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Abstract 

Traffic assignment models are an important component in analyzing the relation- 

ship between demand and supply in the transportation network for design, planning, 

and control purposes. The static traffic assignment model has been used in practice 

for several decades. With the latest development in the area of Advanced Traffic 

Management Systems (ATMS) and Advanced Traveler Information Systems (ATIS), 

there is an increasing demand for dynamic traffic assignment models to serve as a 

basis for studying various issues in these areas. 

Existing dynamic user-equilibrium traffic assignment (DUETA) models are 

mostly expanded from the static user-equilibrium traffic assignment model by intro- 

ducing the time dimension along with a group of additional constraints. Whereas 

the equivalency between the solution to the traffic assignment model and the user- 

equilibrium condition as defined by Wardrop is well established in the static case, 

the same may not be true for the dynamic case. This paper examines the general 

form of DUETA models as proposed in previous research and shows that, if queuing 

behavior is represented in the model at a minimal level, the solution to conventional 

DUETA models with an objective function of the form Et X i  Jti(t) f ( w ) d w  may not 

necessarily converge to or approximate the Wardropian user-equilibrium condition 

in the dynamic sense as defined by many researchers. 

Keywords: Dynamic traffic assignment, Traffic flow, User-equilibrium, Mathematical 

Programming, Optimal Control. 



Executive Summary 

One of the major applications of dynamic traffic assignment models is to project 

the dynamic traffic flow pattern spatially over a network based on given sets of 0 - D  

demands. This is especially important to the ATMIS (Advanced Traffic Management 

and Information System) development in which control and information dissemination 

strategies are developed based on the dynamic evolution of traffic. 

Conventionally, dynamic traffic assignment models were often formulated either from 

simulation or analytical approaches. The focus of this paper is on the property of the an- 

alytical model, in particular, the user-equilibrium dynamic traffic assignment (DUETA) 

model. It was often claimed that the analytical DUETA model has a desirable mathemat- 

ical property that the solution obtained would reach or approximate the user-equilibrium 

state. We show in this paper, under queuing conditions, the solution to existing dy- 

namic user-equilibrium traffic assinment models, either formulated as a mathematical 

programming problem or as an optimal control problem, may not necessarily converge 

to or approximate the Wardropian user-equilibrium condition in the dynamic sense as 

defined by many researchers. 

The identified mathematical inconsistency illustrated in this paper indicates that the 

resulting traffic patterns on a network obtained from most existing analytical DUETA 
models could be drastically different from the ones in the user-equilibrium state, incon- 

sistent with the modeling objective. 
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1 Introduction 

In many transportation planning models, user-equilibrium is commonly used as a condi- 

tion to define route choice or traffic assignment behavior. This condition has behavioral 

appeals. The criteria for attaining the user-equilibrium state is to assign traffic flow among 

the routes in a way that minimizes the cost for each traveler. Without control on route 

choice, as is the real-world situation, this condition can indeed make a strong contention. 

In the traditional way of modeling traffic, also commonly known as static traffic as- 

signment in which the time dimension of traffic flow is not considered, Wardrop (1952) 

defined the user-equilibrium condition as: no traveler can reduce his/her journey time 

by unilaterally changing to a new route. This static assignment implies that traffic flow 

is at a steady state in the network, and that the dynamics of traffic flow such as queue 

dissipation and formation are not captured. Its user-equilibrium state is usually obtained 

by solving a mathematical programming problem with the following objective function: 

where f is a travel cost function and xi is the traffic flow on link i. (See for example, Sheffi 

(1985).) By minimizing this objective function subject to a group of flow conservation 

constraints, one can obtain z for every link in the network. The equivalency between the 

solution of this mathematical programming problem and the user-equilibrium condition 

is well established by Beckmann et al. (1956). 

In the past decade or so, there has been a great deal of effort in extending this static 

assignment condition to a dynamic one, so that traffic flow dynamics which are inevitable 

in real-world situations can be captured. Dynamic traffic assignment deals with the time- 

varying demand at the origin and the time-varying flows on the links over the network. 

