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ABSTRACT OF THE DISSERTATION

Runtime Optimizations for Evaluating Batches of Graph Queries

by

Chengshuo Xu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Dr. Rajiv Gupta, Chairperson

Graph processing frameworks are typically designed to optimize the evaluation of a single

graph query. However, in practice, we often need to respond to multiple graph queries, either from

different users or from a single user performing a complex analytics task. This thesis is aimed at

simultaneously evaluating batches of graph queries of two types: point-to-all and point-to-point.

By fully utilizing system resources, batched evaluation amortizes runtime overheads incurred due

to fetching vertices and edge lists, synchronizing threads, and maintaining computation frontiers.

In addition, new runtime optimizations are developed that enable faster evaluation of batches of

queries than their independent and one by one evaluation.

In context of point-to-all queries we develop the sharing optimization that dynamically

identifies shared queries that substantially represent subcomputations in the evaluation of different

queries in a batch, evaluates the shared queries, and then uses their results to accelerate the evalua-

tion of all queries in the batch. The resulting SimGQ system delivers substantial speedups over a

conventional framework that evaluates and responds to queries one by one. We have also adapted

the batching principles used by SimGQ to the streaming graph scenario in which we continuously
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maintain the results of small batch of shared queries and use them for low cost evaluation of arbitrary

user queries.

For point-to-point queries we have identified unique characteristics of such queries and

based upon them developed two new optimizations. The first optimization, online pruning, elimi-

nates propagation from vertices that are determined to not contribute to a query’s final solution and

thus enables early termination. The second optimization, dynamic direction prediction, dynami-

cally selects direction in which to evaluate the query – either forward (from source) or backward

(from destination) – as their costs can differ greatly. The resulting system, PnP, delivers substan-

tial performance benefits over the state-of-the-art. To solve a batch of point-to-point queries, we

extended this system by incorporating the batching principles in SimGQ along with a new query

aggregation technique that eliminates the redundant computation across point-to-point queries that

share the same source or destination vertex
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Chapter 1

Introduction

Graph analytics is employed in many domains (e.g., social networks, web graphs, internet

topology, brain networks etc.) to uncover insights by analyzing high volumes of connected data.

An iterative algorithm updates vertex property values of active vertices in each iteration driving

them towards their final stable solution. When the solution values of all vertices become stable,

the algorithm terminates. It has been seen that real world graphs are often large with millions of

vertices and billions of edges. Moreover, iterative graph analytics requires repeated passes over

the graph till the algorithm converges to a stable solution. As a result, in practice, iterative graph

analytics workloads are data-intensive and often compute-intensive. Therefore, there has been a

great deal of interest in developing scalable graph analytics systems like Pregel [26], GraphLab [24],

GraphIt [60], PowerGraph [11], Galois [36], GraphChi [21], Ligra [41], ASPIRE [46].

While the performance of graph analytics has improved greatly due to advances intro-

duced by the above systems, much of this research has focussed on developing highly parallel

algorithms for solving a single iterative graph analytic query, which in many cases is a point-to-all
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graph query computing property values from a single source to all other vertices in the graph (e.g.,

SSSP(s) query computes shortest paths from a single source s to all other vertices in the graph).

There are a variety of such single-query computing platforms for graph analytics including shared-

memory systems, distributed clusters, and systems with accelerators like GPUs. However, in prac-

tice the following two scenarios involve multiple queries: (a) Single-User scenario in which a single

user may conduct a complex analytics task requiring issuing of multiple queries; and (b) Multi-User

scenarios as in [34] and [44] where the same data set is queried by many users. In both scenarios,

machine resources can be fully utilized delivering higher throughput by simultaneously evaluating

multiple queries on a modern server with many cores and substantial memory resources.

In addition to the conventional point-to-all graph query, point-to-point graph query, which

computes from a single source vertex to a single destination vertex, is also drawing attention from

the research community. For instance, recently Yan et al. [58] observed that many applications on

large graphs simply require computing point-to-point variants of heavyweight computations. As an

example, when analyzing a graph that represents online shopping history of shoppers, a business

may be interested in point-to-point queries over pairs of certain important shoppers. Thus, given a

pair of distinct vertices (s, d) in a graph, we are interested in computing point-to-point versions of

standard computations such as, shortest path from s to d, widest path from s to d and number of

paths from s to d. Yan et al. developed the Quegel [58] framework to solve point-to-point queries.

Since many such pairs of queries need to be evaluated, Yan et al. overlap the evaluation of multiple

point-to-point queries.

While the focus of above systems is on solving single point-to-all queries and single

point-to-point queries, this thesis develops techniques for simultaneously evaluating batches of
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point-to-all and point-to-point queries. We first explore the opportunity to amortize the runtime

overhead and reduce the computational cost for evaluating a batch of point-to-all graph queries on

static graphs, and then extend the system for streaming graph scenarios. After that, we discuss the

batched evaluation of point-to-point queries following the same batching principle. Since point-to-

point graph queries are a class of workload which have not been widely studied in the literature,

we start with a study on how to accelerate a single point-to-point graph query, and then build upon

the observations for a single point-to-point query to develop further optimizations specifically for

evaluating a batch of point-to-point graph queries.

1.1 Dissertation Overview

Figure 1.1: Dissertation Overview

In this thesis, we exploit the synergy that exists in batched execution of iterative vertex

graph queries to accelerate the evaluation of a batch of point-to-all or point-to-point iterative graph

queries. Figure 1.1 shows the overview of this dissertation. We first studied batching in shared-

memory architecture and developed online sharing optimization to improve the performance of a

3



batch of point-to-all queries on static and dynamic graphs. And then we study and discover the

unique characteristics of point-to-point queries and further tackle the issues in evaluating a batch of

point-to-point queries.

1.1.1 Simultaneously Evaluating Batches of Point-to-All Queries

Conventional point-to-all graph queries have been widely studied in the literature. There-

fore, we do not further dive into how to evaluate a single point-to-all graph query. Instead, we

explore the synergy across a batch of queries. We first study the problem on static graphs which

models the relationships between entities that remain unchanged during the execution of graph al-

gorithms, and then adapt the observations and techniques developed for static graphs to streaming

graph scenarios.

Processing Static Graphs

Given an input graph and a batch of point-to-all queries, we can synergistically perform

simultaneous evaluation of all queries in a batch to deliver results of all queries in a greatly reduced

time. Essentially the synergy in evaluation of queries, that exists due to the substantial overlap be-

tween computations and graph traversals for different queries, is exploited to amortize the runtime

overhead and computation costs across the simultaneously evaluated queries. To amortize compu-

tation costs, we develop a novel strategy that dynamically identifies shared queries whose com-

putations substantially overlap with the computations performed by multiple queries in the batch,

evaluates the shared queries, and then uses their results to accelerate the evaluation of all the queries

in the batch. With the sharing optimization, we develop SimGQ, a graph analytics system aimed at

evaluating a batch of vertex queries received from users for different source vertices in the graph.

4



Processing Streaming Graphs

In many real-world application scenarios, a stream of updates are continuously applied to

the graph, often in batches for better efficiency, known as the streaming graph scenario. Incremental

computation can be used to quickly update the result of fixed queries in streaming graph scenarios.

When a batch of updates is applied to the graph, incremental computation reuses the query result

on the previous version of the graph and performs iterative computation starting from property

values which is closer to convergence compared with reevaluating query from scratch. However, the

applicability of incremental computation is restricted to accelerate fixed queries. In this thesis, we

extend SimGQ to generalize incremental computation to handle batches of arbitrary user queries

in the streaming graph scenario. Essentially we continuously apply incremental computation to

maintain the results of a small batch of preselected shared queries upon graph mutations, which can

be used to accelerate a batch of arbitrary user queries on the latest version of the graph using the

sharing optimization in SimGQ.

1.1.2 Efficiently Evaluating Batches of Point-to-Point Queries

Since not much research has been conducted on evaluating point-to-point queries, we first

propose a greatly enhanced method, based on which we developed a system named PnP, for eval-

uating a single point-to-point query by leveraging the observation that point-to-point queries may

only require a small portion of computation compared with its heavy-weight point-to-all counter-

part. After that, we further study the opportunity to eliminate redundant computation across a batch

of point-to-point queries.
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Optimizing a Single Point-to-Point Query

To quickly respond to point-to-point queries, we developed the PnP system that incorpo-

rates optimizations that greatly improve performance over the Quegel system [58]. First, wasteful

work performed by Quegel is reduced via an online pruning optimization that eliminates unnec-

essary propagation to vertices which are determined to not contribute to the query’s final answer.

Second, we recognize that evaluation times of point-to-point queries in backward and forward direc-

tions can greatly differ because different subgraphs are used with the traversal in different directions,

and thus introduce a light-weight dynamic direction selection optimization that at runtime predicts

the faster direction of execution based on each combination of input query and input graph.

Optimizing a Batch of Point-to-Point Query

Moreover, we are also interested in evaluating a batch of point-to-point queries as users

are interested in computing point-to-point information between a subset of vertices in the graph, as

mentioned in Quegel [58]. In addition to the batching principle studied in SimGQ and the online

pruning technique for a single point-to-point query developed in PnP, we developed a novel query

aggregation optimization for evaluating a batch of point-to-point graph queries. Essentially query

aggregation eliminates the shared computation across point-to-point queries with the same source or

destination which widely exists in the workload of computing point-to-point information between a

subset of vertices in the graph.
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1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents SimGQ, the system

for batched evaluation of point-to-all graph queries. Chapter 3 describes how the batching principle

and sharing optimization in SimGQ can be leveraged to quickly respond to arbitrary queries in

the streaming graph scenarios. Chapter 4 presents the optimizations and the resulting two phase

algorithm for fast evaluation of a single point-to-point query. Chapter 5 discusses batched evaluation

of point-to-point queries which combines the batching principle from SimGQ, the pruning technique

from PnP, and a new query aggregation optimization. Chapter 6 discusses various related works in

the literature. Chapter 7 concludes the thesis and discusses directions for future work.
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Chapter 2

SimGQ – Batched Evaluation with

Online Sharing Optimization

Graph analytics is employed in many domains (e.g., social networks, web graphs, internet

topology, brain networks etc.) to uncover insights by analyzing high volumes of connected data.

An iterative algorithm updates vertex property values of active vertices in each iteration driving

them towards their final stable solution. When the solution values of all vertices become stable, the

algorithm terminates. The existing graph processing frameworks are typically designed to optimize

the evaluation of a single iterative graph query. However, in practice, we often need to respond to

multiple graph queries, either from different users or from a single user performing a complex ana-

lytics task. In both scenarios, machine resources can be fully utilized delivering higher throughput

by simultaneously evaluating multiple queries on a server with many cores and substantial memory.

In this chapter we exploit the synergy across a batch of point-to-all graph queries based on

which we develop a graph analytics system SimGQ [56], aimed at evaluating a batch of point-to-all
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queries received from users for different source vertices of a large graph. For example, for SSSP al-

gorithm, we may be faced with the following batch of point-to-all queries: SSSP (s1), SSSP (s2),

· · · · · · SSSP (sn). Many other important algorithms belong to this category [22, 16, 13] etc. Our

overall approach is as follows. Given an input graph and batch of vertex queries, we synergistically

perform simultaneous evaluation of all queries in a batch to deliver results of all queries in a greatly

reduced time. Essentially the synergy in evaluation of queries, that exists due to the substantial

overlap between computations and graph traversals for different queries, is exploited to amortize

the runtime overhead and computation costs across the simultaneously evaluated queries. Two tech-

niques, batching and online sharing, are employed to simultaneously and efficiently evaluate a set

of queries.

(a) Batching for Resource Utilization and Amortizing Overheads. Batching takes a group

of queries, forming the batch, and simultaneously processes these queries to achieve higher

throughput by fully utilizing system resources and amortizing runtime overhead (e.g., syn-

chronization) costs across queries. SimGQ is capable of evaluating large batches (up to 512

queries) of a general class of queries on a shared-memory system for high throughputs.

(b) Online Sharing. To amortize computation costs, we develop a novel strategy that dynamically

identifies shared queries whose computations substantially overlap with the computations

performed by multiple queries in the batch, evaluates the shared queries, and then uses their

results to accelerate the evaluation of all the queries in the batch. The shared subcomputa-

tions are essentially query evaluations for a small set of high degree source vertices, different

from the source vertices of queries in the batch, such that they can be used to accelerate the

evaluation of all queries in the batch.
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Online sharing has multiple advantages over classical global indexing methods for opti-

mizing evaluation of queries. First, indexing entails heavy weight precomputation used to build a

large index that can be used to accelerate all future queries (e.g., Quegel [58] uses Hub-Accelerator

based indexing). Second, as soon as the graph changes, precomputed indexing/profiling information

becomes invalid. The online sharing as performed by SimGQ involves no precomputation and thus

eliminates its high cost while also accommodating changes to the graph between different batches

of queries. Thus, our approach applies to streaming/evolving graphs.

In SimGQ, the evaluation of a batch of queries is carried out as follows. We partially

evaluate the queries in the batch for a few iterations till some high degree vertices enter the frontiers

of the queries in the batch. We pause the evaluation of the batch queries and select a small set of high

degree vertices encountered. Treating selected vertices as source vertices of queries, we construct a

batch of shared queries and then evaluate this batch. The results of shared queries are then used to

quickly update the solutions of all queries in the original batch and hence accelerate their advance

towards the final stable solution. Finally, we resume the paused evaluation of original batch till

their stable solutions have been found. By simultaneously evaluating queries we also amortize the

runtime overheads incurred, such as costs of accessing vertices and edges, synchronization costs,

and maintaining frontiers as multiple queries traverse the same regions of the graph.

We implemented SimGQ by modifying the state-of-the-art Ligra [41] system. Our ex-

periments with multiple input power-law graphs and multiple graph algorithms demonstrate best

speedups ranging from 1.53× to 45.67× with batch sizes ranging up to 512 queries over the a base-

line implementation that evaluates the queries one by one using the state of the art Ligra system.

We also show that both batching and sharing techniques contribute substantially to the speedups.
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The remainder of the chapter is organized as follows. In section 2.1 we first provide an

overview of SimGQ and then present our algorithms in detail. In section 2.2 we experimentally

evaluate SimGQ. Finally, we summarize this chapter in section 2.3.

2.1 SimGQ: Evaluating a Batch of Queries

When a group of iterative graph queries are evaluated as a batch, following opportunities

for speeding up their evaluation arise that are ignored when evaluating the queries one by one.

First, it is easy to see that during batched evaluation, we can share the iteration overhead across

the queries. This overhead includes the cost of iterating over the loop, synchronizing threads at the

barrier, as well as fetching vertex values and edge lists of active vertices to update vertex values

and the computation frontier. Second, synergy or overlap between computations performed by

the queries can be exploited to reduce the overall computation performed. In particular, we can

identify and evaluate shared queries whose results can be used to accelerate the evaluation of all

the queries in the batch. The computation performed by the shared queries substantially represent

subcomputations that are performed by many queries in the batch. This is because different queries

typically traverse the majority of the graph and consequently present an opportunity to share a

subcomputation across multiple queries. By evaluating the shared queries once, we can speedup the

evaluation of the entire batch of queries. Note that the shared queries must be identified dynamically

because they may vary from one batch to another.
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2.1.1 Overview of SimGQ

Next we provide an overview of SimGQ via an illustrating example. Figure 2.1 shows

how a batch of two queries can be synergistically evaluated by identifying and evaluating shared

queries first. While in the example we use a directed graph, our approach works equally well for

undirected graphs with a minor adjustment. As in other works, each undirected edge is represented

by a pair of directed edges with equal weight.

(a) Initialization for Batch(A,B) of SSSP
Queries.

(b) Phase I. Evaluate Batch(A,B), Pause and
Identify SSET.

(c) Phase II. Evaluate SSET. (d) Phase II Contd. Update Batch(A,B)
Results Using SSET Results.

(e) Phase III. Resume Batch(A,B) Evaluation till
Termination.

Figure 2.1: Overview of Sharing Among a Batch of Queries
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Initialization Step. Since all queries in a given batch are to be evaluated simultaneously,

each vertex is assigned a vector to hold data values for all queries in the batch – each position in

the vector corresponds to a specific query in the batch. In Figure 2.1a we aim to solve a batch of

two SSSP queries for source vertices A and B marked in red. Each node is annotated with a pair

of initial values for the two queries, A first and then B. Initial value 0 is assigned to source vertices

and value∞ to all non-source vertices for each of the SSSP queries.

Phase I: Identifying Shared Queries. Simultaneously starting from the source vertices,

we start traversing the graph updating the shortest path lengths for the processed vertices along the

frontier as shown in red in Figure 2.1b. The evaluation of the batch continues and once good

candidate vertices for shared queries SSET are found, the evaluation of the batch is paused. Let us

assume that after one iteration we identify SSSP(C) (C marked in green) as a good shared query

candidate for the two queries in the batch in our example. Thus, we pause the evaluation of the

batch queries and proceed to the next step to process the identified shared queries.

Phase II. Accelerating Batch Queries Using Shared Queries. In this step we eval-

uate the shared queries first, that is we evaluate them till their stable results have been computed.

For example, in Figure 2.1c we evaluate the shared query SSSP(C). Once the shared queries have

been evaluated, their results are used to rapidly update the partial results of all the original batch

queries as shown in Figure 2.1d. Note that at this point the results of all vertices except B and E

have already reached their final stable values. That is, the evaluation of batch queries has greatly

advanced or accelerated.

Phase III. Completing the Evaluation of Batch Queries. In this final step we resume

the evaluation of batch queries from the frontier at which the evaluation was paused earlier. In our
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example, the resumption of evaluation takes place at vertices B and E and finally the algorithm

terminates after updating the results at vertices E and H. Note that if the acceleration performed in

Phase II is effective, the combined cost of Phase I and Phase III would be significantly less than the

cost of evaluating the batch without employing sharing affected via Phase II.

While the above example provides an overview of our approach, many algorithm details

and heuristic criteria need to be developed. For example, there are different ways to select shared

queries (queries on vertices with high centrality or high degree, queries on vertices that are reachable

by most source vertices in the batch etc.). Since our work focuses on power-law graphs that have

small diameter and skewed degree distribution, high degree vertices are the best candidates for

global queries that in general traverse nearly the entire graph. Our algorithm first marks a set of

high degree vertices as potential shared vertices. At runtime, a heuristic is used to select a small

subset of shared vertices that are not only marked, but also have been encountered more frequently

during partial evaluation of batch queries. After evaluating the shared queries, we use the results to

quickly update the results of all batch queries. In subsequent subsections we present a push-style

evaluation of a batch of queries assisted by our idea of using shared queries.

