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Abstract 

It is well-accepted that Archie’s law is only applicable to “clean” rocks and soils but fails in 
“dirty” ones where clay minerals possess an additional component of surface conductivity. 
Although several models, e.g., Waxman-Smits model, were presented to account for this 
phenomenon, surface conductivity is always inappropriately treated as constant, which actually 
only holds at high salinities. The essential non-linear characteristic differing over fluid salinities 
has not been physically or mathematically explained well in those models. We scrutinize the 
conduction mechanism of clayey rocks and soils and ascribe this non-linear feature to (i) 
variation of the electrical double layer and (ii) the intrinsic clay-and-water conduction pattern. 
With effective medium theory, we develop an easy-to-use non-linear model that both reflects 
electrochemical theories and explains the measurement data well. Our model can be used to 
produce more accurate results for laboratory- and field-scale petrophysical parameter evaluations 
than the previous models. 

Key Points 

 Conductivity of clayey rocks and soils manifests an obvious non-linear behavior with 
respect to changes of the pore water salinity 

 Non-linear conductivity is resulting from (i) variation of electrical double layer and (ii) 
the intrinsic clay-and-water conduction path 

 Our non-linear model reflects electrochemical theories, explains measured data well, and 
is very easy-to-use 

Plain Language Summary 

Electrical and electromagnetic methods are commonly-used hydrogeophysical methods for large-
scale non-invasive subsurface investigations, where different conductivities between Earth 
materials lay their foundations. Unfortunately, for rocks and soils with clay minerals, their 
conductivities behave non-linearly with the pore water. Inappropriately using Archie’s law or 
other linear models could lead to erroneous rock/soil parameter estimation or field data 
interpretation. Here we develop an easy-to-use non-linear model which would produce more 
quantitative petrophysical and geological results from measured geophysical data, e.g., more 
accurate porosity assessment and lithological discrimination. 

1 Introduction 

Electrical conductivity of different rocks and soils lays the base for electrical logging and 
electrical and electromagnetic (E&EM) methods that have been extensively used for near-surface, 
environmental, and hydrogeological investigations (e.g., Chelidze & Gueguen 1999; Chelidze et 
al., 1999; Glover 2015). It is the pioneering work of Archie (1942) that makes the quantitative 
assessment of porosity available and paves the way for other petrophysical parameters. Several 
years later, Patnode & Wyllie (1950) found that Archie’s law is only suitable to “clean” samples 
as clayey minerals in the “dirty” ones present themselves as “conductive solids”. Winsauer & 
McCardell (1953) ascribed the clay conductivity to its electrical double layer (EDL) for the first 
time. Thus the additional component Patnode & Wyllie (1950) added to Archie’s law shall be 
called the surface conductivity. Soon after, Wyllie & Southwick (1954) discovered that the 
surface conductivity is not constant but differs at low and intermediate salinities, and they 
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presented a three-resistor (TR) model to explain this non-linearity. It shall be clarified here that 
"cleanness" and “dirtiness” are relative terminologies that are essentially a question of the ratio 
between surface and pore water conductivity (i.e., the Dukhin number. c.f., Shilov et al., 2001). 
Indeed, one can find surface conductivity even in clean glass beads (e.g., Bolève et al., 2007). 

