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ABSTRACT OF THE DISSERTATION

External Data Access and Indexing in a Scalable
Big Data Management System

By

Abdullah Alamoudi

Master of Science in Computer Science

University of California, Irvine, 2014

Professor Michael J. Carey, Chair

Traditional Database Management Systems (DBMS) offer a long list of quality

attributes such as high performance, a flexible query interface, accuracy, reliability and

fault tolerance. However, in order for users to get these benefits, they need to first

have their data loaded into the system and stored in its storage layer using the system’s

binary format and utilizing its different data structures. The space requirements and

the computational and operational cost of loading data is unjustifiable at times. This

cost increases as data becomes larger and larger, especially when existing systems are

generating these data continually, e.g., by producing system logs. For these reasons,

many existing applications don’t use DBMSs at all and instead rely on custom scripts

or specialized code that lack the qualities offered by DBMSs. This problem has been

acknowledged by many Data Management Systems that also provide ways for users to use

their query language to carry out different analysis against data in raw format. However,

external data access in most of these systems involves expensive full scan operations,

affecting the performance of these DBMSs to a great extent. For this reason, many data

management systems provide external data access to facilitate data loading and not for

ongoing use for routine data querying and analysis.
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Recently, several research projects have sought to improve efficiency for external

data access using different techniques. Each of these techniques has certain limitations,

such as having to change the existing external data or having to write it in the first

place through a specialized system, or has resulted in very small performance gains. In

AsterixDB[2], the big data management system developed in UCI, we have designed and

implemented a new feature that allows building incrementally refreshable indexes over

external data. In this thesis, we explain in detail the different types of external data

AsterixDB can access through its adapters. We then explain the semantics and user

model associated with the indexing of external data. We follow that with a discussion

of the system design for indexing external data and show how the system addresses the

different challenges associated with this task. We further provide an evaluation of query

performance over external data that resides in Hadoop Distributed File System. We

compare AsterixDB’s external data access with Hive on the same data files and with the

same data after loading it into AsterixDB’s internal storage. We show that a user can

get competitive performance using AsterixDB without having to first load their data

into the system.
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Chapter 1

Introduction

Database Management Systems use many techniques discovered and prove to yield good

performance results through decades of research and practice. These techniques cover

different areas such as storage structures, access methods, caching, and cost efficient

query compilation. A prerequisite for using these techniques is for the data management

system to have total control over users’ data, i.e., having it stored in the system’s storage

and modified through its interface. Loading data into the system can be a major obstacle

in this era of big data, with data being produced in huge amounts by multiple systems,

and being stored in different file systems using different formats.

Dealing with data that resides outside a data management system introduces a number

of challenges. The challenges are direct implications of not having control over the

binary representation of records, the storage location, and the data modification. To

address these challenges, designers of an external data access facility need to decide

which external resource types and which formats of records should their facility access.

They also need to decide whether a user can extend their facility to support access of

other types of data sources and formats and how to make that as painless as possible
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for the user. At the same time, the data management system must be equipped to deal

with different sources of failures such as corrupted data or unreachable sources.

Providing basic full scan feature for accessing external data is a good step that enables

users to carry out their analysis using a robust and well tested query facility rather

than writing their own bug-prone analysis code. This does not, however, result in good

performance and may leave the user frustrated by long query response times. We believe

that the field of data management has matured to a point where it can provide better

answers for users with such needs. Unfortunately, providing more complex techniques

to speed up query processing increases the challenges and risks of dealing with external

data.

In AsterixDB, we chose to add indexing capabilities for external data. Indexes are great

for fast lookup queries and also allow the system to perform index nested-loop joins

(which can be faster than other join algorithms for select/join cases). The decision to

index external data carries with it another set of decisions. These decisions include, but

are not limited to, which types of external data to index, which formats, the granularity

of the indexes, whether to allow indexing of changing data or only static data, how

to check for data changes outside the system, how to react to these changes, whether

to allow more than one index per dataset, how to ensure consistency among different

access methods, when and how to update indexes when data changes take place, what

guarantees the system provides and how it maintains a consistent state in the face of

different failures. Looking at these challenges, it can be clearly seen that this problem is

not a trivial one and that the solution needs to be carefully designed and implemented

in order to achieve its practical use.

In this thesis, we start by presenting the motivation behind this work as well as some

background information about AsterixDB and the external dataset support that it had
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before adding the indexing feature. We then explain the semantics for indexing exter-

nal data in AsterixDB, the syntax of the different commands associated with external

indexes and how the system behaves in different states. We then explain how we chose

to deal with each of the challenges listed above. We finish the thesis with an evaluation

of external data access performance both with and without external indexes.
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Chapter 2

Motivation

The performance of queries that access external data in traditional DBMSs has usually

been worse than queries that access loaded records [12]. This gap in performance is

not only attributed to having to scan all the records. In addition, the DBMS has to

parse records and convert them to a format that can be understood by its internal

operators. Moreover, in parallel DBMSs, load balancing is usually restricted by the

location of data and its access APIs, which could potentially cause many nodes of the

system to not participate in the reading and parsing steps. For these reasons, users

with external data often resort to writing their own tools and scripts to perform their

analyses. Writing optimized scripts requires experience in both scripts writing and query

optimization techniques, i.e., pushing selection and projection down, perform the most

selective filtering first,etc. Even for experienced users, this overhead is not a small one

since writing a 1-2 line query using a declarative query language usually translates to tens

or hundreds of lines in a scripting language [12]. Recently, the database management

community has started considering different approaches to speeding up the performance

of external data access, with each approach targeting one of the bottlenecks.
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In the summer of 2013, a company with a very large Hadoop cluster was briefed on

AsterixDB and was quite impressed with the design and performance of AsterixDB as

compared to other big data management options. However, they didn’t have enough

free storage space to consider moving their data into AsterixDB’s internal storage and

proposed adding support for indexing of data that resides outside the system. The

availability of efficient indexes enables data management systems to perform record

lookup operations with very low cost regardless of the size of the accessed dataset, and

indexes can also be used to speed up join operations; the company wanted these benefits

for external data. Two weeks later, another collaborating company provided a similar

request, which quickly reinforced our growing belief of a very real need for indexing of

external data - especially for ”Big Data”.

Looking at the Hadoop user community, the need for indexing of Hadoop Distributed

File System data is very clear. Analysts are often not allowed to run ad-hoc unplanned

data analysis jobs due to the high cost of running these jobs. Instead, they have to plan

and go through long workflows to incorporate their analysis into the system’s planned

Map and Reduce jobs. This can take days or even weeks especially if the analyst wants

to query records that were generated over a long period of time. An analyst at this

stage may have to choose between going through this workflow and waiting to get the

result or relying on previously computed aggregates which don’t provide accurate results.

Indexing of HDFS data would provide a third attractive alternative that could allow

analysts to run queries at any time with minimal cost.

Aside from the clear performance benefits, this work provides a complete user model

with clearly defined semantics that may inform future systems that wish to adapt a

similar approach towards supporting external data. In addition, indexing of external

data provides an easy way for potential users to try and test the system’s secondary

index performance and other features of its query language and execution platform
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without having to preload their data to do so.

6



Chapter 3

Related Work

The need for accessing external data has been long recognized in the data management

industry and was even added to the SQL standard as described in ”SQL and Management

of External Data” [16]. Leading DBMSs provide raw file scanning capability via features

such as external tables in Oracle and MySQL[4] and via the external link and Open Row

Set features in MS SQL. Some also allow users to extend this feature. Oracle supports

table functions, which are user defined functions that return sets of rows that are fed

into query pipelines in a way similar to regular database tables. MS SQL provides a

similar feature using Table-Valued User-Defined functions. These systems essentially

perform full table scanning and parsing when answering a query that needs to access

data residing outside the system. This means that queries that run on raw data files

will likely perform worse than queries that access loaded data.