Though the existing dynamic user-equilibrium traffic assignment (DUETA) models vary 

in details (for a recent review, see Romph, 1994), the basic models are generally ex- 

panded from the static user-equilibrium traffic assignment model by introducing the time 

dimension along with a group of additional constraints. Through an optimal control or 

a mathematical programming approach, most of these new DUETA models adopted the 
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following objective function by extending the 

Z = m i n C C  

static model’s: 

t i  

where zi( t)  is defined as the number of vehicles on link i at time t .  Most of these formu- 

lations, albeit with slight variations, contended that they provided a temporal generaliza- 

tion of Wardrop’s user-equilibrium condition. This temporal generalization requires that, 

when the user-equilibrium condition is achieved, at any time t ,  no vehicle can find a bet- 

ter route than the one assigned. It remains unclear, however, whether a simple extension 

of the objective function as expressed in (2) can adequately characterize dynamic traffic 

assignment as required by the above temporal generalization. Therefore, the purpose of 

this paper is to examine whether this augmented objective function (;.e., (2)) can truly 

capture the impact of queuing characteristics or dynamic congestion in its assignment, 

as is set out to be one of the ultimate goals of DUETA models. Our results seem to 

indicate that the new objective function may not necessarily converge to or approximate 

the user-equilibrium condition as defined earlier. 

In this paper, we will develop this insight by constructing a simple counter-scenario, as 

explained in Section 2. Section 3 will provide and discuss the assignment solution which 

is consistent with the dynamic user-equilibrium condition. In Section 4, we will derive the 

assignment solution resulted from the augmented objective function. By contrasting the 

solutions obtained in Sections 3 and 4, we will establish the potential problems introduced 

by the new objective function. 

2 The Counter-Scenario 

All traffic assignment models have a set of constraints to maintain flow propagation and 

conservation at a node or a link, and nonnegativity of variables. This set of constraints 

is fairly standard and applicable to any traffic assignment models, regardless of the ob- 

jective of the assignment. If one is interested in deriving the traffic assignment pattern 

that minimizes overall system travel time, the same set of constraints can also be used. 

Routes for deriving the dynamic user-equilibrium condition are determined solely in the 

course of minimizing the objective function while satisfying the constraint set. With this 
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understanding, the example shown in this section only emphasizes the form and values of 

the objective function. 

To make the discussion below as general as possible, we avoid making reference to 

any specific form of the link travel cost function (sometimes also known as the link per- 

formance function) but assume the function to be non-negative, increasing, continuously 

differentiable in x, as widely adopted in the literature. The link travel cost is also assumed 

to be decreasing with increasing link capacity, as consistent with common sense. In the 

following, we use cumulative curves of vehicles to describe traffic departure and arrival 

patterns and to derive the user-equilibrium state. 

Figure 1: Network topology of the example 

2.1 Network Topology 

Consider a network with a single origin (0) and two destinations (Dl and 0 2 ) .  The 

roadway geometry is given in Figure 1. There are two paths (P1 and P2a)  from 0 to 

Dl and a single path (P2b)  from 0 to 0 2 .  P1 is longer than P2a and homogeneous 

everywhere. P2a has a bottleneck in the diverge branch leading to Dl as illustrated in 

the same Figure. The capacities (given in the parenthesis in the Figure) for the two main 
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2.2 Traffic Demands 

Two traffic streams, going from origin 0 to each of the two destinations Dl and 0 2 ,  

are generated sequentially in two non-overlapping time intervals, [0, tl] and [tl, t 2 ] .  Their 

respective cumulative departure curves from the origin are shown in Figure 2 (a) and (b). 

Traffic stream 1 to 0 1  departs at the origin at a constant rate of q1 in the time interval 

[O, t l ] .  Traffic stream 2 to 0 2  departs at the origin at a constant rate of q2 only in the 

time interval [tl, t2] .  We assume that Qa << 41 = Q and 42 = Qb. The total demand 

during the entire time period is thus qltl + q 2  

t 

Number 
of vehicles 
going to D1 

- 
I 

3 

! - tl).  

Number 
of vehicles 
going to D2 

(b) Travel demand to 0 2  (a) Travel demand to 0 1  

Figure 2: Travel demands to Dl  and 0 2  

The User-Equilibrium Solution Consistent with 
Its Definition 

By considering the travel time experienced by the travelers, we can derive the traffic flow 

pattern under the user-equilibrium condition. Due to the nature of the demand pattern 

and the network topology, the traffic assignment procedure can be derived empirically in 

two steps. 



