manifolds admitting no taut foliations are very interesting and

first found in [46] and [4] by considering their fundamental groups. In fact, any hyperbolic

Z/2Z-L-space also provides an example of hyperbolic manifold admitting no co-oriented taut

foliations. This is because in the proof of Theorem 1.4 of [36], it is pointed out that any

Z/pZ-L-space does not admit a co-oriented taut foliation for all prime numbers p. There is

also a conjecture of Boyer-Gordon-Watson from [2] relating L-spaces with left-orderability

of the fundamental group.

In [40], L-space knots were introduced by Oszváth and Szabó, in order to study the

6



Berge conjecture on lens space surgeries on knots in S3. For further results towards the

Berge conjecture, see [12, 13].

Definition 1.3.2 (L-space knot). A knot K ⊂ S3 is called an L-space knot, if there is a

positive integer n, such that the n-surgery on K is an L-space.

Since every 3-manifold is a surgery on a link in S3, one can study L-spaces by surgeries

on links. In this paper, we focus on a class of links called L-space links, whose large surgeries

are all L-spaces. These links are natural generalizations of L-space knots. The terminology

of L-space links was introduced by Gorsky and Némethi in [11] to study algebraic links.

Actually, Ozsváth, Stipsicz and Szabó have shown that all plumbing trees are L-space links

in [33]. The surgeries on algebraic links and plumbing trees are all graph manifolds. In this

paper, we give many examples of hyperbolic L-space links, including some families of two-

bridge links and chain links. In turn, these hyperbolic L-space links provide many examples

of hyperbolic L-spaces, including the famous Weeks manifold; see Chapter 4. In fact, all the

examples of hyperbolic L-spaces by considering large surgeries on L-space links are derived

from elliptic L-spaces, by using the surgery exact triangle of Floer homology.

It turns out that L-space links are rich in geometry and simple in algebra. All the

generalized Floer complexes are chain homotopy equivalent to F[[U ]] and the link Floer

homology are controlled by their Alexander polynomials; see Chapter 4 and 5. Moreover,

there are L-space links of all kinds of geometry with arbitrarily many components, including

non-prime links, torus links, satellite links, and hyperbolic links; see Example 1.3.13. There

are also non-fibered prime L-space links, contrasting L-space knots.

Examples and properties of L-space knots have been extensively studied in the literature.

We list some of them here.

Example 1.3.3. Examples of L-space knots include lens space knots such as Berge knots

(up to mirror), algebraic knots (which are torus knots and their cables), and (−2, 3, q) pretzel

knots with q > 1 odd (which are hyperbolic). See [40, 14, 18, 16].
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Fact 1.3.4 ([44]). A positive rational L-space surgery implies a positive integer L-space

surgery; a positive integer L-space surgery implies that all large surgeries are L-spaces.

Fact 1.3.5 ([40]). If K is an alternating L-space knot, then K is a T (2, 2n + 1) torus knot.

Fact 1.3.6 ([30]). An L-space knot is a fibered knot.

Fact 1.3.7 ([40]). Let K be an L-space knot. The knot Floer homology ĤFK(K) is deter-

mined by the Alexander polynomial of K, and rank(ĤFK(K, s)) ≤ 1,∀s ∈ Z.

These properties provide strong constraints on L-space knots. However, it turns out that

none of the above properties extends to L-space links immediately.

1.3.2 Main results on L-space links.

In [11], Gorsky and Némethi define L-space links in terms of large surgeries.

Definition 1.3.8 (L-space link). An l-component link L ⊂ S3 is called an L-space link, if

all of its positive large surgeries are L-spaces, that is, there exist integers p1, ..., pl, such that

S3
n1,...,nl

(L) is an L-space for all n1, ..., nl with ni > pi,∀1 ≤ i ≤ l. Note that whether L is an

L-space link does not depend on the orientation of L. A link L is called a non-L-space link,

if neither L nor its mirror is an L-space link.

The large surgeries on the link L are governed by the generalized Floer complexes A−
s (L)’s

with s ∈ H(L), which were introduced by Manolescu and Ozsváth in [24]. Here, H(L) is

defined below. Also, see Definition 4.1.1 for the generalized Floer complexes.

Definition 1.3.9 (H(L)). For an oriented link L with l components, we define H(L) to be

the affine lattice over Zl,

H(L) =
l⊕

i=1
H(L)i, H(L)i = Z + lk(Li, L − Li)

2 .

Based on the knowledge of A−
s (L), we have the following necessary condition on L-space

links.
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Lemma 1.3.10. If L is an L-space link, then all sublinks of L are L-space links.

We also formulate L-space links in three other equivalent ways, which are easy to use. To

this end, we study the relation between L-space surgeries and large surgeries on links. Using

the L-space surgery induction lemma (Lemma 4.1.4) and the generalized Floer complexes,

we give the following result.

Proposition 1.3.11. The following conditions are equivalent:

(i) L is an L-space link;

(ii) there exists a surgery framing Λ(p1, ..., pl), such that for all sublink L′ ⊆ L, det(Λ(p1, ..., pl)|L′) >

0 and S3
Λ|L′ (L′) is an L-space; (Notice that at this time Λ is positive definite.)

(iii) H∗(A−
s (L)) = F[[U ]],∀s ∈ H(L);

(iv) H∗(Âs(L)) = F,∀s ∈ H(L).

Using grid diagrams as in [25], one can compute A−
s combinatorially and check condition

(iii) or (iv). On the other hand, for special class of links, it is more convenient to use condition

(ii). For instance, it follows immediately that an algebraically split link is an L-space link

if and only if it admits a positive surgery Λ such that the surgeries restricted to sublinks

are all L-spaces. Note that if we work with Z coefficients, conditions (i) and (ii) are also

equivalent.

In contrast to Fact 1.3.4, a single L-space surgery (with positive surgery coefficients) on

L fails to imply that all the large surgeries on L are L-spaces. See Example 4.1.3. It leads

us to define weak L-space links.

Definition 1.3.12 (Weak L-space link). A link L is called a weak L-space link, if there

exists an L-space surgery on L.

There are generalizations of L-space links, called generalized (± · · ·±)L-space links, by

considering the corresponding types of generalized large surgeries. There are also parallel

9



theories of A−
s for generalized large surgeries and the link surgery formula. See Chapter 4. An

L-space link is literally a generalized (+ · · ·+)L-space link. Note that there are generalized

(+−)L-space links that are non-L-space links.

Example 1.3.13. We have the following examples of L-space links and generalized L-space

links.

(A) Split disjoint unions of L-space knots are L-space links.

(B) Two-bridge links b(rq−1,−q) with r, q being positive odd integers are all L-space links,

which include T (2, 2n) torus links. See Theorem 4.2.8. Note that except for T (2, 2n),

they are all hyperbolic links.

(C) A 2-component L-space link: L7n1 in the Thistlethwaite link table. See Example 4.2.17.

(D) Some 3-component L-space links: Borromean rings, L6a5, L6n1, L7a7 and a link in

Example 4.2.3. See Example 4.2.17.

(E) A hyperbolic 4-chain L-space link: See Example 4.2.12.

(F) A hyperbolic 5-chain generalized (+ + + + −)L-space link: See Example 4.2.13.

(G) Two families of hyperbolic L-space chain links: See Example 4.2.14 and Example 4.2.15.

(H) A sequence of plumbing graphs that are generalized L-space links: See Example 4.2.16.

(I) All plumbing trees of unknots are L-space links. This was proved by Ozsváth and Szabó

in [35]. See Example 4.2.10.

(J) All algebraic links are L-space links. This was proved by Gorsky and Némethi in [11].

(K) See Table 4.2.2 for the list of which links with crossing number ≤ 7 are L-space links.

In contrast to Fact 1.3.5, there are alternating hyperbolic L-space links, for example, all

two-bridge links b(rq − 1,−q) with r, q > 1 being positive odd integers. Surgeries on these

hyperbolic L-space links can give examples of hyperbolic L-spaces which are neither surgery
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nor double branched cover over any knot. See Example 4.2.1. In fact, surgeries on these

L-space two-bridge links are always double branched covers over some links. It is not clear

to us whether those links are quasi-alternating or not.

In relation to Example 1.3.13 (B), we make the following conjecture:

Conjecture 1.3.14. The set of all L-space two-bridge links is

{b(rq − 1,−q) : r, q are positive odd integers}.

Using the algorithm from [22] for computing Âs(L) for two-bridge links, we verify that

Conjecture 1.3.14 is true for all two-bridge links b(p, q) with p ≤ 100.

Compared with Fact 1.3.7, we study the Alexander polynomials of L-space links using

A−
s (L).

Theorem 1.3.15. Suppose L is an l-component L-space link with l ≥ 2, and has the multi-

variable Alexander polynomial as follows

ΔL(x1, ..., xl) =
∑

i1,...,il

ai1,...,il
· xi1

1 · · ·xil
l .

Then,

rankF(HFL−(L, s)) ≤ 2l−1,∀s ∈ H(L), (1.3.1)

−2l−2 ≤ ai1,...,il
≤ 2l−2,∀i1, ..., il. (1.3.2)

In particular, for a 2-component L-space link, the multi-variable Alexander polynomial

has non-zero coefficients ±1. Moreover, fixing i1, the signs of non-zero ai1,∗’s are alternating;

similarly fixing i2, the signs of non-zero a∗,i2’s are alternating.

Remark 1.3.16. Inequality (1.3.1) is sharp for l = 2. For example, for the Whitehead link

Wh, HFL−(Wh, 0, 1) equals to F⊕F. Inequality (1.3.1) can also be deduced from a spectral

sequence of Gorsky and Némethi from [11].
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Inequality (1.3.2) is sharp for l = 3. The mirror of L7a7 is an L-space link with Alexander

polynomial

ΔL7a7(u, v, w) = uvw − uv − uw + 2u − 2vw + v + w − 1√
uvw

.

In contrast to knots, the Alexander polynomial condition does not give strong constraints

for alternating links. In [40], it is shown that if K is an alternating knot with Alexander

polynomial satisfying the condition in Fact 1.3.7, then K is a T (2, 2n + 1) torus knot; see

Proposition 4.3.2 and Theorem 4.3.3. On the other hand, we find infinitely many hyperbolic

alternating links with multi-variable Alexander polynomial satisfying Inequality (1.3.2), in-

cluding L-space links and non-L-space links. See Chapter 4.

Theorem 1.3.15 also implies that a Floer homologically thin L-space 2-component link L

has fibered link exterior.

In contrast to Fact 1.3.6, there are non-fibered L-space links. For example, the split

disjoint union of two L-space knots is a non-fibered L-space link, since the complement is

not irreducible any more. In fact, there are also many non-fibered L-space links among

hyperbolic two-bridge links. See Example 4.2.9.

Actually, there are additional constraints on the Alexander polynomials of an L-space

link; see Theorem 5.1.11 and Theorem 5.1.13 below for the precise statements. As a conse-

quence, either of these theorems implies that L7n2 is not an L-space link, while Theorem

1.3.15 fails to do so.

1.4 Surgeries on L-space links.

Despite many algorithms on computing various versions of Heegaard Floer homology, explicit

computations of plus/minus versions for 3-manifold invariants have only been done on a few

cases, such as surgeries on knots and some mapping tori of surfaces, by exploiting surgery

exact triangles. In [15], Hom pointed out that the result from [40] further implies that the

whole package of Heegaard Floer homology of surgeries on an L-space knot K is determined
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by the Alexander polynomial of K and the surgery coefficients.

In this paper, we study the computation of Heegaard Floer invariants for integral surgeries

on an L-space link L, including the completed Heegaard Floer homology HF−, absolute

gradings, and the cobordism maps, using the link surgery formula of Manolescu-Ozsváth

from [24]. The Manolescu-Ozsv’ath surgery complex is an object in the category of chain

complexes of F[[U ]]-modules, while it can also be considered as an object in the homotopy

category of chain complexes of F[[U ]]-modules. In [22], any representative in this chain

homotopy equivalence class is called a perturbed surgery complex. Some algebraic rigidity

results are established in [22], which imply that A−
s (L) is chain homotopic to F[[U ]] by a

F[[U ]]-linear chain map preserving the Z-grading.

Thus, for an L-space link L, the perturbed surgery complex turns out to be largely

simplified. When L has 1 or 2 components, all the information needed in the perturbed

surgery complex is completely determined by the Alexander polynomial and the surgery

framing matrix.

Theorem 1.4.1. For a 2-component L-space link −→
L = −→

L1∪−→
L2, all Heegaard Floer homology

HF−(S3
Λ(L)) together with the absolute gradings on them are determined by the following set

of data:

• the multi-variable Alexander polynomial ΔL(x, y),

• the Alexander polynomials ΔL1(t) and ΔL2(t),

• the framing matrix Λ.

Remark 1.4.2. For L-space links with more components, besides the Alexander polynomials

more information are needed to determine whether the higher diagonal maps vanish or not.

Furthermore, we explicitly describe ĤF of surgeries on an L-space link L = L1 ∪ L2 by

a series of formulas in terms of the Alexander polynomials and the surgery framing matrix.

These formulas give a fast algorithm computing ĤF of these surgeries. We also give a fast

algorithm for classifying L-space surgeries. As an application, we study the classification of
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L-space surgeries on two-bridge links, and compute some examples explicitly: (1, 1)-surgery

on a family of L-space links with linking number zero, Ln = b(4n2 + 4n,−2n − 1).

Instead of classifying L-space links with more than 2 components, we contend to show

the prevalence of surgeries on L-space links among 3-manifolds:

Question 1.4.3. Is every 3-manifold a surgery on a (generalized) L-space link?

If Question 1.4.3 had a positive answer, one could hope to compute Heegaard Floer

homology by L-space links. As a matter of fact, every 3-manifold M can be realized by a

surgery on an algebraically split link after connect sum with several lens spaces; see Corollary

2.5 from [32]. It is also interesting to ask whether this algebraically split link can be chosen

to be a generalized L-space link.

Regarding L-space surgeries, there is a more basic question:

Question 1.4.4. Is every L-space a surgery on a (generalized) L-space link?
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CHAPTER 2

Review of the Manolescu-Ozsváth link surgery formula

2.1 Preliminaries

In this section, we give the precise definitions of what we need in the link surgery formula, in-

cluding Heegaard diagrams, generalized Floer complexes, polygon maps, and nice diagrams.

Here, the Heegaard diagram is adapted for a link inside a 3-manifold with multiple base-

points; the generalized Floer complexes of a link L are derived from the filtered complex

CFL−(L), and they govern the large surgeries; the polygon maps are used in constructing

cobordism maps and certain maps in the link surgery formula; knowledge of nice diagrams

are also introduced to deal with two-bridge links.

2.1.1 Heegaard diagrams of links.

We give the most general definition of Heegaard diagrams for an oriented link −→
L inside a

3-manifold M3. When the link −→
L = ∅, the Heegaard diagram is simply for M3.

Definition 2.1.1 (Heegaard diagram of links). A multi-pointed Heegaard diagram for the

oriented link −→
L in M3 is the data of the form H = (Σ, α, β, w, z), where:

• Σ is a closed, oriented surface of genus g;

• α = {α1, ..., αg+k−1} is a collection of disjoint, simple closed curves on Σ which span

a g-dimensional lattice of H1(Σ;Z), hence specify a handlebody Uα; the same goes for

β = {β1, ..., βg+k−1} specify a handlebody Uβ.

• w = {w1, ..., wk} and z = {z1, ..., zm} (with k ≥ m) are collections of points on Σ with
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the following property. Let {Ai}k
i=1 be the connected components of Σ−α1−· · ·−αg+k−1

and {Bi}k
i=1 be the connected components of Σ − β1 − · · · − βg+k−1. Then there is a

permutation σ of {1, ..., m} such that wi ∈ Ai ∩ Bi for i = 1, ..., k, and zi ∈ Ai ∩ Bσ(i)

for i = 1, ..., m, such that connecting wi to zi inside Ai and connecting zi to wσ(i) inside

Bi will give rise to the link −→
L .

Definition 2.1.2 (Admissible diagrams). A periodic domain is a two-chain φ on Σ which

is a linear combination of components of Σ − α ∪ β with integral coefficients, such that the

local multiplicity of φ at every wi ∈ w is 0 and the boundary of φ is a integral combination of

α- and β-curves. A multi-pointed Heegaard diagram H = (Σ, α, β, w, z) is called admissible

if every non-trivial periodic domain has some positive local multiplicities and some negative

local multiplicities.

Definition 2.1.3 (Basic diagrams of links). An admissible Heegaard diagram of −→L is called

basic, if l = k = m, meaning there are exactly two basepoints wi, zi for every component −→
Li

and no free basepoints.

Remark 2.1.4. (1) The definitions of pointed Heegaard moves are systematically formulated

in [24] section 4.

(2) In order to avoid the issue of naturality, we fix the Heegaard surface Σ as an embedded

surface in the underlying 3-manifold M3. Thus, a Heegaard diagram is equivalent to a self-

indexed Morse function.

(3) In this paper we will only consider maximally colored diagrams in the sense of [24].

2.1.2 Generalized Floer complexes.

Here we define some chain complexes of a Heegaard diagram for an oriented link in S3, which

govern the large surgeries on this link. Suppose −→
L = −→

L1 ∪−→
L2 ∪· · ·∪−→

Ll , and −→
M is an oriented

sublink of −→
L , where −→

M may not have the induced orientation from −→
L on each component.

By −→
L − M , we denote the oriented link obtained by deleting all the components of −→M from

−→
L .

16



The identity H1(S3 − −→
L ) ∼= Zl provides a way to record the Spinc structures over S3

relative to L as an affine lattice over Zl.

Definition 2.1.5 (H(L) and reduction maps). Define the affine lattice H(−→L ) over H1(S3 −
−→
L ) as follows:

H(−→L )i = lk(−→Li,
−→
L − −→

Li)
2 + Z ⊂ Q,H(−→L ) =

l⊕
i

H(−→L )i,

together with its completion

H(−→L )i = H(−→L )i ∪ {−∞, +∞},H(−→L ) =
l⊕
i

H(−→L )i.

The map ψ
−→
M : H(−→L ) → H(−→L −M) is defined by ψ

−→
M(s) = s− [−→M ]/2. More precisely, let

M = Lj1 ∪ ... ∪ Ljm . Then for all i not in {j1, ..., jm}, let Li = (L − M)ki
, set

ψ
−→
M
i : H(−→L )i → H(−→L − M)ki

, si → si − lk(−→Li,
−→
M)

2 . (2.1.1)

The map ψ
−→
M is defined to be the direct sum of the maps ψ

−→
M
i , for those i’s with Li not in M .

The reduction maps ψ
−→
M are used in the definition of the destabilization maps in Section

2.2.

For convenience to define the generalized Floer complexes, here we focus on Heegaard

diagrams with only one pair of basepoints wi, zi on each component and allow free basepoints.

Given an admissible multi-pointed Heegaard diagram H = (Σ, α, β, w, z) for −→
L with exactly

two basepoints zi and wi for each link component Li, we consider the Lagrangian pair Tα,Tβ

in Symg+k−1(Σ) and the Floer complex CF (Tα,Tβ). There is an Alexander multi-grading

A : Tα ∩ Tβ → H(L) characterized by the property

Ai(x) − Ai(y) = nzi
(φ) − nwi

(φ),∀φ ∈ π2(x, y)
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and a normalization condition on the Alexander polynomial. The Alexander grading induces

a filtration on CF −(Tα,Tβ). Given a Spinc structure on S3 − L, i.e. an element s ∈ H(L),

we associate a chain complex A−(H, s) called the generalized Heegaard Floer complex using

the Alexander filtration. We introduce variables Ui with 1 ≤ i ≤ l for each link component

Li, and Ui with l + 1 ≤ i ≤ k for each free basepoint wi.

Definition 2.1.6 (Generalized Floer complex). For s ∈ H(L), the generalized Floer complex

A−(H, s) is the free module over R = F[[U1, ..., Ul]] generated by Tα ∩ Tβ ∈ Symg+k−1(Σ),

and equipped with the differential:

∂−
s x =

∑
y∈T(α)∩T(β)

∑
φ ∈ π2(x, y)

μ(φ) = 1

#(M(φ)/R) · U
E1

s1 (φ)
1 · · ·UEl

sl
(φ)

l · U
nwl+1 (φ)
l+1 · · ·Unwk

(φ)
k · y,

(2.1.2)

where Ei
s(φ) is defined by

Ei
s(φ) = max{s − Ai(x), 0} − max{s − Ai(y), 0} + nzi

(φ) (2.1.3)

= max{Ai(x) − s, 0} − max{Ai(y) − s, 0} + nwi
(φ). (2.1.4)

For simplicity, we also write

UEs(φ) =
l∏

i=1
U

Ei
si

(φ)
i

k∏
i=l+1

U
nwi (φ)
i .

When the Heegaard diagram in the context is unique, we simply denote A−(H, s) by

A−
s1,s2(L) or A−

s1,s2 , where s = (s1, s2). The direct product of all the generalized Floer

complexes forms the first input of the surgery formula.

Remark 2.1.7. Let us explain the relation between A−
s (L) and CFL−(L). First, the filtered

chain complex CFL−(L) defined in [42] is the chain complex CF −(S3) with the Alexander

filtration. Second, the subcomplexes forming the Alexander filtration are isomorphic to the

A−
s (L)’s. The Equation (4.1.4) is an explicit formulation of those differentials in A−

s (L).
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2.1.3 Polygon maps and homotopy equivalences between Floer complexes.

In the Fukaya category of a symplectic manifold (X, ω) (when it is well-defined), the product

of morphisms

μ2 : Hom(L1, L2) ⊗ Hom(L0, L1) → Hom(L0, L1)

is defined by counting holomorphic triangles. In general, higher products are defined by

means of holomorphic polygons. In Heegaard Floer theory, the polygon maps are defined

similarly. However, the technical issue is the compactness of moduli spaces of holomorphic

polygons in the symmetric product of the Heegaard surface, i.e. whether the polygon counts

are finite. This problem breaks down to periodic domains on the Heegaard surface. Admissi-

bility of Heegaard multi-diagrams solves this problem. For more details, one can see Section

4.4 in [24].

Definition 2.1.8 (Strongly equivalent Heegaard diagrams). (1) If two Heegaard diagrams

H and H′ have the same underlying Heegaard surface Σ, and their collections of curves β

and β′ are related by isotopies and handleslides only (supported away from the basepoints),

we say that β and β′ are strongly equivalent.

(2) Two multi-pointed Heegaard diagrams H = (Σ, α, β, w, z, τ),H′ = (Σ′, α′, β′, w′, z′, τ ′)

are called strongly equivalent, if Σ = Σ′, w = w′, z = z′, τ = τ ′, the curve collections α and

α′ are strongly equivalent, and β and β′ are strongly equivalent as well.

(3) We say that two Heegaard diagrams H and H′ differ by a surface isotopy if there

is a self-diffeomorphism φ : Σ → Σ isotopic to the identity and supported away from the

link −→
L , such that Σ = Σ′ and φ takes all the attaching curves and basepoints on Σ to the

corresponding one on Σ′. If H and H′ are surface isotopic, we write H ∼= H′.

Definition 2.1.9 (Triangle maps). Let (Σ, α, β, γ, w, z) be a generic, admissible Heegaard

triple-diagram, where β and γ are strongly equivalent, such that H = (Σ, α, β, w, z),H′′ =

(Σ, α, γ, w, z) are both Heegaard diagrams of the link −→
L and H′ = (Σ, β, γ, w, z) is the
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Heegaard diagram of the unlink in #g+k−1(S1 × S2). Then we can define the triangle map

fαβγ : A−(Tα,Tβ, s) ⊗ A−(Tβ,Tγ, s′) → A−(Tα,Tγ, s+s′)

fαβγ(x ⊗ y) =
∑

z∈Tα∩Tβ

∑
{φ∈π2(x,y,z)|μ(φ)=0}

#(M(φ)) · UEs,s′ (φ)z,

where

UEs,s′ (φ) =U
Es1,s′

1
(φ)

1 · · ·U
Esl,s′

l
(φ)

l U
nwl+1 (φ)
l+1 · · ·Unwk

(φ)
k , s = (s1, . . . , sl), s′ = (s′

1, . . . , s′
l),

Ei
s,s′(φ) = max{Ai(x) − s, 0} + max{Ai(y) − s′, 0} − max{Ai(z) − s − s′, 0} + nwi

(φ).

Definition 2.1.10 (Quadrilateral maps). Let (Σ, η0, η1, η2, η3, w, z) be a generic, admissible

multi-diagram, such that there are two equivalence classes of strongly equivalent attaching

curves among {ηi}i, and η0, η3 are in different equivalent classes so that (Σ, η0, η3, w, z) is

a Heegaard diagram for the link −→
L . Now we can define the quadrilateral maps

fη0,...,η3 :
3⊗

i=1
A−(Tηi−1 ,Tηi , si) → A−(Tη0 ,Tη3 , s1 + s2 + s3)

fη0,...,η3(x1 ⊗ x2 ⊗ x3) =
∑

y∈Tη0 ∩Tη3

∑
{φ∈π2(x1,x2,x3,y)|μ(φ)=−1}

#(M(φ)) · UEs1,s2,s3 (φ)y,

where

UEs1,s2,s3 (φ) =U
E1

s1
1,s1

2,s1
3

(φ)

1 · · ·U
El

sl
1,sl

2,sl
3

(φ)

l U
nwl+1 (φ)
l+1 · · ·Unwk

(φ)
k , si = (s1

i , ..., sl
i), i = 1, 2, 3,

Ei
s1,s2,s3(φ) = max{Ai(x1) − s1, 0} + max{Ai(x2) − s2, 0}

+ max{Ai(x3) − s3, 0} − max(Ai(y) − s1 − s2 − s3, 0) + nwi
(φ).

One can define higher polygon counts fη0···ηl similarly, although the case l > 3 will not

be needed in this paper. For simplicity, we ignore the subscripts of fη0···ηl . An important
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property of polygon maps is the so-called quadratic A∞-associativity equation

∑
0≤i<j≤l

f(x1, ...xi, f(xi+1, ..., xj), xj+1, ..., xl) = 0. (2.1.5)

2.2 Link surgery formula

In this section, we review the link surgery formula of Manolescu-Ozsváth for two-component

links with basic diagrams. In Section 2.2.1, we review some algebra on hyperboxes of chain

complexes and introduce twisted gluing of squares of chain complexes. In Section 2.2.2, we

express the link surgery formula for a two-component link as a twisted gluing of certain

squares of chain complexes derived from the link. These squares are elaborated in Section

2.2.3, by using primitive systems of hyperboxes. The primitive systems of hyperboxes are

generalizations of the basic systems of hyperboxes used in [24]. One can consult [24] for the

full generality of the link surgery formula with general Heegaard diagrams. We assume that

the reader is familiar with Heegaard Floer homology [39, 38, 41, 42].

Throughout, −→L = −→
L1 ∪−→

L2 will be an oriented link in S3, and −→
M will denote an oriented

sublink of −→
L which may not have the induced orientation from −→

L on each component.

2.2.1 Hyperboxes of chain complexes.

2.2.1.1 Hyperboxes of chain complexes.

Definition 2.2.1 (Hyperbox). An n-dimensional hyperbox of size d = (d1, ..., dn) ∈ Zn
≥0 is

the subset

E(d) = {(ε1, ..., εn) ∈ Zn
≥0 : 0 ≤ εi ≤ di}.

If E(d) = {0, 1}n, then E(d) is called a hypercube, denoted by En.

Definition 2.2.2 (Hyperbox of chain complexes). Let R be an F-algebra. An n-dimensional
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hyperbox of chain complexes of size d ∈ Zn
≥0 is a collection of Z-graded R-modules

(Cε)ε∈E(d), Cε =
⊕
∗∈Z

Cε
∗ ,

together with a collection of R-linear maps

Dε
ε0 : Cε0

∗ → Cε0+ε
∗−1+||ε||,

one map for each ε0 ∈ E(d) and ε ∈ En such that ε0 + ε ∈ E(d). The maps are required to

satisfy the relations ∑
ε′≤ε

Dε−ε′
ε0+ε′ ◦ Dε′

ε0 = 0,

for all ε0 ∈ E(d), ε ∈ En such that ε0 + ε ∈ E(d).

By abuse of notation, we sometimes let Dε stand for any of its map Dε
ε0 . Note that a

hypercube of chain complexes H gives rise to a total complex of the hypercube Tot(H).

Example 2.2.3 (1-dimensional hyperboxes). A 1-dimensional hyperbox of chain complexes

is a sequence of chain complexes Cn, together with a sequence of chain maps fn : C(n−1) →
C(n).

C(0) f1 �� C(1) f2 �� C(2) f3 �� · · · �� C(n−1) fn �� C(n).

The total complex of a 1-dimensional hypercube of chain complexes can be regarded as

a mapping cone. Therefore, we also call a 1-dimensional hyperbox of chain complexes a

sequence of chain complexes.

Example 2.2.4 (2-dimensional hyperboxes). A square of chain complexes is a 2-dimensional
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hypercube of chain complexes:

C(0,0)
D

(1,0)
(0,0) ��

D
(0,1)
(0.0) ��

D
(1,1)
(0,0) ��

C(1,0)

D
(0,1)
(1,0)��

C(0,1)
D

(1,0)
(0,1)

�� C(1,1)

= C(0,0) D(1,0)
��

D(0,1)
�� D(1,1)

��

C(1,0)

D(0,1)
��

C(0,1)
D(1,0)

�� C(1,1).

Here D(1,0), D(0,1) are chain maps, and D(1,1) is a chain homotopy between D(0,1) ◦ D(1,0)

and D(1,0) ◦ D(0,1). We can regard the total complex of this square as the mapping cone of

cone(D(1,0)
(0,0))

D
(0,1)
(0,0)+D

(0,1)
(1,0)+D

(1,1)
(0,0)�� cone(D(1,0)

(0,1)).

A rectangle of chain complexes is a 2-dimensional hyperbox of chain complexes. It consists

of squares of chain complexes. A rectangle of chain complexes of size (m, 1) can also be

regarded as a sequence of mapping cones, i.e. a size (m) 1-dimensional hyperbox of mapping

cones.

Let R = (C, D) be a hyperbox of chain complexes of size (d1, d2, . . . , dn). Fixing 1 ≤
i ≤ n, for any integer 0 ≤ l ≤ di, we have a hyperbox Rεi=l = (Cεi=l, Dεi=l) of size

(d1, ..., di−1, 0, di+1, ..., dn), which consists of the chain complexes C(ε1,...,εn) with εi = l. The

differentials Dεi=l consist of all the differentials Dε
ε0 of (C, D) inside Rεi=l.

Remark 2.2.5. In general, a hyperbox of chain complexes is not a chain complex. But a

hypercube is a chain complex considered as the total complex, and it can also be regarded

as a mapping cone in many ways.

2.2.1.2 Compression.

From a hyperbox of chain complexes H = ((Cε)ε∈E(d), (Dε)ε∈En), we can obtain a hypercube

of chain complexes Ĥ = (Ĉε, D̂ε)ε∈En , thus generating a total complex Tot(Ĥ). The process

of turning H into Ĥ is called compression.

Example 2.2.6 (Compression of 1-dimensional hyperboxes). Let R be a hyperbox of di-
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mension 1, see Example 2.2.3. The compression R̂ is the mapping cone of the composition

of the maps f1, . . . , fn

C(0) fn◦···◦f1 �� C(n).

Example 2.2.7 (Compression of 2-dimensional hyperboxes). Consider a rectangle of chain

complexes R of size (n, 1):

C(0,0) f1 ��

k0��
H1

��

C(1,0) f2 ��

k1��
H2

��

C(2,0) f3 ��

k2��
H3

��

· · · fn ��
Hn

��

C(n,0)

kn��
C(0,1) g1 �� C(1,1) g2 �� C(2,1) g3 �� · · · gn �� C(n,1).

As in 2.2.4, we can regard this rectangle as a 1-dimensional hyperbox of mapping cones

cone(ki), i = 0, 1, . . . , n. The compression of 1-dimensional hyperboxes induces the compres-

sion of rectangles of chain complexes as follows

C(0,0) fn◦···◦f1 ��

k0 ��
Ĥ

��

C(n,0)

kn��
C(0,1)

gn◦···◦g1
�� C(n,1),

where

Ĥ =
n∑

i=1
f1 ◦ · · · ◦ fi−1 ◦ Hi ◦ gi+1 ◦ · · · ◦ gn.

Similarly, we can compress a rectangle of chain complexes of size (1, m). For a rectangle

of chain complexes R of size (n, m), we can decompose this rectangle into a union of n

vertical rectangles of size (1, m). We first compress all of these n vertical rectangles, and

thus get a rectangle R′ of size (n, 1). Then we keep compressing R′ and get a square of

chain complexes R̂. Alternatively, we can also first compress every row, and then compress

the column. So every ordering of the coordinate axes gives a different way to compress the

rectangle.

For higher dimensional hyperbox, the compression is defined similarly by induction, once

we fix an order of the coordinate axes. Let us describe this procedure using the language of
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composing chain maps of hyperboxes. One can check that it is the same as the compression

by means of the algebra of songs introduced in [24].

Let 0H =
(
(0Cε)ε∈E(d), (0Dε)ε∈En

)
, 1H =

(
(1Cε)ε∈E(d), (1Dε)ε∈En

)
be two hyperboxes of

chain complexes, having the same size d ∈ Zn
≥0. Let (d, 1) ∈ Zn+1

≥0 be the sequence obtained

from d by adding 1 at the end.

Definition 2.2.8 (Chain maps of hyperboxes). A chain map F : 0H → 1H is a collection

of linear maps

F ε
ε0 : 0Cε0

∗ → 1Cε0+ε
∗+‖ε‖,

satisfying ∑
ε′≤ε

(Dε−ε′
ε0+ε′ ◦ F ε′

ε0 + F ε−ε′
ε0+ε′ ◦ Dε′

ε0) = 0,

for all ε0 ∈ E(d), ε ∈ En such that ε0 + ε ∈ E(d).

In other words, a chain map between the hyperboxes 0H and 1H is an (n+1)-dimensional

hyperbox of chain complexes, of size (d, 1), such that the sub-hyperbox corresponding to

εn+1 = 0 is 0H and the one corresponding to εn+1 = 1 is 1H. The maps F are those maps

D in the new hyperbox that increase εn+1 by 1. Direct computations show the associativity

(F ◦ G) ◦ H = F ◦ (G ◦ H).

For a n-dimensional hyperbox H of size d = (d1, ..., dn), we fix an order of the axes,

say, the increasing order 1, 2, ..., n. The hyperbox H can be decomposed into dn pieces of

hyperboxes of size (d1, ..., dn−1, 1), which is a chain map Fi : Hεn+1=i−1 → Hεn+1=i. Thus the

composition Fdn ◦ · · · ◦F1 is a hyperbox of size (d1, ..., dn−1, 1), and we call it the compression

along the nth-axis Compn(H). If we keep doing compressions for the other axes, then we get

the compression Ĥ = Comp1 ◦ · · · ◦ Compn(H).

2.2.1.3 Gluing of squares.

In the link surgery formula, an algebraic operation occurs, which we could call a twisted

gluing of hypercubes. It consists in repeatedly gluing mapping cones A
f−→ B, A

g−→ B to get
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a new mapping cone A
f+g−−→ B. In this section we describe this operation in detail for the

case of two-component links. We call it the twisted gluing of framed product squares.

Remark 2.2.9. A hypercube of chain complexes requires a Z-grading on it. However, after

gluing of hypercubes, it does not always admit a Z-grading, but admits a Z/2Z-grading. Now

we only require a Z/2Z-grading on each chain complex sitting at a vertex in the hypercube.

Definition 2.2.10 (Gluing of squares). Suppose there are four squares of chain complexes

Ri,j = (Cε
i,j, Dε

i,j), i, j = 0, 1 as listed below,

Ri,j : C
(0,0)
i,j

D
(1,0)
i,j ��

D
(0,1)
i,j �� D

(1,1)
i,j ��

C
(1,0)
i,j

D
(0,1)
i,j��

C
(0,1)
i,j

D
(1,0)
i,j

�� C
(1,1)
i,j .

The squares {Ri,j}i,j are called gluable, if Cε
0,0 = Cε

0,1 = Cε
1,0 = Cε

1,1 for all ε ∈ E2 and

D
(1,0)
i,0 = D

(1,0)
i,1 = D

(1,0)
i , D

(0,1)
0,j = D

(0,1)
1,j = D

(0,1)
j for all i, j = 0, 1. Then we can define

R = (Cε, Dε) to be the gluing of Ri,j’s as below, where we suppress the subscripts i, j of Cε
i,j

. One can check that R is a square of chain complexes.

R := C(0,0) D
(1,0)
0 +D

(1,0)
1 ��

D
(0,1)
0 +D

(0,1)
1 ��

∑
i,j

D
(1,1)
i,j

��

C(1,0)

D
(0,1)
0 +D

(0,1)
1��

C(0,1)
D

(1,0)
0 +D

(1,0)
1

�� C(1,1).

Definition 2.2.11 (Framed product square). A Z2-product square of chain complexes is a

direct product of squares of chain complexes

R =
∏

s∈Z2
Rs,

where Rs is a square of chain complexes for all s ∈ Z2. We call s the coordinate of any
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element x ∈ Rs. The function

F : R → Z2, F(x) = s,∀s ∈ Rs,

is called the framing of R. In order to denote the framing, we write a framed product square

as a pair

(R,F) =
∏

s∈Z2
(Cε

s , Dε
s ).

We can shift the framing F by a set of vectors in Z2, V = {vε}ε∈E2 , to get a new framing

FV, such that

∀x ∈ Cε
s , FV(x) = F(x) + vε.

We call the new framed product square (R,FV) the shifted square of R by V, and simply

denote it by R[V]. Thus, we can write R[V] = ∏s∈Z2(C̃ε
s , C̃ε

s ), where C̃ε
s+vε = Cε

s ,∀ε ∈
E2,∀s ∈ Z2.

Definition 2.2.12 (Framed gluable). Let (Ri,j,Fi,j) with i, j = 0, 1 be a set of framed

product squares of chain complexes. The set of four squares {Ri,j}i,j is called framed gluable,

if {Ri,j}i,j are gluable as squares of chain complexes and all the framings Fi,j,∀i, j are the

same. Then, the result is called the framed gluing of (Ri,j,Fi,j)’s.