In the data management research community, different studies related to accessing exter-

nal data were published. In a study that compares DBMSs query performance with the

use of UNIX tools, a system called FlatSQL was designed and implemented to perform

SQL queries over text files [15]. FlatSQL’s performance was compared against UNIX

7



Grep and against a DBMS and was found to perform better in some special cases, but it

performed much worse in the majority of cases. In the paper ”Here are my Data Files.

Here are my Queries. Where are my Results?” [12], an eloquent case is presented for the

need to design and implement advanced techniques for dealing with data that resides

outside a DBMS in order to accommodate the needs of the external data user base. This

study lead to the creation of the NoDB research project [6]. NoDB employs caching of

data, adaptive partial loading, building of positional map structures to perform selective

parsing, slicing table attributes into different files, pushing projection into the I/O level,

and reducing the needed computation by parsing only needed attributes.

The high cost of loading data into a parallel data management system in a big data

warehouse is shown in another study [21]. In this study, the authors describe their

approach to integrating Hadoop with Teradata EDW, dividing the work between two

different systems. Another approach to reducing the time to first analysis was shown

in Yale’s HadoopDB project[5] in which users are allowed to run their queries directly

on raw HDFS files using MapReduce operations reducing time to first analysis to zero

while invisibly and incrementally loading data into the DBMSs storage layer in order

to leverage the system’s capabilities in future operations. To avoid performing full scan

operations, a user driven tradeoff between accuracy and result quality can also be used

to speed up query execution over text files[14].

Different approaches were tried to improve the performance of queries on HDFS data.

Split-oriented indexes can be built over HDFS data to determine which splits need to

participate in an analysis job and to reduce the number of mappers [10]. Another

approach that aims at indexing Hadoop’s data does that by building trojan indexes into

the physical file splits when loading the data into HDFS storage using User Defined

Functions (UDFs) [9]. During query processing, the trojan index part of each stored

split is examined and the splits matching the search criteria are read.
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AsterixDB’s solution for boosting the performance of external data access is a unique

solution in a number of ways. AsterixDB allows users to build distributed record-level

indexes over external data. It doesn’t cache or re-write data, the query results are

always correct, and data is not loaded into the AsterixDB storage layer at any time. The

presence of the indexes doesn’t affect the external data itself, and AsterixDB supports

indexing of multiple HDFS input formats. This is accomplished to a large extent by

making externally stored data ”look” like internally stored data from the perspective of

the vast majority of the system’s query processing components.
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Chapter 4

Background

AsterixDB is a new BDMS (Big Data Management System) with a feature set that

distinguishes it from other platforms in today’s open source Big Data ecosystem. Its

features make it well-suited to applications including web data warehousing, social data

storage and analysis, and other use cases related to Big Data.

Development of AsterixDB began in 2009 and led to a mid-2013 initial open source

release. AsterixDB runs on top of Hyracks, which is a partitioned-parallel software

platform designed to run data-intensive computations on large clusters [7]. A complete

description of the initial release of the system can be found in the paper ”AsterixDB: A

Scalable, Open Source BDMS” [20]. In this chapter, we will very briefly describe Aster-

ixDB’s architecture, its data model, its query language and its storage and transaction

model.
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Figure 4.1: AsterixDB’s architecture

4.1 AsterixDB Architecture

Figure 4.1 provides a high-level overview of AsterixDB and its basic logical architecture.

Data enters the system through loading, continuous feeds, and/or insertion queries.

Data is accessed via queries and the return (synchronously or asynchronously) of their

results. AsterixDB aims to support a wide range of query types, including large queries

(like current Big Data query platforms), short queries (like current key-value stores),

as well as everything in between (like traditional parallel databases). The Cluster Con-

troller in Figure 4.1 is the logical entry point for user requests; the Node Controllers

and Metadata (MD) Node Controller provide access to AsterixDBs metadata and the

aggregate processing power of the underlying shared-nothing cluster. The figures dotted

Data publishing path indicates that we are also working towards the eventual inclusion

of support for continuous queries. AsterixDB has a typical layered DBMS architecture

that operates on nodes of shared nothing clusters. AsterixDB’s query compiler compiles

AQL queries into Hyracks jobs expressed as Directed Acyclic Graphs (DAGs) consisting

11



c r e a t e dataver se tpch ;
use dataver se tpch ;
c r e a t e type l ine itemType as c l o s ed {

l o rde rkey : int32 , lpa r tkey : int32 ,
lsuppkey : int32 , l l inenumber : int32 ,
l quan t i t y : double , l e x t endedpr i c e : double ,
l d i s c oun t : double , l t ax : double ,
l r e t u r n f l a g : s t r i ng , l l i n e s t a t u s : s t r i ng ,
l s h i pda t e : date , lcommitdate : date ,
l r e c e i p t d a t e : date , l s h i p i n s t r u c t : s t r i ng ,
lshipmode : s t r i ng , lcomment : s t r i n g } ;

Listing 4.1: Creating a dataverse and a data type

of operators that perform different types of computations or I/O operations and connec-

tors which connect operators and make the newly produced partitions available at the

consuming operators’ side. Hyracks jobs are executed in a pipelined fashion and data

messages are passed between operators as frames containing sets of tuples.

4.2 AsterixDB Data Model

AsterixDB has its own data model called the AsterixDB Data Model(ADM). ADM is

a superset of JSON, and each individual ADM data instance is optionally typed and

self-describing. All data instances live in datasets which in turn live in dataverses that

represent data universes in AsterixDB’s world. Datasets may have associated schema

information that describes the core content of their instances. AsterixDB’s schemes are

by default open, in the sense that individual data instances may contain more informa-

tion than what their dataset schema indicates and can differ from one another regarding

their extended content. Listing 4.1 shows an example of how one creates a dataverse

and a data type in AsterixDB.
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4.3 AsterixDB Query Language

Data in AsterixDB is accessed and manipulated through the use of the associated As-

terixDB Query Language (AQL). AQL is designed to cleanly match and handle the

data-structuring constructs of ADM. It is inspired by XQuery, but omits its many XML-

specific and document-specific features. Listing 4.2 shows examples of AQL statements

for creating, loading and querying an internal dataset.

use dataver se tpch ;

c r e a t e datase t InLine item ( l ine itemType ) primary key lorderkey , l l inenumber

;

load datase t InLine item us ing hdfs ( ( ” hdfs ”=” hdfs : // sensorium −21. i c s . uc i .

edu :54311 ” ) , ( ”path”=”/data/ tpch/ l i n e i t em ” ) , ( ” input−format ”=” text−

input−format ” ) , ( ” format ”=” de l imited−t ex t ” ) , ( ” d e l im i t e r ”=” | ” ) ) ;

f o r $ l in datase t InLine item

where $ l . l s h i pda t e <= date ( ”1998−09−02” )

order by $ l . l e x t endedpr i c e

re turn $ l ;

Listing 4.2: Creating loading and querying an internal dataset

4.4 AsterixDB Storage and Transaction Model

Indexes in AsterixDB are Log Structured Merge (LSM) indexes optimized for quick

insert, update and delete operations, with every index consisting of several components

stored in disk and a single memory component all sorted in a chronological order. During

search operations, multiple cursors are used and all components of an index are searched,

the results of the search are merged and returned. Deletion of tuples in LSM indexes is

done through either physically deleting tuples found in the current memory component

13



or else by inserting an ”antimatter” tuple in the memory component (which indicates

that the corresponding tuple is deleted) or by adding a ”killer tuple” to a buddy b-tree

that holds a ”deleted list” of tuples. The transaction model supported by the indexes

in AsterixDB is that of a typical NoSQL store: every record operation maintains ACID

properties across the primary and secondary indexes of a dataset and is considered a

single transaction by itself, so each record operation is either committed in all indexes

of a dataset or else none of the indexes is affected. An example consequence of this is

that, when an AQL statement attempts to insert 1000 records, it is possible that the

first 800 records may end up being committed while the remaining 200 records fail to

be inserted. More about AsterixDB’s storage can be found in ”Storage Management in

AsterixDB”[19].
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Chapter 5

External Datasets

In this chapter, we describe the state of the external data support in AsterixDB prior

to the start of this thesis work and the initial improvements made by this author to the

HDFS adapter.

