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REPORT

Macrocytic Anemia and Mitochondriopathy
Resulting from a Defect in Sideroflexin 4

Gordon J. Hildick-Smith,1,15,16 Jeffrey D. Cooney,1,15,17 Caterina Garone,2,15 Laura S. Kremer,3,4

Tobias B. Haack,3,4 Jonathan N. Thon,1 Non Miyata,5 Daniel S. Lieber,6,7 Sarah E. Calvo,6,7

H. Orhan Akman,2 Yvette Y. Yien,1 Nicholas C. Huston,1 Diana S. Branco,1,18 Dhvanit I. Shah,1

Matthew L. Freedman,8 Carla M. Koehler,5 Joseph E. Italiano, Jr.,1 Andreas Merkenschlager,9

Skadi Beblo,10 Tim M. Strom,3,4 Thomas Meitinger,3,4 Peter Freisinger,11 M. Alice Donati,12

Holger Prokisch,3,4 Vamsi K. Mootha,6,7 Salvatore DiMauro,2 and Barry H. Paw1,13,14,*

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe

case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial

inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and

themacrocytic anemiawithmegaloblastic features of themore severe case. In vitro and in vivo complementation studies with fibroblasts

from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and

erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.
Mitochondrial disorders are a group of diseases that affect

1 in 5,000 live births. Affected individuals can present at

any age with a constellation of symptoms, such as failure

to thrive, lactic acidosis, skeletal myopathy, deafness,

blindness, other neurological defects, and impaired hema-

topoiesis. The genes underlying many hereditary forms of

respiratory-chain disorders remain uncharacterized.1 In

contrast to those of mitochondriopathies, the etiologies

of macrocytic anemia are better defined. However, in the

first, more severe case, we excluded all known causes of

macrocytosis.2

Here, we describe two individuals with mitochon-

driopathies. The first individual presented at birth with

macrocytic erythroid abnormalities and mitochondrial

disease. Subsequently, we identified a second individual

with a milder mitochondriopathy and defects in the

same gene. Individual 1, the more severe case, is a 14-

year-old girl of European origin and was born to noncon-

sanguineous healthy parents in Italy. As a result of intra-

uterine growth retardation (IUGR) and oligohydramnios,

delivery was induced at 37 weeks of gestation. At 48 hr

of life, she had increased blood lactate (168 mg/dl; normal

range ¼ 10–60 mg/dl), ammonia (125 mg/dl; normal
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range ¼ 12–55 mg/dl), and uric acid. A muscle biopsy

showed mildly increased numbers of mitochondria and

lipid droplets, whereas her brain MRI was normal. The in-

fant’s weight at birth was in the third percentile (2.25 kg);

her length and cranial circumference also measured lower

than the third percentile from birth to the age of 12 years.

By 3 months of life, she suffered from macrocytic anemia.

One year later, a repeat muscle biopsy revealed severe defi-

ciency of mitochondrial complex I activity, which per-

sisted until she reached 4 years of age (Table S1, available

online). Global defects in respiratory-chain activity (RCA)

were determined later in life in primary fibroblasts from

individual 1 (Figures 1A–1C).3 Since then, she has gradu-

ally improved but remains dysmorphic and underweight

(less than the third percentile) with atrophic muscles

and difficulty running. Additional neurological symptoms

include tremor, dysmetria, language delay, and mild

intellectual disability. Despite a normal retinogram, she

has a severe visual deficit. When she was 13 years of

age, her red blood cells retained macrocytic indices (Table

S2) with hypersegmented neutrophils (Figure 1D). Since

she was 3 years of age, her diet has been supplemented

with carnitine, coenzyme Q10, and vitamins C and B1.
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Figure 1. Individual 1 Has Macrocytic
Anemia, and Both Individuals Present
with Mitochondriopathy
(A) The RCA defect was seen in primary
fibroblasts from both individuals, but not
in control fibroblasts. RCA activity was
assayed as described.3 Error bars represent
the SEM.
(B) Immunoblot analyses of mitochon-
drial-respiratory-complex proteins from
control fibroblasts (C1, C2, and C3) and
fibroblasts from the two affected individ-
uals (I1 and I2) are displayed.
(C) Densitometric quantification of the
respiratory-complex proteins, shown in
(B), demonstrates intact expression of the
respiratory-chain components. Error bars
represent the SEM.
(D) Peripheral-blood smears from individ-
ual 1 reveal erythroid macrocytosis (left,
arrow heads) and hypersegmented neutro-
phils (right, arrow).
Individual 2 is a 6-year-old girl of European origin and

