
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
On The Asymptotics of Some Low-Delay Transmission Scenarios

Permalink
https://escholarship.org/uc/item/4jv5x03s

Author
Sevinc, Ceren

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jv5x03s
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

On The Asymptotics Of Some Low-Delay Transmission Scenarios

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Ceren Sevinç
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ABSTRACT OF THE DISSERTATION

On The Asymptotics Of Some Low-Delay Transmission Scenarios

by

Ceren Sevinç

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2022

Professor Ertem Tuncel, Chairperson

The first part of the thesis focuses on asymptotic energy-distortion performance of zero- and

low-delay transmission of Gaussian sources over energy-limited Gaussian channels. A lower

bound for the leading term in the negative logarithm of the distortion, termed the energy-

distortion exponent, is derived through an achievable scheme based on high-resolution quan-

tization coupled with orthogonal signaling. The higher-order term in the negative logarithm

of the distortion, termed the energy-distortion dispersion, is optimized while keeping the

leading term, the energy-distortion exponent, at its optimal (respectively, the best known)

value for the zero-delay (respectively, low-delay) regime. In contrast with the decaying

dispersion previously reported in the literature, the proposed coding scheme achieves a con-

stant dispersion. When the scheme is optimized, this constant can be improved with respect

to its näıve value, i.e., that achieved by optimizing purely the source coding performance

instead of the end-to-end distortion. Lastly, a tradeoff of achievable energy-distortion expo-

nents is derived for broadcast scenarios by extending the point-to-point scheme to include

a successive refinement source coder coupled with two rounds of orthogonal signaling.

viii



The second part examines the idea of randomized response together with the

method of types and large deviations techniques to analyze the accuracy of potential elec-

tronic privacy-preserving voting and survey schemes. Previous work by Tuncel [1] proposed

a voting scheme in which votes are randomly changed by the system before being transmit-

ted with a chosen flipping probability to preserve the privacy of the voters. The vulnerable

interval in [1], where the voting results are very close to 50%–50%, is tackled by introducing

a third possible outcome referred to as “too close to call”. This third outcome is used as

a feedback to adjust the flipping probability so that small upper bounds on the probabil-

ity of wrongly calling the election could be given. A natural tradeoff arises between the

probability of wrongly calling the election and the probability of a too-close-to-call outcome.
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3.2.1 The Näıve approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 σ-optimal Gaussian pdf approach . . . . . . . . . . . . . . . . . . . . 29
3.2.3 λ-optimal approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Practical Energy-Distortion Tradeoff . . . . . . . . . . . . . . . . . . 31

3.3 Achievable Energy-Distortion Dispersion for M = 2 . . . . . . . . . . . . . . 32
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Chapter 1

Introduction

Classical information theoretic approaches for source and channel coding depend

on mapping large blocks of source samples to large blocks of channel symbols under av-

erage power and bandwidth constraints. Such approaches may become irrelevant in some

cases, particularly in emerging internet of things (IoT) technologies where (i) the measured

phenomenon is almost always very slowly varying, thus inducing an extremely low sam-

pling rate and a very delay-intolerant regime, (ii) there is ample time to communicate the

measurement, thereby resulting in a very high relative channel bandwidth, and (iii) a small

average power consumption per channel symbol translates into huge energy consumption

per source sample due to the high relative bandwidth. Subsequently, new communication

limits must be explored for the case where very few source samples M (as few as M = 1)

are mapped to very large blocks of channel symbols N under energy constraints, instead

of power constraints. This would constitute a zero-delay and low-delay framework in the

sense of source delay, i.e., transmission without waiting for new source samples to occur, or

transmission after combining only a few source samples, respectively.
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Energy-distortion tradeoff was introduced in [3] in order to characterize the mini-

mum average reconstruction distortion that can be achieved under a total energy constraint

(per source sample) without any restriction on the channel bandwidth. Authors in [4] pro-

posed the concept of energy-distortion exponent as a prominent performance metric defined

as

Θ = lim
γ→∞

−1

γ
lnD(γ) ,

where γ denotes the signal energy-to-noise ratio (ENR), and D(γ) is the minimum mean

square-error (MSE). They then showed that for Gaussian sources and channels, the expo-

nential energy-distortion behavior of Shannon-theoretic M -to-N mappings (where both M

and N are allowed to be arbitrarily large) can be replicated in the 1-to-infinity mapping

regime so long as catastrophic outage events are allowed with vanishingly small probability,

and the MSE distortion is measured conditioned on non-outage. In [5], the same scenario

was undertaken with respect to the overall distortion for any M -to-infinity regime. It was

shown that achievable exponents coincide with those in the Shannon-theoretic setting when

M →∞, making the proposed scheme exponent-optimal asymptotically in M .

In [6], an achievable tradeoff of exponents for the overall distortion was derived for

broadcast channels for any M . The energy-distortion problem for Gaussian broadcasting

was later studied in [7], [8] under the constraint of a private message sent to the better

receiver with a given rate. Energy-distortion tradeoff for the transmission of a pair of cor-

related Gaussian sources over a two-user Gaussian broadcast channel with noiseless and

causal channel output feedback was explored in [9].
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Later, we investigate the more detailed characterization of broadcast channels for

zero-delay scenario as in the point-to-point case in [5], which takes the higher order term

energy-distortion dispersion, i.e. Υ1(γ), into consideration in the analysis of the energy-

distortion tradeoff with 1-to-infinity source-channel mapping, D1(γ), in the form of

− lnD1(γ) = Θ1 · γ + Υ1(γ) + o(1) , (1.1)

for large γ, where Υ1(γ) is sub-linear in γ, i.e., limγ→∞Υ1(γ)/γ = 0. We also suggest a

convenient approach by optimizing the variance of the Gaussian point-density function to

be able to extend the energy-distortion dispersion analysis to Gaussian broadcast channels.

The second part of the dissertation explores a different application of a low-delay

communication in which we analyze an electronic privacy-preserving voting and survey

schemes by using a locally differential private mechanism of randomized response and assess

the performance bounds by utilizing the method of types and large deviation techniques.

In the age of internet and big data, the need for data privacy is becoming increas-

ingly recognized. There is growing interest in the question: How do we protect the privacy

of a user while we perform an informative analysis on a dataset using statistics and/or

machine learning? In this regard, differential privacy [10] has gained popular attention in

the past decade, and is often regarded as the gold standard for data privacy of users in

data analysis. The further mathematical discussion of the differential privacy is provided

in [11]. The main idea behind differential privacy is to inject some random noise to a user

input to give the user plausible deniability. This is typically done in one of two ways: in a

(i) centralized or (ii) local framework, which are shown in Figure 1.1.
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User 1

User 2

User n

Central unit

or

aggregator

User 1

User 2

User n

Central unit

or

aggregator

Noise

Noise

Noise

Noise
Randomized

output

Randomized

output

Centralized differential privacy

Local differential privacy

Figure 1.1: Two approaches of differential privacy: (a) centralized (b) local.

In the case of centralized differential privacy, the real data is sent to a central

unit, known as the aggregator. The aggregator transforms the data with a differentially

private mechanism to produce anonymized output. This approach has been also applied on

data mining [12], deep learning [13]. Recently, The U.S. Census Bureau has also started

research on differential privacy as part of modernization of disclosure avoidance, and another

prominent work can be found in [14]. In this model, users must trust the aggregator for

keeping protection of their sensitive data. However, the central unit is often prone to

adversarial attacks which compromise user privacy. Similarly, the central unit might not

be trusted in certain cases, such as untrustworthy operators or authoritarian governments.

Moreover, the requirement of processing the whole data and adding noise to the dataset at

once to increase accuracy induces system delay.
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An alternative to central differential privacy is local differential privacy (LDP),

in which noise is locally added on each data before being transmitted to the central unit.

Although this approach has recently gained attraction in the technology industry, i.e., RAP-

POR from Google [15], Apple iOS [16], Microsoft [17], its origins can be traced back to 1965,

in which Warner introduced the randomized response model in [18] to protect the privacy

of respondents in a survey. When respondents are asked questions on sensitive topics, they

may refuse to answer or may give an untruthful response as a result of concerns over their

privacy, thereby biasing the survey. To eliminate this bias, Warner suggests that respon-

dents are asked to react to either one of the mirrored sentences, i.e., “I belong to attribute

A” and “ I do not belong to A” with a YES or NO, depending on the outcome of a random-

ization device, such as an unfair coin toss or a spinner without revealing their pick to the

interviewer. Later, this approach was extended to multiple sensitive attributes in [19], [20].

For more applications of LDP, we refer the reader to [21–25], and the references therein.

1.1 Outline

Chapter 2 is dedicated to preliminaries and notation for point-to-point transmis-

sion over additive white Gaussian noise (AWGN) channel and Gaussian broadcast channel.

Moreover, tools of high resolution quantization are introduced.

Chapter 3 provides the derivation of achievable energy-distortion exponents for

general M and the details of an achievable energy-distortion dispersion analysis for M =

1 and M = 2 in point-to-point AWGN channels. Furthermore, we utilize Monte Carlo

simulations to validate the high resolution distortion assumptions.

5



In Chapter 4, an achievable tradeoff of energy-distortion exponents for broadcast

channels are derived, for which a simple parametric computation algorithm is also discussed.

In Chapter 5, we move on to a different application, i.e., privacy-preserving voting

mechanism, which was introduced in [1]. We present preliminaries, problem definition, and

the relationship between number of voters, the allowed probability of incorrectly calling the

election, and the level of privacy (i.e., amount of randomization). a case study of The 2020

US Presidential Election for the given voting mechanism.

Chapter 6 focuses on resolving the drawback of mechanism in [1], which has a

vulnerable interval when the voting results are very close to 50%–50%, by introducing a third

possible outcome referred to as “too close to call”. The tradeoff between the probability of

wrongly calling the election and the probability of a too-close-to-call outcome is investigated.

In Chapter 7, we extend privacy-preserving voting mechanism to surveys, which

require YES/NO responses to increase cooperation and privacy that can help reduce bias

by taking an information theoretic approach on the randomized response models.

Some of the proofs are deferred to Appendix A.
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Part I

On Asymptotic Analysis of

Energy-Distortion Tradeoff for

Low-Delay Transmission over

Gaussian Channels
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Chapter 2

Preliminaries

2.1 Introduction

A voluminous amount of data (several exabytes) is generated each day, and wait-

ing to be processed by big data algorithms. Along with smart phones, one of the highest

contributors to the explosion of the volume of data is the Internet of Things (IoT), which

refers to a network of everyday objects such as wearables, appliances (e.g., smart refriger-

ators, thermostats, doorbells), and many others, that can take measurements through the

use of embedded sensors and actuators, and can transmit the information collected about

the objects (or people) to nearby devices, such as phones, tablets, laptops, etc.

Especially prevalent in the IoT framework are the communication scenarios where

the data sampling rate is very small due to the slowly varying nature of the measured

phenomenon. For example, for a diabetes patient monitoring their glucose level, it suffices

to take a reading once every 5 minutes. Similarly, an Apple Watch measures the resting

heart rate every 5 minutes, although during workouts it may go up to once every few seconds.
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Another example is temperature control through a smart thermostat, whereby the room

temperature is measured once every minute. Finally, smart meters take measurements every

15 minutes, although it is conceivable that they will eventually be capable of transmitting

readings every minute.

Classical information theoretic approaches for source-channel coding rely on map-

ping large blocks of source samples to large blocks of channel symbols while satisfying

average power and bandwidth constraints. Such approaches are inapplicable in the afore-

mentioned scenarios, as the extremely low sampling rate imposes large communication de-

lays if block coding is used. But at the same time, the low sampling rate creates ample

time between samples to communicate the measurements, thereby resulting in a very high

relative channel bandwidth. That, in turn, implies that it is the total energy consumption

per source symbol that should be constrained, as opposed to the power consumption per

channel symbol, as even small quantities of the latter translates into a huge quantities of

the former in this setting. To sum up, new communication limits must be explored for the

case where very few source samples M (as few as M = 1) are mapped to very large blocks

of channel symbols N (idealized as N →∞) under energy and distortion constraints.

This would constitute a “low-delay” framework in two senses. First, for low val-

ues of M (respectively M = 1), there will be low (respectively zero) source delay, i.e.,

the encoding/decoding process will not have to wait for more than M source samples to

occur. But more importantly, if the channel bandwidth is high enough, M = 1 also corre-

sponds to actual low communication delay, because large amounts of channel symbols can

be transmitted in a very short period of time after the source sample occurs. For example,

9



Bluetooth communication channels have 1MHz of bandwidth, which would ideally allow

for as many as N = 500, 000 channel symbols to be sent in one second. Contrasting with

minutes between source samples, the communication delay will therefore be in the order of

seconds (or fractions thereof) in practice.

A Shannon-theoretic analysis of the energy-distortion tradeoff for Gaussian sources

and channels was provided in [3], where M and N were both allowed to increase without

bound. It was shown that

D = e−γ (2.1)

where γ denotes the signal energy-to-noise ratio (ENR) per source symbol. In [4], it was

shown that the same exponential energy-distortion behavior as in (2.1) can actually be

obtained in a 1-to-N mapping regime in which outage events (i.e., catastrophic reconstruc-

tion) are allowed with vanishingly small probability, and the MSE distortion is measured

conditioned on non-outage.

In this work, instead of conditioning on the occasional outage event only, we ana-

lyze the end-to-end MSE achieved by mapping M source samples to infinitely-long channel

words. Defining DM (γ) as the energy-distortion tradeoff, i.e., the minimum MSE achievable

under the ENR γ using an M -to-infinity source-channel mapping, we analyze

− lnDM (γ) = ΘM γ + ΥM (γ) + o(1) , (2.2)

10



for large γ, where ΥM (γ) is sub-linear in γ, i.e.,

lim
γ→∞

ΥM (γ)

γ
= 0 .

Here, ΘM is the coefficient of the dominant term, termed the energy-distortion exponent.

Seeing a parallel between (2.2) and recent results in finite blocklength source and channel

coding, whereby higher-order terms of the coding rate as a function of the blocklength

is investigated [26, 27], we define the higher order term ΥM (γ) as the energy-distortion

dispersion.

We do not limit our attention to only M = 1, because for the cases where some

delay is tolerable, a few source samples can be combined and coded at once to utilize the

advantage of vector coding. For instance, a heart rate data that is collected every 5 seconds

during a workout session can recorded by a smart phone with as much as 15 seconds of

delay, so a smart watch can combine up to three readings before transmitting them.

For M = 1, Burnashev [28] arrived at the conclusion that

− lnD1(γ) ≤ 1

6
γ + C ln(1 + γ)− lnC ,

for some constant C and large enough γ.1 This implies Θ1 ≤ 1
6 as an upper bound to

the maximum energy-distortion exponent. In fact, Θ1 is exactly equal to 1
6 as implied in

[2,30,31], and [29, Chapter 8], which showed Θ1 ≥ 1
6 through achievable schemes. Therefore,

1While Burnashev’s result was for uniform sources, it was noted in the same work [28] that the result
can be extended to any well-behaving source.
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Burnashev’s result also implies

Υ1(γ) ≤ C ln(1 + γ)− lnC .