Definition 2.2.13 (Twisted gluing). Let (Ri,j,Fi,j) with i, j = 0, 1 be a set of framed

product squares of chain complexes. For any matrix Λ = (Λ1, Λ2) ∈ Z2×2, let

Vi,j(Λ) = {vε = Λ · (iε1, jε2)t}ε=(ε1,ε2)∈E2 , ∀i, j = 0, 1.

Then there are four shifted squares Ri,j[Vi,j(Λ)], with i, j = 0, 1. As long as these four

shifted squares {Ri,j[Vi,j(Λ)]}i,j=0,1 are framed gluable, we define the Λ-twisted gluing of

{Ri,j}i,j to be the framed gluing of {Ri,j[Vi,j(Λ)]}i,j, denoted by RΛ. See Figure 2.2.1 for an

example of twisted gluing.
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Figure 2.2.1: An example of twisted gluing. This is an example of
( −1 1

1 2

)
-twisted

gluing of four squares {Ri,j = ∏s∈Z2 Rs,i,j}i,j=0,1, where Rs,i,j = (Cε
s,i,j, Dε

s,i,j). Since Cε
s,i,j

is identified with some Cε
s′,0,0, we omit the subscripts i, j in the picture. Every shaded

circle encloses a factor Rs,0,0 of the Z2-product square R0,0 with some s ∈ Z2. The yellow
parallelogram indicates the D-maps of R0,1, which is shifted by the vector Λ2; whereas the
red parallelogram indicates the D-maps of R1,0, which is shifted by the vector Λ1. The gray
parallelogram indicates all the maps of the square R1,1, which is shifted by using both Λ1
and Λ2.
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Example 2.2.14 (Twisted gluing in the link surgery formula). Suppose for any (i, j) ∈ E2,

Ri,j =
∏

s∈Z2
Rs,i,j

with Rs,i,j = (Cε
s,i,j, Dε

s,i,j) is a framed product square of chain complexes with the natural

framing Fi,j(x) = s,∀x ∈ Cs,i,j. Let −→
L be a two-component link and lk be the linking

number. Given any surgery framing matrix

Λ =

⎛⎜⎝ λ1 lk

lk λ2

⎞⎟⎠ ,

as long as the following identities hold for all s ∈ Z2,

C
(0,0)
s,0,0 = C

(0,0)
s,0,1 = C

(0,0)
s,1,0 = C

(0,0)
s,1,1 ,

C
(1,0)
s,0,0 = C

(1,0)
s,0,1 = C

(1,0)
s−Λ1,1,0 = C

(1,0)
s−Λ1,1,1,

C
(0,1)
s,0,0 = C

(0,1)
s−Λ2,0,1 = C

(0,1)
s,1,0 = C

(0,1)
s−Λ2,1,1,

C
(1,1)
s,0,0 = C

(1,1)
s−Λ2,0,1 = C

(1,1)
s−Λ1,1,0 = C

(1,1)
s−Λ1−Λ2,1,1,

(2.2.1)

the shifted squares {Ri,j[Vi,j(Λ)]}i,j are framed gluable. Thus we define the twisted gluing

of squares RΛ.

Remark 2.2.15. The twisted glued square RΛ no longer decomposes as a Z2 direct product.

However, it decomposes as a direct sum⊕u∈Z2/Λ RΛ(u), where Λ is viewed as a lattice spanned

by Λ1, Λ2. The equivalence classes Z2/Λ correspond to the Spinc structures over the surgery

manifold on a link in S3.

2.2.2 Link surgery formula for a two-component link
−→
L = −→

L1 ∪ −→
L2.

In order to denote the orientations of the sublinks, we use ± signs to denote the positive

and negative orientations, where the positive orientation is the induced orientation from −→
L

and the negative orientation is the opposite orientation. Let L = +L1 ∪ +L2, that is, L has
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the same orientation as −→
L .

The the link surgery formula is the total complex of a square of chain complexes: the

chain complexes at the vertices are the generalized Floer complexes described in Section

2.1.2, and the maps in the square are defined by means of complete systems of hyperboxes

(see section 2.2.3 for the definition). From a complete system of hyperboxes of L, we get

four sets of squares of chain complexes Rs,i,j, where s ∈ H(L), i, j ∈ {0, 1}:

Rs,0,0 : A−(HL, s)

Φ+L2s
��

Φ+L1s ��

Φ+L1∪+L2s
��

A−(HL2 , ψ+L1(s))
Φ+L2

ψ+L1 (s)��
A−(HL1 , ψ+L2(s))

Φ+L1
ψ+L2 (s)

�� A−(H∅, ψ+L1∪+L2(s));

(2.2.2)

Rs,1,0 : A−(HL, s)

Φ+L2s
��

Φ−L1s ��

Φ−L1∪+L2s
��

A−(HL2 , ψ−L1(s))
Φ+L2

ψ−L1 (s)��
A−(HL1 , ψ+L2(s))

Φ−L1
ψ+L2 (s)

�� A−(H∅, ψ−L1∪+L2(s));

(2.2.3)

Rs,0,1 : A−(HL, s)

Φ−L2s
��

Φ+L1s ��

Φ+L1∪−L2s
��

A−(HL2 , ψ+L1(s))
Φ−L2

ψ+L1 (s)��
A−(HL1 , ψ−L2(s))

Φ+L1
ψ−L2 (s)

�� A−(H∅, ψ+L1∪−L2(s));

(2.2.4)

Rs,1,1 : A−(HL, s)

Φ−L2s
��

Φ−L1s ��

Φ−L1∪−L2s
��

A−(HL2 , ψ−L1(s))
Φ−L2

ψ−L1 (s)��
A−(HL1 , ψ−L2(s))

Φ−L1
ψ−L2 (s)

�� A−(H∅, ψ−L1∪−L2(s)),

(2.2.5)

where ψ
−→
M is defined in Equation (2.1.1). Thus, we have four framed product squares with

the natural framings

Ri,j =
∏

s∈H(L)
Rs,i,j.
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Definition 2.2.16 (Link surgery formula). For any surgery framing matrix Λ, the shifted

squares {Ri,j[Vi,j(Λ)]}i,j are framed gluable according to Equations (2.2.1). The link surgery

formula for the framed link (L, Λ) is the total complex of the Λ-twisted gluing of {Ri,j}i,j as

follows,

(C−(H, Λ),D−) := ∏
s∈H(L)

A−(HL, s)

Φ+L2 +Φ−L2

��

Φ+L1 +Φ−L1 ��

Φ+L1∪−L2 + Φ−L1∪−L2

+Φ+L1∪+L2 + Φ−L1∪+L2��

∏
s∈H(L)

A−(HL2 , ψ+L1(s))

Φ+L2 +Φ−L2

��∏
s∈H(L)

A−(HL1 , ψ+L2(s))
Φ+L1 +Φ−L1

�� ∏
s∈H(L)

A−(H∅, ψ+L1∪+L2(s)),

where Φ◦ = ∏s∈H(L) Φ◦
s with ◦ = ±L1,±L2,±L1 ∪ ±L2.

The map

Φ
−→
M
s : A−(HL, s) → A−(HL−M , ψ

−→
M(s))

is defined by

Φ
−→
M
s = D

−→
M

p
−→
M (s) ◦ I

−→
M
s . (2.2.6)

We will spell out the constructions of D
−→
M

p
−→
M (s)

and I−→
M
s in the next sections by using primitive

systems of hyperboxes.

For the Λ-twisted gluing of squares, there is a direct sum splitting of the complex

C−(H, Λ) =
⊕

u∈H(L)/H(L,Λ)
C−(H, Λ, u),

where we identify H(L)/H(L, Λ) with Spinc(S3
Λ(L)).

Theorem 2.2.17 (Manolescu-Ozsváth Link Surgery Theorem, Theorem 7.7 of [24] for two–

component links). Fix a primitive system of hyperboxes H for an oriented two-component

link −→
L in S3, and fix a framing Λ of L. Then for any u ∈ Spinc(S3

Λ(L)) ∼= H(L)/H(L, Λ),
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there is an isomorphism of F[[U ]]-modules

H∗(C−(H, Λ, u),D−) ∼= HF−
∗ (S3

Λ(L), u),

where F[[U ]] = F[[U1, U2]]/(U1 − U2).

Here, we let HF− denote the completion of HF − with respect to the maximal ideal (U)

in the ring F[U ]. Since completion is an exact functor, HF− can be regarded as the homology

of the complex CF− = CF − ⊗F[U ] F[[U ]], where F[[U ]] is the completion of F[U ]. When s is

a torsion Spinc structure of a 3-manifold M , if

HF−(M, s) = F[[U ]] ⊕ T

with T a torsion F[[U ]]-module, then

HF −(M, s) = F[U ] ⊕ T.

For more details, see Section 2 in [24].

Remark 2.2.18. The link surgery theorem states that all the Ui-actions are the same in the

homology of the surgery complex.

Remark 2.2.19. Although all the squares in Equations (2.2.2) to (2.2.5) posses Z-gradings,

the surgery complex C−(H, Λ) does not always have a Z-grading after the twisted gluing. In

[24], an absolute grading was also given in Section 7.4, which is the same as the absolute

grading on Heegaard Floer homology of the surgery manifold.

2.2.3 Inclusion maps and destabilization maps.

2.2.3.1 Inclusion maps.

In the link surgery formula, we need a set of chain maps I−→
M
s in (2.2.6) which are called

inclusion maps. Here, we define the inclusion maps for all links with arbitrary number of
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components. In the knot case, the inclusion maps correspond to the maps hs and vs from

[43].

Definition 2.2.20. Let −→
M be an oriented sublink of −→

L . Define

I+(−→L ,
−→
M) = {i : −→L and −→

M share the same orientation on Li};

I−(−→L ,
−→
M) = {i : −→L and −→

M have different orientations on Li}.

A projection map p
−→
M : H(L) → H(L) is defined component-wisely as follows:

p
−→
M
i (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if i ∈ I+(−→L ,
−→
M),

−∞ if i ∈ I−(−→L ,
−→
M),

s otherwise.

Definition 2.2.21 (Inclusion maps). Suppose −→
M ⊂ −→

L is an oriented sublink, and s =

(s1, s2) ∈ H(L) satisfies si �= ∓∞ for those i ∈ I±(−→L ,
−→
M). Let H be a Heegaard diagram of

L. The inclusion map I−→
M
s : A−(HL, s) → A−(HL, p

−→
M(s)) is defined by the formula

I
−→
M
s (x) =

∏
i∈I+(−→L ,

−→
M)

Umax(Ai(x)−si,0)
τi

∏
i∈I−(−→L ,

−→
M)

Umax(si−Ai(x),0)
τi

x.

One can verify this is a chain map.

Example 2.2.22. Suppose −→
L is a two-component link and H is a basic Heegaard diagram

of L. We have the following inclusion maps

• I+L1
s1,s2 : A−

s1,s2 → A−
+∞,s2 , I−L1

s1,s2 : A−
s1,s2 → A−

−∞,s2 .

• I+L2
s1,s2 : A−

s1,s2 → A−
s1,+∞, I−L2

s1,s2 : A−
s1,s2 → A−

s1,−∞.

• I+L1∪+L2
s1,s2 : A−

s1,s2 → A−
+∞,+∞, I−L1∪+L2

s1,s2 : A−
s1,s2 → A−

−∞,+∞,

I+L1∪−L2
s1,s2 : A−

s1,s2 → A−
+∞,−∞, I−L1∪−L2

s1,s2 : A−
s1,s2 → A−

−∞,−∞.
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2.2.3.2 Destabilization maps.

Let −→
L = −→

L1 ∪ −→
L2. We set

J(+Li) = {(s1, s2) ∈ H(L)|si = +∞}, J(−Li) = {(s1, s2) ∈ H(L)|si = −∞}.

Now let −→
M ⊂ L be an oriented sublink, and let {−→Mi}i be all the oriented components of

−→
M . Define

J(−→M) =
⋂
i

J(−→Mi).

For s ∈ J(−→M), there is a destabilization map

D
−→
M
s : A−(HL, s) → A−(HL−M , ψ

−→
M(s)),

which gives rise to the map D
−→
M

p
−→
M (s)

in (2.2.6). Note that p
−→
M(s) ∈ J(−→M) for any s ∈ H(L).

In the knot case, the destabilization map corresponds to the map identifying C{i > 0} and

C{j > 0}. We will give the definition in the next section.

Example 2.2.23. Let s = (s1, s2) ∈ H(L) and −→
M = ±L1, then p±L1(s) = (±∞, s2). The

destabilization map

D±L1±∞,s2 : A−(HL,±∞, s2) → A−(HL2 , s2 − lk(+L1,±L2)
2 )

is a chain homotopy equivalence.

If we consider sublinks −→
M = ±L1 ∪ ±L2, then we will get destabilization maps from
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A−(HL,±∞,±∞) to A−(H∅, 0), namely,

D+L1∪+L2
+∞,+∞ : A−(HL, +∞, +∞) → A−(H∅, 0),

D−L1∪+L2−∞,+∞ : A−(HL,−∞, +∞) → A−(H∅, 0),

D+L1∪−L2
+∞,−∞ : A−(HL, +∞,−∞) → A−(H∅, 0),

D−L1∪−L2−∞,−∞ : A−(HL,−∞,−∞) → A−(H∅, 0).

2.2.3.3 Primitive system of hyperboxes.

In [24], complete system of hyperboxes is defined in order to define the destabilization maps.

Definition 2.2.24 (Complete pre-system of hyperboxes). A complete pre-system of hyper-

boxes H representing the link −→
L consists of a collection of hyperboxes of Heegaard diagrams,

subject to certain compatibility conditions as follows. For each pair of subsets M ⊆ L′ ⊆ L,

and each orientation −→
M on M , the complete pre-system assigns a hyperbox H

−→
L′,

−→
M for the

pair (
−→
L′ ,

−→
M), where

−→
L′ has the induced orientation from −→

L . Moreover, the hyperbox H
−→
L′,

−→
M

is required to be compatible with both H
−→
L′,

−→
M ′ and H

−→
L′−−→

M ′,
−→
M−−→

M ′ .

In the above definition, there is some compatibility condition we have not spelled out.

A complete system of hyperboxes is a complete pre-system with some additional conditions

regarding the surface isotopies connecting those hyperboxes. In a complete system of hy-

perboxes, every hyperbox of Heegaard diagrams induces a hyperbox of generalized Floer

complexes. Instead of explaining these compatibility conditions, we give a special complete

system of hyperboxes for two-component links satisfying these conditions, which illustrates

the main idea. They are called primitive system of hyperboxes.

When the sublink
−→
L′ has the induced orientation from −→

L , we simply denote it by L′.

Thus, we use notation HL′,
−→
M = H

−→
L′,

−→
M . In a complete pre-system H, we have four zero

dimensional hyperboxes of Heegaard diagrams, HL,∅,HL1,∅,HL2,∅,H∅,∅, where HL,∅ is a Hee-

gaard diagram of L, HLi,∅ is a Heegaard diagram of Li, and H∅,∅ is a Heegaard diagram of

S3. We denote the four Heegaard diagrams simply by HL,HL1 ,HL2 ,H∅.
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Given a basic Heegaard diagram HL = (Σ, α, β, {w1, w2}, {z1, z2}) of L, from Equa-

tion (4.1.4), we see A−(HL, (+∞, s2)) is counting nw1(φ) without using z1, thus as the

same as deleting z1. Moreover HL2 = (Σ, α, β, {w1, w2}, {z2}) is a Heegaard diagram of

L2 with one free basepoint w1. We call this diagram the reduction of HL at +L1, de-

noted by r+L1(HL); see [24] Definition 4.17. Hence, we have an identification between

A−(HL, (+∞, s2)) and A−(r+L1(HL), s2 − lk(+L1,+L2)
2 ). Similarly, we define r−L1(HL) to be

the diagram obtained from HL by deleting w1 and relabeling z1 as w1. We have an identifica-

tion between A−(HL, (−∞, s2)) and A−(r−L1(HL), s2 − lk(−L1,+L2)
2 ), since A−(HL, (−∞, s2))

uses basepoints {z1, w2} ⊂ HL.

Moreover, the diagrams r−L1(HL) and r+L1(HL) are related by Heegaard moves, for

they represent the same knot L2. By definition, there is an arc c in Σ − α connecting w1

and z1, so we can move z1 along c to w1, by a sequence of Heegaard moves. Moving a

basepoint to cross some β-curve can be done by a sequence of handleslides and isotopies of

β-curves, stabilizations, and destabilization followed by a surface isotopy. However, if we

need stabilizations/destabilizations, we can modify the original Heegaard diagram HL by

these stabilizations in the beginning. Thus, we can always get a diagram H̃L, such that

there is a sequence of Heegaard moves only of handleslides and isotopies of β-curves together

with some surface isotopy from r−L1(H̃L) to r+L1(H̃L). In sum, there is an surface isotopy

h : Σ → Σ supported in a small neighborhood of c (so h fixes other basepoints and all the

α-curves), such that h(w1) = z1 and h(r+L1(H̃L)) is strongly equivalent to r−L1(H̃L) via

handleslides and isotopies of β-curves.

Definition 2.2.25 (Primitive Heegaard diagrams). For any basic Heegaard diagram H of

an oriented link −→
L = −→

L1 ∪ −→
L2, there are surface isotopies hH

i : Σ → Σ supported in a small

neighborhood of the arc ci connecting wi and zi in Σ − α, such that hH
i (wi) = zi and hH

i

preserves the α-curves and the other basepoints. They are unique up to isotopy. The basic

Heegaard diagram H is called primitive, if it is admissible and r−Li
(H) is strongly equivalent

to hH
i (r+Li

(H)) for both i = 1, 2.

From the above discussion, we can get the following lemma.
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Lemma 2.2.26. Let L be an oriented two-component link, and let H be a basic admissible

Heegaard diagram of L. Then there is an index one/two stabilization turning H into a

primitive Heegaard diagram H̃.

Fixing a primitive Heegaard diagram HL for an oriented two-component link L, we can

get two sequences of strongly equivalent Heegaard diagrams H̄L,−Li :

H̄L,−L1 : r−L1(HL) = H̄L,−L1(∅) → H̄L,−L1(L1) = hH
1 (r+L1(HL)), (2.2.7)

H̄L,−L2 : r−L2(HL) = H̄L,−L2(∅) → H̄L,−L2(L2) = hH
2 (r+L2(HL)). (2.2.8)

These induce another two sequences of strongly equivalent Heegaard diagrams H̄Li,−Li :

H̄L1,−L1 : r−L1

(
r+L2(HL)

)
= H̄L1,−L1(∅) → H̄L1,−L1(L1) = hH

1

(
r+L1(r+L2(HL))

)
, (2.2.9)

H̄L2,−L2 : r−L2

(
r+L1(HL)

)
= H̄L2,−L2(∅) → H̄L2,−L2(L2) = hH

2 (r+L2

(
r+L1(HL))

)
, (2.2.10)

together with a square of strongly equivalent Heegaard diagrams H̄L,−L1∪−L2 :

r−L1∪−L2(H) = H̄L1∪L2,−L1∪−L2(∅) ��

�� 		

H̄L1∪L2,+L1∪−L2(L1) = hH
1 (r+L1∪−L2(H))

��

hH
2 (r−L1∪+L2(H)) = H̄L1∪L2,−L1∪−L2(L2) �� H̄L1∪L2,−L1∪−L2(L) = hH

1 ◦ hH
2 (r+L1∪+L2(H)).

(2.2.11)

These almost produce a complete system of hyperbox H̄ except for the admissibility of

H̄. We call this system a primitive almost complete system of hyperbox.

Definition 2.2.27 (Primitive almost complete system of hyperbox). Given a primitive Hee-

gaard diagram HL = (Σ, α, β, {w1, w2}, {z1, z2}) of −→
L = −→

L1 ∪ −→
L2, there exists a primitive

almost complete system of hyperbox H̄ associated to HL consisting of

37



• four 0-dimensional hyperboxes of Heegaard diagrams:

H̄L = H, H̄L1 = r+L2(H), H̄L2 = r+L1(H), H̄∅ = r+L1∪+L2(H);

• eight 1-dimensional hyperboxes of Heegaard diagrams:

H̄L,±Li , H̄Li,±Li ,∀i = 1, 2,

where H̄L,+Li , H̄Li,+Li are trivial hyperboxes, i.e. just a Heegaard diagram, and H̄L,−Li ,H̄Li,−Li

are described in Equations from (2.2.7) to (2.2.10);

• four 2-dimensional hyperboxes of Heegaard diagrams: one trivial hyperbox H̄L,+L1∪+L2 ,

two degenerate hyperboxes:

H̄L,+L1∪−L2 = H̄L2,−L2 , H̄L,−L1∪+L2 = H̄L1,−L1 ,

and a square of strongly equivalent Heegaard diagrams HL,−L1∪−L2 , which is described

in Equation (2.2.11).

Definition 2.2.28 (Primitive system of hyperboxes). Given a primitive diagram HL and

the induced primitive almost complete systems of hyperboxes H̄, if the admissibility of H̄
is not satisfied, we can enlarge the hyperbox in H̄ to achieve admissibility, thus getting a

complete system of hyperboxes. We call the result a primitive system of hyperboxes H.

Indeed, if H̄L,−L1 is not admissible, i.e. (Σ, α, β, β′, w, z) is not admissible, then we can

insert an isotopy of β, namely β′′, such that both (Σ, α, β, β′′, w, z) and (Σ, α, β′′, β′, w, z)

are admissible. Suppose {D1, . . . , Dm} is a basis of the Q-vector space of the periodic domains

in (Σ, α, β, β′, w, z) with only positive multiplicities . Let Dc
1 be the union of all the regions

which are not in D1. Then Dc
1 �= ∅, since nwD1 = 0. As (Σ, α, β, w, z) and (Σ, α, β′, w, z)

are both admissible, the boundary of D1 must contain a β-curve and a β′-curve. Thus there

is a β-arc b and a β′-arc b′ on D1 ∩Dc
1. So we can find a path γ in D1 connecting b to b′, and
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then do a finger move of the β-curve containing b along γ to get negative multiplicities for

D1 (see [48] for the definition of finger move). Similarly we deal with the other Di’s. Finally,

the new β in the above process is chosen to be β′′. Similar arguments work for the case of

the square H̄L,−L1∪−L2 .

Therefore to achieve admissibility, we can enlarge the square of Heegaard diagram H̄L,−L1∪−L2 :

(Σ, α, β11, w, z) ��

�� ��

(Σ, α, β13, w, z)
��

(Σ, α, β31, w, z) �� (Σ, α, β33, w, z)

into HL,−L1∪−L2 :

(Σ, α, β11, w, z) ��

�� ��

(Σ, α, β12, w, z) ��

�� ��

(Σ, α, β13, w, z)
��

(Σ, α, β21, w, z) ��

�� ��

(Σ, α, β22, w, z) ��

�� ��

(Σ, α, β23, w, z)
��

(Σ, α, β31, w, z) �� (Σ, α, β32, w, z) �� (Σ, α, β33, w, z).

In order to send every hyperbox of Heegaard diagrams H−→
L ,

−→
M to a hyperbox of chain

complexes A−(H−→
L ,

−→
M , s), we need a set of Θ chain elements. We call the choice of these

Θ-elements a filling of the hyperboxes Heegaard diagrams. Let us explain Θ-elements case

by case.

For HL,−L1 , we have a sequence of strongly equivalent Heegaard diagrams of −→L − L1,

HL,−L1 : (Σ, α, β1, w, z) → (Σ, α, β2, w, z) → (Σ, α, β3, w, z).

We choose a cycle element Θβ1,β2 representing the maximal degree element in the homology

of A−(Tβ1 ,Tβ2 , 0). Then we define a chain homotopy equivalence Dβ1,β2 : A−(Tα,Tβ1 , s) →
A−(Tα,Tβ2 , s) by using triangle maps Dβ1,β2(x) = fαβ1β2(x ⊗ Θβ1,β2). Similarly, we get a

chain homotopy equivalence Dβ2,β3 : A−(Tα,Tβ2 , s) → A−(Tα,Tβ3 , s) by choosing Θβ2,β3 ∈
A−(Tβ2 ,Tβ3 , 0). Thus, D−L1 = Dβ2β3 ◦ Dβ1β2 is also a chain homotopy equivalence. Let
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us put a subscript on D−L1 for labeling the Spinc structure. Since A−(HL, (+∞, s2)) =

A(r+L1(HL), s2 − lk(+L1,+L2)
2 ), A−(HL, (−∞, s2)) = A−(r−L1(HL), s2 − lk(−L1,+L2)

2 ), we write

D−L1−∞,s2 : A−(HL, (−∞, s2)) → A−
(
HL,
(

+ ∞, s2 + lk(+L1, +L2)
))

,

or simply

D−L1−∞,s2 : A−
−∞,s2 → A−

+∞,s2+lk.

Similarly we define D−L2
s1,−∞ : A−

s1,−∞ → A−
s1+lk,+∞.

For the 2-dimensional hyperbox of Heegaard diagrams HL,−L1∪−L2 , we can get a square

of chain complexes. Let us first look at the upper left quarter of HL,−L1∪−L2 :

(Σ, α, β11, w, z)
Θβ11β12 ��

Θβ11β21
��

Θβ11β22

��

(Σ, α, β12, w, z)
Θβ12β22
��

(Σ, α, β21, w, z) Θβ21β22

�� (Σ, α, β22, w, z).

In the above the diagram, the Θ-elements on the edges are arbitrary cycles representing the

maximal degree elements in their homology groups. Let c = fβ11β12β22(Θβ11β12 ⊗ Θβ12β22) +

fβ11β21β22(Θβ11β21 ⊗ Θβ21β22). The equation

∂(fβ11β12β22(Θβ11β12 ⊗ Θβ12β22) + fβ11β21β22(Θβ11β21 ⊗ Θβ21β22)) =

fβ11β12β22((∂Θβ11β12) ⊗ Θβ12β22) + fβ11β21β22(Θβ11β21 ⊗ (∂Θβ21β22)) = 0

shows that c is a cycle in A−
μ (Tβ11 ,Tβ22 , 0), where μ equals to the maximal degree of the

homology of A−(Tβ11 ,Tβ22 , 0). Since the curves β∗∗ are all strongly equivalent, up to chain

homotopy equivalences, we can only consider the case when they are all small Hamilto-

nian isotopies of each other. By Lemma 9.7 in [39], we can see that fβ11β12β22(Θβ11β12 ⊗
Θβ12β22), fβ11β21β22(Θβ11β21 ⊗ Θβ21β22) both represent the maximal degree element in the ho-

mology of CF (Tβ11 ,Tβ22). Thus, c is 0 in the homology. So there is a Θβ11,β22 such that
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∂Θβ11,β22 = c, where ∂ = fβ11,β22 . In sum,

fβ11β12β22(Θβ11β12 ⊗ Θβ12β22) + fβ11β21β22(Θβ11β21 ⊗ Θβ21β22) = fβ11β22(Θβ11β22).

From the quadratic A∞ associativity Equation (2.1.5), we have a square of chain complexes

A−(Tα,Tβ11 , s)
Dβ11β12 ��

Dβ11β21 ��

Dβ11β22

��

A−(Tα,Tβ12 , s)
Dβ12β22��

A−(Tα,Tβ21 , s) Dβ21 β22

�� A−(Tα,Tβ22 , s),

where Dβ11β22(x) = fαβ11β12β22(x ⊗ Θβ11β12 ⊗ Θβ12β22) + fαβ11β21β22(x ⊗ Θβ11β21 ⊗ Θβ21β22) +

fαβ11β22(x ⊗ Θβ11β22), and

Dβ11β12(x) = fαβ11β12(x ⊗ Θβ11β12), Dβ12β22(x) = fαβ12β22(x ⊗ Θβ12β22),

Dβ11β21(x) = fαβ11β21(x ⊗ Θβ11β21), Dβ11β22(x) = fαβ11β22(x ⊗ Θβ11β22).

Similarly, we can choose other Θ-elements on HL,−L1∪−L2 , and get a rectangle of chain

complexes of size (2, 2). We denote it by A−(HL,−L1∪−L2 , s).

Definition 2.2.29. We define the destabilization map D−L1∪−L2 to be the diagonal map in

the compression of A−(HL,−L1∪−L2 , s):

A−(r−L1 ∪−L2 (HL), s) ��

�� 



A−(r−L1 ∪+L2 (HL), s)
��

A−(r+L1 ∪−L2 (HL), s) �� A−(r+L1 ∪+L2 (HL), s).

Since A−(r−L1∪−L2(HL), s) = A−(HL,−∞,−∞), we denote it by D−L1∪−L2−∞,−∞ .

As all the other hyperboxes of Heegaard diagrams are trivial, the following identities hold

D+L1
+∞,s2 = id, D+L2

s1,+∞ = id, D−L1∪+L2−∞,+∞ = 0, D+L1∪−L2
+∞,−∞ = 0, D+L1∪+L2

+∞,+∞ = 0.

41



Now we can build all the rectangles of chain complexes as follows, where lk = lk(−→L1,
−→
L2).

Rs,1 ,1 :=

A−
s1 ,s2

I −L1s1 ,s2
��

I −L2s1 ,s2 ��

I −L1 ∪−L2s1 ,s2
��

A−
s1 ,−∞

I −L1
s1 ,−∞

��

D−L2
s1 ,−∞�� A−

s1+lk,+∞

I
−L1
s1+lk,+∞

��
A−

−∞,s2

D−L1
−∞,s2

��

I −L2
−∞,s2

�� A−
−∞,−∞

D−L1
−∞,−∞

��

D−L2
−∞,−∞��

D−L1 ∪−L2
−∞,−∞

��

A−
−∞,+∞

D
−L1
−∞,+∞

��
A−

+∞,s2 +lk
I −L2
+∞,s2 +lk

�� A−
+∞,−∞

D−L2
+∞,−∞

�� A−
+∞,+∞;

Rs,0 ,1 :=

A−
s1 ,s2

I +L1s1 ,s2
��

I −L2s1 ,s2 ��

I +L1 ∪−L2s1 ,s2
��

A−
s1 ,−∞

I +L1 ∪−L2
s1 ,−∞

��

D−L2
s1 ,−∞�� A−

s1 +lk,+∞

I +L1
s1 ,+∞

��
A−

+∞,s2

id
��

I −L2
+∞,s2

�� A−
+∞,−∞

id
��

D−L2
+∞,−∞

�� A−
+∞,+∞

id
��

A−
+∞,s2 I −L2

+∞,s2

�� A−
+∞,−∞

D−L2
+∞,−∞

�� A−
+∞,+∞;

(2.2.12)

Rs,1 ,0 :=

A−
s1 ,s2

I −L1s1 ,s2
��

I +L2s1 ,s2 ��

I −L1 ∪+L2s1 ,s2
��

A−
s1 ,+∞

I −L1
s1 ,+∞

��

id �� A−
s1 ,+∞

I −L1
s1 ,+∞

��
A−

−∞,s2

D−L1
−∞,s2

��

I +L2
−∞,s2

�� A−
−∞,+∞

D−L1
−∞,+∞

��

id �� A−
−∞,+∞

D−L1
−∞,+∞

��
A−

+∞,s2 +lk
I +L2
+∞,s2

�� A−
+∞,+∞ id

�� A−
+∞,+∞;

Rs,0 ,0 :=

A−
s1 ,s2

I +L1s1 ,s2
��

I +L2s1 ,s2 ��

I +L1 ∪+L2s1 ,s2
��

A−
s1 ,+∞

I +L1
s1 ,+∞

��

id �� A−
s1 ,+∞

I +L1
s1 ,+∞

��
A−

+∞,s2

id
��

I +L2
+∞,s2

�� A−
+∞,+∞

id
��

id �� A−
+∞,+∞

id
��

A−
+∞,s2 I +L2

+∞,s2

�� A−
+∞,+∞ id

�� A−
+∞,+∞.

(2.2.13)

The squares Rs,i,j’s used in Equations (2.2.2) to (2.2.5) are defined to be the compressions

of Rs,i,j’s.
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CHAPTER 3

Applications to surgeries on two-bridge links

3.1 Generalized Floer complexes of two-bridge links

In this section, we combinatorially compute the generalized Floer complexes A−
s1,s2(−→L ) for

all two-bridge links −→
L by using nice diagrams.

3.1.1 Nice diagrams.

In [48], Sarkar and Wang use nice Heegaard diagrams to combinatorially compute the

ĤF (M). This algorithm is based on a fact: in a nice diagram H = (Σ, α, β, w), the index-1

pseudo-holomorphic disks in Symg+k−1(Σ) with nw = 0 have simple domains on Σ and can

be combinatorially counted.

Definition 3.1.1 (Nice diagrams). A Heegaard diagram H = (Σ, α, β, w) is called nice, if

any region (i.e. connect component of Σ − α − β) without any basepoint wi ∈ w is either a

bigon or a square. For x, y ∈ Tα ∩ Tβ, a domain φ ∈ π2(x, y) is called an empty embedded

2n-gon, if it is an embedded disk with 2n vertices on its boundary, such that for each vertex

v, μv(φ) = 1
4 , and it does not contain any xi or yi in its interior. An empty embedded 4-gon

is also called empty embedded square.

Remark 3.1.2. The notation π2(x, y) in [48] denotes the sets of domains, namely 2-chains φ

on Σ such that ∂(∂φ|α) = y−x, whereas in this paper π2(x, y) denotes the homology classes

of Whitney disks in Symg+k−1(Σ) from x to y.

Theorem 3.1.3 ([48]). Let φ ∈ π2(x, y) be a domain on a nice diagram such that μ(φ) = 1

and nwi
(φ) = 0,∀i. If φ has a holomorphic representative, then φ is either an empty embedded
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bigon or an empty embedded square. Conversely, if φ ∈ π2(x, y) with nwi
(φ) = 0,∀i is an

empty embedded bigon or an empty embedded square, then the product complex structure on

Σ×D2 achieves transversality for φ under a generic perturbation of the α and the β curves,

and μ(φ) = 1 as well as #M(φ)/R = 1 (mod 2).

The above theorem enables us to combinatorially count differentials in ĈF on a nice

diagram, by counting empty embedded bigons and squares. Following the same lines of the

proof, we can obtain the following adaption.

Proposition 3.1.4. Suppose H = (Σ, α, β, w, z) is a Heegaard diagram such that any region

of Σ is either a bigon or a square. Then, there is a 1-1 correspondence between the differen-

tials in A−(H,∞) and the set of empty embedded bigons and empty embedded squares. Thus,

the complex A−(H, s) can be described combinatorially.

3.1.2 Schubert normal form.

A two-bridge link/knot can be obtained by closing a rational tangle. For the definition of

rational tangles, one can see the reference [28] chapter 9 and [3] chapter 7E, 12D. Let us

adopt the notations in [3]. By b(p, q) where gcd(p, q) = 1, we denote the two-bridge link/knot

according to the rational tangle of slope q
p
.

Definition 3.1.5 (Schubert normal form). For a two-bridge link/knot L = b(p, q), the

Schubert normal form is a canonical projection of L with two over-bridges and two under-

bridges, where we regard the projection plane as a sphere S in S3. The two over-bridges

O1, O2 are straight segments on the projection plane, and each component of the other two

under-bridges U1, U2 crosses O1, O2 alternatively. Together with the lower half space (which

is a ball in S3), the under-bridges U1, U2 form a rational tangle of slope q
p
. Moreover, if L has

two components, we arrange the notation such that Li = Oi ∪ Ui. We denote the Schubert

form by (S, O1, O2, U1, U2).

Concretely, the Schubert normal form can be obtained by gluing two disks Dα
1 , Dα

2 shown

in Figure 3.1.1. The endpoint ai is glued to a′
q−i, where all the subscripts are modulo 2p.
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Figure 3.1.1: The Schubert form: the neighborhoods of the two over-bridges.

Figure 3.1.2: The Schubert normal form of the Whitehead link.

When L has two components, L can be endowed with a canonical orientation induced by

the orientation of −→O1 = −−→a0ap,
−→
O2 =

−−→
a′

0a
′
p, which is also shown in Figure 3.1.1.

Example 3.1.6. In Figure 3.1.2, we show the Schubert normal form of the Whitehead link

b(8, 3).

Remark 3.1.7. Here in the definition of Schubert normal form, we set the straight arcs to be

over-bridges, while in other places the straight arcs are set to be under-bridges. However,

given p, q, these two links are the same up to taking the mirror of each other.

Fact 3.1.8. Let b(p, q) denote the two-bridge link defined as above, where p, q ∈ Z, gcd(p, q) =

1, p > 0. Then
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(1)(12.1. in [3]) When p is odd, the link b(p, q) is a knot; and when p is even, b(p, q) has

two components.

(2)(Schubert, [3], Theorem 12.6.) As an oriented link/knot, b(p, q) is equivalent to b(p′, q′)

if and only if p′ = p, q′ ≡ q±1(mod 2p); as an unoriented link/knot, b(p, q) is equivalent to

b(p′, q′) if and only if p′ = p, q′ ≡ q±1(mod p).

(3)(12.8 in [3]) When b(p, q) has two components, the link b(p,−q) is the mirror of b(p, q),

and the link b(p, q + p) can be obtained by changing the orientation on one component of

b(p, q).

(4)(Remark 12.7, [3]) The linking number can be computed by the formula:

lk(b(p, q)) = −
p
2∑

i=1
(−1)� (2i−1)q

p �.

(5)(Theorem 9.3.6, [28]) The signature can be computed by the formula:

σ(b(p, q)) =
p−1∑
i=1

(−1)� iq
p �.

3.1.3 Heegaard diagrams of two-bridge links.

In this section, we construct nice Heegaard diagrams of two-bridge links by using their

Schubert forms.

Definition 3.1.9. A bridge presentation of a link L is a topological pair (L, S) inside S3,

such that

• S is an embedded sphere transversely intersecting L,

• S3 − S ∼= B1 ∪ B2, where B1, B2 are homeomorphic to the unit ball B3,

• each pair (L ∩ Bi, Bi) with i = 1, 2 is homeomorphic to the pair ({Pj}k
j=1 × I, D2 × I),

where {Pj}k
j=1 is a set of points in the interior of the unit disk D2.

The minimum over all possible k is called the bridge number of the link, denoted by br(L).
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Every bridge presentation of L gives rise to a genus-0 multi-pointed Heegaard diagram

for L. Let the sphere S be the Heegaard surface. In each ball Bi, choose k − 1 disjoint

proper disks to divide Bi into k chambers, such that every component of the k bridges is in a

distinct chamber. The boundaries of these disks are the alpha, beta curves. The basepoints

wi, zi are the intersection points of L and S. In other words, by pushing all the bridges onto

the sphere S, we obtain a projection of L consisting of 2k arcs a1, · · · , ak, b1, · · · , bk, such

that the arcs {ai} are disjoint, the arcs {bj} are disjoint, and the arcs {ai} are always over

the arcs {bj}. Then the boundaries of tubular neighborhoods of the arcs {ai}k−1
i=1 , {bj}k−1

j=1 are

the alpha, beta curves.