2.1.2 Push-Style Batch Evaluation With Sharing

Now we present a detailed algorithm that evaluates a batch of vertex queries, employing

both batching and sharing, using Push model (a similar algorithm can be easily designed for the Pull

model). In Algorithm 1, function EVALUATEBATCH (line 3) simultaneously evaluates a batch of

vertex queries for source vertices s1, s2, ..., sk, over a directed graph G (V,E). The algorithm uses
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Algorithm 1 Batched Evaluation With Sharing
1: Given: Directed graph G(V,E); High Degree Set M ⊂ V of Marked Vertices

2: Goal: Evaluate a Batch of Queries, QUERYBATCH← { Q1(s1), Q2(s2), ..., Qk(sk) }

3: function EVALUATEBATCH( QUERYBATCH )

4: B [Initialization Step]

5: INITIALIZE RESULTT for QUERYBATCH

6: ACTIVE← { s1, s2, ..., sk }; NEXTTRACK← φ; ITER← 0

7: CURRTRACK← { (si, Qi) : Qi(si) ∈ QUERYBATCH }

8: B Iterate till Convergence

9: while ACTIVE 6= φ do

10: B [Phase I: Iteration ≤ p] [Phase III: Iteration > p]

11: B Process Active Vertices

12: ACTIVE← PROCESSBATCH ( ACTIVE, ITER, CURRTRACK, NEXTTRACK, RESULTT )

13: if ITER = p then B [Phase II]

14: B Identify #SSET as the Most Frequently Visited Vertices from M as the source of Shared Queries

15: SSET← SELECTSHAREDQS (M , Visits, #SSET)

16: B Evaluate Shared Queries with Sources in SSET

17: SHAREDT← EVALUATEBATCH (SSET)

18: B Update RESULTT using SHAREDT

19: SHAREUPDATEBATCH ( SSET, SHAREDT, RESULTT )

20: end if

21: CURRTRACK← NEXTTRACK; NEXTTRACK← φ; ITER++

22: end while

23: return RESULTT

24: end function
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Algorithm 2 Batched EdgeMap Function to Update Vertex Values and Compute New Frontier
1: function PROCESSBATCH ( ACTIVE, ITER, CURRTRACK, NEXTTRACK, RESULTT )

2: NEWACTIVE← φ

3: for all v ∈ ACTIVE in parallel do

4: for all e ∈ G.outEdges(v) in parallel do

5: B Apply conventional Update on e.dest

6: changed← EDGEFUNCBATCH ( e, CURRTRACK, NEXTTRACK, RESULTT)

7: if ( ITER ≤ p ) and ( e.dest ∈M ) then Visits[e.dest]++ end if

8: B Update Active Vertex Set for next Iteration

9: if changed then NEWACTIVE← NEWACTIVE ∪ {e.dest} end if

10: end forall

11: end forall

12: return NEWACTIVE

13: end function

M ⊂ V as a set of marked high degree vertices from which a small number of vertices are selected to

form shared queries; different batches of queries yield different shared queries. In our experiments

|M | is set to 100 to provide choices that suit different batches, while up to 5 shared queries are

selected to limit the overhead of sharing (i.e., SSET size is 5). The algorithm maintains an ACTIVE

vertex set, the combined frontier for all queries in the batch. Although ACTIVE tells which vertices

are active, it cannot tell which queries are associated with each active vertex. Therefore, in addition

to ACTIVE, our algorithm maintains two fine-grained active lists, CURRTRACK and NEXTTRACK,

to indicate for each active vertex all the queries whose frontier the active vertex belongs to. While

CURRTRACK is the information for active set being processed, NEXTTRACK is the corresponding

information for the active set being formed for the next super step of the algorithm. The RESULTT

maintains the results of all the queries for each vertex.
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Algorithm 3 Batched Edge Update Function
1: function EDGEFUNCBATCH (e, CURRTRACK, NEXTTRACK, RESULTT)

2: B Initialize RETVALUE to false.

3: B Set to true if property value of vertex e.dest is changed.

4: RETVALUE← false

5: for all Qi(si) ∈ QueryBatch do

6: B Only Attemp Update for Queries activated e.source

7: if (e.source, Qi) ∈ CURRTRACK then

8: B Perform Update via e

9: if UPDATEFUNC(e, Qi, RESULTT) == true then

10: B Schedule e.dest for next Iteration

11: RETVALUE← true

12: NEXTTRACK← NEXTTRACK ∪ {(e.dest,Qi)}

13: end if

14: end if

15: end for

16: return RETVALUE

17: end function

Following the initialization step (lines 4-7) in Algorithm 1, in each super iteration (lines 9-

22), the vertices in ACTIVE vertex set are processed in parallel by calling function PROCESSBATCH

(Algorithm 2). Function PROCESSBATCH updates the value of out-neighbors of active vertices in

Push style fashion and generates NEWACTIVE containing the active vertices for next iteration which

it returns to EVALUATEBATCH at the end. The work performed by the loop at line 9 executes the

three phases of our algorithm. The first p iterations form Phase I, following which, next in Phase II

first shared queries SSET are identified by calling SELECTSHAREDQS (line 15) and then the queries

in SSET are evaluated (line 17). Finally, the evaluation of original batch of queries is accelerated by
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Algorithm 4 Identify Shared Queries from M

1: Given: High Degree Set M ⊂ V of Marked Vertices

2: Vector Visits: Number of Visits of All Vertices ∈M

3: Constant #SSET: # of Shared Vertices Selected

4: Goal: Select #SSET most frequently visited Vertices in M

5: function SELECTSHAREDQS (M , Visits, #SSET)

6: B Init: Set of Source Vertices for Shared Queries

7: SSET← φ

8: B Init: Set of (vertex, vertex visits number) pairs

9: VERTVISITSPAIRS← φ

10: for all v ∈M do

11: VERTVISITSPAIRS←VERTVISITSPAIRS∪{v,Visits[v]}

12: end for

13: B Sort Vertices subject to Number of Visits

14: Sort ( VERTVISITSPAIRS, moreVisits() )

15: B Select most frequently visited Marked Vertices

16: for #SSET top {v, Visits[v]} ∈ VERTVISITSPAIRS do

17: SSET← SSET ∪ {v}

18: end for

19: return SSET

20: end function

updating their results in RESULTT using the results of SSET queries in SHAREDT (line 19). Finally

in Phase III the computation of batch queries is resumed and completed in remaining iterations of

the while loop. During Phase I the algorithm maintains a count of number of visits to each vertex in

M . These counts are used for selecting vertices to form SSET, more visits implies greater relevance

to queries in the original batch and hence higher priority for inclusion in SSET. Following the call
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to PROCESSBATCH in the pth iteration (1st in our experiments), we enter Phase II at which point

SSET is built. The details of SSET construction are presented in Algorithm 4. If lines 13-20

are eliminated, the algorithm will not perform sharing and thus its execution will revert to simple

batched evaluation.

Function PROCESSBATCH (Algorithm 2) loops over each outedge e of every active vertex,

and calls function EDGEFUNCBATCH (Algorithm 3) to attempt update of e.dest by relaxing edge

e using conventional edge update function UPDATEFUNC. If the relaxation is successful, i.e. the

value of e.dest is changed, e.dest becomes an active vertex for next iteration. Note that function

EDGEFUNCBATCH does not blindly relax e for all queries. Instead it looks up CURRTRACK to

check which queries activated e.source in the previous iteration, and only attempts update of value

of e.dest for corresponding queries. The conventional edge update function UPDATEFUNC for four

algorithms is given in Table 2.1. Here CASMIN(a, b) sets a = b if b < a atomically using compare-

and-swap); and CASMAX(a, b) sets a = b if b > a atomically using compare-and-swap).

Finally, Algorithm 5 shows how we accelerate the convergence of the solution of the

original batch of queries in RESULTT using the results of the shared queries in SHAREDT. Since

the cost for looping over all vertices and applying share updates is significant, we limit the number

of shared vertices with which each query is used to speed up convergence of property values by

choosing a small SSET size. Let us see how the result of a shared query with source vertex r

can benefit a batch query given that the reachability is known to be true. Given a vertex d, its

value in query Qi can take advantage of the shared result of subquery on vertex r in SHAREDT

and be expressed as follows: SHAREUPDATEFUNC(d, r, Qi, SHAREDT, RESULTT). The above

function for four benchmarks is given in Table 2.2. For example, for SSSP, RESULTT[si][r] +
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Table 2.1: Conventional Updates for Five Algorithms.

ALG RESULTT[si][e.dest]← UPDATEFUNC ( e, Qi, RESULTT )
SSWP CASMAX(RESULTT[si][e.dest], min(RESULTT[si][e.src], e.w)))
Viterbi CASMAX(RESULTT[si][e.dest], RESULTT[si][e.src] / e.w)
BFS CASMIN(RESULTT[si][e.dest], RESULTT[si][e.src] + 1)
SSSP CASMIN(RESULTT[si][e.dest], RESULTT[si][e.src] + e.w)
TopkSSSP KSMALLEST({RESULTT[si][e.dest]} ∪ {RESULTT[si][e.src] + e.w})

Table 2.2: Directed Graphs: SHAREUPDATEFUNC for Five Algorithms.

ALG RESULTT[si][d]← SHAREUPDATEFUNC(d,r,Qi, SHAREDT,RESULTT)
SSWP CASMAX( RESULTT[si][d], min(RESULTT[si][r], SHAREDT[r][d]))
Viterbi CASMAX( RESULTT[si][d], RESULTT[si][r] * SHAREDT[r][d])
BFS CASMIN( RESULTT[si][d], RESULTT[si][r] + SHAREDT[r][d])
SSSP CASMIN( RESULTT[si][d], RESULTT[si][r] + SHAREDT[r][d])
TopkSSSP KSMALLEST({RESULTT[si][e.dest]} ∪ {RESULTT[si][r] + SHAREDT[r][d]})

SHAREDT[r][d] is a safe approximation of the shortest path value from source vertex of qi to d via

r, and we can use the estimation to accelerate the convergence of the value of d.

For undirected graphs, when applying update using result of shared queries, we can benefit

from a more accurate approximation of the property value from source vertex to shared vertex. Take

SSSP as an example. Given an undirected graph, SHAREDT[r][si] can be used as the accurate

measurement of the distance from si to r. Compared with RESULTT[si][r] used in Table 2.2,

which is an approximation value, SHAREDT[r][si] can be used to compute a better estimation of

the distance between si and d and therefore give better acceleration on the evaluation of the original

batch of queries.

20



Algorithm 5 Accelerate Batch Queries Using Shared Queries From SSET
1: function SHAREUPDATEBATCH (SSET, SHAREDT, RESULTT)

2: for all Qi(si) ∈ QUERYBATCH do

3: for r ∈ SSET do

4: B Update using r only if r is reachable from si

5: if RESULTT[si][r] 6= −1 then

6: for d ∈ ALLVERTICES do

7: B Attempt Update if d is reachable from r

8: if SHAREDT[r][d] 6= −1 then

9: B Update d for Query i using r

10: SHAREUPDATEFUNC ( d, r, Qi, SHAREDT, RESULTT )

11: end if

12: end for

13: end if

14: end for

15: end for

16: end function

2.1.3 Applicability

Our sharing algorithm can be applied to batched iterative graph algorithms where each

query in the batch begins at single source vertex and the property values from these sources to

all other vertices are computed. Sharing of results of subqueries is effective because they rep-

resent overlapping subcomputations. Graph problems with dynamic programming solutions have

the opportunity to benefit from our sharing algorithm because of the optimal substructure prop-

erty of dynamic programming. Examples include monotonic computations like SSWP, Viterbi,
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TopkSSSP, and BFS used in our evaluation as well as other non-monotonic algorithms like Per-

sonalized Page Rank (PPR) [13] used by recommender services like twitter and Single-Source

SimRank (SimRank) [16] queries that are evaluated to compute similarities of graph nodes. It does

not apply to algorithms with a global solution, i.e. not originating at source-vertex (e.g., Connected

Components). Sharing will work less effectively for local queries like 2-Hop queries due to low

overlap between them; however, local queries are inexpensive and can be processed efficiently with

batching alone. Sharing works well on power-law graphs as they contain high centrality nodes but

it is less effective for high-diameter graphs like road-networks. Only when source vertices are in

proximity of each other can there be significant reuse in high-diameter graphs.

2.2 Experimental Evaluation

2.2.1 Experimental Setup

For evaluation we implemented our SimGQ framework using Ligra [41] which uses the

Bulk Synchronous Model [45] and provides a shared memory abstraction for vertex algorithms

which is particularly good for graph traversal. We evaluate our techniques for evaluation of batches

of queries using four benchmark applications (SSWP – Single Source Widest Path, Viterbi [22],

BFS – Breadth First Search, and TopkSSSP – Top k Single Source Shortest Paths). We used four

Table 2.3: Input graphs used in experiments.

Graphs #Edges #Vertices
Twitter (TT) [5] 2.0B 52.6M
Twitter (TTW) [20] 1.5B 41.7M
LiveJournal (LJ) [3] 69M 4.8M
PokeC (PK) [42] 31M 1.6M
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Table 2.4: BASELINE – Total Execution Times for Evaluating Randomly Selected Queries One by
One in Seconds on the Ligra [41] System. For first 3 benchmarks 512 queries are used and for

TopkSSSP we use 64 queries.

Graph SSWP Viterbi BFS Top 2 & 1 SSSP
TTW 2,989s 3,737s 2,574s 4,073s 2,337s
TT 3,949s 4,902s 3,538s 2,768s 1,574s
LJ 134s 258s 102s 389s 226s
PK 63s 116s 55s 232s 123s

real world power-law graphs shown in Table 4.3 in these experiments – TT [5] and TTW [20] are

large graphs with 2.0 and 1.5 billion edges respectively; and LJ [3] and PK [42] are smaller graphs

with 69 and 31 million edges respectively. Benchmarks are implemented using the PUSH model

on a machine with 32 cores (2 sockets, each with 16 cores) with Intel Xeon Processor E5-2683 v4

processors, 512 GB memory, and running CentOS Linux 7.

For each combination of benchmark application and input graph, we used 512 randomly

generated queries to carry out the evaluation, except for TopkSSSP for which we use 64 queries

because of runtime cost. The baseline total execution times when the queries are evaluated one by

one is given in Table 2.4. Because TTW and TT are far bigger in size than LJ and PK, the execution

times for TT and TTW are higher.

2.2.2 Benefits of Sharing and Batching

In this section we present the results of our algorithm, we refer to them as Batch+Share.

In addition, we also collect execution times of algorithm that uses batching but no sharing, we refer

to this algorithm as Batch. Since the batch size is an important parameter in this evaluation, we vary

batch sizes from 4 queries to a very large number of 512 queries. For TTW and TT the maximum

batch size was limited to 256 because our machine did not have sufficient memory to run 512 queries

for very large graphs. For TopkSSSP maximum batch size is limited to 64 due to its high runtimes.
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The results of running the above algorithms are presented in Table 2.5 and Figure 2.2.

While Table 2.5 presents the total execution times for 512 queries for batch sizes (number in paren-

theses) that yielded the highest speedup for each of the algorithms, Figure 2.2 presents average per

query execution times for all batch sizes for TT the largest graph.

The data in Table 2.5 shows that our algorithms yield speedups of up to 45.67× over the

baseline that executes the queries one by one using the state of the art Ligra system. For the first

two benchmarks of SSWP and Viterbi the Batch+Share algorithm delivers speedups ranging from

22.11× to 45.67×. In contrast, for the last two benchmarks of BFS and TopkSSSP the highest

speedups observed range from 1.53× to 6.63×.

The sharing algorithm is more profitable if the result values of queries fall in a narrow

range and hence often overlap. Like the result of SSWP query is usually an integer between 17

and 25, and the answer of Viterbi is between 0 and 1. In these cases, sharing produces lots of stable

values and reduces the number of iterations because vertices made stable by sharing will never be

activated again. Sharing is also effective when the vertex update function is expensive even if it

produces few stable values – TopkSSSP is a representative graph algorithm from this category.

Here sharing reduces the number of updates by 34% but produces few stable values. BFS does not

fall into any of these two categories and thus, as expected, does not benefit much from sharing.

Let us consider results in Figures 2.2 which present the average per query execution times

for varying batch sizes. The trends for the first three benchmarks show that performance continues

to improve with increasing batch sizes. For Batch the improvement is due to greater amortization of

runtime overheads while for Batch+Share the improvement is greater due to additional benefits of

sharing. Further, we observe that on our machine, once we cross the batch size of 64, the improve-
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Table 2.5: Best Batching+Sharing and Batching Execution Times in Seconds for all Queries and
Corresponding (Batch Sizes) and Speedup Over No-Batching Baseline times from Table 2.4.

Algorithm SSWP (512 Queries) Viterbi (512 Queries) BFS (512 Queries)
TTW

Batch+Share 71 (256) 42.37× 86 (256) 43.42× 440 (128) 5.84×
Batch 629 (256) 4.75× 729 (256) 5.13× 388 (256) 6.63×

TT
Batch+Share 90 (256) 43.96× 107 (256) 45.67× 723 (128) 4.90×

Batch 1034 (64) 3.82× 1274 (64) 3.85× 692 (128) 5.12×
LJ

Batch+Share 6 (512) 22.11× 12 (128) 22.27× 23 (256) 4.36×
Batch 37 (256) 3.63× 59 (256) 4.34× 18 (256) 5.63×

PK
Batch+Share 2 (512) 28.38× 4 (128) 28.97× 11 (512) 5.01×

Batch 20 (512) 3.24× 30 (256) 3.89× 9 (512) 6.40×

Algorithm Top 2 & 1 SSSP (64 Queries)
TTW

Batch+Share 2671 1260 (32) (32) 1.53× 1.86×
Batch 3652 1876 (32) (8) 1.12× 1.25×

TT
Batch+Share 1605 858 (8) (8) 1.73× 1.84×

Batch 2768 1574 (1) (1) 1.00× 1.00×
LJ

Batch+Share 237 135 (64) (64) 1.64× 1.67×
Batch 375 190 (32) (32) 1.04× 1.19×

PK
Batch+Share 119 58 (64) (64) 1.95× 2.13×

Batch 196 98 (16) (16) 1.19× 1.26×
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ments in performance are relatively small although the best performances reported in Table 2.5 are

for batch sizes of 256 and 512 for majority of the cases (i.e., different graphs and benchmarks).

Based upon the trends observed in Figure 2.2, for a larger machine with more memory and number

of cores, performance can be expected to scale further with batch size. For TopkSSSP while there

is less variation with batch size the difference between Batch and Batch+Share is substantial.
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Figure 2.2: Average Per Query Execution Times of Batch vs. Batch+Share.
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Table 2.6: Batch+Share Over Batch Alone: Cost of Phase II, Benefit of Phase II, Speedup Due to
Batch+Share Over Batch Alone. Speedups computed for best Batch+Share configurations for

all Queries.

SSWP (512 queries) Viterbi (512 Queries) BFS (512 Queries)
TTW

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup
0.08 0.97 8.92× 0.09 0.97 8.47× 0.15 0.07 0.93×

TT
Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup
0.06 0.98 12.26× 0.06 0.98 12.64× 0.11 0.07 0.96×

LJ
Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup
0.12 0.96 6.43× 0.12 0.92 5.14× 0.26 -0.03 0.77×

PK
Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup
0.09 0.98 8.76× 0.08 0.96 8.22× 0.20 -0.08 0.78×

Top 2 & 1 SSSP (64 Queries)
TTW

Cost Benefit Speedup
0.04 0.04 0.31 0.41 1.37× 1.60×

TT
Cost Benefit Speedup

0.09 0.09 0.63 0.62 2.16× 2.12×
LJ

Cost Benefit Speedup
0.02 0.02 0.43 0.39 1.69× 1.58×

PK
Cost Benefit Speedup

0.02 0.02 0.50 0.50 1.94× 1.94×

2.2.3 Contributions of Sharing vs. Batching

We observed that for SSWP and Viterbi both sharing and batching are responsible for

delivering high performance while for TopkSSSP batching does not provide benefit, and for BFS

sharing does not deliver additional performance improvement. We analyze the cost and benefit of

sharing to show that for first three benchmarks the benefit far outweighs the cost while for BFS the

benefit is smaller than the cost incurred.
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Table 2.7: Factoring Speedups: Batching × Sharing = Total Speedup.

SSWP Viterbi
TTW

4.75 × 8.92 = 42.37× 5.13 × 8.47 = 43.42×
TT

3.58 × 12.26 = 43.96× 3.61 × 12.64 = 45.67×
LJ

3.44 × 6.43 = 22.11× 4.33 × 5.14 = 22.27×
PK

3.24 × 8.76 = 28.38× 3.52 × 8.22 = 28.97×

Using the execution times of Batch, which is essentially a shared-memory version of

MultiLyra, as baseline, Table 2.6 presents the speedups achieved by Batch+Share. As we can see

from the results, for benchmarks of SSWP and Viterbi, the speedups range from 5.14× to 12.64×

demonstrating that sharing delivers substantial additional speedups over batching alone for these

benchmarks. For benchmark of TopkSSSP, the benefit from sharing is less, but there are still

descent speedups of up to 2.16× due to sharing. On the other hand, for benchmark of BFS there is

even some slowdown.

