
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Supporting Query-Driven Cleaning in Probabilistic Databases

Permalink

https://escholarship.org/uc/item/4mb4w8c2

Author

Alsaudi, Abdulrahman

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mb4w8c2
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Supporting Query-Driven Cleaning in Probabilistic Databases

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Abdulrahman Abdulhamid Alsaudi

Dissertation Committee:
Professor Sharad Mehrotra, Chair

Professor Michael J. Carey
Professor Yaming Yu

2021

© 2021 Abdulrahman Abdulhamid Alsaudi

DEDICATION

To my late father, Abdulhamid, who was an example to follow with his incredible
accomplishments. To my beloved mother, Jawza, who filled me with unconditional love

from birth. To my loving wife, Nourah, and my beautiful daughter, Hadeel, for their
ever-lasting support and love. To my sisters and brother, Noura, Hind and Abdullah.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

VITA xii

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1

2 Related Work 9
2.1 Probabilistic Databases . 9

2.1.1 Probabilistic top-k Query . 12
2.2 Data Cleaning . 15
2.3 Query-Driven Cleaning . 17

3 TQEL: Framework for Query-Driven Linking of Top-K Entities in Social
Media Blogs 19
3.1 Preliminaries . 23

3.1.1 Dataset and Required Functions . 23
3.1.2 Exact Top-k Definitions . 26
3.1.3 Approximate Top-k Definitions . 28
3.1.4 Top-k Example Solution . 29

3.2 TQEL overview . 30
3.2.1 Preparatory Phase . 32
3.2.2 Thinking & Execution Phase . 32

3.3 TQEL-exact Approach . 34
3.3.1 Stopping Condition . 35
3.3.2 Mention Selection . 35

3.4 TQEL-approximate Approach . 38
3.4.1 Checking for the Stopping Condition 39
3.4.2 Exploiting Filters . 41

iii

3.4.3 Monte-Carlo Simulation Implementation 49
3.4.4 Mention Selection . 50
3.4.5 Updating Lists and Approximations 50

3.5 Experiments . 51
3.5.1 Experimental Setup . 51
3.5.2 Experiments Results . 54

3.6 Conclusion . 64

4 TQELX: Query-Driven Cleaning for Group-Based Aggregation Queries 66
4.1 Preliminaries . 70

4.1.1 Dataset and Required Functions . 70
4.1.2 Probabilistic Query Definitions . 72
4.1.3 Probabilistic Group-Based Aggregation Query Example Solution . . . 74

4.2 TQELX overview . 76
4.2.1 Preparatory Phase . 78
4.2.2 Cleaning Phase . 80
4.2.3 Evaluation Phase . 82

4.3 TQELX-probabilistic Approach . 82
4.3.1 Stopping Condition . 83
4.3.2 Monte-Carlo Implementation . 87
4.3.3 Selecting Tuples for Cleaning . 89

4.4 Experiments . 90
4.4.1 Experimental Setup . 90
4.4.2 Experiments results . 94

4.5 Conclusion . 103

5 PIVM: Probabilistic Incremental View Maintenance - A Monte-Carlo Ap-
proach 104
5.1 Related Work . 108
5.2 Preliminaries . 110
5.3 Query Processing Implementation . 111
5.4 Delta Computations of Queries . 119
5.5 Experiments . 123

5.5.1 Experimental Setup . 123
5.5.2 Queries . 123

5.6 Conclusion . 130

6 Conclusions & Future Work 132
6.1 Conclusions . 132
6.2 Future Work . 134

Bibliography 136

iv

LIST OF FIGURES

Page

1.1 Uncertainty Cleaning Cycle . 6

2.1 An illustration of the entity linking task. 16

3.1 Entity list representation of Table 1. Bolded mentions represent mentions
that links to associated entity. Faded mentions do not link to the associated
entity. 25

3.2 TQEL flow diagram . 31
3.3 TQEL data structures. 33
3.4 Stopping condition checking flow diagram 42
3.5 Comparing number of calls to entity linking function vs different k-values for

multiple categories . 55
3.6 Comparing total execution time (seconds) vs different k-values for multiple

categories . 56
3.7 Detailed performance analysis of TQEL-approximate using different confi-

dence levels. 59
3.8 EL calls vs k-values . 61
3.9 EL calls vs k-values . 61
3.10 Execution Time . 63
3.11 Accuracy . 63

4.1 TQELX flow diagram . 77
4.2 TQELX data structures. 80
4.3 Number of cleanings for Top-k AVERAGE of line item prices per supplier . . 95
4.4 Number of cleanings for Top-k SUM of all line item prices per supplier query 95
4.5 Number of cleanings for Top-k COUNT of all line items per supplier query . 95
4.6 Total execution time of Top-k AVERAGE of line item prices per supplier . . 95
4.7 Total execution time of Top-k SUM of all line item prices per supplier query 96
4.8 Total execution time of Top-k COUNT of line item prices per supplier query 96
4.9 Number of cleanings for group-based query with AVERAGE as aggregation

function . 97
4.10 Number of cleanings for group-based query with SUM as aggregation function 97
4.11 Number of cleanings for group-based query with COUNT as aggregation function 98
4.12 Total execution time for group-based query with AVERAGE as aggregation

function . 98

v

4.13 Total execution time for group-based query with SUM as aggregation function 98
4.14 Total execution time for group-based query with COUNT as aggregation func-

tion . 98
4.15 Number of cleanings for Top-k queries with different confidence scores 100
4.16 Number of x-tuples sampled for Top-k queries with different confidence scores 100
4.17 Total execution time for Top-k queries with different confidence scores 100
4.18 Number of cleanings for queries with having clause using different confidence

scores . 100
4.19 Number of sampled x-tuples for queries with having clause using different

confidence scores . 101
4.20 Total execution time for queries with having clause using different confidence

scores . 101

5.1 Execution times for query 1, insertion and deletion times. 124
5.2 Execution times for query 2, insertion and deletion times. 125
5.3 Execution times for query 3, insertion and deletion times. 127
5.4 Execution times for query 4, insertion and deletion times. 128
5.5 Execution times for query 5, insertion and deletion times. 130

vi

LIST OF TABLES

Page

1.1 Dataset for Car Owners Information. 3
1.2 Instance 1 with P = 0.14 . 4
1.3 Instance 2 with P = 0.24 . 4
1.4 Instance 3 with P = 0.06 . 4
1.5 Instance 4 with P = 0.56 . 4

2.1 Speed readings table . 12
2.2 Possible worlds results. 12

3.1 Sample of prepossessed tweets. The crossed sequence of words is dropped in
the preprocessing step. The bolded sequence of words represents a mention
that links to an entity. Underlined mentions refer to an entity from the movies
category. 24

3.2 Evaluation metrics for different confidence levels 61
3.3 Evaluation metrics for noisy dataset with 95% confidence level 62
3.4 Evaluation metrics for different confidence levels 64

4.1 Relation to represent tweets in table 3.1 . 68
4.2 Relation to represent mentions after running entity extraction & entity lookup

function on tweets in table 4.1 . 68
4.3 Partially cleaned speed readings table . 74
4.4 Partially cleaned possible worlds results. 74
4.5 Fully cleaned speed readings table . 75
4.6 Evaluation metrics of different confidence levels for the top-k query using

different aggregate functions . 102
4.7 Evaluation metrics of different confidence levels for the group-based query

with a having clause using different aggregate functions 102

5.1 Dataset for car owners information collected from different sources. 106
5.2 Addresses collected from different sources. 106
5.3 Result for probabilistic join query . 107
5.4 An example of a temporary table JP that holds the deterministic join result 114
5.5 An example of a simulation table for CarRegistration relation 115
5.6 An example of a simulation table for the aggregation query on the CarRegis-

tration relation . 116

vii

5.7 An example of a simulation table for the aggregation query on the CarRegis-
tration relation . 116

5.8 An example of a view for the CarRegistration relation 117

viii

LIST OF ALGORITHMS

Page
1 TQEL Approach . 31
2 Choosing the critical value . 47
3 TQELX Approach . 77
4 Calculating max counter for AVERAGE aggregate function 79
5 Calculating min counter for AVERAGE aggregate function 79

ix

ACKNOWLEDGMENTS

First and foremost, I would like to extend my sincerest gratitude towards my advisor Pro-
fessor Sharad Mehrotra for his continuous guidance, mentorship and support throughout my
Ph.D. years. Professor Sharad taught me how to identify exciting and challenging research
problems and tackle them with confidence and intelligence. Due to his immense knowledge
of the area, I witnessed firsthand the skill of abstracting complex ideas and finding a general
solution by viewing the larger picture of the problem. I had the most pleasure working under
the supervision of professor Sharad, and for that, I am grateful.

I am thankful to professor Yaming Yu for his invaluable knowledge in the statistical field.
His guidance and support were crucial for the works in this thesis to flourish. I am also
thankful to him for being part of my dissertation committee and his helpful feedback and
comments.

I am also grateful to Professor Michael J. Carey for joining my dissertation committee.
His technical and editorial feedback was valuable and appreciated. I am also grateful for the
unforgettable time I spent as a teaching assistant for his classes and the exciting conversations
regarding the different modern database systems.

I would like to extend my appreciation to Dr. Yasser Altowim for his tremendous help and
support, which significantly impacted the work presented in chapter 3. I would like to also
thank Dr. Hotham Altwaijry for being a great help at the start of my Ph.D. journey.

I am also grateful to King Saud University in Saudi Arabia for providing me with a generous
scholarship to obtain my Master’s and Ph.D. degrees. The work in this thesis was also
supported in part by NSF Grants 1527536, 1545071, 2032525, 1952247, 1528995, 2008993,
2044107, 2139103 and DARPA under Agreement No. FA8750-16-2- 0021.

I would like to thank my colleagues in the ISG group, Professor Shantanu Sharma, Professor
Roberto Yus, Wail Alkowaileet, Vishal Chakraborty, Glenn Galvizo, Sameera Ghayyur, Dr.
Dhrubajyoti Ghosh, Peeyush Gupta, Shanshan Han, Shiva Jahangiri, Subhamoy Karmakar,
Dr. Taewoo Kim, Nada Lahjouji, Yiming Lin, Dr. Chen Luo, Malik Luti, Dr. Primal
Pappachan, Sriram Rao, Dr. Mehdi Sadri, Dr. EunJeong Shin, Guoxi Wang and Guangxue
Zhang for the amazing times we spent together and the fruitful discussions we had.

I am also thankful for my incredible friends, Dr. Abdulmajeed Alameer, Dr. Abdulrahman
Alamer, Dr. Hashem Alayed, Tawfiq Alhathloul, Maan Alnasser, Bassam Alnemer, Malek
Alowain, Nasser Alrayes, Ahmed Alrumaih, Abdulaziz Alshayban for the fun times we had,
which helped ease the stress and for the unforgettable memories.

Words cannot begin to explain my absolute gratefulness towards my mother, Jawza, who
showed me nothing but support, love and care. I will forever be in debt for her sacrifices,
and I am utmost grateful to call her my mother.

I would like to give my thanks to my brother, Abdullah, and my sisters Noura and Hind for

x

their kind and encouraging messages and for being the best siblings a person can have.

Last but not least, I will always be grateful for my loving wife, Nourah, who lived my Ph.D.
journey with me through thick and thin and has always supported and motivated me to
where I am today. Without her help and sacrifice, this work would not have been possible.
I am also thankful to my in-laws for their continuous support.

And to my beautiful daughter, Hadeel, your smile is what keeps me going forward and seeing
your happy face after a hard day at work never fails to fill my heart with joy. Thank you
for being the sunshine of my life.

xi

VITA

Abdulrahman Abdulhamid Alsaudi

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, California

Master of Science in Computer Science 2013
University of Southern California Los Angeles, California

Bachelor of Science in Computer Science 2010
King Saud University Riyadh, Saudi Arabia

RESEARCH EXPERIENCE

Graduate Research Assistant 2015–2021
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2021
University of California, Irvine Irvine, California

SELECTED PUBLICATIONS

TQEL: framework for query-driven linking of top-k en-
tities in social media blogs

2021

International Conference on Very Large Databases (VLDB)

Adaptive topic follow-up on twitter 2017
International Conference on Data Engineering (ICDE)

xii

ABSTRACT OF THE DISSERTATION

Supporting Query-Driven Cleaning in Probabilistic Databases

By

Abdulrahman Abdulhamid Alsaudi

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Sharad Mehrotra, Chair

Organizations collect a substantial amount of user’ data from multiple sources to explore

such data analytically and derive meaningful insights. One of the obstacles that prevent or-

ganizations from reaping the benefits of the analysis task is the low quality of the previously

collected data. Hence, most of the data preparation time is dedicated to cleaning the data

from fixing type errors to removing the uncertainty or ambiguity of some data using data

cleaning techniques. A new paradigm for handling such issues is integrating the cleaning pro-

cess within the query execution workflow to clean the needed tuples rather than performing

the cleaning step prior to query execution on the entire dataset. In this thesis, we tackle the

challenge of applying the query-driven cleaning approach in the case of probabilistic queries.

First, we present TQEL, a framework that integrates the entity linking task with query

processing to answer top-k entities’ queries on top of a collection of social media blogs. The

entity linking process removes the ambiguity of certain words in any textual snippet by

linking such words to real-world entities. The TQEL framework offers two variants: TQEL-

exact and TQEL-approximate, that retrieve the exact/approximate top-k results. TQEL-

approximate, using a weaker stopping condition, achieves significantly improved performance

(with the fraction of the cost of TQEL-exact) while providing strong probabilistic guarantees

(over two orders of magnitude lower EL calls with a 95% confidence threshold compared to

xiii

TQEL-exact).

Subsequently, we propose TQELX, a framework that generalizes the previous approach to

support multiple aggregation functions and other group-based aggregation queries. TQELX

is an analysis-aware cleaning for probabilistic queries that use the approximate confidence

computation technique. TQELX tightly incorporates the cleaning step in multiple stages

of the Monte-Carlo simulation execution to return the results as quickly as possible. We

compare our approach against multiple probabilistic query answering baselines and show

that TQELX outperformed them in total execution times.

Lastly, we discuss the incremental view maintenance problem in probabilistic databases and

provide a solution to speed up the execution process in the case of database updates. Naively,

if a tuple is inserted, deleted or updated, the previously computed results become obsolete,

requiring the query’s re-execution. In cases where the query uses approximate confidence

computation techniques, the overhead of such process incurs overheads and unacceptably

delays the overall execution experience. We implement PIVM, a solution built on top of

PostgreSQL to support delta computation techniques efficiently. Our experiments demon-

strate the effectiveness of using such an approach on multiple select-project-join queries and

report that PIVM offers a massive execution speed-up in the case of updates.

xiv

Chapter 1

Introduction

The last two decades have witnessed a rapid growth in our ability to generate and collect data

from diverse sources such as social media, sensors and web data. Organizations collect such

data for various purposes ranging from real-time monitoring, supply chain optimizations to

short-term and long-term analytic tasks such as forecasting product demand, understanding

efficacy of advertisement and determining product demand. As another example, news orga-

nizations may collect diverse information for political analysis, and think tanks may collect

and analyze data to gain insight on international relations and the impact of policy changes

on society. The digitization of our everyday activities coupled with unprecedented growth in

technologies to capture our daily life has created an opportunity to acquire, store, analyze

and maintain large volumes of data. Today, for example, 1.7 MB of data is generated per user

per minute around the world [2] consisting of social media posts, commercial transactions

and business interactions.

Such data is often defined as big data that is characterized by four V’s that correspond to

volume, velocity, variety and veracity of data. It has become imperative to build efficient

data management and analytic tools that address the four V’s – that is, they scale to the

1

massive volumes and velocity of big data, and can handle heterogeneity in the types of data,

as well as continue to provide valuable insights when data might contain errors or may be

missing. While each of the 4Vs is important and interdependent and need to be addressed by

modern information systems, this thesis focuses on challenges related to veracity (or quality)

of data which plays a major role in the analytical process and may negatively affect the

outcome of the data analysis process.

Different factors can affect the quality of the collected data, such as data entry errors (e.g., a

receptionist enters the age of a patient as 119 rather than 19). Another factor is manifested

by the uncertainty that is present in the collected data. One form of data uncertainty is the

ambiguity of words or sequence of words in any textual information (e.g., a tweet that reads

”I just arrived in Cambridge” where Cambridge can either be a city in England or a city in

the state of Boston). Imprecise machine-generated data such as readings of a sensor are also

a different form of uncertainty that affect the data quality by reporting different values for

each reading. For example, a speed radar sensor could return two values for a sensor reading

at 12:30 pm where the value of the car’s speed is 100 mph with a probability of 0.7 or 95

mph with a probability of 0.3.

Data quality problems hinder data scientists’ and data analysts’ ability to examine and

analyze the data thoroughly. Moreover, most of the captured data come from an automatic

data generation source that captures data in its raw form, making it harder to derive valuable

insights from such data. Hence, removing such difficulties by cleaning/enriching the data

helps improve the data quality, which improves the outcome of the analysis. For instance,

given a dataset that has the devices’ connectivity information for a WIFI router such that

the scope of the WIFI router’s coverage spans multiple rooms, one might want to find the

room with the most connected devices in a given data. The answer would be imprecise

if the analysis relied on the raw data alone since it does not provide the values at a fine-

grained level. In order to accurately locate each device’s connection instance, one might use

2

a cleaning function such as LOCATER /citelin2020locater which deterministically provides

room-level localization using semi-supervised learning techniques. By running the cleaning

function on the dataset, the uncertainty of the data would be reduced, which allows for the

proper execution of the analysis task.

Probabilistic databases systems that have been introduced in the literature can be used

to manage data with uncertainty where the value of an attribute or the values of a tuple

is associated with an existence probability in the database. Systems such as TRIO [88],

MCDB [52] and MayBMS [50] are examples of probabilistic database management systems

that enable storing, maintaining and querying uncertain datasets. The naive method for

answering probabilistic queries is by enumerating all the possible worlds (instances) of the

database and then summing up the probabilities of the worlds that a tuple t appear in as an

answer for that world. For example, table 1.1 is an uncertain table that holds car owners’

information along with the details of their owned cars. The different possible worlds, along

with their probabilities, are represented in tables 1.2, 1.3, 1.4 and 1.5.

However, this approach is not feasible since the number of possible worlds is exponential.

Instead, probabilistic database systems usually follow two different queries answering seman-

tics that return a probabilistic answer with a confidence score with each answer. These query

answering semantics are the exact confidence computation semantics and the approximate

confidence computation semantics. The exact confidence computation semantics refers to

the method of returning the exact confidence score of a tuple or group of tuples satisfying

a given query (e.g., by transforming a query to a DNF form statement and calculating the

CarOwners
Tuple id Owner Price Year P

1 John 60,000 2019 0.2
2 Amy 65,000 2020 0.7
3 Emily 50,000 2018 1

Table 1.1: Dataset for Car Owners Information.

3

CarOwners
Tuple id Owner Price Year

1 John 60,000 2019
2 Amy 65,000 2020
3 Emily 50,000 2018

Table 1.2: Instance 1 with P = 0.14

CarOwners
Tuple id Owner Price Year

3 Emily 50,000 2018

Table 1.3: Instance 2 with P = 0.24

CarOwners
Tuple id Owner Price Year

1 John 60,000 2019
3 Emily 50,000 2018

Table 1.4: Instance 3 with P = 0.06

CarOwners
Tuple id Owner Price Year

2 Amy 65,000 2020
3 Emily 50,000 2018

Table 1.5: Instance 4 with P = 0.56

answer’s confidence from a tuple’s existence probability) [30, 59]. On the other hand, the

approximate confidence computation semantics is deployed by generating, randomly, enough

samples from the possible world’s space and then running the query on each randomly gen-

erated world and returning the confidence of the given answer based on the answers of all

generated worlds (e.g., by using Monte-Carlo simulation techniques in order to answer DNF

styled queries) [56, 57, 58]. The exact confidence computation method can only be used

for queries that have safe-query plans [30] (e.g., the confidence score of the answer can be

computed exactly in polynomial time without generating the entirety of the possible worlds

for the database). In contrast, other queries can only be answered using the approximate

confidence computation method in polynomial time.

While probabilistic database systems enable applications to store and query probabilistic

data, they by themselves cannot address the restrictions applications face due to uncertainty.

As an example, an analyst wants to find the most popular iPhone model on social media.

The popularity of a model is measured by the number of times it has been mentioned in

each social media post. Given the text ”I just bought the new iPhone,” the word ”iPhone”

mentioned in the text could possibly refer to multiple models. If one were to run the query

as a probabilistic query, the returned answer would be probabilistic also where each possible

answer is associated with a confidence score. Hence, a returned answer set: {”iPhone 13”:

4

0.3, ”iPhone 12”: 0.2, ...} will not suffice for analysis purposes.

The technique that is mainly followed when addressing data uncertainty in literature is

cleaning. Data cleaning is an essential task for deriving meaningful insights and observations

about the given data. This process usually takes a considerable portion of the overall analysis

time due to multiple complexities. It is reported that data scientists spend 80% of the

allocated time for cleaning and preparing the data, whereas the rest 20% is spent for insights

derivation [65]. The process of data cleaning can take place before loading the data, where

the cleaning process is an offline step and is performed once and is performed on the data as

a whole. Another possibility is to perform cleaning periodically where a continuous stream

of data would undergo the cleaning process in batches. Alternatively, at query-time, where

the cleaning step is integrated within the query processing pipeline. The key concept is to

focus on a subset of the dataset rather than cleaning the entire dataset [10, 11, 22, 43, 68].

There are several advantages to adopting a query-driven approach compared to other pro-

posed approaches, especially when dealing with large volumes of data. One of the advantages

is avoiding the nuisance of cleaning the entire dataset since it is time-consuming and consid-

ered wasteful when the query rate is not high. The query-driven approach can help filter out

some of the tuples in the dataset using the query’s predicate by exploiting the semantics of

the query’s operator, such as in top-k queries. Another form of exploitation uses functional

dependencies to identify the tuples that need cleaning in a query context. Another advan-

tage is the option of analyzing the data as it arrives and reporting the results for recent data

rather than running the cleaning step offline and then reloading a cleaned version of the data

or waiting for the periodic cleaning schedule to clean the newly arrived data.

The basic flow of a query-driven approach is depicted in the cleaning cycle in figure 1.1.

When a user asks a query on top of a collection of dirty data (i.e., data with uncertainty),

the query is sent to the query processing engine for evaluation. After the query result is

returned, it is examined to see if it satisfies the query answer’s semantics (e.g., the returned

5

answer is equivalent to the answer after cleaning the entire collection of data) or if the user

feels content with the returned answer. However, if the result’s quality does not suffice, some

tuples are chosen from the database to be cleaned. After the data undergo the cleaning phase,

the data is updated accordingly. The flow of the query-driven approach goes iteratively until

the results are accepted.

In this thesis, we explore novel ways to support integrating the cleaning step in probabilistic

query processing while reducing the overhead associated with it (e.g., reducing the number

of tuples to be cleaned). We first focus on solving a more specific query: a top-k query over

counts of entities in Twitter. In particular, we present TQEL, a query-driven framework

for efficiently finding top-k entities in a collection of social media blogs by calling the entity

linking function. Given the noisy nature of the textual information, entity linking refers

to the process of linking an entity mentioned in the text of tweets to a real-world entity

in a knowledge base such as Wikipedia. In order to find the top entities mentioned in a

collection of tweets, we first need to link those mentions and then count the number of

occurrences of each real-world entity to return the k entities with the most counts. TQEL

framework is capable of handling top-k queries and returning either an exact answer or a

probabilistic one with confidence guarantees. Our contributions focus on the probabilistic

solution where we apply the approximate confidence computation approach by adopting the

Monte-Carlo simulation technique to evaluate the top-k query. In addition, we introduce a

Figure 1.1: Uncertainty Cleaning Cycle

6

filter based on normal approximation calculations, which acts as a low-cost test to check if

an answer for the top-k query is potentially found rather than repeatedly using the more

expensive query evaluation based on Monte-Carlo simulation. Our experiments show that

the proposed approximate approach is over two orders of magnitude lower calls to the entity

linking function with a 95% confidence threshold compared to the exact approach. Moreover,

the exact approach is orders of magnitude better than a naive approach that calls the entity

linking function on the entire collection of tweets.

We then generalize the TQEL framework in order to serve more group-based aggregation

queries defined using SQL. We illustrate the enhancements to the uncertainty cleaning cycle

to answer queries with probabilistic guarantees using the Monte-Carlo simulation technique.

We expand the types of supported queries to include different top-k aggregation queries

such as top-k SUM and top-k AVERAGE queries. We also include group-based aggregation

queries with a having clause (e.g., a query that finds entities that appeared more than 50

times in a collection of tweets). We describe how the normal approximation filter calcula-

tions are affected by each query and introduce different optimizations to the Monte-Carlo

simulation technique in order to evaluate the queries. The experiments show massive sav-

ings in the number of cleanings performed when answering the query using the probabilistic

guarantees approach compared to the exact and naive approaches.

After that, we focus on tackling the issue of the repeated and expensive execution of the query

evaluation using the Monte-Carlo simulation in the context of the uncertainty cleaning cycle.

We implement an incremental view maintenance solution tailored for probabilistic queries to

expedite the delta computation process. We implement our solution on top of PostgreSQL

to support a wide range of select-project-join style queries. Our primary intuition is to

leverage the Monte-Carlo samples generated in previous query executions for tuples that

have not been updated. Our experiments show that using our proposed implementation of

IVM, delta computations techniques are more efficient than rerunning the query entirely

7

after each update.

The rest of this thesis is organized as follows. Chapter 2 covers the related work. In Chapter

3, we describe the TQEL framework for answering top-k entities on top of social media blogs

and then discuss the extension of the TQEL framework to include different aggregation

queries in chapter 4. In chapter 5, we present our implementation of IVM for probabilistic

query processing. Finally, we conclude this thesis and discuss future work in chapter 6.

8

Chapter 2

Related Work

In this chapter we discuss the different works introduced in the literature that are related to

my thesis in order to set the stage for chapters 3, 4 & 5.

