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ABSTRACT

Accurately estimating all link-level properties of a large net-

work has proven to be very difficult. The measurements used

for these estimates require significant collaboration from all

endpoints on the network, significantly reducing their appli-

cability for large scale Internet measurements.

We present a scalable approach using a small number of

hosts without collaboration from existing routers and mini-

mal collaboration between the hosts. Our approach is based

on adaptive sampling. Initially, each host probes a set of

receivers at a low frequency. When packet losses are de-

tected, the sampling rate increases. By detecting correla-

tions between time series and combining them with infor-

mation about network connectivity, the host identifies a set

of suspected lossy routers. Hosts then communicate with

each other, combining evidence to identify routers with high

packet loss. Our experiments show that using a relatively

small set of hosts and receivers, we can gather sufficient ev-

idence to identify a small number of routers that cause most

of the packet loss in a geographically diverse sample of the

Internet. We deployed our method for one month on 68 Plan-

etLab nodes. As a result of that deployment, we identified

128 routers of the ≈ 4,500 accounting for 87% of the ob-

served packet loss.

General Terms

Network measurement, Network tomography, Fault de-
tection

1. INTRODUCTION

Localization of faults in the Internet is not only im-
portant for improving its structure, but could also pro-
vide useful information to overlay network providers
and end users as well [26, 3]. Identifying and locating
such faults can aid in providing an acceptable quality
of service (QoS) to real time Internet applications such
as VoIP, teleconferencing and online gaming.

In particular, VoIP has become increasingly popular
in recent years. Studies have shown that high levels of
latency, packet loss and jitter are the major contributers
to poor QoS for VoIP [8, 10]. Our methods are extensi-
ble for other quantities of interest as well. Packet loss is

particularly problematic for VoIP because of its bursty
nature [23, 10]. Typical packet loss bursts last around a
second, during which which more than half of the pack-
ets are lost. This type of behavior is very difficult for
error correcting codes to overcome, and the user will
likely experience poor audio quality. In order to carry
VOIP in the Internet at an acceptable QoS, the level
of packet loss, especially bursty packet loss, has to be
significantly reduced. Identification of the routers that
drop many packets is an important step towards achiev-
ing this reduction.

Most current work on pinpointing network anomalies
is based on simulations and on experiments using small
networks where all nodes are under the control of the
experimenter [25, 27, 16]. This ensures that the net-
work substrate is uniform and known, that the number
of end-points and measurements is sufficient to cover
the network, and as a result that the conclusions de-
rived from the measurements are reliable. The per-
ceived problem with performing such experiments on
the Internet is that the Internet is so large and diverse
that it is impossible to draw trustworthy conclusions
from measurements made at a small number of end-
points and without any special collaboration from the
network [24, 14]. Consequently, it stands to reason that
one would have to flood the Internet with probes in or-
der to reliably identify lossy routers.

Our thesis is that although there is no a-priori reason
to believe that lossy routers can be identified by sta-
tistical probing, as a matter of fact, most of the lossy
routers on the Internet can be identified by light-weight
active monitoring. The reason is that although packet
loss is extremely bursty, with burst typically lasting a
few seconds, the cause of bursts is a very small frac-
tion of the routers. As a result, integrating information
from probes over long periods of time (hours to weeks)
reveals the identity of the culprit routers. To appreciate
the significance of this finding, imagine an alternative
situation in which packet loss on the Internet is highly
distributed across many routers, each of which causes
a packet loss burst very rarely. If this was the case,
then detecting the culprits would be next to impossible.
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By the time a burst is detected, the culprit router has
stopped dropping packets, and will not drop a packet
for several days, making it impossible to identify. Our
experiments show that most packet loss culprits on the
internet are repeat offenders, and thus can be reliably
identified. In our experiments we used 68 PlanetLab [1]
end-nodes to monitor packet loss on about 4500 routers.
Our measurements implicate about 128 (3%) of these
routers in 87% of the overall observed packet loss. Be-
cause the PlanetLab nodes are distributed around the
world, it is likely that these ratios are typical. Because
most links are well-behaved the majority of the time,
we can use methods of adaptive sampling to identify
the relatively few bottleneck routers causing loss at any
given time. Moreover, our findings suggest that invest-
ment in reducing packet loss has high economic lever-
age. Reducing packet loss on a relatively small number
of routers would make a significant difference in QoS
for many end-users.

Most statistical network probing is based on static
sampling. In other words, the set of probes is cho-
sen before the experiment starts and is kept constant
throughout the experiment. The problem with that
approach is that in order to detect the relatively rare
faults, probes have to be sent at a high rate. On the
other hand, the vast majority of these probes are not in-
formative, because they are sent along routes with less
than 1% loss rate [31]. To overcome this problem we
use adaptive sampling. The algorithm starts by prob-
ing at a low rate, and when packet loss is detected, the
sampling rate is increased. In addition, if an end-node
detects lossy routes whose packet loss events are corre-
lated, it formulates a set of shared routers between the
routes and for verification purposes starts to monitor
these shared routers. In this way we can probe lossy
network locations at a sufficient rate to draw reliable
conclusions while not overloading the endpoints or the
network with too many probes.