Definition 3.1.10 (Schubert Heegaard diagrams). Let −→
L = −→

L1 ∪ −→
L2 be a two-bridge link,

and let (S, O1, O2, U1, U2) be its Schubert form. The Schubert Heegaard diagram of L is the

Heegaard diagram H = (S2, {α}, {β}, {z1, z2}, {w1, w2}), where

• α = ∂N(O1), β = ∂N(U1) with N(O1), N(U1) being disjoint tubular neighborhoods of

O1, U1 on S,

• {z1, w1} = {L1 ∩ S} and {z2, w2} = {L2 ∩ S}.

Concretely, regarding the Schubert form as the gluing of two disks Dα
1 , Dα

2 in Figure 3.1.1,

we can take α = ∂Dα
1 and β = ∂N(U1). The basepoint z1 can be any point in Dα

1 near ap,

and the basepoint w1 can be any point in Dα
1 near a0; whereas the basepoint z2 can be any

point in Dα
2 near a′

p, and the basepoint w2 can be any point in Dα
2 near a′

0.

Example 3.1.11. The two-bridge link b(8, 3) is the Whitehead link Wh (or its mirror due

to the convention). The Schubert Heegaard diagram of Wh is in Figure 3.1.3.

Notation 3.1.12. Since we will repeatedly discuss the Schubert Heegaard diagram, it is

convenient to make a notational convention for all the intersection points and regions as

follows.

• The components of S − β are both disks, denoted by Dβ
1 , Dβ

2 such that the disk Dβ
i is a

neighborhood of Ui.
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Figure 3.1.3: The Schubert Heegaard diagram of the Whitehead link. The red curve
is α, and the blue curve is β.

Figure 3.1.4: The Schubert Heegaard diagram for the two-bridge link b(p, q).

• There is a total of four bigons among the components of S − (α∪β), and each of them

contains a distinct basepoint in {z1, z2, w1, w2}. All the other components are squares.

• We label all the p + 1 components of Dα
1 − β by X0, X1, ..., Xp, and label all the p + 1

components of Dα
2 − β by Y0, Y1, ..., Yp, such that X0, Xp, Y0, and Yp are bigons and

w1 ∈ X0, w2 ∈ Y0, z1 ∈ Xp, z2 ∈ Yp.

• There is a total of 2p intersection points of α and β. We label them by b0, b1, ..., b2p−1

clockwise, such that b0, b2p−1 are vertices of X0, and bp−1, bp are vertices of Xp. All the

subscripts are modulo 2p.

The above properties and conventions are illustrated in Figure 3.1.4.
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Lemma 3.1.13. The Schubert Heegaard diagram of the two-bridge link b(p, q) is a nice

diagram. By Proposition 3.1.4, the generalized Floer complexes of the Schubert Heegaard

diagram are combinatorial.

From the property of Schubert normal form, it follows a direct description of the Schubert

Heegaard diagram.

Lemma 3.1.14. In the Schubert Heegaard diagram of b(p, q),

(1) in the disk Dα
1 , the points bi and b2p−1−i are connected by a β-arc,

(2) in the disk Dα
2 , the points bi and bj are connected by a β-arc if and only if i + j ≡

2q − 1 (mod 2p).

3.1.4 The multi-variable Alexander polynomial of two-bridge links.

With the help of link Floer homology, we can directly calculate the multi-variable Alexander

polynomial of knots and links. In [42], there is a formula of the Euler characteristic of

ĤFL(L): ∑
h∈H(L)

χ(ĤFL∗(L, h)) · eh =
l∏

i=1
(T

1
2

i − T
− 1

2
i )ΔL. (3.1.1)

Definition 3.1.15 (Thin complex and E2-collapsed complex). Suppose (C, ∂) is a Z2-filtered

chain complex of F-vector spaces. Let (i, j) denote the filtration, and let g denote the internal

grading. The complex (C, ∂) is called thin, if i+j−g is a constant for all elements in C. The

chain complex C is called E2-collapsed, if the differential can be decomposed as ∂ = ∂1 + ∂2,

such that F (∂1(x)) = F (x) − (1, 0) and F (∂2(x)) = F (x) − (0, 1), where F (x) is the Z2-

filtration of x.

Remark 3.1.16. A thin complex is E2-collapsed. The classification of E2-collapsed complexes

of F-vector spaces is shown in [42] Section 12.1.

Proposition 3.1.17. Let L = b(p, q) be a two-bridge link, where p is even and −p < q < p.

Let A(bi) be the Alexander grading, and let q−1 be the number theoretical reciprocal of q
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modulo 2p. Then

A(bi) − A(bi−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((−1)�q−1·i/p�, 0), i is even,

(0, (−1)�(q−1·i+1)/p�), i is odd.

Furthermore, we have A1(bi) + A2(bi) − M(bi) is a constant, i.e. not dependent on i, where

M(bi) is the Maslov grading. In other words, the chain complex A−
+∞,+∞(L) is thin.

Proof. We use Notations 3.1.12. There is a set of bigons of Maslov index 1 connecting bi

and bi+1, for i = 0, 1, ..., 2p − 2. Each of these bigons is a part of one of the disks Dβ
1 and

Dβ
2 . In fact, these bigons can be obtained by chasing the under-bridges U1 and U2.

The under-bridge U1 starts from z1 = ap = a′
q−p and passes the disks Dα

2 and Dα
1

alternately. For i even, at the point ai, if the under-bridge U1 is pointing out of Dα
1 , then

i ≡ p − 2kq (mod 2p) for some k with 0 < k < p
2 , which is equivalent to

⌊
i·q−1

p

⌋
is even. In

this case, there is a bigon φ from bi to bi−1 with a single basepoint z1 on it, and thereby

A(bi) − A(bi−1) = ((−1)� q−1·i
p

�, 0).

If the under-bridge U1 is pointing into Dα
1 , then i ≡ 2kq − p (mod 2p) for some k with

0 < k < p
2 , which is equivalent to

⌊
i·q−1

p

⌋
is odd. In this case, there is a bigon φ from bi−1 to

bi with a single basepoint z1 on it, and still

A(bi) − A(bi−1) = ((−1)� q−1·i
p

�, 0).

Similarly, by keeping track of U2, we can prove the other cases. For i odd, at the point

ai, if the under-bridge U2 is pointing off Dα
1 , then i ≡ p − q − 2kq (mod 2p) for some k

with 0 < k < p
2 , which is equivalent to

⌊
1+i·q−1

p

⌋
is even. In this case, there is a bigon φ of

index 1 from bi to bi−1 with a single basepoint z2 on it. Thus, we have A(bi) − A(bi−1) =

(0, (−1)� q−1·i+1
p

�) for i odd.
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From Lipshitz’s formula μ(φ) = e(φ) + μbi
(φ) + μbi−1(φ), it follows μ(φ) = 1, and thereby

for all i,

A1(bi) + A2(bi) − M(bi) = A1(bi−1) + A2(bi−1) − M(bi−1).

Now we are able to compute the multi-variable Alexander polynomial of two-bridge links

by Equation (3.1.1). Since the Floer chain complex for the Schubert Heegaard diagram

is thin, there are no differentials in the associated graded complex of ĈFL(L, h) for the

Alexander filtration. That is, for this thin complex, ĤFL(L, h) = ĈFL(L, h). Thus,

l∏
i=1

(T
1
2

i − T
− 1

2
i ) · ΔL(x, y) =

2p−1∑
i=0

(−1)A1(bi)+A2(bi) · xA1(bi) · yA2(bi).

By computer experiments, we have found two distinct two-bridge links b(126, 47) and

b(126, 55) that share the same Alexander polynomial, signature, and linking number, but

are not the same or mirror to each other.

Δb(126,47)(x, y) = Δb(126,55)(x, y) = −15 + 8
x

+ 8x + y

8 + 8y − 4
xy

− 4xy − 4x

y
− 4y

x
,

σ(b(126, 47)) = σ(b(126, 55)) = 3,

lk(126, 47) = lk(126, 55) = 1.

3.1.5 The Floer complexes for two-bridge links.

Let H = (S, α, β, w,z) be the Schubert Heegaard diagram of b(p, q). By Lemma 3.9, the

generalized Floer complex A−(H, s) is combinatorial. It consists of counting the empty

embedded bigons of Maslov index 1 on S, since here g + k − 1 = 1.

The pattern of empty embedded bigons of Maslov index 1 is illustrated in Figure 3.1.5 as

in [48]. In Schubert Heegaard diagram, these bigons are always in a similar form of Figure

3.1.5, where the function fp is defined as follows.
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Figure 3.1.5: A bigon in the Schubert Heegaard diagram of a two-bridge link. The
red lines are parts of α, and the blue curves are parts of β.

Definition 3.1.18. For all n, m, k ∈ Z, let Mod(n, m, k) be the residue of n modulo m

starting from k, that is,

Mod(n, m, k) ≡ n (mod m) and k ≤ Mod(n, m, k) ≤ k + m − 1.

Then fp is defined by

fp(n) = |Mod(n, 2p,−p + 1)| .

Lemma 3.1.19. In the Schubert Heegaard diagram (S, {α}, {β}, {w1, w2}, {z1, z2}) of the

two-bridge link −→
L = b(p, q), the regions in Dβ

1 are X0, Yq,Xfp(2q),Yfp(3q),...,Xfp(pq) = Xp

consecutively, and the regions in Dβ
2 are Y0, Xq,Yfp(2q),Xfp(3q),...,Yfp(pq) = Yp consecutively.

Proof. Note that Dβ
i is the regular neighborhood of the under-bridge Ui. The region Xi

contains the arc aia−i ⊂ L, and the region Yj contains arc a′
ja

′
−j ⊂ L. Conversely, the point

ai is contained in Xfp(i), and the point a′
j is contained in Yfp(j). Thus since ai, a′

q−i are glued

together and a−i, a′
q+i are glued together, Xfp(i) is adjacent to Yfp(q−i) and Yfp(q+i). Since Y0

is in Dβ
2 and it is adjacent to Xq, the region Xq is adjacent to Yfp(2q). Inductively, we can

show in Dβ
2 , Yfp(kq) is adjacent to Xfp[(k−1)q] and Xfp[(k+1)q]. A similar argument applies to

Dβ
1 .

Definition 3.1.20. In the bigon φ, denote the number of α arcs in φ by nα(φ), and denote

the number β arcs in φ by nβ(φ).
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Every bigon φ is uniquely determined by nα(φ), nβ(φ) and the basepoint on it.

Lemma 3.1.21 (Patterns of bigons). In the Schubert Heegaard diagram of b(p, q), suppose

φ is an empty embedded bigon of index 1 in π2(bi, bj). Then

(i, j) = ((1 − nα)q + nβ − 1, (1 − nα)q − nβ),

(i, j) = (nαq − nβ, nαq + nβ − 1),

(i, j) = (nαq − nβ, nαq + nβ − 1),

(i, j) = ((1 − nα)q + nβ − 1, (1 − nα)q − nβ),

if w1 ∈ φ, nα is odd,

if w1 ∈ φ, nα is even,

if w2 ∈ φ, nα is odd,

if w2 ∈ φ, nα is even.

Furthermore, given m, n ∈ Z and a basepoint pt ∈ {w1, w2, z1, z2}, there exists at most

one empty embedded bigon φ with nα(φ) = m, nβ(φ) = n, and npt(φ) = 1.

There exists an empty embedded bigon φ of index 1 with nα(φ) = m, nβ(φ) = n, and

nw2(φ) = 1 if and only if the condition P1(m, n) holds.

The condition P1(m, n) is as follows:

1. either m = 1, or if m > 1, then the set of intervals: [0, n − 1] and all intervals

[fp(2iq) − n + 1, fp(2iq) + n − 1] with 1 ≤ 2i ≤ m − 1 are pairwise disjoint intervals in

[0, p];

2. either m = 1, or if m > 1, then the set of intervals: all intervals [fp((2i + 1)q) − n +

1, fp((2i + 1)q) + n − 1] with 1 ≤ 2i + 1 ≤ m − 1 are also pairwise disjoint intervals in

[1, p − 1].

Similarly, there exists an empty embedded bigon φ of index 1 with nα(φ) = m, nβ(φ) = n

and nw1(φ) = 1 if and only if the condition P2(m, n) holds.

The condition P2(m, n) is as follows:

1. either n = 1, or n > 1 and the set of intervals: [0, m − 1] and all intervals [fp(2iq) −
m + 1, fp(2iq) + m − 1] with 1 ≤ 2i ≤ n − 1 are pairwise disjoint intervals in [0, p];
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2. either n = 1, or n > 1 and the set of intervals: all intervals [fp((2i + 1)q) − m +

1, fp((2i + 1)q) + m − 1] with 1 ≤ 2i + 1 ≤ n − 1 are also pairwise disjoint intervals in

[1, p − 1].

In addition, for i = 1, 2, there is a one-to-one correspondence between the set of all the

empty embedded bigons with nwi
= 1 and the set of empty embedded bigons with nzi

= 1, where

the bigon φ ∈ π2(bi, bj) with nα = m, nβ = n,nwi
= 1 is sent to the bigon φ′ ∈ π2(bi +p, bj +p)

with nα = m, nβ = n,nzi
= 1.

Proof. Suppose φ is a bigon of index 1 in π2(bi, bj) with nw2(φ) = 1. Combining Lemma

3.1.14 and Lemma 3.1.19, we can get the formula of (i, j) out of Figure 3.1.5 by induction

on nα, nβ. The initial step is (i, j) = (q − 1, q), for nα = nβ = 1. Similarly, we can show the

other case where nw1(φ) = 1.

For the second part, the sufficient and necessary condition of when there exists an empty

embedded bigon is that all the regions in the bigon are not overlapped. By Lemma 3.1.19,

it is not hard to get the formulas by induction.

Finally, notice that there is a symmetry of the Heegaard Schubert diagram which sends

bk to bk+p and exchanges wi to zi for all 1 ≤ k ≤ 2p, i = 1, 2. This symmetry directly gives

the one-to-one correspondence between the bigons with wi and the ones with zi.

Consequently, we get an algorithm for computing A−
s (b(p, q)) as follows.

Theorem 3.1.22. Let L = b(p, q) be a two-bridge link and H be the Schubert Heegaard

diagram. Define functions Fi : N× N → Z/2pZ× Z/2pZ, i = 1, 2, by

F1(m, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((1 − m)q + n − 1, (1 − m)q − n), if m is odd,

(mq − n, mq + n − 1), if m is even.

F2(m, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((1 − m)q + n − 1, (1 − m)q − n), if m is even,

(mq − n, mq + n − 1), if m is odd.
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The conditions Pi(m, n), i = 1, 2 are as in Lemma 3.1.21.

Then, the complex A−(H, +∞, +∞) is a free F[[U1, U2]]-module generated by g0, ...g2p−1

with differentials

∂gi =
2p−1∑
j=0

(λi+p,j+p + μi+p,j+p)gj +
2p−1∑
j=0

λi,jU1gj +
2p−1∑
j=0

μi,jU2gj,

where the coefficients λi,j, μi,j ∈ Z/2Z are determined by the following equations

λi,j = #{(m, n) ∈ N× N|1 ≤ m, n ≤ p, F1(m, n) = (i, j), P1(m, n) is true} (mod 2),

μi,j = #{(m, n) ∈ N× N|1 ≤ m, n ≤ p, F2(m, n) = (i, j), P2(m, n) is true} (mod 2).

Remark 3.1.23. One can get an algorithm of O(p2) time complexity for computing A−
s (b(p, q)).

To compute A−
s (b(p, q)), we only need to know A−

+∞,+∞(b(p, q)), which is determined by all

the counting of bigons, i.e. those λi,j’s and μi,j’s. Computing λi,j’s and computing μi,j’s

are similar. In order to get all the λi,j’s, one can nest two loops. The outer loop is indexed

by n ≥ 1, and the inner loop is indexed by m ≥ 1 with a test condition P1(m, n). When

P1(m, n) is true, we change the value of λF1(m,n) by 1 (mod 2) and keep running the inner

loop; when P1(m, n) is false, we stop the inner loop and go back to the outer loop.

Let us estimate the time complexity. Switching the α and β roles converts the Heegaard

diagram of b(p, q) to its mirror b(p,−q). Thus, we assume 0 < q < p. First, when P1(m, n)

is true and n > q, m must be 1, as otherwise the second part of P1(m, n) would imply

fp(q)−n+1 = q−n+1 ≥ 1. Thus we force the outer loop stop when n = q +1. Computing

the other λF1(m,n)’s with (m, n) = (1, n), n > p can be done within O(p) operations. Second,

if P1(m, n) is true, then m ≤ (p + 1)/n. This is because the first part of P1(m, n) implies

that there are m pieces of open intervals (fp(2iq)−n+ 1
2 , fp(2iq)+n− 1

2) pairwise disjoint in

(−1
2 , p + 1

2). Thus, at the nth step of the outer loop, the inner loop stops within �(p + 1)/n�
steps. Finally, testing P1(m, n) can be done within 2m steps. In fact, when m is even, we

can check if the new interval [fp(mq)−n + 1, fp(mq) + n−1] is disjoint from the other m
2 −1
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intervals in the first part of P1(m, n) (which are already ordered in the previous step). If it

is disjoint from the other intervals, we put it in the correct position in the order. This is

done within 2m operations. It is similar when m is odd. Thus the time complexity is of the

order

T (p, q) = (
q∑

n=1

�(p+1)/n�∑
m=1

2m) + O(p) ≤
( q∑

n=1
[(p + 1

n
)2 + p + 1

n
]
)

+ O(p).

Since n ≤ q ≤ p, (p + 1)/n ≥ 1, thus

T (p, q) ≤ 2[
q∑

n=1

(p + 1)2

n2 ] + O(p) = O(p2).

3.2 Applying the surgery formula to two-bridge links

In this section, we show some algebraic rigidity results for the chain maps between certain

chain complexes up to chain homotopy. This provides a way to determine the destabilization

maps in the surgery complex of two-bridge links up to chain homotopy. Using these maps to

replace the original maps in the surgery complex, we construct a perturbed surgery complex.

We further show that it has the same homology as the original one. Based on the perturbed

surgery formula, we give an algorithm for computing the homology of surgeries on two-bridge

links.

3.2.1 Algebraic rigidity results.

There is a short exact sequence in the Exercise 3.6.1 in [49] as follows. Suppose P∗, Q∗ are

(co)chain complexes of R-modules, and P, d(P ) = Im(d) are both projective R-modules.

Then there is an exact sequence

0 → ∏
p+q=n−1

Ext1
R(Hp(P∗), Hq(Q∗)) → Hn(Hom(P∗, Q∗)) → ∏

p+q=n

HomR(Hp(P∗), Hq(Q∗)) → 0.

For completeness, we give a proof here adapted to the setting of Z/2Z-graded chain com-

plexes.
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Lemma 3.2.1. Let P∗, Q∗ be Z/2Z-graded chain complexes of R-modules. If P and d(P ) =

Im(d) are projective modules, then there is a short exact sequence for any n, p, q ∈ Z/2Z,

0 → ⊕
p+q=n+1

Ext1
R(Hp(P ), Hq(Q)) → Hn(Hom(P, Q)) → ⊕

p+q=n

HomR(Hp(P ), Hq(Q)) → 0.

(3.2.1)

Proof. First, all the indices n, p, q, i, j are in Z/2Z. Since d(P ) is projective, the short exact

sequence 0 → ZP → P → d(P ) → 0 splits, thus giving that P = d(P )⊕ZP . Thereby, ZP is

projective and thus Ext1
R(ZP , M) = 0 for all R-module M . Also, by Ext1

R(d(P ), M) = 0,∀M

we get an exact sequence

0 → HomR(d(Pp), Qq) → HomR(Pp, Qq) → HomR(ZP
p , Qq) → 0.

These assemble to a short exact sequence of chain complexes

0 → ⊕
p+q=n

HomR(d(Pp), Qq) → (HomR(P, Q))n → ⊕
p+q=n

HomR(ZP
p , Qq) → 0. (3.2.2)

Actually, it is not hard to check the following commuting diagram

0 �� ⊕
p+q=n

HomR(d(Pp), Qq) ��

d

��

(HomR(P, Q))n

d

��

�� ⊕
p+q=n

HomR(ZP
p , Qq)

d

��

�� 0

0 �� ⊕
p+q=n+1

HomR(d(Pp), Qq) �� (HomR(P, Q))n+1 �� ⊕
p+q=n+1

HomR(ZP
p , Qq) �� 0.

Since dP is projective, the short exact sequence 0 → d(Qj−1) → ZQ
j → Hj(Q) → 0 gives a

short exact sequence

0 → HomR(dPi, d(Qj−1)) → HomR(dPi, ZQ
j ) → HomR(dPi, Hj(Q)) → 0.

Furthermore, the differential in HomR(dPi, Qj) is dQ, so from the above exact sequence it

follows that Hn(HomR(d(P ), Q)) = ⊕p+q=n HomR(d(Pp), Hq(Q)), p, q, n ∈ Z/2Z. Since ZP
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is projective, similarly we have

Hn(HomR(ZP , Q)) =
⊕

p+q=n

HomR(ZP
p , Hq(Q)).

Thus the long exact sequence of homology from Equation (3.2.2) is

· · · → ⊕
p+q=n

HomR(ZP
p+1, Hq(Q)) ∂n+1−−−→ ⊕

p+q=n

HomR(d(Pp), Hq(Q)) → Hn(HomR(P, Q))

→ ⊕
p+q=n

HomR(ZP
p , Hq(Q)) ∂n−→ ⊕

p+q=n

HomR(d(Pp+1), Hq(Q)) → · · · . (3.2.3)

A diagram chasing shows that the connecting morphism ∂∗ : Hom(ZP
∗ , H∗(Q)) → Hom(d(P∗), H∗(Q))

is the restriction.

Hence, the short exact sequence 0 → dPi+1 → ZP
i → Hi(P ) → 0 can produce the exact

sequence

0 → HomR(Hp(P ), Hq(Q)) → HomR(ZP
p , Hq(Q)) ∂p+q−−→ HomR(dPp+1, Hq(Q))

→ Ext1
R(Hp(P ), Hq(Q)) → Ext1

R(ZP
p , Hq(Q)) = 0,

thus Ker(∂p+q) ∼= HomR(Hp(P ), Hq(Q)) and Coker(∂p+q) ∼= Ext1
R(Hp(P ), Hq(Q)). Finally,

the exact sequence in Equation (3.2.1) comes from Equation (3.2.3).

Let (C∗, ∂∗) be a chain complex of F-vector spaces, with U1, U2-actions which drop the

Z-grading by 2. Consider C as a F[[U1, U2]]-module. Even though the U1, U2-actions do not

preserve the Z-grading, we will still call C a complex of F[[U1, U2]]-modules.

Proposition 3.2.2. Let A, B be complexes of F[[U1, U2]]-modules with U1, U2-actions drop-

ping grading by 2, and A, d(A) are both free F[[U1, U2]]-modules. Suppose H∗(A) ∼= H∗(B) ∼=
F[[U1, U2]]/(U1 −U2), precisely, H2k(A) ∼= H2k(B) ∼= F for all k ≤ 0 and Hi(A) = Hi(B) = 0

otherwise, where Ui · H2k(A) = H2k−2(A), Ui · H2k(B) = H2k−2(B) for both i = 1, 2. If

F, G : A → B are both quasi-isomorphisms as F[[U1, U2]]-modules, then F and G are homo-

topic as F[[U1, U2]]-modules.
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Proof. First, the Z-grading of A, B induces a Z/2Z-grading on both A and B, and U1, U2-

action preserves the induced Z/2Z-grading, thus we regard A, B as Z/2Z-graded chain com-

plexes of F[[U1, U2]]-modules. In order to distinguish these two gradings, we put brack-

ets on the numbers to represent Z/2Z-gradings. Hence we have H[0](A) = H[0](B) =

F[[U1, U2]]/(U1 − U2), H[1](A) = H[1](B) = 0.

By Lemma 3.2.1, we have

0 → ⊕
[p]∈Z/2Z

Ext1
F[[U1,U2]](H[p+1](A∗), H[p](B∗)) → H[0](Hom(A∗, B∗))

→ ⊕
[p]∈Z/2Z

HomF[[U1,U2]](H[p](A∗), H[p](B∗)) → 0,

thus

H[0](Hom(A∗, B∗)) = HomF[[U1,U2]](F[[U1, U2]]/(U1 − U2),F[[U1, U2]]/(U1 − U2))

= F[[U1, U2]]/(U1 − U2).

Since H[0](Hom(A∗, B∗)) is the group of chain homotopy equivalence classes of chain maps

from A to B, this means the chain maps from A to B are classified by their action on

homology. Since F and G are both quasi-isomorphisms, they are homotopic as F[[U1, U2]]-

modules.

Let H : A → B be any homotopy such that F − G = H∂ + ∂H, H · Ui = Ui · H. Then

H shifts the Z/2Z-grading by 1, thus shifting the Z-grading by odd numbers. Thus, let

H = ∑i∈Z H2i+1, where H2i+1 : A∗ → B∗+2i+1. Since

F − G = H∂ + ∂H =
∑
i∈Z

(H2i+1∂ + ∂H2i+1)

preserves the original Z-grading, we have H2i+1∂ + ∂H2i+1 = 0,∀i �= 0. So we can replace

the homotopy H by H1 : A∗ → B∗+1, thus being a chain homotopy of the original Z-graded

chain complexes.
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Remark 3.2.3. The prototype of the complexes in the previous Proposition is the simplest

Heegaard Floer chain complex of the unknot in S3. Let Cu be the chain complex of F[[U1, U2]]-

modules generated by x, y with differential ∂x = (U1−U2)y, where y, x are of gradings 0,−1

respectively.

Corollary 3.2.4. Let A, B be complexes of F[[U1, U2]]-modules with U1, U2-actions dropping

grading by 2. Suppose A is chain homotopy equivalent to the complex Cu as F[[U1, U2]]-

modules, and H∗(B) ∼= F[[U1, U2]]/(U1 − U2) as in Proposition 3.2.2. Then for any quasi-

isomorphisms F, G : A → B of F[[U1, U2]]-modules, F and G are chain homotopic as

F[[U1, U2]]-modules.

Proof. Let h1 : A → Cu, h2 : Cu → A be the chain homotopy equivalences, such that

h1 ◦ h2 � idCu , h2 ◦ h1 � idA. Then by Proposition 3.2.2, F ◦ h2 is homotopic to G ◦ h2 as

F[[U1, U2]]-modules. Hence, F ◦h2 ◦h1, G ◦h2 ◦h1 are homotopic as F[[U1, U2]]-modules, and

thus so are F and G.

Proposition 3.2.5. Let A∗, B∗ be complexes of F[[U ]]-modules with U-action dropping grad-

ing by 2, and A, B are both free F[[U ]]-modules. Suppose H∗(A) = H∗(B) = F[[U ]], pre-

cisely, H2k(A) ∼= H2k(B) ∼= F for all k ≤ 0 and Hi(A) = Hi(B) = 0 otherwise, where

U ·H2k(A) = H2k−2(A), U ·H2k(B) = H2k−2(B). If F, G : A → B are both quasi-isomorphisms

of F[[U ]]-modules, then F, G are chain homotopic as maps of F[[U ]]-modules.

Moreover, if H, K are both chain homotopies as homomorphisms of F[[U ]]-modules be-

tween any two chain maps f, g : A → B, i.e. H∂ + ∂H = K∂ + ∂K = f − g, then

H − K = ∂T + T∂, for some F[[U ]]-module homomorphism T : A∗ → B∗+2.

Proof. First, we regard A, B as Z/2Z-graded complexes of F[[U ]]-modules. Since a P.I.D. is

hereditary, every submodule of a free module over a P.I.D. is a projective module. See [49]

Definition 4.2.10 and Exercise 4.2.6. Thus, d(A), d(B) are both projective F[[U ]]-modules.
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Applying Lemma 3.2.1, we can compute

H[0](Hom(A, B)) = Hom(F[[U ]],F[[U ]]) = F[[U ]],

H[1](Hom(A, B)) = Ext1
F[[U ]](F[[U ]],F[[U ]]) = 0.

The first identity implies that the quasi-isomorphisms F, G are chain homotopic as Z/2Z-

graded complexes via H. In order to get a homotopy between F and G preserving the Z-

grading, we decompose H = ∑i∈Z H2i+1, where H2i+1 : A∗ → B∗+2i+1. Then similarly to

Proposition 3.2.2, the map H1 is also a chain homotopy between F, G.

Since ∂(H−K)+(H−K)∂ = 0, the second identity implies that H−K ∈ Z[1](Hom(A, B)) =

B[1](Hom(A, B)). This means there is a homomorphism of F[[U ]]-modules T : A → B pre-

serving the Z/2Z-grading, such that H−K = ∂T +T∂. Thus, the map T can be decomposed

as T = ∑i∈Z T2i, where T2i : A∗ → B∗+2i. From the fact that H − K = ∑i∈Z ∂T2i + T2i∂

maps An into Bn+1, it follows that ∂T2i + T2i∂ : A∗ → B∗+2i−1 vanish for all i �= 1. Thus

T = T2 : A∗ → B∗+2.

Corollary 3.2.6. Suppose the complexes A∗ and B∗ are as in Proposition 5.1.1. Then, A∗

and B∗ are chain homotopy equivalent as F[[U ]]-modules.

Proof. From the proof of Proposition 5.1.1 we see H[0](Hom(A∗, B∗)) = Hom(H[0](A), H[0](B)) =

F[[U ]], which implies that there exists a quasi-isomorphism h : A → B as Z/2Z-graded

chain complex of F[[U ]]-modules. Decompose h as h = h0 + h1 such that for all a ∈ An,

h0(a) ∈ Bn, h1(a) ∈ ⊕i�=0 Bn+2i. Then h∂A = ∂Bh implies that h0∂A = ∂Bh0, h1∂A = ∂Bh1,

so h0 is also a chain map preserving the Z-grading. Since Uh = hU and the U -action drops

the Z-grading by 2, we have h0U + Uh0 = 0. In addition, h0 is also a quasi-isomorphism.

Hence, on the homology level, h0(1) = 1 ∈ F[[U ]].

Similarly, we have another quasi-isomorphism g0 : B∗ → A∗ preserving the Z-grading,

such that g0∂B = ∂Ag0, g0U = Ug0. Then, g0h0 : A∗ → A∗ is a quasi-isomorphism. From

Proposition 5.1.1, it follows that g0h0 − idA = ∂H + H∂, where H is chain homotopy of Z-
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graded complexes commuting with the U -action. Similarly, we have that h0g0 is homotopic

to idB.

3.2.2 Destabilization maps.

In the link surgery formula, the part of polygon counts for defining the destabilization maps

is difficult to read off from the Heegaard diagram. However, in the case of two-bridge links

we can use the algebraic rigidity result to avoid the difficulty.

In a primitive system of hyperboxes, all the destabilization maps we need are listed below:

D−L1−∞,s2 :A−(HL,−∞, s2) → A−(HL, +∞, s2 + lk(L1, L2)),

D−L2
s1,−∞ :A−(HL, s1,−∞) → A−(HL2 , s1 + lk(L1, L2), +∞),

D−L1∪−L2−∞,−∞ :A−(HL,−∞,−∞) → A−(HL, +∞, +∞).

Second, notice that all the domains and targets of these maps have homology F[[U1, U2]]/U1−
U2, which is isomorphic to F[[U1]] as an F[[U1]]-module. By Proposition 5.1.1, we can substi-

tute D−L1−∞,s2 , D−L2
s1,−∞ by any F[[U1]]-linear homotopy equivalence, since they are all homotopic

as homomorphisms of F[[U1]]-modules. We can also substitute the diagonal maps D−L1∪−L2−∞,−∞

by any F[[U1]]-linear homotopy shifting grading by 1, since they are homotopic up to higher

F[[U1]]-linear homotopy. We will show an invariance theorem of the surgery square under

perturbations of the edge maps and the diagonal maps in the next sections.

3.2.3 Perturbed surgery complex for two-bridge links.

The rigidity results in Section 3.2.1 allow us to perturb the edge and diagonal maps up to

homotopies, in the surgery square for two-bridge links. However, in order to obtain a square

of chain complexes, we still need some more modifications of the square.

First, suppose we have a hypercube (Cε, Dε). If we change Dε
ε0 to D′ε

ε0 = Dε
ε0 + ΔDε

ε0
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for all ε with ‖ε‖ > 0, then in order to have a hypercube again, we need to have

∑
ε′≤ε

(Dε−ε′
ε0+ε′ + ΔDε−ε′

ε0+ε′) ◦ (Dε′
ε0 + ΔDε

ε0) = 0,

∑
ε′≤ε

ΔDε−ε′
ε0+ε′ ◦ Dε′

ε0 + Dε−ε′
ε0+ε′ ◦ ΔDε

ε0 + ΔDε−ε′
ε0+ε′ ◦ ΔDε

ε0 = 0.

This formula provides a necessary condition to inductively perturb the maps from edges

to the longest diagonal. Based on the above principles, we get the following procedures to

construct the perturbed surgery square.

Suppose H be a primitive system of hyperboxes of a two-bridge link L and consider

Equation (2.2.12). Now we choose an arbitrary F[[U1]]-linear quasi-isomorphism D̃−Li
s1,s2 for

substituting D−Li
s1,s2 . By Proposition 5.1.1, D̃−Li

s1,s2 and D−Li
s1,s2 are homotopic by a F[[U1]]-linear

homotopy H−Li
s1,s2 :

D̃−Li
s = D−Li

s + H−Li
s ∂−

s + ∂−
pLi (s)H

−Li
s .

Then, we choose any F[[U1]]-linear maps F̃ ±L1∪−L2
s1,−∞ , F̃ −L1∪±L2−∞,s2 , D̃−L1∪−L2−∞,−∞ which are homo-

topies in each square of Equation (2.2.12), such that the following rectangles are hyperboxes
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of chain complexes:

A−
s1 ,s2

I −L1s1 ,s2
��

I −L2s1 ,s2 ��

I −L1 ∪−L2s1 ,s2
��

A−
s1 ,−∞

I −L1
s1 ,−∞

��

D̃−L2
s1 ,−∞��

F̃−L1 ∪−L2
s1 ,−∞

��

A−
s1 +lk,+∞

I −L1
s1 +lk,+∞

��
A−

−∞,s2

D̃−L1
−∞,s2

��

I −L2
−∞,s2

��

F̃−L1 ∪−L2
−∞,s2

��

A−
−∞,−∞

D̃−L1
−∞,−∞

��

D̃−L2
−∞,−∞��

D̃−L1 ∪−L2
−∞,−∞

��

A−
−∞,+∞

D̃−L1
−∞,+∞

��
A−

+∞,s2 +lk
I −L2
+∞,s2 +lk

�� A−
+∞,−∞

D̃−L2
+∞,−∞

�� A−
+∞,+∞;

A−
s1 ,s2

I +L1s1 ,s2
��

I −L2s1 ,s2 ��

I +L1 ∪−L2s1 ,s2
��

A−
s1 ,−∞

I +L1
s1 ,−∞

��

D̃−L2
s1 ,−∞��

F̃+L1 ∪−L2
s1 ,−∞

��

A−
s1 +lk,+∞

I +L1
s1 ,+∞

��
A−

+∞,s2

id
��

I −L2
+∞,s2

�� A−
+∞,−∞

id
��

D̃−L2
+∞,−∞

�� A−
+∞,+∞

id
��

A−
+∞,s2 I −L2

+∞,s2

�� A−
+∞,−∞

D̃−L2
+∞,−∞

�� A−
+∞,+∞;

(3.2.4)

A−
s1 ,s2

I −L1s1 ,s2
��

I +L2s1 ,s2 ��

I −L1 ∪+L2s1 ,s2
��

A−
s1 ,+∞

I −L1
s1 ,+∞

��

id �� A−
s1 ,+∞

I −L1
s1 ,+∞

��
A−

−∞,s2

D̃−L1
−∞,s2

��

I +L2
−∞,s2

��

F̃−L1 ∪+L2
−∞,s2

��

A−
−∞,+∞

D̃−L1
−∞,+∞

��

id �� A−
−∞,+∞

D̃−L1
−∞,+∞

��
A−

+∞,s2 +lk
I +L2
+∞,s2

�� A−
+∞,+∞ id

�� A−
+∞,+∞;

A−
s1 ,s2

I +L1s1 ,s2
��

I +L2s1 ,s2 ��

I +L1 ∪+L2s1 ,s2
��

A−
s1 ,+∞

I +L1
s1 ,+∞

��

id �� A−
s1 ,+∞

I +L1
s1 ,+∞

��
A−

+∞,s2

id
��

I +L2
+∞,s2

�� A−
+∞,+∞

id
��

id �� A−
+∞,+∞

id
��

A−
+∞,s2 I +L2

+∞,s2

�� A−
+∞,+∞ id

�� A−
+∞,+∞.

Definition 3.2.7 (Perturbed surgery square). The above rectangles in Equation (3.2.4) are

called perturbed surgery rectangles for the two-bridge link L. After compressing them, we

get four sets of squares,

A−
s1,s2

Φ̃−L1
s1,s2

��

Φ̃−L2
s1,s2 ��

Φ̃−L1∪−L2
s1,s2

��

A−
s1+lk,+∞

Φ̃−L1
s1+lk,+∞

��
A−

+∞,s2+lk
Φ̃−L2

+∞,s2+lk

�� A−
+∞,+∞;

A−
s1,s2

Φ̃−L1
s1,s2

��

Φ̃+L2
s1,s2 ��

Φ̃−L1∪+L2
s1,s2

��

A−
s1,+∞

Φ̃−L1
s1,+∞

��
A−

+∞,s2+lk
Φ̃+L2

+∞,s2+lk

�� A−
+∞,+∞;

A−
s1,s2

Φ̃+L1
s1,s2

��

Φ̃−L2
s1,s2 ��

Φ̃+L1∪−L2
s1,s2

��

A−
s1+lk,+∞

Φ̃+L1
s1+lk,+∞

��
A−

+∞,s2 Φ̃−L2
+∞,s2

�� A−
+∞,+∞;

A−
s1,s2

Φ̃+L1
s1,s2

��

Φ̃+L2
s1,s2 ��

Φ̃+L1∪+L2
s1,s2

��

A−
s1,+∞

Φ̃+L1
s1,+∞

��
A−

+∞,s2 Φ̃+L2
+∞,s2

�� A−
+∞,+∞.
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After a Λ-twisted gluing of the above squares, we obtain a perturbed surgery square (C̃−(HL, Λ), D̃−).