 Although research on the electrical conductivity of clayey rocks and soils progressed 
significantly in the 1950s, the following years are not always the case. Despite the fact many 
models have been presented to account for this non-linear characteristic, they are argued not to 
comply with electrochemical theories or not coincide with measurements, and most are too 
complex to use (Bussian, 1983). For example, the TR model (Wyllie & Southwick, 1954) can 
explain measurements well, yet it is exclusive of EDL, clay minerals being treated as classic 
conductors. The Waxman-Smits (WS) model (Waxman & Smits, 1968), probably the most 
popular model, postulates that the ionic mobility decreases with the diminishing ionic 
concertation which is opposite to the electrochemical theory (e.g., Bockris & Reddy, 1998). The 
Padé approximant (PA) model (Schwartz et al., 1989) first calculates the low-salinity 
conductivity with surface tortuosity and the high-salinity conductivity with bulk tortuosity, 
respectively, then ‘stitches’ these two together with a Padé approximant. The former does have a 
physical basis, yet the latter is purely mathematical. The Bruggeman-Hanai-Sen (BHS) model 
wholly uses the differential effective medium (DEM) theory to derive its equation (Sen et al., 
1981). While Poisson’s equation can be seen as its physical basis, this model treats the clay 
minerals as conductive solids and never considers the EDL variation with salinities. Besides, this 
model gives an implicit equation and only has closed-form expressions under some 
approximations (Bussian, 1983). 

We recognize that a model quantitatively accounting for such non-linearity is very 
imperative to petrophysical and geophysical communities. For instance, in the laboratory, using 
the linear equation to fit a clayey rock sample’s bulk conductivity tends to underestimate its 
formation factor if data belonging to the non-linear portion are contained in such a linear curve 
fitting. Similarly, in the field, when E&EM methods are used in the critical zone studies, the 
fresh pore water often makes the bulk conductivity of clayey soils lie in its non-linear portion. 
The linear model could output erroneous hydraulic parameters in this situation. With the 
increasing usage of E&EM tools for critical zone research, it is important to better understand 
this non-linear behavior. Using the effective medium theory, we obtain an easy-to-use non-linear 
model that is well-aligned with both electrochemical theories and measurements. Our model is 
expected to produce better results than the previous models, especially in the circumstances of 
freshwater or high clay minerals. 
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2 Model development 

 
Figure 1. Schematic demonstration of clay conductivity curve and its EDL structure. (a) shows a typical 
conductivity curve of clayey rock/soil. Differences between clayey rocks and soils are mainly in their formation 
factors here (i.e., the slope of the linear portion). Note that conductivity values are just for an example here and they 
are actually sample-dependent; (b) demonstrates the EDL structure around the clay surface. The faded yellow 
background signifies that the potential decreases with the distance from the clay surface. Note that, different to Na+, 
almost none water molecules are attached to Cl- because of its bigger ion size (c.f., Bockris & Reddy, 1998). 

Figure 1a gives the typical bulk conductivity curve shape of clayey rocks and soils, which 
shows three features: (I) The curve neither crosses the origin nor shows such a trend; (II) At high 
salinity (i.e., the linear portion), the bulk conductivity   is linear with the fluid conductivity w , 
(III) At low and intermediate salinities (i.e., the non-linear portion and the transition, 
respectively), the bulk conductivity behaves non-linearly to the fluid conductivity. 

Feature (I) nullifies Archie's law for clayey rocks and soils, while feature (II) ratifies the PW 
model (Patnode & Wyllie, 1950) that adds constant surface conductivity s  to Archie’s law at 
high salinity. Nevertheless, feature (III) specifies that s  increases concavely when the salinity 
grows. Considering this growth runs smoothly, it is mathematically deducible that the PW model 
still holds its form but s  becomes a function of w  as 

  w
s wF


    , (1) 

where the first term is Archie’s law and F the formation factor, while the second is the fluid-
dependent surface conductivity. Obviously, clay minerals cause this concave non-linearity in Eq. 
(1). To derive the effect of pore fluid salinity on surface conduction, we will investigate the 
principles of EDL and the role they play in  s w  . 

