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Abstract

Turbulence Modeling in Core-Collapse Supernovae with Machine Learning

by

Platon Igorevich Karpov

Chaotic fluid motion, known at the small scales as turbulence, can significantly alter the

large-scale evolution of astrophysical events. For example, the growth and impact of

convection to produce a successful core-collapse supernova (CCSN) depend upon the

evolution of turbulence. The ideal way to investigate it in such an environment would

be with high-resolution direct numerical simulations (DNS) that resolve the turbulent

energy cascade down to some small scale where the energy could be safely assumed to

dissipate as heat. Unfortunately, given the high Reynolds number and a large range of

spatial scales, this is well beyond the current state-of-the-art computational 3D CCSN

models. Since turbulence cannot be properly simulated in 1D or 2D, a subgrid-scale

model (SGS) is needed to capture the unresolved 3D physics. Simple analytical SGS

models often lack accuracy, though, and complex ones are difficult to tune, resulting

in limited generalizability based on initial conditions. Given the recent successes in

turbulence SGS modeling with Machine Learning (ML) in adjacent fields, this thesis

develops an ML algorithm to analyze current simulations and study the features of

turbulence in CCSN. To demonstrate its efficacy, we test our ML approach on modeling

viii



dynamic 3D HD & MHD turbulence, integrating the former into a 1D code to study the

role of one specific feature of turbulence (the effective turbulent pressure) on the fate of

CCSN simulations. Furthermore, our ML tools can be used to study the broader effects

of turbulence, explore other ML architectures, and be integrated into the outside 1- and

multi-dimensional CCSN codes. The ML framework (Sapsan) and its implementation

in a 1-dimensional code (COLLAPSO1D) are open-sourced and available for public use.
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Chapter 1

Introduction

Some of the most energetic events in the Universe are stellar explosions known as

supernovae (SNe). They can be roughly separated into two categories: thermonuclear

and core-collapse SNe (CCSNe). The former result from a degenerate white dwarf stel-

lar remnant exceeding the Chandrasekhar mass of 1.4 M⊙, resulting in a deflagration-

to-detonation supernova, commonly known as Type Ia. The latter CCSN event marks

the death of a massive star. A spectacular explosive event is actually not guaranteed

for a star undergoing core-collapse at the end of its life. While more details behind the

CCSN mechanism will be discussed in Section 1.1, let us introduce the main stages

here. Shortly after the core bounce, the shock is stalled within ∼ 200 km, requiring it to

be re-energized for a successful explosion to avoid a further collapse into a black hole.

In this process, turbulence has been speculated to play a significant role by supply-
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ing additional pressure, energy, and increasing its dissipation to heat below the shock.

These contributions further amplify the importance of including turbulence in the global

3D CCSN simulations. However, this is a very demanding computational task where

current analytical models do not have a definitive answer for turbulence. This work

investigated the applicability of Machine Learning (ML) modeling for turbulence in

CCSN as an alternative to the current approaches, which can be used either on its own

or in conjunction with the analytical turbulence models.

In this thesis, later sections of Chapter 1 present an overview of CCSN, character-

istics of turbulence, and its modeling implementations and goes over ML methods that

can be applied to benefit current global astrophysical simulations. Chapter 2 discusses

the open-source pipeline called Sapsan that was built for designing, training, and evalu-

ating ML models for turbulence modeling in astrophysical applications. Next, Chapter

3 goes over a physics-informed ML (PIML) method to train and predict 3D magnetohy-

drodynamic (MHD) turbulence in CCSN. Chapter 4 adopts the PIML model to capture

3D dynamics to introduce into 1D CCSN simulations. It discusses the effects of the tur-

bulent pressure term, increasing the accretion shock radius, which in turn ameliorates

explodability of the CCSN models. Lastly, Chapter 5 summarizes the ML applications

in computational astrophysics, outlining its future in CCSN modeling and beyond.
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1.1 Core-Collapse Supernova Mechanism

The fusion process in a massive (> 8 M⊙) star eventually leads to a formation of

an iron core. At this point, enough energy from the fusion reactions cannot be gener-

ated to support the star’s gravitational force. Along with energy losses from escaping

neutrinos radiating from the core, the star undergoes a collapse. Colgate and White

(1966) proposed that the inner bound shock then reaches the core, compressing it to

nuclear densities (∼ 2×1014 gcm−3), at which point it must bounce back and explode

the star. However, its fate is not as determined to result in a successful SN. As the star

collapses, the shock loses energy due to photodisintegration, i.e., undoing the heavy

nuclei through high-energy photon absorption. After the bounce, the shock is launched

outwards but quickly loses energy due to continued neutrino losses and photodisintegra-

tion, stalling within several milliseconds at the radius of 100−200km. The shock just

became an accretion shock, losing its positive momentum, and needs to be re-energized

in order to avoid a failed SN, collapsing into a black hole (Woosley and Janka, 2005;

Janka, 2012; Müller, 2020).

At the core, the newly formed proto-neutron star (PNS) continues to supply a flux

of neutrinos. It cools the PNS while getting quickly re-absorbed in the gain region

right above, providing the negative entropy gradient to power convection in the re-

gion (Herant et al., 1994b; Fryer and Heger, 2000; Fryer and Warren, 2002). Then,

convection carries the heat generated from neutrinos out to the shock, providing the

3



extra ram pressure to revive the shock. Many studies have been done in the neutrino-

powered paradigm (Fryer et al., 2007; Janka et al., 2016; Janka, 2017; Radice et al.,

2018; O’Connor et al., 2018; Müller, 2020; Burrows and Vartanyan, 2021), but neu-

trinos alone do not appear to provide sufficient energy to explode the star. A critical

missing piece of the CCSN engine appears to be attributed to turbulence in the bubble

region between the PNS and the shock (Herant et al., 1994a; Blondin et al., 2003; Fryer

and Young, 2007a; Melson et al., 2015; Burrows et al., 2018). However, its source

also presents the biggest challenge in studying it. Turbulence can develop from the

progenitor through the collapse, standing accretion shock instability (SASI) (Blondin

et al., 2003), magneto-rotational instability (MRI) in MHD (Mösta et al., 2015), or

other instabilities in the bubble. In general, CCSNe are asymmetric, requiring multi-D

treatment, substantially raising computational costs (Figure 1.1). There is also strong

evidence of asymmetry in CCSN from observations of neutron star and black hole kicks

(Hobbs et al., 2005; Faucher-Giguère and Kaspi, 2006; Ng and Romani, 2007; Repetto

et al., 2012), which in turn would be responsible for turbulence. In the recent literature,

pressure due to turbulence alone has been estimated to reach up to ∼ 50% of the gas

pressure (Couch and Ott, 2015) aiding the shock. Furthermore, turbulence increases the

energy flux and its dissipation to heat below the shock, which can contribute similarly

in magnitude to the additional pressure term (Mabanta et al., 2019; Couch et al., 2020).

Typically the fate of the star is decided within a few 100 ms after the bounce. If

4



Figure 1.1: Entropy in the convective hot bubble below the accretion shock (outer cyan
outline) at 220.8 ms after bounce of a 3D CCSN simulation performed with FLASH
by O’Connor and Couch (2018). The snapshot presents the growing asymmetry of a
CCSN.
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the shock is successfully revived, it starts to move out through the star, mixing and

sweeping material on its way. The shock can take hours to days to reach the outer

shell. Besides the lighter elements, the explosion of ∼ 1051 erg will release a wide

abundance of intermediate and Fe-group elements, formed through nucleosynthesis in

the explosive burning (Woosley et al., 1995; Nomoto et al., 2006; Heger and Woosley,

2010). In addition, CCSNe are one of the sources of heavy elements beyond the Fe-

group through the rapid neutron capture process, i.e., r-process (Woosley et al., 1994;

Qian and Woosley, 1996; Nishimura et al., 2015).

1.2 Turbulence

Turbulence is a vital part not only of SNe or other astrophysical phenomena, but also

of our everyday life. From blood flow to clouds to stellar formation, chaotic velocity

fluctuations known as turbulence are found essential for those processes. Despite how

common it is, turbulence is incredibly difficult, if not impossible, to predict exactly,

given its random nature. As such, it is best to model turbulence through statistical and

qualitative means, approximating its effect on larger scales.

A useful parameter to characterize a flow is Reynolds Number (Re), defined as

Re =
uL
ν

(1.1)

where u is characteristic velocity, L is characteristic length, and kinematic viscosity ν

6



Figure 1.2: Jet fluid mixing at high Re presenting a turbulent flow structure; photo from
Dimotakis et al. (1983).

(Pope, 2000). Turbulent flow is typically defined to have a high Re of O(103), while

low Re is called laminar. An example of turbulent mixing is shown in Figure 1.2.

In the photo, there are small and large whirls, i.e., eddies, that can be observed in the

turbulent regime. Qualitatively such structure can be reasoned by the classic poem of

Richardson (1922): "Big whirls have little whirls that feed on their velocity, and little

whirls have lesser whirls and so on to viscosity". To better understand the turbulent

behavior, it is essential to look at the energy spectrum in Figure 1.3. Energy is driven

at the low-order modes, i.e., large-scale eddies, also known as the integral scale. Then

the energy cascades down the spectrum following Kolmogorov’s −5/3 slope through

the inertial range (Kolmogorov, 1941). At the smallest, dissipative scale, turbulent

energy transfers to heat. Ideally, the direct numerical simulations (DNS) would resolve

7



Figure 1.3: Illustration of the Kolmogorov energy spectrum. (not a final schematic; I
might want to re-do a few labels)

the flow down to the smallest eddies for the turbulence to dissipate. However, this is

incredibly cost prohibitive. For example, to model a hydrodynamic (HD) flow with

Re = 1000 in 3D, the grid will have to be of O(104) per axis (following the N ∼ Re
3
4

requirement from Jiménez (2003)). This is already very challenging, while not getting

anywhere close to Re ∼ O(1014) that can occur in SNe (Woosley et al., 2004; Müller

et al., 2017).

Since global DNS is not feasible to model in most scenarios, the leading paradigms

for HD simulations have been Large Eddy Simulation (LES) and Reynolds-Averaged-

Navier-Stokes (RANS). In both methods, a mathematical decomposition is applied to

fluid variables, where the spatial-averaged (for LES) or time-averaged (for RANS)

8



quantities are separated from the fluctuating ones, with their correlation modeled using

the average quantities often through a hypothesis of the underlying turbulence prop-

erties. An analytical model can be used to close the system of NS equations, i.e.,

recover the subgrid-scale high-order modes that have been averaged. The common

closure models used for LES in astrophysics are Dynamic Smagorinsky (Lilly, 1966)

and gradient-type subgrid models (Schmidt, 2015; Miesch et al., 2015). Both of them

extend the Kolmogorov energy cascade down to dissipation scales by filtering (i.e.,

averaging) the resolved grid and crudely extrapolating the effects of the filtering op-

eration in a self-similar manner to the SGS structure. These models benefit from low

computational overhead and straightforward implementation. The issues of such SGS

models are the lack of flexibility, generalizability, and difficulty assessing the accuracy

of the modeled unresolved turbulence. On a side note, it is also a common practice for

global 3D simulations in astrophysics to use implicit LES (ILES) (Radice et al., 2015,

2018), which assumes numerical diffusion and viscosity to take care of turbulence, i.e.,

under-resolved simulation with no SGS model.

Throughout the last few decades, significant technological and algorithmic advance-

ments have started a new era for the study of dynamically evolving turbulence. Follow-

ing Moore’s Law evolution of high-performance computing (HPC), non-global DNS

turbulence models have emerged (Li et al., 2008; Mösta et al., 2015). These simula-

tions model turbulence in a box, as if modeling a small portion of a global simulation.
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While they do not reach the high Re found in SNe, it does get to sufficiently large mag-

nitudes to study turbulent flow in these phenomena. It is noteworthy that previously,

the role of turbulence in the CCSN engine could have been underestimated due to low

Re given the low simulation resolution, which slowed the growth of turbulence (Mösta

et al., 2015).

Today, DNS data can be used as ground truth, along with experimental data, for

turbulence subgrid model optimization in large-scale 3D computational fluid dynamic

(CFD) simulations. The relative abundance of DNS data presents opportunities for

Machine Learning (ML) to augment turbulence modeling. The ML methods tend to

be highly flexible, as demonstrated in many industrial and scientific applications (e.g.,

face recognition and self-driving cars). It has already shown the potential for turbulence

modeling, both in the direct prediction of turbulent fluxes and analytical (e.g., RANS-

based) model optimization through the means of ML (Ling et al., 2016; Wu et al., 2018;

Wang et al., 2019; Wu et al., 2020; Rosofsky and Huerta, 2020; Beck and Kurz, 2021a).

However, ML comes with its own range of challenges, especially when modeling phys-

ical systems. For example, turbulent regimes require physics-based constraints to the

ML inference, which is still a raw field of study today. While typical ML methods can

be considered universal approximators (Hornik et al., 1990), we should be careful to

ensure the accuracy of ML-based turbulence models, embedding physics-based restric-

tions (Ling et al., 2016; Beucler et al., 2019; Portwood et al., 2019; Mohan et al., 2020;

10



Wu et al., 2020; Li et al., 2021; Rosofsky et al., 2023).

1.3 Machine Learning for Turbulence Closure Models

In the case of LES or RANS, after the appropriate (spatial, time, or both) averaging

has been performed, the velocity field will have the following form:

ui = ūi +u′i (1.2)

where u is velocity, ū is its average, and u′ is the fluctuating velocity component. LES

or RANS 3D simulations only account for the average ū, while u′ fluctuations are left

for the turbulence model to close the system. Upon averaging Navier-Stokes (NS)

equations for incompressible (i.e., constant density ρ), hydrodynamic (HD) system,

what is known as Reynolds Stress (Ri j) emerges:

τi j = Ri j = ρu′iu
′
j (1.3)

Modeling Reynolds Stress defines a turbulent closure model for the momentum NS

equation. The simplest case is presented here to keep it concise, but physical systems

can grow quite complex. For example, in compressible magneto-hydrodynamic (MHD)

regimes, there are more stresses and terms that emerge through averaging, e.g., due to

magnetic field influence on turbulent evolution and energy cascade.

ML methods to tackle turbulence closure differ significantly: from strictly statis-

tical data training to embedding physical constraints to model stationary and dynamic
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turbulence. In this section, a sample of ML algorithms that represent the field today

will be discussed, briefly outlining the successes and struggles of each. Note that pro-

duction ML models are not limited to using a single type of network, with researchers

often mixing them up to reap the benefits and challenges of both, not to mention the

added training difficulties.

1.3.1 Supervised Machine Learning

The most common type of ML is supervised learning, meaning the model is given

a target feature to train against, e.g., the Re stress itself or the analytical closure coeffi-

cients. Such models are typically easier to design and implement, pointing at the exact

feature relationships for the model to investigate.

Simplistic Regression models are the most commonly used variants of ML for

turbulence modeling (e.g., Gaussian Process (Rasmussen et al., 2006), Kernel Ridge

Regression (King et al., 2016)). One of the main benefits of using them is the trans-

parency of these methods. They are relatively simple in form, easier to derive, and

more interpretable. The methods have solidified their reliability for turbulent regimes

that are stationary and isotropic, with numerous papers showing great performance in

more idealized setups (Tracey et al., 2015; Zhang and Duraisamy, 2015; King et al.,

2016). However, simplistic regression methods lack the flexibility to tackle more com-

plex physical problems, such as dynamic 3D HD & MHD turbulent regimes.
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Convolutional Neural Networks (CNN) are some of the more often used NN al-

gorithms ranging from shallow (fewer layers) to deep (more layers) networks. In the in-

dustry, they are popular for image analysis due to their ability to capture spatial features

across a wide range of scales. As a result, it is evident how CNNs can be a powerful

tool to tackle LES-type turbulence modeling when spatial filtering is involved. How-

ever, those models have no inherent physics, making deep CNNs difficult to interpret.

In addition, it is not trivial to generalize solutions to dynamic turbulence. (Wu et al.,

2018; Zhang et al., 2018)

Recurrent Neural Networks (RNN) take into account the time-dependency of the

training data, learning the patterns, hence giving an insight into dynamic evolution. A

common variant of an RNN is a Long-Short Term Memory (LSTM) algorithm (Mohan

et al., 2019). Similar to CNNs, deep RNN/LSTM-based models can serve as a good

general-purpose estimator, tackling turbulent problems, among others. However, the

lack of physical constraints preserves the black-box nature of such models, leaving

generalizability to be used for a wide range of turbulent problems under question.

Generative Adversarial Networks (GAN) involves two networks that compete

against each other, the generator and discriminator (Goodfellow et al., 2020). The for-

mer tries to generate a dataset similar to the target training, and the latter needs to

distinguish between the fake and the ground truth. This concept forces the GAN model

to learn the unknown probability distribution of the training dataset and generate the
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data from it during inference. The model has shown to be particularly successful in

super-resolution applications, i.e., upscaling the low-resolution images (Ledig et al.,

2017; Wang et al., 2018). GAN recovers the unresolved subgrid features, effectively

resembling a closure model. Moreover, considering that statistical properties of turbu-

lence are more important than the individual spatial features, GANs have been gaining

popularity among turbulence researchers (Lee et al., 2018; Bode et al., 2021). That said,

GANs tend to be more challenging to train, further exacerbated by adding the physics-

informed constraints. Despite the promising work in turbulence modeling, there are

concerns related to the prediction of small-scale distribution and, among others, infer-

ence of dynamic turbulence with evolving distribution (King et al., 2018).

1.3.2 Unsupervised Machine Learning

In unsupervised ML, there is no target feature. A model is given complete flexibility

to find relationships between the features in the training set. Even though this is a much

more complex and unpredictable field of ML, there is potential to discover new physics

and even define a universal formalism for turbulence. Some advancements for physical

systems have already been made (Andreassen et al., 2019; Yao et al., 2022). While

this is an exciting and promising branch of ML, convergence, training efficiency, and

physical validation of those models remain challenging.
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1.3.3 Physics Informed Machine Learning

Embedding physical constraints into ML models is a crucial step to ensure the phys-

ical consistency of their predictions. A few leading techniques utilized today to aug-

ment the aforementioned models are outlined next.

Non-Trainable Layers can enforce a physical condition within the network itself

(Ling et al., 2016). For example, conservation of mass can be preserved through diver-

gence of the vector potential being equal to zero (∇ ·A = 0), in the case of incompress-

ible turbulence (Mohan et al., 2020). Another example of preserving a realizability

condition of the Re diagonal components prediction, i.e., enforcement of positive pres-

sure prediction, will be discussed in Chapter 3. Designing such non-trainable layers for

complex physical systems, i.e., compressible or MHD regimes, can be non-trivial.

Optimizing Analytical Models with ML can substantially improve their perfor-

mance for a given problem while preserving the physics they were based on. There are

examples of RANS, BHR, k−ε optimization, and even combined RANS & LES meth-

ods (Wang et al., 2019). The caveat is that ML only learns the coefficients; hence the

final SGS model relies upon the underlying physical assumptions of a given analytical

model. The physics is not embedded into the ML model itself, and generalizability is

not guaranteed. Thus, one has to be careful when choosing a specific analytical SGS

model to optimize and apply to the turbulent regime at hand; the high flexibility of deep

NNs is not utilized to its full potential.
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Loss functions can be regularized to enforce physical constraints. Thus, the ML

network will have a physics-based optimization at each epoch, i.e., iteration. Unlike the

non-trainable layers, the enforcement is rather soft, rewarding the models for following

certain trends or the expected physical behavior. An example would be using a loss

derived from statistics rather than a point-to-point loss, e.g., L1 or L2 loss. Statistics-

based regularization is especially relevant for turbulence, where individual spatial fea-

tures of smaller eddies might not be as important as the overall statistical distribution,

which applies to both statistically stationary and dynamic turbulence regimes. An ex-

ample of utilizing a combination of point-to-point and statistical losses will be given

in Chapter 3. The challenges arise due to the difficulty of tuning such regularizers

(Beucler et al., 2019; Wu et al., 2020).

Ordinary and Partial Differential Equations can represent turbulent dynamics.

ML is used to predict the coefficients, in turn calculating the evolution of the turbulent

behavior. Thus far, there have been promising results in predicting decaying turbulence,

while its growth remains challenging through neural ordinary differential equations

(NODE) by Portwood et al. (2019). Examples of using partial differential equations

include the physics-informed neural operators (PINO) method for modeling 1D and

2D physical systems (Li et al., 2021; Rosofsky et al., 2023).
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1.3.4 Machine Learning in Astrophysics

In astrophysics, ML is primarily used in observational data processing, e.g., ob-

ject detection, classification, and noise reduction (Kremer et al., 2017; Baron, 2019;

Vojtekova et al., 2020). The methods are complimented by the popularity of image-

processing research and development in the industry. However, modeling physical sys-

tems less reliant on spatial features, e.g., turbulence, is a niche application requiring tai-

lored and often physics-informed solutions. Currently, there is an absence of ML-based

methods in large astrophysical code-bases, e.g., SN and galaxy simulations. Adopting,

constructing, and testing more intricate ML models is daunting, especially with the lack

of tools available for computational astrophysics.