Our method escalates its probing and analysis in a
series of modes which starts by probing all end-points
uniformly and gradually becomes more focused on spe-
cific routers. The end result is a short list of routers
with verified high packet loss rate.

We arrived at our particular sequence of measure-
ment and analysis by trial and error. We have not
strived to find an optimal probing method. Rather,
our emphasis is on simplicity, low load on the probing
host and on the network, and minimal interdependence
between the hosts. We created a method which can
be easily deployed and scales to large sets of nodes.
We show that useful conclusions can be drawn using a
deployment over just 68 PlanetLab hosts. Further in-
crease in the deployment does not require increasing the
load on any one host and will likely give a comprehen-
sive analysis of the high-loss routers across the whole

Internet. The strength of our method is demonstrated
by the repeated localizations to particular routers over
time and across multiple vantage points. While it is
possible, even likely, that some of the routers that we
identify as lossy are in fact not dropping many packets,
it is very unlikely that routers detected as lossy many
times over and from several different end-points, are in
fact not lossy. We therefore remain quite confident in
the correctness of the list of 128 routers, and that by
fixing these routers and/or increasing their capacity the
rate of packet loss on the Internet can be significantly
decreased.

The rest of the paper is organized as follows. In Sec-
tion 2 we survey related work. In Section 3 we describe
the Pinpoint methodology. In Section 4 we discuss the
results of some experiments run on PlanetLab [1]. We
discuss future directions for Pinpoint in Section 5 and
conclude in Section 6.

2. RELATED WORK

There are several approaches to estimating link level
loss in networks using only end-to-end measurements.
One approach is that of “network tomography” overviewed
in [9, 11]. Network tomography methods make a large
set of end-to-end measurements, express the problem
of estimating the router loss as an under-constrained
system of equations, and then search for a solution
the maximizes a regularization measure. Various tech-
niques have been employed to solve these problems, the
majority of which have been dominated by maximum
likelihood, random sampling and expectation-maximization
(EM) approaches. A significant recent contribution to
this line of work has been made by Zhao et al. [32].
They define the concept of of a “minimum identifiable
link sequence” (MILS) which makes solving the system
of equations tractable. Zhao et al. describe experiments
on the Internet using PlanetLab nodes. However their
probes span a very short period of time. In contrast,
our experiments were conducted for over a month, while
our adaptive approach minimizes the impact of the long
experiment on the PlanetLab computers and on the net-
works.

Another approach to this problem is to explore how
multicast measurements can be used to estimate link
level properties [2, 6, 7, 12]. However, due to the lack of
widespread multicast support, implementing multicast
probing in the Internet is impractical. Duffield finds
that stripes of unicast probes can estimate accurately
link level loss characteristics in a variety of network con-
ditions [13]. In particular, he investigates how large the
stripes need to be in order to identify correlations be-
tween links, and finds that stripes of size 2–4 are more
than adequate. Since the Internet supports unicast ev-
erywhere, we choose to use stripes of unicast probes as
well.
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Although active probing dominates the literature, there
has been some work on localizing packet loss localiza-
tion using passive collection of data. These approaches
have the benefit that the measurements cannot affect
the entities being measured. Padmanabhan et al. [21]
collect TCP traces from msn.com servers and employ a
variety of methods to infer link level loss percentages.
They utilize random sampling, linear programming and
Gibbs sampling. However, their results are derived from
a small data set and are hard to validate since they hap-
pened in the past and are processed off-line. In contrast,
our algorithm was developed for an online setting and
we validate our results in real time.

Another area of work that has recently been stud-
ied is how probes should be sent in order to obtain
accurate link level measurements. The PASTA prin-
ciple (Poisson Arrivals See Time Averages) says that
Poisson modulated probes used in a system that obeys
a Poisson process will converge to the true value when
averaged [30]. Recent work has shown that in the active
probing paradigm, the PASTA principle can be well ap-
proximated by much simpler probes including random-
ized uniformly separated probes [4]. We utilize random-
ized uniformly separated probes.

A different correlation technique is employed by Ruben-
stein et al. [25]. Here they develop a comparison-based
correlation test, rather than threshold-based, to deter-
mine whether two flows share a point of congestion.
Their experiments do not attempt to localize this shared
point, merely determine its existence. Kim et al. [16]
also develop a correlation-based algorithm, but apply it
to queuing delay rather than packet loss. We chose to
instantiate our fault localization algorithm by thresh-
olding our correlations, and in future work we plan to
experiment with other statistical tests for detecting cor-
relations.

An attempt to localize congestion along routes is pre-
sented by the Tulip project [19]. In this work, the au-
thors present a method to identify a bottleneck along
a single route. They present sequential and binary
searching techniques along a single lossy route to lo-
calize a lossy router. Their methods involve sending a
special sequence of round-trip probes, designed to de-
termine whether a loss event happened on the forward
or reverse path. Their method is highly sensitive to
other simultaneous measurement, so it is not applicable
for detecting shared loss across many routes.