2.1 Electrical double layer (EDL): Structure and variation 

Clays are not the most abundant components compared to feldspars in the Earth’s crust, but 
the most abundant natural reactive solids on the Earth’s surface (Schroeder, 2018). The presence 
of clay minerals can be in a consolidated form of clayey rocks (e.g., shale) or unconsolidated 
clayey soils (e.g., bentonite). The strong clay reactivity stems from its two basic characteristics: 
high surface area and net negative surface charges. The former results from its extremely small 
size ( 2 μm ) and the latter from its special chemical structure. Clay minerals are hydrous 



 

5 
 

aluminum phyllosilicates made of two fundamental fractals of the tetrahedral sheet between 2-O  
and 4+Si  and octahedral sheet between -OH  and 3+Al  (or 2+Mg  with isomorphous substitution). 
This special chemical structure induces net negative charges on clay surfaces and interlayers. 
Though permanently charged, clay minerals in the dry state are not conductive as these charges 
are fixed which is completely different from metals (Winsauer & McCardell, 1953). 

However, when dry clay minerals transit into a wet state with ionic solutions, it becomes 
conductive. This is due to the establishment of the EDL on a clay particle’s surface with mobile 
charges when exposed to a saline solution as shown in Figure 1b (Bockris et al., 2000). Nearest 
to the clay surface, there is always a hydration sheath because of the strong polarization of water 
molecules. These water molecules flop down their orientations for the electrical force from the 
charged surface. The second row is largely reserved for solvated cations whose locus is called 
the outer Helmholtz plane (OHP). The first hydration sheath (sometimes accompanying with 
specifically adsorbed ions, the locus of which is called the inner Helmholtz plane, i.e., IHP) and 
the second row of solvated cations are together named as the Stern layer. Outside the Stern layer, 
the electric force and thermal jostling both take effect, which leads to a mixture of hydrated 
cations and anions (i.e., the diffuse layer). Beyond the diffuse layer, it is the bulk solution where 
thermal buffeting dominates (Bockris et al., 2000). 

It is axiomatic that the conduction of a clay particle is via its EDL. Unfortunately, EDL is 
not static but dynamic. Amongst its influencing factors, fluid salinity is the most encountered 
one. Electrochemical experiments prove the existence of a critical salinity above which the clay 
particle’s conductivity cp  can be seen as constant (Zukoski & Saville, 1986b). From EDL 

theories, the thickness of the diffuse layer (i.e., the Debye length) shrinks with the increase of 
salinities and thus increase cp  until its growth is negligible, while some believe that the EDL 

conduction is mostly from the Stern layer rather than the diffuse layer (Zukoski & Saville, 
1986a). Dynamic Stern layer model depicts the constant cp  as the full saturation of cations in its 

Stern layer with the salinity increase (Zukoski & Saville, 1986a, b). A debate between dynamic 
diffuse and Stern layer models is beyond the scope of our paper as they both evidence that the 
critical salinity for the constant cp  is extremely low which certainly cannot explain the concave 

non-linearity in Figure 1a (Bernabé & Revil, 1995). It is self-evident that there is another 
mechanism more dominant than the EDL variation that controls the whole non-linearity. In this 
context, it appears prudent to avoid taking such EDL variation so strictly and to focus on the 
main dominator for this non-linearity. It is practical to average this effect to exclude its steep 
changes (i.e., use the mean value of cp  with salinities), which is acceptable as both theories and 

experiments confirm EDL variations happen merely near zero salinity (Zukoski & Saville, 
1986a, b). Considering that distilled or de-ionized water is hardly met in geophysical 
circumstances, such an averaging scheme, albeit it may overestimate cp  near zero conductivity, 

can help us focus on the main non-linear mechanism without sacrificing our model’s 
applicability. 

