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The Internet of Things (IoT) integrates heterogeneous devices, ranging from sensors

to smartphones, tablets and edge servers, and can provide a variety of services, beyond the

traditional Internet. Unfortunately, due to its unprecedented scale and ubiquity, IoT faces a

maintainability challenge and a set of interrelated problems. With the emergence of edge

computing, IoT devices execute various tasks that consume a significant amount of power

to deliver high quality of service, which can drain their battery in short time. High peak

power increases the device temperature stress, which worsens the impact of transistors and

interconnects reliability degradation mechanisms. Such mechanisms lead to early device failures

and are costly to fix. In this dissertation, we focus on novel solutions for energy-efficient and
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reliability-driven management of IoT systems. We introduce a simulation framework called

RelIoT to enable reliability evaluation and analysis in IoT networks, which paves the way for

the development of new network management solutions. We develop a dynamic reliability

management technique based on computation offloading for IoT edge computing architectures.

Our approach achieves 20.5% longer mean time to failure than the next best network management

solution. We also present an adaptive and distributed reliability-aware routing protocol using

reinforcement learning. We show that our routing protocol can improve reliability of a network

up to 73.2% compared to state-of-the-art routing approaches. The main focus in all our solutions

is to use device batteries efficiently, satisfy QoS requirements, and improve overall network

lifetime by mitigating reliability degradation. Lastly, we complement this to specifically study

battery health and associated degradation mechanisms, as the traditional techniques developed

for optimizing the energy consumption of networks do not yield optimal battery life. An

improvement in network lifetime up to 68.5% can be achieved with our approach compared to

energy consumption optimization approaches.

xvii



Chapter 1

Introduction

The Internet of Things (IoT) continues to grow as it is adopted progressively across

many domains such as logistics, farming, industrial and environmental monitoring, healthcare,

and smart infrastructures [5]. The rapid development of IoT has lead to a tremendous increase

in the number of devices connected to the Internet. There are already more than 10 billion

interconnected heterogeneous devices, ranging from low-power sensors with limited compu-

tational capabilities to multi-core platforms on the high-end [6]. This number is expected to

exceed 40 billion by 2025, requiring a sophisticated and agile network hierarchy, along with

more complex management. Another challenge that stems from such dramatic growth is the

maintainability of IoT systems. Despite the wide range of different IoT devices, all electronics

age and degrade, eventually leading to failures that necessitate costly maintenance. Currently,

operational expenses account for 80% of the overall spending [7] ($746 billion in 2019 [8]),

of which a significant fraction is associated with maintenance and technical diagnostics due

to system failures. While meeting the needs of an evolving range of applications, it is also a

crucial requirement for IoT devices and networks to operate reliably for long periods. Otherwise,

maintenance investments can become a critical bottleneck for the growth of IoT.

The ultimate goal of IoT systems is to deliver a high quality of service to users, where

the service can be data acquisition and communication, information processing, or decision

making [9]. The level of users’ satisfaction, described by Quality of Service (QoS) metrics such
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as delay, throughput, accuracy, improves with higher system performance. Improvements in

system performance can be achieved through increased computation or communication, which

result in higher power draw and reduced battery life. Power dissipation also raises the device

temperature quickly due to the absence of active cooling solutions. High temperature stress,

in turn, accelerates reliability degradation [10]. Previous research has shown that reliability

degradation of electronics worsens exponentially with increasing temperature because of the

intensified effects of various mechanisms such as Time-Dependent Dielectric Breakdown (TDDB)

and Bias Temperature Instability (BTI) [11, 12]. As a result of these mechanisms, components

in IoT devices age and degrade, leading to higher rates of early failures.

The reliability of IoT networks can be improved with proper system design and reliability

management strategies. Prior efforts have focused primarily on developing useful applications,

improving the design and management of performance, energy, and reliability trade-offs for

individual devices [13]. There is a large body of studies investigating the dynamic management

of reliability degradation for processor-based systems, showing notable gains in the lifetime

of stand-alone devices such as desktop and server machines, mobile devices, etc. [10, 14, 12].

However, at the level of networks of devices, the focus is mainly on improving performance

with energy-efficient solutions and achieving extended battery life [15]. Unfortunately, very

little work has been done to consider a network-level IoT reliability management framework.

The approaches proposed for individual devices may not yield optimal strategies for groups

of devices and sometimes cannot be directly applied to networked systems. In IoT networks,

a group of interconnected devices cooperate to accomplish a common task. Hence, there are

interactions between devices, data dependencies, and a large optimization space, making the

management complex.

In this dissertation, we propose the design of an exploration, simulation, and optimization

framework for IoT systems, develop end-to-end management solutions capable of evaluating

device and network level tradeoffs with respect to performance (QoS requirements), power

consumption (battery lifetime), thermal issues (including the effects of environmental conditions
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on devices), and the resulting reliability and maintenance costs. We define four interconnected

challenges described below that we address to obtain an end-to-end framework.

Simulation and Exploration of IoT Systems

No common infrastructure has been developed that allows engineers and researchers to sim-

ulate, explore, and optimize IoT systems from not just performance and energy consumption

perspectives, but also with the view of ensuring good system-wide reliability and maintainability.

The lack of such tools has prevented researchers from undertaking reliability-oriented analysis,

exploration, and predictions early in the design cycle. A proper tool can lead to the design of

new network reliability management strategies.

Computation and Communication Optimization

IoT devices are responsible for the collection, aggregation, and processing of data. In addi-

tion to this computational load, they have to communicate large amounts of data, either for

distributed processing across other network devices, or for in-depth analysis, long-term storage,

and permanent archiving in the cloud. Therefore, both computation and communication play

a role for the performance of an IoT service. At the same time, the power dissipation, along

with the resulting temperature and reliability degradation of the device, varies as a function of

computation and computation loads. It is of great importance to include the contributions of

both components in reliability analysis and optimize accordingly, considering their trade-offs for

different applications.

Network-Level Management

In addition to leveraging the reliability management techniques developed for individual, stand-

alone devices, an IoT device can benefit from network-level strategies, such as computation

offloading, resource allocation, or load balancing [16]. However, this adds another layer of

complexity to the problem at hand. Individual device controls include voltage and frequency

levels, duty-cycling, sampling rates and so on, while network-level controls dictate the interac-

tions between devices, i.e., communication rates and paths, distributed workloads and others. A

successful management system that looks over a large number of network devices needs to be
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dynamic, scalable with low complexity, and ideally have distributed operation.

Modular Management

One should not think of IoT devices as single “black box” entities if fine-grained management is

desired. Rather, a better model is to divide them into components: sensing unit, processing unit,

RF transceiver, power unit (battery), and energy harvester. To obtain the overall characterization

of an IoT device, the power, thermal, and reliability contributions of different components should

be combined.

This thesis first introduces a simulation framework called RelIoT to enable reliability

evaluation and analysis in IoT networks, which paves the way for the development of new

network management solutions. It then analyzes different network configurations and explores

their energy-reliability trade-offs, all of which are simulated using the proposed framework and

validated on real testbeds. We continue with a dynamic reliability management technique based

on computation offloading for IoT edge computing architectures. We also present an adaptive and

distributed reliability-aware routing protocol using reinforcement learning. The main focus in

our solutions is to use device batteries efficiently, satisfy QoS requirements, and improve overall

network lifetime by mitigating reliability degradation. Lastly, we specifically study battery health

and associated degradation mechanisms, as the traditional techniques developed for optimizing

the energy consumption of networks do not yield optimal battery life.

Next, we discuss the key problems addressed by this dissertation; reliability modeling

and simulation, dynamic reliability management, reliability-aware routing, and battery health

management. We highlight the main challenges in the context of IoT networks, then present our

solutions and the achieved results.

1.1 Simulating Reliability of IoT Networks

Despite being a major concern, there is a lack of thorough studies on the reliability of

IoT networks in the context of device aging and degradation. Reliability-aware design and
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management were shown to delay failures and improve the lifetime of individual devices [12, 10].

Even though IoT networks can also radically benefit from this, the unavailability of tools that

provide reliability modeling for networks makes it difficult to assess reliability-aware strategies.

To extend the work on individual devices and explore different management strategies at a

network-level, there is a need for a convenient tool.

Simulators are widely used tools in research and industry to evaluate and validate net-

works, and to study novel methods without the need for real deployments when resources are

limited. However, currently, it is not possible to analyze the reliability of IoT networks with any

of the available network simulators. The most popular ones, e.g., ns-3 [17], OMNeT++ [18], and

OPNET [19], are designed only for analyzing communication performance (throughput, delay,

utilization, etc.) under different protocols, and lack the ability to account for computation power,

performance, and reliability of network devices.

Motivated by this gap in existing simulation platforms, there has been growing attention

towards incorporating some of these considerations into simulation tools. While there has been

some attention paid to these considerations individually, no prior work has addressed these

concerns simultaneously and using a sufficiently accurate modeling strategy. For instance, due to

the energy constraints in battery-powered sensor networks, several works have integrated power

modeling and analysis with different granularity. Wu et al. [20] first introduced energy source

models and device energy models to ns-3. They use existing analytical battery models and build

communication energy models based on radio hardware datasheets. In another work named

PASES [21], the authors construct accurate power consumption models for both processor and ra-

dio components of network devices by hardware design space exploration. In network simulators,

usually, the accuracy of power models is compromised for attaining low computational costs.

To provide flexible options for heterogeneous devices in an IoT network, the simulator should

offer configurable models with different granularity, while allowing extensions for user-specified

models.

For IoT performance, iFogSim [22] and EdgeCloudSim [23] incorporated computation
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performance (e.g. processing delay) to simulate end-to-end latency of a multi-level IoT structure

including cloud servers, gateways, and sensors. Both toolkits employ low accuracy estimations

such as look-up tables for latency and power analysis. Although such models are favorable in

terms of computational overhead, it is important to capture the characteristics of different types

of IoT devices running various applications, by doing a finer-grained estimation. Besides power

and performance models, the simulator should also include modeling of temperature, all required

to work together for evaluating reliability.

In Chapter 2, we take the first step in presenting an integrated reliability framework for

IoT networks based on the ns-3 simulator. The framework, in addition to reliability, incorporates

three other interrelated models, namely power, performance, and temperature, each of having a

direct influence on reliability. We validate our framework on a mesh network testbed. Finally, we

show how the framework offers an opportunity for researchers to explore and optimize trade-offs

between energy, performance and reliability in IoT networks.

1.2 Dynamic Reliability Management of IoT Edge Comput-
ing Systems

IoT brings significant demands for data collection, storage, and processing [24]. In

traditional cloud-centric IoT, simple tasks such as data collection, aggregation, and preliminary

processing are done at the edge, whereas more resource intensive workloads like in-depth analysis

and long-term storage are carried out in the cloud. As a result, data needs to be constantly moved

from the edge to cloud. Naively communicating data at large volumes from the devices to

the cloud leads to expensive infrastructure and service needs, high energy costs, and causes

unreliable latency.

The emerging paradigm of edge computing envisions overcoming the shortcomings of

the cloud-centric Internet of Things (IoT) by providing data processing and storage capabilities

closer to the source of data [25]. By 2025, around 40% of IoT-generated data will be processed,
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stored, and acted upon close to the edge of network [26]. Accordingly, with the increasing

demand of computation workloads on them, IoT edge devices are prone to failures more than

ever. Intense workload requirements raise the average power consumption along with the device

temperature. This dramatically exacerbates the impact of temperature-dependent transistor and

interconnect reliability degradation mechanisms that cause semiconductor devices to fail. CMOS

transistors, which are used in almost all the electronic devices, are affected by Time Dependent

Dielectric Breakdown (TDDB), Negative Bias Temperature Instability (NBTI) and Hot Carrier

Injection (HCI). Also, metal interconnects in electronics are affected by Electromigration (EM)

and Thermal Cycling (TC) [27]. The continuous scaling of CMOS transistor and interconnect

dimensions intensifies the impact of degradation, contributing to early device failures.

The International Technology Roadmap for Semiconductors (ITRS) identifies reliability

issues as one of the primary concerns for integrated circuits [28]. Uncertainties in reliability

can lead to performance penalties and field failures that are costly to fix as well as damaging

to the manufacturer reputation. Therefore, researchers have come up with various techniques

at different levels of development hierarchy (process [29], design, OS [10], software [30], and

application [31]) to cope with reliability degradation [32]. All the degradation mechanisms can

be described by a reliability function which represents the probability that the device does not

fail at any point in time [33]. Then, the degradation of devices can be controlled at runtime

by adjusting operation dynamics that influence temperature. Such strategy is called Dynamic

Reliability Management (DRM) and is usually implemented to meet a lifetime criteria for the

target device. In DRM, degradation is tracked with model-based estimation [12] or monitored

using on chip or on board sensors [34, 35].

DRM has been researched and used extensively for personal computers, mobile devices,

and data centers [36, 10, 37]. However, our work was the first to consider a network-level

IoT reliability management framework [1]. In addition to leveraging the DRM techniques

developed for individual and stand-alone devices, an IoT device can benefit from network-

level mitigation strategies, such as offloading computation or allocating network resources,
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for alleviating reliability degradation. Several prior works [38, 39, 40] proposed different

computation offloading and resource allocation techniques for cooperative operation in the edge

computing setting, but none considered the reliability of edge devices in their approaches.

For typical prior work on edge computing systems [41, 42, 38, 43], improving the energy

efficiency of devices while delivering a minimum QoS is the main goal since many edge devices

are battery-operated or have limited energy sources [44]. Many studies aim at balancing the

tradeoff between power consumption and delay performance [41, 45, 46, 42, 47]. The problem

of QoS management for IoT edge devices under the limited resources (bandwidth, gateway’s

processing power) of edge computing systems was addressed in [48, 39, 49].

In Chapter 3, we present a novel multi-gateway DRM technique for IoT edge devices,

taking advantage of the edge computing architecture where a portion of the edge devices’

computation can be offloaded to the IoT gateways. The goal of the management is to satisfy

the QoS and reliability requirements while maximizing the remaining energies of the device

batteries.

1.3 Reliability-Aware Routing

The term reliability, in network related studies, is associated with many different types

of failures. Almost all of the literature on network reliability focuses on communication link

reliability, that is, the situations where the connection between two nodes in the network fails.

In some papers, node failures are also included. The so-called node errors can be categorized

into three groups: soft errors (causing random bit flips) [50], software reliability issues [51], or

batteries running out of energy [52, 53], none of which handle hard errors. For example, [51]

considers software failures, message congestion, VM failures on IoT devices. The failures are

modeled as a Poisson process with an average failure rate. There are also some hardware failures

discussed in various works (such as [54]), but they consist of superficial models of sensor faults;

short faults, constant faults, and noise faults. These types of failures are transient and can be
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more easily fixed, whereas hard failures are not recoverable.

Hard failures caused by well-known thermally-driven mechanisms in silicon, such as

TDDB, EM, BTI, result in a need to replace that electronic component in the field, leading to

high maintenance and replacement costs. Hard failure models have been studied extensively at

the circuit and chip level [11, 55, 12], and adopted for dynamic voltage & frequency scaling,

task scheduling, and power gating strategies in multi-core system-on-a-chips [10]. Prior studies

have not considered the impact of hard failures at the network level and how networking might

affect the electronics reliability. IoT devices are often deployed in harsh environments, causing

stress on the hardware that reduces their reliability and mean time to failure (MTTF). Despite

temperature being a key driver in the rate of failure, the majority of IoT devices do not have

active cooling to mitigate the thermal stress. In such cases, curbing power dissipation of devices

helps in lowering the device temperatures and scaling down the effect of temperature-driven

failure mechanisms to achieve a better MTTF. Network routing can be useful in this regard; it

is possible to place the IoT devices into low-power states by avoiding them in communication

paths. In this way, low reliability devices in the network are utilized less to reduce thermal stress

and slow down degradation.

The literature on network routing does not scrutinize the problem of hardware failures

and reliability issues as a bottleneck for the lifetime of networks. Since the majority of IoT

devices are battery-operated, the works in this domain are directed towards improving battery

lifetimes [52, 56, 57]. Maximum lifetime routing incorporates the residual energy of device

batteries into routing decisions and ensures a balanced depletion among them. The typical

approach for routing is to model the network as a weighted directed graph and then find

paths with the minimum cumulative weight. The weights of the graph edges and vertices

traditionally include a variety of node and link metrics: latency, hop count, stability, bandwidth,

throughput, and energy, or might instead, be a composite of multiple metrics [58, 59]. The

impact of degradation mechanisms on device reliability has not been taken into account by

routing techniques to date.
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In Chapter 3, we present a novel adaptive and distributed reliability-aware routing

protocol based on reinforcement learning to mitigate the reliability degradation of IoT devices

and improve the network MTTF. The proposed algorithm adapts routing decisions based on the

current reliability status of the devices, the amount of degradation they are likely to experience

due to communication activity, and network performance goals. We extend the ns-3 [60] network

simulator to support our reliability models and evaluate the routing performance by comparing

with state-of-the-art approaches.

1.4 Dynamic Optimization of Battery Health

Another key driver of network failure is when an IoT device shuts off due to lack of power.

Replacing batteries for devices across a network involves expensive labor and infrastructure,

hence the battery life should be improved to keep the network running for as long as possible.