All the approaches for turbulence discussed above have their benefits, and more

are being developed. With such an abundance of ML architectures to explore, it is

necessary to simplify the design procedure and implementation of ML in astrophysical

codes. The Sapsan framework was developed to aid these challenges, along with a

PyTorch wrapper from COLLAPSO1D available for new and legacy codes, e.g., FLASH,

FORNAX. These tools will allow for rapid iteration of the ML design process and will

allow us to better evaluate the applicability and benefit of ML to the community.
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Chapter 2

Sapsan Framework

Adapted from

Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning

P. I. Karpov, I. Sitdikov, C. Huang, C. L. Fryer

Journal of Open Source Software, Volume 6(67), pp.3199 (2021)

DOI: 10.21105/joss.03199, ©Authors
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Summary

Sapsan is a framework designed to make Machine Learning (ML) more accessible

in the study of turbulence, with a focus on astrophysical applications. Sapsan includes

modules to load, filter, subsample, batch, and split the data from hydrodynamic (HD)

simulations for training and validation. Next, the framework includes built-in conven-

tional and physically-motivated estimators that have been used for turbulence model-

ing. This ties into Sapsan’s custom estimator module, aimed at designing a custom ML

model layer-by-layer, which is the core benefit of using the framework. To share your

custom model, every new project created via Sapsan comes with pre-filled, ready-for-

release Docker files. Furthermore, training and evaluation modules come with Sapsan

as well. The latter, among other features, includes the construction of power spectra

and comparison to established analytical turbulence closure models, such as a gradient

model. Thus, Sapsan attempts to minimize the hard work required for data preparation

and analysis, leaving one to focus on the ML model design itself.

2.1 Statement of Need

Domain sciences have been slow to adopt Machine Learning (ML) for a range of

projects, but particularly for physical simulations modeling turbulence. It is challenging

to prove that an ML model has learned the laws of physics in a particular problem, and
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that it has the ability to extrapolate within the parameter-space of the simulation. The

inability to directly infer the predictive capabilities of ML is one of the major causes

behind the slow adoption rates; however, the community cannot ignore the effectiveness

of ML.

Turbulence is ubiquitous in astrophysical environments, however, it involves physics

at a vast range of temporal and spatial scales, making accurate fully-resolved model-

ing difficult. Various analytical turbulence models have been developed to be used in

simulations using temporal or spatial averaged governing equations, such as RANS

(Reynolds-averaged Navier-Stokes) and LES (Large Eddy Simulation), but the accu-

racy of these methods is sometimes inadequate. In search of better methods to model

turbulence in core-collapse supernovae, it became apparent that ML has the potential

to produce more accurate turbulence models on an un-averaged subgrid-scale than the

current methods. Scientists from both industry and academia (King et al., 2016; Zhang

et al., 2018) have already begun using ML for applied turbulent problems. Still, none

of these efforts have yet reached the scales relevant for the physics and astronomy

community on a practical level. For example, physics-based model evaluation and in-

terpretability tools are not standardized, nor are they widely available. As a result, it is

a common struggle to verify published results, with the setup not fully documented, the

opaquely structured code lacking clear commenting, or even worse, not publicly avail-

able. This is a problem that the broader ML community can relate to as well (Hutson,
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2018). Thus, it is not surprising that there is considerable skepticism against ML in

physical sciences, with astrophysics being no exception (Carleo et al., 2019).

In pursuit of our supernova (SNe) study, the issues outlined above became painfully

apparent. Thus, we have attempted to lower the barrier to entry for new researchers in

domain science fields studying turbulence to employ ML, with the main focus on astro-

physical applications. As a result, we developed an ML Python-based pipeline called

Sapsan. The goals have been to make this library accessible and shared with the com-

munity through Jupyter Notebooks, a command-line-interface (CLI) and a graphical-

user-interface (GUI)1 available for end-users. Sapsan includes built-in optimized ML

models for turbulence treatment, both conventional and physics-based. More impor-

tantly, at its core, the framework is meant to be flexible and modular; hence there is an

intuitive interface for users to work on their own ML algorithms. Most of the mundane

turbulence ML researcher needs, such as data preprocessing and prediction analysis,

can be automated through Sapsan, with a streamlined process of custom estimator de-

velopment. In addition, Sapsan brings best practices from the industry regarding ML

development frameworks. For example, Sapsan includes docker containers for repro-

ducible release, as well as MLflow for experiment tracking. Thus, Sapsan is a single,

complete interface for ML-based turbulence research.

Sapsan is distributed through GitHub and pip. For further reference, visit Sapsan’s

wiki.
1A demo is available at sapsan.app
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2.2 Framework

Sapsan organizes workflow via three respective stages: data preparation, machine

learning, and analysis, as shown in Fig.2.1. The whole process can be further dis-

tributed using Docker for reproducibility. Let’s break down each stage in the context of

turbulence subgrid modeling, e.g., a model to predict turbulent behavior at the under-

resolved simulation scales.

• Data Preparation

– Loading Data: Sapsan is ready to process common 2D & 3D hydrody-

namic (HD) and magnetohydrodynamic (MHD) turbulence data in simulation-

code-specific data formats, such as HDF5 (with more to come per commu-

nity need).

– Transformations: A variety of tools are available for the user to prepare

data for training:

∗ Filtering: To build a subgrid model, one will have to filter the data to,

for example, remove small-scale perturbations. Some possible choices

include a box, spectral, or Gaussian filter. The data can be filtered on

the fly within the framework.

∗ Sampling: to run quick tests of your model, you might want to test on

a sampled version of the data while retaining the full spatial domain.
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For this application, equidistant sampling is available in Sapsan.

∗ Batching & Splitting: The data are spatially batched and divided into

testing and validation subsets.

• Machine Learning

– Model Setup: Different ML models may be appropriate for different phys-

ical regimes, and Sapsan provides templates for a selection of both con-

ventional and physics-based models with more to come. Only the most

important options are left up to the user to edit, with most overhead kept in

the backend. This stage also includes tools for defining ML layers, tracking

parameters, and choosing and tuning optimization algorithms.

• Analysis

– Trained Model: A turbulence subgrid model defines how small-scale struc-

ture affects the large scale quantities. In other words, it completes or ”closes”

the governing large-scale equations of motion with small-scale terms. The

prediction from a trained ML model is used to provide the needed quanti-

ties.

– Analytical Tools: There are also methods included for comparing the trained

model with conventional analytic turbulence models [such as the Dynamic

Smagorisnky (Lilly, 1966); or Gradient, (Liu et al., 1994b); models], or to
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Figure 2.1: High-level overview of Sapsan’s workflow.

conduct other tests of, for example, the power spectrum of the model pre-

diction.

For further information on each stage, please refer to Sapsan’s Wiki on Gihub.

Dependencies

The following is a list of the core functional dependencies2 and a short description

of how they are used within Sapsan:

• PyTorch: Sapsan, at large, relies on PyTorch to configure and train ML mod-

els. Thus, the parameters in the aforementioned Model Setup stage should be

configured with PyTorch functions. Convolutional Neural Network (CNN) and

Physics-Informed Convolutional Auto Encoder (PICAE) examples included with

Sapsan are based on PyTorch. (Paszke et al., 2019)
2Please refer to GitHub for the complete list of dependencies.
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• Scikit-learn: A alternative to PyTorch, as demonstrated in the Kernel Ridge Re-

gression (KRR) example in Sapsan. Since scikit-learn is less flexible and scalable

than PyTorch, the latter is the recommended interface. (Pedregosa et al., 2011)

• Catalyst: used as part of the backend to configure early-stopping of the model

and logging. (Kolesnikov, 2018)

• MLflow: provides an intuitive web interface for tracking the results of large

experiments and parameter studies. Beyond a few default parameters, a user can

include custom parameters to be tracked. (Databricks, 2020)

• Jupyter Notebook: the most direct and versatile way to use Sapsan.

• Streamlit (GUI): a graphical user interface (GUI) for Sapsan. While not as

flexible as the other interfaces, this can be useful for developing public-facing

demonstrations. An example of this interface can be found online at sapsan.app.

(Treuille, 2019)

• Click (CLI): a command-line interface (CLI) for Sapsan. It is used to get the

user up and running with templates for a custom project. (Ronacher, 2021)
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2.3 Applications

While Sapsan is designed to be highly customizable for a wide variety of projects

in the physical sciences, it is optimized for the study of turbulence. In this section we

will demostrate various capabilities of Sapsan working with 2D and 3D data, various

machine learning libraries, and built-in analytical tools. The ML methods used are

included in Sapsan’s distribution as example Jupyter notebooks to get started with the

framework.

2.3.1 Hydro simulations

Here is an examples of a turbulence closure model trained on the high-resolution

Johns Hopkins Turbulence Database [JHTDB, Li et al. (2008)]. The training data is a

2D slice of a direct numerical simulation (DNS) of a statistically-stationary isotropic

3D MHD turbulence dataset, 10243 in spatial resolution and covering roughly one large

eddy turnover time over 1024 checkpoints, i.e. the dynamical time of the system (Eyink

et al., 2013). We compare it with a commonly used Dynamic Smagorinsky (DS) tur-

bulence closure model (Lilly, 1966). On the Sapsan side, a Kernel Ridge Regression

model (Murphy, 2012) by the means of scikit-learn is used to demonstrate the effective-

ness of conventional ML approaches in tackling turbulence problems. In this test, we

used the following setup:

• Train features: velocity (u), vector potential (A), magnetic field (B), and their
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respective derivatives a checkpoint = 0. All quantities have been filtered down

to 15 Fourier modes to remove small-scale perturbations, mimicking the lower

fidelity of a non-DNS simulation. Next they were sampled down to 1283, with

the last step leaving a single slice of 1282 ready for training.

• Model Input: low fidelity velocity (u), vector potential (A), magnetic field (B),

and their respective derivatives at a set checkpoint = 10.

• Model Output: velocity stress tensor component (τxy) at the matching check-

point in the future, which effectively represents the difference between large and

small scale structures of the system.

In Fig.2.2, it can be seen that the ML-based approach significantly outperforms

the DS subgrid model in reproducing the probability density function, i.e., a statistical

distribution of the stress tensor. The results are consistent with (King et al., 2016).

2.3.2 Supernovae

Even though the conventional ML regression approach worked well in the 2D setup

from the previous example, the complexity of our physical problem forced us to seek

out a more sophisticated ML method. Supernovae host a different physical regime

that is far from the idealistic MHD turbulence case from before. Here we are dealing

with dynamically evolving turbulence that is not necessarily isotropic. Turbulence can
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Figure 2.2: Predicting a 2D turbulent stress-tensor component (τxy) in statistically-
stationary isotropic MHD turbulence setup. The left plot compares the original spatial
map of the stress-tensor component to the predicted spatial map (middle). The plot on
the right presents probability density functions (PDF), i.e., distributions, of the original
stress-tensor component values, the ML predicted values, and the conventional Dy-
namic Smagorinsky (DS) subgrid model prediction.

behave drastically differently depending on the evolutionary stage. With Sapsan, we

have tested a 3D CNN (Convolutional Neural Network) model built with PyTorch to

predict a turbulent velocity stress tensor in a realistic Core-Collapse Supernova (CCSN)

case. Fig.2.3 presents results of the following:

• Train features: velocity (u), magnetic field (B), and their respective derivatives

at time steps before 5 ms (halfway of the total simulation). All quantities have

been filtered down with a σ = 9 Gaussian filter to remove small-scale perturba-

tions, mimicking the lower fidelity of a non-DNS simulation. Lastly they were

sampled from the original 3483 down to 1163 in resolution.

• Model Input: low fidelity velocity (u), magnetic field (B), and their respective

derivatives at a set time step in the future beyond 5 ms.
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Figure 2.3: Predicting turbulent stress-tensor component in a core-collapse supernovae
(CCSN). The model has been trained on a selection of dynamically evolving turbulence
timesteps during the first 5 ms (out of the total ∼ 10 ms) of a 3D MHD direct numerical
simulation (DNS) after the shockwave bounced off the core in a CCSN scenario. On
the left, the two figures are the 2D slices of a 3D τxy prediction, with the right plot com-
paring PDFs of the original 3D data, 3D ML prediction, and a conventional Gradient
subgrid model.

• Model Output: velocity stress tensor components (τi j) at the matching time step

in the future, which effectively represents the difference between large and small

scale structures of the system.

In this case, the probability density functions are overall consistent, with minor

disagreement at the positive outliers, even though the prediction is performed far into

the future (time = 9.48 ms, end of the simulation time). Predictive advantage is high-

lighted when compared with the analytical Gradient model that misses a large portion

of positive data. The quantitative implications of the differences in predicting quality

for turbulent pressure between these methods will be further discussed in Chapter 3.
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Abstract

Turbulence plays an important role in astrophysical phenomena, including core-

collapse supernovae (CCSN), but current simulations must rely on subgrid models since

direct numerical simulation (DNS) is too expensive. Unfortunately, existing subgrid

models are not sufficiently accurate. Recently, Machine Learning (ML) has shown an

impressive predictive capability for calculating turbulence closure. We have developed

a physics-informed convolutional neural network (CNN) to preserve the realizability

condition of Reynolds stress that is necessary for accurate turbulent pressure predic-

tion. The applicability of the ML subgrid model is tested here for magnetohydrody-

namic (MHD) turbulence in both the stationary and dynamic regimes. Our future goal

is to utilize this ML methodology (available on GitHub) in the CCSN framework to

investigate the effects of accurately-modeled turbulence on the explosion of these stars.

3.1 Introduction

Turbulence plays a key role in many astrophysical phenomena (Schekochihin and

Cowley, 2007; Brandenburg and Lazarian, 2013; Beresnyak, 2019). A prominent exam-

ple being a core-collapse supernova (CCSN): the bright, energetic, dynamic explosion

of a highly evolved massive star of at least 8 times the mass of the sun. At the end of

its life, the iron core of such a massive star can no longer generate energy by fusion
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reactions and yet is subject to enormous energy losses in the form of neutrinos. As

the core of about 1.5 solar masses contracts and heats up, looking for a new source of

energy generation, additional instabilities instead accelerate the collapse until it is in

almost free fall. These instabilities include electron capture and photodisintegration -

heavy nuclei splitting into lighter elements due to high-energy photon absorption. The

collapse continues until the density of the inner core exceeds that of the atomic nucleus

(∼ 2×1014 g cm−3) and then abruptly halts due to the repulsive component of the nu-

clear force. The outer part of the core rains down on the nearly stationary inner core and

bounces, creating a powerful outward-bound shock wave. It was once thought that this

“prompt shock” might propagate through the entire star, exploding it as a supernova

(Baron et al., 1987). Now we know it does not happen. The shock stalls in the face of

prodigious losses to neutrinos and photodisintegration and becomes an accretion shock

outside the edge of the original iron core. All positive radial velocity is gone from the

star. The evolution slows, now taking 100’s of milliseconds instead of milliseconds. At

this stage, the core is a hot proto-neutron star, radiating a prodigious flux of neutrinos,

surrounded by an accretion shock through which the rest of the star is falling. The suc-

cess or failure of the explosion then depends on the efficiency of neutrinos in depositing

some fraction of their energy outside the proto-neutron star (outside the neutrinosphere

and inside the accretion shock), and the distribution of pressure that energy deposition

creates. A failed explosion will lead to a black hole and no supernova (Woosley and
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Janka, 2005; Burrows and Vartanyan, 2021).

Over the past three decades, the community has focused on the importance of tur-

bulence and convection in improving the efficiency with which energy released in the

collapse of the core is converted into explosion energy (Herant et al., 1994a; Blondin

et al., 2003; Fryer and Young, 2007a; Melson et al., 2015; Burrows et al., 2018). Most

of these studies focused on the large-scale convective motions that transport both mat-

ter and energy. If the pressure in this convective region, including turbulence, becomes

large, the accretion shock will be pushed outwards, ultimately achieving positive ve-

locity and exploding the star. A recent study attributes up to ∼ 30% of the gas pressure

to turbulence to aid the CCSN explosion (Nagakura et al., 2019). Turbulence in this

region has three origins: the primordial turbulence present because the star was con-

vective in these zones before it collapsed; the turbulence generated by the convective

overturn driven by neutrino energy deposition beneath the shock; and, if the star is

rotating, by magnetic instabilities in the differentially rotating layers (especially the

“magneto-rotational instability”, MRI). Multi-dimensional solutions exist to the CCSN

problem both with and without rotation and magnetic fields. Some explode; some do

not, and this has been a problem for at least the past 60 years (Colgate and White, 1966).

A major difficulty is a physically correct description of the turbulence and its effective

pressure in a multi-dimensional code that is unable to resolve the relevant length scales.

Here we focus on magnetically generated turbulence. This introduces additional
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variables and uncertainties not contained in the non-MHD case, but has the merit of us-

ing conditions that are locally generated and the existence of a high-resolution training

set (Mösta et al., 2015) (detailed in Section 3.3.4). The framework that we derive can

be used for both MHD and field-free turbulence, and it is our intention to return to the

non-MHD case in subsequent work. In this case, the MRI occurs in a setting of magne-

tized, differentially rotating fluid layers, i.e., stellar shells. The instability exponentially

amplifies primordial perturbations developing turbulence (Obergaulinger et al., 2009).

A flow can be considered turbulent if the Reynolds number (Re) is of order ∼ 103,

which corresponds to what we expect to see in CCSN (Fryer and Young, 2007b). For

DNS, the per-axis 3D resolution scales as N ∼ 2Re3/2 (Jiménez, 2003), leading to 3D

DNS of CCSN requiring a grid size of 105 in each direction, which is extremely expen-

sive (if possible) to achieve with today’s HPC resources. Together with a vast spatial

scale range needed to be resolved in CCSN (200 km inner convective region and out to

109 km outer shell) and the complexity of physical processes ongoing in CCSN, DNS

calculations are out of reach. Given the computational challenges, subgrid turbulence

is often modeled using the following techniques (in astrophysics, these schemes are

primarily used in 1-dimensional simulations):

• Reynolds-Averaged Navier Stokes (RANS) - time (and ensemble) averaged

treatment of turbulence equations of motion. RANS is typically used for rel-

atively low Re, e.g., stellar evolution and consequently supernovae progenitors
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(Arnett et al., 2015) and requires a turbulent closure model. An example of a

popular technique based on RANS is Mixing Length Theory (MLT). It is used to

model turbulent eddies that transfer their momentum over some mixing length via

eddy viscosity (Spiegel, 1963); akin to molecular motion. MLT is used to study

turbulence driven by convection, thus applicable to stellar convection (including

supernovae simulations (Couch et al., 2020)) in 1D simulations. MLT performs

well for small mixing length scales, while turbulence in CCSN evolves over a

wide range of scales, which is deemed problematic for MLT’s accuracy (Joshi

et al., 2019).

• Large Eddy Simulation (LES) - space averaged turbulence treatment. Similar

to RANS, a subgrid model substitutes the turbulence effects absent from small

spatial scales. For closure, it is common to use Dynamic Smagorinsky (Lilly,

1966) or gradient-type subgrid models (Schmidt, 2015; Miesch et al., 2015) in

LES simulations. Implicit LES (ILES) - similar to LES, but the small scales are

assumed to be approximated by numerical artifacts (e.g., numerical diffusion and

viscosity). ILES is typically employed by large, global 3D simulations of CCSN

and other astrophysical events (Radice et al., 2015, 2018).

Even though these techniques have achieved some level of success when predict-

ing HD turbulence, MHD poses a new set of challenges. With magnetic fields present,

the magnetic/kinetic energy is primarily transferred at small scales through the dynamo
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Figure 3.1: An example of the difference magnetic field can bring to the turbulence
stress distribution. The data has been taken from JHTDB MHD and HD datasets (Li
et al., 2008).

process (Beresnyak and Lazarian, 2014). The non-linear behavior of MHD further

exacerbates simulation challenges leaving many open questions on the nature of turbu-

lence despite decades of focused studies (Beresnyak, 2019). As an example of changes

due to an introduction of a magnetic field within a simulation, we present a comparison

of normalized Re stress tensor component distribution between HD and MHD simu-

lations given comparable initial conditions from Johns Hopkins Turbulence Database

(JHTDB) in Figure 3.1.

To tackle the challenges of MHD turbulence in an astrophysical setting, we turned

to Machine Learning (ML). In HD simulations, ML has shown promising results in the
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fields of applied mathematics, engineering, and industry as a whole. Throughout the

last few decades, there have been significant technological and algorithmic advance-

ments that have started a new era for the study of turbulence through the means of

Big Data. For our context, by Big Data we mean the abundance of turbulence DNS

data that resulted from the Moore’s Law evolution of high-performance computing

(HPC). While Re of those simulations is not to the natural level of CCSN, it is still

a significant improvement upon the resolution of the current CCSN models. Further-

more, DNS data in non-astronomy fields has been used as ground-truth, along with

experimental data, for turbulence subgrid model optimization in large-scale 3D com-

putational fluid dynamic (CFD) simulations. Big Data presents the opportunities for

ML to help augment and improve turbulence modeling. As shown by the industry (i.g.,

face-recognition, self-driving cars), ML is highly flexible, and it has already shown its

potential for turbulence modeling, both direct prediction of turbulent fluxes and analyt-

ical (e.g., RANS-based) model optimization (King et al., 2016; Wu et al., 2018; Zhang

et al., 2018; Rosofsky and Huerta, 2020).

ML has been applied to quasi-stationary 2D ideal MHD turbulence in an astrophys-

ical setting with promising results as compared to the conventional analytic gradient

subgrid turbulence model (Rosofsky and Huerta, 2020). In this paper, we developed an

ML model for 3D MHD turbulence for astrophysical simulations in reduced dimension,

as well as performed a time-dependent prediction analysis. Considering the popular-
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ity and success of Convolutional Neural Networks (CNNs) in the industry (Krizhevsky

et al., 2012; He et al., 2016) for spatial pattern recognition, we sought to relate large-

scale eddie structure to small-scale turbulence distribution. Thus, we based our ap-

proach on CNNs to develop a physics-informed machine learning (PIML) turbulence

closure model, described in Section 3.3.3. It was applied for two regimes to test gen-

eralizability: statistically-stationary homogeneous isotropic MHD turbulence from a

general-purpose dataset and dynamic MHD turbulence from a CCSN simulation. The

former can be found in the ISM, studying the stellar formation, and the latter is directly

applicable to high-energy events, such as CCSN. The model predicts Reynolds stress

tensor (τ), with turbulent pressure (Pturb) defined as:

Pturb = tr(τ) (3.1)

where tr(x) is a trace of x. Note that we neglect the 1/3 coefficient in our definition

of Pturb, which has no effect on the ML prediction results. We will primarily focus

on analyzing statistical distribution, i.e., probability density function (PDFs), of time-

dependent turbulence. In the case of stationary turbulence, we will be testing the sta-

bility of the ML model, ensuring prediction would remain in the physical domain. For

the dynamic case, we will check the model’s ability to make future predictions within

the limits of the available ground truth data, i.e., DNS data we assume to accurately

represent the physical state of the system.

