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In recent years, embedded and cyber-physical systems (CPS), under the guise of Internet-of-

Things (IoT), have entered many aspects of daily life. Despite many benefits, this develop-

ment also greatly expands the so-called attack surface and turns these newly computerized

gadgets into attractive attack targets. One key component in securing IoT devices is malware

detection, which is typically attained with (secure) remote attestation. Remote attestation

is a distinct security service that allows a trusted verifier to verify the internal state of a

remote untrusted device. Remote attestation is especially relevant for low/medium-end em-

bedded devices that are incapable of protecting themselves against malware infection. As

safety-critical IoT devices become commonplace, it is crucial for remote attestation not to

interfere with the device’s normal operations. In this dissertation, we identify major issues in

reconciling remote attestation and safety-critical application needs. We show that existing

attestation techniques require devices to perform uninterruptible (atomic) operations during

attestation. Such operations can be time-consuming and thus may be harmful to the device’s

safety-critical functionality. On the other hand, simply relaxing security requirements of re-

mote attestation can lead to other vulnerabilities. To resolve this conflict, this dissertation

presents the design, implementation, and evaluation of several mitigation techniques. In par-

ticular, we propose two light-weight techniques capable of providing interruptible attestation

modality. In contrast to traditional techniques, our proposed techniques allow interrupts to
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occur during attestation while ensuring malware detection via shuffled memory traversals or

memory locking mechanisms. Another type of techniques pursued in this dissertation aims

to minimize the real-time computation overhead during attestation. We propose using peri-

odic self-measurements to measure and record the device’s state, resulting in more flexible

scheduling of the attestation process and also in no real-time burden as part of its interaction

with verifier. This technique is particularly suitable for swarm settings with a potentially

large number of safety-critical devices. Finally, we develop a remote attestation HYDRA

architecture, based on a formally verified component, and use it as a building block in our

proposed mitigation techniques. We believe that this architecture may be of independent

interest.

xv



Chapter 1

Introduction

In recent years, the number and variety of special-purpose computing devices have increased

dramatically. This includes all kinds of embedded devices, cyber-physical systems (CPS)

and Internet-of-Things (IoT) gadgets. Such devices are increasingly deployed in various

smart settings, such as homes, offices, factories, automotive and public venues. Despite their

various benefits, these devices unfortunately also represent natural and attractive attack

targets.

In the context of actuation-capable devices, malware can impact both security and physical

safety, e.g., as demonstrated by Stuxnet [87] attack on centrifuges in an Iranian nuclear

facility. Whereas, for sensing devices, malware can undermine privacy by obtaining ambient

information about nearby activities. Furthermore, clever malware can attack availability of

IoT devices by turning them into zombies that can become sources for distributed denial-

of-service (DDoS) attacks. For example, in Fall 2016, a multitude of compromised smart

cameras and DVRs formed the Mirai Botnet [4] which was used to mount a massive-scale

DDoS attack.

Unfortunately, security is typically not the highest priority for IoT device manufacturers,
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due to cost, size or power constraints, as well as the rush-to-market syndrome. It is thus

unrealistic to expect such devices to have the means to prevent malware attacks. The

next best thing is detecting the presence of malware. This typically requires some form

of Remote Attestation (RA) – a distinct security service for detecting malware on CPS,

embedded and IoT devices. RA is especially applicable to embedded devices incapable

of defending themselves against malware infection. This is in contrast to more powerful

devices (both embedded and general-purpose) that can avail themselves of sophisticated

anti-malware protection, e.g., anti-virus and/or intrusion detection software.

In the past two decades, many RA techniques with various assumptions and complexities

have been proposed. To the best of our knowledge, none of the prior techniques has investi-

gated and evaluated the potential impact of secure RA on practical IoT deployment settings.

As IoT devices are often used in safety-critical and real-time operations, it is paramount that

a RA technique must not interfere with normal operations of such devices. Unfortunately,

this is mostly not the case. For instance, one widely accepted consensus on a security re-

quirement is atomic and non-interruptible execution of RA functionality [31, 33]. However,

RA execution can be quite time-consuming.

Consider a (sensing-actuating) fire alarm application running on a low/medium-end embed-

ded device, powered by an ODROID-XU4 development board [37]. Under normal operating

conditions, this application periodically checks the value of its temperature readings and

triggers an alarm whenever the value exceeds a certain threshold. As mentioned earlier, to

be secure, the device must execute the RA functionality atomically. Attesting this device

with 1GB RAM requires approximately 7 seconds. However, if a fire breaks out soon after

execution starts, it would take a relatively long time for the application to regain control,

sense the fire, and respond appropriately. It is apparent that enforcing this security require-

ment can be harmful since precious time lost might cause disastrous consequences. Resolving

this conflict is the challenge that we explore in this dissertation.
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1.1 Contribution

The goal of this dissertation is to investigate RA in safety-critical IoT settings. To this end,

this dissertation makes the following contributions:

• We identify issues in existingRA techniques that arise in safety-critical applications. To

be secure, existing techniques enforce the devices to perform uninterruptible (atomic)

operations during attestation. We demonstrate that such operations can be time-

consuming in practice. As a result, RA functionality can directly interfere with, and

thus be harmful to, device’s safety-critical functionality and general availability. On

the other hand, we also show that simply relaxing security requirements is non-trivial

and can result in vulnerabilities.

• We explore the solution landscape of reconciling requirements of safety-critical opera-

tion with those of secureRA. We propose three distinct solutions, each making different

assumptions about the underlying hardware device as well as providing different de-

grees of availability for the device. Our three solutions are mutually exclusive and, in

principle, can be used in conjunction with one another to ensure higher availability of

safety-critical devices.

• We also study the problem of secure RA and safety-critical operation in large-scale

settings, where RA is performed over a potentially large network of IoT devices. We

propose two practical attestation schemes with different communication and computa-

tion complexities, and analyze their applicability to safety-critical settings.

• Throughout the process of developing these solutions, we also design an independent

RA architecture and use it as a building block in our proposed solutions. Contrary

to all previous relevant efforts, our design requires no modifications to the underlying

hardware, which makes it deployable on off-the-shelf IoT devices. We demonstrate
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such feasibility and practicality by implementing full prototypes of our design on two

commercially available development boards.

1.2 Outline

We begin by surveying the current landscape of RA techniques in Chapter 2. In Chapter 3,

we motivate our work by showing how existing RA techniques fail to satisfy operational

requirements of safety-critical IoT devices, and then identify the tussle between the security

requirements and safety-critical application needs. The overview of our solutions is presented

at the end of the same chapter. Chapter 4 presents a new RA architecture that serves as

a building block in our proposed solutions. Our approaches are described in Chapters 5, 6,

and 7. In Chapter 8, we investigate issues that arise in settings with groups of devices. We

conclude this dissertation in Chapter 9.
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Chapter 2

Related Work

This chapter overviews the current research landscape in RA. RA is a security service that

can aid in malware detection; it is typically realized as an interactive protocol between a

trusted verifier (Vrf) and a potentially compromised remote prover device (Prv). As shown

in Figure 2.1, current RA techniques can be clustered into four major categories, based

on: their requirements about the underlying architecture of Prv (Section 2.1), detection

guarantees (Section 2.2), assumptions about network communication (Section 2.3), and the

adversarial model (Section 2.4). Using the proposed taxonomy, we compare current tech-

niques (Section 2.5) and discuss the scope of this dissertation (Section 2.6).

2.1 Architectural Requirements

The first category in our taxonomy provides a qualitative measure of architectural require-

ments for a given RA technique to operate securely. It categorizes RA techniques based on

the amount of hardware necessary to provide all RA security guarantees.
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2.1.1 Hardware-based Techniques

We consider an RA technique to be hardware-based if it requires either (1) RA functionality

to be housed entirely within dedicated hardware (e.g., co-processors), or (2) modifications or

additions to the underlying instruction set architecture. We now overview three important

main types of hardware-based technique.

Trusted Platform Module (TPM) [86]. A TPM is an international standard for a secure

co-processor designed to protect cryptographic keys, and utilize them to encrypt or digitally

sign data. At boot time, a TPM computes a hash of loaded software and stores the result

in Platform Configuration Registers (PCR). RA functionality is then provided by having

the TPM sign these values with an attestation key along with a random challenge, provided

by Vrf, and submit the computed result to Vrf. Security of TPM-based RA relies on the

fact all of its key components (including PCR, the attestation key and the hash engine) are

implemented entirely in hardware, and thus only accessible to the TPM itself. Subsequent

work [71] proposed an emulation of a TPM by leveraging the existing trusted execution

environment ARM TrustZone [6].

Intel SGX [23]. In 2013, Intel introduced a new set of CPU instructions, termed Software

Guard Extensions (Intel SGX). SGX enables realizing an isolated execution environment

(or enclave). Using hardware mechanisms, SGX guarantees that: (1) contents (i.e., code

and data) inside each enclave are inaccessible by any process except the enclave itself, (2)

execution of enclave’s code must start at a dedicated entry point, and (3) CPU executions

(e.g., faults and interrupts) inside an enclave are handled securely without leaking its private

information. Based on these properties, Intel claims to ensure confidentiality and integrity

of code and data running inside an enclave. To perform RA, an enclave first proves its

identity to a privileged quoting enclave via local attestation – a hardware-based mechanism

used by an enclave to convince the other enclave that they are running on the same SGX-
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enabled platform. After successfully asserting the identity, the quoting enclave creates an

attestation report by signing a hash of the application enclave’s contents. The attestation

key is initially retrieved and protected by another privileged provisioning enclave. This

report can then be used as evidence to convince Vrf that the application enclave is running

the expected software.

Sancus [63]. Sancus proposes a security architecture for embedded devices without a trusted

codebase. Similar to SGX, Sancus provides a means of RA based on isolation between

protected software modules. In Sancus, isolation is achieved by additional CPU instructions

enforcing the following: (1) code of all protected modules is immutable, (2) data of a given

software module is only accessible while the code of the same module is being executed, and

(3) code can only be executed by jumping to a well-defined entry point. In the context of

RA, these properties guarantee confidentiality of the attestation key residing in a protected

module when such a module requests an attestation report via a special CPU instruction,

MAC-Seal. Upon completing execution of the MAC-Seal instruction, the attestation report

becomes available to the requesting module; it then can be used to prove to Vrf as well as

other software modules that the module is correctly loaded and running on the device.

2.1.2 Software-based Techniques

On the other end of the spectrum, software-based techniques require no hardware support

at all, and perform RA using a custom function implemented entirely in software. This

approach relies on precise timing of a RA protocol and/or memory constraints on Prv’s

device.

Precise Timing. Pioneer [79] is a prominent example of this approach. It constructs a

one-time special checksum function that covers memory in an unpredictable (rather than

contiguous) fashion. Traversing memory in an unpredictable order prevents a “memory
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shadowing” attack [21] where an adversary redirects attesting memory locations to different

locations storing the correct values. Also, any attempt to forge a checksum output results in a

noticeable delay which will be detected by Vrf. A similar approach has been adopted by other

techniques targeting specific deployment settings, e.g., Viper [52] that uses a time-sensitive

checksum computation to verify integrity of peripherals’ firmware, while SWATT [80] uses

a similar method to verify memory of an embedded device. In all software-based methods,

Vrf is convinced that prover’s software is in a benign state only if the checksum is correct

(i.e., corresponds to correct software) and is received within a (predetermined) time limit.

Due to strict timing constraints during verification, the implementation of the checksum

function needs to be time-optimal; otherwise, an adversary can easily forge an attestation

result by simply using a faster implementation of the same checksum function on a copy of

valid software [21]. For the same reason, communication delay between Prv and Vrf must

also be fixed or negligible (compared to the time required to compute checksum).

Memory Constraint. An alternative approach is to exploit memory constraints of Prv’s

device. The idea behind this approach is to not leave any empty memory space for the

malicious code to hide in during the checksum computation. Choi et al. [22] propose to fill

all unused memory with pseudorandom numbers derived from a Vrf-generated random seed.

Afterward, Prv can construct an attestation report by computing a hash over its entire mem-

ory, and submit it to Vrf. Vrf can validate the received report since it knows the expected

entire memory snapshot, which consists of original memory contents plus contents of previ-

ously empty memory filled with Vrf-chosen pseudorandom numbers. Yang et al. [91] further

extended this approach to perform distributed software-based attestation, where integrity

of Prv’s software is determined in a distributed manner by all Prv’s neighbors. Security of

this approach relies on two assumptions. First, it assumes space optimality of original mem-

ory contents (including the checksum code), i.e., they should be uncompressible; otherwise,

an adversary can simply compress and gain enough free space not filled by pseudorandom

numbers to store and run malicious code to evade attestation [21]. This assumption can
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be dropped if Prv has a read-only memory region to store and execute attestation code, as

suggested in [69]. The second assumption is that Vrf must be aware of all communication

between Prv and other entities. This assumption is necessary to prevent a so-called “proxy”

attack where malicious Prv asks for help from a more powerful accomplice device to compute

a valid response.

A more recent work [36] leverages both precise timing and memory constraint characteris-

tics in order to to construct software-based attestation for verifying integrity of peripheral’s

software at boot-time. In particular, the authors in [36] propose a new primitive, called ran-

domized polynomial, and mathematically proves its space-time optimality in a formal model

of their target Prv-s. Intuitively, time optimality guarantees that it is impossible for malware

to evaluate a randomized polynomial faster than the theoretical lower bound; whereas space

optimality implies that no malware can hide in code implementing a randomized polyno-

mial. Prv creates an attestation response by evaluating the randomized polynomial on its

own memory and along with a Vrf-generated challenge. Vrf then concludes that Prv is in a

malware-free state if it receives the correct response within the theoretical lower bound.

2.1.3 Hybrid (HW/SW) Techniques

Hybrid techniques use hardware and software co-design to provide security guarantees for

RA. In this dissertation, we consider an RA technique to be hybrid if its hardware changes is

simple as well as does not include any changes in the underlying instruction set architecture.

Examples of common hardware components include a simple read-only memory storage

(ROM), or dedicated hardware to monitor and enforce memory access control rules. Below,

we overview two important RA architectures that have become a foundation for subsequent

work in hybrid RA.

SMART(+) [31, 12]. SMART is the first hybrid technique for RA with (allegedly) min-

10



imal hardware modifications to current micro-controller units (MCUs). It stipulates that

attestation software and attestation key reside in immutable storage (e.g., ROM) and are

guarded by MCU access control rules. The latters are implemented by modifying the MCU’s

data bus, and enforce the following: (1) the key is only accessible to attestation software,

and (2) execution of attestation code is atomic, i.e., only starts from its first instruction

and finishes at the last instruction. Whenever any violation of these rules occurs, SMART

erases all data memory and resets the device. SMART’s attestation software guarantees

the non-interruptible execution of attestation functionality, which is necessary to prevent

code-reuse attacks [74]. Also, SMART performs static analysis on attestation software to

ensure no key leak occurs through CPU registers after its execution. All of these proper-

ties are further systematically analyzed in [33] and argued to be necessary and sufficient for

providing secure RA. Subsequent work in [12] extended SMART to defend against denial-

of-service (DoS) attacks that try to impersonate Vrf. This extended variant (referred to as

SMART+) additionally requires Prv to have a Reliable Read-Only Clock (RROC), needed to

perform Vrf authentication and prevent replay, reorder and delay attacks. To ensure reliabil-

ity, RROC must not be modifiable by software. In SMART+, upon receiving a Vrf request,

ROM-resident attestation code checks the request’s freshness using RROC, authenticates it,

and only then proceeds to perform RA.

TrustLite [47]. TrustLite extends SMART by supporting strong isolation of software mod-

ules, called trustlets. Such isolation is guaranteed by the use of an execution-aware memory

protection unit (EA-MPU), which can be programmed at compile-time. TrustLite can realize

RA by configuring its EA-MPU rules in such a way that: (1) no other trustlets can access

data (which also includes the attestation key) inside the attestation trustlet, and (2) execu-

tion of the attestation trustlet can only start from the well-defined entry point. TrustLite

also supports secure interrupt handling by modifying the CPU Exception Engine to store the

trustlet’s context in a protected region and clear the CPU registers before switching to an

untrusted interrupt handler. In principle, this feature can be used to prevent the key leak-
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age through CPU registers when the attestation trustlet is interrupted by untrusted code.

Nonetheless, we demonstrate in Chapter 6 that secure interrupt handling, along with the

aforementioned EA-MPU rules, is insufficient to provide RA in TrustLite. One also needs

some kind of temporal consistency mechanism, e.g., disabled interrupts or memory locking,

in order to prevent malicious code from evading detection by issuing an interrupt and relo-

cating itself to an already-attested memory region. A follow-on effort, called TyTAN [11],

adopted a similar approach while providing additional real-time guarantees. TyTAN’s key

feature is to allow EA-MPU rules to be programmable at runtime. Therefore, trustlets in

TyTAN can be dynamically loaded and unloaded on demand at runtime, which was not

previously possible in TrustLite.

2.2 Assurance Guarantees

This category refers to a type of assurance guarantees obtained by Vrf about Prv after

receiving a correct attestation response from Prv. We classify such assurance into two

groups: software integrity and run-time integrity.

2.2.1 Software Integrity

The majority of existing work in RA, including the schemes in Section 2.1, focuses on

detecting malware presence by verifying integrity of Prv’s software. This detection guarantee

is typically achieved by a challenge-response protocol, where Prv first receives a challenge

from Vrf, and generates a response by computing an integrity check (e.g., checksum or

keyed-hash) of the received challenge over its own memory. Vrf could also pre-compute all

safe/legal values ahead of time. Since the verification process assumes Vrf knows all valid

memory states, previous work usually targets attestation of static memory regions (i.e., code)
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while ignoring highly variable memory regions (i.e., data). In Chapter 6, we propose a simple

technique to achieve integrity of both code and data on Prv.

In this detection goal, the correct response assures that Prv’s software is in a legitimate state

during RA. However, it does not provide any guarantees about the history of Prv’s software

states, e.g., before performing RA. In Chapter 7, we address this issue by presenting an

approach based on periodic self-measurements that allows Prv to securely and periodically

record its software state. These recordings can then be used as evidence to convince Vrf

that Prv has been in a healthy state in between two RA sessions. This idea was pursued by

Ibrahim et al. [39] in parallel to our work. Nonetheless, our work shows that the approach

based on periodic self-measurements can further remedy the conflict between RA and safety-

critical application needs, and thus is better suited for safety-critical applications – the

primary goal of this dissertation.

2.2.2 Run-time Integrity

Instead of verifying memory content, this type of assurance guarantee aims to detect malware

presence during execution of target software by verifying its run-time properties. It is mainly

motivated by the fact that software integrity is not enough to guarantee that execution of

attested software will ever happen. Malware may (re-)infect Prv after completing RA and

before executing attested software. This is referred to as the time-of-check to time-of-use

(TOCTOU) problem [13].

CFLAT [1] is among the first to propose a solution for remotely verifying Prv’s execution

paths. It leverages a trusted execution environment (e.g., TrustZone [6]) to securely compute

a hash of the exact sequence of executed instructions on Prv’s device. The result allows Vrf

to determine whether a particular code is executed on Prv, as well as whether its execution

is not tampered with and strictly follows one of the valid control-flow paths. C-FLAT
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imposes significant run-time overhead on Prv as it requires performing multiple context

switches between secure and non-secure environments during RA. A follow-on work, called

LoFAT [25], aims to overcome this limitation by implementing an RA engine entirely in

hardware. A more recent work, LiteHAX [24], incorporates additional data-flow information

into its RA scheme in order to prevent data-oriented attacks.

2.3 Communication Models

RA techniques make various assumptions about the underlying network communication

model between Prv and Vrf. We divide them into three settings: one-hop settings, remote

settings, and remote group settings.

2.3.1 One-hop Setting

In this setting, Prv is located exactly one-hop away from Vrf. This means that Vrf is capable

of directly communicating with Prv without requiring any intermediate nodes. Examples of

this model include communication between peripherals and their host CPU via a Peripheral

Component Interconnect (PCI) Bus or intra-vehicular connectivity utilizing a Controller

Area Network (CAN) Bus network. The one-hop communication model is commonly used

to capture one of the following network characteristics: (1) a reliable network where no packet

loss occurs, i.e., communication between Prv and Vrf is lossless, or (2) a local area network

where Vrf overhears all Prv’s incoming and outgoing communication. We also note that

security of software-based RA techniques (See Section 2.1.2) makes the same assumption,

limiting their applicability to only the one-hop communication setting.
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2.3.2 Remote Setting (with Single Prv)

This setting allows Vrf and Prv to be remote to each other, i.e., separated by an arbitrary

many hops. Examples include the Internet and wireless mesh networks. The assumption

about constant/negligible network delays is not realistic in this setting because of packet

loss or variable latency. Therefore, RA solutions based on software-based techniques are not

applicable to this setting.

2.3.3 Remote Group Setting

Here, we consider a remote group setting where Vrf communicates with a network of inter-

connected Prv-s over intermediate hops. The goal for RA in this setting is for Vrf to assert

integrity of a group of Prv-s as a whole. Vrf may also be interested in knowing “which”

Prv-s are infected. In this dissertation, we refer to RA techniques in this setting as collective

remote attestation (cRA). Besides security, efficiency and scalability are also important when

designing a cRA scheme.

SEDA [7] is the first RA scheme tailored for the group setting. In SEDA, Vrf starts the cRA

protocol by sending a request to an initiator device, selection of which is flexible. Having

received a request, a device accepts the sender as its parent and forwards that request to its

neighbors. An attestation report of any device is created – and protected using a secret key

(distributed as part of the off-line phase) shared between that device and its parent – and

sent to its parent device. Once it receives all of its children’s reports, a device aggregates

them into a single report. This process is repeated until the initiator receives all reports

from its children. The initiator then combines these reports, signs them using its private key

and returns the final result to Vrf. Security of SEDA relies on the underlying hybrid RA

architecture such as SMART [31] or TrustLite [47].
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SANA [76] extends SEDA by providing a more efficient and scalable cRA scheme based

upon Optimistic Aggregate Signatures (OAS). OAS allows many individual signatures to be

efficiently combined into a single aggregated signature, which can be verified much faster

than all individual signatures. SANA’s scalability is demonstrated via simulation showing

that it can attest a million devices in 2.5 seconds.

Chapter 8 of this dissertation proposes two practical cRA schemes. Our aim when design-

ing such schemes is to narrow the gap between paper-design techniques, such as SEDA and

SANA, and realistic performance assessment and practical deployment. Throughout the de-

sign process, we also define a qualitative measure for cRA, i.e., Quality of Swarm Attestation

(QoSA). QoSA reflects Vrf’s information requirements and allows comparison across cRA

techniques.

2.4 Adversarial Models

In the context of RA, the adversarial models typically fall into three clusters: physical, local

and remote adversaries.

2.4.1 Physical Adversary

This type of adversary has full physical access to Prv. It can launch any hardware-based

attacks on the device. This includes mounting hardware-based side-channel attacks, or

physically removing any (even protected) Prv’s memory (e.g., RAM, ROM or flash) and

extracting secrets from it. In addition, it can induce hardware faults as well as directly

access and modify hardware states of Prv. In the context of RA, this type of adversary

is considered to be the most difficult to mitigate, and generally excluded from the threat

model considered by most RA techniques. Nonetheless, a few techniques [38, 48] attempt to
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detect, and mitigate damages from, physical attacks in a network of devices. For example,

DARPA [38] proposes a mitigation technique based on the rationale that, an adversary

needs to spend a non-negligible amount of time to physically compromise that device. To

detect device absence, DARPA requires each device to periodically monitor other devices by

recording their heartbeat, at regular time intervals. Vrf can then detect any absent device

when collecting these heartbeats. DARPA can also be used in a conjunction with other cRA

schemes to provide protection in the presence of a physical adversary.

2.4.2 Local Adversary

We consider an adversary to be local if it is located sufficiently near Prv to have control over

Prv’s communication. In particular, it can eavesdrop on, and manipulate, i.e., insert, drop,

record and replay, any messages between Vrf and Prv. This adversarial capability is akin to

the Dolev-Yao adversarial model [27], which is widely used to formally prove properties of

cryptographic protocols. Software-based RA techniques generally do not consider this type

of adversary, because their underlying assumptions strongly rely on adversarial control over

Prv’s communication (see Section 2.1.2 for more detail).

2.4.3 Remote Adversary

Remote adversaries exploit vulnerabilities in Prv’s software to inject malware over the net-

work. By introducing malware onto Prv, this adversary controls Prv’s entire software state,

including all code and data. Specifically, it can modify any writable memory and read any

memory that is not explicitly protected by (hardware-enforced) access control rules, i.e., it

can read anything (including secrets) that is not explicitly protected by the trusted hard-

ware. Malware can also attempt to evade detection by erasing or re-locating itself during

RA. All RA techniques aim to provide security against remote adversaries.
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2.5 Comparison

Table 2.1 summarizes notable RA research based on the taxonomy proposed earlier in this

chapter. We observe that all software-based techniques consider remote, but not physical

and local, attacks in their adversarial model. On the other hand, most hardware-based

and hybrid techniques aim to prevent both local and remote adversaries, but not physical

adversaries. Other than imposing ubiquitous tamper-resistant hardware, the only practical

means of mitigating physical attacks is by heartbeat-based absence detection [38]. Most RA

techniques consider this to be an orthogonal issue. Furthermore, software-based techniques

are suitable only for one-hop Prv-Vrf. Hardware-based and hybrid techniques can be used

in both one-hop and remote settings. Finally, all techniques aiming to provide run-time

integrity guarantees are hardware-based.

2.6 Scope

As this dissertation focuses on low/medium-end embedded and IoT devices, we consider

hardware-based techniques too expensive. This is because such techniques require dedi-

cated hardware features that are only available in more powerful (high-end) devices, e.g.,

personal computers, laptops or smartphones. The same features are considered a “lux-

ury” for low/medium-end embedded and IoT devices. On the other hand, software-based

techniques rely on strong assumptions about their adversarial capabilities, which are unre-

alistic in networked (multi-hop) settings. Additionally, it is difficult to prove time- and/or

space-optimality of the checksum implementation in practice. In fact, among all proposed

software-based techniques, [36] is the only technique capable of successfully proving such

properties.

In this dissertation, we consider hybrid techniques to be the best fit for our target devices as
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Seshadri et al. 2004 SWATT [80]

Seshadri et al. 2005 Pioneer [79]

Choi et al. 2007 - [22]

Yang et al. 2007 - [91]

TCG 2009 TPM [86]

Li et al. 2011 Viper [52]

ElDefrawy et al. 2012 SMART [31]

Noorman et al. 2013 Sancus [63]

Intel 2013 SGX [23]

Koeberl et al. 2014 TrustLite [47]

Asokan et al. 2015 SEDA [7]

Ambrosin et al. 2016 SANA [76]

Ibrahim et al. 2016 DARPA [38]

Abera et al. 2016 CFLAT [1]

Dessouky et al. 2017 LO-FAT [25]

Dessouky et al. 2018 LiteHAX [24]

Gligor and Woo 2018 - [36]

is/provides/assumes/considers is not/not provide/not assume/not consider

Table 2.1: Summary of RA research discussed throughout this chapter in a chronological
order

19



they require minimal additional hardware features and are thus suitable for cost-sensitive

IoT devices. Consequently, we choose to present our RA approaches in Chapters 4, 5, 6, 7

and 8 of this dissertation based on hybrid techniques. We also consider the same adversarial

models as those considered by hybrid techniques. That is, we only consider remote and local

adversaries while physical adversaries are out of scope in this dissertation. Finally, as the

first step to reconcile secure RA and safety-critical operation needs, our work only targets

software integrity as the primary assurance guarantees expected from RA. Adapting our

solutions to techniques that guarantee run-time integrity is an interesting future direction.
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Chapter 3

Remote Attestation in Safety-Critical

Settings

In this chapter, we motivate the main problem that we study in this dissertation, i.e., reconcil-

ing RA with safety-critical applications. We start by giving an overview of RA (Section 3.1).

We then proceed to explain why existing RA techniques (overviewed in the previous chap-

ter) fail to satisfy the needs for safety-critical application. We also show that resolving this

conflict is non-trivial; näıvely relaxing security requirements can lead to (additional) vul-

nerabilities (Section 3.2). Finally, we conclude by presenting the high-level overview of our

solutions to this problem (Section 3.3).

3.1 RA Overview

RA is a security service that facilitates detection of malware presence on a remote device.

RA is especially applicable to embedded and IoT devices incapable of defending themselves

against malware infection. This is in contrast to more powerful devices (both embedded
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and general-purpose) that can rely on sophisticated anti-malware protection. RA involves

verification of the current internal state (i.e., RAM and/or flash) of an untrusted remote

hardware platform (prover or Prv) by a trusted entity (verifier or Vrf). If Vrf detects malware

presence, Prv’s software can be reset or rolled back and out-of-band measures can be taken

to prevent similar infections. In general, RA can help Vrf establish a static or dynamic root

of trust in Prv and can also be used to construct other security services, such as software

updates [8], secure memory erasure [69, 66], and secure code execution [67].

3.1.1 RA Blueprint

As illustrated in Figure 1, RA is typically obtained via a simple challenge-response protocol:

ProverVerifier

(2) Authenticated

Integrity Check

(4) Verify

Report

(1) Request

(3) Report

Figure 3.1: Blueprint of a typical RA protocol

1. Vrf sends a challenge-bearing attestation request to Prv. This request might also

contain a token derived from a secret that allows Prv to authenticate Vrf.

2. Prv receives this request and computes an authenticated integrity check over its mem-

ory and the supplied challenge. The memory region might be either pre-defined, or

explicitly specified in the request. In the latter case, authentication of Vrf in step (1)

is paramount to the overall security, privacy and availability of Prv, as the request can

specify arbitrary memory regions.
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3. Prv sends the computed attestation report to Vrf.

4. Vrf receives the result, and verifies whether it corresponds to a valid memory state.

The authenticated integrity check can be realized as a Message Authentication Code (MAC)

over Prv’s memory. However, computing a MAC requires Prv to have a unique secret key

(denoted by K) shared with Vrf. This key must reside in secure storage, where it is not

accessible to any software running on Prv, except for attestation code. Since most RA

threat models assume a fully compromised software state on Prv, secure storage implies

some level of hardware support.