Finally, the iPlane project is a large-scale measure-
ment project to aggregate statistics and map the topol-
ogy of the Internet. Similarly, Huffaker et al. [15] present
another large-scale mapping system that combines IP
and BGP routing information, and give some results
connecting geographic distribution of nodes to observed
latency. However, the primary goal of these projects is
to construct an accurate map of the Internet, whereas

RECEIVERS

HOST

Figure 1: A single host sending simultaneous
probes to two receiver nodes. Each dot repre-
sents a router on the traceroute from host to
receiver.

our goal uses small views of Internet connectivity as
a means toward failure localization. At present, iPlane
does not provide analysis of their data in terms of shared
packet loss bottlenecks [18]. In this sense, the Pinpoint
project is novel in its aim to develop a practical and
lightweight method to diagnose packet loss failures in
the Internet in real time.

3. THE PINPOINT ALGORITHM

Imagine the simple case of Figure 1 where a single
host is sending probes to two receiver nodes. In an
ideal world we could simultaneously measure the one
way loss to each of the receivers. If both receivers shared
a single lossy router on both of their routes, then we
would expect to see very similar loss patterns between
the two. This is the core of the Pinpoint algorithm. The
most common measure of similarity used in statistics is
correlation. Let X = (x1, . . . , xN ), Y = (y1, . . . , yN ) be
the packet loss time series for each receiver for times t ∈
[1, N ], then we define the sample correlation between
these two time series as

Corr(X, Y ) =
1

N−1

∑

t(xt − x̄)(yt − ȳ)

σxσy
.

Here x̄, ȳ denote the means of X and Y , σx, σy are the
standard deviations, and N is the number of measure-
ments taken. We expect high positive correlation when
both series are simultaneously above their respective
means. In other words, when we see a spike in packet
loss above the norm on one receiver, we see a corre-
sponding spike at the same time on the other. If we
can find several coinciding events, then we have strong
evidence that these packet loss events share a common
cause. Figure 2 shows two examples of highly corre-
lated packet loss time series, one set with frequently
repeating “blips” of packet loss, and the other with a
single sustained loss event significantly above the aver-
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Figure 2: Two sets of correlated packet loss time
series from a single host to two distinct receivers
with (a) repeated spikes (r = 0.9214), (b) a sin-
gle long-duration packet loss event (r = 0.9101).
Measurements were taken every 3 seconds.

age background loss.
When we find strong positive correlation we know

that the lossy router is very likely to be in the shared
portion of the tree. When we observe uncorrelated loss
events, we know that the cause of the failures are more
likely to be in the individual branches.

We now extend this idea to a multicast tree where a
single host is sending probes to many receiver nodes as
shown in Figure 3. (Multicast probing is not supported
everywhere in the Internet, but tightly coupled unicast
probes can be used as an approximation [13].) A pin-
point event occurs whenever a set of correlated receivers
is identified. The pinpointed set is found by first iden-
tifying the root of the smallest subtree containing the

HOST

RECEIVERS

Figure 3: A single host sending simultaneous
probes to many receiver nodes. A single corre-
lated set is illustrated in red and the pinpointed
set of routers in green.

entire correlated set. Then from this node, we traverse
up the tree until we find the next highest branching
point, allowing us to rule out any routers also common
to the remainder of the (uncorrelated) receivers. All of
the routers from the root of the subtree to the child of
the next highest branching point define the pinpointed
set. We expect to find the culprit lossy router within
this pinpointed set.

Combining these ideas with adaptive sampling rates,
we arrive at our methodology in five distinct steps:

1. Background probing: Each endpoint initially
probes each of the other endpoints at a relatively
low frequency. We denote the node sending the
probes as the host and the nodes being measured
as the receiver set.

2. Accelerated probing: If the background prob-
ing detects packet loss, it triggers a faster sampling
rate for the offending receivers. The background
probing rate is maintained for all other non-lossy
receivers.

3. Correlation detection: Each pair of nodes in
the receiver set exhibiting packet loss are tested to
see if their packet loss events are correlated over
time. A high correlation coefficient is evidence
that the router causing the packet loss lies along
the common path segment to the two end-nodes.
By analyzing the correlated set and relating it to a
tree of traceroutes to the receiver set, the method
identifies a set of suspected routers. This set is
called the pinpoint set.

4. Verification: By probing the routers in the pin-
point set, the method narrows down the cause of
the loss to a single router. Statistical tests are
used to compare the loss rate of routers along the
pinpoint set and identify the hop on which there
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is a significant increase in packet loss. This set of
routers is called the verified set.

5. Aggregation: Each host creates its own list of
lossy routers (pinpoint sets and verified sets). By
combining these lists from all of the hosts, we can
create a master list which identifies those routers
that are identified as lossy many times and across
many hosts.

In the Internet we face many problems that com-
plicate the idealized model. First, obtaining one-way
measurements of packet loss requires control over and
synchronization between both of the endpoints. We do
not assume control over the receiver set, because this is
impractical for large scale measurement in the Internet.
As an approximation, round trip measurements can be
used in place of one-way measurements.

Second, round trip measurements may be dropped
along unmeasurable reverse traceroute paths. Packets
going on the forward path to the destination need not
return along the same path. This problem could be
overcome by synchronization between the host and re-
ceiver set, but again, this would not scale for very large
receiver sets. However, it has been observed that the
majority of forward and reverse traceroutes differ by at
most one hop [22]. We simplify the problem by assum-
ing symmetry along forward and reverse paths.