In Section 4.2, we will cover filtering, decomposition, and the result MHD formal-
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ism. Section 3.3 introduces the analytical subgrid turbulence model we will be using

for comparison, our ML pipeline, specifics of the ML & PIML models used to treat var-

ious τi j components, and the datasets used for training and testing them. In Section 4.4,

we provide the analysis of stationary and dynamic results, with conclusion following in

Section 4.6. Lastly, the Appendices include further details on the ML model developed

and its training process.

3.2 Formalism

We begin by presenting the mathematical basis of our work, covering the funda-

mentals of MHD LES, including its unfiltered and filtered forms.

3.2.1 Filtering

A filtering operation is defined as an infinitely-resolved, i.e., continuous, variable

that is decomposed into average and fluctuating parts:

u = ū+u′ (3.2)

where ū (LES-simulated quantity) is the ensemble average of u (DNS quantity), and u′

are the fluctuations. By cutting out fluctuations of a specific size, what is left can be

thought of as a filtered quantity. Then, ū is defined by applying a filtering convolution
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kernel G:

ū = G∗u (3.3)

In the context of LES, the simulation resolution is defined as a spatial filter of size ∆

applied to a continuous variable. What we have done in this study is typical for the

LES community: taking a high-resolution DNS data and applying a filter of size ∆ f ,

where ∆ f > ∆, to decrease (“blur”) the fidelity of the data to mimic a low-resolution

simulation.

We applied a Gaussian filter to all of the data, with a 1D Gaussian kernel as G:

G(x) =
1√

2πσ2
e−

x2

2σ2 (3.4)

where σ is the standard deviation of the Gaussian, controlling the amount of “blur”, and

x is the data. The filter can be applied in 3D via the product of 1D Gaussian functions,

covering each direction.

3.2.2 MHD equations - Unfiltered

In order to bridge the gap between filtered and unfiltered values, i.e., a stress tensor

that we will model, let us first establish the basis of the ideal MHD Navier-Stokes

equations. The evolution equations for continuity, momentum, and induction follow
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the notation from Grete (2017):

∂tρ+∇ · (ρu) = 0 (3.5)

∂t(ρu)+∇ · (ρu⊗u−B⊗B)+∇

(
P+ B2

2

)
= 0

∂tB−∇× (u×B) = 0

where ρ is density, P is pressure, u is velocity, and B is a magnetic field that incorporates

the units of 1/
√

4π.

3.2.3 MHD equations - Filtered

For the filtered LES equations, we need to apply Eq. 3.4 to Eqs. 3.5. As a result we

get:

∂t ρ̄+∇ · (ρ̄ũ) = 0 (3.6)

∂t(ρ̄ũ)+∇ · (ρ̄ũ⊗ ũ− B̄⊗ B̄)+∇

(
P̄+ B̄2

2

)
=−∇ · τmom

∂tB̄−∇× (ũ× B̄) = ∇×E

where ũ = ρu/ρ̄, which is the mass-weighted filtering, i.e, Favre filtering; τmom stands

for the momentum subgrid-scale (SGS) stress and E is the turbulent electromotive

force. These are defined as follows:

τmom
i j = ρ̄τkin

i j − τ
mag
i j +

(
B2 − B̄2

)
δi j
2 (3.7)

E = u×B− ũ× B̄ (3.8)
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where δi j is the Kronecker delta, τkin is the stress due to the turbulent motion, i.e.,

Reynolds stress, and τmag is the Maxwell stress:

τ
kin
i j = ũiu j − ũiũ j (3.9)

τ
mag
i j = BiB j − B̄iB̄ j (3.10)

In this paper, we will focus on τkin, which will be further referred to as τi j to simplify

notation.

3.3 Subgrid Modeling

We will be comparing our ML results with a conventional turbulence subgrid model

used widely in astronomy - the gradient model (Liu et al., 1994a).

3.3.1 Gradient model

The gradient model is defined by the Taylor series expansion of the filtering opera-

tion. The tensor has the form of:

τi j =
∆̃2

12
∂kũi∂kũ j (3.11)

where ∆̃ is the filter size, and u is velocity.
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(a) Off-diagonal terms (3D CNN) (b) Diagonal terms (PIML)

Figure 3.2: Model schematics to calculate the Reynolds stress (τi j) components.

3.3.2 Machine Learning Pipeline

In its essence, machine learning (ML) is a sophisticated fitting routine of a multi-

dimensional dataset against a target feature. However, unlike it, ML does not require

a theoretical understanding of the underlying statistical form of the data. Thus, the

exact relationship of a feature to the target does not need to be defined in contrast to

conventional fitting routines. ML methods are capable of learning the data structure

solely from the input data with model tuning based on a validation dataset (Bishop,

2006; LeCun et al., 2015). This opens up a possibility to learn new links between the

input variable, potentially leading to new physics and functional forms (Carleo et al.,

2019). While we will not delve deeper into the latter topic in this paper, we will discuss

how to use physics to inform and then further analyze the model training.

Lastly, ML models can learn iteratively, hence improving themselves as new data

becomes available. That signals the potential to achieve accurate interpolation/classification
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and, more importantly, extrapolation results (Carleo et al., 2019). This applies to both

spatial and temporal data.

Currently, there are ML models that are based on convolutional neural networks.

They are used as generalizable solutions and are standard in the industry (e.g., AlexNet

(Krizhevsky et al., 2012), ResNet (He et al., 2016)). However, those models are not

optimized to solve problems in physical sciences, including astrophysics. Considering

the lack of standardized packages for ML in astrophysics, we built our own pipeline,

Sapsan (Karpov et al., 2021). Here is a high-level procedure overview:

1. Data: choose a relevant high-fidelity dataset. In our case, the data comes from

the DNS simulations that we consider to be ground truth.

2. Data Augmentation: filter and augment the data to mimic an LES simulation,

in which the ML pipeline would be used. For example, the turbulent features in

the CCSN LES simulations are severely under-resolved. Hence filtering applied

to high-resolution DNS simulation data need to account for that adequately.

3. Data Splitting: split the data into training, validation, and testing portions.

4. Optimization and Training: optimizing hyperparameters of the ML model via

cross-validation and testing against the unseen data. In this context, unseen data

is defined by the data not used in the training or validation of the ML model. This

procedure strives to achieve the best efficiency and accuracy of the model.
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5. Validation, Testing, and Analysis: test the trained ML model to confirm the

predictions to be representative of the relevant physics, as well as an estimate of

efficiency and uncertainty of the ML scheme.

Next, we will discuss how we adopted and augmented conventional ML methods

for CCSN turbulence prediction, enforcing physical principles to aid our studies.

3.3.3 Machine Learning Models

We used two ML models to calculate all 9 components of the Reynolds stress τi j:

a conventional CNN encoder for off-diagonal terms and a custom, physics-informed

CNN encoder for diagonal terms. Schematics of the models are shown in Fig.3.2a and

Fig.3.2b with discussion of each in Sections 3.3.3 & 3.3.3 respectively. Both models

have been trained on a dual-GPU system, equipped with NVIDIA Quadro RTX 5000

cards.

Off-Diagonal Terms (3D CNN)

The idea behind a neural network is illustrated in Fig. 3.2a as a pipeline schematic.

We first need to put in the data, which is represented by the input layer. Then the data

will need to be manipulated in some way, as represented by the hidden layer(s), e.g.,

CNN Encoder. At the end, there is an output layer predicting our target quantity.

We based our model for off-diagonal tensor components on the 3D Convolutional
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Neural Network (3D CNN) with some modifications while keeping it conventional. In

a CNN, a convolution layer is applied as a hidden layer. In that case, a given kernel is

used to parse through the dataset to identify the spatial patterns needed for the given

problem. The kernel has the form:

out(Ni,Cout) = bias(Cout +
Cin−1

∑
k=0

weight(Cout,k)input(Ni,k)) (3.12)

where N is the number of features, i is the feature index, and C is the number of chan-

nels. The input data size is defined by

[N,Cin,D,H,W ] (3.13)

and the output is

[N,Cout ,Dout ,Hout ,Wout ] (3.14)

where [D, H, W ] are the [depth, height, width], i.e., [x,y,z]. The notation is in agreement

with PyTorch documentation1. The reason behind choosing a CNN as our core ML

algorithm was the goal to relate spatial structure of the turbulent eddies to the small

scale structure.

We utilized PyTorch build-in modules with slight modifications for our workflow,

with the following parameters:

• Model: a classical approach for CNN network architectures, where convolu-

tion and pooling layers are stacked up consequently followed by fully connected

dense layers as it is shown in Fig. 3.11, based around 3D CNN1.
1pytorch.org/docs/stable/generated/torch.nn.Conv3d.html

47

https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html


• Optimizer: Adam Optimizer2 - extension of the stochastic gradient descent; it

was picked due to the good performance on sparse gradients.

• Activation function: LogSigmoig3 - a non-linear activation function to select

values to pass from layer to layer. The function is defined by log( 1
1+exp(−x)).

• Loss function: Custom SmoothL1Loss4 - an L1 loss that is smooth if |x−y|< β,

where β = 1σ and σ is the standard deviation. The loss for |x−y|< β was further

increased by a factor of 10 to aid the efficiency of the training convergence of the

model. It can be viewed as a combination of L1 and L2 losses (behaves as L1 if

the absolute value is high or as L2 if the absolute value is low).

Besides the network itself, the reasons behind the choices of Optimizer, Activation

Function, and the Loss Function were the broad applicability, availability, and success

of these techniques. In addition, we performed cross-validation over available PyTorch

functions to solidify our choices. These parameters were sufficient for off-diagonal

terms of τi j of 3D MHD turbulence. However, physical conditions had to be enforced

in order to model diagonal terms and ultimately predict Pturb.

2pytorch.org/docs/stable/generated/torch.optim.Adam.html
3pytorch.org/docs/stable/generated/torch.nn.LogSigmoid.html
4pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Diagonal Terms (PIML)

If calculated directly, Reynolds stress is defined by:

τi j = ũ′iu
′
j = ũiu j − ũiũ j (3.15)

where u′i is a velocity fluctuation component, and x̃ is the spatial average. Thus, for

diagonal terms a realizibility condition is defined as τii > 0 (Schumann, 1977), making

distribution of diagonal tensor components asymmetric. While the model in Section

3.3.3 excelled at quasi-symmetric distribution prediction, it struggled with asymmetric

distributions. Further analysis of this will be covered in Section 3.4.2.

• Model: 3D CNN encoder as described in Section 3.3.3 with physics-informed

(PI) layers. The encoder implicitly predicts velocity fluctuations (u′i), then PI

layers calculate u′2i to enforce τii > 0 and filter to find the mean as per Eq. 3.15.

• Optimizer: Adam Optimizer - same as in Section 3.3.3.

• Activation function: LogSigmoid (stationary) and Tanhshrink5 (dynamic) - the

latter showed a faster model convergence rate for the dynamic turbulence. The

function is defined by

f (x) = x− tanh(x)

• Loss function: Custom - a dynamic combination of SmoothL1Loss (point-to-

point) and Kolmogorov-Smirnov (KS) Statistic (Massey, 1951) losses.
5pytorch.org/docs/stable/generated/torch.nn.Tanhshrink.html
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The combined loss function was designed to compound the advantages of the point-

to-point and statistical losses. Further discussion can be found in the Results Section

3.4.2.

The PyTorch implementation of this PIML model used for diagonal terms along

with the 3D CCSN data sampled down to 173 is provided as part of the Sapsan pack-

age6.

3.3.4 Datasets

In machine learning, the predictions will only be as good as the training data. With

the goal of testing our algorithm on a broader range of physical conditions, we diversi-

fied by using stationary and dynamic turbulence datasets. A quick parameter overview

of both datasets can be found in Table 3.1.

• Stationary: high resolution statistically stationary, isotropic, forced, incompress-

ible MHD turbulence dataset7 from Johns Hopkins Turbulence Database (JHTDB)

(Li et al., 2008). It has a low Reynolds number fluctuating around Re ∼ 186.

• Dynamic: evolving highly-magnetized CCSN turbulence dataset by Mösta et al.

(2015). It is a 3D DNS of an MHD CCSN. The dataset has been developed to

study the effects of magneto-rotational instability (MRI) in growing turbulence in

6sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-for-turbulence-modeling-pimlturb
7turbulence.pha.jhu.edu/Forced_MHD_turbulence.aspx

50

https://sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-for-turbulence-modeling-pimlturb
http://turbulence.pha.jhu.edu/Forced_MHD_turbulence.aspx


Figure 3.3: Box filter with a Gaussian kernel (σ = 9) was used to filter the data. Above
is a slice of sampled ux, down to (116,116,116); filter was applied prior to sampling.
Left: Original, Right: Filtered

.

a CCSN scenario to aid the explosion, aiming to prove the plausibility of CCSN

to be progenitors of LGRBs and magnetars (Mösta et al., 2015). The needed

resolution is high, so it is not a global simulation, only tracking the first ∼ 10 ms

after the core bounce to see the development of turbulence. In addition, only a

quarter of the star close to the core has been simulated (66.5 km in x and y and

133 km in z), maintaining a 90◦ rotational symmetry in the xy plane. To fit our

memory constraints, we used the dataset with ∆x = 200m resolution that exhibits

mild turbulence.
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Stationary Dynamic

Resolution 10243 3473

ttot 2.56 10.3 [ms]

δt 2.5×10−4 5×10−4 [ms]

∆t 2.5×10−3 2.4×10−2 [ms]

kmax 482 348

KE/Etot ∼ 0.5 ∼ 0.9

EB/Etot ∼ 0.5 ∼ 0.1

σ 16 9

Table 3.1: Parameters of the statistically stationary (JHTDB) and dynamic CCSN
(Mösta et al., 2015) turbulence datasets. The time values for stationary dataset is in
normalized numerical units amounting to 1 large-eddy turnover time. ttot is the total
simulation time, δt is a timestep, ∆t is checkpoint time separation, kmax is the max-
imum Fourier mode, KE/Etot and EB/Etot are the time-averaged fractions of kinetic
and magnetic energy with respect to the total energy. σ is the Gaussian filter standard
deviation we applied during data preparation. Lastly, the spatial resolution of the Dy-
namic dataset is ∆x = 200 m.
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Data Preparation

In order to reflect a realistic low-fidelity environment of the CCSN simulations,

we chose to apply Gaussian filter (Carati et al., 2001) as described in Section 3.2.1.

Standard deviation σ of the filter (Eq.3.4) for each dataset was chosen to provide similar

levels of filtering for both stationary and dynamic datasets, with exact σ specified in

Table 3.1. An example of the filtering used is shown in Fig. 3.3. For both datasets,

derivatives were calculated, and the filter was applied at the highest resolution available.

Then, the data was equidistantly sampled down to 1163 to fit the hardware memory

constraints. The exact data preparation procedures are summarized:
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1. Calculate derivatives of [u,B]

2. Calculate Reynolds stress tensor τ using Eq.4.7

3. Apply a Gaussian filter to the original data to get [ũ, d̃u, B̃, d̃B]

4. Sample the data equidistantly down to 1163

5. Use the sampled quantities of [ũ, d̃u, B̃, d̃B] as the model input

6. Use each τi j component as the model output

3.4 Results & Discussion

3.4.1 Stationary Turbulence

Figure 3.4: Prediction of x components of τ at t = 1000 of JHTDB MHD dataset in
normalized numerical units. Blue is the original target data, Orange is prediction of the
CNN or PIML models for off-diagonal and diagonal terms respectively, and Gray is the
result of the gradient subgrid model as per Section 3.3.1.
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Figure 3.5: Slices presenting spatial distribution of 3D stress tensor component at t =
7.55 ms, sampled down to 1163. Left: Target τxx, Right: PIML Prediction of τxx.
Statistical distribution of the above can be found in Fig. 3.6 (1st row, 2nd column)

Though the dataset is evolving spatially, statistics remain stationary in the JHTDB

MHD dataset we used. Our CNN and PIML models for off-diagonal and diagonal terms

respectively outperform the traditional gradient subgrid model. Fig.3.4 presents predic-

tions of the x components of the Reynolds stress: [τxx,τxy,τxz] at ∆t = 1000, which is

near the end of the simulation. Prediction performance of the y and z components re-

mained comparable to the x components; hence those plots were omitted.

For training, we used the first 4 checkpoints (∆t), separated by 10 time-steps (δt)

each. Exact data preparation was performed as per Section 3.3.4. Our PIML method

especially excelled at predicting τxx that is consequently important for Pturb calculation,

while the gradient model completely misses the peak and the overall turbulent distri-

bution. Next, τxy matches the bulk of the data but overpredicts the outliers. Note that

y−axis is on a log scale; hence the actual error remains minimal. As for τxz, the CNN
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model does not show any particular weaknesses.

The point of this exercise was to test the reliability of the CNN algorithm when

applied to a changing spatial distribution. Since CNNs parse a kernel through the data-

cube, it is not trivial to assume statistical consistency in the predictions based on the

evolving spatial distribution. Nonetheless, the statistically stationary dataset did not

require significant tuning to achieve its results and served more as a consistency check

of our algorithms before moving to a dynamic dataset.

3.4.2 Dynamic Turbulence

The ulimate goal of our study was to test the models on a more realistic astrophysi-

cal dataset. While DNS CCSN simulation from (Mösta et al., 2015) has its limitations,

it is the best-resolved turbulence dataset investigating CCSN. Figure 3.6 presents pre-

dictions of τx components in the second half of the simulation, t = [5.62, 7.55, 9.48]ms.

The results remain consistent with statistically stationary JHTDB predictions. The gra-

dient model continuously underpredicts the Reynolds stress distribution, performing

especially poorly at capturing the outliers. Predictions of τy and τz components are

comparable in accuracy across all timesteps, hence were omitted from the plot. Figure

3.5 presents an example of spatial distribution prediction, i.e. slice of the datacube at

t = 7.55 ms.

The key to capturing the dynamics was to train across a wide range of checkpoints
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Figure 3.6: Statistical distributions of the stress tensor component, where the val-
ues are in units of u2. Rows: [τxx,τxy,τxz] components; Columns: simulation time
[5.62,7.55,9.48]; ms. Blue: Target τ distribution; Orange: CNN prediction; Gray
Dotted: gradient turbulence subgrid model of the form τi j = 1/12∆2δuikδu jk using
Einstein notation, where ∆ is filter width and u is velocity.
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covering the first half of the simulation, t < 5 ms. We were able to optimize the results

using 9 equally distant checkpoints; the evolution of normalized PDFs of τxy from the

exact checkpoints used in training can be seen in Figure 3.9. A diversified training

dataset as such helped prevent overfitting while maintaining the flexibility of the model

to predict the future timesteps (t > 5 ms). To summarize, the total size of the training

dataset was:

4 [input variables]×9 [checkpoints]×1163 [resolution] ∼ 108 [points]

Thus far, the CNN methods worked well for off-diagonal terms, and our PIML en-

forced realizability condition (τii > 0) for the diagonal terms. However, diagonal terms

of the dynamic turbulence dataset presented another challenge - asymmetric statistical

distributions. CNN with a point-to-point loss such as SmoothL1Loss has shown its

robust performance at predicting quasi-symmetric distributions. This includes predic-

tions of diagonal terms in JHTDB stationary data (τxx in Figure 3.4), where due to the

shift of the peak, the distribution can be classified as quasi-symmetric. However, in the

dynamic dataset, the peak is near the origin, making the distribution acutely asymmet-

ric. As a result, while accurately capturing the outliers, the previous approach failed

to predict the correct peak position, i.e., the bulk of the data. To remedy this behavior,

we developed a custom loss function combining a point-to-point SmoothL1Loss with a

loss based on the Kolmogorov-Smirnov statistic (KSstat). The latter metric is the maxi-

mum distance between the two cumulative distribution functions (CDFs), i.e., how far
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apart the two distributions are from one another.

SmoothL1Loss excelled at predicting distribution outliers while struggling to de-

termine the peak position. On the other hand, KS loss excelled at predicting the bulk

of the data, including the peak position, by minimizing the distance between the input

and target distributions but struggled with the outliers. As a result, the two losses were

combined in a dynamic fashion. The model first minimized SmoothL1Loss to get the

overall distribution shape, particularly the outlier portion, and then minimized KS loss

to shift the peak into the right position. The results can be seen in the top row of Fig-

ure 3.6, with the detailed peaks presented in a separate box within each plot. Further

details on the training loss behavior are provided in Appendix 3.5. While we primarily

stressed accurate prediction of the statistical distribution, another benefit of not using

an exclusively statistical loss is a sound spatial prediction, as shown in Figure 3.5.

The leading deliverable of τi j predictions is the ability to calculate turbulence pres-

sure via Eq.4.8. Thus, any deviation in the peak of τii is further exacerbated when

computing Pturb. As an example of our PIML model performance, we present Pturb pre-

diction calculation at t = [5.62,7.55,9.48]ms, as shown in Figure 3.7. There, the trace

was taken of the sorted τii components. During this operation, the spatial distribution

of the Pturb is lost, though it is not required for our main goal: accurate prediction of

the total pressure due to turbulence in the region and its statistical distribution. This

is due to the convection region being extremely under-resolved, while it is responsible
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Figure 3.7: The plot presents an unnormalized distribution of Pturb as time evolves. Pturb
is in units of u2. We compare the performance of our PIML model with the gradient
turbulence subgrid model.

for supplying Pturb to the stalled shock for the potential explosion in the global CCSN

simulations. Thus, the astrophysical question is reduced to a binary one: will the stalled

shock move outwards (explosion) or inwards (black hole). Consequently, the accuracy

of the total Pturb in the convection region becomes the most significant while alleviating

the need for accurate prediction of the spatial distribution.