was born to nonconsanguineous German parents at

37 weeks of gestation. Similar to the delivery of individual

1, the delivery of individual 2 was induced because of

IUGR. Weight, length, and cranial circumference were

initially at the third percentile until she reached the age

of 18 months, when she recovered normal height and

weight. From birth, she had elevated lactate concentra-

tions in blood and cerebrospinal fluid, which improved

with a ketogenic diet. Muscle biopsy at 1 year of age re-

vealed significantly reduced complex I activity (Table S1).

She has severe visual deficit with delayed bilateral visual-

evoked potential, but electroencephalography, nerve con-

duction studies, and auditory-evoked potential were

normal. Although her grossmotor skills are almost normal,

she continues to show severe deficits in fine motor skills,

visual-motor integration, and coordination. Erythrocyte

mean corpuscular volume has always been in the upper

range of normal without elevated methylmalonic acid

excretion (Table S2). She regularly receives carnitine, a

mixture of essential micronutrients, coenzyme Q10, and

riboflavin.

In summary, both individuals share a similar clinical pre-

sentation consistent with mitochondrial disease: IUGR,

microcephaly, hypotonia, vision impairment, speech

delay, and lactic acidosis due to a severe and consistent

reduction in RCA (Figure 1A). Generalized defects in the

expression of the mitochondrial respiratory complexes

and mitochondrial mass were excluded by immunoblot

analysis (Figures 1B and 1C).

For individual 1, blood measurements revealed

decreased red blood cell counts. Red blood cell size

was highly variable, and the average was larger than
The American Journal of Human Gen
normal (Table S2). Also consistent

with megaloblastic maturation, pe-

ripheral-blood smears revealed hyper-
segmented neutrophils (Figure 1D). Individual 2 exhibited

milder erythroid abnormalities; her red blood cell size was

highly variable but within normal limits. Metabolites

associated with macrocytosis were within the normal

range for both individuals (Table S2). White blood cell

indices and platelet counts were also normal (data not

shown).

The erythroid abnormalities from individual 1 cannot be

explained by known mechanisms. All known causes of

macrocytosis were excluded. Reticulocyte count was not

indicated because her peripheral-blood smear did not

reveal elevated polychromasia, spherocytes, schistocytes,

or nucleated red blood cells. She also showed normal liver

function, and therefore, liver-disease-associated abnormal

lipid metabolism could be excluded. This individual had

normal thyroid-function test results. Additionally, individ-

ual 1 had normal white blood cell and platelet counts, so

bone marrow diseases (myelodysplastic syndrome, acute

leukemia) were excluded. Furthermore, the individual

had no exposure to alcohol, toxins, or drugs that induce

macrocytic anemia (substances reviewed by Aslinia

et al.).2 Bone marrow aspiration and biopsy were not

performed because they would cause significant pain and

discomfort without a clear therapeutic or diagnostic

benefit, a decision concurred by the local human subjects

institutional review board in Italy. We further excluded

known causes of megaloblastosis from vitamin deficiency

and disorders of transport and absorption, such as perni-

cious anemia (MIM 170900) and Imerslund-Gräsbeck

syndrome (MIM 261100) given that individual 1 had

normal serum B12 and folate.4,5 Rare diseases, such as

transcobalamin II deficiency (MIM 275350) and defects

in cellular cobalamin modification, are also known to
etics 93, 906–914, November 7, 2013 907