There is often confusion when discussing battery lifetime because the lifetime for rechargeable

and non-rechargeable batteries are described in different ways. Non-rechargeable batteries die

and need to be replaced after their initial charge is completely depleted. Therefore, the indicator

for remaining battery life is the State of Charge (SoC). On the other hand, rechargeable batteries

can withstand hundreds of charge-recharge cycles, allowing operation for extended periods when

combined with energy harvesting solutions such as solar cells or thermal energy. Despite their

ability to be recharged, these batteries still have limited lifetimes and reduced battery capacity

due to battery aging. In this case, instead of SoC, we need to consider their State of Health

(SoH) which is a figure of merit of the physical condition of a battery. SoH degrades due to

cycle aging (charge-discharge rate and total number of cycles) and calendar aging (ambient

conditions, e.g. temperature) which result in deterioration of battery conditions in the form

of internal impedance increase, open voltage decrease, and most importantly, capacity fading.

Depending on its application, a rechargeable battery reaches its end of life with an SoH between

70%-80% and needs to be replaced [61].
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Most works in the literature concerning lifetime maximization either consider non-

rechargeable batteries and deal with SoC, or assume ideal (nondegradable) operation for recharge-

able batteries, neglecting the effects of SoH degradation in their management strategies. The

publications that study non-rechargeable batteries try to maximize the time at which the batteries

drain out of energy [62],[63]. Recent studies [64],[65] involve battery dynamics that are able to

capture the “non-ideal” (nonlinear and dynamic) behavior of actual batteries in their optimization

formulations. Even though they show that one can achieve a significantly longer lifetime with

an optimal routing policy using a non-ideal battery model, the proposed solution does not suit

systems with rechargeable batteries.

Another set of publications investigate energy harvesting networks with rechargeable

batteries. This work usually tries to develop control algorithms to optimally utilize available

energy [66],[67]. However, only a handful of studies [68, 69, 70] consider the degradation of

batteries, which is the major factor in determining the lifetime of a network of devices with

rechargeable batteries.

The degradation of batteries in a network control problem is studied primarily in battery

energy storage systems [71, 72], smart grid [73], and data centers [74, 75]. These works are

not directly applicable to IoT domain because of the different structures of the network, and

additional constraints that the network possesses. In energy storage systems and smart grid,

batteries are often modeled in an aggregate fashion. In IoT networks, the batteries from different

devices are not physically connected and can only supply energy to the associated device.

The devices work together to accomplish a network-level task, but their energy demands are

individual, which differentiates other domains from IoT.

In Chapter 4, we formulate the problem of determining the data flow that minimizes

SoH degradation of rechargeable batteries for an IoT network, then propose a model predictive

controller (MPC) solution. We incorporate battery models which capture the temperature-

dependent, nonlinear charging/discharging and degradation behavior into the system model. We

evaluate our solution using real-world deployment in a smart home and a large scale IoT network
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Figure 1.1. Thesis contributions: reliability-driven, energy-efficient end-to-end IoT solutions.

HPWREN [76].

1.5 Thesis Contributions

This thesis focuses on energy-efficient and reliability-driven end-to-end solutions for IoT

systems. It presents methods to improve the lifetime of IoT networks using reliability-aware

approaches. It covers simulation, exploration, management, and optimization aspects to provide

a comprehensive treatment. A reference schema for the scope of this dissertation is presented in

Figure 1.1. The following discussion demonstrates the contributions and the outlines of the rest

of the thesis:

• It presents an integrated reliability framework for IoT networks based on the ns-3 simula-

tor. The lack of such tools has restrained researchers from performing reliability-oriented

analysis, exploration, and early predictions in the design cycle. Our contribution facilitates

the aforementioned processes, which can lead to the design of new network reliability

management strategies. The proposed framework, in addition to reliability, incorporates

three other interrelated models - power, performance, and temperature - which are required
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to model reliability. We validate our framework on a mesh network with ten heterogeneous

devices of three different types. We demonstrate that the models accurately capture the

power, temperature, and reliability dynamics of real networks. We finally simulate and an-

alyze two examples of energy-optimized and reliability-optimized network configurations

to show how the framework offers an opportunity for researchers to explore trade-offs

between energy and reliability in IoT networks. The simulation framework is described in

Chapter 2.

• It proposes a novel dynamic reliability management (DRM) technique for multigateway

IoT edge computing systems to mitigate degradation and defer early hard failures. Tak-

ing advantage of the edge computing architecture, we utilize gateways for computation

offloading with the primary goal of maximizing the battery lifetime of edge devices,

while satisfying the Quality of Service (QoS) and reliability requirements. We present

a two-level management scheme, which work together to (i) choose the offloading rates

of edge devices, (ii) assign edge devices to gateways, and (iii) decide on multi-hop data

flow routes and rates in the network. The offloading rates are selected by a hierarchical

multi-timescale distributed controller. We assign edge devices by solving a bottleneck

generalized assignment problem (BGAP) and compute optimal flows in a fully-distributed

fashion, leveraging the subgradient method. Our results, based on real measurements

and trace-driven simulation demonstrate that the proposed scheme can achieve a similar

battery lifetime and better QoS compared to the state-of-theart approaches while satisfying

reliability requirements, where other approaches fail by a large margin. This work is

presented in Chapter 3.

• It proposes a novel adaptive and distributed reliability-aware routing protocol based on

reinforcement learning to mitigate the reliability degradation of IoT devices and improve

the network Mean Time to Failure (MTTF). Through routing, we curb the utilization

of quickly degrading devices, which helps to lower the device power dissipation and
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temperature, thus reducing the effect of temperature-driven failure mechanisms. To

quantify and optimize networking performance besides reliability, we incorporate Expected

Transmission Count (ETX) in our formulations as a measure of communication link quality.

Our proposed algorithm adapts routing decisions based on the current reliability status of

the devices, the amount of degradation they are likely to experience due to communication

activity, and network performance goals. We extend the ns-3 network simulator to support

our reliability models and evaluate the routing performance by comparing with state-

of-the-art approaches. Our results show up to a 73.2% improvement in reliability for

various communication data rates and the number of nodes in the network while delivering

comparable performance. The details of this routing method are described in Chapter 4.

• It formulates the problem of minimizing battery degradation to improve the lifetime of

IoT networks and solve it with Model Predictive Control (MPC) leveraging models for

battery dynamics and State of Health (SoH). The battery SoH is modeled using a realistic

non-linear model while taking ambient temperature into account. We demonstrate that

our solution can improve network lifetime up to 68.5% compared to the conventional

energy consumption focused algorithms, which use simple linear battery models. The

proposed approach achieves near-optimal performance in terms of preserving battery

health, staying within 8.7% SoH with respect to an ideal oracle solution on average. This

work is presented in Chapter 5.
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Chapter 2

RelIoT: Reliability Simulator for IoT Net-
works

The next era of the Internet of Things (IoT) calls for a large-scale deployment of edge

devices to meet the growing demands of applications such as smart cities, smart grids, and

environmental monitoring. From low-power sensors to multi-core platforms, IoT devices are

prone to failures due to the reliability degradation of electronic circuits, batteries, and other

components. As the network of heterogeneous devices expands, maintenance costs due to system

failures become unmanageable, making reliability a major concern. Prior work has shown the

importance of automated reliability management for meeting lifetime goals for individual devices.

However, state-of-the-art network simulators do not provide reliability modeling capabilities for

IoT networks.

In this chapter, we present an integrated reliability framework for IoT networks based on

the ns-3 simulator. The lack of such tools restrained researchers from doing reliability-oriented

analysis, exploration, and predictions early in the design cycle. Our contribution facilitates this,

which can lead to the design of new network reliability management strategies. The proposed

framework, besides reliability, incorporates three other interrelated models - power, performance,

and temperature - which are required to model reliability. We validate our framework on a

mesh network with ten heterogeneous devices, of three different types. We demonstrate that the

models accurately capture the power, temperature, and reliability dynamics of real networks.
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We finally simulate and analyze two examples of energy-optimized and reliability-optimized

network configurations to show how the framework offers an opportunity for researchers to

explore trade-offs between energy and reliability in IoT networks.

2.1 Introduction

The Internet of Things (IoT) is a growing network of heterogeneous devices, combining

residential, commercial, and industrial domains. Devices range from low-power sensors with

limited computational capabilities to multi-core platforms on the high-end. From small scale

(e.g., smart homes) to large scale (e.g., smart cities) applications, the IoT provides infrastructure

and services for enhancing the quality of life and use of resources. By 2025, the IoT is expected

to connect 41 billion devices [8].

The unprecedented scale and heterogeneity of the IoT pose major research challenges

that have not been faced before. While ongoing research efforts aim at optimizing power

efficiency and performance [77, 78], an aspect that has often been neglected is the reliability of

the devices in the network. The common property for these devices is that they age, degrade

and eventually require maintenance in the form of repair, component replacement, or complete

device replacement. Since an enormous number of heterogeneous devices are interconnected in

IoT networks, the maintenance costs will increase accordingly. Cisco recently anticipated that for

100K devices that operate IoT smart homes, around $6.7M/year will be spent for administration

and technical diagnosis related to system failures, comprising between 30% to 70% of total

costs [7]. Without a proper reliability management strategy, IoT solutions are strongly limited as

it becomes infeasible to maintain increasingly large networks.

Exploring reliability management strategies requires a convenient tool for reliability

evaluation. In respect of this, simulators are widely used tools in research and industry to evaluate

and validate networks, to study novel methods without the need for real deployments when

resources are limited. However, existing network simulators do not support aging/degradation and
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reliability modeling or analysis. Popular network simulators, e.g., ns-3 [17], OMNeT++ [18],

and OPNET [19] are equipped with a rich collection of communication models, allowing

the assessment of network performance (throughput, delay, utilization, etc.) under different

protocols. Recent research also integrated energy models and an energy-harvesting framework

to the platform [20, 79]. Yet it is not possible to analyze the reliability of IoT networks with the

existing tools because they lack built-in reliability models. It should be noted that we refer to the

aging and reliability degradation of the hardware of an IoT device, and not to the communication

reliability.

To address this gap in reliability analysis, we propose a simulation framework named

RelIoT , which allows practical and large-scale reliability evaluation of IoT networks. The frame-

work is implemented in ns-3 [17], a discrete-event network simulator with low computational

overhead and low memory demands. Up to one billion nodes can be simulated with ns-3 [80].

In recent years, with the addition of models for various network settings and protocols through

open-source contributions, ns-3 has established itself as a de facto standard network simulation

tool. To allow reliability simulation in ns-3, RelIoT integrates the following modules:

• Power Module: Supports power consumption simulation for various workloads with

configurable power models.

• Performance Module: Works in cooperation with the power module to provide performance

predictions for a given workload.

• Temperature Module: Estimates the internal temperature of a device based on its power

consumption.

• Reliability Module: Evaluates the device reliability using the existing thermal-based

degradation models [33, 14, 12].

To the best of our knowledge, RelIoT is the first reliability analysis framework for

heterogeneous IoT networks, taking thermal characteristics as well as power and performance
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into account. RelIoT enables researchers to explore trade-offs between power, performance, and

reliability of network devices. Moreover, RelIoT incurs only a marginal performance overhead

on the default ns-3, making it scalable for simulating large networks. For the scalability analysis

of the default ns-3, the reader is referred to previous works [80, 81]. We validate our framework

with two real-world experiments, showing RelIoT estimates power, performance, and temperature

with errors of less than 3.8%, 4.5%, and ±1.5°C respectively. We validate reliability models

against the results from existing literature. Finally, we built a mesh network testbed to illustrate

that RelIoT can effectively capture the average long-term power and thermal behavior of devices

in a dynamic network. Finally, we provide example simulation results from RelIoT to motivate

the need for reliability-aware management and to show the differences between energy-driven

and reliability-driven management strategies.

The rest of the chapter is organized as follows: Section 2.2 reviews power, performance,

and reliability simulation techniques introduced by previous works. The overall structure of our

proposed framework and details of models is elaborated in Section 2.3 and Section 2.4. Section

2.5 describes the evaluation setup and further discusses the results.

2.2 Related Work

Network Simulators for Power and Performance.

Network simulators are used to study the behavior of computer networks and evaluate

communication protocols prior to deployment. Popular examples are: ns-3 [17], OMNeT++ [18],

and OPNET [19], all of which are discrete event-based and open-source. The standard versions of

these network simulators are designed only for analyzing communication performance, lacking

consideration for computation power, performance, and reliability of network devices.

Motivated by energy constraints in battery-powered sensor networks, several works

have integrated power modeling and analysis with different granularity. Wu et al. [20] first

introduced energy source models and device energy models to ns-3. They used existing analytical
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battery models and relied on hardware datasheets to build WiFi radio energy models. In another

work named PASES [21], the authors construct accurate power consumption models for both

processor and radio components of network devices by hardware design space exploration.

In network simulators, usually, the accuracy of power models is compromised for attaining

low computational costs. To provide flexible options for heterogeneous devices in an IoT

network, RelIoT offers two configurable power models with different granularity, while allowing

extensions for user-specified models.

For IoT performance, iFogSim [22] and EdgeCloudSim [23] incorporated computation

performance (e.g. processing delay) to simulate end-to-end latency of a multi-level IoT structure

including cloud servers, gateways, and sensors. Both toolkits employ low accuracy estimations

such as look-up tables for latency and power analysis. RelIoT does a finer-grained estimation for

different types of IoT devices running various applications.

Reliability Modeling and Management.

Prior work has studied reliability degradation phenomena on processor-based systems.

The considered failure mechanisms include Time-Dependent Dielectric Breakdown (TDDB),

Negative Bias Temperature Instability (NBTI) and Electromigration (EM), which all limit device

lifetime [33, 14, 12]. In these works, the reliability degradation problem is approached in two

steps: (i) Physical-level models are built to quantify the reliability degradation due to voltage and

temperature stress, which are influenced by the environmental conditions and workload variations.

(ii) Based on the reliability degradation models, a management algorithm is designed to optimize

performance while satisfying reliability constraints. The trade-off between performance and

reliability could be adjusted during runtime by voltage scaling [33, 14, 12], task scheduling [82],

or both [10]. The recent work by Mercati et al. [10] implements the above-mentioned models on

a mobile phone, showing as much as a one-year improvement on lifetime with dynamic reliability

management. Despite the impressive results on individual devices, reliability management for

IoT networks is yet to be investigated. Recently, a dynamic optimization approach was proposed
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to manage battery reliability degradation in IoT networks, but their work does not consider the

reliability of other device components (e.g., processor) [4].

In this thesis, we propose RelIoT, a framework for end-to-end reliability simulation in

IoT networks to enable investigation of reliability trade-offs and prototyping of reliability man-

agement strategies. We develop and integrate power, performance, temperature, and reliability

modules into ns-3. In contrast to prior work on network simulators, RelIoT offers temperature

and reliability estimation for the networked devices.

2.3 Reliability Framework for RelIoT

In this section, we give a background on ns-3 and its features, then describe the overall

structure of RelIoT and its integration with ns-3.

2.3.1 ns-3 Preliminary

ns-3 is built as a system of libraries that work together to simulate a computer network.

To do simulation using ns–3, the user writes a C++ program that links the various elements from

the library needed to describe the communication network being simulated. ns–3 has a library

of objects for all of the various elements that comprise a network (objects are highlighted in

italics). Nodes are a representation of computing devices that connect to a network. Sensors,

routers, hubs, gateways, and servers in the IoT architecture can be all considered Node objects.

Fig. 2.1a shows the structure of a typical ns-3 Node. Net Devices represent the physical device

that connects a Node to a communications Channel. For example, the Net Device can be a simple

Ethernet network interface card or a wireless IEEE 802.11 device, and the Channel could be

a fiber–optic link or the wireless spectrum. Packets are the fundamental unit of information

exchange in a network. A Packet contains headers describing the information needed by the

protocol implementation and a payload which represents the actual data being communicated

between network devices. Each protocol in the Protocol Stack performs some operation on

network packets and then passes them to another layer in the stack for additional processing. The
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Figure 2.1. ns-3 integration of the reliability framework

Net Applications are simple networking applications that specify the attributes of communication

policies between devices. All of these individual components are aggregated on the Node objects

to give them communication ability and set up networking activity. Other modules, such as

Routing, Mobility, and Energy, can be installed to provide additional functionality to Nodes.

2.3.2 Overview of the Proposed Framework

Our proposed framework consists of separate modules for power, performance, tempera-

ture, and reliability, as shown in Fig. 2.1b. IoT devices can run some applications to process

the sensed or collected data before sending it to a central entity. In this case, as soon as an

application starts, the performance module first calculates its execution time. Then, the power

module gives an estimate of power consumption within the execution interval of the application.

If the IoT device is not running any applications, then idle power consumption is estimated.

Given the power estimation, ambient temperature, the temperature module outputs an estimated

temperature, which is fed to the reliability module. Finally, reliability is calculated based on

temperature. The modules operate on two different time scales: Long Intervals, on the order
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of days that it takes for reliability to change, and Short Intervals, on the order of milliseconds.

Both performance and power values are updated every Short Interval. Reliability estimation

is computationally expensive, so it is only done once every Long Interval using the average

temperature over each interval. The underlying mechanisms of each module are be explained in

Section 2.4.

2.3.3 Integration with ns-3

As shown in Fig. 2.1a, our framework is implemented as an additional set of modules that

can be aggregated on the Nodes, adhering to the structure and conventions of ns-3. The power

and performance modules provide functions to other modules for querying power consumption

and execution time values. We also provide an interface connecting the ns-3 energy module

and our reliability framework (Fig. 2.1c). The energy module (proposed in [20]) consists of

a set of energy sources and device energy models. An EnergySourceModel is an abstraction

for the power supply (e.g. battery) of a Node. The DeviceEnergyModels represent energy

consuming components of a Node, for example, a WiFi radio. We implement a model called

CPUEnergyModel as a child class of DeviceEnergyModel. The features of CPUEnergyModel

are as follows:

• It is designed to be state-based, where the CPU can take the states Idle or Busy. The CPU

will be Busy while processing packets received, e.g., while executing some applications

such as encryption, decryption, compression, or Machine Learning (ML) algorithms.