The Cost and Benefit of sharing are also shown explaining the above results. The Cost is

the time spent in Phase II while Benefit is reduction in total time spent on Phase I + Phase III

due to sharing based updates performed by Phase II. Both the Cost and Benefit are presented as

fraction of execution times of corresponding Batch algorithms. Thus, the Speedups are related to

the Cost and Benefit as follows: Speedup = 1/(1 + Cost − Benefit). For SSWP, Viterbi, and

TopkSSSP, the Benefit far exceeds the Cost while for BFS, the Cost exceeds the Benefit hence

the observed speedup results. Finally, Table 2.7 summarizes how the overall speedups achieved

for SSWP and Viterbi can be factored between batching and sharing showing the importance of

employing both batching and sharing techniques.
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Table 2.8: Percentage of Vertex Values that become Stable due to Sharing Updates.

Graph Batch Sizes SSWP Viterbi BFS Top 2 & 1 SSSP

TTW
4 99.99 99.99 28.95 6.93 - 6.93
8 99.99 99.99 25.14 7.38 - 7.41
16 99.99 99.99 22.07 5.21 - 5.25

TT
4 99.99 99.99 23.71 16.65 - 16.78
8 99.99 99.99 20.57 19.85 - 20.03
16 99.99 99.99 18.14 13.61 - 13.82

LJ
4 99.99 99.64 7.64 2.21 - 1.03
8 99.99 99.64 6.56 2.01 - 1.20
16 99.99 99.64 5.61 2.53 - 1.40

PK
4 99.99 99.63 6.26 0.88 - 1.92
8 99.99 99.63 6.11 1.01 - 2.03
16 99.99 99.63 5.38 3.24 - 4.35

Average 99.99 99.80 12.87 6.10 - 6.18

The cost of sharing is reasonable because overheads of sharing come from three sources

and all of them are low. First, we need to maintain a counter of the number of visits for each

marked high degree vertex in Phase I. This overhead is negligible because we only mark a very

small amount of high degree vertices (e.g., 100 out of millions in the current setting) and Phase I

is very short (e.g., 1 iteration) and thus has relatively small frontier sizes. Second, we need to solve

the shared queries in Phase II. Given that it only computes a small number of shared queries (e.g.,

only 5 from 100) while the batch size for original queries can be much larger (up to 512), the cost

is amortized well across all queries in a batch and thus it has little impact on each individual query.

Third, we introduce extra computation cost when applying the result of shared queries to accelerate

the convergence of original query. Since this step is a linear scan of the array, it leads to better

cache performance due to spatial locality compared with the usual updates for a query which can be

randomly scattered across the value array in Ligra. Besides, our sharing algorithm only allows each

query to reuse the result of one shared query and only once, keeping the reuse cost low.
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To better understand the effectiveness of sharing, we also collected the stable value per-

centages – this is the percentage of vertices reachable from the source vertex whose vertex values

converge as a result of performing share updates. We collected this data for the Batch+Share con-

figuration. Since we pause the original computation only after the first iteration (i.e., p = 1), the

percentage of vertices that are stable prior to sharing updates is negligible (less than 0.01%). The

percentages of values that are stable following sharing updates are presented in Table 2.8. As shown

in the table, sharing greatly benefits SSWP and Viterbi as it causes nearly all the values (> 99%) to

converge. To explain the phenomenon that Top2SSSP and Top1SSSP has lower stable percent-

age than BFS but sharing delivers much more speedups for the former than the latter, we collected

the reduction in number of vertex updates resulting from sharing. It turns out that the reduction for

Top2SSSP and Top1SSSP (34%) is much higher than the reduction for BFS (7%).

2.2.4 Sensitivity of SimGQ Performance to the p Value

All our preceding experiments were performed for p value of 1, i.e. Phase I lasted one

iteration following which Phase II was performed and then the updates from Phase II results

optimized the remainder of time spent in Phase III till convergence. We varied the p value from 1

to 3 and compared the speedups that were obtained by sharing over batching alone. The results in

Table 2.9 show that p value 1 delivers best overall speedups and the trend is that speedup falls as p

value is increased. The only exceptions are LJ::Viterbi and PK::Viterbi where p value of 2 slightly

outperforms p value of 1 (5.48× v.s. 5.14×, 8.57× v.s. 8.22×). There is a performance tradeoff in

selecting p value. A smaller p enables an earlier reuse which leads to earlier convergence of queries.

However, if p is small, limited number of marked high degree vertices may be visited and considered
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as candidates for sharing. We conclude the following from this experiment. First, executing Phase

I for one iteration is sufficient as high quality SSET nodes have already been encountered. Second,

executing Phase II early has the added benefit that greater fraction of overall iterations is optimized

by the updates performed from the results of Phase II. We observe that p value of 1 causes sharing

to deliver much higher speedups than p value of 2 for SSWP and Viterbi on large graphs than small

graphs. For example, for the TT graph on Viterbi benchmark, the speedup over batching alone for

p value of 1 is 12.64× while for the second best p value of 2, is much smaller 6.36×.

Table 2.9: Sensitivity to p Value: Cost of Phase II, Benefit of Phase II, Speedup of Sharing Over
Batching Alone on 256 Queries.

p SSWP Viterbi
TTW

Cost Benefit Speedup Cost Benefit Speedup
1 0.08 0.97 8.92× 0.09 0.97 8.47×
2 0.08 0.81 3.74× 0.07 0.84 4.21×
3 0.08 0.49 1.70× 0.08 0.50 1.72×

TT
Cost Benefit Speedup Cost Benefit Speedup

1 0.06 0.98 12.26× 0.06 0.98 12.64×
2 0.06 0.88 5.61× 0.05 0.89 6.39×
3 0.06 0.57 2.05× 0.06 0.59 2.17×

LJ
Cost Benefit Speedup Cost Benefit Speedup

1 0.12 0.96 6.43× 0.12 0.92 5.14×
2 0.13 0.94 5.26× 0.09 0.91 5.48×
3 0.12 0.88 4.19× 0.10 0.85 3.89×

PK
Cost Benefit Speedup Cost Benefit Speedup

1 0.09 0.98 8.76× 0.08 0.96 8.22×
2 0.09 0.95 7.25× 0.07 0.95 8.57×
3 0.09 0.83 3.91× 0.08 0.87 4.68×
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2.2.5 Dynamic Selection of SSET

One of the key characteristics of our algorithm is that the vertices in SSET are selected

dynamically during the evaluation of a batch of queries. This has two main advantages. First, the

selection of SSET vertices is customized to the batch of queries being evaluated. This is important

that different batches may contain queries that are close to, in terms of number of hops, different

high degree vertices and selection of closer high degree vertices offers greater opportunities of

sharing. Second, our technique can be used to speedup the evaluation even when only a single batch

of queries is to be evaluated. Note that alternatively techniques can be devised to profile executions

of batches to identify SSET vertices and then use them to implement sharing in future batches.

However, such an approach would lose both of the advantages of our approach mentioned above.

We next confirm that dynamic custom selection of SSET vertices for each batch does in-

deed lead to selection of different high degree vertices which deliver better speedups. We performed

an experiment in which we split 256 queries for the two large graphs TTW and TT into four batches

of 64 queries each. We identified the SSET vertices using the first batch and used it to perform shar-

ing in the other three batches. Table 2.10 presents batch running time as follows: time using a single

dynamically selected SSET vertex for the batch→ time using a single dynamically selected SSET

Table 2.10: Changes in Batch Execution Time (seconds):
Dynamically Selected→ From Other Batch.

Graph::Alg. Batch 2 Batch 3 Batch 4
TTW::SSWP 14.1→ 14.4 12.9→ 14.1 12.3→ 13.3
TTW::Viterbi 15.1→ 16.4 13.4→ 14.5 14.4→ 14.4
TT::SSWP 17.5→ 18.6 16.2→ 17.5 16.2→ 17.3
TT::Viterbi 18.6→ 18.5 17.5→ 17.6 17.1→ 17.3
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Table 2.11: Number of Unique Shared Vertices Selected Over Four Batches:
Min < Actual < Max

Graph::Alg. |SSET | = 1 |SSET | = 3 |SSET | = 5

TTW::SSWP 1 <3 <4 3 <7 <12 5 <9 <20
TTW::Viterbi 1 <3 <4 3 <7 <12 5 <9 <20
TT::SSWP 1 <2 <4 3 <8 <12 5 <9 <20
TT::Viterbi 1 <2 <4 3 <8 <12 5 <9 <20

vertex in the first batch. The results show that for TTW::SSWP, TTW::Viterbi, and TT::SSWP

custom/dynamic selection of SSET vertices for the last three batches delivers better performance

(i.e., lower execution times) than the speedups that result from using SSET vertices identified using

the first batch. For TTW::Viterbi batches 1 and 4 selected the same vertex and hence there is no

change in execution time. For TT::Viterbi the nodes selected give nearly the same performance.

Finally, we examined the identities of selected SSET vertices for various batches to study

the diversity of SSET vertices. In Table 2.11 we present actual number of distinct vertices included

in SSETs versus the minimum number (size of SSET) and maximum number (number of batches

× the size of SSET) of distinct vertices that can be observed. We found that the number of distinct

SSET vertices selected are well above the minimum, i.e. during evaluation of different batches

often different vertices are selected as SSET vertices.

2.3 Summary

In this chapter, we developed techniques for simultaneous evaluation of large batches of

iterative point-to-all graph queries. By employing batching, the overhead costs of query evaluation

are amortized across the queries. By employing sharing, the cost of computations involving shared

queries are amortized across the original batch of queries. Our experiments based upon the state

of the art Ligra system yielded speedups ranging from 1.53× to 45.67× across four input graphs
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and four benchmarks. In the next chapter, we will discuss how to adapt the batching principle

and sharing technique to efficiently process point-to-all queries with arbitrary source vertices in the

streaming graph scenarios.
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Chapter 3

Leveraging Batching and Sharing for the

Streaming Graph Scenario

Several streaming graph systems have been proposed recently with supports for incre-

mental evaluation of iterative graph queries such as Kineograph [7], Tornado [43], Naiad [33],

KickStarter [48], Graphbolt [27]. The core of these systems is to leverage incremental computation

to quickly update the results of fixed queries in streaming graph scenarios, as illustrated by the fig-

ure 3.1. In the streaming graph scenarios, usually the updates are streamed to the graph continuously

and they are commonly grouped into batches for more efficient digestion. After a batch of updates

(e.g., edge insertions) is applied to the graph, incremental computation reuses the query result on the

previous version of the graph to initialize the vertex values, and thus performs iterative computation

starting from a point closer to convergence compared to evaluating the query from scratch.

However, existing incremental computation has a fundamental limitation - it requires a

priori knowledge of the user query. In order to benefit from incremental computation, the query
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Figure 3.1: Incremental Computation

under evaluation must remain the same to ensure the safety to reuse the query results on a previous

version of the graph. Any queries, other than the fixed standing queries maintained by incremental

computation, must be reevaluated from scratch with the trivial initialization values for all the vertices

in the graph. While this is not an issue for graph algorithms with a global solution such as PageRank

and Connected Components, it prevents incremental computation from accelerating arbitrary user

queries for vertex graph algorithms originating from a single source vertex such as single-source

shortest path (SSSP) and breadth-first search (BFS).

In this chapter, we adapt the sharing and batching proposed in SimGQ to generalize incre-

mental computation to handle batches of arbitrary vertex queries in the streaming graph scenario.

Essentially we continuously apply incremental computation to maintain the results of a small batch

of shared query candidates upon each graph mutation. When a batch of arbitrary user queries comes,

the results of one of the shared query candidates will be selected to share with all the user queries

using the sharing optimization in SimGQ. The performance of both the incremental evaluation of

shared query candidates and the evaluation of user queries are further improved using the batching

technique to achieve a higher throughput.
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3.1 SimGQStream: Evaluating a Batch of Queries in Streaming Graphs

3.1.1 Overview of SimGQStream

Figure 3.2: Incremental Computation.

Figure 3.2 shows the architecture of our system. At high level, the system consists of

two modules: on the left we have a standing loop that processes fixed shared queries and feeds the

results to the user query processing module; on the right we have the user query processing module

that uses the shared query results generated from the shared query processing module to accelerate

a batch of arbitrary user queries.

Shared Query Processing Module

The shared query processing module on the left of Figure 3.2 is responsible for incremen-

tally maintaining the results of a batch of fixed queries whose results are to be shared with other

queries originating from any vertex in the graph. Following our observations in SimGQ, we again

use high degree vertices as the candidates for source vertices of shared queries because high degree
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vertices are generally reachable to more vertices in the graph and thus provide a larger coverage

when we apply sharing to accelerate the processing of user queries, especially for power-law graphs

such as social networks which constitutes a large portion of real graphs.

Since incremental computation requires only a small portion of work and execution time

compared with full evaluation from scratch (e.g., incremental evaluation of 16 to 64 queries with a

graph mutation of 10K edges is roughly same as a full evaluation of a single query on graph Twitter),

now we can afford computing results for more shared query candidates compared with SimGQ in

which usually we can only afford evaluating one shared query due to the expensive full evaluation.

User Query Processing Module

On the right of Figure 3.2, we have a module that answers the user queries. When a

batch of user queries comes, this module takes a snapshot of the current version of the graph and

waits for the shared query processing module to converge the evaluation of shared queries on the

snapshot graph if needed. As soon as the stable results of the shared queries become ready, the user

query processing module selects one or more shared queries from the standing loop on the left, and

then applies the sharing technique to share the shared queries results to fast-forward the input user

queries during the initialization stage.

For example, let’s take SSSP on an undirected graph as an example. Let SP (u, v) denotes

the shortest path distance between vertex u and vertex v. If the user query originates from vertex u

and the shared query originates from vertex r, then SP (u, v) can be safely initialized as SP (u, r)+

SP (r, v) for every vertex v in the graph. After initialization, we just start the normal iterative graph

algorithm (e.g., SSSP) from the source vertices of the user queries until the user queries’ results

converge.
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Where Batched Evaluation Can Help

Since user queries have been grouped into batches before streamed into our system, user

queries can be naturally evaluated in a batched manner. In addition, as mentioned before, with the

help of incremental computation, now we can afford maintaining the results of more shared query

candidates which can be computed together as a batch upon each graph mutation. Therefore, the

performance of both user query processing and shared query processing can be further improved by

employing the batch processing paradigm introduced in SimGQ.

3.1.2 Push-Style Batch Evaluation With SimGQStream

Now we present a detailed algorithm for generalized incremental computation leveraging

both batching and sharing. The shared query processing module is presented in Algorithm 7. The

user query processing module is presented in Algorithm 8. The connection and interaction between

two subsystem modules is shown in Algorithm 6 which is the entry point of the overall algorithm.

The aforementioned three algorithms are configured to run in serial to maximize resource avail-

ability for each individual task: graph update, shared query processing, and user query processing,

where each of the three is executed in parallel with multithreading support. In the following, we will

first discuss Algorithm 6 and then dive into the implementation of the two subsystems respectively.

Algorithm 6 illustrates the high level idea about how our system responds to graph mu-

tations and user query request in the streaming graph scenarios. When the system is launched, the

users need to specify two input parameters: the initial input graph G and the number of shared

queries k. A larger k value provides more sharing opportunities while a smaller k value value

reduces the cost to maintain the shared query results. According to the results of sensitivity ex-
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periments, we set the default value of k to 16 to balance the trade-off. The algorithm begins with

initialization stage in which the top k highest degree vertices are retrieved as the source vertex for

the shared queries, followed by a batched evaluation of these shared queries on the initial version of

input graph (lines 4-7). Once the initialization is complete, the algorithm maintains a standing loop

(lines 12-22) that monitors two types of signals: graph mutations and new requests for evaluating

user queries. If the captured signal is triggered by graph mutation (lines 13-17), which is a batch

of edge insertions in our case, the system will create a task for the shared query processing mod-

ule by calling function PROCESSSHAREDQUERYBATCH (line 15) which will incrementally update

shared query results in a batched manner. If the captured signal is triggered by a new request for

evaluating user queries (lines 18-21), the system will create a task for the user query processing

module by calling function PROCESSUSERQUERYBATCH (line 20) which will leverage the shared

query results to accelerate the user query evaluation in a way similar to the Batch+Share algorithm

proposed in SimGQ.

Algorithm 7 illustrates once a graph mutation is detected, how our system keeps the shared

query results up-to-date with batched incremental evaluation. The algorithm leverages the shared

query results on the previous version of the graph (i.e., SHAREDT onG) to accelerate the processing

of the same queries on a new version of graph G
⊕
DeltaG by initializing the the query property

values on the new graph with the query results on the previous version of graph (i.e., SHAREDT)

which is a state closer to the convergence state compared with trivial initial values and leads to faster

convergence. In order to guarantee the correctness of output, the source vertices of inserted edges

need to be put into the active lists (lines 7-12). After the initialization, the algorithm iterates until

all the property values becomes stable (lines 14-18). Function EDGEMAPBATCH does almost the
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same work as function PROCESSBATCH in Algorithm 1 – both of them update the property values of

active vertices and computes the new coarse-grained and fine-grained active frontiers (i.e., ACTIVE

and NEXTTRACK), except that EDGEMAPBATCH does not maintain the counter of visits for the

source vertices of shared queries.

Algorithm 8 illustrates once our system detects a new request for evaluating a batch of

user queries, how to leverage both sharing and batching to quickly evaluate the coming arbitrary

user queries. The algorithm works in two steps. In the first step, function SHAREUPDATEBATCH

is called (lines 4-5), so that the property values of the user queries are fast-forwarded during the

initialization stage by sharing with all the user queries in the batch the results of the shared queries

which have been evaluated and converged on the current version of graph. Since the details of

function SHAREUPDATEBATCH has been discussed in Algorithm 5 in the previous chapter, we

do not dive into it again. Essentially the connection between user queries and the shared queries

are established by triangle-inequality. For example, let us take single-source shortest path (SSSP)

algorithm as the sample benchmark. Let u denote the source vertex of a user query, let r denote

the source vertex of a shared query, and let SP (a, b) denote the shortest path distance from vertex

a to vertex b. SP (u, v) is bounded by the sum SP (u, r) + SP (r, v) where both SP (u, r) and

SP (r, v) are known from the shared query results for undirected graphs. Once the initialization

step is complete, the algorithm moves on to the second step which is straightforward – iteratively

run the graph application in a batched manner until convergence (lines 9-14). The core operations

in SHAREUPDATEFUNC for different graph algorithms can be found in Table 2.2 presented in the

previous chapter.
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Algorithm 6 Generalized Incremental Computation
1: Given: Initial version of directed graph G(V,E); Number of shared queries k

2: Goal: Maintain shared query results upon graph mutation and respond to user queries

3: function LAUNCH( G, k )

4: B Initialize shared query set

5: SSET← SELECTTOPKHIGHDEGREEVERTICES(G, k)

6: B Evaluate shared queries in SSET on graph G using SimGQ Batch Algorithm w/o sharing

7: SHAREDT← EVALUATEBATCH(G, SSET)

8: B Initialize graph update batch and user query batch

9: DELTAG← φ

10: USERQUERYBATCH← φ

11: B Standing loop that monitors and responds to graph mutations and user query requests

12: while GETNEWGRAPHUPDATE(&DELTAG) or GETNEWUSERQUERY(&USERQUERYBATCH) do

13: if DELTAG 6= φ then

14: B Case 1: Trigger is a graph mutation; Incrementally update shared query results

15: SHAREDT← PROCESSSHAREDQUERYBATCH(G, DELTAG, SSET, SHAREDT)

16: G← G
⊕

DELTAG

17: DELTAG← φ;

18: else

19: B Case 2: Trigger is a new user query request; Evaluate user queries with help of Sharing

20: RESULTT← PROCESSUSERQUERYBATCH(G, USERQUERYBATCH, SSET, SHAREDT)

21: USERQUERYBATCH← φ;

22: end if

23: end while

24: end function
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Algorithm 7 Batched Incremental Evaluation of Shared Queries
1: Given: Previous version of graph G(V,E); A set of inserted edges DeltaG; The set of source vertices of the shared

queries SSET; Shared query results on G named SHAREDT

2: Goal: Update SHAREDT to be the shared query results on the new version of the graph G
⊕
DeltaG

3: function PROCESSSHAREDQUERYBATCH( G, DeltaG, SSET, SHAREDT )

4: B Initialization

5: ACTIVE← φ;CURRTRACK← φ; NEXTTRACK← φ

6: B Initialize active frontiers w.r.t. to the inserted edges

7: for all inserted edge (u, v) ∈DeltaG in parallel do

8: ACTIVE← ACTIVE ∪ {u}

9: for all SharedQuery(vertex) : Qi(si) ∈ SSET in parallel do

10: CURRTRACK← CURRTRACK ∪ {(u, Qi(si)}

11: end forall

12: end forall

13: B Iterate till Convergence

14: while ACTIVE 6= φ do

15: B Update shared query results in current iteration

16: ACTIVE← EDGEMAPBATCH ( ACTIVE, CURRTRACK, NEXTTRACK, SHAREDT )

17: CURRTRACK← NEXTTRACK; NEXTTRACK← φ;

18: end while

19: return SHAREDT

20: end function

3.1.3 Applicability

Since the user query processing module of generalized incremental computation relies on

the sharing technique in SimGQ to fast forward the property value array during the query initial-
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Algorithm 8 Batched Evaluation of User Queries
1: Given: Current version of directed graph G(V,E); A batch of user queries named UserQueryBatch; The set of

source vertices of the shared queries SSET; Shared query results on G named SHAREDT

2: Goal: compute and return RESULTT which is the user query results on G

3: function PROCESSSHAREDQUERYBATCH( G, DeltaG, SSET, SHAREDT )

4: B Initialize User Query Results with Sharing Optimization in SimGQ

5: SHAREUPDATEBATCH ( SSET, SHAREDT, RESULTT )

6: B Initialize active frontiers

7: ACTIVE← { s1, s2, ..., sk }; NEXTTRACK← φ;

8: CURRTRACK← { (si, Qi) : Qi(si) ∈ QUERYBATCH }

9: B Iterate till Convergence

10: while ACTIVE 6= φ do

11: B Update user query results in current iteration

12: ACTIVE← EDGEMAPBATCH ( ACTIVE, CURRTRACK, NEXTTRACK, RESULTT )

13: CURRTRACK← NEXTTRACK; NEXTTRACK← φ;

14: end while

15: return RESULTT

16: end function

ization stage, the prerequisite for sharing optimization (i.e., vertex query and optimal substructure

within the graph problem) also applies for generalized incremental computation described in this

chapter. More discussion on the applicability of sharing can be found in Section 2.1.3 in Chapter 2.