To the best of our knowledge, the only known achievable energy-distortion dispersion was

implicitly provided in [2] and can be shown after some algebra that

Υ1(γ) ≥ − ln
5γ

3
. (2.3)

In this work, we show through an achievable scheme that the energy-distortion

exponent for any M > 1 can be lower bounded as

ΘM ≥
M

(
√
M +

√
2)2

. (2.4)

As can be seen, the right hand side of (2.4) is a monotonically increasing sequence converging

to 1, so this achievable scheme is optimal when M → ∞, as a higher exponent cannot be

achieved due to (2.1). Analyzing the dispersion achieved by the proposed scheme, we also

obtain

Υ1(γ) ≥ −1.7006 ,

which is an improvement compared to (2.3), as the latter becomes a trivial lower bound

when γ →∞.

We then turn to the Gaussian broadcast scenario, where the same device is trans-

mitting its readings to multiple control units in a degraded fashion. As usual, different

12



receivers might represent either separate physical IoT devices, or the same device suffer-

ing from different possible levels of communication noise. Energy-distortion exponents in

the broadcast setting was first discussed in [4], where the asymptotic (M → ∞) exponent

tradeoff at the two receivers was derived using the achievability and converse results of [32].

It was then shown that if vanishingly unlikely outage events are allowed, the same expo-

nents in [4] can be achieved using 1-to-N coding schemes, thereby generalizing the results

for point-to-point coding in the same work. As in the same spirit in point-to-point coding,

we explore the end-to-end MSE achieved by mapping M source samples to infinitely-long

channel words. Specifically, we derive an achievable energy-distortion exponent tradeoff

for arbitrary M and show that the tradeoff region expands as M increases and eventually

converges to the tradeoff in [4] as M →∞. Our results for the point-to-point and broadcast

scenarios have appeared in a preliminary form in [5] and [6], [33], respectively. The extended

studies are presented with supporting proofs in a coherent flow, and validity of the high

resolution distortion formulas are tested and justified via Monte Carlo simulations in [34].

2.2 Preliminaries

2.2.1 Point-to-point Transmission

Let X be a real-valued M -dimensional source to be transmitted over the AWGN

channel V = U+W, where U and V are N -dimensional channel input and output vectors,

respectively. The channel noise W is independent of U, and W ∼ N (0, σ2
W I), where σ2

W

is the noise variance. The encoder φM,N : RM → RN maps X into U, and the decoder

ψM,N : RN → RM estimates X from V as X̂.

13



Definition 1 An energy-distortion pair (D,E) is achievable if for any ε > 0, there exist

large enough M,N and (φM,N , ψM,N ) such that

1

M
E
[
||U||2

]
≤ E + ε

1

M
E
[
||X− X̂||2

]
≤ D(1 + ε) .

We also fix M as a finite number and let only N grow without bound, and accord-

ingly make the following M -achievability definition.

Definition 2 An energy-distortion pair (D,E) is M -achievable if for any ε > 0, there exist

large enough N and (φM,N , ψM,N ) such that

1

M
E
[
||U||2

]
≤ E + ε

1

M
E
[
||X− X̂||2

]
≤ D(1 + ε) .

We refer to γ = E
σ2
W

as the energy-to-noise ratio (ENR) per source symbol, and

define achievability and M -achievability of a pair (D, γ) similarly. We also define D(γ)

(respectively DM (γ)) as the minimum achievable (respectively M -achievable) D for a given

γ. Note that D(γ) = D∞(γ)
∆
= limM→∞DM (γ).

As was mentioned in the introduction, characterization ofD(γ) is a solved problem,

because it was shown in [3] that

D(γ) = e−γ (2.5)

On the other hand, much less is known about DM (γ).
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In our pursuit of characterizing M -achievable (D, γ) pairs, we utilize a scheme

whereby X is quantized using a vector quantization with N � 1 regions, and use orthogonal

signaling to transmit the quantization index in N channel uses. That is, the quantized

indices are mapped into orthogonal channel input vectors such that

U =
√
ME ek(X)

where 1 ≤ k(X) ≤ N is the vector quantization index, and ek is the kth unit vector in RN .

Note that the energy expended per source symbol is always equal to E.

At the receiver, we use maximum likelihood (ML) decoding given as

K̂ = arg max
1≤k≤N

Pr[V|k(X) = k] .

Because the noise W is i.i.d. Gaussian, this boils down to a nearest-neighbor decoder, i.e.,

K̂ = arg min
1≤k≤N

||V −
√
MEek||2 ,

which, in turn, is the same as

K̂ = arg max
1≤k≤N

VTek = arg max
1≤t≤N

Vt .

The receiver then outputs

X̂ = rK̂
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Figure 2.1: Block diagram of the proposed coding scheme for an M -dimensional source. Q
and Q−1 refer to quantization and reconstruction of the source, respectively.

where rk is the kth reconstruction level of the M -dimensional quantizer. This proposed

coding scheme is illustrated as a block diagram in Figure 2.1.

We denote by O the outage event, i.e., occasional decoding errors:

O =
{
k(X) 6= K̂

}
. (2.6)

While ML decoding is not optimal, it simplifies the analysis and makes it tractable.

More specifically, i) the outage event O becomes independent of X, which will be convenient

in the sequel, and ii) incorrect decoding induces a uniform distribution over each of the N−1

incorrect quantization regions in RM . To see the latter, observe that

arg max
1≤t≤N, t6=k(X)

Vt = arg max
1≤t≤N, t6=k(X)

Wt

and that Wt is an i.i.d. sequence.

Before we close this section, it is worth mentioning that other approaches in the

literature, most notably the work by Zeger and Manzella [35] which was developed for

communication over binary symmetric channels and later adapted to Gaussian channels by

Hochwald in [36], may be utilized in the current scenario, after adjusting for energy instead
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Figure 2.2: The block diagram for transmission of a Gaussian source sequence X over the
Gaussian broadcast channel V(i) = U + W(i), i = 1, 2. Each receiver estimates its version
X̂(i) of the source.

of channel input power. One advantage our approach has is that it produces a constructive

scheme which is very easy to implement in practice. Another is that it easily generalizes to

broadcast channels, as we discuss next.

2.2.2 Broadcast Channels

Let X be a real-valued M -dimensional source to be transmitted over the broadcast

channel V(i) = U + W(i), i = 1, 2, where U is the N -dimensional channel input as in the

point-to-point case, and V(i) are the output vectors at the two receivers. The channel noise

W(i) are independent of U, and W(i) ∼ N (0, σ2
Wi

I). We also define

ρ =
σ2
W1

σ2
W2

.

and without loss of generality, assume that ρ > 1, i.e., the second receiver is “better.”

The encoder φM,N : RM → RN maps X into U, and the decoder at the ith receiver

ψ
(i)
M,N : RN → RM estimates X from V(i) as X̂(i) for i = 1, 2. Figure 2.2 depicts the scenario.

We refer to γi = E
σ2
Wi

as the ENR per source symbol observed at each receiver i = 1, 2.
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Clearly,

γ2 = ργ1 .

Definition 3 An energy-distortion triplet
(
D(1), D(2), E

)
is achievable if for any ε > 0,

there exist large enough M,N and (φM,N , ψ
(1)
M,N , ψ

(2)
M,N ) such that

1

M
E
[
||U||2

]
≤ E + ε

1

M
E
[
||X− X̂(i)||2

]
≤ D(i)(1 + ε)

for i = 1, 2.

In [37], the region of achievable (D(1), D(2), E) was analyzed and inner and outer

bounds were provided. We focus instead on the tradeoff with finite M as defined next.

Definition 4 An energy-distortion triplet
(
D(1), D(2), E

)
is M -achievable if for any ε > 0,

there exist large enough N and (φM,N , ψ
(1)
M,N , ψ

(2)
M,N ) such that

1

M
E
[
||U||2

]
≤ E + ε

1

M
E
[
||X− X̂(i)||2

]
≤ D(i)(1 + ε)

for i = 1, 2.

We modify the scheme described in the point-to-point case as follows. Let N =

N1+N2 with N1 � 1 and N2 � 1. We quantize X with successive refinement with N1 levels

in the base layer and N2 levels in the refinement layer. We then use orthogonal signaling

and maximum likelihood decoding as in point-to-point transmission, with the modification

18



that the transmission is done in two rounds: In the jth round, j = 1, 2, the channel is used

Nj times to transmit the jth layer quantization index, i.e., U = [U1 U2] such that

U1 =
√
τME ek1(X)

U2 =
√
τ̄ME ek2(X) ,

where 1 ≤ kj(X) ≤ Nj is the jth layer vector quantization index, 0 ≤ τ ≤ 1 and τ̄ = 1− τ .

Although both receivers have access to both rounds, i.e., V(i) = [V
(i)
1 V

(i)
2 ], i =

1, 2, only the second receiver attempts to decode the refinement layer, thereby discarding

V
(1)
2 . The first receiver performs maximum likelihood decoding as in the point-to-point

case, i.e.,

K̂
(1)
1 = arg max

1≤t≤N1

V
(1)

1,t

and then outputs X̂(1) = r
K̂

(1)
1

. The second receiver also performs maximum likelihood

decoding as

K̂
(2)
j = arg max

1≤t≤Nj
V

(2)
j,t

for round j = 1, 2, and outputs X̂(2) = r
K̂

(2)
2 |K̂

(2)
1

. Here rk1 is the k1th reconstruction level

of the base layer quantizer, and rk2|k1
is the conditional k2th reconstruction level at the

refinement layer given the k1th reconstruction level of the base layer.

Occasional decoding errors of quantization index kj(X) at receiver i will be denoted

by the outage event

O(i)
j =

{
kj(X) 6= K̂

(i)
j

}
, (2.7)

where the event O(1)
2 is moot, as mentioned above.
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Figure 2.3: Compander model, where G is a nonlinear compressor and G−1 is a nonlinear
expander.

2.2.3 High Resolution Quantization

Our proposed scheme is formulated by exploiting high-resolution quantization the-

ory, which can be justified by the fact that the number of quantization levelsN must increase

exponentially with γ to guarantee an exponentially decaying distortion, as will be apparent

in the sequel. Distortion in the high-resolution regime is best understood with the help

of companders [38] as shown in Figure 2.3. First, a nonlinear compressor G reduces the

spread of large amplitudes and maps the source sample to [0, 1]. Then, the source is uni-

formly quantized in the compressed domain with N levels. Finally, a nonlinear expander

G−1 reverses this process by expanding the small amplitudes of uniformly quantized output.

As a result, the overall impact of compander turns into a non-uniform quantizer.

As explained in [38], when N is large, an equivalent framework for non-uniform

quantization is provided by the point density function, λ(x) = dG
dx , which approximately

indicates the fraction of quantization points per unit width centered at x. It also has the

convenient property that λ(x) ≥ 0 and

∫ ∞
−∞

λ(x)dx = 1 .

That is, its behavior is the same as that of a probability density function (pdf).
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It is well-known (cf. [38–40]) that the MSE distortion incurred by an N -level scalar

quantizer employing λ(·) as the point density function satisfies

lim
N→∞

N2E
[
(X − rk(X))

2
]

= d(λ(·)) ∆
=

1

12

∫ ∞
−∞

f(x)

λ2(x)
dx (2.8)

whenever the integral converges, where rk(X) is the output of the quantizer as mentioned

before, and f(x) is the source pdf. The integral above is known as the Bennett integral.

The Bennett integral and interpretation of point density function λ(x) need to be

revisited for the case where M > 1. In [41], it was proven that

lim
N→∞

N2/M 1

M
E
[
‖X−rk(X) ‖2

]
= dM (m(·), λ(·))

∆
=

∫
m(x)f(x)

λ2/M (x)
dx (2.9)

whenever the integral converges. Here, λ(x) indicates the fraction of codevectors per unit

volume and m(·) is the inertial profile that designates the normalized moment of inertia

of quantization cells as a function of location, surmising that cells have a certain lattice

tessellation and neighboring cells exhibit a similar normalized moment of inertia. According

to Gersho’s conjecture [40], m(x) = C(M) is the optimal choice, 2 where

C(M) =
1

M
inf

H∈HM
I(H) ,

with I(H) being the normalized inertia of a convex polytope H and HM being the class of

admissible polytopes in RM .

2As we seek an upper bound to the distortion, we will just set m(x) = C(M) and will not need this
conjecture to be true in the sequel.
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When we set m(x) = C(M), optimal point density function for the purpose of

minimizing the MSE distortion becomes

λ∗M (x) =
fM/(M+2)(x)∫
fM/(M+2)(x′)dx′

. (2.10)

as shown in [41].

In this work, we consider zero-delay or low-delay scenarios to determine dispersion,

where M = 1 or M = 2 respectively. For these two cases, optimal polytopes, hence the exact

values of C(M), are known. It is clear that C(1) = 1
12 . Fejes-Tóth [42] and Newman [43]

showed that the optimal polytope for M = 2 is the regular hexagon, yielding

C(2) =
5
√

3

108
≈ 0.0802 .

For the cases where M > 2, one of the two well-known upper bounds on C(M) can be used.

Those are the simple cube upper bound [40]

C(M) ≤ 1

12
≈ 0.0833 ,

and the Zador upper bound [39]

C(M) ≤ 1

M
Γ

(
1 +

2

M

)
V
−2/M
M ,

where Γ(·) is the gamma function, and VM is the volume of the unit sphere in M dimensions.

For similar discussions on vector quantization, the reader can refer to [44–47] and the

references therein.
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From (2.9), it can be easily observed that distortion due to the quantization de-

creases like N−2/M with an accompanied constant that depends on the source pdf, point

density, and inertial profile. We also assume that the source pdf, the compressor/expander

functions are sufficiently smooth and well-behaved throughout the work so that (2.9) holds.
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Chapter 3

Achievable Energy-Distortion

Exponent and Dispersion Analysis

for Point-to-Point Channel

3.1 Achievable Energy-Distortion Exponents

The energy-distortion exponent is a useful performance metric, particularly in the

absence of a fully characterized DM (γ). We derive a lower bound on energy-distortion

exponent and dispersion by using the achievable scheme that we discussed in the previous

section. The theorem that we will be presenting reveals that our coding scheme is exponent-

optimal for M = 1 and for M →∞, i.e., it achieves the exponent Θ1 = 1
6 and Θ∞ = 1. To

the best of our knowledge, this paper is the first to study the energy-distortion exponent

for 1 < M <∞.
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Theorem 1 (Point-to-point energy-distortion exponents): The scheme proposed in Sec-

tion 2.2.1 can achieve an exponent given by

lim
γ→∞

−1

γ
lnDM (γ) ≥ θM

∆
=


1/6 M = 1

M
(
√
M+
√

2)2
M > 1

, (3.1)

with the choice

N = ceαγ , (3.2)

where α is properly picked and c is a constant.