Third, the path between any two nodes in the Inter-
net is not guaranteed to be constant for long periods
of time. Routing updates happen often throughout the
Internet, but it has been shown that most routes remain
stable on the order of hours to days [22].

Finally, not all nodes in the Internet respond to mea-
surement techniques. For example, some routers may
choose to filter ICMP packets. Packet filtering affects
all active probing techniques. Our statistical tests at-
tempt to overcome some easily detected forms of filter-
ing (i.e. by only counting positive increases in packet
loss rate for verification), but otherwise do not differen-
tiate filtering from failure.

Nevertheless, the aim of the pinpoint methodology is
to be robust enough so that when a correlated set of re-
ceivers is found, the corresponding pinpoint set contains
a lossy culprit router a significant portion of the time.
We now present experiments that explore how robust
our pinpoint methodology is against these problems.

4. INTERNET EXPERIMENTS

The following experiments were conducted on 68 ge-
ographically well distributed PlanetLab nodes between
December 6, 2006 and January 11, 2007. Table 1 shows
the geographic distribution of our set of nodes. Each
node acts as an autonomous host, using the remaining
nodes as its receiver set.

Continent # of nodes
North America 22

Europe 24
Asia 21

Australia 1

Table 1: Geographic distribution of selected
PlanetLab nodes.

4.1 Methodology

Figure 5 shows the core of our pinpoint module. An
|H| ×N matrix is maintained to record the packet loss
measurements of our tightly coupled unicast probes to
each receiver. Each row in this matrix corresponds to
a receiver being monitored, and contains the last N
average packet loss measurements (we set N = 1200).

To reduce the network load incurred by uninformative
observations, we partition the receiver set into two sets:
a fast set F with a high sampling rate, and a slow set
S with a lower sampling rate. All nodes start out in
the slow set, where the host sends a ping of 50 packets
every 21 seconds and records how many return. When
the algorithm observes packet loss above 2% (i.e. at
least one probe is lost), the offending receiver is moved
into the fast set, where the sampling rate is increased
to once every 3 seconds, again in bursts of 50 probes1.
Each probe consists of a 56-byte ICMP ping.

The measurement matrix contains entries for every 3
seconds, and infers a zero loss rate in between samples
for the slow set. If a node in the fast set has 7 consecu-
tive measurements of 0 (i.e. over 21 seconds has only 0
packet loss measurements), it is moved back to the slow
set. The assumption behind these two speeds is that
when an initial loss event is observed, it is more likely
that more loss events can be observed soon thereafter.
Because of the transient nature of packet loss events,
we aim to improve correlation accuracy by obtaining
more samples during the current loss event, and avoid
wasteful sampling on routes exhibiting no packet loss.

We also compile traceroute trees by joining tracer-
outes from the host to each member of the receiver set
in a bottom-up fashion. The traceroute tree is updated
every 4 hours.

We continually update an |H|×|H| correlation matrix
with each incoming set of measurements. A complete
undirected graph is then constructed with the receiver
set as the vertices and the pairwise correlation coeffi-
cients as the edge weights. All edges with a correla-
tion coefficient below 0.90 are pruned, and we find con-
nected components on the resulting graph. Our choice

1In our implementation, the 3- and 21-second delays be-
tween samples for the fast and slow sets hold only in ex-
pectation. Each second, we generate a random number
r ∼ U [0, 1], and initiate probes for the fast and slow sets if
r ≤ 1/3 or r ≤ 1/21 respectively.
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PinpointMonitor(H)
1 F ← ∅
2 S ← H
3 repeat
4 With probability 1/3, probe F and move nodes with 7 consecutive 0 measurements into S
5 With probability 1/21, probe S and move nodes with non-zero measurements into F
6 Update correlation matrix
7 Find connected components in correlation graph
8 R ← pinpointed sets ∪ children ∪ parent
9 S ← S ∪R

10 Delete from F and S any routers in H monitored for at least 4 hours
that are no longer in a pinpointed set

11 Sleep 1 second

Figure 4: Pseudo-code for the main components to the pinpoint experiment. H here is our subset of
68 PlanetLab nodes, minus the host itself.

HOST

NEW PLOSS DATA

PACKET LOSS MATRIX

WINDOW SIZE = 4 HOURS

OLD PLOSS DATA

PINGS

ROUTER

Figure 5: A single PlanetLab node periodically
probes all other PlanetLab nodes, creating a ma-
trix of packet loss measurements. The correla-
tion matrix is updated after each shift of the
matrix, and pinpoint events occur when highly
correlated sets of rows are found.

of threshold here is consistent with the distribution of
correlation coefficients for shared end-points presented
by Kim et al. [16]. Any connected component of at
least two nodes in the correlation graph defines a cor-
related set, and the corresponding pinpoint set is com-
puted from the traceroute tree as described in Section 3.
We then monitor these routers in the same fashion as
described above for a minimum of one hour, but these
routers are omitted from any subsequent correlated set
calculations (only endpoints are considered). For val-
idation purposes, we also include the routers one hop
above and below the pinpoint set in the tree.