Remark 3.2.8. In the definition, a perturbed surgery square depends on the choices of the

maps D̃−Li
s1,s2 , F̃ ±L1∪−L2

s1,−∞ , F̃ ±L1∪−L2−∞,s2 , D̃−L1∪−L2−∞,−∞ . However, we will show it is isomorphic to the

original square as F[[U1]]-module.

3.2.4 Invariance of the perturbed surgery complex.

Now we establish the invariance of the perturbed surgery complex for two-bridge links under

the change of edge maps and some diagonal maps up to chain homotopies.

Proposition 3.2.9. Let R be a F-algebra. Suppose f, g : A → B be two chain maps between

two chain complexes of R-modules. If f, g are homotopic to each other by f
H→ g, then the

mapping cones cone(f), cone(g) are isomorphic.

Proof. We directly construct the isomorphism between the mapping cones cone(f) and

cone(g). Define K1 : cone(f) → cone(g), K2 : cone(g) → cone(f) by

K1|A = idA ⊕ H, K1|B = idB,

K2|A = idA ⊕ H, K2|B = idB.

In fact, K1 is a chain map, since ∀a ∈ A, b ∈ B,

K1∂f (a) + ∂gK1(a) = K1(∂A(a) + f(a)) + ∂g(a + H(a))

= ∂(a) + H∂A(a) + f(a) + ∂A(a) + g(a) + ∂BH(a) = 0,

K1∂f (b) + ∂gK1(b) = K1∂B(b) + ∂g(b) = ∂B(b) + ∂B(b) = 0.

Moreover, K2K1 is idcone(f), since

K2K1(a) = K2(a + H(a)) = a + H(a) + H(a) = a,

K2K1(b) = K2(b) = b, ∀a ∈ A, b ∈ B.
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A

f
��

idA ��

H


A
idA ��

g
��

H


A

f
��

B
idB

�� B
idB

�� B

There is a hyperbox version of Proposition 3.2.9.

Definition 3.2.10. A hyperbox of chain complexes R is said to be isomorphic to another

hyperbox R′, if there are chain maps of hyperboxes F : R → R′, G : R′ → R, such that

F ◦ G = idR′ , G ◦ F = idR.

Proposition 3.2.11. Let R = ((Cε)ε∈E((d,1)), (Dε)ε∈E(n+1)) be a hyperbox of chain complexes

of size (d, 1) ∈ Zn+1
≥0 . If all the edge maps D(0,1) = id, where 0 = (0, ..., 0) ∈ Zn, then R

induces an isomorphism from the subhyperbox Rεn+1=0 to the subhyperbox Rεn+1=1.

Proof. We first show the case of hypercubes by induction, i.e., d = (1, ..., 1) ∈ Zn.

When n = 1, this is exactly Proposition 5.8. When n > 1, let us make some notations at

first. There is a (n − 1)-dimensional subhypercube corresponding to εn = εn+1 = 0, denoted

by R00, and there is also a (n−1)-dimensional subhypercube corresponding to εn = 0, εn+1 =

1, denoted by R01. Similarly, the subhypercube corresponding to εn = 1, εn+1 = 0 is denoted

by R10, and the hypercube corresponding to εn = εn+1 = 1 is denoted by R11. Then we can

view the hypercube R as the following square of hypercubes.

R00 f ��

h1
��

H

��

R10

h2
��

R01
f ′

�� R11

Notice that f, f ′, h1, h2 are chain maps of hypercubes, and H is a chain homotopy of hyper-

cubes between the chain maps. In other words, we have

h1 ◦ D|R00 = D|R10 ◦ h1, h2 ◦ D|R01 = D|R11 ◦ h2, H ◦ D|R00 + D|R11 ◦ H = h2 ◦ f + f ′ ◦ h1.
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By induction, the (n − 1)-dimensional subhypercube corresponding to εn = 0 induces

the isomorphism h1. Thus, we have a chain map of hypercubes h−1
1 : R01 → R00, such that

h1h
−1
1 = idR01 and h−1

1 h1 = idR00 . Similarly, we have h−1
2 : R11 → R10 as the inverse of h2.

The hypercube R induces a chain map h1 + H + h2 from the subhypercube Rεn+1=0 to the

subhypercube Rεn+1=1. We show that the chain map of hyperboxes h1 + H + h2 : Cεn+1=0 →
Cεn+1=1 is an isomorphism, by directly constructing the inverse h−1

1 + h−1
2 ◦ H ◦ h−1

1 + h−1
2 :

Rεn+1=1 → Rεn+1=0, which is induced by the following hypercube:

K = R01 f ′
��

h−1
2 ◦H◦h−1

1
��

h−1
1 ��

R11

h−1
2��

R00
f

�� R10.

Here, the map h−1
2 ◦ H ◦ h−1

1 is the composition of maps h−1
2 , H, h−1

1 .

The following two rectangles of hypercubes show that h−1
1 +h−1

2 Hh−1
1 +h−1

2 is the inverse

of h1 + H + h2.

C00 f ��

h1
��

H

��

C10

h2
��

C01 f ′
��

h−1
2 Hh−1

1
��

h−1
1 ��

C11

h−1
2��

C00
f

�� C10

C01 f ′
��

h−1
2 Hh−1

1
��

h−1
1 ��

C11

h−1
2��

C00 f ��

h1
��

H

��

C10

h2
��

C01 f ′
�� C11

Next, to prove the general case for hyperboxes, we do induction on the size of H, while

fixing n. We claim that for any k with 1 ≤ k ≤ n − 1, if the proposition is true for all

hyperboxes R of size (d, 1) where d = (d1, ..., dk, 0, 0, ..., 0) ∈ Zn
≥0, then the proposition is

also true for all hyperboxes S of size (d′, 1) where d′ = (d′
1, ..., d′

k+1, 0, ..., 0) ∈ Zn
≥0.

Let Si,j = Sεk+1=i,εn+1=j with i ∈ {0, 1, ..., d′
k+1}, j = {0, 1} be the subhyperbox corre-

sponding to those complexes with εk+1 = i, εn+1 = j. Thereby, the subhyperbox Si,j is of
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size d′
k = (d′

1, ..., d′
k, 0, ..., 0) ∈ Zn+1

≥0 . So we can regard Si,j as a k-dimensional hyperbox

of size d̄′
k = (d′

1, ..., d′
k). For all ε ∈ E(d̄′

k), we denote the chain complex of S sitting at

(ε, i, 0, 0, ..., 0, j) by (Si,j)ε.

We can decompose the hyperbox S as a rectangle of hyperboxes as the following diagram:

S0,0 f1 ��

h0
��

H1

��

S1,0 f2 ��

h1
��

H2

��

S2,0 f3 ��

h2
��

H3



· · ·
fd′

k+1��
Hd′

k+1

��

Sd′
k+1,0

hd′
k+1��

S0,1
f ′

1

�� S1,1
f ′

2

�� S2,1
f ′

3

�� · · ·
f ′

d′
k+1

�� Sd′
k+1,1,

where f1, ..., fd′
k+1

, f ′
1, ..., f ′

d′
k+1

, h0, ..., hd′
k+1

are chain maps of hyperboxes and H1, ..., Hd′
k+1

are chain homotopies of hyperboxes.

By the induction hypothesis, the subhyperbox Sεk+1=j, j ∈ {0, 1, ..., d′
k+1} is of size

(d′
1, ..., d′

k, 0, ..., 0, 1), and thereby induces the isomorphism of hyperboxes hj : Sj,0 → Sj,1.

Let the inverse of hj be h−1
j : Sj,1 → Sj,0. We define a set of homotopies of hyperboxes

h−1
j ◦ Hj ◦ h−1

j−1 : Sj−1,1 → Sj,0, for any j ∈ {1, 2, ..., d′
k+1} by the following equations, for all

ε0 ∈ E(d̄′
k), ε ∈ E(k) such that ε0 + ε ∈ E(d̄′

k),

(h−1
j ◦ Hj ◦ h−1

j−1)ε
ε0 =

∑
{ε′,ε′′∈E(k)|ε′≤ε′′≤ε}

(h−1
j )ε−ε′′

ε0+ε′′ ◦ (Hj)ε′′−ε′
ε0+ε′ ◦ (h−1

j−1)ε′
ε0 .

We simply denote h−1
j ◦Hj ◦h−1

j−1 by h−1
j Hjh

−1
j−1. From the definition of h−1

j Hjh
−1
j−1, we can

show the associativity of compositions of maps of hyperboxes. Thus, HjD|Sj−1,0 +D|Sj,1Hj =

hjfj + f ′
jhj−1 and hjD|Sj,0 = D|Sj,1hj implies that

h−1
j ◦ Hj ◦ h−1

j−1 ◦ D|Sj−1,1 + D|Sj,0 ◦ h−1
j ◦ Hj ◦ h−1

j−1 = fj ◦ h−1
j−1 + h−1

j ◦ f ′
j.
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Therefore, we can construct the following the hypercube T

S0,1 f ′
1 ��

h−1
0
��

h−1
1 H1h−1

0
��

S1,1 f ′
2 ��

h−1
1
��

h−1
2 H2h−1

1
��

S2,1 f ′
3 ��

h−1
2
��

h−1
3 H3h−1

2
��

· · ·
f ′

d′
k+1 ��

h−1
d′

k+1
Hd′

k+1
h−1

d′
k+1−1
��

Sd′
k+1,1

h−1
d′

k+1��

S0,0
f1

�� S1,0
f2

�� S2,0
f3

�� · · ·
fd′

k+1

�� Sd′
k+1,0,

which induces a chain map from the subhyperbox Sεn+1=1 to the subhyperbox Sεn+1=0. Direct

computations show that the chain maps induced by S and T are the inverses of each other.

Corollary 3.2.12. On a rectangle of chain complexes R = (Cε, Dε), if we change the diag-

onal maps D(1,1)
ε by a higher homotopy, i.e. D′(1,1)

ε = D(1,1)
ε + H(1,1)

ε Dε
ε + D

ε+(1,1)
ε+(1,1)H

(1,1)
ε with

H(1,1)
ε : Cε

∗ → C
ε+(1,1)
∗+2 , then the new rectangle R′ = (Cε, D′ε) is isomorphic to R.

Theorem 3.2.13. Suppose L is an oriented two-bridge link with the framing Λ. For any

F[[U1]]-linear quasi-isomorphisms D̃−Li
s1,s2 and F[[U1]]-linear homotopies F̃ −L1∪±L2

s1,s2 , F̃ ±L1∪−L2
s1,s2 ,

D̃−L1∪−L2−∞,−∞ , the perturbed surgery complex (C̃−(HL, Λ), D̃−) is isomorphic to the original

surgery complex in [24] as F[[U1]]-module. By imposing the U2-action to be the same as U1-

action, the F[[U1, U2]]-module H∗(C̃−(HL, Λ), D̃−) is isomorphic to the homology HF −(S3
Λ(L)).

Furthermore, this isomorphism preserves the absolute grading.

Proof. First, we restrict our scalars to F[[U1]]. By Proposition 3.2.11, the following cubes

69



show that the top square in each cube is isomorphic to the bottom one.

C

id

��

f2 �� D

id

��

A

id

��

f3 ��

f1+K∂A+∂CK

��

H+f2K

��

K

��

B

id

��

f4

��

C f2 �� D

A f3 ��

f1

��

H

��

B

f4

��

C

id

��

f2 �� D

id

��

A

id

��

f3 ��

f1

��

H+Kf3

��

B

id

��

f4+K∂B+∂DK

��

K

��
C f2 �� D

A f3 ��

f1

��

H

��

B

f4

��

This means when an edge map is changed up to a F[[U1]]-linear chain homotopy in a square

R, we are able to change the diagonal maps correspondingly to guarantee the new square is

isomorphic to the original one as an F[[U1]]-module. By inductions on the edges of rectangles

Rs,i,j in Equation (2.2.12), we can show that after changing the edge maps D−Li
s1,s2 by D̃−Li

s1,s2

and changing some diagonal maps accordingly, the result rectangle R′
s,i,j is isomorphic to

Rs,i,j as F[[U1]]-modules. In fact, we only have changed diagonal maps among the positions

of F̃ ±L1∪±L2
s1,s2 , F̃ ±L1∪±L2

s1,s2 , D̃±L1∪±L2±∞,±∞ in (3.2.4), where we can keep applying the rigidity results

in Proposition 5.1.1. Thereby, Corollary 3.2.12 implies the perturbed rectangles in Equation

(3.2.4) are isomorphic to those rectangles R′
s,i,j’s, and thus isomorphic to the original Rs,i,j’s

in Equation (2.2.12) as F[[U1]]-modules. After compressing these rectangles and gluing them

together, the perturbed surgery complex is isomorphic to the original surgery complex as an

F[[U1]]-module.

From Theorem 2.2.17, it follows that the U1, U2 actions in H∗(C−(HL, Λ),D−) are the

same. Thus by imposing the U2-action as the same as the U1-action on the F[[U1]]-module

H∗(C̃−(HL, Λ), D̃−), we get an isomorphism as F[[U1, U2]]-module between H∗(C̃−(HL, Λ), D̃−)

and H∗(C−(HL, Λ),D−). As all the rigidity results respect the gradings, the above isomor-

phism also preserves the grading.

Remark 3.2.14. In the above theorem, the homology of the unknot is F[[U1, U2]]/(U1 − U2)
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as an F[[U1, U2]]-module. There is no analogue of the Proposition 5.1.1 for homotopies over

the ring F[[U1, U2]]. This is why we restrict our scalars to F[[U1]]. This idea is due to Ciprian

Manolescu.

3.2.5 Algorithm for computing HF−(S3
Λ(L)) for two-bridge links.

Let L be a two-bridge link.

First, we use the algorithm in Section 3.1.5 to compute all the A−
s (L)’s.

Second, by solving linear equations, we find F[[U1, U2]]-linear quasi-homomorphisms

D̃−L1−∞,s2 : A−
−∞,s2 → A−

−∞,s2+lk, D̃−L2
s1,−∞ : A−

s1,−∞ → A−
s1+lk,−∞.

Finding chain maps is a problem of solving linear equations modulo 2, which has fast algo-

rithm in the case of sparse matrices. In order to find a quasi-isomorphism without computing

the homology, we adopt an area filtration on the complexes as follows. From the Schubert

diagram HL, one can see that the diagram r−L1(HL) is isotopic to the standard genus-0

diagram of the unknot with one free basepoint and two intersection points x, y of attaching

curves. Let Cu be the chain complex of F[[U1, U2]]-modules generated by x, y, with differen-

tial ∂x = (U1 − U2)y. Thus there is a chain homotopy equivalence by counting holomorphic

triangles from A−
±∞,s2 to Cu, denoted by F : A−

±∞,s2 → Cu.

Consider the Heegaard diagram by removing z1, then an area filtration argument shows

this chain homotopy equivalence F : A−
+∞,s2 → Cu is in the form of

F (b0) = x + lower terms,

F (b−1) = y + lower terms,

where the lower terms are referred to the area filtration. In fact, as long as a chain map
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G : Cu → A−
+∞,s2 is in the form of

G(x) = b0 + lower terms,

G(y) = b−1 + lower terms,

then it is a quasi-isomorphism. This is because F ◦ G : Cu → Cu is in the form of

F ◦ G(x) = x + lower terms,

F ◦ G(y) = y + lower terms,

which is an isomorphism of groups by Lemma 9.10 in [39]. In order to find an area filtration,

we can set every bigon and square to be of the same area 1 on the Schubert Heegaard diagram

so that every periodic domain has area 0. We can also similarly determine F .

Third, we plug in all the maps I
−→
M
s and D̃−Li to (3.2.4). By Corollary 3.2.4, these D̃−Li ’s

are chain homotopic to D−Li ’s as maps of F[[U1, U2]]-modules. Thus, following the same

line in the proof of Theorem 3.2.13, we can find F[[U1, U2]]-linear diagonal maps F̃ ’s and

D̃−L1∪−L2−∞,−∞ to make those rectangles to be hyperboxes of chain complexes. Finding such maps

is also a problem of solving linear equations.

Finally, after compressing all the rectangles and doing Λ-twisted gluing of these squares,

we obtain the perturbed surgery complex (C̃−(HL, Λ), D̃−). Then, we compute the homology

over the polynomial ring F[[U1, U2]] and there are several algorithms of polynomial time. This

F[[U1, U2]]-module might not be isomorphic to HF−(S3
Λ(L)). However, by Theorem 3.2.13,

as an F[[U1]]-module, it is isomorphic to HF−(S3
Λ(L)). So we impose the U2-action on the

homology of (C̃−(HL, Λ), D̃−) to be the same as the U1-action. By Theorem 3.2.13, now it

is isomorphic to HF−(S3
Λ(L)) as an F[[U1, U2]]-module.

We note that the surgery complex is infinitely generated over F[[U1, U2]]. Hence, before

finding the perturbed surgery complex, we need to do truncations for a fixed framing matrix

Λ, as described in [24] Section 8.3. The time complexity of doing truncations is a polynomial
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of det(Λ).

Remark 3.2.15. Indeed, in the second and third steps, we only need F[[U1]]-linear quasi-

isomorphisms D̃−Li ’s and F[[U1]]-linear diagonal maps F̃ ’s and D̃−L1∪−L2 to replace those

F[[U1, U2]]-linear maps. The reason we use F[[U1, U2]]-linear maps is that over F[[U1, U2]] the

module A−
s is finitely generated and thus easier to use in computer programs.

Example 3.2.16. Consider (0, 0) surgery on the unlink L = L1 ∪ L2 and look at the (0, 0)

Spinc structure s0. The general Floer complexes of the unlink A−
s (L)’s are all Cu, where

Cu is defined in Remark 3.2.3. Since the Alexander gradings A(x) = A(y) = (0, 0), the

inclusion maps I±Li
s0 are all the identities for i = 1, 2. It follows that Φ+Li

s0 and Φ−Li
s0 are chain

homotopic by Proposition 3.2.2. Hence, we can get the perturbed surgery complex for the

Spinc structure s0 as follows

Cu 0 ��

0
��

F
��

Cu

0
��

Cu
0

�� Cu,

where F is an F[[U1, U2]]-linear map shifting the gradings by 1 satisfying ∂F = F∂. Thus,

F can either be 0 or the following map f : Cu → Cu, where f(x) = y, f(y) = 0.

Case I For F = 0, the homology of the perturbed complex is
(
F[[U1, U2]]/(U1 − U2)

)⊕4
.

Case II For F = f , the homology is
(
F[[U1, U2]]/(U1 − U2)

)⊕2 ⊕
(
F[[U1, U2]]/(U1 − U2)2

)
.

However, as F[[U1]]-modules, both homology groups are isomorphic to F[[U1]]⊕4. Thus, by im-

posing the U2-action to be the same as U1, we obtain the correct homology is
(
F[[U1, U2]]/(U1−

U2)
)⊕4

.

3.2.6 Further discussions of the perturbed surgery complex.

Besides replacing the maps in a hypercube of chain complexes up to homotopy, we can

also replace the chain complexes sitting at the vertices in the hypercube up to chain homo-

topy equivalences. Sometimes this procedure allows us to simplify the computations of the
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homology of a hypercube.

Lemma 3.2.17. Let A, Ã, B, B̃ be chain complexes. Suppose hA : A → Ã, hÃ : Ã → A

are the chain homotopy equivalences, with hAhÃ

KÃ� idÃ, hÃhA
KA� idA. Similarly, we have

the chain homotopy equivalences hB, hB̃ and the chain homotopies KB, KB̃ with hBhB̃

KB̃�
idB̃, hB̃hB

KB� idB. Let f : A → B be any chain map. Then, the mapping cones cone(f) and

cone(hBfhÃ) are chain homotopy equivalent via the chain maps H1 : cone(f) → cone(hBfhÃ), H2 :

cone(hBfhÃ) → cone(f) induced by the following squares of chain complexes

H1 := A

hA
��

f ��

hBfKA

��

B

hB
��

Ã
hBfhÃ

�� B̃;

H2 := Ã
hBfhÃ��

KBfhÃ


hÃ

��

B̃

hB̃
��

A
f

�� B.

Proof. We directly compute the compositions H1 ◦ H2 and H2 ◦ H1 to check that they are

both chain homotopic to the identities. The composition H2 ◦ H1 is the compression of the

juxtaposition of the two squares, which is the square

H2 ◦ H1 = A
f ��

hÃhA

��
F̃

��

B

hB̃hB

��
A

f
�� B

where F̃ = KBfhÃhA + hB̃hBfKA. The following cube shows that H2 ◦ H1 is homotopic to

idcone(f)

A

idA

��

f ��

F̃

��

hÃhA

��

KA

��

KBfKA

��

B

idB

��

hB̃hB

��

KB

��

A

idA

��

f �� B

idB

��

A

idA

��

f �� B

idB

��
A f �� B
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where F̃ = KBfhÃhA + hB̃hBfKA. Direct computation verifies that the above cube is a

hypercube chain complex. We only check the longest diagonal here:

KBf + fKA + KBfhÃhA + hB̃hBfKA = KBf(∂AKA + KA∂A) + (∂BKB + KB∂B)fKA)

= KBfKA∂A + ∂BKBfKA.

Similarly, H1 ◦ H2 is chain homotopic to idcone(hBfhÃ).

Now we generalize this lemma to a hypercube version. The proof is similar, so we omit

it.

Proposition 3.2.18. Suppose A and Ã are two chain homotopy equivalent n-dimensional

hypercubes, and so do B and B̃. Then the (n + 1)-dimensional hypercube cone(A f−→ B) is

chain homotopy equivalent to cone(Ã hBfhÃ−−−−→ B̃), where hB : B → B̃, hÃ : Ã → A are chain

homotopy equivalences.

Iterating these conjugation constructions, we have the following proposition.

Proposition 3.2.19. Let H = (Cε, Dε) be a n-dimensional hypercube of chain complexes.

Suppose we have that C̃ε is chain homotopy equivalent to Cε for all ε ∈ En. Then there

exists a hypercube H̃ = (C̃ε, D̃ε) which is chain homotopy equivalent to H.

For the purpose of this paper, we give an example of the 2-dimensional case.

Example 3.2.20. Let H be the following square of chain complexes

H = C1
f1 ��

g1
��

F
��

C2

f2
��

C3 g2
�� C4.

Then suppose we have a set of chain homotopy equivalences hi : Ci → C̃i, h̃i : C̃i → Ci,

where hi ◦ h̃i is homotopic to idC̃i
via K̃i and h̃i ◦ hi is homotopic to idCi

via Ki. Then

compressing the following rectangle, we obtain the desired square H̃.
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C̃1
h̃1 ��

h3g1h̃1
��

K3g1h̃1
��

C1
f1 ��

g1

��
F

��

C2

f2
��

h2 ��

h4f2K2


C̃2

h4f2h̃2
��

C̃3
h̃3

�� C3 g2
�� C4 h4

�� C̃4.

Thus,

H̃ = C̃1
h2f1h̃1 ��

h3g1h̃1
��

F̃


C̃2

h4f2h̃2
��

C̃3
h4g2h̃3

�� C̃4.

where F̃ = h4g2K3g1h̃1 + h4Fh̃1 + h4f2K2f1h̃1.

If we know the chain homotopy types of all the A−
s ’s, we can also replace the chain

complexes in the perturbed surgery complex by the conjugation construction. We will still

call it the perturbed surgery complex. This is used in simplifying the computations in the

next section.

3.3 Examples

3.3.1 The complexes ĈFL(L) for two-bridge links L.

We recall from [42] that for a link L, the filtered chain complex ĈFL(L) is a chain complex of

S3 with a filtration induced from L. More precisely, fixing a Heegaard diagram HL of L ⊂ S3,

we obtain a chain complex of F-modules ĈF (HL), generated by the intersection points of

Tα and Tβ in the symmetric product. There is an Alexander filtration on ĈF (HL). It is

shown that given different Heegaard diagrams of L, HL
1 and HL

2 , there is a chain homotopy

equivalence from ĈF (HL
1 ) to ĈF (HL

2 ), which preserves the Alexander filtration. Thus, the

filtered chain homotopy equivalence class of these chain complexes is called the filtered chain

homotopy type of ĈFL(L). By abuse of notation, we also let ĈFL(L) be some filtered

complex in this equivalence class. Similarly, we define the filtered chain homotopy type of

CFL−(L), by looking at the Alexander filtered chain complex CF −(HL).
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•

•e

•

•

B(d)[i, j]

•

• •

•

e

H2
(d)[i, j]

• •

• •e

V 2
(d)[i, j]

• •

• •

•e

X2
(d)[i, j]

•

• •

• •e

Y 2
(d)[i, j]

Figure 3.3.1: Examples of the Z2-filtered chain complexes B, H, V, X, Y . The labelled
dots e in B(d)[i, j], H l

(d)[i, j], V l
(d)[i, j], X l

(d)[i, j], Y l
(d)[i, j] are of grading d and with the filtra-

tions (i, j), (i, j), (i, j), (i + l, j), (i + l, j) respectively.

We represent Z2-filtered complexes graphically by dots and arrows on the x-y coordinate

plane, with the dots representing generators, the arrows representing differentials, and the

coordinates representing filtrations.

Theorem 3.3.1 (Theorem 12.1 in [42]). Suppose −→
L = −→

L1∪−→
L2 is an oriented two-component

alternating link. Then the filtered chain homotopy type of ĈFL(L) is determined by the

following data:

(1)the multi-variable Alexander polynomial of L, ΔL;

(2)the signature of L, σ(L), and the linking number of L, lk(L);

(3)the filtered chain homotopy type of ĈFK(L1) and ĈFK(L2).

In fact, for alternating two-component links, ĈFL(L) is filtered chain homotopy equiva-

lent to a simplified filtered chain complex ĈFLOS(L). The simplified complex is a direct sum

of five different types of Z ⊕ Z-filtered chain complexes B(d)[i, j],H l
(d)[i, j],V l

(d)[i, j],X l
(d)[i, j]

and Y l
(d)[i, j]. These basic filtered complexes are described in Section 12.1 of [42]; the filtered

complex B(d)[i, j] looks like a box and the others look like zigzags. See Figure 3.3.1.

Corollary 3.3.2. If L is an oriented two-bridge link, then the filtered homotopy type of

ĈFL(L) is determined by σ(L), lk(L) and the multi-variable Alexander polynomial ΔL(x, y).

More concretely, let

l = lk(−→L ) + σ(−→L ) − 1
2 ,
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(1) if l ≥ 0, let a = 1−σ−lk
2 , b = −1−σ−lk

2 , then we have that ĈFL(L) is filtered chain

homotopic to

Y l
(0)[a, a] ⊕ Y l+1

(−1)[b, b] ⊕⊕
k

B(dk)[ik, jk],

where those dk, ik, jk’s are determined by the Alexander polynomial ΔL;

(2) if l < 0, then we have that the ĈFL(L) is filtered chain homotopic to

X
|l|
(0)[

lk
2 ,

lk
2 ] ⊕ X

|l|−1
(−1) [ lk2 ,

lk
2 ] ⊕⊕

k

B(dk)[ik, jk],

where those dk, ik, jk’s are determined by the Alexander polynomial ΔL.

Example 3.3.3. Let Wh denote the Whitehead link. Since lk(Wh) = 0, σ(Wh) = −1, we

get l = −1. Notice that lk = 0 implies that the signature doesn’t depend on the orientations

of the link. Thus the filtered chain homotopy type of ĈFL(Wh) is

X1
(0)[0, 0] ⊕ X0

(−1)[0, 0] ⊕⊕
k

B(dk)[ik, jk],

where those dk, ik, jk are determined by the Alexander polynomial. If we consider the mirror

of Wh, we have σ(Wh) = 1. Similarly, the filtered chain homotopy type of ĈFL(Wh) is

Y 0
(0)[0, 0] ⊕ Y 1

(−1)[−1,−1] ⊕⊕
k

B(d′
k

)[i′
k, j′

k].

In the following diagram, ĈFL(Wh) and ĈFL(Wh) are illustrated, where each dot represents

a generator and each arrow represents a differential.

σ(Wh) = 1 : •
��

• •
����

�� •��

��••
��

• •• •��

��

••��
��

��• • •�� •,��

σ(Wh) = −1 : •
��

• •
��

�� •��

��••
��

• •• •��

��

��

��

••��

��• • •�� •.��

(3.3.1)

We find that it is easier to work with Wh with σ = −1, since all the A−
s (Wh) have homology
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right-handed half twists

Figure 3.3.2: The two-bridge links b(4n + 4, 2n + 3). If n = 2k − 1, then the linking
number is 0; if n = 2k, then the linking number is 2.

F[[U1, U2]]/(U1 − U2), so that we can apply the rigidity results. (One can compare this to

the case of the right-handed trefoil knot versus the left-handed trefoil knot.)

Remark 3.3.4. The way of decomposing the complex ĈFL(−→L ) into direct sums of B, H, V, X, Y

is not canonical. We can do some base-changes to change the above direct sum decomposition

of ĈFL such that the patterns of the arrows don’t change.

3.3.2 The filtered homotopy type of CFL−(L) for some two-bridge links.

Given a two-bridge link L, we can use the Schubert Heegaard diagram to combinatorially

find the filtered complex CFL−(L). However, this description is too cumbersome. Instead,

here we use algebraic arguments to determine the filtered homotopy type of CFL−(L) in

some special examples.

Consider the Schubert Heegaard diagram H for L and the Z2-filtered chain complex

ĈF (H). Then there is a filtered chain homotopy equivalence F : ĈF (H) → ĈFLOS(L).

Thus, F induces an isomorphism on the homology of their associated graded, i.e. the link

Floer homology. In fact, the homology of their associated graded are just the chain groups

themselves, because ĈF (H) and ĈFLOS(L) are both thin (with no differentials in their

associated graded). So F is an isomorphism. In other words, we can change the basis of
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Figure 3.3.3: The filtered complex CFL−(Wh) and (N, ∂−). The horizontal red arrows
and vertical red arrows have U1 and U2 coefficients respectively.

ĈF (H) preserving the filtration, such that the arrows are pruned as in the Ozsváth-Szabó

simplified pattern. We use this new basis to consider CF −(H). Since every bigon in H
contains a basepoint, those ∂U1,U2 arrows in CF −(H) are either upward or rightward of

length 1. This property is repeatedly used later.

In this section, we show that for the two-bridge links b(4n, 2n + 1), the filtered homotopy

type of CFL−(L) is determined by ĈFL(L). Since ĈFL(L) can be decomposed as direct

sums of B, X, Y ’s, our goal is to show that CFL−(L) can be viewed as a square of chain

complexes of these B, X, Y ’s.

Using continuous fractions, we can get the 4-plat presentations of b(4n, 2n + 1), thus

providing the diagram in Figure 3.3.2. In addition, there is a convention issue of signs of the

signature. We adopt the convention compatible with Corollary 3.3.2, so that σ
(
b(8k, 4k +

1)
)

= −1.

Proposition 3.3.5. For the two-bridge link L = b(8k, 4k + 1), the filtered homotopy type of

CFL−(L) is determined by the Alexander polynomial, signature and linking number of L, or

equivalently by ĈFL(L). Precisely, we have CFL−(L) = CFL−(Wh)⊕⊕k−1
i=1 (N, ∂−), where

CFL−(Wh) and (N, ∂−) are described in Figure 3.3.3.
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Figure 3.3.4: ĈFLOS(b(8k, 4k ± 1)). On the left side, the figure illustrates the Alexander
grading of A, B, C, D summands, where k = 2. On the right side, it indicates the filtered
homotopy types of (A(i), ∂̂), (B(i), ∂̂), (C(i), ∂̂), (D(i), ∂̂), which all have the filtered homotopy
types as boxes, except for (D(1), ∂̂).

Proof. By Theorem 3.3.1, the Ozsváth-Szabó simplified complex ĈFLOS(L) can be computed

in terms of ΔL(x, y) = kΔWh(x, y) = k (x−1)(y−1)√
xy

, lk = 0, and σ(L) = −1. Then, we compute

that

ĈFLOS(L) = A ⊕ B ⊕ C ⊕ D =
k⊕

i=1
A(i) ⊕

k⊕
i=1

B(i) ⊕
k⊕

i=1
C(i) ⊕

k⊕
i=1

D(i).

See Figure 3.3.4 for the filtered homotopy type of A(i), B(i), C(i), D(i), where we denote the

generators in A(i), B(i), C(i), D(i) by a
(i)
j , b

(i)
j , c

(i)
j , d

(i)
j , j = 1, 2, 3, 4, respectively.

Given ĈFLOS(L), let us investigate the possibilities for CFL−(L). The differential ∂− in

CFL−(L) decomposes into

∂− = ∂̂ + ∂U1,U2 = ∂A1 + ∂A2 + ∂U1 + ∂U2 ,

where ∂U1,U2(x) = ∂U1(x) + ∂U2(x) consists of the components in ∂−(x) with coefficients of

U1, U2 powers, and ∂̂(x) = ∂A1(x) + ∂A2(x) is decomposed by the Alexander filtration. As

stated before, here ∂Ui
has the form of ∂Ui

(x) = Uiy for i = 1, 2, i.e. the ∂Ui
-arrows are

all of length 1. A close examination of U1, U2 powers and the Alexander filtrations in the
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coefficients of the following identity provides that

0 = (∂−)2 = (∂̂ + ∂U1,U2)2 = (∂A1 + ∂A2 + ∂U1 + ∂U2)2 =⇒ [∂̂, ∂U1,U2 ] = 0, ∂2
U1,U2 = ∂̂2 = 0 =⇒

[∂A1 , ∂U1 ] = [∂A2 , ∂U1 ] = [∂A2 , ∂U1 ] = [∂A2 , ∂U2 ] = [∂U1 , ∂U2 ] = 0, ∂2
A1 = ∂2

U1 = ∂2
A2 = ∂2

U2 = 0.

where [f, g] = fg + gf .

At this point, we first consider the Whitehead link. The ĈFL(Wh) is shown by the right

term in Equation (3.3.1), and the bullets are labeled as in Figure 3.3.4. By looking at the

vertical arrows only, the equations ∂2
U2 = ∂2

A2 = [∂A2 , ∂U2 ] = 0 give rise to the two possibilities

of the rightmost column as follows, according to whether ∂U2(c(1)
4 ) is 0 or not.

d
(1)
4

d
(1)
3

c
(1)
4

U2

c
(1)
3

U2

d
(1)
4

d
(1)
3

c
(1)
4

c
(1)
3

Consider the Heegaard diagram of L1 obtained from H by deleting w2, i.e. the reduction

r−L2(H). The differentials in ĈF (r−L2(H)) count the bigons without basepoints w1, z1, z2

on H, which are the same as bigons with basepoint w2. Thus, the complex ĈF (r−L2(H))

can be obtained by ignoring the arrows ∂A2 and setting U2 = 1. So the vertical homology

of CFL−(L) using only the ∂U2 arrows is the knot Floer homology of the unknot L1, F⊕ F,

supported in the filtration A1 = τ(L1) + lk(L)
2 = 0. Thus, the right-hand side in the above

diagram is ruled out. A similar argument applies to the leftmost column. In sum,

∂U2(b(1)
1 ) = U2a

(1)
1 , ∂U2(b(1)

2 ) = U2a
(1)
2 , ∂U2(c(1)

4 ) = U2d
(1)
4 , ∂U2(c(1)

3 ) = U2d
(1)
3 .

Together with ∂A1∂U2 = ∂U2∂A1 , we get

∂A1∂U2(b(1)
4 ) = ∂U2∂A1(b(1)

4 ) = ∂U2b
(1)
1 = U2a

(1)
1 =⇒ ∂U2(b(1)

4 ) = U2a
(1)
4 or U2(a(1)

4 + d
(1)
1 ).
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Thus, ∂A2∂U2 = ∂U2∂A2 implies that ∂U2(b(1)
3 ) = a

(1)
3 and ∂U2(c(1)

1 ) = d
(1)
1 , ∂U2(c(1)

2 ) = 0.

a
(1)
1

a
(1)
2

b
(1)
1

U2

b
(1)
2

U2

a
(1)
4

a
(1)
3

b
(1)
4

U2

b
(1)
3

U2

d
(1)
1

U2

d
(1)
2

U2

c
(1)
1

U2

c
(1)
2

d
(1)
4

d
(1)
3

c
(1)
4

U2

c
(1)
3

U2

Next, ∂U2∂A2 = ∂A2∂U2 implies that ∂U2(d(1)
2 ) ∈ U2 ·D. To determine ∂U2(d(1)

2 ), we consider

the complex CFL−(L) ⊗F[[U1,U2]] (F[[U1, U2]]/U1) = CFL−(L)/(U1 · CFL−(L)), i.e. setting

U1 = 0. The homology of this complex can be computed from the long exact sequence of ho-

mologies, and it is F[[U2]]/U2 as an F[[U2]]-module. Meanwhile, to compute this homology we

can also use the A1-filtration and kill acyclic subcomplexes and acyclic quotient complexes.

Taking the vertical homology of this complex with respect to ∂A2 leaves only d
(1)
2 and d

(1)
1 .

Thus, from the homology constraint we have computed, it follows that ∂U2(d(1)
2 ) = U2d

(1)
1 .

Thus, we recover all the U2-arrows. See the above figure, where the dashed arrow is unde-

termined. Similarly, we can get all the U1-arrows. By changing basis, ã
(1)
4 = a

(1)
4 + d

(1)
1 and

c̃
(1)
4 = c

(1)
4 + d

(1)
3 , we can get rid of the dashed arrows, which gives the picture of CFL−(Wh)

in Figure 3.3.3.