Figure 2. Next-Generation Sequencing Identifies Mutations in SFXN4
(A) Upper panel: sequencing revealed a single-nucleotide deletion (c.233delC) in the SFXN4 cDNA from individual 1 (right), but not in
the control (left). Lower panel: sequencing of individual 2 revealed twomutations, c.739dup (left) and c.471þ1G>A (right). The normal
and aberrant amino acid sequences are displayed below each chromatogram.
(B) A schematic representation of the normal SFXN4 is shown with the predicted multispanning transmembrane domains (top, high-
lighted in yellow). The c.233delC mutation in individual 1 results in a frameshift (highlighted in pink) and an eventual nonsense
substitution at amino acid residue 102 (p.Pro78Leufs*26). In individual 2, the c.739dup mutation also causes a frameshift (pink) and
premature termination at amino acid 266 (p.Arg247Lysfs*19), whereas the c.471þ1G>A mutation affects the splice donor site at intron
8, causes its retention in the misspliced mRNA, and thus results in the insertion of an additional 38 amino acids after Tyr157
(p.Thr158Metfs*38).
(C) qRT-PCR analysis from control and affected fibroblasts revealed decreased steady-state SFXN4 mRNA when normalized to glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH), correlating the disease severity with the residual SFXN4 mRNA level; **p < 0.0005. qRT-
PCR was performed with TaqMan probes for SFXN4 and GAPDH (Applied Biosystems, Life Technologies). SFXN4 expression was
analyzed with the standard curve method, and GAPDH was used as a normalization control. Error bars represent the SEM.
(D) Family 1: Mendelian recessive-inheritance segregation was demonstrated in the family of individual 1 (arrow, III-1) by allele-specific
oligonucleotide hybridization with the normal (top) or mutant c.233delC (bottom) 32P-labeled probes. The control is a GM00536A
healthy male. Family 2: the compound heterozygosity of individual 2 (arrow, II-2) was established with Sanger dideoxy sequencing.
cause megaloblastic anemia in individuals with normal

serum B12 and folate but elevated homocysteine and/or

methylmalonic acid.4,5 Importantly, individual 1 had

normal levels of metabolic intermediates, thereby ruling

out defects in this canonical pathway. Orotic aciduria

(MIM 258900) also causes megaloblastic anemia, but this

too was excluded because both individuals showed no

detectable levels of orotic acid in their urine (data not

shown).6 We propose that individual 1 has a hitherto

uncharacterized macrocytic erythroid abnormality.

With the approval of the human subjects ethics com-

mittees from the University of Florence and the Technical
908 The American Journal of Human Genetics 93, 906–914, Novemb
University of Munich and the informed consent of the