AsterixDB allows users to define external datasets and use them to transparently query

data stored in external sources using AQL. An external dataset in AsterixDB, like an

internal dataset, is associated with a type, but doesn’t have to have a primary key. In

addition to the dataset’s type, an external dataset has an associated adapter. Adapters

in AsterixDB perform on-the-fly data fetching from an external source and do record

parsing during query execution. AsterixDB is shipped with a set of built-in adapters,

and users can also provide their own implementations that can be added to the system

using AsterixDB’s external library feature. A user implementing an adapter has the

complete flexibility to manage any combination of resources and data formats. An

adapter implementation also controls which nodes will participate in query execution.

In addition to their use with external datasets, adapters are also used for loading records

into an internal dataset and for the data ingestion tasks of data feed management [18].
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AsterixDB does not cache any parsed data from external sources.

Creating an external dataset simply adds an entry for the dataset in the Metadata

dataverse; in this case, the entry also holds the adapter type and adapter arguments

associated with the dataset. Users are not allowed to carry out any operations that

insert, delete or update external datasets. Deleting an external dataset only removes its

entry from AsterixDB’s metadata and doesn’t affect the data at the source. Querying

an external dataset in AQL is done using the same syntax used for querying an internal

dataset as seen in Listing 5.1.

use dataver se tpch ;

c r e a t e ex t e rna l datase t ExLineitem ( l ine itemType ) us ing hdfs ( ( ” hdfs ”=”

hdfs : // sensorium −21. i c s . uc i . edu :54311 ” ) , ( ”path”=”/data/ tpch/ l i n e i t em ”

) , ( ” input−format ”=” text−input−format ” ) , ( ” format ”=” de l imited−t ex t ” ) , (

” d e l im i t e r ”=” | ” ) ) ;

f o r $ l in datase t ExLineitem

where $ l . l s h i pda t e <= date ( ”1998−09−02” )

order by $ l . l e x t endedpr i c e

re turn $ l ;

Listing 5.1: Creating and querying an external dataset

5.1 Query Planning and Execution

During query planning, the AQL compiler creates an external dataset scan operator for

each external dataset in the user’s query. This operator uses the dataset’s adapter to

parse records and package them into Hyracks frames sending them to the consuming

operator in the query pipeline. When the compiler creates the adapter object, it uses

the implementation for that adapter to determine which nodes to run the external scan
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operator on. For example, when the compiler creates the local file system adapter,

the adapter will select the nodes which store files for the accessed external dataset to

participate in the query execution and for HDFS adapter, all nodes are selected. During

query execution, the adapter on each participating node first creates its appropriate

parser and starts fetching the assigned part of the data from external sources, parsing

the records and sending them to the next operator in the query pipeline.

5.2 Built-in Adapters

The built-in adapters in AsterixDB are of multiple types, each requiring different sets

of arguments at creation time. Adapters use their arguments to locate and read data

from different sources and to use an appropriate parser to parse records into AsterixDB’s

binary format for ADM data. The main resource types that can be accessed by built in

adapters in AsterixDB are data files in the cluster nodes’ Local File Systems, data files

in HDFS, and data in web resources.

(1) Data Files in Local File Systems: The AsterixDB Local File System adapter is a

built-in adapter for reading data from files residing in the local file system of AsterixDB’s

nodes. The arguments that this adapter looks for are a list of files and the data format.

The format is used to determine the appropriate parser to be used for parsing that

data. AsterixDB’s built-in text parsers support parsing delimited text files, JSON, or

ADM data format. When parsing self describing data such as data in JSON or ADM

format, the user doesn’t actually need to specify the schema of the dataset since it

can be extracted from the data files and the parser can leverage AsterixDB’s open

fields capability to construct appropriate self-describing tuples for the dataset’s records.

The parallelism achieved by this adapter at runtime is determined by the number and
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Figure 5.1: Cluster controller contacts HDFS’s name node and schedules reading and
parsing assignments

locations of the data files. Multiple files on the same node are read and parsed in

parallel on that node, making use of multi-core processors in individual nodes, while

having multiple files on different nodes increases cluster level parallelism since multiple

nodes will be reading and parsing their local files at the same time.

(2) Data Files in HDFS: The AsterixDB HDFS adapter performs the same function

for data files stored in HDFS, but with slight implementation differences. It expects

an additional argument that describes the InputFileFormat of the dataset’s files. When

reading HDFS files, a file can be broken into logical byte splits that can be read concur-

rently by multiple readers running on different nodes. As shown in Figure 5.1, during

the query planning phase AsterixDB’s cluster controller contacts HDFS’s name node

to get the block storage information for files under that dataset. It then assigns the

fetching and parsing responsibilities to those nodes giving higher priority to nodes that

currently hold the corresponding HDFS Blocks in their local storage devices. In order

to achieve higher level of parallelism, the scheduler may also choose to assign reading
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and parsing of a file split to a node that doesn’t have it locally in its storage device.

At the start of this project, the AsterixDB HDFS adapter was able to only access

Text and Sequence Files and to parse only delimited text and ADM records. The first

improvement made to the HDFS adapter was to enable it to access files of any of the

HDFS input formats. The second improvements was adding a parser that uses Hive

Serdes to read any binary format that can be deserialized using any of the Hive Serdes.

This improvement has allowed AsterixDB to read many new binary formats, such as

RCFiles, Avro data, Optimized RC, Regex, Thrift Byte Streams, and many more. The

built-in Hive object parser performs 2-step parsing by first deserializing binary records

into Hive objects using Hive’s own code and then converting the produced objects into

AsterixDB’s binary format. The last improvement which provides greater flexibility, was

to allow users to provide and use their own implementation of HDFS records parsers

when the provided ”out of the box” parsers don’t meet their needs. All of these were

possible before through implementing a complete user-defined adapter, but now require

much less effort due to these improvements.

(3) Data in web resources: AsterixDB also offers a variety of adapters for reading

data from web resources. When a dataset’s records are read from the web, a set of URIs

are used to identify the resources to be requested. Data is parsed using the same parsers

available for local files’ textual data formats, and the level of parallelism is determined

by the number of URIs. Readers for the URIs are assigned by AsterixDB’s compiler to

different cluster nodes during query compilation time. At runtime, each participating

node uses the assigned URIs to fetch and parse records into the ADM binary format.
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Chapter 6

Indexing of External Data

Indexes are used heavily by data management systems to provide fast and efficient access

to selected records that satisfy search predicates. Using indexes greatly reduces the cost

of I/O and results in improved overall performance of the DBMS. Unfortunately, as

mentioned earlier, traditional DBMSs do not support building indexes over external

data in their external raw format, and thus require data to be loaded first into the

system.

Building an efficient and robust indexing scheme over external data presents several

challenges. When building an index, a DBMS needs to have a unique identifier for each

indexed record in order for indexes to be able to ”point” to it. In addition, the DBMS

must be able to use this record id (RID) to efficiently locate and fetch the record itself.

In AsterixDB, an internal dataset record is identified by its unique primary key, which

can be used to lookup the record in the dataset’s primary index. External data comes in

different container formats and different content formats, hence, appropriate RIDs must

be identified for each targeted combination, extracted when building the index ,and used

to access records when the index is selected as an access method. In a parallel DBMS,
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minimizing nodes’ communication and choosing a good index distribution strategy is

another challenge. A data management system which provides indexing of data must

also provide clear and reasonable semantics and a well-defined user model in response

to data changes. This includes making sure that queries will provide the exact same

results when data is accessed through indexes, or through a full scan; the DBMS must

also provide a mechanism for incrementally updating the indexes of an external dataset.