2.2 Clay-and-water conduction path: Effective medium theory (EMT) 

In nature, clay particles mostly present themselves as disseminated clay aggregates or 
massive streaks in rocks and soils which can be categorized based on their clay fraction such as 
shales subdivides into dispersed, structural, and laminar ones. Although laminar shale is 
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considered to be a macroscale continuum, scanning electron microscopy (SEM) images show 
that scattered shale flakes exist widely (Schroeder, 2018). Thus when clayey rocks and soils are 
exposed to EM field, clay particles cannot conduct current hundred-percent via their 
interconnected EDLs, but through a path switching between EDL and bulk fluid (i.e., the clay-
and-water pattern). Whilst some local, continuous EDL paths do exist, taking all the clay 
particles as a whole, it is still a clay-and-water conduction mechanism. One apparent excepting 
case might be compact pure clays at laboratory. However, because of possible colloid repulsion 
and rough surface curvatures, we still don’t expect currents to transfer completely via 
interconnected EDLs. Recent laboratory measurements on pure clay validate that its real (not 
quadrature) conductivity also shows almost the same concave nonlinearity (Mendieta et al., 
2021). 

The geometry of clayey rocks and soils can be roughly illustrated in Figure 2a. It is self-
explanatory that there are two main conduction paths within the pore: one through the centered 
bulk fluid (i.e., Path #1) and the other via the clay-and-water conduction path clinging to the pore 
wall (i.e., Path #2). These two paths statistically run parallel with each other with the former 
described as Archie’s law and the latter the surface conductivity s , which can be seen as the 
physical explanation for Eq. (1). A close-up of these two parallel conduction paths #1 and #2 are 
drawn in Figure 2b where the upper part represents the path of pore fluid and the lower is the 
clay-and-water conduction path. It is also well to bear in mind that “clay” in “clay-and-water” is 
actually clay’s EDL because dry clay is almost insulating and “water” here specifically indicates 
clay’s contiguous water clinging to the pore wall in such a conduction path (i.e., Path #2). 

 

 
Figure 2. Schematic geometry of clayey rocks and soils. (a) and (b) are the overview and close-up of the two 

parallel conduction paths under electrical field, respectively. 

To calculate s , the clay-and-water path can be seen as a mixture of conductive clay and 
fluid. Since we have previously used the averaging scheme for the EDL variation to exclude its 
steep change around zero salinity, the conductivity of clays’ EDL can be seen as from clay 
themselves during the mathematical derivation here. Regarding this mixture, the fluid water 
bears the conductivity w  and the clay c . It must be stressed that the clay conductivity c  
should not be confused with the aforementioned clay particle’s conductivity cp , albeit they do 

have correlations. For example, natural clayey rocks and soils usually contain more than one 
kind of clay mineral (e.g., kaolinite, illite, and smectite), different kinds of clay particles 
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inherently hold different cp . Patchett (1975) presented one method to average c  out of cp  

based on their mass fractions which worked well on experiments (e.g., Woodruff & Revil (2011), 
Dumont et al., 2021). Additionally, inorganic precipitation on a clay surface decreases its 
conductivity cp (e.g., Wu et al., 2010). Thus c  represent the average conduction abilities of all 

the cp (i.e., the averaging scheme), which is certainly rock- and soil-dependent because of many 

influencing factors like clay type, clay fraction, clay aggregation extent, etc. 

From Figure 2b, the surface conductivity s  represents the effective conductivity of this 
clay-and-water conduction path. We resort to the effective medium theory (EMT) to calculate s  
out of c  and w . Maxwell Garnett (MG) equation (Garnett, 1904) is employed here because of 
its simplicity yet broad applicability (Landauer, 1978) 

 s c w c

s c w c2 2

   


   
 


 

,  (2) 

where   is the water volume fraction in the clay-and-water conduction path that denotes the 
percentage of water participating in such a clay-and-water conduction pattern. Although some 
necessary geometrical approximation is postulated, it is underlined that MG equation is not a 
simple arithmetic mixing rule but a physics-based one where Maxwell’s equations are used 
during its derivation. However, as a side note, MG equation is always incorrectly written as 
Maxwell-Garnett equation in the literature. Actually, J. C. Maxwell Garnett is the inventor of this 
equation who is an English physicist (1880-1958), while the founder of Maxwell's equations is 
the Scottish physicist James Clark Maxwell (1831-1879). J. C. Maxwell Garnett's father William 
Garnett used to serve as JC Maxwell's laboratory demonstrator and put J. C. Maxwell as his son's 
given name for respect (c.f., Landauer, 1978). It should also be stressed that in the MG equation, 
the contributions of clay and water are not identical, and one must be chosen as the matrix (i.e., 
the host) and the other as inclusion (i.e., the guest). Mathematically speaking, c  and w  are not 
symmetrical to each other in Eq. (2). From a physical perspective, for the surface conductivity 