3.1.2 Coverage of RA

The usual RA coverage on Prv includes executable code residing in RAM or some non-

volatile memory. RA may also cover non-executable regions on Prv, i.e., data. Let M , of

bit-size L, represent Prv’s memory to be attested. If the content of M is known a priori

to Vrf and expected to be immutable, then Prv can compute the authenticated integrity

check over M and send the result to Vrf, which can easily validate it. The same applies if

M is mutable and its entropy is low: Vrf can compute (or pre-compute) all possible valid

(benign) attestation results over M and thus validate Prv’s result. However, if entropy of

M is high, enumeration of its possible valid states can become infeasible. This is likely

to occur when parts of M correspond to data, e.g., stack, heap and, registers. One way to

address this issue is for Prv to return to Vrf the actual contents of parts of M that are highly

mutable. For example, if M = [C,D] where C represents immutable code and D – volatile

high-entropy data region(s), Prv can return the fixed-size measurement result produced by

the authenticated integrity check over M , accompanied by a copy of D. Clearly, this only

makes sense if |D| is small, i.e., |D| << L. Furthermore, if content of D is irrelevant to Vrf,

Prv can easily zero it out before computing the authenticated integrity check. This makes
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it impossible for malware to hide in such regions, and obviates the need for Prv to send Vrf

an explicit copy of D.

3.1.3 RA Timing Overhead

Timing complexity (overhead) of RA on Prv is dominated by the authenticated integrity

check (or measurement) of attested memory, which, in turn, depends on the size of that

memory, Prv’s computational capabilities, and underlying cryptographic function(s). One

natural way to obtain a measurement is by computing a Message Authentication Code

(MAC), based either on hashing (e.g., HMAC-SHA-2 [50]) or encryption (e.g., AES-CBC-

MAC [41]). We focus on hash-based MACs. Alternatively, a measurement can be obtained by

computing a Digital Signature, via the standard hash-and-sign method, e.g., using RSA [55]

or EC-DSA [42]. MACs are much cheaper than signatures. Whereas, if non-repudiation or

strong origin authentication is required, signatures are justified.

Regardless of MACs or signatures, timing overhead is mostly determined by hashing. The

actual signature time is independent of memory size, since only the fixed-size hash is signed.

Of course, for small memory sizes, signature computation is the dominating step. However,

for any signature algorithm, there is a point at which the cost of hashing exceeds that of

signing. Also, for HMAC-based MACs, the cost of the outer hash is negligible compared to

the inner one which processes the actual data.

We now illustrate some concrete timing measurements. As a sample Prv hardware platform,

we use ODROID-XU4 [37], a popular single-board MCU representative of medium-to-low-

end embedded systems. Figure 3.2 shows timings of the measurement process for various

memory sizes, and for several hash and signature choices. We picked some popular hash

functions: SHA-256, SHA-512, Blake2b and Blake2s (the latter two are in particular well

suited for embedded systems), as well as popular signature schemes: RSA-1024, RSA-2048,
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Figure 3.2: Timings of several hash functions and signatures on ODROID-XU4.

RSA-4096, ECDSA-160, ECDSA-224, and ECDSA-256.

As illustrated in Figure 3.2, for input sizes over 1MB, the measurement process takes longer

than 0.01sec, and the cost of most signature algorithms become relatively insignificant. Re-

sults show that even hashing a reasonably small amount of memory incurs a significant

delay, e.g., about 0.9sec to measure just 100MB on ODROID-XU4. Measuring its entire

RAM (2GB) is time-consuming and requires nearly 14sec.
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3.2 RA in Safety-Critical Settings

Since low/medium-end devices are often used in real-time and safety-critical applications,

it is important to minimize the impact of RA on normal operations (i.e., availability) of

such devices. In particular, it might be undesirable to allow attestation code on Prv to run

without interruption, considering that computing a measurement over a substantial amount

of memory might take a relatively long time, as shown above in Section 3.1.3.

For example, consider a sensing-actuating fire alarm application running over “bare-metal”

on a low-end embedded Prv, powered by ODROID-XU4. This application periodically (say,

every second) checks the value read by its temperature sensor and triggers an alarm when-

ever that value exceeds a certain threshold. Given this safety-critical function, software

integrity of Prv is periodically validated via RA, where the role of Vrf is played by a fire-

alarm controller or a building’s smart control panel. Upon receipt of a request from Vrf,

the measurement process interrupts the safety-critical application and takes over. Using a

hybrid technique (e.g., SMART), the measurement process must run uninterrupted in or-

der to accurately reflect Prv’s current state. Assuming attested memory size of 1GB, the

measurement process would run for approximately 7sec. However, if an actual fire breaks

out soon after the measurement process starts, it would take a relatively long time for the

application to regain control, sense the fire, and then trigger the alarm. Precious time lost as

a result of the non-interruptible measurement process might have disastrous consequences.

At this point, it may be natural to conclude that the atomicity requirement should be

relaxed and that the measurement process should be interruptible by a legitimate time-

critical application. Unfortunately, allowing interrupts to the execution of the attestation

code opens the door for malware to evade detection. For example, if Prv is compromised,

its safety-critical application may contain malware which presumably attempts to avoid

detection. When confronted with imminent attestation and thus subsequent detection, it
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Issues in Remote Attestation
for Safety-Critical Settings

Require Atomic Execution
of Measurement Process

Chapter 5:
SMARM

(HOST’18)

Chapter 6:
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(ASIACCS’18)

Impose Slow Run-time Overhead
on Measurement Process

Chapter 7:
ERASMUS

(DATE/TODAES’18)

Chapter 8:
LISA

(ASIACCS’17)

AND

Figure 3.3: Overview of potential solutions. Red arrow represents a mitigation method for
a specific sub-problem.

may:

• Erase itself, perhaps in order to reappear later. This is an example of transient mal-

ware. More generally, transient malware is one that infects Prv and later disappears,

ideally leaving no trace.

• Remain on Prv and try to avoid detection by moving itself around during RA. This

behavior corresponds to self-relocating malware.

Therefore, we argue that there is an inherent conflict between the needs of safety-critical ap-

plications andRA security requirements. Resolving this conflict represents a major challenge

that we explore in the remainder of this dissertation.
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3.3 Overview of Proposed Solutions

Our mitigation methods are summarized in Figure 3.3. One possible direction to resolve

this conflict is to carefully relax the atomicity requirement while retaining all RA security

properties. This idea is pursued in Chapters 5 and 6 of this dissertation. Specifically,

Chapter 5 allows RA to be interruptible but enforces memory to be measured in a random

(and secret) order. Chapter 6 presents an alternative approach that permits interrupts

while ensuring the validity of secure RA by locking memory, i.e., making it unmodifiable,

during RA. It also presents various locking mechanisms, each providing different degrees of

availability of writable memory.

The other issue investigated in this dissertation is how to resolve a conflict stemmed from

a real-time computation overhead of the attestation process on Prv. This idea is treated in

Chapters 7 and 8. Chapter 7 introduces the concept of periodic self-measurements, which

results in more flexible scheduling of the measurement process. Using this approach, Prv

can avoid the conflict by safely and securely aborting the measurement process whenever

safety-critical applications need to execute. This is possible because this approach imposes

no real-time computation on Prv (as part of its interaction with Vrf). Chapter 8 presents

two cRA schemes, and discuss how to integrate periodic self-measurement techniques into

these two schemes.

In the next chapter, we present a hybrid RA architecture, called HYDRA, that will serve as

a building block when designing and implementing these mitigation techniques.
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Chapter 4

Remote Attestation Using Formally

Verified Microkernel

4.1 Introduction

This chapter introduces the first hybrid RA design – called HYDRA – based upon formally

verified components to provide memory isolation and protection guarantees. Our main ra-

tionale is that designing RA techniques based upon such components increases confidence in

security of such designs and their implementations. Of course, ideally, one would formally

prove security of the entirety of a RA system, as opposed to proving security separately

for each component and then proving that its composition is secure. However, we believe

that this is not yet possible given the current state of developments and capabilities in

(automated) formal verification and synthesis of hardware and software.

One recent prominent example illustrating difficulty of correctly designing and implementing

security primitives (especially, those blending software and hardware) is the TrustZone-based

Qualcomm Secure Execution Environment (QSEE) kernel vulnerability and exploit reported
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in CVE-2015-6639 [62]. ARM TrustZone [6] is a popular System-on-Chip (SoC) and a

CPU system-wide approach to security; it is adopted in billions of processors on various

platforms, including: smartphones, tablets, personal computers, wearables and enterprise

systems. CVE-2015-6639 enables privilege escalation and allows execution of code in the

TrustZone kernel which can then be used to achieve undesired outcomes and expose keying

material. This vulnerability was used to break Android’s Full Disk Encryption (FDE) scheme

by recovering the master keys [51]. This example demonstrates the difficulty of getting both

the design and the implementation right; it also motivates the use of formally verified building

blocks, which can yield more secure RA techniques. To this end, our RA design uses the

formally verified seL4 microkernel to obtain memory isolation and access control. Such

features have been previously attained with hardware in designs such as [31] and [47]. Using

seL4 requires fewer hardware modifications to the underlying microprocessor and provides

an automated formal proof of isolation guarantees of the implementation of the microkernel.

To the best of our knowledge, this is the first attempt to design and implement RA using a

formally verified microkernel.

Our main goal is to investigate a previously unexplored segment of the design space of

hybrid RA schemes, specifically, techniques that incorporate formally verified and proven

(using automated methods) components, such as the seL4 microkernel. Beyond using seL4

in our design, our implementation is also based on the formally verified executable of seL4;

that executable is guaranteed to adhere to the formally verified and proven design. Another

important goal, motivation and feature of our design is the expanded scope of efficient hybrid

RA techniques. While applicability of prominent prior results (particularly, SMART [31] and

TrustLite [47]) is limited to very simple single-process low-end devices, we target more capa-

ble devices that can run multiple processes and threads. We believe that our work represents

an important and necessary step towards building efficient hybrid RA techniques upon solid

and verified foundations. Admittedly, we do not verify our entire design and prove its secu-

rity using formal methods. However, we achieve the next best thing by taking advantage of
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already-verified components and carefully arguing security of the overall design, considering

results on systematic analysis of features required for securely realizing hybrid RA [33]. To

achieve our goals we make two main contributions: (1) design of HYDRA – the first hybrid

RA technique based on the formally verified seL4 microkernel which provides memory iso-

lation and access control guarantees, (2) implementations of HYDRA on two commercially

available development boards (Sabre Lite and ODROID-XU4) and their analysis via experi-

ments to demonstrate practicality of the proposed design. We show that HYDRA can attest

10MB of memory in less than 250ms when using Speck [73] as the underlying block-cipher

to compute a cryptographic checksum (MAC).

This section overviews HYDRA and its design rationale, discusses security objectives and

features, as well as the adversarial model. Our notation used in this chapter is summarized

below.

Adv Adversary

Prv Prover

Vrf Verifier

PRAtt Attestation Process on Prv
BCAtt Attestation Code/Binary on Prv
K Symmetric secret key shared by Prv and Vrf

Table 4.1: Notation

4.1.1 Design Rationale

Our main objective is to explore a new segment of the overallRA design space. The proposed

hybrid RA design – HYDRA – requires very little in terms of secure hardware and builds

upon the formally verified seL4 microkernel. As shown in Section 4.3, the only hardware

support needed by HYDRA is a hardware-enforced secure boot feature, which is readily

available on commercial off-the-shelf development boards and processors, e.g., Sabre Lite

boards. The rationale behind our design is that seL4 offers certain guarantees (mainly
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process isolation and access control to memory and resources) that provide RA features that

were previously feasible only using hardware components. In particular, what was earlier

attained using additional MCU controls and Read-Only Memory (ROM) in the SMART [31]

and TrustLite [47] architectures can now be instantiated using capability controls in seL4.

To motivate and justify the design of HYDRA, we start with the result of Francillon, et al.

[33]. It provides a systematic treatment of RA by developing a semi-formal definition of

RA as a distinct security service, and systematically de-constructing it into a necessary and

sufficient security objective, from which specific properties are derived. These properties

are then mapped into a collection of hardware and software components that results in an

overall secure RA design. Below, we summarize the security objective in RA and its derived

security properties. Sections 4.2 and 4.3 show how the security objective and properties are

satisfied in HYDRA and instantiated in two concrete prototypes based on Sabre Lite and

ODROID-XU4 boards.

4.1.2 Hybrid RA Objective and Properties

According to [33], the security objective of RA is to allow a (remote) prover (Prv) to create

an unforgeable authentication token, that convinces a verifier (Vrf) that the former is in

some well-defined (expected) state. Whereas, if Prv has been compromised (i.e., malware is

present), the authentication token must reflect this. The work in [33] describes a combination

of platform features that achieve aforementioned security objective and derives a set of

properties both necessary and sufficient for secure RA. The conclusion of [33] is that the

following properties collectively represent the minimal requirements to achieve secure RA on

any platform.

• Exclusive Access to Attestation Key (K): the attestation process (PRAtt) must have

exclusive access to K. This is the most difficult requirement for (especially, low-end and
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mid-range) embedded devices. As argued in [33], this property is unachievable without

some hardware support on low-end devices. If the underlying processor supports mul-

tiple privilege modes and a full-blown memory separation for each process, one could

use a privileged process to handle any computation that involves K. However, low-end

and mid-range processors generally do not offer such “luxury” features.

• No Leaks: no information related to (or derived from) K must be accessible after

execution of PRAtt. To achieve this, all intermediate values that depend on K – except

the final attestation token to be returned to Vrf – must be securely erased. This is

applicable to very low-end devices, with none (or minimal) OS support and assuming

that memory is shared between processes. However, if the underlying hardware and/or

software guarantees strict memory separation among processes, this property is trivially

satisfied.

• Immutability: To ensure that the attestation executable (BCAtt) cannot be modified,

previous efforts (e.g., [31] or [33]) place it in and execute it from ROM, which is

available on most, even low-end, platforms. ROM is a relatively inexpensive way

to enforce BCAtt’s code immutability. Whereas, if the OS guarantees: (1) run-time

process memory separation, and (2) immutability of BCAtt code (e.g., by checking its

integrity/authenticity prior to execution), then BCAtt can reside, and be executed, in

RAM.

• Uninterruptability: Execution of BCAtt must be uninterruptible. This is necessary to

ensure that malware does not obtain the key (or some function thereof) by interrupting

BCAtt while any key-related values remain in registers or other locations. SMART

achieves this property via MCU controls. However, if PRAtt runs with the highest

possible priority, the OS can ensure uninterruptibility.

• Controlled Invocation (aka Atomicity): BCAtt must only be invocable from its first

instruction and must exit only at one of its legitimate last (exit) instruction. This is
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motivated by the need to prevent code-reuse attacks. As before, enforcing this property

via MCU access controls can be replaced by OS support.

The work in [33] stipulates one extra property: Secure Reset, initiated whenever an attempt

is detected to execute BCAtt from the middle of its code. We argue that this is not needed

if controlled invocation is enforced. It suffices to raise an exception, as long as the memory

space of PRAtt is protected and integrity of executable is guaranteed.

Another important security feature identified in [12] is to protect Prv from Vrf impersonation

as well as denial-of-service (DoS) attacks that attempt to forge, replay, reorder or delay

attestation requests. All such attacks aim to maliciously invoke RA functionality on Prv

and thus deplete Prv’s resources or take them away from its main tasks. According to [12],

the following additional property is required:

• Vrf Authentication: PRAtt on Prv must: (1) authenticate Vrf and (2) detect replayed,

re-ordered and delayed requests. To achieve (1), the very same K can used to generate

(by Vrf) and verify (by Prv) all attestation requests. To satisfy (2), the work in [12]

requires an additional hardware component: a reliable real-time clock. This clock must

be loosely synchronized with Vrf’s clock and must be write-protected.

4.1.3 Adversarial Model & Other Assumptions

Based on the recent taxonomy in [2], adversary (Adv) in the context ofRA can be categorized

as follows:

• Remote: exploits vulnerabilities in Prv’s software to inject malware, over the network.

• Local: located sufficiently near Prv in order to eavesdrop on, and manipulate, Prv’s

communication channel(s).
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• Physical: has full (local) physical access to Prv and its hardware; can perform physical

attacks, e.g., use side channels to derive keys, physically extract memory values, and

modify various hardware components.

[33] and [12] conclude that anyRA that satisfies all properties described in 4.1.2 always yields

correct attestation tokens (i.e., no false positives and no false negatives) while achieving

resilience to DoS attacks even in the presence of remote and local Adv-s. HYDRA builds

on top of these properties and similarly considers remote and local Adv-s; physical Adv is

considered to be out-of-scope.

We note that, at least in a single-prover setting1, protection against physical attacks can

be attained by encasing the CPU in tamper-resistant coating and employing standard tech-

niques to prevent side-channel key leakage. These include: anomaly detection, internal power

regulators and additional metal layers for tamper detection. We consider Prv to be a (possi-

bly) unattended remote hardware platform running multiple processes on top of seL4. Once

Prv boots up and runs in steady state, Adv might be in complete control of all application

software (including code and data) before and after execution of PRAtt. Since physical at-

tacks are out of scope, Adv can not induce hardware faults or retrieve K using side channels.

Finally, recall that Prv and Vrf must share at least one secret key K. This key can be pre-

loaded onto Prv at installation time and stored as part of BCAtt. We do not address the

details of this procedure.

4.2 Design

This section overviews seL4 and discusses its use in HYDRA. It then describes the sequence

of operations in HYDRA.

1See [38] for physical attack resilience in groups of provers.
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Figure 4.1: Sample seL4 instantiation from [81].

4.2.1 seL4 Overview

seL4 is a member of the L4 microkernel family, specifically designed for high-assurance ap-

plications by providing isolation and memory protection between different processes. These

properties are mathematically guaranteed by a full-code level functional correctness proof,

using automated tools. A further correctness proof of the C code translation is presented

in [82], thus extending functional correctness properties to the binary level without needing

a trusted compiler. Therefore, behavior of the seL4 binary strictly adheres to, and is fully

captured by, the abstract specifications.

Similar to other operating systems, seL4 divides the virtual memory into two separated ad-

dress spaces: kernel-space and user-space. The kernel-space is reserved for the execution

of the seL4 microkernel while the application software is run in user-space. By design, and

adhering to the nature of microkernels, the seL4 microkernel provides minimal functionali-

ties to user-space applications: thread, inter-process communication (IPC), virtual memory,

capability-based access control and interrupt control. The seL4 microkernel leaves the im-

plementations of other traditional operating system functions – such as device drivers and

file systems – to user-space.

Figure 4.1 (borrowed from [81]) shows an example of seL4 instantiation with two threads –

sender A and receiver B – that communicate via an EndPoint EP. Each thread has a Thread

Control Block (TCB) that stores its context, including: stack pointer, program counter,
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register values, as well as pointers to Virtual-address Space (VSpace) and Capability Space

(CSpace). VSpace represents available memory regions that the seL4 microkernel allocated

to each thread. The root of VSpace represents a Page Directory (PD), which contains Page

Table (PT) objects. Frame object representing a region of physical memory resides in a

PT. Each thread also has its own kernel managed CSpace used to store a Capability Node

(CNode) and capabilities. CNode is a table of slots, where each slot represents either a

capability or another CNode.

A capability is an unforgeable token representing an access control authorization of each

kernel object or component. A thread cannot directly access or modify a capability since

CSpace is managed by, and stored inside, the kernel. Instead, a thread can invoke an opera-

tion on a kernel object by providing a pointer to a capability that has sufficient authority for

that object to the kernel. For example, sender A in Figure 4.1 needs a write capability of EP

for sending a message, while receiver B needs a read capability to receive a message. Besides

read and write, grant is another access right in seL4, available only for an endpoint object.

Given possession of a grant capability for an endpoint, any capability from the possessor

can be transferred across that endpoint. For instance, if A in Figure 4.1 has grant access

to EP, it can issue one of its capabilities, say a frame, to B via EP. Also, capabilities can

be statically issued during a thread’s initialization by the initial process. The initial process

is the first executable user-space process loaded into working memory (i.e., RAM) after the

seL4 microkernel is loaded. This special process then forks all other processes. Section 4.2.4

describes the role, the details and the capabilities of the initial process in HYDRA design.

seL4’s main “claim to fame” is in being the first formally verified general-purpose operating

system. Formal verification of the seL4 microkernel is performed by interactive, machine-

assisted and machine-checked proof using a theorem prover Isabelle/HOL. Overall functional

correctness is obtained through a refinement proof technique, which demonstrates that the

binary of seL4 refines an abstract specification through three layers of refinement. Conse-
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quently, the seL4 binary is fully captured by the abstract specifications. In particular, two

important feature derived from seL4’s abstract specifications, are that: the kernel never

crashes. Another one is that: every kernel API call always terminates and returns

to user-space. Comprehensive details of seL4’s formal verification can be found in [44].

Another seL4 feature very relevant to our work is: correctness of access control en-

forcement derived from functional correctness proof of seL4. [81] and [56] introduce formal

definitions of the access control model and information flow in seL4 at the abstract specifi-

cations. They demonstrate the refinement proof from these modified abstract specifications

to the C implementation using Isabelle/HOL theorem prover, which is later linked to the

binary level (by the same theorem prover). As a result, three properties are guaranteed by

the access control enforcement proof: (1) Authority Confinement, (2) Integrity and (3) Con-

fidentiality. Authority confinement means that authority propagates correctly with respect

to its capability. For example, a thread with a read-only capability for an object can only

read, and not write to, that object. Integrity implies that system state cannot be modified

without explicit authorization. For instance, a read capability should not modify internal

system state, while write capability should only modify an object associated with that ca-

pability. Finally, confidentiality means that an object cannot be read or inferred without a

read capability. Thus, the proof indicates that access control in seL4, once specified at the

binary level, is correctly enforced as long as the seL4 kernel is active.

We now show how seL4’s access control enforcement property satisfies required RA features.

4.2.2 Deriving seL4 Access Controls

We now describe access control configuration of seL4 user-space that achieves most required

properties for secure RA, as described in section 4.1.2. We examine each feature and identify

the corresponding access control configuration. Unlike prior hybrid designs, HYDRA pushes
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Table 4.2: Security properties in hybrid RA

Security Property SMART [31] TrustLite [47] HYDRA

Exclusive Access to K HW (Mod. Data Bus) SW (programmed MPU) SW (seL4)

No Leaks SW (Instrumented SW) HW (CPU Exception Engine) SW (seL4)

Immutability HW (ROM) HW (ROM) and SW (MPU) HW (ROM) and SW (seL4)

Uninterruptability SW (Interrupt Disabled) HW (CPU Exception Engine) SW (seL4)

Controlled Invocation HW (MCU Control) SW (MPU) SW (seL4)

almost all of these required features into software, as long as the seL4 microkernel boots

correctly. (A comparison with SMART and TrustLite is in Table 4.2.)

• Exclusive Access to K is directly translated to an access control configuration. Similar

to previous hybrid approaches, K can be hard-coded into the BCAtt at production

time. Thus, BCAtt needs to be configured to be accessible only to PRAtt.

• No Leaks is achieved by the separation of virtual address space. Specifically, the virtual

memory used for K-related computation needs to be configured to be accessible to only

PRAtt.

• Immutability is achieved using combination of verifiable boot and runtime isolation

guarantee from seL4. At runtime, BCAtt must be immutable, which can be guaranteed

by restricting the access control to the executable to only PRAtt. However, this is not

enough to assure immutability of BCAtt executable because BCAtt can be modified after

loaded into RAM but before executed. Hence, a verifiable boot of BCAtt is required.

• Uninterruptability is ensured by setting the scheduling priority of PRAtt higher than

other processes since the formal proof of seL4 scheduling mechanism guarantees that

a lower priority process cannot preempt the execution of a higher priority process. In

addition, seL4 guarantees that, once set, the scheduling priority of any process can not

be increased at runtime.
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Note that this feature implies that PRAtt needs to be the initial user-space process

since the seL4 microkernel always assigns the highest priority to the initial process.

• Controlled Invocation is achieved by the isolation of process’ execution. In particular,

TCB of PRAtt cannot be accessed or manipulated by other processes.

• Vrf Authentication is achieved by configuring a capability of the real-time clock to be

read-only for other user-space processes.

With these features, we conclude that the access control configuration of seL4 user-space

needs to (at least) include the following:

C1 PRAtt has exclusive access to BCAtt; this also includes K residing in BCAtt. (Recall

that PRAtt is the attestation process, while BCAtt is the executable that actually

performs attestation.)

C2 PRAtt has exclusive access to its TCB.

C3 PRAtt has exclusive access to its VSpace.

C4 PRAtt has exclusive write-access to the real-time clock.

Even though this access control configuration can be enforced at the binary code level,

this assumption is based on that seL4 is loaded into RAM correctly. However, this can be

exploited by an adversary by tricking the boot-loader to boot his malicious seL4 microkernel

instead of the formally verified version and insert a new configuration violating above access

controls. Thus, the hardware signature check of the seL4 microkernel code is required at

boot time. The similar argument can also be made for BCAtt code. As a result, additional

integrity check of BCAtt code needs to be performed by seL4 before executing.
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4.2.3 Building Blocks

In order to achieve all security properties described above, HYDRA requires the following

four components.

• Read-Only Memory: region primarily storing immutable data (e.g. hash of public

keys or signature of software) required for secure boot of the seL4 microkernel.

• MCU Access Control Emulation: high-assurance software framework capable of

emulating MCU access controls to attestation key K. At present, seL4 is the only

formally verified and mathematically proven microkernel capable of this task.

• Attestation Algorithm: software residing in PRAtt and serving two main purposes:

authenticating an attestation request, and performing attestation on memory regions.

• Reliable Real-Time Clock: loosely synchronized (with Vrf) real-time clock. This

component is required for mitigating denial-of-service attacks that involve Vrf imper-

sonation (via replay, reorder and delay)[12]. If Prv does not have a clock, a secure

counter can replace a real-time clock with the downside of delayed message detection.

We also note that this component needs not be write-protected at hardware level due

to a capability-based access control guarantee from seL4.

4.2.4 Sequence of Operation

The sequence of operations in HYDRA, shown in Figure 4.2, has three steps: boot, setup,

and attestation.

Boot Process. Upon a boot, Prv first executes a ROM-resident boot-loader. The boot-

loader verifies authenticity and integrity of the seL4 microkernel binary. Assuming this
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Figure 4.2: Sequence of operation in HYDRA

verification succeeds, the boot-loader loads all executables, including kernel and user-space,

into RAM and hands over control to the seL4 microkernel. Further details of secure boot in

our prototype can be found in Section 4.3.

seL4 Setup. The first task in this step is to have the seL4 microkernel setting up the

user-space and then starting PRAtt as the initial user-space process. Once the initialization

inside the kernel is over, the seL4 microkernel gathers capabilities for all available memory-

mapped locations and assigns them to PRAtt. The seL4 kernel also performs an authenticity

and integrity check of PRAtt to make sure that it has not been modified. After successful

authentication, the seL4 microkernel passes control to PRAtt.

With full control over the system, PRAtt starts the rest of user-space with a lower scheduling

priority and distributes capabilities that do not violate the configuration specified earlier.

After completing configuration of memory capabilities and starting the rest of the user-space,
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PRAtt initializes the network interface and waits for an attestation request.

Attestation. An attestation request, sent by a verifier, consists of 4 parameters: (1) TR

reflecting Prv’s time when the request was generated, (2) target process p, (3) its memory

range [a, b] that needs to be attested, and (4) cryptographic checksum CR of the entire

attestation request.

Similar to SMART [31], the cryptographic checksum function used in attestation is imple-

mented as a Message Authentication Code (MAC), to ensure authenticity and integrity of

attestation protocol messages.

Upon receiving an attestation request PRAtt checks whether TR is within an acceptable range

of the Prv’s real-time clock before performing any cryptographic operation; this is in order

to mitigate potential DoS attacks. If TR is not fresh, PRAtt ignores the request and returns

to the waiting state. Otherwise, it verifies CR. If this fails, PRAtt also abandons the request

and returns to the waiting state.

Once the attestation request is authenticated, PRAtt computes a cryptographic checksum

of the memory region [a, b] of process p. Finally, PRAtt returns the output to Vrf. The

pseudo-code of this process is shown in Algorithm 1.

4.3 Implementation

To demonstrate feasibility and practicality of HYDRA, we developed two prototypes on

commercially available hardware platforms: ODROID-XU4 [37] and Sabre Lite [10]. We

focus on the latter, because of lack of seL4 compatible network drivers and programmable

ROM in current ODROID-XU4 boards. We provide details of, and insight gained from, our

implementation, mostly concerning secure initialization and the configuration of the access
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Algorithm 1: BCAtt pseudo-code
Input : TR timestamp of request

p target process for attestation
a, b start/end memory region of target process
CR cryptographic checksum of request

Output: Attestation Report
1 begin
2 /* Check freshness of timestamp and verify request */
3 if ¬ CheckFreshness(TR) then
4 exit();
5 end
6 if ¬ VerifyRequest(CR, K, TR‖p‖a‖b) then
7 exit();
8 end
9 /* Retrieve address space of process p */

10 Mem ← RetrieveMemory(p);
11 /* Compute attestation report */
12 MacInit(K);
13 MacUpdate(TR‖p‖a‖b);
14 for i ∈ [a, b] do
15 MacUpdate(Mem[i]);
16 end
17 out ← MacFinal();
18 return out

19 end

control in HYDRA; we then describe the implementation of key storage and timestamp

generation. Section 4.5 presents a detailed performance evaluation of the implementation.