When k > 1, we follow the same line of argument, together with doing more changes of ba-

sis to prune the arrows. First, consider the rightmost column, i.e. R = SpanF[[U2]]{d
(i)
3 , d

(i)
4 , c

(i)
3 , c

(i)
4 }k

i=1

with the differentials ∂A2 +∂U2 . Assume ∂U2(c(i)
4 ) = U2 ·∑k

m=1 λi,md
(m)
4 . Then ∂U2∂A2 = ∂A2∂U2

implies that ∂U2(c(i)
3 ) = U2 ·∑k

m=1 λi,md
(m)
3 . So the matrix D = (λi,m) represents the differ-

ential ∂U2 in the upside down vertical complex
(
R ⊗F[[U2]] F[[U2]]/(U2 − 1), ∂U2

)
. Since its

homology is 0, the matrix D is invertible. In other words, the ∂U2-arrows form an isomor-

phism from SpanF{c
(i)
3 , c

(i)
4 }k

i=1 to SpanF{d
(i)
3 , d

(i)
4 }k

i=1. Thus, we can find a new basis of C,
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namely {c̃
(i)
1 , c̃

(i)
2 , c̃

(i)
3 , c̃

(i)
4 }k

i=1, such that

∂U2(c̃(i)
3 ) = U2 · d

(i)
3 , ∂U2(c̃(i)

4 ) = U2 · d
(i)
4 ,∀1 ≤ i ≤ k,

while the pattern of the ∂̂ is preserved. In addition, [∂U2 , ∂A1 ] = 0 implies that

∂U2(c̃(i)
1 ) = U2 · d

(i)
1 , ∂U2(c̃(i)

2 ) = U2 · d
(i)
2 ,∀2 ≤ i ≤ k,

∂U2(c̃(1)
1 ) = U2 · d

(1)
1 , ∂U2(c̃(1)

2 ) = 0.

From the fact that the vertical homology of CFL−(L) with respect to the differential ∂A2+∂U2

is F[[U2]]/U2, it follows that ∂U2(d2) = U2 · d1.

We may as well keep using the notations c
(i)
j for the new basis. Applying similar arguments

for the leftmost column with respect to vertical arrows, we can change the basis of A without

changing the pattern of ∂̂, such that

∂U2(b(i)
j ) = U2a

(i)
j ,∀j = 1, 2,∀i = 1, ..., k.

Then ∂A1∂U2 = ∂U2∂A1 implies

∂U2(b(i)
4 ) = U2a

(i)
4 +

k∑
m=1

εi,mU2d
(m)
1 ,∀i = 1, ..., k, εi,m ∈ F.

Thus, ∂U2(b(i)
3 ) = U2a

(i)
3 +∑k

m=2 εi,mU2d
(m)
2 ,∀i = 1, ..., k. Do base-changes:

ã
(i)
4 = a

(i)
4 +

k∑
m=1

εi,md
(m)
1 , ã

(i)
3 = a

(i)
3 +

k∑
m=2

εi,md
(m)
2 .

We can preserve the pattern of ∂̂, such that under the new basis (where we keep using the no-

tations a
(i)
j ) all the vertical arrows are pruned as ∂U2(b(i)

j ) = U2a
(i)
j ,∀j = 1, 2, 3, 4,∀i = 1, ..., k.

Similarly, by changing the bases of A and B simultaneously, we can prune the horizontal ar-

rows in the top row, while preserving the pattern of ∂̂, ∂U2 on A and B, such that ∂U1(b(i)
j ) =
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U1c
(i)
j ,∀j = 1, 4,∀i = 1, ..., k. Then ∂A2∂U1 = ∂U1∂A2 implies that ∂U1(b(i)

2 ), ∂U1(b(i)
3 ) are de-

termined.

Similarly, all the horizontal arrows from B can be pruned by changing the basis of C.

Suppose

∂U1(b(i)
4 ) = U1(

k∑
m=1

λi,mc
(m)
4 +

k∑
m=1

μi,md
(m)
3 ).

Then ∂U1∂U2(b(i)
4 ) = ∂U2∂U1(b(i)

4 ) implies that U1U2(
∑k

m=1 λi,md
(m)
4 ) = U1U2d

(i)
4 . Thus, λi,i =

1, λi,m = 0,∀i = 1, ..., k,∀m �= i. Thus, ∂U1(b(i)
4 ) = U1(c(i)

4 +∑k
m=1 μi,md

(m)
3 ). Do base-changes

c̃
(i)
4 = c

(i)
4 +

k∑
m=1

μi,md
(m)
3 , c̃

(i)
1 = c

(i)
1 +

k∑
m=2

μi,md
(m)
2 ,∀i = 1, ..., k.

Under the new basis (where we keep using the notations c
(i)
j ), the patterns of all the ∂̂ and

∂U2 arrows are preserved, while ∂U1(b(i)
4 ) = c

(i)
4 . Moreover, [∂A1 , ∂U1 ] = [∂A2 , ∂U1 ] = 0 implies

that ∂U1b
(i)
j = U1c

(i)
j ,∀j = 1, 2, 3, 4,∀i = 1, ..., k. Finally, all the arrows are as in Figure 3.3.3.

Thus, CFL−(L) can be viewed as a square of chain complexes of A, B, C, D.

Similar arguments apply to the case of L = b(8k + 4, 4k + 3).

Proposition 3.3.6. For the two-bridge link L = b(8k+4, 4k+3), the filtered homotopy type of

CFL−(L) is determined by the filtered homotopy type of ĈFL(L) (and hence by the Alexander

polynomial, signature and linking number). Furthermore, CFL−(L) = CFL−(T (2, 4)) ⊕⊕k−1
i=1 (N, ∂−), where (N, ∂−) is as in Figure 3.3.3 and CFL−(T (2, 4)) is as follows.

•

•

U2

•

•
U1

•

U2

•U1

U2

•

•
U1
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3.3.3 Computations of surgeries on b(8k, 4k + 1).

In this section, we compute the homology of surgeries on the two-bridge link b(8k, 4k + 1)

and their d-invariants explicitly. Here, we make a convention of the d-invariants of HF−

different from [41]. We require that d(HF−(S3)) = 0. Thus, the d-invariants computed here

are the same as the d-invariants for HF +.

We will first compute for the Whitehead link, following three steps: computations of

A−
s (Wh), computations of the inclusion maps I

−→
M
s , and the computations of the homology of

the surgeries on Wh.

Lemma 3.3.7. H∗(A−
s (Wh)) = F[[U1, U2]]/(U1 − U2) = F[[U ]] for all s ∈ H(Wh) = Z2.

Proof. By Proposition 3.3.5, we can decompose A−
+∞,+∞(Wh) into a square of chain com-

plexes, i.e.

A �� D

B

��

�� C,

��

where the summands A, B, C, D are described in Proposition 3.3.5. Since A−
+∞,+∞ can be

viewed as a mapping cone from A ⊕ B ⊕ C to D, we get a short exact sequence of chain

complexes

0 → D
i→ A−

+∞,+∞ → A ⊕ B ⊕ C → 0.

From the fact that H∗(A ⊕ B ⊕ C) = 0, it follows that i is a quasi-isomorphism. Hence

H∗(A−
+∞,+∞) = F[[U ]] and [d1] = [d3] = 1 ∈ H∗(A−

+∞,+∞).

All the other complexes A−
s1,s2(Wh) can be actually obtained by taking various reflections

on A−
+∞,+∞(Wh). Note that Equation (4.1.4) implies that the differentials in A−

s are only

changed by U1, U2 powers from A−
+∞,+∞. In order to read off the correct powers of U1, U2-

coefficients, we can change the Z2-filtration of A−
s , such that the upward and rightward arrows

in A−
s are with U1 and U2 coefficients respectively. For instance, when s1 > 0, s2 = 0, we can

flip the summands A and D about the A1-axis to obtain the complex A−
s1,0. For convenience,

we denote the vertical reflections of A, B, C, D by A, B, C, D. Thus, the complex A−
s1,0 is
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still a square of chain complexes as follows:

A �� D

B

��

�� C.

��

Thus, the fact that A, B, C are acyclic implies that H∗(A−
s1,0) = H∗(D) = F[[U ]]. Similarly,

we denote the horizontal reflections of A, B, C, D by |A, |B, |C, |D respectively. Thus, the

complex A−
0,s1 with s1 > 0 is the following square of chain complexes

A �� |D

B

��

�� |C.

��

Following the same line, we list all the filtered homotopy types of A−
s ’s together with

some generators of their homologies in Table 3.3.1. Since max A1 = max A2 = 1, min A1 =

min A2 = −1, the notation +∞ means a positive integer s, while −∞ means a negative

integer s.

A−
−∞,+∞ =
|A �� |D

|B
��

�� |C,

��

[d1] = 1 ∈ H∗(A−
−∞,+∞);

A−
0,+∞ =

A �� |D

B

��

�� |C,

��

[d1] = 1 ∈ H∗(A−
0,+∞);

A−
+∞,+∞ =
A �� D

B

��

�� C,

��

[d1] = [d3] = 1 ∈ H∗(A−
+∞,+∞);

A−
−∞,0 =

|A �� |D

|B
��

�� |C,

��

[a2] = 1 ∈ H∗(A−
−∞,0);

A−
0,0 =

A �� |D

B

��

�� |C,

��

[d1] = [d3] = 1 ∈ H∗(A−
0,0);

A−
+∞,0 =

A �� D

B

��

�� C,

��

[d3] = 1 ∈ H∗(A−
+∞,0);

A−
−∞,−∞ =
|A �� |D

|B
��

�� |C,

��

[a2] = [c2] = 1 ∈ H∗(A−
−∞,−∞);

A−
0,−∞ =

A �� |D

B

��

�� |C,

��

[c2] = 1 ∈ H∗(A−
0,−∞);

A−
+∞,−∞ =
A �� D

B

��

�� C,

��

[d3] = [c2] = 1 ∈ H∗(A−
+∞,−∞).

Table 3.3.1: A−
s (Wh) and generators of their homology.

87



Note that A, A, |A, B, B, |B, C, C, |C are all acyclic, and D, D, |D, |D all have the same

homology F[[U ]]. We can use the same argument for A−
+∞,+∞ to show that A−

−∞,+∞, A−
0,+∞,

A−
+∞,+∞, A−

0,0, A−
+∞,0, and A−

+∞,−∞ all have the same homology F[[U ]]. For those other A−
s ,

we can use the conjugation symmetry, that is, H∗(A−
s (L)) = H∗(A−

−s(L)),∀s ∈ H(L),∀L.

This is because A−
s ’s are quasi-isomorphic to the Floer complexes of large surgeries on L.

Now we explain the generators of their homologies in Table 3.3.1. The chain complex

A−
0,−∞ can be viewed as a mapping cone of a chain map from cone(B → A) to cone(|C → |D).

Because cone(B → A) is acyclic, the generator of H∗
(
cone(|C → |D)

)
is also a generator of

H∗(A−
0,−∞). Since H∗(|C) = F[[U ]]/U, H∗(|D) = F[[U ]], we derive a short exact sequence

0 → F[[U ]] → F[[U ]] → F[[U ]]/U → 0

from the long exact sequence of the homologies · · · → H∗(|D) → H∗
(
cone(|C → |D)

)
→

H∗(|C) → · · · . Because [c2] = 1 ∈ H∗(|C) = F[[U ]]/U and [c2] ∈ cone(|C → |D) is mapped

to [c2] ∈ H∗(|C), the above short exact sequence implies that [c2] = 1 ∈ H∗
(
cone(|C → |D)

)
,

and thus [c2] = 1 ∈ H∗(A−
0,−∞).

Similar arguments show that [a2] = [c2] = 1 ∈ H∗(A−
−∞,−∞) and [d3] = 1 ∈ H∗(A−

+∞,−∞).

Moreover, in the complex A−
+∞,−∞, the equations ∂−c1 = U2c2 + d1, ∂−d2 = d1 + U1d3 imply

that [c2] = [d3] = 1 ∈ H∗(A−
+∞,−∞).

Taking the grading into account, we adopt the formula of the Z/d(u)Z-grading defined

on the surgery complex for a Spinc structures u ∈ H(L)/H(L, Λ) in [24] Section 7.4,

μ(s, x) = μM
s (x) + ν(s) − ‖M‖, x ∈ A−(HL−−→

M , ψ
−→
M(s)), (3.3.2)

where s ∈ u and μM
s = μ

ψ
−→
M (s) is a natural Z-grading defined on A−

(
L − −→

M, ψ
−→
M(s)
)
. In the

torsion case, the quadratic function ν can be chosen as 0. The natural Z-grading μ∅
s = μs1,s2
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on each A−
s1,s2 is given by

μs1,s2(x) = M(x) − 2
2∑

i=1
max{Ai(x) − si, 0},

where M(x) is the Maslov grading. When we use the Schubert Heegaard diagram, A1(x) +

A2(x) − M(x) is constant. Thus, up to a shift of a constant number, we can take M(x) =

A1(x) + A2(x) for ∀x ∈ A−
s1,s2 . In the primitive system we identify A−

(
L −−→

M, ψ
−→
M(s)
)

with

some A−
s′

1,s′
2

(where s′
1, s′

2 can evaluate +∞), so the grading μM
s is actually μs’. We define

some rules of ∞ as follows:

0 · (+∞) = +∞; s + (+∞) = +∞,∀s ∈ R; s + (−∞) = −∞,∀s ∈ R; (±1) · (+∞) = ±∞.

Recall the notations in Example 2.2.14. The complexes C
(ε1,ε2)
(s1,s2) = A−

s1+ε1·∞,s2+ε2·∞, εi ∈
{0, 1} are setting at the position (ε1, ε2) in the square and with the index (s1, s2) in the

product complex C(ε1,ε2) = ∏s1,s2 C
(ε1,ε2)
(s1,s2) .

We define the grading με1,ε2
s1,s2 on the complex C

(ε1,ε2)
(s1,s2) by the formula:

με1,ε2
s1,s2(x) = M(x) − 2

2∑
i=1

max{Ai(x) − si − εi(+∞), 0} − ε1 − ε2.

Here με1,ε2
s1,s2 plays the role as μ in Equation (3.3.2).

Let W be the four-manifold cobordism corresponding to the surgery from S3 to S3
Λ(L).

In [24], it is shown that the cobordism map F −
W,s corresponds to the inclusion ι : A−(H∅) →

A−(H∅, ψ
−→
L (s)) ⊂ C−(H, Λ), −→

L = +L1 ∪ +L2. So we need to shift the grading such that ι

is of the degree deg(F −
W,s) = c1(s)2−2χ(W )−3σ(W )

4 . In our case, the complex A−(H∅, ψ
−→
L (s)) =

C
(1,1)
(s1,s2) = A−

+∞,+∞(Wh) has a generator [d1] = 1 ∈ H∗(A−
+∞,+∞) of Alexander grading

A(d1) = (0, 1). Finally, the grading formula turns out to be

με1,ε2
s1,s2(x) = A1(x)+A2(x)−2

2∑
i=1

max{Ai(x)−si−εi(+∞), 0}−ε1−ε2+
c1(s)2 − 2χ(W ) − 3σ(W )

4 +1,

(3.3.3)
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where c1(s) = [2s]−Λ1−Λ2 = (2s1−p1, 2s2−p2) ∈ Z2/Λ. In the perturbed surgery complex,

since all the perturbed maps have the same degrees as the original, we can compute the

gradings still using Equation (3.3.3).

Now we restrict our scalars to F[[U1]]. By Proposition 5.1.1 and Lemma 3.3.7, up to

F[[U1]]-linear chain homotopy, all the edge maps Φ±Li
s are classified by their actions on

the homologies. The actions of Φ±Li
s on homologies are determined by the corresponding

inclusion maps I±Li
s . We denote the induced maps on homologies by (I±Li

s )∗ : F[[U ]] →
F[[U ]].

Lemma 3.3.8. Regarding the inclusion maps, we have the following results for I±L1
s , where

s = (s1, s2).

• If s1 > 0, then (I+L1
s )∗ = id.

• If s1 = 0, s2 �= 0, then (I+L1
s )∗ = id.

• If s1 = s2 = 0, then (I+L1
s )∗ = U · id.

• If s1 < 0, then (I+L1
s )∗ = U−s1 · id.

• If s1 > 0, then (I−L1
s )∗ = U s1 · id.

• If s1 = 0, s2 �= 0, then (I−L1
s )∗ = id.

• If s1 = s2 = 0, then (I−L1
s )∗ = U · id.

• If s1 < 0, then (I−L1
s )∗ = id.

Proof. In fact, when s1 > 0, by definition I+L1
s1,s2 = id. When s1 = 0, s2 > 0, we have

I+L1
0,s2 (d1) = d1. Therefore by Table 3.3.1, the inclusion map I+L1

0,s2 acts on the homology as

id : F[[U ]] → F[[U ]]. When s1 = 0, s2 < 0, we have I+L1
0,s2 (c2) = c2. Therefore by Table

3.3.1, the inclusion map I+L1
0,s2 acts on homology as the identity. When s1 = s2 = 0, we

have I+L1
0,0 (d3) = U1 · d3. Therefore by Table 3.3.1, I+L1

0,0 acts on homology as U · id. When

s1 < 0, s2 > 0, we have I+L1
s1,s2(d1) = U−s1

1 ·d1. Thus, (I+L1
s )∗ = U−s1 · id. When s1 < 0, s2 ≤ 0,
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we have I+L1
s1,s2(a2) = U−1−s1

1 ·a2. In the complex A−
+∞,s2 , s2 ≤ 0, the equation ∂−a3 = a2+U1d3

implies that [a2] = U1[d3] ∈ H∗(A−
+∞,s2). Thus, [a2] = U ∈ F[[U ]] = H∗(A−

+∞,s2). Therefore,

it follows that (I+L1
s1,s2)∗ = U−s1 · id, when s1 < 0, s2 ≤ 0.

In the same way, we get the following results for I−L1
s , where s = (s1, s2).

Now we can compute the homology of surgeries on S . In each case, we write down the

d-invariants, which are the gradings of the top element in each F[[U ]] summand.

Proposition 3.3.9. Let Wh be the Whitehead link, Λ = diag(p1, p2) and Y be the surgery

manifold S3
Λ(Wh). Then Spinc(Y ) can be identified with Z2/Λ ∼= Z/p1Z⊕ Z/p2Z, so we use

(t1, t2) ∈ Z/p1Z ⊕ Z/p2Z to denote the Spinc structures over Y . Then, the Floer homology

of Y is as follows.

• If p1 = p2 = 0, then HF−(Y, (t1, t2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F[[U ]]⊕4, (t1, t2) = (0, 0);

0, otherwise,
with d = −1,−1, 0, 0.

• If p1 > 0, p2 = 0, then HF−(Y, (t1, t2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F[[U ]]⊕2, (t1, t2) = (t1, 0);

0, otherwise.
Their d-

invariants are d(Y, (0, 0)) = p1
4 − 7

4 , p1
4 − 3

4 , and d(Y, (t1, 0)) = (2s1+p1)2

4p1
+ 1

4 , (2s1+p1)2

4p1
− 3

4 ,

when t1 �= 0, where s1 is an integer in the class t1 ∈ Z/p1Z such that −p1 < s1 ≤ 0.

• If p1 < 0, p2 = 0, then HF−(Y, (t1, t2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F[[U ]]⊕2 ⊕ (F[[U ]]/U), (t1, t2) = (0, 0);

F[[U ]]⊕2, t1 �= 0, t2 = 0;

0, otherwise.

Their d-invariants are d(Y, (t1, 0)) = (2s1−p1)2

4p1
+ 3

4 , (2s1−p1)2

4p1
− 1

4 , where s1 is an integer

in the class t1 ∈ Z/p1Z such that p1 < s1 ≤ 0.

• If p1 > 0, p2 > 0, then HF−(Y, (t1, t2)) = F[[U ]], ∀(t1, t2) ∈ Z/p1Z ⊕ Z/p2Z. Their d-

invariants are d(Y, (0, 0)) = p1+p2−10
4 , and d(Y, (t1, t2)) = (2s1+p1)2

4p1
+ (2s2+p2)2

4p2
− 1

2 , when

(t1, t2) �= (0, 0), where si is an integer in the class ti ∈ Z/piZ such that −pi < si ≤ 0.
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• If p1 > 0, p2 < 0, then HF−(Y, (t1, t2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F[[U ]] ⊕ (F[[U ]]/U), (t1, t2) = (0, 0);

F[[U ]], otherwise.

Their d-invariants are d(Y, (t1, t2)) = (2s1+p1)2

4p1
+ (2s2−p2)2

4p2
, where si is an integer in

the class ti ∈ Z/piZ such that −|pi| < si ≤ 0.

• If p1, p2 < 0, then HF−(Y, (t1, t2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F[[U ]] ⊕ (F[[U ]]/U), (t1, t2) = (0, 0);

F[[U ]], otherwise.
Their d-

invariants are d(Y, (t1, t2)) = (2s1−p1)2

4p1
+ (2s2−p2)2

4p2
+ 1

2 , where si is an integer in the class

ti ∈ Z/piZ such that pi < si ≤ 0.

Proof. First, let’s look at the (0, 0)-surgery on the Whitehead link. The surgery complex

splits into a direct product of squares of chain complexes according to Spinc structures. See

Figure 3.3.5. In the (s1, s2) Spinc structure, the factor of the direct product is the following

square of chain complexes:

A−
s1,s2

Φ+L1
s1,s2 +Φ−L1

s1,s2 ��

Φ+L2
s1,s2 +Φ−L2

s1,s2
��

∑
Φ±L1∪±L2

s1,s2
��

A−
+∞,s2

Φ+L2
+∞,s2

+Φ−L2
+∞,s2

��
A−

s1,+∞
Φ+L1

s1,+∞+Φ−L1
s1,+∞

�� A−
+∞,+∞.

For the torsion Spinc structure (0, 0) ∈ Z2, since Φ+L1
0,0 � Φ−L1

0,0 , Φ+L2
0,0 � Φ−L2

0,0 , Φ+L1
0,+∞ �

Φ−L1
0,∞ , Φ+L2

+∞,0 � Φ−L2
+∞,0, the perturbed surgery complex is as follows:

A−
0,0

0 ��

0 ��

A−
+∞,0

0��
A−

0,+∞
0 �� A−

+∞,+∞.

Therefore, the homology is F[[U ]]⊕4 generated by d1 ∈ C
(0,0)
(0,0) , d3 ∈ C

(1,0)
(0,0) , d1 ∈ C

(0,1)
(0,0) , d1 ∈

C
(1,1)
(0,0) . Since c1

(
(0, 0)

)
= (0, 0), χ(W ) = 2, σ(W ) = 0, from Equation (3.3.3), we also get

their absolute gradings μ0,0
0,0([d1]) = −1, μ1,0

0,0([d3]) = 0, μ0,1
0,0([d1]) = 0, μ1,1

0,0([d3]) = −1.
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Figure 3.3.5: The surgery complex for Λ = (0, 0). Every dot represents a complex Cε
s

which is a certain generalized Floer complex A−
s’ (Wh), and every arrow represents a Φ-map

according to the endpoints of the arrow. We only label the four complexes Cε
s for the Spinc

structure s = (0, 0), and the others are similar.

For the non-torsion Spinc structure (s1, s2) ∈ Z2, s1 > 0, since Φ+L1
s1,s2 + Φ−L1

s1,s2 acts on

homology as id + U s1 · id = (1 + U s1) · id, which is a quasi-isomorphism, it follows that the

homology of this Spinc structure is 0. Indeed, one can consider the horizontal filtration for

this square, whose associated graded is the direct sum of the two acyclic horizontal rows. A

similar argument applies to all the other non-torsion Spinc structures.

Second, let’s look at the (p1, 0)-surgery with p1 �= 0, which gives rise to a manifold with

b1 = 1. Suppose p1 > 0. In order to compute the homology, we need some filtrations to

kill acyclic subcomplexes and quotient complexes. Let F1(C(ε1,ε2)
(s1,s2)) = −s1,F2(C(ε1,ε2)

(s1,s2)) =

s1 − (ε1 − 1)p1. Without loss of generality, see Figure 3.3.6 for the illustration of the surgery

complex and the truncation in the case of Λ = (1, 0).

For any (t1, t2) ∈ Spinc(Y ) = Z/p1Z⊕Z with t2 �= 0, the Floer homology is 0. Indeed, we

can consider the union of all these Spinc structures, which corresponds to the subcomplex

R1 =
∏

s2 �=0
(C(0,0)

(s1,s2) ⊕ C
(1,0)
(s1,s2) ⊕ C

(0,1)
(s1,s2) ⊕ C

(1,1)
(s1,s2)).

Since Φ+L2
s1,s2 + Φ−L2

s1,s2 , s2 �= 0 acts on homology as id + U |s2| · id = (1 + U |s2|) · id, which is a
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quasi-isomorphism, the following square is acyclic:

A−
s1,s2

Φ+L1
s1,s2 ��

Φ+L2
s1,s2 +Φ−L2

s1,s2 ��
Φ+L1∪+L2

s1,s2 +Φ+L1∪−L2
s1,s2

��

A−
+∞,s2

Φ+L2
+∞,s2

+Φ−L2
+∞,s2��

A−
s1,+∞

Φ+L1
s1,+∞

�� A−
+∞,+∞.

The associated graded complex of F1 splits as a direct product of the above squares, so R1

is acyclic.

For the Spinc structure (t1, 0), we first kill the acyclic subcomplex

R2 =
∏

s1>0
C

(ε1,ε2)
(s1,0) .

Since the inclusion map I+L1
s1,0 is id for all s1 > 0, the associated graded complex of the

filtration F1 splits as a direct product of acyclic complexes in the form of

C
(0,0)
(s1,0)

Φ+L1
s1,0 ��

Φ+L2
s1,0 +Φ−L2

s1,0 ��
Φ+L1∪+L2

s1,s2 +Φ+L1∪−L2
s1,s2

��

C
(1,0)
(s1,0)

Φ+L2
+∞,0+Φ−L2

+∞,0��

C
(0,1)
(s1,0) Φ+L1

s1,+∞

�� C
(1,1)
(s1,0).

Thus R2 is acyclic.

On the other hand, we have another acyclic subcomplex

R3 =
∏

F2≤0
C

(ε1,ε2)
(s1,0) .

In fact, since the inclusion maps I−L1
s1,0 and I−L1

s1,+∞ are both id when s1 < 0, the associated

graded complex of the filtration F2 splits as a direct product of acyclic complexes in the
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form of

C
(0,0)
(s1,0)

Φ−L1
s1,0 ��

Φ+L2
s1,0 +Φ−L2

s1,0 ��
Φ−L1∪+L2

s1,s2 +Φ−L1∪−L2
s1,s2

��

C
(1,0)
(s1+p1,0)

Φ+L2
+∞,0+Φ−L2

+∞,0��

C
(0,1)
(s1,0) Φ−L1

s1,+∞

�� C
(1,1)
(s1+p1,0).

Thus R3 is acyclic. So the quotient complex Q = C−/R1 ∪R2 ∪R3 is a direct product of

C
(0,0)
(s1,0)

Φ+L2
s1,0 +Φ−L2

s1,0−−−−−−−→ C
(0,1)
(s1,0),

where −p1 + 1 ≤ s1 ≤ 0. From the computations of the inclusion maps, we know that

Φ+L2
s1,0 � Φ−L2

s1,0 . Thus the homology of each Spinc structure (t1, 0) ∈ Z/p1Z ⊕ Z is F[[U ]]⊕2.

Note that χ(W ) = 2, σ(W ) = 1. When −p1 + 1 ≤ s1 < 0, the complex C
(0,0)
(s1,0) = A−

s1,0 has

a2 as a generator of its homology of grading μ0,0
s1,0(a2) = s2

1
p1

+ s1 + p1
4 + 1

4 , and the complex

C
(0,1)
(s1,0) = A−

s1,+∞ has d1 as a generator of its homology of grading μ0,1
s1,0(d1) = s2

1
p1

+ s1 + p1
4 − 3

4 .

While for the (0, 0) Spinc structure, C
(0,0)
(0,0) = A−

0,0 has d1 as a generator of its homology with

grading μ0,0
0,0(d1) = p1

4 − 7
4 , and C

(0,1)
(0,0) = A−

0,+∞ has d1 as a generator of its homology with

grading μ0,1
0,0(d1) = p1

4 − 3
4 .

The case of p1 < 0 is similar. We first kill the acyclic subcomplex

R1 =
∏

s2 �=0
(C(0,0)

(s1,s2) ⊕ C
(1,0)
(s1,s2) ⊕ C

(0,1)
(s1,s2) ⊕ C

(1,1)
(s1,s2)).

Thus, the homology for the Spinc structure (t1, t2) with t2 �= 0 is 0. Next, we kill the acyclic

quotient complexes

R2 =
∏

s1>0
C

(ε1,ε2)
(s1,0) , R3 =

∏
s1−ε1p1<0

C
(ε1,ε2)
(s1,0) .

In the (0, 0) Spinc structure, the remaining complexes are as follows
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Figure 3.3.6: The surgery complex for Λ = (1, 0). Every dot represents a complex
Cε

s which is a certain generalized Floer complex A−
s’ (Wh), and in every shaded circle the

complexes Cε
s ’s have the same subscript s. Every arrow represents a Φ-map according to

the endpoints of the arrow, where we omit the subscripts. All the parallel arrows share the
same type of Φ

−→
M , i.e. having the same superscript −→

M . The arrows with circled numbers
1, 2, 3, 4 are Φ+L2

+∞,0 + Φ−L2
+∞,0, Φ+L2∪+L1

0,0 + Φ−L2∪+L1
0,0 , Φ+L2

0,0 + Φ−L2
0,0 , and Φ+L2∪−L1

0,0 + Φ−L2∪−L1
0,0

respectively. The regions R1, R2, R3 divided by the (thicker) lines are corresponded to the
acyclic subcomplexes R1,R2,R3. The shaded region Q corresponds to the truncated complex
Q.

96



C
(1,0)
(p1,0)

Φ+L2
+∞,0+Φ−L2

+∞,0 ��

C
(0,0)
(0,0)

Φ+L2
0,0 +Φ−L2

0,0��

Φ−L1
0,0��

Φ+L1
0,0 ��

Φ+L1∪+L2
0,0 +Φ+L1∪−L2

0,0
��

Φ−L1∪+L2
0,0 +Φ−L1∪−L2

0,0
��

C
(1,0)
(0,0)

Φ+L2
+∞,0+Φ−L2

+∞,0��

C
(1,1)
(p1,0) C

(0,1)
(0,0)Φ−L1

0,+∞

��
Φ+L1

0,+∞

�� C
(1,1)
(0,0) .

Since Φ+L2
+∞,0, Φ−L2

+∞,0 are chain homotopic, we can replace Φ+L2
+∞,0 +Φ−L2

+∞,0 by 0 in the perturbed

surgery complex. Therefore, we can also replace the diagonal maps by 0. Thus, we have two

split complexes,

C
(1,0)
(p1,0) C

(0,0)
(0,0)

Φ−L1
0,0��

Φ+L1
0,0 �� C

(1,0)
(0,0) ,

C
(1,1)
(p1,0) C

(0,1)
(0,0)Φ−L1

0,+∞

��
Φ+L1

0,+∞

�� C
(1,1)
(0,0) .

Since C
(1,0)
(p1,0) = C

(1,0)
(0,0) and Φ+L1

0,0 � Φ−L1
0,0 , we can replace Φ+L1

0,0 by Φ−L1
0,0 in the perturbed

complex. By changing basis, we can split the first row as cone(Φ+L1
0,0 )⊕C

(1,0)
(p1,0) with homology

F[[U ]] ⊕ (F[[U ]]/U). Similarly, from that Φ±L1
0,+∞ are quasi-isomorphisms, it follows that the

second row is quasi-isomorphic to C
(1,1)
(0,0) by changing basis. Thus in the (0, 0) Spinc structure,

the homology is F[[U ]]⊕2 ⊕ (F[[U ]]/U).

For the other Spinc structures (t1, 0), t1 �= 0, the remaining complexes are as follows

C
(1,0)
(s1,0)

Φ+L2
+∞,0+Φ−L2

+∞,0−−−−−−−−→ C
(1,1)
(s1,0),

where the integer s1 is in the residue class t1 ∈ Z/p1Z such that p1 < s1 < 0. Similarly, we

replace Φ+L2
+∞,0 + Φ−L2

+∞,0 by 0, and get that the homology is F[[U ]]⊕2. The correction terms

can be computed similarly with χ(W ) = 2, σ(W ) = −1.

Finally, let’s look at the (p1, p2)-surgery, where p1p2 �= 0. This breaks down to three

cases: p1, p2 > 0, p1, p2 < 0, and p1p2 < 0. We apply the truncation tricks shown in [24]

Section 8.3.
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(1) When p1, p2 > 0, the (p1, p2)-surgery is actually a large surgery, so its homology can

be derived from A−
s directly. However, we still compute them by elementary methods. We

construct two filtrations,

F00(C(ε1,ε2)
(s1,s2)) = −s1 − s2, F11(C(ε1,ε2)

(s1,s2)) = s1 − (ε1 − 1)p1 + s2 − (ε2 − 1)p2.

Without loss of generality, see Figure 3.3.7 for the illustration of the surgery complex and

the truncation in the case of Λ = (1, 1).

We first consider an acyclic subcomplex

R1 =
∏

max{s1,s2}>0
C

(ε1,ε2)
(s1,s2) .

In fact, since the inclusion maps I+L1
s1,s2 , s1 > 0 and I+L2

s1,s2 , s2 > 0 are both id’s, the associated

graded complex of the filtration F00 splits as a direct product of acyclic squares Rs,0,0 in

Equation 2.2.2:

A−
s1,s2

Φ+L1
s1,s2 ��

Φ+L2
s1,s2

��
Φ+L1∪+L2

s1,s2
��

A−
+∞,s2

Φ+L2
+∞,s2

��
A−

s1,+∞
Φ+L1

s1,+∞

�� A−
+∞,+∞.

Thus R1 is acyclic.

There is another acyclic subcomplex

R2 =
∏

max{s1−(ε1−1)p1,s2−(ε2−1)p2}≤0
C

(ε1,ε2)
(s1,s2) .

One can directly check R2 is a subcomplex by computation. Because the inclusion maps

I−L1
s1,s2 , s1 < 0 and I−L2

s1,s2 , s2 < 0 are both id’s, the associated graded complex of F11 splits as
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a product of acyclic squares Rs,1,1 :

A−
s1,s2

Φ−L1
s1,s2 ��

Φ−L2
s1,s2

��
Φ−L1∪−L2

s1,s2
��

A−
+∞,s2

Φ−L2
+∞,s2

��
A−

s1,+∞
Φ−L1

s1,+∞

�� A−
+∞,+∞,

where s1 + p1 ≤ 0, s2 + p2 ≤ 0. Thus R2 is acyclic.

Let C1 = C/(R1 + R2). Inside C1, there are two acyclic subcomplexes

R3 = { ∏
s1−(ε1−1)p1≤0,−p2+1≤s2≤0

C
(ε1,ε2)
(s1,s2)} ∩ C1 =

∏
s1+p1≤0,0≥s2>−p2

(
C

(0,0)
(s1,s2) ⊕ C

(1,0)
(s1+p1,s2)

)
,

R4 = { ∏
s2−(ε2−1)p2≤0,−p1+1≤s1≤0

C
(ε1,ε2)
(s1,s2)} ∩ C1 =

∏
s2+p2≤0,0≥s1>−p1

(
C

(0,0)
(s1,s2) ⊕ C

(1,1)
(s1,s2+p2)

)
.

In fact, the associated graded complex of F11 on R3 splits as a direct product of acyclic

complexes C
(0,0)
(s1,s2)

Φ−L1
s1,s2−−−→ C

(1,0)
(s1+p1,s2), because the inclusion map I−L1

s1,s2 , s1 < 0 is id. Thus R3

is acyclic. Similar argument applies to R4.

At last, we look at the quotient complex

Q = C1/(R3 + R4) =
⊕

−p1<s1≤0,−p2<s2≤0
C

(0,0)
(s1,s2),

where C
(0,0)
(s1,s2) = A−

s1,s2 . There is only one A−
s left in each Spinc structure Y with homology

F[[U ]]. For (s1, s2) = (0, 0), the complex C
(0,0)
(0,0) = A−

0,0 has d1 as a generator of its homology

with grading μ0,0
0,0(d1) = p1+p2−10

4 . For −p1 < s1 < 0, the complex C
(0,0)
(s1,s2) = A−

s1,s2 has a2 as

a generator of its homology with grading μ0,0
s1,s2(a2) = s2

1
p1

+ s2
2

p2
+ s1 + s2 + p1+p2−2

4 . Similarly,

we have the same formula for −p2 < s2 < 0,−p1 < s1 ≤ 0.

(2) When p1p2 < 0, we might as well suppose p1 > 0, p2 < 0 due to the symmetry of the
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Figure 3.3.7: The surgery complex for Λ = (1, 1). The arrows with circled num-
bers 1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The regions
R1, R2, R3, R4 divided by the (thicker) lines are corresponded to the acyclic subcomplexes
R1,R2,R3,R4. The shaded region Q corresponds to the truncated complex Q.

two components. We construct four filtrations

F00(C(ε1,ε2)
(s1,s2)) = −s1 + s2, F01(C(ε1,ε2)

(s1,s2)) = −s1 − s2 + (ε2 − 1)p2,

F10(C(ε1,ε2)
(s1,s2)) = s1 − (ε1 − 1)p1 + s2, F11(C(ε1,ε2)

(s1,s2)) = s1 − (ε1 − 1)p1 − s2 + (ε2 − 1)p2.

Without loss of generality, see Figure 3.3.8 for the illustration of the surgery complex and

the truncation in the case of Λ = (1,−1). We first kill an acyclic subcomplex R1 composed

of C
(ε1,ε2)
(s1,s2) with s1 > 0. Indeed, the associated graded complex of F00 on R1 splits as a direct

product of acyclic squares, since the inclusion map I+L1
s1,s2 , s1 > 0 is id.

We have another acyclic subcomplex

R2 =
∏

s1−(ε1−1)p1≤0
C

(ε1,ε2)
(s1,s2) .

In fact, since Φ−L1
s1,s2 are quasi-isomorphisms when s1 < 0, the associated graded of the

filtration F10 for R2 splits as a direct product of acyclic squares Rs,1,0. Thus R2 is acyclic.
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Thus, C is quasi-isomorphic to the quotient complex

C1 = C/(R1 + R2) =
∏

−p1<s1≤0

(
C

(0,0)
(s1,s2) ⊕ C

(0,1)
(s1,s2)

)
.

We have an acyclic quotient complex R3 of C1

R3 =
∏

−p1<s1≤0,s2>0

(
C

(0,0)
(s1,s2) ⊕ C

(0,1)
(s1,s2)

)
,

since the inclusion maps I+L2
s1,s2 , s2 > 0 are all the identities. Furthermore, we have another

acyclic quotient complex R4 of C1

R4 =
∏

−p1<s1≤0,s2<0

(
C

(0,0)
(s1,s2) ⊕ C

(0,1)
(s1,s2−p2)

)
.