• To determine when a transition occurs between states, a PhyListener is used. In ns-3,

PhyListener is an object that monitors the network packet transmissions and receptions at

the physical (PHY) layer. After an Idle node completes receiving data of specified size,

the PhyListener notifies CPUEnergyModel. Then, the specified application is executed

and state is set to Busy.

• It calculates the total energy consumed according to the power consumption value acquired
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from the power module and the execution time value acquired from the performance

module. Then, it updates the remaining energy of the energy source described by Ener-

gySourceModel.

2.4 Modules and Device Behavior Modeling

In this section, we describe the functionality of the proposed modules and interfaces and

present underlying models in detail.

2.4.1 Power Module

The power module supports functions for running and terminating an application and

switching between CPU states Idle and Busy. The value of power consumption is updated at

a predefined period Short Interval, according to the selected power model. The power and

temperature modules are interconnected; power consumption updates subsequently lead to

temperature updates.

From cycle-accurate, instruction-level analysis to functional-level analysis, there are

numerous power modeling techniques at different levels of abstraction. Low-level models use

a fine-grain representation of the CPU, which usually implies that the time required for power

estimation is large due to high computational complexity. This is undesirable for network

simulations because it becomes very time consuming to simulate networks with a great number

of nodes. In our framework, we offer two CPU power models having low model complexity

while still providing good estimation accuracy. To improve the extensibility of the simulator for

custom applications, we have included functionality for users to add new models to the power

module. Parameters of the power models are configurable through external interfaces.

Frequency & Utilization-based Power Model. The idea of estimating CPU power con-

sumption on embedded devices based on CPU frequency and utilization is well studied. In a

previous work [83], the authors use a linear combination of frequency and utilization to charac-

terize the CPU power of a smartphone, achieving less than 2.5% average error. Similarly, we use
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linear models in our simulator to predict CPU power consumption PCPU . The equation is given

as:

PCPU(t) = a · f (t)+b ·u(t)+ c (2.1)

where f (t) and u(t) are CPU frequency and utilization at time t respectively. The coefficients

a,b,c are learned through linear regression based on datasets collected on real devices. The

frequency & utilization-based power model provides a good estimation accuracy for CPU power

estimation on embedded devices. However, it requires frequency and utilization traces as inputs

to the simulator which might not be available in practice.

Application-based Power Model. The power consumption of embedded devices varies

depending on the running application. An application-based model is convenient when there are

only high-level functional properties are available, e.g. input data size. Different applications

have different power trends (i.e. linear, exponential, etc.) as the size of input data increases.

Furthermore, the power consumed by running the same applications varies for different devices.

In our framework, we adopt the modeling methodology proposed in [41], where the authors

characterize and verify power models of running ML algorithms on edge devices (i.e. Raspberry

Pi) and servers. They train, test, and cross-validate four regression models (linear, polynomial,

log, and exponential regression), and select the best one. The input is the size of processed

data by the application and the output is power consumption for these models. We leverage

this methodology to deploy models for Raspberry Pi’s and servers, but also apply the same

methodology to build our own models for microcontrollers such as Arduinos. In addition to the

22 ML algorithms modeled in [41], our framework delivers a CPU power model for Multilayer

Perceptron (MLP) based on the number of MAC (multiply-accumulate) operations. The same

modeling approach can be applied to other neural network architectures such as Convolutional

Neural Networks (CNNs).
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2.4.2 Performance Module

IoT systems usually need to satisfy some performance requirements to provide adequate

Quality of Service (QoS). To evaluate and monitor the performance of deployed applications

and hence the overall network, we implement a performance module. Various metrics can be

used to quantify performance, e.g., throughput, response time, etc. The performance metric is

application-specific. For example, delay and throughput are critical in multimedia streaming

applications whereas information accuracy is the main criterion for performance in some ML

applications.

In our current release, we provide an Execution Time Model. We use the input data size

of the application or number of MAC operations it needs to perform to estimate the application

execution time. To build the model, we measure the execution times of various applications on

a target device, then fit regression models to the collected data. Certain performance metrics

can be calculated using the execution time value. For example, let texec be the execution time of

an application, then its throughput can be obtained as D/texec where D is the input data size. In

addition, end-to-end delay of a network path can be computed as the sum of communication and

computation delays among the path (communication delay can be obtained using default ns-3

modules).

For both the power and performance modules, users are able to configure coefficients of

the existing model or add new models with provided APIs.

2.4.3 Temperature Module

The goal of the temperature module is to estimate CPU temperature (based on CPU

power consumption and ambient temperature) and to calculate the average temperature over a

Long Interval. We adopt a thermal modeling strategy that can be used for any IoT device.

We assume that we do not have knowledge about the information describing topological

and physical parameters of the device (e.g., we do not know material characteristics and layers
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of the devices’ PCB board) so we cannot do a physical simulation of the process. To have an

acceptable level of complexity in our simulator, we work on high-level information gathered

from the coarse-grained thermal sensors of the device’s key heat sources. Such information

is available in most of the devices today like smartphones and single-board computers (e.g.,

Raspberry Pi).

Let the number of the heat sources be n and let Tk ∈ Rn represent the vector of tempera-

tures observed by thermal sensors and Pk ∈ Rn be the power consumed by the heat sources at

time instant k. Each heat source is assumed to have one thermal sensor measuring its temperature.

Then, temperature Tk+1 at time instant k+1 can be predicted given the current temperature Tk

and power Pk at time k. The discrete-time state-space model of the device’s thermal behavior is

expressed in Equation (2.2) [84].

Tk+1 = A ·Tk +B ·Pk +C ·T env
k (2.2)

where A,B ∈ Rn×n are defined as the state and the input matrices. T env
k is the ambient

temperature and C is a vector of coefficients which weighs the impact of ambient temperature

on each heat source’s internal temperature. We use system identification methods to derive the

model from measured power and temperature traces. A, B and C parameters are different for

each class of devices, so we offer multiple device thermal models and made the parameters

configurable through the temperature module API. The order of the model is equal to the number

of the heat sources n. In our initial work, we use n = 1, where the only source is CPU. However,

the extension to multiple sources is straightforward in our framework. For example, if a power

model for GPU is provided, then power consumption values from both CPU and GPU can be

used to predict temperature.

The temperature module updates the states in Equation (2.2) at a time resolution of Short

Interval, the same time granularity as power estimation updates. On the other hand, average

temperature T̄ is calculated for every Long Interval denoted LI. T̄ is the exponential moving
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average of past temperature values in the interval k to k+LI.

T̄k+1 = α ·Tk− (1−α) · T̄LI (2.3)

where α is a weighing coefficient that is configured depending on the length of interval LI.

2.4.4 Reliability Module

The reliability module is the last component in the power, temperature, reliability module

hierarchy. Temperature is estimated using power, while reliability is estimated using temperature.

Unlike power and temperature, reliability is a slowly changing variable. Therefore, reliability

can be estimated on a longer time scale, on the order of hours or days. Reliability degradation

is affected more by average stress over a long time interval rather than instantaneous stress.

We leverage these properties to calculate reliability sparsely because reliability models are

highly compute-intensive. The reliability module does estimation every Long Interval, using

temperatures averaged over the interval. It polls the temperature module to fetch the average

temperature T̄LI every LI, then T̄LI is reset to start a new averaging operation.

Reliability is defined as the probability of not having failures before a given time t. To

obtain the overall reliability of a processor, the effects of different failure mechanisms should

be combined. We use the sum-of-failure-rates model as in RAMP [33], which states that the

processor is a series failure system; the first instance of a failure due to any mechanism causes

the entire processor to fail. In our reliability model, the single device reliability is a product

of the reliabilities due to different failure mechanisms such as Time Dependent Dielectric

Breakdown (TDDB), Negative Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI),

Electromigration (EM) and Thermal Cycling (TC). These mechanisms all depend on thermals.

Time Dependent Dielectric Breakdown (TDDB) Reliability Model. The thin gate oxide

layer in transistors introduces a risk of breakdown and shortening devices lifetime. Due to gate

oxide degradation, which is a non-reversible mechanism with a cumulatively increasing impact,
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a breakdown occurs. The reliability of a single transistor i with oxide thickness xi subject to

oxide degradation can be expressed as [85]:

Ri(t) = e−a( t
γ
)βxi (2.4)

where t is the time-to-breakdown, a is the device area normalized with respect to the minimum

area, and γ and β are respectively the scale parameter and shape parameter. The scale parameter

γ represents the characteristic life, which is the time where 63.2% of devices fail, and it depends

on voltage and temperature. The shape parameter β , instead, is a function of the critical defect

density, which in turn depends on oxide thickness, temperature and applied voltage. R(t) is a

monotonically decreasing function with values in the range of [0, 1] indicating the probability

that the system will not fail.

The reliability of the entire chip RC can be expressed as the product of single transistor

reliabilities:

RC(t) =
m

∏
i=1

Ri(t) = e∑
m
i=1−ai(

t
γi
)βixi

(2.5)

m is the number of transistors on the chip which can be on the order of millions. Since different

regions of the chip have similar temperatures, the complexity possessed by large m on the

computation of Equation (2.5) can be reduced by assuming the same scale and shape parameters

over the chip[12].

The RC expression in Equation (2.5) assumes a constant temperature applied from time

t = 0, thus it is only representative of static systems. To capture the dynamics of reliability under

varying temperature, we discretize the time and calculate reliability at each time step as shown

in Equation (2.6). The temperature is assumed to be constant between discrete time steps.

Rk = Rk−1−
(

RC(tk−1,Tk−1,k)−RC(tk,Tk−1,k)
)

(2.6)

In Equation (2.6), k indicates the kth time instant and Tk−1,k is the temperature experienced by
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the chip between the time instants k−1 and k. We set this interval between adjacent time steps

as the Long Interval and let Tk−1,k be equal to the average temperature T̄LI of the corresponding

LI.

The reliability module can work with any failure mechanism or combination of multiple

mechanisms as long as the mechanism can be described by a function RC(t), as in Equation (2.5).

For example, the module can be extended to include NBTI and HCI if we describe the reliability

functions associated with these mechanisms, respectively RNBT I and RHCI . Then, by the sum-of-

failure-rates approach, the reliability module calculates the total system reliability as the product

of the functions associated with the single mechanisms as RC(t) = RT DDB(t) ·RNBT I(t) ·RHCI(t).

Equation (2.6) would not need any modifications since it is general and does not depend on a

specific RC(t).

2.5 Experiments and Results

In this section, we first present validation results on a three-node network topology,

comparing power, performance, and temperature measurements from experiments with the

simulated traces. We then use a testbed with a mesh network of 10 heterogeneous nodes to

evaluate the accuracy of the simulator under different networking conditions and temperatures.

We cannot explicitly validate reliability because it requires long term experiments and specialized

degradation sensors. Finally, we illustrate how the proposed simulator is useful in exploring

energy, performance, reliability trade-offs in a network and show that it can be used to implement

reliability-aware strategies. We analyze examples of energy-optimized and reliability-optimized

network configurations to motivate reliability-aware network design and management.

2.5.1 Validation and Evaluation

Three-Node Network Topology.

To validate the device models and to verify the functionality of the simulator modules,

we use a simple three-node network. The setup consists of an ESP8266 WiFi microchip with
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Figure 2.2. RPi3 power and temperature traces

microcontroller, a Raspberry Pi 3 (RPi3), and a PC. The devices communicate over WiFi (IEEE

802.11b) and transmit/receive TCP/IP packets using MQTT protocol [86]. The ESP8266 samples

random data as a sensor node, runs median filtering to preprocess the data, and sends filtered

data to RPi3. The data is further processed by an application on the RPi3, or the computation

can be offloaded to the PC. This type of computation offloading is common in IoT edge devices

and is representative of their usual operation [87]. If the application is chosen to be offloaded,

then the RPi3 is only responsible of relaying incoming data to the PC.

In our three-node experiments, we collected 5 different measurements synchronously:

(i) RPi3 power consumption (via HIOKI 3334 power meter [88]),

(ii) RPi3 CPU temperature (via built-in temperature sensor),

(iii) ESP8266 power consumption (via INA219 power monitor [89]),

(iv) ESP8266 CPU temperature (via built-in temperature sensor),

(v) Ambient temperature (via DHT22 temperature sensor [90]).

Measurements and simulation results are presented in Fig. 2.2 for an example test case

under two different ambient temperatures. The goal here is to show a temporal view of the

simulator output, particularly in a dynamic case where the simulated device has a varying

workload. In this experiment, the RPi3 runs a data processing application with incoming data
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input from ESP8266 for the first 15-20 seconds. After that, the application is offloaded to the PC

and the RPi3 only relays data while its CPU is idle. As shown in Fig. 2.2, the simulator output

follows the real power and temperature traces with a mean error of 3.42% and 6.19% in low

ambient temperature, and with a mean error of 2.69% and 3.97% in high ambient temperature.

The discrepancy between real and simulated temperatures at the beginning of each plot is because

of the initial condition set for the temperature in the simulator. The temperature starts from a

lower initial condition and reaches a steady-state value.

Overall, applying the same modeling methodology of reference [41], we estimate the

execution time and energy consumption of the RPi3 for 23 different ML applications with

average errors of 3.8% and 4.5%, respectively. For the CPU temperature, the state-space model

predictions stays within ±1.5°C of measurements at steady-state, for all applications.

Mesh Network Topology.

To show that our simulator can correctly capture devices’ behavior in a more complicated

scenario, we simulate a larger network under different configurations and operating conditions,

then validate it using our testbed. As shown in Fig. 2.3, the testbed spans a whole floor in

UCSD CSE department building, including two Raspberry Pi 3 (RPi3), four Raspberry Pi 0

(RPi0) and four ESP8266. Data is generated from each node and communicated to the sink node
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RPi31 in multiple hops via MQTT. The network of all RPis works in an ad-hoc manner, while

all ESP8266s forward their data to RPi32 that is a gateway for that local area. Not all devices

can communicate with each other because some pairs are out of communication range. The

connections are depicted in Fig. 2.3. Using this setup, we both implement and simulate following

scenarios:

Scenario 1 RPi31 and RPi01 process the data, while the other devices only communicate.The

ambient temperature for each network device is approximately 25°C.

Scenario 2 The same devices process data as Scenario 1. We use a heater that raises the ambient

temperature around RPi01 to 37 °C, while the rest of the devices are in the normal ambient

condition of 25 °C.

Scenario 3 The data processing duties of RPi31 and RPi01 are distributed between RPi02,

RPi03, and RPi04. Therefore, each of these three devices only transmits the outputs of

data processing tasks to RPi01, which directly forwards them to RPi31. RPi01 is still in a

heated environment of 37 °C.

An ML application can be split and distributed to edge devices, which allows us to realize

the different configurations in these scenarios for allocating data processing without changing the

overall application behavior [91, 92]. Fig. 2.4 illustrate the power and temperature distribution

of the devices, while Fig. 2.5 shows the simulated reliability traces in a year. We only depict the

measurement and simulation statistics on RPi0s in each scenario, but the rest show similar trends.

Comparing collected traces to simulation logs, our result shows that RelIoT is able to estimate

average power within±0.11 W (∼11%), and average temperature within±4 °C (∼9%). It can be

seen from Fig. 2.4 that, although extremities in both power and temperature are difficult to track,

RelIoT is able to precisely capture the averages in different configurations. Scenario 3 distributes

the workload to other RPi0s, thus significantly reduces the network traffic. Consequently, power

and temperature of both RPi01 and the rest RPi0s drop, which is also reflected in the simulation
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Figure 2.4. Collected and simulated statistics of RPi0s (average, max, and min values).

Figure 2.5. Reliability degradation of RPi0s in one year.

RelIoT starts simulation from a device temperature of 35 °C, which explains why the minimum

temperature of RelIoT consistently locates at 35 °C.

The power and temperature validation experiments lasts 300s, but we simulate the

network for a time-span of one year to observe the long-term reliability changes. The stair

pattern in Fig. 2.5 is a result of RelIoT updating the reliability by the end of each Long Interval.

In all scenarios, reliability remains fairly high if the device is in normal ambient temperature. In

Scenario 1, RPi01 degrades slightly faster than the rest of the RPi0s due to its data processing

workload. However, in Scenario 2, the raised ambient temperature together with its workload

lead to a drastic degradation in reliability. In such case, workload reallocation as in Scenario
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3 can alleviate degradation. The network devices in environments with low temperatures can

take on a higher workload to mitigate reliability problems of the quickly degrading devices. The

result in Fig. 2.5 implies the necessity for reliability-aware management in IoT networks.

2.5.2 Reliability-Aware Management

Most of the IoT devices are battery-powered and/or rely on energy harvesters with limited

energy sources. Therefore, traditionally, many network management solutions aim at optimizing

the energy consumption while satisfying some Quality-of-Service (QoS) constraints (throughput,

delay, jitter, network coverage, etc.). In this context, reliability is also a design parameter that

can be optimized or a certain overall reliability constraint can be subjected to the network.

Although correlated, the optimal energy efficiency and reliability usually are not ensured by

the same management strategy. The designers need to find good trade-offs between energy

savings and reliability. In this section, we show how our simulator addresses this issue by making

reliability-aware management and design possible. To emphasize the differences between two

approaches and to motivate reliability-aware management, we provide simulation results for

different scenarios of energy-optimized and reliability-optimized network management strategies

using the topology in Fig. 2.3.

Energy-Optimized.