4.3.1 seL4 User-space Implementation

Our prototype is implemented on top of version 1.3 of the seL4 microkernel [59]. The

complete implementation, including helper libraries and the networking stack, consists of

105, 360 lines of C code (see Table 4.3 for a more detailed breakdown). The overall size of

executable is 574KB whereas the base seL4 microkernel size is 215KB. Excluding all helper

libraries, the implementation of HYDRA is just 2800 lines of C code. In the user-space, we

base our C code on following libraries: seL4utils, seL4vka and seL4vspace; these libraries
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Table 4.3: Complexity of HYDRA impl. on our prototype

Complexity
HYDRA with HYDRA w/o HYDRA w/o seL4 Kernel
net. and libs net. stack net. and libs Only

LoC 105,360 68,490 11,938 9,142
Exec Size 574KB 476KB N/A 215KB

provide the abstraction of processes, memory management and virtual space respectively.

In our prototypes, PRAtt is the initial process in the user-space and receives capabilities to

all memory locations not used by seL4. Other processes in user-space are spawned by this

PRAtt. We also ensure that access control of those processes does not conflict with what

we specified in Section 4.2. The details of this access control implementation are described

below in this section.

The basic C function calls are implemented in muslc library. seL4bench library is used to

evaluate timing and performance of our HYDRA implementation. For a timer driver, we

rely on its implementation in seL4platsupport. All source code for these helper libraries

can be found in [58] and these libraries contribute around 50% of the code base in our

implementation. We use an open-source implementation of a network stack and an Ethernet

driver in the user-space [57]. We argue that this component, even though not formally

verified, should not affect security objective of HYDRA as long as an IO-MMU is used to

restrict Direct Memory Access (DMA) of an Ethernet driver. The worst case that can

happen from not formally verified network stack is symmetrical denial-of-service, which is

out of scope of HYDRA.

4.3.2 Secure Boot Implementation

Here, we describe how we integrate an existing secure boot feature (in Sabre Lite) with our

HYDRA implementation.
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Figure 4.3: Image layout in flash

Secure Boot in Sabre Lite

NXP provides a secure boot feature for Sabre Lite boards, called High Assurance Boot

(HAB) [34]. HAB is implemented based on a digital signature scheme with public and

private keys. A private key is needed to generate a signature of the software image during

manufacturing whereas a public key is used by ROM APIs for decrypting and verifying the

software signature at boot time. A public key and a signature are attached to the software

image, which is pre-installed in a flash during manufacturing. The digest of a public key

is fused into a one-time programmable ROM in order to ensure authenticity of the public

key and the booting software image. At boot time, the ROM boot-loader first loads the

software image into RAM and then verifies the attached public key by comparing it with the

reference hash value in ROM. It then authenticates the software image through the attached

signature and the verified public key. Execution of this image is allowed only if signature

verification succeeds. Without a private key, an adversary cannot forge a legitimate digital

signature and thus is unable to insert and boot his malicious image.
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Figure 4.4: Secure boot sequence in SabreLite prototype

Secure Boot of HYDRA

HAB ensures that the seL4 microkernel is the first program initialized after the ROM boot-

loader. This way, the entire seL4 microkernel binary code can be covered when computing

the digital signature during manufacturing. Moreover, seL4 needs to be assured that it gives

control of the user-space to the verified PRAtt, which means that seL4 has to perform an

integrity check of PRAtt before launching it. Consequently, a hash of BCAtt needs to be

included in the seL4 microkernel’s binaries during production time and be validated upon

starting the initial process.

With this procedure, a chain of trust is established in theRA system in HYDRA. This implies

that no other programs, except the seL4 microkernel can be started by the ROM boot-loader

and consequently only PRAtt is the certified initial process in the user-space, which achieve

the goal of secure boot of RA system. Figure 4.4 illustrates the secure boot of HYDRA in

Sabre Lite prototype.

4.3.3 Access Control Implementation

Here we describe how the access control configuration specified in section 4.2 is implemented

in our HYDRA prototype. Our goal is to show that in the implementation of HYDRA no
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other user-space processes, except PRAtt, can have any kind of access to: (1) the binary

executable code (including K), (2) the virtual address space of PRAtt, and (3) the TCB of

PRAtt. To provide those access restrictions in the user-space, we make sure that we do not

assign capabilities associated to those memory regions to other user-space processes. Recall

that PRAtt as the initial process contains all capabilities to every memory location not used

by the seL4 microkernel. And there are two ways for PRAtt to issue capabilities: dynamically

transfer via endpoint with grant access right or statically assign during bootstrapping a new

process.

In our implementation, PRAtt does not create any endpoint with grant access, which disallows

any capability of PRAtt to transfer to a new process after created. Thus, the only way

that capabilities can be assigned to a new process is before that process is spawned. When

creating a new process, PRAtt assigns only minimal amount of capabilities required to operate

that process, e.g. in our prototype, only the CSpace root node and fault endpoint (used for

receiving IPCs when this thread faults) capabilities are assigned to any newly created process.

Limited to only those capabilities, any other process cannot access the binary executable code

as well as existing virtual memory and TCB of PRAtt.

Moreover, during bootstrapping the new process, PRAtt creates a new PD object serving

as the root of VSpace in the new process. This is to ensure that any new process’ virtual

address space is initially empty and does not overlap with the existing virtual memory of

PRAtt. Without any further dynamic capability distribution, this guarantees that other

processes cannot access any memory page being used by PRAtt. Sample code for configuring

a new process in our prototype is provided in Listing 4.1 below.

int sel4utils configure process custom( sel4utils process t ∗process , vka t ∗vka, vspace t ∗spawner vspace ,

sel4utils process config t config)

{

int error ;

sel4utils alloc data t ∗ data = NULL;

memset(process , 0 , sizeof( sel4utils process t )) ;
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seL4 CapData t cspace root data = seL4 CapData Guard new(0 , seL4 WordBits − config .

one level cspace size bits ) ;

process−>own vspace = config . create vspace ;

error = vka alloc vspace root(vka, &process−>pd) ;

i f (error) {

goto error ;

}

i f (assign asid pool (config . asid pool , process−>pd. cptr) != seL4 NoError) {

goto error ;

}

process−>own cspace = config . create cspace ;

i f (create cspace(vka, config . one level cspace size bits , process , cspace root data) != 0) {

goto error ;

}

i f (create fault endpoint(vka, process) != 0) {

goto error ;

}

sel4utils get vspace (spawner vspace , &process−>vspace , &process−>data , vka, process−>pd. cptr ,

sel4utils allocated object , (void ∗) process) ;

process−>entry point = sel4uti ls el f load(&process−>vspace , spawner vspace , vka, vka, config .image name) ;

i f (process−>entry point ==NULL) {

goto error ;

}

error = sel4utils configure thread(vka, spawner vspace , &process−>vspace , SEL4UTILSENDPOINTSLOT, config .

priority , process−>cspace . cptr , cspace root data , &process−>thread) ;

i f (error) {

goto error ;

}

return 0;

error :

/∗ clean up ∗/

. . .

return −1;

}

int sel4utils configure thread config (vka t ∗vka, vspace t ∗parent , vspace t ∗alloc , sel4utils thread config t

config , sel4utils thread t ∗res )

{

memset(res , 0 , sizeof( sel4utils thread t )) ;

int error = vka alloc tcb(vka, &res−>tcb) ;

i f (error == −1) {

sel4utils clean up thread(vka, alloc , res ) ;

49



return −1;

}

res−>ipc buffer addr = (seL4 Word) vspace new ipc buffer(alloc , &res−>ipc buffer ) ;

i f (res−>ipc buffer addr == 0) {

return −1;

}

i f (write ipc buffer user data(vka, parent , res−>ipc buffer , res−>ipc buffer addr)) {

return −1;

}

seL4 CapData t null cap data = {{0}};

error = seL4 TCB Configure(res−>tcb . cptr , config . fault endpoint , config . priority , config . cspace , config .

cspace root data , vspace get root( alloc ) , null cap data , res−>ipc buffer addr , res−>ipc buffer ) ;

i f (error != seL4 NoError) {

sel4utils clean up thread(vka, alloc , res ) ;

return −1;

}

res−>stack top = vspace new stack(alloc ) ;

i f (res−>stack top ==NULL) {

sel4utils clean up thread(vka, alloc , res ) ;

return −1;

}

return 0;

}

Listing 4.1: Sample code for initializing a new process

4.3.4 Key Storage

Traditionally, in previous hybrid designs, Prv requires a special hardware-controlled memory

location for securely storing K and protecting it from software attacks. However, in HYDRA,

it is possible to store K in a normal memory location (e.g. flash) due to the formally verified

access control and isolation properties of seL4. Moreover, since K is stored in a writable

memory, its update can easily happen without any secure hardware involvement. Thus, in

our prototypes, K is hard-coded at production time and stored in the same region as BCAtt.
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4.3.5 Mitigating Denial-of-Service Attacks

Our HYDRA prototype uses the same K for two purposes: (1) Prv computing the attestation

token, and (2) authenticating Vrf attestation requests. (Recall that K can be accessed only

by PRAtt.) Alternatively, PRAtt can derive two separate keys from K, one for each purpose,

through a key derivation function (KDF).

The work in [12] also shows that authenticating attestation requests is insufficient to mitigate

DoS attacks sinceAdv can eavesdrop on genuine attestation requests and then delay or replay

them. [12] concludes that timestamps, obtained from a reliable real-time clock (synchronized

with Vrf’s clock), are required in order to handle replay, reorder and delay attacks.

There are currently no real-time clock drivers available for seL4. Instead, we generate a

pseudo-timestamp by a timer, the driver for which is provided by seL4platsupport, and a

timestamp of the first validated request, as follows:

When a device first boots and securely starts PRAtt as the initial process, PRAtt loads

a timestamp, T0, that was previously saved (in a separated location in flash) before the

last reset. When the first attestation request arrives, PRAtt checks whether its timestamp,

T1 > T0 and, if so, proceeds to V erifyRequest. (Else, the request is discarded). Once the

request is validated, PRAtt keeps track of T1 and starts a counter. At any later time, a

timestamp can be constructed by combining the current counter value with T1. Also, PRAtt

periodically generates and saves this timestamp value on flash, to be used after the next

reboot. The prototype also ensures that the timestamp is write-protected by not assigning

write capabilities for a memory region (storing T0 and a timer device driver) to any other

processes.
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4.4 Security Analysis

We now informally show that HYDRA satisfies the minimal set of requirements to realize

secure RA (described in Section 4.1.2). HYDRA’s key features are:

(1) seL4 is the first executable loaded in a HYDRA-based system upon boot/initialization.

Correctness of this step is guaranteed by a ROM integrity check at boot time, e.g., HAB in

the Sabre Lite case.

(2) PRAtt
2 is the initial user-space process loaded into memory and executed by seL4. This

is also supported via a software integrity check performed by seL4 before spawning the initial

process.

(3) PRAtt starts with the highest scheduling priority and never decreases its own priority

value. This can be guaranteed by checking that BCAtt does not contain any system calls to

decrease its priority.

(4) Any subsequent process executed by seL4 is spawned by PAttest and does not get the

highest scheduling priority. This can be ensured by inspecting BCAtt to check that all

invocations of other processes are with a lower priority value. Once a process is loaded with

a certain priority, seL4 prevents it from increasing its priority value; this is formally verified

and guaranteed by seL4 implementation.

(5) The software executable and K can only be mapped into the address space of PRAtt. This

is guaranteed by ensuring that in the BCAtt no other process on initialization (performed in

PRAtt ) receives the capabilities to access said memory ranges.

(6) Virtual memory used by PRAtt cannot be used by any other process; this includes any

memory used for any computation involving the key, or related to other values computed

2PRAtt is different from BCAtt per Figure 4.3. PRAtt is what is called “initial process” in Figure 4.3 and
it contains BCAtt executable as a component.
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using the key. This is formally verified and guaranteed in the seL4 implementation.

(7) Other processes cannot control or infer execution of PRAtt (protected by exclusive capa-

bility to TCB’s PRAtt).

(8) Access control properties, i.e., authority confinement, integrity and confidentiality, in

seL4’s binary are mathematically guaranteed by its formal verification.

(9) Other processes cannot modify or reset the real-time clock. This can be guaranteed by

verifying that BCAtt does not give away a write capability of the clock to other processes.

Given the above features, the security properties in Section 4.1.2 are satisfied because:

Exclusive Access to K: (5), (6) and (8) guarantee that only PRAtt can have access to K.

No Leaks: (6) and (8) ensure that intermediate values created by key-related computation

inside PRAtt cannot be leaked to or learned by other processes.

Immutability: (1) and (2) imply that HYDRA is initialized into the correct expected known

initial states and that the correct binary executable is securely loaded into RAM. (5) also

prevents other processes from modifying that executable.

Uninterruptability: (3) and (4) guarantee that other processes, always having a lower

priority value compared to PRAtt, cannot interrupt the execution of PRAtt.

Controlled Invocation: (7) ensures that the execution of PRAtt cannot be manipulated

by other applications.

Vrf Authentication: (5), (6) and (8) ensure that K cannot be accessed and/or inferred

by other processes. (8) and (9) ensure that no other process can modify and influence a

timestamp value.
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(b) Memory mapping in seL4
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Figure 4.5: Evaluation of HYDRA in SabreLite prototype

4.5 Evaluation

Ideally, we would have liked to compare the performance of HYDRA with that of previous

hybrid designs such as SMART and TrustLite on the same hardware platform. However,

this is not feasible because SMART and TrustLite are designed for low-end micro-controllers

and development platforms based on such micro-controllers (currently) cannot run seL4. In

addition, SMART and TrusLite require some modifications to the micro-controller’s hard-

ware and are thus not available on off-the-shelf development platforms. We instead present

performance evaluation of HYDRA using the commercially available I.MX6 Sabre Lite and

ODROID-XU4 development platform.
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4.5.1 Evaluation Results on I.MX6 Sabre Lite

We conduct experiments to assess speed of, and overhead involved in, performing attestation

using different types of keyed Message Authentication Code (MAC) functions, on various

numbers of user-space processes and sizes of memory regions to be attested. We obtain the

fastest performance using the Speck MAC; HYDRA can attest 10MB in less than 250msec

in that case. Our prototypes are implemented in C and compiled with an O2 flag.

Breakdown of Attestation Runtime. The attestation algorithm (Algorithm 1) is com-

posed of three operations. V erifyRequest (lines 3 to 9) is responsible for verifying an

attestation request and whether it has been recently generated by an authorized verifier.

RetrieveMem (line 11) maps memory regions from a target process to PRAtt’s address

space and returns a pointer to the mapped memory. MacMem (lines 13 to 20) computes a

cryptographic checksum (using K) on the memory regions.

As shown in Table 4.4, the runtime of MacMem contributes the highest amount of the overall

BCAtt runtime: 89% of total time for attesting 1MB of memory and 92% for attesting 20

KB of memory on Sabre Lite; whereas RetrieveMem and V erifyRequest together require

less than 11% of the overall time.

Performance of RetrieveMem in seL4. Another important factor affecting the perfor-

mance of HYDRA is the runtime of RetrieveMem: the time PRAtt takes to map the attested

memory regions to its own virtual address space. As expected, Figure 4.5b illustrates the

memory mapping runtime in seL4 is linear in terms of mapped memory size. In addition, we

compare the runtime of RetrieveMem and MacMem on larger memory sizes. Figure 4.5c

illustrates that the runtime ratio of RetrieveMem to various implementations of MacMem

is always less than 20%. This confirms that retrieving memory and mapping it to the ad-

dress space account for only a small fraction of the total attestation time in HYDRA. This

illustrates that whatever overhead seL4 introduces when enforcing access control on memory
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Table 4.4: Performance breakdown of Algorithm 1 on I.MX6-SabreLite @ 1GHz

Operations
1 MB of Memory 20 KB of Memory

Time in cycle Proportion Time in cycle Proportion

V erifyRequest 1,604 <0.01% 1,604 0.29%
RetrieveMem 3,221,307 10.7% 45,624 8.21%
MacMem 26,880,057 89.29% 508,334 91.5%
Overall 30,102,968 100% 555,562 100%

is not significant and does not render HYDRA impractical.

Performance of MacMem in seL4. Since MacMem is the biggest contributor to the

runtime of our implementations, we explore various types of (keyed) cryptographic check-

sums and their performance on top of seL4. We compare the performance of five different

MAC functions, namely, CBC-AES [85], HMAC-SHA-256 [5], Simon and Speck [73], and

BLAKE2S [75], on 1MB of data in the user-space of seL4. The performance results in Fig-

ure 4.5a illustrate that the runtime of MAC based on Speck-64-128 3 and BLAKE2S in seL4

are similar; and they are at least 33% faster than other MAC functions when running on

Sabre Lite.

Performance of MacMem vs Memory Sizes. Another factor that affects MacMem’s

performance is the size of memory regions to be attested. We experiment by creating another

process in the user-space and perform attestation on various sizes (ranging from 1MB to

10MB) of memory regions inside that process. As expected, the results of this experiment,

illustrated in Figure 4.5d, indicate that MacMem performance is linear as a function of the

attested memory sizes. This experiment also illustrates feasibility of performing attestation

of 10MB of memory on top of seL4 in HYDRA using a Speck-based MAC in less than 250msec.

Performance on MacMem vs Numbers of Processes. This experiment answers the

following question: How would an increase in number of processes affect the performance

3Speck with 64-bit block size and 128-bit key size
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of HYDRA? To answer it, we have the initial process spawn additional user-space processes

(from 2 to 20 extra processes) and, then, perform MacMem on 100 KB memory in each

process. To ensure fair scheduling of every process, we set priority of all processes (including

the initial process) to the maximum priority. The result from Figure 4.5e indicates that the

performance of MacMem is linear as a function of the number of processes on a Sabre Lite

device.
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4.5.2 Performance on ODROID-XU4

We also evaluate performance of HYDRA on ODROID-XU4 @ 2.1 GHz. Despite lacking an

Ethernet driver, we evaluate the core component of HYDRA: MacMem. Unlike results from

I.MX6 Sabre Lite, BLAKE2S-based MAC achieves the best performance for attesting 10MB

on ODROID-XU4 platform.

MAC Performance on Linux vs in seL4. Figure 4.6 illustrates the performance compar-

ison of keyed MAC functions on ODROID-XU4 running on Ubuntu 15.10 and seL4. Results

support feasibility of RA in seL4, since the runtime of seL4-based RA can be as fast as that

of RA running on top of the popular Linux OS.

MAC Performance on ODROIX-XU4. Speck- and BLAKE2S-based MACs have the

fastest attestation runtimes in seL4. We conducted additional experiments with these MAC

functions on ODROID-XU4. Figure 4.7 shows the linear relationship between the number of

processes and MacMem runtime. Also, MAC runtime in Figure 4.8, is also linear in terms

of the memory size to be attested. Finally, runtime of BLAKE2S-based MAC needs under

100 milliseconds to attest 10MB of memory.
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Chapter 5

Shuffled Measurement

5.1 Introduction

Lower-end devices are often used in real-time and safety-critical applications. Thus, it is

important to minimize the impact of security on normal operation (i.e., availability) of such

devices. As motivated in Chapter 3, it is undesirable for a RA technique to allow the

measurement process (MP) on Prv to run without interruption, considering that computing

a measurement over a substantial amount of memory might take a relatively long time. In

other words, MP should be interruptible by a legitimate, time/safety-critical application.

However, Prv might have been compromised and the same safety-critical application might

contain malware (Mal). Mal presumably wants to evade detection. When confronted with

RA, it may want to simply erase itself, perhaps in order to reappear later. Alternatively,

it might remain on Prv and try to avoid detection by relocating itself during RA. This

behavior corresponds to self-relocating malware.

Therefore, this chapter focuses on reconciling two seemingly contradicting objectives: resis-

tance against self-relocating malware and minimizing the impact of RA on Prv’s availability.
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In particular, we explore a mitigation technique that allows MP to be interruptibly while

protecting Prv against self-relocating malware.

Prior hybrid RA designs had different motivations. SMART avoids self-relocating Mal by

enforcing non-interruptibility of the measuring process, which fully sacrifices interruptibility

by a safety-critical task. Although TrustLite allows secure interrupts, it fails to detect self-

relocating malware. Whereas, TyTAN protects against self-relocating malware by enforcing

a rule that the process being measured can not interrupt MP, while other processes can.

Nonetheless, this approach lacks transparency of RA, i.e., if a safety-critical process is being

measured, it can not interrupt MP. Also, TyTAN might not detect self-relocating malware

if process isolation is compromised (e.g., by a kernel bug) resulting in process collusion.

Furthermore, TrustLite and (to a lesser degree) TyTAN require more advanced hardware

features than SMART, which translates into extra cost for low-end platforms.

5.2 Remote Attestation via Shuffled Measurements

To mitigate the conflict between self-relocating malware (Mal) detection and critical mis-

sion of Prv, we propose SMARM : a light-weight technique, based on shuffled measurements.

SMARM allows MP to be interruptible, while the order in which M is measured is de-

termined randomly and privately, by MP. The rationale is that, if Mal remains unaware

of what portions of M have been already measured (covered), it can not decide where to

relocate itself to escape detection. Mal’s optimal strategy (i.e., where and when to relocate)

depends on its knowledge of the RA coverage. However, based on reasonable assumptions

about security of the RA architecture, we show that Mal is detectable with significant

probability.

Furthermore, since individual RA instances are independent, the compound probability for
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Mal to evade detection can be made negligible. As discussed in Section 5.6 below, although

this increased level of security comes at the cost of running several measurements, no ad-

ditional hardware features are needed. This results in the first low-cost and secure hybrid

RA technique that has no impact on Prv’s availability during RA.

Shuffled (or random) memory coverage has been already suggested in the context of software-

based RA, However, it was done differently from SMARM , in several ways. First, random

coverage of memory in software-basedRA is not secret, i.e.,Mal is fully aware of the sequence

of memory blocks traversal. In contrast, SMARM assumes secrecy of this traversal pattern

(shuffling), since it is generated based on Vrf’s one-time challenge and a secret key shared by

Vrf and Prv, which is inaccessible to Mal, as part of the underlying SMART architecture.

Also, as described in [80, 79, 52], memory blocks are measured several times before all are

processed at least once. This redundant coverage is likely due to size restrictions and non-

optimizable constraints of MP.

In the rest of this chapter, in the context of Prv implementing SMARM , we analyze different

evasion strategies based on self-relocating Mal’s varying degree of knowledge about the

progress of shuffled measurements.

5.3 Model and Assumptions

We assume that Prv’s memory is divided into n blocks M1, . . . ,Mn. We require Prv to

conform to the SMART+ or HYDRA hybrid security architecture, as described in Chapter 2

and 4 respectively. In addition, SMARM entails one important change with respect to

SMART+ and HYDRA:

We relax the atomicity requirement of SMART+ and HYDRA such that the mea-

surement process implemented byMP can be interrupted after it measures each
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memory block.

Let σ be a permutation randomly selected for a given RA instance (measurement) of M .

That is, block Mσ(i) is measured at step i. Let t1, . . . , tn be the times at which blocks

Mσ(1), . . . ,Mσ(n) are measured, respectively.

Let M∗ be M in benign state. Let R∗ = FK(M∗) be the measurement corresponding to the

healthy state, computed by the measurement routine F using key K. Finally, let R be the

measurement actually computed over M in a given RA instance1.

We define a benign measurement as the event R = R∗. We further define the probability of

Mal evading detection with strategy S as:

PS = Pr(R = R∗ |M 6= M∗)

We assume each Mi is measured under the same constraints as SMART+ or HYDRA. Namely,

execution of MP (over Mi) is atomic, access to K is protected, and memory is cleaned up

(such that no traces of K remain) after the measurement of Mi is done.

Potential interruptions by other tasks running on Prv must thus be scheduled between the

measurement of two blocks. Let tmax denote the “maximum non-interruptibility interval”.

The size of a memory block Mi is set such that the time to measure it is at most tmax.

5.4 Self-Relocating Mal Evasion Strategies

Since Mal’s goal is to avoid detection, it must restore each block where it resides to a

benign state before that block is measured. This section considers the optimal strategy for

1Since MP takes a non-negligible amount of time and since M can change during that time, we can not
write R = F (M).
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Mal, under various assumptions about its capabilities and knowledge, and the associated

probability of detection.

We initially assume that Mal occupies a single block. The case where it resides in multiple

blocks is discussed later in Section 5.5.3. Without loss of generality, we also assume that

Mal is active during the entire MP, and can thus interrupt it and make changes to any

block of M at any point as long as it does so between the intervals of MP measuring a

single block. Reactive Mal, and Mal with restricted number of interruptions are discussed

in Sections 5.5.4 and 5.5.5, respectively.

5.4.1 Erasure

One trivial evasion strategy for Mal is to simply erase itself as soon as possible, perhaps

to re-infect Prv at a later time. Assuming that Mal is aware of the incoming attestation

request from Vrf, or it interrupts MP before it starts (or early on during its execution),

erasure seems difficult, if not impossible, to mitigate. In the rest of this paper, we focus on

strategies whereby Mal attempts to remain on Prv while evading detection.

5.4.2 Relocation Techniques

Clearly, ifMal remains where it is, it can not escape detection. Otherwise, it must relocate

itself, at least once. We identify and explore three intuitive Mal flavors (which vary in the

degree of knowledge) and their associated probabilities of successful evasion. As mentioned

earlier, we assume below that Mal occupies a single memory block.
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Knowledge of Future Volume (KFV)

During RA, the volume (size) of memory that has not yet been measured is the least amount

of actionable information that Mal might have. This knowledge can be acquired by mea-

suring the time elapsed since the start ofMP and estimating the number of memory blocks

already measured. This is based on a realistic assumption that Mal is aware of: (1) time

when MP began, and (2) time to measure one memory block. We refer to this degree of

knowledge as the KFV model.

Theorem 5.1. The optimal strategy for KFV Mal is to relocate after every memory block

is measured. It would thus move a total of n− 1 times, assuming that it can interrupt MP

at each block boundary. The probability of evasion is:

PFV =

(
1− 1

n

)n
≈ e−1 ≈ 0.37

Proof. Let Mmi
denote the block containingMal at ti, for 1 ≤ mi ≤ n. Having the ability

to interrupt MP between ti and ti+1, Mal can either stay put or relocate. Let pi be the

probability of Mal getting “caught” exactly at ti+1:

pi = Pr(mi+1 = σ(i+ 1) | mk 6= σ(k), 1 ≤ k < i),

for 1 ≤ i < n.

IfMal relocates, two outcomes may occur: either (1) its new location Mmi+1
has been already

measured (there are i such blocks), in which case it will certainly not be caught, or (2) Mmi+1

was not measured yet (there are n − i such locations), in which case it will be caught with
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probability 1
n−i . Consequently:

pmove
i =

i

n
· 0 +

n− i
n
· 1

n− i
=

1

n
. (5.1)

If Mal does not relocate, two situations may occur. Let j be the last interval when Mal

moved. (If it never moved, j = 0.) Again, Mmi+1
= Mmj+1

might have been already

measured, in which case Mal will not be caught. This occurs with probability j
n
. Indeed,

since Mmj+1
can not have been measured in the last i − j steps (since we assume Mal has

not been detected so far), it must have been measured in the j first ones.

Otherwise, if Mmj+1
has not been measured yet (which occurs with probability 1− j

n
), Mal

will be caught with probability 1
n−i (for the same reason as in Eq. (5.1)). Consequently,

pstayi =
j

n
· 0 +

n− j
n
· 1

n− i
=

n− j
n(n− i)

If j < i, pstayi > pmove
i . Therefore, it is always beneficial for Mal to relocate. Interestingly,

the new location Mmi+1
does not matter, as long as mi+1 6= mi. Relocation at each interval

leads to an overall evasion probability of:

PFV = (1− pi)n−1 · Pr(m1 6= σ(1)) =

(
1− 1

n

)n

Pr(m1 6= σ(1)) is the probability that the first block measured is not Mm1 . The approxima-

tion to e−1 results from the limit definition of e.
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Knowledge of Future Coverage (KFC)

In addition to knowing how many blocks have been measured, Mal might also learn which

blocks have been measured. That is, after ti,Mal knows {σ(1), . . . , σ(i)}. Based on this,Mal

can infer {σ(i+1), . . . , σ(n)}. This is different from knowing precise values σ(i+1), . . . , σ(n);

see Section 5.4.2 below. We refer to this as the KFC model.

This greater knowledge might stem from a side-channel vulnerability in the implementation

ofMP, e.g., if measured blocks can be distinguished from non-measured ones from the point

of view ofMal. Alternatively, it could be the result ofMP carelessly storing {σ(1), . . . , σ(i)}

(See Section 5.7).

Theorem 5.2. The optimal strategy for KFC Mal is to change its location to Mσ(1) imme-

diately after t1. The probability of evasion is:

PFC = 1− 1

n

Proof. Since σ(1) is unknown before t1, Mal can not make any informed decision, and

thus would be discovered if m1 = σ(1). After t1, Mal knows that Mσ(1) was measured.

Thus, it can safely relocate there and remain until the end. The result follows trivially:

Pr(m1 = σ(1)) = 1
n
.

Knowledge of Future Order (KFO)

In addition to future coverage,Mal might know σ(i+1), . . . , σ(n), and thus also {σ(1), . . . , σ(i)}.

Whether Mal also knows the past order of coverage (σ(1), . . . , σ(i)) is irrelevant; see Sec-

tion 5.5. Mal might acquire this additional knowledge due to σ(i+ 1), . . . , σ(n) being inse-

curely stored byMP; see Section 5.5. The leakage can also occur due to some vulnerability

in the random block selection process, e.g., in case of a weak random number generation.
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We refer to this as the KFO model.

Theorem 5.3. The optimal strategy for KFO Mal is to relocate to any Mj with j 6= σ(1)

before t1 if Mσ(1) is its initial location, and then to Mσ(1) immediately after t1. The probability

of evasion is:

PFO = 1

Proof. If Mal is located in σ(1) (the next block to be measured), it must relocate. After

t1, Mal knows that Mσ(1) was measured, so it can safely relocate there and remain to the

end. Consequently, Mal must move once (or twice, if Mσ(1) is its initial location) in order

to evade detection.

5.5 Discussion

We now discuss the viability of aforementioned malware flavors and several related issues.