The performance of the PIML method shows significant advantages over the gra-

dient model predicting the over distribution, the outliers, and the peak position. Its

performance does deteriorate with time, as can be seen by the slight peak shift in Fig-

ure 3.7, right plot at t = 9.48ms. Quantitatively, performance metrics to compare PIML

and the gradient model predictions are summarized in Figure 3.8. The Top panel shows

that the total Pturb calculated from the PIML predictions over-predicts the target ground
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truth (the dynamic 3D DNS CCSN data) by ∼ 5%−35% depending on the future pre-

diction time, resulting in a ∼ 19% deviation on average. This is a significant advantage

over ∼ 63% under-prediction error of the gradient model that will fail to supply suffi-

cient Pturb to re-energize the stalled shock to explode the star. This means that by using

the PIML method, Pturb could reach on average ∼ 36% of the gas pressure instead of

the estimated ∼ 30% in Nagakura et al. (2019), making it easier for the star to explode.

The Middle panel of Figure 3.8 shows KSstat for the PIML method to degrade to

gradient model level at the far-future checkpoints. This large discrepancy in the Target

and PIML CDFs is due to the slight peak shift of the prior PIML prediction. While

KSstat is an important metric used in our custom loss function, it does not disqualify

PIML’s advantages over the conventional gradient turbulence model.

Lastly, the Bottom panel presents consistent variance between the Target and PIML

results. The predicted distribution stays consistent in its dispersion, i.e., bulk and outlier

distribution, which cannot be said about the gradient model results. Thus the PIML

approach has an advantage in modeling the small-scale eddies that, in turn, can grow

into large scales to provide the dominant fraction of the Pturb to re-energize the stalled

shock as the simulation evolves.
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Figure 3.8: Performance metrics of the PIML vs. gradient subgrid model. The Top
panel is the ratio of the total turbulent pressure calculated from the model prediction to
the target dynamic 3D DNS CCSN data, Middle is the Kolmogorov-Smirnov statistic,
and Bottom panel is variance. In total, metrics at 10 checkpoints equally separated in
time are presented in the plots.
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3.5 Conclusion

The study of CCSN requires an accurate treatment of turbulence, and yet conven-

tional subgrid turbulence approaches are unreliable. A DNS treatment of turbulence

in global 3D CCSN simulations is not achievable with the current computational re-

sources, thus the calculations are typically done via ILES. Although they can capture

the effects of large-scale flows with relative accuracy, these simulations neglect the

turbulent pressure (Pturb) entirely, relying on numerical artifacts to represent its effect.

Building upon prominent ML techniques used in the industry, we have developed PIML

networks to increase the predictive accuracy of Reynolds stress (τi j), the trace of which

is Pturb. Pturb is thus the main deliverable of this paper that can be used in a CCSN

simulation in aid of re-energizing the stalled shock and exploding the star.

Our PIML approach consistently outperformed a conventional gradient subgrid

model for both stationary and dynamic turbulence datasets. It resulted in a ∼ 19%

PIML average error of the total Pturb in comparison to ∼ 63% of the gradient model. In

addition, our method has excelled at predicting the outliers of both τi j and Pturb, which

are important for dynamic simulations to investigate the turbulent growth. Given the

flexibility of ML algorithms used, these results should be reproducible across HD and

MHD CCSN simulations, which we are currently investigating for the next publica-

tion. That being said, the performance of the ML models deteriorates further in time

predictions are made, which is to be expected with a CNN-based approach. While at
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its worst, it continued to take the lead over the gradient model, temporal and overall

performance can be further improved in our future work with the inclusion of recurrent

neural network (RNN) layers in the models or by utilizing physics-informed neural

operators (PINO) (Li et al., 2021; Rosofsky et al., 2023).

Furthermore, a broader application of the ML model can suffer from the data-model

inconsistency when integrating a trained model within CCSN codes. The distribution

discrepancies between the training dataset and the newly simulated grids, as well as the

numerical errors, can lead to an exponential error growth in the predictions (Beck and

Kurz, 2021b). Regularization of the model prediction can improve its stability. Our

future work will be investigating the approaches to tackle this potential issue.

This paper has been our first attempt at studying the generalizability of ML methods

for studying turbulence over different physical regimes. In the future, we would like to

delve deeper into this topic, employing other 3D MHD CCSN datasets. Specifically,

here we used a DNS MHD CCSN dataset of a single star, while we would like to expand

the study to both HD and MHD models over a wide range of CCSN progenitor masses

(from 8 M⊙ to 25 M⊙) that exhibit great variation in their physical engines. In the next

paper, we will present our current implementation of the evolving turbulent pressure

term trained on 3D simulation data into 1D CCSN models to study a large parameter

space of progenitors to understand its impact on the CCSN explosion rates.
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Appendix

Training Features

The ML models were trained on u, du, B, dB as the input features and τi j as the

target feature: a model per tensor component. Figure 3.9 presents an example of how

τxy evolves at t < 0.5 ms, following exact checkpoints used for training. The other

τi j components follow a similar level of dynamics. This provided a sufficient level of

diversity in the training dataset to prevent model overfitting and aid flexibility of the

model.
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Figure 3.9: Evolution of the stress tensor component’s (τxy) statistical distribution in
the first half of the simulation (t < 5 ms). These exact checkpoints, 9 in total, where
used as a target to train the CNN network.

Training Loss

We developed a custom loss function (l) that combines a point-to-point (SmoothL1Loss,

i.e. L1) with a statistical loss (Kolmogorov-Smirnov statistic, i.e., KSstat) in a dynamic
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fashion. The goal was to force the model to minimize L1 loss first to get the overall

distribution shape. Then, the model prioritizes minimizing KSstat to shift the peak into

its correct position.

The two losses operate on different scales during training: L1 loss can span a range

of ∼ 104 (from 10−4 down to 10−8), while KSstat ranges ∼ 101 (from 100 down to 10−1)

before overfitting. To account for such differences, we first normalized the losses and

then applied a scaling factor α to prioritize L1 until the general PDF shape had been

learned. Given our training data, at L1 loss < 10−6 this condition was satisfied, making

α = 106. Thus, L1 loss is heavily prioritized for the first several orders of magnitude,

decreasing the combined loss (l), then sharing an equal weight with KSstat . This results

in l to follow L1 loss’s training dynamic as shown by Figure 3.10 Top and Middle

plots. In summary, the two losses are combined as follows:

l = 0.5(αL̃1)+0.5K̃Sstat (3.16)

where X̃ is a spatial average of X .

Once KSstat becomes important, the peak is being shifted, and we introduce an early

stopping condition to prevent overfitting. Figure 3.10 Bottom plot presents the train-

ing evolution of the KSstat loss component of l. After train loss (blue) and validation

loss (red) cross at ∼ 4×10−2, train loss decreases exponentially while validation loss

increases exponentially. This indicates that the model is overfitting. Thus, the early

stopping condition was set to ∼ 4× 10−2, based on the crossing value of train and
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validation losses.

More details on the application and reasoning behind the combined loss can be

found in Section 3.4.2.

CNN Encoder

We present a graph of the CNN encoder we used in Figure 3.11. Data shape is

noted at each arrow, akin to what was used to produce our results throughout the paper.

For input and output, the shape is formatted as [N,C,D,H,W ] where N is the number

of batches, C represents channels, i.e., features, and [D,H,W ] stand for depth, height,

and width of the data. The notation is in agreement with PyTorch documentation. The

graph was produced with Sapsan8.

8sapsan-wiki.github.io/tutorials/model_graph
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Figure 3.10: Training loss evolution: Top is the actual loss of the model that consists of
a combined L1 and KS loss components, Middle is the L1 loss component, Bottom is
the KSstat loss component.
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Figure 3.11: Graph of the CNN encoder used in all models for tensor component pre-
diction. The activation function is either LogSigmoid or ShrinkTanh depending on the
tensor component type. Further information can be found in Section 3.3.3
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Chapter 4

Machine Learning for Core-Collapse

Supernovae: 1D Models

Adapted from

Machine Learning for Core-Collapse Supernovae: 1D Models

P. I. Karpov, C. Huang, C. L. Fryer, S. Woosley

In prep for the Astrophysical Journal (2023)
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Abstract

Turbulence, broadly defined, plays a key role in many astrophysical phenomena,

often contributing a pressure that augments microscopic thermal motion. An example

is the convection in the hot bubble surrounding the proto-neutron star (PNS) in a core-

collapse supernova (CCSN). This has been speculated to play a significant role in the

explosion mechanism behind CCSN. Unfortunately, testing this theory is challenging

since accurate simulations require high-resolution 3D treatment, leading to prohibitive

costs. While convection and turbulence are not the same phenomena, the Machine

Learning (ML) techniques we have developed for a subgrid turbulence model in low-

fidelity simulations can be applied to the chaotic circulation that develops there. Here

we present a similar physics-informed convolutional-neural-network (CNN) method

preserving the realizability condition of Reynolds-like stress to capture a convective

pressure term from global 3D CCSN simulations and introduce it into the cost-efficient

1D CCSN simulations. We ran [12,13,16,17,18,19] M⊙ simulations, observing either

an appreciable change in the shock radius or an explosion for models that included ML.

However, an ML model trained on a successful explosion in 3D will not necessarily

yield an explosion in 1D. After all, the model has to remain flexible to accommodate

the differences in the underlying physics of the 1D code and its evolution. Possible

improvements and future directions are discussed.
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4.1 Introduction

Few problems in theoretical astrophysics have been as enduring, complex, and com-

putationally intensive as the energizing mechanism for core-collapse supernovae (CC-

SNe). The generally favored paradigm was proposed by Colgate and White (1966),

though see also Baade and Zwicky (1934). The iron core of a highly evolved mas-

sive star collapses to a neutron star (NS), producing a flood of neutrinos. A portion of

these neutrinos interacts with the accreting matter just outside the proto-neutron star

(PNS), energizing and inflating a bubble of radiation and pairs whose expansion, in the

successful case, powers the explosion. Many changes have occurred, and substantial

progress has been made in the intervening decades. We now understand that the ex-

plosion does not occur promptly as Colgate and many since hypothesized (Bethe and

Wilson, 1985). The accretion must slow, and the bubble takes time to inflate. There

are new species of neutrinos to consider and new physics for their interactions, espe-

cially by neutral weak current interactions. The equation of state (EOS) for nuclear

matter is now better understood, and the pre-supernova stellar models are much more

realistic. A key advancement relevant to this paper has been the necessity of including

multi-dimensional effects, especially the circulation of matter in the bubble, i.e., con-

vection, and how that affects both the transport and absorption of neutrino-deposited

energy. Many excellent reviews exist. Some recent ones are Fryer et al. (2007); Janka

et al. (2016); Janka (2017); Radice et al. (2018); O’Connor et al. (2018); Müller (2020);
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Burrows and Vartanyan (2021).

While 1D models are simpler and cheaper to run, spherically symmetric CCSN

models lack the necessary physics to explode. Simple piston (Woosley et al., 1995)

or thermal-bomb (Nomoto et al., 2006) injections are often used. These methods can

produce very different results, especially when following the effects of fallback (Young

and Fryer, 2007). A number of increasingly sophisticated models have been developed

to improve the fidelity of artificially driven explosions, including enhanced neutrino

luminosities (Perego et al., 2015) and continuous energy or entropy injection within

the convective region (Fryer et al., 2018; Imasheva et al., 2023). As understanding of

the importance of convection grew, some 1-dimensional models attempted more self-

consistent approaches to include the convection (Mabanta et al., 2019; Couch et al.,

2020)

Many of these 1-dimensional prescriptions have been influenced by the results of

multi-dimensional models. Over the last three decades, there has been a growing real-

ization that multi-dimensional effects play an important role in producing a successful

explosion (Herant et al., 1994b; Burrows et al., 1995; Janka and Mueller, 1996; Fryer

and Heger, 2000; Fryer and Warren, 2002; Fryer and Young, 2007a; Murphy et al.,

2013; Couch and O’Connor, 2014; Couch and Ott, 2015; Lentz et al., 2015; Janka

et al., 2016; Radice et al., 2018; O’Connor and Couch, 2018; Nagakura et al., 2019;

Müller, 2020; Burrows et al., 2020). The term multi-dimensional here covers a host of
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phenomena, even without rotation or magnetic fields, including:

• The standing accretion shock instability, or SASI (Blondin et al., 2003; Foglizzo

et al., 2007)

• Asymmetric explosions induced by large-scale asymmetries in the collapse (Bur-

rows and Hayes, 1996; Fryer, 2004; Wongwathanarat et al., 2013)

• Non-spherical flows in the post-accretion shock zone, which increases the mass

in the gain region (Couch and Ott, 2013; Couch and Ott, 2015; Müller, 2020)

• Convection powered by a negative entropy gradient set up by the initial bounce

shock and driven by neutrino absorption (Herant et al., 1994b; Fryer and Heger,

2000; Fryer and Warren, 2002) or solely by neutrino absorption (Burrows et al.,

1995; Janka and Mueller, 1996)

• Pre-existing progenitor turbulence seeding that convection (Couch and Ott, 2013;

Müller et al., 2017)

See the review by (Radice et al., 2018) for a recent discussion and additional references.

We shall be primarily interested here in approximating the effects of neutrino-powered

convection, an inherently 3D phenomenon, on the explosion.

Convection assists in re-energizing the shock in a variety of ways. Some of them

involve providing extra pressure and energy at the shock (Murphy et al., 2013; Couch
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and Ott, 2015; Radice et al., 2016; Fryer et al., 2018), and dissipation of kinetic en-

ergy to heat (Mabanta and Murphy, 2018). Others involve redistributing entropy in the

region beneath the shock (Murphy and Meakin, 2011) and changing the efficiency of

energy deposition by cooling the base of the convection zone (Janka, 2012). Convec-

tion can also alter the geometry beneath the shock and increase the accretion rate in

a star that is in the process of exploding (Burrows et al., 2020). While all these can

have a significant contribution to a successful explosion (Mabanta et al., 2019; Couch

et al., 2020), in this paper, we focused solely on modeling the pressure term, commonly

referred to as turbulent pressure, Pturb. It has been estimated to provide up to 50% of

the gas pressure Pgas (Couch and Ott, 2015; Nagakura et al., 2019). In our analysis of

the Burrows et al. (2020), we confirmed similar values for the Pturb contribution.

The importance of multi-dimensional simulations, particularly in 3D, to study CCSN

cannot be overstated. Unfortunately, they are also very expensive to run, making it

difficult to run extensive parameter studies (Couch et al., 2020). On the other hand,

statistically significant simulation ranges could be done in reduced dimensionality if

multi-D flow effects could be recovered. Several attempts have been made by using

analytical models to augment the 1D CCSN simulations by Mabanta et al. (2019) and

Couch et al. (2020). While the results are promising, the analytical models rely on the

underlying physical assumptions and closure models. Here we have tried to develop

a more generalizable approach to be used in any CCSN code, inferring the effects of
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convection from fundamental runtime observables, such as velocity, temperature, and

others (more in Section 4.3.2).

We have used a machine-learning (ML) method to approximate Pturb due to convec-

tion trained on the existing 3D models of Burrows et al. (2020); produced by FORNAX.

The datasets were angle-averaged, which both filtered and mapped them to 1D. In ad-

dition, only the convective region between the PNS and the shock was used for training

and inferencing. The time-independent ML model is based on Karpov et al. (2022),

adapted to 1D. It is a physics-informed convolutional neural network (CNN) designed

to preserve the realizability condition of the Reynolds stress that is necessary for accu-

rate turbulent pressure predictions.

To test the ML approach, we used a 1D Lagrangian code called COLLAPSO1D,

first described by Herant et al. (1994b). As part of this project, the code has been open-

sourced (available on GitHub1). It was modernized in a few key ways to match better

with FORNAX that generated the training dataset. The ML integration is a PyTorch

wrapper that is decoupled from COLLAPSO1D and can be used in any FORTRAN

code for either training or inferencing from a pre-trained model; the wrapper is also

open-sourced and available. We performed the latter: training a PyTorch model in

python, and then using it at runtime only for inferencing in COLLAPSO1D. Using a set

of FORNAX-consistent progenitors from Sukhbold et al. (2016) from 12 to 19 M⊙, we

ran high-resolution 1D CCSN models to study the effects of Pturb on the shock position
1github.com/pikarpov-LANL/COLLAPSO1D
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and test applicability of ML to a CCSN problem as a whole.

We describe the 1D CCSN code we used, i.e., COLLAPSO1D, and define our Pturb

extraction from first principles in Section 4.2. Next, Section 4.3 discusses all of the ML

model details, including its architecture, training dataset, and its preparation. Then,

we present the ML training and its application results in Section 4.4. In section 4.5 we

analyze our results and discuss them in the context of the models from other groups, and

the future of ML for simulating astrophysical flows, augmenting 1D and 3D models.

Lastly, we conclude the paper in Section 4.6 and provide further technical details and a

resolution study in the Appendix.

4.2 Formalism

4.2.1 Convection or Turbulence?

Often, any and all multi-D velocity fluctuations are amalgamated into the term tur-

bulence, including convection (Müller, 2020). Convection in a medium with a large

Reynolds number (Re) produces turbulence on its smallest scales, eventually dissipat-

ing as heat. However, convection also exhibits large-scale correlated motions that are

not truly turbulent in nature, but they are relevant for low-Re flows such as here.

The large-scale motions carry momentum flux that resembles an anisotropic pres-

sure; from the integral scale of ∼ 100km down to 1.5km of the “dissipative” range.
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This large-scale motion is chiefly responsible for augmenting the pressure near the ac-

cretion, and it is this major effect that our ML models attempt to capture in 3D and

transcribe to 1D.

4.2.2 1D Code

COLLAPSO1D2 (now open-sourced) is a 1D Lagrangian hydrodynamics (Benz,

1991) code with artificial viscosity for modeling CCSN, introduced by Herant et al.

(1994b) and Fryer (1999). It contains the basic physics for core-collapse simula-

tions and should be a suitable platform for differential studies, e.g., of accretion shock

radius, with and without ML additions. COLLAPSO1D includes a post-Newtonian,

spherically-symmetric implementation of general relativity (van Riper, 1979).

The continuity equations with the physics included in our code are:

1
ρ
= 4πr2 ∂r

∂m (4.1)

dv
dt =−4πr2

∂m

(
∂Pgas
∂m + ∂Pturb

∂m + ∂q
∂m

)
−GM(r)

r2 (4.2)

ds
dt =

4πr2

T

(
1
2

∂q
∂m − ∂uν

∂m + ∂Ye
∂m µe

)
(4.3)

using density ρ, radius r, cell mass m, enclosed mass M, velocity v, pressure P, artificial

viscosity q, gravitational constant G, entropy s, temperature T , neutrino energy uν,

electron fraction Ye, and electron chemical potential µe. The main addition of this work

is the pressure term ∂Pturb
∂m responsible for modeling fluctuations in multi-D flow, i.e.,

2github.com/pikarpov-LANL/COLLAPSO1D
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convection, specifically in the θ and φ directions of the spherical coordinates, in the

momentum equation (Eq. 4.2). Throughout this paper, we will call this term turbulent

pressure to stay consistent with the literature, even though small-scale turbulence is not

contained in the original training data3. Further details on modeling that term are given

in Section 4.3.

The neutrino transport utilizes a gray, 3-species (νe, ν̄e, and νµ,τ) flux-limited diffu-

sion scheme below the “neutrinosphere" and a light-bulb/free-streaming approximation

assuming an e−τ energy loss where τ is the optical depth of the neutrinos. The divid-

ing line need not be at the τ = 1 surface (standard placement of a photosphere), and

determining the dividing line between flux-limited diffusion and the light-bulb approx-

imation can lead to variations in the final result.

Since the neutrino trapping scheme in COLLAPSO1D is based on examining diffu-

sion times and optical depths in individual zones, the time step and results are zoning-

dependent, which proved problematic. The abrupt change in zoning beneath the neutri-

nospheres occasionally caused issues in neutrino transport. As a result, the luminosity,

especially of µ− and τ− neutrinos, was unstable but often exhibited large excursions.

Usually, these variations did not cause significant changes in the accretion shock ra-

dius, but occasional glitches were sometimes noted and excluded from the analysis.

As in Herant et al. (1994b), the µ− and τ− neutrino luminosities were generally sev-

3Current state-of-the-art global CCSN simulations are extremely under-resolved, running at low
Reynolds number Re of several hundred at most, far from the high-Re usually associated with a gen-
eral definition of turbulence.
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eral times larger than in modern calculations, including those of Burrows et al. (2020).

Their mean energy was also larger, ∼ 40MeV . Otherwise, though, the shock radius

history for the various models and the νe- and ν̄e- luminosities and temperatures were

similar to modern studies, with the former hovering around 150km and showing sub-

stantial increases of order 20 - 30% when the high entropy material associated with the

base of the oxygen burning shell in the pre-supernova star was accreted. Entropies per

baryon in the hot bubble were around 10, and the infall velocity at the accretion shock

was 3 - 4 ×109 cm/s. As judged by the location of a density of 1012 g/cm3, PNS radii

were near 30km.

The original coupled EOS combined the Lattimer-Swesty EOS at high densities (Lat-

timer and Douglas Swesty, 1991) and the Blinnikov EOS at low densities (Blinnikov

et al., 1996), and an 18-isotope nuclear network (Fryer, 1999). For this project, we have

implemented SFHo4 by Steiner et al. (2013), consistent with the source of our training

dataset (Burrows et al., 2020).

Further details of the code setup for our models are given below:

• Resolution: a non-uniform, static Lagrangian- (i.e., mass-) grid of 9000 cells.