In addition, the shared query processing module in generalized incremental computation requires

that the graph algorithm benefits from conventional incremental computation which applies to many

common vertex graph algorithms such as SSSP, BFS, and multiple variants of SSSP.
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3.2 Experimental Evaluation

3.2.1 Experimental Setup and Evaluation Methodology

Given that the architecture of SimGQ [56] is close to meeting our requirement for user

query evaluation, we implemented the user query processing module by modifying the SimGQ

implementation based on Ligra [41] which uses the Bulk synchronous Model [45] and provides

a shared memory abstraction for vertex algorithms which is particularly good for graph traversal.

However, since Ligra is designed for processing static graphs rather than streaming graphs, we adopt

a state-of-the-art streaming graph engine called Aspen [9] to ingest graph mutations and keep the

graph up-to-date in the streaming graph settings. We also extend Aspen to incrementally maintain

the results of a group of fixed shared query while the graph is changing.

The evaluation is conducted using four benchmark applications (SSWP – Single Source

Widest Path, Viterbi [22], BFS – Breadth First Search, and SSSP - Single Source Shortest Paths).

Benchmarks are implemented using the PUSH model on a machine with 32 cores (2 sockets, each

with 16 cores) with Intel Xeon Processor E5-2683 v4 processors, 512 GB memory, and running

CentOS Linux 7.

We used two real world power-law graphs shown in Table 4.3 in these experiments –

LJ [3] and PK [42] with 69 and 31 million edges respectively. For each input graph, we used 512

randomly generated user queries to carry out the evaluation.

The performance of the shared query processing module is evaluated on the same set of

four benchmark applications and two input graphs as in the evaluation of the user query processing

module. The number of shared queries is set to 16 by default, because according to our prior study

in SimGQ, 16 shared queries is sufficient to provide a decent performance benefit on user queries
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via sharing. To study the sensitivity of shared query performance to graph mutation, we vary the

graph update batch size (number of edge insertions) from one thousand (1K) to one million (1M).

3.2.2 Evaluation of User Query Processing Module

In this section, we present the evaluation of user queries. The effectiveness of the user

query processing module is measured by the speedup of generalized incremental computation over

the baseline that answers user queries in a batched manner but without sharing (i.e., the Batch algo-

rithm in SimGQ). Table 3.1 shows the baseline execution times (averaged per query running time

for 512 user queries) with various query batch sizes ranging from 1 to 256. For all the eight com-

binations of input graphs and benchmark applications, the general trend is the same – the running

time decreases as query batch size increases, since the runtime overhead such as access to the edge

list are better amortized with larger batch sizes. The improvement of performance from a larger

batch size becomes reasonably less significant once the query batch sizes reach a certain threshold

(e.g., batch size 64 for SSWP on LJ).

Table 3.3 shows the speedups of the generalized incremental computation of user queries

over the non-incremental evaluation baselines with different query batch sizes. As we can see, the

speedups fall into a wide range for different benchmarks. Generalized incremental computation

provides more speedups for SSWP (20.03x-71.87x, average at 38.06x) and Viterbi (10.45x-78.19x,

average at 33.93x) compared with the case for BFS (1.01x -1.26x, average at 1.14x) and SSSP

(1.01x-2.40x, average at 1.33x). The divergence is due to the fact that different graph algorithms

have different update functions and different property value types. After the initialization stage that

accelerates the user query results by sharing the results of the shared queries, different benchmarks
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Table 3.1: BASELINE – Averaged Per Query Execution Times for Evaluating Randomly Selected
User Queries One by One in Seconds on the Ligra [41] System. 512 queries are used.

G Batch Sizes SSWP Viterbi BFS SSSP

LJ

1 0.30 0.58 0.18 0.46
2 0.22 0.38 0.13 0.33
4 0.16 0.32 0.13 0.26
8 0.16 0.27 0.10 0.17
16 0.11 0.20 0.08 0.18
32 0.09 0.15 0.05 0.11
64 0.09 0.13 0.05 0.10

128 0.08 0.12 0.05 0.10
256 0.08 0.12 0.05 0.09

PK

1 0.14 0.23 0.08 0.20
2 0.11 0.16 0.06 0.14
4 0.08 0.13 0.05 0.09
8 0.08 0.11 0.05 0.10
16 0.07 0.08 0.04 0.08
32 0.06 0.08 0.04 0.07
64 0.05 0.07 0.03 0.06

128 0.05 0.06 0.03 0.05
256 0.04 0.06 0.03 0.05

receive diverged property value stable rates which is defined as the ratio of the number of vertices

that receive their converged value from initialization via sharing over the total number of vertices in

the graph that will have non-trivial values at the end of iterative computation. As shown in Table 3.2,

the stable rates from sharing are very high for SSWP and Viterbi (both are more than 99%) and lower

for BFS (20%-23%) and SSSP (7%-13%). More detailed discussion for this divergence of benefits

from sharing can be found in Section 2.2.2 in Chapter 2.

From Table 3.3, we also observe that, in general, the speedup from incremental computa-

tion decreases as the query batch size increases. The trend is more clear for SSWP and Viterbi for

which sharing is more effective and leads to very high stable value rates. For SSWP and Viterbi,

since sharing can effectively prune out substantial computation during the initialization stage, gen-

47



Table 3.2: Stable Rates from Initialization via Sharing in Generalized Incremental Computation for
Evaluating Randomly Selected 512 User Queries

G Batch Sizes SSWP Viterbi BFS SSSP

LJ

4 100.00 99.64 22.82 9.97
8 100.00 99.64 20.98 8.94
16 100.00 99.64 21.06 7.25
32 100.00 99.64 19.91 7.42
64 100.00 99.64 21.75 7.12

128 100.00 99.64 21.73 7.04
256 100.00 99.64 21.73 8.81

PK

4 100.00 99.63 23.32 13.17
8 100.00 99.63 20.60 12.38
16 100.00 99.63 19.93 11.60
32 100.00 99.63 20.06 11.40
64 100.00 99.63 20.22 11.13

128 100.00 99.63 20.22 11.25
256 100.00 99.63 20.22 11.25

Average 100.00 99.64 21.04 9.91

Table 3.3: Speedup of Generalized Incremental Computation vs. Non-Incremental Baseline for
Evaluating Randomly Selected 512 User Queries

G Batch Sizes SSWP Viterbi BFS SSSP

LJ

1 49.60 73.63 1.23 2.15
2 38.51 39.66 1.14 1.50
4 29.65 36.76 1.26 1.33
8 35.53 31.10 1.21 1.24
16 24.77 22.99 1.23 1.16
32 25.85 18.96 1.04 1.09
64 24.25 12.53 1.08 1.13
128 20.11 11.42 1.06 1.03
256 20.03 10.45 1.07 1.07

PK

1 71.87 78.19 1.23 2.40
2 68.72 59.26 1.25 1.51
4 47.30 47.65 1.22 1.01
8 39.24 41.77 1.14 1.28
16 38.83 37.20 1.15 1.49
32 48.29 30.59 1.17 1.35
64 37.21 23.12 1.05 1.08
128 34.01 20.17 1.07 1.07
256 31.34 15.35 1.01 1.11

Average 38.06 33.93 1.14 1.33

48



eralized incremental computation has less work to do during the iterative computation after initial-

ization stage and thus benefits less from batched evaluation and resource sharing compared with its

non-incremental counterpart.

3.2.3 Evaluation of Shared Query Processing Module

In this section, we present the experimental results for shared queries. As aforementioned,

we maintain the results of 16 shared queries during graph streaming. We study the following four

variants of algorithms for shared query evaluation with various graph update batch sizes (i.e., num-

ber of inserted edges) ranging from a small number of 1K to a large number of 1M.

• Baseline: We run queries one by one without incremental computation.

• Inc-Only: We run queries one by one with incremental computation.

• Batch-Only: We group queries into one batch and run it in batching mode.

• Batch+Inc: We employ both batching and incremental computation simultaneously.

The per query baseline execution times in seconds are presented in Table 3.4. The data

in Table 3.4 is generated as follows. First, for each combination of input graph, benchmark, and

graph update batch size, we compute the average running time per query. And then we aggregate

all the data points for the same combination of input graph and benchmark. In general, Viterbi is

the most expensive benchmark, because floating points property values take more memory and its

update operation is more costful while BFS runs fastest because of the uniform edge weight.

Table 3.5 presents the aggregated speedups of Inc-Only, Batch-Only, and Batch+Inc over

the baseline execution times. The data in each cell in Table 3.5 is aggregated from the individual
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Table 3.4: Baseline Per Query Running Time for 16 Shared Queries in Seconds. The data in each
cell is represented as AVG(MIN-MAX).

G SSWP Viterbi BFS SSSP
LJ 0.22 (0.22 - 0.23) 0.31 (0.31 - 0.32) 0.09 (0.08 - 0.09) 0.2 (0.19 - 0.2)
PK 0.46 (0.45 - 0.47) 0.58 (0.57 - 0.59) 0.44 (0.43 - 0.45) 0.22 (0.21 - 0.23)

Table 3.5: Speedup of Batch-Only, Inc-Only, and Batch+Inc over Baseline. The data in each cell is
represented as AVG (MIN-MAX).

G Alg. Batch-Only Inc-Only Batch+Inc

LJ

SSWP 3.68x (3.54x - 3.85x) 6.18x (3.01x - 10.56x) 38.25x (17.38x - 72.2x)
Viterbi 3.81x (3.61x - 3.97x) 7.07x (3x - 11.85x) 43.93x (17.27x - 77.3x)

BFS 3.08x (2.94x - 3.21x) 3.37x (1.83x - 5.15x) 19.33x (8.15x - 36.29x)
SSSP 3.31x (3.17x - 3.5x) 5.37x (2.61x - 9.12x) 29.02x (10.87x - 50.51x)

PK

SSWP 3.15x (3x - 3.32x) 6.8x (3.01x - 12.07x) 42.23x (17.4x - 75.52x)
Viterbi 3.21x (3.06x - 3.37x) 8.37x (3.35x - 17.48x) 58.98x (19.74x - 130.79x)

BFS 3.05x (2.9x - 3.3x) 3.26x (1.31x - 6.3x) 17.66x (4.93x - 39.25x)
SSSP 3.02x (2.86x - 3.31x) 4.98x (1.96x - 9.88x) 26.04x (5.6x - 62.62x)

data for each graph update batch sizes ranging from 1K to 1M. As we can see, Batch-Only provides

stable speedup across all graphs and benchmarks with the averaged speedup ranging from 3.02x to

3.87x. Inc-Only provides averaged speedups from 3.26x to 7.07x. The performance of Inc-Only

depends on the benchmark where Viterbi benefits most, BFS benefits least, and SSWP and SSSP

sit in the middle. Batch+Inc delivers much better performance improvement compared with Batch-

Only and Inc-Only, with speedups ranging from 17.66x to 58.98x.

We also studied the impact of the graph update batch size on the performance of shared

query processing. The sensitivity of the speedups to graph update batch size on LiveJournal are

illustrated in Figure 3.3. The trend for PokeC is the same and thus not presented here to save

space. We have observed the following trend from the figures. Overall, the speedup of Inc-Only and

Batch-Inc over the baseline decreases as the update batch size increases, since more edge insertion

means more vertex activation during initialization stage and, in addition, potentially more unstable
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Figure 3.3: Speedup of Batch-Only, Inc-Only, Batch+Inc over Baseline that Runs Shared Query
One By One w/o Incremental Computation .

property values to converge during incremental computation due to greater change to the graph

structure. The speedup of Batch-Only is not sensitive to the update batch size because batching is

a system level optimization for resource sharing and cache efficiency which is independent from

incremental computation. Once update batch size reaches 100K and larger, the performance of Inc-

Only drops to the same level or even slightly less performant compared with Batch-Only. However,

Batch+Inc constantly significantly outperforms both Batch-Only and Inc-Only over the wide range

of update batch size from 1K to 1M, although the difference between the three becomes relatively

smaller as update batch size increases.
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3.3 Summary

In this chapter, we propose generalized incremental computation to efficiently evaluate a

batch of arbitrary vertex graph queries by extending the sharing technique and batching principle

in SimGQ to the streaming graph scenarios. The results of a small set of fixed shared queries

are incrementally maintained while graph is changing. A batch of arbitrary user queries can be

efficient handled by sharing the results of the selected shared queries across all the user queries

in the batch. Our experiments show that generalized incremental computation delivers averaged

speedup from 1.14x to 38.06x over the non-incremental batched evaluation baseline with trivial

cost on maintaining shared query results. So far we have discussed the batched evaluation of point-

to-all queries on static and streaming graphs. In the following chapters, we will present our work

on processing point-to-point graph queries.
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Chapter 4

PnP – Evaluating a Point-to-Point Query

Parallel iterative frameworks are used to compute important properties for large real-world

graphs. Even though iterative graph analytics algorithms are highly parallel, for large graphs they

are expensive due to their exhaustive nature (e.g., shortest path algorithm starts from a single source

and computes shortest paths to all destination vertices).

Recently Yan et al. [58] observed that many applications on large graphs simply require

computing point-to-point variants of heavyweight computations. As an example, when analyzing a

graph that represents online shopping history of shoppers, a business may be interested in point-to-

point queries over pairs of certain important shoppers. Thus, given a pair of distinct vertices (s, d)

in a graph, we are interested in computing point-to-point versions of standard computations such

as, shortest path from s to d, widest path from s to d and number of paths from s to d. Yan et al.

developed the Quegel [58] framework to solve point-to-point queries.

Although Quegel presents a solution for evaluating point-to-point queries, it is far from

optimized. First, Quegel does a significant level of wasteful work as it does not prune traditional one
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source to all destinations computation to achieve point-to-point subcomputation. Second, it does

not recognize that evaluation times of point-to-point queries in backward and forward directions

can greatly differ. In contrast we present PnP that addresses the above drawbacks and delivers

significant speedups over Quegel.

Quegel supports Hub2 [18] precomputation to speedup evaluation of individual queries.

However, this approach has multiple drawbacks that limits its utility. The experimental data reported

in [58] shows that Hub2 precomputation is expensive. Moreover, in the common scenario where

graph structure mutates, the Hub2 precomputation must be repeated making Quegel unsuitable for

streaming (changing) graphs. While KickStarter’s value-dependence based trimming strategies [48]

can be used to accelerate Hub2 computation, the repetitive trimming of Hub2 information does

not justify separating it out as a preprocessing step for relatively-inexpensive queries. Finally the

Hub2 [18] precomputation is specifically designed for accelerating shortest path queries on graphs

where all edge weights are the same. This limits its use both in terms of types of queries and graphs.

In this chapter, we present PnP framework that avoids all of the above limitations of

Quegel and efficiently computes lighter weight point-to-point versions of wide range of queries on

weighted and unweighted graphs. PnP does not require any precomputation thus allowing graph

changes in between queries. To quickly respond to queries PnP uses dynamic techniques for op-

timizing query evaluation. In particular, it uses two general dynamic techniques: online Pruning

of graph exploration that eliminates propagation from vertices determined to not contribute to a

query’s final solution; and dynamic direction Prediction method for choosing between solving the

query in forward (from source) or backward (from destination) direction as their costs can differ

significantly based on the graph structure and computation behavior.
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We carry out an experimental study (§4.1) that shows how query characteristics and the

direction of evaluation impact runtime. Guided by the observations from the study, we propose

PnP’s two-phase algorithm (§4.2) that delivers fast evaluation times across queries with differing

characteristics. Phase 1 briefly traverses the graph in both forward and backward directions origi-

nating from source and destination vertices. By monitoring progress in both directions during this

phase we are able to predict the faster direction highly accurately and compute information that

enables pruning. Phase 2 completes the point-to-point computation by running the algorithm, with

pruning enabled, in the chosen direction to convergence leading to highly efficient query evaluation.

The remainder of the chapter is organized as follows. In Section 4.1 we present a unidi-

rectional framework with pruning and study its performance for 10,000 queries each, with differing

characteristics, for multiple graphs and graph algorithms. In section 4.2 we use the observations

of the study to guide the development of our two-phase algorithm. In section 4.3 we evaluate the

two-phase algorithm. We summarize this chapter in section 4.4.

4.1 Study of Point-to-Point Query Characteristics

In this section we present an algorithm for computing point-to-point queries with simple

pruning (sPr) and then analyze the runtime characteristics of the algorithm on 10,000 queries each

for four input graphs and multiple analytics problems. This large scale study allows us to uncover

runtime characteristics that enable us to develop a new two-phase algorithm that dynamically pre-

dicts and adapts execution to deliver highly optimized performance across all types of queries. Note

that prior work is limited in its scope – Quegel [58] uses 1000 shortest path queries [58]; thus, the

observations made and exploited in this work eluded prior work on Quegel.
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Each point-to-point query is of the form Q(s  d,G) where G is a directed graph, s

is the chosen source vertex, and d is the chosen destination vertex. Thus, we compute the desired

property Q with respect to s d (e.g., Shortest Path from s to d, Widest Path from s to d etc.). To

avoid negative-weight cycles, edge weights are assumed to be positive. In comparison to standard

iterative algorithms, the iterative algorithm for point-to-point query has two distinct features: it

employs pruning and it provides direction choice.

• The online pruning of graph exploration is enabled by the observation that point-to-point

evaluation algorithm only needs to achieve convergence for s d as opposed to all possible

(destination) vertices. Pruning dynamically eliminates wasteful computation and propaga-

tion that is determined not to contribute to the final solution for the query. Pruning leads to

early termination relative to the standard iterative algorithm. The pruning strategy is easily

identifiable for monotonic problems, i.e. the solution for the property value being computed

monotonically increases or decreases over the iterations of the algorithm before stabilizing.