affected individuals’ parents, we proceeded to study the

genetic basis of this disease. We used the coexistent mito-

chondrial disease from individual 1 to narrow the range of

potential candidates to mitochondrial genes or nuclear

genes encoding mitochondrial proteins.7 With this tar-

geted approach, we used next-generation sequencing

(Illumina GA-II platform) to identify a mutation in indi-

vidual 1 in the putative mitochondrial-protein-encoding

gene sideroflexin 4 (SFXN4 [RefSeq accession number

NM_213649.1]).7,8 In individual 1, we found a homozy-

gous single-nucleotide deletion (c.233delC) in SFXN4
er 7, 2013



Figure 3. SFXN4 Localizes to the Inner Mitochondrial
Membrane
(A)With the use of Lipofectamine 2000 (Invitrogen) and immuno-
blot analysis with FLAG antibody (Sigma) (lane 1, mock transfec-
tion; lane 2, zebrafish sfxn4; lane 3, human SFXN4), FLAG-tagged
SFXN4 from human and zebrafish was found to localize to the
mitochondria in transiently transfected Cos7 cells. Lysate refers
to total cellular lysate, and mito (mitochondrial) and cytosolic
refer to the subcellular fractions. HSPD1 (total and mitochondrial;
Santa Cruz) and GAPDH (cytosolic; Santa Cruz) antibodies were
used as loading controls. Cells were prepared for immunoblotting
as previously described.16 FLAG antibodies were obtained from
Sigma. Goat anti-mouse IgG-HRP was used as a secondary anti-
body. Proteins were visualized with the SuperSignal West Pico
Substrate chemiluminescent (Pierce).
(B) Confocal immunofluorescence microscopy confirmed the
colocalization of FLAG-SFXN4 (FITC, green) with HSPD1 (Texas
Red) (Pearson’s correlation coefficient, 0.74), a mitochondria
resident protein (yellow, merged panel). Nuclei were stained
with DAPI (blue). The correlation between the signal from the
FLAG-tagged SFXN4 and mitochondrial marker HSPD1 was calcu-
lated with software developed by Tony Collins, Wayne Rasband,
and Kevin Baler. The Pearson’s coefficient was compared against
74 randomized iterations of the HSPD1 images via the Fay
method17 and was statistically significant (p < 0.05). FITC and
Texas-Red-conjugated secondary antibodies were obtained from
Santa Cruz.
(C) FLAG-SFXN4 localized to the inner mitochondrial membrane
in transfected HeLa cells after trypsin digestion (lane 2). TIM23, an
inner-membrane protein, was protected from trypsin digestion,
whereas TOM20, an outer-membrane protein, was degraded
(lane 2). Rupturing of the mitochondrial inner membrane by
hypotonic treatment showed that FLAG-SFXN4 and TIM23 were
sensitive to proteolysis, whereas HSPA9, a matrix protein was
protected (lane 3). The residual protease-resistant FLAG-SFXN4
reflects mitochondria that are resistant to osmotic shock. Proteins
were detected with FLAG (Gilbertsville), TOM20 (Santa Cruz),
TIM23 (BD Biosciences), and HSPA9 (Santa Cruz) antibodies.

The American
(Figure 2A); it is predicted to introduce a frameshift and a

premature stop codon prior to the region encoding all five

predicted transmembrane domains (p.Pro78Leufs*26)

(Figure 2B).

Exome sequencing (Illumina HiSeq2000 platform) in

individual 2 identified heterozygous, predicted loss-of-

function mutations in SFXN4 (Figure 2A).9,10 The first

mutant allele, c.739dup, causes a frameshift and a pre-

mature truncation of the polypeptide before the two

terminal transmembrane domains (p.Arg247Lysfs*19)

(Figures 2A and 2B). The mutation in the second allele,

c.471þ1G>A, alters the canonical splice donor site, result-

ing in the insertion of intron 8 into the mature mRNA

(Figure 2B). This intronic insertion in the open-reading

frame predicts an additional 38 amino acids after Tyr157

and a subsequent premature translational termination

(p.Thr158Metfs*38). The misspliced mRNA isoform also

predicts that an internal alternate ATG/Met initiator at

Met168 could allow translation of an in-frame polypeptide

encoding the C-terminal portion of SFXN4 with potential

partial activity.

To determine whether the gene was expressed, we

assessed the steady-state level of SFXN4 mRNA from

the affected individuals’ fibroblasts. Quantitative RT-PCR

(qRT-PCR) showed that SFXN4 expression was 84% lower

in individual 1 but only 22% lower in individual 2

(Figure 2C) than in controls. The results for individual

1 are consistent with nonsense-mediated decay of the

mutant transcript.11 Taken together, these data suggest

that the c.233delC mutation in individual 1 results in a

severe loss-of-function phenotype. In contrast, the com-

pound-heterozygous mutations in individual 2 are most

likely hypomorphic, resulting in a higher residual level of

SFXN4 mRNA, which is consistent with her milder clinical

course.

To establish the inheritance pattern of these mutations,

we used allele-specific oligonucleotide hybridization and

Sanger sequencing to genotype the affected individuals

and their family members as previously described.12–14

Normal DNA (control) was isolated from a lymphoblas-

toid line, GM00536A (Coriell Institute, Camden). The

region surrounding the mutation was amplified via PCR

with primers listed in Table S3. The results, summarized

in Figure 2D, indicate that the mutant alleles were

inherited in a Mendelian recessive manner. Individual 1

(III-1 from family 1) is homozygous for the c.233delC

mutation, and individual 2 (II-1 from family 2) is a com-

pound heterozygote for the c.739dup and c.471þ1G>A

mutations.