Thus C is quasi-isomorphic to

Q = C1\(R3 ∪R4) = { ⊕
−p1<s1≤0

(
C

(0,0)
(s1,0) ⊕ C

(0,1)
(s1,0) ⊕ C

(0,1)
(s1,p2)

)
} ⊕ { ⊕

−p1<s1≤0,p2<s2<0
C

(0,1)
(s1,s2)}.

In the Spinc structure (t1, 0) ∈ Z/p1Z⊕ Z/p2Z, we have the complex as follows,

C
(0,0)
(s1,0) = A−

s1,0
Φ+L2

s1,0 ��

Φ−L2
s1,0

��

A−
s1,+∞ = C

(0,1)
(s1,0)

A−
s1,+∞ = C

(0,1)
(s1,p2),

where s1 is an integer such that −p1 < s1 ≤ 0 and s1 ≡ t1(mod p1). Since the inclusion

maps I±L2
0,0 induce the same action on homology, Φ±L2

0,0 are chain homotopic to each other.

By Corollary 3.2.6, we can replace A−
0,0, A−

0,+∞ by the complex F[[U1, U2]] U1−U2−−−−→ F[[U1, U2]],

where the generators are g1, g2. Then, we can replace the chain maps I±L2
0,0 by the same

chain map Ĩ, where Ĩ(gi) = U1gi. Thus, the homology of the (0, 0) Spinc structure can be

computed by this perturbed complex, which is F[[U ]] ⊕F[[U ]]/U . From above computation,

the generator corresponding to F[[U ]] is actually the generator of H∗(C(0,1)
(0,0)), which is d1 ∈
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Figure 3.3.8: The surgery complex for Λ = (1,−1). The arrows with circled num-
bers 1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The regions
R1, R2, R3, R4 divided by the (thicker) lines are corresponded to the acyclic subcomplexes
R1,R2,R3,R4. The shaded region Q corresponds to the truncated complex Q.

A−
s1,+∞ with grading μ0,1

0,0(d1) = p1+p2
4 by Equation (3.3.3).

On the other hand, since the inclusion maps I−L2
s1,0 , s1 < 0 are all quasi-isomorphisms, we

can kill the acyclic quotient complex A−
s1,0

Φ−L2−−−→ A−
s1,+∞. Thus, the homology for the Spinc

structure (t1, 0) ∈ Z/p1Z⊕ Z/p2Z with t1 �= 0 is F[[U ]] generated by d1 ∈ A−
s1,+∞ of grading

μ0,1
s1,0(d1) = s2

1
p1

+ s1 + p1+p2
4 , where s1 is an integer with −p1 < s1 < 0 in the class t1 modulo

p1.

In every other Spinc structure in the complex Q, there is only one complex C
(0,1)
(s1,s2) =

A−
s1,+∞,−p1 < s1 ≤ 0 of homology F[[U ]] of grading s2

1
p1

+ s2
2

p2
+ s1 − s2 + p1+p2

4 .

(3) The last case is when p1, p2 are both negative integers. We use two filtrations

F00(C(ε1,ε2)
(s1,s2)) = s1 + s2, F11(C(ε1,ε2)

(s1,s2)) = −s1 + (ε1 − 1)p1 − s2 + (ε2 − 1)p2.

Without loss of generality, see Figure 3.3.9 for the illustration of the surgery complex and

the truncation in the case of Λ = (−1,−1).
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We first kill an acyclic quotient complex

R1 =
∏

max{s1,s2}>0
C

(ε1,ε2)
(s1,s2) .

By considering the filtration F00, we can see that R1 is acyclic. We also have another acyclic

quotient complex

R2 =
∏

min{s1−ε1p1,s2−ε2p2}<0
C

(ε1,ε2)
(s1,s2) .

In fact, the inclusion maps I−Li
s1,s2 , si < 0 are quasi-isomorphisms. Thus the associated graded

complex of the filtration F11 splits as a direct product of acyclic complexes

Rs,1,1 ∩ (C\R1)

where min{s1, s2} < 0 and Rs,1,1 is in Equation (2.2.5). Therefore R2 is acyclic.

Hence, the subcomplex Q = C\(R1 ∪R2) is quasi-isomorphic to C, where

Q =
⊕

max{s1,s2}≤0,min{s1−ε1p1,s2−ε2p2}≥0
C

(ε1,ε2)
(s1,s2) .

In the Spinc structure (t1, t2), t1 �= 0, t2 �= 0, there is only one complex C
(1,1)
(s1,s2) in Q, thus

having the homology F[[U ]] with grading (2s1−p1)2

4p1
+ (2s2−p2)2

4p2
+ 1

2 , where s1, s2 are negative

integers in the residue classes t1, t2 such that si ≥ pi + 1, i = 1, 2. In the Spinc structure

(0, t2), t2 �= 0, there are three complexes C
(0,1)
(0,s2), C

(1,1)
(0,s2), C

(1,1)
(p1,s2) in Q, where s2 is an integer

in the residue class t2 such that p2 < s2 < 0. Since the inclusion map I±L1
0,s2 , s2 �= 0 are

quasi-isomorphisms, we can replace Φ+L1
0,s2 by Φ−L1

0,s2 in the perturbed complex and thus split

it as a direct sum, cone(Φ+L1
0,s2 ) ⊕ C

(1,1)
(0,s2), by changing the basis. Thus the homology is the

same as the homology of C
(1,1)
(0,s2) = A−

+∞,+∞, which is F[[U ]] generated by [d1] with grading
p1
4 + (2s2−p2)2

4p2
+ 1

2 . It is similar for (t1, 0) ∈ Spinc(Y ), t1 �= 0.

The most interesting Spinc structure is (0, 0). It consists of nine complexes, which are

also illustrated in Figure 3.3.9. By Corollary 3.2.6 and the discussion in Section 3.2.6, in
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Figure 3.3.9: The surgery complex for Λ = (−1,−1). The arrows with circled numbers
1, 2, 3, 4 are Φ+L1∪+L2 , Φ+L1∪−L2 ,Φ−L1∪−L2 , and Φ−L1∪+L2 respectively. The regions R1, R2
divided by the (thicker) lines are corresponded to the acyclic subcomplexes R1,R2. The
shaded region Q corresponds to the truncated complex Q.

the perturbed complex we can replace all the A−
s by the complex F[[U ]] with 0 differential

and replace the edge maps by the corresponding maps on homology. Finally, the perturbed

complex is the following chain complex

F[[U ]] F[[U ]]1�� 1 �� F[[U ]]

F[[U ]]
1 ��

1
��

F[[U ]]U�� U ��
U
��

U ��

F[[U ]]
1
��

1 ��
F[[U ]] F[[U ]]1�� 1 �� F[[U ]].

Direct computation shows that

HF−(S3
Λ(Wh), (0, 0)) = F[[U ]] ⊕ (F[[U ]]/U),

when Λ = diag(p1, p2) with p1, p2 < 0. Thereby, [d1] = 1 ∈ H∗(C(1,1)
(p1,p2)) is a generator of the

F[[U ]] summand with the absolute grading p1+p2+2
4 .

Theorem 3.3.10. Let −→L be the two-bridge link b(8k, 4k+1), k ∈ N and Λ = diag(p1, p2), p1, p2 ∈
Z be the framing matrix of an integer surgery on −→

L . As in Proposition 3.3.9, we use
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(t1, t2) ∈ Z/p1Z ⊕ Z/p2Z to denote the Spinc structures over S3
Λ(−→L ). Then, we have the

Floer homology

HF−(S3
Λ(−→L ), (t1, t2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HF−(S3

Λ(Wh), (0, 0)) ⊕ F⊕(k−1), (t1, t2) = (0, 0),

HF−(S3
Λ(Wh), (t1, t2)), otherwise.

(3.3.4)

The correction terms of the elements in the HF−(S3
Λ(Wh))-summand are the same as in

HF−(S3
Λ(Wh)).

Proof. By Proposition 3.3.5, CFL−(−→L ) = CFL−(Wh)⊕⊕k−1
i=1 (N, ∂−). Let N =⊕k−1

i=1 (N, ∂−).

We define Ns similarly as A−
s in (4.1.4). Concretely, suppose G be a set of homogeneous

generators of N as a F[[U1, U2]]-module, and for x ∈ G,

∂x =
∑
y∈G

kxyy,

where kxy ∈ F[[U1, U2]]. Let A(x) = (A1(x), A2(x)) denote the Alexander filtration of x ∈ G.

Define Ns by

∂x =
∑
y∈G

kxy · U
max{A1(x)−s1,0}−max{A1(y)−s1,0}
1 U

max{A2(x)−s2,0}−max{A2(y)−s2,0}
2 · y.

Thus A−
s (−→L ) = A−

s (Wh) ⊕ Ns. Thus all the inclusion maps I±Li , i = 1, 2 preserve this

direct sum decomposition. Since the complexes Ns1,±∞ are acyclic complexes, we can choose

D̃±L2
s1,−∞ : A−

s1,±∞(−→L ) → A−
s1,+∞(−→L ) to be

D̃±L2
s1,−∞ = D(Wh)±L2

s1,−∞ ⊕ 0,

where D(Wh)±L2
s1,−∞ is the destabilization map for Wh. Therefore Φ̃±Li

s = Φ(Wh)±Li
s ⊕ Φ±Li

N ,s,

where Φ±Li
N ,s = 0 : Ns → Nψ±Li (s).

Thus the perturbed surgery complex (C̃−(−→L , Λ), D̃−) is a direct sum of two twisted gluing
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of squares

(C̃−(−→L , Λ), D̃−) = (C−(Wh, Λ),D−) ⊕ ∏
s=(s1,s2)∈Z2

(Ns ⊕ Ns1,+∞ ⊕ N+∞,s2 ⊕ N+∞,+∞, D̃−).

From the fact that any Ns with s �= (0, 0) is acyclic, it follows that H∗(C̃−(−→L ), D̃−) =

H∗(C−(Wh),D−)⊕H∗(N0,0). For that N0,0 belongs to the (0, 0) Spinc structure and H∗(N0,0) =

F[[U ]]/U, we have the equations (3.3.4). The absolute gradings are inherited from H∗(C−(Wh),D−).
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CHAPTER 4

L-space links

4.1 L-space links

In this section, we study the L-space surgeries on a link L and the large surgeries. Then, we

introduce various notions of L-space links.

4.1.1 L-space links.

Let us recall the definition of generalized Floer complexes of a link L in S3 in [24] Section

4, which govern the large surgeries on L. For simplicity, we only consider generic admissible

multi-pointed Heegaard diagrams with each component Li having only two basepoints wi, zi.

Here, we allow free basepoints.

Definition 4.1.1 (Generalized Floer complexes). Let L be a link in S3 and choose a Hee-

gaard diagram H. For s ∈ H(L), the generalized Floer complex A−(H, s) is the free module

over R = F[[U1, ..., Ul]] generated by Tα ∩ Tβ ∈ Symg+k−1(Σ), and equipped with the differ-

ential:

∂−
s x =

∑
y∈T(α)∩T(β)

∑
φ ∈ π2(x, y)

μ(φ) = 1

#(M(φ)/R) · U
E1

s1 (φ)
1 · · ·UEl

sl
(φ)

l · U
nwl+1 (φ)
l+1 · · ·Unwk

(φ)
k · y,

(4.1.1)
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where Ei
s(φ) is defined by

Ei
s(φ) = max{s − Ai(x), 0} − max{s − Ai(y), 0} + nzi

(φ) (4.1.2)

= max{Ai(x) − s, 0} − max{Ai(y) − s, 0} + nwi
(φ). (4.1.3)

Here, M(φ) denotes the moduli space of the pseudo-holomorphic disk φ, and Ai(x) denotes

the ith Alexander grading of the intersection point x. The stable quasi-isomorphism type of

A−(H, s) is an invariant of L. For simplicity, we also write A−(L, s), A−
s (L), or A−

s , when

the context is clear.

Notation 4.1.2. Let L be an l-component link in S3. In order to simplify the notation,

we denote the (p1, ..., pl)-surgery on L by S3
p1,...,pl

(L) and the surgery framing matrix by

Λ(p1, ..., pl), where p1, ..., pl are surgery coefficients on the link; i.e. Λ(p1, ..., pl) is the matrix

with p1, ..., pl on the diagonal and linking numbers off the diagonal.

Proof of Lemma 1.3.10. First, let us recall Theorem 10.1 in [24].

Theorem. For Λ̃ sufficiently large, there exist quasi-isomorphisms of relative Z-graded com-

plexes

CF−(S3
Λ̃(L), s) → A−

s (L)

for all s.

Thus, L is an L-space link if and only if A−
s (L) has the homology F[[U ]] for all s ∈ H(L).

When the ith component of s, say si, equals to +∞, there is a destabilization map between

A−(L, s) and A−(L − Li, ψ+Li(s)), which is a quasi-isomorphism. See Example 7.2 in [24].

Roughly, this is because the generalized Floer complexes of L−Li can be computed from the

Heegaard diagram of L by deleting the basepoint zi, which is the same as putting si = +∞
in A−(L, s). Thus, A−(L − Li, s′) has homology F[[U ]] for all s′ ∈ H(L − Li). So L − Li is

an L-space link for Li ⊂ L. An induction will show that all sublinks are L-space links.

In contrast to knots, a weak L-space link L might be a non-L-space link.
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Figure 4.1.1: An example of weak L-space link.

Example 4.1.3. Let L = L1 ∪ L2 be the link consisting of a Figure-8 knot L1 and an

unknot L2 as in Figure 4.1.1. Then by blowing down the unknot, the Figure-8 knot is then

unknotted, and thus the surgery S3
n,1(L) is the lens space L(n− 4, 1), when n �= 4. However,

the Figure-8 knot is not an L-space knot. Thus, by Lemma 1.3.10, L is a weak L-space link

but not an L-space link. Similarly, the mirror of L is not a L-space link neither.

4.1.2 L-space induction and generalized large surgeries.

In this subsection, we study how to characterize L-space links, by exploiting induction in

light of surgery exact triangles.

Lemma 4.1.4 (L-space surgery induction). Let L = L1∪...∪Ln be a link with n components,

and L′ = L−L1. Let Λ be the framing matrix of L for the surgery S3
p1,...,pn

(L), and denote by

Λ′ the restriction of Λ on L′. Suppose S3
p1,...,pn

(L) and S3
p2,...,pn

(L′) are both L-spaces. Then,

Case I if det(Λ) · det(Λ′) > 0, then for all k > 0, S3
p1+k,p2,...,pn

(L) is an L-space;

Case II if det(Λ) · det(Λ′) < 0, then for all k > 0, S3
p1−k,p2,...,pn

(L) is an L-space.

Proof. Let Λk be the framing matrix of the surgery S3
p1+k,p2,...,pn

(L). Notice that det(Λk) =

det(Λ) + k det(Λ′).
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For the case det(Λ) · det(Λ′) > 0, consider the following exact triangle of surgeries:

ĤF (S3
p1,p2,...,pn

(L)) �� ĤF (S3
p1+1,p2,...,pn

(L))
��

ĤF (S3
p2,...,pn

(L′)).

��

Thus, from that det(Λ1) = det(Λ)+det(Λ′), it follows that S3
p1+1,p2,...,pn

(L) is also an L-space.

Iterating this argument for all k > 0, we can obtain that S3
p1+k,p2,...,pn

(L) is an L-space for

all k ≥ 0. The case where det(Λ) · det(Λ′) < 0 is similar.

Lemma 4.1.5 (Positive L-space surgery criterion). An l-component link L is an L-space

link if and only if there exists a surgery framing Λ(p1, ..., pl), such that for all sublink L′ ⊆ L,

det(Λ(p1, ..., pl)|L′) > 0 and S3
Λ|L′ (L′) is an L-space.

In particular, if the surgery framing Λ(p1, ..., pl) satisfies the above condition, then for any

surgery framing Λ′ = Λ(n1, ..., nl) with ni ≥ pi for all i, the surgery S3
Λ′(L) is an L-space.

Proof. If L is an L-space link, then every sublink L′ is an L-space link, by Lemma 1.3.10.

Thus, there is a large (p1, ..., pl)-surgery on L such that for all L′ ⊆ L, det(Λ(p1, ..., pl)) > 0

and S3
Λ|L′ (L′) is an L-space.

Conversely, let Λ(p1, ..., pl) be the surgery framing satisfying the condition in the propo-

sition. Let Λ′ = Λ(p1, ..., pi + 1, ..., pl). By the L-space surgery induction lemma, we have

that for all L′ ⊆ L, S3
Λ′|L′ (L′) is an L-space and det(Λ′|L′) = det(Λ|L′)+ε det(Λ|L′−Li

), where

ε = 1 if Li ⊂ L′ and ε = 0 if Li � L′. Thus, by induction, we can show that for any surgery

framing Λ′′ = Λ(n1, ..., nl) with ni ≥ pi, the surgery S3
Λ′′|L′ (L′) is an L-space for all sublinks

L′ ⊂ L. In particular, S3
Λ′′(L) is an L-space, and this finishes the proof.

Definition 4.1.6. A link is called algebraically split, if all the pairwise linking numbers are

0.

Corollary 4.1.7. Let L = L1 ∪ ... ∪ Ll be an algebraically split link. Then L is an L-space

link if and only if ∃ pi > 0, i = 1, ..., l, such that S3
Λ|L′ (L′) is an L-space for all L′ ⊆ L, where

Λ = Λ(p1, ..., pl).
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Now we can prove Proposition 1.3.11.

Proof of Proposition 1.3.11. Lemma 4.1.5 implies that condition (i) and (ii) are equivalent.

By Theorem 10.1 from [24], it follows L is an L-space link if and only if A−
s (L) has homology

F[[U ]] for all s ∈ F[[U ]]. Thus, condition (i) is equivalent to (iii) as well as (iv).

4.1.3 Generalized L-space links.

We can enlarge our scope to generalized large surgeries on a link L. Let us use ± signs to

denote the type of the generalized large surgeries.

Definition 4.1.8 (Generalized L-space links). A 2-component link L = L1 ∪ L2 is called a

generalized (±±)L-space link, if there exist integers p1, p2, such that for all positive integers

k1, k2 > 0, S3
p1±k1,p2±k2(L) is an L-space. Similarly, we define an l-component generalized

(± · · ·±)L-space link.

Example 4.1.9. The split disjoint union of the left-handed trefoil and the right-handed

trefoil is a generalized (+−)L-space link. However, it is not an L-space link, and neither is

its mirror.

Let us look at some examples of 2-component generalized L-space links.

Proposition 4.1.10. Suppose L is a 2-component link L = L1 ∪ L2 with L1, L2 both being

the unknots, and S3
p1,p2(L) is an L-space. Then,

1. if p1p2 > lk2, p1 > 0, p2 > 0, then S3
p1+k1,p2+k2(L) are L-spaces for all k1, k2 ∈ N;

2. if p1p2 > lk2, p1 < 0, p2 < 0, then S3
p1−k1,p2−k2(L) are L-spaces for all k1, k2 ∈ N;

3. if p1 > 0, p2 < 0, then S3
p1+k1,p2−k2(L) are L-spaces for all k1, k2 ∈ N;

4. if p1p2 < lk2, p1 > 0, p2 > 0, then the surgeries S3
p1+k1,−1−k2(L), S3

−1−k1,p2+k2(L) with

k1 ≥ 0, k2 ≥ 0 and S3
p′

1,p′
2
(L) with 0 < p′

1 ≤ p1, 0 < p′
2 ≤ p2 are all L-spaces;
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Figure 4.1.2: We illustrate the cases of the (p1, p2)-surgeries in Proposition 4.1.10 on the
(p1, p2) plane, where the case (3′) is similar to case (3).

5. if p1p2 < lk2, p1 < 0, p2 < 0, then the surgeries S3
p1−k1,k2(L), S3

k1,p2−k2(L) with k1 >

0, k2 > 0 and S3
p′

1,p′
2
(L) with 0 > p′

1 ≥ p1, 0 > p′
2 ≥ p2 are all L-spaces.

The above cases are shown in Figure 4.1.2.

Proof. The cases (1), (2), and (3) are proved by induction using the long exact sequences

for the surgery triple
(
S3

p,q(L), S3
p+1,q(L), S3

q (L2)
)
.

For the case (4), first by Lemma 4.1.4, we have that S3
p1,−1(L), S3

−1,p2(L) are both L-

space spaces. From (3), it follows that S3
p1+k1,−1−k2(L), S3

−1−k1,p2+k2(L) are all L-spaces for

all non-negative integers k1, k2. Second, we can do induction to prove that S3
p′

1,p′
2
(L) with

0 < p′
1 ≤ p1, 0 < p′

2 ≤ p2 are all L-spaces. The case (5) is similar to the case (4).

Proposition 4.1.10 says that if L is a 2-component link with unknotted components,

then L is a weak L-space link if and only if L is a generalized L-space link. The following

proposition gives another example of generalized L-space links.

Proposition 4.1.11. Let L be an algebraically split link. If there exists a surgery framing

Λ(p1, ..., pl) on L, such that for all sublink L′ ⊆ L, S3
Λ|L′ (L′) is an L-space, then L is a

generalized L-space link of "ε1 · · · εl"-type, where εi is the sign of pi.
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4.1.4 Subcomplexes of CFL∞(L) governing generalized large surgeries.

In this section, we demonstrate that parallel theory of A−
s can be done by considering gen-

eralized large surgeries of different types. Here, we illustrate the idea by using 2-component

links.

The generalized Floer complexes A−
s (L) governs the positive large surgeries on L. In fact,

there are also subcomplexes of CFL∞(L) governing the other types of large surgeries on L

respectively.

For any basic Heegaard diagram of an l-component link L, there is an Alexander grading

on the intersection points Tα ∩ Tβ

A : Tα ∩ Tβ → H(L),

which is characterized by

Ai(x) − Ai(y) = nzi
(φ) − nwi

(φ), ∀φ ∈ π2(x, y)

and a normalization condition of the Alexander polynomial.

Definition 4.1.12 (CFL∞). Let L be an l-component link and H be a basic Heegaard

diagram of L. Then, CFL∞(H) is a chain complex of F[[U1, ..., Ul, U−1
1 , ..., U−1

l ]]-modules

freely generated by x ∈ Tα ∩ Tβ with the differential

∂x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|μ(φ)=1}

#(M(φ)/R) · U
nw1 (φ)
1 · · ·Unwl

(φ)
l · y,

where the Ui’s lower the Z-grading by 2. There is an Alexander filtration on CFL∞(H)

extended from Tα ∩ Tβ by Ai(Uk
j · x) = Ai(x) − δijk. The filtered chain homotopy type of

the filtered complex (CFL∞(H), A) is an invariant of L, where A denotes the Alexander

filtration. We denote this filtered homotopy type by CFL∞(L). By abuse of notation, we

also use CFL∞(L) to denote a chain complex in this class.
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To obtain the subcomplexes of CFL∞(L) governing the large surgeries, let us first recall

some facts of knots. Let K be a knot in S3. Following [37], we can also regard CFL∞(K)

as a chain complex C of F vector spaces generated by triples

[x, i, j], x ∈ Tα ∩ Tβ, i, j ∈ Z, with A(x) = j − i.

The triple [x, i, j] is corresponding to U−ix. Then, Heegaard Floer homology of the pos-

itive large surgeries HF −(S3
p(K)) with p � 0 can be computed from the subcomplexes

C{max(i, j − m) ≤ s}’s, whereas, Heegaard Floer homology of the negative large surgeries

S3
p(K) with p � 0 can be computed from the subcomplexes C{min(i, j − m) ≤ s}’s. See

Theorem 4.1 and Theorem 4.4 in [37] or Section 2.2 in [34]. Thus, C{min(i, j − s) ≤ 0} is

corresponded to the subcomplex of CFL∞(K):

−A−
s (K) = {Ukx|min(−k, A(x) − k − s) ≤ 0}.

One can also formulate this complex more explicitly by using a similar approach in [24].

For simplicity, we consider basic Heegaard diagram without free basepoints, i.e. a doubly-

pointed Heegaard diagram of a knot K.

Definition 4.1.13 (−A−
s (K)). Let H be a doubly-pointed Heegaard diagram of K. For any

s ∈ Z, the complex −A−(H, s) is the free module over R = F[[U ]] generated by Tα ∩Tβ, and

equipped with the differential:

∂−
s x =

∑
y∈T(α)∩T(β)

∑
φ ∈ π2(x, y)

μ(φ) = 1

#(M(φ)/R) · U Ēs(φ) · y, (4.1.4)

where Ēs(φ) is defined by

Ēs(φ) = max(0, s − A(y)) − max(0, s − A(x)) + nw(φ), ∀φ ∈ π2(x, y).
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The chain homotopy type of −A−(H, s) is an invariant of K and s, and we denote it by
−A−

s (K).

Now we can pass from knots to links.

Definition 4.1.14 (±±A−
s1,s2). Let L be a 2-component link, and H = (Σ, α, β, w, z) be a

basic Heegaard diagram of L. Then we define the following subcomplexes of the Alexander

filtered complex CFL∞(L)

• ++A−
s1,s2 := {Uk1

1 Uk2
2 x ∈ CFL∞(L) : x ∈ Tα ∩ Tβ, max(−ki, Ai(x) − ki − si) ≤ 0,∀i =

1, 2};

• +−A−
s1,s2 := {Uk1

1 Uk2
2 x ∈ CFL∞(L) : x ∈ Tα ∩ Tβ, max(−k1, A1(x) − k1 − s1) ≤

0, min(−k2,

A2(x) − k2 − s2) ≤ 0};

• −+A−
s1,s2 := {Uk1

1 Uk2
2 x ∈ CFL∞(L) : x ∈ Tα ∩ Tβ, min(−k1, A1(x) − k1 − s1) ≤

0, max(−k2,

A2(x) − k2 − s2) ≤ 0};

• −−A−
s1,s2 := {Uk1

1 Uk2
2 x ∈ CFL∞(L) : x ∈ Tα ∩ Tβ, min(−ki, Ai(x) − ki − si) ≤ 0,∀i =

1, 2}.

Thus, ++A−
s (L) is isomorphic to A−

s (L) defined in [24]. One can also formulate these

complexes by using Ei
s(φ)’s and Ēi

s(φ)’s. In fact, these four sets of complexes are equivalent

data of L. The advantage of considering A−
s (L)’s is that they can be identified with the

subcomplexes of CFL−(L) which form the Alexander filtration of CFL−(L).

Remark 4.1.15. The original CFK∞(K) defined in [37] is slightly different from the formu-

lation of CFL∞(K) here. We adopt the formulation of CFK∞(K) in [23], and it is the same

as CFL∞(K) here.
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Figure 4.2.1: The Borromean ring. The (1, 1, 1)-surgery on the Borromean link is the
Poincaré sphere.

4.2 Examples of L-space links and generalized L-space links

In this section, we use the lemmas and propositions in Section 4.1 to show some examples

of L-space links and generalized L-space links.

Example 4.2.1 (Two hyperbolic links: the Whitehead link and the Borromean rings). The

Whitehead link and the Borromean rings are two well-known hyperbolic links. In fact, they

are both L-space links.

The (1, 1)-surgery on the Whitehead link is the Poincaré sphere. See Example 8 on Page

263 in [47]. The (1, 1, 1)-surgery on the Borromean rings is also the Poincaré sphere. See

Exercise 4 on Page 269 in [47]. By Corollary 4.1.7, they are both L-space links.

Remark 4.2.2. There are no alternating hyperbolic L-space knots. See Theorem 4.3.3 below

cited from [40]. However, Example 4.2.1 shows that there are L-space alternating hyperbolic

links. In fact, there are many, see Theorem 4.2.8.

Moreover, these hyperbolic links provide many examples of hyperbolic L-spaces which

are neither surgery over knots nor double branched cover over knots. For example, surgeries

on the Whitehead link S3
n,2n(Wh) with n > 0 are all L-spaces but not surgeries nor double

branched cover on a knot. The reason is that the first homology of these surgeries is neither

cyclic nor of odd order.
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Figure 4.2.2: An L-space link giving the Weeks manifold.

Example 4.2.3 (An L-space link providing the Weeks manifold). Consider the link L =

L1 ∪ L2 ∪ L3 in Figure 4.2.2, where L1 ∪ L2 is the Whitehead link (using the convention

in [47]) and L3 is the meridian of L2. The (1, 2, 1)-surgery is the Poincaré sphere, and it

satisfies the positive L-space surgery criterion. Thus, it is an L-space link.

By Lemma 4.1.5, we have that for any n1 ≥ 1, n2 ≥ 2, n3 ≥ 1, the (n1, n2, n3)-surgery

on L is an L-space. Thus, the (5, 3, 2)-surgery is an L-space, which is the (5, 5/2)-surgery

on the Whitehead link. This surgery is the Weeks manifold; see [4]. The Weeks manifold

has the smallest hyperbolic volume among closed hyperbolic 3-manifolds; see [7]. Thus, we

confirm that the Weeks manifold does not admit a taut foliation.

The fact that the Weeks manifold is an L-space was already known by experts such as

[17] and [5].

Example 4.2.4 (T (2, 2n) torus links). The oriented torus links T (2, 2n) are L-space links as

Corollary 4.2.6 below shows. We need to distinguish them from their mirrors, so see Figure

4.2.3 for the precise definitions of T (2, 2n).

Lemma 4.2.5. For the torus links T (2, 2n), we have the following identifications of surgeries

S3
n+1,n−1(T (2, 2n)) = S3, S3

n+1,n+1(T (2, 2n)) = L(2n + 1, 2), S3
n,n+1(T (2, 2n)) = L(n, 1).
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Figure 4.2.3: The (n+1, n−1)-surgery on T (2, 2n). Consider the surgery on the upper-left
link L, which is a plumbing of unknots. By blowing down the horizontal unknots Hi’s, we
get the surgery on the lower-left link T (2, 2n). While blowing down the black unknots Vj’s,
we can get the surgery on the lower-right link, which is S3.
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Figure 4.2.4: The (n+1, n+1)-surgery on the T (2, 2n) torus link. Consider the surgery
on upper-middle link L, which is a plumbing of unknots. After blowing down the horizontal
(blue) unknots Hi’s, we get the (n + 1, n + 1)-surgery on the upper-left link T (2, 2n). While
after doing Rolfsen twists on the black unknots Vj’s, we can get a rational surgery on the
lower-middle link M , which is a lens space by blowing-down the blue unknots using Rolfsen
twists again.
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Proof. First, for the (n+1, n−1)-surgery on T (2, 2n), we consider a surgery on the upper-left

link L in Figure 4.2.4, where L is a plumbing of unknots. After two different blowing-down

procedures, we get the identification of S3
n+1,n−1(T (2, 2n)) with S3.

Second, for the (n+1, n+1)-surgery on T (2, 2n), we similarly consider a different surgery

on L, which is drawn in Figure 4.2.4. After two different processes of doing Rolfsen twists,

we can obtain the identification of S3
n+1,n+1(T (2, 2n)) with L(2n+1, 2). See Figure 4.2.4. As

is similar to the (n + 1, n + 1)-surgery, the (n, n + 1)-surgery is L(n, 1).

Corollary 4.2.6. The following surgeries on the torus link T (2, 2n) are all L-spaces:

• S3
n+1+k1,n+1+k2(T (2, 2n)), ∀k1 ≥ 0,∀k2 ≥ 0,

• S3
n+1−k1,n−1(T (2, 2n)), ∀k1 ≥ 0,

• S3
−1−k1,n−1+k2(T (2, 2n)), ∀k1 ≥ 0,∀k2 ≥ 0,

• S3
n,q(T (2, 2n)) with q �= n.

Proof. We combine Proposition 4.1.10 and Lemma 4.2.5.

From S3
n+1,n+1(T (2, 2n)) = L(2n + 1, 2), it follows that S3

n+1+k1,n+1+k2(T (2, 2n)) are all

L-spaces for k1, k2 ≥ 0.

From S3
n+1,n−1(T (2, 2n)) = S3, it follows that S3

n+1−k1,n−1(T (2, 2n)) are all L-spaces by

Lemma 4.1.4. Thus, (−1, n− 1)-surgery is an L-space, and so is any S3
−1−k1,n−1+k2(T (2, 2n))

with k1, k2 ≥ 0.

From S3
n+1,n−1(T (2, 2n)) = S3, it follows that (n, n − 1)-surgery is an L-space and thus

all (n, q)-surgeries with q ≤ n − 1 are L-spaces.

From S3
n,n+1(T (2, 2n)) = L(n, 1), it follows that all (n, q)-surgery with q ≥ n + 1 are

L-spaces.

Example 4.2.7 (Algebraic links). Gorsky and Némethi showed in [11] that every algebraic

link is an L-space link. An algebraic knot can be obtained by iterated cabling of the unknot.
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Figure 4.2.5: The two-bridge link b(6n + 2,−3).

In [14], Hedden proved that algebraic knots are L-space knots. Note that algebraic knots

include all torus knots.

For hyperbolic L-space links, we have the following theorem by considering the two-bridge

links.

Theorem 4.2.8. For all positive odd integers r, q, the two-bridge link b(rq − 1,−q) is an

L-space link.

Before proving this theorem, let us clarify some conventions for two-bridge links. First,

the notation b(p, q) denotes an oriented two-bridge link of slope q
p
. For any continued fraction

of q
p

:

q

p
= [a1, a2, ..., am] =

1

a1 +
1

· · · +
1

am−1 +
1

am

,

a 4-plat projection of b(p, q) can be obtained in the following ways:
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Figure 4.2.6: The 4-plat presentations of two-bridge links. For any continued fraction
[a1, ..., am] = q/p, there is a 4-plat projection of the two-bridge link b(p, q). When m is odd,
we use (a) to close the 4-braid B in the box; when m is even, we use (b) to close the 4-braid
B.

Case I If m is odd, then the 4-plat is obtained by closing the 4-braid

B = σa1
2 σ−a2

1 · · ·σam
2

in the way shown in Figure 4.2.6(a).

Case II If m is even, then the 4-plat is obtained by closing the 4-braid

B = σa1
2 σ−a2

1 · · ·σ−am
1

in the way shown in Figure 4.2.6(b).

Here, we follow [3] Chapter 12B. We prescribe an orientation on b(p, q) shown in Figure

4.2.6. Note that this orientation convention is different from [3].

Proof. Let r = 2n + 1 and q = 2k + 1. Let us do induction on k.

First, for k = 1, we need to show the family of two-bridge links b(6n + 2,−3) drawn in

Figure 4.2.5 are all L-space links. We claim that for any integer n ≥ 1, the (n + 2, n + 2)-

surgery on the two-bridge link b(6n + 2,−3) is an L-space. Consider the 3-component link

L = L1∪L2∪L3 drawn in Figure 4.2.7. We see that L1∪L2 is the T (2, 2n) torus link with the

linking number n. Now consider the (n+1, n+1, 1)-surgery on L, S3
n+1,n+1,1(L). By blowing
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Figure 4.2.7: A 3-component link used to study the surgeries on b(6n + 2,−3).
The left link L is used to study the surgeries on b(6n + 2,−3). After blowing down the
(−1)-framed L3, we can get the two-bridge link b(6n + 2,−3). While if we consider the
(n + 1, n + 1, 1)-surgery on L, after blowing down the (+1)-framed component L3, we get
the (n, n)-surgery on T (2, 2n + 2), which is an L-space.

Figure 4.2.8: The (n+2, n+2)-surgery on the two-bridge link b(6n+2,−3). Consider the
(n+1, n+1,−1)-surgery on the left 3-component link L. After blowing down the (−1)-framed
component L3, we get the (n + 2, n + 2)-surgery on the two-bridge link b(6n + 2,−3).
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Figure 4.2.9: The (n + 1 + k, n + 1 + k)-surgery on the two-bridge link b(rq − 1,−q)
with r = 2n + 1, q = 2k + 1. Consider the (n + 1, n + 1,− 1

k
)-surgery on the left 3-compo-

nent link L. After doing the Rolfsen twists on the (−1)-framed component L3, we get the
(n + 1 + k, n + 1 + k)-surgery on the two-bridge link b(rq − 1,−q).

down the (+1)-framed component L3, we get the (n, n)-surgery on the T (2, 2n+2) torus link,

S3
n,n(T (2, 2n + 2)), which is an L-space by Corollary 4.2.6. While the (n + 1, n + 1)-surgery

on the T (2, 2n) torus link L1 ∪ L2, S3
n+1,n+1(L1 ∪ L2), is also an L-space. In addition, since

det

⎛⎜⎜⎜⎜⎜⎝
n + 1 n 1

n n + 1 −1

1 −1 1

⎞⎟⎟⎟⎟⎟⎠ = −1 − 2n,

det

⎛⎜⎝ n + 1 n

n n + 1

⎞⎟⎠ = 2n + 1,

from Lemma 4.1.4 it follows that the surgeries S3
n+1,n+1,0(L), S3

n+1,n+1,−1(L) are both L-

spaces. By blowing down the (−1)-framed component L3 on the (n + 1, n + 1,−1)-surgery

on L, we get the (n + 2, n + 2)-surgery on the two-bridge link b(6n + 2,−3). See Figure 4.2.8.

Since det

⎛⎜⎝ n + 2 n − 1

n − 1 n + 2

⎞⎟⎠ > 0 and n + 2 > 0, it follows from Lemma 4.1.4 that the

two-bridge links b(6n + 2,−3) are all L-space links.
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Fixing n, for k > 1, consider rational surgeries on the 3-component link L in Figure 4.2.7,

with a rational coefficient on L3. Then we have an exact triangle for the triple S3
n+1,n+1,0(L),

S3
n+1,n+1,−1/k(L), and S3

n+1,n+1,−1/(k+1),

ĤF
(
S3

n+1,n+1,0(L)
)

�� ĤF
(

S3
n+1,n+1,− 1

k

(L)
)

��

ĤF
(

S3
n+1,n+1,− 1

k+1
(L)
)

.

  

We claim that S3
n+1,n+1,− 1

k+1
(L) is an L-space for all positive integers k. We have shown that

S3
n+1,n+1,0(L) is an L-space in the first step, and by the induction hypothesis, we can assume

S3
n+1,n+1,− 1

k

(L) is an L-space. Moreover, we have

∣∣∣∣H1(S3
n+1,n+1,− 1

k+1
(L))
∣∣∣∣ = ∣∣∣H1(S3

n+1,n+1,− 1
k
(L))
∣∣∣+ ∣∣∣H1(S3

n+1,n+1,0(L))
∣∣∣ ,

since

∣∣∣H1(S3
n+1,n+1,− 1

k
(L))
∣∣∣ = det

⎛⎜⎜⎜⎜⎜⎝
n + 1 n 1

n n + 1 −1

k −k −1

⎞⎟⎟⎟⎟⎟⎠ = −1 − 2n − 2k − 4kn.