Our interest here is to partition an application into smaller tasks and find the task allocation

that maximizes the lifetime of a network. Many ML applications can be partitioned while

preserving functionality [91, 92]. For each device in the network, the energy consumed for

computing and communicating data of size s is given as:

Computation: Pξ

device(s)× texec(s) (2.7)

Communication: Pwi f i(d,BW )× s
BW

(2.8)
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where ξ denotes the application, texec is the application execution time, d denotes the communica-

tion distance, and BW is the communication bandwidth. Pwi f i(d,BW ) is the power consumption

of WiFi which can be parameterized by distance and bandwidth allocation BW [41]. In an

energy-optimized application partition, the mapping of tasks to the devices depends on:

(i) Power characteristics of the application,

(ii) Execution time,

(iii) Allocated bandwidth,

(iv) Distance between the neighbouring devices.

We adopt the convex optimization formulation from [93] and apply it to our problem, with a

slight modification by adding the computation energy term in Equation (2.7). We find the optimal

partitioning of the application such that the maximum energy consumption among network

devices due to computation and communication of the data is minimized.

Reliability-Optimized.

Similar to the previous case, we map the tasks of an application to the network devices.

We use the same solution approach, but this time, the objective is to maximize the minimum

reliability among network devices. Reliability of each device is RC,device(t,T ), which is depen-

dent on time and temperature. We simulate a time horizon tsim, so we want to optimize for

RC,device(tsim,T ). This is under the assumption of environment temperature Tamb being constant

for the entire horizon. In the following experiments, a static solution (constant for the whole

time horizon) is simulated for both energy-optimized and reliability-optimized cases, but it can

be made dynamic by solving for the current energy and reliability estimates at each time instant,

as in (2.6). In this way, the solution can adapt to changing network configurations (bandwidth,

applications) and operating conditions (environment temperature).

Fig. 2.6 presents the comparison of energy-optimized and reliability-optimized solutions

for different bandwidth and environment temperature configurations. The network devices
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Figure 2.6. Energy consumption and reliability degradation results for two approaches

run a part of a data processing application where the optimal partitions are determined by

the two approaches. The energy-optimized partition brings 1.0%, 9.1%, and 10.9% better

energy efficiency compared to the reliability-optimized partition for 0.1Mbps, 1Mbps, and

10Mbps bandwidth configurations respectively. Referring to Equation (2.8), it can be seen

that as bandwidth increases, the time it takes to communicate data of size s decreases, hence,

decreasing the communication energy. The difference of energy efficiencies between two

solutions are increasing with bandwidth because the energy-optimized solution leverages the

decrease in communication energy and allocates more communication instead of computation

to the higher energy consuming network devices. On the other hand, the reliability-optimized

partition results in 25.0% , 28.2%, and 24.5% less reliability degradation compared to the

energy-optimized partition for 25°C, 30°C, and 35°C environment temperatures respectively.

The reliability-optimized solution allocates less computation on the most degrading network

devices, conserving reliability. These results show that, although being correlated, the optimal

energy efficiency and reliability do not yield from the same management strategy. Therefore,

if the concern is particularly the reliability, a reliability-aware management strategy should be

adopted.
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2.6 Conclusion

We presented a novel framework for the reliability analysis of IoT networks using the ns-3

network simulator. The proposed framework can be used to explore trade-offs between power,

performance, and reliability of devices in a network. We validated our reliability framework

in two experimental setups: a three-node network and a ten-node mesh network. Additionally,

we motivated the need for reliability-aware management through example simulation results

of energy-optimized and reliability-optimized management strategies. As future work, we

plan to leverage our framework for design space exploration (DSE) of IoT networks. We can

simulate, explore, and check the feasibility of different network configurations in terms of

different objectives such as energy efficiency, reliability, and performance. We believe that our

contribution will help researchers to study the reliability degradation problem in large-scale

networks.

Chapter 2 contains material from “RelIoT: Reliability Simulator for IoT Networks”, by

Kazim Ergun, Xiaofan Yu, Nitish Nagesh, Lucy Cherkasova, Pietro Mercati, Raid Ayoub, Tajana

Rosing, which appears in International Conference on Internet of Things (ICIOT), 2020 [1]. The

dissertation author was the primary investigator and author of this paper.
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Chapter 3

Dynamic Reliability Management of IoT
Edge Computing Systems

The emerging paradigm of edge computing envisions to overcome the shortcomings of

cloud-centric Internet of Things (IoT) by providing data processing and storage capabilities

closer to the source of data. Accordingly, IoT edge devices, with the increasing demand of

computation workloads on them, are prone to failures more than ever. Hard failures in hardware

due to aging and reliability degradation are particularly important since they are irrecoverable,

requiring maintenance for the replacement of defective parts, at high costs. In this chapter, we

propose a novel dynamic reliability management (DRM) technique for multi-gateway IoT edge

computing systems to mitigate degradation and defer early hard failures. Taking advantage

of the edge computing architecture, we utilize gateways for computation offloading with the

primary goal of maximizing the battery lifetime of edge devices, while satisfying the Quality

of Service (QoS) and reliability requirements. We present a two-level management scheme,

which work together to (i) choose the offloading rates of edge devices, (ii) assign edge devices to

gateways, and (iii) decide multi-hop data flow routes and rates in the network. The offloading

rates are selected by a hierarchical multi-timescale distributed controller. We assign edge devices

by solving a bottleneck generalized assignment problem (BGAP) and compute optimal flows

in a fully-distributed fashion, leveraging the subgradient method. Our results, based on real

measurements and trace-driven simulation demonstrate that the proposed scheme can achieve
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a similar battery lifetime and better QoS compared to the state-of-the-art approaches while

satisfying reliability requirements, where other approaches fail by a large margin.

3.1 Introduction

The Internet of Things (IoT) comprises billions of interconnected heterogeneous devices

that have the ability to sense, communicate, compute, and actuate. IoT continues to rapidly

develop as it is adopted progressively across industries, in governments, and in consumers’ daily

lives. The number of interconnected IoT devices has already exceeded 10 billion and by 2025 it

is expected to reach 40 billion [6]. A significant portion of spending on the IoT ($746 billion in

2019 [8]) is associated with maintenance and technical diagnostics due to system failures, which

motivates our work.

An IoT system, as any electronic or mechanical system, is prone to failures. Cisco

estimated that for every 100k devices that operate in IoT smart homes, around $6.7M/year are

spent for problems related to system failures [7]. The sources of these failures are: user errors,

communication problems, power issues, soft and hard errors in hardware. The majority of

the errors result in a transient failure and are recoverable without the need of physical human

intervention. However, in the case of hard errors, the devices age, degrade, and eventually fail,

requiring maintenance for the replacement of defective parts at high costs. In this work, we

devote our attention to mitigating reliability degradation in IoT devices to defer hard failures.

Reliability degradation of electronic circuits worsens as the technology scales due to in-

tensified effects of various mechanisms such as Time-Dependent Dielectric Breakdown (TDDB),

Bias Temperature Instability (BTI), and Hot Carrier Injection (HCI) [11, 55, 12]. Degradation is

mainly induced by temperature stress, which depends on power dissipated for running workloads

and environmental conditions, e.g., ambient temperature. To illustrate this cause-and-effect

chain, in Fig. 3.1a we depict the steady-state temperature of a device as a function of its power

dissipation at various ambient temperatures. Also, Fig. 3.1b shows the reliability over time of
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Figure 3.1. (a) Device temperature as a function of power dissipation at different ambient temperatures
(b) Device reliability over time

the same device as a function of its temperature. The values are based on our measurements

in Section 3.8. (for temperature) and a reliability model fitted to hypothetical worst-case and

best-case temperatures. As observed from the plots, an increase in power dissipation leads to

heating of the device, which in turn accelerates reliability degradation.

Recently, due to the shortcomings of traditional cloud-centric IoT (e.g., latency, energy,

privacy, cost) [94, 95], Edge Computing [25] is emerging as a promising solution, where data

processing is pushed to the edge of the IoT network (as shown in Fig. 3.2). Since IoT devices

at the edge are now capable and powerful enough, Edge Computing envisions to perform

data processing and storage on them locally, close to the source of data. Accordingly, these

edge devices will run heavy workloads, dissipate more power than ever, and heat up, with no

active cooling. They operate in diverse and sometimes harsh environments, thus, are often

subject to external (due to ambient temperature) as well as internal (due to power dissipation)

temperature stress, bringing reliability concerns. Fortunately, this stress can be controlled by

runtime management techniques to achieve a desired reliability over time [33]. Curbing power

dissipation, in particular, helps by lowering the device temperatures and reducing the effect of

temperature-driven failure mechanisms [55].

The Edge Computing architecture utilizes gateways to enable application-specific con-
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Figure 3.2. IoT network architecture

nectivity between edge and fog devices (Fig. 3.2) [94]. The term “fog” refers to its cloud-like

properties, but closer to the “ground”, i.e., closer to the users or the source of data. Being

cloud-like is what differentiates fog computing from edge computing; fog devices (e.g., servers)

are also in physical proximity to the users, but are still powerful like cloud. The edge refer

to low-power IoT devices, or smart objects, mobile phones. As we illustrate in Fig. 3.2, our

definition places edge devices right at the bottom of the network hierarchy and the fog devices

very close to the cloud. The gateways have limited computational capabilities compared to fog

devices (e.g., high-end servers), but still more capable than low-power sensors, smart objects,

and microcontrollers at the edge. A portion of the computation assigned to edge devices can be

offloaded to IoT gateways. However, the edge devices cannot independently carry out offloading

because the computation resources and communication bandwidth of the gateways are limited,

and have to be shared between numerous devices. The offloading amount should be selected

in consideration with the Quality of Service (QoS), the energy consumption and reliability of

every edge device, and the resources available at the gateway. Several prior works [38, 39, 40]

proposed different computation offloading and resource allocation techniques for cooperative

operation in the Edge Computing setting, but none considered the reliability of edge devices in
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their approaches. As edge devices undertake bigger workloads, thermal stress and reliability

issues cannot be neglected.

For typical edge computing systems, as studied by prior work [41, 42, 38, 43], improving

the energy efficiency of devices while delivering a minimum QoS is the main goal since many

edge devices are battery-operated or have limited energy sources [44]. To reduce the number

of maintenances performed for battery and component replacement, battery lifetime should be

maximized and a certain reliability condition (e.g. minimum MTTF requirement) should be

satisfied for the edge device. On the other hand, the level of user’s satisfaction, described by QoS,

mostly improves with increased computation. For example, processing data at high sampling

rates, making inference from high-resolution data yield better predictions for machine learning

tasks, which would improve QoS. A dynamic and scalable management mechanism is needed

to control edge devices such that they satisfy the reliability and QoS requirements in the most

energy efficient manner. The necessity for a dynamic solution is due to following reasons: (i) the

QoS requirements fluctuate at runtime, (ii) the relative remaining energy of edge devices vary

over time, and (iii) the communication bandwidth and the available resources at the gateways

can change because of unpredictable environments and other workloads respectively. The edge

computing system should quickly adapt to these variations.

In addition to above argumentation, IoT systems usually incorporate many gateways,

which provides a degree of freedom to the problem at hand. Edge devices have multiple

gateway options to connect and offload computation. It is of great importance to avoid inefficient

system operation by properly assigning edge devices to gateways. For example, there may be

cases where some gateways are congested with offloaded data despite other gateways being

underutilized. This unbalanced employment of gateway resources would lead to suboptimal

system performance, thus, the load on the gateways should be distributed evenly. There needs to

be a mechanism that intelligently assign edge devices to gateways. Furthermore, offloaded data

can be relayed in multiple hops through many edge devices on the path to the gateways. The

exact routes from each edge device to their corresponding gateway should also be determined.
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Ideally, the gateways must be self-organizing and self-supported [40], with no or mini-

mum dependency on the cloud [94]. In other words, the gateways should handle the management

of the system and provide control decisions to the edge devices. This means that a light-weight,

low-overhead, dynamic, and scalable solution at the gateways is required for the management

to be responsive to dynamic variations in the system and handle large number of edge devices

distributed over the network. However, the problem of managing the reliability of edge de-

vices poses high complexity due to its size and nonlinearity; it is infeasible to solve it with

compute-intensive methods on resource-constrained gateways.

In this thesis, we present a novel multi-gateway DRM technique for IoT edge devices,

taking advantage of the Edge Computing architecture where a portion of the edge devices’

computation can be offloaded to the IoT gateways. The goal of the management is to satisfy

the QoS and reliability requirements while maximizing the remaining energies of the device

batteries.

The contributions of this work are as follows:

• To the best of our knowledge, we are the first to address the reliability management prob-

lem in a networked multi-gateway edge computing setting. Unlike the DRM techniques

for stand-alone devices, our approach exploits both individual (dynamic voltage and fre-

quency scaling) and network-level (offloading and routing) controls to mitigate reliability

degradation.

• We propose a two-level interconnected management scheme, namely the Intra-Gateway

Management and the Inter-Gateway Management, which work together to (i) choose the

offloading rates of edge devices, (ii) assign edge devices to gateways, and (iii) decide

multi-hop data flow routes and rates in the network.

• For Intra-Gateway Management, we formulate a finite horizon nonlinear optimal control

problem for finding the best offloading rates for a local network with a single gateway and

its associated edge devices. We then propose a hierarchical multi-timescale distributed
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controller solution to deal with the high complexity of the problem. We decompose the

problem into low-overhead sub-problems that are solved by leveraging a cascade of linear

controllers that act on different time scales, distributed over the edge devices and the

gateway.

• For Inter-Gateway Management, we construct a routing problem to jointly decide which

gateway to offload and which network path to use for communicating data. The solution is

linearized and distributed among all edge devices and gateways in the overall network via

dual decomposition and subgradient methods.

• Using real measurements to drive trace-driven simulations, we demonstrate that our pro-

posed scheme can achieve a similar battery lifetime and better QoS compared to the state-

of-the-art approaches while satisfying reliability requirements, where other approaches

fail by a large margin.

3.2 Related Work

3.2.1 Edge Computing in IoT Systems

The IoT contains a large number of battery-powered heterogeneous devices, connected

in networks with multiple layers, which should satisfy different service quality requirements in

an energy-efficient and reliable manner. Many recent efforts have addressed these challenges

in IoT, proposing computation offloading, efficient resource allocation, and QoS management

solutions. The definition of QoS in IoT depends on the service it provides, where the service

can be described as data acquisition and communication, information processing, or decision

making [9]. The majority of previous works dealt with traditional QoS attributes such as

service delay and throughput. In [96], the authors present a delay-minimizing collaboration

and offloading policy for fog-capable devices that aims to reduce the service delay. They

use queueing theory based analytical models to evaluate service delay in IoT edge-fog-cloud

architectures and decide on when to offload a task to upper layers. To deal with the uncertainty
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of task arrivals, a recent study in [97] uses a two-timescale Lyapunov optimization algorithm and

makes delay-optimal decisions only based on the system’s current state. Such works neglect the

other QoS attributes like energy consumption, cost, information accuracy, availability of network

resources, etc., which are critical, especially in edge-oriented IoT.

Most IoT edge devices are powered with batteries, thus many works aim at balancing

the tradeoff between power consumption and delay performance. The authors in [41] and [45]

characterize the computation and communication energy and performance of data processing

applications across edge devices and servers, then identify where to run the application. In [46],

both single-user and multi-user versions of the same problem, in a mobile-edge computing

(MEC) setting, are formulated as a non-convex optimization problem. The shortcoming of these

approaches is that they only support two operation modes: entirely offloading the computation

or entirely processing it locally. In this regard, a scheme for partitioning the input data of a

task among sensor nodes was employed to minimize energy consumption while satisfying a

completion time requirement in [42]. Similar problems for partitioning and offloading workloads

to fog/cloud were solved by game-theoretic approaches [98], multi-objective optimization [47],

heuristic algorithms [43], and primal decomposition [99]. However, the offload target (fog/cloud

server) is assumed to be very powerful and fast, or to have unlimited resources. Moreover, only

one edge/mobile device is considered, without accounting for resource contention between the

network devices.

In the Edge Computing architecture, there are limited resources (bandwidth, gateway’s

processing power) shared between multiple devices. Therefore, the operation of one edge

device has an effect on all the other devices in the same network. In [48], the problem of

QoS management for IoT edge devices under bandwidth, battery, and processing constraints is

addressed. The suggested approach is to partition an application and quantize its input data rate

into discrete levels that correspond to different amounts of offloading and QoS. Then, the optimal

levels that maximize the overall QoS of the system is computed with dynamic programming.

The study in [40] denominates these distinct levels as ‘operation modes’ and advances the prior
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work in terms of execution time and memory overhead. Finally, task allocation [49] and task

scheduling [39] schemes were proposed to determine where and in which order to execute tasks.

In contrast to other works, reference [39] considers the mobility and the ability to perform

approximate computing of edge devices.

Prior work on computation offloading for edge computing examined either the allocation

of distinct tasks or different stages of applications to edge devices and gateways [49, 47, 39, 100].

These problems are commonly formulated as Integer Linear Programming (ILP) problems and

solved with heuristics to find the best allocation of application stages/tasks, from a finite set

of options, e.g., a few discrete offloading levels. The application tasks that are selected by the

aforementioned techniques can be used as an input to our problem. Assuming prior allocation,

we find the optimal rate of input data to be processed locally at the edge and to be offloaded to

the gateway. Different from previous studies, we have a control-theoretic approach; we treat the

selection of processing and offloading rates as an optimal control problem.