Proof. Let DM (γ) denote the MSE distortion achieved by the proposed scheme.

It can be bounded using the outage notation as

DM (γ) ≤ DM (γ)

≤ 1

M

[
Pr[O] · E

[
‖ X− X̂ ‖2

∣∣O]+ E
[
‖ X− X̂ ‖2

∣∣Oc]]. (3.3)

We proceed by bounding each of the terms in (3.3).

Distortion outside the outage region for the optimal high resolution quantizer can

be upper bounded by setting m(x) = C(M) in the M -dimensional Bennett integral given

in (2.9), i.e.,

1

M
E[‖ X− X̂ ‖2 |Oc] ≤ N−

2
M

[
ε+ dM (C(M), λ(·))

]
(3.4)
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for any ε > 0 and large enough N . Defining

Pe(N |Γ) =


δe(lnN−Γ

4 ) lnN ≤ Γ
8

δe−
1
2(
√

Γ−
√

2 lnN)
2

Γ
8 ≤ lnN ≤ Γ

2

,

where δ = 1
2 + 1

2
√

2
≈ 0.8536, we state the following lemma:

Lemma 1 Pr[O] can be upper bounded as

Pr[O] ≤ Pe(N |Mγ) (3.5)

Proof. We defer the proof to Appendix A.2.

Finally, the last term in (3.3) representing the MSE conditioned on outage can be

bounded as in the next lemma.

Lemma 2 For any ε > 0, the proposed scheme satisfies

E
[
‖ X− X̂ ‖2

∣∣O] ≤ ε+ E
[
‖ X ‖2

]
+

∫
||x̃||2λ(x̃)dx̃ (3.6)

for large enough N .

Proof. We refer reader to Appendix A.3 for the proof.

Now, from (3.3)-(3.6) and (3.2), it follows that

lim
γ→∞

−1

γ
lnDM (γ) ≥ min

{
2α

M
, g(α|M)

}
, (3.7)
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with

g(α|s) ∆
=


s
4 − α α ≤ s

8

1
2

(√
s−
√

2α
)2 s

8 ≤ α ≤
s
2

,

for any s ≥ 0 and 0 < α ≤ s
2 . Thus, the problem becomes a max min problem and the

maximum exponent is evidently achieved when

g(α|M) =
2α

M
, (3.8)

yielding the lower bound on the achieved exponent given in (3.1).

Remark 1 The lower bound in (3.1) is increasing in M , and matches the best possible

exponent, i.e., 1
6 for M = 1, and 1 as M → ∞. Thus, we can conclude that for these two

cases, this simple scheme is exponent-optimal. Unfortunately, the converse in [28] is hard

to generalize for higher dimensions M > 1, and it remains as an open problem.

Remark 2 With the choice of N = ceαγ, even mediocre values of γ will quickly drive N

to a very large number, thus making the high-resolution assumption also practical. This is

further discussed and demonstrated in Section 3.2.4.

3.2 Achievable Energy-Distortion Dispersion for M = 1

To the best of our knowledge, the only work in the literature addressing the dis-

persion (albeit indirectly) is [2], where an analytical upper bound for the distortion was
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derived using a uniform quantizer and maximum a posteriori (MAP) receiver:

D1(γ) < e−γ/6

( √
6

√
πγ

(
1 + e−γ/6

(
4γ

3
+ 1

))
+

5γ

3

)
. (3.9)

For large γ, this can be re-written as

− lnD1(γ) ≥ 1

6
γ − ln

5γ

3
+ o(1) . (3.10)

In comparison, with the choice of N as in (3.2) and α as in (3.8), our scheme

achieves

− lnD1(γ) ≥ 1

6
γ + υ(c, λ) + o(1) (3.11)

for large γ, where υ(c, λ) is a function of the chosen c and the point-density function λ(x),

but does not depend on γ, i.e.,

υ(c, λ) = − ln

[
δc

(
1 +

∫ ∞
−∞

x2λ(x)dx

)
+

1

12c2

∫ ∞
−∞

f(x)

λ(x)2
dx

]
. (3.12)

Comparing (3.11) to (3.10) therefore reveals that while both schemes achieve the

same exponent, the dispersion achieved by the scheme in [2] results in a dispersion diverging

to −∞ as γ → ∞. In contrast, our scheme achieves a constant dispersion υ(c, λ). In the

rest of this section, we compare different approaches that can be taken for the design of

the point density function λ(x), along with an optimized c, and analyze and compare the

dispersion achieved by each approach.
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3.2.1 The Näıve approach

If we disregard the end-to-end distortion and optimize λ(x) only to minimize the

high-resolution quantization error, i.e., the second term in (3.12) (as would be done in source

coding), then it follows from (2.10) that λ(x) is the normalized cubic root of the source

pdf when M = 1. For unit-variance Gaussian sources, that translates to λ(x) ∼ N (0, 3).

Substituting λ(x) in (3.12) yields after some algebra

υ(c, λ) = υ(c)
∆
= − ln

[
4δc+

√
3π

2c2

]
,

optimizing which, with respect to c, then yields

c =

(√
3π

4δ

) 1
3

≈ 1.1681

and as a result,

υ(c, λ) ≈ −1.7888 . (3.13)

3.2.2 σ-optimal Gaussian pdf approach

If λ(x) is kept as a zero-mean Gaussian with a general variance σ2 > 2, (3.12)

becomes

υ(c, λ) = υ(c, σ2)
∆
= − ln

[
δc
(
1 + σ2

)
+

πσ3

6c2
√
σ2 − 2

]
.
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Solving for optimal σ2 and c via ∂υ
∂c = ∂υ

∂σ2 = 0 yields

σ2 = 1 +
√

2 ≈ 2.4142 (3.14)

c = 3

√
πσ3

3δ(1 + σ2)
√
σ2 − 2

≈ 1.2794 . (3.15)

The corresponding maximum value of the dispersion than becomes

υ(c, λ) ≈ −1.7215 , (3.16)

i.e., slightly larger than achieved by the näıve approach.

3.2.3 λ-optimal approach

In this approach, we aim to find the optimal point density function λ(x) defined

as the solution to

maximize
c,λ(x)

υ(c, λ)

subject to −λ(x) ≤ 0∫ ∞
−∞

λ(x)dx = 1 .

The result of this optimization was found numerically as

υ(c, λ) ≈ −1.7006 . (3.17)

We refer the reader to Appendix A.1 for the details of this result. Comparing with (3.13),

this dispersion translates into ≈ 0.38dB improvement in distortion.
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Figure 3.1: The accuracy of the high resolution assumption for the MSE distortion condi-
tioned on no outage and outage are depicted in (a) and (b), respectively. In (c), performance
of the scheme in [2] given in (3.9) is compared to both the theoretical upper bound and the
simulated result for our σ-optimal approach. Numbers around markers represent N = ceαγ

values.

3.2.4 Practical Energy-Distortion Tradeoff

In this section, we simulate the proposed end-to-end communication system and

test the validity of the high resolution approximation for low to moderate values of γ. For

brevity, we only test Gaussian point density function λ(x) = N (0, σ2), where σ2 is as in

(3.14) as discussed above.
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We generate Gaussian source samples Xt ∼ N (0, 1) for 1 ≤ t ≤ 109. These

samples are each passed through a nonlinear compressor function G(x) =
∫ x
−∞ λ(y)dy and

then uniformly quantized with N = ceαγ levels in the interval (0, 1), where α = 1
12 is the

solution of (3.8) for M = 1, and c is as in (3.15). Quantized indices k(Xt) are then coded

with orthogonal signaling and transmitted through AWGN channel Vt = Ut + Wt, where

Wt ∼ N (0, 1). At the receiver end, maximum likelihood detection is applied, the decoded

K̂t is mapped to (0, 1) and passed through the expander function G−1, and the resultant

X̂t is output. The event Ot = {k(Xt) 6= K̂t} is also detected whenever it occurs.

In Figure 3.1(a) and (b), we compare the high resolution approximations of E
[
(X−

X̂)2
∣∣Oc] and E

[
(X − X̂)2

∣∣O] provided in (3.4) and (3.6), respectively, to their simulated

counterparts. As can be seen, with this choice of λ(x), when γ is around 17dB (i.e.,

N ≈ 100), the high resolution approximations become very accurate. In Figure 3.1(c),

we compare the performance of the scheme in [2] with that of our σ-optimal approach. We

observe that (i) there is a wide gap between the simulated distortion and the theoretical

upper bound to it provided in (3.11), stemming from the looseness of the bound on prob-

ability of decoding error Pr[O] in Lemma 1, and (ii) the gap between our approach and

the scheme in [2] increases with growing γ, as one would predict by comparing (3.10) and

(3.11).

3.3 Achievable Energy-Distortion Dispersion for M = 2

As was explained in the Introduction, it is sometimes feasible to introduce a small

amount of source delay. Here, we analyze the case M = 2, where the source X is bivariate
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Gaussian with zero mean and covariance matrix CX = I. We note that although the

exponent achieved by the proposed algorithm is not provably optimal, it is worth analyzing

and optimizing the achieved dispersion to obtain a full picture as to how distortion behaves

for large γ.

For M = 2, the solution to (3.8) is achieved by α = 1
4 , and we will therefore

use N = ce
γ
4 quantization levels. In parallel to (3.11) and (3.12), for large N , the bound

becomes

− lnD2(γ) ≥ 1

4
γ + υ(c, λ) + o(1) (3.18)

for large γ, where υ(c, λ) is

υ(c, λ) = − ln

[
1

2
δc

(
2 +

∫
‖ x ‖2 λ(x)dx

)
+

5
√

3

108c

∫
f(x)

λ(x)
dx

]
. (3.19)

3.3.1 The Näıve approach

As a result of näıvely done quantization in (2.10), λ(x) reduces to λ(x) ∼ N (0, 2I),

which, after substituting into (3.19), yields

υ(c) = − ln

[
3δc+

10
√

3π

27c

]
,

It can then be readily shown that this induces c ≈ 0.7870 as the optimal choice with the

corresponding dispersion υ(c, λ) ≈ −1.5137.
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3.3.2 σ-optimal Gaussian pdf approach

For simplicity, we set λ(x) = N (0, σ2I), and optimize over σ2 as well as c. In this

case, (3.19) becomes

υ(c, σ2) = δc
(
1 + σ2

)
+

5
√

3π

54c

σ4

σ2 − 1
.

Solving ∂υ
∂c = ∂υ

∂σ2 = 0 results in

σ2 =
1 +
√

5

2
≈ 1.6180

c =

√
5
√

3π

54δ

σ4

(σ4 − 1)
≈ 0.9773 ,

leading to

υ(c, σ2) = −1.4742 .

3.3.3 λ-optimal approach

The result of this optimization was found numerically as

υ(c, λ) ≈ −1.4686 , (3.20)

yielding an about 0.20dB improvement over the naive approach. We refer the reader to

Appendix A.1 for the details of this result.

34



Chapter 4

Achievable Energy-Distortion

Exponent and Dispersion Analysis

for Broadcast Channels

4.1 Achievable Energy-Distortion Exponents

Let D(i)
M (γi) = E[‖ X − X̂i ‖2] denote the end-to-end the expected distortion

achieved by the scheme proposed in Section 2.2.2 at receiver i. As in point-to-point com-

munication, we let N1 and N2 grow exponentially fast with γ1 and γ2, respectively, i.e.,

N1 = c1e
α1γ1 (4.1)

N2 = c2e
α2γ2 . (4.2)
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D(1)
M (γ1) ≤ 1

M

[
Pr[O(1)

1 ] · E
[
‖X− X̂1 ‖2

∣∣O(1)
1

]
+ E

[
‖X− X̂1 ‖2

∣∣O(1),c
1

]]
≤ 1

M
Pe(N1, τMγ1)

[
ε+ E

[
‖X‖2

]
+

∫
||x̃||2λ(x̃)dx̃

]
+N

−2/M
1 [ε+ dM (C(M), λ(·))] (4.3)

D(2)
M (γ2) =

1

M

[
Pr[O(2),c

1 ] Pr[O(2),c
2 ] · E

[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2),c

2

]
+ Pr[O(2),c

1 ] Pr[O(2)
2 ] · E

[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2

]
+ Pr[O(2)

1 ] Pr[O(2),c
2 ] · E

[
‖X− X̂2 ‖2

∣∣O(2)
1 ,O(2),c

2

]
+ Pr[O(2)

1 ] Pr[O(2)
2 ] · E

[
‖X− X̂2 ‖2

∣∣O(2)
1 ,O(2)

2

]]
≤ 1

M

[
E
[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2),c

2

]
+ Pe(N2, τ̄Mγ2)E

[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2

]
+ Pe(N1, τMγ2)E

[
‖X− X̂2 ‖2

∣∣O(2)
1 ,O(2),c

2

]
+ Pe(N1, τMγ2)Pe(N2, τ̄Mγ2) · E

[
‖X− X̂2 ‖2

∣∣O(2)
1 ,O(2)

2

]]
. (4.4)

We also let 0 ≤ τ ≤ 1 determine what fraction of available energy is allocated to the first

layer description. Clearly, the distortion at receiver 1 mimics the point-to-point distortion

analyzed in Section 3, resulting in (4.3) for any ε > 0 and large enough N1, where Lemmas 1

and 2 are employed as before. On the other hand, the distortion at receiver 2 has a more

complicated given in (4.4). We proceed by analyzing each expectation in (4.4):

• E
[
‖X − X̂2 ‖2

∣∣O(2),c
1 ,O(2),c

2

]
: This distortion is the same as in (3.4), except there are

N1N2 quantization levels. That is,

1

M
E
[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2),c

2

]
≤ (N1N2)−2/M [ε+ dM (C(M), λ(·))] (4.5)

for any ε > 0 and large enough N1, N2.1

1While the well-known notion of successive refinability is about finite rates but infinite blocklengths, we
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N2

−

∆

2

∆

2

Figure 4.1: Description of the case where there is no outage in the first layer, while there
is an outage in the second layer.

• E
[
‖ X − X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2

]
: This case is illustrated in Figure 4.1 for M = 1. As

N1 → ∞, the input pdf is nearly constant over the first layer quantization region Ri, i.e.,

f(x) ≈ fi for x ∈ Ri. The following lemma bounds this distortion for large N1, N2.