2.1 Probabilistic Databases

The literature has extensively studied the idea of representing uncertainty in data using a

probabilistic model in a relational database. It was first presented in works such as [15, 40]

to handle NULL values and attribute-level uncertainty, where the entire tuple’s values are

deterministic except for one uncertain value, by providing data models and simple query

evaluation techniques. Other works focused on a different direction and looked at the model

of uncertain data in the direction of possible world semantics [38]. ProbView [61] explored

the problem of different possible dependencies among records where the previous probabilis-

tic modeling assumed independence between different tuples. ProbView studies the cases

where some degree of dependency is present between tuples, especially in image classifica-

tion. ProbView assumes some input from the user to define the relation between tuples in

9

terms of dependency and explains if the query evaluation complexity would be the same

as the deterministic evaluation of the method that the user chooses, has polynomial time

complexity.

Other works have proposed different probabilistic query evaluation approaches for different

queries that have polynomial time complexity. For instance, Dalvi et al. [30] categorize query

plans into either safe plans or unsafe plans. Safe plans are plans that could be extended by as-

sociating the existing probability with each intermediate relation in the traditional relational

query plan. Their study concludes that if the query’s intermediate relations probabilities can

be computed in polynomial time, the query plan is considered safe, and the query execution

has polynomial time complexity. In [23], authors have provided a different approach for query

processing of tuples with attribute-level uncertainty where an uncertain attribute value is

given as a probabilistic range instead of a probabilistic value. Once a query is given, either

a value or a set of values are returned with a probability density function corresponding to

the confidence that it/they satisfies the query.

Some works are more tailored to probabilistic query evaluation for aggregates, such as [18, 54]

which returns, as an answer, the estimate of the aggregate value where other works focus

on the expected value for the aggregation queries [12, 50, 52, 76]. In [75], authors present

a solution for solving an arbitrary SQL query by returning the top-k answers with the

highest probability that satisfy the query’s predicate. The authors propose an approximate

confidence calculation technique and limit the sample generation to interesting tuples (i.e.,

tuples with a high chance of being in the top-k answer).

Different proposed probabilistic databases use different probabilistic data models and query

semantics. Trio [7, 88] introduced the x-tuples model and a method for expressing lineage.

Trio data model considers a database or a relation composed of different probabilistically

independent x-tuples. Each x-tuple has multiple sub-tuples associated with it such that
∑

of probabilities of all sub-tuples ≤ 1. Trio supports queries on the confidence scores and

10

lineage from the query’s result to the base tables by considering the combinations of all pos-

sible answers for the given query. The system supports single-block select-project-join style

queries and uses exact confidence computation techniques for confidence computation. An-

other system is the Monte-Carlo Database system (MCDB) [52] which uses the approximate

confidence computation technique for answering all types of probabilistic queries. Proba-

bilities for tuples are presented as either probability values or parameters for a distribution

function (e.g., normal distribution function with µ & σ as parameters). MCDB delays the

Monte-Carlo simulation for query evaluation until other query operators are applied to fil-

ter out tuples that do not satisfy the query’s predicate. In the coming chapters, we dive

into the details of implementing the Monte-Carlo simulation technique in our query-driven

frameworks.

MayBMS [12, 50] is another probabilistic database that is a modified version of PostgreSQL

where each tuple has a probability of existence associated with it and independence be-

tween tuples is assumed. MayBMS provides two approaches for query processing where it

follows the exact confidence if the query plan is safe and uses the approximate confidence

computation otherwise. The returned answer is usually a tuple or set of tuples and the

confidence is associated with each one of them. Another example is MYSTIQ [17] which

uses PostgreSQL in order to define BID (block independent disjoint) relations. Their query

processing approach is similar to MayBMS where they utilize both confidence computation

semantics.

The quality of the query’s answer has also been researched for different queries and domains.

In [24, 32, 49], the query’s result has to be above a predefined threshold confidence value in

order to be considered satisfactory to the query semantics. In [22, 68] the answer quality is

considered to be the entropy [79] of the probabilities given by the possible world semantics

where if the entropy is zero, that means the answer is a deterministic answer for the query.

Other quality metrics have been proposed for specific queries, such as in [23] where the

11

SpeedReadings
xid Reading id License plate Speed P

x1 r1 ABC 100 0.6
x1 r2 XYZ 80 0.3
x1 r3 MNO 30 0.1
x2 r4 MNO 120 0.3
x2 r5 XYZ 70 0.7
x3 r6 XYZ 90 1
x4 r7 ABC 110 0.4

Table 2.1: Speed readings table

Possible world Probability Top-2

r1, r4, r6, r7 0.072 r4, r7

r1, r5, r6, r7 0.168 r7, r1

r1, r4, r6 0.108 r4, r1

r1, r5, r6 0.252 r1, r6

r2, r4, r6, r7 0.036 r4, r7

r2, r5, r6, r7 0.084 r7, r6

r2, r4, r6 0.054 r4, r6

r2, r5, r6 0.126 r6, r2

r3, r4, r6, r7 0.012 r4, r7

r3, r5, r6, r7 0.028 r7, r6

r3, r4, r6 0.018 r4, r6

r3, r5, r6 0.042 r6, r5

Table 2.2: Possible worlds results.

quality metric is tailored for queries on tuples where uncertainty is captured by probability

intervals values rather than exact probabilistic values.

For a deeper look at other probabilistic databases and probabilistic query evaluation tech-

niques, surveys such as [6, 85] summarize most of the related work in that area.

2.1.1 Probabilistic top-k Query

Let us briefly review the concept of top-k queries in probabilistic databases that have been

extensively studied in different contexts and variations of the problem [28, 49, 83, 84, 90].

Based on the survey by Ilyas et al. [51], the top-k queries studied in the literature can

be characterized into three categories: top-k selection queries, top-k join queries and top-k

aggregation queries. Furthermore, top-k queries are also characterized by their semantics

that we explain below using a running example.

Consider Table 2.1 that follows the semantics of x-tuple [7, 88] where the relation has 4

mutually exclusive rules x1, x2, x3 and x4. The rules indicate that at most, one of the

12

readings associated with such a rule will be chosen in each instance of the relation. For

example, an instance of this relation could be: r1, r4, r6. Table 2.2 represents the entire

possible worlds for this relation along with the probability and the top-2 answer for that

instantiated world. The table records the information of different cars that are passing a

sensing radar that captures each car’s speed. Due to the fuzzy nature of such sensors, the

readings are not certain and hence are reported with a probability of existence. We illustrate

different top-k query semantics that has been proposed by using an example of the following

top-k selection query to retrieve top-2 readings for the highest speed:

SELECT Reading_id

FROM SpeedReadings

ORDER BY Speed DESC

LIMIT 2;

U-Topk [83, 84] semantics determines the probability of each possible top-k answer and

returns the most probable one. For instance, probability of the answer r4, r6 is the sum of

probabilities corresponding to the possible worlds r2, r4, r6 which is 0.054 and r3, r4, r6 which

is 0.018. Thus, probability of r4, r6 to be the top-2 answers is 0.072. In this example, the

actual answer would be r1, r6 with p = 0.252 since r1, r6 since it is the most probable answer

amongst all possible top-2 answers. As should be clear, U-Topk can be easily answered if we

have the entire set of possible worlds along with each world probability.

U-kRanks [83, 84] semantics is different then the previous one as it finds for each rank 1,

2 . . . k, the tuple that has the highest probability of being ranked i where 1 ≤ i ≤ k. If

every possible world result is reported, one can simply calculate the probability of each tuple

rj being ranked i by the summation of possible worlds probabilities where rj is ranked i.

For example the probability that tuple r6 being tanked top-1 is : 0.126 + 0.042 = 0.168.

U-2Ranks answer is = r4, r6. P(r4 is rank 1) = 0.3 and P(r6 is rank 2) = 0.436.

Another semantics for top-k is Global-Topk [90] which is based on the top-k probability of

13

each tuple being in the top-k. Top-k probability for each tuple is calculated, then the first

k tuples with the highest top-k probability are reported. In order to calculate the top-k

probability for tuple rj, the probability of all possible worlds wi where rj appears in the

answer set of the top-k query are summed. For example, P(r1 in top-k) = 0.108 + 0.168 +

0.252 = 0.528. Global-Top2 answer for the query would be: r6, r1. P(r6 in top-k) = 0.604

and P(r1 in top-k) = 0.528.

PT-k [49] follows the same semantics as Global-Topk but with two differences. The first

difference is that there is a user-specified threshold τ associated with the top-k query such

that the query will only return tuples with a top-k probability > τ . The second difference

is that unlike Global-Topk where the top-k query will exactly return k tuples, PT-k might

return less or more than k tuples depending on the threshold value τ . For example, if the

threshold value τ = 0.55, then the answer for PT-k = r6. On the other hand, if τ = 0.5 then

the answer for PT-k = r6, r1.

Another top-k semantics is the expected score [28] where for each tuple, the expected score is

calculated by multiplying the score × existing probability. The tuples are then sorted based

on their expected score and then a top-k query is directly applied. In our running example,

top-2 would be: r6, r1, where the expected score for r6: 90 and the expected score for r1:

60. Expected rank [28] is another proposed top-k semantics which captures the expectation

of the rank of each tuple by multiplying rank score of each tuple in each possible world wi

× p(wi), where the rank score for rj corresponds to the number of tuples that are ranked

higher than rj in possible world wi. The expected rank for the top-2 running example is: r6,

r1 where the expected rank for r6: 1.3 and the expected rank for r1: 1.78.

Most top-k algorithms that have explored different top-k semantics, including PT-k seman-

tics, have explored top-k selection queries. As discussed clearly in [84], such approaches

to support top-k selection queries cannot be applied to top-k aggregation queries. Top-k

aggregation queries have also been studied in [84], where possible worlds are incrementally

14

materialized for groups with tuples that have the highest function score. Each group Gx is

given a range of scoring function [0, UB * |Gx|] where UB is the score of the tuple with the

highest score in that group. However, their algorithm is only limited to aggregate functions

such as AVERAGE and SUM. Although one can treat COUNT as SUM(1), such an adoption

would not benefit from their incremental materialization of the possible worlds as it would

end up materializing most of the possible worlds in order to get the answer for the top-k

query.

2.2 Data Cleaning

Data cleaning is an essential part of the ETL (extract, transform and load) process and

has been extensively studied in the context of data warehouses. Given massive volumes

of collected data, data warehouses load them for online analytical analysis and business

intelligence applications using OLAP queries. However, before the loading happens, data

has to be in a state that is ready for processing to provide accurate results. Hence, data

cleaning techniques are performed within the transformation stage [73].

A well-known data cleaning problem is the entity resolution (ER) or tuple deduplication

problem. The entity resolution problem refers to the process of the identification and merging

of duplicate objects or tuples that refer to the same entity [16, 29, 35, 48, 60]. Given a

database and records within it, the abstract idea is to run the entity resolution between

each pair of records to find the records or tuples that are the same. Different approaches

have been proposed to efficiently tackle the issue by utilizing blocking techniques in order

to cluster records into groups that have a high chance of pairing and then calling the entity

resolution function for pairs within the same cluster or group [9, 48, 53, 66]. Other data

cleaning problems study the inconsistency in the data due to integrity constraints (IC). Such

data inconsistencies occur for several reasons, including manual typing errors during data

15

entry or errors introduced when merging data from various sources. Such errors can often

be detected and repaired by exploiting integrity constraints over defined over data [25, 26].

Michael Jordan
is an iconic
figure in
Chicago.z

Text Candidate Entities

Entity Probability

Michael J. Jordan (Athlete) 0.35

Michael I. Jordan (Scientist) 0.30

Michael B. Jordan (Actor) 0.25

Other people named
Michael Jordan 0.1

Linked entity

1 2 3

Figure 2.1: An illustration of the entity linking task.

In chapters 3 & 4, we use a specific cleaning challenge that is the linking of mentions (a

word or a sequence of words) in a textual body to real-world entities in a knowledge base

which is referred to as the entity linking task. The entity linking task usually goes through

different stages. The entity linking task is usually performed through different stages. Given

a snippet of text, we first identify the words or sequence of words that could potentially refer

to a real-world entity, which is usually referred to as the entity extraction process. This step

can be performed by following a named entity technique such as the Standford NER tool [37]

or by finding the most extended sequence of words that could potentially refer to a real-world

16

entity using a dictionary-based lookup approach [39]. The second step involves generating

different real-world entities candidates for the extracted mention from the text. The main

common approach for generating the candidates is using a dictionary-based approach (e.g.,

disambiguation page of Wikipedia) [36, 39, 67, 81]. Moreover, each candidate is accompanied

by a linking probability that measures its probability of linking to the extracted mention.

Another common approach for candidate generation is by using search engines to retrieve

the top-k documents by using the mention as the query term [47]. Figure 2.1 illustrates the

stages of the entity linking task.

The last stage of the entity linking task is choosing the real-world entity that links to the

mention. Techniques to disambiguate entity mentions have been extensively studied over

the past decade. Different proposed approaches in the literature mainly use a knowledge

base such as Wikipedia to facilitate the entity disambiguation process [36, 39, 67, 72, 74,

80, 81, 82]. Other approaches resort to machine-learning techniques and supervised learning

algorithms [45, 89] for the entity linking process. Other works incorporate the feedback of

the user in the system in order to correctly identify the actual real entity for ambiguous

mentions using a crowdsourcing approach [31].

2.3 Query-Driven Cleaning

There has been a growing body of work when it comes to query-driven or query-aware

data cleaning [10, 11, 19, 21, 22, 27, 42, 63, 64, 68, 87] where the data cleaning task is

integrated within the query execution plan allowing for cleaning a subset of the database

rather than the entire database. In [10, 11] authors provide a framework for integrating

entity resolution with query processing efficiently to answer complex select-project-join style

queries by smartly selecting tuples that need to be cleaned in order to return an answer

for the query. The framework takes advantage of the predicate’s selectivity that allows for

17

efficient and cost-aware execution. They use blocking techniques to guide the cleaning task

and divide the data into smaller chunks to be efficiently handled. Daisy [43] looks at the

problem of fixing denial constraint violations by relaxing the query results while involving

the cleaning process inside the query execution plan. Their goal is to pinpoint the cleaning

process’s placement in the query execution plan to avoid cleaning unnecessary tuples.

Other works integrated the cleaning step in the case of uncertain query processing in order

to reduce uncertainty [22, 64, 68]. The work in [22] focuses on cleaning uncertain data for

selection queries with a range predicate and queries that ask to find a min or max value for

an uncertain database. Given a budget, they aim to reduce the uncertainty of the answer by

identifying the set of tuples, when cleaned, that will have the highest impact on the quality

of the result.

Exploiting top-k query semantics driven by lowering data cleaning cost has been considered

in prior work as well. The most related such work is that of Verroios and Garcia-Molina

[87] where authors considered the problem of top-k over entity resolution. They proposed

an interactive algorithm for Locality Sensitive Hashing that essentially exploits the top-k

semantics to cut down the cost of blocking only to clusters that are ”dense” so that the

blocking cost per tuple on ”sparse” areas of data is very small. Another work exploring

top-k selection query in the context of cleaning is [68] where they work within a cleaning

budget to reduce the uncertainty of the top-k query answer on an x-tuple style database.

The cleaning process is associated with a cost and a probability of success. The approach is

based on choosing an optimal set of tuples to clean that will improve the answer quality.

Crowdsourcing has been used to answer top-k selection queries such as in [27, 63, 64] where

an expert or a crowd of experts are given questions regarding the order of the records in

the list and based on feedback systems update the database and answer the top-k query

efficiently. In addition, a notion of budget in terms of the number of questions or inquires is

enforced due to the high cost of the crowdsourcing process.

18

Chapter 3

TQEL: Framework for Query-Driven

Linking of Top-K Entities in Social

Media Blogs

Social media blogs usually contain ambiguous mentions that could potentially refer to real-

world entities. In this chapter, we study how top-k queries in the context of social media

blogs can efficiently be evaluated. Given a collection of social media blogs T that contain a

number of mentions, the goal is to identify the top-k real-world entities that are mentioned

the most in T .

Consider, for example, a user creates a collection of tweets (by sampling the public Twitter

API and/or by running keyword/phrase queries using Twitter’s query interface [62, 78]) and

would like to characterize T based on the top-k entities of a certain category – e.g., top-k

”movies”, top-k ”athletes”, or top-k ”locations”. If the text/metadata in the tweets explicitly

identified real-world entities, we could look up the associated categories in knowledge bases

such as DBpedia [13] or Wikipedia [4] to appropriately tag the tweets with the corresponding

19

categories. Then, finding the top-k entities in T in the context of the category of interest

(e.g., movies, politicians, athletes) would be straightforward; we would simply count the

number of times an entity corresponding to the category of interest is mentioned in T , and

choose the k entities with the highest counts.

However, entities are not explicitly associated with the tweets. Instead, entity extraction

and lookup functions [80] are used to determine them. Such functions take as input the set

of words, as well as, metadata associated with the tweet, and return a set of a sequence of

words (referred to as a mention) that could correspond to real-world entities [80, 39]. For

instance, a lookup function applied to a tweet ”Black Panther won an Oscar!” may identify

two mentions ”Black Panther” and ”Oscar”. Such mentions rarely correspond to a unique

real-world entity. The study in [55] shows that each mention, on average, could correspond

to 13.1 real-world entities, each of which is associated with different categories. For instance,

the ”black panther” mention could either refer to a movie or an animal corresponding to

the ”movies” or ”animals” categories respectively. Before the top-k entities within a given

category can be identified, we must first disambiguate such mentions. Once mentions have

been linked to the correct entities, the top-k entities in the tweet collection within the

category of interest can be easily determined.

The challenge in implementing top-k queries arises since entity linking functions are expen-

sive. As such, applying it to the entire collection requires significant computation, leading

to long latency in the results. Moreover, such computation is also wasteful since it requires

linking mentions that are simply not of interest, i.e., those that are clearly not part of the

top-k results. One strategy to overcome the challenge is to simply associate the mention with

every possible entity rather than running the entity linking function. For example, ”black

panther” in the above tweet will be associated with the ”movie” entity and the ”animal”

entity as well. Then we can simply return the top-k set after aggregating the number of

occurrences for each entity. For instance, for the tweets shown in Table 3.1 (represented

20

in the figure 3.1), a query for top-2 movies will return as a result: ”Black Panther (2018

movie)” & ”Black Panther (1977 movie)” since each of them has 4 occurrences.

Clearly, the above strategy results in erroneous answers since the right response in this

example should have been ”Black Panther (2018 movie)” & ”Beautiful Creatures” had we

fully disambiguated all the mentions. When adopting the same strategy for top-10 movies,

top-10 politicians, and top-10 locations on our dataset, the average precision of the results

was 0.16 while the rank distance was 377.9! We explain how to measure precision and rank

distance in section 3.5.

In this chapter, we propose TQEL (Top-k Query processing using Entity Linking), a frame-

work that exploits the query semantics for adaptive application of entity linking to only a

subset of the mentions that are required to answer the query. The TQEL framework can

be invoked to answer the top-k query exactly. The resulting implementation, referred to as

TQEL-exact, improves upon the naive strategy of fully linking all mentions (prior to query

execution), to linking only a small subset that could determine the top-k results. TQEL-

exact returns exactly the same answer as would be returned by the naive strategy, though

at a fraction of the expense.

While TQEL-exact improves upon the naive mechanism, it, nonetheless, incurs overheads

concisely when there are a large number of entities with possible frequency counts that are

large and also close to each other in value competing to be in the top-k spots. As such,

TQEL-exact is not suitable for queries that require faster responses due to delays it incurs

to prove that each element is truly in the top-k. The main contribution of this chapter is an

approximate approach which we refer to as TQEL-approximate.

TQEL-approximate, instead of continuing to link entities until it guarantees that it has found

a top-k result, stops much earlier as soon as it can establish that the entities in top-k result,

it has found so far, have a probability of being in the answer above a user-specified threshold

21

τ . To achieve this, TQEL-approximate uses two statistical models to efficiently deliver the

answer.

First, it estimates the number of occurrences of each entity by applying normal approxima-

tion statistics on the distribution of mentions associated with a given entity where such an

estimation can be computed efficiently. Based on the normal approximation step, TQEL-

approximate then decides whether to link mentions further, or whether it expects that a

potential answer to the top-k query has been found. It then invokes the validation step

which uses the Monte-Carlo simulation technique that generates N samples of the possible

worlds and then calculates the probability of each entity being in the top-k using the N

samples. If verification fails, TQEL-approximate performs more entity linkings until the

verification step’s stopping condition is met.

Note that normal approximation estimation provides a fast mechanism to predict that an

answer has been found, however, it is not used to verify answers but rather the Monte-Carlo

simulation is used for that purpose.

Additionally, TQEL doesn’t require the distribution of mentions’ linking probabilities to

be normally distributed although the filter works best when they are. In effect, TQEL-

approximate allows users to trade quality with latency. Our results over different data sets

show that TQEL-approximate achieves an order of magnitude improvement over TQEL-

exact – it finds top-k answers with confidence as high as 95% within 5-10 seconds, while an

exact approach takes 100-300 seconds for the same query on the same machine.

In summary the main contributions of this chapter are:

• We develop a framework that uses entity linking to evaluate top-k queries efficiently

(section 3.1 & 3.2).

• We propose two heuristic approaches that return an exact answer for the top-k queries

22

(section 3.3) (TQEL-exact).

• We propose an approximate approach that relaxes the quality of the result by returning

a top-k answer with probabilistic guarantees (section 3.4). (TQEL-approximate)

• We experimentally evaluate our framework extensively using three datasets. We il-

lustrate the results of the two approaches and provide a detailed evaluation of the

approximate approach (section 3.5).

3.1 Preliminaries

In this section, we will present the needed preliminaries that form the basis for the TQEL

framework.

3.1.1 Dataset and Required Functions

Social Media Datasets

Let T be a collection of tweets t1, t2, ..., tn, M be the set of mentions in tweet ti’s text

mi
1,m

i
2, ...,m

i
|M |., E be the set of entities e1, e2, ..., e|E|. and each entity ex is associated with

one or more category c1, c2, ..., c|C|. Tweets, in general, contain the text along with metadata

about the tweeter and the tweet itself such as username, timestamp, and location of the tweet.

We identify a word or sequence of words in the body of the text as a mention mi
j if it could

potentially be linked to real-world entity ex. These entities could be of any category such

as movies, people, or locations. At the ingestion time, tweets will undergo a prepossessing

step in order to extract and normalize the text in the tweet. This is executed by removing

the unnecessary words in the body of the tweet such as stop words and Twitter’s special

notation (e.g., “rt”).

23

TweetID Tweeter Text Time Location

t1 u1
Black panther has finally grossed

$700 million domestically!
ts1 l1

t2 u2
Emmy Rossum in

Beautiful Creatures is stunning
ts2 l2

t3 u3 Pixar makes the best animated movies ts3 l3
t4 u4 La La Land best movie of all time! ts4 l4

t5 u5
Another live reading of a random book
in my tbr pile, Beautiful Creatures

ts5 l5

t6 u1 Black Panther won an oscar! ts6 l1
t7 u6 A lot of athlete will be in space jam 2 ts7 l6

t8 u7
Gonna watch stardust

and beautiful creatures
ts8 l7

t9 u8
a black panther was photographed

in Africa last week
ts9 l8

t10 u3 Emma Stone was amazing in la la land ts10 l9

t11 u9
Marvel made michael jordan

famous in black panther
ts1 l10

Table 3.1: Sample of prepossessed tweets. The crossed sequence of words is dropped in the
preprocessing step. The bolded sequence of words represents a mention that links to an
entity. Underlined mentions refer to an entity from the movies category.

Query Model

We model our top-k query Qk where it is executed on top of the tweets collection T . Each

query Qk contains a category filter cg such as people or locations. The main concept is

to find k entities, that are associated with category cg, mentioned the most in the tweets

collection T . As an example, an editor who is working for a magazine that rates and reviews

movies is asked to provide a list of the top-2 movies mentioned in a given tweet collection

T . The query Q2 is to find 2 entities mentioned in T where entities are associated with the

category movies and the number of times they were mentioned in T is larger than the rest

of entities. This query can be evaluated using our query model.

24

Entity Extraction and Lookup

An entity extraction and lookup function LU(ti) takes tweet ti and returns a set of 3-tuples

{<mi
j, ex, p(m

i
j, ex)>} where mi

j is the jth mention in the tweet ti, ex is a possible entity for

the mention and p(mi
j, ex) is the probability mi

j links to ej. The sum of all probabilities for

a specific mention mi
1 is 1. For example, let t1 be ”Black Panther won an oscar!”, LU(t1)

returns <m1
1, Black Panther (2018)>, 0.74), <m1

1, Black Panther (Animal)>, 0.12>, <m1
1,

Black Panther (1977)>, 0.10>, <m1
1, OTHER>, 0.02>. where OTHER corresponds to

linking m1
1 to no entity.

This process is known as the candidate list generation for a specific mention. Most of the

approaches rely on name dictionary based techniques [33, 39, 45, 81] which generates a map

where keys are a list of all possible mentions and values are a set of entities that could

potentially refer to the key. This limits the generation of mentions to only the the ones

that are stored in the map. Another approach uses search engines [47, 69] as the vehicle for

finding candidate entities where they return the top hits for each mention.

Entity Linking

Given a tweet ti, mention mi
j and a linking function (EL), the entity linking function links

Figure 3.1: Entity list representation of Table 1. Bolded mentions represent mentions that
links to associated entity. Faded mentions do not link to the associated entity.

25

mention mi
j in ti with a real-world entity ex. For example, Given the tweet ”Black Panther

won an oscar!”, and the mention ”Black Panther”, EL will link the mention ”Black Panther”

to Black Panther (2018) entity.

The entity linking function is considered a cost-heavy function that require complex compu-

tations to achieve the sought precision when linking a mention in the text of a tweet with

an entity. Some entity linking functions might also require analyzing and linking entities of

the previous tweets from the same user along with any tweets from the same location and

time in order to accurately pinpoint the mentioned entity [39].