• In evaluating the query we have direction choice. That is, we can either compute Q(s  

d,G) in forward direction (i.e., starting from s and propagating forward along the directed

edges inG), or alternatively, we can compute the query in backward direction asQ(d s, Ĝ)

where we start at d and propagate forward in Ĝ which is edge reversed graph corresponding

to G (i.e., Ĝ is obtained by reversing the direction of all edges in G). We show that the choice

of direction impacts execution time.

It is crucial to note that point-to-point queries can also be formulated on undirected graphs.

While the techniques presented in this paper work for undirected graphs as well, we present them

using directed graphs for simpler exposition. In particular, our direction monitoring and selection
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techniques are primarily based on the direction of value propagation from/to source/destination

vertices, and hence, remains oblivious to the underlying graph being directed or undirected.

In Algorithm 9 EVALUATE carries out push-style evaluation of a query for vertex pair

(s  d) starting at the source vertex s by iteratively processing active vertices by calling PRO-

CESS till the set of active vertices becomes empty and propagation ceases. However, in contrast to

standard algorithm, it constructs a pruned active set. Pruning is achieved by comparing the newly

computed value of each vertex v with that of destination vertex d (line 16). If it is determined that

propagating v’s current value through the graph cannot cause a change in d’s value, then propaga-

tion of v’s value is pruned. Consider the evaluation of shortest path from s to d. At any execution

point, d’s current value represents the length of the shortest path from s to d that has been found so

far. If v’s value, that represents the length of the shortest path from s to v, is greater than or equal

to d’s value then it need not be propagated as it can only discover longer paths to d.

The above framework relies upon the user to provide two essential functions for each

algorithm: EDGEFUNCTION is the main computation function that updates the property value of

a destination vertex and returns whether the update succeeded or not (CASMIN(a, b) sets a = b

if b < a atomically using compare-and-swap); and DONOTPRUNE which determines whether the

propagation can be pruned. For illustration, the two functions for the shortest path point-to-point

query SP(s d,G) are given below.

EDGEFUNCTION (e): CASMIN(e.dest.value, e.source.value+ e.weight)

DONOTPRUNE (v, d): v .value < d .value

To solve the query in backward direction we can instead compute SP(d s, Ĝ).
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Algorithm 9 Point-to-Point with Simple Pruning (sPr).

1: function EVALUATE ( Q ( s d, Graph ) )

2: B Initialize active set of vertices

3: ACTIVE← INITIALIZE ( Q ( s d ) )

4: B Iterate

5: while ACTIVE 6= φ do

6: ACTIVE← PROCESS ( ACTIVE, d, Graph )

7: end while

8: end function

9:

10: function PROCESS ( ACTIVE , DEST, Graph )

11: NEWACTIVE← φ

12: B Compute new property values

13: for all v ∈ ACTIVE do

14: for all e ∈ Graph.outEdges(v) do

15: changed← EDGEFUNCTION (e)

16: if changed and DONOTPRUNE (e.dest, DEST) then

17: NEWACTIVE← NEWACTIVE ∪ {e.dest}

18: end if

19: end for all

20: end for all

21: return NEWACTIVE

22: end function
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Table 4.1: Shortest Path Query: Forward sPr.

ACTIVE A B C D E F G H
– ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
S (= 0) 2 1 1 ∞ ∞ ∞ ∞ ∞
A,B,C 2 1 1 3 ∞ 3 3 3

Early Termination
D,F,G,H 2 1 1 3 5 3 3 3
E 2 1 1 3 5 3 3 3
φ Normal Termination

Table 4.2: Shortest Path Query: Backward sPr.

ACTIVE S A B C E F G H
– ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
D (=0) ∞ ∞ 2 ∞ 2 1 2 ∞
B,E,F,G 3 2 2 3 2 1 2 4
A 3 2 2 3 2 1 2 4
φ Early Termination

The example in Figure 4.1 illustrates the above algorithm and the early termination it

achieves via pruning. Table 4.1 shows the progress of the shortest path computation from S to D,

iteration by iteration. In each row the set of active vertices that are processed is presented along

with the updated values following their processing. The values marked in green are those that have

changed requiring further propagation while at the same time are not pruned; thus they are used to

Figure 4.1: Shortest path evaluation SP (S  D).
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compute the ACTIVE set for the following iteration. The values marked in red are those that have

changed but pruned because they are greater than or equal to the value of the D, the destination

vertex. Therefore pruning of vertices F, G, H in row three leads to early termination. If pruning

is not performed the algorithm takes two additional iterations to terminate. Note that during these

iterations the value for vertex D does not change further confirming that the processing of vertices

that were pruned does not contribute to the query solution. Table 4.2 illustrates backward evaluation

of the shortest path from S to D . When we compare the results of Table 4.2 with that of Table 4.1

we observe that cost of the two algorithms vary. In this case we find that the forward algorithm

processes fewer active vertices (and edges) and takes fewer iterations.

Next we present results of our study that analyzes the behavior of above algorithm for

different types of queries. We first describe the experimental setup below.

Experimental setup. For this study we implemented our framework using Ligra [41] which

uses the Bulk Synchronous Model [45] and provides a shared memory abstraction for vertex algo-

rithms which is particularly good for graph traversal. The study is based upon four algorithms –

Shortest Path (SP), Widest Path (WP), Number of Paths (NP), and Breadth First Search (BFS). We

use four input graphs listed in Table 4.3 – two are billion edge graphs (TTW, TT), the other two have

tens of millions of edges (LJ, PK). For each input graph, we generated 10,000 queries and used them

to evaluate all algorithms. No vertex appears more than once, either as a source or destination, in

Table 4.3: Input graphs.

Graphs #Edges #Vertices #Queries
Twitter (TTW) [20] 1.5B 41.7M 10K
LiveJournal (LJ) [3] 69M 4.8M 10K
Twitter (TT) [5] 2.0B 52.6M 10K
PokeC (PK) [42] 31M 1.6M 10K
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these queries. Moreover, the vertices chosen as sources and destinations are selected by sampling

all the vertices ordered according to their degrees. All experiments were performed on a 64 core (8

sockets, each with 8 cores) machine with AMD Opteron 2.3 GHz processor 6376, 512 GB memory,

and running CentOS Linux release 7.4.1708.

For purpose of analysis, the 10,000 queries used can be classified into four distinct cat-

egories based upon combination of two properties: (Fwd vs. Bwd) queries for which forward

evaluation is faster belong to Fwd and those for which backward evaluation is faster belong to Bwd;

(NR vs. R) queries that reveal that destination is non-reachable from the source belong to NR and

queries where destination is reachable from source belong to R. Therefore, the queries on a given

workload can be divided into four categories: FwdNR, BwdNR, FwdR, and BwdR. The distribution

of the 10,000 queries based upon faster/slower direction and reachability/non-reachability is shown

in Table 4.4. We observe there are a good number of queries of all four types. Note that numbers

for NR queries are same for different benchmarks as they are mainly determined by graph structure.

Analysis of execution times – We ran all 10,000 queries for each input on sPr versions of

all four graph algorithms and collected their forward and backward evaluation times. For reachable

queries sPr carries out pruning once it finds the first approximation of query solution while for non-

reachable queries pruning never takes place as query has no result. Average execution times of all

queries by category are given in Tables 4.5 (Non-Reachable) and 4.6 (Reachable). Figure 4.2 shows

a representative scatter plot of the execution times (all plots are shown in later section) – the times

of queries in order of FwdNR FwdR, BwdR, and BwdNR from left to right are plotted. Based upon

the data we make two key observations.
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Table 4.4: Characteristics of 10,000 queries used in experiments: Fwd – Forward faster; Bwd –
Backward faster; R – Reachable; and NR – Non-reachable.

G Queries WP SP NP BFS
TTW FwdR 49.26% 44.55% 15.24% 31.07%

BwdR 13.30% 18.01% 47.32% 31.49%
FwdNR 20.41% 20.41% 20.41% 20.41%
BwdNR 17.03% 17.03% 17.03% 17.03%

LJ FwdR 10.81% 13.23% 12.84% 7.89%
BwdR 37.41% 34.99% 35.38% 40.33%
FwdNR 24.75% 24.75% 24.75% 24.75%
BwdNR 27.03% 27.03% 27.03% 27.03%

TT FwdR 41.86% 10.61% 28.86% 29.23%
BwdR 12.40% 43.65% 25.40% 25.03%
FwdNR 35.02% 35.02% 35.02% 35.02%
BwdNR 10.72% 10.72% 10.72% 10.72%

PK FwdR 3.60% 5.27% 1.65% 6.69%
BwdR 17.30% 15.63% 19.25% 14.21%
FwdNR 38.55% 38.55% 38.55% 38.55%
BwdNR 40.55% 40.55% 40.55% 40.55%

Table 4.5: (sPr on NR queries) Avg. Execution Times in Faster Direction (seconds); and Avg.
Slowdown Factor in Slower Direction.

G Q WP SP NP BFS
TTW FwdNR .0130s 1096.5× .0129s 1137.6× .0268s 128.2× .0058s 3.42×

BwdNR .0365s 318.3× .0258s 562.8× .0303s 145.1× .0089s 105.2×
LJ FwdNR .0009s 484.4× .0010s 875.9× .0055s 40.9× .0010s 79.9×

BwdNR .0009s 666.9× .0013s 620.4× .0071s 34.6× .0012s 67.1×
TT FwdNR .0191s 772.9× .1771s 88.7× .0551s 124.3× .0170s 65.7×

BwdNR .0282s 620.5× .0154s 1560.2× .0595s 117.3× .0299s 44.7×
PK FwdNR .0005s 250.3× .0004s 458.7× .0024s 72.98× .0004s 76.02×

BwdNR .0004s 478.7× .0006s 263.0× .0023s 73.2× .0004s 75.7×

Observation 1 – Fwd vs. Bwd: direction is important. Picking the right direction for solving a

query is important. From Figure 4.2 we can easily see that for non-reachable queries the difference

in forward and backward execution times is consistently high and the time in the faster direction
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Table 4.6: (sPr on R queries) Avg. Execution Times in Faster Direction (seconds); and Avg.
Slowdown Factor in Slower Direction.

G Q WP SP NP BFS
TTW FwdR 5.5598s 2.21 × 9.5778s 1.33 × 2.2778s 1.21 × 0.2546s 2.12 ×

BwdR 7.5349s 1.51 × 11.177s 1.16 × 2.4258s 1.37 × 0.4611s 1.43 ×
LJ FwdR 0.2480s 2.36 × 0.7036s 1.18 × 0.1316s 1.16 × 0.0437s 1.20 ×

BwdR 0.1645s 4.90 × 0.5869s 1.38 × 0.1205s 1.32 × 0.0355s 1.60 ×
TT FwdR 7.2006s 1.94 × 11.8350s 1.27 × 3.8697s 1.30 × 0.4501s 1.46 ×

BwdR 9.5975s 1.74 × 14.7070s 1.36 × 4.2492s 1.27 × 0.6047s 1.29 ×
PK FwdR 0.0742s 1.87 × 0.1319s 1.16 × 0.0683s 1.10 × 0.0175s 1.26 ×

BwdR 0.0481s 3.68 × 0.1125s 1.31 × 0.0607s 1.31 × 0.0125s 1.47 ×

Figure 4.2: Forward and Backward Evaluation Times.

is very small; and for reachable queries the difference between forward and backward evaluation

times varies from very large to very small. This observation holds across all algorithms and all input

graphs as shown by the average times in the faster direction in Tables 4.5 and 4.6. Each table also

presents the factor by which the average execution time increases if a query is solved in the slower

direction as opposed to faster direction. From Table 4.6 for NR queries not only is the execution in

faster direction very small (tens of milliseconds), in the slower direction it is orders of magnitude

slower (around a second). From Table 4.6 for reachable queries the average execution time in faster

direction is higher (several seconds for large graphs) and the slowdown factor is lower.
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Observation 2 – NR vs. R: reachability is important. Picking the right direction alone is not

enough to achieve the best performance. We need a strategy for handling both non-reachable and

reachable queries effectively. In particular, we note that FwdNR/BwdNR queries can be evaluated

significantly faster than FwdR/BwdR queries – well over two and often over three orders of magni-

tude faster. For example, for SP on TTW, average times for FwdNR/BwdNR are 0.0129s/0.0258s

while for FwdR/BwdR they are 9.5778s/11.177s. In other words, since at the start of a query eval-

uation we do not know whether it is NR or R, we need to design a strategy that quickly classifies it

as NR or R and then appropriately handles them to get the fast execution times.

Next we develop a two-phase algorithm that exploits the above observations in delivering

fast evaluation of all four types of queries.

4.2 PnP Two-Phase Framework

The goal of this section is to develop a general algorithm that delivers execution times

that are close to the execution times in the faster direction for all types of queries. Based upon

the observations in the preceding section, we can set the requirements that must be met by the

point-to-point query evaluation algorithm as follows:

• RQ1: effectively handle non-reachable and reachable queries (first observation);

• RQ2: identify the faster direction and use it for query evaluation (second observation); and

• RQ3: maximize the use of pruning for reachable queries for quickly responding to each query.

In this work we develop an algorithm that by design meets RQ1, predicts direction to meet RQ2,

and embodies a significantly enhanced pruning strategy to meet RQ3.
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Figure 4.3: In- and Out-Degree Distribution of LiveJournal.

In general, both reachability (RQ1) and direction (RQ2) requirements must be handled

dynamically as queries constructed from sampling of vertices were found to fall in all four cat-

egories (see Table 4.4). Clearly reachability is function of the graph structure and thus without

exploring the graph at runtime we cannot determine whether a query is a NR query or R query. The

choice of direction matters because the cost of forward evaluation is high if forward propagation en-

counters many high outdegree vertices while backward evaluation is high if backward propagation

encounters many high indegree vertices. We cannot simply statically look at the graph and select

the same preferred direction for all queries as the overall characteristics of G and Ĝ are similar. In

Figure 4.3 we plot the in-degree and out-degree distributions for the LiveJournal graph. As we can

see, both in-degrees and out-degrees have similar power-law distributions. Thus, for a given query,

without dynamically exploring the graph in both directions we cannot establish a basis for select-

ing the preferred direction. Finally for meeting requirement RQ3 we need to quickly find the first

approximation of the query result as soon as possible so that pruning is enabled early and greater

fraction of execution is optimized via pruning.

Therefore, to simultaneously meet all three requirements, we propose a two-phase algo-

rithm such that Phase 1 dynamically and very quickly finds a suitable configuration (for NR vs. R;
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choose Fwd vs. Bwd) for evaluating a given query and then execution transitions to Phase 2 that

evaluates the query under the selected configuration. More specifically, Phase 1 classifies the query

as non-reachable or reachable (RQ1), selects preferable direction for query evaluation as forward

or backward (RQ2), and enables pruning by finding a safe estimate of query’s result value (RQ3).

That is, Phase 1 sets the stage for requirements stated above to be met. Upon completion of Phase 1

execution moves to Phase 2 that solves the query in the preferable direction using the safe estimate

of query’s result to prune graph exploration. Next we discuss the design of phases in greater detail.

Phase 1: Bidirectional Exploration for Identifying Configuration. At the start we are faced

with two questions: NR vs. R? and Fwd vs Bwd?. Thus, Phase 1 must decide which one to target

first. Recall that in the previous section we observed that for NR queries typically one direction

solves the query very quickly than any other case, i.e. for NR query in opposite direction or R

query in any direction. The reason for this behavior is that typically, NR query evaluation in faster

direction examines only a small fraction of the graph that is examined for its evaluation in slower

direction, or evaluation of a R query examines a very large fraction of the graph. For example, for a

sample of 10 NR and 10 R queries for WP on LiveJournal, the average percentage of vertices visited

in Fwd (Bwd) direction was < 1% (87%) for NR queries and 84% (84.4%) R queries.

Given the above observation, to answer NR queries quickly we design Phase 1 to first

distinguish between NR and R queries by attempting to identify a directed path from the source

vertex and the destination vertex. Since we do not know which direction, forward or backward, is

preferable, Phase 1 uses bidirectional exploration in both directions: forward from the source vertex;

and backward from the destination vertex. During bidirectional exploration, the exploration in the

fast direction quickly establishes that the query is of NR kind while relatively little time is expended
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in exploring the graph in the slower direction. In other words, NR queries will be identified and

answered very quickly without even having to predict the preferable direction.

On the other hand, if the query is a R query, the bidirectional exploration runs a bit longer

till Phase 1 determines the existence of a path from source to destination. This happens when bidi-

rectional exploration causes some vertex to be visited from both forward and backward directions.

As soon as this occurs, we know that we have a R query. The extra time spent executing allows us to

observe the progress in both directions and make a choice of direction. Moreover, since a path has

been fully traversed we can generate our first estimate of query’s result that can be used for pruning.

Now the execution transitions to Phase 2 by continuing propagation in the chosen direction while

terminating propagation in the other direction, with pruning turned on right from start of Phase 2.

Since Phase 1 is fast, pruning use is maximized.

The above approach meets all the requirements as follows: (RQ1) it optimizes evaluation

of both NR and R queries; (RQ2) it addresses direction problem by avoiding it for NR queries that

can be quickly solved using bidirectional exploration and by predicting the preferable direction for

R queries; and (RQ3) it guarantees that pruning is turned on for entire Phase 2.

Next we explain the details of how the desirable direction is predicted and safe approxi-

mation of query solution is computed to enable pruning at the start of Phase 2.

Direction prediction – To predict the faster direction we considered a number of measures:

(Work remaining) as estimated by number of active vertices in each direction; (Work performed)

as estimated by tracking the number of vertices processed in each direction; and (Hybrid) method

that uses a combination of preceding two measures giving more importance to the first measure. Our

experience showed that the first measure provides the highest prediction rate and thus, the direction
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for which there are fewer active vertices is predicted as the faster direction and used in Phase 2.

An advantage of this measure is that it does not incur extra tracking overhead involved in the other

measures.

Safe approximation of query solution – Since for some vertex v we have at least found a

path from source to v in the forward direction and a path from v to destination in the backward

direction, we can compute an estimate for query’s result. When multiple vertices are visited from

both directions we select the best approximation provided across all these vertices. To make use

of the two-phase algorithm of our PnP framework, the user must provide two additional functions:

one for the estimation of query result, ESTIMATEAPPROX, from a single vertex; and another for

safe approximation for a query, SAFEAPPROX, from ESTIMATEAPPROX values of all vertices that

are visited in both directions. We illustrate these by providing the functions for the shortest path

query SSSP(s d).

ESTIMATEAPPROX(v) v .
−−−→
value(s) + v .