5.5.1 Realistic Scenarios

We believe that KFV is quite realistic. It requires little insight and sophistication from

Mal. It is viable even with a secure hybrid RA framework and a secure handling of σ. As

discussed in Section 5.5.2, even when Mal’s timing estimates are inaccurate, it can attain

the probability of evasion close to e−1. In contrast, KFC and KFO Mal flavors are more

far-fetched, as long as σ is placed in secure storage, or stored elsewhere in an encrypted and

authenticated form; see Section 5.7.2 Therefore, the rest of this paper focuses on KFVMal.

2However, KFC or KFO might be possible if faulty MP leaks information about σ, or if σ is leaked via
some other side-channel means.
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5.5.2 Unknown Timing

Recall that KFV Mal is assumed to know (t1, . . . , tn). This may not always be the case in

practice. For instance, other active processes might distort the timing, or spurious delays

might be introduced by the MP, as a potential countermeasure.

One possible strategy forMal is to relocate as often as possible. As follows from the proof of

Theorem 5.1, as long asMal relocates at least once between two blocks being measured, the

predicted probability of successful evasion is reached. While precise values for (t1, . . . , tn)

may not be known, Mal can easily determine the lower bound on the time to measure one

block. If Mal relocates with a frequency of that lower bound, it can attain the evasion

probability of e−1.

5.5.3 Mal in Multiple Blocks

Despite the earlier assumption,Mal might not fit in a single memory block. Let s denote the

number of blocks occupied by KFV Mal. Its evasion probability can be viewed as evasion

by s separate single-block pieces of malware, with the probability of:

PFV(S = s) = PFV(S = 1)s ≈ e−s.

5.5.4 Active vs Reactive Malware

So far, we assumed thatMal is active throughoutMP. We now broaden this to includeMal

which wakes up (becomes active) at some point during RA. Let w be the number of memory

blocks measured thus far. Let Pactive(n, s) be the probability of evasion of an active Mal of

size s for a given strategy on measurement of n blocks. The probability Preactive(n, s, w) of
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Figure 5.1: Effect of reactive malware.

Mal following the same strategy reacting after w blocks is:

Theorem 5.4.

Preactive(n, s, w) =

(
n−s
w

)(
n
w

) Pactive(n− w, s)

Proof. The
(n−s

w )
(n
w)

factor is the probability of none of Mal’s s blocks being chosen in first w

measurements. It is a special case of a hypergeometric distribution. The second factor is the

probability that an active Mal escapes detection, with n− w blocks remaining.

It follows trivially that Preactive(n, s, 0) = Pactive(n, s). Figure 5.1 shows the effect of Mal

that is only active after w steps.
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5.5.5 Limited # of Interruptions

We now consider the case when KFV Mal is limited to at most k interruptions during the

entireMP instance. This might be motivated byMal aiming to reduce its timing footprint.

Indeed, one possible countermeasure for MP (with SMARM ) that suspects self-relocating

Mal presence is to measure its total elapsed (wall-clock) time. If it diverges significantly

from the expected time, and if there is no legitimate justification, it can be an indication of

activity by frequently relocating Mal.

Theorem 5.5. The optimal strategy for KFV Mal limited to k interruptions is to change

its location after each group of n/(k + 1) blocks is measured. It thus moves k times and its

probability of evasion is:

PFV(K = k) =

(
1− 1

k + 1

)k+1

Proof. Theorem 5.1 showed that relocating is always preferable forMal to remaining in the

same block. What remains to determine is when to optimally make theses interruptions.

Let n1, . . . , nk be the number of blocks measured before each interruption, and let nk+1 =

n−
∑k

i=1 ni be the remaining blocks after the last interruption. The probability for Mal to

escape detection is thus:

P =
k+1∏
i=1

(
1− ni

n

)

Let P be the probability pertaining to the strategy n1, . . . , nk. Let an alternative strategy
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n′1, . . . , n
′
k (and the corresponding probability P ′) be defined as:

n′i =


na + c if i = a

nb − c if i = b

ni else,

for a 6= b : na ≥ n/(k + 1), nb ≤ n/(k + 1). Such a pair is guaranteed to exist because

nk+1 = n−
∑k

i=1 ni. We thus have:

P

P ′
=

(
1− na

n

) (
1− nb

n

)(
1− na+c

n

) (
1− nb−c

n

)
=

(
1− na

n

) (
1− nb

n

)(
1− na

n

) (
1− nb

N

)
+ c

n

(
nb

n
− na

n

)
− c2

n2

.

Since na ≥ nb, the denominator is smaller than the numerator, and thus P ≥ P ′. This shows

that any strategy that diverges from ni = n/(k + 1) will be sub-optimal.

5.6 Reliable Detection

Using SMARM , the probability that one measurement does not detect Mal presence is

non-negligible. However, if multiple measurements are taken, the overall false negative prob-

ability decreases exponentially. Multiple measurements can be obtained via: (1) independent

consecutive RA instances, (2) batch mode, e.g. Vrf sends m challenges at once and receives

m measurements, or (3) self-measurements by Prv itself, as described in [20]. Given m inde-

pendent measurements, each with probability P of a false negative, the overall false negative

probability is Pm = Pm. That is, with P = e−1 this gives, e.g., P7 < 10−3, and P13 < 10−6.
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5.7 Block Permutation in Practice

This section discusses a trial implementation of random block shuffling and its security

implications.

5.7.1 Permutation Computation and Storage

Recall that the random one-time permutation σ is computed at the start of MP, prior to

measuring any memory blocks. One way to compute it efficiently is by using the well-known

Fisher-Yates [32] (also known as Knuth’s [46]) shuffle method.

Prv’s PRNG is seeded with H(c,K) where c is Vrf’s challenge, K is the key securely stored

by Prv (as part of SMART), and H is a hash function. As mentioned in Section 6.3, we

assume that Prv authenticates each attestation request. Once an attestation request is

validated, Prv knows that c (contained therein) is unique; hence, H(c,K) is unique as well.

This guarantees that random values σi produced by PRNG are both fresh and secret, i.e.,

unpredictable by Mal.

Once computed, σ = {σ(1), . . . , σ(n)} is stored in secure memory. The underlying security

architecture ensures that (similar to K), σ can be written and read only by MP. This

requires ndlog ne bits of storage. When the measurement of block Mσ(i−1) is completed (or

when MP starts at i = 1), σ(i) is read and Mσ(i) is fed to the MAC function. Once all

blocks are measured, σ remains in secure storage. It is then over-written at the start of the

next RA instance.

If the size of the additional secure storage is a concern, the following variant is an alternative.

The permutation σ is instead stored encrypted and authenticated in insecure storage, and no

additional secure storage is required. Each index σ(i) is encrypted individually as a block of
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the block cipher. Since efficiency is a concern, the block cipher operates in CTR mode [26],

so that random access to individual σ(i) is possible. The counter is set to a concatenation

of the Vrf one-time challenge c and i. The encryption of σ(i) is thus EK(c||i)⊕ σ(i).

In addition, a MAC of the encrypted σ(i) is concatenated (cf. Encrypt-then-Mac [40]). A

scenario where n > 2128 being unrealistic, using a block cipher and MAC with a block size of

128 is sufficient. For instance, using AES-128 as E and a SHA-2-based HMAC means that

σ is stored on 48n bytes. At the start of the measurement of each block, the encrypted σ(i)

is decrypted, its MAC verified, and the corresponding block read.

This variant trades off secure storage for regular storage and increased computation cost (see

experiment results in Section 5.8).

5.7.2 Memory Overhead

We estimate memory overhead for storing σ on I.MX6-SabreLite [10], a popular and inex-

pensive development board representative of low- to medium-end IoT devices.

As discussed in Section 6.3, the maximum non-interruptibility interval tmax influences block

size and their number. Given total memory size |M | and throughput θ n = |M |
θtmax

. This

allows us to predict the amount of storage for σ. Figure 5.2 shows this overhead, for varying

values of tmax and |M |, with a throughput of θ ≈ 20.48MB/s.

Figure 5.3 shows the probability of evasion for KFV Mal. It shows that a higher tmax

decreases the chances of escaping detection. As evident from Figure 5.2, it also requires less

storage. However, in order to guarantee good availability on Prv, tmax should not be too

high.
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Figure 5.2: Memory requirement for σ on a I.MX6-SabreLite, as a factor of tmax and |M |.
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Figure 5.3: Probability of evasion for KFV Mal, on a I.MX6-SabreLite, as a factor of tmax

and |M |. Mal is proactive and is of size s = 1.
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5.8 HYDRA Implementation

5.8.1 Overview

We implemented SMARM in the context of HYDRA [30] on an I.MX6-SabreLite. Recall

from Chapter 4 that HYDRA implements a hybrid RA design for devices with a Memory

Management Unit (MMU). It builds upon the formally verified seL4 [45] microkernel, which

ensures process memory isolation and enforces access control to memory regions. Using the

(mathematically) proven isolation features of seL4, access control rules can be implemented

in software and enforced by the microkernel.

HYDRA stores K and attestation code in a writable memory region and configures the

system such that no other process, besides MP, can access these memory regions. Access

control configuration in HYDRA also involves MP having exclusive access to its thread

control block as well as to memory regions used for key-related computations. MP starts

with the highest maximum controlled priority (MCP). This ensures MP execution will run

uninterruptedly as long as its “priority” remains the highest. Note that, in seL4, a priority

is the effective priority of a process, which can be increased and decreased at run-time as

long as it does not exceed its MCP value. In contrast, a process cannot increase its MCP

after it is set (but a decrease is possible).

The formally verified version of seL4 uses a simple preemptive round-robin scheduler. Pro-

cesses with the same priority take turns to execute for the same time-slice of length tslice,

unless pre-empted by a higher-priority process.

The measurement procedure in the HYDRA-based SMARM implementation is as follows.

At the start of a time-slice,MP is set to highest priority (so that it can not be interrupted).

Once the measurement of the block is done (this takes tmax seconds), MP decreases its

priority and yields (via the seL4_Yield system call) its remainder of the time-slice. This
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Figure 5.4: Runtime of SMARM with/without secure storage for σ as a factor of n. |M | is
fixed to 256MB. It is also assumed that no other process exists besides MP.

allows another process (which may include Mal) to run immediately after each block is

measured with a fresh time-slice. Once the next time-slice of MP begins, the next block is

measured 3.

5.8.2 Experimental Results: SMARM with/without Secure Stor-

age

We generate the random permutation σ using the Fisher-Yates shuffle method, discussed in

Section 5.7. The PRNG is implemented using AES-256 in CTR Mode, seeded with SHA-

256(c,K). In the variant where secure storage is not available, we implement the underlying

block cipher and MAC function as AES-128 and SHA-256-based HMAC respectively.

3Technically, each interrupting process, besides MP, is allowed one time-slice (round-robin scheduling).
However, for simplicity we assume a single (possibly infected) such process performing Prv’s main task.
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Figure 5.4 shows overall runtime of these two variants (i.e. SMARM with/without secure

permutation storage) compared to that of the baseline measurement. With enough secure

storage, SMARM incurs 41% overhead over the baseline measurement with n = 2048 (or

tmax = 0.006s). This overhead decreases as n decreases; it achieves 0.8% at n = 32 (or tmax =

0.4s). On the other hand, without secure storage for σ, SMARM spends significant amount

of time performing additional encryptions and MAC computations. The overhead in this

case can be as high as 10,636% (at n = 2048) and as low as 2% (at n = 1). Thus, it might be

more beneficial to deploy a lower number of memory blocks if a device does not have room

for secure storage.

5.8.3 Experimental Results: Different tslice and tmax

Figure 5.5 illustrates the worst-case runtime of SMARM on this HYDRA implementation,

compared to the uninterrupted measurement of M , as a factor of tslice, tmax, and |M |. The

overall SMARM runtime: (1) increases as tslice increases, and (2) decreases as tmax increases.

We found that the overhead can be up to a factor of 1 + tslice
tmax

, while another process can run

for up to tslice seconds every tslice + tmax seconds.
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Chapter 6

Memory Locking

6.1 Introduction

Computation over a large amount of input data is never instantaneous. Even if input size

is moderate, computation can take a long time, e.g., if it involves cryptographic primitives,

or takes place on a slow (low-end) processor. Assuring atomicity (i.e., uninterruptibility) of

computation might be impractical or even unsafe if the underlying system provides safety-

critical or real-time service. Meanwhile, if computation is cryptographic in nature and its

purpose is to ensure integrity, the result must be temporally consistent. In other words,

it must, at least1, reflect the exact state of input data at some point in time. These two

requirements are potentially conflicting: if integrity-related computation is interruptible, its

input might change, such that the result is inconsistent (i.e., wrong) or non-sensical, i.e., it

might correspond to the state of input that did not exist at any one time. This issue has

been surprisingly under-appreciated in the security research literature.

More generally, we argue that temporal consistency is important in computing any integrity-

1We say “at least” to mean that the definition of temporal consistency can be expanded to encompass
an interval of time, rather than a single point in time.
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ensuring function, e.g., checksums for error detection, and not only security-relevant ones

such as hash functions, MACs and digital signatures. All these functions are designed to

operate on static input data, which is assumed by their standard (security) definitions.

This discrepancy between (implicit) theoretical assumptions and implementations is espe-

cially relevant in the context of RA. RA is a security service for remotely assessing integrity

of software and memory (as well as other types of storage) in embedded devices. It is typi-

cally realized as an interaction between a trusted entity (verifier or Vrf) and an untrusted,

potentially malware-infected, remote device (prover or Prv). Upon a request by verifier,

prover computes a measurement of its internal state and returns the result to verifier for

validation. The measurement procedure is essentially an integrity-ensuring function with

additional security (particulars of which depend on the specific flavor of RA) to prevent

malware from falsifying results. Consistency is of paramount concern for RA, since a mea-

surement result must faithfully reflect the state of prover’s memory at some point. (NOTE:

Hereafter, we use consistency as a shorthand for temporal consistency). Looking at prior RA

literature, it is unclear exactly at what time – or time interval – this must hold:

1. Time when verifier’s request is sent to prover?

2. Time when verifier’s request is received by prover?

3. Time at prover at the very start of its measurement?

4. Time at prover at the very end of its measurement?

5. Any time (or interval) between the last two?

6. The entire period between start and end measurement?

Although this list is not exhaustive, it enumerates the obvious choices.

As an illustrative example, consider a sensor/actuator fire alarm application running on

“bare-metal” in a low-end embedded device. This application periodically checks the value

of a sensor and triggers an alarm whenever that value exceeds a certain threshold. Given
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Figure 6.1: Program memory of infected Prv before (at t1), during (at t2, t3) and after (at t4) the
measurement process.

its safety-critical function, software integrity of this device is periodically checked using

RA. Upon receipt of a request from the verifier, the measurement process interrupts the

application and takes over. The measurement process must run uninterrupted in order to

accurately reflect current state of prover’s software. One obvious downside of uninterrupted

measurement is that the safety-critical application is dormant during this process, even if a

real fire occurs.

Whereas, if we favor the critical application and allow the measurement process to be in-

terrupted, another problem arises. Suppose that the device is infected by self-relocating

malware – the type of malware that can move itself around – as a whole, or in pieces – in

device’s memory and other storage, in order to evade detection. Figure 6.1 illustrates how

such malware can escape detection during execution of the measurement process (MP). The

attack can be constructed as follows:

1. At time t0, malware enters and infects Prv. We assume that malware resides at the tail

end of program memory. If program memory is insufficient to contain both existing

firmware and malware, the latter can use the executable compression technique [90] to

reduce the sizes of both firmware and itself.
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2. At time t1 > t0, malware intercepts Vrf’s attestation request, e.g., by modifying the

interrupt handler for the network device driver. It then sets an interrupt timer for t2

and invokes MP.

3. MP runs without interruption from t1 to t2.

4. At t2 > t1, malware interrupts MP. It then copies itself to the part of memory that

was already measured, erases itself from its prior location, and resumes execution of

MP.

5. At time t4, MP completes and produces the measurement for delivery to Vrf.

Throughout this process (t1 → t4) malware is never covered by MP. It thus successfully

escapes detection, since the measurement reflects a malware-free state.

Although dangers of self-relocating malware were anticipated in the design of some software-

based attestation methods, e.g., Viper and Pioneer [52, 79], tradeoffs between uninterrupt-

ibility (and atomicity) and integrity measurement consistency have not been considered in

hardware and hybrid attestation designs. Despite their drawbacks, software-based attes-

tation techniques are inherently less vulnerable to self-relocating malware, since their mea-

surement process involves precise timing which would be noticeably skewed by self-relocating

malware (due to the latter’s efforts of copying and erasing). However, they are also unsuit-

able for remote attestation where fluctuating network delays influence overall timing. Thus,

the main goal of this chapter is to (1) investigate uninterruptibility/consistency tradeoffs,

and (2) design techniques offering a range of concrete consistency guarantees for integrity-

ensuring computations, while allowing varying degrees of interruptibility.
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Figure 6.2: Timeline for a typical RA scheme. Verifier’s request is sent at tvs and received at tpr.
Computation starts at tcs and ends at tce. Report is sent at tps and received at tvr.

6.2 Temporal Consistency

In recent years, RA emerged as a distinct security service for detecting malware on CPS,

ES and IoT devices. It involves verification of current internal state (i.e., RAM or flash) of

an untrusted remote hardware platform (prover or Prv) by a trusted entity (verifier or Vrf).

RA can help the latter establish a static or dynamic root of trust in Prv and can also be used

to construct other security services, such as software updates [78] and secure deletion [69].

6.2.1 RA Blueprint

A typical RA scheme operates as follows:

1. Vrf sends a challenge-bearing attestation request to Prv at time tvs

2. Prv receives it at time tpr

3. Computation of MP starts at time tcs

4. Computation of MP ends at time tce

5. Prv sends the attestation report to Vrf at time tps

6. Vrf receives it at time tvr

The timeline for this sequence of events is shown in Figure 6.2. Computation of MP (in

gray) may be deferred due to networking delays, Vrf’s request authentication, or termination
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of the previously running task. However, typically, tpr ≈ tcs and tce ≈ tps. Also, Prv has no

control over tvs and tvr. Consequently, hereafter we only consider ts := tcs (with tcs = tpr)

and te := tce (with tps = tce).

As discussed in Section 6.1,MP may require time-consuming computations. The exact time

it takes depends on the size of Prv’s memory, its computational capability, and the underly-

ing cryptographic function(s). As a sample hardware platform, we considerMP running an

ODROID-XU4 [37] – a single-board computer representative of medium-to-low-end embed-

ded systems. In most cases, (keyed) hashing2 is the dominant computation, unless memory

to be attested is very small, or the signature algorithm is particularly expensive. Figure 6.3

shows the costs of these operations, for various attested memory sizes and cryptographic

algorithms3. Above 1MB, MP takes longer than 0.01sec, and the cost of most signature

algorithms become comparatively insignificant. Results show that even hashing a reasonable

amount of memory incurs a significant delay. For example, it takes about 0.9s to measure

just 100MB on ODROID-XU4. Its entire RAM (2GB) can be measured in about 14s. In a

safety-critical setting, this is definitely too long for MP to run uninterrupted.

Recent hybrid RA architectures, such as TrustLite [47] and TyTAN [11], permit tasks to be

interrupted. While this allows for time-/safety-critical processes to run and preserve Prv’s

critical functionality, attestation results might be inconsistent. Indeed, in TrustLite, since

memory can change during execution of MP, the report produced and sent to Vrf might

correspond to a state of Prv’s memory that never existed in its entirety at any given time.

This is problematic if Prv is infected with self-relocating malware. Assuming that such

malware resides in the second half of Prv’s memory, it can interrupt MP after the latter

covers the first half of Prv’s memory, copy itself into the first half, erase traces in its former

location, and resume MP. This way, malware remains undetected despite the fact that all

2Or encryption for CBC-MAC.
3For HMAC, the cost of the second hash is negligible compared to hashing data. Signature time is

independent of data sizes, since only the hash of the data is signed.
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Figure 6.3: Computational costs of several hash functions and digital signatures on ODROID-XU4.

memory locations have been measured.

In TyTAN [11], memory of each process is measured individually. While higher-priority

processes may interrupt MP to meet real-time requirements, the process being measured

may not do so, regardless of its priority. While this protects against a single-process malware

from moving in memory, malware that is spread over several colluding processes can defeat

this counter-measure. Doing so would require malware to violate process isolation, e.g., by

exploiting an OS vulnerability. Also, in a low-end device with a single task (besides MP),

this corresponds to uninterruptibility.

SMART [31] disables interrupts as the first step in MP. This precludes self-relocating mal-

ware. Uninterruptibility is required as a means to protect the attestation key and to ensure

MP is performed from beginning to end. However, temporal consistency was not an ex-

plicit design goal of SMART. Consequently, although it coincidentally guarantees consistency,

SMART is unsuitable for time- or safety-critical applications.
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6.2.2 A Trivial Approach

One trivial and intuitive way to address the contradicting requirements of temporal consis-

tency and safety-critical operation is to first copy memory to be attested over to an area to

whichMP has exclusive write access. This way, computation can be performed on the copy

andMP can be arbitrarily interrupted. This would presumably maximize availability while

providing temporal consistency.

Unfortunately, this simple mechanism prompts some concerns. First, it requires sufficient

additional memory, which may or may not be available. Second, it requires this additional

memory to be locked (either permanently or on demand) to allowMP exclusive write access.

Third, copying represents an extra step, which results in longer delays. Finally, it does not

fully address the interruptibility/atomicity conflict; it just makes it smaller. Indeed, if copy-

ing is uninterruptible, the same time-critical issues can arise, while if interrupts are allowed,

self-relocating malware can, in principle, still evade detection. This is further discussed in

Section 6.4.3.

In the remainder of this chapter, we identify and evaluate other mechanisms that reconcile

temporal consistency with interruptible execution of MP.

6.3 Modeling Temporal Consistency

We now introduce the model and notation for temporal consistency and supporting mech-

anisms. Although we focus on RA, the model is generic and relevant to other application

domains that involve integrity-ensuring functions.

We assume that input data is located in Prv’s memory M , which consists of n contiguous

blocks [M1 . . . Mn]. Without loss of generality, we assume that block bit-size matches that
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of the integrity-ensuring function F , e.g., 512 for SHA2-HMAC, or 128 for AES-CBC-MAC.

We use Mi to denote content of the i-th block and M t
i – content of Mi at time t.

We consider computation of R = F (M). For now, we focus on temporal consistency for

sequential functions, i.e., each Mi is read and processed once during the execution of F

and blocks are processed in order: M1,M2, . . . ,Mn. We model a sequential function F as n

independent functions Fi, operating on n blocks sequentially.

Content of memory blocks may change during execution of F , i.e., it might be that M t
i 6= M t′

i

for t < t′. However, fetching Mi (to be processed by Fi) is considered to be an atomic

operation.

We define temporal consistency for integrity-ensuring functions as follows:

Definition 6.1. Output R of an integrity-ensuring function F is consistent with input M

at time t iff: R = F (M t).

We consider F to be correct and benign, i.e., it faithfully computes what it is supposed to

compute, and its implementation is bug-free. In the context of RA, this holds since MP

(containing F ) is protected by the underlying security architecture. For example, in hybrid

attestation architectures, such as TrustLite, TyTAN and SMART, MP is stored in, and

executed from, ROM.

We now consider two specific types of malware.

Definition 6.2. Self-relocating malware is present in one or more blocks of M at ts. It can

move (by copying and erasing) itself at any point during computation of F . Its purpose is to

remain in M at te while remaining undetected.

Definition 6.3. Transient malware is present in one or more blocks of M at time ts. It can

erase itself at any point during computation of F . Its purpose is to escape detection.
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If R is consistent with M at a given time t, and if R corresponds to a benign state, it is

guaranteed that no malware was present at time t. This implies that, if ts ≤ t ≤ te, self-

relocating malware cannot escape detection. Furthermore, if t = ts, neither can transient

malware.

6.4 Temporal Consistency Mechanisms

We now describe and analyze several mechanisms that offer various tradeoffs between con-

sistency guarantees and real-time requirements. Consistency is achieved through locking

memory regions, i.e., making them temporarily read-only. Such locking can be realized via

system-calls and capabilities enabled by a secure microkernel that is supported by underlying

hardware features. e.g., as in the formally-verified seL4 [45] microkernel.

Three points in the timeline of computation of an integrity-ensuring function F are partic-

ularly relevant to our discussion (see also Figure 6.4):

1. ts, the instance where the computation of F starts ;

2. te, the instance when the computation ends ;

3. Optionally, tr when Prv is explicitly requested to release an existing lock. This release

request might come from Prv itself, for instance if R is no longer relevant.

ts te tr

A B C D

Figure 6.4: Timeline for computation of R = F (M). Computation starts at ts and ends at te.
Consistency of R is considered until tr. A change to M at time A or D has no effect. Impact of a
change at time B or C depends on the consistency mechanism.
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6.4.1 Simple Approaches

We begin with three obvious options.

No-Lock

The simplest mechanism is a strawman that does not lock memory. The result is computed

using contents of each memory block Mi at the time when Fi processes it, which means that

it provides no consistency guarantees. Consequently, it might not detect self-relocating or

transient malware; see Table 6.1.

All-Lock

The other extreme is to lock the entire memory M at ts, and leave it locked throughout

computation of F , finally releasing it all at te. This provides very strong temporal consistency

guarantees at the cost of being very restrictive and unfriendly to interrupting (potentially

critical) tasks that may require modifying locked memory. R is consistent with M within

[ts, te]. This also implies that M is immutable and thus constant from ts to te.

All-Lock-Ext

An extended variant of All-Lock that provides extra consistency keeps all memory locked

until tr. Similar to All-Lock, R remains consistent with M at every [ts, tr], and M stays

constant from ts to tr. An extended lock can be advantageous if the verifier wishes to

guarantee that Prv is in a given state at a particular time tr, as opposed to “some time in

the past”.
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6.4.2 Sliding Locks

A natural next step for ensuring temporal consistency is to implement “sliding” mechanisms

to dynamically lock or unlock blocks of memory during execution of F . Variations of this

mechanism are described below and pictured in Figure 6.5.

Decreasing Lock (Dec-Lock)

This is a less restrictive version of All-Lock, which still provides strong consistency guar-

antees. Entire M is locked at ts, and each Mi is released as soon as Fi completes processing

it. The output R is consistent with all of M at time ts only. This implies detection of any

malware present in M at ts.

Let ti be the time that Fi starts/that Mi is loaded. We have the additional guarantee that

Mi remains constant between ts and ti. It is therefore beneficial to start the computation of

F with memory blocks availability of which (to other processes) is important.

Increasing Lock (Inc-Lock)

This variant is the opposite of Dec-Lock. The main idea is to lock blocks as they are

processed. With entire M unlocked at ts, it becomes gradually locked as computation of F

proceeds, until it is completely locked at te, after which it is fully released. Each Mi is locked

only when it is time for Fi.

Output R in this case is consistent with M at te only. This implies detection of self-

relocating, though not transient, malware. Also, Mi remains constant between ti and te.

Unlike Dec-Lock, it is beneficial to finish computing F with blocks that require high avail-

ability, since they are locked for the shortest time.
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Table 6.1: Malware detection features.

Migratory Malware Transient Malware
No-Lock 7 7

All-Lock 3 3

Dec-Lock 3 3

Inc-Lock 3 7

Cpy-Lock 3 3

As discussed in Section 6.4.4, Inc-Lock is better-suited for handling non-sequential functions.

On the other hand, locking M can influence the value of the end-result R. In contrast,

Dec-Lock guarantees consistency at ts when locking has no impact on R. We consider this

to be a subtle yet important distinction between Dec-Lock and Inc-Lock. Put another way,

since Dec-Lock does not interfere with any process until ts, the result R over the snapshot

of M at ts is in no way influenced by the computation of F . However, Inc-Lock gradually

locks memory and any process that interrupts the execution of F may or may not have write

access to parts of memory that it needs: the farther along is the computation of F , the less

memory is left unlocked (writable).

Extended Increasing Lock (Inc-Lock-Ext)

As with All-Lock-Ext, it is possible to add extra-computation consistency to Inc-Lock by

only releasing the lock at tr, instead of te. R thus remains additionally consistent with M

within the interval [te, tr], and M stays constant in [te, tr]. This type of extension is not

naturally applicable to Dec-Lock since memory is not locked at te.

6.4.3 Mixing Copying with Locking

To minimize the impact on time-critical tasks, M can be first copied to M ′ and computation

of F can be performed with the latter as input. This approach is described below and shown
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Figure 6.5: Sliding mechanisms discussed in Section 6.4.2. M is represented horizontally. Locked
portion of M is in gray.

in Figure 6.6.

Copy Lock (Cpy-Lock)

Cpy-Lock reduces the time M is locked by first cloning it and running F over the copy. A

lock on M is acquired at ts and M is copied to another memory segment, M ′, which is also

locked. M ′ may be a pre-locked portion of memory allocated to F , or a lock on it may be

acquired at ts. Once copying is finished at time tc, M is entirely free. The second step is to

proceed to computing R = F (M ′).

The same guarantees as All-Lock apply here: R is consistent with M in [ts, tc].

Cpy-Lock only makes sense if tc < te, i.e., if computation of F is more time-consuming than

copying M . Depending on how memory locking and unlocking is implemented, it might

be better to use Dec-Lock during the copy, instead of All-Lock. Even though the process

is less streamlined and possibly less efficient, it may be friendlier towards real-time write

requirements on M . Likewise, it is possible to dynamically acquire and release the lock on

M ′ if it is not entirely allocated to F .
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Figure 6.6: Mechanisms discussed in Section 6.4.3. M is represented horizontally. Locked portion
of M is in gray.

Cpy-Lock & Writeback

To extend consistency until tr, one can copy M ′ back to M once computation of F (M ′) is

finished. M is locked at te until tr. This way, R is consistent with M within the intervals

[ts, tc] and [te, tr]. Consequently, M ts = M te , and M remains constant between te and tr.

Similar to Cpy-Lock, it might be less constraining to use Dec-Lock during the copy and

Inc-Lock during the writeback, instead of All-Lock.

6.4.4 Variations on the Theme

We outline some extensions to previously discussed mechanisms.