Most of the techniques takes advantage of linking the mentions to their target entities in

a known knowledge base (e.g. Wikipedia) [36, 39, 81, 82] by leveraging the Wikipedia

topology and the Wikipedia articles along with the text of the tweet. Other techniques

use a crowd sourcing approach in order to link the identified mentions [31] to an entity.

Other approaches adopt a machine learning approach where supervised and semi-supervised

learning algorithms are run on top of annotated datasets to find the best candidate entity

for each mention [89].

Since the entity linking functions require complex computations to get the best candidate,

it is considered a bottleneck in any query processing system that relies on entity linking

to answer the asked query. In our setup, we consider the functions LU(ti) and EL(ti, m
i
j)

black box functions that could be replaced with any entity extraction, lookup and linking

functions.

3.1.2 Exact Top-k Definitions

Answer Semantics

Let Ecg be all the possible entities that are associated with category cg and let count(ex) be

26

the number of occurrences of ex in T as identified by the entity linking function. Let A(Qk)

be the answer of applying Qk over T . We call A(Qk) a valid answer iff:

• A(Qk) ⊂ Ecg .

• ∀ ex ∈ A(Qk), ex appears only once in A(Qk).

• ∀ ex ∈ A(Qk) : @ ey ∈ (Ecg - A(Qk)), s.t. count(ey) > count(ex)

Given a query Q2 looking for the top-2 movies in tweets in Table 3.1 and represented in

figure 3.1, answer A(Qk) = {Black Panther (2018), Beautiful Creatures (2013)} and answer

A(Qk) = {Black Panther (2018), La La Land (2016)} are both valid.

Standard Solution

To generate a valid answer for Qk over T for a specified category c, the standard solution

will link each mention in T by calling the EL function. Entities that are associated with

category cg will be filtered then the k entities with largest number of mentions are returned.

This approach requires the query executor to call the linking function on every mention in

T . Such an approach will be inefficient and ineffective when dealing with datasets that are

ingested at high volume and velocity such as social media posts. We also don’t need to

disambiguate every mention in the data set in order to reach a correct answer due to the

semantics of the top-k operator. In section 3.3, we will describe more efficient algorithms to

compute the top-k answers that exploit query semantics to significantly reduce the number

of entity linking functions invoked.

Problem Definition

Given a top-k query Qk on top of a collection of tweets T , an entity lookup function LU,

an entity linking function EL and a category cg, efficiently generate an answer A(Qk) that

27

satisfies the answer semantics of the exact approach.

3.1.3 Approximate Top-k Definitions

Possible Worlds

A possible world wa in our context consists of an assignment of each ambiguous mention

to one of the possible entities based on its linking probability. Thus, the probability of

the possible world p(wa) can be computed as a product of such assignments. For example,

world w1 can consist of the following assignments based on figure 3.1, {(m11
3 : Black Panther

(2018)), (m6
1: Black Panther (2018)), (m1

1: Black Panther (1977)), (m9
1: OTHER), (m2

2:

Beautiful Creatures (2013)), (m8
2: Beautiful Creatures (2013)), (m5

1: OTHER), (m10
2 : La

La Land (2016)), (m4
1: OTHER), (m7

1: Space Jam 2 (2021)), (m8
1: Stardust (2007)), (m6

2:

OTHER)}. p(w1) ≈ 0.0022.

Probabilistic Top-k Evaluation

Given a possible world wa ∈ W , we evaluate the top-k query on the world wa. Let ans(wa)

be the top-k answer set for wa, then p(ex ∈ top-k answers of (W)), abbreviated tkp(ex), can

be calculated using the following equation:

tkp(ex) =

|W|∑
a=1

p(wa) · I(ex, wa) s.t. I(ex, wa) =

1 whenex ∈ ans(wa)

0 whenex /∈ ans(wa)

(3.1)

Answer Semantics

Let A(Qk) be the answer of applying Qk over T . We call A(Qk) a valid answer iff:

28

• A(Qk) ⊂ Ecg .

• ∀ ex ∈ A(Qk), ex appears only once in A(Qk).

• ∀ ex ∈ A(Qk), tkp(ex) > τ .

where τ is a user-defined confidence.

Our top-k query evaluation semantic is similar to PT-k [49] where only entities that have a

top-k probability higher than a specific threshold τ will be included in the answer set. The

order among the returned top-k answer set is ignored in our settings. Given the same query

Q2 that looks for the top-2 movies in tweets in Table 3.1, A possible answer for A(Q2) could

be {Black Panther (2018), Beautiful Creatures (2013)} after the EL function has been called

on some mentions. Note that there could be more than k entities that satisfy the answer

semantics, however choosing any k entities from the answer set, if all mentions were linking,

is sufficient and correct.

Problem Definition

Given a top-k query Qk on top of tweets collection T , and entity lookup function LU, an

entity linking function EL, a category c and a threshold value τ , we aim to provide an

approximate solution for the Query Qk that generates A(Qk) such that A(Qk) follows the

predefined answer semantics for the approximate approach and minimizes the number of

calls to EL.

3.1.4 Top-k Example Solution

Following the exact top-k definition, Q2 for finding the exact top-2 movies in Table 3.1, the

entity linking function is called on the following mentions set {m11
3 ,m

6
1,m

2
2,m

8
2}. We can

29

safely return the set {Black Panther (2018), Beautiful Creatures} as the answer without

linking any more mentions as the answer satisfies the answer semantics. To solve the same

query using the approximate approach where τ = 0.9, the calculation of tkp(ex) for all ex is

required. In our example the top-k probabilities are {(Black Panther (2018): 0.93), Beautiful

Creatures (2013): 0.84), La La Land (2016), Space Jam 2 (2021): 0.27), (Stardust (2007):

0.16), (Black Panther (1977): 0.13), (Oscar (1991): 0.05)}. After calling the EL function

on {m2
2}, the top-k probabilities become {(Black Panther (2018): 0.93), Beautiful Creatures

(2013): 0.91), ..}. Hence, we stop the execution and report the answer for Q2 as {Black

Panther (2018), Beautiful Creatures} since it satisfies the approximate solution’s answer

semantics.

3.2 TQEL overview

This section will talk about the general approach of TQEL.

In traditional query processing and optimization, once a query plan is chosen based on the

workload and different heuristic factors, the chosen query plan is fixed and will execute until

it reaches its life cycle. However, in this framework we present an algorithm that is dynamic

where it is adjusted based on the change of status of the objects that are being processed.

The algorithm consists of multiple phases where the first phase acts as a preparatory step

for the mentions to be linked to entities. It also consists of a thinking phase that generates

the execution plan for the current iteration and an act phase that executes the plan. In

Algorithm 1 and figure 3.2, We describe the steps that are followed by our framework in

general regardless of the approach used to answer Qk.

30

Algorithm 1 TQEL Approach

1: procedure GetTopK(Qk, T , LU,EL)
2: E LIST ← {}
3: for each t ∈ T do
4: {(mi

j, ex, p)} ← LU(ti)
5: {(mi

j, ex, p)} ← filterCategories({(mi
j, ex, p)})

6: addToLists(E LIST, {(mi
j, ex, p)})

7: while !stoppingCondition(Qk, E LIST) do
8: mi

j ← selectMention(E LIST)
9: ex ← EL(mi

j, ti)
10: updateLists(ex,m

i
j, E LIST)

11: produceAnswer(Qk, E LIST)

Figure 3.2: TQEL flow diagram

31

3.2.1 Preparatory Phase

In order to prepare the mentions for the thinking and execution phase, The algorithm it-

eratevely loops over every tweet ti in T and calls the LU function on ti to return a list of

mentions with their possible entities and the linking probabilities. After that, the entities

are filtered based on the category of the query Qk. Entities that are not associated with

category cg are removed and their linking probability are added to the OTHER probability

for that mention.

The algorithm creates a list for every entity ex associated with category cg. The entity list

(lex) has an unresolved mention list which holds pointers to the mentions that could refer

to entity ex along with the linking probabilities. Mentions are sorted descendingly based

on their linking probability allowing for instant access to mentions with highest & lowest

probabilities if needed when selecting a mention to link. Every entity list lex stores min

& max counters that correspond to the number of linked mentions, after running the EL

function, and the maximum number of mentions that could link to ex respectively. Entity

lists are held in another list and are sorted based on the max counter in a descending order

as shown in figure 3.3. Additionally, every mention is represented as an object where it has

a list of pointers to all the possible entities it could refer to. The probability that mention

mi
j does not link to any possible entity is (1 -

y∑
x=1

p(mi
j, ex), where ex is an entity associated

with category c) and this is considered the OTHER probability.

3.2.2 Thinking & Execution Phase

Mention Selection

In order to save time in the top-k query execution, we need to intelligently select the mentions

to link that will help in reaching an answer the top-k query efficiently. The mention to be

32

selected in the next iteration for dismabiguation is influenced by different factors (e.g. the

current spot of the possible entities of mi
j and the probability of linking mention mi

j to entity

ex that is currently in the top-k). This process is different when answering the query using

the exact approach or using the approximate approach and will be discussed in the coming

sections.

Entity Linking and Updating Entity Lists

If mention mi
j is linked to entity ex, lex is updated accordingly. This might cause the entity

lists order to be changed which could help in reaching an answer for Qk. If mention mi
j

is shared among different possible entities, this will result in updating all the entity lists

that have mention mi
j in their unresolved mentions list as well. For example, in figure 3.1,

m1
1 could refer to Black Panther (2018) with probability 0.6, Black Panther (1977) with

probability 0.1 or OTHER with probability 0.3. After calling the EL function on m1
1, we

find that it refers to Black Panther (2018). When updating the lists, it is added to the list of

Black Panther (2018) and deleted from the list of Black Panther (1977). After linking some

of the mentions, the min & max of the affected entity lists will change causing the order of

Figure 3.3: TQEL data structures.

33

entity lists to be adjusted accordingly.

Stopping Condition

In this step, the algorithm checks if a solution for Qk is found and can be validated. This

test will be different for the exact approach as well as the approximate approach and will be

discussed in detail in sections 3.3 & 3.4.

3.3 TQEL-exact Approach

In this section we will present the exact approach of the framework in order to answer the

top-k queries. The exact approach of the top-k query guarantees that the returned answer

follows the answer semantics discussed in section 3.1.

Finding the minimal set of mentions to link in order to find the exact answer set for Qk is

difficult it depends on the outcome of the entity linking function which is unknown prior

to execution. Furthermore, minimizing the number of entity linkings in the expected sense

requires enumerating an exponential search space and hence not practical. Moreover, even

if such approach is found, it may still require large number of entity linkings to find the

exact answer resulting in unacceptable response time. Nonetheless, specifying TQEL-exact

will help us explain TQEL-approximate in the next section. We therefore, introduce two

distinct heuristics that can be used to implement TQEL-exact. Although the proposed

heuristics achieves better results compared to the naive approach (linking all mentions), we

present such heuristics briefly since it is not the main contribution of our work. To specify

TQEL-exact, we specify how to implement stopping condition and mention selection.

34

3.3.1 Stopping Condition

Checking of the stopping condition, in TQEL-exact is straightforward. The framework main-

tains for each entity list the minimum and maximum possible counts of mentions associated

with the list. The stopping condition simply checks to see if there exists k entity lists that

have min counters ≥ max counters of the rest of the entity lists. Since the entity lists are

sorted in a decreasing order according to their max counters, we can check for the stopping

condition by checking if the min values of the first k lists are greater than or equal to that

of k + 1 entity list.

3.3.2 Mention Selection

The goal of mention selection is to identify the next mention to link that will enable the

stopping condition to be reached as quickly as possible. Our mention selection algorithms are

based on the intuition that the entity lists with the k highest max values are likely amongst

the real top-k results. To be able to prove these entities to satisfy the stopping condition, we

will need to increase the min values of these entities to become larger than the max values

of other entities. This can be achieved by linking the mentions that refer to such entities.

Thus, our heuristic algorithms choose from the mentions that refer to entities with k highest

max values.

An alternate approach could have been to use entity linking to reduce the max values of

entities that are not in the top-k, such that the max values go below the min values of the

top-k answer set. Such an approach, however, will require us to link mentions in the entity

lists that are not from the top-k lists which might require significantly larger number of calls

to the entity linking function if the k is much smaller than the number of entities E which

is usually the case. Other heuristic functions use a hybrid approach that adapts to different

situations and uses the approach that has a higher chance of reaching an answer faster than

35

the other approach.

We, thus, briefly present two heuristic strategies referred to as greedy, and benefit-based,

where greedy follows the first approach and benefit-based uses a hybrid approach.

Greedy Approach

In this approach, TQEL-exact greedily choose the mention that has the highest linking

probability from the entity list with the highest max counter. For example, in figure 3.1,

mention m11
3 will be chosen. After the mention is linked, the max and min counters of each

list will be updated along with the list order according to the entity linking function result.

It will stop linking mentions from entity list ei when min(lei) ≥ max(lek+1
) given that all

the entity lists are sorted descendingly according to their max value. The algorithm stops

after the stopping condition is met for the exact top-k solution.

Benefit-based Approach

In this approach, we use a function that helps in identifying a mention, if linked, that helps in

reaching an answer to Qk faster. Such function uses an optimistic estimation of the number

of calls to entity linking needed (ENL) to prove that the k entities with the highest max

counter is the top-k result set. It may either choose to link mentions from the first k entities

with the highest max scores to prove they link to such entities or choose entities from the

other entity lists to prove that they do not link to their associated entity. we calculate ENL

as follows:

ENL =
k∑
i=1

maxof(max(lek+1
)−min(lei), 0) (3.2)

where maxof is a function that returns the max of two numbers.

36

Since k is generally way larger than the number of entities, our intuition is that cleaning the

entities with the highest max counters in order to prove they truly are in the top-k answer

set will require less unneeded calls to the EL functions. For example, let us consider a top-2

query that looks for the 2 entities with the highest count and the total number of entities

is 100. And furthermore, consider that entities e1, e2 ... e100 are ordered based on their

max counter descendingly. Moreover, since TQEL works in an iterative fashion, we want to

choose a mention that brings us closer to the answer in each iteration based on the mention’s

linking probabilities.

If we choose a mention that is associated with e50 for example, this will not have any impact

on the direction of cleaning for the next immediate iterations. Remember that our stopping

condition requires finding 2 entities that have min counters > max counters of the other 98

entities. Therefore, if e50 is not in the answer set this will be considered a wasteful linking.

However, if e50 is in the answer set for the query, we still would have to clean enough mentions

in the first 49 entities to prove that they do not refer to their corresponding entities causing

their max counter to be lower than the min counter of e50. So based on this intuition,

we believe that ENL would be an estimation of the least number of needed linkings but

nonetheless, the actual number of linkings could be more than that.

Let ENL(S) be the the expected number of calls to entity linking function for the given

current entity lists and ENL(Sm
i
j ,ex) be expected number of calls to entity linking function

when mi
j links to ex after calling the entity function on mi

j. Then we choose the mention

with the highest benefit function score (shown in equation 3.3). If an entity list is guaranteed

to be in the top-k answer set (i.e. it has a min counter ≥ max(lek+1
)), then mentions that

are associated with such entity will not be considered for linking.

Benefit(mi
j) = ENL(S)− (

∑
mi

j∈lex

(p(mi
j, ex)

× ENL(Sm
i
j ,ex)) + p(mi

j, OTHER)× ENL(Sm
i
j ,OTHER))

(3.3)

37

The benefit-based approach can be optimized by limiting the calculation of the benefit func-

tion to be on mentions that indeed will reduce the value of ENL if linked. Such optimization

can be achieved by calculating mentions from the first 2 × k entities as they are the only

mentions that will reduce ENL in the next iteration.

For example, using the benefit function for mentions in figure 3.1, ENL(S) = 6 and mention

m11
3 has a benefit score of: 6 - (0.74 * 5 + 0.08 * 5 + 0.18 * 6) = 0.82. On the other hand,

mention m6
2 has a benefit score of: 6 - (0.2 * 6 + 0.8 * 6) = 0. Therefore, choosing m11

3 is

helpful, at this stage, while choosing m6
2 is wasteful.

3.4 TQEL-approximate Approach

In this section, we describe our approach to linking mentions to entities in order to evaluate

top-k queries with probabilistic semantics as defined in section 3.1. In particular, we specify

how we implement the three main functions in Algorithm 1, viz., functions to check the

stopping condition, select mention, and update lists.The latter two are straightforward once

we have developed our strategy for checking the stopping condition. We, thus, focus the

discussion to checking the stopping condition and will briefly describe the select mention

and update list functions at the end.

In TQEL-approximate, the stopping condition is weaker compared to that for the exact

approach. In particular, TQEL-approximate stops early when it has identified k entities

whose tkp is above a user specified threshold τ . One can determine the probability of an

entity being in the top-k from the linking probabilities of each mention to correspond to

given entity. If the stopping condition is not met, TQEL-approximate will iteratively link

additional mentions by calling the entity linking function. Linking mentions reduces uncer-

tainty by resolving the entity that the mention refers to. This, in return, causes uncertainty

38

in the counts associated with the entities to be reduced which could result in the stopping

condition to be met.

Checking the stopping condition in TQEL-approximate, however, is quite complex. It re-

quires the enumeration of all possible worlds based on the linking probability of each mention

and computing the probability of a particular entity to be in top-k. Since the number of

such worlds is exponential, enumeration is not feasible and we are not aware of any efficient

algorithm for processing probabilistic top-k entities over count, that runs in polynomial time,

that can applied in TQEL.

To address the above, we use an estimation technique based on sampling the entire possible

worlds space that allows us to check for the stopping condition (i.e., the probability of the

result set to be in the top-k is above a user specified threshold τ) with high confidence,

discussed below.

3.4.1 Checking for the Stopping Condition

Stopping condition in TQEL-approximate uses Monte-Carlo (MC) simulation similar to prior

work on probabilistic query processing [52, 75]. MC simulation relies on randomness to

generate a sample world wa from the set of possible worldsW . To implement MC simulation,

we iteratively select a mention mi
j and assign an entity to that mention based on the linking

probability distribution of all possible entities ex that could be referred to by mi
j (including

the probability of assigning mention mi
j to OTHER). After assigning all the mentions, a

sample world wa is generated and the result of the top-k query is computed. Given N

sample worlds, we can compute the top-k answers to Qk in those worlds, the results of which

can be used to estimate the probability of an entity being in the top-k by using normal

approximation to the binomial distribution. We compute p̂i as in equation 3.4 and use it to

39

find the confidence interval for the entity’s probability of being in the top-k.

p̂i =
number of times ex appears in top-k

N
(3.4)

lcb = p̂i − z ×
√
p̂i × (1− p̂i)

N
(3.5)

The z-score in equation 3.5 is a critical value for defining the confidence interval and is decided

based on the user-defined τ using a z-score table and the lower confidence bound (lcb), based

on a normal approximation to the binomial distribution, accounts for the uncertainty due to

the finite number of MC samples.

TQEL-approximate checks the stopping condition by checking lcb against τ . If lcb is above

τ , the stopping condition has been reached and the top-k answer can be returned. On the

other hand, if lcb is below τ , TQEL-approximate continues with linking additional mentions

which changes the uncertainty of entities associated with the mention. With enough number

of iterations, the stopping condition is guaranteed to be met (e.g., for instance, when all

the mentions have been linked). The time complexity of the above implementation of the

stopping condition is is O(M×N), where M is the number of mentions and N is the number

of MC samples.

The implementation of MC simulation to check the stopping condition described above

suffers from two limitations. First, as specified, the approach has to pay the overhead of

running a MC simulation (complexity order of O(MN)) after each linking operation. One

could batch the number of mentions to be linked into batches of size b to reduce overhead of

the running the simulation repeatedly. The size of the batch b (i.e., number of entity linking

to be performed prior to checking the stopping condition again) has to chosen carefully.

Sub-optimal choices could result in overhead. For instance, if b it is too large, we will pay

40

the overhead of executing additional entity linking operations (which are also expensive)

unnecessarily since calling the stopping function without linking all the entities in the batch

might also have met the required condition. On the other hand, if we select b to be too small,

then we end up repeatedly paying overhead of the MC simulation. A more efficient algorithm

would minimize the number of entity linking tasks performed prior to calling the stopping

function while simultaneously guaranteeing that the stopping condition is met when it is

called. Such an approach would minimize both the linking cost, as well as, the cost of MC

simulation.

Another limitation is that each time the stopping condition is called, a new set of N samples

are generated using the simulation. Such an overhead can be partially mitigated by observing

that between any two iterations (i.e., calls to the stopping condition) the probability values

of only a small fraction of mentions (i.e., the mentions selected for linking in the previous

batch) have changed. We can speed up the simulation by leveraging the work done during

previous iterations.

We next describe ways TQEL-approximate uses to overcome the above two limitations.

3.4.2 Exploiting Filters

To reduce the number of times we have to execute the expensive MC simulations, we employ

a cheaper/less expensive filter to estimate if the stopping condition will be met by the

MC simulations. Our motivation of invoking such a filter is analogous to the way blocking

functions is used to reduce calls to the more expensive entity resolution functions in the data

cleaning literature [11, 87], or cheaper predicates (e.g., simple selections) are executed first

prior to calling more expensive tests in query processing literature [14].

In our setting, if a filter fails (i.e., determines that the stopping condition will not be met

41

by the MC simulation), we continue linking mentions to reduce uncertainly. We continue

doing so until the filter condition is satisfied and the filter determines that it is likely that

the result will meet the stopping criteria during the MC simulations. If the filter succeeds

(i.e., determines the stopping condition would be met), the suggested results are fed into

the MC simulation to check/validate if indeed the stopping condition has been reached. If

not, then additional cleaning is performed and the filter is appropriately refined (i.e., made

more conservative/tighter) and the process continues iteratively. The filter based algorithm

is depicted in figure 3.4.

Figure 3.4: Stopping condition checking flow diagram

Effectively, our modified approach substitutes the more expensive MC simulation by a (much

cheaper) filter until the algorithm reaches the point where based on filter execution we can

be fairly confident that the stopping condition has been reached. To design an effective

filter, we apply normal approximation statistics on that the linking probability of mentions

associated with a specific entity ex to compute the possible range of values for a given z-

score (i.e., the z-value confidence interval, where z is a parameter associated with the filter).

The confidence intervals can be computed efficiently while constructing the entity lists by

computing the mean (µ) & standard deviation (σ) of ex, as shown in equations 3.6 & 3.7.

We treat the upper & lower bounds of the confidence intervals (shown in equations 3.8 &

42

3.9) as the approximate max & approximate min (APmax & APmin).

µlex =
∑
mi

j∈lex

p(mi
j, ex) (3.6)

σ2
lex

=
∑
mi

j∈lex

p(mi
j, ex)× (1− p(mi

j, ex)) (3.7)

APmax = µ+ xσ (3.8)

APmin = µ− xσ (3.9)

where x is the z-score associated with the desired confidence level. For example, for the

confidence level of 68%, x = 1, while for 95%, x = 1.96, etc.

From the perspective of efficiency, the filter based on normal distribution assumption, takes

roughly 1.7 ms to calculate the APmax & APmin for 10000 entities. In contrast, MC takes

about 3.13 ms to generate only 1 world sample for 10000 mentions, which for a sample size

of say a 1000 would take approximately 3 seconds.

After calculating the APmax & APmin for all entity lists, the filter checks if a solution is

reached based on its calculated approximation. Given that we sort the entity lists descend-

ingly based on their APmax values, if there exists k entity lists with APmin ≥ APmax of the

entity that is in the k+ 1 position then the condition is met and the suggested result is sent

to MC simulation for validation.

43

Choosing the Confidence Intervals

Note that the choice of x in the equations 3.8 & 3.9 does not influence the correctness of

the approach since, in our case, the filter is only used as a hint, and we still perform the

Monte-Carlo simulation for validation of the top-k answer. However, the value x plays an

important role in determining the number of calls to entity linking functions and the cost

of generating and updating the MC simulation results. Smaller the value of x, smaller the

confidence interval, and, lesser the number of calls to entity linking function in order to meet

the filter condition (i.e., there exists k entities such that their APmin ≥ APmax of the rest of

the possible entities).

Conversely, larger the value of x, more entity linking functions will need to be called before

the filter condition is met. Thus, choice of x plays the key role in determining the number

of entity linking functions called and the number of times MC simulation is invoked. An

optimal value x∗ would allow for enough entity linking functions to be called such that the

MC test succeeds when called for validation.

To find such an x∗, we first introduce an estimation of the number of calls to the entity

linking function in order to find a candidate top-k answer (ENC(αx)) given that x is the z-

score for the confidence αx. Given uncertainty of linking function, estimating such a number

is complex. We use a heuristic estimation that greedily favours mentions that are associated

with the k entities having the highest APmax and estimate the number of mentions to be

cleaned on those lists in order to report them as a candidate top-k result. The estimation is

as follows:

ENC(αx) =
k∑
i=1

(maxof(APmax(lek+1
, x)− APmin(lei , x), 0)

1− µei
max(ei)

(3.10)

Where APmax(lei , x) is the APmax(lei) if x is the z-value.

44

ENC(αx) estimates the number of EL calls needed to shift the µ of the first k entities, given

they are sorted on their APmax values, so their APmin ≥ APmax(lek+1
). Note that ENC(αx)

is monotonic in x, i.e. as x value ENC(αx) also increases. To see this note that APmax(lei , x)

increases and APmin(lei , x) decreases as value of x increases. Thus, the numerator in equation

3.10, increases with the increase in x while the denominator is a constant. Thus the functions

is monotonic.

We, further, need to quantify the probability of success and failure when an arbitrary x

value is chosen. Using normal approximation, let us say there are two entity lists lei &

lej such that APmin(lei) ≤ APmax(lej). The probability that its count is below APmin(lei) =

(1−α
2

) if the mentions’ probability follows normal distribution. Similarly the probability of

the count of lej to be above APmax(lej) is the same. We conservatively assume that when

count of lei is below APmin(lei) or the count of lej is greater than APmax(lej), checking that

filter test (APmin(lei) is ≥ APmax(lej) would fail during validation stage. We, thus, estimate

the probability of the success at the validation stage given the success of the filter to be:

(1 − 2 × (1−α
2

)) = α. Likewise, the probability of the validation failing given the success of

the filter is (1- α).