Lemma 3 For any ε > 0 and large enough N1, N2,

1

M
E
[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2

]
≤ N−2/M

1

[
ε+ 2dM (C(M), λ(·))

]
. (4.6)

Proof. Using similar steps as in the proof of Lemma 2, one can show that for each 1 ≤ i ≤

N1,

E
[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2 ,X ∈ Ri
]
≤ N2

N2 − 1

(
E
[
‖X− ri ‖2

∣∣X ∈ Ri]+ E
[
‖X̃− ri ‖2

])

where it is assumed that each ri is chosen as the centroid of the cell Ri (which is the optimal

choice to minimize MSE), and X̃ is a fictitious random vector distributed uniformly over

the second layer reconstruction points rj|i. But since f(x) ≈ fi for x ∈ Ri, the distribution

are in the regime of finite blocklengths and very large quantization rates. Because the optimal quantizer at
the first and second stages use the same point-density function, successive refinability is readily granted.
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Figure 4.2: An example of the case where there is an outage in the first layer, but the
second layer is decoded correctly when M = 1.

of X conditioned on X ∈ Ri is also almost uniform in Ri. That implies for large enough

N2 that

E
[
‖X− X̂2 ‖2

∣∣O(2),c
1 ,O(2)

2 ,X ∈ Ri
]
≤ ε+ 2E

[
‖X− ri ‖2

∣∣X ∈ Ri]

which yields (4.6) after averaging over the first layer index i.

• E
[
‖X − X̂2 ‖2

∣∣O(2)
1 ,O(2),c

2

]
: This case is illustrated in Figure 4.2 for M = 1. Once

there is an outage in the first layer, causing catastrophic distortion as shown in Lemma 2,

whether there is outage in the second layer or not does not change the distortion much.

That is because in the regime of large N1, the first layer quantization cells are already

small, and where exactly the second layer reconstruction falls inside the incorrect first layer

quantization cell adds at most ε to the distortion.

Using Lemma 2, we can therefore write

E
[
‖X− X̂2 ‖2

∣∣O(2)
1 ,O(2),c

2

]
≤ ε+ E

[
‖X‖2

]
+

∫
||x̃||2λ(x̃)dx̃ (4.7)

as N1, N2 →∞.
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Figure 4.3: The accuracy of the high resolution assumption for the MSE distortion at the
second receiver conditioned on (a) no outage at either layer, (b) outage at the first round
of transmission only, and (c) outage at the second round of transmission only. Numbers
around markers represent N2 = c2e

α2γ2 .

• E
[
‖ X − X̂2 ‖2

∣∣O(2)
1 ,O(2)

2

]
: Using the same reasoning we put forth for the previous

expectation, the upper bound (4.7) also applies to this expectation. On the other hand,

this expectation is multiplied by Pe(N1, τMγ2)Pe(N2, τ̄Mγ2), which decays much faster

than the second and the third term for large γ2, and therefore the contribution of this term

to the distortion is only o(1), and it can be ignored.

In Figure 4.3, we demonstrate the accuracy of the high-resolution approximations

introduced in (4.5)-(4.7) when N1 is fixed, and N2 is varied. As can be seen, all three

approximations are accurate when both N1 and N2 are high enough. We are now ready to

analyze the behavior of (4.3) and (4.4) for large γ1 and γ2, respectively.
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Theorem 2 For any 0 ≤ τ ≤ 1 and 0 < α1 ≤ Mτ
2 , let

β1,M (α1, τ)
∆
= min

{
2α1

M
, g(α1|Mτ)

}
(4.8)

and

β2,M (α1, τ)
∆
= min

{
2α1

Mρ
+ τ̄ θM , g

(
α1

ρ

∣∣∣Mτ

)}
(4.9)

with τ̄ = 1− τ .

Then the exponent pair
{
β1,M (α1, τ), β2,M (α1, τ)

}
is M -achievable, i.e.,

lim
γ1→∞

− 1

γ1
lnD(1)

M (γ1) ≥ β1,M (α1, τ) (4.10)

lim
γ2→∞

− 1

γ2
lnD(2)

M (γ2) ≥ β2,M (α1, τ) . (4.11)

Proof. We set N1 and N2 as in (4.1) and (4.2), respectively, for some α2 to be determined.

Proof of (4.10) follows from (4.3) exactly the same way (3.7) follows from (3.2)-(3.6) with

α1 and γ1 replacing α and γ, respectively.

At the second receiver, from (4.4)-(4.7) we have

D(2)
M (γ2) ≤(N1N2)−2/M [ε+ dM (C(M), λ(·))

+ Pe(N2, τ̄Mγ2)N
−2/M
1

[
ε+ 2dM (C(M), λ(·))

]
+ Pe(N1, τMγ2)

[
ε+ E

[
‖X‖2

]
+

∫
‖ x̃‖2 λ(x̃)dx̃

]
(4.12)
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and thus

lim
γ2→∞

− 1

γ2
lnD(2)

M (γ2) ≥ min

{
2

M

(
α1

ρ
+ α2

)
,

2α1

Mρ
+ g(α2|Mτ̄), g

(
α1

ρ

∣∣∣Mτ

)}
. (4.13)

Note that for any fixed α1 and τ , one can choose the best α2 to maximize the minimum in

(4.13) as

α∗2(M, τ) =
Mτ̄

2
θM (4.14)

with θM defined as in (3.1), thereby simplifying (4.13) to

lim
γ2→∞

− 1

γ2
lnD(2)

M (γ2) ≥ min

{
2α1

Mρ
+ τ̄ θM , g

(
α1

ρ

∣∣∣Mτ

)}
= β2,M (α1, τ) (4.15)

finishing the proof.

We next analyze the tradeoff between β1,M (α1, τ) and β2,M (α1, τ). From (4.8) and

(4.9), it is clear that to understand the tradeoff, we need to keep track of the conditions for

which 2α1
M ≶ g(α1|Mτ) and 2α1

Mρ + τ̄ θM ≶ g
(
α1
ρ |Mτ

)
.

It is not hard to show that 2α1
M ≶ g(α1|Mτ) implies

α1 ≶
MθM

2
τ (4.16)

for 0 ≤ τ ≤ 1.
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Figure 4.4: All the relevant subregions of (α1, τ) pairs for the optimal tradeoff of(
β1,M , β2,M

)
are shown for the cases (a) M = 1, ρ = 2, (b) M = 8, ρ = 2, and (c)

M = 8, ρ = 1.5 .

On the other hand, 2α1
Mρ + τ̄ θM ≶ g

(
α1
ρ |Mτ

)
has two possible outcomes. For

M > 2, it translates after some algebra to

α1 ≶
Mρ

4(M + 2)

[
(4θM +M)τ − 4θM

]
(4.17)
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)
tradeoff evolves as M increases. The markers match with

those in Figure 4.4 for the optimal (τ, α1).

for 4θM
4θM+M ≤ τ ≤

8θM
8θM+M−2 and

α1 ≶
ρ

2

√Mτ −
√

2τ + 2θM τ̄
(
1− 2

M

)
1− 2

M

2

(4.18)

for 8θM
8θM+M−2 ≤ τ ≤ 1. But for M ≤ 2, it translates to (4.17) for the entire interval

4θM
4θM+M ≤ τ ≤ 1.

Now, it can be shown that the conditions (4.16)-(4.18) divides the (α1, τ)-plane into

four regions, as depicted in Figure 4.4a, where the green (circle marker) and purple-yellow

(square-cross markers) curves correspond to 2α1
M = g(α1|Mτ) and 2α1

Mρ + τ̄ θM = g
(
α1
ρ |Mτ

)
,

respectively. Furthermore, after some algebra, the intersection of the two curves can be

found at τ = τint, where

τint =
4θMρ

4ρθM +Mρ− 2MθM − 4θM
, (4.19)
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for either M ≤ 2 and all ρ > 1 or M > 2 and ρ ≥ 4θM , and

τint =
2θM (M − 2)(

M − (M − 2)
√

θM
ρ

)2

− 2M + 2θM (M − 2)

, (4.20)

for M > 2 and ρ < 4θM . Note that (4.19) corresponds to the case where the intersection

occurs at the linear part of 2α1
Mρ + τ̄ θM = g

(
α1
ρ |Mτ

)
as governed by (4.17) with equality.

This case is exemplified by Figure 4.4(a) and 4.4(b). Similarly, (4.20) corresponds to the

case where the intersection occurs in the quadratic part governed by (4.18) with equality,

an example of which is shown in Figure 4.4(c).

In light of this division of the (α1, τ)-plane, we show in the next lemma that the

tradeoff of best possible energy-distortion exponents can be computed by focusing on only

a limited set of (α1, τ) pairs.

Lemma 4 The optimal tradeoff between β1,M (α1, τ) and β2,M (α1, τ) is achieved by the

collection of (α1, τ) satisfying one of the following:

1. 2α1
M = g(α1|Mτ) and τ ≥ τint

2. 2α1
Mρ + τ̄ θM = g

(
α1
ρ |Mτ

)
3. 2α1

M > g(α1|Mτ), g
(
α1
ρ |Mτ

)
> 2α1

Mρ + τ̄ θM , and τ = 1.

Proof. We analyze the behavior of (β1,M , β2,M ) in each region in Figure 4.4(a)

separately:
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• Region I: In this region, β1,M = g(α1|Mτ) and β2,M = g
(
α1
ρ |Mτ

)
. Since both are

increasing in τ , we can improve both β1,M and β2,M simultaneously by increasing τ , until

either 2α1
M = g(α1|Mτ) or 2α1

Mρ + τ̄ θM = g
(
α1
ρ |Mτ

)
.

• Region II: As one increases τ keeping α1 constant, β1,M = 2α1
M stays the same and β2,M =

g
(
α1
ρ |Mτ

)
increases, until 2α1

Mρ + τ̄ θM = g
(
α1
ρ |Mτ

)
.

• Region III: Since β1,M = 2α1
M and β2,M = 2α1

Mρ+τ̄ θM and both are increasing in α1, one can

improve both β1,M and β2,M simultaneously by increasing α1, until either 2α1
M = g(α1|Mτ)

or 2α1
Mρ + τ̄ θM = g

(
α1
ρ |Mτ

)
.

• Region IV: In this region, since β1,M = g(α1|Mτ) is convex in (α1, τ), its maximum

over the line β2,M = 2α1
Mρ − θMτ = c for arbitrary c must be achieved on the boundary

of the region, that is, when either 2α1
M = g(α1|Mτ), or 2α1

Mρ + τ̄ θM = g
(
α1
ρ |Mτ

)
, or

2α1
M > g(α1|Mτ), g

(
α1
ρ |Mτ

)
> 2α1

Mρ + τ̄ θM , and τ = 1.

Remark 3 The first and the second conditions in Lemma 4 are satisfied when (4.16) and

(4.17)-(4.18) are satisfied with equality, respectively. The third condition translates to

MθM
2

< α1 <
MθMρ

2
(4.21)

together with τ = 1.

Figure 4.5 shows the resultant
(
β1,M , β2,M

)
tradeoff computed using Lemma 4 for

two sample cases of ρ values as a function of M . Clearly, as M → ∞, the entire region
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of Shannon-theoretic exponents derived in [4] is exhausted. The next lemma shows this

analytically.

Lemma 5 As M →∞, any (β1, β2) with 0 ≤ β1 ≤ 1 and

β2 = 1− β1

(
1− 1

ρ

)
(4.22)

can be achieved by the scheme described above.

Proof. Take all (α1, τ) pairs on the curve 2α1
M = g(α1|Mτ), i.e., those satisfying

(4.16) with equality. As M →∞, we have

2α1

M
= g(α1|Mτ)→ τ

2α1

Mρ
+ τ̄ θM → 1− τ

(
1− 1

ρ

)
g

(
α1

ρ
|Mτ

)
→∞

resulting in

β1,M → τ

β2,M → 1− τ
(

1− 1

ρ

)
.

for all 0 ≤ τ ≤ 1.
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4.2 Achievable Dispersion Analysis in Broadcast Channels

In this section, we investigate the more detailed characterization of broadcast

channels for zero-delay scenario as in the point-to-point case, which takes the higher order

term energy-distortion dispersion, i.e. ν(γ), into consideration in the analysis of the energy-

distortion tradeoff with 1-to-infinity source-channel mapping, D1(γ), in the form of (3.10),

for large γ, where Υ1(γ) is sub-linear in γ, i.e., limγ→∞Υ1(γ)/γ = 0. It is important

to note that analyzing the higher order term in point-to-point case for M = 1 has more

significance as the optimal exponent is known. However, we provide a way to extend the

energy-distortion dispersion analysis to Gaussian broadcast channels, by optimizing the

variance of the Gaussian point-density function as in Section 3.2.2.

Distortion expression in (3.14) can be updated for the base layer as follows.

D(1)
1 (γ1) ≤ e−τγ1/6

[(
1 + σ2

)
δc1 +

πσ3

6c2
1

√
σ2 − 2

]

which induces the energy-distortion dispersion given by

ν(1)(c, σ2) ≥ − ln

((
1 + σ2

)
δc1 +

πσ3

6c2
1

√
σ2 − 2

)
. (4.23)

By proceeding with (6.3) for the refinement layer and using σ-optimal approach

in Section 3.2.2 amd the results of (3.5),(4.1), (4.2), (2.8), we get

D(2)
1 (γ2) ≤ 1

N2
1N

2
2

d (λ(x)) +
2

N2
1

d (λ(x))Pe (N2, τ̄γ2) +

(
1 +

∫
x2λ(x)dx

)
Pe (N1, τγ2)
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≤ exp(−2α1γ1) exp(−2α2γ2)

c2
1c

2
2

· πσ3

6
√
σ2 − 2

+
2 exp(−2α1γ1)

c2
1

· πσ3

6
√
σ2 − 2

δc2 exp(α2γ2) exp(−1

4
λ̄γ2)

+
(
1 + σ2

)
δc1 exp(α1γ1) exp(−1

4
λγ2)

= exp(−2

ρ
α1γ2) · πσ3

c2
16
√
σ2 − 2

[
exp(−1

6 λ̄γ2)

c2
2

+ 2δc2 exp(−1

6
λ̄γ2)

]

+
(
1 + σ2

)
δc1 exp(

1

ρ
α1γ2) exp(−1

4
λγ2)

≤ e−
(

1
6
τ̄+ 2

ρ
α1

)
γ2 πσ3

6c2
1

√
σ2 − 2

[
1

c2
2

+ 2δc2

]
+ e
−
(

1
4
τ− 1

ρ
α1

)
γ2
(
1 + σ2

)
δc1 . (4.24)

For the choice of τ where the energy-distortion exponent tradeoff remains in the

non-degenerate region, i.e., when τ ≥ 2ρ
5ρ−3 , the first exponent in (4.24) will dominate the

expression, thereby setting its coefficient as the dispersion term such that

ν(2) ≥ − ln

(
πσ3

6c2
1

√
σ2 − 2

[
1

c2
2

+ 2δc2

])
, (4.25)

Clearly, optimization of c2 yields c2 = 1
3√
δ
, and thus

ν(2)(c, σ2) ≥ − ln

(
πσ3δ2/3

2c2
1

√
σ2 − 2

)
. (4.26)

Figure 4.6 shows the tradeoff between optimal (ν
(1)
1 , ν

(2)
1 ) pair for Gaussian sources

in zero-delay Gaussian broadcast channels. where parameters c1 and σ2 are exhaustively

searched and found to be c1 = 1.2 and σ2 = 2.41, respectively.
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Figure 4.6: Dispersion tradeoff in broadcast channels.