Non-Sequential Functions

Some functions are not sequential, e.g., they might require input blocks to be used concur-

rently or might reuse blocks in computation. Simple mechanisms (No-Lock or All-Lock)

are not affected by this. However, dynamic locking techniques need to be amended.

A lock on Mi needs to be acquired the first time that block is needed by F . Likewise, a lock

on Mi can only be released when Mi is no longer required. Consequently, in non-sequential
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Figure 6.7: Locked memory in sliding mechanisms of Section 6.4.2 for non-sequential F . Time
goes from top to bottom, and M is represented horizontally. Locked portion of M is in gray.

functions, locks may be acquired sooner, or released later, than in sequential functions.

Figure 6.7 shows the effect on Dec-Lock and Inc-Lock. A larger gray area indicates more

restrictive operation for real-time systems (for the same guarantees of consistency), though

still less restrictive than the All-Lock.

Dec-Lock requires the execution environment to be aware of blocks that are no longer needed

for the remainder of computation of F . If that information is not available, locks cannot be

released until te, in which case Dec-Lock degenerates to All-Lock. Inc-Lock does not have

this issue (blocks are locked the first time they are needed for F and not freed until te).

Adaptive Locking

Multiple mechanisms can be combined in order to achieve alternative timings of consistency

in computing F . For example, to achieve consistency at tk (ts ≤ tk ≤ te), we can combine

the use of: (1) Inc-Lock on [M0, . . . ,Mk], and (2) Dec-Lock on [Mk, . . . ,Mn]. Nevertheless,

it is somewhat unclear if and when such hybrids may be useful in practice. One potentially

relevant application is adaptive locking that aims to minimize impact on other processes,

especially, if the execution environment is aware of other processes’ interrupt schedules.
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Lazy Copy (Cpy-Lazy)

Another variation of copy-based mechanisms in Section 6.4.3 is Cpy-Lazy. It involves using

All-Lock4 on M with a lazy (or reactive) copy mechanism. When another process interrupts

F and, during its execution, wishes to write Mi, this block is first copied to M ′
i . The lock

on Mi is then released so the process can write to it. The rationale for Cpy-Lazy is that

copying only what is, and when, necessary reduces overhead. This is particularly relevant

when few blocks are likely to be modified during computation of F . However, if many

blocks are to be modified and copied, cumulative overhead might exceed that of a single

bulk copy. Another consideration is whether there is OS or hardware (e.g., MPU) support

for the “interrupt-on-write” primitive required to implement Cpy-Lazy.

6.4.5 Uninterruptibility vs. Locking

All mechanisms described above achieve consistency by temporarily locking (parts of) mem-

ory. As mentioned earlier, uninterruptibility of computation of F (e.g., as in SMART [31])

also provides consistency, though rigidly, i.e., for the interval [ts, te]. There are other differ-

ences:

• Even when M is locked entirely or partially, other processes can interrupt execution of

F and modify memory outside of M , as well as read all memory, including M . This

does not violate consistency of F ’s result R.

• Whereas, if F is uninterruptible and the underlying hardware platform is a single-CPU

device, other processes are completely blocked, regardless of whether M is locked.

• If multiple CPUs have shared memory access, uninterruptibility does not guarantee

consistency, since a process running on a CPU different from the one running F can

modify M concurrently.

4It can also be easily adapted to Inc-Lock and Dec-Lock.
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• Locking is more flexible than uninterruptibility: while locking and unlocking of M

can be dynamic and gradual (i.e., block-wise), execution of F is rigid: either it is

interruptible or not. For example, SMART provides consistency only because, in a

single-CPU device, uninterruptibility is equivalent to All-Lock.

6.4.6 Memory Access Violations

If some process P ′ tries to write to Mi which is currently locked by process P running F ,

a memory access violation occurs (recall that read access to M requires no extra handling).

P and P ′ might be running concurrently, on different CPUs, or P ′ might have interrupted

P . There are several alternatives:

If P handles the situation, one possibility is to abort F and terminate P . This approach

is the most friendly with respect to P ′ and other processes. However, it makes it easy for

a malicious process to starve P , i.e., prevent F from ever completing. Otherwise, we can

adopt the reactive Cpy-Lazy approach discussed in Section 6.4.4. Alternatively, P ′ can be

aborted. Though this would allow P (and thus F ) to complete uninterrupted, it might be

impractical in safety-critical scenarios. Another possibility is to stall P ′ until Mi is unlocked.

This approach is gentler, although it might still be problematic, depending on how long P ′

has to wait.

6.4.7 Inconsistency Detection

Another approach to enforce consistency is to detect inconsistency. The memory M is not

locked but instead a trigger is setup such that the integrity measuring (e.g., attestation)

process is alerted if any changes occur to M during the computation of F . If any such

changes occur, the result produced is thus no longer consistent throughout the computation.
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Depending on the strategy for dealing with inconsistency, the computation of F can be

stopped, continued, or restarted. An implementation of this is presented and discussed in

Section 6.7.4.

The clear benefit of inconsistency detection over consistency enforcement is that it does

not interfere with the execution of other processes. This is particularly relevant in time-

critical applications when availability must be maintained at all times. The drawback is

that consistency might not be guaranteed, depending on the strategy used whenever an

inconsistency is detected. This may lead to attestation never terminating if inconsistencies

are constantly created, even by benign software.

6.5 Temporal Consistency Security Game

In this section, we develop a new definition for a security game that captures temporal

consistency in the context of secure remote attestation. We build upon the theoretical model

of a processor architecture and syntax from [54]. The work in [54] focuses on virus detection

by constructing a scheme that interleaves secret shares of cryptographic keys with the actual

memory. This scheme requires modifications to the instructions of the processor, in order

to reconstruct such keys and use them to ensure integrity (and thus detect unauthorized

modifications by malware) of memory content with every read and write. Our work differs

from [54], since we do not require any modification to the underlying processor architecture,

as evident in our implementation.

6.5.1 System (Memory and CPU) Model

We model the prover as a random access machine RAM made up of two components: a

random access memory M, and a central processing unit CPU. M consists of three sections:
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1. MEM– standard random access memory.

2. ROM– read-only memory. This section of memory will store the code for a measuring

process MP.

3. ProMEM– protected memory, that can only be written to from instructions in ROM. This

section of memory will store data to be used by the MP in ROM.

CPU consists of registers (including input and output register) and an instruction set. Com-

munication between M and CPU occurs in fetch-execute cycles, which are referred to as rounds

below.

6.5.2 Syntax of a Consistent Integrity-Ensuring Measurement Scheme

A consistent integrity-ensuring measuring scheme (CMP) is a tuple of algorithms (Gen,

Challenge, Respond, Verify) defined as:

• Gen(λ): Generates a secret key K on input of a security parameter λ.

• Challenge(s): Generates a random challenge c on input of a seed s.

• Respond(M, c,K): Generates a response r to a given challenge c (based on content of

memory M).

• Verify(c, r,K): Outputs a bit b indicating whether r is a valid response to the challenge

c.

6.5.3 Consistent Integrity Ensuring Measurement Attack Game

In the following game, A is allowed to choose a piece of code (or data) to inject into memory

at any point in time. At some point in time chosen by A, a challenge is issued. A wins if its

code (or data) is injected before the game ends, but the response to the challenge is correct.
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Table 6.2: Notation

A The adversary
C The challenger
ρinit # rounds at beginning of security game

(before issuing challenge)
ρinsert # rounds before A’s code is injected
ρattest # rounds after issuing the challenge
v Code that A injects into MEM

MP Integrity-ensuring measurement function
that runs Respond algorithm.

Recall that, in Section 6.2, we described a typical RA scheme as follows:

1. Vrf sends a challenge-bearing attestation request to Prv at time tvs

2. Prv receives it at time tpr

3. Computation of MP starts at time tcs

4. Computation of MP ends at time tce

5. Prv sends the attestation report to Vrf at time tps

6. Vrf receives it at time tvr

The formal security game of CMP is defined in terms of rounds, where if tvs = tpr = tcs,

they would all correspond to the instant at the end of the rounds ρinit when the challenge

is issued. The end of ρattest corresponds to time when computation of the integrity ensuring

function ends at: tce = tps = tvr.

Definition 6.4. We say that a consistent integrity-ensuring measuring scheme (CMP) is

secure if a non-empty piece of code is inserted before the attack game terminates, and:

Pr (b = 1) ≤ µ(λ)

where µ(λ) is a negligible function.

Figure 6.8 contains the definition of the security game for a consistent integrity-ensuring
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measuring scheme (CMP).

Shared by A and C: random access machine RAM = (M, CPU), program W , integrity ensuring
measurement function MP (e.g., an HMAC), security parameter λ, and consistent

integrity-ensuring measurement function CMP.

1. A chooses the following and provides them to C:
• Inputs: x = x1|| . . . ||xi for RAM.
• Values: ρinit, ρinsert and ρattest, all polynomial in λ.
• Code v to be injected into MEM, and memory location i to insert it (and optionally

a list of other memory locations v should be moved to at subsequent rounds after
insertion at ρinsert).

2. C runs Gen(λ) to generate setup parameters.

3. C simulates ρinit rounds of execution. If round ρinsert is reached, v is inserted into MEM at
the beginning of that round. If program halts, go to step 4.

4. C initiates CMP by generating a challenge c by invoking Challenge and writing it to
the input register. C invokes ROM which contain executable code of MP. C simulates
execution of ρattest rounds. If round ρinsert is reached, v is inserted into MEM at the
beginning of that round. If program halts, proceed to step 5.

5. C interprets data in output register as r, a response to its challenge, and outputs bit b,
which is the result of Verify(c, r,K).

Figure 6.8: CMP Security Game

6.6 Security Arguments & Considerations

We consider two approaches: Dec-Lock and All-Lock, and sketch out corresponding security

proofs. Security of remaining approaches is quite similar. For the purpose of this section,

our instantiations of Dec-Lock and All-Lock is within the HYDRA architecture. Proof

sketches are only valid for these specific instantiations since they rely on features ensured

by HYDRA. The required (memory isolation and access control) features are instantiated in

HYDRA using seL4 which is formally verified. HYDRA uses a secure HMAC as the MP.
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6.6.1 Preliminaries and Assumptions

We capture HYDRA features by the following assumptions:

1. Assumption-1 (memory access control): memory regions locked, or configured as read-

only, cannot be written to by any process.

2. Assumption-2 (memory isolation): each process, except the attestation one, can only

access its own memory space.

3. Assumption-3 (MP is secure): A secure HMAC is used to implement MP.

6.6.2 Proof Sketch for Dec-Lock

Considering the security game in Figure 6.8, there are two cases:

1. A supplied ρinsert ≤ ρattest

2. A supplied ρinsert > ρattest

The first case is trivial, since there is no memory modification after attestation starts, i.e.,

temporal consistency follows by construction of the case. If everything works as expected,

MP computes r on MEM and Verify(c, r,K) should fail, i.e., b = 0. b would be 0 because v

is now in MEM before MP starts. Thus, the value of r will indicate that; otherwise, MP is

insecure, which contradicts Assumption-3. Computation, intermediate and final results of

MP cannot be directly affected, since this would violate Assumption-2.

The second case is more subtle. Recall that, in Dec-Lock, entire memory is locked at

tvs = tpr = tcs = ρinit, and incrementally unlocked as computation ofMP proceeds. Assume

that memory location i is unlocked after it is processed in round ρattest + j, i.e., one memory
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location is processed per round after attestation starts. If memory location i, where v is to

be inserted, is still locked during ρinsert, i.e., if ρattest < ρinsert < ρattest + j, then based on

Assumption-1 above, v cannot be inserted into MEM. In order to insert v, memory location i

has to be unlocked during ρinsert, i.e., ρattest+j < ρinsert; this means that during computation

of MP the memory was consistent. Note that the case of ρattest + j < ρinsert is reduced to

case 1 in the next attestation round request. Thus, security follows as the first case above.

6.6.3 Proof Sketch for All-Lock

Considering the security game in Figure 6.8, there are two cases:

1. A supplied ρinsert ≤ ρattest

2. A supplied ρinsert > ρattest

The first case is the same as in Dec-Lock.

In the second case, since ρinsert > ρattest and, at ρattest, all memory is locked, by Assumption-

1 insertion of v into location i will fail, MEM will remain consistent and a correct r will be

produced; Verify(c, r,K) will succeed and produce b = 1.

6.7 Implementation & Evaluation

Our prototype of temporal consistency mechanisms is realized in the context of HYDRA

hybrid RA architecture [30]. The design and implementation of HYDRA are discussed ex-

tensively in Chapter 4. Below, we describe implementation details of each mechanism and

assess their performance on two popular low- to medium-end development boards: I.MX6-

SabreLite [10] and ODROID-XU4 [37].
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6.7.1 Experimental Setup

Our implementation ensures temporal consistency by locking memory regions. It thus does

not require the execution of the attestation process (PRAtt) to be uninterruptible, unlike the

original HYDRA implementation [30]. As a result, all user-space processes, including PRAtt,

have the same priority in our implementation.

The microkernel executable is compiled from the unmodified seL4 source code v4.0.0 [59].

Our user-space code is based on open-source seL4 libraries [58], mostly for providing ab-

stractions for processes, memory management and virtual address space.

6.7.2 Experimental Results: Primitives

Our implementation of mechanisms discussed in Section 6.4 consists of four primitives:

LockPage, UnlockPage, CopyMem and MacMem. In HYDRA (and in seL4, in general),

locking and unlocking a memory page can be invoked from user-space (by authorized pro-

cesses) and handled inside the kernel.

To lock a specific page, PRAtt needs to perform three steps: (1) revoke all capabilities

associated with the page 5, (2) create a read-only capability to the page, (3) assign the new

capability to a targeted process and map the page into the process’ virtual address space.

Unlocking can be done similarly by using a read-and-write capability, instead of a read-only

capability. In terms of seL4 implementation, each of these primitives translates into three

function calls: seL4 CNode Revoke(), seL4 CNode Copy() and seL4 ARCH Page Map().

Another parameter related to LockPage and UnlockPage is memory page size, which can dif-

fer depending on the underlying instruction-set architecture. For instance, I.MX6-SabreLite,

5This step by default includes modifying the corresponding page table entry, clearing a cache line and
invalidating a TLB entry.

103



which is based on the ARMv7-A architecture, only supports the following page sizes: 4KB,

64KB, 1MB and 16MB. CopyMem performs a memory copy between source and destination

RAM locations. We note that only Cpy-Lock requires this primitive. Finally, MacMem per-

forms a MAC computation over a memory range. MacMem is implemented as a keyed hash

using: BLAKE2S [75], AES256-CBC based MAC [41] and HMAC-SHA256 [61] algorithms.

Figure 6.9 illustrates run-time of primitive operations on 16MB of memory. Results show

that page size heavily influences performance of LockPage and UnlockPage: the larger

the page size, the faster it is to lock or unlock memory of the same size. This is expected,

because larger pages result in fewer entries that need to be modified in a page table. Run-time

performance of CopyMem and MacMem, however, remains almost unchanged, regardless of

page size. In addition, the same figure suggests that run-times of CopyMem, LockPage and

UnlockPage are relatively fast, compared to that of MacMem. The first three primitives

take at most 9% of MacMem’s run-time.

Finally, we evaluate and compare performance of the various primitives on I.MX6-SabreLite

running at 1.0GHz, and ODROID-XU4 running at 2.1GHz. Figure 6.10 shows the results of

this comparison. It shows that: (1) run-times of LockPage and UnlockPage primitives are

still roughly the same on both hardware platforms, and (2) MacMem remains, by far, the

most time-consuming primitive.

6.7.3 Experimental Results: Mechanisms

We assess performance of five temporal consistency mechanisms – No-Lock, All-Lock,

Dec-Lock, Inc-Lock and Cpy-Lock – on the SabreLite board. No-Lock is the baseline

and it directly translates into the MacMem primitive. All-Lock, Dec-Lock and Inc-Lock

all require additional steps of sequentially locking and unlocking memory blocks. For its

part, Cpy-Lock involves all four primitives.
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Figure 6.9: Performance of primitives with 16MB of memory on I.MX6-SabreLite.

Figure 6.11 demonstrates run-time performance of aforementioned mechanisms (using BLAKE2S

as the underlying function) with various memory sizes: 16MB to 96MB, and page sizes 4KB

and 64KB. Results can be summarized as follows:

• Run-time of all mechanisms is linear in terms of memory size. This is expected since

they are built upon a sequential function, i.e., a MAC.

• Run-time of MAC computation on large memory sizes is indeed non-negligible, e.g.,

it takes around 4 seconds for keyed BLAKE2S over 96MB of memory. This clearly

demonstrates the need for ensuring temporal consistency, especially, in settings where

PRAtt needs to be interruptible.

• Run-times of All-Lock, Dec-Lock and Inc-Lock are all roughly equal, in all cases.

This is also expected, since each of these three mechanisms involves a similar number

of invocations of primitives.

• The difference in run-time between baseline and All-Lock, Dec-Lock and Inc-Lock

decreases as page size grows. This difference then becomes negligible (< 0.1%) when

page size reaches 1MB. Thus, it is beneficial to use these mechanisms with reasonably
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Figure 6.10: Performance of primitives with 16MB memory on I.MX6-SabreLite and ODROID-
XU4.

large page sizes. One disadvantage of larger page sizes is that memory pages, on

average, will be locked for longer periods.

• Cpy-Lock comes out as the preferred mechanism. It incurs small (∼ 8%) run-time

overhead; however, this mechanism provides much better availability as memory is

locked for a very short amount of time (only during the copying process). However,

recall that an obvious disadvantage is that it requires additional memory of size M ′.

(a) 4KB Page Size (b) 64KB Page Size

Figure 6.11: Run-time of various temporal consistency ensuring mechanisms in I.MX6-SabreLite.
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6.7.4 Implementation of Inconsistency Detection

We could implement the inconsistency detection mechanism by having PRAtt detect whether

any dirty/accessed bits are set after each measurement is completed. However, this obvious

approach falls short in the context of HYDRA. Doing so would imply some modifications to

the existing kernel, which may consequently break formally verified properties of seL4.

Instead, we base our implementation of inconsistency detection on the All-Lock imple-

mentation. The idea is to have PRAtt first lock memory to be attested before starting

to compute the integrity-ensuring function, e.g., the MAC. If the computation completes

without interruptions or detecting any inconsistency, PRAtt then unlocks the memory; this

scenario resembles typical All-Lock execution. However, if another process (denoted by P ′)

attempts to modify any part of the locked memory, the kernel will suspend execution of P ′

and PRAtt will be made aware of such inconsistency; PRAtt then resolves the inconsistency

by unlocking the memory and resuming execution of P ′. Note that this implementation

still requires some interference with other processes as P ′ is suspended when inconsistency

occurs. However, we show later in Section 6.7.5 that the overhead from this interference is

very small compared to the actual measurement runtime.

To implement this mechanism in HYDRA, we decompose PRAtt into the following three

threads:

• Thchecksum: computing the integrity-ensuring function and returning an attestation re-

sult to Thmain on success.

• Thfault: listening for any memory write fault and notifying Thmain when there is an

attempt to modify memory being attested.

• Thmain: managing the other two threads, locking and unlocking memory and reporting

to Vrf when an inconsistency occurs.
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Thfault Thmain Thchecksum

LockPage

DetectInconsist
ComputeChecksum

return: Checksum
Suspend

UnlockPage

output:
Checksum

return: InconsistDetected, P ′

Suspend

UnlockPage+
Resume(P ′)

Resume

return: Checksum

output:
Checksum+ Inconsist

altalt Thchecksum replies first

Figure 6.12: Sequence diagram of PRAtt with memory inconsistency detection during single at-
testation instance. PRAtt chooses to resume execution of Thchecksum after P ′ causes memory incon-
sistency.
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Unlike Thchecksum and Thmain, implementing Thfault is not trivial; it requires support from

the underlying hardware and/or kernel in order to: (1) detect whenever a process causes a

fault and (2) examine whether the fault is caused by an invalid write access and whether it

happens within a specific memory range. Fortunately, these operations are already available

in seL4 without requiring modifications to the kernel.

We implement Thfault by leveraging how a fault endpoint works in seL4. An endpoint is

an seL4 object that allows a small amount of data to be transferred between two threads.

When a process or a thread faults, the seL4 kernel automatically sends a fault IPC message

to its registered fault endpoint. This fault IPC message provides useful information that

helps Thfault decide whether the fault will result in memory inconsistency. For instance,

the message includes a type of fault (e.g. page fault, capability fault, or unknown syscall),

address that causes the fault and whether a read or write access causes the fault6. In

our implementation, Thmain shares a single fault endpoint among all user-space processes,

allowing a fault caused by any process to be transmitted to this fault endpoint. The last

step of the implementation is to have Thfault wait for an incoming message from the fault

endpoint and notify Thmain if the message indicates the attempted write access on memory

being attested. A sample code for Thfault is provided in Listing 6.1.

void handle_fault(seL4_CPtr fault_ep, seL4_CPtr main_ep)

{

seL4_Word sender_badge = 0;

while(1) {

seL4_MessageInfo_t tag = seL4_Recv(fault_ep, &sender_badge);

seL4_Word fault_addr = seL4_GetMR(seL4_VMFault_Addr);

if(seL4_MessageInfo_get_label(tag) == seL4_Fault_VMFault && !

sel4utils_is_read_fault() && is_being_attested(fault_addr))

6See http://sel4.systems/Info/Docs/seL4-manual-latest.pdf for full details.
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{

/* Return back to the main thread with a process causing

inconsistency */

seL4_SetMR(0, sender_badge);

seL4_Send(main_ep, tag);

}

}

}

void create_fault_handler_thread(seL4_CPtr fault_ep, seL4_CPtr main_ep)

{

sel4utils_thread_t fault_thread;

seL4_CPtr cspace_cap = simple_get_cnode(&simple);

int error = sel4utils_configure_thread(&vka, &vspace, &vspace,

seL4_CapNull, seL4_MaxPrio, cspace_cap, seL4_NilData, &fault_thread);

assert(error == 0);

error = sel4utils_start_thread(&fault_thread, handle_fault, (void*)

fault_ep, (void*) main_ep, 1);

assert(error == 0);

}

Listing 6.1: Sample code for Thfault

A diagram in Figure 6.12 summarizes the sequence of operation of our modified PRAtt during

a single attestation instance. First, Thmain locks entire memory to be attested, then calls

Thchecksum and Thfault via a shared endpoint and waits for their replies. There are two possible

scenarios:
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1. If no process attempts to write into attested memory during attestation, Thchecksum

successfully completes and returns to Thmain with an attestation token. Thmain then

promptly unlocks attested memory.

2. Otherwise, the kernel suspends P ′ and transmits a fault IPC message to Thfault. Once

receiving it, Thfault replies back to Thmain, which suspends Thchecksum, unlocks memory,

and resumes execution of P ′. Thmain can also choose to abort, continue or restart

execution of Thchecksum.

Finally, Thmain outputs the result (an attestation token and/or whether any inconsistency

occurs or not) back to Vrf.

6.7.5 Experimental Results: Inconsistency Detection

To evaluate performance of the inconsistency detection mechanism, we experimented by

running two processes – modified PRAtt and P ′ – with the same execution priority on I.MX6-

SabreLite. (Multiple same-priority processes are scheduled in a round-robin fashion.) Thus,

timing results for this experiment differ from others that consider only PRAtt running at any

given time.

Results in Figure 6.13 show the performance comparison of: (1) the inconsistency detection

mechanism (with and without inconsistency occurring), (2) All-Lock, and (3) attestation

without consistency guarantee or No-Lock on 16MB to 96MB memory. In this experiment,

we assume that PRAtt chooses to resolve inconsistency by unlocking the entire memory of

P ′. In case of no inconsistency, our mechanism (as expected) performs as well as All-Lock

and roughly 6% slower than No-Lock. On the other hand, when an inconsistency occurs,

the mechanism (surprisingly) runs 3% faster. While this may seem counter-intuitive, we

found that improved performance is caused by Thmain performing memory unlocking while
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Figure 6.13: Run-time of inconsistency detection with 4KB page size on I.MX6-SabreLite.

Figure 6.14: Downtime of the faulting process P ′ when its actions result in an inconsistency with
4KB page size on I.MX6-SabreLite. Horizontal lines represent downtime from the approach where
PRAtt resolves inconsistency by unlocking entire memory of P ′.

P ′ is being suspended. This results in run-time of the unlock operation being ∼2x faster

than that of the same operation in its counterpart, where memory unlocking is performed

concurrently with P ′.
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We now consider the alternative, whereby PRAtt resolves the inconsistency by unlocking only

the page that causes it, instead of unlocking entire memory. Clearly, runtime overhead of

this approach depends on the number of times inconsistency is triggered 7 during attestation.

In this experiment, we measure overhead through downtime of P ′, i.e., total elapsed time for

P ′ to complete writing into locked pages. Figure 6.14 illustrates that overhead, as expected,

is linear in terms of a number of modified pages. It also shows that it is more beneficial to

use the alternative approach where P ′ is expected to perform only a few memory writes. In

our experimental setting, this threshold is around 0.12% of P ′ memory pages.

7This is equivalent to the number of memory pages of P ′ modified during attestation.
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Chapter 7

Periodic Self-Measurement

7.1 Introduction

In recent years, embedded and cyber-physical systems (CPS), under the guise of Internet-

of-Things (IoT), have entered many aspects of daily life, including: homes, office buildings,

public venues, factories and vehicles. This trend of adding computerized components to

previously analog devices and then inter-connecting them brings many obvious benefits.

However, it also greatly expands so-called “attack surface” and turns these newly comput-

erized gadgets into natural and attractive attack targets. In particular, as the 2016 Mirai

botnet demonstrated, IoT devices can be infected with malware and used as bot-controlled

zombies in Distributed Denial-of-Service (DDoS) attacks [4]. Also, IoT-borne malware can

snoop on device owners (by sensing) or maliciously control critical services (by actuation),

as happened with Stuxnet [87].

One key component in securing IoT devices is malware detection, which is typically attained

with remote attestation. Remote attestation is a distinct security service that allows a

trusted party, called verifier (Vrf), to securely verify the internal state (including memory
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and storage) of a remote untrusted and potentially malware-infected device, called prover

(Prv). RA is generally realized as an interactive protocol between Prv and Vrf. A typical

example is described in [12]: (1) Vrf sends an attestation request to Prv, (2) Prv verifies the

request1, (3) computes a cryptographic function of its internal state, (4) sends the result to

Vrf, and (5) Vrf finally checks the result and decides whether Prv is infected.

This general approach is referred to as on-demand attestation and all current RA techniques

adhere to it. In this chapter, we identify two important limitations of such approach. First,

it is a poor match for unattended devices, since malware that “comes and goes” (i.e., mobile

malware [68]) can not be detected if it leaves Prv by the time attestation is performed. Sec-

ond, for a device working under time constraints (real-time operation) or otherwise providing

safety-critical services, on-demand attestation requires performing a possibly time-consuming

task while deviating from the device’s main function(s).

To address these issues, we design ERASMUS: Efficient Remote Attestation via Self-Measurement

for Unattended Settings. ERASMUS is based on periodic self-measurements. In it, Prv mea-

sures and records its state at scheduled times. Measurements are stored in Prv’s insecure

memory. Vrf occasionally collects and validates these measurements in order to establish the

history of Prv’s state. In this general approach, Vrf imposes only negligible real-time bur-

den on Prv. It also offers strictly better quality-of-service than prior attestation techniques,

because Vrf obtains Prv’s entire history of measurements, since the last Vrf request. In

other words, ERASMUS de-couples (1) frequency of Prv checking, from (2) frequency of Prv

measurements, which are equivalent in on-demand attestation. Finally, ERASMUS simplifies

RA design (in terms of required features) for Prv: authentication of Vrf requests is no longer

needed, since computational DoS attacks do not arise. This differs from requirements in [12]

that stipulate (potentially expensive) Prv authentication of all Vrf’s requests.

1Since attestation is a potentially expensive task, this relatively light-weight verification mitigates com-
putational DoS attacks.
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We also introduce the new notion of Quality of Attestation (QoA) which captures: (1) how

Prv is attested, (2) how often its state is measured, and (3) how often these measurements

are verified. It is the temporal analogue of the concept of quality of swarm attestation

(QoSA) introduced in [16] in the context of attesting groups of devices.

NOTE: ERASMUS is not intended as a replacement for on-demand attestation. Clearly,

for some devices, and in some settings, real-time on-demand attestation is mandatory, e.g.,

immediately before or after a software update, or in the context of secure erasure/reset.

Also, on-demand attestation may be more flexible, e.g., if Vrf is only interested in measuring

a fraction of Prv’s memory. These two approaches are not mutually exclusive and may be

used together to increase QoA, specifically, in terms of freshness of the latest measurement.

The last incentive for the self-measurement approach is its suitability for highly mobile groups

of devices. RA protocols developed for “swarm attestation”, e.g., [7, 76, 38, 16], are designed

to efficiently attest groups of interconnected devices on-demand, with a single interaction

between Vrf and multiple Prv-s. However, such protocols do not work in highly mobile

swarms, since on-demand attestation requires topology to essentially remain static during

the entire attestation protocol instance, duration of which is dominated by computation on

all swarm devices. Since ERASMUS involves virtually no real-time computation for Prv, it

is more suitable for high-mobility swarm settings.

7.2 Remote Attestation via Self-Measurements

As discussed in the previous section, all current techniques perform on-demand RA, This

can be a time-consuming activity that diverts Prv’s attention away from its primary mission.

However, Prv performs no RA computation between successive Vrf’s requests. In contrast,

ERASMUS divides RA into two phases. In the measurement phase, Prv performs self-
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measurements based on a pre-established schedule, and stores the results. In the collection

phase, Vrf (whenever it chooses to do so) contacts Prv to fetch these measurements. The

collection phase is very fast since it requires practically no computation by Prv. In particular,

since measurements are based on a MAC computed with a key shared between Prv and Vrf,

no extra protection is needed when Prv sends measurements to Vrf. Furthermore, unlike

on-demand attestation, there is no threat of computational DoS on Prv, and therefore no

need to authenticate Vrf’s requests.