It is meant to capture the hot convective region below the shock (100−150km),

which was typically ∼ 0.01 M⊙, resulting in the fine-zoning requirement of ∼

0.0001 M⊙ to capture the shock. Due to the accreting material, the fine zoning
4We adopted an EOS wrapper by Evan O’Connor: github.com/evanoconnor/EOSdriver

with further implementation details in COLLAPSO1D’s documentation: pikarpov-
lanl.github.io/COLLAPSO1D/eosdriver/
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has to cover 1.2-1.7 M⊙, raising the total cell count to 9000. The grid includes

three regions: medium proto-NS, high shifting-convective, and low-resolution

outer zones (more in Appendix 4.6).

• Progenitors: [12.0,13.0,16.0,17.0,18.0,19.0] M⊙ from Sukhbold et al. (2016).

• EOS: SFHo EOS tables Steiner et al. (2013) by integrating the EOSdriver by

O’Connor and Ott (2010) into the code.

• Machine Learning: a C wrapper for ML with PyTorch is based on the pytorch-

fortran5 wrapper (Alexeev and Hrywniak, 2022) that was expanded for gfortran

& ifort compatibility. It is set up to perform real-time inferencing and can be ad-

justed to utilize single-core, multi-core CPU, or GPU via CUDA (see Section 4.4

for overhead and its mitigation). The wrapper is not exclusive to COLLAPSO1D,

with the interface made for easy integration with any code written in FORTRAN

90 & above (follow COLLAPSO1D’s documentation6).

The progenitors and the EOS are consistent with the training data from 3D CCSN

FORNAX simulations by Burrows et al. (2020) used for our ML model. While the

neutrino physics and Lagrangian vs. Eulerian architecture of the codes differ, we tried

to stay consistent in other details of the code, including the spatial resolution of the

convective bubble.
5github.com/alexeedm/pytorch-fortran
6pikarpov-lanl.github.io/COLLAPSO1D/
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4.2.3 Turbulence Extraction

When bridging the gap between 3D and 1D simulations, we have to treat the 3D

simulations as the ground-truth Direct Numerical Simulation (DNS), even if they are

under-resolved. The latter would act as a Large Eddy Simulation (LES) simulation

needing a closure model for turbulence. In this section, we will present DNS formalism

with an LES-like procedure of extracting turbulence for ML model training purposes,

similar to procedures described in Karpov et al. (2022); Nagakura et al. (2019).

By applying a spatial filter, each DNS variable is decomposed into a mean (ū) and

fluctuating (u′) parts:

u = ū+u′ (4.4)

To extract the fluctuating (turbulence) part, we define solid angle averaging for the

mean, i.e., averaging over θ and φ shells as a function of radius, as the filtering op-

eration. This procedure allows us to both filter and collapse the 3D data to 1D at the

same time, and the filtering operation satisfies Reynolds rules of the mean Germano

(1992). Applying said filter to the NS equations results in the following hydrodynamic

equations for continuity and momentum:

∂t ρ̄+∇ · (ρ̄ũ) = 0 (4.5)

∂t(ρ̄ũ)+∇ · (ρ̄ũ⊗ ũ+ P̄I)− ρ̄g =−∇τ (4.6)

where ũ = ρu/ρ̄, which represents the mass-weighted filtering, i.e., Favre filtering; τ is
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the stress due to the turbulent motion, i.e., Reynolds stress, defined as:

τi j = (ũiu j − ũiũ j) (4.7)

In turn, total pressure due to turbulence (Pturb) is defined as the product of the trace of

R and density:

Pturb = ρ tr(R) (4.8)

since in the training dataset, the radial term was dominant in comparison to angular

components, Rrr ≫ Rθθ +Rφφ, we set

Pturb ≈ ρRrr (4.9)

4.3 Turbulence Model

4.3.1 Machine Learning Model

The ML model we employ here is based on our previous Physics-Informed (PI) ML

method from Karpov et al. (2022) adapted to a 1D setting with a few key changes. We

used the PI layer to preserve the realizability of the τ, ensuring predicted Pturb stays

positive. Also, a filtering layer with a Gaussian kernel is used for smoothing the predic-

tion, preventing sharp intermittent gradients of Pturb. The overarching model structure

is summarized in the schematic of Figure 4.1. Furthermore, the custom loss function

84



from the aforementioned paper that combines Smooth L1 (spatial) and Kolmogorov-

Smirnov (statistical) losses improved the training time and accuracy of the model.

Considering the integration with COLLAPSO1D, both input and output for the model

training must be in 1D. In total, 5 features (density ρ, sound speed us, gas pressure Pgas,

temperature T , and entropy S) were used for training, each of size 200, across ∼ 20

checkpoints. Even though not all training features are independent, ML benefits from

data transformations to accelerate the training convergence. In ML, this is generally

known as feature engineering (Zheng and Casari, 2018). In our case, it was best to use

physical intuition for guidance, i.e., using inter-dependent features for training such as

Pgas and us.

This amounted to ∼ 4000 training data points per ML model. Due to the 1D nature

and the smaller size of the training dataset, a shallow 1D convolutional neural network

(CNN) proved sufficient to capture turbulence’s dynamic states presented in the training

data, although no turbulence model of its dynamic growth is used here. Next, we did

not need to predict the full stress tensor τi j but instead wanted to directly predict Pturb.

Thus, Eq.4.8 is folded into the model itself. Lastly, the output was a normalized quantity

of Pturb/Pgas for stability reasons.

• Model: 1D CNN encoder with physics-informed layers. The encoder implicitly

predicts velocity fluctuations (u′i), then PI layers calculate u′2i to enforce τii > 0

and filter to find the mean.
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• Optimizer: Adam Optimizer7 - extension of the stochastic gradient descent; it

was picked due to the good performance on sparse gradients.

• Activation function: Tanhshrink8, for which the function is defined by

f (x) = x− tanh(x)

• Loss function: Custom SmoothL1Loss9 - an L1 loss that is smooth if |x−y|< β,

where β = 1σ and σ is the standard deviation. The loss for |x−y|< β was further

increased by a factor of 10 to aid the efficiency of the training convergence of the

model. It can be viewed as a combination of L1 and L2 losses (behaves as L1 if

the absolute value is high or as L2 if the absolute value is low).

4.3.2 Basis 3D Dataset

We trained our models using non-rotating HD CCSN simulations performed by

Burrows et al. (2020). Most of the included corresponding [12,13,16,17,18,19] M⊙

stars exploded, except the 13 M⊙. The 14 & 15 M⊙ were not included despite being

available since they also did not explode and exhibited lower turbulence levels. Thus

they made unlikely candidates to push our 1D models to explode, leaving the test bed

for non-exploding training datasets to 13 M⊙. The simulations were performed using

7pytorch.org/docs/stable/generated/torch.optim.Adam.html
8pytorch.org/docs/stable/generated/torch.nn.Tanhshrink.html
9pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Figure 4.1: ML model schematic to predict Pturb/Pgas (output). Besides a conventional
CNN Encoder, it includes a physical layer to enforce a realizability condition to ensure
Pturb stays positive, and a smoothing filter layer.

an Eulerian spherical 3D code called FORNAX (Skinner et al., 2019) with a dendritic

grid of 678× 256× 128 (r × θ× φ). For progenitors, Sukhbold et al. (2016) models

were used for the subset of models we use in this study. It is important to note that the

first 10 ms of the simulations after the bounce were performed in 1D, at which point

mild velocity perturbations were introduced, and the models were mapped to 3D. As

such, we are not utilizing the early checkpoints for training. For the complete setup

details, please refer to the aforementioned manuscript.

Given our interest in the convective region to revive the shock, we focus on the

subset of the data between the PNS and the shock position. To extract the Pturb, we

followed a procedure described in Nagakura et al. (2019), which studied the effects of

turbulence through Reynolds-like stress components.
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Data Preparation

The raw 3D data was unsuitable for training and making the ML model usable in

a 1D simulation. In addition, the subset used for training was limited by both space

and time. Below is the complete procedure to transform the original data into the final

training dataset, in order:

1. Calculate Pturb, i.e. τrr, radial Reynolds-like stress tensor component, using

Eq.4.7 from the original 3D data

2. Average over solid angle, which simultaneously filters and collapses the data

from 3D to 1D for all relevant training variables [u,us,ρ,Pgas,T,S]

3. Select checkpoints until the shock either reaches 300km (at which point it is

considered exploding) or collapses below 100km. Using only 10% of the total

number of 1ms-checkpoints, amounting to ∼ 20 equidistant checkpoints in total

per M⊙, proved sufficient for training. Then, 3% of in-between checkpoints were

used for validation.

4. Interpolate linearly the grid between PNS and the shockfront to a constant num-

ber (i.e., 200) of cells to equate the size of the convective region through all

checkpoints used for training

5. Scale the variables to unity to equalize their weight during model training
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6. Target feature is set as Pturb/Pgas instead of Pturb to relate the predicted turbu-

lence to present in COLLAPSO1D Pgas.

The collapsed 3D-to-1D datasets, after the above step 2, are summarized by the shock

position vs. time after the bounce plot in Figure 4.2. It is directly comparable to Figure

2 in Burrows et al. (2020).

Note that a time-diverse set of checkpoints is used for training to capture the evolu-

tion of turbulence and prevent overfitting. That said, validation checkpoints are equally

important, and despite being only 3% of the total dataset, they are responsible for the

early-stopping condition in model training. Without them, the model could overfit to

the average of all training snapshots instead of remaining flexible enough to predict the

dynamic nature of turbulence.

A sample of the result target feature used in training, Pturb/Pgas, is shown in Figure

4.3. The snapshots are taken at [100,150,200] ms, to make it easier to compare 19 M⊙

with the medium resolution 19 M⊙ (green curve) in Figure 11, Left from Nagakura

et al. (2019). Our training targets, i.e., Pturb/Pgas, are consistent with their paper, given

the similar feature extraction procedure.
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Figure 4.2: Shock evolution after the bounce of the 3D-to-1D mapped datasets from
Burrows et al. (2020) selected for ML model training. Please note that 13M⊙ fails to
explode.
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Figure 4.3: Evolution of the training Pturb/Pgas for [12,13,17,19] M⊙ in the convective
region between the PNS and the shockfront, where all explode except the 13 M⊙. At
200 ms (the last plot), 12 and 17 M⊙ have already passed 300 km per Figure 4.2. The
dashed grey curve for 17 M⊙ labeled “SM” stands for “small-scale” turbulence, i.e.,
extracted on the integral scale (a few km) of the simulation using a Gaussian filter with
σ = 2 [cells]. Depending on the definition of turbulence, large vs. smallest-resolved
scale, its role in CCSN can be affected by a factor of ∼ 4. The base 3D dataset was
produced using FORNAX.
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Figure 4.4: Predicting Pturb/Pgas profiles of the unseen timesteps from the training
dataset of the 12 M⊙. Prediction is not oscillatory and stays consistent to the shape
across 2-3 orders of magnitude above 10−3, i.e., the model predicts a consistent trend
above 0.1% of Pturb/Pgas.

4.4 Results

4.4.1 ML Training

For each progenitor, a corresponding ML model was trained following the proce-

dure described in Section 4.3.1. Considering the small size of the 1D dataset, training

on a CPU (12-core, 24-thread AMD Ryzen 9 3900X) proved to be sufficient. With

our custom loss-function, each model would converge within 1000 epochs. The model

was constructed and trained using the Sapsan framework (Karpov et al., 2021), which

includes production-ready example of it, called PIMLTurb1D10. Refer to Appendix 4.6

for more details on the training evolution.

Testing on the remaining 90% of the unseen data from Burrows et al. (2020), the

10sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-for-1d-turbulence-modeling-
pimlturb1d
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models have performed well predicting the growth of Pturb/Pgas. Figure 4.4 presents

a prediction of select, unseen checkpoints at far spread-out simulation times, [105,

155, 205] ms, for the 12 M⊙ simulation. It is important to note that the y-scale is

logarithmic; hence the tail below 10−3 is expected to misbehave. In addition, such

precision is not necessary, as it is expected for Pturb/Pgas > 10−2, i.e., 1%, to potentially

affect the shock radius to cause an explosion. The most important was for the model to

capture the plateau at maximum Pturb/Pgas and its evolution. The level of performance

is comparable across all ML models and progenitors in this paper.

4.4.2 Baseline 1D CCSN

At first, we conducted baseline simulations for [12,13,16,17,18,19] M⊙ without

any additional Pturb. As shown in Figure 4.5, none of the models exploded (as ex-

pected). They have primarily settled at ∼ 130km and will eventually collapse. After

the bounce, the shock radius has a minor oscillatory behavior due to the region behind

the shock not being in the high-resolution zone as per Figure 4.14. It takes 15ms after

the bounce for the models to stabilize. This behavior will dictate the delay of turning on

ML to apply Pturb in the next batch of simulations. We compiled analytic profile evolu-

tion of velocity, pressure, temperature, and many others, accessible on COLLAPSO1D’s

documentation11; full setup details can be found there as well.

11pikarpov-lanl.github.io/COLLAPSO1D/research/
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Figure 4.5: Shock evolution of the baseline simulations without ML using
[12,13,16,17,18,19] M⊙ progenitors. None of the 1D COLLAPSO1D simulations have
exploded, and no positive velocities have been generated. Numerical noise has been
filtered out of the curves by applying a Savitzky–Golay filter.
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Figure 4.6: Shock evolution of the ML-augmented [12,13,16,17,18,19] M⊙ simulations
with the added Pturb. The smaller subplot has the same x-axis range from 0 to 250 ms,
but expands the y-axis out to 500 km to show the exploding 17 M⊙. Numerical noise
has been filtered out of the curves by applying a Savitzky–Golay filter.
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4.4.3 1D CCSN with ML subgrid model

Keeping the setup exactly the same, Pturb was introduced via the ML subgrid model.

To make it work, we employed the following procedure:

1. Identify convective region but calculating the current PNS and shock positions,

excluding the width of the diffused shock

2. Scale the features identically to the training dataset

3. Interpolate the features in the region to array size 200

4. Pass to PyTorch wrapper that converts the features into torch tensors, loads the

trained model, and performs inferencing

5. Recover Pturb by multiplying the prediction by Pgas

6. Augment Pressure by adding Pturb in the momentum equation

Even though ML inferencing has a relatively low cost, it still causes a ∼ 200%

overhead per timestep (per ∼ 10−7 s). However, given the relatively slow evolution

of Pturb on such timescale, updating it through inferencing every 5 timesteps proved

sufficient. As a result, the total overhead of running COLLAPSO1D with the ML model

was 40−50% in comparison to baseline runs.

To give a perspective into simulation evolution, i.e., the dynamics of the runtime

features feeding into the ML model to predict Pturb, plots of [u,ρ,T ] leading to an
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explosion of 17 M⊙ are shown in Figure 4.7. The convective bubble there used for

inferencing lies between the red lines identifying the PNS edge and the shock. Note

that a few cells right below the shock are also excluded from inferencing to account

for shock diffusion. At 175ms, large positive velocities are developed (top right plot in

Figure 4.7), resulting in an explosion of that simulation.

The shock position has moved out for all progenitors and caused the 17 M⊙ model

to explode. Figure 4.6 summarizes the shock evolution in all models, with the smaller

inside figure showcasing the runaway of the exploding models beyond 500km. Com-

paring with the baseline simulations in Figure 4.5, 12 & 17 M⊙ comparison is plotted

in Figure 4.8: baseline runs in solid lines, and dashed for models with the ML subgrid

model. The 12 M⊙ with ML slowly diverged from the baseline, moving the shock fur-

ther out by ∼ 5% in comparison to the baseline without developing positive velocities.

On the other hand, the 17 M⊙ diverged rapidly to a similar 5% shock position increase

at the early time and then proceeded to explode shortly after reaching the “plateau".

4.5 Discussion

Adding Pturb through ML directly affects the 1D CCSN simulations by increasing

the shock radius. The outwards adjustment of the shock was generally in the range sug-

gested by other studies (Radice et al., 2018), about 10-30%. However, the correlation

between the outcomes in COLLAPSO1D and FORNAX was not directly consistent, i.e.,
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Figure 4.7: Velocity, density and temperature evolution for the baseline (dashed orange)
and the ML-augmented with Pturb (solid gray) 17 M⊙ simulations. In the 3rd column at
175ms, the latter has developed strong positive velocities for the first push towards an
eventual explosion. The red lines signify the PNS edge and the shock position in the
ML-augmented case. The region in-between is fed into the ML model to predict Pturb.
The checkpoints are consistent with the predictions in Figure 4.9.
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Figure 4.8: Comparison of the shock evolution between the baseline and ML-
augmented models with Pturb for 12 & 17 M⊙, a failed and a successful explosion
respectively.
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training the ML model on an exploded simulation did not necessarily produce an ex-

plosion for the same progenitor mass in 1D. To some extent, that is expected. Adding a

simple scalar pressure does not capture the full effects of a 3D simulation and the basic

physics in COLLAPSO1D and FORNAX are different. In addition, we need to evaluate

the ML performance to validate its accuracy further and make suggestions for the future

of ML in HD & MHD simulations.

4.5.1 Effect of turbulence in 1D models

It is important to understand the ML model behavior at runtime and what caused 17

M⊙ to explode. Pturb/Pgas has been plotted at different simulation times for [12,17,19]

M⊙ in Figure 4.9, similar to Figure 4.3 for the training dataset. Let us break down this

set of three plots in more detail:

• Magnitude: Pturb predictions stayed within the training dataset and physical

bounds, not exceeding Pgas, even for explosive cases.

• Shape: the curves are primarily affected by the Lagrangian grid used: a large

number of points at the smaller radii given the higher density, while there are

fewer cells near the shock. In an Eulerian case of the original training dataset, the

convective region is more uniformly resolved, giving a smoother overall shape.

An adaptive grid would improve the shock resolution.
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• Evolution Timescale: given the 15 ms delay and the underlying physical dif-

ferences between COLLAPSO1D and FORNAX, Pturb evolution timescales are

different between the codes, which is to be expected. As such, it is more useful

to look at the relative growth and peak magnitudes of turbulence within COL-

LAPSO1D simulations.

• Shock Position: note the increase of Pturb/Pgas relative to the larger shock radius

for the corresponding models (check Figure 4.6 for shock positions). While there

is no linear relationship between the shock radius and Pturb, the larger outer radius

indicates favorable conditions for turbulence growth.

It is important to remember that the training dataset dictates that prediction. In our

case, how closely the conditions are matched will affect the turbulence evolution. In

the non-exploding cases, Pturb/Pgas reached ∼ 10%, unlike ∼ 70% for the exploding 17

M⊙ due to the rest of the observables not passing the conditions for the explosion. Such

differences can be due to several reasons, including the shock position that signifies

more significant underlying differences. For example, the discrepancies in the neutrino

engine, i.e., trapping/free streaming conditions, can dictate the fate of the star.

There is an apparent dichotomy between exploding and non-exploding models, as

Figure 4.10 illustrates. The successful 17 M⊙ quickly expands to 7% larger than the

baseline and then undergoes large shock radius oscillation while staying > 30% with

the baseline leading to explosion by ∼ 220ms. On the other hand, the failed explo-
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sions stay relatively close to one another, slowly growing up to 5-10% by late times

(≥ 250ms). Examining the Pturb/Pgas in Figure 4.11, it shoots up to 70% in the suc-

cessful 17 M⊙, consistent with training dataset (Burrows et al., 2020). The rapid drop

at ∼ 225ms is due to the model being trained only on the initial shock moving out to

300km, i.e., following it through the explosion. The back-propagating, post-explosion

shocks are then detected, under which our model continues to inject Pturb, but that can-

not be deemed accurate and goes beyond the scope of this paper.

As for the non-exploding models, Pturb/Pgas stays just below the 20% mark, where

it converges, unable to grow further. This is fairly consistent with the non-exploding 13

M⊙ training dataset from Burrows et al. (2020), where Pturb/Pgas reaches a maximum

of ∼ 30% before dying down. Considering the training dataset has a larger shock radius

before Pturb becomes significant, the smaller maximum Pturb/Pgas in our simulations is

to be expected. In fact, the shock in our non-exploding low-resolution (grid=2000 cells)

runs does expand to a larger shock radius, and reach ∼ 30% of Pturb/Pgas (Figure 4.19).

A similar dichotomy between successful and failed explosions was also observed

in low-resolution runs. While they support our hypothesis of the larger baseline shock

radius leading to its greater increase with the addition of Pturb, there are resolution

effects that start playing a dominant role in model dynamics. The inability to resolve

the shock well, leading to large shock oscillations over 10s of km per time step, results

in untrustworthy models to draw definitive conclusions. Nonetheless, it serves as a
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good training exercise, explored further in Appendix 4.6.

To summarize, even though adding Pturb does help to re-energize the shock and

move it outwards, its ability to do so effectively depends on the underlying physics and

likelihood of an explosion, creating a positive feedback loop. This observation speaks

to the idea of a successful CCSN being on a proverbial “cliff”, where a small extra

contribution can push it over the edge to produce an explosion. In this context, adding

Pturb can be an important factor in dictating the fate of a star.

4.5.2 Comparison & Limitations

Our high-resolution findings are comparable with the 3D CCSN models by Couch

and Ott (2015), which concluded that Pturb can reach up to 50% of Pgas. Inspired

by those conclusions, work has been done by Mabanta et al. (2019) and Couch et al.

(2020), developing parameterized models for turbulence in 1D. They showed the impor-

tance of turbulence in the neutrino-driven CCSNs through convection below the shock.