←−−−
value(d)

SAFEAPPROX ∀ v min ( ESTIMATEAPPROX(v ) )

Phase 2: Query Evaluation. Upon termination of Phase 1, the execution transitions into Phase

2 where the propagation in the predicted direction is run to completion while the execution in the

non-predicted direction is discontinued. Note that all the processing performed in Phase 1 for the

predicted direction is not wasted as computation continues from where it was for the predicted

direction. At the start of Phase 2, if the predicted direction is forward the initial value for destination

vertex d is set to SAFEAPPROX produced by Phase 1 and if the predicted direction is backward the

initial value for the source vertex s is set to SAFEAPPROX.
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Algorithm 10 Two-Phase PnP Evaluation (2Phase) .
1: function 2PHASE( Query ( s d,G ) )

2: B Initialization

3: VISITF (*)← VISITB (*)← False

4: FACTIVE← INITIALIZE ( Query ( s d,G ) )

5: BACTIVE← INITIALIZE ( Query ( d s, Ĝ ) )

6: SAFEAPPROX← Query.Initialize

7: B Phase 1

8: while TRUE do

9: B Process active vertices

10: PROCESSED← FACTIVE ∪ BACTIVE

11: FACTIVE← PROCESS ( FACTIVE, d, G ); BACTIVE← PROCESS ( BACTIVE, s, Ĝ )

12: B Update Visit Flags of processed vertices

13: VISITF (v)← True, ∀ v ∈ FACTIVE; VISITB (v)← True, ∀ v ∈ BACTIVE

14: B Case I: Non-Reachable Query

15: if FACTIVE = φ ∨ BACTIVE = φ then

16: return ( Not-Reachable )

17: end if

18: B Case II: Reachable Query

19: for all v ∈ PROCESSED do

20: if VISITF (v) ∧ VISITB (v) then

21: REACHABLE← TRUE; NEWVALUE← ESTIMATEAPPROX(v)

22: SAFEAPPROX← fapprox ( NEWVALUE, SAFEAPPROX )

23: end if

24: end for all
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Algorithm 11 Two-Phase PnP Evaluation (2Phase) (Cont.).
25: if REACHABLE then

26: PREDICTION← |FACTIVE| > |BACTIVE| ? BACKWARD : FORWARD

27: break

28: end if

29: end while

30: B Phase 2

31: if PREDICTION = FORWARD then

32: B Initialize destination d vertex value

33: d .value = SAFEAPPROX

34: B Continue iterating: forward direction only

35: while FACTIVE 6= φ do

36: FACTIVE← PROCESS ( FACTIVE, d, G )

37: end while

38: return ( Reachable, d.value )

39: else B Prediction is Backward

40: B Initialize source s vertex value

41: s.value = SAFEAPPROX

42: B Continue iterating: backward direction only

43: while BACTIVE 6= φ do

44: BACTIVE← PROCESS ( BACTIVE, s, Ĝ )

45: end while

46: return ( Reachable, s.value )

47: end if

48: end function
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Algorithm 10 summarizes the two-phase algorithm. The iterative loop (lines 7–29) repre-

senting Phase 1 processes active vertices and identifies active vertices for the next iteration. Phase

1 terminates under two conditions. First is when the query is found to be non-reachable because

the active set in one of the directions becomes empty and thus the algorithm terminates (see lines

14–17). Second is when the query is found to be reachable in which case safe approximation is

computed and direction for Phase 2 is predicted (see lines 18–28). The Phase 2 (lines 30–47) sim-

ply continues processing in the predicted direction, using the safe approximation, and terminates

when the algorithm converges. During processing of active vertices in Phase 1 pruning is always

off while in Phase 2 pruning is always on.

Note that the proposed algorithm satisfied all three requirements. Our approach handles

both non-reachable and reachable queries (RQ1). For non-reachable queries our execution time is

expected to be close to the faster direction time which is much smaller than the slower direction

time. For reachable queries since Phase 1 is fast, Phase 2 is highly optimized as our algorithm

accurately predicts the faster direction (RQ2) and maximizes the use of pruning by ensuring that it

is enabled right from the start of Phase 2 (RQ3).

Applicability of PnP. The PnP two phase algorithm minimizes computations by limiting prop-

agation of values via direction selection and safe pruning. We further understand how direction

selection and pruning can be applied to a wide variety of graph algorithms. Graph algorithms are

typically convergence based iterative algorithms wherein vertex values propagate as they change

across iterations. These propagations happen across the structure of the input graph, and hence,

they can be viewed as occurring in certain pattern or direction. At an elementary level, propagation

of a vertex value occurs in the “outward” direction through out-neighbors of the vertex; for exam-
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ple, in Algorithm 9, the out-neighbors of vertices get processed (line 14) as values propagate across

the graph. However, an important characteristic of point-to-point queries is the two special vertices

(a source and a destination) that concretely define an expected direction for propagation: forward

direction from source to destination. PnP further extracts the hidden reverse direction to leverage

the disparity in propagation and limits overall computations via pruning. Path based algorithms

naturally fit this class of point queries where values are expected to be propagated from source to

destination. For general algorithms like PageRank, every vertex acts like a source; thus, it is diffi-

cult to deduce a single direction of flow of values that can be leveraged by PnP. On the other hand,

pruning of value propagation occurs when we know (a) what to prune; and, (b) how to prune it.

— What to prune? While PnP prunes value propagations (or edge computations) in a

broader sense, the semantics of each graph algorithm needs to be carefully analyzed to identify the

exact propagation paths across which values will never be transferred. These semantics can be cap-

tured by characterizing the aggregation function used to compute vertex values. The most common

aggregation functions used across graph algorithms are shown in Table 4.7. Since selection based

aggregation functions (min, max, or) effectively select values coming from a single incoming path

to a given vertex, PnP can safely prune values coming from other incoming paths to a vertex, hence

supporting several graph algorithms, some of which are listed in Table 4.7. Complete aggrega-

tions (sum, product) on the other hand combine values coming from multiple incoming edges into

a single value. This means the value contributions from individual incoming paths cannot be dis-

carded throughout the computation, and hence, PnP does not prune value propagations but instead

only performs direction selection. In our experiments (§4.3), we use NumPaths as an example for

complete aggregation to show that PnP is very useful even without availability of pruning.
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Table 4.7: Applicability of PnP.

Aggregation Type Graph Algorithms

min, max, or Selection

Shortest Paths, Widest Paths,
Connected Components, Reachability

Minimum Spanning Tree
Betweenness Centrality

sum, product Complete
NumPaths, PageRank, SpMV,

Belief Propagation

— How to prune? Once we have identified the propagation paths to prune, we rely on

the algorithmic semantics to perform pruning. Vertex values for path based algorithms that rely on

selection functions often progress in a monotonic fashion, i.e., subsequent values of vertices are

either non-increasing (e.g., shortest paths) or non-decreasing (e.g., widest paths). PnP monitors the

destination vertex’s values and performs numerical comparison (≥, ≤) to safely prune out propa-

gations that cannot contribute to the result. For algorithms beyond monotonic convergence (e.g.,

PageRank), algorithm-specific pruning conditions can be formulated by the user.

4.3 Evaluation of PnP Two-Phase

We evaluate the two-phase algorithm with four input graphs and four graph analytics

benchmarks. We use four input graphs from Table 4.3. Four types of queries are considered –

Widest Path (WP), Shortest Path (SP), Number of Paths (NP), and Breadth First Search (BFS). We

first evaluate the two-phase algorithm for non-reachable queries and then for reachable queries. The

algorithms compared are as follows:

• 2Phase (2Ph) – our two-phase algorithm (from §4.2); and

• sPr – simple Pruning algorithm that can be run in forward or backward direction (from §4.1).
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4.3.1 Evaluation for Non-Reachable (NR) Queries

The execution times for 2Phase as well as sPr in forward and backward directions for all

non-reachable queries are shown in the scatter plots of Figure 4.4. As we can see, for vast majority

of queries the execution time of 2Phase algorithm is very close to the time for the faster direction

which is significantly smaller that the time in the slower direction.

The average times across all queries for sPr in the faster direction (sPr:FastNR) and

slower direction (sPr:SlowNR) as well as 2Phase algorithm can be found in Table 4.8. The effec-

tiveness of 2Phase algorithm is computed as

sPr : SlowNR− 2Phase

sPr : SlowNR− sPr : FastNR
× 100

which computes actual benefit of two-phase as a percentage of available benefit – this number

is shown in parenthesis in Table 4.8. This number is often over 90%. The last column in the

table (Vertices Visited) indicates the fraction of vertices in the entire graph that are visited by

each algorithm. The numbers for sPr:FastNR and sPr:SlowNR confirm that a tiny fraction of

the vertices are visited (< 0.03%) in the fast direction while vast majority of vertices are visited

(80-90%) in the slower direction. Finally, two-phase algorithm visits less than 0.5% percent of the

vertices explaining its effectiveness for non-reachable queries.

4.3.2 Evaluation for Reachable Queries

Let us analyze the performance of the two-phase algorithm for reachable queries. For

this analysis we again compare its performance with that of the limits of performance of the sPr
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Figure 4.4: Execution Times of NR Queries: [Left] sPr Forward (Green) & sPr Backward (Gold);
and [Right] 2Ph (Red).
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Figure 4.5: Execution Times of R Queries: [Left] sPr Forward (Green) & sPr Backward (Gold);
and [Right] 2Ph Direction Correctly Predicted (Blue) & 2Ph Direction Mispredicted (Red).
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Table 4.8: NR Queries 2Ph vs. sPr: Average Execution Times (seconds); and % of Vertices Visited.

G Algorithm WP SP NP BFS
TTW 2Phase 0.144s (99.1%) 0.145s (99.1%) 0.140s (97.1%) 0.101s (89.2%)

sPr:FastNR 0.024s 0.019s 0.028s 0.007s
sPr:SlowNR 13.03s 14.61s 3.85s 0.87s

LJ 2Phase 0.019s (96.6%) 0.019s (77.8%) 0.027s (91.0%) 0.019s (77.5%)
sPr:FastNR 0.001s 0.001s 0.006s 0.001s
sPr:SlowNR 0.534s 0.820s 0.237s 0.080s

TT 2Phase 0.174s (99.0%) 0.199s (99.7%) 0.267s (96.9%) 0.149s (88.8%)
sPr:FastNR 0.021s 0.139s 0.056s 0.020s
sPr:SlowNR 15.39s 17.66s 6.88s 1.17s

PK 2Phase 0.008s (94.3%) 0.009s (94.8%) 0.012s (94.1%) 0.009s (71.6%)
sPr:FastNR .0004s .0005s .0023s .0004s
sPr:SlowNR 0.141s 0.155s 0.171s 0.029s

G Algorithm Vertices Visited
TTW 2Phase 0.1767%

sPr:FastNR 0.0000029%
sPr:SlowNR 90.62%

LJ 2Phase 0.38%
sPr:FastNR 0.0299%
sPr:SlowNR 88.95%

TT 2Phase 0.47%
sPr:FastNR 0.0000024%
sPr:SlowNR 84.60%

PK 2Phase 0.0688%
sPr:FastNR 0.000066%
sPr:SlowNR 80.77%

algorithm (i.e., in faster and slower directions for all queries). The scatter plots for reachable queries

are shown in Figure 4.5.

Average execution times across all reachable queries for algorithms sPr and 2Phase are

given in Table 4.9. As we see in most cases execution times of algorithms are related as follows:

sPr:FastR < 2Phase < sPr:SlowR. This is to be expected as sPr:FastR is in a sense ideal time
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Table 4.9: R Queries: Avg. Execution Time Per Query (secs).

G Algorithm WP SP NP BFS
TTW 2Ph 3.5116s 10.827s 2.9134s 0.5396s

2Ph100% 3.2826s 10.466s 2.6813s –
sPr:FastR 5.9797s 10.038s 2.3898s 0.3585s
sPr:SlowR 12.0750s 12.793s 3.1887s 0.6007s

LJ 2Ph 0.1998s 0.6928s 0.1179s 0.0781s
2Ph100% 0.1572s 0.6543s 0.1169s –
sPr:FastR 0.1832s 0.6190s 0.1234s 0.0369s
sPr:SlowR 0.7569s 0.8168s 0.1575s 0.0560s

TT 2Ph 4.3782s 16.727s 4.7800s 0.8338s
2Ph100% 3.8370s 15.049s 4.5825s –
sPr:FastR 7.7483s 14.145s 4.0473s 0.5214s
sPr:SlowR 14.6030s 19.041s 5.2159s 0.7136s

PK 2Ph 0.0705s 0.1392s 0.0980s 0.0342s
2Ph100% 0.0631s 0.1361s 0.0968s –
sPr:FastR 0.0526s 0.1174s 0.0613s 0.0141s
sPr:SlowR 0.1705s 0.1492s 0.0789s 0.0195s

where overhead of prediction is nil and prediction rate is 100%. In comparison 2Phase algorithm

involves overhead of direction prediction and has less than perfect prediction rate. However, as we

can see 2Phase is frequently far closer to sPr:FastR than sPr:SlowR. This indicates that 2Phase

is highly effective. To further demonstrate its effectiveness, we also present the average execution

time 2Phase100% which is computed assuming perfect 100% prediction rate. We can see that

2Phase is only slightly greater than 2Phase100%. Finally, it should be noted that in some cases

2Phase< sPr:FastR (WP on TTW, NP on LJ) or at least 2Phase100%< sPr:FastR (WP on LJ).

This is because the 2Phase pruning strategy significantly outperforms the pruning carried out by

sPr and thus more than offsets the cost of prediction. Note that for BFS no times for 2Phase100%

are provided as BFS terminates at the end of Phase 1. Next we further analyze prediction and

pruning in greater detail.
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Prediction effectiveness of 2Phase algorithm is analyzed in Table 4.10. The prediction

rates (PR) of the 2Phase algorithm are presented – on an average the prediction rates exceed

80%. For the two cases where 2Phase < sPr:FastR we can see that the prediction rates exceed

90% (92.74% for WP on TTW; 90.17% for NP on LJ). Additional data in Table 4.10 shows that for

queries where predictions are correct, on average, the difference in execution times in two directions

(∆P) is typically greater than for queries where missprediction occurs (∆MP). That is, benefit of

correct predictions is higher than the loss due to incorrect predictions.

Pruning effectiveness of 2Phase algorithm is analyzed in Table 4.11. We present the

percentage of execution time over which pruning is not enabled – lower numbers are better. For

2Phase algorithm this time is the percentage of execution time spent in Phase 1. For sPr algorithm

we found this time by noting the point at which the first approximation of query result is generated

for use in pruning during remainder of the execution. From the results we can see that for the

Table 4.10: 2Ph Prediction Effectiveness: (PR) Prediction Rate of 2Phase Algorithm; and
Difference Between Average Execution Times (seconds) in Faster and Slower Directions for

Predicted Queries (∆P); and Mispredicted Queries (∆MP). BFS omitted as it has no Phase 2.

G Pred WP SP NP
TTW PR 92.74% 87.69% 56.51%

∆P 11.64s 5.67s 0.90s
∆MP 3.16s 2.93s 0.53s

LJ PR 86.35% 71.67% 90.17%
∆P 0.61s 0.22s 0.04s
∆MP 0.31s 0.14s 0.01s

TT PR 88.32% 57.24% 58.39%
∆P 12.75s 4.84s 0.45s
∆MP 4.63s 3.92s 0.48s

PK PR 87.99% 87.80% 81.67%
∆P 0.13s 0.06s 0.015s
∆MP 0.06s 0.026s 0.003s
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2Phase algorithm this time is often significantly smaller than for sPr:FastR algorithm. That is,

2Phase pruning is substantially better than simple pruning performed by sPr.

Tables 4.12 and 4.13 present the work performed in terms of total number of active

vertices encountered and number of iterations for convergence. As we can see, the number of active

vertices is significantly smaller for 2Phase in comparison to sPr:FastR. This reduction is the

highest for NP because the SAFEAPPROX is computed by multiplying the NP values in forward and

backward direction causing pruning to be highly effective. This is another indicator of the enhanced

pruning strategy of 2Phase algorithm being significantly superior than that of sPr. On the other

hand, the average number of iterations for 2Phase and sPr:FastR are fairly close. Note that even

though the 2Phase algorithm for BFS terminates at end of Phase 1, its vertex computations count

Table 4.11: R Queries: % of Execution Time for which Pruning is Inactive. BFS is omitted
because it does not require Phase 2 as it terminates at the end of Phase 2.

G Algorithm WP SP NP
TTW 2Ph 28% 1.6% 6.1%

2Ph100% 30% 1.7% 6.1%
sPr:FastR 54% 31% 64%
sPr:SlowR 45% 36% 74%

LJ 2Ph 21% 3.7% 22%
2Ph100% 22% 3.1% 22%
sPr:FastR 32% 8.3% 45%
sPr:SlowR 42% 18% 86%

TT 2Ph 16% 1.2% 3.3%
2Ph100% 14% 1.0% 2.6%
sPr:FastR 29% 17% 28%
sPr:SlowR 41% 27% 49%

PK 2Ph 2.6% 1.1% 2.9%
2Ph100% ≈ 0% ≈ 0% ≈ 0%
sPr:FastR ≈ 0% ≈ 0% ≈ 0%
sPr:SlowR 41% 25% 49%
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Table 4.12: R Queries: Average Active Vertex Count Per Query (in millions).

G Algorithm WP SP NP BFS
TTW 2Ph 5.82m 22.17m 27.86m 6.93m

2Ph100% 5.17m 21.80m 15.27m –
sPr:FastR 14.65m 32.46m 54.13m 11.54m
sPr:SlowR 51.16m 55.34m 48.06m 13.46m

LJ 2Ph 1.58m 6.12m 0.32m 0.80m
2Ph100% 1.24m 6.31m 0.29m –
sPr:FastR 1.98m 6.85m 3.50m 0.85m
sPr:SlowR 8.47m 12.15m 5.72m 2.13m

TT 2Ph 7.56m 30.56m 42.13m 7.51m
2Ph100% 6.27m 39.07m 42.13m –
sPr:FastR 16.74m 59.87m 54.10m 12.04m
sPr:SlowR 60.03m 50.34m 63.87m 17.77m

PK 2Ph 0.61m 1.38m 0.39m 0.28m
2Ph100% 0.56m 1.37m 0.77m –
sPr:FastR 0.81m 1.70m 2.57m 0.37m
sPr:SlowR 2.70m 2.99m 3.46m 0.67m

is consistently lower than that for sPr:FastR indicating that the bidirectional traversal is more

effective that unidirectional traversal. Finally, occasionally 2Phase performs fewer active vertices

than 2Phase100% (e.g., SP on LJ). This is because the runtime cost depends upon additional

factors (e.g., number of edges associated with active vertices, cache misses etc.), i.e. the direction

in which fewer active vertices are processed can have higher execution time.

Beamer’s Bidirectional BFS [4] vs. Two-Phase PnP. Recently bidirectional BFS was pro-

posed by Beamer that switches directions at iteration boundaries to minimize the work performed

– the frontier sizes in two directions are compared to select the cheaper direction for the next itera-

tion. Although this is an effective algorithm, PnP relies upon direction selection over bidirectional

search. First, PnP is general which solves problems besides BFS while Beamer’s algorithm only
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Table 4.13: R Queries: Average Number of Iterations Per Query (rounded).

G Algorithm WP SP NP BFS
TTW 2Ph 5 9 5 4

2Ph100% 4 9 4 –
sPr:FastR 5 9 5 4
sPr:SlowR 16 12 5 4

LJ 2Ph 10 28 4 6
2Ph100% 6 27 4 –
sPr:FastR 7 27 7 6
sPr:SlowR 47 29 7 6

TT 2Ph 5 9 5 4
2Ph100% 4 10 5 –
sPr:FastR 5 11 5 4
sPr:SlowR 17 10 5 4

PK 2Ph 8 14 4 5
2Ph100% 6 14 4 –
sPr:FastR 6 14 7 5
sPr:SlowR 20 16 7 5

Table 4.14: No-pruning (nPr) vs. Pruning in Two-Phase.

G Algorithm WP SP NP BFS
#Iter. #Iter. #Iter. #Iter.

TTW 2Ph 5 9 5 4
noPr:FastR 20 21 23 19
noPr:SlowR 21 21 27 20

LJ 2Ph 10 28 4 6
noPr:FastR 20 30 15 14
noPr:SlowR 46 32 16 15

applies to BFS. Second, due to PnP’s aggressive pruning, the number of iterations in the two-phase

algorithm are greatly reduced and this limits the potential benefits of bidirectional approach. Ta-

ble 4.14 shows that the number of iterations of two-phase are much smaller than for no-pruning

(noPr) scenario considered in bidirectional BFS. Thus, bidirectional approach is not expected to

yield significant additional benefit in the presence of pruning.
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Table 4.15: PnP average execution times in seconds for 50 queries of each kind on one 8-core 32
GB machine; and PnP speedups over Quegel [58] for the same queries on 1 and 4 machines.