s , as its self-explanatory name, clay plays a more characteristic role than water through the 
surface tortuosity (Schwartz et al., 1989), which leads to the fact that clay must be chosen as the 
matrix and water as the inclusion. From Eq. (2), we can directly derive the surface conductivity 

 
2

c w c
s

c w

(2 1) 2(1 )

(2 ) (1 )

    


   
  


  

. (3) 

Given path #1 and #2 run parallel to each other (Figure 2), with Eq. (1) and (3), our non-linear 
model is presented as 

 
2

w c w c

c w

(2 1) 2(1 )

(2 ) (1 )F

     
   

  
 

  
. (4) 

It can be shown that this new non-linear model has a very simple form with the first term as the 
classic Archie’s law and the second as the clay- and fluid-dependent surface conductivity 

s w c( , )    with   balances its two contributors. It can be easily tested that our model holds a 
non-linear concavity with the increase of w  when w  and c  are comparable (i.e., at low or 
intermediate salinity) and becomes linear to w  at high salinities. At high salinity (i.e., in the 
linear portion), s  reaches its constant maximum as 

 max
s c

2 1

1

 






. (5) 
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We proceed to validate our model on natural and synthetic circumstances. 

3 Model verification 

3.1 Natural clayey rocks and soils 

The non-linear surface conductivity has been studied for 70 years since this additional term 
was first discovered by Patnode & Wyllie (1950), which accumulates extensive high-quality data 
to test our models. We successfully verified our model on these available data and four examples 
are shown here. 

  
Figure 3. Model verification on natural clayey soils and rocks. Data sources are displayed in the respective inserts 
where QW model, by convention, represents our developed non-linear model. Note that this plot is in log-log scale. 

Two clayey soils in Figure 3a and 3b are the Sample Bonsall-B from Friedman (2005) and AE 
from Revil et al. (2019), respectively, and two clayey rocks in Figure 3c and 3d are the Sample 
#26 from Waxman & Smits (1968) and L31 from Lévy et al. (2018), respectively. Our model fits 
all these 4 datasets extremely well with coefficient R2 > 0.99. The parameters for soil Sample 
Bonsall-B are 4.71F  , c 0.06  , and 26.7%  , and for Sample AE 9.79F   c 0.21  , and 

47.3%  , while for the rock Sample #26 41.63F  , c 0.14  , and 11.1%  , and for Sample 
L31 88.03F  , c 0.03  , and 30.3%  . All these parameters are in accord with the 
investigations of the related literature. 

It can be seen that our model is able to capture the non-linear and linear portions both very 
well. Considering s w( )   is always smaller than max

s , simply using a linear model (i.e., PW 
model) always tends to under-predict the true formation factor F . Some may argue that this 
problem can be circumvented by kicking off the non-linear portion and only fitting the linear part. 
However, this method is not practical as the transition from nonlinearity to linearity cannot be 
precisely determined in many cases. The inclusion of some data points from the non-linear to 
linear transition zone will again result in an inaccurate F  prediction. The necessity of including 
the non-linear portion is also underscored by these 4 datasets for freshwater conductivity 
( 0.2 S/m ) which is often encountered in nature, where empirical or petrophysical relationships 
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developed at high salinities do not apply to the freshwater situation and could lead to erroneous 
assessments. 