4.2 Results

The following sections discuss the results of our Plan-
etLab experiments.

4.2.1 Diagnosis Granularity

Diagnosis granularity refers to the size of the pin-
pointed sets. Smaller diagnosis granularity implies a
more specific predicted location of the lossy router. Fig-
ure 6 shows a CDF of the diagnosis granularity of the
identified pinpointed sets. Almost 80% are of size two
or less, and almost 90% are of size four or less. This is
comparable to the results of [32]. The granularity here
is quite low for most pinpoint events, indicating that
obtaining precise information in the Internet may not
be as difficult as anticipated. We expect the granular-
ity to decrease even further with the addition of more
endpoints to the receiver set.

These results are promising for scaling Pinpoint as
a monitoring service for the Internet. One potential
challenge for scalability lies in choosing a receiver set
that shares enough traceroute information for pinpoint
events to diagnose to a fine granularity. The problem
of selecting IPs that share favorable branching points
in their traceroutes is particularly difficult. Our results
indicate that this problem may not need much attention
at all. Since most pinpoint sets are small even with our
very geographically diverse set of nodes, it follows that
we would achieve comparable diagnosis granularity for
much larger receiver sets.

4.2.2 Success Rate of Pinpoint Events

Once a pinpointed set is identified, we begin moni-
toring each of the routers in the set, and record their
average packet losses over the next 15 minutes. We
deem a pinpoint event successful if the pinpointed set
contains some router with significantly higher average
packet loss than its parent. Note that the parent need
not be within the pinpointed set.

Validating the success of a pinpoint event is inher-
ently difficult. Because we have no control over any
of the encountered routers, we cannot directly verify
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whether a loss can be attributed to it at the time of a
given pinpoint event. Therefore, actually observing the
router dropping packets after it has been pinpointed
becomes problematic because of the short, bursty na-
ture of loss events. The best one can hope to do is to
probe the pinpointed router while the problem persists.
However, the probes need not follow the same route as
in our current traceroute tree. Moreover, observed loss
to the router need not have happened at that particu-
lar router, but may have happened anywhere along the
probe’s route. These problems do not present a signifi-
cant hurdle, given that most of our probes result in zero
packet loss. With this in mind, we attempt to actively
probe our pinpointed routers for verification purposes.

We use a paired hypothesis test where the null hy-
pothesis is that the parent’s average is equal to the
child’s, and the alternative is that the parent’s average
is less than the child’s. We utilize the Wald statistic,
which is defined as follows:

W =
(p̂parent − p̂child)

√
n

√

p̂parent(1− p̂parent) + p̂child(1− p̂child)

The null hypothesis is rejected when |W | > zα/2, that
is, when |W | lies in the upper α/2-quantile of the nor-
mal distribution N (0, 1). Here, n is the total number
of measurement packets sent over a given time win-
dow, and p̂(·) denote the empirical average packet loss.
We then use Bonferonni correction within each pinpoint
event with a significance value α = 0.052. We deem a
pinpoint event successful whenever a parent and child
pair exists within the pinpointed set where their loss
rates pass the test above, and the child’s average packet
loss is greater than that of its parent. If this is the case,
we say that the lossy child router has been verified.

Figure 7 shows how often our pinpointed sets contain
verified routers as a function of the size of the original
correlated set. This graph shows the probability of suc-
cess given that the correlated receiver set is of size at
least x. As expected, our success rate increases with
the number of nodes in the correlated set because we
have more evidence towards a shared lossy router.

Figure 8 shows the average number of hops from a
pinpointed router to its closest end point (either the
host or any receiver node). Many routers are 7 or 8 hops
away from the closest endpoint, implying that we are
finding mostly internal routers, rather than “last mile”
routers. This may be due to the geographic sparsity of
our receiver set. However, our results show a surprising
degree of packet loss at these internal routers, contrary
to the common view that most performance bottlenecks
occur in the last mile.

The fact that success generally increases as a func-
tion of the size of the correlated set, particularly for the

2See Wasserman for a more complete treatment of hypoth-
esis testing [29].
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Figure 6: The diagnosis granularity of the pin-
pointed sets found. 80% of the sets are of size 2
or less.
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Figure 7: The fraction of successful pinpoint
events given that the correlated set contained
at least x nodes.

common case of small correlated sets, leads to an intu-
itive notion of confidence in our predictions. The more
nodes in the correlated set, the more confident we are in
the corresponding pinpoint set. In terms of scalability,
it may prove useful to refine the algorithm and factor
correlated set size into prediction confidence.

4.2.3 The Repetitive Nature of Pinpoint Events

Figure 9 shows a CDF of all the routers we encoun-
tered and how often they were in a pinpointed set over
the entire experiment. Almost 85% of the routers were
pinpointed to either 0 or 1 times and less than 10%
of the routers were pinpointed to over 10 times. Very

7



0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance from endpoint

F
ra

c
ti
o

n
 o

f 
p

in
p

o
in

te
d

 r
o

u
te

rs

Figure 8: CDF of distance from a pinpointed
router to either the host or its closest receiver.

few routers are pinpointed to multiple times, and the
fraction of routers pinpointed to x times decays expo-
nentially as x increases. This indicates a small fraction
of routers that repeatedly drop packets over our month-
long experiment period.