It is important to remind that not only pressure was considered as the dominant effect

of turbulence, but also energy flux Fe and dissipation of kinetic energy to heat εheat

through the means of turbulence. This work focuses solely on the pressure term Pturb to

test the applicability of ML for supernovae problems. That said, all of these turbulent

terms are related to velocity vturb; hence our ML model can be used to include those

terms without re-training.
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Figure 4.9: Evolution of the ML-predicted Pturb/Pgas for the [12,13,17,19] M⊙ in COL-
LAPSO1D. The plots show only the region where ML was applied, i.e., the region
between the PNS and the shock front. Besides, Pturb fraction continuing to grow be-
yond 0.2 for the exploding 17 M⊙, note that the shock radius for that progenitor mass
was also the farthest out, indicating favorable underlying physical conditions. The last
plot at 250 ms does not have the 17 M⊙ since it already exploded. At later times, 12
& 13 M⊙ reach the same 0.2 Pturb/Pgas as the 19 M⊙ at 250 ms, hence non-exploding
models are consistent in their evolution.
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Figure 4.10: Cumulative comparison of the shock position increase for exploding 17
M⊙ and non-exploding [12,13,16,18,19] M⊙. The differences between the latter models
are minor while exhibiting a similar growth behavior with oscillatory dynamic; hence
they are combined. This presents the dichotomy of the failed vs. successful explosions,
and how a small early push by Pturb can result in the explosion.
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Figure 4.11: Evolution of the maximum predicted Pturb/Pgas at each checkpoint for
exploding 17 M⊙ and non-exploding [12,13,16,18,19] M⊙. The former corresponds
well with the training dataset (Burrows et al., 2020) and the shock-position dynamic
from Figure 4.6. As the shock moves out, Pturb/Pgas also increases. After the shock has
moved far past 300km (∼ 220ms), the ratio drops since the ML model was not trained
passed that regime, and it suppresses those outliers. Hence, those predictions are not
expected to be accurate and are marked with a dashed line.
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With that in mind, there are fundamental differences between our turbulence model

and the previous work done in 1D CCSN codes, which can relate to the differences

between analytical and ML approaches to turbulence modeling. The former is limited

by the approximations used for their derivation. For example, in the case of Mabanta

et al. (2019), a constant luminosity tuned by hand is used where turbulent dynamics

is derived directly from neutrino luminosity. Hence other means of turbulence gener-

ation are ignored. Couch et al. (2020) proposed a different approach based on MLT

called Turbulence in Reduced dimensionality (STIR). With a more elaborate neutrino-

transport scheme which complemented a more generalizable turbulence modeling ap-

proach, it came with the downsides of MLT. In particular, the dependence on the mixing

length scale factor λmix itself, which works well for small scales but is problematic at

capturing the full range of scales turbulence evolves on (Joshi et al., 2019).

On the other hand, the ML approach is limited solely by the training dataset, which

should improve as better-resolved datasets with higher physical fidelity become avail-

able. It can capture a wide range of scales, i.e., the growth of turbulence, as long as

the training dataset exhibits that behavior. While an analytical model typically strives

to reduce the number of variables in its formalism, it is much easier to include and

investigate a broader range of physical dependencies on a target observable with ML.

Thus, while previous physical assumptions can guide the architecture, the models are

not limited by them, potentially giving the ability to uncover new physical dependen-
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cies. Outside of some physical limitations built into the model’s architecture, it remains

flexible and physically scalable, improving as better, preferably DNS, training datasets

come to fruition.

Our approach also does not capture the increase in accretion rate that might oc-

cur beneath an unstable accretion shock. Mapping the 3D model into a 1D scalar field

results in lost information. Such an effect is due to a macroscopically anisotropic veloc-

ity field resulting from discrete convective plumes, which follows the non-conventional

definition of turbulence used in this paper. Nevertheless, it is thought to be important

(Couch and Ott, 2013; Müller and Janka, 2015), and its neglect diminishes the fidelity

of our ML model, at least as applied to 1D models.

The approach also does not realistically include the effect of a cooled gain radius

that might affect the neutrino absorption efficiency at the base of the convective region.

That is, the entropy profile is not smoothed, and it is rendered flat as true convection

would do. This may be a limit to the 1D approximation, but further exploration is

needed.

4.6 Conclusion & Future Directions

The ML framework we developed shows great promise for including the effects of

turbulence and other chaotic motions in simplified calculations of many phenomena,

core-collapse included. We started with baseline [12,13,16,17,18,19] M⊙ simulations,
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of which none exploded, as was expected. The addition of the ML-predicted Pturb

term resulted in the Pturb/Pgas to reach ∼ 20% for the non-exploding models, and up to

∼ 70% for the exploding 17 M⊙. These numbers, albeit with some discrepancies, are

consistent with the training set from Burrows et al. (2020). As for the shock position

increase, in the case of non-exploding models, it gradually grew to a ∼ 10% larger

radius than the baseline. The effect is in the bounds from Radice et al. (2018) (∼ 25%),

despite the differences in dimensionality and neutrino physics.

It is worth noting the observed correlation between the shock radius, the maximum

predicted Pturb, and ultimately explodability. For example, the exploded 17 M⊙ moved

out the farthest in comparison to all the other models in both the baseline (∼ 150km)

and in the early times of ML-augmented runs (∼ 160km). We also conducted extensive

code-optimization studies not presented in this paper, which explored the sensitivity of

both baseline models (without the ML augmentation) and those with additive pressure

to assumptions regarding zoning, EOS, and, especially, neutrino trapping parameters.

Generally speaking, failed (non-exploding) models where the shock stalled at a larger

radius were more likely to explode with an ML augmentation. We suspect that the

larger shock radius indicates the underlying physical conditions that resemble more the

exploding FORNAX models on which it was trained.

As for the non-exploding models presented here, despite their smaller shock ra-

dius, it is unreasonable to expect an augmentation from convectively generated pres-
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sure alone to make the difference between failure and explosion in all cases. Instead,

a more representative metric becomes the increase in shock radius due to Pturb. Indeed

Murphy et al. (2013) and Radice et al. (2018) find the effective pressure support gener-

ated by the turbulence only accounts for an increase in the shock radius up to ∼ 25%.

Janka et al. (2016) estimate that the effect of turbulence with Mach number (Ma) is the

increase in the shock radius by a factor of about (1+4/3Ma2)2/3 or about 20% for Ma

= 1/2. This increase is consistent with what we see for the 17 M⊙ model (and in the

low-resolution models in Appendix 4.6).

Overall, important lessons were learned, and progress was made that points the way

for future improvements. The ML model itself does an excellent job of describing the

fluid motions in the 3D models of Burrows et al. (2020) (see Figure 4.4). It inherently

includes all the 3D effects present in the training models. The six training variables

used here could be changed or expanded to include additional dependencies, but even

the present tables could be used in other, more modern, 1D codes. An obvious next step

would be to apply the same tables to 1D models using FORNAX, which has the same

physics, except for dimensionality, as the 3D training set. We are optimistic that better

correlations in outcome would be observed.

However, there are inherent deficiencies in 1D. By limiting the output of the ML

model to a single scalar-pressure augmentation - other important multi-dimensional

effects are neglected. However, it can already be used to include energy flux and heat
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dissipation due to their dependence on turbulent velocity, which can be easily extracted

from the predicted pressure term (Couch et al., 2020). Other examples of the missing

multi-D features include the augmentation of accretion by instabilities at the accretion

shock is ignored, and the redistribution of entropy and matter near the gain radius. Both

of these are probably important effects (Murphy and Meakin, 2011; Burrows et al.,

2020).

Lastly, we would like to list several potential improvements/approaches to utilizing

ML for the modeling of astrophysical flows:

A Generalized Model - a single model to predict for all progenitors. In this paper,

we trained a unique ML model per each progenitor while using the same architecture.

However, the next step would be to train a single multichannel-output model to include

progenitor mass dependency. For example, a classification-type NN can be used to

achieve that, where the continuous mass range can be used as the class. As a result, it

would be reasonable to utilize the model for a continuous range of progenitor masses

in-between the training dataset masses.

Time Dependence - the inclusion of the time variable in the training dataset. The

model architecture could include Recurrent NN (RNN) layers to capture the timescales.

However, a concern is the naturally different simulation evolution timescales due to

the underlying physics and dimensionality discrepancies. As such, while a worthy

parameter to investigate, time dependency must be included with caution.
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Analytical Model Tuning - recover subgrid turbulence through established analyt-

ical models in conjunction with ML. While there are no DNS CCSN simulations that

resolve the dissipation scale of turbulence available for training, the approach presented

here can be extended via a simple analytical model, e.g., Dynamic Smagorinsky (Lilly,

1966), to subgrid scales. A step further would be to use ML for tuning a more sophis-

ticated analytical model, such as RANS or BHR (Besnard et al., 1992; Denissen et al.,

2012, 2014).

3D Subgrid Model - one could also easily modify the ML model to train on differ-

ences among 3D simulations of varying resolution (Nagakura et al., 2019), essentially

acting as a subgrid model in cheaper low-resolution 3D models. Then the hydro code

could capture important macroscopic effects, and ML compensate for information lost

with coarse resolution. As shown by Karpov et al. (2022), CNN ML models can suc-

cessfully capture Pturb term from 3D MHD DNS data to perform 3D inferencing. While

3D ML models take longer to train, given the larger training dataset, there is an oppor-

tunity to use deeper networks to allow more complex nonlinear models to be trained.

Increased training time is a worthy price to pay, especially when it does not significantly

affect the overhead for inferencing at runtime. Such ML subgrid models will drive the

computational cost down and can pave the way to more extensive parameter studies

of 3D CCSN. Our open-sourced ML implementation is not limited to COLLAPSO1D;

in fact, it is agnostic to the base FORTRAN code, its dimensionality, or even the ML
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model architecture itself, which can be tailored further depending on the closure model

in question, i.e., prediction target.
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Appendix

Training Details

1D PIML Model from Figure 4.1 is detailed as a layer-by-layer schematic in Figure

4.12. The changes in the data shape can be tracked as noted at each arrow. For input

and output, the shape is formatted as [N,C,L] where N is the number of batches, C

represents channels, i.e., features, and L stands for the length or size of the data. The

notation is in agreement with PyTorch documentation. Thus the graph presents an input

size of [20,5,200] with 20 checkpoints and 5 features of interpolated size 200. Note

that even though the number of checkpoints differed for every progenitor depending on

the training dataset, it was close to 20 for all models. The graph was produced with
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Sapsan12.

Custom Loss Function from Karpov et al. (2022) that combines a spatial point-to-

point (SmoothL1Loss, i.e., L1) with a statistical loss (Kolmogorov-Smirnov statistic,

i.e., KSstat) was used for this project. The latter is used to define an early stopping con-

dition to prevent overfitting. The total loss (Top) and its L1 (Middle) & KSstat (Bottom)

are presented in Figure 4.13 as a function of the training iterations, i.e., epochs. For the

first few hundred epochs, L1 loss dominates. However, once it gets below 1, becoming

comparable to KSstat in magnitude, the prediction adjusts its shape to match the train-

ing dataset statistically. No significant moves in the total loss and its L1 component are

seen at that point. However, the KSstat component keeps adjusting until it drops below

the cutoff of 0.11, which was tested to be sufficient for the model to remain flexible and

accurate without overfitting across all progenitors.

Resolution Study

Besides the high-resolution (HR) simulations with a grid of 9000 cells, we per-

formed the same study for a low-resolution grid with 2000 cells13. The ML models

stayed the same as presented in the paper, with the only difference being the underlying

grid. A comparison of the grids is shown in Figure 4.14. Thus, the main difference

between the grids was the “high-resolution” region, through which the shock moves

12sapsan-wiki.github.io/tutorials/model_graph
13pikarpov-lanl.github.io/COLLAPSO1D/research/
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out as the mass accretes onto the PNS. Between the HR and LR grids, the zone was

resolved 6 times worse in the case of the latter. To better understand its effect on the

shock position, check Figure 4.15. Recall that the region between the PNS and the

shock (between the red lines) is used as an input to the ML model to predict Pturb. The

LR (orange curve) shows only a few cells in the span of a ∼ 100km, which causes sig-

nificant oscillations of the shock radius, affecting ML inferencing. The Eulerian grid

would have been superior to a Lagrangian counterpart used here. If the grid would be

adjustable, it would reduce the zoning requirement.

The average shock position moved out significantly farther than in the HR runs

(from ∼ 150 to ∼ 200km) for most models, as per Figure 4.16. The 12 M⊙ stood

out here, extending to ∼ 280km, yet not developing any positive velocities and ex-

ploding. Once ML was applied, the shock moved out further in all models, relative

to the HR runs, with 12 M⊙ exploding (Figure 4.17). It is better illustrated in Fig-

ure 4.18, where is shock radius difference reaches 18%, in comparison to 12% in the

HR runs (Figure 4.10). Furthermore, Figure 4.19 shows the Pturb/Pgas converging to

30%, as per the training dataset (Burrows et al., 2020) for non-exploding models. How-

ever, notice the large spread of the orange-filled region representing the non-exploding

[13,16,17,18,19] M⊙ models. This spread is due to the large shock oscillations men-

tioned above, with the shock jumping up to 100km per timestep.

In the paper, we proposed that the larger shock radius would result in higher Pturb/Pgas
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and, in turn, increase the likelihood of an explosion. However, the LR simulations have

significant flaws to support that undoubtedly. While Pturb did have a larger effect here,

the previously exploded 17 M⊙ has failed here. Instead, the 12 M⊙ exploded. The

expectation was for the 17 to explode, along with others either moving out to a larger

radius (which did happen) or exploding. This discrepancy could be attributed to the

poorly-resolved shock causing the models to grow unstable.

In conclusion, the LR results are consistent with the dichotomy observed in HR

runs and agree with our assumption of a large shock radius leading to higher Pturb/Pgas.

However, the large oscillatory behavior prevents us from solidifying those claims. It is

best to treat this LR study as a cautionary tale for grid setup when applying ML in a

shock-dependent zone and modeling CCSN turbulence in general.
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Figure 4.12: Graph of the 1D PIML model with 20 checkpoints and 5 training features
as an input. Please note that the number of checkpoints was slightly different for each
M⊙ based on the available training dataset.
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Figure 4.13: ML model training loss evolution for the 19 M⊙: Top is the actual loss
of the model that consists of a combined L1 and KS loss components, Middle is the L1
loss component, Bottom is the KSstat loss component. The training early-stop condition
is based on the KSstat of the validation dataset. Thus, the training halted based on the
KSstat dropping to ∼ 0.1.
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Figure 4.14: Comparison of the high-resolution (HR) and low-resolution (LR) La-
grangian grids used for all of our simulations. They are static, and non-uniform to
include 3 regions: medium PNS, high shifting-convection (between the red lines), and
the low outer. The fine-zoning extended between approximately 1.2 and 1.7 M⊙ due to
matter accreting onto the PNS, and the region below the shock staying relatively thin
(∼ 0.01M⊙). That region was 8700 cells for HR, and 1700 cells for LR. This amounted
to the LR fine-zoning being 3×10−4 M⊙, which was 6 times worse than our HR runs.
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Figure 4.15: Velocity profiles presenting the shock resolution for the baseline (no
ML) 17 M⊙ at 200 ms for high-resolution grid with 9000 cells (solid gray) and low-
resolution grid with 2000 cells (dashed orange) simulations. The red lines show the
convective region between the PNS (left line) and the shock (right line). Such low reso-
lution in the grid=2000 cells case results in high oscillations of the shock radius, as the
jump over a single cell results in 10s of km shifts.
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Figure 4.16: Shock evolution of the low-resolution baseline simulations without ML
using [12,13,16,17,18,19] M⊙ progenitors with a grid of 2000 cells. The shock has
moved out further in comparison to the high-resolution runs from Figure 4.5, converg-
ing near 200 km for most models. That said, none of the 1D COLLAPSO1D simulations
have exploded, and no positive velocities have been generated. Numerical noise has
been filtered out of the curves by applying a Savitzky–Golay filter.
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Figure 4.17: Shock evolution of the low-resolution simulations with ML using
[12,13,16,17,18,19] M⊙ progenitors with a grid of 2000 cells. The shock has moved
out further in comparison to the high-resolution (HR) runs from Figure 4.6. In this case,
only the 12 M⊙ has exploded. Numerical noise has been filtered out of the curves by
applying a Savitzky–Golay filter.
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Figure 4.18: Cumulative comparison of the shock position increase for exploding 12
M⊙ and non-exploding [13,16,17,18,19] M⊙. The differences between the latter models
are minor, while exhibiting a similar growth behavior with large oscillatory dynamic
due to low-resolution of the shock; hence they are combined. The dashed line for the
12 M⊙ is the back-propagating shock.
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Figure 4.19: Evolution of the maximum predicted Pturb/Pgas at each checkpoint for
exploding 12 M⊙ and non-exploding [13,16,17,18,19] M⊙. The former corresponds
well with the training dataset (Burrows et al., 2020) and the shock-position dynamic
from Figure 4.17. For the 12 M⊙ the ratio does drop similar to Figure 4.11 at a later
time (> 400ms). However, the low-resolution simulations become very unstable at that
point, with very large shock oscillations; hence the later times are not plotted.
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Chapter 5

Conclusion

5.1 Paper Summary

The work for this thesis was structured as follows: develop a pipeline to design ML

models for turbulence in astrophysics, test learning of 3D turbulent behavior with ML,

and test the applicability of using ML to retrieve 3D turbulent-convective dynamics

in 1D CCSN simulations, along with developing a wrapper to use ML inferencing in

legacy and modern Fortran codes.

ML framework for Astrophysics, Sapsan, was developed to introduce industry-

leading tools. It includes compatibility with both scikit-learn and PyTorch for model

design, MLflow for experiment tracking, Docker to ease the development and distribu-

tion of the ML models, and Streamlit-based GUI web interface for ML models demon-
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strations. Sapsan aims to reduce the boilerplate code and streamline ML development,

giving more opportunities to focus on physics-informed methods. The pipeline also in-

cludes analytical and plotting modules, as well as turbulence SGS models. These tools

help to gauge model accuracy and performance and to aid model interpretability. A

thorough documentation was written and distributed along with Sapsan via GitHub1,

open-sourced for the community.

Modeling 3D MHD turbulence was the next step for this project to test the capa-

bilities of ML. The training dataset from Mösta et al. (2015) was the highest-resolution

DNS simulation of the dynamically evolving CCSN turbulence available to us, which

was the best setup for ML model design iteration. As part of this step, we developed our

own CNN-based PIML method with a custom loss function to capture 3D MHD turbu-

lence. Typically, magnetic fields pose severe complications when studying turbulence.

However, for the ML model, strong magnetic fields proved to be a defining feature of

turbulent growth through MRI. As a result, ML proved to have relatively fast conver-

gence on GPUs and consistent prediction accuracy with the unseen checkpoints from

the dataset. Furthermore, the method was generalizable to other applications, such as

2D and HD regimes.

Introduction of 3D dynamics into 1D CCSN simulations was done to test the

ML approach of reproducing the effects of turbulence/convection in reduced dimen-

sionality. The ML model was adopted from the 3D MHD turbulence case, with minor
1github.com/pikarpov-LANL/Sapsan
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adjustments to adapt for 1D turbulence prediction. It was trained on the global 3D

CCSN models by Burrows et al. (2020). Despite the comparatively low fidelity within

the hot bubble between the PNS and the shock, the training dataset exhibited larger-

scale convective motion, often referred to as turbulence in such global simulations. It is

important to note that only the additional pressure term was modeled. The ML model

showed a notable increase in the shock radius and an explosion in the 1D models, com-

parable to other publications. Since this project required performing ML inferencing

at simulation runtime, a PyTorch wrapper was developed to integrate ML into our test

Fortran code COLLAPSO1D. That said, the wrapper was built to be generalized for easy

integration within any Fortran code, independent of dimensionality. It is open-sourced,

documented, and available to the community via GitHub2.

5.2 Challenges in Machine Learning

As promising ML-based turbulence models are, there are challenges to be aware of.

These are not unique to astrophysics and are actively being worked on in other fields

and the industry. These problems can be generally consolidated into three active areas

of research.

Generalization remains an open question in ML, which has been referenced heav-

ily throughout this thesis. A trained model heavily depends on the training dataset;

2github.com/pikarpov-LANL/COLLAPSO1D
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hence, more data should yield better results. Then, we can be sure that great inter-

polation performance can be achieved. On the other hand, predicting on new unseen

data can present a challenge for extrapolation (Arjovsky, 2020), e.g., the late-stage of a

physical system evolved beyond the training dataset. In the context of turbulence, em-

bedded physical constraints can help enforce the model to stay within physical bound-

aries. However, if there is no question about the need to enforce conservation laws and

invariants, what about the unknown physical conditions that affect turbulent behavior?

In CCSN, an ML model can be trained on idealistic DNS setups, e.g., isotropic and

stationary turbulence, hoping to adapt to a significantly more complex simulation. It

becomes a non-trivial problem on what physics to introduce as a part of the ML algo-

rithms and how to test the extrapolation of the trained turbulence models, leading us to

the next point.

Uncertainty quantification is a significantly understudied area in ML. Typically,

ML model performance is assessed solely based on the loss-function applied during

training, i.e., a measurement of model accuracy based on the target feature (at least

in supervised ML). The underlying uncertainties of the training data, whether exper-

imentally or computationally obtained, are often ignored (except for Bayesian-based

algorithms). A trustworthy model uncertainty would aid in prediction robustness and

evaluation. For a more detailed review of various levels of uncertainty and its quantifi-

cation, see Duraisamy et al. (2019).
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Interpretability of ML models is an active area of research in the industry and

physics community. Indeed, ML models are often treated as a black-box. It is not

trivial to represent the model-learned relationships between specific features. While

we can learn new physics from ML, it is challenging to define due to its convoluted

nature through many layers. The problem is further exacerbated by the popularity and

flexibility advantages of deep learning (DL) neural networks, consisting of many net-

work layers (e.g., Krizhevsky et al., 2012; He et al., 2016). Training on Big Data is

beneficial to cover a larger physical domain, but it further complicates interpretabil-

ity. Extracting the learned physical relationships to assess predictive validity becomes

incredibly challenging. To remedy this, one might want to rely solely on embedding

hard-constraints physical constraints and use shallow neural networks. However, in re-

turn, that will inhibit the flexibility of the models and will not aid the opportunity to

learn new turbulence physics. The balance between ML model interpretability, flexibil-

ity, and generalizability can be challenging.