Our previous work [16] is the first to address the reliability management problem in a

networked edge computing system. The problem setting assumes a single-gateway to which

edge devices are connected in a star topology, and the proposed solution only controls the

offloading rates of edge devices. This work extends and improves [16] by introducing a two-

level management scheme that additionally assigns edge devices to gateways and orchestrates

the routing of larger multi-gateway networks, connected in mesh topology. Previously, the

management of multi-gateway systems was studied in [101] to improve the service quality of

IoT applications under limited network bandwidth. The authors present a trade-based approach

in which gateways negotiate and trade edge devices based on battery lifetime and available

processing resources. Although the outline of the problem is similar to ours, the specifics of

their problem setting and modeling are principally different. They do not consider reliability

and solve a multiple knapsack problem over discrete levels for offloading rates, service quality,

processing power, and bandwidth.
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3.2.2 Dynamic Reliability Management

The term reliability, especially in networks, is associated with many different types

of failures. Almost all of the literature on network reliability focuses on communication link

reliability, that is, the situations where the connection between two nodes in the network fails.

In some papers, node failures are also included, but they can be mostly categorized into three

groups: soft errors (causing random bit flips) [50], software reliability issues [51], or batteries

running out of energy [52, 53]. For example, in [51], software failures, message congestion,

VM failures on IoT devices are considered, and the failures are modeled as a Poisson process

with an average failure rate. There are also some hardware failures discussed in various works

(such as [54]), but they consist of superficial models of sensor faults; short faults, constant faults,

and noise faults. These types of failures are transient and can be more easily fixed, whereas

hard failures are not recoverable. In [102], the authors propose dynamic updates on a reliability

function of hard failures, but the failure rate is still modeled as a constant. In comparison, our

temperature dependent models, where the failure rates change over time, can capture the dynamic

degradation in reliability.

The thermal and reliability aspects of IoT devices are mostly neglected in previous

IoT-related work. As IoT devices become more powerful, thermal and reliability issues cannot be

ignored and should be taken into consideration in the management strategies. Extensive literature

exists for the reliability degradation phenomena on system-on-chips (SoCs). The considered

failure mechanisms include TDDB, BTI, and HCI, which all limit device lifetime [33, 14, 12]. In

these works, physical-level models are built to quantify the reliability degradation due to voltage

and temperature stress, which are influenced by the environmental conditions and workload

variations. Based on the reliability models, a management algorithm optimizes performance

while satisfying reliability constraints. The trade-off between performance and reliability can

be adjusted during runtime by power/voltage scaling [55, 33, 14, 12], task scheduling [82],

or both [10]. In [103], a task allocation scheme is presented for multi-processor SoCs which
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maximizes the time to failure of an SoC subject to performance constraints. The authors in [10]

implement the above-mentioned mechanisms on a mobile device, showing as much as a one-year

improvement on lifetime with dynamic reliability management.

Despite the impressive results on individual devices, reliability management for networks

of IoT devices is an open problem. The recent paper in [44] briefly discussed reliability in the

context of IoT and acknowledged that IoT devices can profit from voltage scaling with respect

to power and energy. In [16], we showed that the reliability of edge devices can be improved

without sacrificing network performance or battery lifetime. To the best of our knowledge, we are

the first to propose reliability management for multi-gateway edge computing, which leverages

both individual controls (voltage/frequency scaling) and network-level mitigation strategies, such

as computation offloading and routing.

In summary, none of the of the related works is applicable to our problem because they

either (i) neglect reliability, or some QoS attributes such as energy consumption, availability

of network resources, which are critical in edge-oriented IoT, (ii) assume the offload target

(fog/cloud server) to be very powerful and fast, or to have unlimited resources, (iii) consider one

edge/mobile device, without accounting for resource contention between the network devices,

(iv) formulate the problem as task allocation with a few discrete offloading levels, (v) study only

single-gateway IoT systems.
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3.3 System Model

The envisioned IoT network architecture has multiple layers comprising edge devices,

gateways, fog, and cloud servers as illustrated in Fig. 3.2. The IoT edge devices sense information

from physical phenomena and send preprocessed data to a gateway node, which aggregates the

streams of sensed data in real time, processes, and sends them to the central servers, e.g., fog,

cloudlets, or cloud servers for storage or further analysis. For the edge computing setting, we

focus on the management in the first two layers: the edge and the gateway layer.

3.3.1 Network Architecture

We consider an IoT network composed of N edge devices ED = {ED1,ED2, ...,EDN}

and M gateways G = {G1,G2, ...,GM}. Each gateway G j has a subset of N j < N associated

edge devices, which together form a local network as shown in Fig. 3.3. We denote O j as the

set of edge devices connected to gateway j, with cardinality |O j|= N j. The notation EDi ∈ O j

implies that edge device i is in the local network of G j. It should be noted that this association

is not permanent; the edge devices are assumed to be able to dynamically change the gateway

to which they are connected. The gateway can either directly relay the processed data from the

edge devices to upper network layers, or it can help with computation and process a portion of

the raw data offloaded from the edge devices.

In the local network, edge devices share the limited resources of gateway’s computation

power and communication bandwidth. They communicate with WiFi (IEEE 802.11) or low-

power, low-bandwidth wireless technologies such as BLE (Bluetooth Low Energy), ZigBee

(IEEE 802.15.4), and LPWAN (Low-Power Wide-Area Network). The bandwidth BWj is the

total available bandwidth of the local network associated with gateway G j, where the wireless

medium is shared between the edge devices and the gateway. It is assumed to be varying because

of the possible changes in the communication medium and interference from external sources.

We assume a mesh topology within a network, where connection is allowed between every
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edge device depending on the maximum distance they can transmit. Let Si denote the set of

neighboring devices to which node i can send packets to. Then, Si = { j : di, j < dmax}, where di, j

is the distance between devices i and j and dmax is the distance of transmission with maximum

power. The notation j ∈ Si is used to show that j is a neighbor of i and they can communicate.

The devices can have mobility, in which case the neighbors change depending on the locations

of the devices. The location of all devices are assumed to be known, either by GPS or other

localization methods.

3.3.2 Device Models

As depicted in Fig. 3.4, each IoT device is equipped with: (i) sensors, (ii) a processing

unit, (iii) a transceiver, and (iv) an energy source. The sensors sense physical phenomena and

sample input data, the processing unit (e.g. CPU, GPU, FPGA) performs computation, and the

transceiver carries out the communication between the edge devices and the gateway. We assume

that both the edge devices and the gateway abide by similar device models but with different

parameters. The main distinction between them is edge devices being more resource-constrained,

that is, lower communication, storage, and computation capabilities. In the following, we

describe the power, temperature, reliability, and battery models of the devices.

Power Model. The overall power consumption Povr of the edge device includes the

sensing power Psen of the sensors, the computation power Ppu of the processing unit, and the

communication power Pr f of the transceiver.

Povr = Psen +Ppu +Pr f (3.1)
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The power consumption Ppu of a processing unit can be modeled through Equation (3.2) as the

sum two contributions: leakage power Plea (also called as static power) and dynamic power Pdyn.

The dynamic power is resulted from the logic gate switching and is dependent on the operating

frequency f . The leakage power is affected by temperature T and it can account as much as 50%

of the total power consumption in current CMOS technologies [104].

Ppu = Pdyn +Plea = αCe f fV 2
dd f +Vdd(bT T 2e

k
T + Igate) (3.2)

Here, α and Ce f f are the activity factor and the effective switching capacitance. The coefficient

bT is a technology dependent constant, k is the Boltzmann constant, and Igate is the gate leakage

current which can be assumed constant. Since the clock frequency f depends linearly on voltage

Vdd [105], a simplified model that accounts for both dynamic and leakage power can be given as

Ppu = a f 3 +b f .

The communication power consumption is determined by the rate of the bits transmitted

over the wireless channel. The energy consumption of a IEEE 802.11n or IEEE 802.15.4 wireless

node is dominated by the transmit or receive modes, and their costs are approximately the same.

The communication cost is characterized by the empirical transmission power model [106] and

the required power Pr f to transmit L bits/second is governed by:

Pr f = ρ1(d)
L
g
+ρ2 (3.3)

where ρ1(d)≥ 0 denotes the energy coefficient monotonically increasing in distance d; the most

common such function is ρ1(d) = C f +Csdβ where C f ,Cs are given constants depending on

channel attenuation as well as specific modulation techniques and β is a constant dependent on

the medium. g denotes channel state and ρ2 is the static power consumed by RF circuits. Finally,

the sensing power consumption can be simply modeled as a linear function of the sampling rate
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of the sensor.

Psen = csλ (3.4)

where λ is the sampling rate, or the output traffic rate of the sensor.

Battery Model. Not just the net amount, but the way in which the power is consumed,

that is, the current-extraction patterns and the employed current levels play a significant role

in battery depletion [107]. Therefore, it is inaccurate to assume linear energy depletion with

respect to the power consumed/current drawn, a dynamic battery model is needed to realistically

capture the influence of power consumption on the battery. We use Temperature Dependent

Kinetic Battery Model (T-KiBaM) [108], a dynamic model which can describe the nonlinear

characteristics of available battery capacity. It is able to accurately characterize the two important

effects (rate capacity effect, and recovery effect) that make battery performance nonlinear [107].

The effective capacity of a battery drops for higher discharge rates. This effect is termed as

rate capacity effect. If there are idle periods in discharging, the battery can partially recover the

capacity lost in previous discharge periods. This effect is known as recovery effect. It was shown

in [65] that using battery models that capture these effects results in more accurate optimization

and control algorithms, and hence better network management techniques.

T-KiBaM models the batteries with two tanks, respectively the Bound Charge Tank

(BCT) and the Available Charge Tank (ACT). The ACT holds the electrical charge that can be

immediately supplied to the load, while the BCT holds the secondary charge flowing towards

the ACT. In this way, T-KiBaM successfully models the recovery and rate capacity effects. The

flow rate between the two tanks is regulated by their height difference and the temperature. The

battery is denoted empty when its ACT depletes. Let Povr = Ppu+Pr f +Psen be the overall power

drawn from the battery under supply voltage Vdd and qA, qB denote the total charge in ACT and

BCT respectively. Then, Equation (3.5) gives the system of differential equations that describes

T-KiBaM. At any time instant, qA +qB is the total available charge in the battery. Parameters

κ and c are predefined constants that can be obtained using the battery data-sheets or through
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experimental measurements [108].


dqA

dt
=−κ(1− c)qA +(κc)qB−

Povr

Vdd
dqB

dt
= κ(1− c)qA− (κc)qB

(3.5)

Temperature Model. Temperature of a device depends on the power dissipated and

ambient temperature. We define the power consumption vector of the edge device, Ped =

[Ppu,Pr f ]
T , only including the computation and communication terms. Accordingly, let the heat

sources be the PU and RF and let Ted(k) represent the vector of temperatures observed by thermal

sensors at time instant k. The heat sources are assumed to have one thermal sensor measuring

its temperature. Then, temperature Ted(k+1) at time instant k+1 can be predicted given the

current temperature Ted(k) and power Ped(k) at time k. The discrete-time state-space model of

the device’s thermal behavior is expressed in the following equation [84].

Ted(k+1) = AT ·Ted(k)+BT ·Ped(k)+CT ·Tamb(k) (3.6)

AT and BT are defined as the state and the input matrices respectively. Tamb is the ambient

temperature and CT is a vector of coefficients which weighs the impact of ambient temperature

on device’s internal temperature. Deriving the model (i.e. matrices A,B,C) of Equation (3.6) by

only accessing power and temperature is a blind identification problem. To solve this problem,

we use a numerical algorithm for subspace system identification (N4SID [109]) and derive the

model from measured power and temperature traces.

Reliability Model. The main degradation mechanisms affecting integrated circuits

are Time Dependent Dielectric Breakdown (TDDB), Negative Bias Temperature Instability

(NBTI), Hot Carrier Injection (HCI), Electromigration (EM), and Thermal Cycling (TC) [33].

Models have been developed for MTTF for each degradation phenomenon, which show a strong

(exponential) dependence on temperature. For example, the MTTF for TDDB is described by
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Equation (3.7).

MT T FT DDB = A0exp− γEoxexp
Ea

kBT
(3.7)

A0 is a constant determined empirically, Eox is the electric field across the dielectric, γ is the

field acceleration parameter, Ea is the activation energy, and kB is the Boltzmann constant. The

MTTF for NBTI is:

MT T FNBT I = A0(
1
V
)γvexp

Ea

kBT
(3.8)

where γv is the voltage acceleration factor and V is the applied voltage. The MTTF for HCI is

described by the Eyting model, expressed in Equation (3.9) for N-channel devices.

MT T FHCI = BI−Cmat
sub exp

Ea

kBT
(3.9)

Here, Isub is the peak substrate current during stressing, Cmat is a material dependent constant

and B is a scale factor, function of technological parameters.

Similar to power and temperature models, for reliability models we divide the device into

structures – PU & RF – and apply the analytic models to each structure as an aggregate. To obtain

the overall MTTF of an edge device, we combine the effects of different failure mechanisms,

across these different structures. A standard model used by the industry is the sum-of-failure-

rates (SOFR) model [33], which makes the assumption that the device is a series failure system,

in other words, the first instance of any structure failing due to any failure mechanism causes the

entire device to fail. Hence:

MT T Fed =
1

∑
ns
i=1 ∑

nm
j=1

1
MT T Fi j

(3.10)

where MT T Fi j is the MTTF of the ith structure due to the jth failure mechanism. The variables

ns and nm are the number of structures and mechanisms, respectively.

MTTF for each degradation mechanism is related to a reliability function as expressed
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by Equation (3.11), where reliability R(t) is the function depicting the probability of not having

failures before a given time t, defined in the interval [0,1]. Compared to MTTF, reliability is a

function of time, so it is more suited for the purpose of dynamic management [10].

MT T F =
∫

∞

0
R(t)dt (3.11)

The reliability function R(t), in general, is expressed as a monotonically decreasing

exponential function of time and temperature [55].

R(t) = γ1exp(− Ea

kBT
)exp(−γ2t) (3.12)

where γ1, γ2 are the constants depending on the respective mechanism. The expression in

Equation (3.12) is only representative of static systems because it assumes a constant temperature

applied from time t = 0. The workloads and temperature vary over time, so is the degradation

process. Therefore, we introduce equivalent degradation time to characterize the reliability

degradation effect under such varying conditions. Given the reliability degradation of a device

under temperature T1 for duration t1, the equivalent degradation under temperature T2 is described

as follows:

∆R(teqv,1,T2) = ∆R(t1,T1) (3.13)

The equivalent degradation time teqv,1 can be computed using Equation (3.12). To elaborate,

assume a scenario where a device worked subsequently under temperature T1 and T2, with

durations t1 and t2, respectively. Then, the degradation of the device at time t1 + t2 equals that of

the device which worked under temperature T2 for time (0, teqv,1 + t2), and can be computed as

∆R(teqv,1 + t2,T2).

To capture the dynamics of reliability under varying temperature, we discretize the time

and calculate reliability at each time step as shown in the following. We leverage the equivalent
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degradation time to calculate the degradation at each discrete time step. The temperature is

assumed to be constant between time steps.

∆R(teqv,k−1,Tk−1,k) = R0−Rd(k−1) = ∆R|t=tk−1

Rd(k) = R(teqv,k−1 + tk−1,k,Tk−1,k) (3.14)

In Equation (4.3), k indicates the kth time instant and Tk−1,k is the temperature experienced by

the device between the time instants k−1 and k. Similarly, tk−1,k is the time passed between the

time instants k−1 and k. Rd is the dynamic reliability and R0 is the reliability of a device at time

t = 0.

Similar to the system MTTF expression in Equation (3.10), multiple reliability functions

can be combined into a single one when considering the effect of multiple mechanisms and

structures together as a series failure system.

Rd,ed(k) =
ns

∏
i=1

nm

∏
j=1

Rd,i j(k) (3.15)

The variables ns and nm are the number of structures and failure mechanisms, respectively. Rd,i j

is the reliability of the ith structure modeled by the jth failure mechanism.

3.3.3 Application Model

We consider the cooperative computing setting in which edge devices can execute

applications with the help of gateways. In the following, we elaborate the application model and

describe the operation of the edge devices and the gateways.

In many IoT edge computing systems, the application is not entirely executed on a single

device, instead, it is segmented into tasks and distributed over computing hierarchy, consisting of

the cloud, the fog, and the edge [25]. As illustrated in Fig. 3.5, traditional machine learning (ML)

approaches and deep neural networks (DNN) are examples of commonly used applications in IoT

systems that can be segmented and mapped to different IoT devices. Several works considering
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general ML applications [40, 110, 92] and DNNs [111, 112] exist, though, the segmentation of

applications and the distribution process are beyond the scope of this thesis. In our work, we

assume that this segmentation and distribution process is governed by an external management

mechanism, such as [49]. Therefore, the edge devices in our network are dynamically being

assigned different tasks.

The tasks can be executed either locally at the edge devices or remotely on the gateways

via computation offloading. In particular, the input data of the tasks can be partitioned and

offloaded (communicated) to the gateways, as illustrated in Fig. 3.6. In the case of offloading,

both the edge device and the gateway execute the same task, but at different times and on

different partitions of the data. As a concrete example, let us consider a system that runs a feature

extraction algorithm. The application code is assumed to be already present on both devices.

Therefore, the features can be extracted from “raw” sensor data at the edge devices, then the

processed features are communicated to the gateway. Another option is to send the raw data

57



directly to the gateway and extract the features there. Input data partition comes into play at

this stage. For example, the sensor of the edge may be device generating 10kB of data every 5

seconds, i.e., at a rate of 2kB/s. If it sends the first 6kB chunk of this data to the gateway and

process (extract features) the next 4kB locally at the edge devices, then the offloading rate and

local processing rates are 1.2kB/s and 0.8kB/s, respectively.

It is worth noting that sometimes an application (e.g. geo-distributed MapReduce [113])

can be breakable into tasks which do not exhibit dependencies across partitions of its input [42].