A Prv’s measurement Mt computed at time t is defined as:

Mt =< t,H(memt),MACK(t,H(memt)) >

where H is a suitable cryptographic hash (e.g., SHA-256) function and memt represents

Prv’s memory at time t. Computation of H(memt) and MAC is done in the context of the

underlying RA architecture, e.g., SMART+ or HYDRA.

Although ERASMUS assumes a symmetric key K shared between Vrf and Prv, a public key

signature scheme could be used instead, with no real impact on security of the scheme except

for the higher cost of measurements.

7.2.1 Quality of Attestation

Quality of Attestation (QoA) is primarily determined by two parameters: (1) time TM be-

tween two successive measurements on Prv, and (2) time TC between two successive requests

by Vrf to collect measurements from Prv.

We assume that, in most cases, TC > TM . If happens that TC ≤ TM , Vrf simply collects the

same measurements more than once, which is redundant. Alternatively, Vrf can explicitly

request Prv to perform a fresh measurement before the collection. In that case, Vrf’s request
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Table 7.1: Quality of Attestation Parameters

Notation Meaning Trade-off between:

TM
Time between two + High detection rate

consecutive measurements - High burden on Prv

TC
Time between two + Fast detection by Vrf

consecutive Vrf requests - High burden on Prv and Vrf

f
Freshness of + Fresh measurement

the latest measurement - High burden on Prv

would have to be authenticated and checked for freshness (as in SMART+ [12]) before the

on-demand measurement is computed. These activities clearly incur additional real-time

overhead and delays. This variant is called ERASMUS+OD and it is discussed in Section 7.3.

Exactly how TC and TM are determined depends on the specifics of Prv’s mission and its

deployment setting. Security impact of these parameters is intuitive. Smaller TM implies

smaller window of opportunity for mobile malware to escape detection. Smaller TC implies

faster malware detection. If either value is large, attestation becomes ineffective. Mean-

while, though low values increase QoA, they also increase Prv’s overall burden, in terms of

computation, power consumption and communication.

Without loss of generality, we assume that measurements and collections occur at regular

intervals. Of course, in practice this might not work for critical or time-sensitive applications

(see Section 7.5). In fact, it might be advantageous to take measurements at irregular

intervals, since doing so might give Prv a bit of an extra edge against mobile malware, as

discussed in Section 7.2.4.

Another ERASMUS parameter is the number of measurements (referred to as k) obtained by

Vrf in each collection phase. It can range between one (only the most recent measurement)

and all. In a typical setting, Prv’s history size should be set such that each measurement is
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. . . . . .

time

measurement
collection

TM

TCf

infection 1 (undetected)
infection 2 (detected)

Figure 7.1: QoA illustration: Infection 1 by mobile malware is undetected; Infection 2 is
detected. TM is the time between two measurements, TC is the time between two collections,
and f is the freshness of each measurement.

collected exactly once. That is, k = dTC/TMe.

Finally, the collection phase involves the notion of freshness, i.e., how recent is Prv’s latest

measurement. Depending on the application, maximal freshness might be required, e.g.,

right before or after a software update. Maximal freshness is attainable via on-demand

attestation. In ERASMUS, freshness of a measurement (denoted as f) ranges between TM

and 0, which correspond to minimal and maximal freshness, respectively. On average, we

expect f = TM/2.

Figure 7.1 shows an example with two malware infections. In the first, malware covers its

tracks and leaves before any measurement takes place. In the second, malware persists on

Prv. Although a measurement occurs perhaps soon after infection, corrective action can be

taken only after collection, thus illustrating the importance of a small TC . Measurements and

collections are shown as punctual events in Figure 7.1. Although they do take some time

to complete (measurements, in particular), they are considered negligible in Prv’s overall

lifecycle (see Section 7.4). We summarize QoA parameters and their security implications

in Table 7.1.
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7.2.2 Measurements Storage & Collection

A näıve way for Prv to store measurements is to keep track of them indefinitely. However,

this will eventually consume a lot of Prv’s storage. To this end, ERASMUS uses rolling

measurements. A fixed section of Prv’s insecure storage is allocated as a windowed (circular)

buffer for n measurements. The i-th measurement is stored at location Li mod n. However, it

is expected that Vrf collects measurements sufficiently often, such that no measurement is

over-written. That is, the time between successive collections should be at most TC ≤ n ·TM .

The interaction between Prv and Vrf is very simple: Vrf asks for the k latest measurements,

which Prv simply reads from the buffer and transmits. The collection phase does not involve

any change of state on Prv and returned measurements are not encrypted. (However, recall

that they are authenticated since each measurement is a MAC computed using K). It

also does not trigger any significant computation on Prv, i.e., in contrast with on-demand

attestation, no cryptographic operations are required in the collection phase.

Self-measurements can be stored in Prv’s unprotected storage. This allows malware (that

is possibly present on Prv) to tamper with measurements, by modifying, re-ordering and/or

deleting them. However, since malware (by design of SMART) cannot access K, it cannot

forge measurements. Thus, it is easy to see that any tampering will be detected by Vrf at

the next collection phase and hence malware presence would be noticed. For same reasons,

code that handles request parsing as well as storage and transmission of measurements does

not need to be executed in a secure environment, or stored in ROM. Code that performs

self-measurement, however, must be protected by the underlying security architecture, as in

on-demand attestation.

Scheduling in ERASMUS can be implemented in a very simple and stateless manner. Let t

be the time specified by a Reliable Read-Only Clock (RROC) at measurement Mt, and let

TM be the time between two successive measurements, as configured in Prv. The windowed
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Vrf Prv

collect k

if k > n :

k = n

M = {∗L(i−j) mod n | 0 ≤ j < k}

foreach Mt ∈M :

check t and h

verify MACK(t, h)

Figure 7.2: ERASMUS collection protocol.

(i− k) mod n i

t = 1492453673

H(memt) = 0xe4b...ce

MACK(t,H(memt)) = 0xea0...77

Figure 7.3: ERASMUS memory allocation. Example with n = 12, i = 3, k = 7.

buffer slot Li, used to store Mt, is determined by: i = bt/TMc mod n.

ERASMUS collection protocol is shown in Figure 7.2. The underlying attestation architecture

is not involved in the collection phase. Notation ∗Lj refers to contents of memory location

Lj. A sample memory layout is shown in Figure 7.3.

7.2.3 Security Considerations

Security of the measurement process itself is based on the underlying security architecture,

e.g., SMART+ or HYDRA, which: (1) provides measurement code with exclusive access to
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K, (2) ensures non-malleability and non-interruptibility of the measurement code, and (3)

performs memory-cleanup after execution.

Timestamps used in the measurement process must be obtained from a Reliable Read-Only

Clock (RROC), which (by definition) can not be modified by non-physical means. This

is important, since malware should not influence when measurements are taken. If RROC

values could be modified, the following attack scenario would become possible: malware

enters at time t0 and remains activeuntil a measurement at time t0 + δ (with δ < TM) is

taken. Before leaving, malware discards that measurement and resets the counter to t0.

Soon after δ (so that a measurement, valid this time, has been taken for t0 + δ), malware

returns and resets the counter to time elapsed since t0. Though this example works for one

TM window, it can be extended to arbitrarily many. It requires an additional assumption

that no collection took place during the presence of malware.

Fortunately, RROC is already a requirement for SMART+, for a totally different reason:

RROC helps prevent replay and computational DoS attacks on Prv. Thus, ERASMUS does

not require any changes to the underlying security architecture.

As mentioned earlier, measurements need not be stored in protected memory because tam-

pering is detectable and indicates malware presence on Prv. Likewise, the code to support

the collection phase does not require any protection since measurements are not secret (they

are unique for every device and every timestamp value), and their absence or alteration is

self-incriminating.

7.2.4 Irregular Intervals

A natural extension to ERASMUS is the use of irregular measurement intervals, instead of

a fixed TM . The main motivation is that mobile malware that is aware of fixed scheduling
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Task

ERASMUS

On-demand 

Attestation

ERAMUS+OD
Maximum 

Freshness

Mobile 

Malware 

Detection

NO

YES YES

NO

Figure 7.4: Diagram summarizing major RA tasks of ERASMUS and on-demand attestation

knows when to enter/leave Prv in order to stay undetected. One way to implement irregular

intervals is via Cryptographic Pseudo Random Number Generator (CPRNG) [53] initialized

(seeded) with the secret key K. Output of the CPRNG can be truncated, such that TM is

upper- and/or lower-bounded.

For example, after computing Mti , Prv can set the measurement timer to:

T next
M = map(CPRNGk(ti)),

where map is a function that maps CPRNG output to seconds, e.g., map : x 7→ x mod

(U − L) + L, with U and L upper and lower bounds, respectively. The timer itself must

be read-protected to ensure that T next
M is unknown to malware potentially present on Prv.

CPRNG code must be protected the same way as the measurement code.

7.3 Comparison with On-demand Attestation

We now discuss advantages and disadvantages of ERASMUS as compared to on-demand

attestation. We also propose a method to combine both techniques while retaining most of
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their respective benefits. Figure 7.4 summarizes the discussion throughout this section.

ERASMUS has several advantages over on-demand attestation. Most importantly, it enables

detection of mobile malware on Prv. Measurements can be performed more often without

increased Vrf participation. This is an important security consideration, since frequency of

(self-)measurements determines the window of opportunity for mobile malware. Another

advantage comes from the fact that the collection phase of ERASMUS requires practically no

computation on Prv. This makes ERASMUS inherently resilient against computational DoS

attacks, without explicitly authenticating Vrf’s requests. Finally, measurement scheduling

in ERASMUS can be made context-aware. This makes ERASMUS better suited for safety-

critical applications; this is discussed further in Section 7.5.

Despite these benefits, ERASMUS does not fully obviate the need for on-demand attestation.

In applications where a quick reaction to infection is crucial (e.g., immediately before or after

a software update or for secure erasure/reset) on-demand attestation is still necessary, as

it is the only way to maximize freshness of attestation, given that verification is performed

immediately after the measurement.

Fortunately, ERASMUS may be combined with on-demand attestation to retain advantages

of both approaches. This variant, ERASMUS+OD, records Prv’s state history to detect

mobile malware, and uses on-demand attestation to obtain better freshness. Freshness is

particularly relevant whenever real-time attestation is mandatory.

The measurement phase is unmodified, while the collection phase is combined with on-

demand attestation request as follows: First, as part of each attestation request, Vrf com-

putes and includes an authentication token and specifies k. As in SMART+ [12], authen-

tication of Vrf protects Prv against computational DoS. Then, only after checking that a

request is valid, Prv computes a new measurement. Finally, this real-time measurement is

sent to Vrf, along with k previous measurements. This protocol is shown in Figure 7.5.
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Vrf Prv

treq , k,MACK(treq)

check treq is fresh

verify MACK(treq)

if not OK:

abort

h = H(memt)

M0 = t, h,MACK(t, h)

if k > n :

k = n

M0,M = {∗L(i−j) mod n | 0 ≤ j < k}

verify M0

foreach Mt ∈M :

check t and h

verify MACK(t, h)

Figure 7.5: ERASMUS+OD protocol.

7.4 Implementation

We implemented ERASMUS on two security architectures: SMART+ and HYDRA. The main

difference is that the former targets low-end devices, and the latter – medium-end devices

with a memory management unit (MMU).

7.4.1 Implementation on SMART+

Figure 7.6 shows the implementation of ERASMUS atop SMART+ architecture. As in

SMART+, measurement code and K reside in ROM. However, the code is invoked peri-

odically and autonomously, whenever a scheduled timer interrupt occurs. We now examine

ROM size, hardware costs and run-time.

ROM Size: This greatly depends on the choice of the MAC algorithm. We implement ROM-
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Figure 7.6: Memory organization and access rules of SMART+-basedRA. r denotes exclusive
read-only access.

Table 7.2: Size of Attestation Executable

MAC Impl. SMART+ HYDRA

On-Demand ERASMUS On-Demand ERASMUS

HMAC-SHA1 4.9KB 4.7KB - -
HMAC-SHA256 5.1KB 4.9KB 231.96KB 233.84KB
Keyed BLAKE2S 28.9KB 28.7KB 239.29KB 241.17KB

Table 7.3: Hardware Cost on MSP430

H/W Original On-demand ERASMUS

Register 579 655 655
Look-up Table 1,731 1,969 1,969

resident code in “C” using three MAC functions: HMAC-SHA1 [28]2, HMAC-SHA256 [61]

and keyed BLAKE2S [75]. We then use open-source MSP430-gcc compiler [84] to compile the

“C” code into an MSP430 executable. Table 7.2 shows the ROM size for each SMART+-based

approach. As expected, ERASMUS requires slightly less ROM than on-demand attestation.

2Note that HMAC-SHA1 is only used for comparison purposes. We exclude it in our actual implementa-
tions due to a recent collision attack on SHA1 [83].
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Figure 7.7: Measurement Run-Time on MSP430-based Device @ 8MHz

Hardware Cost: We implement the hardware part of ERASMUS by modifying the MSP430

architecture, using the open-source OpenMSP430 core [35]. We modify the memory back-

bone module in the OpenMSP430 core to support atomic execution of ROM code and ex-

clusive access to K. RROC is realized as a peripheral using a 64-bit register incremented for

every clock cycle. To ensure write-protection, a write-enable wire is removed from the RROC

module. For timer components, we use the unmodified version of the omsp timerA module

provided by OpenMSP430. Note that we do not consider hardware timers as additional

hardware cost because they are common and crucial components of most embedded sys-

tems. Indeed, it is unusual to find an embedded device not equipped with at least one timer.

Finally, we use Xilinx ISE 14.7 [89] to synthesize our modifications of the OpenMSP430 core

from a hardware description language to a combination of registers and look-up tables in an

FPGA. As expected, synthesized results in Table 7.3 show that ERASMUS utilizes the same

number of registers and look-up tables as on-demand attestation. Compared to the unmod-

ified OpenMSP430 core, ERASMUS requires roughly 13% and 14% additional registers and

look-up tables respectively.
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Figure 7.8: Memory organization of HYDRA-based on-demand attestation and ERASMUS.

Measurement Run-Time: Figure 7.7 illustrates run-time of the measurement phase for

various memory sizes. Not surprisingly, it is linearly dependent on memory size and roughly

equivalent to that of on-demand attestation.

7.4.2 Implementation on HYDRA

Table 7.4: Run-Time (in ms) of Collection Phase on I.MX6-Sabre Lite

Operations ERASMUS ERASMUS+OD

Verify Request N/A 0.005
Compute Measurement3 N/A 285.6
Construct UDP Packet 0.003 0.003
Send UDP Packet 0.012 0.012

Total Collection Run-time 0.015 285.6

Figure 7.8 shows implementations of HYDRA-based ERASMUS and on-demand attestation.

Both are realized on an I.MX6 Sabre Lite [10] development board. RROC is implemented

3On 10MB memory using keyed BLAKE2S as the underlying MAC function.
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Figure 7.9: Measurement Run-Time on I.MX6 Sabre Lite @ 1GHz

based on the software clock approach, suggested by Brasser et al. [12]. Specifically, we use

a short-term counter from Sabre Lite’s General Purpose Timer (GPT) and our clock code

in HYDRA’s attestation process (PRAtt) to construct the RROC. When the counter wraps

around and causes an interrupt, our clock code handles it by updating higher-order bits of

the clock in PRAtt. Then, the clock value is constructed by combining these bits with the

GPT counter. To ensure the read-only property, PRAtt is given exclusive write-access to

RROC components. Also, we use Sabre Lite’s Enhanced Periodic Interrupt Timer (EPIT)

to schedule execution of ERASMUS measurement code

We base the code of PRAtt on open-source seL4 libraries [58]: seL4utils, seL4vka, seL4vspace,

and seL4bench. The first three provide abstractions of: process, memory management and

virtual space, respectively, while the last one is used to evaluate performance. Finally, we

use the code in [60] to implement the network stack, an Ethernet driver and timer drivers

in seL4.

Executable Size: Table 7.2 compares executable sizes of PRAtt in on-demand attestation

and ERASMUS. Results show that ERASMUS is only about 1% larger in terms of executable

size. This overhead mostly comes from the need for an additional timer driver.
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Measurement Run-time: Measurement run-time of HYDRA-based ERASMUS in Fig-

ure 7.9 follows the same trend as SMART+-based ERASMUS: (1) it is linear as a function

of memory sizes, and (2) it is roughly equal to that of on-demand attestation. The same

figure shows that performing self-measurement (based on keyed BLAKE2S) takes less than

300msec on a 1GHz device with 10MB memory.

Collection Run-time: Table 7.4 shows the run-time breakdown of the collection phase

for each variant. Clearly, run-time of the collection phase in ERASMUS is negligible (by at

least a factor of 3, 000), compared to that of the measurement phase. Collection run-time

in ERASMUS+OD, on the other hand, is dominated by run-time of performing on-demand

attestation.

7.5 Availability in Time-Sensitive Applications

In some cases, it might be undesirable to interrupt execution of Prv’s application process

to obtain a measurement. This is particularly the case for time-sensitive or safety-critical

applications. As discussed in Section 7.4, measurements can take non-negligible time, e.g.,

7 seconds on an 8-MHz device with 10KB RAM. Making Prv unavailable for that long is

not appropriate. As is, pure on-demand attestation is a poor match for such applications.

At the same time, if Prv follows a strict schedule, ERASMUS is also not a remedy since it

suffers from the same issue. However, it can be made more flexible.

One partial measure is for Prv to be self-aware of when time-sensitive tasks occur. That

way, it can schedule measurements at appropriate times. If this knowledge is also available

to Vrf, on-demand attestation could be used if Vrf adapts to Prv’s schedule.

We consider another ERASMUS variant: lenient scheduling. In it, Prv is allowed to abort

the measurement in progress. If something causes a measurement to be aborted, it can be
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rescheduled to the end of the current measurement window. However, this comes with some

caveats: First, the security architecture needs to be adapted to allow interrupts during mea-

surements. Protection of keys (and cleanup, in case of an interrupt) is still required. Thus,

there is still a need for some hardware support. Second, it would be trivial for malware to

abort computation of measurements in order to avoid detection, or simply pretend, when

queried by Vrf, that all attempted measurements have been aborted. Therefore, Vrf must

use some external information or policy to decide whether there is a valid justification for

each aborted measurement. For instance, Vrf can consider that a maximum of w consecutive

missing measurements are acceptable. More than that might indicate that a malware pur-

posely aborted measurements to remain undetected. The value of w represents an evident

security/availability tradeoff.

These are certainly not ideal measures and the underlying problem seems quite difficult to

address deterministically. As is typical for security/usability compromises, real deployment

would likely involve policy-based decisions.

7.6 Collective Remote Attestation (cRA)

Some applications require attesting a group (or swarm) of interconnected embedded devices.

In such a setting, it is beneficial to take advantage of inter-connectivity and perform collective

attestation using a dedicated protocol. Several cRA techniques have been proposed. SEDA [7]

is the first such scheme, which relies on hybrid attestation security architectures: SMART [31]

and TrustLite [47]. SEDA combines them with a request-flooding and response-gathering

protocol. SEDA was improved and further specified in LISA [16]. Other related techniques

deal with report aggregation [76] or physical attacks [38].
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ERASMUS could be used instead of on-demand attestation in the context of cRA protocols.

In particular, Prv self-measurements can be coupled with a collection protocol, such as LISA-

α, where the latter only relays reports and does not perform any computation. This would

yield a clean and conceptually simple approach to cRA, with all the benefits of ERASMUS.

An additional advantage of using ERASMUS in the swarm setting is support for high mobil-

ity. Prior cRA techniques, such as SEDA or SANA require swarm topology to remain almost

static during the whole cRA instance. This process may be long and prohibitive for appli-

cations where connectivity changes often. ERASMUS does not require external input and

its collection phase is very fast, since it does not involve any computation; only reading and

sending stored measurements. This makes ERASMUS a very natural and viable technique

for highly-mobile swarms.

Finally, related to the discussion in Section 7.5, we consider the scenario where availability

of at least one in (or a part of) a group of devices is required at all times. This cannot be

guaranteed by on-demand cRA, where a large part of the network may be concurrently busy.

Meanwhile, with ERASMUS, it is trivial to establish a schedule which ensures that only a

fraction of the swarm computes measurements at any given time.
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Chapter 8

Group Consideration

8.1 Introduction

The number of so-called Internet of Things (IoT) devices is expected to soon [14] exceed

that of traditional computing devices, i.e., PCs, laptops, tablets and smartphones. IoT can

be loosely defined as a set of interconnected embedded devices, each with a various blend of

sensing, actuating and computing capabilities. In many IoT settings and use-cases, devices

operate collectively as part of a group or swarm, in order to efficiently exchange informa-

tion and/or collaborate on common tasks. Examples of IoT swarms include multitudes

of interconnected devices in smart environments, such as a smart households, factories,

and buildings. Actual devices might include home theater sound systems, home camera

and surveillance systems, electrical outlets, light fixtures, sprinklers, smoke/CO2 detectors,

faucets, appliances, assembly-line components as well as drones. Device swarms also appear

in agriculture, e.g., livestock monitoring [70], as well as other research areas, e.g., swarm

robotics and swarm intelligence [77]. As IoT swarms become increasingly realistic, their

security and overall well-being becomes both apparent and important. Specifically, it is
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necessary to periodically (or on demand) ensure collective integrity of software running on

swarm devices.

The formidable impact of large-scale remote malware infestations has been initially demon-

strated by the Stuxnet incident in 2011 and the most recent Dyn denial-of-service (DoS)

attack in 2016. This attack type aims to compromise as many devices as possible, without

physical access, or close proximity, to any victim device. Compromise of “smart” household

devices may also have significant privacy ramifications. In one recent incident, cameras in

compromised smart TVs were used to record private activities of their owners [88]. It is not

hard to imagine other such attacks, e.g., malware that performs physical DoS by activating

smart door locks, sprinklers, or light-bulbs.

8.1.1 Collective Remote Attestation (cRA)

Both feasibility and efficacy of hybrid remote attestation approaches1 have been demon-

strated in the single-prover scenario (See Chapter 2 for more details). Nonetheless, new

issues emerge when it is necessary to attest a potentially large number (group or swarm)

of devices. First, it is inefficient and sometimes impractical to näıvely apply single-prover

remote attestation techniques to each device in a large swarm that might cover a large geo-

graphical area. Second, cRA needs to take into account topology discovery, key management

and routing. This can be further complicated by mobility (i.e., dynamic topology) and device

heterogeneity, in terms of computing and communication resources.

A recently proposed scheme, Scalable Embedded Device Attestation (SEDA) [7], represents

the first step towards practical cRA. It builds upon hybrid SMART and TrustLite techniques.

It combines them with a flooding-like protocol that propagates attestation requests and

gathers corresponding replies. According to simulations in [7], SEDA performs significantly

1 In the context of remote attestation, we use the following terms interchangeably throughout the chapter:
protocols, techniques, methods and approaches.
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better than individually attesting each device in a swarm. Despite its viability as a paper

design, SEDA is not a practical technique, for several reasons. First, it is under-specified in

terms of:

• Architectural Impact: What is the impact of cRA on the underlying hardware

and security architecture (which suffices for single-prover settings), in terms of: (a)

additional required features, as well as (b) increased size and complexity of current

features?

• Timing: How to determine overall attestation timeout for the verifier? This issue is

not as trivial as it might seem, as we discuss later in the chapter.

• Initiator Selection: How to select the device(s) that start(s) the attestation process

in order to construct a spanning tree over the swarm topology?

Second, as we discuss later, SEDA has some gratuitous (unnecessary) features, such as the

use of public key cryptography, which are unjustified by the assumed attack model. Third,

it is unclear whether SEDA handles device (node) mobility. This is an important issue:

some swarm settings are static in nature, while others involve node mobility and dynamic

topologies.

Finally, SEDA does not capture or specify the exact quality of the overall attestation outcome

and thus provides no means to compare its security guarantees to other swarm attestation

techniques. We believe that it is important to define a qualitative (and whenever possible,

quantitative) measure for cRA, i.e., Quality of Swarm Attestation (QoSA). This measure

should reflect verifier’s information requirements and allow comparisons across cRA tech-

niques.
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8.2 Preliminaries

We now delineate the scope of our work in this chapter and outline our assumptions.

8.2.1 Scope

This chapter focuses on cRA in the presence of limited device mobility, which means that

swarm topology is assumed to be connected and quasi-static during each attestation session.

The latter means that the swarm connectivity graph can change as long as changes do not

influence message propagation during an attestation session.

Similar to prior results in the single-prover remote attestation setting, proposed protocols

are not resistant to physical attacks. Other than imposing ubiquitous tamper-resistant hard-

ware, the only practical means of mitigating physical attacks is by heartbeat-based absence

detection [38]. We consider this to be an orthogonal direction and focus on remote malware

attacks. Also, low-level denial-of-service (DoS) attacks that focus on preventing commu-

nication (e.g., physical-layer jamming) are beyond the scope of this chapter. However, we

do take into account DoS attacks that try to force devices to perform a lot of computation

and/or communication.

Since we build upon state-of-the-art hybrid techniques for single-prover remote attestation,

our protocols assume that each device adheres to the minimal requirements specified in

[31] and [12]. Even though practicality, i.e., suitability for real-world deployment, is the

ultimate goal of this work, we do not actually deploy proposed techniques in real-world swarm

settings. Nevertheless, we achieve the next best thing by implementing and evaluating them

via emulation, which effectively replicates the behaviors of physical, link and network layers

(by virtualizing them on top of Linux) in a virtual environment which takes into account

wireless channel interference, noise and loss. Emulation allows us to easily experiment with

136



multiple deployment configurations (varying number of devices, their wireless capabilities and

environments) and swarm topologies – something not easily doable in an actual deployed

swarm. We claim that, though not the same as actual deployment, emulation is much more

realistic than simulation. Since the latter completely abstracts away the protocol stack, it

can miss some practical performance issues and artifacts that arise in using the actual stack,

the medium access protocol (at the data link layer) and characteristics of the wireless channel

(at the physical layer).

8.2.2 Network & Device Assumptions

Devices: We assume that each swarm device (prover):

• Adheres to SMART+ architecture, as discussed in Section 8.2.3 below.

• Has at least one network interface and ability to send/receive both unicast and broad-

cast packets.

• The second protocol (LISAs) in Section 8.3.2, requires each device to have a clock in

order to implement a timer and to know the total number of devices in the swarm – n.

In general, devices can vary along three dimensions: (1) attestation architecture, (2) com-

putational power, and (3) installed code-base. As mentioned above, we assume uniform

adherence to SMART+ architecture. Our first protocol, LISAα, makes no other assump-

tions. The second, LISAs, also assumes homogeneity in terms of computational power.

Connectivity & Topology: The verifier (Vrf) is assumed to be unaware of the current

swarm topology. The topology (connectivity graph) of the swarm can change arbitrarily

between any two attestation instances. It might change for a number of reasons, e.g., physi-

cal movement of devices, foreign objects impeding or enabling connections between devices,

hibernating devices, or devices entering or leaving the network. However, during each at-
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testation instance, the swarm is assumed to be: (1) connected, i.e., there is a path between

any pair of devices, and (2) quasi-static. The latter means that the swarm connectivity

graph can actually change during an attestation session, as long as changes do not influence

message propagation, e.g., if a link disappears after one device finishes sending a message,

and re-appears before any other message is exchanged between the same pair of devices. See

Sections 27 and 32 for details.

If either condition does not hold, protocols discussed in Section 8.3 still provide best-effort

attestation, i.e., if a change of connectivity occurs, some healthy devices might end up not

being attested, which would result in a false-negative outcome. Nonetheless, infected devices

are never positively attested, regardless of any connectivity changes during attestation.

Adversary Type: Based on the recently proposed taxonomy [2], adversaries in the context

of remote attestation can be categorized as follows:

• Remote: exploits vulnerabilities in prover’s software to remotely inject malware. In

particular, it can modify any existing code, introduce new malicious code, or read any

unprotected memory location.

• Local: located sufficiently near the prover to eavesdrop on, and manipulate, prover’s

communication channels.

• Physical Non-Intrusive: located physically near the prover; can perform side-channel

attacks in order to learn secrets.

• Stealthy Physical Intrusive: can physically compromise a prover; however, it leaves no

trace, i.e., can read any (even protected) memory and extract secrets.

• Physical Intrusive: has full (local) physical access to the prover; can learn or modify

any state of hardware or software components.

Our protocols take into account remote and local adversary flavors. However, as with most

prior work, all types of physical attacks are out of scope.
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Since all hybrid remote attestation schemes involve hardware-protected key storage, we as-

sume (for now) a trivial master key approach, whereby all swarm devices have the same

secret, shared with Vrf. While this might seem silly, it is sufficient in a setting without

physical attacks; see Section 8.3 for more details. However, for the sake of completeness,

counter-measures to physical attacks and additional cryptographic considerations are dis-

cussed in Section 8.6.

8.2.3 Security Architecture

Architectural minimality is a key goal of this work; hence, our protocols require minimal

hardware support. Specifically, we assume that each device adheres to the SMART archi-

tecture [31], augmented with Vrf authentication (aka DoS mitigation) features identified in

[12]. We refer to this combination as SMART+ and its key aspects are:

• All attestation code (AttCode) resides in ROM. AttCode is safe, i.e., it always

terminates and leaks no information beyond the attestation result, i.e., a token.

• Execution of AttCode is atomic and complete, which means: (a) it can not be inter-

rupted, and (b) it starts and ends at official entry and exit points, respectively.2 This

feature is generally enforced by a Memory Protection Unit (MPU) using a set of static

rules.

• At least one secret key stored in ROM, which can only be read from within AttCode .

For now, we remain agnostic as far as what type of cryptography is being used.

• A fixed-size block of secure RAM that stores the counter and/or a timestamp of the

last executed attestation instance. (This is needed to prevent replay attacks). This

memory can only be modified from within AttCode . [12] offers an alternative in the

form of a reliable real-time clock that can not be modified by non-physical means.

However, we opt for a secure counter since it is a cheaper feature.

2There might be multiple legal exit points.
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SMART+ operates as follows:

1. Vrf generates an authenticated attestation request. Authentication is achieved either

via a signature or a message authentication code (MAC), depending on the type of

cryptography used.