In this work, we have added an external dataset indexing feature to AsterixDB, allowing

users to build distributed B-tree and R-tree indexes . These indexes can then be used

to efficiently access records, reducing query response times greatly without first having

to load the records into the system’s storage at all. In this chapter, we first present

the user experience and the access semantics and requirements for indexing an external

dataset. We then, describe in detail, how we have implemented this feature and discuss

the design decisions that were made in the process.

6.1 Semantics and User Experience

When an un-indexed external dataset is scanned, the scan operator reads and parses

records found in the source locations that were defined when the dataset was created.

When data changes take place in the source, the changes are seen by the next scan

query that accesses the data. When a user creates an index or multiple indexes over

a static external dataset, the indexes will always be up to date in terms of matching

the state of the data at the source. Accessing a dataset in that case, using either an

index or a full scan operator, produces the same output. In practice, however, most data

changes overtime, with records being added, deleted, and/or updated, rather than being

static. Having outdated indexes could then result in producing inconsistent results when
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a dataset is accessed using an index or using a scan operator. Moreover, creating indexes

at different times might produce multiple indexes pointing to different data. To take

care of these anomalies and provide well-defined behavior, the concept of an external

dataset snapshot was introduced in AsterixDB. This concept facilitates understanding of

data access semantics and clarifies the system’s behavior in all scenarios. It is also used

to preserve consistency among an external datasets’ indexes in addition to enforcing a

shared view of data between the index access operator and the dataset scan operator.

Figure 6.1: Stored snapshot and file system as filters

An external data snapshot represents the state of an external dataset at a point in time.

It consists of a list of file records. Each external file record contains the dataverse name

and the dataset name of its external dataset. In addition, it stores the file’s absolute

path, modification time and its size at the snapshot capture time. The ExternalFile

Metadata dataset in AsterixDB stores the snapshots of all the external datasets in the
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system and can be queried as illustrated in Listing 6.2.

When the first index over an external dataset is created, a dataset’s snapshot is captured

and the index is created according to the dataset’s status at that point in time. When

a user creates more indexes, they are created according to the captured snapshot of

that dataset. When the system accesses an external dataset that has indexes, it only

accesses records that were present as of the snapshot capture time. This means that

an external dataset access will only read the intersection of (i) records present at the

snapshot capture time and (ii) the existing records at the dataset’s access time as shown

in Figure 6.1. To update a dataset’s snapshot and all of its indexes to the current point in

time, a user can use the refresh external dataset statement. Queries are not interrupted

by the refresh operation and to establish a defined behavior, queries that accesses the

dataset must access the same version of the dataset index on all nodes. This means

that refreshes and queries are logically serialized with respect to each other. In case

of a failure during index creation, the index is dropped. The refresh statement on the

other hand must be run as an atomic operation and in case of any failure, the dataset’s

snapshot and all its indexes must be restored to its previous state. In case of any failure

during index creation, the index is dropped. The refresh statement also must be run as

an atomic operation and in case of any failure, the dataset’s snapshot and all its indexes

must be restored to its previous state. To understand how important this transactional

behavior, consider the case of an indexed external dataset that has tera bytes of records

with multiple indexes that are refreshed daily. If after a long time of maintaining these

indexes, a system crash took place and the system was not able to restore these indexes

to a consistent state, a very costly and undesirable re-indexing of the whole dataset is

required. Adding to that how common failures are when dealing with external systems

stresses the importance of this property. The user can also query the stored snapshot of

an external dataset that is kept in the Metadata ExternalFile dataset.
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use dataver se tpch ;
c r e a t e index OrderKeyIdx on InLine item ( l o rde rkey ) ;
c r e a t e index OrderKeyIdx on ExLineitem ( lo rde rkey ) ;

Listing 6.1: Creating a B-Tree index over internal and external datasets

use dataver se tpch ;
r e f r e s h ex t e rna l datase t ExLineitem ;
f o r $ f i l e in datase t Metadata . Ext e rna lF i l e

where $ f i l e . DataverseName = ”tpch”
and $ f i l e . DatasetName = ”ExLineitem”

return {
”FileName” : $ f i l e . FileName ,
”ModTime” : $ f i l e . FileModTime ,
” S i z e ” : $ f i l e . F i l e S i z e
} ;

Listing 6.2: Refreshing an external dataset and querying its stored files list

One of the desired qualities is to create a similar experience for external data users as for

internal data users. For this reason, the build index statement over an external dataset

has exactly the same syntax as for internal datasets. Listing 6.1 shows an example of

the create index statement for both internal and external datasets. An example of the

refresh dataset statement is shown in listing 6.2 a long with a query that returns the

stored snapshot of the dataset after the refresh and example result of the query can be

seen in Listing 6.3

6.2 Design and Implementation

In this section we discuss the design decisions that we made to address each of the

challenges associated with indexing external data in a parallel data management system.

We also describe some of the key implementation details of this work.

This section starts by discussing the selected types of external dataset for indexing. It

then describes how indexes are partitioned and the rationale behind the chosen parti-
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{ ”FileName” : ”/data/ tpch/ l i n e i t em / l i n e i t em . tb l . 1 ” , ”ModTime” : datet ime ( ”
2014−05−05T09 : 5 7 : 3 2 . 2 4 4Z” ) , ” S i z e ” : 19959828307 i64 }

{ ”FileName” : ”/data/ tpch/ l i n e i t em / l i n e i t em . tb l . 2 ” , ”ModTime” : datet ime ( ”
2014−05−05T09 : 5 8 : 2 8 . 4 4 1Z” ) , ” S i z e ” : 20072834877 i64 }

{ ”FileName” : ”/data/ tpch/ l i n e i t em / l i n e i t em . tb l . 3 ” , ”ModTime” : datet ime ( ”
2014−05−05T10 : 0 2 : 2 4 . 3 4 4Z” ) , ” S i z e ” : 20073143660 i64 }

Listing 6.3: An example ADM result of querying the ExternalFile dataset

tioning strategy. This is followed by a discussion of index size optimizations and the

approach tp storage of a dataset’s snapshot. After that, a detailed description of the

index building and index access pipelines in Hyracks is presented. We describe, then,

the design of the atomic dataset refresh operation. Finally, we show how the system

maintains consistency in different cases and how different operations on external dataset

run concurrently.

6.2.1 Indexable External Datasets

External datasets that use the AsterixDB HDFS adapter have many characteristics

that make them good first candidates for indexing. These characteristics include their

popularity in the big data community. On top of that, most HDFS files conform to a

known set of input formats that specify how their records are stored physically and how

they can be read regardless of their content format. Hence, records in files that share an

input format can be identified using similar record ids. In addition, files in HDFS are

immutable, meaning that once a record is written to a file, it can’t be modified and it

remains there until the file is deleted. Moreover, HDFS files are usually accessed in big

data analysis systems using full scan operations, making it extremely expensive to run

unscheduled ad-hoc analysis jobs; the needs for indexing such data is very clear. For

these reasons, we chose to focus on indexing external data that resides in HDFS. The

majority of the design can also be used with external data residing the cluster nodes’
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file systems.

HDFS is the file system beneath Hadoop[1] which itself is an open source implementation

of Google’s MapReduce project [8]. HDFS consists of a name node, which stores files’

metadata information, and data nodes, which bear the responsibility of storing the

data itself. Files in HDFS are partitioned into blocks, allowing parallel reads, and each

block is replicated according to a replication factor to strengthen the system against

hardware failures. AsterixDB supports building indexes over data that is stored in

three of the input formats of HDFS: TextInputFormat, SequenceFileInputFormat, and

RCInputFormat.