Although these natural clayey rock and soil datasets have validated the applicability of our 
model. A caveat is that the parameter c  and   cannot be comparatively analyzed in these 
natural samples because of the large variations in formation factors, clay types, and clay contents. 
In the next chapter, an experiment using synthetic samples will be presented to illustrate this 
aspect. 

3.2 Synthetic clay experiment 

Synthetic samples have advantages over natural ones as their compositions can be 
qualitatively changed such that model parameters can be analyzed. Wyllie & Southwick (1954) 
already performed such an experiment. To keep the formation as identical as possible, a synthetic 
cation exchange material of polystyrene sulfonates named Amberlite is employed as they always 
keep their spherical shapes without dissolution in fluid as clay minerals. The experiment was 
designed as 4 cases: 1) Full glass spheres, 2) 60% volume of glass spheres and 40% Amberlite 
spheres, 3) 20% volume of glass spheres and 80% Amberlite spheres, and 4) 100% Amberlite 
spheres, where all the glass and Amberlite spheres are sieved and chosen to 40-50 mesh U.S. 
Sieve Series which leads to an approximate porosity of 40% for all the cases. 

To test our model, it shall be noted that the full-glass case (i.e., clay-free situation) is a 
mathematical singular point for our model and the non-negative least squares (NNLS) method 
must be used for the regression, otherwise negative   might emerge. To make cases comparable, 
we denote  =100% and c 0.007 S/m   for this clay-free case, albeit NNLS outputs a near zero 
value for   because of singularity. All in all, as shown in Figure 4a, our model fits these 4 cases 
with R2 > 0.99, yet we found a slight growth of root mean squared errors (RMSE) with the 
increase of Amberlite fraction. Considering goodness-of-fit statistics tend to conceal small values’ 
effect, we checked the performance point by point. Interestingly, we found our model doesn’t 
perform very well at those relatively extremely low salinities (e.g., 0.02 and 0.05 S/m for case #3 
and #4, respectively) which are much clearer in the log-log scale in Figure 4b (note that 1.810

=0.016, 1.310 =0.05 S/m). It seems to have a trend of overestimation at such extremely low 
salinities with the increase of Amberlite. Looking back on our discussion on EDL variation, this 
is very reasonable because higher clay content leads to stronger EDL variations at extremely low 
salinities where our averaging scheme of constant c  might misrepresent these steep changes. 
Mathematically, a weighted least squares (WLS) method to decrease the importance of these 
extremely low salinities could output better results. To make things simple, here we neglect to fit 
the four extremely low salinity points (i.e., giving zero weight to them) for the full-Amberite 
case. 
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Figure 4. Model verification on synthetic clayey soils with the case constitutions in the lower insert. To respect both 

large and small values, data are plotted in normal and log-log scales in (a) and (b), respectively. 

With the same case order, we obtain the model parameters as F  = 3.79, 3.66, 3.88, and 3.55; 
c  = 0.007, 0.024, 0.191, and 0.929 S/m;   = 100%, 68.4%, 36.4%, and 31.8%. Using Eq. (5), 

we can also get max
s  = 0.007, 0.181, 0.518, 2.23 S/m. The similar F  is the result of the identical 

porosity at about 40% for these glass/Amberlite spheres (c.f., Friedman, 2005). The obvious 
increase of c  and the decrease of   with the increasing Amberlite content are in complete 
accord with our analysis of the clay-and-water conduction path which states that both clay and 
water involve in this conduction path and a higher clay content will increase the clay 
conductivity c  and tend to decrease the participating role of water (i.e., decrease  ). Besides, 

the increasing trend of max
s  justifies the well-received conclusion that surface conductivity can 

be used as an index for clay content. One interesting thing shown here is that c  manifests more 

sensitivity than max
s , which probably hints that c  might be a better indicator for clay content. 

However, this needs a further quantitative study. 