Wei-Hua Lin and Hong E<. Lo 5 

In the first step, we only consider traffic stream 1 since it is the only traffic in the 

network for the time interval [0, t l ] .  We assume that the network topology is such that 

PI is considerably longer than P2a. P2a always yields shorter travel times for all the 

demands destined to Dl despite the existence of a bottleneck in P2a and even if the 

free-flow condition prevails in P1. The underlying condition for this to happen and the 

travel delay to each vehicle in traffic stream 1 can be illustrated with a set of cumulative 

curves of vehicles as shown in Figure 3. For the given cumulative demand (or departure) 

A Number 
of vehicles 
going to Dl  

D0W 

Figure 3: The trip time from the origin to D l  via paths P1 and P2a 

curve Do(t)  = qlt for t E [0, t l ] ,  the cumulative arrival curve Dpl (Dpaa(t))  is constructed 

by loading all demands for D l  on path P1 (P2a) .  The vehicle trip time from 0 to Dl 
via path P1 (P2a)  can be obtained by the horizontal distance between curves Do(t )  and 

D p l ( t )  (DpZa( t ) ) .  As an example, the j t h  vehicle leaving 0 at t j ,o  will reach D l  at tj,l by 

taking P2a and at t j , 2  by taking P1. The time saving for the vehicle is D p ; ( j )  -Dj&(j) = 

t j , 2  - t j , l .  As shown in the curves, Dp;(k)  - Dj&(k) > 0 for all k in traffic stream 1, 

suggesting that, for each vehicle in traffic stream 1, the congested travel condition on P2a 

(represented by the low discharging rate for curve DpZa(t)) is better than the free-flow 
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condition on P1 in terms of travel times. The user-equilibrium state for traffic stream 

1 is thus achieved when all the vehicles in this group are assigned to P2a.  This is so 

because no one can shorten his/her travel time by switching to PI. Therefore, assigning 

all stream 1 vehicles to path P2a indeed satisfies the dynamic user-equilibrium condition. 

In the second step, we consider the assignment of traffic stream 2 to 0 2  during the 

time interval [tl, t 2 ] .  Since P2b is the only route choice, so all stream 2 vehicles should 

be assigned there. The resulting assignment from these two steps is indeed the user- 

equilibrium solution for both traffic streams since no vehicle can be better off by changing 

routes. It should be obvious that increasing the demand to 0 2 ,  accomplished by extending 

t 2 ,  will not alter the assignment solution. In summary, the dynamic user-equilibrium 

condition requires that P1 should not be used at all in the assignment. 

During the entire second assignment period, [tl, t 2 3 ,  one should note that the queue 

upstream of the junction, initially formed by the stream 1 vehicles to 0 1 ,  shall persist. 

This is because the demand for destination 0 2  in the second period, 4 2 ,  equals the capacity 

at the diverge branch b, Q b .  There is no extra capacity to recover or shorten the existing 

queue. On the contrary, if there were no stream 1 vehicles on path P 2 ,  there would not 

be a queue for the stream 2 vehicles. In Figure 4, the shading region represents the total 

delay to traffic stream 2 induced by the queue. All stream 2 vehicles will experience the 

same delay, regardless of their departure time from the origin. 

4 The User-Equilibrium Solution by Minimizing 
the Objective Function 

In this section, we contrast the solution obtained in Section 3, which is consistent with 

the definition of user-equilibrium, with the solution obtained by optimizing the objective 

function of DUETA models, as discussed in Section 1. Here we argue that the objective 

function will derive solutions that assign traffic stream 1 vehicles onto P1, thus contra- 

dicting the solutions obtained in Section 3. We will show that the equilibrium solution of 

Section 3 is not a local minimum of ( 2 )  because a small feasible perturbation can be used 

to reduce ( 2 ) .  

To begin, let the objective function value of the dynamic user-equilibrium solution 
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Departure curve Departure curve 
at Junction at Junction 
(without queue) (with queue) Number 

of vehicles 

Figure 4: The delay to stream 2 vehicles incurred by traffic stream 1 

obtained in Section 3 be expressed as: 

where C1 and C2 are the respective objective function values associated with traffic streams 

1 and 2. 

Let's consider this alternate assignment scheme by reassigning the last m (0 < m 5 
ql t l )  vehicles in traffic stream 1 to P1 and the rest to P2a as before. The rerouting of 

the last m vehicles have no impact on stream 1 vehicles departed earlier. However, as a 

result of rerouting these m vehicles to the longer route P1, the objective function value 

associated with traffic stream 1 will be increased from C1 to Ci. We denote this increase, 

Ci - C1, by Ad. 

By shifting these rn vehicles to P1, the size of the queue on P2 to be faced by the 

incoming traffic stream 2 vehicles will be reduced. That is, for some i's during the time 

interval [tl ,  t z ] ,  x i ( t )  will be lower'. Since the link performance function, f, is non-negative 

'This should be expected because, to traffic stream 2, the presence of queues acts like a dynamic 
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and increasing in q ( t ) ,  the objective function value associated with traffic stream 2 should 

be decreased from C2 to Ca. Instead of comparing the change in each individual x : ; ( t ) ,  

we consider an aggregated X T  that represents the total demand to 0 2  for the entire 

assignment period and let c2 - ca = g ( X T ) .  