Q G PnP :: 1 machine
WP SP NP BFS

Fw
dN

R LJ 0.020s 0.020s 0.037s 0.030s
PK 0.007s 0.009s 0.011s 0.013s

B
w

dN
R LJ 0.027s 0.028s 0.045s 0.034s

PK 0.007s 0.007s 0.012s 0.013s
Fw

dR LJ 0.035s 0.198s 0.200s 0.136s
PK 0.013s 0.081s 0.151s 0.054s

B
w

dR LJ 0.042s 0.169s 0.214s 0.152s
PK 0.012s 0.071s 0.148s 0.055s

Quegel :: 1 machine
WP SP NP BiBFS BFS

12.9× 13.1× 7.02× 11.0× 8.63×
62.5× 45.2× 23.0× 22.9× 31.0×

679.4× 644.5× 877.3× 24.5× 521.1×
1082.9× 1050.9× 1516.8× 22.8× 611.0×
557.9× 97.7× 192.0× 17.5× 115.6×
630.3× 99.5× 114.7× 22.3× 129.6×
438.0× 110.6× 169.7× 19.3× 101.5×
629.6× 113.2× 112.3× 23.8× 122.2×

Quegel :: 4 machines
WP SP NP BiBFS BFS

14.9× 15.1× 8.20× 12.0× 10.2×
58.2× 41.9× 97.1× 24.7× 28.0×

364.8× 344.2× 427.5× 19.2× 290.8×
618.7× 596.1× 3116.1× 23.4× 297.4×
320.8× 56.5× 98.4× 12.0× 67.5×
353.9× 55.2× 229.0× 14.5× 64.4×
262.8× 58.3× 83.0× 13.5× 61.2×
356.6× 63.1× 233.9× 15.5× 61.3×

4.3.3 Quegel vs. PnP

Finally we compare the performance of PnP with Quegel, that is aimed at point-to-point

iterative graph analytics. Table 4.15 shows the average execution times of PnP for 50 queries of each
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of four kinds on a single 8-core machine, and the average relative speedups achieved by PnP over

Quegel on 1 and 4 machines (8-cores per machine). Quegel’s optimization that combines messages

with the same destination vertex is turned on, and results are shown for Quegel’s bidirectional BFS

(BiBFS) as well as unidirectional BFS.

On an average across all types of queries, PnP on a single machine outperforms Quegel on

four (one) machines by 8.2× to 3116× (7× to 1517×). Furthermore, it was interesting to observe

that Quegel’s BFS performed better than it’s BiBFS in few cases; nevertheless our prediction and

pruning strategies allowed PnP to significantly outperform both Quegel’s BiBFS and BFS.

4.4 Summary

In this chapter, we present observations on the performance characteristics of point-to-

point graph queries. Based on the observations, we have developed PnP that incorporates a novel

two-phase algorithm for evaluating iterative point-to-point queries involving a single source and

destination vertex pair. The algorithm derives its efficiency from selecting the faster direction for

evaluating the query and pruning the computation to achieve early termination. Our solution is

applicable to streaming graphs as following the solving of one query and before beginning of the

next, graph updates can be applied. PnP substantially outperforms Quegel, the only previous frame-

work for computing point-to-point queries. In the next chapter, we will combine our knowledge on

batched evaluation of point-to-all graph queries and the characteristics of point-to-point query to

develop a solution for efficiently processing a batched of point-to-point queries.
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Chapter 5

Batched Evaluation of Point-To-Point

Queries

In the previous chapter, we have discussed two techniques, online pruning and online

direction prediction, that improves the performance of a single point-to-point query. Earlier in the

thesis (chapter 2), we have also shown how to explore the synergy between a group of vertex queries

to reduce the execution time by amortizing the runtime overhead.

In this chapter, we extend SimGQ (chapter 2) and PnP (chapter 4) to efficiently evaluate

a batch of point-to-point queries resulting a system called SimGQ+. To avoid the redundant compu-

tation between point-to-point queries, we propose query aggregation, an optimization which merges

multiple point-to-point queries sharing the same source vertex into a coarse-grained one-to-many

query with a single source vertex and multiple destination vertices. Similarly we may aggregate

point-to-point queries sharing the same destination vertex into many-to-one queries. Query ag-

gregation eliminates the shared computation among point-to-point queries and thus delivers better
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performance. In addition, we generalize pruning and direction prediction, two optimizations pro-

posed in PnP, from the single point-to-point query scenario to the aggregated one-to-many query

scenario to further improve performance of batched evaluation.

While query aggregation requires that point-to-point queries share source or destination

vertices, the oppotunity for vertex sharing is not uncommon in real world applications. For example,

there are use cases in which the analysts may issue many-to-many queries (e.g., in Quegel [58], the

authors report that some ecommerce companies are interested in the pairwise queries among a group

of important customers). In this case, there are rich opportunities to combine point-to-point queries

that share the same source or destination vertices. In addition, the likelihood that a vertex appears

as source or destination of a query is not evenly distributed across all vertices in the graph. For

example, considering the scenario where an Expedia user search for a flight on a transportation

graph in which vertices represent airports and edges represent flights, large airports with higher

degrees (e.g., LAX) are expected to appear much more frequent as the start or destination of a flight

query compared with local airports with lower degrees. Given the frequent appearance of high

degree vertices, we can expect that there are opportunities to aggregate point-to-point queries.

5.1 SimGQ+: Evaluation of a Batch of Point-To-Point Queries

Next we present multiple optimizations for batched evaluation of point-to-point queries

which can be combined together seamlessly. We first propose the query aggregation technique

and present the motivating data to illustrate the potential of this approach. Next we generalize the

pruning technique in PnP to handle coarse-grain one-to-many and many-to-one query generated

via aggregation. Finally we discuss extending direction prediction for batched PnP scenario.
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Table 5.1: Relationship between Execution Time and Number of Queries.

Aggregation Point-To-Point One-To-Many Many-To-One
# of Queries 50 38 13

Time w/o Batching 21.83s 16.90s 5.58s
Time w/ Batching 4.62s 3.89s 1.66s

5.1.1 Query Aggregation - Exploit Shared Computation

When a group of point-to-point queries are evaluated simultaneously, new opportunities

for optimization arise. First of all, we may apply batching for better resource utilization and cache

locality, just like what we did for point-to-all queries in the previous section. Moreover, we can de-

velop optimizations specific to multiple point-to-point queries. In this work, we are particularly in-

terested in eliminating shared computations across batch queries. We consider forward-aggregation

which combines multiple point-to-point queries that share the same source vertex into one point-to-

many query which has one source vertex and multiple destination vertices. Similarly we consider

backward-aggregation which combines the point-to-point queries that share the same destination

vertex into a many-to-point query with one destination vertex and multiple source vertices. Such

query aggregation reduces the number of queries and can further reduce the computation overhead

because it reduces the number of distinct frontiers we need to maintain.

To illustrate the performance benefit from query aggregation, we conducted the follow-

ing motivating experiment. Fifty point-to-point shortest path queries are selected such that many

of them share source vertex or destination vertex. The input graph is soc-LiveJournal [23] with

4847571 vertices and 68993773 edges.

In Table 5.1, we compare the total running times under three different aggregation poli-

cies. Point-to-Point is the baseline without aggregation. one-to-many is the result of forward aggre-
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gation. many-to-one is the result of backward aggregation. As we can see, both one-to-many and

many-to-one generate fewer queries than point-to-point and also run faster than point-to-point which

shows that query aggregation is effective and leads to less query time. In addition, by comparing

the running time with and without batching, we observe that batching is effective for aggregated

queries. Thus batching and sharing can be applied together for better performance.

5.1.2 Adapting Pruning to Multiple One-To-Many Query Scenario

In our prior work PnP [57], we introduced an online pruning optimization to accelerate

point-to-point iterative graph algorithms by eliminating the wasteful propagation which are deter-

mined not to contribute to the final answer. Pruning is achieved by comparing the new value of an

active vertex v (i.e., v.value) with the current value of the destination vertex d (i.e., d.value). For

instance, in the case of the shortest path algorithm, we can safely prune out vertex v from the active

vertex frontier if v.value ≥ d.value. Pruning reduces the amount of vertex propagation and leads

to early termination compared with standard iterative graph algorithms.

We can adapt pruning from the scenario of a single point-to-point query to the scenario

with a single one-to-many query. Suppose we have an one-to-many query with a single source

vertex s and k destination vertices d1, d2, . . . , dk. We can safely prune out vertex v from the active

vertex frontier if v.value cannot contribute to any of the k point-to-point queries which include

s → d1, s → d2, . . . , s → dk. In the case of the shortest path problem, we can prune out v if

v.value ≥ max(di.value) where i ≥ 1 and i ≤ k.

We can further generalize pruning from the scenario with a single one-to-many query to

the scenario with multiple concurrent one-to-many queries. Let us see how pruning can be com-

bined with batching. Suppose we have l one-to-many queries which originate from source vertices
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s1, s2, . . . , sl. Each one-to-many query has k destinations. LetQi denote the ith one-to-many query

which originates from si. Let THRESHOLD[Qi] denote the pruning threshold for query Qi. Then

THRESHOLD[Qi] = max(RESULTT[Qi][dj]) for all j ∈ [1, k] where RESULTT[Qi][dj] is the ten-

tative shortest path value from si to dj . The pruning condition for vertex v in the multiple query

scenario will be v.value >= max(THRESHOLD[Qi]) for i ∈ [1, l].

5.1.3 Discussion of Full-Mapping Workload - Breaking Tie between Forward and

Backward Aggregation using Direction Prediction

Yan et al. [58] observed that many applications on large graphs simply require computing

point-to-point variants of heavyweight computations. As an example, when analyzing a graph that

represents online shopping history of shoppers, a business may be interested in all point-to-point

queries over an important set of shoppers. Therefore in this work we focus on this kind of full-

mapping workload. Moreover, we identify high degree vertices in the input graph as vertices of

interest because high degree vertices are usually important vertices in power-law graphs.

Under this workload, the set of input point-to-point queries can be represented as a full

mapping from a set of source vertices to the same set of destination vertices (see Figure 5.1). As

a result, forward/backward aggregation generate a minimal number of one-to-many/many-to-one

queries. In other words, there is a tie between the forward and backward aggregation. Then the

question comes which direction to be chosen for aggregation: forward or backward?

Inspired by the direction prediction heuristic developed in PnP [57], we developed a

heuristic for predicting the faster direction for a batch of point-to-point queries based on the es-

timation of work. While in PnP direction prediction is conducted dynamically after a bidirectional
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Figure 5.1: Full-Mapping Queries

phase one execution by comparing the frontier sizes from different directions, in this work we pre-

dict the direction for a given batch of point-to-point queries statically before iterative computation

starts. We make this design choice because we observe that the computation for point-to-point

queries between high-degree vertices usually finishes in a few iterations making the dynamic direc-

tion selection overhead high relative to the small overall work.

Here is the direction prediction heuristic that we employ. For each point-to-point query

in the input batch, we assume the query is forward-fast if the outdegree of the source vertex is

greater than the indegree of the destination vertex and similarly assume the query is backward-fast

otherwise. If there are more forward-fast queries in the batch, we predict the forward direction is

faster and run the batch in the forward direction starting from the source vertices on the original

graph. Otherwise we predict the backward direction to be the faster direction, and run the batch in

the backward direction starting from the destination vertices on the edge-reversed graph.

An alternative direction prediction heuristic for a batch is to compare the sum of out-

degrees of all source vertices and the sum of the indegrees of all destination vertices and select

the direction with smaller total degree. However, we found that this metric does not reflect the
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relative amount of work in different directions as accurate as the first approach because this alterna-

tive approach may over-emphasize the importance of a single point-to-point query in the batch and

consequently misleadingly hide the impact of other batch queries. For instance, among 16 point-

to-point queries in a batch, 15 queries are forward-fast and only 1 query is backward-fast; however

the backward-fast query has a source with very high outdegree and a destination with very small

indegree and dominate the overall prediction.

5.1.4 Push Style Batched Evaluation of Full-Mapping Point-to-Point Queries

Now we present a detailed algorithm that computes the pairwise property values between

each pair of vertices from a set of important vertices using the Push model. In Algorithm 12,

function EVALUATEPAIRWISE works as follows. First, function PREDICT (line 5) applies one of the

static degree-based heuristics (discussed in Section 5.1.3) to predict the faster direction for the given

input query on the given input graph. For k query vertices, there are k2 corresponding point-to-point

queries. Based on the prediction result, the algorithm decides how to aggregate these point-to-point

queries into more coarse-grained queries. If the predicted direction is forward, k2 point-to-point

queries are aggregated in the forward direction into k one-to-many queries each of which has a single

source vertex and k destination vertices (line 10-13). If the predicted direction is backward, point-

to-point queries are aggregated in the backward direction into k many-to-one queries each of which

has a single destination vertex and k source vertices (line 15-18). After generating the aggregated

queries, function EVALUATEBATCHEDONETOMANY is called to evaluate the aggregated queries

as a batch (lines 13 and 18). To benefit from a unified interface for evaluating one-to-many queries

and many-to-one queries, the evaluation of many-to-one queries is conducted as follows. We first

convert many-to-one queries into one-to-many queries by calling the function REVERSE (e.g., many-
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Algorithm 12 Pairwise Evaluation between a Group of Vertices

1: Given: Directed Graph: G(V,E); The Edge-Reverse Graph: Ĝ(V, Ê); and Vertex set QueryVertices which contains

a group of k vertices

2: Goal: Compute point-to-point values between each pair of vertices in QueryVertices

3: function EVALUATEPAIRWISE(QueryVertices(s1, s2, s3, ..sk), G, Ĝ)

4: B Predict faster Direction

5: Prediction← PREDICT(QueryVertices, G)

6: B Generate Point-to-Point Queries from Input Vertex Set

7: PTPQueries← GENPTPQUERIES(QueryVertices);

8: B Aggregate Point-To-Point Queries and Evaluate in the Predicted Direction

9: if Prediction = Forward then

10: B Aggregate Point-To-Point Queries into One-To-Many Queries

11: OneToManyQueries← FWDAGGREGATE(PTPQueries)

12: B Evaluate aggregated Queries

13: EVALUATEBATCHEDONETOMANY(OneToManyQueries, G)

14: else

15: B Aggregate Point-To-Point Queries into Many-To-One Queries

16: ManyToOneQueries← BWDAGGREGATE(PTPQueries)

17: B Evaluate aggregated Queries

18: EVALUATEBATCHEDONETOMANY(REVERSE(ManyToOneQueries), Ĝ)

19: end if

20: end function

to-one query ({s1, s2, ..., sk}, si) is reversed to an one-to-many (si, {s1, s2, . . . , sk})). After the

conversion, we can get the result of the original many-to-one query by evaluating the reversed one-

to-many queries on the edge-reversed graph Ĝ (line 18).
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Algorithm 13 Batched Evaluation of One-To-Many Queries
1: Given: Directed Graph Graph(V, E); QueryBatch which is set of k One-To-Many queries: Q1(s1, {s1, s2, s3, ..sk}),

Q2(s2, {s1, s2, s3, ..sk}), · · ·Qk(sk, {s1, s2, s3, ..sk})

2: Goal: Evaluate the given batch of One-To-Many queries

3: function EVALUATEBATCHEDONETOMANY( QueryBatch )

4: B Initialization Step

5: Initialize RESULTT for QueryBatch

6: ACTIVE← { s1, s2, ..., sk }; NEXTTRACK← φ;

7: CURRTRACK← { (si, Qi) : Qi(si) ∈ QueryBatch }

8: Initialize THRESHOLD[] for pruning for each Qi in QueryBatch

9: B Iterate till Convergence

10: while ACTIVE 6= φ do

11: B Process Active Vertices

12: ACTIVE← PROCESSBATCH (ACTIVE, CURRTRACK,NEXTTRACK, RESULTT)

13: B Update the Pruning Threshold for each One-To-Many Query in the Batch

14: for all (si, {s1, s2, ..sk}) ∈ QueryBatch in parallel do

15: THRESHOLD[Qi]← AGGREGATELOOSE(ResultT[Qi][sj]) for j = 1..k

16: end forall

17: B Prune active frontier using pruning threshold

18: ACTIVE← PRUNEACTIVE(ACTIVE, NEXTTRACK, THRESHOLD, RESULTT)

19: CURRTRACK← NEXTTRACK; NEXTTRACK← φ;

20: end while

21: return RESULTT

22: end function

Let us dive into function EVALUATEBATCHEDONETOMANY which simultaneously eval-

uates a batch of one-to-many queries over a directed graph G (V,E) where the ith query originates

at source vertex si and has k destination vertices s1, s2, ..., sk. The function is explained in Algo-
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Algorithm 14 Prune Active Vertex Frontier using Threshold
1: function PRUNEACTIVE( ACTIVE, NEXTTRACK, THRESHOLD, RESULTT)

2: NEWACTIVE← φ

3: for all v ∈ ACTIVE in parallel do

4: for all Qi ∈ QueryBatch do in parallel

5: B v cannot be pruned if any query needs propagation of new value of v

6: if DONOTPRUNE(v, Qi) then

7: NEWACTIVE← NEWACTIVE ∪ {v}

8: else

9: NEXTTRACK← NEXTTRACK \ {(v, Qi)}

10: end if

11: end forall

12: end forall

13: return NEWACTIVE

14: end function

rithm 13. It is similar to the simple batching algorithm for point-to-all queries (Algorithm 1 without

lines 13-20). The algorithm maintains an ACTIVE vertex set, the combined frontier for all queries

in the batch as well as two fine-grained active lists, CURRTRACK and NEXTTRACK, that provides

information about which vertex is activated by which query. The RESULTT maintains the results of

all the queries for each vertex. What makes a difference is pruning (line 18). After each iteration of

propagation, THRESHOLD[Qi] for pruning is updated for each one-to-many query Qi from Query-

Batch using the tentative query results by applying an aggregation for loose boundary (line 14-16).

For instance, AGGREGATELOOSE ismax in the case of shortest path and BFS while it ismin in the

case of widest path and Viterbi algorithm. Pruning threshold is computed as loose boundary rather

than tight boundary because we cannot prune a vertex v for a one-to-many query as long as the new
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value of v may contribute to the value of any (rather than all) destination vertices. With the updated

THRESHOLD, the active vertex frontier is pruned by calling the function PRUNEACTIVE (line 18).

Function PRUNEACTIVE is described in detail in Algorithm 14. An active vertex v cannot be pruned

from the active vertex set if at least one of the queries does not want to prune it (line 6-7). Function

DONOTPRUNE (line 6) varies from benchmark to benchmark. For instance, in the case of shortest

path problem, DONOTPRUNE returns true if and only if RESULTT[Qi][v] < THRESHOLD[Qi].

5.2 Experimental Evaluation

5.2.1 Experimental Setup

For evaluating a batch of point-to-point (PTP) queries, we reused the batching interface

from SimGQ and on top of that we implemented optimizations for batched processing of point-to-

point queries including query aggregation, dynamic pruning, and direction prediction. We evaluated

our techniques using four benchmark applications – SSWP, Viterbi, BFS, and SSSP. We once

again used as input the four power-law graphs in Table 4.3. Benchmarks are implemented using

the PUSH model. Experiments are conducted on a machine with 32 cores and 512 GB memory as

described in Section 4.1.

For each combination of benchmark application and input graph, we evaluate the point-

to-point property values between each pair of vertices from a set of query vertices which are the

vertices with highest total degrees from the input graph and with both indegree and outdegree above

a set default threshold of 500.

Since number of query vertices is an important parameter in this evaluation, in the ex-

periments we vary this number from 4 vertices (i.e., 16 point-to-point queries) to 128 vertices (i.e.,
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16,384 point-to-point queries). The maximum number of query vertices is set to 64 (i.e., 4,096

point-to-point queries) for TTW graph and 32 (i.e., 1,024 point-to-point queries) for TT graph be-

cause of high execution times due to large sizes of these graphs.

5.2.2 Effectiveness of Aggregation and Batching

In this section we present the results of our algorithms to evaluate the effectiveness of both

query aggregation and batching. We present the performance of three algorithms for comparison.

We refer to the algorithm that employs both query aggregation and batching as Aggregate+Batch.

In addition, we also collect the execution time of the algorithm with query aggregation but no

batching where we refer to this algorithm as Aggregate. The baseline algorithm evaluates point-

to-point queries (with pruning) one by one, we refer to this algorithm as PTP-OneByOne. For all

three algorithms, we present the data for the largest number of query vertices for each graph (i.e.,

128 for LJ and PK, 64 for TTW, and 32 for TT).