2. On Prv, the attestation request is received by untrusted code outside AttCode and

passed on to AttCode .

3. AttCode disables interrupts and checks whether the sequence number of the request

is greater than current counter value. If not, request is ignored.

4. AttCode authenticates – using either symmetric or public key – the attestation re-

quest. If authentication fails, request is ignored.

5. AttCode computes the authenticated integrity check of its memory (i.e., the result),

stores it in a publicly accessible location, cleans up after itself, enables interrupts and

terminates.

6. Untrusted code on Prv (outside of AttCode) returns the result to Vrf.

7. Vrf authenticates the result and decides whether Prv is in a secure state.

Memory organization and memory access rules for SMART+ and LISA are summarized in

Figure 8.1.
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Figure 8.1: Memory organization and access rules in SMART+ and LISA; r denotes read, w
denotes write.
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8.2.4 Quality of Swarm Attestation (QoSA)

The main goal of cRA is to verify collective integrity of the swarm, i.e., all devices at once.

However, in some settings, e.g., when a swarm covers a large physical area, the granularity

of a simple binary outcome is not enough. Instead, it might be more useful to learn which

devices are potentially infected, so that quick action can be taken to fix them. By the same

token, it could be also useful to learn the topology. To this end, we introduce a notion that

tries to capture the information provided by swarm attestation, called Quality of Swarm

Attestation (QoSA). It also enables comparing multiple cRA protocols. We consider the

following types of QoSA:

• Binary QoSA (B-QoSA): a single bit indicating success or failure of attestation of the

entire swarm.

• List QoSA (L-QoSA): a list of identifiers (e.g., link-layer and/or network-layer ad-

dresses) of devices that have successfully attested.

• Intermediate QoSA (I-QoSA): information that falls between B-QoSA and L-QoSA,

e.g., a count of successfully attested devices.

• Full QoSA (F-QoSA): a list of attested devices along with their connectivity, i.e.,

swarm topology.

This is not an exhaustive list. Although we view these four types as fairly natural, other

QoSA-s can be envisioned. We also note that, in a single-prover setting which applies to

most prior attestation literature, QoSA is irrelevant, since Vrf communicates directly with

one Prv, and there is no additional information beyond the attestation result itself. In

contrast, in a multi-prover setting, QoSA is both natural and useful. It can be tailored to

the specific application’s needs, as described below in Section 8.3.
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8.2.5 Attestation Timeouts

Since envisaged cRA is mostly autonomous and Vrf is initially unaware of the current topol-

ogy, there needs to be an overall timeout value. As in any one-to-many reliable delivery

protocol, timeouts are necessary to account for possible losses of connectivity during attes-

tation, caused by mobility, noisy channels, or excessive collisions, all of which might occur

naturally, or be caused by DoS attacks. As usual, the timeout parameter must be selected

carefully, since an overly low value would result in frequent false positives, while an overly

high one would cause unnecessary delays. In any case, we assume that the timeout is de-

pendent on n – the number of devices in the swarm.

8.2.6 Initiator Selection

To minimize its burden, Vrf can initiate the process by directly sending an attestation request

to one device in the swarm. We call this device an “initiator”. There are several ways to select

it, e.g., based on physical proximity, and/or computation power. If Vrf has no knowledge

about nearby devices, it first needs to perform neighbor discovery (e.g., [43] or [49]) which

introduces an extra step in the overall process. Alternatively, Vrf can use multiple initiators

and skip neighbor discovery by simply broadcasting an attestation request to whichever

device(s) can hear it. In that case, all Vrf’s immediate neighbors become initiators, in

parallel. Our protocols are agnostic to this choice and work regardless of how initiators are

selected, as long as at least one is picked.

8.2.7 Verifier Assumptions

Following prior work, we assume an honest Vrf. In particular, it is not compromised and

is trusted to correctly generate all attestation requests, as well as to correctly process all
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received attestation reports (replies). Also, Vrf is assumed to know n.

8.3 New cRA Protocols

We now describe two lightweight cRA protocols, LISAα and LISAs, including their design

rationale, details and complexities. Similar to SMART+, either symmetric or public key

cryptography can be used to provide authenticated integrity of protocol messages. However,

for the sake of simplicity and efficiency, we describe LISAα and LISAs assuming a single

swarm-wide symmetric master key. This master key can be pre-installed into all swarm

devices at manufacture or deployment time. Although this might seem näıve, recall that, in

the absence of physical attacks, there is no difference between having: (1) one swarm-wide

master key shared with Vrf, (2) a symmetric unique key each device shares with Vrf, or

(3) a device unique public/private key-pair for each device. This is because malware that

infects any number of devices still can not access a device’s secret key due to SMART+’s

MPU access rules. However, if physical attacks are considered, Section 8.6 discusses the use

of device-specific symmetric keys and public key cryptography.

8.3.1 Asynchronous Version: LISAα

LISAα stands for: Lightweight Swarm Attestation, asynchronous version. Its goal is to pro-

vide efficient cRA while incurring minimal changes over SMART+. Before describing LISAα,

we can imagine a very intuitive approach, whereby Vrf, relying strictly on SMART+, runs an

individual attestation protocol directly with each swarm device. This would require no extra

support in terms of software or hardware features. Nonetheless, this näıve approach does not

scale, since it requires Vrf to either: (1) attest each device in sequence, which can be very

time-consuming, or (2) broadcast to all devices and maintain state for each, while waiting
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for replies. This scalability issue motivates device collaboration for propagating attestation

requests and reports. LISAα adopts this approach and involves very low computational

overhead, while being resistant to computational denial-of-service (DoS) attacks. Devices

act independently and asynchronously, relying on each other only for forwarding attestation

requests and reports.

LISAα Protocol Details

LISAα’s pseudo-code and finite state machine (FSM) for a prover device (Prv) are illus-

trated in Algorithm 2 and an upper figure of Figure 8.2, respectively. LISAα’s FSM for Vrf

is illustrated in a lower figure of Figure 8.2 and the pseudo-code is described in Algorithm

3. The protocol involves two message types:

(1) request : Attreq = [“req”,Snd,Seq,Authreq] and

(2) report : Attrep = [“rep”,DevID,Par,Seq,H(Mem),Authrep]

where:

• Snd – identifier of the sending device; this field is not authenticated

• Seq – sequence number and/or timestamp of the present attestation instance; set by

Vrf

• Authreq – authentication token for the attestation request message; computed by Vrf

as: MAC(K, “req”||Seq)

• DevID – identifier of Prv; stored in ROM, along with AttCode

• Par – identifier of the reporting device’s parent in the spanning tree; copied from Snd

field in Attreq

• Authrep – authentication token for the attestation reply message; computed by Prv as:

MAC(K, “rep”||DevID||Seq||H(Mem)), where H() is a suitable cryptographic hash

function and Mem denotes device memory that is subject to attestation3.

3Note that H(Mem) is part of Attrep. We can omit it to save space, and have Vrf keep a mapping of
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LISAα Prover From the perspective of a prover Prv, LISAα has five states:

1. Wait: Prv waits for an attestation-relevant packet. In case of Attreq, Prv proceeds to

VerifyRequest and in case of Attrep, it jumps to VerifySession.

2. VerifyRequest: Prv first checks validity of Seq, which must be strictly greater than the

previous stored value; otherwise, it discards Attreq and returns to Wait. Next, Prv validates

Authreq by recomputing MAC. If verification fails, Prv discards Attreq and returns to Wait.

Otherwise, Prv saves Seq as the current session number CurSeq, stores Snd as its parent

device Par for this session, and transitions to Attest.

3. Attest: Prv sets Snd field in Attreq to DevID and broadcasts the modified Attreq. Next,

Prv computes Authrep and composes Attrep, as defined above. Note that Authrep authenti-

cates Par by virtue of covering Attreq. Finally, Prv unicasts Attrep to Par and transitions

to Wait.

4. VerifySession: Prv receives Attrep from one of its descendants. If the Seq in Attrep does

not match its stored counterpart CurSeq, Prv discardsAttrep and returns to Wait. Otherwise,

it proceeds to Forward.

5. Forward: Prv unicasts Attrep received in VerifySession, to its stored Par and returns to

Wait.

(DevID,H(Mem)). However, this would take away Vrf’s ability to make decisions based on actual device
signatures.
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Figure 8.2: LISAα FSM-s for Prv (top) and Vrf (bottom)

LISAα Verifier From Vrf’s perspective, LISAα is simpler, with four states:

1. Wait: Vrf waits for external signal (e.g., from a user) to start a new attestation session.

When it arrives, Vrf moves to Initiate.

2. Initiate: Vrf sets the overall timeout and selects the initiator(s), as discussed earlier.

It then initializes Attest = Fail = ∅, Norep = {all DevID}. Next, Vrf sets Snd =Vrf,

composes Attreq, sends it (via unicast) to the initiator(s), and moves to Collect.

3. Collect: Vrf waits for Attrep messages from the initiator(s) or an overall timeout. If a

timeout occurs, Vrf transitions to Tally. Upon receipt of Attrep, Vrf extracts and validates

Authrep by recomputing MAC. (Note that duplicate Attrep messages are assumed to be

automatically detected and suppressed). There are three possible outcomes:

i. Validation fails: Attrep is discarded,
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Algorithm 2: Pseudo-code of LISAα for Prv
Write-Protected Vars: DevID – id of Prv

CurSeq – current sequence #
Par – Prv’s parent id

1 while True do
2 m = receive();
3 if type(m) = “req” then
4 [Snd, Authreq , Seq] ← decompose(m);
5 if Seq < CurSeq then
6 continue();
7 end
8 if Authreq 6= MAC(K, “req”||Seq) then
9 continue();

10 end
11 CurSeq ← Seq; Par ← Snd;
12 broadcast(“req”||DevID||CurSeq||Authreq);
13 Authrep ← MAC(K, “rep”||DevID||CurSeq||H(Mem));
14 Attrep ← “rep”||DevID||Par||CurSeq||H(Mem)||Authrep;
15 unicast(Par,Attrep);
16 else if type(m) = “Rep” then
17 Seq ← getSeq(m);
18 if Seq = CurSeq then
19 unicast(Par,m);
20 end

21 end

22 end

ii. Authrep is authentic and H(Mem) corresponds to an expected (legal) state of DevID’s

attested memory: Vrf adds DevID to Attest, and removes it from Norep,

iii. Authrep is authentic and H(Mem) does not match any expected state of DevID’s

attested memory: Vrf adds DevID to Fail and removes it from Norep

If |Attest|+ |Fail| = n, Vrf moves to Tally; otherwise it remains in Collect.

4. Tally: Vrf outputs Attest, Fail and Norep as sets of devices that passed, failed and

didn’t reply, respectively. Finally, Vrf returns to Wait.
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Algorithm 3: Pseudo-code of LISAα for Vrf
1 tAttest ← ta + tMAC + 2 · n · tt + ts;
2 while True do
3 wait();
4 InitID ← getInitId();
5 CurSeq ← getSeq();
6 Attreq ← “req”||Vrf||CurSeq||Authreq ;
7 unicast(InitID,Attreq);
8 Attest← ∅; Fail← ∅;
9 Norep← {allDevID};

10 T ← getTimer();
11 while T < tAttest do
12 Attrep ← receive();
13 [DevID, Par, Seq, H(Mem), Authrep] ← decompose(Attrep);
14 if Seq = CurSeq ∧ Authrep = MAC(K, “rep”||DevID||CurSeq||H(Mem)) then
15 if H(Mem) ⊂ expectedHash(DevID) then
16 Attest← Attest ∪ {DevID};
17 else
18 Fail← Fail ∪ {DevID};
19 end
20 Norep← Norep \ {DevID};
21 end
22 if |Attest|+ |Fail| = n then
23 break();
24 end

25 end
26 output(Attest, Fail,Norep);

27 end

Vrf Timeout in LISAα

As follows from the protocol description (or, equivalently, from FSMs and pseudocode),

devices do not require a timeout. For its part, Vrf sets the overall attestation timeout to

tAttest = ta + n · tMAC + 2 · n · tt + ts, where:

• ta – time for Prv to perform self-attestation4

• tMAC – time for Prv to compute a MAC (to verify or generate) over a short message

• tt – time for Prv to transmit a message to another device

• ts – slack time, which accounts for variabilities, i.e., possible deviations

tAttest represents the time corresponding to running LISAα over a n-device swarm with

the worst-case topology scenario, i.e., a realistic upper bound. The worst-case is a line

topology where Attreq processing is done in sequence, taking n · tMAC . Only one ta needs

4In case of heterogeneous devices, ta represents the maximum self-attestation time across all devices. The
same applies to tMAC and tt.
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to be included in tAttest since the last device (the only leaf in the tree) finishes its attestation

after all others. Also, since there are at most n hops between Vrf and the last device, it

takes n · tt to transmit Attreq to that device and the same amount of time to transmit the

last Attrep to Vrf.

Connectivity in LISAα

Let t0 denote the time when Prv receives Authreq from Par, trep,i denote the time when

Par receives the ith Authrep from Prv and z denote the number of Prv’s descendants. The

connectivity assumption of LISAα can be formally stated as follows:

LISAα produces a correct cRA result, i.e. no false positives and no false negatives, if a link

between every Prv and its Par exists during their t0, trep,1, trep,2,...,trep,z+1.

QoSA of LISAα

At the end, Vrf collects a set of Attrep messages, one from each device. After verifying all

Attrep-s, Vrf learns the list of successfully attested devices, thus achieving L-QoSA. It is easy

to augment the protocol to collect topology information along with attestation results. This

can be performed by simply including Par in each Attrep. Vrf then can thus reconstruct the

topology based on verified reports. Specifically, line 15 in Algorithm 2 would become:

Authrep ← MAC(K, “rep”||CurSeq||DevID||Par||H(Mem));

However, topology information obtained by Vrf is not reliable, since Par is not authenticated

upon receiving Attreq. Fixing this is not hard; it would require each device to: (1) compute

and attach an extra MAC, at least over Par and Authreq fields, at Attreq forwarding time,

and (2) verify the Par’s MAC upon receiving Attreq.

149



Complexity of LISAα

Architectural Impact: Roughly speaking, the LISAα protocol adheres to SMART+ secu-

rity architecture, i.e., it does not impose any additional features. However, it clearly requires

a larger ROM to house additional code, and a more complex MPU to implement access rules.

Compared to SMART+, ROM size is expected to grow by just 30 bytes, as shown in Ta-

ble 8.1. Also, LISAα introduces two extra write-protected variables: Seq and Par. We

assume that each can be a 32-bit value, i.e., only 8 extra bytes need to be write-protected.

Finally, MPU needs to support two additional access rules to protect these two variables.

The resulting increase in hardware complexity is shown in Figure 8.1 and Table 8.1.

Table 8.1: Estimated code complexity; all code in ”C”.

METHOD:
SMART+

SMART+ LISAα LISAs
w/o MAC5

Lines of Code 43 262 269 321
Executable Size (bytes) 8,565 17,896 17,928 18,128

Write-Protected
n/a 4 12 40 + 4n

Memory Size (bytes)

Software Complexity: LISAα needs only one simple extra operation: message (Attreq)

broadcast. This operation is usually straight-forward in practice if a device is already capable

of unicasting. Moreover, LISAα is nearly stateless: only Seq and Par need to persist

between attestation sessions. Table 8.1 shows that LISAα is only about 2% higher than

single-prover SMART+ in terms of lines-of-code (LoC-s).

Communication Overhead: We assume an SHA-256-based hash and MAC constructs,

each yielding a 32-byte output. Overall size of Attreq is thus 43 bytes: 3 – message tag,

4 – Snd, 4 – Seq, and 32 – Authreq. Meanwhile, Attrep is 79 bytes: 3 – message tag, 4 –

DevID, 4 – Par, 4 – Seq, 32 – Authrep, and 32 – H(Mem). We also assume that Prv has

5MAC is implemented as HMAC-SHA-256 from [5]
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z descendants and w neighbors in the swarm spanning tree, and there are n devices total.

In each session, Prv receives up to w Attreq-s and exactly z Attrep-s. Thus, depending on

topology, Prv might receive anywhere between (43 + 79z) and (43w + 79z) bytes. Also,

Prv broadcasts one Attreq to neighbors and unicasts (z + 1) Attrep-s to Par. Thus, overall

transmission cost for each Prv is: 43 + 79(z + 1).

Clearly, potentially high communication overhead is LISAα’s biggest drawback, since a

device – in the worst case – transmits n reports. This motivated us to design LISAs which

reduces communication overhead by aggregating Attrep-s.

8.3.2 Synchronous Version: LISAs

The main idea in LISAs is to let devices authenticate and attest each other. When one

device is attested by another, only the identifier of the former needs to be securely forwarded

to Vrf, instead of the entire Attrep. This translates into considerable bandwidth savings and

lower Vrf workload. Also, Attrep-s can be aggregated, which decreases the number of packets

sent and received. It also allows more flexibility in terms of QoSA: from B-QoSA to F-QoSA.

Finally, malformed or fake Attrep-s are detected in the network and not propagated to Vrf,

as in LISAα. However, these benefits are traded off for increased protocol (and code)

complexity, as described below.

LISAs’s main distinctive feature is that each Prv waits for all of its children’Attrep-s before

submitting its own. This makes the protocol synchronous. Each Prv keeps track of its parent

and children during an attestation session. Once Attreq is processed and propagated, Prv

waits for each child to complete attestation by submitting a Attrep. Then, Prv verifies each

Attrep, aggregates a list of children as well as descendants they attested, attests itself, and

finally sends its authenticated Attrep (which contains the list of attested descendants) to its
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Par.

LISAs Protocol Details

The FSM and pseudo-code for Prv are shown in an upper part of Figure 8.3 and Algorithm 4,

respectively. LISAs is constructed such that Prv can receive a new Attreq in any state, even

while waiting for children’s Attrep-s. Besides Attreq and Attrep, LISAs involves one extra

message type:

(1) request : Attreq = [“req”,Snd,Seq,Depth,Authreq],

(2) report : Attrep = [“rep”,Seq,DevID,Desc,Authrep], and

(3) acknowledgment : Attack = [“ack”,Seq,DevID,Par], with:

• Snd– identifier of the sending device; this field is not authenticated

• Seq– sequence number and/or timestamp of the present attestation instance; set by

Vrf

• Depth– depth of the sending device in the spanning tree

• Authreq– authentication token for the attestation request message; computed by Vrf

as: MAC(K, “req”||Seq)

• DevID– identifier of Prv (in ROM, along with AttCode)

• Desc– list of Prv’s descendants; populated when Prv receives an authentic report

• Authrep– authentication token for the attestation reply message; computed by Prv as:

MAC(K, “rep”||Seq||DevID||Desc)

• Par– identifier of reporting device’s parent in the spanning tree; copied from Snd field

in Attreq

Prover in LISAs From the perspective of a prover Prv, LISAs consists of eight states:
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Algorithm 4: Prv pseudo-code in LISAs.
Write-Protected Vars: CurSeq – current sequence number

DevID – id of Device Prv
Par – id of current Prv’s parent
C – pre-installed hash of Prv’s memory
Desc – list of id-s of Prv’s descendants

1 tACK ← tMAC + 2tt + ts;
2 while True do
3 m← nonBlockReceive();
4 T ← getTime();
5 if type(m) = “req” then
6 [Authreq , Seq, Snd, Depth ] ← decompose(m, “req”);
7 if Seq < CurSeq then
8 continue();
9 end

10 if Authreq 6= MACK(“req”‖Seq) then
11 continue();
12 end
13 CurSeq ← Seq; Par ← Snd;
14 Attack ← “ack”||CurSeq||DevID||Par;
15 unicast(Par,Attack);
16 tREP ← (n−Depth)(tACK + ta + tMAC + tt + ts);
17 Attreq ← “req”||CurSeq||DevID||(Depth+ 1)||Authreq ;
18 broadcast(Attreq);
19 Desc← ∅;
20 Children← ∅;
21 T ← restartTimer();

22 else if type(m) = “ack” then
23 if T > tACK then
24 continue();
25 end
26 [Seq, Snd, SndPar ] ← decompose(m, “ack”);
27 if Seq = CurSeq then
28 Children = Children ∪ {Snd};
29 end

30 else if type(m) = “rep” then
31 if T ≤ tACK ∨ T ≥ tREP then
32 continue();
33 end
34 [Seq, Snd, SndDesc, Authrep ] ← decompose(m, “rep”);
35 if Seq 6= CurSeq then
36 continue();
37 end
38 if Authrep = MAC(K, “rep”||CurSeq||Snd||SndDesc) then
39 Desc← Desc ∪ {Snd} ∪ SndDesc;
40 Children← Children \ {Snd};
41 end

42 end
43 if (Children = ∅ ∧ T ≥ tACK) ∨ (T ≥ tREP ) then
44 if H(Mem) 6= C then
45 abort();
46 end
47 Authrep ← MAC(K, “rep”||CurSeq||DevID||Desc);
48 Attrep ← “rep”||CurSeq||DevID||Desc||Authrep;
49 unicast(Par,Attrep);
50 T ← resetAndStopTimer();

51 end

52 end
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Figure 8.3: FSM of LISAs: Dev (top) and Vrf (bottom)

1. Wait: the initial state where Prv waits for an attestation-relevant packet. Prv transitions

to VerifyRequest if it is Attreq, VerifySession if it is Attrep and VerifyTimer+Ack if it is Attack.

Also, if a timeout occurs during this state, Prv transitions to Attest+Answer. This timeout
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is set in Answer+Broadcast+Reset below.

2. VerifyRequest: This state is similar to VerifyRequest in LISAs. If verification of Attreq

fails, Prv discards Attreq and goes back to Wait. Otherwise, Prv realizes its depth in the

spanning tree through Depth field in Attreq and saves Seq as CurSeq and Snd as Par.

Finally, Prv transitions to Answer+Broadcast+Reset.

3. Answer+Broadcast+Reset: Prv sends Attack back to Par, copies its DevID into Snd field

of Attreq and broadcasts the modified Attreq. Next, Prv computes a timeout tREP . This

timeout is used to determine when to stop receiving Attrep during Wait. Prv then initializes

a list of its children (Children) and a list of its descendants (Desc) to empty sets, starts a

timer, and returns to Wait.

4. VerifyTimer+Ack: Prv receives Attack from a device that wants to be its child. First, Prv

checks with an acknowledgment timeout (tACK), which is a global constant. If the current

time is later than tACK , Prv discards Attack and returns to Wait. If the Seq in Attack does not

match CurSeq, Prv also discards Attack and goes back to Wait. Otherwise, Prv transitions

to AcceptChild.

5. AcceptChild: Prv accepts Attack and stores Snd into Children. Then, Prv returns to Wait.

6. VerifySession: This state is also similar to VerifySession in LISAα. Prv discards Attrep

and return to Wait if Seq in Attrep does not match CurSeq. Otherwise, it transitions to

AggregateReport

7. AggregateReport: Prv accepts Attrep and aggregates it with other received reports in the

same session. The aggregation is done by adding Snd and Desc fields in Attrep into its Desc

and removing Snd from Children since Snd has replied. If all of its children have already

replied (or Children = ∅), Prv transitions to Attest+Answer. Otherwise, Prv returns to Wait.

8. Attest+Answer: Prv computes a hash of its attestable memory. If the resulting digest does
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not match with the pre-installed hash value (C), Prv outputs an error and acts accordingly

(e.g., hardware reset and memory wipe-out). Otherwise, Prv constructs Authrep and Attrep

as defined earlier and unicasts Attrep to Par. Finally, the timer is reset and stopped and

Prv returns to Wait.

We now consider some details of Algorithm 4.

• Line 3: Reception of messages should be non-blocking, such that the timer can be

checked even when no message is received6.

• Line 7: Freshness of Seq in Attreq is established by comparing it to CurSeq, as in

LISAα. During any given session, a node acknowledges to the first neighbor that

broadcasts an attestation request with CurSeq. Subsequent broadcasts with the same

CurSeq are ignored.

• Line 14: Attack to Par is constructed, consisting of: Seq, DevID and Par. These

values are not authenticated since Attack is only used for determining timeouts. An

adversary can send fake Attack-s to Prv which would only cause longer timeouts.

• Line 17: The request contains: Seq, Snd and Depth. Authentication of Seq is required

to prevent replay attacks while Snd and Depth do not need to be authenticated. If

either or both of the latter are modified by a local adversary, the result would be a

DoS attack.

• Lines 19 and 20: The sets Desc and Children are re-initialized, i.e., set to empty.

The former represents DevID’s of Prv’s descendants, which is populated when reports

from children are verified (line 39). The latter represents the set of Prv’s children. It is

populated whenever a neighbor acknowledgment is verified (line 28) and de-populated

when a child’s report is verified (line 40). If Children is empty at any time after tACK ,

it means all the reports of Prv’s children have been attested and Prv may proceed with

self-attestation (line 43).

6Note that, in loops with only non-blocking operations, it is necessary to avoid busy waiting; this is
usually done by adding a short sleep timer at each iteration.
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• Line 21: The timer is reset whenever a request is verified and re-broadcast.

• Lines 27 and 35: The received sequence number Seq is compared to the one stored

for the last accepted request – CurSeq. If they differ, the message (acknowledgment

or report) is discarded. This comparison incurs a negligible cost while preventing

acknowledgments and reports from older sessions being verified when a new attestation

session has started. It also mitigates DoS attacks whereby a remote adversary (unaware

of the current Seq) sends fake acknowledgments or reports.

• Lines 44 and 45: A hash of specified memory range of Prv is computed and compared

to its reference value – C. If they do not match, LISAs returns an error, performs a

hardware re-set and cleans up its memory. C needs to be write-protected. This can be

enforced by a static MPU rule.

• Line 48: Authrep contains authenticated fields: Seq, Snd and SndDesc. Seq and Snd

need to be validated to ensure authenticity and prevent replay attacks. SndDesc is also

authenticated to prevent a man-in-the-middle attacks that might overwrite attestation

status of some descendants. Self-attestation must be performed last – after verifying

reports of all children. If performed earlier, the protocol becomes vulnerable to a sort

of a time-of-check-to-time-of-use (TOCTOU) attack where Prv gets corrupted after

performing self-attestation and before sending out the aggregated report.

• Line 50: The timer is reset and stopped when attestation is completed. It is stopped

so the condition at line 43 does not hold until a new Authreq is received.

Verifier in LISAs The Vrf in LISAs has one additional state – AcceptChild – while the

rest of the states remain similar or the same as the ones in LISAα. Vrf’s pseudo-code is

illustrated below and its finite state machine is in the lower part of Figure 8.3.

1&2. Wait and Initiate: These two state are identical to their counterparts in LISAα.

3. AcceptChild: Vrf waits for Attack-s from the initiator(s), which are used to determine the
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completion of Collect. After a timeout occurs, Vrf stops receiving Attack-s and transitions

to Collect.

4. Collect: This state is also similar to Collect in LISAα except the following three behaviors:

One is Vrf does not need to check H(Mem) since it is not include in Attrep. Secondly, Vrf

does not need to maintain a list of unsuccessfully attested devices (Fail) since software-

infected devices cannot output an authentic Authrep. Lastly, Vrf transitions to Tally if the

initiator(s) (realized in AcceptChild) has sent its reports. The rest of its behaviors remains

the same as in LISAα.

5. Tally: Vrf outputs Attest and Norep and returns to Wait.

Algorithm 5: Vrf pseudo-code in LISAs.
1 tACK ← tMAC + 2tt + ts;
2 tAttest ← n · (tACK + ta + tMAC + tt + ts);
3 while True do
4 wait();
5 InitID ← getInitId();
6 CurSeq ← getSeq();
7 Attreq ← “req”||Vrf||CurSeq||Authreq ;
8 unicast(InitID,Attreq);
9 Attest← ∅; Children← ∅;

10 Norep← {allDevID};
11 T ← getTimer();
12 while T < tACK do
13 Attack ← receive();
14 [Seq, DevID, Par] ← decompose(Attack);
15 if Seq = CurSeq then
16 Children← Children ∪ {DevID};
17 end

18 end
19 while T < tREP do
20 Attrep ← receive();
21 [Snd, Par, Seq, SndDesc, Authrep] ← decompose(Attrep);
22 if Seq = CurSeq ∧ Authrep = MAC(K, “rep”||Seq||DevID||SndDesc) then
23 Attest← (Attest ∪ SndDesc) ∪ {Snd};
24 Norep← (Norep \ SndDesc) \ {Snd};
25 Children← Children \ {Snd};
26 end
27 if Children = ∅ ∨ |Attest| = n then
28 break();
29 end

30 end
31 output(Attest,Norep);

32 end
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Timeouts in LISAs

Prv requires two timeouts: an acknowledgment timeout (tACK) and a report timeout (tREP ).

tACK is the amount of time that Prv waits after having broadcast a request for children

acknowledgments. It is set to the constant value of tMAC + 2tt + ts, that is time for the

broadcast to reach a neighbor (tt), for the neighbor to verify the request (tMAC), and then

for the answer to be received by Prv (another tt), plus some slack ts (global parameter).

This gives all neighbors an opportunity to send Attack.

tREP is the amount of time, after the children have been determined, that Prv will wait for

reports before performing its own attestation. It is set to the value (n−Depth)(tACK + ta +

tMAC + tt + ts). This represents the time the descendants would take to answer back to Prv

in the absolute worst scenario. This scenario is when the descendants are in a line topology

and each has only one child (except the last one). It is indeed the worst case because no work

can be done in parallel. Each node in the line (except the leaf) will perform the following:

forward a request to and wait for the answer from its (only) child (tACK), and then, after

receiving the answer, verify its child’s report (tMAC), attest itself (ta), and finally answer back

to the parent (tt) and some slack ts for variability considerations. In this scenario, all of Prv’s

descendants will take this time (except the leaf which takes slightly less). If Prv has Depth

ancestors, it has at most (n−Depth) descendants. Hence, time for attestation of descendants

is bounded, even in the worst-case scenario, by: (n − Depth)(tACK + ta + tMAC + tt + ts).