TextInputFormat is the HDFS format for plain text files with records separated by

new line characters. A record within a file of this format can be identified using its

byte offset. SequenceFileInputFormat is a commonly used HDFS format for storing

key/value pairs. It is extensively used in MapReduce jobs where temporary outputs of

Map operations are stored as Sequence Files. Sequence files can be uncompressed, record

compressed or block compressed. Figure 6.2 shows the structure of an uncompressed or

value compressed sequence file. For these first two, records within a single file, similar

to records in TextInputFormat files, can be identified using their byte offset. For a

block compressed sequence file, records are compressed and stored in groups. Each

record group is read together in a single read call. For this reason, an additional field

is needed to store the record order within its record group. In AsterixDB, we don’t

support indexing of data that is stored in block compressed sequence files.

RCFileInputFormat is another widely used input format for storing (relational) data

in HDFS [11]. RCFiles provide efficient compression and support efficient attribute

projection due to their columnar order. RCFiles are built on top of Sequence files with

records being separated into row groups. Each row group is stored in a columnar order
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Figure 6.2: Structure of Sequence files

within the value part with its metadata being stored in the key part. As shown in Figure

6.3 and Figure 6.4, a sync marker is written once for every record group and the records

in a group are read together. A record within a file of this format is identified using the

byte offset of its row group in addition to its order within the row group. The nature of

RCFile input format forces an index-based data access to read a complete row group if

it contains any number of records matching the search criteria. Hence, the size of row

groups and the ratio of the number of records of interest to the number of read row

groups will each play an important role in determining the efficiency of index access for

records stored using RCFile format.

In addition to identifying records within files, the files themselves must be identified in

every RID since a dataset in AsterixDB could map to multiple physical external HDFS

files. An individual external dataset file in AsterixDB is therefore identified using a

combination of its path and its modification timestamp. RIDs of records in Text

and Sequence files consist of (file id , record offset), and RIDs of records in RCFiles

consist of (file id , row group offset , row order).
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Figure 6.3: Structure of RC files

Figure 6.4: Logical and physical layouts of RC files
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6.2.2 Index Partitioning

Partitioning of data is critical in any parallel system. It affects load balancing, scala-

bility, and the level of needed communication between the system’s nodes. Records of

an internal dataset in AsterixDB are stored in primary B-tree indexes that are hash-

partitioned on the primary key’s values. This achieves an even distribution of tuples and

allows partitioning the probing tuples when performing index nested-loop joins on the

primary keys of a dataset. The secondary indexes of an internal dataset are co-located

with the primary one on the same node, ensuring zero communication between nodes

when secondary index access is used in a query at runtime.

Figure 6.5: External dataset’s indexes are co-located with HDFS blocks

Records distribution for external datasets is controlled by HDFS. The particular clus-

ter nodes that store blocks that contain the records of a dataset can be either shared

with AsterixDB nodes or separate but reachable from AsterixDB nodes. Moreover, the

primary key of an external dataset’s record, represented by its RID is not part of the

dataset’s data type and will never become a join attribute in any user query. In the case
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when the nodes of AsterixDB are shared with HDFS, external records will be indexed at

one of the nodes that hold the containing HDFS data block, as can be seen in Figure 6.5.

When choosing indexing assignments, AsterixDB keeps track of the number of HDFS

blocks to index that have been assigned to each of its nodes. Since a block is replicated

in more than one node, AsterixDB first determines the shared nodes among these and

then sets the block’s index destination to the node among them with the lower number

of block assignments. (If indexed blocks are moved later by HDFS, they will still be

accessible through the indexes, but the performance of the index access will be affected

due to reduced data locality). In the case where cluster nodes are not shared between

the two systems, block indexing responsibilities are assigned to AsterixDB nodes in a

round-robin fashion to ensure an even distribution between all nodes.

6.2.3 The Files Index

Having the file name and modification timestamp appear in every RID in secondary

indexes would require a relatively large amount of space. This would affect the dataset

indexing and index access performance in various ways. The external sort operator in the

index-building pipeline (seen in Figure 6.6) would be affected since the number of tuples

that would fit in a frame would become smaller. The disk space required for storing

the indexes would increase, affecting overall index performance. The sort operator in

the index-access pipeline in Figure 6.8 would suffer as well since it sorts tuples on their

RIDs. To mitigate these effects, we chose to replace the file id part of every RID with

monotonically increasing integer values that are assigned to external files. AsterixDB

stores each file’s information in a B-tree index on disk, keyed by the assigned integer

values, and uses this files index to fetch the needed file information at runtime.

The file information along with the assigned numbers are stored in the metadata Ex-
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ternalFile dataset. Metadata datasets in AsterixDB are stored in a single special node

called the metadata node. Using the ExternalFile dataset for file lookup during index

access would force the system to either broadcast this information to different nodes or

to have nodes request file information from the metadata node whenever they need to

get a given file’s information. This overhead could be negligible if the number of files

is very small, but this is not always the case. For example, a dataset on HDFS with a

retention period of 5 years and a 1 hour clock frequency would have 43800 files (assuming

that each instance is stored in a single file). In such a case, broadcasting the file index

would incur an unneeded cost, especially for queries that needs to access records in just

a few files. At the same time, choosing to access the ExternalFile index when a node

needs to access a new file could create a major source of communication overhead and

may create a bottleneck in the metadata node. To avoid this, a files index is created for

each indexed external dataset and is replicated in all AsterixDB nodes. This index is

accessed in the lookup operator whenever it encounters a new file number and needs to

get its path and modification time.

6.2.4 Hyracks Pipelines

AsterixDB uses Hyracks[7] as its execution engine, and all of its operations are expressed

as Hyracks jobs. In this section, we describe the different operators involved in the index

building and index access jobs.

When a user creates the first secondary index over an external dataset, AsterixDB

communicates with the HDFS name node, gets a logical snapshot of the dataset, and

stores it in its Metadata ExternalFile dataset. This snapshot is then replicated in all

nodes of AsterixDB for use at index access time. A snapshot of an external HDFS

dataset consists of a list of its files’ metadata; each file’s metadata record contains the
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file’s absolute path, its modification time, and its current size in bytes. The path of the

file along with its modification time identifies the file, while the size identifies the portion

of the file available as of the snapshot capture time (The size is needed for maintaining

a consistent view over each file since it turns out that HDFS might change the size

during a write operation while keeping the same modification time). A file that has

the same path with a different modification time is considered a new file. At the same

time, records that are located beyond the captured size of the file are ignored, ensuring

consistency when building different indexes and when the dataset is accessed using the

scan operator.

Figure 6.6: Hyracks pipeline for index building job

The Hyracks pipeline for index building consists of the four operators shown in Figure

6.6. Once the job is constructed, this pipeline becomes a completely local task in each

data storage node. It starts with an external indexing source operator. When creating

this operator, the cluster controller contacts HDFS and uses the stored snapshot of the

dataset to create logical block-sized file splits using the intersection of the snapshot

and the existing files in the file system. The splits are then assigned to nodes for the

indexing task according to the partitioning strategy described above. During execution,

the operator fetches and parses records, constructs their RIDs, and pushes them to the

project operator as illustrated in Figure 6.7.

The project operator in Figure 6.6 extracts the secondary keys and the assigned RIDs
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Figure 6.7: Hyracks operator for reading records with their IDs

and sends them to the sort operator which sorts them on the secondary keys. Finally,

the index build operator builds the index itself bottom up.

Figure 6.8: Hyracks pipeline for index access within a query

The pipeline for index access, shown in Figure 6.8 is completely local to each AsterixDB

node as well. It starts with a source operator that supplies the search predicates followed

by a secondary index search operator. This operator uses the incoming values to search

the index and produce a list of RIDs pointing to records that match the search criteria.