We now calculate the cost of TQEL-approximate given an x value as cost(αx), in the case

that the validation step succeeds. Let CEL be the cost of the entity linking function, CMC be

the cost of generating N MC simulations for one mention and CV as the cost of running top-k

query on all N worlds to verify the answer. cost(αx) can be calculated using the following

equation:

cost(αx) = CEL × ENC(αx) + CMC(M − ENC(αx)) + CV (3.11)

We next consider the cost of TQEL-approximate for a given x value if the validation step

fail. In such a case, we need to clean more mentions to get better results. We do that by

45

using a higher x value such that the confidence in our suggested top-k to succeed is higher.

Such a scenario requires paying an overhead of linking more mentions, updating their linking

results in the stored MC simulations and executing the verification process again. Consider

that we begin the TQEL-approximate with a value of x = x1, that results in failure at

validation which prompts the algorithm to use x = x2, which succeeds. We denote the cost

of such an execution by cost([αx1 , αx2]). We estimate the cost of choosing a value x1 where

the suggested top-k answer set based on x1 estimation fails and we choose a higher value x2

C(αx1 , αx2) as follows:

cost([αx1 , αx2]) = cost(αx1)

+ (CEL + CMC)(ENC(αx2)− ENC(αx1)) + CV

(3.12)

In the formula above, note that the case when αx2 = 1 (that is, the confidence interval covers

the entire distribution) is special. In such a case, to meet the filter condition, one will need

to link all ambiguous entities and there will be no uncertainty in the top-k results. Thus,

the process will not need to execute the final validation step. In such a case, the cost would

be:

cost([αx, 1]) = cost(αx) + CEL(M − ENC(αx)) (3.13)

We next introduce a general equation for estimating the expected cost (EC([αx1 , αx2 , ...αxn]))

as follows:

EC([αx1 , αx2 , ...αxn]) = αx1cost(αx1) + (αx2 − αx1)

cost([αx1 , αx2]) + ...+ (αxn−1 − αxn)cost([αx1 , αx2 , ...αxn])

+ (1− αxn)cost([αx1 , ..., αxn , 1)

(3.14)

TQEL-approximate uses Algorithm 2 to find the optimal value of x. The algorithm searches

for an x value such that EC(αx) ≤ EC(αx‘) for any x‘ ≥ x. The algorithm chooses an initial

46

Algorithm 2 Choosing the critical value

1: procedure ChoosingCriticalValue(M , CEL, CMC , CV , τ , budget)
2: αx ← τ
3: αx‘ ← 1
4: b← 0
5: while αx < αx‘ AND b < budget do
6: if EC([αx, αx‘]) ≤ EC(αx‘) then
7: αx‘ ← (αx‘ + αx)/2
8: b← b+ 1
9: else

10: αx ← αx‘

11: αx‘ ← 1
12: b← 0
13: return αx

x value such that αx = user-defined τ . The intuition is that we want to choose an x such

that the probability of the success when validating top-k results given the success of the

filter ≥ user-defined τ . If we choose x < τ , even if the filter succeeds the chance that the

validation using MC simulation will fail is high. Given the monotonic nature of ENC(αx),

the algorithm performs a binary search to find a x‘ value such that EC(αx‘) < EC(αx). If no

such value x‘ is found before a searching budget b is exhausted, we choose x as the critical

value. However, if an x‘ value is found before the b is exhausted, we choose x‘ as the new

value for x and we rerun the algorithm.

Efficacy of Filter

The main role of the filter is to provide a cheaper mechanism for estimating the outcome of

the query. However, the correctness of TQEL doesn’t rely on this outcome for evaluating

the top-k query but validates the query using MC simulations. Nonetheless, the efficacy of

such filter is important as it effects the performance of the query (i.e. excessive EL calls and

number of verification’s performed).

Therefore, we have to propose a metric to measure how well this filter performs on different

47

queries, datasets and mention’s probabilities distribution of the top-k entity lists. Please

note that although the filter uses normal approximation it, however, doesn’t require mentions

probabilities to be normally distribution to work as it readjust itself by increasing the critical

value when the validation step fails. In the extreme case, the critical value will be high enough

to cover the entire distribution.

In order to properly measure the effectiveness of such a filter, we introduce a notion of

accuracy in order to assess the goodness of using such a filter. The filter’s test for expecting

that an answer has been found can result in two answers: yes (in which case the validation

using MC simulation is performed) or no (in which case TQEL will continue to link more

mentions). Based on the outcome of the filter, and whether or not the MC stopping condition

has been reached, we present 4 measurement labels: true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). TP refers to the number of times the filter test

was accurately predicting the outcome of the validation step which is always 1. TN captures

the number of times when both the validation using MC simulation and the filter ask for

more linkings in order to validate the query (necessary number of EL calls). This can be

calculated by calling the MC simulation after each linking to calculate exactly how many

linkings are necessary. FP is captured by the number of times the filter test is satisfied but

the validation using MC simulation is not. FN represents the excessive number of EL calls

performed because of the filters failure of predicting that an answer has been reached using

the validation step. This can be calculated by subtracting (the necessary EL calls) from

the actual number of calls performed when using the filter. Hence, We define accuracy as

the ratio of the sum of TP and TF determined by TQEL divided by the total sum of TP,

TN, FP and FN. Accuracy is quite appropriate in our setting since both false positives and

negatives result in expensive calls to MC simulation / EL function respectively. We report

in experiment 7, a detailed accuracy evaluation for different baselines.

48

3.4.3 Monte-Carlo Simulation Implementation

In order to efficiently access the previous MC simulations, we keep the results of the previous

runs in a vector of size N inside the mention object. For each value of the vector v1, v2, ..., vN ,

we store the entity that is assigned to that mention for that specific sampled world. We,

further, store the number of occurrences of each entity ex in the N sampled worlds in a

vector of size N where each value va corresponds to the number of assigned mentions for ex

in world wa as shown in figure 3.3. We store such values to easily retrieve the number of

occurrences for that entity in each sampled world wa. We also store the minimum number

of occurrences of all N worlds for each entity list.

In order to smartly generate MC samples for mentions in TQEL-approximate, we start by

generating the samples for mentions of entity lists with the highest APmax value. We iterate

over the entity lists in a decreasing order of APmax values in order to generate samples for the

mentions which are associated with entities that are competing to be in the top-k answer.

If k entity lists were found such that their minimum number of occurrences ≥ max(ej) such

that ej is not an entity from the first k entities, we do not perform MC simulation process

for ej.

Answer Verification

We use equations 3.4 & 3.5 to calculate the lcb for the first k entities given that they are

sorted based on their APmax values. If for every entity, lcb > τ , we return the first k entities

as the answer to Qk. However, if the this step fails, we continue to link more mentions until

the stopping condition is met.

49

3.4.4 Mention Selection

TQEL-approximate follows a benefit function approach similar to equation 3.3 where ENL

is replaced by ENC. We define ENC(S) as the expected number of calls such that the filter

test passes given the current entity lists and ENC(Sm
i
j ,ex) as the expected number of calls

needed for the filter to pass when mi
j links to ex. The benefit function finds a mention mi

j

such that if linked brings us closer to the top-k answer result. Note that chosen the entity

with the highest linking probability, say 0.9, might not always be the best answer since the

reduction in uncertainty, if it links to the desired entity, is quite low. Therefore, the benefit

function takes into account the probability of success as well as the reduction in the expected

number of EL calls.

3.4.5 Updating Lists and Approximations

APmin and APmax Maintenance

We can instantly calculate and update the APmin & APmax values based on the stored values

of µ & σ for every entity list. Values of µ & σ are updated by adding the probability

value of new mention mi
j to µ and adding p(mi

j)) * 1 - p(mi
j)) to σ2. Moreover, whenever

we link mention mi
j to an entity ex, for every entity that was associated with mention mi

j

we update the values of µ & σ accordingly. To update entity ex which is linked to mention

mi
j we add (1 - p(mi

j)) to µ and subtract p(mi
j)) * 1 - p(mi

j)) from σ2. For the other entities

we subtract p(mi
j)) from µ and subtract p(mi

j)) * 1 - p(mi
j)) from σ2 as well.

50

Monte-Carlo Simulation Maintenance

In order to properly maintain the samples of the Monte-Carlo simulation algorithm, we store

the results of the previous N runs to use ,if needed, in later stages. Whenever a mention mi
j

is linked to entity ex, we update the number of occurrences of all the entities that could be

referred to by mi
j. We remove mi

j from any entity that is not ex and add it to ex in all the

runs too. If the mention mi
j is not linked to any entity, then we remove mi

j in all N runs of

the possible entities.

3.5 Experiments

In this section we illustrate the wide range of experiments conducted using TQEL-exact &

TQEL-approximate.

3.5.1 Experimental Setup

Datasets

We are using two tweets datasets that have been collected from Twitter’s public API with-

out any specification or focus on certain keywords, locations or topics. All these tweets

are English tweets. We run the two heuristics of TQEL-exact & TQEL-approximate on

both datasets and conduct different experiments to evaluate such approaches with different

settings. We also use a synthetic dataset that have been generated by introducing a 10%

uniform noise to the linking probability of every mention-entity pair using the small dataset.

This can be done by multiplying a randomly generated real number between (0.9, 1.1) to

every mentions linking probabilities. Afterwards, we normalize the probabilities in order

to satisfy that the sum of probabilities equals 1. Our goal is to test the robustness of our

51

approach when the initial linking probability of a mention-entity pair is erroneous and study

how TQEL-exact and TQEL-approximate would perform in such circumstances. For the

TQEL-approximate we have chosen 10,000 to be the number of runs for the MC simulation

for all of our experiments.

• Small Dataset. The first dataset contains 101,486 tweets and has been collected from

April 6-April 7, 2018.

• Large Dataset. The second dataset contains 11,250,894 tweets and has been collected

from May 30-June 9, 2019.

Approaches

In our experiments we use 6 baselines to compare them with TQEL-approximate approach

and they are as follows:

• Random Approach (random). In this approach we will iteratively choose a random

mention-entity pair to link until a solution is found. We enhance the efficiency of this

algorithm by limiting the choice of mention from lists that are competing to be in the

top-k answer.

• TQEL-exact (Benefit Function) Approach discussed in 3.3.

• TQEL-exact (Greedy) Approach discussed in 3.3.

• TQEL-Approximate (Greedy) Approach. In this approach, TQEL choose the

mention with the highest probability rather than using the mention selection technique

discussed in 3.4.

52

• NOFILTER Approach. In this approach, TQEL does not use the filter proposed

in 3.4 but rather validates the query using MC Simulation after each EL call. This

approach will follow the same mention selection technique for TQEL-Approximate.

• MC-NOOPT Approach. In this approach, TQEL does not apply the optimizations

discussed in 3.4 but rather runs the Monte-Carlo simulation every time a validation is

needed.

Knowledge Base

We have used Wikipedia [5] as the source of our KB in this experiment by indexing the

whole Wikipedia dump using Apache Lucene [3] to make it easier to query titles, text bodies

and other metadata. We have also tagged each Wikipedia article with categories fetched

from DBpedia to be able to answer the top-k query with the category filter. We have only

indexed the articles that are included in our queries and the indexing process took around a

day and 20 hours.

Queries

The queries that are used for the experiments are top-k queries of different categories in

DBpedia. We have used multiple categories from different levels in the DBpedia category

hierarchy in order to control the selectivity of the query. The selectivity is corresponding to

the number of mentions in all the tweets. For example, a 10% selectivity indicates that 90%

of the mentions will be discarded as they do not have any possible entity that is associated

with the category cg. We also execute the query on different k-values and confidence scores.

The categories that we used in these experiments have been selected from 3 different levels

in the category hierarchy and it is as follows:

• Top-level categories: Agent, Work and Place. With an average selectivity of 55%.

53

• Med-level categories: Person, Musicalwork and Organization. The average selec-

tivity is 31%.

• Low-level categories: Film, Song, Populatedplace, Artist, Athlete and Politician.

The average selectivity is 13%.

Entity Extraction & Lookup Function:

In our experiment, we use simple dictionary-based entity lookup function that parses the

tweet sequentially and identifies the largest sequence of words that matches an article in the

KB. When there is a match, LU generates the possible candidates for the identified mention

and gives each candidate a linking probability based on a score of different factors (e.g. page

view count). LU takes roughly 0.5 milliseconds per tweet.

Entity Linking Function

In order to disambiguate a mention-entity pair we use TagMe API [36] that returns an entity

for the mention in the tweet text along with a probability of linking. In our setting we use

entity linking function as a determining function by assigning such mention to the entity if

the linking function returns a probability of 0.5 or more and vice versa. The linking process

takes on average 44 milliseconds.

3.5.2 Experiments Results

Experiment 1: Number of entity linking calls & execution time for different k

values

In this experiment we show the effectiveness when using different strategies and the advantage

that the TQEL-approximate approach provides as a function of k. We average the query

54

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

25000

30000

35000

40000

nu
m

be
r o

f E
L

ca
lls

All categories

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

10000

20000

30000

40000

50000

60000

70000

nu
m

be
r o

f E
L

ca
lls

Categories: agent/work/place

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

10000

20000

30000

40000

50000

nu
m

be
r o

f E
L

ca
lls

Categories: person/organization/musicalwork

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

nu
m

be
r o

f c
al

ls
to

 E
L

Categories: film/song/populatedplace/athlete/artist/politician

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 3.5: Comparing number of calls to entity linking function vs different k-values for
multiple categories

55

2 4 6 8 10 12 14 16 18 20
k-values

0

250

500

750

1000

1250

1500

1750

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

All categories

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

500

1000

1500

2000

2500

3000

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: agent/work/place

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

500

1000

1500

2000

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: person/organization/musicalwork

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

200

400

600

800

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: film/song/populatedplace/athlete/artist/politician

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 3.6: Comparing total execution time (seconds) vs different k-values for multiple
categories

56

results based on the category used over the hierarchy levels. Total execution time for TQEL-

exact consists of thinking time, benefit function calculation, and the time needed to resolve

the chosen mentions. Moreover, for TQEL-approximate total execution time is calculated

by adding critical factor choosing time, mention selection time, time to run MC simulation

and time to validate the top-k result using the MC runs.

From figures 3.5 & 3.6, we can see that TQEL-approximate is showing promising results in

terms of total of number of calls to the entity linking function and total query execution time.

We noticed that in all the queries we are saving in term of calls to the EL function, which is

a bottleneck for the query, due to the use of approximate query answering techniques. This

is due to the fact that the variance in the number of occurrences of each entity in the top-k

is quite large, and to find a top-k answer, we only require a much smaller number of entity

linking calls.

We also see another trend in TQEL-approximate approach where the number of EL calls for

k = x is higher compared to k = x − 1 and k = x + 1, this happens because of having two

or more contenders that have relatively comparable counts which in return forces more calls

to EL function for mentions in the competing entities.

We illustrate the fact that TQEL-exact (for both heuristics) outperforms the random ap-

proach in general by a huge margin (130x saving) by smartly selecting mentions to disam-

biguate in an iterative fashion. The reason behind that is by focusing on proving that the

k-highest entities in terms of max values. We also see the number of calls and total execu-

tion time is increasing whenever k increases while in TQEL-approximate that is not the case.

The reason behind such results is that, if the approximation clearly shows that the top-k

result without any competition from the k + 1 entities, then little work in terms of entity

linking is needed regardless of k. However, for TQEL-exact, we need to pay the overhead of

performing such EL calls to make sure that the top-k result is valid.

57

In the experiment, we do not include the execution time of the entity extraction and lookup

function since it is shared by all strategies. Additionally, this process could be executed

on the entire dataset during ingestion time since it is cheap. We also do not include the

numbers of the naive approach that requires the cleaning of all the tuples before running the

query although it is clear that our proposed strategies outperform such strategy. The naive

approach takes around 145,023 EL calls and around 1.8 hours needed to execute any of the

queries. We do not report the naive approach numbers as it is constant over all queries and

stretches the figures making them less informative.

Experiment 2: Detailed analysis of TQEL-approximate performance

In this experiment we analyze the performance of the TQEL-approximate for different con-

fidence levels that are given by the query. We will focus on 3 factors that are of interest:

number of EL calls, number of mentions that have been sampled using MC technique and

total execution time of the query. We are reporting also averaging the query results for

categories in the same hierarchy level in this experiment.

In the left upper sub-figure of figure 3.7, we can see that the confidence level heavily affects

the number of entity linking calls that we will end up being executed. The number of calls to

EL function is growing as the confidence level rises. The number of calls to EL is also affected

by the k value as it might cause a significant increase in EL calls due to the competitiveness

of entities for that rank based on the number of occurrences .

We also report the difference in number of mentions required for the MC simulation in

order to generate a top-k answer set. The right upper sub-figure in figure 3.7 illustrates the

amount of savings that are achieved by smartly limiting the generation of MC simulations

to mentions associated with competing entities as discussed in section 3.4. The number of

sampled mentions also decreases when the number of resolved mentions increases as we will

not need to generate samples for the linked mentions. In the lower sub-figure of figure 3.7,

58

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

100

200

300

400

500

600

700

800

nu
m

be
r o

f c
al

ls
to

 E
L

All categories

k = 5
k = 10
k = 20

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f m
en

tio
ns

 sa
m

pl
ed

All categories

k = 5
k = 10
k = 20

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

10

20

30

40

50

60

70

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

All categories

k = 5
k = 10
k = 20

Figure 3.7: Detailed performance analysis of TQEL-approximate using different confidence
levels.

59

we report the total execution time of the queries which consists of (critical factor choosing

time, mention selection time, time to run MC simulation and validate top-k answer set using

the MC runs). In this experiment we illustrate the fact that in general choosing a lower τ

leads to less number of entity linking calls and therefore less total execution time in general

given that the EL function execution is the bottleneck.

Experiment 3: Scalability of TQEL

This experiment illustrates the impact of large datasets on TQEL-exact & TQEL-approximate

and that the amount of savings we are able to achieve using the TQEL-approximate is no-

ticeable. We have run the query on the category ”film” and reported the performance over

multiple k values. The ”film” category had roughly 10% selectivity in the large dataset. From

figure 3.8, we are able to find the same pattern or trend where the savings by TQEL-exact

approach in term of EL calls is more than 100x for the calls needed to fully disambiguate

all the mentions in the tweets. TQEL-approximate results are also promising and are quite

similar to results that have been achieved on the smaller dataset, even though in the large

dataset we are dealing with a large number of tweets. This is due to the fact that the differ-

ence of number of occurances between entities that are in the top-k is quite large which is

allowing TQEL-approximate to return the result with high confidence without much entity

linking calls. This experiment clearly shows that in real-world datasets differences in the

number of occurrences should be exploited by returning an answer with high confidence us-

ing approximation techniques rather than paying the huge overhead of reporting the exact

answer.

Experiment 4: Score of TQEL-approximate results

In this experiment we measure the accuracy for the results returned by TQEL-approximate

for different τ values. To evaluate the returned answer set we have used two metrics:

60

2 4 6 8 10 12 14 16 18 20
k-values

0.0

0.5

1.0

1.5

2.0

nu
m

be
r o

f E
L

ca
lls

1e6 Category: film (Large dataset)

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 3.8: EL calls vs k-values

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

25000

30000

35000

40000

nu
m

be
r o

f c
al

ls
to

 E
L

All categories (Noisy dataset)

TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)
Random

Figure 3.9: EL calls vs k-values

• Precision: Represents the fraction of elements in the approximate answer set com-

pared to the exact top-k set.

• Rank Distance: A modified version of the footrule distance [34] to compute the

distance of the inaccurate entity ei in the approximate answer set to their exact rank.

To compute rank distance we compute the following: 1
k

k∑
i=1

maxof(exactei − k, 0) where

exactei is the exact rank of ei. We modified the distance calculation since we only report the

top-k answer set without any order between the top-k answer set.

In Table 3.2, we averaged the scores of each confidence levels over all categories and over

k values (1 - 20). We see that rank distance is heavily influenced by the chosen τ and the

difference in EL calls.

Confidence 95% 90% 85% 80% 75% 70%

Precision 0.95 0.93 0.92 0.92 0.91 0.90

Rank Distance 0.069 0.091 0.113 0.130 0.160 0.168

Table 3.2: Evaluation metrics for different confidence levels

61

Confidence 95%

Precision 0.90

Rank Distance 0.089

Table 3.3: Evaluation metrics for noisy dataset with 95% confidence level

Experiment 5: Robustness of TQEL

In this experiment we illustrate the effect of introducing noise to the linking probability to

study the its impact on the query execution time and answer quality.

From figure 3.9 we have not noticed any major affect due to the introduced noise in terms

of number of calls to EL as the TQEL-approximate approach is still dominating any other

approach in terms of performance which is also reflected in the total execution time. However,

the quality of the answer has dropped due to the introduced noise as shown in Table 3.3.

Experiment 6: Comparing TQEL with other approximate baselines

In this experiment we report the total execution time of the query for different proposed

baselines. In figure 3.10, we illustrate the execution time of the EL functions, denoted as

[baseline] EL, in a different color to show how different baselines perform. NOFILTER

approach was as expected the best in terms of EL function time since we validate the query

after each call resulting in not executing any unnecessary EL calls. However, in terms of

overall execution of the query it performed the worst due to the extremely high number of

expensive verification overhead (factor of the number of entity linking calls). We stopped

the query execution after 5 minutes of execution due to the delay and overhead caused by

some baselines.

On the other hand, MC-NOOPT approach verification cost was also high compared to

TQEL-approximate since MC simulations will be run each time the validation step is per-

formed. This clearly shows the effectiveness of our proposed MC optimizations. We see that

62

TQEL-approximate performed better than TQEL-approximate (Greedy), especially with

the execution time of the EL functions caused by the 9% increase of EL calls compared to

TQEL-approximate.

5 10 20

k-values

0

50

100

150

200

250

300

To
ta

l E
xe

uc
tio

n
Ti

m
e

(s
)

Total Exeuction time for different baselines
TQEL-App. EL
TQEL-App. T
TQEL-App.
(Greedy) EL
TQEL-App.
(Greedy) T
NOFILTER EL
NOFILTER T
MC-NOOPT EL
MC-NOOPT T

Figure 3.10: Execution Time
pe

rs
on

po
pu

la
te

dp
la

ce

or
ga

ni
za

tio
n

po
lit

ici
an

at
hl

et
e

m
us

ica
lw

or
k

so
ng

ar
tis

t

fil
m

pl
ac

e

wo
rk

ag
en

t

Catogory

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy of Baselines

TQEL-Approximate
TQEL-Approximate
(Greedy)

Figure 3.11: Accuracy

Experiment 7: Evaluating Filter’s Efficacy.

This experiment shows the accuracy of TQEL-approximate, TQEL-approximate (Greedy)

and NOFILTER baselines. In order to calculate the accuracy for the first two, we follow the

measurement discussed in Section 3.4.

In the case of NOFILTER, since it never characterizes data as negative (it always invokes

the expensive MC simulation), the values for TN and FN are 0 and the value of TP is 1,

while the value of FP are number of EL calls - 1. As a result, its accuracy is very poor (below

1% for all categories) we do not show the results in Figure 3.11. Figure 3.11 illustrates the

accuracy of TQEL-approximate & TQEL-approximate (Greedy) with a reported average

of 83% and 64% accuracy, respectively, over all categories.

In the experiment we further analyzed and realized a correlation between the distribution

of the top-k entity lists mentions’ probabilities and the accuracy of the result illustrated in

table 3.4.

63

Criteria for comparison of top-20 entity lists Agent Athelete

Average size of entity list 149.75 47.65

Average standard deviation of entity lists 4.68 1.7

Average percentage of the difference between mean calculated
using normal approximation and mean calculated using MC

0.1% 4.1%

Average number of verifications 1.05 2.5

Average percentage increase of EL calls compared
to NO-FILTER approach

5% 16%

Table 3.4: Evaluation metrics for different confidence levels

For the agent category where the size of the top-20 entity lists is relatively large, we get an

accuracy of 95%. For agent, the average size of the top-20 lists was 149.75, the average σ

based on normal approximation was 4.68 and the average µ difference between normal ap-

proximation and MC simulation was 0.1% (thus normal approximation is a better estimate),

we get an accuracy of 95%. On the other hand, the same numbers for the athlete category

were 47.56, 1.7 and 4.1% which effects the normal distribution statistics to be inaccurate

resulting in a lower filter accuracy.

3.6 Conclusion

In this chapter, we presented TQEL, a framework to support queries that retrieve top-k

entities belonging to a user-specified category in a collection T . TQEL exploits the query

semantics to reduce the number of entity linking function calls for mentions in T . It provides

the option of answering the query exactly with deterministic guarantees or approximately

with probabilistic guarantees. The chapter focuses on the approximate approach that uses an

implementation of Monte-Carlo simulation technique to efficiently evaluate the query with

guarantees. To reduce the overhead of the Monte-Carlo simulations (which is expensive),

TQEL-approximate uses normal approximation to estimate the count of each entity as a

blocking function / filter. In order to reduce the number of calls to the entity linking

64

function, a benefit-based function is used to select mentions to link in each iteration.

65

Chapter 4

TQELX: Query-Driven Cleaning for

Group-Based Aggregation Queries

Aggregate queries are a powerful tool for analyzing large sums of data to produce a single

representative value. Aggregate queries are widely used in data analysis, decision-making

and OLAP domains to offer a summarized version of a field or multiple fields. The presence of

uncertainty in datasets hinders the benefits from performing data analytics tasks, including

aggregate functions, where the query’s result might be misleading and does not answer the

query accurately.