Note that the timeouts are needed to detect errors and DoS attacks. In most topologies, the

delay in gathering reports will be much shorter. Finally, Depth is important: without it, if

a node times out, its parent (and all ancestors) will also time out. Then, Vrf would have no

idea about what happened. Instead, if a node times out, it sends what it has thus far to its

parent, which does not time out itself.

Since Vrf can be viewed as the root of the spanning tree, tACK and tREP are applicable to
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it. Vrf’s tREP = n · (tACK + ta + tMAC + tt + ts).

Connectivity in LISAs

Let t0 denote the time that Prv receives Authreq from Par, t1 denote the time that Par

receives Attack from Prv and t2 denote the time that Par receives Authrep from Prv. Then,

we can formally state the connectivity assumption in LISAs as follows:

LISAs provides correct cRA result, i.e. no false-positive and false-negative, if a link between

every Prv and its Par exists during their t0, t1 and t2.

Note that this assumption is more relaxed than the one in LISAα since each link has to

appear during those three times while in LISAα, Prv and Par have to be connected for

transmitting z + 1 messages where z is a number of Prv’s descendants. The downside,

however, is that when the assumption does not hold, Vrf will lose all Authrep-s of Prv and

its descendants while in LISAα, some of those Authrep-s could still arrive to Vrf.

QoSA of LISAs

As presented in Algorithm 4, LISAs offers L-QoSA. By changing information contained in

the reports (line 48), QoSA can be amended to:

• Binary: Instead of Desc, Attrep contains a single bit indicating whether all descendants

have been successfully attested. This saves bandwidth over L-QoSA since reports are

smaller (the MAC is also faster to compute). The obvious downside is that Vrf is only

learns the result of cRA as a whole, and can not identify missing devices. One option is

to use LISAs with B-QoSA until failure is encountered and then re-run LISAs with

higher QoSA to identify devices that failed attestation.

• Counter: Using a counter allows Vrf to learn how many devices failed attestation. This
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comes at a marginal increase is bandwidth consumption.

• List Complement: Instead of composing a list of attested descendants, each device can

build a list of unattested ones. In a mostly healthy swarm, this is cheaper in terms of

bandwidth than list QoSA.

• Topology: By representing the list of descendants as a tree instead of a set in the report,

LISAs can provide topology information to Vrf. Specifically, line 39 is replaced by:

Desc ← Desc ∪ (Snd : SndDesc). This recursively creates a subtree rooted at each

node. The only drawback is a small increase in bandwidth usage.

Complexity of LISAs

Architectural Impact: LISAs does not require any additional secure hardware features,

and, in coarse terms, adheres to SMART+. However, ROM needs to be expanded by around

200 bytes to support larger code. Also, LISAs has 5 write-protected values (while SMART+

has one): Seq, Par, C and Desc. To guard them, MPU needs to include at least as many

memory access control rules. Each of the first two is a 4-byte integer, while C is 32 bytes,

while the size ofDesc is proportional to n. In total, Prv needs 40+4n bytes of write-protected

memory, which is O(n). Protecting a fixed-size value is clearly easier than a variable-size

one. Nonetheless, we illustrates a simple mechanism that accommodates variable-size data

with implicit write-protection with minimal (constant) added space complexity for write-

protected memory below:

Let x be a variable-sized data that needs to be write-protected. Let hx be a fixed-size

memory location that stores H(x). Instead of enforcing access rules for x, the MPU ensures

that only hx is write-protected. Whenever x is modified to x′, MPU stores H(x′) at hx.

Whenever x (as a whole or any part thereof) needs to be read, MPU first checks whether

hx = H(x). This does not prevent malware from modifying x. However, any unauthorized

change is detected upon the next read, which is sufficient for our purposes.
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We note that SEDA already implicitly requires write-protected variable-sized data even

though [7] does not discuss how this can be achieved in practice.

Software Complexity: LISAs’s software is much more complex than that of SMART+

or LISAα. Compared to LISAα, LISAs has three extra states, needed to: (1) determine

timeouts, (2) establish parent-child relationship, and (3) handle report aggregation. For

that, Prv needs to store additional variables(two of which are arrays): Depth, Par, Desc

and Children, in each attestation session. This makes LISAs a stateful protocol. In terms

of LoC-s, LISAs is approximately 22% and 19% over SMART+ and LISAα, respectively.

Bandwidth Usage: Suppose Prv has q children, z descendants and w neighbors. Com-

pared to LISAα, Attreq includes one extra field: Depth– 4 bytes. Thus, the size of Attreq

in LISAs is 47 bytes. Attrep does not include H(Mem) and Par. However, it contains

additional variable-size data, Desc, which can be as long as 4z. Thus, the size of Attrep is

47 + 4z bytes. Finally, Attack size is 15 bytes: 3 – message tag, 4 – Seq, 4 – DevID field

and 4 – Par.

In each session, Prv broadcasts one Attreq to its neighbors, plus unicasts one Attrep and one

Attack to Par. Thus, the overall transmission cost for Prv is 47 + 47 + 4z + 15 = 109 + 4z.

In the same session, Prv receives up to w Attreq-s, exactly q Attrep-s and q Attack-s. Hence,

in the worst case, Prv receives (in bytes):

47w +

q∑
i=1

(47 + 4zi) + 15q = 47w + 47q + 4(z − q) + 15q = 47w + 58q + 4z

where zi is the number of descendants of ith child of Prv.

Overall, LISAs reduces the number of messages, compared to LISAα. Each Prv transmits

a fixed number of messages while, in LISAα, this depends on the number of descendants

and neighbors.
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8.4 Security Analysis

We now describe possible attacks and then (informally) assess security of LISAα and

LISAs.

8.4.1 Attack Vectors

Recall that our adversarial model only considers remote and local adversaries, while physical

attacks are out of scope. An adversary Adv can remotely modify the software and/or the

state of any device. It also has full control of all communication channels, i.e., can eavesdrop

on, inject, delete, delay or modify any messages between devices, as well as between any

device and Vrf. In the context of LISA, the following attacks are possible:

1. Report Forgery: Forging a Attrep would allow a device to evade detection of malware,

or allow Adv to impersonate a device.

2. Request Forgery: Forging a Attreq would trigger unnecessary cRA and result in denial-

of-service (DoS) for the entire swarm.

3. Application Layer DoS: Adv can launch a DoS attack abusing the attestation protocol

itself. This type of attack can vary, depending on the protocol version. One example

is flooding the swarm with fake Attrep-s.

4. DoS on Network Layer and Lower Layers: Adv can launch DoS attacks that target

network, link and physical layers of devices. This includes radio jamming, random

packet flooding, packet dropping, etc. We do not consider such attacks since they are

not specific to cRA.
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8.4.2 Security of LISAα

Report Forgery: Recall thatAttrep in LISAα is [“rep”,DevID,Par,Seq,H(Mem),Authrep]

where Authrep = MAC(K, “rep”||DevID||Seq||H(Mem)). If Adv produces an authentic

Attrep for some device then one of the following must hold:

• Adv forgesAuthrep without knowing K: this requiresAdv to succeed in a MAC forgery,

which is infeasible, with overwhelming probability, given a secure MAC function.

• Adv knows K and constructs its own Authrep: this is not possible, since only AttCode

can read K, AttCode leaks no information about K beyond Authrep, and Adv can

not tamper with hardware.

• Adv modifies a compromised device’s DevID which results in producing Authrep for

another DevID: since DevID “lives” in ROM, it can not be modified.

We note that replay attacks are trivially detected by Vrf since each Attreq includes a unique

monotonically increasing Seq, which is authenticated by every Prv and included in Attrep.

Request Forgery: Recall thatAttreq in LISAα is [“req”,Snd,Seq,Authreq] whereAuthreq =

MAC(K, “req”||Seq). An Adv that fakes an Attreq must either create a forged Authreq with-

out K or somehow know K. Similar to report forgery above, neither case is possible due to

our assumptions about the MAC function and inaccessibility of K.

Application Layer DoS: An Adv flooding the swarm with fake Attrep-s and/or Attreq-s

can result in an effective attack if it triggers a lot of computation on, and/or communication

between, devices. Fake Attreq flooding to a device is not very effective since it causes DoS

for only that device which authenticates an Attreq before doing further work and forwarding

it. On the other hand, a fake Attrep sent to a single device can result in several devices

forwarding garbage. This is because a device forwards a report to its parent (and further

up the spanning tree) without any authentication. We consider this attack not to be severe
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because it does not trigger any other computation (only communication).

8.4.3 Security Analysis of LISAs

Report Forgery: Analysis of this attack in LISAs is similar to that in LISAα. Attrep in

LISAs is [“rep”,DevID, CurSeq,Desc,Authrep], where Authrep = MAC(K, “rep”||DevID

||CurSeq||Desc). If Adv successfully forges a Attrep for one of the swarm devices such that

Vrf accepts it, then one of the following must have occurred: (1)Adv forgedAuthrep violating

security of the underlying MAC; (2) Adv learned K which is in ROM and only accessible

from AttCode which is leak-proof; or (3) Adv was able to modify variables that “live” in

write-protected memory (i.e., CurSeq, DevID, Par, Desc and Children). This is also not

possible due to the guaranteed write-protection from MPU access rules and ROM.

Request Forgery: Attreq in LISAs is similar to Attreq in LISAα except the additional

field – Depth. This field is, however, not utilized when checking integrity of Attreq. Thus,

the analysis of this attack is similar to that in the LISAα case above.

Application-Layer DoS: Fake request flooding in LISAs has the same effect as that in

LISAα since the request of both protocols has similar format and is handled similarly. Fake

report flooding, nonetheless, does not result in significant communication overhead since a

device in LISAs verifies all reports before aggregating them. In addition, LISAs involves

one additional type of message: Attack. Recall that Prv in LISAs constructs Children based

on Attack-s and then waits for reports until Children is empty or a timeout tREP occurs. A

fake Attack causes devices to wait longer than necessary. However, such waiting time is still

bounded by tREP and thus in the worst case this attack will result in timeout of all of its

ancestor devices. This attack is not severe since it does not incur extra computation on any

devices, and produces effects similar to DoS attacks on lower layers. Fake Attack flooding

is also possible in LISAs, though it results in DoS for targeted devices and not the entire
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swarm.

8.5 Experimental Assessment

We implemented LISAα and LISAs in Python, and assessed their performance by emulat-

ing device swarms using the open-source Common Open Research Emulator (CORE) [3].

8.5.1 Experimental Setup and Parameters

Figure 8.4: Example scenario generated in CORE (40 nodes). Vrf is highlighted.

CORE Emulator: CORE is a framework for emulating networks. It allows defining net-

work topologies with lightweight virtual machines (VMs). CORE contains Python modules

for scripting network emulations at different layers of the TCP/IP stack and allows defining

mobility scenario for nodes, configuring routing and switching, network traffic and appli-

cations running inside emulated VMs. One key advantage of CORE over other simulation

frameworks, such as ns2 or ns3, is that it utilizes the actual network stack in Linux and

instantiates each emulated node using a lightweight VM with its own file system running

its own processes. Using the actual networking stack results in performance estimates very

close to reality, since it does not abstract away any implementation details or issues at the

data link, network and transport layers.
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Experimental Setup & Scenarios: We generated several CORE scenarios with n nodes

each. In every scenario, the positions of the n nodes are chosen uniformly at random in an

area of 1, 500× 800 units, e.g., meters. A pair of nodes is connected if the distance between

them is smaller then a threshold of 200 units, corresponding roughly to the coverage range

of 802.11/WiFi. If the resulting network is not connected, the above process is repeated

until a connected network is generated. Vrf is also randomly positioned within the area, and

connected to the generated network. Figure 8.4 in shows a sample configuration.

The link-layer medium access control protocol running between neighboring nodes is 802.11.

Network layer (IP) routing tables are automatically populated via the Optimized Link State

Routing (OLSR) protocol, an IP-based routing protocol optimized for MANETs. OLSR uses

proactive link-state routing with “Hello” and “Topology Control” messages that discover

and disseminate link state information throughout the network. Each node uses topology

information to compute next-hop destinations for all other nodes using the shortest path

algorithm. Each node then runs our cRA protocol, though instead of actually performing

cryptographic operations, we insert delays (specified below) corresponding to time to perform

such operations on low-end devices. At the beginning of each experiment, Vrf broadcasts a

new Attreq that is propagated throughout the network according to LISAα or LISAs.

Timings of Cryptographic Operations: Delays used to mimic cryptographic operations

on low-end devices are as follows:

• Vrf signature computation/verification: 0.0001s

• Node signature computation/verification: 0.001s

• Node hash speed (for attestation): 0.0429s/MB

The scheme used to sign messages can be implemented by a MAC or a public key signature

scheme such as ECDSA (see Section 8.6). These timings are based on using ECDSA-160

and SHA-256. Using a MAC would reduce the time for small memory sizes. However, as
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discussed in Sections 8.5.2 and 8.6, computation is generally dominated by hashing. Numbers

for Vrf are derived from a typical laptop, and those for Prv nodes come from a Raspberry

Pi-2.

8.5.2 Experimental Results

In each experiment, we measured: (a) total time to perform cRA: from Vrf sending Attreq,

until Vrf finishes verification of the last Attrep; (b) average CPU time for Prv to performing

attestation; and (c) average number of bytes transmitted per Prv. Figure 8.5 shows the

results for both protocols with various amounts of attested memory and different swarm

sizes. Each data point is obtained as an average over 30 randomly generated scenarios for

that setup.

Total time (Figure 8.5a) varies significantly between LISAα and LISAs. This is because in

LISAs nodes spend a lot of time waiting for external input, without computing anything.

In these results, the factor varies between 2 (for 1MB) to 8 (for 100MB). This time is also

heavily influenced by the size of the attested memory, as shown in Figure 8.5b. Finally,

total attestation time depends (roughly logarithmically) on n, since nodes are explored in

a tree fashion. Although random, the tree is expected to be relatively well-balanced (see

Figure 8.4).

Average CPU time (Figure 8.5b) for Prv is roughly equivalent in both protocols. This might

seem counterintuitive, since in LISAs nodes verify Attrep-s of their children. However, veri-

fication is much cheaper than attestation, in particular, if attested memory size is large. This

is discussed in Section 8.6. The number of devices (n) also has little effect on computation

costs. On the other hand, the amount of attested memory has a strong impact on Prv’s CPU

usage. This shows that both protocols impose negligible extra overhead (over single-prover

attestation) in terms of CPU usage.
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(a) Total time [s] for cRA in LISAα and
LISAs, for different memory sizes, as a func-
tion of n (log y-scale).

(b) Average CPU time [s] per device for LISAα
and LISAs, for different memory sizes, as a
function of n (log y-scale).

(c) Average # bytes transmitted per device for
LISAα and LISAs, for different memory sizes,
as a function of n (linear y-scale).

Figure 8.5: Experimental Results for LISAα and LISAs
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Bandwidth usage (Figure 8.5c) is, as expected, higher in LISAα than in LISAs. The exact

difference factor depends on n, ranging from negligible (5 nodes) to 3 (40 nodes). This only

represents payloads size. Nodes in LISAα also send more packets7, compared to only 3 in

LISAs: Attreq, Attack, and Attrep. Bandwidth usage is also roughly linear in terms of n.

The size of the memory does not affect bandwidth usage, since data transmitted by nodes

is independent to it.

8.6 Cryptographic Choices

As described above, both LISAα and LISAs assume that symmetric cryptography is used

for constructing the MAC primitive, i.e., a keyed cryptographic hash function [9] or a CBC-

based MAC [41]. Key management is trivial: a single master key shared between Vrf and

all devices is used for computing and verifying all attestation reports. However, under some

conditions, it might be desirable or even preferable to apply less näıve key management

techniques and/or take advantage of public-key cryptography.

Physical Attacks: As stated earlier, LISAα and LISAs consider physical attacks to be out

of scope, following most prior literature on this topic. Thus, SMART+ architecture, coupled

with a single shared symmetric master key, is sufficient for attesting the entire swarm in

the presence of Remote and Local adversaries, as defined in Section 8.2.2. However, in the

presence of physical adversaries, neither scheme is secure. A physical attack on a single

device exposes the master key, which allows the adversary to impersonate all other devices

as well as Vrf.

Device-Specific Keying: One natural mitigation approach is to impose a unique key that each

device shares with Vrf. That way, the adversary learns only one key upon compromising a

7 The number of packets sent by both protocols, not depicted here, follows a behavior very similar to
Figure 8.5c.
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single device. Although this approach would work well with LISAα, it requires changes to

LISAs to support key establishment among neighboring devices; this would likely entail the

use of public key cryptography, e.g., using the Diffie-Hellman key establishment protocol.

Attreq Authentication: Device-specific symmetric keying also does not address the issue of

Vrf impersonation. To allow devices to authenticate each Attreq individually, Vrf would

need to compute n distinct Authreq tags, one for each device. This might incur significant

computational and bandwidth overheads, if n is large. For small swarms, the tradeoff could

be acceptable. Regardless of whether a single master key or device-specific keys are used,

one simple step towards preventing Vrf impersonation and consequent DoS attacks is to

impose a public key on Vrf only. In other words, Vrf would sign each Attreq, thus changing

the format of Authreq to: SIGN(SKVrf , “req”||Seq) where SKVrf is Vrf’s private key and

PKVrf is its public counterpart, assumed to be known to all devices. One obvious downside

of this simple method is the extra computational overhead of verifying Authreq. We note

that the combination of: (1) public key-based Attreq authentication, and (2) per device

symmetric keys, is both appropriate and efficient for LISAα, which does not require devices

to authenticate each other’s Attrep-s. It makes less sense for LISAs, due to the need for a

means to authenticate one’s neighbors’ Attrep-s.

Public Keys for All: Predictably, we now consider imposing a unique public/private key-

pair for each device. Admittedly, this only mitigates the effects of physical attacks and

clearly does not prevent them. However, a successful physical attack on a single device

yields knowledge of that device’s secret key and does not lead to impersonation, or easier

compromise, of other devices. For LISAα, there is almost no difference between the full-

blown public key approach and device-specific symmetric keying, as long as either is coupled

with public key-based Attreq authentication. The only issue arises if Vrf is not fully trusted;

in that case, the former is preferable since Vrf would not be able to create fake Attrep-s. For

LISAs, using device-specific public keys is conceptually simpler as there would be no need
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to establish pairwise keys between neighbors.

Attested Memory Size: An orthogonal (non-security) issue influencing cryptographic choices

is the size of attested memory. Considering relatively weak low-end embedded devices, the

cost of computing a symmetric MAC (dominated by computing a hash) over a large segment

of memory might exceed that of computing a single public key signature. In that case, it

makes sense to employ a digital signature in both LISAα and LISAs. To illustrate this

point, Figure 8.6 compares performance of SHA-256 with several signature algorithms on

Raspberry Pi-2. When attested memory size reaches 45KB, the run-time of Elliptic Curve

Digital Signature Algorithm (ECDSA) with a 256-bit public key catches up to that of SHA-

256. Hence, at least with Raspberry Pi-2, it makes sense to switch to ECDSA-256 for

memory sizes exceeding 4.5MB – at that point, ECDSA-256 consumes less than 1% of total

attestation runtime.

Figure 8.6: Performance Comparison: Hash & Signature on Raspberry Pi-2@900MHz [72].
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8.7 Applicability in Security-Critical Applications

The current versions of LISA keep Prv-s busy for a non-negligible amount of time during

cRA (See our evaluation results in Section 8.5.2 for more details). Naturally, this makes

them unsuitable for time-/safety-critical swarm devices that operate under strict time con-

straints. One direction to resolve this issue is to minimize the real-time requirement in

LISA by adopting the periodic self-measurement technique, which is thoroughly discussed

in Chapter 7.

Consider a variant of LISAα in which all Prv-s deploy ERASMUS-based self-measurements

instead of performing on-demand RA based on a Vrf request. In this variant, each Prv

periodically records its software state, and simply transmits the latest recording to its par-

ent during cRA. Doing so eliminate the need for Prv-s to perform on-demand RA, which

represents the main bottleneck in LISAα. As no on-demand RA is required, this variant

is not exposed to computational DoS attacks, entailing that authentication of Vrf requests

is also no longer necessary. As a result, this variant of LISAα imposes no time-consuming

computation on Prv-s and also allows more flexible scheduling of RA, making it suitable for

a swarm of safety-critical devices. The same technique is less effective on LISAs, however.

This is because, even coupling with the self-measurement technique, each Prv in LISAs still

needs to verify its children’s reports in order to prevent them from lying, and this process

can be potentially time-consuming (even though much less time-consuming than on-demand

RA).
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Chapter 9

Conclusion & Future Work

This dissertation proposed several mitigation mechanisms to remedy the conflict between

requirements of secure remote attestation and those of safety-critical operations.

We started off in Chapter 4 by discussing HYDRA – the underlying RA architecture in our

mitigation mechanisms. HYDRA follows the same design principle as hybrid RA, which aims

to minimize hardware features on Prv. For software components, we leveraged the seL4 for-

mally verified microkernel to enforce memory isolation and access control to resources in

HYDRA. We demonstrated how to derive seL4’s access control configurations from security

properties of hybrid RA. Contrary to previous hybrid RA techniques, HYDRA does not

require any changes to the underlying processor; the only hardware support needed by HY-

DRA is a hardware-enforced secure boot feature, which is readily available on commercially

available development boards and processors. This makes HYDRA deployable even on the

existing off-the-shelf IoT devices. Admittedly, despite building on top of the formally ver-

ified kernel, the user-space components of HYDRA are not verified. One promising future

direction is to formally verify such components with respect to formal security properties

and functional correctness.
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Using HYDRA as a building block, we presented the first mitigation mechanism, called

SMARM , in Chapter 5. SMARM aims to reconcile secure RA with safety-critical applica-

tions by carefully relaxing the atomicity requirement in RA. In particular, SMARM per-

mits the measurement process to be interruptible while mitigating self-relocating malware by

measuring Prv’s memory in a random and secret order. This order is established randomly

when the measurement starts, and then stored in secure memory. SMARM requires the

memory measurement to be performed multiple times in order to ensure a negligible prob-

ability of malware evasion. Thus, this technique imposes additional run-time overhead on

Prv. Nonetheless, we showed that RA based on SMARM minimizes practical impact on the

availability of Prv for its main operation, which is the primary requirement in safety-critical

applications.

Chapter 6 introduced the notion of temporal consistency with a focus on the RA application.

We argued that, in practice, inputs to any cryptographic integrity-ensuring functions can

change during computation, and thus the result from such computation may be inconsis-

tent, i.e., it may reflect a state of inputs that never existed in their entirety at any given

time. We presented various memory locking mechanisms to ensure temporal consistency in

RA. They offer tradeoffs between consistency guarantees, performance overhead, and im-

pact on memory availability. We implemented the proposed mechanisms on two commodity

platforms using HYDRA as the underlying RA architecture. Experimental results showed

that our mechanisms can be achieved with less than 10% overhead on both platforms, while

providing much better availability for safety-critical applications.

Chapter 7 presented ERASMUS as an alternative to current on-demand RA techniques for

IoT devices. It is based on scheduled self-measurements, which allows periodically and

autonomously recording Prv’s software state without relying on Vrf’s interaction. Using this

technique, Prv has control over the measurement schedule and thus can avoid running the

measurement process at the same time as safety-critical processes. It also provides detection
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of mobile malware, which is not possible with on-demand RA techniques. Its other major

advantage is that it requires no cryptographic computation as part of Vrf’s interaction.

This makes ERASMUS more resilient to DoS attacks based on Vrf impersonation. We also

discussed the possibility of using on-demand RA as part of ERASMUS collection phase to

obtain maximal freshness.

Chapter 8 brought collective remote attestation (cRA) closer to reality by designing two

simple and practical protocols: LISAα and LISAs. To analyze and compare across pro-

tocols, we introduced a new metric: Quality of Swarm Attestation (QoSA) which captures

the information offered by a specific cRA protocol. We showed that LISAs can achieve

more variety of QoSA-s. Meanwhile, the design of LISAα is simpler, resulting in a smaller

size of secure memory storage and less complex software. We evaluated both LISAs and

LISAα using the open-source CORE emulator. Evaluation results showed feasibility and

practicality of our proposed protocols; both LISAs and LISAα take less than 1 minute

to attest a swarm of up to 40 devices. We also described variants of LISA-s that replace

on-demand RA by the self-measurement technique, making them good candidates for cRA

of safety-critical devices.

Future Research Directions. All of our proposed mitigation mechanisms build on top

of RA techniques that compute an attestation report based on a memory measurement

(e.g., keyed hash of Prv’s memory). Recall from Chapter 2 that such techniques only give

Vrf an assurance about Prv’s software integrity during the measurement time; it does not

guarantee that the measured memory will run properly. Various control-flow based RA

techniques [1, 25, 24] have been recently proposed in order to address this limitation. One

interesting future research direction is to adapt our mitigation mechanisms to support such

control-flow RA techniques. This can especially be challenging since control-flow RA tech-

niques are known to be prone to the problem of execution-path (or state) explosion [1];

allowing interrupts to occur during control-flow RA could further complicate this problem.
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Next, security arguments of our proposed mechanisms are informally stated. The natural

extension is to formally prove our design and implementation with respect to formal security

guarantees. One way to achieve this is to follow the same verification methodology as the

work in [65] (for single Prv settings) or [64] (for multiple Prv-s settings), which would require

the following: (1) formalize an end-to-end notion of secureRA in the context of safety-critical

settings, (2) use a formal verification framework (e.g., theorem prover or model checking) to

prove that the protocol design of our proposed mechanism satisfies the end-to-end notion,

and (3) prove that our implementation corresponds to the proven protocol design. The final

direction for future work that we intend to pursue is trial deployment of our proposed mech-

anisms in real-world safety-critical settings. Doing so will demonstrate stronger practicality

of our proposed mechanisms.
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Hämäläinen. Energy-efficient neighbor discovery protocol for mobile wireless sensor
networks. Ad Hoc Networks, 7(1):24–41, 2009.

[50] H. Krawczyk, R. Canetti, and M. Bellare. Hmac: Keyed-hashing for message authenti-
cation. 1997.

[51] laginimaineb. Extracting qualcomm’s keymaster keys! https://bits-

please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html, 2016.

[52] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the integrity of peripherals’
firmware. In ACM Conference on Computer and Communications Security, 2011.

[53] Y. Lindell and J. Katz. Introduction to modern cryptography, chapter 3, pages 68–72.
Chapman and Hall/CRC, 2014.

181

https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html


[54] R. J. Lipton, R. Ostrovsky, and V. Zikas. Provably secure virus detection: Using
the observer effect against malware. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP, 2016.

[55] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS# 1: RSA cryptography
specifications version 2.2. Internet Engineering Task Force, Request for Comments,
8017, 2016.

[56] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,
X. Gao, and G. Klein. seL4: from general purpose to a proof of information flow
enforcement. In IEEE Symposium on Security and Privacy (SP), 2013.

[57] National ICT Australia. UNSW Advanced Operating Systems. https://

bitbucket.org/kevinelp/unsw-advanced-operating-systems, 2014.

[58] National ICT Australia and other contributors. seL4 Libraries. https://github.com/
seL4/seL4 libs, 2014.

[59] National ICT Australia and other contributors. The seL4 Repository. https://

github.com/seL4/seL4, 2014.

[60] National ICT Australia and other contributors. util libs. https://github.com/seL4/
util libs, 2014.

[61] National Institute of Standards and Technology. Secure Hash Signature Standard (SHS)
(FIPS PUB 180-2). 2002.

[62] National Vulnerability Database. Vulnerability summary for cve-2015-6639. https:

//web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-6639, 2015.

[63] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Pre-
neel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost trustworthy extensible net-
worked devices with a zero-software trusted computing base. In USENIX Security
Symposium, 2013.

[64] I. D. O. Nunes, G. Dessouky, A. Ibrahim, N. Rattanavipanon, A.-R. Sadeghi, and
G. Tsudik. Towards systematic design of collective remote attestation protocols. In
IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

[65] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik. VRASED:
A verified hardware/software co-design for remote attestation. In USENIX Security
Symposium, 2019.

[66] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Pure: Using verified
remote attestation to obtain proofs of update, reset and erasure in low-end embedded
systems. In International Conference On Computer Aided Design, 2019.

[67] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. A verified architecture
for proofs of execution on remote devices under full software compromise. arXiv preprint
arXiv:1908.02444, 2019.

182

https://bitbucket.org/kevinelp/unsw-advanced-operating-systems
https://bitbucket.org/kevinelp/unsw-advanced-operating-systems
https://github.com/seL4/seL4_libs
https://github.com/seL4/seL4_libs
https://github.com/seL4/seL4
https://github.com/seL4/seL4
https://github.com/seL4/util_libs
https://github.com/seL4/util_libs
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-6639
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-6639


[68] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In ACM Symposium
on Principles of Distributed Computing (PODC), 1991.

[69] D. Perito and G. Tsudik. Secure code update for embedded devices via proofs of secure
erasure. In European Symposium on Research in Computer Security. Springer, 2010.

[70] D. Puri. Got milk? IoT and LoRaWAN modernize livestock monitor-
ing. http://www.networkworld.com/article/3118803/internet-of-things/got-
milk-iot-and-lorawan-modernize-livestock-monitoring.html.

[71] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-
mann, J. Loeser, D. Mattoon, et al. ftpm: A software-only implementation of a TPM
chip. In 25th USENIX Security Symposium, 2016.

[72] Raspberry Pi Foundation. Raspberry Pi 2 Model B. https://www.raspberrypi.org/
products/raspberry-pi-2-model-b/, 2015.

[73] B. Ray, S. Douglas, S. Jason, T. Stefan, W. Bryan, and W. Louis. The simon and
speck families of lightweight block ciphers. Technical report, Cryptology ePrint Archive,
Report./404, 2013.

[74] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 2012.

[75] M. Saarinen and J. Aumasson. The blake2 cryptographic hash and message authenti-
cation code (mac). Technical report, 2015.

[76] A.-R. Sadeghi, M. Schunter, A. Ibrahim, M. Conti, and G. Neven. SANA: Secure
and scalable aggregate network attestation. In ACM Conference on Computer and
Communications Security, 2016.
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