An external sort operator sorts the RIDs before feeding them to an external lookup

operator. Having the RIDs sorted before access ensures that each external file is opened
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Figure 6.9: Hyracks operator for external lookup in a query

once, and it also reduces I/O cost by reading records sequentially as they appear in HDFS

blocks. The external lookup operator, illustrated in Figure 6.9, uses the incoming RIDs

to reads records from external files. It monitors the file id field for file changes, and

when the file id changes, it use the local replicated files index to get the stored file status

as of the snapshot’s capture time and contacts the HDFS name node to validate the

continued existence of the file. If the file still exists, the operator opens the file and uses

the incoming RIDs to fetch and parse its records. If the file was not found, then all

incoming RIDs belonging to that deleted file are ignored. The records that are found

are then parsed using the appropriate parser and pushed to the consuming operator in

the pipeline. Figure 6.9 shows an illustration of how this operator works.
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6.2.5 Atomic External Dataset Refresh

The data lifecycle in HDFS consists of two main operations, the addition and deletion of

files. Different lifecycle models exist for different users’ needs. The synchronous clocked

dataset lifecycle is widely adopted in the Hadoop’s users community. In this model,

data has a retention period which represents a sliding time window over the data, with

files being added and deleted according to a known frequency. With every addition of

a new file of data, another file - older by the length of the retention period - is deleted.

Usually, instances are identified by their creation time, which constitutes a part of the file

URI. Oozie is a well known dataflow management and coordination system that works

well with the synchronized synchronous dataset lifecycle, and other workflows have been

designed for different data lifecycles [13]. Different systems write their outputs to HDFS

files in different ways. Some systems first write their records to a temporary file and

then rename it when all the records are written, while others write data directly to

the destination file. Some systems add a single file per clock event, while others add a

directory of files, while still other systems don’t follow well-defined lifecycles. Due to

these variations, we decided not to try to automate the refresh operation and we instead

delegate this responsibility to the user of the system. At the same time, the AsterixDB

manual refresh operation has a well-defined behavior that works with all of these use

cases.

The external dataset refresh operation in AsterixDB advances the snapshot of the dataset

to the current point in time, and it updates all of its secondary indexes to reflect the

changes in HDFS that were captured by the new snapshot. In a cluster, AsterixDB

follows The presumed-abort 2 Phase Commit (2PC) protocol[17] to perform the refresh

as an atomic operation. The refresh operation starts by getting list of files statuses

from HDFS’s name node and comparing it with the list of files in the stored snapshot
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in AsterixDB, thus computing the snapshot delta. The computed delta consists of 3

sets: a set of deleted files, a set of record-appended files, and a set of new files. If

the computed delta is empty, the operation is completed, and otherwise the delta is

recorded on disk and the refresh transaction enters the (running) state. AsterixDB then

adds the file delta to the replicated files index in all nodes and associates it with the

refresh transaction. Locally, for each of the files indexes, a new hidden index component

is created that holds all of the the refresh transaction’s operations. For new files, new

tuples are created in the transaction component, while for deleted files, anti-matter

tuples are inserted into the same component. Transaction components can later be

committed during the commit phase of the transaction and can also be deleted if the

transaction aborts. After that, for each secondary index of the dataset, a Hyracks job

is constructed to update the index under the ongoing transaction. This job consists of

a pipeline similar to the index building pipeline. The indexing targets come from the

delta rather than from the stored snapshot and the records are inserted into separate

hidden index components. In addition to the insertion of new index entries, the bulk

load operator in this pipeline performs deletions for records that belong to deleted files

in older index components. Note that with only the file information at hand, deleting

these entries in an index by adding anti-matter tuples would require an expensive full

scan operation of the index. To avoid this, we added a buddy B-tree to each external

index component. Each buddy B-tree contains file numbers of the deleted external files

in previous components and it is filled in the bulk load operator of the refresh pipeline.

The buddy B-tree then works as a filter during the search, as depicted in Figure 6.10.

During an index search, when the index search cursor finds a candidate tuple and before

it returns it, it extracts the tuple’s file number and uses it to probe all newer components’

buddy B-trees. If the file number is found, the tuple is dropped, and otherwise the tuple

is indeed returned by the cursor. Each buddy B-tree is accompanied by a Bloom filter
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Figure 6.10: Search within multiple components of an index

to reduce the number of I/O operations during the search. The buddy B-trees of an

index are also used for space reclamation when the index component’s merge operation

is triggered by its merge policy. Filtering deleted tuples at this early stage of the pipeline

has additional benefits since it also reduces the number of tuples to be sorted in the sort

operator that precedes the external lookup operator.

If any of the Hyracks jobs involved in a refresh fails, the computed delta is discarded,

the cluster controller instructs each node to abort the transaction locally in all the

participating indexes, the transaction is marked complete, and an error message with

the cause of failure is returned to the end user. If all Hyracks jobs complete successfully,

the cluster controller records the state of the transaction as ready-to-commit and then

instructs all nodes to commit the transaction locally in its indexes. After that, the cluster

controller adds the delta to the ExternalFile dataset and marks the refresh transaction
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as complete. During AsterixDB’s startup bootstrap, the system loops over all ongoing

transactions to perform global recovery. In the case of a system crash, any transaction

that was in the running state is rolled back, and any transaction that was in the ready-to-

commit state is rolled forward. Since refresh operations always bulk load their changes

into new components, no record level logging is required.

6.2.6 Consistency and Concurrency

In AsterixDB, a consistency requirement is that an AQL query that accesses an indexed

external dataset should access the same version of the dataset throughout its execution.

This means that the refresh operation’s effect must either be seen by all the operators of

a query in all the nodes or not seen by any operator. This behavior must be maintained

in the case when a dataset is being refreshed while queries are accessing it using multiple

indexes or using a scan operator. We now explain how AsterixDB achieves this and how

queries, refreshes, index creates, and index deletes can interleave correctly.

AsterixDB maintains at most two logical versions of each index. The cluster controller

keeps track of the number of queries accessing each version of each external dataset. An

index version locally maps to a list of disk components that form the index. When a

query needs to access an external index, the compiler assigns it the most recent version

of the index, and the number of queries known to be accessing that index version is

incremented. When a query needs to access the same dataset a second time, the compiler

assigns the previously assigned version to the new operator in the same query. When

a query finishes execution, the index access count for each of its accessed datasets is

decremented. When the number of queries accessing an old version of an indexed dataset

reaches 0, the dataset version becomes inactive since no more queries are going to be

assigned that version.
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Multiple secondary index creation operations for a dataset can be run concurrently. On

the other hand, each external dataset refresh statement is serialized with respect to

other refresh statements and is mutually exclusive with index create statements. This is

critical since index create statements build indexes with respect to a specific snapshot.

Index create statements hence need to wait for an ongoing refresh to either succeed or

fail before it can proceed with building the index according to the state of the stored

snapshot of the dataset. The refresh operation also can’t proceed if the older version of

the index is still active, so it waits until the last query accessing that version finishes

execution. Since we don’t keep track of the number of queries accessing each dataset’s

index, an index can only be deleted when no other operations are running on its dataset.

Locally on each node, an external index maintains a list of pointers to components that

map to each version of the index. Since a local index partition has no way of knowing

when a version of the index is not needed anymore, the information about the older

version of the index is only deleted when the system shuts down or when a new refresh

starts. When a query tries to search an index, it carries with it the version number of

the index that it was assigned by the compiler, and the search cursor will then only

search components that belong to that version. The index component merge policy only

considers the most recent version of the index when it is triggered, without dismissing

the possibility that - between the start of a merge operation and its completion - a new

version of the index could have been added. Upon completion of merge operations, the

index takes care of updating its two versions by deleting the merged components and

replacing them with the new component. With these control structures, consistency is

guaranteed while allowing queries and refreshes to be run concurrently.
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Chapter 7

Performance Evaluation

In this chapter, we presents some initial experimental results to show the performance

of AsterixDB’s external datasets. We use the HDFS adapter on Hive-created data and

compare the performance of AsterixDB against Hive itself and also against AsterixDB

running with the same data loaded natively into the system. We also show the space

performance tradeoffs between moving data into the AsterixDB system and indexing it

as external data.