An alternative way of viewing this phenomenon is
presented in Figure 10. For each router that we encoun-
tered during the experiment, we counted the number of
pinpoint events that included it. We then calculated
the fraction of all observed pinpoint events that include
one or more of the top x most frequently pinpointed
routers. Approximately 150 routers account for 80% of
all pinpoint events. Only ≈800 of the observed routers
were ever included in a pinpoint event, allowing our al-
gorithm to focus resources on less than 20% of the set
of potential culprits.

Similarly, Figure 11 shows the CDF of the fraction
of verified routers, ordered by decreasing verification
frequency. Here we maintain counts for each router in-
dicating how many times it was in a verified set. Again,
approximately 150 routers account for 80% of the total
number of all verified routers observed. Of all routers
encountered, only≈500 were ever verified as lossy. Since
a router must be pinpointed before it can be verified,
this implies that about 60% of routers that belong to
some pinpointed set were verified.

Figure 12 illustrates the distribution of the number
of hosts that pinpoint a given router. Almost 80% of
routers were pinpointed to from two or fewer hosts, but
a surprisingly small number of routers were pinpointed
from many different vantage points. Because multiple
hosts with different views of the routing topology agree
on this small set of routers, we expect these predictions
to be especially strong.

If this result scales, then it follows that very few
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Figure 9: The fraction of routers pinpointed x or
fewer times. A very small percentage of routers
are pinpointed to more than ten times.
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Figure 10: Fraction of all pinpoint events that
include one or more of the top x most frequently
pinpointed routers. Only ≈ 800 of the observed
routers are ever included in a pinpointed set.

routers will be pinpointed many times. This leads to
a natural way of finding such suspicious routers and
verifying whether or not they are lossy. The Pinpoint
methodology could be deployed from many vantage points
across the Internet, and those routers that are pin-
pointed to the most frequently, and from the most dis-
tinct vantage points, are the ones that should be moni-
tored further to investigate their loss properties.

4.2.4 Packet Loss Explanation

To evaluate our methodology, we quantify the amount
of observed packet loss accounted for by the most fre-
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Figure 11: Fraction of passed hypothesis tests
up to the top x most frequently verified routers.
Only ≈ 500 routers are verified.
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Figure 12: Fraction of routers pinpointed by
at most x distinct hosts. A small percentage
of routers are pinpointed from several different
vantage points.

quently pinpointed and verified routers.
Figure 13 illustrates the distribution of verified lossy

routers aggregated over all observed hosts and lossy re-
ceivers. For each end-to-end link exhibiting at least
3% packet loss for a given window3, we checked if the
path contained one of the top x most frequently veri-
fied routers, and then counted the amount of observed
packet loss. Of the 4413 routers encountered through-
out the duration of the experiment, the top 128 (2.9%)
appear on routes accounting for 87% of all observed

3The windows here are periodic snapshots of the host’s
packet loss matrix as defined in Section 3.
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Figure 13: The fraction of packet loss observed
at receivers exhibiting packet loss of at least
3% that also contain one of the top x most fre-
quently verified routers along the path from the
host. 87% of all packet loss occurs along routes
containing a router in the top 128.

packet loss. We repeated this process for several thresh-
olds, ranging from 0.1% to 10%, and the results did not
change significantly. This confirms our thesis that end-
point correlation over a relatively small receiver set can
detect a significant portion of the observed packet loss.
But do these routers really explain the observed loss?

Figure 14 illustrates the maximum amount of packet
loss from any monitoring host to two of the most fre-
quently verified routers over the entire duration of the
experiment. In both cases, loss remains low for long pe-
riods of time, interrupted by bursts of extremely high
packet loss. These graphs are typical of the top 15 ver-
ified routers listed in Table 2. The high packet loss
observed at these routers indicates that the pinpoint
methodology does succeed in locating causes of end-
point loss.

These results confirm our intuition that real-time adap-
tation allows us to focus resources on the most problem-
atic areas, while not sacrificing much information from
the less-frequently sampled routers.

4.2.5 AS Investigation

During our experiment, we encountered routers from
154 different autonomous systems. Table 2 shows the
AS information for the top 15 most frequently verified
routers. Surprisingly, they belong to a very small set of
autonomous systems.

Although we do not have direct access to the AS
topology, we can draw inferences from the traceroute
tree. In the following, we define a gateway router as
a node in the traceroute tree adjacent to another node
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Figure 14: Packet loss observed throughout the experiment for the most frequently verified router
(top) and a typical router in the top 15 (sixth most frequently verified, bottom). Each point corre-
sponds to the maximum loss from any host monitoring that router in a given hour.

from a different AS, that is, their link crosses AS bor-
ders. The actual border routers lie somewhere in be-
tween two gateway routers. Ten of the top 15 verified
routers lie on some AS boundary, including all of those
that belong to Abilene-Internet2.