Previous large-scale proteomic analysis identified SFXN4

as a mitochondrial protein.15 By probing cellular fractions

by immunoblot and by confocal immunofluorescence

microscopy, we experimentally confirmed that SFXN4

efficiently targets the mitochondria (Figures 3A and 3B).

We next sought to determine the submitochondrial

localization of SFXN4. We isolated mitochondria from

HeLa cells expressing FLAG-SFXN4 and treated them
Journal of Human Genetics 93, 906–914, November 7, 2013 909



Figure 4. sfxn4Knockdown inZebrafishRecapitulates theDefects in Erythropoiesis andMitochondrial Respiration Seen in Individual 1
(A) Phenotypic characterization of control and zebrafish morphants for sfxn4. Zebrafish sfxn4 morphants showed a defect in hemo-
globinization (brown color) when stained with o-dianisidine (upper). The anemia in sfxn4 morphants was evident by the reduction
of GFPþ erythroid cells in the Tg(globin-LCR:eGFP) transgenic zebrafish reporter line (middle). Cytospin analyses of flow-sorted erythroid
cells from the control (left) and sfxn4 morphant (right) revealed large nuclei with noncondensed chromatin in the latter (lower).
Enlarged magnifications of individual cells (arrow) are shown in the insets.
(B) Flow cytometry of the Tg(globin-LCR:eGFP) transgenic line quantified the anemia in sfxn4 morphants with a splice-blocking MO
(***p < 0.0005). Cells were collected from 20–100 control or MO-injected embryos, disaggregated and passed sequentially through 70
and 40 mm cell strainers, washed in Hank’s Balanced Salt Solution (HBSS) (Sigma), and pelleted by low-speed centrifugation. The cells
were resuspended in a final buffer containing HBSS. Cells were sorted in a BD Biosciences FACSVantage SE machine as described.20,21

Error bars represent the SEM.
(C) Enumeration of the ratio of nuclear area to cytoplasmic area showed a large increase in nuclear size relative to residual cytoplasmic
area (***p < 0.0005; n > 250 cells were analyzed for each condition). Erythrocytes were sorted from embryos as previously described20

and stained withWright-Giemsa dye in a clinical hematology laboratory (Dana-Farber Cancer Institute, Boston). Cells were individually
given a chromatic threshold for designating nuclear and cytoplasmic regions. The nuclear and cytoplasmic areas weremeasured in Image
J (National Institutes of Health) with investigator-coded software.22 Analysis was confirmed by manual inspection of all samples, and
cellular components given improper thresholds were excluded from the analysis. Nuclear and cytoplasmic areas were averaged from
a minimum of 250 cells (total) from four independent samples and divided for obtaining the ratio of nuclear area to cytoplasmic
area.23 Statistical significance was established with a one-tailed Student’s t test for paired samples. Error bars represent the SEM.
(D) Neither vitamin B12 (1.0 mM) nor folate (0.01 mM) chemically complemented the anemia in sfxn4 morphant zebrafish raised in
vehicle media (standard balanced salt solution). The vehicle- and vitamin B12-treated sfxn4 morphants were significantly more anemic
than the control morphant samples exposed to either vehicle or vitamin B12 (*p < 0.05). Similarly, compared to morphant controls
exposed to folate, folate-treated sfxn4 morphants were anemic (p ¼ 0.12). Doses were selected on the basis of established literature
and adjusted for preventing developmental and chemical toxicity.24,25 At 96 hr postfertilization, embryos were stained for hemoglobi-
nized cells with o-dianisidine (Sigma) as described.26 Error bars represent the SEM.
(E) Zebrafish sfxn4morphants, but not embryos injected with a standard control MO, exhibited global mitochondrial-respiratory-chain
defects (complexes I and III, complex I, complex II, citrate synthase3,27) (*p < 0.05). Error bars represent the SEM.
with trypsin to digest exposed membrane proteins as pre-