Provided this condition, the edge device and the gateways can also be assumed to be able to run

different tasks. To characterize a task τm, we consider three attributes: {IPCm,αm,Dm}. Here,

IPCm is the average instruction per cycle required to run the task, αm is the activity factor, and Dm

represents the deadline. According to the delay requirements of the application, the tasks can be

categorized into delay-sensitive and delay-tolerant (i.e., best-effort) ones [9]. The delay-sensitive

tasks are required to be served in a timely fashion, and have hard deadline constraints usually

from milliseconds to tens of milliseconds. In contrast, delay-tolerant tasks, such as data-based

applications as in personal health analytics and ML model training are tolerant to certain delays.

Hence, we consider soft deadlines for delay-tolerant tasks and hard deadlines for delay-sensitive

tasks.

3.3.4 Network Operation

IoT traffic can be roughly categorized into periodic and event-based modes of communi-

cation [114]. Some applications will always be event-driven, but still periodicity can ensue. For

example, motion detection sensors in smart homes activate roughly at the same time every day,

when leaving for work and returning home, in a predictable, periodic manner. In addition, many

IoT devices from other fields of application such as smart grids, environmental monitoring etc.

often intrinsically generate and communicate data in a periodic fashion. In our work, we assume

that the input traffic generated by sensors of EDi is periodic with a period Ti and a deterministic

arrival rate λi. Depending on the tasks and QoS requirements, the data arrival rate can differ.
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The operation of an edge device is illustrated in Fig. 3.7, with local data processing at its

processing unit (PU) and network communication for data offloading and data forwarding at its

transceiver (RF). The rate at which the input traffic is routed to the gateways through RF is Li,

denoted as the offloading rate. There is also incoming external data from other edge devices to

be relayed, since mesh network topology is assumed. We use ri to denote the total forwarding

rate. The computation intensity (processing rate), µi( fi,τm), is deterministic and dependent on

the edge device’s operating clock frequency and the running task (related by its IPCm). Both

the PU processing rates µi and RF communication rates Li are controllable variables that are

regulated by our proposed DRM controller. We assume the communication of task outputs is

negligible, but the proposed models can be extended to account for it.

Data from the edge devices is communicated to the gateways wirelessly. Each edge

device is assigned to a single gateway and all of its data should be forwarded to only that gateway.

However, since the network topology is mesh, devices can cooperate to distribute and relay data

in a multi-hop fashion. Our proposed inter-gateway management framework chooses the target

gateways and data forwarding routes for every edge device in the network. The gateways receive

the superposition of offloaded periodic traffics from a number of unsynchronized edge devices

(Fig. 3.8). According to the Palm-Khintchine theorem, this aggregated traffic for each gateway

can be approximated with a Poisson process with the arrival rate ∑EDi∈O j
Li, that is, the sum of

offloading rates of the associated edge devices [114]. The computing resources of a gateway
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is adequate for processing data for several tasks from multiple edge devices simultaneously.

We assume that there are c homogeneous computation cores in a gateway’s SoC, working with

a deterministic processing rate µG, j. Also, unlike the edge devices, memory resources of the

gateways are sufficient to be able to hold a queue of incoming data. Therefore, the gateways

employ a queueing structure of type M/D/c [115], denoted QG, j. The discrete queue dynamics at

the input of the gateways are as follows:

QG, j(k+1) = [QG, j(k)+∑Li(k)−µG, j(k)]+ (3.16)

where QG, j(k) denotes the queue length of gateway j at time instant k, in bits, and [x]+ =

max(x,0). µG, j is the total computation resources available at the gateway, in bits per unit time.

We assume that the amount of µG, j can dynamically change depending on the overall network

operation and we do not have control over it.

For delay-tolerant tasks, it is enough to finitely maintain the queue lengths in Equation

(3.16). This assures that all arrived tasks are served within finite time. However, for delay-

sensitive tasks, we need to provide a delay guarantee. We introduce a delay aware virtual queue

based on the ε-persistent queue technique [116] to ensure that the tasks are finished with a delay

lower than Dm.

Delay-Aware Virtual Queue. In order to guarantee the maximum delay Dm,i for task m

associated with edge device i, offloaded to gateway j, we employ a delay-aware virtual queue
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ZG, j whose equation is shown below:

ZG, j(k+1) =

 0, when QG, j(k)≤ µG, j(k)

[ZG, j(k)−µG, j(k)+ εG, j]
+, o.w

where εG, j is a pre-specified constant based on the delay constraint. ZG, j(k) has the same service

process as QG, j(k) but has an additional constant arriving process εG, j whenever the actual queue

backlog QG(k) is larger than µG, j(k). This ensures that the virtual queue grows only when there

exists data in the original queue that have not been served. Therefore, if there is data from a

task staying in the waiting queue for a long time, the queue length of ZG, j(k) will continue to

grow. Any algorithm that maintains bounded ZG, j(k) and QG, j(k) values also ensures persistent

service with bounded worst-case delay. This maximum delay can be expressed in terms of the

maximum queue lengths Qmax
G, j and Zmax

G, j . For a time slot k, if the system can be controlled to

ensure that QG, j(k)< Qmax
G, j and ZG, j(k)< Zmax

G, j , then any task is fulfilled with a maximum delay

W max defined as follows:

W max = [(Qmax
G, j +Zmax

G, j )/εG, j] (3.17)

Given the above property, we can choose the appropriate εG, j for each task to ensure that it can

not exceed its maximum delay Dm,i (i.e. W max < Dm,i). The original queue QG exists in the form

of a buffer structure in the system. The received data packets wait in this buffer until they can be

served by the gateway. On the other hand, the virtual queue dynamics are implemented by the

tracking the original queue and increasing/decreasing the virtual length accordingly.

To summarize, the edge devices produce input traffic via sensors, run different tasks,

and process data. As a result of on-board computation, they dissipate a certain power, consume

battery energy, heat up, degrade, and hence lose reliability. We provide all the associated device

and application models. The edge devices can be connected and offload computation to any of

the gateways in the network. The operation of one edge device has an effect on all other devices

in the same network, which is formulated by the queueing model. We use the described system
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model in our problem formulation.

3.4 Problem Formulation

In the following, we formalize our problem based on the network and device models

presented. The goal of this section is to express the problem in a mathematical framework and

relate it to a family of problems from optimization and control fields. We next provide the

methods and the tools to solve it in Section 3.5. Table 5.1 provides the list of symbols that are

used in problem formulation, in the order of appearance throughout the chapter.

The target for the above-mentioned multi-gateway system is to have an energy-efficient

and reliable operation without sacrificing performance. To achieve this objective, we define three

interdependent problems:

(i) choosing the data offloading rates of edge devices,

(ii) assigning edge devices to gateways, and

(iii) deciding multi-hop data flow routes and rates in the network.

We treat problem (i) individually whereas problems (ii) and (iii) are combined. The reason for

this particular choice of partitioning is clarified in Section 3.5.

First, we formulate the problem of finding the optimal offloading rates for a local network

with a gateway and its associated edge devices. This is called the Intra-Gateway Problem

since it can be solved by single gateway and the solution depends only on the local network.

Then, considering the complete multi-gateway network with all edge devices, we construct a

routing problem to jointly decide which gateway to offload and which network path to use for

communicating data. This is called the Inter-Gateway Problem as it requires global effort from

all the devices in the complete network covering multiple gateways.
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Table 3.1. Nomenclature

Symbol Definition
ED Edge device
G Gateway
N Number of edge devices
M Number of gateways
Si Set of neighboring devices to node i

BW Local network bandwidth
Povr Overall power consumption of an edge device

f Device operating frequency
qA Total charge in battery Available Charge Tank
qB Total charge in battery Bound Charge Tank
Ted Vector of temperatures of an edge device

Tamb Ambient temperature
MT T Fed Mean time to failure of an edge device

Rd,ed Dynamic reliability of an edge device
λ Input traffic data rate i
L Data offloading rate
r Data forwarding rate
µ Data processing rate

µG Gateway processing rate
QG Gateway queue length
ZG Gateway virtual queue length
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3.4.1 Intra-Gateway Problem

The gateways G are only responsible for the edge devices ED in their own local network,

i.e, if EDi ∈ O j. Therefore, the Intra-Gateway Problem can be formulated separately for each

local network. The goal is to maximize the remaining energy in the batteries of edge devices

under QoS and reliability constraints. We assume that the gateway can have its energy supplied

by the grid and reliability is less of a concern due to available preventative measures (i.e., access

to cooling and effortless maintenance).

Cost Function: The cost function of the control problem is the sum of battery energies

of all edge devices in the local network. We define the following objective for finite horizon

optimal control of j-th local network:

min
(µ,L)

Tf−1

∑
k=0
−∥1T q(k)∥2 =

Tf−1

∑
k=0

N j

∑
i=1
−∥1T qi(k)∥2 (3.18)

where (µ,L)≜ (µ1(k), ...,µP(k),L1(k), ...,LP(k))
Tf−1
k=0 . The vector qi(k) = [qi,A(k),qi,B(k)]T is

the battery charge vector and q denotes the combined vector of all edge devices.

Constraints: There are three QoS requirements that should be satisfied at any time

instant k and a terminal reliability constraint that should be satisfied at the final time instant Tf :

1. The maximum task delay Dm,i should be met for every edge device i and task m. Then, the

delay experienced at the gateway queue should be less than Dm,i, which is ensured if the

length of gateway queue is smaller than a value Qmax
G, j , i.e., QG, j(k)< Qmax

G, j .

2. Bandwidth utilization should not exceed BWj. The bandwidth utilization of an edge device

i is Li, hence the corresponding constraint is ∑
P
i=1 Li(k)≤ BWj.

3. Depending on the application, there is a certain data arrival and service rate at each edge

device determined by QoS requirements. We define this target rate as λ
target
i . The sum

of data processed locally and offloaded should be equal to the target, i.e., µi(k)+Li(k) =
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λ
target
i (k).

4. The dynamic reliability Rsys
d,i (Equation 3.15) of each device at the end of the horizon

should be at least the target reliability Rtarget , i.e, Rsys
d,i (Tf )≥ Rtarget

Control Variables: The two performance-related state variables to be controlled for

each edge device are: (i) PU processing rate µi( f ) and (ii) RF communication (offloading) rate

Li. Then, the control variables include the required change in the operating frequency ∆ fi and

change in the communication rate ∆Li.
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All in all, we define the following discrete-time finite horizon optimal control problem:

min
∆f,∆L

Tf−1

∑
k=0

N j

∑
i=1
−∥1T qi(k)∥2 (3.19)

s.t. i = 1, ...,N j k = 0, ...,Tf−1

qA,i(k+1) = AqqA,i(k)+BqqB,i(k)−
Povr,i(k)

Vdd

qB,i(k+1) =CqqA,i(k)+DqqB,i(k)

Povr,i(k)=ai f 3
i (k)+bi fi(k)+cs,iλi(k)+ρ1

Li(k)+ri(k)
g

+ρ2

Ted,i(k+1) = AT Ted,i(k)+BT Ped,i(k)+CT Tamb,i(k)

QG, j(k+1) = [QG, j(k)+∑
P
i=1 Li(k)−µG, j(k)]+

ZG, j(k+1) = [ZG, j(k)−µG, j(k)+ εG, j]
+

µi(k+1) = µi(k)+di∆ fi

Li(k+1) = Li(k)+∆Li

QG, j(k)< Qmax
G, j

ZG, j(k)< Zmax
G, j

∑
P
i=1 Li(k)≤ BWj

µi(k)+Li(k) = λ
target
i (k)

Rd,i(Tf )≥ Rtarget

|∆ fi| ≤ ∆ f max, |∆Li| ≤ ∆Lmax

where we discretized the battery dynamic equations from Equation (3.5) with state variables

qA,i and qB,i, representing the charge level of edge device i at time instant k. Overall power

consumption Povr,i is expressed in terms of processing, communication, and sensing rates. On

the other hand, Ped,i = [Ppu,i,Pr f ,i]
T , a vector of PU and RF power consumption, is used in

the temperature dynamics equation to compute Ted,i = [Tpu,i,Tr f ,i]
T . We define µi and Li as
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state variables which are controlled by the inputs ∆ fi and ∆Li: respectively the change in the

operating frequency and the change in the offloading rate. By doing this and imposing magnitude

constraints on the new control variables, we ensure a smooth transition in both processing and

offloading rates.

3.4.2 Inter-Gateway Problem

The solution to the Intra-Gateway Problem finds the offloading rates for every edge

device, but it does not specify how the offloaded data should be communicated to gateways.

As the network is assumed to have mesh topology, data can be forwarded in multiple hops

through many edge devices on the path. The exact routes from each edge device to the gateways

should be determined. Also, the Intra-Gateway Problem is formulated for a fixed set of edge

devices in the local networks. However, as stated in Section 3.3.D, edge devices have multiple

choices for which gateway to offload data. These choices should be made considering the state

of the system. We construct the Inter-Gateway Problem whose solution gives the edge device to

gateway assignments, as well as the routing between them.

The desired joint problem can be composed into a single network routing problem with

multicommodity flows and multiple sinks. The goal is to find the maximum lifetime routing.

From the Intra-Gateway Problem’s solution, we obtain Li, the rate at which data is generated

at edge device i. We consider the data from different edge devices as different commodities.

This data needs to be communicated to any of the gateways in the network, resulting in the

multicommodity flow multiple sink routing problem. We assume that in general, each commodity

should only be communicated to a single gateway, that is, data from one edge device cannot be

distributed to multiple gateways. For example, if the data is sequential (e.g., time-series data),

then it should be received at one gateway in the same order to be processed correctly. If the data

is distributed to many gateways and not received as a whole at a single gateway, the task cannot

be carried out. The packet transmission is thus unicast. An alternative solution for when this

assumption does not hold is discussed in Section 3.7.1. An example solution for our problem
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Figure 3.9. Multicommodity flow multiple sink routing

setting is illustrated in Fig. 3.9 for a network with two gateways.

For notational convenience in the routing problem, consider the network nodes numbered

from 1 to N denote the edge devices and N+1 to N+M denote the gateways. In other words,

i ∈VED and j ∈VG for the edge devices and gateways respectively, where VED = {1, ...,N} and

VG = {N +1, ...,N +M}. Let ri
kl denote the rate of data flow from edge device k to any node

l ∈ Sk, carrying edge device i’s commodity. The aggregate data rate for the unidirectional link

from edge device k to l is denoted by rkl and is equal to ∑
N
i=1 ri

kl . For simplicity of notation, we

stack up all rkl into a single vector and denote network flow as r = {ri
kl}, Then, the lifetime of

edge device i under flow r is given by

MT T Fed,i = γcexp
Ea

kBTed,i(r)
(3.20)

We define lifetime in terms of mean time to failure, where Equation (3.20) is a generalized

form of MTTF definitions in Equations (3.7), (3.8), (3.9) and coefficient γc encompasses the

multiplicative terms in the respective formulas. Temperature T (r) is a function of network flow

as it alters according to device power dissipation (Equation (3.6)), which in turn relates to data

flow through Equation (3.3).

We assume that a network fails with the first node’s failure as a common definition.
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This definition is one of the most prevalent in literature [52] and was used in many recent

works [117, 118]. In this case, network MTTF under flow r is the minimum of any node in the

network, i.e.

MT T Fnet(r) = min
i∈N

MT T Fed,i(r) (3.21)

Our goal is to find a solution for the flow r = {ri
kl} that maximizes the network lifetime.

Hence, we formulate the following problem.

maximize
r,Xassign

min
i∈VED

MT T Fed,i(r) (3.22)

subject to ∑
l∈Sk

(ri
kl− ri

lk) = Li, ∀i,k ∈VED, i = k

∑
l∈Sk

(ri
kl− ri

lk) = 0, ∀i,k ∈VED, i ̸= k

ri
kl ≥ 0, ∀i,k ∈VED, ∀l ∈ Sk

∑
k∈VED

ri
kl = Li, ∀i ∈VED, ∀{l ∈VG | xil = 1}

M

∑
j=1

xi j = 1, ∀i ∈ {1, ...,N}

xi j ∈ {0,1}, ∀i ∈ {1, ...,N},∀ j ∈ {1, ...,M}

The optimization variables are ri
kl and xi j. Xassign is the assignment matrix in which elements

xi j assume value 1 if edge device i is assigned to gateway j and 0 otherwise. The matrix

Xassign ∈ RNxM has only one element equal to 1 for each row. This is because data from one

edge device cannot be distributed to multiple gateways so each commodity should only be

communicating to a single gateway. The first two constraints are the flow conservation equations

at each node. The difference between incoming and outgoing flows for each commodity is equal

to the data generation rate. We express the condition on commodities that restrict them to be

communicated to a single gateway by the fourth constraint. The summation of all outgoing flows
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towards the l-th gateway for the i-th commodity should be Li.

3.5 Proposed Approach: Overview

In this section, we first present the general solution framework and briefly describe

its operation. Subsequently, we break down and analyze the proposed solution in further

detail. Fig. 3.10 depicts an overview of the proposed two-level management scheme. The

overall management methodology is an interplay between Intra-Gateway Management and

Inter-Gateway Management components:

• Intra-Gateway Management is responsible for choosing the local processing and offloading

rates of edge devices. Each gateway runs it separately for the edge devices in their own

local networks.

• Inter-Gateway Management assigns edge devices to gateways and decides multi-hop data

flow routes and rates in the network. It is carried out with collaborative effort from all

devices.

The two components work together in a cyclical fashion; one computes its solution based

on the other’s output. Inter-Gateway Management takes as input the data offloading rates set

by Intra-Gateway Management. On the other hand, Intra-Gateway Management determines

optimal offloading rates in accordance with the gateway assignments and the data forwarding

rates of edge devices.