Figure 15 illustrates the relationship between gate-
way routers and verification frequency. For the top x
frequently verified routers, we counted the fraction of
gateway routers included. Strikingly, of the top ten
most frequently verified routers, nine lie on links span-
ning autonomous system boundaries. The general trend
is that the more often a router is pinpointed and veri-
fied, the more likely it is to be on the boundary between
two autonomous systems. This may be indicative of
traffic shaping or poor BGP policies at the provider,
and lends support to previous claims that BGP prob-
lems can cause substantial service outages at the end-
points[3].

5. FUTURE WORK

In the future, the Pinpoint project plans on doing
more extensive Internet measurements and developing
a monitoring service that can produce a real-time list
of the worst offending routers in the current Internet.
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Figure 15: The fraction of the top x verified
routers that lie on links spanning AS boundaries.

We now propose some extensions to the present work
to improve the accuracy of the algorithm and further
reduce the incurred network load due to active probing.
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IP addr. V Rank P Rank ASN AS Name Country Gateway?
202.112.53.181 1 5 4538 ERX-CERNET-BKB China Education CN No
202.112.61.13 2 30 4538 ERX-CERNET-BKB China Education CN Yes
62.40.112.133 3 8 20965 GEANT The GEANT IP Service NL Yes
202.112.53.17 4 12 4538 ERX-CERNET-BKB China Education CN Yes
202.112.61.9 5 22 4538 ERX-CERNET-BKB China Education CN Yes
202.179.241.21 6 24 24489 TEIN2-NORTH-AP Trans-Eurasia I CN Yes
198.32.8.76 7 11 11537 ABILENE - Internet2 US Yes
62.40.124.121 8 55 20965 GEANT The GEANT IP Service NL Yes
64.57.28.7 9 16 11537 ABILENE - Internet2 US Yes
202.179.241.26 10 23 24489 TEIN2-NORTH-AP Trans-Eurasia I CN Yes
198.32.11.102 11 40 11537 ABILENE - Internet2 US Yes
202.112.53.18 12 1 4538 ERX-CERNET-BKB China Education CN No
62.40.112.57 13 25 20965 GEANT The GEANT IP Service NL No
62.40.112.134 14 19 20965 GEANT The GEANT IP Service NL No
202.127.216.22 15 67 4538 ERX-CERNET-BKB China Education CN No

Table 2: Top 15 routers found. We show what rank in terms of number of verified sets the router
was involved in (V Rank) and also in terms of the total number of times pinpointed to (P Rank).
We also show what AS number the IP belongs to (ASN), the name of that AS, the country that AS
is in, and whether the router borders two ASes on observed routes. Visit our website for a more
complete list.

5.1 Robust Similarity

One of the major underlying problems with using
correlation is its relative sensitivity to noise. To cor-
relate at a level of 0.9 or higher is a stringent condi-
tion that is easily breakable. Imagine the case where
two endpoints observe loss as a result of two indepen-
dent routers, where one router lies on the shared path
segment to the endpoints and the other lies below the
branching point. The two endpoints will in some sense
have similar time series, but correlation alone is not
robust enough to capture this form of similarity. We
would then like to be able to separate the contributions
of the observed time series due to each router in order
to derive a new notion of similarity.

There have been several techniques proposed in the
statistics and machine learning literature designed to
address this type of overlapping signals problem, in-
cluding Independent Components Analysis (ICA) and
Non-negative Matrix Factorization (NMF) [5, 20]. Be-
cause of the positive additive nature of the composi-
tion of packet loss events, we briefly experimented with
NMF-based similarity metrics for our time series data.
We were unable to find a sufficiently robust tuning of
the parameters to employ in the online setting, but our
experiments were by no means exhaustive. More re-
search in this direction would help to generalize our
model to handle simultaneous router failures along non-
overlapping path segments. On the other hand, because
of the fact that most routers tend to not drop any pack-
ets most of the time, this scenario where a route has
multiple simultaneous lossy routers my be rare enough

to be neglected.
A larger looming concern is the effect of false positive

correlations in our work. Because of the short bursty
nature of packet loss and the discrete nature of our mea-
surement abilities we are typically only able to catch a
select few high loss bursts in a given window to correlate
on. Utilizing statistical tests for correlation may help
separate the false positives from the real correlations.

5.2 Increased Adaptivity

The pinpoint methodology proposed is entirely geared
for online discovery of lossy shared routers. Something
that we initially examined in the experiments discussed
above is the adaptive sampling component to the online
algorithm. The present work is adaptive in two distinct
ways. First, the sampling rate of a node being mon-
itored varies as function of the observed packet loss.
Secondly, the set of nodes being observed is highly vari-
able, and depends on long-term interactions between
members of the receiver set.

In our experiments, we restricted our initial receiver
set to 68 nodes, and used a simple threshold rule to de-
cide when to increase the sampling rate. However, when
the receiver set becomes much larger, we run the risk
of saturating the host’s connection with measurement
packets. Therefore, we would like to be able to maxi-
mize the information gained by our measurements while
simultaneously minimizing the contributed load on the
network. Intuitively, a node having low-variance packet
loss should be easier to predict than one with high vari-
ance. The less predictable the time series is, the more
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information we gain from each sample. Therefore, the
sampling rate of a node should also depend on the vari-
ance of its time series, rather than a simple threshold
of its latest observation. This intuition leads to the
addition of a weighting for each receiver that depends
directly on the variance of its time series, and could be
updated online with the exponential weights rule, which
has seen significant success in the field of online machine
learning [17, 28]. It should be noted that our current
threshold rule necessarily entails a dependence on vari-
ance. In addition to the low-variance, high-loss links,
every high-variance link will be monitored because it
must have crossed the loss threshold to achieve high
variance. The present algorithm is therefore not opti-
mized for network load, but provides a superset of the
observations, is slightly more intuitive, and has fewer
parameters to tune.