For example, given the readings of table 2.1, an insurance company would like to quote

a policy for a driver priced based on the average speed of the speed readings, with high

confidence, of each driver. The readings were captured by a speed sensor device that produces

uncertain readings. If the average speed for a car is above a specific threshold, then the price

would be higher. A query corresponding to such an analysis can be as follows:

SELECT License_plate

FROM Speed_readings

66

GROUP BY License_plate

HAVING AVG(speed) > 100;

The readings in the dataset are not deterministic and an existence probability value ac-

companies each reading. Consider, for instance, that the video recording is extracted and

analyzed to get a more accurate version of that reading (i.e., cleaning). One possible ap-

proach to solving this issue is to clean the entire dataset (i.e., consulting the video version

for each reading instance). Another option is to apply uncertain query answering techniques

to answer the query probabilistically.

Nonetheless, both approaches pose limitations when answering the query at hand. The

first approach to cleaning the dataset would be costly and sometimes unnecessary (e.g.,

for readings that would not affect the predicate satisfaction outcome given if it were to be

cleaned). On the other hand, we might not get a high confidence answer by purely using

probabilistic query processing approaches. (e.g., the probability that a driver owning a

car with license plate ABC satisfying the query is 0.4!). Therefore, a method that utilizes

both approaches by cleaning only necessary readings needed to answer the query with high

confidence would be more suitable for such queries.

In the previous chapter, we presented TQEL, a framework that finds the top-k entities

in a collection of tweets by efficiently calling the entity linking function. The main idea

was to exploit a cheap filter-like mechanism, based on normal approximation calculations,

that identifies if a top-k answer is found before running the more expensive Monte-Carlo

simulation technique for query evaluation. Let us consider the data in TQEL to be modeled

using two tables 4.1 & 4.2, we can then view the TQEL top-k query to be a group-by COUNT

query over the tables. In particular, the query to retrieve top-2 mentions for the category

”films” can be viewed as the following group-by COUNT query:

67

Tweets
Tweet id Tweeter Text Time Location

t1 u1
Black panther has finally grossed

$700 million domestically!
ts1 l1

t2 u2
Emmy Rossum in Beautiful

Creatures is stunning
ts2 l2

...

Table 4.1: Relation to represent tweets in table 3.1

Mentions
Tuple id Tweet id Mention id Mention Entity Categories P

tup1 t1 m1 Black panther
Black Panther

(2018 film)

{Film,
Creative Work,
Oscar Winner}

0.6

tup2 t1 m1 Black panther
Black Panther

(1977 film)
{Film,

Creative Work} 0.1

tup3 t1 m1 Black panther
Black Panther

(Animal)
{Big Cat,
Animal} 0.1

tup4 t2 m1 Emmy Rossum Emmy Rossum
{Entertainer,

Agent} 1

tup5 t2 m2
Beautiful
Creatures

Beautiful Crea-
tures (2013 film)

{Film,
Creative Work} 0.8

tup6 t2 m2
Beautiful
Creatures

Beautiful Crea-
tures (Novel)

{Novel,
Creative Work} 0.15

...

Table 4.2: Relation to represent mentions after running entity extraction & entity lookup
function on tweets in table 4.1

SELECT Entity

FROM Mentions

WHERE "Film" in Categories

GROUP BY Entity

ORDER BY COUNT(Entity) DESC

LIMIT 2;

68

In this chapter, we expand the techniques developed in the previous chapter to support a

larger class of aggregations, particularly SUM and AVERAGE, in addition to the COUNT

supported by the TQEL framework. We refer to the extended framework as TQELX. We

first consider a top-k query with different aggregation functions, other than COUNT. We

then further generalize the framework to include the other query, a group-by query with a

having clause. For the top-k queries with generalized aggregation, we note that the method

developed in the previous chapter using the normal distribution filter will need to be modified.

Furthermore, as we will see, we can further optimize the Monte-Carlo simulation technique

that reduces the cost of the query validation step.

For the group-by query with a having clause, we first formally define probabilistic semantics

of such queries and formulate the precise query satisfaction requirement for the cleaning

process. We devise a different approach for tackling the problem of integration of the cleaning

process since the mechanism to integrate cleaning in top-k queries does not generalize to the

queries with the having clause. We first use the normal approximation filter to estimate the

aggregation value given the existence probabilities of each tuple. We then exclude groups

with a high chance of satisfying the query’s condition (i.e., the having clause) from the

cleaning process. Furthermore, we eliminate the groups with a high probability of not

satisfying the query’s condition. Using such bounds, we can limit the cleaning process for

each iteration to groups that are of interest and have a chance, if chosen for cleaning, to

improve the answer’s quality.

We empirically study the expanded framework, TQELX, on a synthetic dataset to evaluate

each query’s performance, the Monte-Carlo simulation’s effects, and the impact of the normal

approximation filter on each query.

In summary the main contributions of this chapter are:

• We develop a expanded framework TQELX, that integrates the cleaning process with

69

a different group-based aggregation queries. (section 4.1 & 4.2).

• We propose a probabilistic approach that relaxes the quality of the result by introducing

a user-defined confidence threshold to expedite the overall running time of the query

efficiently 4.3). (TQELX-probabilistic)

• We experimentally evaluate our framework using a synthetically generated dataset

from the TPC-H dataset. We compare the results of the TQELX-probabilistic against

the results of a deterministic approach. Moreover, we provide a detailed evaluation for

the probabilistic approach (section 4.4).

4.1 Preliminaries

In this section, we will present the required preliminaries that form the basis for the TQELX

framework.

4.1.1 Dataset and Required Functions

Dataset

Let D be a probabilistic database that consists of n probabilistic relations (x-relations)

R1,R2, ...,Rn. Each x-relation Ri consists of m x-tuples x1, x2, ..., xm and they are consid-

ered independent (i.e. the existence of an x-tuple in a x-relation instance is not dependent

on the existence of another x-tuple). Each x-tuple xj is composed of alternative tuples

tj,1, tj,2, ..., tj,|xj | which are normal tuples that follow the schema of the relation Ri but have

an existence probability value associated with each one of them. The alternative tuples

tj,1, tj,2, ..., tj,|xj | of x-tuple xj are mutually exclusive (i.e. at most one tuple can be present in

any x-relation instance). Moreover,
|xj |∑
y=1

p(tj,y) ≤ 1 for every x-tuple. Our data model follows

70

the same probabilistic data model that was first introduced in Trio [88, 7].

Cleaning Function

A cleaning function in the TQELX framework CLN(tj,1, tj,2, ..., tj,|xj |) takes as input all

alternative tuples of one x-tuple xj. The output of cleaning function is a either a deterministic

tuple that belongs to the x-tuple xj (i.e. the existence probability of the returned tuple is

1) or no tuples indicating that x-tuple xj has an existence probability of 0 for any x-relation

instance.

The main goal for the cleaning function CLN is to remove the uncertainty of the x-tuple xj,

which in return reduces the uncertainty of the database D. Entity linking is an example of

the cleaning function where the combination of (Tweet id and mention id) in table 4.2 is the

x-tuple while alternative tuples correspond to Tuple ids that share the same combination

of (Tweet i and mention id). Another example of the cleaning function is the process of

identifying the accurate speed reading from table 2.1.

Query Model

Let G(Q) be the fields of the group-by clause such that the values of G(Q) are unique within

the alternative tuples of the same x-tuple. Let AF(Q)) be the field used for aggregation and

agg(Q) be the aggregate function. Let pred(Q) be the query’s predicate, having(G(Q)) be

the having clause and order(G(Q)) be the order-by clause of the query Q. In the TQELX

framework, we study the problem of integrating the cleaning process with two aggregation

group queries, and they are as follows:

• Top-k aggregation query: a top-k query Qk is evaluated on top of x-relation Ri.

Each query Qk should include order(G(Qk)), however, pred(Qk) and having(G(Qk))

are optional. For example, a top-k Qk that finds the license plate with the highest sum

71

of recorded speeds from table 2.1. The query can be expressed as the following query:

SELECT License_plate

FROM Speed_readings

GROUP BY License_plate

ORDER BY SUM(speed)

LIMIT 1;

• Group-based aggregation query with having clause: a query Q is evaluated on

top of x-relation Ri. Each query Q has a having clause having(G(Q)) and an optional

predicate pred(Q). For example, a query Q retrieves the license plates that have more

than one different speed readings from table 2.1. The query can be expressed as the

following query:

SELECT License_plate

FROM Speed_readings

GROUP BY License_plate

HAVING COUNT(License_plate) > 1;

In TQELX, we only consider the set of aggregation functions {AVERAGE, SUM, COUNT}.

4.1.2 Probabilistic Query Definitions

Possible Worlds

A possible world wa of x-relation Ri from the set of all possible worlds W is composed of at

most one alternative tuple tj,y from each x-tuple xj. The probability of the possible world

p(wa) can be computed using equation 4.1. Moreover, the summation of the probability of

72

all possible worlds W is defined in equation 4.2.

p(wa) =
m∏
j=1

V s.t. V =

p(tj,y) when wa ∪ xj = tj,y

1−
|xj |∑
y=1

p(tj,y) when wa ∪ xj = φ
(4.1)

p(W) =

|W|∑
a=1

p(wa) (4.2)

Probabilistic Group-Based Aggregation Query Evaluation

We now discuss how to evaluate the queries supported in TQELX. Given a possible world

wa ∈ W , we evaluate the query on the world wa. Let ans(wa) be the answer set for Q(wa),

then we define satp(G(Q)) as the probability that G(Q) is ∈ ans(wa) sets of W , and can be

calculated using the following equation:

satp(G(Q)) =

|W|∑
a=1

p(wa)·I(G(Q), wa) s.t. I(G(Q), wa) =

1 whenG(Q) ∈ ans(wa)

0 whenG(Q) /∈ ans(wa)

(4.3)

Answer Semantics

Let A(Q) be the answer after evaluating query Q over x-relation Ri and τ is a user-defined

confidence score threshold value. We now define the answer semantics for both queries as

follows: We call A(Q) a valid answer for the top-k query iff:

• ∀ G(Q) ∈ A(Q), satp(G(Q)) > τ .

The top-k aggregation query evaluation semantic we adopt in TQELX is similar to the

semantics of PT-k [49] where only group values that have a top-k probability, satp, higher

73

than a specific threshold τ will only be included in the answer set. The order among the

returned top-k answer set is ignored in our setting. Note that in the case of ties (more than

k group values satisfy the answer semantics), we return the only k group values ordered by

their satp(G(Qk)) score in a descending order.

Problem Definition

Given a group-based aggregation query Q on top of x-relation Ri, a cleaning function CLN ,

a user-defined confidence score threshold value τ , TQELX provides an efficient probabilistic

solution for the query Q that generates A(Q) such that A(Q) follows the predefined answer

semantics for the probabilistic approach by reducing the number of x-tuples cleaned using

the cleaning function CLN .

For the group-based aggregation query with having clause, a user specifies a cut-off confidence

score threshold value β such that we discard any tuples for group G(Q) with satp(G(Q)) <

β from the cleaning process.

4.1.3 Probabilistic Group-Based Aggregation Query Example So-

lution

SpeedReadings
xid Reading id License plate Speed P

x1 r1 ABC 100 0.6
x1 r2 XYZ 80 0.3
x1 r3 MNO 30 0.1
x2 r5 XYZ 70 1
x3 r6 XYZ 90 1
x4 r7 ABC 110 0.4

Table 4.3: Partially cleaned speed readings ta-
ble

Possible world Probability

r1, r5, r6, r7 0.24
r1, r5, r6 0.36

r2, r5, r6, r7 0.12
r2, r5, r6 0.18

r3, r5, r6, r7 0.04
r3, r5, r6 0.06

Table 4.4: Partially cleaned possible worlds
results.

74

SpeedReadings
xid Reading id License plate Speed P

x1 r1 ABC 100 1
x2 r5 XYZ 70 1
x3 r6 XYZ 90 1

Table 4.5: Fully cleaned speed readings table

Let the query be the one presented as an example in the query model for the top-k aggregation

query that finds the license plate with the highest sum of speeds that was recorded in table

2.1. Let the user-defined confidence score threshold value τ be 0.75. We first run the query

in each possible world presented in table 2.2. After calculating satp for each license plate

we get the following set (license plate: satp): {ABC: 0.24, MNO: 0.138, XYZ: 0.622}. We

see that we cannot return an to the top-k query unless we clean more tuples to return an

answer to the query that satisfies the answer semantics. When we choose to clean alternative

tuples of x-tuple x2 we get the partially cleaned table 4.3. After evaluating the query in each

possible world instance depicted in table 4.4 we get the following set (license plate, satp):

{ABC: 0.24, XYZ: 0.76}. We can now return {XYZ} as the Qk’s answer since it follows the

answer semantics.

We next discuss the solution of the group-based aggregation with having clause query exam-

ple that asks for the license plates with more than one recorded speed readings in table 2.1.

Given that the confidence threshold confidence value τ is 0.85, the cut-off confidence thresh-

old value β is 0.25 and after evaluating the group-based aggregation query and calculating

satp for each group, we get the following set (License plate: satp): {ABC: 0.24, MNO: 0.03,

XYZ: 0.79}. Since there are no groups with satp > τ , we cannot include any group in the

answer set. However, the group with the value XYZ has satp 0.79 and can be a potential

answer if some tuples are cleaned. From the partially cleaned table 4.3 and possible worlds

illustrated in table 4.4, we get the following satp values after evaluating the query: {ABC:

0.24, MNO: 0.03, XYZ: 1}. Hence, we show that we have found a set {XYZ} that satisfies

75

the answer semantics and can be returned as the answer for the query Q. Note that group

values {ABC, MNO} will be ignored as potential answers and discarded from the cleaning

candidate set since their satp < β.

Having formally defined the semantics of the group-by queries with aggregation and having

queries, the following section discusses the overview of the TQELX implementation.

4.2 TQELX overview

The abstract flow of any query-driven cleaning model is illustrated in figure 1.1 as the

uncertainty cleaning cycle where the cleaning step is iteratively executed until the quality of

the answer satisfies the query’s semantics. In TQELX, we generalize the uncertainty cycle

to support probabilistic group-based aggregation queries where the query evaluation follows

the approximate confidence computation approach. TQELX is a middleware framework

that handles the probabilistic query evaluation in memory and returns the answer to the

user. The general algorithm shown in algorithm 3 is an adaptive algorithm that analyzes the

current state of the execution and adjusts the query plan accordingly. The algorithm consists

of a preparatory phase where groups are created given the tuples that satisfy the query’s

predicate, a cleaning phase which identifies the set of tuples to be cleaned for the current

iteration, and an evaluation phase that evaluates the query and return an answer if the

stopping condition is met. The algorithm, in essence, is alike for both queries supported in

TQELX. However, the aggregate functions’ implementation differs (e.g., filter testing differs

for both queries).

76

Algorithm 3 TQELX Approach

1: procedure GetQueryAnswer(Q, Ri)
2: satisfying tuples ← getSatisfyingTuples(Q, Ri)
3: groups ← createGroupsFromTuples(satisfying tuples)
4: answer found ← false
5: while !answer found do
6: while !passFilterTest(Q, groups) do
7: tj,1, tj,2,...,tj,y ← selectTuplesToClean(satisfyingtuples, groups)
8: xj ← CLN(tj,1, tj,2,...,tj,y)
9: updateRelation(xj, Ri)

10: updateGroups(xj, groups)

11: if stoppingConditionMet(Q) then
12: answer found ← true

13: returnAnswer(Q, groups)

Figure 4.1: TQELX flow diagram

77

4.2.1 Preparatory Phase

To prepare tuples and groups for the next phases, algorithm 3 retrieves all the tuples that

satisfy pred(Q) from x-relation Ri. Then a list of group objects is created such that each

group object represents a possible value of G(Q) given the retrieved predicate satisfying

tuples. Moreover, every group object holds a list named ”dirty tuples list,” which consists

of pointers to all the uncleaned tuples (i.e., the probability of tuple < 1) that have the same

group values. Tuples in the dirty tuples list are ordered based on their aggregation value in

a descending order. Moreover, each group has a list named ”clean tuples list,” which stores

the pointers to the cleaned tuples (i.e., the probability of tuple = 1) with the same group

values. In addition, each group object has min & max counters. These correspond to the

possible minimum and maximum values that an aggregate associated with the group might

have after all tuples are cleaned.

In order to calculate the max counter for a group Gc when the aggregation function is

COUNT or SUM, we execute the aggregation function on dirty tuples list + clean tuples list

of the group Gc (e.g., for the aggregation function SUM, we calculate the summation of dirty

tuples lists and add it to the summation of clean tuples list). However, for aggregate function

AVERAGE, the calculation is more complicated. We need to consider the min average and

the tuples that would increase the average score only. We show in algorithm 4 how to

accurately calculate the max counter. On the other hand, when calculating COUNT and

SUM for the min counter, we only apply the aggregate function to the clean tuples list and

report the result as the min counter. For the AVERAGE aggregation function, we describe

in algorithm 5 how to calculate it since calculating min value is not as straightforward by

only increasing the aggregate values of dirty tuples that decreases the overall average.

Given the satisfying tuples, an object is created for each tuple that holds the values and

a pointer to the x-tuple object it belongs to. We also maintain a list of x-tuple objects

78

Algorithm 4 Calculating max counter for AVERAGE aggregate function

1: procedure CalculateMaxCounterForAVG(Gc, AF (Q))
2: max ← 0
3: for each t ∈ Gc.CleanTuples do
4: max ← t.AF (Q)

5: count ← Gc.CleanTuples.size()
6: max ← max / count
7: groups ← createGroupsFromTuples(satisfying tuples)
8: stop calculation ← false
9: index ← 0

10: while !stop calculation & index < Gc.DirtyTuples do
11: if max ¡ Gc.DirtyTuples[index].AF (Q) then
12: max ← max * count + Gc.DirtyTuples[index].AF (Q)
13: count ← count + 1
14: max ← max / count
15: index ← index + 1
16: else
17: stop calculation ← true

Algorithm 5 Calculating min counter for AVERAGE aggregate function

1: procedure CalculateMinCounterForAVG(Gc, AF (Q))
2: min ← 0
3: for each t ∈ Gc.CleanTuples do
4: min ← t.AF (Q)

5: count ← Gc.CleanTuples.size()
6: min ← min / count
7: groups ← createGroupsFromTuples(satisfying tuples)
8: stop calculation ← false
9: index ← Gc.DirtyTuples.size() - 1

10: while !stop calculation & index > 0 do
11: if min > Gc.DirtyTuples[index].AF (Q) then
12: min ← min * count + Gc.DirtyTuples[index].AF (Q)
13: count ← count + 1
14: min ← min / count
15: index ← index - 1
16: else
17: stop calculation ← true

79

Figure 4.2: TQELX data structures.

where for each x-tuple object, we store a list of alternative tuples that point to the different

tuples in the Tuples list. Figure 4.2 illustrates the various data structures that are used in

the TQELX framework and how other objects connect. The central concept behind having

different pointers in each object is to allow for instant access to any group, x-tuple, or

alternative tuple.

4.2.2 Cleaning Phase

Tuples Selection for Cleaning

By exploiting the group-based query semantics, we can smartly select a set of tuples to

80

clean to satisfy the query evaluation steps’ stopping condition efficiently. Cleaning the most

relevant tuples yields savings in terms of the cost of cleaning and, hence, reduces the total

execution time of the query. The method of choosing the set of tuples to clean is different

when answering different queries supported in TQELX and will be explained in detail in the

next section for each query.

Cleaning Function

When a set of alternative tuples, that belong to the same x-tuple xj, are fed to the cleaning

function CLN , the expectation is at most one tuple is returned as the clean version of xj

(i.e. the x-tuple value xj will be unique within the relation). For example, if the framework

decides to clean the alternative tuples of x-tuple x1 in table 4.3, tuples {r1, r2, r3} are sent

as input to the cleaning function CLN(r1, r2, r3). The output of the cleaning function, as

depicted in the fully cleaned table 4.5, is the tuple r1 and we can see in table 4.5 we only

see one tuple representing the x-tuple x1. The cleaning function process will be the same for

any type of query used in TQELX framework.

Groups Update

In this step, the algorithm updates the different groups that were affected by the cleaning

function executed on the selected tuples. For each tuple chosen, we remove its pointer from

the dirty tuples lists and subtract the aggregation value of the tuple from the max counter. If

the output returns a tuple as the cleaned version of the associated x-tuple, we add a pointer

in the clean tuples list for the group that shares the same group values with the returned

tuple. Moreover, the aggregate value of the clean version tuple is added to the min & max

counters of that group.

For example, when choosing the alternative tuples {r1, r2, r3} of x-tuple x1 for cleaning, r1

pointer in the dirty tuples list of the group with value ”ABC” and the new max counter

81

value is 110. we perform the same process for tuples r2 & r3 and their corresponding groups

with values ”XYZ”, ”MNO” respectively. Once r1 is returned as the clean version of x-tuple

x1, we add it to the clean tuples list of group with value ”ABC” along with adding the value

100 to both the min & max counter so they become 100 & 210 respectively.

4.2.3 Evaluation Phase

Filter Test

TQELX exploits a filter-based mechanism where its main job is to estimate if a potential

answer is found for the probabilistic query Q. Since the probabilistic evaluation of the

stopping condition is expensive, the filter acts as a gatekeeper to prevent proceeding to the

probabilistic query evaluation step until the chance of reaching the stopping condition is

high. The following section explains the filter’s features and how the test is performed for

both queries supported in TQELX.

Stopping Condition

In this step, the algorithm checks if a solution for the group-based Q is found and can be

validated. The implementation of the stopping condition function is different for the top-k

aggregation query and the group-based aggregation with a clause query. The implementation

of both queries will be discussed in detail in the next section.

4.3 TQELX-probabilistic Approach

In this section, we describe our approach to integrating the cleaning process with proba-

bilistic query answering as the defined semantics in section 4.1. We discuss in detail how to

implement the different functions of algorithm 3 in the context of both supported queries

82

in TQELX. We specifically study the implementation of tuples selection, updating groups,

filter test and stopping condition functions.

To evaluate the query probabilistically, the generation of all possible worlds W is required

and then evaluating the query on each world wa ∈ W in order to retrieve the confidence score

of each answer. However, as we explained in section 3.4 of chapter 3, this is infeasible to

execute. We instead follow the approximation confidence computation semantics by sampling

the set of all possible worlds W and then evaluating the query on each sampled world. By

computing satp for each group, we can include groups with a more confidence score than τ .

4.3.1 Stopping Condition

Similar to the TQEL framework, Monte-Carlo simulation is used for the TQELX-probabilistic

approach by generating random samples of the set of all possible worldsW . A random world

sample wa is generated by choosing at most one alternative tuple tj,y for each x-tuple xj based

on the probability distribution of the alternative tuples tj,1, tj,2, ..., tj,|xj |. If the summation

of the probabilities of alternative tuples tj,1, tj,2, ..., tj,|xj | does not add up to 1, the x-tuple

has a probability of 1 -
|xj |∑
y=1

p(tj,y) which corresponds to the probability of the x-tuple xj not

existing in the database. We also generalize the formula to calculating the probability of

group Gc showing up in the final answer p̂c as follows:

p̂c =
number of times Gc appears in A(Q)

N
(4.4)

where N is the number of sampled worlds.

TQELX-probabilistic checks the stopping condition by calculating and comparing lcbc in

83

equation 3.51 against τ for every group Gc. The stopping condition has a different imple-

mentation for the top-k aggregation query and group-based aggregation query with having

clause. For the top-k aggregation query, if there are k groups whose lcbc values > τ , then

query execution stops, and those k groups are returned as the answer for the top-k query.

For the group-based aggregation query with having clause, the query execution will not stop

until all group values are either in the answer set (i.e., lcb > τ) or discarded from the cleaning

candidates given the cut-off confidence score threshold value β. We calculate a higher bound

for the confidence cut-off bound (hccb) using equation 4.5. If hccbc < β, we then refrain

from cleaning any tuples associated with group Gc and delete its object from the groups’

list. Hence, when the cleaning stops, every group in G(Q) has to be either in the answer set

A(Q) or not considered as a potential answer and therefore deleted from the group list.

hccbc = p̂c + z ×
√
p̂c × (1− p̂c)

N
(4.5)

Given the similarity with TQEL-approximate, discussed in section 3.4, we propose similar

approaches and optimizations from exploiting filters based on normal approximation cal-

culation, mentions selection technique and other optimizations related to the Monte-Carlo

simulation execution. However, a complete adoption is not simply possible. Thus, we need

to modify some of the approaches, given that the query semantics are different and require

multiple modifications to the previous solution. We discuss the necessary changes in the

following subsections.

Filters

The main goal of the filter in TQELX is to provide a mechanism that can estimate the

1lcb as explained in chapter 3 is the lower confidence bound of the probability of group Gc

84

outcome of the approximate query evaluation, using the Monte-Carlo simulation technique,

in an efficient and fast way without the need to run the actual expensive simulation and

evaluation. Hence, any filter with such properties can be used in our framework to speed up

the total query execution time.

In TQELX, we use the normal approximation filter that was introduced in section 3.4 due to

a degree of similarities between the two problem settings where both are answering a group-

based aggregation query. To generalize the use of such filter, we have to redefine different

terms such as the mean (µ), the standard deviation (σ), the approximate max (APmax), the

approximate min (APmin) and ENC(αx) that are used in section 3.4. We, further, revisit

the implementation of the filter’s test for both supported queries.

Let µGc be the mean of group Gc, σGc be the standard deviation of group Gc, p(tj,y, Gc) be

the probability that tj,y exists in the database and the value of the group fields is Gc and

value(AF tj,y) is the value used by the aggregation field for tj,y. In equations 4.6 & 4.7 we

define µc & σc for different aggregate functions. Using those equations we will be able to

calculate the approximate max & approximate min (APmaxc & APminc) for every group

as formulated in equations 3.8 & 3.9 respectively.