viously described.18 SFXN4 was found to degrade concur-

rently with an inner membrane control, TIM23, indicating

that SFXN4 localizes to the mitochondrial inner mem-

brane (Figure 3C).
910 The American Journal of Human Genetics 93, 906–914, Novemb
To functionally validate the causal relationship, we

modeled the disease by knocking down the corresponding

gene by using two different morpholinos (MOs) (Table S3)

in zebrafish (Danio rerio), an excellent model system

for studying human disease.19 All zebrafish experiments
er 7, 2013



Figure 5. SFXN4 Is Functionally Conserved across Vertebrate
Species in Both Erythropoiesis and Mitochondrial Respiration
(A) Normal SFXN4 cRNA from either zebrafish or human partially
complemented the anemia in sfxn4 morphant embryos (**p <
0.005, *p < 0.05). Zebrafish and human FLAG-SFXN4 cDNA
constructs in pXT7 were used for generating 50 capped mRNA
with the use of the mMessage mMachine T7 Kit (Ambion). The
generated mRNA was mixed with MO at an equimolar concen-
tration to the MO injection and injected at the 1-cell stage. The
translational expression of the transgenic mRNA was confirmed
by immunoblot analysis with FLAG antisera.
(B) Normal SFXN4 cDNA from zebrafish and human com-
plemented the RCA defect in primary fibroblasts of individual 1

The American
were conducted with the guidance and approval of the

Institutional Animal Care and Use Committee at Boston

Children’s Hospital. By qRT-PCR, we confirmed the effi-

cient knockdown of sfxn4 (RefSeq NM_001076662) by

both MOs (Figures S1A and S1B). MO-mediated knock-

down of sfxn4 in zebrafish embryos caused a gross reduc-

tion in hemoglobinized cells, as indicated by o-dianisidine

staining (Figure 4A, upper panel). To quantify this reduc-

tion, we knocked down sfxn4 in transgenic Tg(globin-

LCR:eGFP) zebrafish, which express a GFP reporter under

the regulation of the globin-LCR enhancer28 (Figure 4A,

middle panel). Fluorescence-activated cell sorting (FACS)

analysis20,21 revealed that relative to controls, sfxn4

morphants had a 65% reduction of GFPþ red blood

cells (MO1: Figure 4B; MO2: Figure S1C). Additionally,

sfxn4 morphant embryos exhibited erythrocytes with

enlarged nuclei containing open chromatin (mature

teleost erythrocytes are nucleated), consistent with matu-

ration arrest (Figure 4A, lower panel). Quantification of

the nuclear/cytoplasmic ratio22,23 showed that relative to

control cells, red blood cells from sfxn4 morphant fish ex-

hibited a nearly 3-fold increase (Figure 4C). Interestingly,

neither exogenous folate nor vitamin B12 supplementa-

tion could rescue the anemia seen in sfxn4 morphants

(Figure 4D).With ourmodel system, these data experimen-

tally validate the clinical findings that macrocytic anemia

is independent of vitamin B12 and folate. N-acetylcysteine,

a strong thiol antioxidant,29–31 was also unable to rescue

the anemia in sfxn4 morphants, confirming that the ane-

mia phenotype is not due to oxidative damage by reactive

oxygen species (Figure S1D). Like the described affected

individuals (Figure 1A), sfxn4 morphants had global RCA

defects (Figures 4E). In summary, sfxn4 morphants recapit-

ulated both the erythroid abnormality characterized in

individual 1 and the mitochondrial respiratory defects

observed in both individuals.