5.3 Overlook

Accurately predicting turbulence with ML requires care, especially concerning its

long-term temporal dependencies. It is important to account for intermittency and the

general chaotic nature of turbulence. That said, there have been significant advance-

ments in physics-informed ML methods, as presented in this work and by the commu-
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nity, specifically looking at the problems of turbulent growth and decay.

In CCSN, ML opens up many exciting opportunities for the future of turbulence

and convection modeling. These processes can impact the explodability to produce

successful CCSNe, as we observed in our results, consistent with the literature. Besides

the pressure term, our work can be applied to capture other contributions of turbulence

with ML, e.g., energy flux and its dissipation to heat, and introduce them into either

1D or low-fidelity 3D CCSN simulations. The next step for this project would be

to test the contribution of those terms and evaluate the role of turbulence in CCSNe

comprehensively. In addition, our ML paradigm would be tested independently and

in conjunction with analytical models within 3D global CCSN simulations, inferenced

at runtime. Such an approach will further extend the recovery of the missing SGS

structure in the more cost-effective global 3D simulations.

130



Bibliography

Dmitry Alexeev and Markus Hrywniak. alexeedm/pytorch-fortran: Version v0.3,
November 2022. URL https://doi.org/10.5281/zenodo.7304774.

Anders Andreassen, Ilya Feige, Christopher Frye, and Matthew D Schwartz. Junipr:
a framework for unsupervised machine learning in particle physics. The European
Physical Journal C, 79:1–24, 2019.

Martin Arjovsky. Out of distribution generalization in machine learning. PhD thesis,
New York University, 2020.

W. David Arnett, Casey Meakin, Maxime Viallet, Simon W. Campbell, John C. Lat-
tanzio, and Miroslav Mocák. BEYOND MIXING-LENGTH THEORY: A STEP
TOWARD 321d. The Astrophysical Journal, 809(1):30, aug 2015. doi: 10.1088/00
04-637x/809/1/30. URL https://doi.org/10.1088/0004-637x/809/1/30.

W. Baade and F. Zwicky. On Super-novae. Proceedings of the National Academy of
Science, 20(5):254–259, May 1934. doi: 10.1073/pnas.20.5.254.

Dalya Baron. Machine learning in astronomy: a practical overview, 2019.

E. Baron, H. A. Bethe, G. E. Brown, J. Cooperstein, and S. Kahana. Type ii supernovae
from prompt explosions. Phys. Rev. Lett., 59:736–739, Aug 1987. doi: 10.1103/Ph
ysRevLett.59.736. URL https://link.aps.org/doi/10.1103/PhysRevLett.5
9.736.

Andrea Beck and Marius Kurz. A perspective on machine learning methods in tur-
bulence modeling. GAMM-Mitteilungen, 44(1):e202100002, 2021a. doi: https:
//doi.org/10.1002/gamm.202100002. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/gamm.202100002.

Andrea Beck and Marius Kurz. A perspective on machine learning methods in tur-
bulence modeling. GAMM-Mitteilungen, 44(1):e202100002, 2021b. doi: https:
//doi.org/10.1002/gamm.202100002. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/gamm.202100002.

131

https://doi.org/10.5281/zenodo.7304774
https://doi.org/10.1088/0004-637x/809/1/30
https://link.aps.org/doi/10.1103/PhysRevLett.59.736
https://link.aps.org/doi/10.1103/PhysRevLett.59.736
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002


Willy Benz. An introduction to computational methods in hydrodynamics. In C. B.
de Loore, editor, Late Stages of Stellar Evolution Computational Methods in Astro-
physical Hydrodynamics, pages 258–312, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg. ISBN 978-3-540-46921-6.

Andrey Beresnyak. Mhd turbulence. Living Reviews in Computational Astrophysics, 5
(1), Sep 2019. ISSN 2365-0524. doi: 10.1007/s41115-019-0005-8. URL http:
//dx.doi.org/10.1007/s41115-019-0005-8.

Andrey Beresnyak and Alex Lazarian. Mhd turbulence, turbulent dynamo and applica-
tions. Magnetic Fields in Diffuse Media, page 163–226, Oct 2014. ISSN 2214-7985.
doi: 10.1007/978-3-662-44625-6_8. URL http://dx.doi.org/10.1007/978-3
-662-44625-6_8.

D. Besnard, F. H. Harlow, R. M. Rauenzahn, and C. Zemach. Turbulence transport
equations for variable-density turbulence and their relationship to two-field models.
U.S. Department of Energy: Office of Scientific and Technical Information, 6 1992.
doi: 10.2172/7271399. URL https://www.osti.gov/biblio/7271399.

H. A. Bethe and J. R. Wilson. Revival of a stalled supernova shock by neutrino heating.
ApJ, 295:14–23, August 1985. doi: 10.1086/163343.

Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre
Gentine. Enforcing Analytic Constraints in Neural-Networks Emulating Physical
Systems. arXiv e-prints, art. arXiv:1909.00912, September 2019.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

S. I. Blinnikov, N. V. Dunina-Barkovskaya, and D. K. Nadyozhin. Equation of State
of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy.
Astrophysical Journal Supplement Series, 106:171, September 1996. doi: 10.1086/
192334.

John M. Blondin, Anthony Mezzacappa, and Christine DeMarino. Stability of Standing
Accretion Shocks, with an Eye toward Core-Collapse Supernovae. The Astrophysical
Journal, 584(2):971–980, February 2003. doi: 10.1086/345812.

John M. Blondin, Anthony Mezzacappa, and Christine DeMarino. Stability of standing
accretion shocks, with an eye toward core-collapse supernovae. The Astrophysical
Journal, 584(2):971, feb 2003. doi: 10.1086/345812. URL https://dx.doi.org
/10.1086/345812.

132

http://dx.doi.org/10.1007/s41115-019-0005-8
http://dx.doi.org/10.1007/s41115-019-0005-8
http://dx.doi.org/10.1007/978-3-662-44625-6_8
http://dx.doi.org/10.1007/978-3-662-44625-6_8
https://www.osti.gov/biblio/7271399
https://dx.doi.org/10.1086/345812
https://dx.doi.org/10.1086/345812


Mathis Bode, Michael Gauding, Zeyu Lian, Dominik Denker, Marco Davidovic, Kon-
stantin Kleinheinz, Jenia Jitsev, and Heinz Pitsch. Using physics-informed enhanced
super-resolution generative adversarial networks for subfilter modeling in turbulent
reactive flows. Proceedings of the Combustion Institute, 38(2):2617–2625, 2021.
ISSN 1540-7489. doi: https://doi.org/10.1016/j.proci.2020.06.022. URL https:
//www.sciencedirect.com/science/article/pii/S1540748920300481.

Axel Brandenburg and A Lazarian. Astrophysical hydromagnetic turbulence. Space
Science Reviews, 178(2):163–200, 2013.

A. Burrows and D. Vartanyan. Core-collapse supernova explosion theory. Nature,
589(7840):29–39, jan 2021. doi: 10.1038/s41586-020-03059-w. URL https:
//doi.org/10.1038%2Fs41586-020-03059-w.

A. Burrows, D. Vartanyan, J. C. Dolence, M. A. Skinner, and D. Radice. Crucial
Physical Dependencies of the Core-Collapse Supernova Mechanism. Space Science
Reviews, 214(1):33, February 2018. doi: 10.1007/s11214-017-0450-9.

Adam Burrows and John Hayes. Pulsar recoil and gravitational radiation due to asym-
metrical stellar collapse and explosion. Phys. Rev. Lett., 76:352–355, Jan 1996. doi:
10.1103/PhysRevLett.76.352. URL https://link.aps.org/doi/10.1103/Phy
sRevLett.76.352.

Adam Burrows, John Hayes, and Bruce A. Fryxell. On the Nature of Core-Collapse
Supernova Explosions. ApJ, 450:830, September 1995. doi: 10.1086/176188.

Adam Burrows, David Radice, David Vartanyan, Hiroki Nagakura, M. Aaron Skinner,
and Joshua C. Dolence. The overarching framework of core-collapse supernova ex-
plosions as revealed by 3D FORNAX simulations. Monthly Notices of the Royal As-
tronomical Society, 491(2):2715–2735, January 2020. doi: 10.1093/mnras/stz3223.

Daniele Carati, Grégoire S Winckelmans, and Hervé Jeanmart. On the modelling of
the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. Journal
of Fluid Mechanics, 441:119–138, 2001.

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naf-
tali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the
physical sciences. Reviews of Modern Physics, 91(4):045002, October 2019. doi:
10.1103/RevModPhys.91.045002.

Stirling A. Colgate and Richard H. White. The hydrodynamic behavior of supernovae
explosions. The Astrophysical Journal, 143:626, 1966.

133

https://www.sciencedirect.com/science/article/pii/S1540748920300481
https://www.sciencedirect.com/science/article/pii/S1540748920300481
https://doi.org/10.1038%2Fs41586-020-03059-w
https://doi.org/10.1038%2Fs41586-020-03059-w
https://link.aps.org/doi/10.1103/PhysRevLett.76.352
https://link.aps.org/doi/10.1103/PhysRevLett.76.352


Sean M. Couch and Evan P. O’Connor. High-resolution three-dimensional simulations
of core-collapse supernovae in multiple progenitors. The Astrophysical Journal, 785
(2):123, apr 2014. doi: 10.1088/0004-637X/785/2/123. URL https://dx.doi.o
rg/10.1088/0004-637X/785/2/123.

Sean M. Couch and Christian D. Ott. Revival of the stalled core-collapse supernova
shock triggered by precollapse asphericity in the progenitor star. The Astrophysical
Journal Letters, 778(1):L7, oct 2013. doi: 10.1088/2041-8205/778/1/L7. URL
https://dx.doi.org/10.1088/2041-8205/778/1/L7.

Sean M. Couch and Christian D. Ott. The Role of Turbulence in Neutrino-driven Core-
collapse Supernova Explosions. ApJ, 799(1):5, January 2015. doi: 10.1088/0004-6
37X/799/1/5.

Sean M. Couch, MacKenzie L. Warren, and Evan P. O’Connor. Simulating turbulence-
aided neutrino-driven core-collapse supernova explosions in one dimension. The
Astrophysical Journal, 890(2):127, feb 2020. doi: 10.3847/1538-4357/ab609e.
URL https://doi.org/10.3847/1538-4357/ab609e.

Inc Databricks. Mlflow. https://github.com/mlflow/mlflow, 2020.

Nicholas A. Denissen, Jimmy Fung, Jon M. Reisner, and Malcolm J. Andrews. Im-
plementation and validation of the bhr turbulence model in the flag hydrocode. U.S.
Department of Energy: Office of Scientific and Technical Information, 8 2012. doi:
10.2172/1050005. URL https://www.osti.gov/biblio/1050005.

Nicholas A. Denissen, Bertrand Rollin, Jon M. Reisner, and Malcolm J. Andrews. The
Tilted Rocket Rig: A Rayleigh–Taylor Test Case for RANS Models1. Journal of
Fluids Engineering, 136(9), 07 2014. ISSN 0098-2202. doi: 10.1115/1.4027776.
URL https://doi.org/10.1115/1.4027776. 091301.

Paul E. Dimotakis, Richard C. Miake-Lye, and Dimitris A. Papantoniou. Structure and
dynamics of round turbulent jets. The Physics of Fluids, 26(11):3185–3192, 11 1983.
ISSN 0031-9171. doi: 10.1063/1.864090. URL https://doi.org/10.1063/1.86
4090.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the
age of data. Annual Review of Fluid Mechanics, 51(1):357–377, 2019. doi: 10.114
6/annurev-fluid-010518-040547. URL https://doi.org/10.1146/annurev-f
luid-010518-040547.

Gregory Eyink, Ethan Vishniac, Cristian Lalescu, Hussein Aluie, Kalin Kanov, Kai
Bürger, Randal Burns, Charles Meneveau, and Alexander Szalay. Flux-freezing

134

https://dx.doi.org/10.1088/0004-637X/785/2/123
https://dx.doi.org/10.1088/0004-637X/785/2/123
https://dx.doi.org/10.1088/2041-8205/778/1/L7
https://doi.org/10.3847/1538-4357/ab609e
https://github.com/mlflow/mlflow
https://www.osti.gov/biblio/1050005
https://doi.org/10.1115/1.4027776
https://doi.org/10.1063/1.864090
https://doi.org/10.1063/1.864090
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547


breakdown in high-conductivity magnetohydrodynamic turbulence. Nature, 497
(7450):466–469, May 2013. ISSN 1476-4687. doi: 10.1038/nature12128. URL
https://doi.org/10.1038/nature12128.

Claude-André Faucher-Giguère and Victoria M. Kaspi. Birth and evolution of isolated
radio pulsars. The Astrophysical Journal, 643(1):332, may 2006. doi: 10.1086/5015
16. URL https://dx.doi.org/10.1086/501516.

T. Foglizzo, P. Galletti, L. Scheck, and H.-Th. Janka. Instability of a stalled accretion
shock: Evidence for the advective-acoustic cycle. The Astrophysical Journal, 654
(2):1006, jan 2007. doi: 10.1086/509612. URL https://dx.doi.org/10.1086/5
09612.

Chris L. Fryer. Mass Limits For Black Hole Formation. ApJ, 522(1):413–418, Septem-
ber 1999. doi: 10.1086/307647.

Chris L. Fryer. Neutron Star Kicks from Asymmetric Collapse. Astrophysical Journal
Letters, 601(2):L175–L178, February 2004. doi: 10.1086/382044.

Chris L. Fryer and Alexander Heger. Core-Collapse Simulations of Rotating Stars.
ApJ, 541(2):1033–1050, October 2000. doi: 10.1086/309446.

Chris L. Fryer and Michael S. Warren. Modeling Core-Collapse Supernovae in Three
Dimensions. Astrophysical Journal Letters, 574(1):L65–L68, July 2002. doi: 10.1
086/342258.

Chris L. Fryer, Aimee L. Hungerford, and Gabriel Rockefeller. Supernova Explosions:.
Understanding Mixing. International Journal of Modern Physics D, 16(6):941–981,
January 2007. doi: 10.1142/S0218271807010523.

Chris L. Fryer, Sydney Andrews, Wesley Even, Alex Heger, and Samar Safi-Harb.
Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields.
ApJ, 856(1):63, March 2018. doi: 10.3847/1538-4357/aaaf6f.

Christopher L. Fryer and Patrick A. Young. Late-Time Convection in the Collapse of
a 23 Msolar Star. The Astrophysical Journal, 659(2):1438–1448, April 2007a. doi:
10.1086/513003.

Christopher L. Fryer and Patrick A. Young. Late-Time Convection in the Collapse of
a 23 Msolar Star. The Astrophysical Journal, 659(2):1438–1448, April 2007b. doi:
10.1086/513003.

135

https://doi.org/10.1038/nature12128
https://dx.doi.org/10.1086/501516
https://dx.doi.org/10.1086/509612
https://dx.doi.org/10.1086/509612


M. Germano. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238:
325–336, may 1992. ISSN 0022-1120. doi: 10.1017/S0022112092001733. URL
https://www.cambridge.org/core/product/identifier/S0022112092001
733/type/journal_article.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

Philipp Grete. Large eddy simulations of compressible magnetohydrodynamic turbu-
lence. PhD thesis, Max-Planck-Institute for Solar System Research, Lindau, Febru-
ary 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Alexander Heger and S. E. Woosley. Nucleosynthesis and Evolution of Massive Metal-
free Stars. ApJ, 724(1):341–373, November 2010. doi: 10.1088/0004-637X/724/1/
341.

Marc Herant, Willy Benz, W. Raphael Hix, Chris L. Fryer, and Stirling A. Colgate.
Inside the Supernova: A Powerful Convective Engine. The Astrophysical Journal,
435:339, November 1994a. doi: 10.1086/174817.

Marc Herant, Willy Benz, W. Raphael Hix, Chris L. Fryer, and Stirling A. Colgate.
Inside the Supernova: A Powerful Convective Engine. ApJ, 435:339, November
1994b. doi: 10.1086/174817.

G. Hobbs, D. R. Lorimer, A. G. Lyne, and M. Kramer. A statistical study of 233 pulsar
proper motions. Monthly Notices of the Royal Astronomical Society, 360(3):974–
992, 07 2005. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2005.09087.x. URL
https://doi.org/10.1111/j.1365-2966.2005.09087.x.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks. Neural
Networks, 3(5):551–560, 1990. ISSN 0893-6080. doi: https://doi.org/10.1016/0893
-6080(90)90005-6. URL https://www.sciencedirect.com/science/articl
e/pii/0893608090900056.

Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science, 359
(6377):725–726, 2018. ISSN 0036-8075. doi: 10.1126/science.359.6377.725.
URL https://science.sciencemag.org/content/359/6377/725.

136

https://www.cambridge.org/core/product/identifier/S0022112092001733/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112092001733/type/journal_article
https://doi.org/10.1111/j.1365-2966.2005.09087.x
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://science.sciencemag.org/content/359/6377/725


Liliya Imasheva, Hans-Thomas Janka, and Achim Weiss. Parametrizations of thermal
bomb explosions for core-collapse supernovae and 56Ni production. Monthly Notices
of the Royal Astronomical Society, 518(2):1818–1839, January 2023. doi: 10.1093/
mnras/stac3239.

H. T. Janka and E. Mueller. Neutrino heating, convection, and the mechanism of Type-
II supernova explosions. Physics Reports, 306:167, February 1996.

Hans-Thomas Janka. Explosion mechanisms of core-collapse supernovae. Annual
Review of Nuclear and Particle Science, 62(1):407–451, 2012. doi: 10.1146/annure
v-nucl-102711-094901. URL https://doi.org/10.1146/annurev-nucl-102
711-094901.

Hans-Thomas Janka. Neutrino-Driven Explosions, pages 1095–1150. Springer Inter-
national Publishing, Cham, 2017. ISBN 978-3-319-21846-5. doi: 10.1007/978-3-3
19-21846-5_109. URL https://doi.org/10.1007/978-3-319-21846-5_109.

Hans-Thomas Janka, Tobias Melson, and Alexander Summa. Physics of core-collapse
supernovae in three dimensions: A sneak preview. Annual Review of Nuclear and
Particle Science, 66(1):341–375, 2016. doi: 10.1146/annurev-nucl-102115-044747.
URL https://doi.org/10.1146/annurev-nucl-102115-044747.

Javier Jiménez. Computing high-Reynolds-number turbulence: will simulations ever
replace experiments?*. Journal of Turbulence, 4(1):22, June 2003. doi: 10.1088/14
68-5248/4/1/022.

Jyeshtharaj B. Joshi, Krishnaswamy Nandakumar, Ashwin W. Patwardhan, Arun K.
Nayak, Vishnu Pareek, Monica Gumulya, Chunliang Wu, Nitin Minocha, Eshita
Pal, Mukesh Kumar, Vishal Bhusare, Shashank Tiwari, Dhiraj Lote, Chaitanya Mali,
Ameya Kulkarni, and Sarang Tamhankar. 2 - computational fluid dynamics. In
Jyeshtharaj B. Joshi and Arun K. Nayak, editors, Advances of Computational Fluid
Dynamics in Nuclear Reactor Design and Safety Assessment, Woodhead Publish-
ing Series in Energy, pages 21–238. Woodhead Publishing, 2019. ISBN 978-0-08-
102337-2. doi: https://doi.org/10.1016/B978-0-08-102337-2.00002-X. URL
https://www.sciencedirect.com/science/article/pii/B9780081023372
00002X.

Platon I. Karpov, Iskandar Sitdikov, Chengkun Huang, and Chris L. Fryer. Sapsan:
Framework for supernovae turbulence modeling with machine learning. Journal
of Open Source Software, 6(67):3199, 2021. doi: 10.21105/joss.03199. URL
https://doi.org/10.21105/joss.03199.

137

https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1007/978-3-319-21846-5_109
https://doi.org/10.1146/annurev-nucl-102115-044747
https://www.sciencedirect.com/science/article/pii/B978008102337200002X
https://www.sciencedirect.com/science/article/pii/B978008102337200002X
https://doi.org/10.21105/joss.03199


Platon I. Karpov, Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley,
and Ghanshyam Pilania. Physics-informed machine learning for modeling turbu-
lence in supernovae. The Astrophysical Journal, 940(1):26, nov 2022. doi: 10.3847/
1538-4357/ac88cc. URL https://dx.doi.org/10.3847/1538-4357/ac88cc.

Ryan King, Oliver Hennigh, Arvind Mohan, and Michael Chertkov. From deep to
physics-informed learning of turbulence: Diagnostics, 2018.

Ryan N. King, Peter E. Hamlington, and Werner J. A. Dahm. Autonomic closure for
turbulence simulations. Phys. Rev. E, 93:031301, Mar 2016. doi: 10.1103/PhysRevE
.93.031301. URL https://link.aps.org/doi/10.1103/PhysRevE.93.031301.

Sergey Kolesnikov. Accelerated dl r&d. https://github.com/catalyst-team/ca
talyst, 2018.

A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid
for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30:301–305,
January 1941.

Jan Kremer, Kristoffer Stensbo-Smidt, Fabian Gieseke, Kim Steenstrup Pedersen, and
Christian Igel. Big universe, big data: machine learning and image analysis for
astronomy. IEEE Intelligent Systems, 32(2):16–22, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc
/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

J. M. Lattimer and F. Douglas Swesty. A generalized equation of state for hot, dense
matter. Nuclear Physics A, 535:331–376, December 1991. doi: 10.1016/0375-947
4(91)90452-C.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
et al. Photo-realistic single image super-resolution using a generative adversarial
network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4681–4690, 2017.

138

https://dx.doi.org/10.3847/1538-4357/ac88cc
https://link.aps.org/doi/10.1103/PhysRevE.93.031301
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Jinu Lee, Sangseung Lee, and Donghyun You. Deep learning approach in multi-scale
prediction of turbulent mixing-layer. arXiv e-prints, art. arXiv:1809.07021, Septem-
ber 2018.