At the beginning of system operation, the gateways are evenly matched with the closest

edge devices and they establish single-hop connections. M disconnected local networks are

formed with an average of N/M edge devices per gateway. Based on the initial assignments, opti-

mal offloading rates for edge devices are calculated via Intra-Gateway Management separately at

each local network. Inter-Gateway Management then uses these offloading rates to make gateway

assignment and routing decisions. It assigns edge devices to gateways primarily based on fairness
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Figure 3.10. Overall architecture of the proposed management scheme

such that each gateway receives similar amounts of offloaded data. At this stage, the initial

topology of the network is changed and edge devices have new gateway pairs. The topology is

not restricted to single-hop connections, so data can be forwarded in multiple hops through many

edge devices on the path. Inter-Gateway Management lastly adjusts communication paths and

data flow rates on the communications links.

After the initialization phase, both management components continue to work in tandem.

Inter-Gateway Management’s routing introduces additional communication load to some edge

devices due to multi-hop communication, which was not assumed at the system start. Intra-

Gateway Management accordingly adjusts processing and offloading rates to compensate for
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the additional data forwarding load on the edge devices. The edge computing system is already

dynamic due to variable workloads and resources, fluctuating temperatures, etc., so the solution

is continuously updated at certain intervals.

The gateway assignments, data flow rates and paths are also not fixed. Inter-Gateway

Management updates the solution under the following conditions:

1. Periodically, at regular intervals,

2. If the bandwidth allocation of any local network is over 90% for a certain time,

3. If the queue length of any gateway is at Qmax for a certain number of consecutive tasks.

The normal operation of Inter-Gateway Management is through periodic updates, but

irregular interventions may be needed under the given circumstances. If there is persistently not

enough bandwidth left or the gateway queue is full at a local network, then the corresponding

gateway sends an emergency signal to the Inter-Gateway Management component. A reassign &

reroute signal is sent back to gateways that is further forwarded to edge devices. Since gateway

assignment is based on fairness, it balances out bandwidth and queue utilizations across local

networks.

If there is a failure in the execution of Inter-Gateway Management, the Intra-Gateway

Management can continue working since the gateways already know their edge device assign-

ments. Intra-Gateway Management is a local management scheme, meaning that it does not

need to receive external inputs to operate. Each gateway only needs to know their new assign-

ments whenever a there is a restructuring in the network. There are N different Intra-Gateway

Management instances running at the same time on different gateways separately. On the other

hand, if any of the Intra-Gateway Management schemes fails, then the Inter-Gateway Manage-

ment can continue operating as well. It can still decide on gateway assignments and routing.

However, the failed Inter-Gateway Management will not be able to produce optimal offloading

rate values, so the performance of the overall management may decrease. The common point
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in both management mechanisms is that they do not fully rely on a single device to run. There

are distributed components that run at edge devices, which significantly reduces the single-point

failure phenomena that centralized systems have.

3.6 Intra-Gateway Management

We consider two approaches: centralized Model Predictive Control (MPC) and our

distributed solution for the control of the local networks. First, we analyze the centralized

MPC and discuss its limitations for practical implementations in large networks. It requires to

communicate and use the full knowledge of the entire local network, which is not a scalable

approach. Thus, we use it as a benchmark to represent the ideal performance. We then decompose

the full control problem into subproblems with coordination by leveraging a hierarchy of linear

controllers that act on different time scales, distributed over the edge devices and the gateway.

3.6.1 Centralized MPC

Our problem in Equation (3.19) can be converted to the standard MPC form using the

following discrete-time prediction model:

x(k+1) = Ax(k)+Bu(k)+Cw(k) (3.23)

with state x(k) = [qA,1(k),qB,1(k),Ted,1(k),µ1(k),L1(k),qA,N j(k),qB,N j(k),Ted,N j(k),µP(k), ...,

LN j(k),QG(k)]T and control input u(k) = [∆ f1(k),∆L1(k), ...,∆ fN j(k),∆LN j(k)]
T . Disturbance

vector includes the ambient temperatures of edge devices and gateway’s processing rate, which

are uncontrollable: w(k) = [Tamb,1(k), ...,Tamb,N j(k),µG(k)]T . For a local network with N j edge

devices, the state, input, and disturbance vectors are of sizes 5N j+1, 2N j, and N j+1 respectively.

QoS and reliability constraints can be represented as Dx(k)≤ 0 and Eu(k) = 0 in matrix form.

At decision instant k, the controller samples the state of the system x(k) and solves the
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centralized optimization problem PrC(x(k)) of the following form to find the control action.

min
u(k)

Tp−1

∑
l=0

N j

∑
i=1

d(x(k+ l|k), x̂) (3.24)

s.t. i = 1, ...,N j j = 0, ...,Tp−1

x(k+ l +1|k) = Ax(k+ l|k)+Bu(k+ l|k)

Dx(k+ l|k)≤ 0

Eu(k+ l|k) = 0

The double index notation (k+ l|k) in (3.24) denotes a prediction for l steps ahead from time

k. d(x, x̂) denotes a distance metric. The problem is solved for a prediction horizon of Tp. For

centralized MPC, we first set k = 0 and find a solution to PrC(x(k)), then apply control u∗(k|k)

to the system. Next, k is incremented and the previous steps are repeated until the final horizon

Tf .

The centralized MPC approach requires communication of states from all nodes to a

central entity (gateway), which then sends an individual control signal to each of the edge

devices. The gateways should solve a problem with (5N j +1)×Tp states and produce a control

sequence of size 2N j×Tp at each time step. Hence, as the network size grows, the computation

time required to solve the optimization problem becomes very large. The problem is also a

Nonlinear MPC problem because of the nonlinear relationship between the control variables

and the objective and constraints, which further exacerbates the computational complexity. The

numerical solution of the NMPC optimal control problems is typically based on direct optimal

control methods using Newton-type optimization schemes. Even the computational complexity

of very low-complexity implementations of NMPC are at least O(T (n2
x + nxnu)) [119], with

T = Tp being the prediction horizon and nx = 5N j +1 and nu = 2N j respectively the state and

input dimensions for our problem. Finally, the centralized approach is inflexible, in the sense

that adding new devices to the network requires the controller to drastically update its model. To
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address these issues, we distribute the computation among the network devices.

3.6.2 Proposed Controller Methodology

We decompose the central Nonlinear MPC problem PrC(x(k)) into a set of local sub-

problems Prp(xp(k)), p ∈ {1, ...,P} for the edge devices and a light-weight central subproblem

PrG(xG(k)) for the gateway. The goal of this decomposition is twofold: first, to ensure that the

central subproblem is computationally much less intensive and smaller in size than the overall

problem (has fewer state variables and constraints, and linear unlike PrC(x(k))), and second, to

ensure that the coupling between local subproblems are minimal and solvable in tolerable time

in constrained edge devices.

Handling the Size. In our problem, it is redundant to search for an optimal solution

over a space of size (5N +1)×Tp as in Equation (3.24). The reason is that if the overall system

consists of subsystems whose time constants are far from each other (e.g. temperature Ted,i and

performance {µi,Li}), then the fast varying subsystem (performance) will arrive at its steady-

state before the slow subsystem (temperature) has deviated significantly. Leveraging this, we

can employ different control periods for the slow and fast subsystems. If the control period of

the slow subsystem is longer than the settling time of the fast subsystem, the fast subsystem can

always enter its steady-state. Thus, the control loops for them are decoupled and can be designed

independently. We decrease the overall problem size by employing larger control periods for

slower changing subsystems and separating their control loops.

Handling the Nonlinearity. The “causal chain” of Frequency→DissipatedPower→

Temperature can be split into two parts. The first part, as expressed by Equation (3.2), is highly

nonlinear while the power-to-temperature model in Equation (3.6) is linear. We separate the

linear and nonlinear parts to keep the MPC model in the central subproblem linear, minimizing

its complexity.

Handling the Couplings. Since the states of any edge device pair {µi,Ted,i} and

{µ j,Ted, j}, i ̸= j are already decoupled, a natural way to decompose the problem is to associate
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local subproblems with only these states to each edge device. The state for communication rates,

Li, are coupled through the gateway queue structure (3.16) and bandwidth constraints. The bat-

tery states qA,i and qB,i are coupled through the objective function (3.18) that aims at maximizing

the battery remaining energy in the edge devices. Therefore, a complete decentralization is not

possible and coordination between edge devices is needed. We associate a central subproblem

with the coupled states {Li,qA,i,qB,i} to be solved at the gateway using MPC.

3.6.3 Proposed Controller Architecture

In the following section, we describe the structure of our proposed controller. Fig. 3.11

shows our hierarchical multi-timescale control approach. The lower level controllers at each edge

device manage the local, ‘decoupled’ variables, whereas the top-level controller at the gateway

coordinates the control decisions among the controllers at the lower level. The overall system

consists of subsystems whose control variables operate at different time scales. Leveraging this,

we apply three different time scales: Long Intervals (LI), in the order of hours that targets slow

reliability changes, Medium Intervals (MI), in the order of seconds for temperature variations,

and Short Intervals (SI), in the order of milliseconds for performance-related decisions. In this

multi-timescale approach, the faster-varying subsystems arrive at their steady-state before the

slower subsystems, which minimizes violations; thus, it leads to a minimal loss in control quality

with a significant reduction in complexity [120]. The proposed controller architecture consists of

the following four components.

1) Edge Reliability Controller: Estimates the reliability degradation of the edge devices

at the beginning of each LI. Based on the current reliability value and the target reliability

constraint Rtarget , it computes a reference temperature T re f
ed , which is used as a constraint by the

Edge Thermal Controller.

2) Edge Thermal Controller: Computes the maximum reference power dissipation

value Pre f
ed , which would ensure that, at the end of the LI timescale, the average temperature

experienced in the whole LI is less than T re f
ed . Then, it modifies these maximum values based on
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Figure 3.11. Controller block diagram

the target input data rate to obtain a lower, energy optimal power reference, which is sent to the

Gateway Top-Level Controller.

3) Gateway Top-Level Controller: Calculates the reference optimal communication

rates Lre f for each edge device (at each MI timescale) that maximizes their remaining battery

energies and satisfy the delay requirements of their respective tasks, while abiding by the

bandwidth limit BW .

4) Edge Performance Controller: Computes the edge device computation and commu-

nication rates by applying controls ∆ f and ∆L at each SI time scale.

3.6.4 Edge Reliability Controller

Leveraging the equivalent degradation time technique in Equation (4.3), the Edge Relia-

bility Controller calculates the reliability degradation of the edge device at each LI, using the

averaged temperature over the previous LI. Then, it selects the reference temperature T re f
ed for

the next LI by solving the convex optimization problem in Equation (3.25). The computation of

convex optimization introduces a negligible overhead since the controller activates by intervals

in the order of days.
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min
T target

ed

∥R(teqv + trem,T
re f

ed )∥ (3.25)

s.t. R(teqv + trem,T
target
ed )≥ Rtarget

R(teqv,T
target
ed ) = Rd,ed(kLI)

Rd,ed(kLI) indicates the dynamic reliability at the long interval kLI and trem is the remaining time

from the current LI until tli f e. The result of the optimization, T target
ed , is the temperature which

would satisfy the reliability target Rtarget at the desired lifetime tli f e, given the device operates

at that temperature for the remaining of its lifetime. The constraint on reliability is met if the

average LI temperature T LI
ed is below T ed

target at the end of the LI.

Within an LI, if the difference between target temperature and average temperature, i.e.,

T target
ed −T avg

ed , is non-zero at any given time instant, then the system has either not fully exploited

the available reliability margin (if positive) or it has violated the reliability constraint for the

current LI so far (if negative). Therefore, we introduce a new variable T re f
ed to keep track of

under/over-utilization of the reliability margin and adjust the system accordingly.

T avg
ed (kMI) =

(kMI−1) ·T avg
ed (kMI−1)+T LI

ed (kMI)

kMI
(3.26)

T re f
ed (kMI) =

tLI ·T target
ed − kMI ·T avg

sys (kMI)

tLI− kMI
(3.27)

In the above equations, kMI indicates the kth MI inside an LI and tLI is the duration of an LI

(measured in number of MIs). If the system is being over-utilized, then T re f
ed will be lower than

T target
ed , accommodating for the extra thermal stress experienced until that point. This way, the

Edge Thermal Controller can reduce the thermal stress for the remaining part of the current LI

using T re f
ed as a reference.
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3.6.5 Edge Thermal Controller

Within a long interval, the Edge Thermal Controller determines the power Ped(kMI) at

each MI time step kMI , which would ensure that the temperature Ted experienced in the whole LI

on average is less than T re f
ed . We recast the temperature state-space model in Equation (3.6) as

follows:

Ted(kMI +1) = AT ·Ted(kMI)+BT ·uT (kMI) (3.28)

uT (kMI) = Ped(kMI)+CT/BT ·Tamb(kMI) (3.29)

Then, the state feedback uT (kMI) is calculated as We apply the state-feedback control law [121]

for a linear system. Then, the input uT (kMI) is calculated as:

uT (kMI) = KT (T
re f

ed −Ted(kMI)) (3.30)

where KT is the feedback gain which is determined using pole placement technique. The ambient

temperature Tamb is assumed to be known since it can be monitored with temperature sensors.

Hence, we retrieve Ped(kMI) = [Ppu(kMI),Pr f (kMI)]
T using the following equation.

Ped(kMI) = KT (T
re f

ed −Ted(kMI))−CT/BT ·Tamb(kMI) (3.31)

If an edge device dissipates the resulting power Ped at each time step kMI , then it can very closely

meet the reliability target Rtarget . However, to meet the QoS requirements on data rate λ target , the

edge device may need to consume more power than Ped . Or, if λ target is a relatively small rate,

then consuming Ped would be ‘excess’. Therefore, to compute the reference power values Pre f
ed

to be sent to the Gateway Top-Level Controller, we do a slight modification (trimming) on the

power values Ped obtained by Equation (3.31) concerning the power scaling of the components

Ppu and Pr f .
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Figure 3.12. Average power as functions of computation and communication rates

Algorithm 1: Power Reference Trimming
Input: λ target ,Ppu(kMI),Pr f (kMI)

Output: Pre f
ed

1 Calculate Ppu for µ = λ target

2 Calculate Pr f for L = λ target

3 if Ppu|µ=λ < Pr f |L=λ then
4 if Ppu|µ=λ < Ppu(kMI) then
5 Pre f

ed = [Ppu|µ=λ ,0]T

6 else
7 Calculate {µre f | Ppu|µ=µre f = Ppu(kMI)}
8 Lre f = λ target−µre f

9 Pre f
ed = [Ppu(kMI),Pr f |L=Lre f ]T

10 else
11 if Pr f |µ=λ < Pr f (kMI) then
12 Pre f

ed = [0,Pr f |µ=λ ]
T

13 else
14 Calculate {Lre f | Pr f |L=Lre f = Pr f (kMI)}
15 µre f = λ target−Lre f

16 Pre f
ed = [Ppu|µ=µre f ,Pr f (kMI)]

T
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Pre f
ed Trimming. Up until a certain rate, processing data on the PU consumes less power

than communicating the data, as shown in Fig. 3.12. However, it is more energy efficient

to communicate data for higher rates since PU power consumption scales superlinearly with

processing rate while RF power consumption scales linearly with communication rate. For a

given λ target , we use Algorithm 2 to find a tighter, more energy efficient power reference than

what we have obtained in Equation (3.31) for the Gateway Top-Level Controller’s problem. First,

the algorithm calculates the required power consumption for processing or communicating data

at rate λtarget . If processing power Ppu is the smaller of the two, then it is further compared with

the value obtained from Equation (3.31). All needed power can be allocated to the PU if the

required processing rate results in a power which is lower than what the thermal constraints allow

(Line 5). Otherwise, we calculate the corresponding maximum allowed processing rate (µre f )

and allocate the RF power consumption such that the rest of the data is communicated at rate

Lre f (Lines 7-9). If initially processing power Pr f is found to be smaller, then same procedures

are done for the RF (Lines 10-16).

3.6.6 Gateway Top-Level Controller

The goal of the Gateway Top-Level Controller is to maximize the remaining battery

energies of the edge devices while assuring that the task delay requirements are satisfied and the

bandwidth limit is not exceeded. It solves a standard quadratic programming (QP) form MPC

with a linear system model.
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min
Ped

Tp−1

∑
kMI=0

−∥1T q(kMI)∥2
Y +∥Ped(kMI)−Pre f

ed ∥
2
Z (3.32)

s.t. kMI = 0, ...,Tp

qA,i(kMI+1) = AqqA,i(kMI)+BqqA,i(kMI)−
1T Ped,i(kMI)

Vdd

qB,i(kMI+1) =CqqA,i(kMI)+DqqB,i(kMI)

QG(kMI+1) = [QG(kMI)+∑vT Ped,i(kMI)−µG(kMI)]
+

ZG, j(kMI+1) = [ZG, j(kMI)−µG, j(kMI)+ εG, j]
+

QG(kMI)≤ Qmax

ZG(kMI)≤ Zmax

∑vT Ped,i(kMI)≤ BW

where we used the fact that [0 g/ρ] ·Ped = L and rewritten the communication rate variables L in

terms of power variables Ped with vT = [0 g/ρ]. q = [qA,qB]
T and Ped are the combined vectors

of all edge devices for battery states and power states respectively. Y and Z are matrices that

weigh the importance of the elements in the cost function. Since the power reference vector

Pre f
ed is constructed in the Edge Thermal Controller to yield an energy efficient reference, the

two terms in the cost function are not conflicting. At each sampling time kMI , the solver yields

the optimal solution Ped(kMI) within the MPC prediction horizon Tp that minimizes the cost

function and meets the constraints. After converting power values to communication rate values,

the respective communication rate references Lre f
i for each edge device are sent to the Edge

Performance Controllers.