µc =

COUNT

∑
G(tj,y)∈Gc

p(tj,y,Gc)

SUM
∑

G(tj,y)∈Gc
(p(tj,y,Gc)× value(AF tj,y))

(4.6)

σ2
c =

COUNT

∑
G(tj,y)∈Gc

(p(tj,y,Gc)× (1− p(tj,y,Gc)))

SUM
∑

G(tj,y)∈Gc
(p(tj,y,Gc)× (1− p(tj,y,Gc))× value(AF tj,y)2)

(4.7)

In the case of AVERAGE, calculating the µc & σ2
c is not that straightforward given that we

85

cannot quickly know the tuples that will be counted in the average calculation and which will

not. We, however, treat the AVERAGE aggregate function as a ratio sample estimator and

use the DLTA method [20] to compute an estimate of the µc & σ2
c . Although the estimates

will be biased, when the number of tuples within each group is high, the bias effect will be

small. Hence we define the µc & σ2
c of AVERAGE in equations 4.9 & 4.10 respectively. We,

first, define the terms that will be used for equations 4.9 & 4.10.

MX =
µc of COUNT

|Gc|
, MY =

µc of SUM

|Gc|
, SX =

σ2
c of COUNT

|Gc|
, SY =

σ2
c of SUM

|Gc|

SXY =
1

|Gc|
∑

G(tj,y)∈Gc

(p(tj,y,Gc)× (1− p(tj,y,Gc))× value(AF tj,y))

(4.8)

µc =
MY

MX

(4.9)

σ2
c =

1

|Gc|
(
SY
M2

X

− 2×MY × SXY
M3

X

+
M2

Y × SX
M4

X

) (4.10)

For the top-k aggregation query Qk, we generalize the formula of the estimated number of

cleanings (ENC) needed to pass the filter’s test. With such generalization, we can apply

it to SUM & AVERAGE aggregate functions rather than only COUNT as illustrated in

equation 4.11. Note that groups are ordered in a descending order according to their APmax

value.

ENC(αx) =
k∑
c=1

maxof(APmax(Gk+1, x)− APmin(Gc, x), 0)

max(Gc)− µc
× TTCGc (4.11)

86

where APmax(Gc, x) is the APmax(Gc) if x is the z-value and TTCGc corresponds to the number

of uncleaned tuples in Gc.

For the group-based aggregation query with having clause, we calculate ENC for each

group by calculating two estimates and choosing the minimum of both. The first estimate,

illustrated in equation 4.12, calculates the estimated number of cleanings for Gc to prove it

is in the answer set. On the other hand, equation 4.13 estimates the number of cleanings

needed to prove that Gc is not in the answer set (i.e., to find enough cleanings that eliminate

this group from the query’s answer).

ENC(αx) =

|G(Q)|∑
c=1

maxof(E − APmin(Gc, x), 0)

max(Gc)− µc
× TTCGc (4.12)

ENC(αx) =

|G(Q)|∑
c=1

maxof(APmax(Gc, x)− E, 0)

µc −min(Gc)
× TTCGc (4.13)

where E is the numerical operand in the having clause.

We follow the rest of the normal approximation filter’s implementation used in section 3.4

along with the algorithms and equations for choosing the filter’s parameters.

4.3.2 Monte-Carlo Implementation

In TQELX, we leverage the previously generated Monte-Carlo runs by keeping the outcome

of the runs inside the x-tuple object. each x-tuple xj contains a vector of size N where

for each vector value we store the alternative tuple tj,y that was assigned to x-tuple xj for

that run. If no alternative tuples were assigned, we place a null value for that run instead.

We, further, have a vector with N values in each group Gc object that holds the aggregate

87

value that group Gc gets for that specific run. By doing so, we can effectively modify the

previous aggregate values for solely the affected groups when an x-tuple is cleaned rather than

regenerating the values from scratch for each query validation. We also store the minimum

aggregate value of all N worlds for the group to answer the top-k query effectively.

Integration of Query Processing With Monte-Carlo Simulation

TQELX intelligently generates the Monte-Carlo simulation runs by checking the having

clause condition within the generation process. For top-k queries, we follow the exact gen-

eration mechanism that was introduced in section 3.4.

For group-based queries aggregation queries with having clause, we keep two vectors with

size N that hold the min & max values for each run such that min = max after generating all

the runs for the dirty tuples for a group Gc. The concept behind keeping min & max values

for each run is to stop the generation of the rest of x-tuples if the group for this run will not

satisfy the having clause condition. For example, in table 4.3, if the having clause condition

for each license plate group to have a sum > 150, then if x1 in run1 is not randomly assigned

to r1 we do not need to generate the sample for x4 since we already know that group ”ABC”

will not satisfy the having condition for run1. Moreover, if the having clause checks whether

the aggregate value is ”greater than” or ”greater than or equal” a numerical operand, we

first generate the samples for tuples with the highest AFc value (i.e., start from the first

index in the dirty tuples list) and vice versa.

Answer Verification

After generating the sample runs for all the required x-tuples to evaluate the query as

described above. We then calculate satp for groups that of interest depending on each

query. For the top-k we follow the same answer verification in section 3.4.

88

For group-based aggregation query with having clause, we would need to calculate satp, lcb &

hccb for each group as shown in equations 4.3, 3.5 & 4.5 respectively. If the lower confidence

bound (lcb) > τ , we add the group to the answer set. However, if the higher confidence

cut-off bound (hccb) < β, we discard this group as a potential answer to the query and

delete its object. Otherwise, the clean process continues until each group is either in the

answer set or discarded from the potential answers (i.e., no groups that need cleaning).

4.3.3 Selecting Tuples for Cleaning

We propose a benefit-based method for identifying the next tuple to clean that would have a

high chance of reducing the number of cleanings in future iterations. We use ENC as an in-

dicator for the tuples that, if cleaned, would bring the cleanings process to an early stop. Let

ENC(S) be the estimated number of cleaning needed in the current state, ENC(S, tj,y, xj)

be to the estimated number of cleanings needed for the state when xj is cleaned and the

returned tuple is tj,y and let ENC(S,NULL, xj) is the number of needed cleanings when the

cleaning function does not return any tuple for xj. In each iteration, we choose the x-tuple

with the highest benefit score calculated using the following equation:

Benefit(xj) = ENC(S)−(

|xj |∑
y=1

(p(tj,y)×ENC(S, tj,y, xj))+(1−
|xj |∑
y=1

p(tj,y))×ENC(S,NULL, xj))

(4.14)

89

4.4 Experiments

In this section, we illustrate the wide range of experiments conducted to measure the effec-

tiveness of the TQELX framework.

4.4.1 Experimental Setup

Datasets

Since dirty probabilistic datasets that require cleaning are not widely available to conduct

performance experiments, we synthetically modify TPC-H data for experimental purposes.

We first generated 1 GB of data from the TPC-H dataset using TPC-H’s dbgen program.

Given that TPC-H is a deterministic dataset used for benchmarking deterministic databases,

we synthetically converted the dataset into a probabilistic dataset that follows the x-tuple

model. As such, this resulted in creating > 3GB of data which we use for our experiments.

When generating the probabilistic dataset, we first treated each original tuple as an x-tuple.

Then, for each x-tuple, we added 1-4 alternative tuples that had random values different from

the original x-tuple. After that, we randomly assigned each alternative tuple an existence

score indicating its confidence to exist in the database. We also normalized the existence

probability values for all alternative tuples that belong to the same x-tuple such that their
∑

≤ 1. For instance, consider the following tuple in the ”lineitem” relation (3666275, 133613,

8640, 3, 16.00, 26345.76, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”, ”1993-06-04”, ”1993-05-01”,

”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”). We first add an x-tuple id

(xid) and a unique tuple id (tid), as the first two fields, so it becomes (1, 1, 3666275, 133613,

8640, 3, 16.00, 26345.76, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”, ”1993-06-04”, ”1993-05-01”,

”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”) where the green colored values

correspond to the newly added values.

90

After that we create the alternative tuples by generating random values for each field in the

original tuple that is different from the original values. An example of the alternative tuples

would be (1, 2, 3666275, 133613, 44, 3, 16.00, 2354.95, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”,

”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”)

& (1, 3, 3666275, 133613, 2567, 3, 16.00, 86674.82, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”,

”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”)

where the blue colored values correspond to randomly generated values. In this example, two

alternative tuples are generated: a tuple with tid = 2 and another tuple with tid = 3 plus

the tuple with tid = 1 that holds the original values. We, further, generate three random

values within the range (0, 1) and normalize these values such that their summation is ≤

1. Moreover, we assign the highest value to the tuple with tid = 1, by adding a probability

field to the tuple, and assign the other two values to the other alternative tuples, tuples with

tid=2 & tid = 3, randomly. An example of the resulting alternative tuples would be: (1, 1,

0.6, 3666275, 133613, 8640, 3, 16.00, 26345.76, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”, ”1993-06-

04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”), (1, 2, 0.25,

3666275, 133613, 44, 3, 16.00, 2354.95, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”, ”1993-06-04”,

”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”) & (1, 3, 0.15,

3666275, 133613, 2567, 3, 16.00, 86674.82, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”, ”1993-06-04”,

”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”).

Note that the original tuple has to be one of the alternative tuples that are generated. In

addition, we assign the existence probability with the highest value to the alternative tuples

that hold the original tuple’s values. We only randomly tamper with the values of the

supplier keys (l suppkey) and the total price of the line (l extendedprice) in the ”lineitem”

because we use them in the group by field and the field used in the aggregation function

accordingly.

Approaches

91

We evaluate our TQELX-probabilistic technique against multiple baselines. The first two

approaches are deterministic, where they return exact answers rather than probabilistic

ones. After ordering the groups based on their max counter value, if we find k groups whose

min counter values ≥, the query processing stops, and the answer is returned. The exact

approach’s stopping condition for the top-k query is the same as the one discussed in section

3.3. The two exact baselines are as follows:

• Random Approach (random). In this approach, we randomly choose the alterna-

tive tuples of one x-tuple to clean in each iteration.

• Greedy Approach (greedy). In this approach, we eagerly choose tuples of the group

with the highest max counter value for the cleaning process. We specifically choose

the dirty tuple with the highest aggregate value and the alternative tuples of the same

x-tuple within that group for cleaning.

We, further, compare our TQELX-probabilistic with two probabilistic baselines that follow

the same answer semantics but differ in their techniques. They are as follows:

• NOFILTER Approach. We do not use the normal approximation filter for this

approach but rather evaluate the query after each cleaning function call to clean the

minimum number of tuples required.

• MC-NOOPT Approach. This approach restrains from using the Monte-Carlo opti-

mizations mentioned in section 4.3 (i.e., the Monte-Carlo simulation is repeatedly run

for each validation step).

Queries

We use three queries on the lineitem table with different selectivities to assess the perfor-

mance of the TQELX-probabilistic approach. They are as follows:

92

• Q1. This query selects the line items of orders that have a commit date between ”1994-

01-01” and ”1994-01-31”. The number of tuples retrieved for this query is 230,875

tuples.

• Q2. The predicate for this query is the line items of orders with a commit date between

”1995-01-01” and ”1995-03-31” where we retrieve 672,865 in total.

• Q3. For this query, we look at line items of orders in the range of six months such that

the commit date of the order is between ”1995-07-01” and ”1995-12-31”. The number

of selected tuples is 1,353,673.

We run top-k COUNT, top-k SUM, top-k AVERAGE on each query such that the aggregate

field is l extendedprice and the group-by field is l suppkey. The top-k aims to retrieve the

top-k suppliers that satisfy the top-k query’s condition. An example of such a query is:

SELECT l_suppkey

FROM lineitem

WHERE l_commitdate BETWEEN "1994 -01 -01" AND "1994 -01 -31"

GROUP BY l_suppkey

ORDER BY AVERAGE(l_extendedprice) DESC

LIMIT 5

For the group-based aggregation queries with the having clause, we find suppliers that satisfy

the having condition. We use different values as the numerical operand of the having clause.

The first value is the mean value of the aggregate function for all suppliers, where the other

values are random numbers from the range of aggregate values. For example we evaluate

the following query:

SELECT l_suppkey

FROM lineitem

WHERE l_commitdate BETWEEN "1995 -01 -01" AND "1994 -03 -31"

93

GROUP BY l_suppkey

HAVING COUNT(l_extendedprice) >= 50

Cleaning Function

In our experiments, given that we have generated the alternative tuples synthetically from the

original TPC-H dataset, the cleaning function CLN is equivalent to a lookup operation on

the original relation in order to return the original tuple given the different alternative tuples

for the same x-tuple. We estimate the cost of each cleaning function to be 50 milliseconds.

For instance if the cleaning function CLN taken as input the following alternative tuples:

(1, 1, 0.6, 3666275, 133613, 8640, 3, 16.00, 26345.76, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”,

”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”),

(1, 2, 0.25, 3666275, 133613, 44, 3, 16.00, 2354.95, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”,

”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”)

& (1, 3, 0.15, 3666275, 133613, 2567, 3, 16.00, 86674.82, 0.09, 0.07, ”R”, ”F”, ”1993-04-11”,

”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”, ”s. fluffily regular”),

it returns the tuple (1, 1, 1, 3666275, 133613, 8640, 3, 16.00, 26345.76, 0.09, 0.07, ”R”,

”F”, ”1993-04-11”, ”1993-06-04”, ”1993-05-01”, ”DELIVER IN PERSON”, ”REG AIR”,

”s. fluffily regular”) as the output.

4.4.2 Experiments results

Experiment 1: Top-k Query (Number of cleanings & execution time for different

k values)

In this experiment, we evaluate TQELX-probabilistic against the baselines specified earlier

to measure our proposed technique’s effectiveness in the case of different queries’ selectivities.

We also measure the impact of the value k for each aggregate function. We have run the top-

94

5 10 15 20

K-values

105

4 × 104

6 × 104

2 × 105

Nu
m

be
r o

f c
le

an
in

gs
Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.3: Number of cleanings for Top-k
AVERAGE of line item prices per supplier

5 10 15 20

K-values

104

105

Nu
m

be
r o

f c
le

an
in

gs

Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.4: Number of cleanings for Top-k
SUM of all line item prices per supplier query

5 10 15 20

K-values

104

105

Nu
m

be
r o

f c
le

an
in

gs

Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.5: Number of cleanings for Top-k
COUNT of all line items per supplier query

5 10 15 20

K-values

0

2000

4000

6000

8000

10000

12000

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.6: Total execution time of Top-k AV-
ERAGE of line item prices per supplier

k query on the three proposed queries and averaged the results for each aggregate function.

Given that the cleaning function is a bottleneck of any query-driven query, we measure the

number of calls to the cleaning function CLN as well as the total execution time of the

query. The total execution time of the query for any probabilistic approach consists of the

cleaning time, the Monte-Carlo simulation time and the verification time. We only report

the cleaning time for the deterministic approach since the query evaluation time is negligible

in our setting.

The probabilistic evaluation approaches showed one order of magnitude in terms of savings

95

5 10 15 20

K-values

0

2000

4000

6000

8000

10000

12000
To

ta
l e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.7: Total execution time of Top-k
SUM of all line item prices per supplier query

5 10 15 20

K-values

0

2000

4000

6000

8000

10000

12000

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.8: Total execution time of Top-k
COUNT of line item prices per supplier query

in the cleaning cost compared to the deterministic ones. The main reason is that cleaning is

not required for some cases when there is a high chance of a group being in the top-k answer

set. On the other hand, the exact approaches will continue the cleaning process until that

condition is guaranteed. We also see that as the k value increases, more cleanings would

be required to find an answer for most cases. This, however, is not always true, as can be

evidenced from the number of cleanings for the top-k count in figure 4.5. The figure shows

that for k = 20, it required fewer cleanings than it required for k = 15. Such cases arise

since, as explained in section 4.1, our answer semantics do not require the top-k results to

be ordered. Thus, in some cases, less work may be required to find the best 10 items rather

than finding the best 5 items.

As illustrated in figures 4.3, 4.4 and 4.5, we clearly see that the aggregate function has an

effect on the number of cleanings which also influences the total execution time. Our tech-

nique, in general, offers higher savings in cleaning cost for Top-k COUNT queries compared

to other aggregation functions. Top-k AVERAGE, in particular, required more cleanings

due to two factors. The first factor is that AVERAGE is not monotonic. When a tuple is

cleaned and assigned to a certain group, it is not always the case that the total value will

increase due to that cleaned tuple being part of that group. For instance, adding the number

96

5 to an average value of 10 will lower the average rather than increase it and vice versa. The

second factor corresponds to the dataset at hand, which has is quite dense in terms of the

average value and cleaning the tuples is the only way to achieve the required confidence.

Figures 4.6, 4.7 and 4.8, shows the clear advantage of using TQEL-probabilistic compared to

other probabilistic approaches. Although the NOFILTER approach achieved lower savings

in cleanings, it failed terribly to provide acceptable results on time. This phenomenon is

attributed to repeated evaluation after each cleaning, which required upwards of 2 hours to

complete a single query, illustrating the effectiveness of adopting a filter approach that limits

the number of evaluations. The MC-NOOPT approach, on the other hand, required more

time for the query evaluation due to repeated Monte-Carlo simulation simulations every

time the query was evaluated. The execution time of the MC-NOOPT reflects the number

of verifications performed as it increases steadily with it. We do not report the number of

cleanings for MC-NOOPT as it is the same as TQEL-probabilistic.

Experiment 2: Group-based Aggregation Query (Number of cleanings & exe-

cution time)

99
th

75
th

50
th

25
th 1t
h

Percentiles values

104

105

Nu
m

be
r o

f c
le

an
in

gs

Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.9: Number of cleanings for group-
based query with AVERAGE as aggregation
function

99
th

75
th

50
th

25
th 1t
h

Percentiles values

103

104

105

Nu
m

be
r o

f c
le

an
in

gs

Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.10: Number of cleanings for group-
based query with SUM as aggregation func-
tion

97

99
th

75
th

50
th

25
th 1t
h

Percentiles values

103

104

105

Nu
m

be
r o

f c
le

an
in

gs
Random
Greedy
NOFILTER
TQELX-probabilistic

Figure 4.11: Number of cleanings for group-
based query with COUNT as aggregation
function

99
th

75
th

50
th

25
th 1t
h

Percentiles values

103

104

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.12: Total execution time for group-
based query with AVERAGE as aggregation
function

99
th

75
th

50
th

25
th 1t
h

Percentiles values

102

103

104

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.13: Total execution time for group-
based query with SUM as aggregation func-
tion

99
th

75
th

50
th

25
th 1t
h

Percentiles values

102

103

104
To

ta
l e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
Random
Greedy
NOFILTER
TQELX-probabilistic
MC-NOOPT

Figure 4.14: Total execution time for group-
based query with COUNT as aggregation
function

For the second experiment, we analyze the effectiveness of TQELX-probabilistic on group-

based aggregation queries with a having clause and measure its performance against other

baselines where τ is 95% and the β is 25%. Similar to the first experiment, we plot the

number of cleanings and total execution time for each query. Given that the predicate and

selectivity of Q1, Q2 & Q3 are different, we wanted to standardize the method for choosing

the numerical operand value for each query. We chose five different values for each query

using each supported aggregate function. The chosen values represent the values at the

98

border of percentile ranks (i.e., 99th percentile means that the chosen value is higher than

99% of the values). We average the result of the same aggregate function and the same

percentile value to understand the behavior of TQELX-probabilistic with scenarios.

The performance of TQELX-probabilistic depended heavily on the value chosen for the query

as it is illustrated in figures 4.9, 4.10 and 4.11. It required more cleanings whenever more

groups had a chance of satisfying the query than not. For instance, for the 50th percentile,

most groups were candidates to be in the answer set, which required more cleanings to prove

the groups that truly are in the answer set. Moreover, the TPC-H dataset has low skewness,

which does not help when choosing the mean value for all groups. On the other hand, for the

99th percentile and the 1st percentile, TQELX-probabilistic performed significantly better

and had an acceptable query response time as well as a lower number of performed cleanings,

which makes it an effective approach for such situations.

Although TQELX-probabilistic performed more cleanings for some queries, it still outper-

formed the other baselines with the help of the normal approximation filter and the Monte-

Carlo simulation optimizations. For the NOFILTER baseline, we modify the execution such

that the query executes on one group at a time (i.e., it cleans tuples of one query until it

proves it is in the answer set or not). The modification is because the entire query evaluation

is wasteful. The groups with no cleaned tuples from the last iteration will return the same

answer result regardless of the new execution because we store the Monte-Carlo simulation

result. However, the MC-NOOPT baseline does not take advantage of such a feature and

will re-run the Monte-Carlo simulation technique whenever the validation step is performed.

Experiment 3: Detailed analysis of queries’ performance on different confidence

scores

Figure 4.18 illustrates the huge overhead entailed in the form of the number of cleanings

when the chosen value is near the mean. This, in turn, affects the number of x-tuples that

99

5 10 15 20

K-values

0

1000

2000

3000

4000

5000

6000

7000

8000
Nu

m
be

r o
f c

le
an

in
gs

TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.15: Number of cleanings for Top-k
queries with different confidence scores

5 10 15 20

K-values

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f s
am

pl
ed

 x
-tu

pl
es

TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.16: Number of x-tuples sampled for
Top-k queries with different confidence scores

5 10 15 20

K-values

0

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.17: Total execution time for Top-k
queries with different confidence scores

99
th

75
th

50
th

25
th 1t
h

Percentiles values

0

5000

10000

15000

20000

25000

30000

35000
Nu

m
be

r o
f c

le
an

in
gs

TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.18: Number of cleanings for queries
with having clause using different confidence
scores

underwent the Monte-Carlo simulation step since the database version is less uncertain. For

instance, if query lists groups with COUNT > 50, group Gc1 with min value as 49 and max

value as 60 is expected to require less Monte-Carlo simulations than group Gc2 which has

min value of 40 and max value of 60. Finally, the total execution time as shown in figure

4.20 is a reflection of the number of cleanings performed and follows the same trend as such.

In figure 4.15, we see that the confidence score level affects the number of cleanings performed

for the top-k query. The reason is that by using a lower confidence score, the filter test will

100

99
th

75
th

50
th

25
th 1t
h

Percentiles values

0

5000

10000

15000

20000

25000

30000
Nu

m
be

r o
f s

am
pl

ed
 x

-tu
pl

es
TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.19: Number of sampled x-tuples for
queries with having clause using different con-
fidence scores

99
th

75
th

50
th

25
th 1t
h

Percentiles values

0

250

500

750

1000

1250

1500

1750

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

TQEL-probabilistic (95% confidence)
TQEL-probabilistic (85% confidence)
TQEL-probabilistic (75% confidence)

Figure 4.20: Total execution time for queries
with having clause using different confidence
scores

require fewer cleanings, in general, to pass it, given the lower confidence intervals representing

the confidence score. Moreover, this entails more Monte-Carlo simulations, as in figure 4.16,

to compensate for the fewer cleanings performed when the confidence score is lower. Figure

4.17 plots the different execution times were in general. The lower the confidence score, the

faster the execution. However, this affects the quality of the results, as we will see in the

following experiment.

Experiment 4: Accuracy of queries

We report in this experiment the accuracy of each query given the aggregate function and

the confidence level. We define different metrics such that we can measure the accuracy of

the returned answer, which are as follows:

• Precision: represents the quality of the returned answer. We calculate the precision

of the answer using the ratio of the number of correct elements in the answer set by

the total elements.

• Recall: measures the number of elements from the exact answer that TQEL-probabilistic

101

returns. It can be computed by calculating the ratio of correct elements returned by

our technique divided by the number of elements in the exact answer.

• Rank Distance: We use the same rank distance proposed in section 3.5 which mea-

sures the distance of the return answer from the top-k query compared to the correct

answer. The rank distance of 0 indicates that the returned probabilistic answer is the

same as the exact answer.

Aggregate Function Metric 95% 80% 75%

AVERAGE Precision 0.92 0.77 0.604
AVERAGE Rank Distance 0.3125 1.175 3.25

SUM Precision 1 0.89 0.89
SUM Rank Distance 0 0.433 0.816

COUNT Precision 0.93 0.92 0.8625
COUNT Rank Distance 0.27 0.508 0.675

Table 4.6: Evaluation metrics of different confidence levels for the top-k query using different
aggregate functions

Aggregate Function Metric 95% 80% 75%

AVERAGE precision 0.99 0.95 0.92
AVERAGE Recall 0.98 0.95 0.91

SUM precision 1 1 0.95
SUM Recall 0.97 0.93 0.9

COUNT precision 1 1 1
COUNT Recall 0.95 0.9 0.89

Table 4.7: Evaluation metrics of different confidence levels for the group-based query with a
having clause using different aggregate functions

For the top-k query, we report the precision and rank distance in table 4.6. The precision of

the answer and the rank distance were impacted by the confidence level as expected. The

top-k AVERAGE measure was the worst compared to other aggregation functions because

the aggregate values of the groups were less skewed than the other aggregate values. In

addition, we report the precision and recall for the group-based aggregation queries with a

having clause in table 4.7. In general, the scores were relatively high due to the high number

of cleanings performed in our experiments for some queries.

102

4.5 Conclusion

This chapter presents TQELX, a framework that integrates the cleaning process with prob-

abilistic query processing for group-based aggregation queries. The framework can handle

top-k aggregation queries as well as group-based aggregation queries with a having clause.

The probabilistic query processing follows an approximate confidence computation method

by implementing the Monte-Carlo simulation technique. TQELX utilizes a normal approxi-

mation filter to estimate the aggregate value of each group in order to reduce the overhead

of the probabilistic query evaluation. It leverages the previous work in Monte-Carlo sim-

ulation by storing the previously generated samples to speed up the evaluation process.

TQELX cuts down the cleaning cost and the total execution time dramatically compared

to approaches that return an exact answer. In addition, TQELX offers optimization to the

Monte-Carlo simulation technique, which helps stop the query early while providing high

confidence guarantees.

103

Chapter 5

PIVM: Probabilistic Incremental

View Maintenance - A Monte-Carlo

Approach

As we have seen in previous chapters, integrating the data cleaning mechanism into prob-

abilistic query processing requires repeated query evaluation as the state of the database

changes due to data cleaning. A change in the state due to cleaning, in turn, may invalidate

the results computed prior to the state update. This is especially a challenge in probabilistic

query processing since regenerating the Monte-Carlo samples can be very expensive. As

illustrated from the experiments in section 3.5, the probabilistic query execution approach

that re-executed the query after each cleaning call (entity linking call in this case) resulted

in unacceptable delays where some queries had a total execution time exceeding 5 hours! We

see clearly that the repeated executions are infeasible for such queries.