We validated the functional orthology of vertebrate

SFXN4 by using a combination of zebrafish and fibroblast

complementation experiments. Relative to embryos in-

jected with sfxn4 MO alone, zebrafish embryos coinjected

with sfxn4 MO and either zebrafish or human SFXN4

mRNA showed a significant increase in the erythrocyte

population (Figure 5A). Using qRT-PCR, we confirmed

the efficient knockdown of the endogenous sfxn4 mRNA

in the animals rescued with human SFXN4 mRNA
(*p < 0.05). RCA for complexes I and III were compared to a
mock-transfected (empty-vector) sample. Transfections were car-
ried out with 5 mg of human or zebrafish SFXN4 cDNA or empty
vector pCS2þ with the use of Lipofectamine 2000 (Invitrogen).
(C) Lentiviral transduction of individuals 2’s fibroblasts (per-
formed as described32) with SFXN4 cDNA (DNASU Plasmid
Repository, clone ID HsCD00352377) cloned into the pLenti6/3/
V5-TOPO vector system (Invitrogen) complemented the complex
I respiratory deficiency. The oxygen-consumption rate was
measured as previously described10 after nontransduction (�) or
SFXN4 stable transduction with lentivirus (þ) on fibroblasts
from the control and individual 2 (**p < 0.01).
Error bars represent the SEM.

Journal of Human Genetics 93, 906–914, November 7, 2013 911



(Figure S1A). Similarly, in fibroblasts from individual 1, the

overexpression of both zebrafish and wild-type human

SFXN4 rescued the defect in the activity of complexes I

and III without increasing the mitochondrial mass (p <

0.05) (Figure 5B). Furthermore, retroviral transduction of

individual 2’s fibroblasts, stably expressing human

SFXN4 cDNA, functionally complemented the mitochon-

drial RCA (p < 0.01) (Figure 5C). Together, these data

describe pathologic mutations in SFXN4 (c.233delC,

c.739dup, and c.471þ1G>A), demonstrate the functional

conservation of SFXN4, and prove that the mutations are

causative of both the mitochondrial and the erythroid

pathologies observed in the individuals.

Hematologic manifestations of mitochondrial diseases

are not unprecedented and include aplastic, macrocytic,

or sideroblastic anemia, leukopenia, neutropenia, throm-

bocytopenia, or pancytopenia. They can occur in either

syndromic or nonsyndromic mitochondrial disorders.33

Despite these precedents, the pathogenic mechanisms

linking mitochondrial dysfunction and hematological

manifestations are poorly understood. Iron-metabolism

dysfunction could play a central role in the sideroblastic

anemia of the myopathy, lactic acidosis, and sideroblastic

anemia (MLASA) syndromes (MLASA1 [MIM 600462] and

MLASA2 [MIM 613561], caused by mutations in PUS1

and YARS2, respectively)34 and in X-linked sideroblastic

anemia (MIM 300751), due to defects in ALAS2,27 whereas

a toxic iron overload occurs in GRACILE syndrome (MIM

603358).35 Additional examples of mitochondrial diseases

with hematological manifestations have been recently re-

viewed (GLRX5 [MIM 609588], SLC19A2 [MIM 603941],

SLC25A38 [MIM 610819], ABCB7 [MIM 301310], and

mtDNA deletions).27

SFXN4 is part of a superfamily of genes encoding pre-

dicted mitochondrial transmembrane proteins, presum-

ably transporters. The founding family member, Sfxn1,

was first reported to be mutated in the flexed-tail mouse

mutant with sideroblastic anemia.36 However, others

have subsequently reported that the defect in these

mice is in the transcription-factor-encoding gene Smad5

rather than in Sfxn1.37 This controversy remains un-

resolved. There is in vitro information to suggest that

Sfxn5 (BBG-TCC) can function as a mitochondrial citrate

exchanger.38

Although the mechanism of disease remains elusive, it

is clear that mutations in SFXN4 are rare. On the basis of

allele frequency in the National Heart, Lung, and Blood

Institute Exome Sequencing Project Exome Variant Server,

there are no common nonsynonymous variants in SFXN4.

Interestingly, genome-wide association studies have yet

to link mutations in SFXN4 with hematologic39–41 or

neurologic disease.42,43

The identification of these rare mutations in SFXN4 and

their in vivo functional validation illustrate the power of

coupling targeted exome sequencing with the zebrafish

system for rapidly identifying and validating disease-

causing mutations. Our studies demonstrate that SFXN4
912 The American Journal of Human Genetics 93, 906–914, Novemb
should be added to the list of proteins required for

mitochondrial homeostasis and hematopoiesis.
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