7.1 Experimental Setup

The following experiments are conducted on a cluster of 10 nodes. The nodes are Dell

PowerEdge 1435SCs with 2 Opteron 2212HE processors, 8GB DDR2 RAM each, and 2x

1TB 7200 rpm hard drives. The version of Hadoop used in the experiments is 2.2.0 with

10 data nodes each using the two available hard drives. The I/O buffer size for Hadoop

is set to 64 KB, and the default block size is set to 64 MB with the default replication

factor of 3. The number of HDFS name node handlers is set to 100, allowing upto
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10 concurrent RPC calls from each node in the cluster at any time, and the minimum

I/O buffer size (which determines the minimum size read by an HDFS reader) is set to

64KB. 2GB of memory is allocated for map tasks and 4GB for reduce tasks, with 2GB

of memory being allocated for sorting operations with 200 merge streams. The Hive

version used in these experiments is version 0.13.0. An AsterixDB instance is installed

on the same cluster, with each node having two partitions and each partition using one

of the two I/O devices. The cluster controller is allocated 1GB of memory. In each of

the node controllers, the memory allocated for sort and join operations is 512 MB. The

memory allocated for disk buffer cache is 1.5GB and the memory allocated for indexes

memory components is 512 MB.

Dataset Format Size Number of files
Lineitem Text 187.2 GB 10
Lineitem Sequence 207.6 GB 749
Lineitem RCFile 173.9 GB 749
Orders Text 41.9 GB 10
Orders Sequence 46.1 GB 167
Orders RCFile 39.35 GB 167

Customer Text 5.75 GB 10
Customer Sequence 6.22 GB 23
Customer RCFile 5.6 GB 23

Table 7.1: HDFS raw data files for TPCH

The dataset used with in these experiments is a TPC-H[3] dataset at a 250GB scale

value. The experiments use only the Lineitem, Orders and Customer tables. the data is

uploaded in its generated text format (delimited text with pipe delimiters) to HDFS and

is block-balanced among the 20 disks. External hive tables are created on the uploaded

text files and then used to perform a SELECT INSERT into their equivalent Hive tables,

thus creating the same datasets stored in Sequence file format and RCFile format. The

row group size in the produced RCFile datasets is 4 MB. The sizes of each of the datasets

in their different raw formats is shown in Table 7.1.
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7.2 Results and Analysis

In our experiments, we focus on evaluating the performance of AsterixDB’s external

HDFS datasets. We first evaluate the space and time cost of loading the data into

an internal dataset in AsterixDB. We then evaluate the performance of AsterixDB’s

external data access without indexes on all datasets using all of the file formats against

the performance of AsterixDB for internal datasets and against Hive’s performance on

Hive tables on the same data. We then evaluate the cost of building external indexes in

AsterixDB, and finally, we evaluate the performance of using AsterixDB with external

indexes as compared to AsterixDB’s internal storage indexing.

7.2.1 Cost of loading data

Dataset Loading time Primary Index Size
Lineitem 43 min 334 GB
Orders 9 min 60 GB

Customer 1.25 min 7.7 GB

Table 7.2: Cost of loading data

Loading data into internal datasets introduces additional costs that are eliminated com-

pletely with the use of external datasets. The time and space costs of loading the three

datasets into internal AsterixDB datasets are shown in Table 7.2. Loading data into the

system involves in addition to fetching and parsing data from external resources, hash

partitioning and sorting the records on their primary keys, and then bulk loading them

into partitioned B-Tree indexes. Even though a record’s binary representation is smaller

than its raw format, the overall space cost is larger than the external file size because of

the additional space needed by the index structure. Creating external datasets, on the

other hand, has negligible space and time costs.
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Figure 7.1: Lineitem dataset full scan access

Figure 7.2: Orders dataset full scan access

7.2.2 Full scan performance

In this section, we evaluate the full scan performance on the three datasets. The queries

that we ran for the full scan access performance evaluation either calculate simple ag-

gregate values over a single attribute of a dataset or else perform a single record lookup.

Examples of these queries in Hive Query language (HQL) and in AQL can be found in

Listings 7.1 and 7.2. Looking at the performance in Figures 7.1, 7.2, and 7.3, we

can see that AsterixDB’s internal datasets are always faster than its external datasets

and also faster than Hive for all table formats. This is due to the fact that internal
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Figure 7.3: Customer dataset full scan access

Figure 7.4: Join Orders and Customers on customer key

AsterixDB data is stored in the system’s binary data format and doesn’t require any

parsing. In addition, the amount of data read is smaller since only the leaf nodes of

the internal dataset’s primary indexes are scanned. Queries on external data stored in

Text and Sequence formats run faster with AsterixDB and its external datasets than

using Hive itself to query the same data. This can be attributed in part to the lower

cost of running Hyracks jobs compared to the cost of running MapReduce operations.

However, Hive runs queries on the Lineitem dataset stored in RCFile format faster than

AsterixDB’s external dataset performance on the same files. This is caused by two-step
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SELECT MAX( l i .L PARTKEY) FROM l in e i t em l i ;
SELECT ∗ FROM l in e i t em l i

WHERE l i .L SUPPKEY = 559288
AND l i .L LINENUMBER = 7
AND l i .L QUANTITY = 5
AND l i .L EXTENDEDPRICE = 6321 . 45 ;

Listing 7.1: Full scan query examples in HQL

use dataver se tpch ;
// f i nd the maximum
l e t $ l i t ems := f o r $ l i in datase t Lineitem

return $ l i . partkey
return max( $ l i t ems ) ;
// lookup a s p e c i f i c r ecord
f o r $ l i in datase t Lineitem

where $ l i . l suppkey = 559288
and $ l i . l l inenumber = 7
and $ l i . l quan t i t y = 5
and $ l i . l e x t endedpr i c e = 6321.45

return $ l i ;

Listing 7.2: Full scan query examples in AQL

parsing, as AsterixDB uses the built-in Hive parser which first deserializes records into

Hive objects using Hive serde and then parses them into AsterixDB’s internal format.

On top of that, AsterixDB’s adapters always parses all the fields of each record regard-

less of whether these fields are needed to answer the query. The negative effect of this

two-step parsing is not seen in queries that run on the Orders and Customer datasets

due to their smaller sizes, and hence, AsterixDB runs these queries faster than Hive at

all times.

We followed these single dataset experiments with queries that perform a filter using

customer key on the Orders dataset followed by a join with the Customer dataset on

the customer key. The queries used for the join experiments can be found in listings

7.3 and 7.4. The size of the join output is 1010 records and the performance results are

shown in Figure 7.4. In addition to AsterixDB’s ability to read these datasets faster

than Hive, it uses a Grace hash join algorithm which is more efficient than the shuffle
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SELECT cust . c custkey , cust . c name , ord . o orderkey FROM order s ord JOIN
customer cust ON ( ord . o cus tkey = cust . c cus tkey )

WHERE ord . o cus tkey > 1463524
and ord . o cus tkey < 1463624

Listing 7.3: Join query in HQL

use dataver se tpch ;
f o r $ord in datase t Orders
f o r $cus in datase t Customer
where $ord . ocustkey = $cus . ccustkey
and $ord . ocustkey > 1463524
and $ord . ocustkey < 1463624

return {
” custkey ” : $cus . ccustkey ,
”name” : $cus . ccname ,
” orderkey ” : $ord . oorderkey } ;

Listing 7.4: Join query in AQL

join used by Hive.