Eric J. Lentz, Stephen W. Bruenn, W. Raphael Hix, Anthony Mezzacappa, O. E. Bron-
son Messer, Eirik Endeve, John M. Blondin, J. Austin Harris, Pedro Marronetti, and
Konstantin N. Yakunin. Three-dimensional core-collapse supernova simulated using
a 15 m⊙ progenitor. The Astrophysical Journal Letters, 807(2):L31, jul 2015. doi:
10.1088/2041-8205/807/2/L31. URL https://dx.doi.org/10.1088/2041-820
5/807/2/L31.

Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns,
Shiyi Chen, Alexander Szalay, and Gregory Eyink. A public turbulence database
cluster and applications to study Lagrangian evolution of velocity increments in tur-
bulence. Journal of Turbulence, 9:N31, January 2008. doi: 10.1080/146852408023
76389.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede
Liu, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural
operator for learning partial differential equations. ICLR 2022 Conference, 2021.
doi: 10.48550/ARXIV.2111.03794. URL https://arxiv.org/abs/2111.03794.

D. K. Lilly. On the application of the eddy viscosity concept in the Inertial sub-range
of turbulence. NCAR Manuscript 123, January 1966.

Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance. Journal of Fluid
Mechanics, 807:155–166, 2016. doi: 10.1017/jfm.2016.615.

Shewen Liu, Charles Meneveau, and Joseph Katz. On the properties of similarity
subgrid-scale models as deduced from measurements in a turbulent jet. Journal of
Fluid Mechanics, 275:83–119, 1994a. doi: 10.1017/S0022112094002296.

Shewen Liu, Charles Meneveau, and Joseph Katz. On the properties of similarity
subgrid-scale models as deduced from measurements in a turbulent jet. Journal of
Fluid Mechanics, 275:83–119, 1994b. doi: 10.1017/S0022112094002296.

Quintin A. Mabanta and Jeremiah W. Murphy. How turbulence enables core-collapse
supernova explosions. The Astrophysical Journal, 856(1):22, mar 2018. doi: 10.384
7/1538-4357/aaaec7. URL https://dx.doi.org/10.3847/1538-4357/aaaec7.

Quintin A. Mabanta, Jeremiah W. Murphy, and Joshua C. Dolence. Convection-aided
explosions in one-dimensional core-collapse supernova simulations. i. technique and

139

https://dx.doi.org/10.1088/2041-8205/807/2/L31
https://dx.doi.org/10.1088/2041-8205/807/2/L31
https://arxiv.org/abs/2111.03794
https://dx.doi.org/10.3847/1538-4357/aaaec7


validation. The Astrophysical Journal, 887(1):43, dec 2019. doi: 10.3847/1538-435
7/ab4bcc. URL https://doi.org/10.3847%2F1538-4357%2Fab4bcc.

Frank J. Massey. The kolmogorov-smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 1951. ISSN 01621459. URL ht
tp://www.jstor.org/stable/2280095.

Tobias Melson, Hans-Thomas Janka, Robert Bollig, Florian Hanke, Andreas Marek,
and Bernhard Müller. Neutrino-driven Explosion of a 20 Solar-mass Star in Three
Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scatter-
ing. The Astrophysical Journal Letters, 808(2):L42, August 2015. doi: 10.1088/20
41-8205/808/2/L42.

Mark Miesch, William Matthaeus, Axel Brandenburg, Arakel Petrosyan, Annick Pou-
quet, Claude Cambon, Frank Jenko, Dmitri Uzdensky, James Stone, Steve Tobias,
Juri Toomre, and Marco Velli. Large-eddy simulations of magnetohydrodynamic
turbulence in heliophysics and astrophysics. Space Science Reviews, 194(1–4):
97–137, Jul 2015. ISSN 1572-9672. doi: 10.1007/s11214-015-0190-7. URL
http://dx.doi.org/10.1007/s11214-015-0190-7.

Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed Con-
volutional LSTM: An Efficient Deep Learning framework to Model High Fidelity
3D Turbulence. arXiv e-prints, art. arXiv:1903.00033, February 2019.

Arvind T. Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embed-
ding Hard Physical Constraints in Neural Network Coarse-Graining of 3D Turbu-
lence. arXiv e-prints, art. arXiv:2002.00021, January 2020.

Philipp Mösta, Christian D. Ott, David Radice, Luke F. Roberts, Erik Schnetter, and
Roland Haas. A large-scale dynamo and magnetoturbulence in rapidly rotating core-
collapse supernovae. Nature, 528(7582):376–379, December 2015. doi: 10.1038/na
ture15755.

B. Müller and H. Th. Janka. Non-radial instabilities and progenitor asphericities in
core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 448
(3):2141–2174, April 2015. doi: 10.1093/mnras/stv101.

Jeremiah W. Murphy and Casey Meakin. A GLOBAL TURBULENCE MODEL FOR
NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE.
The Astrophysical Journal, 742(2):74, nov 2011. doi: 10.1088/0004-637x/742/2/74.
URL https://doi.org/10.1088%2F0004-637x%2F742%2F2%2F74.

140

https://doi.org/10.3847%2F1538-4357%2Fab4bcc
http://www.jstor.org/stable/2280095
http://www.jstor.org/stable/2280095
http://dx.doi.org/10.1007/s11214-015-0190-7
https://doi.org/10.1088%2F0004-637x%2F742%2F2%2F74


Jeremiah W. Murphy, Joshua C. Dolence, and Adam Burrows. The dominance of
neutrino-driven convection in core-collapse supernovae. The Astrophysical Jour-
nal, 771(1):52, jun 2013. doi: 10.1088/0004-637X/771/1/52. URL https:
//dx.doi.org/10.1088/0004-637X/771/1/52.

Kevin P. Murphy. Machine learning: A probabilistic perspective. In Machine Learning:
A Probabilistic Perspective, chapter 14.4.3, pages 492–493. The MIT Press, 2012.

Bernhard Müller. Hydrodynamics of core-collapse supernovae and their progenitors.
Living Reviews in Computational Astrophysics, 6(1), jun 2020. doi: 10.1007/s41115
-020-0008-5. URL https://doi.org/10.1007%2Fs41115-020-0008-5.

Bernhard Müller, Tobias Melson, Alexander Heger, and Hans-Thomas Janka. Super-
nova simulations from a 3D progenitor model – Impact of perturbations and evo-
lution of explosion properties. Monthly Notices of the Royal Astronomical Society,
472(1):491–513, 08 2017. ISSN 0035-8711. doi: 10.1093/mnras/stx1962. URL
https://doi.org/10.1093/mnras/stx1962.

Hiroki Nagakura, Adam Burrows, David Radice, and David Vartanyan. Towards an un-
derstanding of the resolution dependence of Core-Collapse Supernova simulations.
Monthly Notices of the Royal Astronomical Society, 490(4):4622–4637, December
2019. doi: 10.1093/mnras/stz2730.

C.-Y. Ng and Roger W. Romani. Birth kick distributions and the spin-kick correlation
of young pulsars. The Astrophysical Journal, 660(2):1357, may 2007. doi: 10.1086/
513597. URL https://dx.doi.org/10.1086/513597.

Nobuya Nishimura, Tomoya Takiwaki, and Friedrich-Karl Thielemann. The r-process
nucleosynthesis in the various jet-like explosions of magnetorotational core-collapse
supernovae. The Astrophysical Journal, 810(2):109, sep 2015. doi: 10.1088/0004-6
37x/810/2/109. URL https://doi.org/10.1088%2F0004-637x%2F810%2F2%2F
109.

Ken’ichi Nomoto, Nozomu Tominaga, Hideyuki Umeda, Chiaki Kobayashi, and Kei-
ichi Maeda. Nucleosynthesis yields of core-collapse supernovae and hypernovae,
and galactic chemical evolution. Nuclear Physics A, 777:424–458, October 2006.
doi: 10.1016/j.nuclphysa.2006.05.008.

Martin Obergaulinger, Pablo Cerdá-Durán, Ewald Müller, and Miguel Angel Aloy.
Semi-global simulations of the magneto-rotational instability in core collapse su-
pernovae. Astronomy & Astrophysics, 498(1):241–271, 2009.

141

https://dx.doi.org/10.1088/0004-637X/771/1/52
https://dx.doi.org/10.1088/0004-637X/771/1/52
https://doi.org/10.1007%2Fs41115-020-0008-5
https://doi.org/10.1093/mnras/stx1962
https://dx.doi.org/10.1086/513597
https://doi.org/10.1088%2F0004-637x%2F810%2F2%2F109
https://doi.org/10.1088%2F0004-637x%2F810%2F2%2F109


Evan O’Connor and Christian D Ott. A new open-source code for spherically sym-
metric stellar collapse to neutron stars and black holes. Classical and Quantum
Gravity, 27(11):114103, may 2010. doi: 10.1088/0264-9381/27/11/114103. URL
https://dx.doi.org/10.1088/0264-9381/27/11/114103.

Evan O’Connor, Robert Bollig, Adam Burrows, Sean Couch, Tobias Fischer, Hans-
Thomas Janka, Kei Kotake, Eric J Lentz, Matthias Liebendörfer, O E Bronson
Messer, Anthony Mezzacappa, Tomoya Takiwaki, and David Vartanyan. Global
comparison of core-collapse supernova simulations in spherical symmetry. Journal
of Physics G: Nuclear and Particle Physics, 45(10):104001, sep 2018. doi: 10.108
8/1361-6471/aadeae. URL https://dx.doi.org/10.1088/1361-6471/aadeae.

Evan P. O’Connor and Sean M. Couch. Exploring fundamentally three-dimensional
phenomena in high-fidelity simulations of core-collapse supernovae. The Astro-
physical Journal, 865(2):81, sep 2018. doi: 10.3847/1538-4357/aadcf7. URL
https://dx.doi.org/10.3847/1538-4357/aadcf7.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-p
ytorch-an-imperative-style-high-performance-deep-learning-library
.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

A. Perego, M. Hempel, C. Fröhlich, K. Ebinger, M. Eichler, J. Casanova, M. Liebendör-
fer, and F. K. Thielemann. PUSHing Core-collapse Supernovae to Explosions in
Spherical Symmetry I: the Model and the Case of SN 1987A. ApJ, 806(2):275, June
2015. doi: 10.1088/0004-637X/806/2/275.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000. doi: 10.1017/
CBO9780511840531.

Gavin D. Portwood, Peetak P. Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen, Bal-
asubramanya T. Nadiga, Juan A. Saenz, Michael Chertkov, Animesh Garg, Anima

142

https://dx.doi.org/10.1088/0264-9381/27/11/114103
https://dx.doi.org/10.1088/1361-6471/aadeae
https://dx.doi.org/10.3847/1538-4357/aadcf7
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Anandkumar, Andreas Dengel, Richard Baraniuk, and David P. Schmidt. Turbulence
forecasting via Neural ODE. arXiv e-prints, art. arXiv:1911.05180, November 2019.

Y. Z. Qian and S. E. Woosley. Nucleosynthesis in Neutrino-driven Winds. I. The Phys-
ical Conditions. ApJ, 471:331, November 1996. doi: 10.1086/177973.

David Radice, Sean M Couch, and Christian D Ott. Implicit large eddy simulations of
anisotropic weakly compressible turbulence with application to core-collapse super-
novae. Computational Astrophysics and Cosmology, 2(1), Aug 2015. ISSN 2197-
7909. doi: 10.1186/s40668-015-0011-0. URL http://dx.doi.org/10.1186/s40
668-015-0011-0.

David Radice, Christian D. Ott, Ernazar Abdikamalov, Sean M. Couch, Roland Haas,
and Erik Schnetter. Neutrino-driven convection in core-collapse supernovae: High-
resolution simulations. The Astrophysical Journal, 820(1):76, mar 2016. doi: 10.3
847/0004-637X/820/1/76. URL https://dx.doi.org/10.3847/0004-637X/82
0/1/76.

David Radice, Ernazar Abdikamalov, Christian D Ott, Philipp Mösta, Sean M Couch,
and Luke F Roberts. Turbulence in core-collapse supernovae. Journal of Physics
G: Nuclear and Particle Physics, 45(5):053003, Apr 2018. ISSN 1361-6471. doi:
10.1088/1361-6471/aab872. URL http://dx.doi.org/10.1088/1361-6471/aa
b872.

Carl Edward Rasmussen, Christopher KI Williams, et al. Gaussian processes for ma-
chine learning, volume 1. Springer, 2006.

Serena Repetto, Melvyn B. Davies, and Steinn Sigurdsson. Investigating stellar-mass
black hole kicks. Monthly Notices of the Royal Astronomical Society, 425(4):2799–
2809, 10 2012. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2012.21549.x. URL
https://doi.org/10.1111/j.1365-2966.2012.21549.x.

Lewis Fry Richardson. Weather prediction by numerical process. University Press,
1922.

Armin Ronacher. Click, 2021. URL https://click.palletsprojects.com/.

Shawn G. Rosofsky and E. A. Huerta. Artificial neural network subgrid models of 2d
compressible magnetohydrodynamic turbulence. Physical Review D, 101(8), Apr
2020. ISSN 2470-0029. doi: 10.1103/physrevd.101.084024. URL http://dx.doi
.org/10.1103/PhysRevD.101.084024.

143

http://dx.doi.org/10.1186/s40668-015-0011-0
http://dx.doi.org/10.1186/s40668-015-0011-0
https://dx.doi.org/10.3847/0004-637X/820/1/76
https://dx.doi.org/10.3847/0004-637X/820/1/76
http://dx.doi.org/10.1088/1361-6471/aab872
http://dx.doi.org/10.1088/1361-6471/aab872
https://doi.org/10.1111/j.1365-2966.2012.21549.x
https://click.palletsprojects.com/
http://dx.doi.org/10.1103/PhysRevD.101.084024
http://dx.doi.org/10.1103/PhysRevD.101.084024


Shawn G Rosofsky, Hani Al Majed, and E A Huerta. Applications of physics informed
neural operators. Machine Learning: Science and Technology, 4(2):025022, may
2023. doi: 10.1088/2632-2153/acd168. URL https://dx.doi.org/10.1088/263
2-2153/acd168.

Alexander A. Schekochihin and Steven C. Cowley. Turbulence and Magnetic Fields
in Astrophysical Plasmas, pages 85–115. Springer Netherlands, Dordrecht, 2007.
ISBN 978-1-4020-4833-3. doi: 10.1007/978-1-4020-4833-3_6. URL https:
//doi.org/10.1007/978-1-4020-4833-3_6.

Wolfram Schmidt. Large eddy simulations in astrophysics. Living Reviews in Compu-
tational Astrophysics, 1(1):1–69, 2015.

U. Schumann. Realizability of Reynolds-stress turbulence models. Physics of Fluids,
20(5):721–725, May 1977. doi: 10.1063/1.861942.

M. Aaron Skinner, Joshua C. Dolence, Adam Burrows, David Radice, and David Var-
tanyan. Fornax: A flexible code for multiphysics astrophysical simulations. The
Astrophysical Journal Supplement Series, 241(1):7, feb 2019. doi: 10.3847/1538-4
365/ab007f. URL https://dx.doi.org/10.3847/1538-4365/ab007f.

Edward A Spiegel. A generalization of the mixing-length theory of turbulent convec-
tion. The Astrophysical Journal, 138:216, 1963.

A. W. Steiner, M. Hempel, and T. Fischer. Core-collapse Supernova Equations of
State Based on Neutron Star Observations. ApJ, 774(1):17, September 2013. doi:
10.1088/0004-637X/774/1/17.

Tuguldur Sukhbold, T. Ertl, S. E. Woosley, Justin M. Brown, and H. T. Janka. Core-
collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explo-
sions. ApJ, 821(1):38, April 2016. doi: 10.3847/0004-637X/821/1/38.

Brendan D. Tracey, Karthikeyan Duraisamy, and Juan J. Alonso. A Machine Learning
Strategy to Assist Turbulence Model Development. 53rd AIAA Aerospace Sciences
Meeting, 2015. doi: 10.2514/6.2015-1287. URL https://arc.aiaa.org/doi/a
bs/10.2514/6.2015-1287.

Adrien Treuille. Turn python scripts into beautiful ml tools. Towards Data Science, 8,
October 2019.

K. A. van Riper. General relativistic hydrodynamics and the adiabatic collapse of stellar
cores. ApJ, 232:558–571, September 1979. doi: 10.1086/157314.

144

https://dx.doi.org/10.1088/2632-2153/acd168
https://dx.doi.org/10.1088/2632-2153/acd168
https://doi.org/10.1007/978-1-4020-4833-3_6
https://doi.org/10.1007/978-1-4020-4833-3_6
https://dx.doi.org/10.3847/1538-4365/ab007f
https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287
https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287


Antonia Vojtekova, Maggie Lieu, Ivan Valtchanov, Bruno Altieri, Lyndsay Old, Qifeng
Chen, and Filip Hroch. Learning to denoise astronomical images with u-nets.
Monthly Notices of the Royal Astronomical Society, 503(3):3204–3215, nov 2020.
doi: 10.1093/mnras/staa3567. URL https://doi.org/10.1093%2Fmnras%2Fst
aa3567.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards
Physics-informed Deep Learning for Turbulent Flow Prediction. arXiv e-prints, art.
arXiv:1911.08655, November 2019.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change
Loy, Yu Qiao, and Xiaoou Tang. Esrgan: Enhanced super-resolution generative ad-
versarial networks, 2018.

A. Wongwathanarat, H. Th. Janka, and E. Müller. Three-dimensional neutrino-driven
supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis
products. Physics Reports, 552:A126, April 2013. doi: 10.1051/0004-6361/201220
636.

S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman, and B. S. Meyer. The
r-Process and Neutrino-heated Supernova Ejecta. ApJ, 433:229, September 1994.
doi: 10.1086/174638.

S. E. Woosley, Norbert Langer, and Thomas A. Weaver. The Presupernova Evolution
and Explosion of Helium Stars That Experience Mass Loss. ApJ, 448:315, July 1995.
doi: 10.1086/175963.

S. E. Woosley, S. Wunsch, and M. Kuhlen. Carbon ignition in type ia supernovae: An
analytic model. The Astrophysical Journal, 607(2):921, jun 2004. doi: 10.1086/38
3530. URL https://dx.doi.org/10.1086/383530.

Stan Woosley and Thomas Janka. The physics of core-collapse supernovae. Nature
Physics, 1(3):147–154, 2005.

Jin-Long Wu, Heng Xiao, and Eric Paterson. Physics-informed machine learning ap-
proach for augmenting turbulence models: A comprehensive framework. Phys.
Rev. Fluids, 3:074602, Jul 2018. doi: 10.1103/PhysRevFluids.3.074602. URL
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602.

Jin-Long Wu, Karthik Kashinath, Adrian Albert, Dragos Chirila, Prabhat, and Heng
Xiao. Enforcing statistical constraints in generative adversarial networks for mod-
eling chaotic dynamical systems. Journal of Computational Physics, 406:109209,
April 2020. doi: 10.1016/j.jcp.2019.109209.

145

https://doi.org/10.1093%2Fmnras%2Fstaa3567
https://doi.org/10.1093%2Fmnras%2Fstaa3567
https://dx.doi.org/10.1086/383530
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602


Yudong Yao, Henry Chan, Subramanian Sankaranarayanan, Prasanna Balaprakash,
Ross J Harder, and Mathew J Cherukara. Autophasenn: unsupervised physics-aware
deep learning of 3d nanoscale bragg coherent diffraction imaging. npj Computational
Materials, 8(1):124, 2022.

Patrick A. Young and Chris L. Fryer. Uncertainties in Supernova Yields. I. One-
dimensional Explosions. ApJ, 664(2):1033–1044, August 2007. doi: 10.1086/51
8081.

Weiwei Zhang, Linyang Zhu, Yilang Liu, and Jiaqing Kou. Machine learning meth-
ods for turbulence modeling in subsonic flows over airfoils. arXiv e-prints, art.
arXiv:1806.05904, June 2018.

Ze Jia Zhang and Karthikeyan Duraisamy. Machine Learning Methods for Data-Driven
Turbulence Modeling. 22nd AIAA Computational Fluid Dynamics Conference,
2015. doi: 10.2514/6.2015-2460. URL https://arc.aiaa.org/doi/abs/1
0.2514/6.2015-2460.

Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles
and techniques for data scientists. " O’Reilly Media, Inc.", 2018.

146

https://arc.aiaa.org/doi/abs/10.2514/6.2015-2460
https://arc.aiaa.org/doi/abs/10.2514/6.2015-2460

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Core-Collapse Supernova Mechanism
	Turbulence
	Machine Learning for Turbulence Closure Models
	Supervised Machine Learning
	Unsupervised Machine Learning
	Physics Informed Machine Learning
	Machine Learning in Astrophysics


	Sapsan Framework
	Statement of Need
	Framework
	Applications
	Hydro simulations
	Supernovae


	Modeling 3D MHD Turbulence
	Introduction
	Formalism
	Filtering
	MHD equations - Unfiltered
	MHD equations - Filtered

	Subgrid Modeling
	Gradient model
	Machine Learning Pipeline
	Machine Learning Models
	Datasets

	Results & Discussion
	Stationary Turbulence
	Dynamic Turbulence

	Conclusion

	Machine Learning for Core-Collapse Supernovae: 1D Models
	Introduction
	Formalism
	Convection or Turbulence?
	1D Code
	Turbulence Extraction

	Turbulence Model
	Machine Learning Model
	Basis 3D Dataset

	Results
	ML Training
	Baseline 1D CCSN
	1D CCSN with ML subgrid model

	Discussion
	Effect of turbulence in 1D models
	Comparison & Limitations

	Conclusion & Future Directions

	Conclusion
	Paper Summary
	Challenges in Machine Learning
	Overlook