In the previous chapters we proposed two frameworks TQEL & TQELX that provided a

mechanism to limit the number of query executions (i.e. the validation step by using Monte-

104

Carlo simulations and executing the query in each simulated world) by adopting a blocking-

like filter based on normal approximation. The aim of the filter is to provide a fast and

cheap mechanism for batching of multiple cleaning tasks on different tuples and estimating

the validation step outcome with high accuracy. By doing so, most of the queries required

three or less iterations of the validation step in order to return an answer for the group-based

aggregation queries which was of the order of seconds, and hence tolerable and acceptable.

However, these two frameworks only cater to specific queries such as top-k aggregation and

group-based aggregation queries that include a having clause. For more general queries, such

as select-project-join (SPJ) queries that are set based, there is no counterpart to a normal

approximation filter that can be used to reduce the number of calls to the validation step.

We, thus, cannot use the schemes developed in previous chapters.

In this chapter, we focus on developing a new mechanism for SPJ style queries to deal

with updates in the database, via cleaning, without having to pay the high cost of Monte-

Carlo simulation repeatedly. The approach that we refer to as Probabilistic Incremental

View Maintenance (PIVM) is based on incrementally updating the answer result. Similar

to TQEL, we leverage previous Monte-Carlo simulation runs by temporarily storing the

outcome of each sample. Given that each tuple is an independent event (i.e., its existence is

not dependent on other tuples), we only need to regenerate the runs for the tuples that are

affected by any updates. Moreover, the results generated for untouched tuples should also

be preserved and the query should not be re-executed on top of those unchanged tuples.

For example, consider table 5.1 where data regarding cars’ registration is collected from

different sources and is ingested into a probabilistic database. Say, there are irregularities

in the collected datasets such that in 30% of the sources assign the license plate ”AAA” to

an owner called ”John” as seen in the tuple with tid = 1. On the other hand, 70% of the

collected datasets have ”AAA” license plate registered to another owner, ”Amy”, and had

different car information as seen in the tuple with tid = 2. Table 5.2 has information about

105

CarRegistration
xid tid License plate Owner Price Year P

1 1 AAA John 60,000 2019 0.3
1 2 AAA Amy 65,000 2020 0.7
2 3 BBB Emily 50,000 2018 0.2
2 4 BBB Trent 45,000 2019 0.4
2 5 BBB Sal 70,000 2021 0.4

Table 5.1: Dataset for car owners information collected from different sources.

Addresses
xid tid Street State Zipcode Occupant P

11 11 1 first st CA 90011 Sal 0.1
11 12 1 first st CA 90011 Amy 0.9
12 13 2 second st NY 10001 John 0.25
12 14 2 second st NY 10001 Emily 0.75

Table 5.2: Addresses collected from different sources.

addresses associated with individuals that are also acquired from multiple different sources.

The following query, shown below, lists addresses associated with the license plate of a car

by joining the two tables.

SELECT License_plate , Street , State , Zipcode

FROM CarRegistration AS CR , Addresses AS A

WHERE CR.owner = A.owner

In order to answer the above query using the approximate confidence computation approach

(e.g., using Monte-Carlo simulation), samples of all possible worlds are randomly generated

and the query is executed on each sampled world to calculate the confidence of each row in the

result. In table 5.3, we report a possible answer that would be produced with the confidence

of each row if we were to generate 100 world samples. Consider that more datasets about car

registration become available, resulting in the probability of the tuples in the corresponding

x-tuple to change. Say after acquiring more data; we update the existence probability of

106

License plate Street State Zipcode Confidence

AAA 2 second st NY 10001 0.09
AAA 1 first st CA 90011 0.65
BBB 2 second st NY 10001 0.17
BBB 1 first st CA 90011 0.04

Table 5.3: Result for probabilistic join query

tuples with tid = 1 & tid = 2 such that their existence probabilities become 0.25 & 0.75

respectively. Such an update will result in the answers returned to the query above becoming

obsolete. The update to the tuples would require us to rerun the same query and regenerate

the random samples to answer the query. Instead, we could answer the query more efficiently

by leveraging the previous runs and generated results. For instance, we only need to generate

runs for tuples that share the same x-tuple with xid = 1 instead of generating the samples

for all the x-tuples. This would only affect the first and second rows from the result to be

recomputed, but no change is required for the third and fourth rows.

PIVM approach, built on top of PostgreSQL, models probabilistic relations and answers

probabilistic queries using Monte-Carlo simulation by incrementally updating the results

exploiting Incremental View Maintenance techniques [8]. When a query is submitted, in

addition to executing the query, we also create temporary tables to store metadata generated

after the query execution that will be exploited to speed up future iterations as the data

changes (i.e., insert, delete or update). Moreover, PIVM, similar to other IVM approaches,

such as DBtoaster [8], generates appropriate triggers that automatically deploy incremental

changes to the query result based on updates to the base table without any user intervention.

We believe that this is the first contribution to incremental view maintenance on top of

probabilistic databases.

In summary the main contributions of this chapter are:

• We introduce PIVM, a solution that is built on top of PostgreSQL, which allows for

107

modeling, answering and incrementally updating the results of the query based on the

changes to the probabilistic relations (sections 5.2 & 5.3).

• We discuss the different delta computations needed to efficiently update the previous

Monte-Carlo simulation runs and incrementally update the results (section 5.4).

• We experimentally evaluate our solution using different select-project-join style queries

(section 5.5).

5.1 Related Work

A view is a virtual relation that is constructed by a query on one or more physical base

relations. Views are usually lazily invoked and the query is executed when necessary. On

the other hand, a materialized view is eagerly executed, and the results are stored in the

database for future queries. However, done naively, for both approaches, any change in the

base relations requires the complete re-execution of the views.

Many works have looked at problems associated with the overhead of repeated execution

of materialized views when there is an update to the underlying data in the context of

deterministic databases. Naively implemented, such updates would require a re-execution of

the query associated with the view in order to capture the new changes in the data. One of

the first approaches to implement incremental evaluation for views is the counting algorithm

[46] that addresses the problem of duplicates in views in case of deletion. In the counting

algorithm, a count of each row’s derivation in the view is stored in order to efficiently delete

tuples in the base relations and propagate that change in the materialized view in the case of

duplicates. For example, if the view projects the names of the employees without duplicates

and there are two employees who share the same name, then the deletion of the record of

one of them should not mistakenly delete the entry in the view given that the other record

108

is still in the base relation.

Another related early work is ViewCache [77], which uses stored pointers in order to prop-

agate the changes in the underlying table in a lazy fashion. Given a single-block select-

project-join style query, the work in [71] presents the concept of propagating the updates,

insertions and deletions in the base relations using algebraic differential expressions. The

work proposed in [44] follows the same concept and extends the range of supported queries

to include, for instance, queries containing aggregation in the presence of duplicates.

Recent work, such as DBtoaster [8], is a database system that offers an approach for efficient

delta computation by employing a recursive finite differencing mechanism that materializes

the query results and other reciprocal views that are needed for maintaining the materialized

query’s view when a change happens by combining the analysis of the old and new data. By

chopping the delta values into a set of views, the changes in the underlying views propagate to

views of higher-order, causing the cost of maintaining the query result to be cheaper. When

a query is submitted, triggers are created in order to properly cascade the required delta

values in the chain of materialized views. LINVIEW [70] provides a different perspective

for handling complex data analytical tasks such as in machine learning jobs. Since these

analytical tasks are reduced to a set of linear algebra programs, The proposed framework

utilizes matrix factorization approaches to limit the changes in the intermediate delta views

in order to reduce the cost of the overall maintenance.

Most of the previous solutions are proposed to tackle the problem of high update rates in

different applications that require fast responses. In addition, recent work has also used

Incremental View Maintenance (IVM) in the context of query-driven cleaning such as En-

richDB [41], and in intermittent query processing [86].

EnrichDB is a DBMS technology that supports data enrichment on top of newly acquired

data. By performing complex functions, EnrichDB prepares the data to be used for different

109

analytical queries. It integrates the data enrichment task with processing in order to pro-

gressively provide answers to the users’ queries. It uses an IVM implementation [1] that is

built on top of PostgreSQL, which handles the updates caused by the enrichment process in

an incremental fashion, which drastically reduces the total time of execution.

While EnrichDB and intermittent query processing have considered using IVM techniques to

speed up query processing, neither of these works has explored IVM in the context of prob-

abilistic query processing as we do in PIVM. We note that the previously proposed solution

to support incremental query processing using IVM cannot be quickly adopted when dealing

with probabilistic relations and queries. We, thus, implement an IVM that is suitable for

approximate confidence computation, using Monte-Carlo simulation, in probabilistic queries.

5.2 Preliminaries

In this section, we specify the data & query models and discuss how the PIVM is implemented

on top of PostgreSQL.

Data Model

We adopt the same data model that was described in section 4.1 where each x-relation is

composed of multiple x-tuples and each x-tuple has mutually exclusive alternative tuples

such that for every possible world, there could be only one alternative tuple. We take

advantage of the PostgresSQL DBMS powerful engines in order to create such x-relations

and run probabilistic queries on top of them. When creating a new x-relation Ri, we have to

include an attribute of the ”real” domain named ”prob” which corresponds to the existence

probability of each tuple in the x-relation Ri.

Query Model

110

We extend the SQL language in order to support a wide range of queries. By adding the

notion of confidence (conf()), the confidence of the probabilistic query results can be easily

projected and filtered. Given that each tuple tj,y in the x-relation Ri, has an associated

existences probability, conf() refers to the confidence score that a row or tuple belongs to

the answer of the query. Different SPJ style queries are supported1 where the conf() of the

answer can be either in the selection clause, where clause or/and the having clause (e.g., by

limiting the answer of the query to only tuples that have a confidence score of 70% or more).

Moreover, the query is associated with the number of Monte-Carlo runs used to compute

each row’s confidence in the result.

SELECT License_plate , conf()

FROM CarRegistration

WHERE year > 2018 AND conf() > 0.7

GROUP BY License_plate

HAVING AVG(Price) > 58000

For example, the above query on table 5.1 can be expressed in our query model where we

report the license plates that have an average price of more than $58,000 and the confidence

of each row in the answer.

5.3 Query Processing Implementation

There are several probabilistic databases systems that follow the approximate confidence

computation approach to answer queries. Examples include Trio [88], MCDB [52] and

MayBMS [12]. We could have possibly built PIVM on top of such systems instead of build-

ing on top of PostgreSQL; however, existing systems either do not follow the approximate

confidence computation approach for every supported query (i.e., they use exact confidence

1We currently do not support self joins, ranking queries and nested queries.

111

computation for safe-plan queries), execute the sample generation in memory and do not

materialize the sample runs that are randomly generated to allow for the re-use of such runs

or do not have proper functioning up-to-date code to use for building the Incremental View

Maintenance technique.

Hence, we have built a simple query processing solution that rewrites the probabilistic query

into multiple deterministic queries in order to support probabilistic query processing in

PostgreSQL. Moreover, we have also implemented a Monte-Carlo random sample generator

that generates sample runs based on the existence probabilities of the alternative tuples that

share the same x-tuple.

A naive implementation of the query processing solution would execute the Monte-Carlo

random generator code on every x-tuple in the base relations yielding N random instances

of each x-relation. Afterward, the query would be executed on the deterministic instances

that have been generated to find and materialize the answer set of each possible world. Then

one can find the number of times a row in the answer set has appeared in the N answer sets

that have been computed and report the confidence score from such calculations.

However, this implementation suffers from multiple problems as reported in [52]. One major

issue with such an approach would be the massive amount of wasted space/time that could be

potentially saved if the Monte-Carlo random generation execution was delayed until other

operators are executed, which would result in excluding some tuples from the generation

process. Another problem is related to the number of times we execute the query - if done

naively would require 1 query execution per sample database, thus, resulting in N query

executions for N instances that have been generated. Such a naive approach would be very

costly.

We, thus, present an approach for probabilistic query execution that addresses both prob-

lems. Similar to the query processing in MCDB [52], we delay the Monte-Carlo simulation

112

process as late as possible in order to filter out tuples that do not satisfy the query’s predicate

by applying the selection and the join operators on the base x-relations early. Similar to

MCDB, we propose a solution that runs the query only once on all the instances. We create

a temporary table with the schema <xid, tid, run> such that each row stores the assigned

tid for the x-tuple for each run. For example, if we generate a sample run for x-tuple with

xid = 1 that randomly chooses tuple with tid = 2 for the third sample, we insert the row

<1, 2, 3> in the temporary table. If the Monte-Carlo simulation generates a sample run

that assigns xid = 1 to no tuple, we do not store that row in the table. After generating

and storing all the required sample runs, one can calculate the number of times tid appears

in sample runs by counting the number of times it appears in the temporary table.

We use plpython functions (function written in the Python language within PostgreSQL)

to allow users to submit their probabilistic query on top of the x-relations. The function

takes as input two parameters: the probabilistic query and the number of iterations for

Monte-Carlo simulation N . After the query is received, the predicate is pushed to the base

x-relations in order to only retrieve the tuples that satisfy the query’s predicate. We next

present a step-by-step explanation of the query processing technique.

Step 1: Selection Push-Down

Consider the following query on top of the relation CarRegistration shown in table 5.1:

SELECT tid , conf()

FROM CarRegistration

WHERE Price < 55 ,000

Given the above query, we exclude any x-tuple that does not have an alternative tuple such

that the value of Price < 55,000. That means tuples with xid = 1 will never be in the

answer because both alternative tuples with tid =1 and tid = 2 do not satisfy the query’s

predicate and therefore will not be used in the samples generation step. On the other hand,

113

JP
xid1 tid1 p1 xid2 tid2 p2

2 3 0.2 12 14 0.75

Table 5.4: An example of a temporary table JP that holds the deterministic join result

tuples with xid = 2 will be used in the samples generation step because at least one of the

alternative tuples satisfies the query predicate. In this case, both alternative tuples with tid

= 3 and tid = 4 do. This process is done by executing a query with the same predicate

”Price < 55,000” to retrieve the xid, tid and the existence probabilities of each tuple in the

answer. For example, the result set of this step would be {(2, 3, 0.2), (2, 4, 0.4)}. Note that

we do not include any clauses that has conf() or p as an operand (e.g., if predicate is ”Price

< 55,000 AND conf() > 0.5” we then discard ”conf() > 0.5” in this step).

Step 2: Elimination of Unjoined Tuples

If the submitted query is a join query, we would perform a deterministic join and temporarily

save the result in a relation called JP. In order to find the join results, we treat the x-relations

R1, R2, . . . , Rn as deterministic tables and join them by only projecting the xid, tid and

existence probability of each tuple from each relation. This process identifies the tuples

that could potentially be in the join result and excludes tuples that will not. Consider the

following query:

SELECT cr.tid , a.tid , conf()

FROM CarRegistration AS cr , Addresses AS a

WHERE cr.Owner = a.Occupant AND Price < 55 ,000

After executing the deterministic join on relations CarRegistration & Addresses, we get the

following temporary table (JP) as illustrated in 5.4. By executing the deterministic join, we

can eliminate tuples with xid = 1 in the CarRegistration relation as well as tuples with xid

= 11 from the Addresses relation because they will never be in the answer set regardless of

114

CarRegistration sim
xid tid run

2 4 1
2 3 2
2 4 5
2 4 6
2 3 7
2 4 10

Table 5.5: An example of a simulation table for CarRegistration relation

their existence probability values. We then retrieve the set of tuples that will be used for

the generation step for each relation. The set of retrieved tuples for the CarRegistration

relation is {(2, 3, 0.2)} and the set of retrieved tuples for the relation Addresses is {(12,

14, 0.75)}. We then retrieve all the alternative tuples with xid = 2 that satisfy the query’s

predicate from the CarRegistration relation and all the alternative tuples with xid = 12 that

satisfy the query’s predicate from the Addresses relation. Including all the alternative tuples

is necessary to recompute the query results in the event of updates to the base relations, as

we will see in the following section.

Step 3: Monte-Carlo Simulation

In this step, we create a temporary simulation table Ri sim for each x-relation Ri in order

to store the results of the Monte-Carlo simulation step. Note that if some of the alternative

tuples of x-tuple xj satisfy the query’s predicate or are in the deterministic join result, we

only store the runs that randomly choose the participating alternative tuples (i.e., if tuple tj,y

is not a participating tuple and was randomly chosen as the exclusive tuple for xj in the run

r1, then we do not store it in the Ri sim table). The schema of the simulation table Ri sim

is <xid, tid, run>. Consider the same query as in step 1 and the number of Monte-Carlo

samples is 10; one possible instance of the CarRegistration sim would be illustrated in table

5.5.

115

In table 5.5 we see that the chosen alternative tuple for x-tuple with xid = 2 in the first

sample run is tuple with tid = 4. In the second run, the chosen alternative tuple is the

tuple with tid = 3. Moreover, if the chosen tuple is a tuple that does not satisfy the query’s

predicate, such as in the third run, we do not insert the data for that run since it will not be

used in the next steps or future delta computations of queries. In the case of a join query,

we create a simulation table for each base table.

Step 4: Aggregate Values Calculation

CarRegistration sim
xid tid run

1 1 1
1 2 2
1 2 3
1 2 4
1 1 5
1 2 6
1 1 7
1 2 8
1 2 9
1 2 10
2 4 1
2 3 2
2 5 3
2 5 4
2 4 5
2 4 6
2 3 7
2 5 8
2 5 9
2 4 10

Table 5.6: An example of a simulation table
for the aggregation query on the CarRegistra-
tion relation

AG
run aggregation

1 105,000
2 115,000
3 135,000
4 135,000
5 105,000
6 110,000
7 110,000
8 135,000
9 135,000
10 110,000

Table 5.7: An example of a simulation table
for the aggregation query on the CarRegistra-
tion relation

If a query is an aggregation query, we create another temporary table called AG that holds

the aggregation results for each run, such as SUM, AVERAGE and MAX. We store such

116

values to avoid recomputing the aggregates for each sampled world in case of updates in the

base relation. Note that we perform this only once by performing a group-by query where

the grouping field is the run columns of the simulation table. We follow the same process for

the group-based aggregation query by storing the aggregate value for each group and each

run. Consider the following aggregation query:

SELECT SUM(Price), conf()

FROM CarRegistration

Table 5.6 is a possible instance of the simulation table for the CarRegistration relation and

table 5.7 is the aggregate values table AG that has the aggregate value of each run. The

query that populates the AG table is as follows:

SELECT sim.run , SUM(cr.Price)

FROM CarRegistration AS cr , CarRegistration_sim AS sim

WHERE cr.tid = sim.tid

GROUP BY run

Note that in the case of the aggregate function AVERAGE, we also add another column for

storing the count of tuples in order to update the average value efficiently. If the query is

a group-based query, we add the grouping fields as columns in the AG table and store the

aggregate values for each group per run.

Step 5: View Creation

IV
tid conf

3 0.2
4 0.4

Table 5.8: An example of a view for the CarRegistration relation

Finally, we create an incremental materialized view named IV, which stores the query result

117

where each row has a confidence score calculated from the sampled worlds. In the case of

aggregation queries, we calculate the confidence score from the AG table since it has the

calculated aggregates for each sampled world. Considering the query in the first step and

the simulation table 5.5; we can populate the materialized view IV in table 2 using the

following query:

SELECT tid , COUNT (*) / 10 AS conf

FROM CarRegistration_sim

GROUP BY tid

In the case of a condition on the confidence of the row in the elements to be more than

a specified confidence score, we add a having clause that limits the results to be above a

specific conf value (e.g., HAVING COUNT(*) / 10 > 0.5).

If the query is a join query, we first create the JP temporary table, which holds the possible

joins rows, then we create a simulation table for each of the base relations. Hence, to calculate

the incremental materialized view IV for the join query, we use the following query:

SELECT jp.tid1 , jp.tid2 , COUNT (*) / 10 AS conf

FROM CarRegistration_sim AS sim1 , Addresses_sim AS sim2 ,

JP AS jp

WHERE jp.tid1 = sim1.tid AND jp.tid2 = sim2.tid

AND sim1.run = sim2.run

GROUP BY jp.tid1 , jp.tid2

Given that we have calculated the deterministic join results in JP, we guarantee that we only

project tuples that satisfy the join condition by joining the tables. Moreover, we enforce that

the join has appeared in the same sampled world by adding the ”sim1.run = sim2.run” in

the where clause.

For the aggregation queries, we follow the same process to populate the IV table. Consider

118

the aggregation query in step 4, the simulation in table 5.6 and the aggregation table AG in

5.7, then we execute the following query:

SELECT aggregation , COUNT (*) / 10 AS conf

FROM AG

GROUP BY aggregation

Note that if the query is a group-based query and the grouping field is year then the query

would be as follows:

SELECT year , aggregation , COUNT (*) / 10 AS conf

FROM AG

GROUP BY year , aggregation

If the query projects fields other than the tid, we join the simulation table with the base table

to retrieve the projected attributes’ values. However, every result will require the projection

of the tid attribute if the query is not an aggregation query.

5.4 Delta Computations of Queries

In this section we define the delta computations needed in order incrementally update the

incremental materialized view IV.

We represent the delta computations as triggers that are created for the base x-relations of

the query. We add two triggers, one for insertions to the base relation and the other for

the deletion of tuples. We only consider the insertion and deletion of the entire alternative

tuples of the same x-tuple since it changes the query result (e.g., when deleting tj,y we delete

all alternative tuples that share the same xj and vice versa).

Let ∆R be the delta tuples that have been inserted or deleted from x-relation R, pred(Q) be

119

the predicate of the query Q without including the conf() clause. Moreover, let R sim be the

Monte-Carlo simulation table for the x-relation R and IV to be the incremental materialized

view for the query Q. If an x-tuple is updated (e.g., changing the probability value of an

alternative tuple), we model such event as a deletion then an insertion to the base relation.

Selection Query (Single Relation)

In the case of deletion, we simply delete ∆R entries corresponding to tuples in R sim and

from IV as follows:

∆R sim = Πxid,tid,run∆R on R sim

IV ′ = IV − Πtid,conf (IV on ∆R sim)

R sim′ = R sim−∆R sim

where IV’ is the new incremental materialized view and R sim’ is the new simulation table

for relation R.

In the case of insertion, we first apply the predicate selection on ∆R. We then run the

Monte-Carlo simulation technique on the satisfying tuples and add the results to IV along

with the ratio of the number of times the results appear in ∆R sim by N .

∆R sim = MCSIM(σpred(Q)∆R)

R sim′ = R sim ∪∆R sim

IV ′ = IV ∪ (tidGcount(run)/N∆R sim)

Join Query

120

For join queries of R & S, the deletion process is similar to the deletion process for selection

queries where the entries of ∆R are deleted from R sim and IV as well. The exact process

is applied to S. However, in the case of insertions, we create the temporary join table JP’

using the following expression:

JP ′ = σpred(Q)∆R on σpred(Q)S ∪R on σpred(Q)∆S ∪ σpred(Q)∆R on σpred(Q)∆S

In the case of multiple joins, the JP’ table will hold tuples that deterministically join among

all joined x-relations. Afterward, we create a delta simulation table for each base relation,

including the new tuples the deterministic join added. If an x-tuple has been previously used

for sampled generation appears in the JP’ table, we do not need to rerun the Monte-Carlo

simulation for such an x-tuple. On the other hand, newly added x-tuples will have to be

used for the Monte-Carlo simulation samples generation. We also add the newely generated

samples to the simulation tables of each base table.

IV ′ = IV ∪ tid1,tid2Gcount(run)/N(R sim onrun=run ∆S sim onR sim.tid=tid1∧∆S sim.tid=tid2 JP
′)

∪ tid1,tid2Gcount(run)/N(∆R sim onrun=run S sim on∆R sim.tid=tid1∧S sim.tid=tid2 JP
′)

∪ tid1,tid2Gcount(run)/N(∆R sim onrun=run ∆S sim on∆R sim.tid=tid1∧∆S sim.tid=tid2 JP
′)

Aggregation Query

Delta queries for aggregation queries and group-based aggregation queries are more complex

since we need to update the aggregates in the case of deletions as well as insertions. We first

need to update the aggregates values for each run in the AG table and each group if groups

are used before deleting or inserting the entries of ∆R.

∆AG = run[,group]Gα as aggregation∆R sim[on ∆R]

121

where α is the aggregation function.

In case of deletion, we subtract the ∆AG’ table values for each run as follows:

AG′ ← Πrun[,group],AG.aggregation−∆AG.aggregation(AG onrun=run[∧group=group] ∆AG)

In case of insertion, we add the ∆AG’ table values for each run as follows:

AG′ ← Πrun[,group],AG.aggregation+∆AG.aggregation(AG onrun=run[∧group=group] ∆AG)

Once the AG table is updated we then we then need to truncate the contents of IV and

repopulate the results over again. In the case of group-based queries we only delete the results

of the affected groups rather than deleting all the entries. The reason behind repopulating

the view content rather than updating the current values is that the insert operation is faster

than the update operation. The expression for populating the IV for aggregation over the

entire table is as follows:

IV ′ = aggregationGcount(run)/N as confAG
′

For group-based queries we first delete the entries in the results that contain the effected

groups and then we add the new aggregate value instead.

IV ′ = IV − aggregation,groupGcount(run)/NAG

IV ′′ = IV ′ ∪ aggregation,groupGcount(run)/NAG
′

where IV” is the new incremental materialized view.

Note that when the aggregation function is either MAX or MIN we compare them to the

current values in the AG table and only update them if the ∆ values would effect the MAX

122

or MIN values.

5.5 Experiments

In this section we evaluate the performance of PIVM by analyzing different queries and their

delta queries execution times.

5.5.1 Experimental Setup

Datasets

For experimental purposes, we have used the same dataset that was synthetically generated

from the TPC-H dataset. The details of the generation process can be found in 4.4.1.