4.3 Conclusion

Motivated by the IoT applications where the source is very slowly varying and

therefore sampled very infrequently, we analyzed the exponential decaying speed of the dis-

tortion as a function of energy for transmission of M -dimensional i.i.d. Gaussian sources

over N -dimensional Gaussian broadcast channels. N is allowed to increase without bound

with increasing energy, while M is fixed. The growing of N is necessary for our analysis

as we rely on high-resolution quantization theory. But it is also justified by the IoT ap-

plications since one would have ample time (and hence bandwidth) to communicate the

measurement(s) to the control unit.

While we showed that the resultant achievable exponent region grows with increas-

ing M and converges to the Shannon-theoretic limit at infinite M , it is not clear if there is

matching “converse” result for the more interesting case of small M .
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Part II

A Privacy-Preserving Voting and

Survey Scheme by Using

Information Theoretic Approach
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Chapter 5

A Privacy-Preserving Voting

Scheme

5.1 Introduction

Everyone has right to fair and free elections to determine the elected representa-

tives legitimately in a democratic country. However, the low voter turnout might undermine

the true choice of the citizens. In the UK, the voter turnout at the European Union (EU)

referendum that resulted in a 51.9% vote for “Brexit” was only 72%. Although this was

a record turnout for a UK-wide referendum, this corresponds to approximately 38% of the

entire population wanting to leave the EU. Later reports showed that one of the deciding

factors in the outcome of the Brexit referendum was a low voter turnout among the young

population (18 to 24 year-olds). While there are conflicting reports on the exact turnout
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among the young population (38% 1 vs 64% 2), it is unanimously accepted that the choice

of remaining in the EU is high among the young population, with the estimates ranging

between 70% − 75%. Coupled with the fact that there is a negative correlation between

turnout and average age, the Brexit referendum could have gone much differently with a

higher turnout. As another example, in the 2018 midterm US elections, only half of the pop-

ulation eligible to vote actually ended up voting. In the 2020 Presidential Elections, voter

turnout was recorded as 66.2% 3. Similar to the case in the UK, voter turnout among young

Americans (18 to 29 year-olds) recorded as 45%, and 53% in 2016 and 2020 presidential

elections, respectively4.

One of the main reasons for the low turnout is often associated with the political

apathy among young people. Another prominent reason in the US is that voting is not

made easy for everyone, e.g., the election day is not a holiday. Besides, voter suppression

on especially minorities and low-income families brings about lower turnout. Moreover,

COVID-19 times have brought some other challenges such as following different deadlines

for mail-in ballots, keeping safety and social distancing measures in case of long lines, or

shortages in poll workers, to name a few. To combat all these challenges, a viable alternative

to increase voter participation might be electronic voting, whereby voters can either use their

smartphones or their computers at home, or go to public places with computers having

access to the Internet (such as schools, libraries, etc.). About 90% of adults in the US had

access to the Internet and 81% owned smartphones in 2019, while these numbers increase

1https://www.arcgis.com/apps/Cascade/index.html?appid=b59e96164e6d44578accc378b9574d6f
2https://www.theguardian.com/politics/2016/jul/09/young-people-referendum-turnout-brexit-twice-

as-high
3https://en.wikipedia.org/wiki/Voter_turnout_in_United_States_presidential_elections
4https://circle.tufts.edu/latest-research/election-week-2020
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to 100% and 96% among the young population, respectively 5 6. These increasing statistics

in the last decade are making electronic voting a more favorable method. This may also

result in increase in young voter turnout, thereby helping their voices to be better heard

on issues that matter to them the most, such as student debt, access to healthcare, and the

increasing youth unemployment rates.

While an electronic voting system may simplify the whole voting process, the

central or governmental unit may be able to track IP addresses of the voters and/or the

voter ID. Hence, protecting the privacy of the voters appears as one of the major issues to

be resolved. One simple solution can be the randomized response (RR) method that has

been suggested in the pioneering work [18] to eliminate self-censorship or bias in responses

of a poll by increasing cooperation and trust between interviewees and interviewers. Warner

employs an unbiased maximum likelihood estimator and analyzes its variance (i.e., mean

square error) as a quality metric. They also compare this mean square error with that of

conventional estimates that suffer from response/non-response bias. Further studies that

are based on statistics can be also found in [48], [49], and [50].

In this part, we utilize the privacy-preserving voting mechanism that has been

proposed in [1]. Unlike the statistical approaches on RR models, this method exploits

standard information theoretic tools, such as the method of types and large deviations,

in order to analyze the tradeoff between the privacy of the voters and probability that

the elections will be accurately called. The voting app on the smartphone or the website

randomly flips the votes before transmitting it to the governmental unit. Hence, the actual

5https://www.statista.com/statistics/489255/percentage-of-us-smartphone-owners-by-age-group/
6https://www.statista.com/statistics/266587/percentage-of-internet-users-by-age-groups-in-the-us/
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vote can be treated as an unknown type, and the random alteration of votes can be thought

of as a discrete memoryless channel. Each person’s vote independently goes through the

same random channel, and thus neither an adversarial party nor the government is able

to unequivocally resolve what each individual vote was. On the other hand, despite the

self-imposed randomness in the system, thanks to the law of large numbers, the election

can be more and more accurately called as the number of voters grow. It is also important

to note that the system does not generate any delay as the voters (i.e., the source samples)

are spread out in space as opposed to time.

We mainly focus on referendums or elections where there are only two options, i.e.

YES and NO or Candidate A and B are on the ballot. The votes are passed through a binary

symmetric channel and flipping probability of the vote is regarded as the privacy parameter.

The 2020 US Presidential Elections are considered as a case study. For simplicity, it will be

regarded as an election with only 2 candidates. We analyze the probability of incorrectly

calling the result for the US presidential elections, which depends on number of voters and

the level of privacy. As the algorithm performs well on the cases where the difference is not

close to 50% − 50%, we do not include the analysis of dominantly Red and Blue States,

and focus on 9 swing or “close-call” states in which the maximum separation is 47% −

53%, namely: Arizona, Florida, Georgia, Michigan, Nevada, North Carolina, Pennsylvania,

Texas, and Wisconsin. Our voting mechanism successfully called the elections for all states

with a guaranteed probability of error of 10−6 even if the votes are flipped with probability of

30%, except for Arizona, Georgia, and Wisconsin. We can guarantee the same probability

of error for only up to 18% flipping ratio for the case of Wisconsin, while the allowable
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flipping ratio can only be up to 6% for the case of Arizona and Georgia. Unsurprisingly,

the votes had to be re-counted in both states.

5.2 Preliminaries

We will rely heavily on types and their properties. For a detailed discussion on

types and their properties, we refer the reader to [51]. We only cover the properties which

will prove most useful in the sequel.

For finite alphabets X and Y, and vectors x ∈ X n and y ∈ Yn, the type of x,

denoted Px, and the conditional type of y given x, denoted Vy|x, are defined as probability

mass functions satisfying

Px(a) =
1

n
N(a|x) , a ∈ X

and

Px(a)Vy|x(b|a) =
1

n
N(a, b|x,y) , a ∈ X , b ∈ Y

whereN(a|x) is the number of occurrences of the letter a ∈ X in x, and similarlyN(a, b|x,y)

is the number of occurrences of the pair (a, b) ∈ X × Y in (x,y).

The type class P , denoted TnP , is defined as

TnP = {x ∈ X n : Px = P} .

For each x ∈ X n, the set of vectors y having conditional type Vy|x = V is denoted by TnV (x),

and is called the V -shell of x.
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We also denote byM(X ) and C(Y|X ) the set of all marginal probability distribu-

tions on X and the set of all conditional distributions from X to Y, respectively. Finally,

we denote by Mn(X ) the set of all valid types (i.e., non-empty type classes) of length-n

sequences over X , and by CnP (Y|X ) the set of all valid conditional types (i.e., non-empty

V -shells) of length-n sequences over Yn given any x ∈ TnP .

Information measures such as entropy, conditional entropy, divergence, and con-

ditional divergence are all defined in the standard way. However, we follow the notation

of [51] to emphasize their dependencies on probability mass functions, i.e.,

H(P ) = −
∑
a∈X

P (a) logP (a) (5.1)

H(V |P ) = −
∑
a∈X

P (a)
∑
b∈Y

V (b|a) log V (b|a) (5.2)

D(P ||Q) =
∑
a∈X

P (a) log
P (a)

Q(a)
(5.3)

D(V ||W |P ) =
∑
a∈X

P (a)
∑
b∈Y

V (b|a) log
V (b|a)

W (b|a)
(5.4)

where here and in the sequel, we use natural logarithms.

Let [PV ] indicate the marginal distribution on Y given by

∑
a∈X

P (a)V (b|a) .

Observe that if x ∈ TnP and y ∈ TnV (x), then y ∈ Tn[PV ] also.
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Property 1 For any n ≥ 1, the number of distinct types in Mn(X ) is polynomial in n.

More specifically,

|Mn(X )| ≤ (n+ 1)|X | . (5.5)

Similarly, for any P ∈Mn(X ),

|CnP (Y|X )| ≤ (n+ 1)|X |·|Y| (5.6)

These bounds can be tightened significantly when |X | = |Y| = 2:

|Mn(X )| = n+ 1 (5.7)

and

|CnP (Y|X )| ≤ (n2 + 1)2 . (5.8)

Property 2 For any P ∈Mn(X ), the size of TnP can be bounded as

|TnP | ≤ enH(P ) . (5.9)

Similarly, for any x ∈ TnP , we have

|TnV (x)| ≤ enH(V |P ) . (5.10)
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Property 3 If X is generated i.i.d.∼ Q ∈M(X ), then

Pr[X = x] = e−n[H(Px)+D(Px||Q)] . (5.11)

Similarly, for a given x ∈ X n, if Y is generated conditionally i.i.d. ∼W ∈ C(Y|X ), then

Pr[Y = y|X = x] = e−n
[
H(Vy|x|Px)+D(Vy|x||W |Px)

]
. (5.12)

Finally, using the last two properties, we obtain the following.

Property 4 If X is generated i.i.d.∼ Q ∈M(X ), then for any P ∈Mn(X )

Pr[X ∈ TnP ] ≤ e−nD(P ||Q) . (5.13)

Similarly, for a given x ∈ TnP , if Y is generated conditionally i.i.d.∼W ∈ C(Y|X ), then for

any V ∈ CnP (Y|X ),

Pr[Y ∈ TnV (x)] ≤ e−nD(V ||W |P ) . (5.14)

5.3 Privacy-Preserving Voting Mechanism

Let X be the list of options on a ballot in an election with n voters. For example,

X = {Blue Candidate,Red Candidate} in the US presidential elections. We define x ∈ X n

as the vote vector and Ok, k = 1, 2 as the possible election outcomes, which partition the

space of all possible vote vectors X n in a non-overlapping manner.
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It is clear that in a fair election (one person one vote), the election outcome should

depend on the vote vector x only through its type. That is, each Ok must be a union of

certain type classes. For example, in the presidential elections, letting O1 and O2 represent

a vote for Joe Biden (BLUE) and Donald Trump (RED), respectively7,

O1 =
⋃

P∈Mn(X ): P (BLUE)>P (RED)

TnP (5.15)

O2 =
⋃

P∈Mn(X ): P (RED)≥P (BLUE)

TnP . (5.16)

We defineO(x) as the index of the election outcome corresponding to x. That is, O(x) = k if

and only if x ∈ Ok. We also abuse the notation and use O(P ) for the outcome corresponding

to the type class TnP .

In this paper, we propose a voting mechanism whereby voters indicate their choices

on the ballot through some electronic medium, such as a website, or an app on their smart-

phones. For each voter 1 ≤ i ≤ n, the website or app passes their vote xi ∈ X through

a binary symmetric channel W = BSC(α) where some α < 1
2 , with an output alphabet

Y before sending it to the central governmental unit where votes will be counted, i.e.,

X = Y = {BLUE,RED}. Advantages of choosing of a symmetric channel can be listed

as follows. Firstly, it allows us to treat BLUE and RED votes equally, thereby controlling

privacy with only one parameter, α. Secondly, it induces a tractable error exponent for the

further analysis.

Then, the output space Yn is also partitioned into decision regions Dk, k = 1, 2,

and outcome k will be declared if y ∈ Dk. To maintain the fairness of the system, the

7When there are even number of voters, ties are assumed to be broken in favor of Red Candidate.
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decision regions should also be unions of type classes inMn(Y). We define D(y) and D(Q)

for y ∈ Yn and Q ∈Mn(Y) similarly to O(x) and O(P ) above. As a result of the symmetry,

the decision regions should be in line with the outcome regions given by (5.15) and (5.16),

i.e.,

D1 =
⋃

Q∈Mn(Y): Q(BLUE)>Q(RED)

TnQ (5.17)

D2 =
⋃

Q∈Mn(Y): Q(RED)≥Q(BLUE )

TnQ . (5.18)

As was mentioned in the Introduction, this random alteration of the votes will

protect the privacy of the voters, as either the government or an adversarial party tapping

into the communication will not be able to resolve any individual voter’s choice unequiv-

ocally (the noisier the channel, the more the uncertainty). At the same time, as we will

discuss, the collective election outcome can be more and more accurately estimated by the

governmental unit as n increases.

The probability of the occurrence of an erroneous election result is given by

Pe(x)
∆
= Pr[D(Y) 6= O(x)|x] .

Observe that because both the election outcomes Ok and decision regions Dj are unions of

type classes, Pe(x) depends on x only through its type Px. Upper bound on Pe(x) is given

by (we refer reader to [1, eq. (13)] for the proof)

Pe(x) ≤ e
−n

[
D(V ∗n (P )||W |P )− 2 log(n2 +1)

n

]
(5.19)
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where V ∗n (P ) is defined as

V ∗n (P ) = arg min
V ∈CnP (Y|X ): D([PV ])6=O(P )

D(V ||W |P ) . (5.20)

As can be seen from (5.19), the probability of incorrectly calling the election result

vanishes exponentially so long as D(V ∗n (P )||W |P ) is bounded away from 0 as n→∞. The

rest of the paper is devoted to evaluating this exponent for the simple referendum elections.

Assume that voters desire that (i) the probability of an erroneous election outcome

is upper bounded by δ whenever p < 1
2 − ξ or p > 1

2 + ξ for some (ξ, δ) pair, and (ii) their

privacy is protected by a BSC with parameter α. In this case, we get [1, eq. (22)]

D(V ∗n (P )||W |P ) ≥ D(V ∗(P )||W |P )

=
(1− 2α)2

2α(1− α)
ξ2 +O(ξ3) (5.21)

for p = 1
2 + ξ.