Hence, from the above exact triangle it follows that S3
n+1,n+1,− 1

k+1
(L) is an L-space.

Now by doing Rolfsen twists on L3, we get a (n+1+k, n+1+k)-surgery on the two-bridge

link b(pq − 1,−q) = b(4kn + 2k + 2n,−2k − 1). See Figure 4.2.9. Since the linking number

of b(4kn + 2k + 2n,−2k − 1) is ±(n − k), the determinant det

⎛⎜⎝ n + 1 + k ±(n − k)

±(n − k) n + 1 + k

⎞⎟⎠ is

positive. Thus, by Lemma 4.1.5, we get b(rq − 1,−q) is an L-space link for all positive odd

integers r, q.

Example 4.2.9 (Non-fibered hyperbolic L-space links). The two-bridge links b(10n+4,−5)

with n ∈ N are L-space links, by Theorem 4.2.8. At least for 2 ≤ n ≤ 6, they are not fibered

links, i.e., there does not exist any Seifert surface F such that the link complement fibers
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−→
L = L1 ∪ L2 Δ−L1∪L2(t) = ΔL1∪L2(t) =

b(24,−5) 2t2 − 3t + 2 − 3
t

+ 2
t2

1
t3 (2t6 − 3t5 + 2t4 − 3t3 + 2t2 − 3t + 2)

b(34,−5) 3t2 − 4t + 3 − 4
t

+ 3
t2

−1
t4 (2t8 − 3t7 + 2t6 − 3t5 + 2t4 − 3t3 + 2t2 − 3t + 2)

b(44,−5) 4t2 − 5t + 4 − 5
t

+ 4
t2

1
t5 (2t10 − 3t9 + 2t8 − 3t7 + 2t6 − 3t5 + 2t4 − 3t3 +

2t2 − 3t + 2)

b(54,−5) 5t2 − 6t + 5 − 6
t

+ 5
t2

−1
t6 (2t12 − 3t11 + 2t10 − 3t9 + 2t8 − 3t7 + 2t6 − 3t5 +

2t4 − 3t3 + 2t2 − 3t + 2)

b(64,−5) 6t2 − 7t + 6 − 7
t

+ 6
t2

1
t7 (2t14 −3t13 +2t12 −3t11 +2t10 −3t9 +2t8 −3t7 +

2t6 − 3t5 + 2t4 − 3t3 + 2t2 − 3t + 2)

Table 4.2.1: Alexander polynomials of non-fibered hyperbolic L-space links. Here,
we consider the single variable Alexander polynomials for the two different orientations on
the above L-space links. None of them has leading coefficient 1, although the multi-vari-
able Alexander polynomials do have coefficients ±1. Thus, they are not fibered with any
orientation.

over circle with fiber F . The fiberedness of links is detected by the knot Floer homology.

See Corollary 1.2 in [30]: An oriented link −→
L in S3 is fibered if and only if the knot Floer

homology ĤFK(−→L ) has a single copy of Z at the top Alexander grading. Thus, for a

homologically thin link L, the link L is fibered if and only if its single-variable Alexander

polynomial has leading coefficient ±1. Note that two-bridge links are alternating and thus

homologically thin; see Theorem 1.3 in [42]. We compute the multi-variable polynomials

ΔL(x, y) using the algorithm in [22] , and plug t or t−1 for x, y so as to get the single-variable

Alexander polynomials. It turns out that b(10n + 4,−5) is not fibered with any orientation,

when 2 ≤ n ≤ 6. See Table 4.2.1. In fact, the fibered two-bridge knots and links are also

classified by using continued fractions due to Gabai. See [6]. One should be able to generalize

this to all n ≥ 2 using number theoretic arguments.
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Figure 4.2.10: The 3-component link L7a7. The 3-component link L drawn above on the
left is the mirror of L7a7 drawn in the Thistlethwaite Link Table on Knot Atlas. Consider
the (n, n, 1)-surgery on L. After blowing down the 1-framed component L3, we get the
(n − 1, n − 1)-surgery on the Whitehead link Wh.

Example 4.2.10 (Plumbing trees). Any plumbing tree L of unknots is an L-space link. In

fact, any sufficiently negative surgery on L is a negative definite graph without bad vertices,

and thus is an L-space, by [35] Lemma 2.6. Since the plumbing tree is amphichiral, the

sufficiently positive surgeries are also L-spaces. Note that if M is an L-space, then so is

−M .

The surgeries on a plumbing tree are generally Seifert manifolds. Actually, we also have

examples of plumbing graph of unknots to be generalized L-space links, which give rise to

hyperbolic manifolds. But one should be very careful about the types of generalized L-space

links. Also note that for the same graph there are many different plumbings.

Example 4.2.11 (L7a7 in the Thistlethwaite Link Table). The link L drawn in Figure

4.2.10 is an L-space link. It is actually the mirror of L7a7 drawn in the Thistlethwaite Link

Table. Consider the (n, n, 1)-surgery on L. It is an L-space when n � 0. This is because

after blowing down the (+1)-framed knot L3, we get the L-space Whitehead link b(8,−3).

Then, it follows from Lemma 4.1.5 that L is an L-space link.

Example 4.2.12. The plumbing of unknots L in Figure 4.2.11 is a hyperbolic L-space link.

In fact, consider the (3, 1, 3, 1)-surgery on L, which is S3. By Lemma 4.1.5, L is an L-space
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Figure 4.2.11: A plumbing graph L-space link. Consider the link L = L1 ∪ ... ∪ L4 in
the figure which is a plumbing of unknots. By blowing down L2, L4, we see that the surgery
shown is S3.

link. In fact, this link is derived by resolving the Whitehead link. Thus, all the surgeries on

the Whitehead link are surgeries on this link.

Example 4.2.13. The plumbing shown in Figure 4.2.12 is a generalized (++++−)L-space

link. The (1, 1, 1, 1, 1)-surgery is the Poincaré sphere. See [47] page 309. In fact, every proper

sublink is an L-space link, since the surgeries on them are lens spaces. Thus, by Lemma

4.1.4, the (p1, 1, 1, 1, 1)-surgery is an L-space for all p1 ≥ 1, since det(Λ(1, 1, 1, 1, 1)) =

−1 and det(Λ(1, 1, 1, 1, 1)|L−L1) = −1. Next, from that S3
p1,1,1,1(L − L2) = L(p1, 1) and

det(Λ(p1, 1, 1, 1, 1)) = det(Λ(p1, 1, 1, 1, 1)|L−L2) = −p1, it follows that (p1, p2, 1, 1, 1)-surgery

on L is an L-space for all p1 ≥ 1, p2 ≥ 1. Similarly, we can get the (p1, p2, p3, 1, 1)-surgery

is an L-space for all p1 ≥ 1, p2 ≥ 1, p3 ≥ 1. This is because S3
p1,p2,1,1(L − L3) = L(p1, 1),

and det(Λ(p1, p2, 1, 1, 1)) = −p1p2, det(Λ(p1, p2, 1, 1, 1)|L−L3) = −p1. Now, we can get that

the (p1, p2, p3, p4, 1)-surgery on L is an L-space, for all p1 ≥ 3, p2 ≥ 3, p3 ≥ 2, p4 ≤ 1, since

det(Λ(p1, p2, p3, 1, 1)) = p2−p1p2−p2p3 < 0, det(Λ(p1, p2, p3, 1, 1)|L−L4) = 1−p1−p3−p1p2 +

p1p2p3 > 0. Finally, we can obtain that the (p1, p2, p3, p4, p5)-surgery on L is an L-space for
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Figure 4.2.12: A generalized (++++−)L-space link. Consider the link L = L1 ∪ ...∪L5
in the figure which is a plumbing of unknots. The surgery shown is the Poincaré sphere.

all p1 � 0, p2 � 0, p3 � 0, p4 � 0, p5 ≥ 1, due to

det(Λ(p1, p2, p3, p4, 1)) = p1p2p3p4 + lower terms < 0,

det(Λ(p1, p2, p3, p4, 1)|L−L5) = p1p2p3p4 + lower terms < 0.

Example 4.2.14 (A family of L-space chain links). A n-chain link consists of n unknotted

circles, linked together in a closed chain. Hyperbolic structures on n-chain link complements

have been studied, for example, by Neumann and Reid [29]. They show that when l ≥ 5

they are hyperbolic links.

The family of l-component chain links in Figure 4.2.14 are all L-space links. In fact, the

(1, 2, ..., 2, l − 2)-surgery satisfies the positive L-space surgery criterion. First, if we blow

down L1, L2, ..., Ll−2 successively, then we get the (1, 1)-surgery on the Whitehead link, the

Poincaré manifold. Moreover, every proper sublink is a union of linear plumbings of unknots,

and their surgeries are all connected sum of lens spaces. Thus, we only need to check the

positive determinant condition.

Since a handle slide does not change the determinants of the surgery framing matri-

ces, blowing down a +1 framed unknot does not change the determinants of the surgery
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framing matrices. Thus, after successively blowing down L1, ..., Ll−2 from L, we see that

det(Λ(1, 2, ..., 2, l − 1)) = 1. For the proper sublinks, we only need to consider a linear

plumbing L′ ⊂ L. Since the determinant of the surgery framing matrix does not depend

on the orientations, we can always orient L′ such that all the linking numbers of adjacent

components are −1. Let M(k, n) denote the following k × k matrix

M(k, n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n −1

−1 2 −1

−1 2

· · ·
2 −1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the surgery framing matrix of the linear plumbing in Figure 4.2.13. There are four

cases for computing det(Λ|L′):

• if L1 /∈ L′, Ll /∈ L′, then Λ|L′ = M(k, 2) with k being the number of components in L′;

• if L1 /∈ L′, Ll ∈ L′, then Λ|L′ = M(k, l − 1);

• if L1 ∈ L′, Ll /∈ L′, then after successively blowing down L1, L2, ..., we can see

det(Λ|L′) = 1;

• if L1 ∈ L′, Ll ∈ L′, then after successively blowing down L1, L2, ... inside L′, we can see

det(Λ|L′) equals to det(M(k, n)) with k ≤ l − 2, n ≥ 1.

It is not hard to see det(M(k, 2)) = k + 1 by induction, and thus det(M(k, n)) = nk − k + 1.

Therefore, all determinants are positive.

Example 4.2.15 (Another sequence of L-space chain links). Similarly, the family of l-

component chain links in Figure 4.2.16 are also all L-space links for l ≥ 3. In fact, when

n1, n2 are large enough, the (1, 2, ..., 2, n2, n1)-surgery satisfies the positive L-space surgery
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Figure 4.2.13: A linear plubming.

Figure 4.2.14: A family of hyperbolic L-space chain links. The surgery labelled above
satisfies the positive L-space surgery criterion.
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Figure 4.2.15: A linear plubming.

criterion. This is because after blowing down L1, ..., Ll−2, we have an (n1 − l + 2, n2 − 1)

framed T (2, 4) torus link. Thus, when n1, n2 are both large, this surgery is an L-space, since

T (2, 4) is an L-space link. As is similar in Example 4.2.14, we only need to show when n1, n2

are large enough, det(Λ(1, 2, ..., 2, n2, n1)|L′) is positive for any sublink L′. For any sublink

L′, we can blow down the circles on the side of L1, and then obtain a linear plumbing as in

Figure 4.2.15. The surgery matrix is a k × k matrix in the form of

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1 − c −1

−1 n2 −1

−1 2

· · ·
2 −1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where c is the number of times for blowing down +1-framed unknots. The determinant of

the above matrix is a polynomial of n1, n2, and the leading term is det(M(k − 2, 2))n1n2 =

(k − 1)n1n2. Thus, for n1, n2 large enough, all the determinants are positive.

Note that the link in Example 4.2.13 is the same as the link here for l = 5.

Example 4.2.16. The link L(n) = V1 ∪ V2 ∪ H1 ∪ ... ∪ Hn shown in Figure 4.2.17 is a

generalized L-space link of "++− · · ·−" type, for any n ≥ 1. One can do similar induction

as in Example 4.2.13 to show the following claim.

Claim: For any 0 ≤ k ≤ n and all integers p1 � 0, p2 � 0, q1 � 0, · · · , qk � 0, the

(p1, p2, q1, . . . , qk,−1, . . . ,−1)-surgery on L(n) is an L-space. Notice that the determinant of
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Figure 4.2.16: Another family of hyperbolic L-space chain links. The surgery labelled
above satisfies the positive L-space surgery criterion, when n1, n2 are large enough.

framing matrix

det(Λ((p1, p2, q1, . . . , qk,−1, . . . ,−1))) = (−1)n−kp1p2q1 · · · qk + lower terms.

The claim will follow from two induction on n and on k.

Notice that surgeries on L(n) are mostly graph manifolds.

Example 4.2.17 (Thistlethwaite Link Table with crossing number ≤ 7). We examine the

links in the Thistlethwaite Link Table with crossing number ≤ 7 and list the results in Table

4.2.2.

Using the conditions of Alexander polynomials in Theorem 1.3.15, we conclude that L6a1,

L7a1, L7a2, L7a4, and L7a5 are all non-L-space links.

The link L6a2 is the two-bridge link b(10, 7). Conjecture 1.3.14 has been verified for all

two-bridge links b(p, q) with p ≤ 100 using the algorithm from [22]. So L6a2 is a non-L-space

link.

The link L6a5 is the mirror of the left link in Figure 4.2.7 with n = 1, on which the
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Figure 4.2.17: Another sequence of generalized L-space link. Consider the link L(n)

used in the proof of Lemma 4.2.5. It is in fact a generalized L-space link.

(2, 2, 1)-surgery is an L-space. Then, it quickly follows from the positive L-space surgery

criterion that the mirror of L6a5 is an L-space link.

For the link L6n1, after blowing down a +1-framed component from it (all three com-

ponents are symmetric), we get the unlink. So the (10, 10, 1)-surgery on L6n1 satisfies the

positive surgery criterion, and thus showing that L6n1 is an L-space link.

The mirror of L7a3 consists of two components L1 and L2, where L1 is the right-handed

trefoil and L2 is the unknot. Consider the (n, 1)-surgery on the mirror of L7a3 with n large.

After blowing down the unknot, we have a large surgery on the right-handed torus knot

T (2, 5). This is an L-space, since the right-handed torus knot T (2, 5) is an L-space knot.

Then it follows from the positive surgery criterion that the mirror of L7a3 is an L-space link.

The link L7a6 is the two-bridge link b(14,−9), and it is not L-space link by direct

computation.

The link L7n1 has two components L1 and L2, where L1 is the right-handed trefoil knot

and L2 is the unknot. Consider the (10, 1)-surgery on this link. After blowing down the

unknot, the trefoil is unknotted and we obtain a lens space surgery. Since the right-handed

trefoil is an L-space knot, from the positive surgery criterion it follows that L7n1 is an

L-space link.
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Links L-space link Alexander polyno-
mial

Comments

L2a1 Yes Yes The Hopf link
L4a1 Yes Yes The T (2, 4) torus link
L5a1 Yes Yes Mirror of the L-space Whitehead

link
L6a1 No No
L6a2 No Yes
L6a3 Yes Yes The T (2, 6) torus link
L6a4 Yes Yes The Borromean link
L6a5 Yes Yes The mirror is an L-space link
L6n1 Yes Yes
L7a1 No No
L7a2 No No
L7a3 Yes Yes The mirror is an L-space link
L7a4 No No
L7a5 No No
L7a6 No Yes The two-bridge link b(14,−9)
L7a7 Yes Yes The mirror is an L-space link
L7n1 Yes Yes
L7n2 No Yes Generalized (+−)L-space link

Table 4.2.2: Thistlethwaite Link Table with crossing number ≤ 7. Here, by "Yes"
in the column "L-space link", it means either the link or its mirror is an L-space link; by
"Yes" in the column "Alexander polynomial", it means the conditions on the multi-variable
Alexander polynomial in Theorem 1.3.15 are satisfied.

The link L7n2 is not an L-space link; see Proposition 5.1.14 for the proof. Its mirror is not

an L-space link neither, since the left-handed trefoil is not an L-space knot. However, L7n2 is

a generalized (+−)L-space link. The link L7n2 consists of two components L1 and L2, with

L1 being the right-handed trefoil and L2 being the unknot. Consider the (n,−1)-surgery on

L7n2 with n large. After blowing down the unknot, we get the unknot, thus getting a lens

space surgery. Then, since the right-handed trefoil is an L-space knot, (n,−k)-surgery is an

L-space for all k > 0 and large n by Lemma 4.1.4.
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4.3 Floer homology and Alexander polynomials of L-space links

In this section, we study the link Floer homology and the multi-variable Alexander polyno-

mials of L-space links with l ≥ 2 components. The Alexander polynomial of L is determined

by the Euler characteristics of the link Floer homology HFL−(L, s), due to Equation (2) in

[42]

ΔL(x1, ..., xl) �=
∑

(s1,...,sl)∈H(L)
χ(HFL−(L, s1, ..., sl)) · xs1

1 · · ·xsl
l , (4.3.1)

where f
�= g denotes that f and g differ by multiplication by units. Here, we use CFL−(L)

rather than ĈFL(L) as in [40]. Note that CFL−(L, s1, s2) is a finite dimensional F-vector

space, and thus χ(CFL−(L, s1, s2)) = χ(HFL−(L, s1, s2)).

Now we are ready to prove Theorem 1.3.15 from the introduction.

4.3.1 Proof of Theorem 1.3.15.

Proof. Fixing {si}i, we denote the following successive quotient complexes by

C
(1)
k ={x ∈ CF−(S3)|Ai(x) = si, 1 ≤ i ≤ k, Aj(x) ≤ sj, k + 1 ≤ j ≤ l},

C
(2)
k ={x ∈ CF−(S3)|Ai(x) = si, 1 ≤ i ≤ k, Ak+1(x) ≤ sk+1 − 1, Aj(x) ≤ sj, k + 2 ≤ j ≤ l}.

Then, C
(1)
0 = A−

s , C
(2)
0 = A−

s1−1,s2,...,sl
, C

(1)
l = CFL−(L, s), and C

(1)
k+1 = C

(1)
k /C

(2)
k .

Consider the short exact sequence of chain complexes

0 → C
(2)
0

ι−→ C
(1)
1 → C

(1)
1 → 0,

where the map ι is the inclusion map. It induces another short exact sequence of homologies

0 → coker(ι∗) → H∗(C(1)
1 ) → ker(ι∗) → 0.

The map ι∗ : F[[U ]] → F[[U ]] is either 0 or a multiplication of Uk for some integer k ≥ 0.
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Since U1 acts on the chain complex C
(1)
1 as 0, it also acts as 0 on homology. Thus,

H∗(C(1)
1 ) is either 0 or F[[U ]]/U. Note here F[[U ]] denotes F[[U1, U2, ..., Ul]]/(U1 −U2, ..., U1 −

Ul) as an F[[U1, U2, ..., Ul]]-module and the U -action denotes any action of Ui. Furthermore,

χ(H∗(C(1)
1 )) is either 0 or 1. In fact, if H∗(C(1)

1 ) = 0, then the grading of 1 ∈ F[[U ]] =

H∗(C(1)
0 ) equals to the grading of 1 ∈ F[[U ]] = H∗(C(2)

0 ); while if H∗(C(1)
1 ) = F[[U ]]/U ,

then the grading of 1 ∈ H∗(C(1)
0 ) equals to the grading of 1 ∈ H∗(C(2)

0 ) plus 2, and the

grading of 1 ∈ F[[U ]]/U = H∗(C(1)
1 ) equals to the grading of 1 ∈ H∗(C(1)

1 ). Moreover, the

complex A−
+∞,...,+∞ is just CF−(S3) and the absolute gradings of elements in H∗(A−

+∞,...,+∞)

are all even integers. An induction will show that all the absolute gradings of elements in

the homologies of A−
s1,s2,...,sl

and any successive quotients of them are all even integers.

Thus, we have

χ(H∗(C(1)
1 )) = 0 or 1.

Notice that C
(1)
k and C

(2)
k are defined similarly, just with different s values. Thus, we can

similarly show that

χ(H∗(C(2)
1 )) = 0 or 1.

Since χ(H∗(C(1)
k+1)) = χ(H∗(C(1)

k )) − χ(H∗(C(2)
k )), we can inductively prove that

∣∣∣χ(H∗(C(1)
k ))
∣∣∣ ≤ 2k−2,∀k = 2, ..., l,

∣∣∣χ(H∗(C(2)
k ))
∣∣∣ ≤ 2k−2,∀k = 2, ..., l.

Hence, we prove Inequality (1.3.2) by letting k = l.

Since C
(1)
k+1 = C

(1)
k /C

(2)
k , we have

rankF(C(1)
k+1) ≤ rankF(C(1)

k ) + rankF(C(2)
k ).

From rankFH∗(C(1)
1 ) ≤ 1, it follows that rankFHFL−(L, s) ≤ 2l−1. Thus, Inequality (1.3.1)

holds.
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Let us look at the signs of the multi-variable Alexander polynomial when l = 2. Suppose

χ(CFL−(L, s1, s2)) and χ(CFL−(L, s1 + k, s2) are the consecutive non-zero Euler charac-

teristics among the horizontal Alexander gradings, that is,

• |χ(CFL−(L, s1, s2))| = 1,

• |χ(CFL−(L, s1 + k, s2))| = 1,

• χ(CFL−(L, s1 + i, s2)) = 0,∀i = 1, 2, ..., k − 1.

Then, we have

χ(H∗(A−
s1+k,s2/A−

s1+k,s2−1)) − χ(H∗(A−
s1−1,s2/A−

s1−1,s2−1)) (∗)

=
k∑

i=0
χ(CFL−(L, s1 + i, s2))

=χ(CFL−(L, s1, s2)) + χ(CFL−(L, s1 + k, s2)).

Since χ(H∗(A−
s1,s2/A−

s1,s2−1)) = 0 or 1, for all (s1, s2) ∈ H(L), the top row of Equation (∗)

is 0 or ±1. Whereas by the assumption, the bottom row of Equation (∗) is 0 or ±2. Thus,

we have

χ(CFL−(L, s1, s2)) + χ(CFL−(L, s1 − k, s2)) = 0.

Corollary 4.3.1. A homological thin L-space 2-component prime link L = L1∪L2 has fibered

link exterior.

Proof. The homological thin condition means that the homology ĤFL(L, s) is supported in

a single Maslov grading, and thus is determined by its Euler characteristic. Thus, the link

Floer homology is determined by the multi-variable Alexander polynomial. However, here

we need to consider the hat version link Floer homology for the discussions of fiberedness.

138



Let the symmetrized Alexander polynomial be

ΔL(x, y) =
∑
i,j

ai,j · xi · yj.

We choose

x0 = max{i|ai,j �= 0}, y0 = max{j|ax0,j �= 0}.

Since ∑
(s1,s2)∈H(L)

χ(ĤFL(L, s1, s2)) · xs1 · ys2 = ±(x − 1)(y − 1)√
xy

ΔL(x, y),

we have that (x0+1
2 , y0+1

2) is an extreme point of the polytope for ĤFL(L), and χ(ĤFL(L, x0+
1
2 , y0 + 1

2)) = ±1. Furthermore, since L is homological thin, we have that rankĤFL(L, x0 +
1
2 , y0 + 1

2) = 1, and thereby the link exterior of L is fibered.

4.3.2 Examples.

Let us use Theorem 1.3.15 to filter L-space links among two-bridge links. Notice that in the

knot case the Alexander polynomial gives a strong obstruction for an alternating knot to be

an L-space knot. In [40], it is shown that alternating L-space knots are only (2, 2n+1) torus

knots.

Proposition 4.3.2 (Ozsváth-Szabó, [40], Proposition 4.1). If K is an alternating knot with

the property that all the coefficients ai of its Alexander polynomial ΔK have |ai| ≤ 1, then

K is the (2, 2n + 1) torus knot.

Theorem 4.3.3 (Ozsváth-Szabó, [40], Theorem 1.5). If K ⊂ S3 is an alternating knot with

the property that there is some integral surgery along K is an L-space, then K is a (2, 2n+1)

torus knot for some integer n.

In contrast to the knot case, by computer experiments, we find many hyperbolic two-

bridge non-L-space links whose Alexander polynomials satisfy the constraints in Theorem

1.3.15. We list some interesting phenomena in the two-bridge links b(p, q) below, where
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0 < p ≤ 100. Note that all these phenomena should presumably be true for all positive even

integers p.

Links Alexander polynomial condition: Hyperbolic link: L-space link:

b(2n,−1) Yes Torus link T (2, 2n) Yes

b(6n + 2,−3) Yes Hyperbolic link Yes

b(6n + 4,−3) Yes Hyperbolic link No, when 6n + 2 ≤ 100.

b(10n ± 2, 5) No Hyperbolic link No

4.3.3 HFL− of L-space links.

Let L be an L-space link. In general, CFL−(L, s) is an iterated quotient complex of A−
s .

For every subcomplex C1 ⊂ C, the quotient complex C/C1 is quasi-isomorphic to the

mapping cone of the inclusion map i : C1 → C. Thus, it leads to an iterated mapping cone

construction of CFL−(L, s) by using A−
s . This provides a spectral sequence converging to

HFL−(L, s) considered as F-vector spaces, which is stated in [10]. This spectral sequence

also implies Inequality (1.3.1).
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CHAPTER 5

Applications to surgeries L-space links

5.1 Surgeries on L-space links

Using the knot surgery formula from [43], the graded Heegaard Floer homology of surgeries

on L-space knots are determined by the Alexander polynomial and the surgery coefficient.

Using the Manolescu-Ozsváth link surgery formula from [24] and algebraic rigidity results

from [22], we prove Theorem 1.4.1 and give some explicit formulas in this section.

The generalized Floer complexes A−
s ’s are F[[U1, ..., Ul]]-models, and all the Ui multipli-

cations are homotopic to the U1 multiplication. In fact, when L is an L-space link, A−
s (L) is

chain homotopic to F[[U1]] preserving the Z-grading. This is done by restricting our scalars

to F[[U1]] and applying the algebraic rigidity results Proposition 5.5 and Corollary 5.6 in

[22]. There is an absolute Z-grading on A−
s . However, the U1 action lows down it by 2, and

thus it is not a chain complex of F[[U1]]-modules. So, the complexes here are considered as

Z/2Z-graded chain complexes of F[[U1]]-modules together with a Z-grading compatible with

the Z/2Z-grading, where U1 lowers the Z-grading by 2.

Proposition 5.1.1 (Proposition 5.5, [22]). Let A∗, B∗ be Z-graded complexes of F-modules

with U-action dropping grading by 2 and commuting with the differential. Suppose A, B are

both free F[[U ]]-modules, and H∗(A) = H∗(B) = F[[U ]], precisely, H2k(A) ∼= H2k(B) ∼= F for

all k ≤ 0 and Hi(A) = Hi(B) = 0 otherwise, where U · H2k(A) = H2k−2(A), U · H2k(B) =

H2k−2(B).

Then, if F, G : A → B are both quasi-isomorphisms of F[[U ]]-modules, then F, G are

chain homotopic as maps of F[[U ]]-modules. Moreover, if H, K are both chain homotopies
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as homomorphisms of F[[U ]]-modules between any two chain maps f, g : A → B, i.e. H∂ +

∂H = K∂ + ∂K = f − g, then H − K = ∂T + T∂, for some F[[U ]]-module homomorphism

T : A∗ → B∗+2.

Using these chain homotopy equivalences, we replace A−
s (L) by F[[U1]] in the Manolescu-

Ozsváth link surgery complex and replace the maps up to homotopies. In [22], we call this

new complex the perturbed surgery formula. Thus, we only need to determine the map Φ
−→
M
s in

the perturbed surgery formula, where are either 0 or multiplications of Uk. For the definition

of those Φ maps, one can see [24] Section 7 or [22] Section 4.

Combining this with conjugation symmetry, we determine the maps Φ±Li
s by the coeffi-

cients in the multi-variable Alexander polynomials of the sublinks in L and the linking num-

bers. We also show that in the perturbed surgery complex, Φ±L1∪±L2
s = 0 for all s ∈ H(L).

For higher diagonal maps, more information is needed. For 2-component case, we write down

explicit formulas.

5.1.1 Conjugation symmetry of inclusion maps.

Definition 5.1.2 (p
−→
M(s)). For s ∈ H̄(L) and −→

M ⊂ L, we define p
−→
M(s) = (p

−→
M
1 (s1), ..., p

−→
M
l (sl))

by the following formulas

p
−→
M
i (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if Li ⊂ M has the induced orientation from L;

−∞ if Li ⊂ M has the opposite orientation from L;

s if Li �⊂ M.

Definition 5.1.3 (n
−→
M
s (L)). Suppose −→

L is an oriented l-component L-space link and −→
M ⊂ −→

L

is a sublink which might not have the induced orientation. Choose a Heegaard diagram H of

L. The inclusion map I
−→
M
s : A−(H, s) → A−(H, p

−→
M(s)) is a chain map shifting the Z-grading

by a definite amount, which is explicitly expressed in Equation (57) in [24]. Thus, the map

induced on homologies (I
−→
M
s )∗ : H∗ (A−(H, s)) → H∗

(
A−(H, p

−→
M(s))

)
is a multiplication of a
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monomial Uk : F[[U ]] → F[[U ]] or 0 rather than a multiplication of a polynomial. In fact,

this map is not 0. Consider the short exact sequence

0 → A−
p

−→
M (s)

→ A−
s → A−

s /A−
p

−→
M (s)

→ 0

and the induced exact triangle on homology. The homology A−
s /A−

p
−→
M (s)

is a torsion U1

module, which is argued similarly as in the proof of Theorem 1.3.15.

The integer k does not depend on the choice of H, and thus we define it to be n
−→
M
s (L).

When the context is clear, we simply denote it by n
−→
M
s .

Remark 5.1.4. When L is a L-space knot K, these n±K
s (K)’s are just the same as Vs’s and

Hs’s defined for knots in [31].

Lemma 5.1.5 (Conjugation symmetry of n
−→
M
s (L)). Suppose L is an oriented n-component

L-space link. Then

n
−→
M
s = n−−→

M
−s , ∀s ∈ H(L),∀−→M ⊂ L.

Proof. Choose an admissible basic Heegaard diagram H = (Σ, α, β, wH , zH) for −→
L . In

order to distinguish the basepoints in different Heegaard diagrams, we put a superscript

H on w and z. Then, H′ = (−Σ, β, α, wH′
, zH′) is also a Heegaard diagram for −→

L , where

wH = zH′
, zH = wH′ .

There is an F[[U1, . . . , Un]]-linear isomorphism of chain complexes

hs : A−(H, s) −−−→ A−(H′,−s),

x �−−−−−→ x, ∀x ∈ Tα ∩ Tβ.

Actually, for any x, y ∈ Tα ∩ Tβ and a class φ ∈ π2(x, y), the moduli space of holomorphic

disks M(φ,H) is identical to M(φ,H′). See Theorem 2.4 in [38]. Moreover, it is not hard to

see that the Alexander gradings are of opposite signs

A(x,H) = −A(x,H′).
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Thus, we just need to show hs is a chain map, i.e.

∂H′
−s(hs(x)) =

∑
y∈Tα∩Tβ

∑
φ∈π2(x,y),μ(φ)=1

#(M(φ)/R) · U
EH′

−s1
(φ)

1 · · ·UEH′
−sn

(φ)
n · y

= hs(∂H
s (x)) =

∑
y∈Tα∩Tβ

∑
φ∈π2(x,y),μ(φ)=1

#(M(φ)/R) · U
EH

s1 (φ)
1 · · ·UEH

sn
(φ)

n · y.

In fact, by Equation (4.1.3), ∀φ ∈ π2(x, y), ∀1 ≤ i ≤ n,

EH′
−si

(φ) = max(−si − AH′
i (x), 0) − max(−si − AH′

i (y), 0) + nzH′
i

(φ)

= max(−si + AH
i (x), 0) − max(−si + AH

i (y), 0) + nwH
i

(φ)

= EH
si

(φ).

Moreover, by direct computation, we have the following commuting diagram

A−(H, s)
I

−→
M
s (H) ��

hs �� A−(H′,−s)
I−−→

M
−s (H′)��

A−(H, p
−→
M(s))

h
p

−→
M (s)

�� A−(H′,−p
−→
M(s)).

Thus, it follows that

n
−→
M
s = n−−→

M
−s , ∀s ∈ H(L), ∀−→M ⊂ L.

5.1.2 Perturbed the link surgery formula for 2-component L-space links.

We review the link surgery formula of Manolescu-Ozsváth for a 2-component link L. See [24]

and Section 4 in [22]. We need some notations. Denote the set of orientations on a link N by

Ω(N). We define some projection maps by p±L1(s1, s2) = (±∞, s2), p±L2(s1, s2) = (s1,±∞),

and p±L1∪±L2(s1, s2) = (±∞,±∞).

Choose an admissible basic Heegaard diagram H and denote A−(H, s) by A−
s . Then, the
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Manolescu-Ozsváth surgery complex (C−(H, Λ), D−(Λ)) is as follows:

(C−(H, Λ), D−(Λ)) :=
∏

(s1,s2)∈H(L)
A−

s1,s2

D01
00(Λ)

��

D10
00(Λ)

��

D11
00(Λ)

��

∏
(s1,s2)∈H(L)

A−
+∞,s2

D01
10(Λ)

��∏
(s1,s2)∈H(L)

A−
s1,+∞

D10
01(Λ)

��
∏

(s1,s2)∈H(L)
A−

+∞,+∞,

(5.1.1)

where ∀δ1, δ2, ε1, ε2 ∈ {0, 1},

Dδ1δ2
ε1ε2(Λ) =

∏
(s1,s2)∈H(L)

⎛⎜⎝ ∑
−→
M∈Ω(δ1L1∪δ2L2)

Φ
−→
M
p+ε1L1∪+ε2L2 (s1,s2)

⎞⎟⎠ . (5.1.2)

The Manolescu-Ozsváth surgery complex is in the category of complexes of F[[U1]]-

modules, Ch. Inspired by the idea of homotopy category K of F[[U1]]-modules, we can

replace the complexes on the vertices of the hypercube by its chain homotopy type and

replace the maps on the edges by its homotopy type. Then, the Manolescu-Ozsváth surgery

complex becomes a perturbed surgery formula.

Lemma 5.1.6. Let −→L = −→
L1∪−→

L2 be an L-space link. Then the Heegaard Floer homologies on

all the surgeries HF−(S3
Λ(L)) and their absolute gradings are determined by {n+L1

s (L)}s∈H(L)

and {n+L2
s (L)}s∈H(L).

Proof. We restrict our scalars to F[[U1]] from now on. Consider the chain complex F[[U1]],

which is freely generated by a single element over F[[U1]] with 0 differential. Since L is an

L-space link, i.e. H∗(A−
s (L)) = F[[U ]],∀s ∈ H(L), A−

s (L) is in fact chain homotopic to F[[U1]]

by Corollary 5.6 in [22] as a Z-graded F[[U1]]-module with U1 lowering grading by 2.

Thus, we can replace every A−
s by Ã−

s which is isomorphic to Cu and replace the maps

correspondingly so as to get a new complex (C̃−(H, Λ), D̃−(Λ)). We call it the perturbed

surgery complex, and it is chain homotopic to the original one.

More concretely, we first replace the edge maps in the squares in Equation (5.1.1) Φ±Li
s
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by

Φ̃±Li
s = Un

±Lis
1 : F[[U1]] → F[[U1]].

Next, we replace the diagonal maps Φ±L1∪±L2
s by

Φ̃±L1∪±L2
s = 0.

The reason we replace the diagonal maps by 0 is that, in the link surgery complex, the

F[[U1]]-linear diagonal maps always shift the Z-gradings by an odd number.

Finally, we get the new perturbed surgery complex C̃(Λ) as follows:

(C̃−(H, Λ), D̃−(Λ)) :=
∏

(s1,s2)∈H(L)
Ã−

s1,s2

D̃01
00(Λ)

��

D̃10
00(Λ)

��

D̃11
00(Λ)

��

∏
(s1,s2)∈H(L)

Ã−
+∞,s2

D̃01
10(Λ)

��∏
(s1,s2)∈H(L)

Ã−
s1,+∞

D̃10
01(Λ)

��
∏

(s1,s2)∈H(L)
Ã−

+∞,+∞,

(5.1.3)

where

D̃δ1δ2
ε1ε2(Λ) =

∏
(s1,s2)∈H(L)

⎛⎜⎝ ∑
−→
M∈Ω(δ1L1∪δ2L2)

Φ̃
−→
M
p+ε1L1∪+ε2L2 (s1,s2)

⎞⎟⎠ , δ1, δ2, ε1, ε2 ∈ {0, 1}. (5.1.4)

The perturbed complex C̃(Λ) is chain homotopy equivalent to the original surgery com-

plex as F[[U1]]-modules. Moreover, this chain homotopy equivalence is preserving the Z-

grading on it. For more details, see Section 5.6 in [22].

Hence, we have H∗(C̃(Λ)) ∼= HF− (S3
Λ(L)) as an F[[U1]]-module. By Link Surgery Theo-

rem in [24], we have Ui actions on the homology of HF− (S3
Λ(L)) are all the same, i.e.

HF− (S3
Λ(L)
)

= H∗(C̃(Λ)) ⊗F[[U1]] F[[U1, U2]]/(U1 − U2).

All the inputs of C̃(Λ) are {n±L1
s (L)}s∈H(L) and {n±L2

s (L)}s∈H(L). Thus, the proof is done
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by Lemma 5.1.5. To compute the absolute grading for HF−, we only need to shift the

absolute Z-grading by c12(s)−2χ−3σ
4 which can be computed from Λ.

5.1.3 Redefining knot Floer homology.

We redefine the knot Floer homology by using slightly generalized Heegaard diagrams with

extra basepoints. The reason we consider these diagrams is that they are used in the proof

of Theorem 1.4.1. In [23], there are many generalized versions of knot Floer complex and

homology discussed. Since the version in this subsection is not presented in [23], we define

it here.

1. Heegaard diagram: We choose a Heegaard diagram H = (Σ, α, β, {w1, ..., wk}, {z1}).

2. Alexander grading: For any x ∈ Tα ∩ Tβ,

A(Un1
1 · · ·Unk

k x) = A(x) − n1.