Database System

We have used PostgreSQL 13 to implement our functions for processing probabilistic queries

following the approximate confidence calculation approach using the Monte-Carlo simulation

technique. We also use plpython for generating triggers that allow for delta computation

of inserted or deleted tuples. We have turned off the auto commit flags and disabled WAL

mode to offer fast ingestion of the sample runs’ tables.

5.5.2 Queries

Query 1: Selection Query

The first query finds the line items from orders committed in 1994 and have been flagged as

a return order. The SQL for this query is as follows:

123

10 10
0

10
00

Number of samples

10−3

10−2

10−1

100

101

102

103
Ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)
Query
Delete 1
Insert 1
Delete 100
Insert 100

Figure 5.1: Execution times for query 1, insertion and deletion times.

SELECT tid , conf()

FROM lineitem

WHERE l_commitdate BETWEEN "1994 -01 -01" AND "1994 -12 -31"

AND l_returnflag = "R" AND conf() > 0.5

The resulting tuples from running this query without checking the confidence clause are

1,808,144, and we will only be running the Monte-Carlo simulation code on the filtered

tuples. Also, the query will filter out 90% of the tuples in the base table. The disk space

absorbed by each simulation table is 192 MB, 1921 MB and 19 GB for 10, 100 and 1000 runs,

respectively. On the hand, the size of the view table was the same for different simulation

runs which is 19 MB.

124

We plot in figure 5.1 the times for query execution, the insertion of one tuple, deletion of

one tuple, and the insertions and deletions of 100 tuples. The y-axis shows the number of

seconds it takes to execute the task, while the x-axis is the number of Monte-Carlo simulation

samples. We see that the main factor that affects the query execution is the number of Monte-

Carlo samples. On the other hand, the delta computation doesn’t seem to be highly affected

by the number of samples, given that we only insert or delete a small number of tuples even

if the number of samples is 1000. The reason that the deletion takes a bit more time is due

to the fact that deletion in PostgreSQL is slower compared to insertion.

Query 2: Aggregation Query

10 10
0

10
00

Number of samples

10−3

10−2

10−1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query
Delete 1
Insert 1
Delete 100
Insert 100

Figure 5.2: Execution times for query 2, insertion and deletion times.

125

We used the same predicate for the second query to have the same selectivity to have a

relative comparison between the queries. The query returns the count of the number of

tuples that satisfy the predicate and as follows:

SELECT COUNT(tid), conf()

FROM lineitem

WHERE l_commitdate BETWEEN "1994 -01 -01" AND "1994 -12 -31"

AND l_returnflag = "R" AND conf() > 0.5

Note that the confidence here will only return the count that appears in more of 50% of the

worlds if any.

In figure 5.2 we see the same trend as query 1 as it shows lower running times for delta

queries regardless of the number of samples generated. The only difference is that we have

to update the temporary aggregation table after each insert or each delete so that we do not

have to recompute the aggregation value for each sampled world each time. Moreover, since

the number of runs or worlds is low, the update process takes no time for each delta tuples

and therefore doesn’t affect the total execution time. In terms of the size of the view, it was

approximately 8 KB for 10 and 100 simulation runs and 40 KB for 1000 simulation runs.

The AG table occupied the same disk space as well.

Query 3: Group-based Aggregation Query

For this query, we also use the same predicate as the previous query. This query calculates

the average prices of line items per supplier for the same period along with confidence score

of each average per supplier. The query is as follows:

SELECT l_suppkey , AVG(l_extendedprice), conf()

FROM lineitem

WHERE l_commitdate BETWEEN "1994 -01 -01" AND "1994 -12 -31"

AND l_returnflag = "R"

126

10 10
0

10
00

Number of samples

10−2

10−1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query
Delete 1
Insert 1
Delete 100
Insert 100

Figure 5.3: Execution times for query 3, insertion and deletion times.

GROUP BY l_suppkey

In figure 5.3, the delta computation execution time is higher than the previous two queries.

The cause of the increase in execution time is that the temporary aggregation table holds

aggregate values for all groups per run. We do so to make it easier to update each group

value without recomputing the rest of the group values in our query view. Therefore, the

update will only affect the rows that hold the values for the groups of the delta tuples only.

However, this requires updating all the groups involved, too, which entails more time for

execution. The disk space allocated for the view in this experiment was 3544 KB, 35 MB

and 340 MB where the number of samples is 10, 100 and 1000 respectively.

127

Query 4: Group-based Aggregation Query with Having Clause

10 10
0

10
00

Number of samples

10−2

10−1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query
Delete 1
Insert 1
Delete 100
Insert 100

Figure 5.4: Execution times for query 4, insertion and deletion times.

For this query, we find the suppliers with the total sum of prices of returned line items sold

in 1994 to be more than $1,600,000. We only return suppliers with %90 confidence that

they satisfy the query’s predicate. This query, in essence, is one of the queries that would

be answered using the TQELX framework. The query is as follows:

SELECT l_suppkey

FROM lineitem

WHERE l_commitdate BETWEEN "1994 -01 -01" AND "1994 -12 -31"

AND l_returnflag = "R"

GROUP BY l_suppkey

128

HAVING SUM(l_extendedprice) > 1,600,000 AND conf() > 0.9

Note that we do not return the confidence score nor the sum of prices here as we are only

interested in the suppliers that satisfy the condition.

The times reported for query 3 are similar to those reported for this query since they are

both group-based aggregation queries. The key difference here is that we only report the

suppliers that satisfy the having clause over all possible worlds rather than reporting every

possible value as we did for query 3. For this query, the size of the view was approximately

232 KB for the different numbers of simulation samples.

Query 5: Join Query

In this query, we examine the performance of the join operator in the case of approximate

confidence computation. We use the same predicate as in the previous queries for the line

item table and join it with a probabilistic version of the supplier table. The query is as

follows:

SELECT r1.tid , t2.tid , conf()

FROM lineitem AS r1 , supplier AS r2

WHERE r1.l_suppkey = r2.s_suppkey AND l_returnflag = "R"

AND l_commitdate BETWEEN "1994 -01 -01" AND "1994 -12 -31"

We plot in figure 5.5 the execution times of the query, the insertion of one tuple to both tables

and the deletion of one tuple from both tables as well. Moreover, we report the execution

times for inserting 100 tuples into each table and deleting the same number of tuples from

the tables. Contrary to the previous queries, we see that the insertion process takes more

time to execute than the deletion process. This is due to the fact that when we delete tuples,

we delete them from the temporary table that holds the simulation runs results and the view

directly without the need for other actions. However, in the case of insertion, we need to join

129

10 10
0

10
00

Number of samples

10−1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query
Delete 1
Insert 1
Delete 100
Insert 100

Figure 5.5: Execution times for query 5, insertion and deletion times.

the delta tuples with the base table of the other relations. In addition, we also need to join

the sample runs tables in order to find the number of worlds this join actually occurs and

add it to the view result. The reported size of the view was 19 MB for different simulation

runs.

5.6 Conclusion

This chapter presents PIVM, a solution implemented on top of PostgreSQL, to represent

uncertain relations and answer probabilistic queries following the approximate confidence

computation method. Using the Monte-Carlo simulation technique, samples of the possible

130

worlds are created and used for probabilistic query evaluations. In addition, PIVM incremen-

tally updates the query’s result in the event of insertions, deletions and updates to the base

relations. It deploys triggers depicting the different delta computation expressions to update

the query’s result without rerunning the entire query execution. Our experiments showed

that the incremental view maintenance technique adopted by PIVM offers a tremendous

speed-up for single or batched updates.

131

Chapter 6

Conclusions & Future Work

6.1 Conclusions

In this thesis, we addressed the problem of query-driven cleaning of group-based aggregation

queries on top of probabilistic databases. In addition, we propose solutions that offer delta

computation techniques to answer probabilistic queries incrementally.

Chapter 3 explored query-driven entity linking in the context of top-k queries on top of

social media blogs. We introduced TQEL, a framework that offers an exact solution for

answering the top-k query and an approximate one. TQEL-exact exact iteratively calls

the entity linking task until an exact solution to the-k is found. On the other hand, TQEL-

approximate uses the Monte-Carlo simulation technique to return an answer with guarantees.

TQEL-approximate reduces the overheads incurred by the entity linking process as well as the

repeated evaluation using the Monte-Carlo simulation technique. It utilizes a blocking-like

filter based on normal approximation that estimates the count of each entity to prevent the

repeated execution of the query by combining multiple entity linkings in this same iteration.

It further leverages the previous Monte-Carlo runs to avoid the regeneration of such samples.

132

In addition, we empirically studied the performance of the two solutions on multiple Twitter

datasets, which demonstrated the significant advantage of TQEL-approximate in terms of

savings in the number of linkings compared to the other approaches.

In chapter 4, we extended the solutions of the previous chapter and introduced TQELX, a

general analysis-aware framework for group-based aggregation queries. TQELX can answer

top-k aggregation queries as well as a group-based aggregation query with a having clause

on top of probabilistic databases. TQELX exploits the query semantics of both queries to

efficiently select the least number of tuples to clean and return an answer with probabilistic

guarantees. Like TQEL, it uses the Monte-Carlo simulation technique for the query eval-

uation step and implements multiple optimizations to speed up the execution. We have

conducted multiple experiments to measure the effectiveness of TQELX for multiple aggre-

gation functions on a synthetically generated dataset.

In chapter 5, we presented PIVM, a probabilistic Incremental View Maintenance technique

built on top of PostgreSQL, which provides efficient delta computations in the case of updates

to the database. PIVM allows for modeling uncertain relations and submitting select-project-

join probabilistic queries that are incrementally updated by generating triggers on the base

relations of the query. We tailor our solution to the probabilistic queries that follow the

approximate confidence computation technique by implementing a Monte-Carlo simulation

generation algorithm and storing the results of such runs for future iterations. Finally, We

empirically conduct experiments to measure the speedup provided by PIVM using multiple

queries. Our results show the effectiveness of adopting such solutions where the updates

were incrementally reflected in the answers within milliseconds to seconds.

133

6.2 Future Work

In this thesis, we have only tackled the problems concerning the integration of cleaning within

probabilistic group-based aggregation queries. However, these problems do not capture the

complete picture, nor do they provide a comprehensive solution for the problem of cleaning

in the context of probabilistic query processing. Different directions can be explored and

researched in order to provide more solutions for such a domain.

One direction of potential work is exploring and proposing a different filter mechanism suit-

able for non-aggregation probabilistic queries. Such a filter would help cut down the expen-

sive cost of the repeated execution for the probabilistic query processing as well as guide

the cleaning process in order to limit the number of cleanings. For example, one possible

filter that is applicable for a general class of queries is an incremental sampling filter. This

can be achieved by running a small number of sampling runs for the entire dataset, say ten

runs, then after that, a set of tuples is chosen for the cleaning stage given the deterministic

query answers of the ten sampled worlds. By following this approach, we will aggressively

eliminate tuples that are either are in the answer sets of all the worlds and tuples that are

not in any of the answer sets from the cleaning process. Afterward, we incrementally call the

Monte-Carlo simulation progressively for tuples of interest (i.e., high chance of appearing in

the answer set after more samples are generated).

Furthermore, applying query-driven approaches in a progressive setting to answer probabilis-

tic queries is an organic extension of TQEL and TQELX. That is, a user submits a query,

and tuples are cleaned in iterations of epochs. At the end of each epoch, a probabilistic

answer is given based on the current state of the data, where the main goal is to refine

such given answers in future epochs. In this scenario, the user controls when the processing

stops whenever he is satisfied with the returned result. This approach would hide some of the

drawbacks of TQELX and TQELX in terms of total execution time, given that the processing

134

and cleaning will stop on demand and the best answer at that time will be returned. Such

work can be integrated within EnrichDB [41] since they share the same cleaning-analysis

model.

In the current implementation of PIVM, only single-block queries are supported, given that it

does not contain self-joins or a distinct clause. One exciting direction would be to extend the

support for nested queries and queries with a distinct clause. This will allow for supporting

complex probabilistic queries and push for more experimentations in the area of query-

driven cleaning of complex probabilistic queries because of the incremental query processing

improvements. Another direction would be to optimize the costs associated with running

and storing the Monte-Carlo sample results as they take most of the query processing time.

Moreover, improvements concerning the sampled runs storage methods would be highly

beneficial in reducing the amount of allocated disk space.

135

Bibliography

[1] Incremental view maintenance development for postgresql.
https://github.com/sraoss/pgsql-ivm.

[2] Data never sleeps 8.0. https://www.domo.com/learn/infographic/

data-never-sleeps-8, 2020.

[3] Apache lucene. https://lucene.apache.org/, 2021.

[4] Wikipedia. https://www.wikipedia.org, 2021.

[5] Wikipedia:database download. https://en.wikipedia.org/wiki/Wikipedia:

Database_download, 2021.

[6] C. C. Aggarwal and S. Y. Philip. A survey of uncertain data algorithms and applications.
IEEE Transactions on knowledge and data engineering, 21(5):609–623, 2008.

[7] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and
J. Widom. Trio: A system for data, uncertainty, and lineage. Proc. of VLDB 2006
(demonstration description), 2006.

[8] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta pro-
cessing for dynamic, frequently fresh views. arXiv preprint arXiv:1207.0137, 2012.

[9] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational
entity resolution. Proceedings of the VLDB Endowment, 7(11):999–1010, 2014.

[10] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra. Query-driven approach to entity
resolution. Proceedings of the VLDB Endowment, 6(14):1846–1857, 2013.

[11] H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. Query: A framework for integrating
entity resolution with query processing. Proceedings of the VLDB Endowment, 9(3):120–
131, 2015.

[12] L. Antova, C. Koch, and D. Olteanu. Maybms: Managing incomplete information with
probabilistic world-set decompositions. In 2007 IEEE 23rd International Conference on
Data Engineering, pages 1479–1480. IEEE, 2007.

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In The semantic web, pages 722–735. Springer, 2007.

136

https://www.domo.com/learn/infographic/data-never-sleeps-8
https://www.domo.com/learn/infographic/data-never-sleeps-8
https://lucene.apache.org/
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download

[14] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In
Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, pages 261–272, 2000.

[15] D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic data.
IEEE Transactions on knowledge and data engineering, 4(5):487–502, 1992.

[16] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom.
Swoosh: a generic approach to entity resolution. The VLDB Journal, 18(1):255–276,
2009.

[17] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. Mystiq: a system for
finding more answers by using probabilities. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 891–893, 2005.

[18] D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Olap
over uncertain and imprecise data. In VLDB, volume 5, pages 970–981. Citeseer, 2005.

[19] J. Cambronero, J. K. Feser, M. J. Smith, and S. Madden. Query optimization for
dynamic imputation. Proceedings of the VLDB Endowment, 10(11):1310–1321, 2017.

[20] G. Casella and R. L. Berger. Statistical inference. Cengage Learning, 2021.

[21] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy
match for online data cleaning. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 313–324, 2003.

[22] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality guarantees.
Proceedings of the VLDB Endowment, 1(1):722–735, 2008.

[23] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over
imprecise data. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 551–562, 2003.

[24] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods
for probabilistic threshold queries over uncertain data. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, pages 876–887, 2004.

[25] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into
context. In 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 458–469. IEEE, 2013.

[26] X. Chu, I. F. Ilyas, P. Papotti, and Y. Ye. Ruleminer: Data quality rules discovery.
In 2014 IEEE 30th International Conference on Data Engineering, pages 1222–1225.
IEEE, 2014.

[27] E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Crowdsourcing for top-
k query processing over uncertain data. IEEE Transactions on Knowledge and Data
Engineering, 28(1):41–53, 2015.

137

[28] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data and
expected ranks. In 2009 IEEE 25th International Conference on Data Engineering,
pages 305–316. IEEE, 2009.

[29] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and
N. Tang. Nadeef: a commodity data cleaning system. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 541–552, 2013.

[30] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. The VLDB
Journal, 16(4):523–544, 2007.

[31] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Zencrowd: leveraging probabilis-
tic reasoning and crowdsourcing techniques for large-scale entity linking. In Proceedings
of the 21st international conference on World Wide Web, pages 469–478, 2012.

[32] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 588–599, 2004.

[33] M. Fabian, K. Gjergji, W. Gerhard, et al. Yago: A core of semantic knowledge unifying
wordnet and wikipedia. In 16th International World Wide Web Conference, WWW,
pages 697–706, 2007.

[34] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
discrete mathematics, 17(1):134–160, 2003.

[35] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969.

[36] P. Ferragina and U. Scaiella. Tagme: on-the-fly annotation of short text fragments
(by wikipedia entities). In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 1625–1628, 2010.

[37] J. R. Finkel, T. Grenager, and C. D. Manning. Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 363–370,
2005.

[38] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of in-
formation retrieval and database systems. ACM Transactions on Information Systems
(TOIS), 15(1):32–66, 1997.

[39] A. Gattani, D. S. Lamba, N. Garera, M. Tiwari, X. Chai, S. Das, S. Subramaniam,
A. Rajaraman, V. Harinarayan, and A. Doan. Entity extraction, linking, classification,
and tagging for social media: a wikipedia-based approach. Proceedings of the VLDB
Endowment, 6(11):1126–1137, 2013.

138

[40] E. Gelenbe and G. Hebrail. A probability model of uncertainty in data bases. In 1986
IEEE Second International Conference on Data Engineering, pages 328–333. IEEE,
1986.

[41] D. Ghosh. A case for enrichment in data management systems. preprint
on webpage at https://github.com/DB-repo/enrichdb/blob/master/A%20Case%

20for%20Enrichment%20in%20Data%20Management%20Systems_FullVersion.pdf.

[42] S. Giannakopoulou, M. Karpathiotakis, and A. Ailamaki. Cleaning denial constraint
violations through relaxation. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 805–815, 2020.

[43] S. Giannakopoulou, M. Karpathiotakis, and A. Ailamaki. Query-driven repair of func-
tional dependency violations. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1886–1889. IEEE, 2020.

[44] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In Pro-
ceedings of the 1995 ACM SIGMOD international conference on Management of data,
pages 328–339, 1995.

[45] S. Guo, M.-W. Chang, and E. Kiciman. To link or not to link? a study on end-to-end
tweet entity linking. In Proceedings of the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pages 1020–1030, 2013.

[46] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
ACM SIGMOD Record, 22(2):157–166, 1993.

[47] X. Han and J. Zhao. Nlpr kbp in tac 2009 kbp track: A two-stage method to entity
linking. In TAC. Citeseer, 2009.

[48] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. ACM
Sigmod Record, 24(2):127–138, 1995.

[49] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain data: a prob-
abilistic threshold approach. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 673–686, 2008.

[50] J. Huang, L. Antova, C. Koch, and D. Olteanu. Maybms: a probabilistic database man-
agement system. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, pages 1071–1074, 2009.

[51] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing tech-
niques in relational database systems. ACM Computing Surveys (CSUR), 40(4):1–58,
2008.

[52] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. Mcdb: a monte
carlo approach to managing uncertain data. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 687–700, 2008.

139

https://github.com/DB-repo/enrichdb/blob/master/A%20Case%20for%20Enrichment%20in%20Data%20Management%20Systems_FullVersion.pdf
https://github.com/DB-repo/enrichdb/blob/master/A%20Case%20for%20Enrichment%20in%20Data%20Management%20Systems_FullVersion.pdf

[53] M. A. Jaro. Advances in record-linkage methodology as applied to matching the 1985
census of tampa, florida. Journal of the American Statistical Association, 84(406):414–
420, 1989.

[54] T. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for probabilistic data.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 346–355. Citeseer, 2007.

[55] H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis. Overview of the tac 2010
knowledge base population track. In Third text analysis conference (TAC 2010), vol-
ume 3, pages 3–3, 2010.

[56] R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability prob-
lems. In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983),
pages 56–64. IEEE Computer Society, 1983.

[57] R. M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms for enu-
meration problems. Journal of algorithms, 10(3):429–448, 1989.

[58] C. Koch. Approximating predicates and expressive queries on probabilistic databases.
In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 99–108, 2008.

[59] C. Koch and D. Olteanu. Conditioning probabilistic databases. arXiv preprint
arXiv:0803.2212, 2008.

[60] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197–210, 2010.

[61] L. V. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. Probview: A flexi-
ble probabilistic database system. ACM Transactions on Database Systems (TODS),
22(3):419–469, 1997.

[62] R. Li, S. Wang, and K. C.-C. Chang. Towards social data platform: Automatic topic-
focused monitor for twitter stream. Proceedings of the VLDB Endowment, 6(14):1966–
1977, 2013.

[63] Y. Li, H. Wang, N. M. Kou, Z. Gong, et al. Crowdsourced top-k queries by pairwise
preference judgments with confidence and budget control. The VLDB Journal, pages
1–25, 2020.

[64] X. Lin, J. Xu, H. Hu, and Z. Fan. Reducing uncertainty of probabilistic top-k ranking
via pairwise crowdsourcing. IEEE Transactions on Knowledge and Data Engineering,
29(10):2290–2303, 2017.

[65] S. Lohr. For big-data scientists,‘janitor work’is key hurdle to insights. New York Times,
17:B4, 2014.

140

[66] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 169–178, 2000.

[67] R. Mihalcea and A. Csomai. Wikify! linking documents to encyclopedic knowledge.
In Proceedings of the sixteenth ACM conference on Conference on information and
knowledge management, pages 233–242, 2007.

[68] L. Mo, R. Cheng, X. Li, D. W. Cheung, and X. S. Yang. Cleaning uncertain data
for top-k queries. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 134–145. IEEE, 2013.

[69] S. Monahan, J. Lehmann, T. Nyberg, J. Plymale, and A. Jung. Cross-lingual cross-
document coreference with entity linking. In TAC, 2011.

[70] M. Nikolic, M. Elseidy, and C. Koch. Linview: incremental view maintenance for
complex analytical queries. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 253–264, 2014.

[71] R. Paige. Applications of finite differencing to database integrity control and query/-
transaction optimization. In Advances in data base theory, pages 171–209. Springer,
1984.

[72] F. Piccinno and P. Ferragina. From tagme to wat: a new entity annotator. In Proceedings
of the first international workshop on Entity recognition & disambiguation, pages 55–62,
2014.

[73] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull., 23(4):3–13, 2000.

[74] D. Rao, P. McNamee, and M. Dredze. Entity linking: Finding extracted entities in a
knowledge base. In Multi-source, multilingual information extraction and summariza-
tion, pages 93–115. Springer, 2013.

[75] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In
2007 IEEE 23rd International Conference on Data Engineering, pages 886–895. IEEE,
2007.

[76] R. Ross, V. Subrahmanian, and J. Grant. Aggregate operators in probabilistic
databases. Journal of the ACM (JACM), 52(1):54–101, 2005.

[77] N. Roussopoulos. An incremental access method for viewcache: Concept, algorithms,
and cost analysis. ACM Transactions on Database Systems (TODS), 16(3):535–563,
1991.

[78] M. Sadri, S. Mehrotra, and Y. Yu. Online adaptive topic focused tweet acquisition. In
Proceedings of the 25th ACM International on Conference on Information and Knowl-
edge Management, pages 2353–2358, 2016.

141

[79] C. E. Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[80] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and Data Engineering, 27(2):443–460,
2014.

[81] W. Shen, J. Wang, P. Luo, and M. Wang. Linden: linking named entities with knowledge
base via semantic knowledge. In Proceedings of the 21st international conference on
World Wide Web, pages 449–458, 2012.

[82] W. Shen, J. Wang, P. Luo, and M. Wang. Linking named entities in tweets with
knowledge base via user interest modeling. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 68–76, 2013.

[83] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing in uncertain
databases. In 2007 IEEE 23rd International Conference on Data Engineering, pages
896–905. IEEE, 2007.

[84] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic top-k and ranking-
aggregate queries. ACM Transactions on Database Systems (TODS), 33(3):1–54, 2008.

[85] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases. Synthesis lectures
on data management, 3(2):1–180, 2011.

[86] D. Tang, Z. Shang, A. J. Elmore, S. Krishnan, and M. J. Franklin. Intermittent query
processing. Proc. VLDB Endow., 12(11):1427–1441, 2019.

[87] V. Verroios and H. Garcia-Molina. Top-k entity resolution with adaptive locality-
sensitive hashing. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 1718–1721. IEEE, 2019.

[88] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage.
Technical report, Stanford InfoLab, 2004.

[89] W. Zhang, C. L. Tan, Y. C. Sim, and J. Su. Nus-i2r: Learning a combined system for
entity linking. In TAC, 2010.

[90] X. Zhang and J. Chomicki. Semantics and evaluation of top-k queries in probabilistic
databases. Distributed and parallel databases, 26(1):67–126, 2009.

142

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Related Work
	Probabilistic Databases
	Probabilistic top-k Query

	Data Cleaning
	Query-Driven Cleaning

	TQEL: Framework for Query-Driven Linking of Top-K Entities in Social Media Blogs
	Preliminaries
	Dataset and Required Functions
	Exact Top-k Definitions
	Approximate Top-k Definitions
	Top-k Example Solution

	TQEL overview
	Preparatory Phase
	Thinking "3026 Execution Phase

	TQEL-exact Approach
	Stopping Condition
	Mention Selection

	TQEL-approximate Approach
	Checking for the Stopping Condition
	Exploiting Filters
	Monte-Carlo Simulation Implementation
	Mention Selection
	Updating Lists and Approximations

	Experiments
	Experimental Setup
	Experiments Results

	Conclusion

	TQELX: Query-Driven Cleaning for Group-Based Aggregation Queries
	Preliminaries
	Dataset and Required Functions
	Probabilistic Query Definitions
	Probabilistic Group-Based Aggregation Query Example Solution

	TQELX overview
	Preparatory Phase
	Cleaning Phase
	Evaluation Phase

	TQELX-probabilistic Approach
	Stopping Condition
	Monte-Carlo Implementation
	Selecting Tuples for Cleaning

	Experiments
	Experimental Setup
	Experiments results

	Conclusion

	PIVM: Probabilistic Incremental View Maintenance - A Monte-Carlo Approach
	Related Work
	Preliminaries
	Query Processing Implementation
	Delta Computations of Queries
	Experiments
	Experimental Setup
	Queries

	Conclusion

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