5.4 A Case Study: US Presidential Elections

This paper focuses on the 2020 US Presidential Elections as a case study for the

proposed voting scheme. While several candidates across multiple parties run for elections,

as in most democratic systems, the US Presidential Elections typically boil down to a

race between two candidates: (i) the strongest candidate of the Republican Party (Red
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Figure 5.1: The actual ξ of the 2020 US Presidential Elections for each of the 9 swing states
and ξα, the minimum deviation from the 50% − 50% threshold above which the δ-bound
holds for the proposed voting mechanism. The yellow, purple, orange, blue, and green
shaded areas represent the regions of ξ values that correspond to α = 0.1, α = 0.15, α =
0.2, α = 0.25, and α = 0.3, respectively. Note that each colored region encompasses the
colored regions within it. The actual ξ values are shown in black, solid lines.

candidate) and (ii) the strongest candidate of the Democratic Party (Blue candidate). This

“tradition” can be traced back to the 1876 US Presidential Elections. However, the number

of votes going to the other candidates is non-zero. As such, the percentage of votes for

the two main candidates are normalized to sum up to 100%. Moreover, the states that are

predominantly Red or Blue are excluded from the analysis, as the algorithm performs well

when the margin between the percentage of votes is much larger than 50%− 50%. We pay

particular attention to the 9 close-call or “swing” states, namely: Arizona, Florida, Georgia,

Michigan, Nevada, North Carolina, Pennsylvania, Texas, and Wisconsin.
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The total number of votes for the two main candidates in a state determines

the value of n for that particular state. We set a δ-bound on the probability of error,

i.e., we upper bound the right-hand side of (5.19) to guarantee that the probability of

flipping the final election result is less than a predetermined value δ, which was chosen to

be δ = 10−6 for all the states. Next, we calculate ξα, the minimum deviation from the

50% − 50% threshold above which the δ-bound holds, for different flipping probabilities,

i.e., α = 0.1, α = 0.15, α = 0.2, α = 0.25, and α = 0.3. These values of ξα are compared to

the actual margin of votes from the 2020 US Presidential Elections for the 9 swing states

and are shown in Figure 5.1.

The results in Figure 5.1 can be categorized into three. The first category is where

the actual ξ is outside all of the ξα regions, such as in Florida, Michigan, Nevada, North

Carolina, Pennsylvania, and Texas. This indicates that the specified δ-bound will be sat-

isfied for all the specified values of α. The second category is where the actual ξ is inside

all of the ξα regions, such as in Arizona and Georgia. In such cases, the δ-bound cannot

be guaranteed for any of the specified α. The third category is where the ξ is outside some

of the ξα regions and inside the others, such as in Wisconsin. In this particular case, the

δ-bound is satisfied for α = 0.1, α = 0.15, and α = 0.2, but not for α = 0.25 or α = 0.3.

This analysis could also be conducted on past data to predict ξ before an election and

select the flipping probability α accordingly. For example, assuming the next election cycle

will produce similar ξ values as the 2020 elections, an α of 0.15 (or less) should be used in

Wisconsin, whereas an α of 0.3 (or more) could be used in Texas.

63



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

P
e

Arizona (3,333,829) Georgia (4,935,487) Michigan (5,453,892)

Nevada (1,373,376) N. Carolina (5,443,065) Pennsylvania (6,838,186)

Wisconsin (3,240,738) 10
-6

10
-4

Figure 5.2: Calculated probability of error for different states (n), α values for the corre-
sponding ξ values.

The next natural question that arises is: What is the value of α below which

the δ-bound is always guaranteed? To answer this question, the probability of error is

calculated using the actual ξ for varying values of α. Figure 5.2 depicts the probability of

error for the aforementioned states as a function of α. The 10−6 and 10−4 δ-bounds are

shown for comparison. Note that Texas and Florida were omitted from Figure 5.2 as their

error probabilities are too small compared to the rest. The value of α below which the

δ-bound is always guaranteed, denoted α?, can be readily obtained from the intersection of

the probability of error curve with the δ-bound. The values of n, actual ξ, and α? for the

swing states (excluding Texas and Nevada) are summarized in Table 5.1.

Remark 4 The effect of the total number of votes n can be observed by focusing on Michi-

gan and Nevada. Although the actual ξ are close, i.e. 1.41356%, 1.22312%, respectively;
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State n Actual ξ α?

Arizona 3,333,829 0.0015683 0.0753194
Georgia 4,935,487 0.0011933 0.0656223
Michigan 5,453,892 0.0141356 0.4300946
Nevada 1,373,376 0.0122312 0.3499085
North Carolina 5,443,065 -0.0068418 0.3598532
Pennsylvania 6,838,186 0.0059709 0.3562917
Wisconsin 3,240,738 0.0031795 0.1865765

Table 5.1: The values of n, actual ξ, and α? for the swing states (excluding Texas and
Nevada).

Michigan (n = 5, 453, 892) achieves a lower probability of error compared to Nevada (n =

1, 373, 376) for the same α (see Figure 5.2. Alternatively, fixing the probability of error

yields a significantly larger α? for Michigan compared to Nevada (see Table 5.1).
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Chapter 6

Modified Privacy-Preserving

Voting Scheme

6.1 Introduction

In this section, we utilize a modified version of the privacy-preserving voting mech-

anism proposed in [1]. Unlike the statistical approaches on RR models, this method exploits

information theoretic tools, such as the method of types and large deviations, in order to

analyze the tradeoff between the privacy of the voters and the probability that the elections

will be correctly called. The voting app on the smartphone or the website randomly flips

the votes before transmitting it to the central unit. Hence, the actual vote can be treated as

an unknown type, and the random alteration of votes can be thought of as a discrete mem-

oryless channel. Each person’s vote independently goes through the same random channel,

and thus neither an adversarial party nor the government is able to unequivocally resolve
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what each individual vote was. Despite the self-imposed randomness in the system, the

election can be more and more accurately called as the number of voters grows thanks to

the law of large numbers. It is also important to note that the system does not generate

any delay as the voters (i.e., the source samples) are spread out in space as opposed to time.

The detection or composite hypothesis testing problem in elections is further extended to

the estimation problems in polls or surveys in [52], where a worst-case analysis of the effect

of randomization on estimation performance over each possible percentage of YES answers

is carried out.

One of the main shortcomings of the approach in [1] was the lack of a feedback

system for the cases where the result were very close to 50% − 50% as the probability of

wrongly calling the election was not guaranteed for this vulnerable interval. Introducing a

region called “too close to call” allows us to come up with such a feedback system thereby

introducing a tradeoff between the probability of wrongly calling the election result and

the probability of the too-close-to-call outcome. For the analysis, we mainly focus on

referendums or elections where there are only two options, i.e. YES or NO, Candidate

A or B, and more specifically the 2020 US Presidential Elections. For simplicity, it will

be regarded as an election with only 2 candidates. The votes are passed through a binary

symmetric channel and flipping probability of the vote is regarded as the privacy parameter.

We analyze the probability of incorrectly calling the result for the 2020 US Presidential

Elections, which depends on the number of voters and the flipping probability. Historical

data on each state can be utilized to determine the initial flipping probability and the too

close to call interval. In a case of too close to call, the election can be repeated with a
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lower flipping probability. The probability of correctly calling the elections increases as the

election results moves away from the 50%− 50% interval. For most states, a probability of

error as low as 10−6 can be guaranteed, even if the votes are flipped with a probability of

0.35 or more. As such, we mainly focus on the more interesting 3 “swing” states in which

the maximum separation is 49.4% − 50.6%, namely: Georgia, Arizona, and Pennsylvania.

We can guarantee a 10−6 probability of error for only up to 0.09, 0.1, and 0.38 flipping

probabilities for Georgia, Arizona, and Pennsylvania, respectively. Unsurprisingly, these

findings align with the fact that the votes had to be recounted in Georgia and Arizona.

6.2 Proposed Voting Mechanism

Let X be the list of options on a ballot in an election with n voters. For example,

X = {Blue Candidate,Red Candidate} in the US presidential elections. We define x ∈ X n

as the vote vector and Ok, k = 1, 2 as the possible election outcomes, which partition the

space of all possible vote vectors X n in a non-overlapping manner, as in (5.15) and (5.16).

Again, for each voter 1 ≤ i ≤ n, the website or app passes their vote xi ∈ X through

a binary symmetric channel W = BSC(α) with some α < 1
2 and an output alphabet Y = X ,

before sending it to the central governmental unit where votes will be counted.

In the new proposed method, the output space Yn is partitioned into 3 decision

regions Dl, l = 0, 1, 2, and outcome l will be declared if y ∈ Dl. Here the additional decision

region D0 represents the too-close-to-call outcome, which provides a feedback to the central

unit. To maintain the fairness of the system, the decision regions should also be unions of

type classes inMn(Y). We define D(y) and D(Q) for y ∈ Yn and Q ∈Mn(Y) similarly to
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O(x) and O(P ) above. As a result of the symmetry, the decision regions should be in line

with the outcome regions given by (5.15) and (5.16), i.e.,

D0 =
⋃

Q∈Mn(Y): 1
2
−ε≤Q(BLUE )≤ 1

2
+ε

TnQ (6.1)

D1 =
⋃

Q∈Mn(Y): Q(BLUE)> 1
2

+ε

TnQ (6.2)

D2 =
⋃

Q∈Mn(Y): Q(BLUE )< 1
2
−ε

TnQ (6.3)

With the addition of the decision D0, a new tradeoff is introduced between the

probability of declaring an erroneous election result and the probability of the result declared

to be too close to call. The probability of the occurrence of an erroneous election result is

given by

Pe(x)
∆
=


Pr[Y ∈ D2|x] , x ∈ O1(x)

Pr[Y ∈ D1|x] , x ∈ O2(x)

, (6.4)

and the probability of calling too close to call is defined by

Pt(x)
∆
= Pr[(Y) ∈ D0|x] . (6.5)

Observe that because both the election outcomes Ok and decision regions Dj are

unions of type classes, Pe(x) depends on x only through its type Px. The upper bound on

Pe(x) (we refer reader to [1, eq. (13)] for the proof) can be rewritten for the new case as

Pe(x) ≤ e
−n

[
D(V ∗n (P )||W |P )− 2 log(n2 +1)

n

]
(6.6)
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where V ∗n (P ) is defined as

V ∗n (P ) = arg min
V ∈CnP (Y|X ): D([PV ])=2

D(V ||W |P ) , (6.7)

when O(P ) = 1, and

V ∗n (P ) = arg min
V ∈CnP (Y|X ): D([PV ])=1

D(V ||W |P ) , (6.8)

when O(P ) = 2. Similarly,

Pt(x) ≤ e
−n

[
D(V ∗n,0(P )||W |P )− 2 log(n2 +1)

n

]
(6.9)

where

V ∗n,0(P ) = arg min
V ∈CnP (Y|X ): D([PV ])=0

D(V ||W |P ) . (6.10)

As can be seen from (6.6) and (6.9), the probability of incorrectly calling the

election result vanishes exponentially so long as D(V ∗n (P )||W |P ) and D(V ∗n,0(P )||W |P ) is

bounded away from 0 as n→∞. By applying the result of [1, eq. (22)], we get

D(V ∗n (P )||W |P ) ≥ D(V ∗(P )||W |P )

= min

V ∈ C(Y|X ) :

V : [PV ](BLUE) ≥ 1
2

+ ε

De(V ||W |P )

= min

(β1, β2) :

β1p̄+ β̄2p ≥ 1
2

+ ε

p

[
β2 log

β2

α
+ β̄2 log

β̄2

ᾱ

]

+ p̄

[
β1 log

β1

α
+ β̄1 log

β̄1

ᾱ

]
, (6.11)
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Figure 6.1: Mapping of too close to call interval onto election results.

for p ≤ 1
2 . Then [1, Lemma 1] can be adapted to find the minimizing (β1, β2) pair (i.e., the

V-shell) in (6.11) to satisfy

β1p̄+ β̄2p =
1

2
+ ε (6.12)

β1β2ᾱ
2 = β̄1β̄2α

2 . (6.13)

Similarly, to find D(V ∗n (P )||W |P ) for p > 1
2 , it suffices to replace (6.12) with

β1p̄+ β̄2p =
1

2
− ε . (6.14)

For the exponent of the too-close-to-call event D0, we need to solve the same

minimization problem (6.11) defined over the region

1

2
− ε ≤ β1p̄+ β̄2p ≤

1

2
+ ε . (6.15)
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Figure 6.2: Pe - Pt tradeoff of close-call states, namely Georgia, Arizona, Pennsylvania for
chosen α flipping probabilities and varying ε. Shaded region shows α and ε values for the
given state that satisfy (δe, δt) bound on the probability of error and the probability of
close-call.

It is not hard to show that in this case, defining

p∗1 =
1
2 − ε− α
1− 2α

(6.16)

p∗2 =
1
2 + ε− α
1− 2α

, (6.17)

the solution is given by β1 = β2 = α whenever

p∗1 ≤ p ≤ p∗2

thereby yielding D(V ∗0 (P )||W |P ) = 0. On the other hand, if p > p∗2, the optimal (β1, β2) will

be given by (6.12) and (6.13), and similarly if p < p∗1, the optimum pair will be provided by

(6.13) and (6.14). For example, for ε = 0.01, α = 0.2, we get p∗1 = 0.4833 and p∗2 = 0.5167,

as shown in Figure 6.1.
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6.3 A Case Study: US Presidential Elections

While several candidates across multiple parties run for elections, as in most demo-

cratic systems, the US Presidential Elections typically boil down to a race between two

candidates: (i) the strongest candidate of the Republican Party (Red candidate) and (ii)

the strongest candidate of the Democratic Party (Blue candidate). This “tradition” can

be traced back to the 1876 US Presidential Elections. However, the number of votes going

to the other candidates is non-zero. As such, the percentage of votes for the two main

candidates are normalized to sum up to 100%. Moreover, the states that are predominantly

Red or Blue are excluded from the analysis, as the scheme performs well when the margin

between the percentage of votes is much larger than 50%−50%. We pay particular attention

to the 3 close-call or “swing” states, namely: Georgia, Arizona, and Pennsylvania.

6.3.1 Analytical Results

The total number of votes for the two main candidates in a state determines the

value of n for that particular state. We set a (δe, δt) bound on the probability of error and

the probability of close-call, i.e., we upper bound the right-hand side of (6.6) and (6.9),

respectively, to guarantee that the probability of flipping the final election result is less

than a predetermined value (δe, δt), which were chosen to be δe = 10−6 and δt = 10−3 for

all the states. It is important to note that this value of the (δe, δt) pair was chosen only

for illustrative purposes. The selection of (δe, δt) remains a topic to be treated in future

work. Once the (δe, δt) pair is set, a natural question arises: What are the (α, ε) pairs

that guarantee the (δe, δt)-bounds? To answer this question, the probability of wrongly
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Figure 6.3: Pe - Pt tradeoff for Georgia, Arizona, Pennsylvania, Nevada, and Michigan for
ε = 0.005% and varying α flipping probabilities. Shaded region shows α and ε values for
the given state that satisfy (δe, δt) bound on the probability of error and the probability of
close-call.

calling the election and the too close to call probability are computed by sweeping over

ε for different values of α, as shown in Figure 6.2. The region satisfying (δe, δt)-bound is

shaded in gray. It is important to note that decreasing ε decreases the probability of a too

close to call but increases the error probability. The figure also shows that the α boundary

is between 9% and 10% for Georgia, 10% and 11% for Arizona, and 38% and 39% for

Pennsylvania.