7.2.3 Cost of indexing datasets

The next set of experiments evaluates the cost of creating indexes over external datasets

against their internal equivalents. Table 7.3 shows these results. The results show that

the time needed for indexing external datasets is always more than the time needed for

indexing internal ones. This is due to the additional I/O cost, the parsing cost and

having composite Record IDs (which slows down the sort operation). In addition to

that, the HDFS readers at the indexing source operator at the beginning of the pipeline

in Figure 6.6 might scan files from partitions residing in the same I/O device in some

cases, which creates added delay. This is caused by a limitation in the current Hadoop

API, which doesn’t provide a mechanism to determine the I/O device hosting each block,

at the time of writing this thesis. The size of the indexes for RCFile data is larger than

the same indexes on other formats due to the additional row number field in each RID.
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TPCH-Dataset Index Key Indexing Time(s) Resulting Index Size
Text Lineitem order key 1458 48.8 GB
Sequence Lineitem order key 1678 48.8 GB
RCFile Lineitem order key 1796 58.6 GB
Internal Lineitem part key 1313 40 GB
Text Lineitem part key 1632 48.8 GB
Sequence Lineitem part key 1802 48.8 GB
RCFile Lineitem part key 2156 58.6 GB
Internal Orders customer key 297 7.7 GB
Text Orders customer key 356 12 GB
Sequence Orders customer key 422 12 GB
RCFile Orders customer key 473 14.5 GB
Text Orders order key 300 48.8 GB
Sequence Orders order key 362 48.8 GB
RCFile Orders order key 341 58.6 GB
Text Customer customer key 38 1 GB
Sequence Customer customer key 39 1 GB
RCFile Customer customer key 49 1.47 GB

Table 7.3: Indexing comparison between external and internal datasets

7.2.4 Index access performance

Figure 7.5: Lookup queries on Orders dataset using order index

We now evaluate index access on external and internal datasets. First, we compare the

performance of the secondary index access on external datasets with the primary index

access on internal dataset. We then evaluate the performance of the secondary index
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use dataver se tpch ;
count (

f o r $ord in datase t TextOrders
where $ord . oorderkey > 1000000
and $ord . oorderkey < 1500000

return $ord
) ;

Listing 7.5: Lookup query on Orders dataset using the order key index

access on different external and internal datasets. We finally compare the performance

of index nested-loop join queries over external and internal datasets.

The first set of index access queries compare the performance of external secondary

indexes on the Orders datasets of different formats on the order key against the internal

Orders dataset’s primary index. An example of these queries can be seen in Listing

7.5. The external raw Text files in HDFS have the records sorted on the index key,

while the data in the original 10 files of this dataset were split into 167 files when

inserting them into Hive tables. The data internally is hash-partitioned on the order

key attribute values. Figure 7.5 shows the results of running these queries. We can

see that for small ranges all dataset formats perform about the same. This is due to

the cost being dominated by the Hyracks job starting cost. As the range grows larger,

we can see that for the internal dataset, the low cost is maintained. This behavior is

expected since it essentially performs a single index search using the dataset’s primary

index. The load balancing is much better for the internal dataset as wel, as records are

hash-partitioned on the search key. In addition to the load balancing advantage of the

internal dataset, the external datasets are first searching the secondary indexes, then

sorting the produced tuples, and then performing external data seek, read, and parse

operations. An interesting observation that shows the effect of the record organization

in the external source is the gap between the Sequence and RCFile datasets on one hand

and the Text dataset on the other. Looking at the logged load distribution, we found
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use dataver se tpch ;
count (

f o r $ord in datase t TextOrders
where $ord . ocustkey > 3000000
and $ord . ocustkey < 3100000

return $ord
) ;

Listing 7.6: Lookup query on Orders dataset using customer key index

that having the records totally ordered in the original Text files created a clear imbalance

which affected the index access performance negatively. This property was not preserved

when the data was loaded using Hive into the other two datasets, and hence, their index

access performed better than the the index access for the Text formatted data in this

case.

Figure 7.6: Lookup queries on Orders dataset using customer index

The next set of external index queries compare the performance of secondary indexes on

both internal and external datasets. An example of these queries that perform records

lookup using the customer key on the Orders datasets can be found in Listing 7.6.

The results, seen in Figure 7.6, show roughly comparable performance for all types of

datasets. The workload distribution was similar for all the datasets in this query since

the records are not ordered on the customer key for any of them. At around the 10,000

range, the RCFile dataset’s secondary index access suffers from the cost of additional
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I/O because it reads a complete row group (about 40,000 records) if any records of

interest are stored in that row group, and so it becomes less performant than the other

datasets. At around the 100,000 range, the RCFile’s dataset I/O cost started becoming

lower again since more records were found in the same row groups and the benefits

of performing sequential reads in this case outweighed the cost of reading extra records

from disk. Overall, this experiment shows that secondary external indexes perform quite

well as compared to internal ones.

Figure 7.7: Lookup queries on Lineitem dataset using part index

To confirm these findings, similar lookup queries were also run on the Lineitem datasets

using the partkey secondary index. The results are shown in Figure 7.7. These queries

exhibit similar behavior until the 3,000,000 range, where queries over RCFiles datasets

using secondary indexes outperformed internal dataset’s queries. This behavior can be

attributed to having more records of interest grouped and read together using sequential

I/O reads which provided some speedup. In this range, queries that access Text and

Sequence data performed much worse than the same queries on the internal or the

RCFile dataset. Continuing until the range of 60,000,000 records, we can see that the

performance of secondary index access for all formats of the dataset provided similar

performance results.
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use dataver se tpch ;
count (

f o r $ord in datase t Orders
f o r $cus in datase t Customer
where $ord . ocustkey = /∗+ indexn l ∗/ $cus . ccustkey
and $ord . ocustkey > 1463524
and $ord . ocustkey < 1463624

return $cus
) ;

Listing 7.7: Index nested-loop join query in AQL

Figure 7.8: Join Orders and Customers datasets on customer key

The last set of queries perform a select on the Orders dataset using a condition on the

customer key followed by an index nested-loop join with the Customer dataset using

the customer key. An example of the join query can be found in Listing 7.7. The

first observation seen in Figure 7.8 is that the internal dataset joins are faster than the

external ones. This is caused by a number of contributing factors. The records produced

from the first index search on the Orders dataset are each sent to a specific node which

holds the customer record with the matching customer number in the internal datasets

case. For the external datasets, each record must be broadcast to all the nodes since

the matching record’s location is unknown. On top of that, at the join side, the internal

dataset only searches on a primary key, while for the external datasets, the search is

performed on a secondary index and must be followed by seek, read, and parse operations
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to fetch the record itself. Nonetheless, the performance of the index nested-loop joins

also show the potential benefits of having indexing over external data.
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Chapter 8

Conclusions and Future Work

In this thesis, we have described how AsterixDB addresses the need for external data

access for users with existing external data. We explained how AsterixDB uses different

adapters to read data from different sources and formats and how it performs on the fly

parsing of records in an efficient way. We also explained the existing need to improve

external data access performance and how we addressed this need by building incremen-

tally refreshable external indexes. We then explained the data access semantics when

indexes are built on external data and how AsterixDB preserves consistency among dif-

ferent access methods in the face of a changing external dataset. We also described some

of the key implementation details for the index building, index access, and index refresh

operations. We showed how the system deals with failures and how it maintains a con-

sistent state of indexed datasets at all times. We followed that by describing the control

structures used to ensure consistency and concurrency during different operations.

This thesis also includes a performance evaluation for different access methods for exter-

nal HDFS data. Through these performance experiments, we showed that AsterixDB’s

HDFS dataset access provides good full scan performance for different popular file for-
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mats. We also showed the cost of building indexes on external datasets compared to

building indexes on internal datasets. Finally we ran different index access queries on

different datasets and showed that indexing of external data provides substantial perfor-

mance improvements and even competes respectably with the performance of internal

secondary index access.

The current design of the system allows reusability of most of the existing components

which enables supporting the indexing of more types of external data in the future.

Suggested future work to improve the current external data access include pushing field

projection to the different external data access operators and indexing more types of

external data in HDFS and in local file systems. With the current design, the require-

ment for indexing an additional HDFS input format is the identification of its RIDs,

extracting them while reading files’ splits and using them to look records up. As for

data in local file systems, additional changes would be required.
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