Recall from Section 3 that the queue at the bottleneck, initially formed by the stream 

1 vehicles, does not dissipate with the incoming traffic flow rate of q 2 .  Reducing the 

bottleneck delay or shortening the queue length by shifting rn stream 1 vehicles away to 

path P1 will benefit all stream 2 vehicles heading for 0 2 ,  because each stream 2 vehicle 

has a shorter queue to wait through. Basically, the more stream 2 vehicles there are, the 

higher will be the reduction term g ( X T ) .  In other words, g ( X T )  will increase with XT.  

In this scenario, while Ci - C1 is maintained at M ,  C2 - Ca can be made to increase 

indefinitely by letting t 2  + +a and hence X T  + +m, since XT is equal to q 2 ( t 2  - t l ) .  
In summary, as long as t 2  is extended sufficiently long, one can find a demand pattern for 

which C2 - Ca > M = Ci - C1,  that means the objective function value can be reduced 

by assigning rn vehicles to path P1. The assignment solution obtained by minimizing this 

objective function therefore clearly contradicts the solution obtained in Section 3, which 

requires no vehicle be assigned to path P1 regardless of t 2 .  

5 Discussions 

The example given in the previous sections shows that the DUETA models with an ob- 

jective function of the form ‘& x; J:i(t) f ( w ) d w  cannot always guarantee a traffic pattern 

consistent with the dynamic user-equilibrium condition. The problem arises on a network 

in which queues are formed in the junction area. As shown in our example, the impact 

on delay in one time interval would continue to later time intervals. Consequently, if 

the objective function is to minimize the delay function for the entire duration, then the 

minimization may violate the user-equilibrium condition in order to reduce the overall 

objective function value. 

The dynamic bottleneck shown in the example resembles the gridlock phenomena 

discussed in Daganzo, 1995. Despite the hypothetical nature of the scenario, similar 

bottleneck, taking away some effective capacities. The cost of going through a “long” bottleneck should 
be higher than the cost of going through a “short” bottleneck. 
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bottleneck situations can be observed in many locations. For example, if we view the 

diverge branch to Dl to be the one that leads to a toll plaza, we would expect traffic 

back up past the junction during peak hours, effectively blocking the traffic to the other 

branch (e.g. similar phenomenon can be observed in the junction area of 1-80 and 580 in 

the San Francisco Bay Area). 

This example exhibits several inherent distinctions between dynamic and static as- 

signment. In the static case, bottlenecks are fixed, embedded in the roadway geometry. 

In the dynamic case, however, bottlenecks can result from vehicle interactions (e.g. com- 

peting traffic flow from ramps, temporary lane closure due to incidents, or queuing at 

diverge junctions such as the one shown in the example). Consequently, bottlenecks are 

dynamic, which arise and vanish in time, depending on the traffic condition especially on 

the formation and dissipation of queues. 

Time dimension is one important issue that complicates dynamic traffic assignment. 

For static assignment, without modeling the time dimension or differentiating the depar- 

ture and arrival time of traffic streams, all traffic streams coexist at the same “time”. 

However, in dynamic user-equilibrium traffic assignment, the time sequence in which the 

events happen has to be observed. The impacts of earlier events on subsequent events 

have to be carefully introduced. Apparently, according to our example, the DUETA mod- 

els extended from the static model with an additive and separable objective function do 

not seem to be able to handle this problem well. 

References 

[l] Beckmann, M. J., C. B. McGuire, and C. B. Winsten (1956). Studies in the Economics 

of Transportation. Yale University Press, New Haven, Conn. 

[2] Daganzo, C. F. (1995) The Nature of Freeway Gridlock and How to Prevent It ,  UCB- 

ITS-RR-95-1, Institute of Transportation Studies, University of California at Berkeley. 

[3] Romph, E. (1994) “A Dynamic Traffic Assignment Model: Theory & Applications,” 

PhD thesis, Delft University of Technology, Faculty of Civil Engineering, Transport 

Planning & Traffic Engineering Section, c1994. 



10 Wei-Hua Lin and Hong E<. Lo 

[4] Sheffi, Y .  (1985) Urban Transportation Networks: Equilibrium Analysis with Mathe- 

matical Programming Methods, (Prentice-Hall, N J) 

[5] Wardrop, J. G. (1952) “Some theoretical aspects of road traffic research”, Proc. Inst. 

Civil Eng. Part 11, 1, 325-378. 