Another way of visualizing the tradeoff is by sweeping over values of α, as shown

in Figure 6.3. In contrast to Figure 6.2, Figure 6.3 shows that decreasing α decreases both

the too close to call and error probabilities. As such, one can always select a small enough

α that guarantees the (δe, δt) bounds. This cannot be said about ε. Consequently, in the

case of a too close event, a good strategy would be to repeat the election with a smaller α.

74



Remark 5 The effect of the total number of votes n can be observed by focusing on Michi-

gan and Nevada. Although the actual p are close, i.e. 51.41356%, 51.22312%, respec-

tively; Michigan (n = 5, 453, 892) achieves a lower probability of error compared to Nevada

(n = 1, 373, 376) for the same α (see Figure 6.3) since Michigan has almost 4 times as many

voters as Nevada. Another example showing the effect of n is the fact that Pennsylvania can

tolerate a slightly higher privacy parameter than Nevada even though its p is much closer

to 50%.

6.3.2 Monte Carlo Simulations

Another way to validate the voting scheme is through Monte Carlo simulations.

One way to simulate a BSC in the voting context is using the binomial distribution. Given

the number of total numbers of YES and NO votes, denoted by nY and nN, respectively, the

number of flipped YES and NO answers can be modeled as a binomial random variables.

Let nY→N and nN→Y denote the number of flipped YES and NO answers, respectively.

Then, nY→N will be a binomial random variable with parameters nY and α, and nN→Y will

be a binomial random variable with parameters nN and α. To evaluate error probabilities

of 10−6, at least 108 realizations must be simulated. It is found impractical to simulate

108 or more binomial realizations. As an example, it takes about one hour to generate

108 realizations with parameters n = 250 and α = 0.1. Recall that the voting populations

in the U.S. Presidential Elections average to millions of voters in each state. As such,

going from n = 250 to n = 2, 000, 000 would require days. Since this number cannot be

computed precisely, the runtime to generate 5000 binomial realizations with parameters n

and α = 0.1 is shown as a function of n in Figure 6.4. Note that the hyper-linear growth
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Figure 6.4: Runtime to generate 5000 binomial realizations with parameters n and α = 0.1
is shown as a function of n.

of the runtime as a function of n is attributed to the combinatorial nature of generating a

binomial random variable. From Figure 6.4, it is predicted that generating 108 realizations

of binomial random variables with parameters n = 2, 500, 000 and α = 0.1 would take about

41 days (the probability α does not affect runtime). That is, each point in Figure 6.3 would

require 41×2 = 82 days to reproduce using Monte Carlo simulations, which in turns means

that the plots in Figure 6.3 would require a little less than 17 years to simulate. Instead,

the Gaussian approximation of the binomial distribution with a large n is used.

More formally, let nY→N denote the number of YES votes that flipped to NO votes

and nN→Y the number of NO votes that flipped to YES votes. The variable nY→N can be

modeled as a binomial random variable with sample size nY (commonly known as number

of trials) and a flipping probability of α (the complement of the commonly known success

probability). For large values of n, we can utilize the central limit theorem to represent

the sampling distribution of the sample as a Gaussian distribution. Generally speaking,

a binomial random variable X with number of trials n and success probability p can be
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approximated as a Gaussian random variable with mean µ and variance σ2 given by

µ(Y) = np

σ(Y) =
√
npp̄ .

where p̄ = 1− p. Using this approximation, nY→N and nN→Y will be distributed according

to

nY→N ∼ N (αnY, α(1− α)nY) ,

nN→Y ∼ N (αnN, α(1− α)nN) .

Consequently, the Monte Carlo simulations are realized by drawing from Gaussian

distributions with the aforementioned parameters. After flipping, the total number of YES

votes will be

n̄Y = (nY − nY→N) + nN→Y,

and the total number NO votes will be

n̄N = (nN − nN→Y) + nY→N.

The measured fraction of YES votes is given by

q ,
n̄Y

n
.

77



In each realization, if |q− 1
2 | < ε, then the number of too close to call events is incremented

by one. Otherwise, if q > 1
2 + ε, successful detection is declared. If q < 1

2 − ε, then a missed

detection is declared. The probability Pt is calculated by normalizing the number of too to

close events by the total number of realizations, and the probability Pe is calculated by the

normalizing the number of missed detections by the number of non too close to call events.

Two sets of simulations were conducted to study the Pe - Pt tradeoff: (i) a set

where ε was swept in the range 0.0001% to 0.04% for varying values of α and (ii) a set

where ε was fixed to 0.005% and α was swept between 0.125 and 0.475. The number of

realizations in the first set of simulations varied from 2 × 109 to 1010. The results for the

first set of simulations are shown in Figure 6.5. A total of 109 Monte Carlo realizations

were conducted for the second simulation set. The results for the second set of simulations

are shown in Figure 6.6.

The following can be concluded from Figure 6.5. First, similar to the previous

analytical results, it is important to note that decreasing ε decreases the probability of a

too close to call but increases the error probability. Second, the figure also shows that the α

boundary is between 18% and 21% for Georgia, 19% and 22% for Arizona, 43% and 44% for

Pennsylvania, and 43% and 44% for Nevada as well. Note that the boundaries for Georgia

and Arizona are almost double the ones obtained theoretically in Section 6.3.1. That is

because as p gets closer to 50%, the bound becomes more conservative. The bound yields

a more conservative boundary for Pennsylvania as well.

The main takeaways from Figure 6.6 are as follow. First, similar to the first set of

simulations, the Monte Carlo results show much smaller Pt and Pe probabilities due to the
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Figure 6.5: Monte Carlo results for the first set of simulations, showing Pe - Pt tradeoff for
Georgia, Arizona, Pennsylvania, and Nevada for ε sweeping the range 0.0001% to 0.04%
and varying values of α. Similar to the plots above, the shaded region shows α and ε values
for the given state that satisfy (δe, δt) bound on the probability of error and the probability
of close-call. The number of realizations varied from 2× 109 to 1010.

conservative bounds. Second, the order of the Pe-Pt curves are mostly preserved except for

Pennsylvania. This is because the range of α has changed from Figure 6.3. However, the

Pe-Pt curve for Pennsylvania remains below that of Georgia and Arizona for all α values.

To better see that, Pe and Pt are plotted separately as functions of α in Figure 6.7, which

validates that the Pe-Pt curve for Pennsylvania remain below that of Georgia and Arizona,

as expected.
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Figure 6.6: Monte Carlo results for the second set of simulations, showing Pe - Pt tradeoff
for Georgia, Arizona, Pennsylvania, and Nevada for ε = 0.005% and α sweeping the range
0.125 and 0.475. Similar to the plots above, the shaded region shows α and ε values for
the given state that satisfy (δe, δt) bound on the probability of error and the probability of
close-call. A total of 109 Monte Carlo realizations were conducted.
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Figure 6.7: Monte Carlo results for the second set of simulations, showing Pe as a function
of α, Pt as a function α for Georgia, Arizona, Pennsylvania, and Nevada for ε = 0.005%. A
total of 109 Monte Carlo realizations were conducted.

6.4 Conclusion

Electronic voting will become prevalent with the widespread use of personal de-

vices. To protect the privacy of voters, a voting mechanism was put forth by [1] that
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randomly flips the vote of users to preserve their privacy. This paper extends the voting

scheme in [1] by adding a third outcome referred to as “too close to call” for the cases were

the election result is very close to 50% − 50%. This outcome guarantees that the desired

probability of calling the wrong election result is satisfied . The too close to call outcome is

used as feedback system to change the privacy parameter to guarantee a certain probability

of wrongly calling the election. This new outcome naturally introduces a tradeoff between

the probability of wrongly calling the election result and the probability of falling into the

too close to call region. This paper analyzed the aforementioned tradeoff using the 2020 US

Presidential Elections as a case study.
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Chapter 7

Information Theoretic Approach

on Randomized Response Models

in Surveys

7.1 Introduction

Survey biases can appear in different forms such as sampling bias, non-response

bias, response bias, and question order bias. Non-response or response bias especially may

occur when interviewees are asked questions on sensitive topics to which interviewees may

self-censor their response or hesitate to answer altogether to avoid social undesirability

and feeling of self-embarrassment, or simply to preserve their privacy. The research in [53]

exhibited that misreporting is widespread when the survey includes sensitive topics. In [54],

similar findings were observed in more autocratic countries when interviewees were asked

questions regarding the citizen-state relationship with the fear of the government.
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Two very prominent examples of this phenomenon are possibly the US presidential

elections in 2016 and 2020. It is widely hypothesized that “shy” Trump voters swayed the

polls, which respectively showed Clinton and Biden ahead by a large margin of points in

many swing states, whereas the results were either in Trump’s favor or the margin was

much smaller. Surveys around the COVID-19 pandemic are also very likely to suffer from

this bias. For example, if participants are asked about whether they think vaccines are safe,

or whether they will take the vaccine, they might shy away from telling the truth.

The randomized response (RR) method has been suggested to eliminate the bias

in responses in the pioneering work [18] by increasing cooperation and trust between in-

terviewees and interviewers. The author in [18] utilizes an unbiased maximum likelihood

estimator and analyzes its variance (i.e., mean square error) as a quality metric. They

also compare this mean square error with that of conventional estimates that suffer from

response/non-response bias. Further studies that are based on statistics can be also found

in [48], [49], [50].

In this paper, we take an information theoretic approach on the RR model for

surveys which require YES/NO responses to increase cooperation and privacy that can

help reduce bias. Our work differs from the aforementioned literature in that instead of the

mean square error of the randomized estimate, we target the probability of deviation of the

estimate of percentage of YES answers from its true value by more than a small, acceptable

margin.

In a related previous work [1], a referendum scenario in which the votes are ran-

domized by passing them through a binary symmetric channel (BSC) was studied. It was
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shown that the exponent of the probability of incorrectly calling the election can be well-

approximated to be proportional to the square of how far the true vote is from 50%− 50%.

This result was then leveraged to understand the interplay between number of voters, the

allowed probability of incorrectly calling the election, and the level of privacy (i.e., amount

of randomization). As was noted in [1], the randomized response setup creates a unique

opportunity to utilize standard information theoretic tools, such as the method of types and

large deviations, to estimate relevant probabilities. The actual collective survey response

can be treated as an unknown type, and the randomization of responses can be thought

of as a discrete memoryless channel. Moreover, in contrast with a typical communication

scenario, since the participants of the survey are distributed in space as opposed to time,

and since there is no “channel coding”, the system incurs neither delay nor complexity,

thereby making the analysis applicable in a real-world scenario.

Two important differences between our work and [1] are i) the problem addressed

here is that of estimation and not detection, and ii) we leave no “vulnerable” interval in the

true percentage of YES answers where no guarantees can be made. Indeed, the problem

in [1] was that of composite hypothesis testing (Were YES votes more than NO votes?)

and the probability of misdetection was not guaranteed to be small enough when the true

results are very close to 50% − 50%. In contrast, we conduct a worst-case analysis of the

effect of randomization on estimation performance over each possible percentage of YES

answers.

Our analysis shows that with as little as 100, 000 participants, the probability of

the estimate of the percentage of YES answers deviating from its true value by more than
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±1% is at worst about 2 × 10−6 when the answers are passed through a BSC with a flip

probability of 0.1. If the flip probability is increased to about 0.3, the same performance

can be achieved with 1, 000, 000 participants. While in the old days enrolling a million

participants into a survey would be practically impossible, with the advent of smart phones

and with the guarantee of this much privacy, the scenario becomes much less far-fetched.

7.2 Proposed Survey Mechanism and Analysis of Error Ex-

ponents

Let X be the list of options on a question in a poll or survey with n participants.

We define x ∈ X n as the response vector. It is clear that in a fair questionnaire (one person

one response), the poll outcome should depend on the response vector x only through its

type Px.

In this paper, we propose a survey mechanism whereby participants indicate their

responses through some electronic medium, such as a website, or an app on their smart-

phones. For each participant 1 ≤ i ≤ n, the website or app passes their choice xi ∈ X

through a discrete random channel W with an output alphabet Y before sending it to the

central unit (or a survey master) where survey results will be processed. As was mentioned

in the Introduction, this randomization will protect the privacy of the voters, as either the

surveying agency or any adversarial party tapping into the communication will not be able

to resolve any individual participant’s choice unequivocally (the noisier the channel, the

more the uncertainty).
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Figure 7.1: Channel W (y|x) randomizing the response.

We will be focusing on simple polls with X = {YES,NO} and binary symmetric

channels with flip probability α < 1
2 for randomization, as shown in Figure 7.1 (where we

use the notation s̄ = 1 − s for any 0 ≤ s ≤ 1). As Warner [18] originally proposed, this

randomization can alternatively be achieved by tossing an (unfair) coin for each participant

and asking them the opposite question whenever the outcome is heads (i.e., with probability

α). At the receiving end, the survey master would be oblivious to whether the original or the

opposite question is asked for any given user. (They will only know whether they received

a YES or a NO answer.)

Upon receiving the randomized response vector y ∈ Yn, the survey master is to

estimate Px. Equivalently, given that X = {YES,NO}, we can denote

p = Px(YES)

and reduce the problem to estimation of p. To maintain the fairness of the system, the

estimate p̂ should depend on y only through its type Py. Therefore, we will interchangeably

use p̂, p̂(y), p̂(Py), or even p̂(Py(YES)) depending on the context.

Note that this is a non-Bayesian estimation problem, in that by the nature of sur-

veying the public for an unknown opinion or a trait, one cannot incorporate any information

about the prior distribution of p. In non-Bayesian estimation, traditionally one would seek
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unbiased estimators with minimum variance (or mean-square error), as Warner [18] did.

That is, ensure

E[p̂] = p

and minimize

E[(p̂− p)2]

simultaneously for all 0 ≤ p ≤ 1 if possible. The reader is referred to [55] for a comprehensive

treatment of non-Bayesian estimation.