4 Discussions with other models 

Here we briefly compare our model with two extant models: TR (Wyllie & Southwick, 1954; 
Lévy et al., 2018) and BHS (Sen et al., 1981; Bussian 1983). TR model is 

 

1 2 3

w c w c

c w

2
w c w c

c w

( )

F x y z

y z x

F xz yz

   
   

 

   
 

  

  


 
 



, (6) 

where 1 , 2 , and 3  denote three resistors of bulk fluid, clay-and-water series, and continuous 
clay, and x, y, and z are empirical geometric factors. Mathematically, it is not surprising TR 
model works well on clayey rocks and soils as its redundant parameters x, y, and z can be written 
as the elementary functions of our   as 
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2( 2) ( 2)(1 ) 2

, , and
9 9 2(1 )

x y z
   

  
   

  


. (7) 

Physically, our   explains the meaning of these three empirical factors. If derivations are 
compared, it can be seen that the mathematical-physical simplicity of our model is from the 
appropriate employment of EMT. For geomaterials interacting with the E&EM field, lumped 
circuit theory is not a reasonable representation as geomaterials already perform as distributed 
elements. Thus, TR’s two resistors of clay-and-water series and continuous clay are identical to 
our clay-and-water conduction pattern as we have included the possibility that clays can be 
continuous in our mixture pattern during our model development. 

If the TR model lacks EMT, BHS is completely the opposite. BHS model is 

 c w
w

c

1 /

1 /

m

m  
  

 
 

   
, (8) 

where   and m  are the porosity and the cementation exponent entering the Archie’s law, 
respectively. Mathematically, both BHS and our models have the same parameter numbers (i.e., 
 , m , and c  for BHS and F,   and c  for ours), so neither has redundance. That said, it has 
been emphasized that the BHS model is an implicit function with   on both sides. The fractional 
exponent makes BHS can only be solved with complicated numerical methods (e.g., Glover 2010; 
Niu et al., 2016) or converted to an analytical approximation in the special case of 2m  (e.g., 
Revil et al., 2019), which restricts its wide usage. Physically, BHS is derived fully via DEM (an 
EMT method). Since regular geometry is postulated through its DEM derivation (Sen et al., 
1981), we argue that BHS’s   and m , to some extent, could deviate from the well-received 
Archie’s law since simulations show many factors can influence m (Niu & Zhang, 2018). By 
contrast, we circumvent this complexity by sorting out the two parallel paths of centered pore 
fluid and clay-and-water pattern and only use EMT for the second. This is very beneficial as we 
make our model an easy-to-use explicit function with the legacy of Archie’s law. 

It shall be underlined that both TR and BHS initially considered clays as conductive solids 
without EDL variation (c.f., Bussian 1983), it is their further work rather than themselves that 
involves EDL theories, amongst which, Sauer et al. (1955) and Niu et al. (2016) also discovered 
that the EDL variation happens merely at relatively extremely low salinities (e.g., < 0.05 S/m), 
which can be seen as another validation of our non-linear model and its theoretical basis. 
Furthermore, to make our model solid and convincing, detailed comparisons with TR, BHS, and 
10 additional models listed in Glover (2015) are included in the Supporting Information S1, S2, 
and S3, respectively. 

5 Conclusions 

We develop a model to characterize the intrinsic non-linear electrical conductivity of clayey 
rocks and soils. The concave non-linearity is ascribed to the EDL variations and the clay-and-
water conduction pattern. The former affects merely at extremely low salinity, while the latter 
dominates through the whole non-linear portion, whose contributions are included in our model 
via the averaging scheme and EMT method, respectively. Our model complies with 
electrochemical theories, coincides with measurements, and is also very easy-to-use. Neglecting 
the non-linear characteristics of clayey rock and soil conductivity not only leads to erroneous 
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petrophysical assessment, but also loses potentially invaluable information. We expect this new 
non-linear formulation could improve the modeling and interpretation of electrical and 
electromagnetic data in critical zone studies extensively involving freshwater, and pave the way 
for more quantitative geophysical investigations. 
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