3. Alexander filtration: The complex CF−(S3) is freely generated by x ∈ Tα ∩ Tβ over

F[[U1, U2, ..., Uk]] and the differentials are counting holomorphic disks. For ∀x ∈ Tα ∩
Tβ, we have A(∂x) ≤ A(x). This is because for a pseudo-holomorphic disk in φ ∈
π2(x, y), nz1(φ) ≥ 0 and

A(x) = A(y) + nz1(φ) − nw1(φ) = A(Unw1 (φ)
1 · . . . U

nwk
(φ)

k · y) + nz1(φ).

Thus, the Alexander grading induces a filtration on CF−(S3). We define the subcom-

plex

A−
s (K) := {x ∈ CF−(S3)|A(x) ≤ s}.

4. The filtered minus knot Floer homology: We define the chain complex CFK−(K, s) =

A−
s /A−

s−1 and HFK−(K, s) = H∗(CFK−(K, s)).
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5. The total minus knot Floer homology: We define the chain complex gCFK−(K) to be

freely generated by Tα ∩ Tβ, and ∀x ∈ Tα ∩ Tβ

∂x =
∑

y∈Tα∩Tβ

∑
φ ∈ π2(x, y)

μ(φ) = 1, nz1(φ) = 0

#(M(φ)/R) · U
nw1 (φ)
1 · · ·Unwk

(φ)
k · y.

The homology HFK−(K) is defined to be the homology of gCFK−(K).

Remark 5.1.7. Considered only as F-vector spaces, HFK−(K) = ⊕s∈Z HFK−(K, s). How-

ever, considered as F[[U1, ..., Uk]]-modules, HFK−(K, s) is the associated graded of a filtra-

tion on HFK−(K). Note that HFK−(K, s)’s are always torsion modules.

Proposition 5.1.8. Suppose K ⊂ S3 is a knot. For a multi-pointed Heegaard diagram

H = (Σ, α, β, {w1, ..., wk}, {z1}) for K, we have the following:

1. The knot Floer homology HFK−(K, s) is an F[[U ]] := F[[U1, ..., Uk]]/(U2, ..., Uk)-module,

and does not depend on H considered as an F[[U ]]-module.

2. We have the following identity

∑
s∈Z

χ
(
HFK−(K, s)

)
· ts �= 1

t − 1ΔK(t). (5.1.5)

Proof. This is actually a direct corollary of Theorem 4.10 in [24]. There are six types of

Heegaard moves according to [24],

(i) 3-manifold isotopy;

(ii) α-curve isotopy and β-curve isotopy;

(iii) α-handleslide and β-handleslide;

(iv) index one/two stabilizations;

(v) free index zero/three stabilizations;
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(vi) free index zero/three link stabilizations.

By Proposition 4.13 in [24], we only need to check how the knot Floer homology changes

under these Heegaard moves and their inverses.

The Heegaard moves of types (i) to (iv) are chain homotopy equivalences preserving the

Alexander filtration, and thus do not change the knot Floer homology.

A Heegaard move of type (v) changes the chain complex CF−(H) into CF−(H′), which

is the mapping cone CF−(H)[[Uk+1]]
Uk+1−Ui0−−−−−−→ CF−(H)[[Uk+1]]. Notice that Uk+1 does not

change the Alexander grading. Thus, if i0 �= 1, then CFK−(H′, s) is the mapping cone

CFK−(H, s)[[Uk+1]]
Uk+1−Ui0−−−−−−→ CFK−(H, s)[[Uk+1]].

If i0 = 1, then CFK−(H′, s) is the mapping cone

CFK−(H, s)[[Uk+1]]
Uk+1−−−→ CFK−(H, s)[[Uk+1]].

In both cases, we have that the homology of the mapping cone is

HFK−(H, s) ⊗R F[[U1, ..., Uk+1]]/(U2, ..., Uk+1),

where R = F[[U1, ..., Uk]].

The Heegaard move of type (vi) changes the complex CFK−(H, s) by

CFK−(H, s) ⊗ H∗(S1) ∼= CFK−(H, s) ⊕ CFK−(H, s).

However, if H1 and H2 are equivalent Heegaard diagrams both with a single pair of basepoints

on K, then total number of copies of HFK−(H1, s)’s in HFK−(H2, s) is one.
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5.1.4 Reduction of Heegaard diagrams.

Let H be Heegaard diagram for a link L. Then there are several Heegaard diagrams r−→
M

(H)

of the sublinks of L reduced from H. See Definition 4.17 in [24].

Lemma 5.1.9. Let −→
L = −→

L 1 ∪ −→
L 2 be a link and H = (Σ, α, β, {w1, w2}, {z1, z2}) be a

Heegaard diagram for −→
L . Denote A−(H, (s1, s2)) by A−

s1,s2, for all (s1, s2) ∈ H(L). Then

H∗(A−
+∞,s2/A−

+∞,s2−1) = HFK−(L2, s2 − lk
2 ).

In particular, χ
(
H∗(A−

+∞,s2/A−
+∞,s2−1)

)
is determined by the Alexander polynomial ΔL2(t).

Proof. By Proposition 5.1.8, we can use A−
+∞,s2/A−

+∞,s2−1 to compute the knot Floer homol-

ogy of L2. The only issue is on the Alexander grading. From Equation (36) in [24], there is

an identification

A−(H, p
−→
M(s))

∼=−→ A−(r−→
M

(H), ψ
−→
M(s)).

Note that the definition of ψ
−→
M(s) involves the linking numbers. Thus, we have the following

commuting diagram

A−
+∞,s2−1(L)

∼= ��

ι
+L2
+∞,s2−1

��

A−
s2−1− lk

2
(L2)

ι
+L2
s2−1− lk

2
��

A−
+∞,s2(L)

∼= �� A−
s2− lk

2
(L2),

where ι+L2
+∞,s2−1 and ι+L2

s2−1− lk
2

are both the inclusions of subcomplex. Thus, we have

A−
+∞,s2(L)

A−
+∞,s2−1(L)

∼=
A−

s2− lk
2
(L2)

A−
s2−1− lk

2
(L2)

= CFK−(L2, s2 − lk
2 ).

Thus, the lemma follows.
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5.1.5 Proof of Theorem 1.4.1.

Proof. Consider the following factorization of inclusion maps of subcomplexes

I+L2
s1,s2 : A−

s1,s2

ι
+L2
s1,s2−−−→ A−

s1,s2+1
I

+L2
s1,s2+1−−−−→ A−

s1,+∞.

It induces a factorization of the maps on homology (I+L2
s1,s2)∗ = (I+L2

s1,s2+1)∗ ◦ (ι+L2
s1,s2)∗. As is

discussed in the proof of Theorem 1.3.15, we see (ι+L2
s1,s2)∗ is a multiplication of Uk

+L2
s1,s2 , where

k+L2
s1,s2 = n+L2

s1,s2 − n+L2
s1,s2+1.

Moreover, k = 0 if and only if H∗(A−
s1,s2+1/A

−
s1,s2) = 0, and k = 1 if and only if

H∗(A−
s1,s2+1/A

−
s1,s2) = F with an even grading. Then, we have

χ
(
H∗(A−

s1,s2+1/A
−
s1,s2)
)

= n+L2
s1,s2 − n+L2

s1,s2+1.

Whereas,

χ
(
H∗(A−

s1+k,s2+1/A
−
s1+k,s2)

)

=χ
(
H∗(A−

s1,s2+1/A
−
s1,s2)
)

+
k∑

i=1
χ
(
HFL−(L, s1 + i, s2 + 1)

)
,∀k > 0.

Let k → ∞, and then we have χ
(
H∗(A−

k,s2/A−
k,s2−1)

)
= χ

(
H∗(A−

+∞,s2/A−
+∞,s2−1)

)
deter-

mined by ΔL2(t), by Lemma 5.1.9. Thus, all the n+L2
s1,s2 are determined by the Alexander

polynomials. Similar results hold for L1. The theorem follows from Lemma 5.1.6 and Theo-

rem 5.1.10.

In fact, when the linking number is not 0, the Alexander polynomials of L1 and L2 are

determined by the Alexander polynomial of L = L1 ∪ L2 and the linking number:

Theorem 5.1.10 (Murasugi, Proposition 4.1 in [27]). Let ΔL(x, y) and ΔL1(t) be the Alexan-
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der polynomial of a link L = L1 ∪ L2 and L1 respectively in S3. Then

ΔL(t, 1) �= 1 − tlk

1 − t
ΔL1(t),

where lk is the linking number of L.

5.1.6 Formulas for n±Li
s (L)’s.

Using the Alexander polynomials of L, L1, L2, we can get formulas for n±Li
s (L)’s.

First of all, we fix the overall signs of these Alexander polynomials to get normalization

of Equation (5.1.5) and Equation (4.3.1):

∑
s∈Z χ (HFK−(K, s)) · ts = t

t−1ΔK(t), (5.1.6)∑
(s1,s2)∈H(L) χ(HFL−(L, s1, s2)) · xs1

1 · xs2
2 = x

1
2
1 x

1
2
2 ΔL(x1, x2). (5.1.7)

For an L-space knot K, to get Equation (5.1.6), we require that t
t−1ΔK(t) has finitely

many non-zero positive powers and all the non-zero coefficients of t
t−1ΔK(t) are 1, which is

equivalent to ΔK(1) = 1.

Theorem 5.1.11. Suppose L = L1 ∪ L2 is an L-space link. Let ΔL1(t), ΔL2(t), and

ΔL(x1, x2) be the symmetrized Alexander polynomials, such that ΔL1(1) = ΔL2(1) = 1.

Let

t

t − 1ΔL1(t) =
∑
k∈Z

aL1
k · tk,

t

t − 1ΔL2(t) =
∑
k∈Z

aL2
k · tk,

ΔL(x1, x2) =
∑
i,j

aL
i,j · xi

1 · xj
2.

Suppose (i0, j0) satisfies that aL
i0,j0 �= 0, aL

i,j0 = 0 for all i > i0, and aL
i0,j = 0 for all j > j0.

Then,
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• χ
(
HFL−(L, i0 + 1

2 , j0 + 1
2)
)

= 1 if and only if aL1
i0+ 1

2 − lk
2

= aL2
j0+ 1

2 − lk
2

= 1;

• χ
(
HFL−(L, i0 + 1

2 , j0 + 1
2)
)

= −1 if and only if aL1
i0+ 1

2 − lk
2

= aL2
j0+ 1

2 − lk
2

= 0.

Proof. Notice that χ
(
A−

s1,s2/A−
s1,s2−1

)
can only be 0 or 1 for all (s1, s2) ∈ H(L). By Equation

(??), we have two possible cases:

(a) χ (HFL−(L, s1, s2)) = 1 if and only if χ
(
A−

s1,s2/A−
s1,s2−1

)
= 1 and χ

(
A−

s1−1,s2/A−
s1−1,s2−1

)
=

0;

(b) χ (HFL−(L, s1, s2)) = −1 if and only if χ
(
A−

s1,s2/A−
s1,s2−1

)
= 0 and χ

(
A−

s1−1,s2/A−
s1−1,s2−1

)
=

1.

In addition, we have

χ
(
A−

i0+ 1
2 ,j0+ 1

2
/A−

i0+ 1
2 ,j0− 1

2

)
= χ
(
A−

+∞,j0+ 1
2
/A−

+∞,j0− 1
2

)
= χ
(

HFK−(L2, j0 + 1
2 − lk

2 )
)

.

So χ (HFL−(L, s1, s2)) = 1 if and only if aL2
j0+ 1

2 − lk
2

= 1. Symmetrically, we have χ (HFL−(L, s1, s2)) =

1 if and only if aL1
i0+ 1

2 − lk
2

= 1. Similar argument applies to the case (b).

Definition 5.1.12 (Normalization of Alexander polynomials for L-space links). Suppose

L = L1 ∪ L2 is an L-space link. Let the symmetrized Alexander polynomial of L be

ΔL(x1, x2) =
∑
i,j

aL
i,j · xi

1 · xj
2,

where xi corresponds to the component Li for i = 1, 2. Let the symmetrized Alexander

polynomials of L1, L2 be ΔL1(t), ΔL2(t) in the forms of

t

t − 1ΔL1(t) =
∑
k∈Z

aL1
k · tk,

t

t − 1ΔL2(t) =
∑
k∈Z

aL2
k · tk.

Let (i0, j0) be such that

j0 = max{j ∈ Z + lk − 1
2 | aL

i,j �= 0} and i0 = max{i ∈ Z + lk − 1
2 | aL

i,j0 �= 0}.
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Then, these Alexander polynomials are called normalized, if

1. the leading coefficient of ΔLi
(t) is 1 for both i = 1, 2, which is equivalent to ΔLi

(1) = 1;

2. if aL2
j0− lk

2 + 1
2

= 1, then aL
i0,j0 = 1; while if aL2

j0− lk
2 + 1

2
= 0, then aL

i0,j0 = −1.

After normalization, we have χ(HFL−(L, s1, s2)) = aL
s1− 1

2 ,s2− 1
2

and χ(HFK−(Li, s)) =

aLi
s for i = 1, 2. Therefore,

χ(H∗(A−
s1,s2/A−

s1,s2−1)) = aL2
s2− lk

2
−

∞∑
i=1

aL
s1− 1

2 +i,s2− 1
2

= 0 or 1.

Hence, we have

n+L2
s1,s2 =

∞∑
j=1

(
aL2

s2+j− lk
2
−

∞∑
i=1

aL
s1+i− 1

2 ,s2+j− 1
2

)
. (5.1.8)

Similarly, we have

n+L1
s1,s2 =

∞∑
i=1

⎛⎝aL1
s1+i− lk

2
−

∞∑
j=1

aL
s1+i− 1

2 ,s2+j− 1
2

⎞⎠ . (5.1.9)

Theorem 5.1.13. Suppose L = L1 ∪ L2 is an L-space link. Under the normalization in

Definition 5.1.12, we have that the formulas in Equation (5.1.8) and Equation (5.1.9) are

non-negative for all (s1, s2) ∈ H(L).

In fact, both of Theorem 5.1.11 and Theorem 5.1.13 give additional constraints for the

Alexander polynomials of an L-space 2-component link.

Proposition 5.1.14. The link L7n2 is not an L-space link.

Proof. We give two proofs based on Theorem 5.1.11 and Theorem 5.1.13 respectively. Sup-

pose L = L7n2 is an L-space link with components L1 and L2, where L1 is the unknot and

L2 is the right-handed trefoil. Then, we get the normalized Alexander polynomials of L1
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and L2:

t

t − 1ΔL1(t) = 1 + t−1 + t−2 + · · · ,

t

t − 1ΔL2(t) = t + t−1 + t−2 + · · · .

Since ΔL(x, y) = (x−1)(y−1)√
xy

and lk = 0, by Theorem 5.1.11, we have aL1
1 = aL2

1 . This is a

contradiction to aL1
1 = 0 and aL2

1 = 1.

Another proof is as follows. If we used the normalization in Definition 5.1.12 for L7n2,

then we get n+L1
0,0 = −1 by Equation (5.1.9). This is a contradiction to Theorem 5.1.13.

5.2 Applications: classification of L-space surgeries.

Classifying L-space surgeries on an L-space link L is usually challenging. One difficulty

is the lack of criterion for hyperbolic L-spaces. In [11], Gorsky and Némethi studied L-

space surgeries on the torus links T (pr, qr) with p, q > 1 and r ≥ 1 using Lisca-Stipsicz

characterization of Seifert L-spaces. Let us look at the case where p = 1 and r = 2, i.e. the

torus links L = T (2, 2n). We assume n ≥ 2, since the T (2, 2) torus link is the Hopf link and

its surgeries are lens spaces.

When both of p and q are not equal to n, the (p, q)-surgery on T (2, 2n) is a Seifert

manifold with three singular fibers over the base S2. Using the notational convention in

[21], we can write S3
p,q(T (2, 2n)) = −M(0; 1

n
, 1

p−n
, 1

q−n
). In [21], Lisca and Stipsicz give a

characterization of L-space Seifert manifolds.

Theorem 5.2.1 (Theorem 1.1, [21]). Suppose M is an oriented rational homology sphere

which is Seifert fibered over S2. Then, M is an L-space if and only if either M or −M

carries no positive, transverse contact structures.

Theorem 5.2.2 ([20]). An oriented Seifert rational homology sphere M = M(e0; r1, ..., rk)

with 1 > r1 ≥ r2 ≥ · · · ≥ rk > 0 admits no positive, transverse contact structure if and only

if
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• e0(M) ≥ 0, or

• e0(M) = −1 and there are no relatively prime integers m > a such that

mr1 < a < m(1 − r2), and mri < 1, i = 3, ..., k.

While the (n, q)-surgery on T (2, 2n) is usually a graph manifold. The (n, q)-surgeries are

discussed in Corollary 4.2.6. Direct computation gives the following result.

Proposition 5.2.3 (Classification of L-space surgeries on T (2, 2n) with n ≥ 2). For all

q �= n, the (n, q)-surgery on T (2, 2n) is an L-space.

When p �= n, q �= n and p ≥ q, S3
p,q(T (2, 2n)) is an L-space with if and only if one of the

following conditions holds:

1. n + 2 ≤ p, n + 1 ≤ q;

2. 2n ≤ p, n − 2 ≥ q, and there are no relatively prime integers m > a > 0 such that

m
n − q − 1

n − q
< a < m(1 − 1

n
) and m

p − n
< 1;

3. n + 2 ≤ p ≤ 2n, q ≤ n − 2, and there are no relatively prime integers m > a > 0 such

that

m
n − q − 1

n − q
< a < m(1 − 1

p − n
) and m

n
< 1;

4. p = n + 1, q ≤ n + 1, and q �= n;

5. p = n − 1, q ≤ n − 1;

6. p ≤ n − 2, q ≤ p, and there are no relatively prime integers m > a > 0 such that

m(1 − 1
n

) < a < m
1

n − p
and m

n − q
< 1.

See Figure 5.2.1 for the example of T (2, 20). Compare this result with Theorem 7 in [11].
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Figure 5.2.1: The L-space surgeries on T (2, 20). We draw the L-space surgeries of
T (2, 20) on the x-y plane within the range [−40, 40] × [−40, 40]. Every dot (p, q) represents
an L-space surgery (p, q). The blue points are Seifert L-space surgeries determined by the
characterization of Lisca-Stipsicz, while the red points are determined by induction. The six
labelled regions correspond to the six conditions (1) to (6) in Proposition 5.2.3. The drawn
hyperbola indicates the positions of the surgeries with b1 = 1.
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Nevertheless, the links T (2, 2n) are the simplest two-bridge links. In order to gener-

ally study L-space surgeries on L, we give an algorithm computing ĤF (S3
Λ(L)) using the

Alexander polynomials.

Another example is the Whitehead link. By the results in Section 6 in [22] or the method

introduced in this section, we can obtain the following proposition. In order to distinguish

it with its mirror, we call it the L-space Whitehead link.

Proposition 5.2.4. The (p1, p2)-surgery on the L-space Whitehead link is an L-space if and

only if p1 > 0, p2 > 0.

5.2.1 Truncated perturbed surgery complex.

The the link surgery formula is an infinitely generated F[[U1, U2]]-module. A truncation

procedure is introduced in Section 8.3 in [24] to reduce it to finitely generated F[[U1, U2]]-

module. It is called horizontal truncation in [24], and we just call it truncation here. A

truncation for the Λ-surgery on a 2-component link L is described by four finite subsets of

H(L),

S00(Λ), S01(Λ), S10(Λ), S11(Λ).

The way of doing truncation is not unique. Later, we will describe an explicit way which

depends on L and Λ.

Define

C̄δ1δ2(Λ) =
⊕

s∈Sδ1δ2

A−
p+δ1L1∪+δ2L2 (s), δ1, δ2 ∈ {0, 1}.

Then, the truncated perturbed complex C̄(Λ) for an L-space link is defined as follows:

(C̄−(H, Λ), D̄−(Λ)) := C̄00(Λ)

D̄01
00(Λ)

��

D̄10
00(Λ)

�� C̄10(Λ)

D̄01
10(Λ)

��

C̄01(Λ)
D̄10

01(Λ)
�� C̄11(Λ),

(5.2.1)
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where D̄δ1δ2
ε1ε2(Λ) are the restrictions of D̃δ1δ2

ε1ε2(Λ) on the truncated complexes. See Equation

(5.1.2) and (5.1.4) for the definitions of D̃δ1δ2
ε1ε2(Λ). They are determined by the set of integers

n±Li
s .

The surgery complex naturally splits as a direct sum corresponding to Spinc structures.

For the Λ-surgery on L, there is an identification Spinc(S3
Λ(L)) = H(L)/H(L, Λ), where

H(L, Λ) is the lattice spanned by Λ. For u ∈ H(L)/H(L, Λ), choose s = (s1, s2) ∈ u. Denote

C̄δ1δ2(Λ, u) =
⊕
i∈Z

⊕
j ∈ Z

s + iΛ1 + jΛ2 ∈ Sδ1δ2

Ã−
s+iΛ1+jΛ2

.

Then, the summand C̄(Λ, u) is as follows:

(C̄−(H, Λ, u), D̄−(Λ, u)) := C̄00(Λ, u)

D̄01
00(Λ,u)

��

D̄10
00(Λ,u)

�� C̄10(Λ, u)

D̄01
10(Λ,u)

��

C̄01(Λ, u)
D̄10

01(Λ,u)
�� C̄11(Λ, u).

(5.2.2)

By putting U1 = 0, we can get the chain complex of F-vector spaces C̄ (̂Λ, u), whose

homology is isomorphic to ĤF (S3
Λ(L), u).

Lemma 5.2.5. Suppose A, B, C, D are finite dimensional F-vector spaces and the following

diagram commutes

A
h1 ��

v1

��

B

v2

��
C

h2
�� D.

We form a chain complex (R∗, d∗) supported on degrees 0, 1, 2, R : A
d2−→ B ⊕ C

d1−→ D with

d2 = h1 + v1 and d1 = h2 ⊕ v2. Then, we have the following conclusions

(1) dim H∗(R) = 2 dim(Kerh1 ∩ Kerv1) − 2 dim(Im v2 + Im h2) − dim A + dim B + dim C +

dim D;
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(2) dim H∗(R) = 1 iff one of the following is true

a. χ = dim A−dim B−dim C+dim D = 1, and dim(Ker(h1)∩Ker(v1))+dim Coker(v2+

h2) = 1.

b. χ = dim A−dim B−dim C+dim D = −1, and dim(Ker(h1)∩Ker(v1))+dim Coker(v2+

h2) = 0.

Proof. Part (1) is a straightforward computation. Notice that H0 = Coker(h2 ⊕ v2), H2 =

Ker(h1 + v1).

For Part (2), there are only three cases when H∗(R) = F happens,

1. H0(R) = F, H1(R) = H2(R) = 0;

2. H1(R) = F, H0(R) = H2(R) = 0;

3. H2(R) = F, H0(R) = H1(R) = 0.

In cases (1) and (3), we have that χ = 1 and dim H0 + dim H2 = 1; in case (2), we have

that χ = −1 and dim H0 + dim H1 = 0. It is not hard to check the converse.

If Ker(v1), Ker(h1) are both known, then computing dim(Ker(v1)∩Ker(h1)) is equivalent

to computing dim(Ker(v1) + Ker(h1)), which can be done by Gauss Elimination.

While computing Coker(v2 + h2) is the dual question for computing Ker(v∗
2) ∩ Ker(h∗

2).

While the dual maps v∗
2 and h∗

2 can be obtained by reversing the arrows, since we are working

over F.

We can directly apply the above lemma for each truncated perturbed complex C̄ (̂Λ, u)

for each Spinc structure. Thus, we only need to describe the truncated regions S00(Λ),

S01(Λ), S10(Λ),S11(Λ) and the kernels of the maps D̄ ∗̂∗
∗∗(Λ, u) and their dual.

Proposition 5.2.6. Suppose L is an L-space link. Fix a surgery framing Λ and a Spinc

structure u. Then, ĤF (Λ, u) = F iff in the truncated complex C̄ (̂Λ, u), one of the following

is true,
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(A) #S00(Λ, u)−#S01(Λ, u)−#S10(Λ, u)+#S11(Λ, u) = 1, and dim(Ker(D̂01
00)∩Ker(D̂10

00))+

dim Coker(D̂10
01 + D̂01

10) = 1.

(B) #S00(Λ, u)−#S01(Λ, u)−#S10(Λ, u)+#S11(Λ, u) = −1, and dim(Ker(D̂01
00)∩Ker(D̂10

00))+

dim Coker(D̂10
01 + D̂01

10) = 0.

5.2.2 Truncations.

We explicitly describe the truncated regions S00(Λ), S01(Λ), S10(Λ), S11(Λ) here. Let us

briefly recall the procedure to form these truncated regions for a general two-component link

L in Section 8.3 [24].

1. Choose a number b ∈ N, such that the inclusion maps I±Li
s1,s2 ’s are quasi-isomorphisms

whenever ±si ≥ b.

2. Determine a parallelogram Q in the plane, with vertices P1, P2, P3, P4 counterclockwise

labelled, satisfying the following condition: The point Pi has the coordinate (xi, yi)

such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 > b

y1 > b,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 < −b

y2 > b,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3 < −b

y3 < −b,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x4 > b

y4 < −b.

(5.2.3)

We also require that every edge is either parallel to the vector Λ1 with length greater

than ‖Λ1‖ or parallel to Λ2 with length greater than ‖Λ2‖.

3. Decide which is the case among the six cases of the surgeries described in Figure 22

in [24]. Then, we can decide the corresponding truncated regions according to Section

8.3 in [24].

The way of doing truncation is not unique. One explicit way to choose the parallelogram

Q to be centered at the origin as follows. See Figure 5.2.2.
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P1

P2

P3
P4

�1

�2
x � bx �� b

y � b

y �� b

Q

Figure 5.2.2: The truncation. The vectors Λ1 and Λ2 are determined by the surgery
framing matrix. The edges of the parallelogram Q are parallel to Λ1 and Λ2, and they
indicate the border lines of various acyclic subcomplexes or quotient complexes. Thus, the
parallelogram Q roughly indicates the support of the truncated complex.
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Let

{P1, P2, P3, P4} =
{

i0Λ1 + j0Λ2

2 ,
−i0Λ1 + j0Λ2

2 ,
i0Λ1 − j0Λ2

2 ,
−i0Λ1 − j0Λ2

2

}
,

with i0, j0 being positive integers, such that Equations (5.2.3) hold.

Fix Λ and u ∈ H(L)/H(L, Λ). Suppose

s = θ1Λ1 + θ2Λ2 ∈ u, P1 = a1Λ1 + a2Λ2.

We denote

A1 =  −θ1 − |a1|!, A2 = �−θ1 + |a1|�,
B1 =  −θ2 − |a2|!, B2 = �−θ2 + |a2|�.

Then, the truncated regions in the six cases are as follows.

Case I

S00(Λ, u) = u ∩ Q,

S10(Λ, u) = u ∩ Q ∩ (Q + Λ1),

S01(Λ, u) = u ∩ Q ∩ (Q + Λ2),

S11(Λ, u) = u ∩ Q ∩ (Q + Λ1 + Λ2).

In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 + δ1 ≤ i ≤ A2, B1 + δ2 ≤ j ≤ B2.} .
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Case II

S00(Λ, u) = u ∩ Q,

S10(Λ, u) = u ∩ {Q ∪ (Q + Λ1)},

S01(Λ, u) = u ∩ {Q ∪ (Q + Λ2)},

S11(Λ, u) = u ∩ {Q ∪ (Q + Λ1) ∪ (Q + Λ2) ∪ (Q + Λ1 + Λ2)}.

In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 − δ1 ≤ i ≤ A2, B1 − δ2 ≤ j ≤ B2.} .

Case III

S00(Λ, u) = u ∩ Q,

S10(Λ, u) = u ∩ {Q ∩ (Q + Λ1)},

S01(Λ, u) = u ∩ {Q ∪ (Q + Λ2)},

S11(Λ, u) = u ∩ {[Q ∪ (Q + Λ2)] ∩ ([Q ∪ (Q + Λ2)] + Λ1)}.

In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 + δ1 ≤ i ≤ A2, B1 ≤ j ≤ B2 + δ2.} .

Case IV

S00(Λ, u) = u ∩ Q,

S10(Λ, u) = u ∩ {Q ∪ (Q + Λ1)},

S01(Λ, u) = u ∩ {Q ∩ (Q + Λ2)},

S11(Λ, u) = u ∩ {[Q ∩ (Q + Λ2)] ∪ ([Q ∩ (Q + Λ2)] + Λ1)}.
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In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 ≤ i ≤ A2 + δ1, B1 + δ2 ≤ j ≤ B2.} .

Case V This case is similar to Case I, but the regions S10(Λ, u), S01(Λ, u) have two more

points at the corners.

S00(Λ, u) = u ∩ Q,

S10(Λ, u) = (u ∩ Q ∩ (Q + Λ1)) ∪ T 10,

S01(Λ, u) = (u ∩ Q ∩ (Q + Λ2)) ∪ T 01,

S11(Λ, u) = u ∩ Q ∩ (Q + Λ1 + Λ2),

where T 10 = {s + A2Λ1 + B1Λ2}, T 10 = {s + A1Λ1 + B2Λ2}.

In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 + δ1 ≤ i ≤ A2, B1 + δ2 ≤ j ≤ B2.} ∪ T δ1δ2 ,

where T 00 = T 11 = ∅.

Case VI This is similar to Case V.

S00(Λ, u) = u ∩ Q ∩ (Q − Λ1 − Λ2),

S10(Λ, u) = (u ∩ Q ∩ (Q − Λ1)) ∪ T 10,

S01(Λ, u) = (u ∩ Q ∩ (Q − Λ2)) ∪ T 01,

S11(Λ, u) = u ∩ Q,

where T 10 = s + A1Λ1 + B2Λ2, T 01 = s + B1Λ2 + A1Λ1.
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In other words, for δ1, δ2 ∈ {0, 1},

Sδ1δ2(Λ, u) = {s + iΛ1 + jΛ2|A1 + 1 − δ1 ≤ i ≤ A2, B1 + 1 − δ2 ≤ j ≤ B2.} ∪ T δ1δ2 ,

where T 00 = T 11 = ∅.

Remark 5.2.7. In all of the above cases, #S00(Λ, u)−#S01(Λ, u)−#S10(Λ, u)+#S11(Λ, u) =

±1.

5.2.3 Kernel of D̄ ∗̂∗
∗∗(Λ, u)

In fact, all the mapping cones of D̄ ∗̂∗
∗∗(Λ, u) split as a direct sum of mapping cones in a

common form. They look like the mapping cones in computing +1-surgery on knots. Since

this type of mapping cones looks like zigzags, we just call them "zigzags". We denote the set

of integers in [a, b] by [a; b], where we allow a = b.

Definition 5.2.8 (Zigzags). A zigzag mapping cone C is a mapping cone of F-vector spaces:

⊕
a1≤s≤a2

As
f+g−−→ ⊕

b1≤t≤b2

Bt,

where

As = F, ∀a1 ≤ s ≤ a2,

Bt = F, ∀b1 ≤ t ≤ b2,

f =
⊕

fs, fs : As → Bs,

g =
⊕

gs, gs : As → Bs+1.

The code of the zigzag C is a set of data {[a1; a2], [b1; b2], S1, S2}, where

S1 = {s ∈ Z|fs �= 0}, (5.2.4)

S2 = {s ∈ Z|gs �= 0}. (5.2.5)
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We define Ker(C) (resp. Coker(C)) to be Ker(f + g) (resp. Coker(f + g)).

Definition 5.2.9. For any element x in ⊕a1≤s≤a2 F · es, we can represent it uniquely by

x = ∑s∈Γ es. We call Γ the support of x, and denote it by Supp(x). Similarly, for X =

{x1, ..., xn}, we denote {Supp(x1), ..., Supp(xn)} by Supp(X).

Proposition 5.2.10. For a zigzag C with the code {[a1, a2], [b1, b2], S1, S2}, we represent

S1 ∩ S2 by a minimal disjoint unions

S1 ∩ S2 =
∐

i∈[1;K]
[αi; βi],

with βi ≤ αi+1 + 2,∀i. Then, Ker(C) has a basis with the following support

{
{s}
∣∣∣∣s ∈ [a1, a2]\(S1 ∪ S2)

}
∪
{

[αj − 1, βj + 1]
∣∣∣∣αj − 1 ∈ S2, βj + 1 ∈ S1

}
.

Proof. Straightforward.

Definition 5.2.11. Let L = L1 ∪ L2 be an L-space link. For all s1 ∈ H1(L), s2 ∈ H2(L), we

define

ν+L2
s1 (L) = min{s2 ∈ H2(L)

∣∣∣n+L2
s1,s2 �= 0}, (5.2.6)

ν+L1
s2 (L) = min{s1 ∈ H1(L)

∣∣∣n+L1
s1,s2 �= 0}. (5.2.7)

It is easy to see that in Section 5.1.3 we can let b = max{max{ν+L2
s1 (L)}s1 , max{ν+L1

s2 (L)}s2}.

Moreover, the truncated perturbed complex C̄ (̂Λ) is determined by these ν+L2
s1 (L)’s and

ν+L1
s2 (L)’s, and thereby so are the zigzag mapping cones corresponding to D̄ ∗̂∗

∗∗(Λ, u)’s.

For example, suppose

Λ =

⎛⎜⎝ p1 lk

lk p2

⎞⎟⎠
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and choose s = (s1, s2) ∈ u. Before truncation, we have

cone(D̂01
00(Λ, u)) =

∏
i∈Z

cone(
∏
j∈Z

(Φ̂+L2
s+iΛ1+jΛ2

+ Φ̂−L2
s+iΛ1+jΛ2

)).

After truncation, cone(D̄ 0̂1
00(Λ, u)) splits into direct sums of zigzags in form of

cone(
∏
j∈Z

(Φ̂+L2
s+iΛ1+jΛ2

+ Φ̂−L2
s+iΛ1+jΛ2

)) ∩ C̄ (̂Λ).

Let us figure out the codes of these zigzags. Suppose the code of the above zigzag is

{[a1; a2], [b1; b2], S1, S2}.

Then, it is not hard to get the following formulas for the code,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a1; a2] = {j ∈ Z|s + iΛ1 + jΛ2 ∈ S00(Λ, u)},

[b1; b2] = {j ∈ Z|s + iΛ1 + jΛ2 ∈ S01(Λ, u)},

S1 = {j ∈ Z|s2 + i · lk + j · p2 ≥ ν+L2
s1+i·p1+j·lk(L)},

S2 = {j ∈ Z|s2 + i · lk + j · p2 ≤ −ν+L2
−s1−i·p1−j·lk(L)}.

5.2.4 Examples: L-space surgeries on two-bridge links

From Proposition 4.1.10, we see that if a two-bridge link has an L-space surgery, then it

is a generalized L-space link. By taking mirrors, we can reduce these links to two types:

L-space links and generalized (+−)L-space links. We have discussed two-bridge L-space

links in Chapter 4. By the method in this section, it is convenient to make computer

programs for computing ĤF of their surgeries and give characterizations of L-space surgeries.

For example, regarding the surgeries on the Whitehead link, we can do truncations as in

Proposition 6.9 in [22] and then use the method of zig-zags in Section 5.2.3 to recover the

results in Proposition 6.9 [22] for the hat version. Thus, we can obtain Proposition 5.2.4.
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However, to find a general formula of ĤF is not easy.

In fact, finding L-space homology spheres is more interesting. Let us try some examples

here, by looking at the (1, 1)-surgeries on a sequence of two-bridge links Ln = b(4n2 +

4n,−2n− 1) for all positive integers n. This sequence of L-space links have linking numbers

0. Note that L1 is the Whitehead link.

Proposition 5.2.12. For all n ≥ 2, the (1, 1)-surgery on b(4n2 + 4n,−2n − 1) is not an

L-space.

With the help of a computer program, we get the Alexander polynomials of Ln:

ΔLn(x, y) =
n−1∑

j=−n

n− 1
2 −|j+ 1

2 |∑
i=−n− 1

2 +|j+ 1
2 |

(−1)i+jxi+ 1
2 yj+ 1

2 .

After normalizing ΔLn(x, y) by Definition 5.1.12, we can get formulas for n+L1
s1,s2 by Equation

(5.1.9), (5.1.8). We list the numbers {n+L2
s1,s2(Ln)}−4≤s1≤4,−4≤s2≤4 for n = 1, 2, 3, 4 as follows:

{n+L2
s1,s2(L1)} :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;{n+L2
s1,s2(L2)} :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

1 1 1 1 2 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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{n+L2
s1,s2(L3)} :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 2 1 1 0 0

1 1 1 2 2 2 1 1 1

2 2 2 2 3 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;{n+L2
s1,s2(L4)} :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 2 1 1 0 0

0 1 1 2 2 2 1 1 0

1 1 2 2 3 2 2 1 1

2 2 2 3 3 3 2 2 2

3 3 3 3 4 3 3 3 3

4 4 4 4 4 4 4 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

In particular, we get the following formulas for all s1 ∈ Z,

ν+L2
s1 (Ln) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n − |s1|, |s1| ≤ n,

0, |s1| ≥ n.

Since Ln is a two-bridge link, we have the symmetry ν+L1
s2 = ν+L2

s1 , when s1 = s2.

Thus, we can let b(Ln) = n. Then, as described in Section 5.2.3, the truncation re-

gions are determined by the parallelogram Q, with vertices P1 = (n, n), P2 = (−n, n), P3 =

(−n,−n), P4 = (n,−n). The surgery framing is in Case I, so we have the truncated regions

Sδ1δ2 =
{

(i, j) ∈ Z2
∣∣∣∣− n + δ1 ≤ i ≤ n,−n + δ2 ≤ j ≤ n

}
.

Now we can see

Φ̂±Li
s1,s2 = 0,∀ − n + 1 ≤ s1 ≤ n − 1,−n + 1 ≤ s2 ≤ n − 1, i = 1, 2.

So Âs1,s2 ∈ C̄̂00 with −n < s1 < n,−n < s2 < n are all in the kernel of D̂10
00 and D̂01

00.

So when n ≥ 2, we have that Ker(D̂01
00) ∩ Ker(D̂10

00) has rank at least n2 + (n − 1)2 > 1.

Thus, by Proposition 5.2.6, the (1, 1)-surgeries on Ln with n ≥ 2 are never L-spaces. Similar
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arguments apply to (±1,±1)-surgeries on these links.

Proposition 5.2.13. On the two-bridge L-space links Ln = b(4n2 +4n,−2n−1) with n ≥ 2,

there are no L-space homology sphere surgeries.

In fact, direct computations using the zigzags give that ĤF (S3
1,1(Ln)) has dimension

(2n − 1)2.
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