Here, we take a different, large-deviations approach and strive to minimize

Pe
∆
= max

0≤p≤1
Pr[|p̂− p| > ε] , (7.1)

i.e, the worst-case probability that the estimate p̂ deviates from the true value p by more

than ε > 0. To analyze this probability, for any x with p = Px(YES), we write

Pe(x) =
∑

y:|p̂(y)−p|>ε

Pr[Y = y|x]

=
∑

V ∈CnP (Y|X ): |p̂([PV ])−p|>ε

Pr[Y ∈ TnV (x)|x]

(a)

≤
∑

V ∈CnP (Y|X ): |p̂([PV ])−p|>ε

e−nD(V ||W |P )

(b)

≤ |CnP (Y|X )|e−nD(V ∗n (P )||W |P )

(c)

≤
(n

2
+ 1
)2
e−nD(V ∗n (P )||W |P ) (7.2)

where in (a), we used Property 4, in (b) the fact that there are only polynomially many
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ā

b̄

b

a
p̄ NO

p YES

NO q̄

YES q

Figure 7.2: V-shell as a binary channel

conditional types, and in (c) Equation (5.8). Here, V ∗n (P ) is defined as

V ∗n (P ) = arg min

V ∈ CnP (Y|X ) :

|p̂([PV ])− p| > ε

D(V ||W |P ) . (7.3)

We next tackle the minimization in (7.3). One can treat a V -shell as a fictitious

(and generally asymmetric) binary channel as shown in Figure 7.2, where

q = [PV ](YES) .

Now,

min

V ∈ CnP (Y|X ) :

|p̂([PV ])− p| > ε

D(V ||W |P ) = min

Q ∈Mn(X ) :

|p̂(Q)− p| > ε

min

V ∈ CnP (Y|X ) :

Q = [PV ]

D(V ||W |P )

≥ min

0 ≤ q ≤ 1 :

|p̂(q)− p| ≥ ε

min

0 ≤ a, b ≤ 1 :

q = p̄a+ pb̄

pD(b||α) + p̄D(a||α) (7.4)

with the abuse of notation

D(s||t) = s log
s

t
+ s̄ log

s̄

t̄

for any 0 ≤ s, t ≤ 1. Here, we take the standard approach of setting 0 log 0 = 0.
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Bringing together (7.1)-(7.4), we can write for each estimator p̂(q)

Pe ≤
(n

2
+ 1
)2
e−nD

∗(p̂) (7.5)

with

D∗(p̂)
∆
= min

0≤p≤1
min

0 ≤ q ≤ 1 :

|p̂(q)− p| ≥ ε

min

0 ≤ a, b ≤ 1 :

q = p̄a+ pb̄

pD(b||α) + p̄D(a||α) . (7.6)

7.3 Maximum Likelihood Estimator and Its Performance

Stemming from (7.5), it is desirable to find the estimator p̂(q) that would maximize

D∗(p̂) over all possible estimators for fixed α and ε. While it is not easy to solve this

maximization problem, here we analyze D∗(p̂) for the maximum likelihood estimator

p̂(q) =



q−α
1−2α α ≤ q ≤ 1− α

0 q < α

1 q > 1− α

(7.7)

which is shown in Figure 7.3.1

The following lemma proves that for this p̂(q), the solution of the inner two mini-

mizations in (7.6) reduces to solving a quadratic equation.

1This is the estimator analyzed in Warner [18] as well, and indeed maximizes the likelihood of observing
type Q given that the true response has type P .
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Figure 7.3: The estimator p̂(q) and the behavior of |p̂(q)− p| > ε

Lemma 6 Define

γ1 = (p− ε)(1− 2α) + α

γ2 = (p+ ε)(1− 2α) + α .

Then for the estimator p̂(q) in (7.7), the solution to

D∗(p̂|p) ∆
= min

0 ≤ q ≤ 1 :

|p̂(q)− p| ≥ ε

min

0 ≤ a, b ≤ 1 :

q = p̄a+ pb̄

pD(b||α) + p̄D(a||α)

is given by the pair 0 ≤ a, b ≤ 1 satisfying

abᾱ2 = āb̄α2 (7.9)
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Figure 7.4: Admissible (a, b) pairs, depending on whether p̄
p is less than or greater than 1.

and

b =
p̄

p
a+ 1− γi

p
(7.10)

simultaneously, for either i = 1 or i = 2, whichever yields a lower divergence.

Proof. First observe that the objective function is convex in (a, b). The gradient

vector of the objective function for a fixed (p, q) yields

∇
[
pD(b||α) + p̄D(a||α)

]
=


p̄ log aᾱ

āα

p log bᾱ
b̄α

 (7.11)

As demonstrated in Figure 7.3, q < γ1 and q > γ2 represent admissible values for

the outer minimization. Translating this, together with q = p̄a + pb̄, into admissible (a, b)

pairs, we obtain

b ≥ p̄

p
a+ 1− γ1

p
, (7.12)
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and

b ≤ p̄

p
a+ 1− γ2

p
. (7.13)

This results in two possible scenarios in the a-b plane depending on the value of slope p̄
p ,

which are illustrated in Figure 7.4. The optimum (a, b) must lie on one of the following:

(i) Boundaries defined by a = 0, b = 0, a = 1, b = 1.

(ii) Lines that are defined by (7.12) and (7.13) .

(iii) Interior (shaded) regions that remain between the boundaries (i) and lines (ii).

Case (i) can never provide a solution as can be seen from the behavior of (7.11), i.e., the

gradient has infinite magnitude and points outward for any of a = 0, b = 0, a = 1, b = 1.

As for case (iii), it requires the gradient in (7.11) to be zero, i.e., a = b = α. That, in turn,

implies q = p̄α+ pᾱ, and therefore p̂(q) = p, which is inadmissible. It then follows that the

solution must lie on either of the lines of (7.12) or (7.13), whichever yields a lower objective

function.

The proof is then complete by observing that the gradient vector should be normal

to the lines, translating into


p̄ log aᾱ

āα

−p log b̄α
bᾱ

 = λ

 p̄

−p



for some λ, which, in turn, gives (7.9).
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α ε n Pe
0.1 0.02 22,500 6.5312 10−6

0.2 0.02 75,000 5.0537 10−6

0.25 0.02 130,000 2.3150 10−6

0.1 0.01 100,000 2.0334 10−6

0.2 0.01 320,000 7.7452 10−6

0.1 0.005 420,000 4.1604 10−6

Table 7.1: Several numerical results on the upper bound on Pe for different values of α, ε,
n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6.4

6.42

6.44

6.46

6.48

10
-4

Figure 7.5: The exponent D∗(p̂|p) as a function of p for ε = 0.02, α = 0.2, i.e., when
responses are flipped with 20% probability and survey results are allowed to deviate from
the true percentage by at most 2%.

Figure 7.5 shows how D∗(p̂|p) varies as a function of p when α = 0.2 and ε = 0.02.

As can be seen from the figure, p = 0 or p = 1 achieves D∗(p̂) in this case. As a matter

of fact, we observed that this is always true for any (α, ε), although an analytical proof is

absent at the moment.

Using Lemma 1 and this observation, we also evaluated (7.5) for various α, ε, and

n values such that the upper bound on Pe is in the order of 10−6. Some of the evaluated

values are provided in Table I.
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Figure 7.6: Upper bound on the probability of error Pe is evaluated for varying α values for
different number of participants, n, when ε = 0.01.

Finally, Figure 7.6 depicts the relationship between the probability of error and

α for varying number of participants for a fixed ε = 0.01. Threshold probabilities of 10−3,

10−6 are also plotted as reference points with horizontal dashed and dotted-dashed lines,

respectively. As expected, the more participants n the survey has, the more reliable the

estimation is at the same randomization level α. To be more specific, with 100, 000 partici-

pants, we can only flip the survey responses with 10% probability to be able to ensure that

the probability that the estimated survey result does not stay within 1% of its true value is

in the order of 10−6. In contrast, when we have 2, 000, 000 participants, the same accuracy

can be achieved even when the survey responses are flipped with 35% probability.
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Appendix A

Proofs

A.1 λ optimization

A.1.1 1-dimensional Gaussian Sources

It is easy to check that the argument of the natural logarithm in (3.12) is convex in

λ(x). Therefore, by using the Euler-Lagrange theorem of variational calculus, the optimal

point density function (for a fixed c) is found to be

λc(x) =
1

61/3c2/3

f(x)1/3

(δcx2 + β)1/3
, (A.1)

with the Lagrange multiplier β ≥ 0. It remains to pick β such that λc(x) integrates to 1.

Since (A.1) is decreasing in β, we can always find such a β provided that
∫
λc(x)dx ≥ 1 for

β = 0. Following this logic and substituting β = 0 in (A.1), we observe that c has to satisfy

c ≤ c0
∆
=

(
1

108δ2π

)1/6

Γ

(
1

6

)
≈ 2.2219 . (A.2)
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For each c ≤ c0, denote by βc the value of β satisfying
∫
λc(x)dx = 1. After some

algebra, (3.12) then reduces to

υ(c, λc) = − ln

[
δc

(
1 +

3

2

∫ ∞
−∞

x2λc(x)dx

)
+
βc
2

]

The optimal values of c, βc, and υ(c, λc) are numerically found to be c∗ ≈ 1.3719,

βc∗ ≈ 1.1764, and υ(c∗, λc∗) ≈ −1.7006, respectively.

A.1.2 2-dimensional Gaussian Sources

Proceeding as in the 1-dimensional case, and noting that the argument of the

natural logarithm in (3.19) is convex in λ(x), we obtain

λc(x) =

√
5
√

3

108π
· e−‖x‖

2/4

(δc2 ‖ x ‖2 +2cβc)1/2
, (A.3)

where for each c, βc is to be picked to integrate λc(x) to 1. Substituting this into (3.19) and

numerically solving for the optimal values of c and βc, we obtain c∗ ≈ 1.0017, βc∗ ≈ 0.8741,

and the corresponding dispersion becomes υ(c∗, βc∗) ≈ −1.4686.

A.1.3 2-dimensional Gaussian Sources

Proceeding as in the 1-dimensional case, and noting that the argument of the

natural logarithm in (3.19) is convex in λ(x), we obtain

λc(x) =

√
5
√

3

108π
· e−‖x‖

2/4

(δc2 ‖ x ‖2 +2cβc)1/2
, (A.4)
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where for each c, βc is to be picked to integrate λc(x) to 1. Substituting this into (3.19) and

numerically solving for the optimal values of c and βc, we obtain c∗ ≈ 1.0017, βc∗ ≈ 0.8741,

and the corresponding dispersion becomes υ(c∗, βc∗) ≈ −1.4686.

A.2 Probability of Decoding Error

The proof follows steps similar to [4]. For notational simplicity, we take M = 1.

The result for general M can be obtained by replacing E with ME (or γ with Mγ). Unlike

the proof in [4], we use a tighter version of the Chernoff bound, i.e.,

Q (x)
∆
=

1√
2π

∫ ∞
x

e−
s2

2 ds ≤ 1

2
e−

x2

2 (A.5)

for all x ≥ 0, to obtain a tighter result.

We have

Pr[O] = 1−
∫ ∞
−∞

fW (w1) Pr

[
max

2≤i≤N
{Wi} <

√
E + w1

]
dw1

= 1−
∫ ∞
−∞

fW (w1)

N∏
i=2

Pr
[
Wi <

√
E + w1

]
dw1

=

∫ ∞
−∞

fZ (z)
{

1− (1−Q (
√
γ + z))N−1

}
dz.

where fZ(z) = 1√
2π
e−

z2

2 .

For any γ ≥ 2 lnN , we set µ =
√

2 lnN −√γ, and write

Pr[O] = PO,1 + PO,2 ,
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where

PO,1 =

∫ µ

−∞
fZ (z)

{
1− (1−Q (

√
γ + z))N−1

}
dz

PO,2 =

∫ ∞
µ

fZ (z)
{

1− (1−Q (
√
γ + z))N−1

}
dz .

By following similar steps as in [4], we obtain

PO,1 ≤
∫ µ

−∞
fZ (z) dz =

1√
2π

∫ µ

−∞
e−

z2

2 dz = Q (−µ) ≤ 1

2
e−

µ2

2 , (A.6)

where in the last step, we used µ ≤ 0.

To bound PO,2, we observe that

1− (1−Q (
√
γ + z))N−1 ≤ (N − 1)Q (

√
γ + z)

≤ N

2
e−

(
√
γ+z)2

2

for all z ≥ −√γ. Since µ > −√γ, it follows that

PO,2 ≤
N

2

∫ ∞
µ

fZ (z) e−
(
√
γ+z)2

2 dz

=
N

2
√

2π
e−

γ
4

∫ ∞
µ+
√

γ
4

e−s
2
ds

=
N

2
√

2
e−

γ
4Q

(√
2

(
µ+

√
γ

4

))

≤


N

2
√

2
e−

γ
4
−(µ+

√
γ
4 )

2

µ ≥ −
√

γ
4 ,

N
2
√

2
e−

γ
4 µ < −

√
γ
4 .

(A.7)

98



Finally, it can be shown after some algebra that

Ne−
γ
4
−(µ+
√

γ
4

)2
= e−

µ2

2 . (A.8)

By combining (A.6), (A.7), and (A.8), we obtain

Pr[O] ≤
(

1

2
+

1

2
√

2

)
e−

µ2

2

= δe−
1
2 [
√
γ−
√

2 lnN]
2

for all e
γ
8 ≤ N ≤ e

γ
2 , with δ = 1

2 + 1
2
√

2
. Similarly for all N ≤ e

γ
8 ,

Pr[O] ≤ Ne−
γ
4

(
1

2
√

2
+

1

2
e−(
√

2 lnN−
√

γ
4 )

2
)

= δelnN− γ
4 .

A.3 MSE Conditioned on Outage

Let Ri and x̂i denote the ith quantization region and the corresponding quantized

value, respectively. We then estimate the resultant distortion by

E
[
‖ X− X̂ ‖2

∣∣O] (a)
=

N∑
i=1

E
[
‖ X− X̂ ‖2

∣∣∣O,X ∈ Ri]Pr [X ∈ Ri]

(b)
=

1

N − 1

N∑
i=1

N∑
j=1
j 6=i

E
[
‖ X− rj ‖2

∣∣∣O,X ∈ Ri]Pr[X ∈ Ri]

(c)
=

1

N − 1

N∑
i=1

N∑
j=1
j 6=i

E
[
‖ X− rj ‖2

∣∣∣X ∈ Ri]Pr[X ∈ Ri]
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≤ N

N − 1

N∑
i=1

Pr[X ∈ Ri]
N∑
j=1

1

N
E
[
‖ X− rj ‖2

∣∣∣X ∈ Ri]
(d)
=

N

N − 1
E[‖ X− X̃ ‖2]

=
N

N − 1

(
E[‖ X ‖2] + E[‖ X̃ ‖2]

)
(A.9)

where (a) follows from the independence of the outage event O and X, (b) from the fact

that when outage happens, X̂ is distributed uniformly on the incorrect quantized values

rj , j 6= i, (c) from the independence of X from O even when X ∈ Ri is given, and finally

(d) by defining a fictitious variable X̃ independent of X and distributed uniformly over all

quantization levels rj . Clearly, it follows from (A.9) that as N → ∞, (3.6) is satisfied for

any ε > 0.
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