First, let us consider the results of the algorithms for the forward direction. Table 5.2

presents the total execution time of the baseline algorithm while Table 5.3 gives the execution times

of Aggregate and Aggregate+Batch algorithms as well as their speedups over the baseline algo-

rithm. As we can see, both query aggregation and batching contribute to the speedup significantly.

Query aggregation alone gives speedups ranging from 16.46× (SSWP on TT) to 48.64×(SSSP

on PK). When batching is combined with aggregation, the speedups are further boosted to 28.81×

(SSSP on TT) to 166.27× (SSWP on PK).

We also present the speedups of Aggregate and Aggregate+Batch over the baseline

using algorithms running in the backward direction over the edge-reverse graph and compare the
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Table 5.2: Running Time (Seconds) of Baseline in Forward Direction. Number of Query Vertices:
128 for LJ and PK, 64 for TTW, and 32 for TT.

Graph SSWP Viterbi BFS SSSP
TTW 2180 2306 1001 3351
TT 202 229 126 243
LJ 350 413 144 469
PK 625 613 151 567

Table 5.3: Running Time and Speedup of Aggregate and Aggregate+Batch over baseline
PTP-OneByOne. In each cell, the Left Number is Execution Time in Seconds while the Right

Number is Speedup over Baseline.

Algorithm SSWP Viterbi BFS SSSP
TTW

Aggregate 106 20.62× 117 19.70× 25 40.29× 159 21.05×
Aggregate+Batch 25 86.17× 28 83.85× 17 60.58× 38 88.36×

TT
Aggregate 12 16.46× 13 17.68× 5 24.18× 15 16.66×

Aggregate+Batch 7 30.82× 7 31.41× 3 41.99× 8 28.81×
LJ

Aggregate 10 34.03× 13 32.40× 4 33.00× 16 30.16×
Aggregate+Batch 3 121.54× 3 118.12× 2 84.56× 4 118.35×

PK
Aggregate 14 46.32× 14 44.56× 3 45.31× 12 48.64×

Aggregate+Batch 4 166.27× 4 158.36× 1 134.17× 4 159.00×

results of backward execution with that of forward execution. Table 5.4 shows the speedup that

can be achieved by selecting the faster direction over the slower direction. As we can see, the

difference between forward and backward execution is more significant for large graphs with fewer

query vertices (i.e., TTW with 32 query vertices and TT with 32 query vertices) while the difference

between two directions is smaller for smaller input graphs with larger number of query vertices (i.e.,

LJ and PK with 128 queries). A possible reason for the difference between TTW/TT and LJ/PK is

the difference in their graph structure. In particular, the difference between outdegrees and indegrees

of the query vertices of TTW/TT is much larger than that of LJ/PK.
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Table 5.4: Speedup of Faster Direction over Slower Direction using Aggregate+Batch.

Algorithm SSWP Viterbi BFS SSSP
TTW

PTP-OneByOne 2.81× 2.75× 2.56× 3.28×
Aggregate 3.35× 3.35× 2.32× 3.61×

Aggregate+Batch 2.24× 2.32× 2.22× 2.25×
TT

PTP-OneByOne 3.51× 3.43× 3.38× 3.80×
Aggregate 5.20× 4.80× 3.59× 5.29×

Aggregate+Batch 2.97× 3.04× 2.68× 3.04×
LJ

PTP-OneByOne 1.19× 1.11× 1.11× 1.21×
Aggregate 1.27× 1.13× 1.02× 1.13×

Aggregate+Batch 1.18× 1.02× 1.01× 1.07×
PK

PTP-OneByOne 1.02× 1.02× 1.00× 1.08×
Aggregate 1.01× 1.04× 1.02× 1.08×

Aggregate+Batch 1.02× 1.04× 1.01× 1.05×

5.2.3 Sensitivity To Number of Query Vertices

Figure 5.2 presents execution times for varying number of query vertices for LJ. The gen-

eral trend is that speedup increases as the number of query vertices increases. This is because greater

amounts of redundant computation can be eliminated via query aggregation and greater amount of

runtime overhead is amortized via batching. This is reflected in Figure 5.2 as the gaps between

the baseline and Aggregate (for aggregation) and between Aggregate and Aggregate+Batch (for

batching) increase as the number of query vertices increases. For instance, as shown in Table 5.5, in

the case of SSWP on LJ, the speedup from aggregation and speedup from batching is 2.34× and

1.55× respectively for 4 query vertices. The corresponding speedups grow to 19.18× and 3.57× as

the number of query vertices increases to 64.

98



Number of Query Vertices

P
ro

ce
ss

in
g 

Ti
m

e 
(S

ec
on

ds
)

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

PTP-OneByOne Aggregate Aggregate+Batch

LJ::SSWP::Fwd

Number of Query Vertices

P
ro

ce
ss

in
g 

Ti
m

e 
(S

ec
on

ds
)

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

PTP-OneByOne Aggregate Aggregate+Batch

LJ::Viterbi::Fwd

Number of Query Vertices

P
ro

ce
ss

in
g 

Ti
m

e 
(S

ec
on

ds
)

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

PTP-OneByOne Aggregate Aggregate+Batch

LJ::BFS::Fwd

Number of Query Vertices

P
ro

ce
ss

in
g 

Ti
m

e 
(S

ec
on

ds
)

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

PTP-OneByOne Aggregate Aggregate+Batch

LJ::SSSP::Fwd

Figure 5.2: Total Query Execution Times of PTP-OneByOne vs. Aggregate vs.
Aggregate+Batch.

Table 5.5: Execution Times (Seconds) of SSWP on LJ for Varying # of Query Vertices.

# Query Vertices 4 8 16 32 64 128
PTP-OneByOne 0.19 1.09 2.86 23.62 113.74 350.38

Aggregate 0.08 0.21 0.31 2.72 5.93 10.29
Aggregate+Batch 0.05 0.11 0.13 0.91 1.59 2.88

5.2.4 Accuracy of Direction Prediction

As shown in Table 5.4, the running time of Aggregate+Batch can differ a lot when

evaluating in different directions. Thus it is important to figure out the faster direction. Since we

observe that the number of iterations can be as small as a few iterations for our workload, we decide

to use static direction prediction heuristic in the beginning before the iterative computation starts.

We evaluated the following two degree-based heuristics. The underlying assumption is that lower
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Table 5.6: Prediction Rate - First Heuristic.

Graph SSWP Viterbi BFS SSSP
TTW 100.00% 100.00% 100.00% 100.00%
TT 100.00% 100.00% 100.00% 100.00%
LJ 66.67% 100.00% 50.00% 83.33%

PokeC 50.00% 50.00% 33.33% 50.00%

degree indicates less work to do which has been verified in prior work PnP [57]. In the discussion

below, k denotes the number of query vertices.

In the first heuristic, for each of the k query vertices we compare their outdegree and inde-

gree. If outdegree is less than indegree, the vote for forward execution increases by one. Otherwise,

the vote for backward execution increases by one. After examining every query vertex, the direction

with more votes will be selected as the desired direction.

In the second heuristic, for each of the k2 point-to-point queries we compare the outde-

gree of the source vertex and the indegree of the destination vertex. If the former is less than the

latter, the vote for forward execution increases by one. Otherwise, the vote for backward execution

increases by one. After examining all the point-to-point queries, the direction with more votes will

be predicted as the faster direction.

For each combination of benchmark application and input graph, we compute the predic-

tion rate based on the overall results on different numbers of query vertices. For instance, in the case

of SSWP on LJ, the prediction rate is based on six data points which are collected for six different

numbers of query vertices 4, 8, 16, 32, 64, and 128.

Tables 5.6 and 5.7 present the prediction rates for the two heuristics. Both prediction

heuristics give very good results for TTW and TT and reasonably good results for LJ and PK.
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Table 5.7: Prediction Rate - Second Heuristic.

Graph SSWP Viterbi BFS SSSP
TTW 100.00% 100.00% 100.00% 100.00%
TT 100.00% 100.00% 100.00% 100.00%
LJ 66.67% 100.00% 50.00% 83.33%

PokeC 66.67% 33.33% 83.33% 100.00%
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Figure 5.3: Aggregate+Batch (Forward) vs. Aggregate+Batch (Backward) Running Times.

When prediction heuristics work less efficiently, the forward and backward execution times are

usually close to each other (e.g., Viterbi on PokeC for which the plots of running time in different

directions are shown in Figure 5.3). In contrast, the difference between execution times in forward

and backward is usually much more significant when the prediction rate is more accurate (e.g.,

SSWP on TTW, for which difference between directions is shown in Figure 5.3). Therefore, with

our prediction heuristics, even with misdirection, we still get good performance in the end.

5.3 Summary

In this chapter, we developed techniques for simultaneous evaluation of large batches of

iterative point-to-point graph queries. By embracing the batching paradigm, the overhead costs of

101



query evaluation are amortized across the input queries. By employing query aggregation, prun-

ing, and direction prediction for point-to-point queries, the cost of computations involving shared

workload are amortized across the original batch of queries. Our experiments based upon the Ligra

system show that our system yields significant speedups, where all four techniques, batching, ag-

gregation, pruning, and direction prediction, contribute to speedups albeit to different degrees.
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Chapter 6

Related Work

This chapter discusses research in the literature that are related to our work. We first

present the graph processing frameworks with various architectures including shared-memory sys-

tems, distributed systems, and disk-based out-of-core frameworks. And then we discuss frameworks

designed for processing multiple queries which is related to our batching paradigm. And then we

go over graph databases and query systems because they support point-to-point queries and various

indexing techniques. Finally we close up this chapter with streaming graph frameworks.

6.1 Graph Processing Frameworks

There are a number of single machine shared-memory frameworks [1, 41, 36, 19]. Ligra

[41] provides a shared memory abstraction for vertex algorithms which is particularly good for

graph traversal. [36] presents a shared-memory based implementations of these DSLs on a general-

ized Galois system and compares its performance with the original implementations. These frame-

works are based on the Bulk Synchronous Parallel (BSP) [45] model. GRACE [51], a shared mem-
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ory graph processing system, uses message passing and provides asynchronous execution. To effi-

ciently process large graphs our prior work has employed Graph Reduction [19] and built a system

on top of Galois. On a single machine large graphs may not fit in memory. Therefore other methods

have been proposed for processing extremely large graphs. For a single multicore machine a num-

ber of out-of-core processing systems have been recently proposed (GraphChi [21], X-Stream [40],

GridGraph [64], DynamicShards [49], Turbograph [14], Flashgraph [63], Bishard [35]). Alternately

distributed systems that combine memories of multiple machines to handle large graphs can be used

(Pregel [26], PowerLyra [6], PowerGraph [11], GraphLab [24], ASPIRE [46], CoRAL [47]). Recent

works show that asynchronous algorithms are more capable of tolerating communication latencies

of distributed systems [55, 15, 46, 49].

6.2 Multi Query Frameworks

Recently, MultiLyra [29] and its extensions in BEAD [30] were developed to simulta-

neously evaluate a batch of iterative graph queries. There are important differences between the

algorithms developed in this paper and MultiLyra/BEAD. First, MultiLyra and BEAD are frame-

works for distributed systems and hence its emphasis is on amortizing communication costs between

machines of a cluster while in this paper we show how batching can be deployed on a single mul-

ticore shared-memory machine to amortize overhead costs. Second, we show how to dynamically

identify shared queries and exploit them to amortize computation costs of queries in a single batch.

MultiLyra presents a limited algorithm that profiles multiple batches to find fixed shared queries that

it uses to help speedup future batches. Thus, it cannot be used to speedup a single batch of queries

and it cannot select shared queries that are customized to the batch being evaluated. Also in [44]
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authors show that a batch of BFS queries starting from different source vertices can be simultane-

ously evaluated efficiently. In [17] authors group vertices into multiple batches to reduce message

passing and remote memory access in computing pruned landmark labels. However, they do not

exploit sharing and are aimed at a specific application.

Congra [34] schedules a group of concurrent queries to fully utilize the memory band-

width while preventing contention between different queries. It relies upon offline profiling with

different number of threads to determine the scalability and memory bandwidth consumption of

different graph algorithms on different input graphs. Multiple queries are processed by creating

different processes for different queries where each process has suitable number of threads. This

approach thus exploits available system resources fully. In contrast, SimGQ does not require offline

profiling but is entirely online, lightweight, and enjoys additional benefits from sharing and batch-

ing because it does not use multiple processes. Unlike our sharing of computation across queries,

Congra does not exploit shared computations across multiple queries in a batch and thus it does not

reduce the amount of computation in terms of number of updates or active vertices scheduled. As

for batching, we group the updates from different queries on the same vertex together to achieve

better cache performance, while Congra cannot do so as execution of each query is decoupled from

other queries. Other works on concurrent query processing include CGraph [59] that merely studies

the opportunity to share the graph in the context of out-of-core system and Seraph [53] that studies

the opportunity to share the graph and emphasizes its capability to help in fault tolerance.
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6.3 Graph Databases and Query Systems

The work closely related to our PnP work is Quegel [58]. However, as discussed ear-

lier, it relies upon offline Hub2 computation that is limited to shortest path queries on unweighted

graphs and does not allow graphs to change between queries. All these problems are addressed

by PnP using dynamic pruning and dynamic direction prediction. Quegel also supports another

scenario where on a distributed system a batch of queries are simultaneously solved by efficiently

sharing memory and computing resources among the queries. This is different from the scenario we

consider – solving a stream of queries on a single machine, and answering each query as quickly

as possible. Moreover, their batching algorithm also relies on Hub2 pre-computation. Note that

our technique can benefit from connected components precomputation but we prefer dynamic tech-

niques to avoid disadvantages of precomputation. There are also works that improve performance

of specific algorithms (e.g., delta stepping for SSSP [31]).

There has been a great deal of work on graph based query languages (e.g., Gremlin [39])

and query support in graph databases (e.g., Neo4J and DEX [8, 25, 2]) that enable graph traversals

and joins via lower-level graph primitives (e.g., vertices, edges, etc.). However, they are not effi-

cient for iterative graph algorithms over large graphs. Their strength lies in their ability to program

wide range of queries. They are more suitable for neighborhood queries [37, 50, 38, 28] including

query decomposition and incremental processing devoted to pattern matching [54, 52]. In [37]

authors develop algorithms for efficiently answering k-nearest neighbor queries (k-NN) that prunes

the search to limit the graph that is explored. In [50] authors develop a fast neighborhood graph

search algorithm using a new data structure called the bridge graph constructed from a large number

of bridge vectors. In [28] a compressed representation of social networks is proposed to facilitate
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computation of neighbor queries. NScale [38] is another system for neighborhood-centric analytics

on large graphs including analysis tasks such as ego network analysis, social circles, personalized

recommendations, link prediction, influence cascades, and motif [32] counting. GraphX [12] sup-

ports both kinds of graph operators (i.e., neighborhood aggregation as well as join and structural

operators) and iterative algorithms.

In [62] authors present SPath, an indexing method which leverages decomposed shortest

paths around neighborhood of each vertex as basic indexing unit, to accelerate subgraph matching

queries. SPath performs very large amounts of precomputation (to enable the optimization) before it

can begin to answer queries. In fact the overhead is substantial – comparable to solving a very large

number of queries. SimGQ requires no precomputation, rather it identifies shared computation for

a batch of queries such that performing it once leads to net reduction in execution time.

6.4 Streaming Graph Frameworks

There are multiple graph processing frameworks that target at solving graph analytics

problems in the streaming graph scenarios. Tornado [43] takes a snapshot of the current version of

the graph and creates a separate branch to compute the query results using incremental computation

on the snapshot graph. Kineograph [7] is a distributed streaming graph processing framework that

focuses on incremental computation along with push and pull models. Naiad [33] employs iterative

and incremental algorithms. Kickstarter [48] and Graphbolt [27] track the dependencies to enable

fast query processing on streaming graphs. The above systems focuses on processing fixed queries

replying on a priori knowledge on the user query, while the generalized incremental computation we

proposed in Chapter 3 aim at handling vertex queries that originate from arbitrary source vertices.
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In addition to the above systems, there are also existing works that focus on efficient

ingestion of graph updates. STINGER [10] uses a novel data structure to enable fast insertions and

deletions. Aspen [9] proposes a graph representation using a compressed purely-functional tree data

structure that enables efficient updates to the graph. As mentioned earlier, our work on generalized

incremental computations adopts Aspen as the streaming graph engine.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

In this thesis, we study and leverage the synergy across a group of queries to improve

the overall throughput when simultaneously evaluating a batch of point-to-all or batch of point-to-

point queries. We first explore the opportunity to amortize the runtime overhead and reduce the

computational cost for evaluating a batch of point-to-all graph queries on static graphs, and then

extend the system for streaming graph scenarios. After that, we study the optimizations for a batch

of point-to-point queries. Since point-to-point graph queries are a class of workload which have not

been widely studied in the literature, before moving to the batched version, we start with a study on

how to leverage the performance characteristics of point-to-point queries, which are different from

that of point-to-all queries, to accelerate a single point-to-point graph query, and then build upon

the observations for a single point-to-point query to develop further optimizations that take effect

under the batching scenario.
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Batched Evaluation of Point-To-All Queries

We presented a system that optimizes simultaneous evaluation of a group of point-to-

all queries that originate at different source vertices. The performance benefits of our system are

achieved via batching and sharing. Batching fully utilizes system resources to evaluate a batch

of queries and amortizes runtime overheads incurred due to fetching vertices and edge lists, syn-

chronizing threads, and maintaining computation frontiers. Sharing dynamically identifies shared

queries that greatly represent the shared subcomputations in the evaluation of different queries in a

batch, evaluates the shared queries once, and then uses their results to accelerate the evaluation of

all queries in the batch. We also generalized the incremental computation by adapting batching and

sharing to the streaming graph scenarios. More specifically, we maintain the results of a small num-

ber of preselected shared queries using conventional incremental computation for fixed queries and

then share the results of the shared queries with arbitrary user queries upon graph mutation. Mean-

while, both the computation of shared queries and computation of user queries can be evaluated in

a batched fashion resulting in a higher throughput.

Batched Evaluation of Point-To-Point Graph Queries

We first studied the characteristics of point-to-point queries that differentiates them from

the point-to-all queries. Based on the observations, we developed a two-phase algorithm with two

novel features: online pruning of graph exploration that eliminates propagation from vertices that are

determined to not contribute to a query’s final solution; and dynamic direction prediction for solving

the query in either forward or backward direction as the cost in two directions can differ greatly.

For batched evaluation of point-to-point queries, we developed a new query aggregation technique
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that reduces the shared subcomputation across point-to-point queries that share the same source or

destination queries. The query aggregation optimization can be applied together with batching, and

the aforementioned optimizations for a single point-to-point query for better performance.

7.2 Future Work

Batched Evaluation of Point-To-All Queries

In this thesis, we assume that all the input queries form a single batch for batched eval-

uation. However, from the experimental results on salability w.r.t. query batch size, we can see

that the performance gain from larger batch size becomes less significant as the batch size exceeds

a threshold (e.g., 64 for multiple combinations of input graphs and benchmark applications). In

addition, we have discovered in Chapter 2 that different user queries may prefer different shared

queries. Thus, it would be an interesting topic to study whether we can achieve higher throughput

by grouping queries into multiple mini-batch so that we may apply more fine-tuned optimizations

which are better tailored for each mini-batch to reduce the runtime overhead and computation cost.

Batched Evaluation of Point-To-Point Queries

We have carefully studied two different workloads for point-to-point queries – a single

point-to-point queries and the full-mapping pairwise point-to-point queries between a group of ver-

tices. It would be interesting to study more general batching workloads with weaker assumptions on

the point-to-point queries that form a batch. One potential direction is to study the algorithm to min-

imize the number of one-to-many and many-to-one queries after aggregating queries that share the

same source vertex or same destination vertex which is trivial for full-mapping workload (because
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forward-only and backward-only are optimal in this case), but complicated for the general workload.

Another possible direction is to explore the sharing opportunities for point-to-point queries. While

there are some existing works on indexing techniques for point-to-point queries (e.g., Hub2 [18]),

most of them focus on BFS or SSSP. There might be space for optimizations that work across a

broader spectrum of graph algorithms.
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