Similarly, we could maintain a separate weight that
tells us how stable a particular node’s traceroute is over
time. If it is very stable, then we shouldn’t need to
calculate it often, but if it is continually making large
changes then we should update its traceroute more of-
ten. A simple set difference or edit distance metric
seems logical to employ here, and could reduce the false
positive rate of the pinpoint algorithm by improving the
accuracy of the tree.

6. CONCLUSIONS

We have presented an adaptive measurement paradigm
for pinpointing lossy routers in the Internet. Our exper-
iments focused mainly on packet loss, but the core ideas
put forward could easily be extended to other quantities
of interest, e.g. latency. The experiments on PlanetLab
show that the methodology does in fact work quite well
in the real Internet despite the many real world prob-
lems that work against the model. We found that rel-
atively few routers are responsible for the majority of
packet loss observed by end-users.

It is worth emphasizing the possible implications of
our findings on the economics of QoS on the Internet.
In the current state of affairs, there is no incentive for
ISPs and backbone providers to improve QoS since do-
ing so would not directly impact their prices and their
revenues. On the other hand, there is a growing demand
for QoS from customers that want to use their Internet
connections for VoIP, online games and other real-time
interactions. If our conclusions are correct and if they
scale up to the Internet as a whole, then a small num-
ber of bottleneck routers have a large impact on packet
loss that would be experienced by end-users and thus
represents a significant economic opportunity. If this
small number of routers (or the routing policies which
control them) are upgraded to match their load so that
they would not drop packets, a large number of peo-
ple would get the benefits of higher QoS connections,

which is likely to make them prefer an upgraded net-
work over a network that drops packets. If the number
of bottleneck routers is small and the number of Inter-
net users that benefit from an upgrade is large, then
there is a large economic incentive for upgrading the
routers. We therefore believe that our work represents
a significant step towards making Internet QoS more
transparent and setting the path towards higher QoS on
the Internet. This higher QoS would not rely on “hard”
guarantees, but rather on actual performance. This is
similar to quality of service given to the consumer by
airlines, which relies on the availability of statistics to
the public on cancelled and delayed flights, on flight
service quality, etc. rather than on any written guaran-
tees.

7. REFERENCES

[1] Planetlab. http://www.planet-lab.org.
[2] A. Adams, B. Tian, T. Friedman, J. Horowitz,

D. Towsley, R. Caceres, N. Duffield, F. Presti,
S. Moon, and V. Paxson. The use of end-to-end
multicast measurements for characterizing
internal network behavior. Communications
Magazine, IEEE, 38(5):152–159, May 2000.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and
R. Morris. The case for resilient overlay networks.
In Hot Topics in Operating Systems, 2001.
Proceedings of the Eight Workshop on, pages
152–157, 2001.

[4] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot.
The role of pasta in network measurement. In
SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 231–242, New York, NY,
USA, 2006. ACM Press.

[5] A. J. Bell and T. J. Sejnowski. An
information-maximization approach to blind
separation and blind deconvolution. Neural
Computation, 7:1129–1159, 1995.

[6] T. Bu, N. Duffield, F. L. Presti, and D. Towsley.
Network tomography on general topologies.
SIGMETRICS Perform. Eval. Rev., 30(1):21–30,
2002.

[7] R. Caceres, N. Duffield, J. Horowitz, and
D. Towsley. Multicast-based inference of
network-internal loss characteristics. IEEE
Transactions on Information Theory,
45(7):2462–2480, Nov 1999.

[8] P. Calyam, M. Sridharan, W. Mandrawa, and
P. Schopis. Performance measurement and
analysis of h.323 traffic. Passive and Active
Measurement Workshop, 2004.

[9] R. Castro, M. Coates, G. Liang, R. Nowak, and
B. Yu. Network tomography: Recent

12



developments. Statistical Science, 19:499–517,
2004.

[10] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L.
Lei. Quantifying skype user satisfaction. In
SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 399–410, New York, NY,
USA, 2006. ACM Press.

[11] M. Coates, A. Hero, R. Nowak, and B. Yu.
Internet tomography. Signal Processing Magazine,
IEEE, 19(3):47–65, May 2002.

[12] N. Duffield, J. Horowitz, W. Wei, and
T. Freidman. Multicast-based loss inference with
missing data. IEEE Journal on Selected Areas in
Communications, 20(4):700–713, May 2002.

[13] N. Duffield, F. L. Presti, V. Paxson, and
D. Towsley. Inferring link-loss using striped
unicast probes. IEEE INFOCOM, 2:915–923,
2001.

[14] J. D. Horton and A. López-Ortiz. On the number
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