82



3.6.7 Edge Performance Controller

The two performance-related state variables controlled by the Edge Performance Con-

troller are: (i) PU processing rate µ( f ) and (ii) RF communication (offloading) rate L. Then, the

control variables include the required change in the operating frequency ∆ f and change in the

communication rate ∆L. The Edge Performance Controller receives the reference communication

rates Lre f (kMI) from the Gateway Central Controller at each MI. Based on this, it adjusts ∆ f (kSI)

and ∆L(kSI) such that the sum of data processed locally and data offloaded amount to the data

arrival rate λ target(kMI). They are computed using a similar state-feedback control law as in the

Edge Thermal Controller.

∆ f (kSI)=KP,1[(λtarget(kMI)−Lre f (kMI))− f (kSI)] (3.33)

∆L(kSI)=KP,2(Lre f (kMI)−L(kSI)) (3.34)

3.7 Inter-Gateway Management

The optimization problem posed in Section 3.4.2 is Mixed-Integer Programming (MIP).

The majority of MIP problems are NP-hard, exact solutions result in poor scalability, and

therefore encouraging the use of efficient heuristics to approximate the optimum within finite time.

We observe that Equation (3.22) can be precisely decomposed into its integer and continuous

variables. We propose a two-step solution that separates and individually handles these variables:

(i) Determine the sink for each commodity, i.e., find the set of devices EDi ∈ O j for each

gateway. The result of this step imposes constraints for the next step; the amount of data

absorbed by the gateways for all commodities ri
kl, l ∈VG.

(ii) Solve the resulting optimization problem over a convex set of continuous variables to find

the optimal r = {ri
kl}, given the constraints from the previous step.

The first step is essentially a combinatorial problem with the goal of identifying the best
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edge device to gateway assignment over a finite set of options. The second step consists of only

continuous variables, it can be further converted to Linear Programming (LP) for which we

explain the procedure below in detail.

3.7.1 Gateway Assignment

In Section 3.4.2 we assumed that in general, each commodity should only be communi-

cated to a single gateway, that is, data from one edge device cannot be distributed to multiple

gateways. A gateway assignment step is necessary as a result of this assumption. However,

in some circumstances, it may be admissible to forward any commodity to any gateway. For

example, if the gateways are interconnected via Ethernet, they can reshare the offloaded data

over Gbps-speed wired connections with minimal delay. Or, if any of the gateways can carry out

the same type of tasks with the received data, there is no need to try forwarding data exclusively

to a particular one. For such cases, our approach offers natural way of separating the overall

problem; if the network allows for communication to any gateway,it is sufficient to solve only

step (ii), bypassing the gateway assignment step.

We assign edge devices to gateways primarily based on fairness: each gateway should

receive similar amounts of offloaded data and in proportion to their available computational

resources. The bandwidth is limited at each local network (per gateway). Furthermore, we try

to allocate less data to the gateways with higher queue utilization and assign edge devices to

closer gateways in terms of physical distance. The gateway assignment problem is formulated as
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follows:

maximize
Xassign

min
j∈VG

N

∑
i=1

ci jxi j (3.35)

subject to
N

∑
i=1

Lixi j ≤ BWj, ∀ j ∈ {1, ...,M}

M

∑
j=1

xi j = 1, ∀i ∈ {1, ...,N}

xi j ∈ {0,1}, ∀i ∈ {1, ...,N},∀ j ∈ {1, ...,M}

where Xassign is the assignment matrix in which elements xi j assume value 1 if edge device i is

assigned to gateway j and 0 otherwise. This is a problem from the class of bottleneck generalized

assignment problems (BGAP) [122] and many heuristic and exact solution procedures exist [123,

124, 125]. The GAP is a well-known integer programming problem involving the assignment

of a number of jobs to a number of agents such that each job is performed by a unique agent,

capacity limitations on the agents are not exceeded, and the total cost of the assignments is

minimized. The bottleneck (or minimax) version of this problem is where the objective is to

minimize the maximum of the costs of the assignments that are made. In our problem, there

are N commodities (tasks) that are assigned to M gateways (agents). The offloading rates Li of

the corresponding commodities are the number of resource units consumed. ci j is the cost of

gateway j to consume commodity of edge device i, which we define as a decreasing function of

queue utilizations Qi and distance di j.

We use the approximate algorithm in [124] that heuristically searches for a solution to

BGAP. The algorithm is centralized. All edge devices communicate the values of their offloading

rates to a head gateway. Then, the problem is solved to find the optimal assignments and the

results are communicated back to the edge devices.
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3.7.2 Routing

The gateway assignment step specifies the amount of data to be absorbed by the gateways

for all commodities. The remainder of the overall problem is then a multicommodity flow

multiple sink routing problem with known commodity-to-sink assignments. From this point, we

solely need to deal with continuous functions defined on a set of continuous variables, that is,

the flow rates.

The MTTF function itself is non-linear and non-convex, still, the optimization problem

can be linearized in a few steps. We first start by taking the natural logarithm of the objective

function.

logMT T Fed,i(r) = logγc +
Ea

kBTed,i(r)
(3.36)

Maximizing the minimum of logMT T Fed,i is an equivalent problem to our original

problem. The decision variable, flow rate vector r, is related to MTTF through temperature

function T (r). From Equation (3.6), temperature is a function of power dissipation. On the

other hand, power is a function of data flow rates through Equation (3.3). Both relations are

linear, but the temperature equation is time-dependent. To have a time-invariant approximation

for device temperature, we use the state-space formulation and find the time step tss where

temperature reaches a steady-state. We unroll the list of linear equations until time step t = tss

and calculate two coefficients k1 and k2 of power P and ambient temperature Tamb respectively.

The time-invariant temperature equation used in our problem formulation is as follows:

Ted,i(r) = k1Ped,i(r)+ k2Tamb,i + k3 (3.37)

This can be explicitly written as Ted(r) =∑l∈Sk
Ekl ∑

N
i=1 ri

kl in summation form where E is

a matrix. The entries Ekl are constants depending on the pair of nodes k and l, while the bias terms

in (3.37) are omitted without loss of generality. We also do not show the constant term logγc in

the following derivation to further simplify notation. Then, logMT T Fed,i ∑l∈Sk
Ekl ∑

N
i=1 ri

kl =
Ea
kB

.
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Altogether, the problem in Equation (3.22), excluding the gateway assignment component

can be rewritten as

maximize MT T F (3.38)

subject to ∑
l∈Sk

(ri
kl− ri

lk) = Li, i = k ∀i,k ∈VED

∑
l∈Sk

(ri
kl− ri

lk) = 0, i ̸= k ∀i,k ∈VED

ri
kl ≥ 0, ∀i,k ∈VED, ∀l ∈ Sk

∑
k∈VED

ri
kl = Li, ∀i ∈VED, ∀{l | EDi ∈ Ol}

MT T F ∑
l∈Sk

Ekl

N

∑
i=1

ri
kl ≤

Ea

kB
, ∀i,k ∈VED

The last set of inequality constraints combined with the new objective variable ensures that the

minimum MTTF of all nodes in the network is maximized. We convert this problem into an

equivalent linear programming formulation by change of variables y = 1/MT T F .

minimize y (3.39)

subject to ∑
l∈Sk

(ri
kl− ri

lk) = Li, i = k ∀i,k ∈VED

∑
l∈Sk

(ri
kl− ri

lk) = 0, i ̸= k ∀i,k ∈VED

ri
kl ≥ 0, ∀i,k ∈VED, ∀l ∈ Sk

∑
k∈VED

ri
kl = Li, ∀i ∈VED, ∀{l | EDi ∈ Ol}

∑
l∈Sk

Ekl

N

∑
i=1

ri
kl ≤ y

Ea

kB
, ∀i,k ∈VED

We can interpret the above problem as minimizing the upper bound q on the inverse of
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the mean time to failure of all nodes in the network. Following a similar rationale as discussed in

Section 3.6.1, we propose to solve this problem in a distributed manner. A centralized solution is

not desirable due to lacking scalability and flexibility. Therefore, we decompose the problem

into subproblems with dual decomposition, then solve them distributedly at each node using the

subgradient method.

Distributed Algorithm. We first convert the problem in Equation (3.38) into a completely

decomposable form by introducing additional variables. The objective function y is replaced

by ∑i∈VED y2
i , similar to the technique presented in [126]. Under this new objective function,

network lifetime optimization is reformulated as a quadratic programming problem.

minimize ∑
i∈VED

y2
i (3.40)

subject to ∑
l∈Sk

(ri
kl− ri

lk) = Li, i = k ∀i,k ∈VED

∑
l∈Sk

(ri
kl− ri

lk) = 0, i ̸= k ∀i,k ∈VED

ri
kl ≥ 0, ∀i,k ∈VED, ∀l ∈ Sk

∑
k∈VED

ri
kl = Li, ∀i ∈VED, ∀{l | EDi ∈ Ol}

∑
l∈Sk

Ekl

N

∑
i=1

ri
kl ≤ yk

Ea

kB
, ∀i,k ∈VED

yi = y j, ∀i ∈VED,∀ j ∈ Si

Here, we have local variables yi’s for each node and constraints that enforce them to be equal.

The objective function is quadratic and thus strictly convex in the yi’s. We need to find a flow

r minimizing this objective, such that 1
yi
≤ MT T Fed,i(r), which can be done using the dual

decomposition approach.

We construct the dual problem by introducing Lagrange multipliers υi for the flow

conservation constraints and νi j for the lifetime equality constraints. This results in Partial
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Lagrangian given by (3.41), where the linear equality constraints (temperature constraints) are

not relaxed as they can be satisfied locally at each node. We also do not include the single

gateway communication constraint ∑k∈VED ri
kl = Li. Instead, we manually set the flows ri

kl = 0

for all i,k ∈ VED and all l ∈ VG such that EDi /∈ Ol . This ensures there are no flows to other

gateways and all the flow is restricted to be communicated to the assigned one.

L(y,r,υ ,ν) = ∑
i∈VED

y2
i

+ ∑
k∈VED

N

∑
i=1
i=k

υ
i
k

{
∑

l∈Sk

(ri
kl− ri

lk)−Li

}

+ ∑
k∈VED

N

∑
i=1
i ̸=k

υ
i
k

{
∑

l∈Sk

(ri
kl− ri

lk)
}

+ ∑
i∈VED

∑
j∈Si

νi j(yi− y j)

=− ∑
k∈VED

N

∑
i=1
i=k

υ
i
kLi + ∑

k∈VED

{
y2

k

+ yk ∑
l∈Sk

(νkl−νlk)+
N

∑
i=1

∑
l∈Sk

ri
kl(υ

i
k−υ

i
l )
}

(3.41)

The dual function is given by

g(υ ,ν) =

inf
r,y

{
L(y,r,υ ,ν)

∣∣∣∣∣ 0≤ ri
kl, ∀i ∈VED,∀l ∈ Sk

∑
l∈Sk

Ekl
N
∑

i=1
ri

kl ≤ yk
Ea
kB
, ∀i,k ∈VED

}
(3.42)

From the expression of the Lagrangian, it is clear that the dual function can be evaluated

separately in the variables corresponding to each node k ∈ VED. The variables local to node

k are yk and ri
kl , l ∈ Sk. We use the subgradient method [127, 128] to solve dual problem in a

distributed manner.

89



Gateway 1

Reliability
Controller

Thermal
Controller

Performance
Controller

Top-Level Controller

Reliability
Controller

Thermal
Controller

Performance
Controller...

Local DRM 1 Local DRM N
Rtarget

Tref

Pref PrefLref Lrefq q

∆f   ∆L ∆f    ∆L

λtarget λtarget

1

1

1 1 1

11

1

Rtarget
N

Tref
N

NN N

N N

NTamb,1 Tamb,N

Gateway M

Reliability
Controller

Thermal
Controller

Performance
Controller

Top-Level Controller

Reliability
Controller

Thermal
Controller

Performance
Controller...

Local DRM 1 Local DRM N
Rtarget

Tref

Pref PrefLref Lrefq q

∆f   ∆L ∆f     ∆L

λtarget λtarget

1

1

1 1 1

11

1

Rtarget
N

Tref
N

NN N

N N

NTamb,1 Tamb,N

11

1

1

1

1

11

1

M

M

M

M

M M

M

M

M

1 M

Quadratic 
Program

Subgradient 
Update

Local Flow Control 1

Quadratic 
Program

Subgradient 
Update

Local Flow Control N1

Quadratic 
Program

Subgradient 
Update

Local Flow Control 1

Quadratic 
Program

Subgradient 
Update

Local Flow Control NM

yk, rkl, uk, vkl yk, rkl, uk, vkl yk, rkl, uk, vkl 

Inter-Gateway Manager
In

tr
a-

G
at

e
w

ay
 M

an
ag

e
r

Reroute Signal Reroute SignalEmergency Signal Emergency Signal

Routing

Figure 3.13. Framework block diagram

Subgradient Method: It is an iterative optimization algorithm for minimizing nondiffer-

entiable convex functions. At each iteration t, the nodes only use the local information available

Ekl and the Lagrange multipliers υk(t), νkl(t) to solve the following convex quadratic program

with variables yk(t), ri
kl(t) for k ∈VED, l ∈ Sk.

minimize y2
k(t)+ yk(t) ∑

l∈Sk

(νkl(t)−νlk(t)) (3.43)

+
N

∑
i=1

∑
l∈Sk

ri
kl(t)(υ

i
k(t)−υ

i
l (t))

subject to ∑
l∈Sk

Ekl

N

∑
i=1

ri
kl(t)≤ yk(t)

Ea

kB

ri
kl(t)≥ 0, ∀i ∈VED, ∀l ∈ Sk

The optimal values of the above problem are then used to evaluate the subgradient

components of −g for given (υ ,ν) pair at iteration t. The subgradients are given by

f i
k(t) =

 Li−∑l∈Sk
(ri

kl(t)− ri
lk(t)), i = k

−∑l∈Sk
(ri

kl(t)− ri
lk(t)), i ̸= k

hkl(t) = yl(t)− yk(t) (3.44)

90



Finally, the Lagrange multipliers υk(t) and νkl(t) are updated using the subgradients

based on the following equations:

υ
i
k(t +1) = υ

i
k(t)−β (t) f i

k(t) (3.45)

νkl(t +1) = νk(t)−β (t)hkl(t) (3.46)

where β (t) is a positive scalar step-size. After solving problem (3.43) and updating the Lagrange

multipliers, each node exchanges the updated values of yk, rkl , υk, and νkl with their neighbors

l ∈ Sk.

3.8 Evaluation

3.8.1 Experimental Setup

To illustrate the effectiveness of our solution, we conduct experiments on realistic edge

computing scenarios. In our simulations, we use real power and temperature measurements

collected from actual IoT devices. The experiments are realized on MATLAB. Fig. 3.13 shows

the block diagram of the simulation infrastructure. Some important model parameters used in

the simulation are summarized in Table

Table 3.2. Model Parameters

Parameters Value Parameters Value
a 1.59e-11 g 0.12e+7
b 8.62e-7 SI 0.1 s

C f 0.22 MI 1 s
Cs 1e-4 LI 86,400 s
β 3.2 T re f 45◦C
ρ2 0.064 W εG 10

Hardware: The target edge devices are Raspberry Pi 2 with ARM Cortex-A7 CPU

and the gateway is a Raspberry Pi 4 Model B with Arm Cortex-A72 CPU. The gateway (Pi 4)
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exhibits around ten times more instructions per second compared to edge devices (Pi 2) [129].

We measure the CPU and WiFi power consumption and temperature of the edge devices by

running various applications under different ambient temperatures, then fit the models in Section

III. The maximum power consumptions of PU and RF components are Pmax
pu = 2.16W and

Pmax
r f = 1.44W respectvely. We use the T-KiBaM [108] as our battery model to realistically

capture the discharge characteristics of the batteries. For reliability analysis, we calibrate the

parameters of the model in Equation (3.12) by selecting a worst-case, a nominal, and a best-case

device operation temperature throughout its lifetime. These values are selected to be 70◦C, 45◦C,

and 20◦C respectively. We test our proposed technique with trace driven network simulations,

following the characteristics of the modeled platform.

Environment: The reliability heavily depends on the temperature of the environment

that the device operates, so we consider various ambient temperature conditions. We use the

temperature dataset from [130], which contains hourly ambient temperature measurements of

36 cities for 5 years from 2012 to 2017. To demonstrate the effect of ambient temperature, we

simulate scenarios in very hot (e.g., Phoenix) and cold (e.g., Toronto) locations. Moreover, we

consider the effects of the device being placed in different places by selecting the temperature

as Tamb±U(−10,+10) , where U is a uniform distribution. For example, a device placed in

a closed container, when airflow around the device is restricted, so its heat is trapped, and the

container is in the sun, will have much higher ambient temperature than a device placed under a

shade in open air.

Application Scenario: Tasks assigned to the edge devices can be any segment of an

application’s pipeline. For example, traditional ML applications can be hierarchically segmented

into filtering, feature extraction, and classification tasks. Or, neural networks (NN) can be

inherently segmented into layers that have different jobs (e.g., convolutional layers for feature

extraction in CNNs). In our experiments, we consider the ML classification and regression tasks

characterized for edge computing settings in [41] with their corresponding power consumptions.

These classification and regression tasks can either run on the edge devices or the gateway. In
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the simulations we assign tasks in a randomized fashion, to immediately run one after another.

The task sizes are sampled from an exponential distribution, where the mean size is 5 MB. Task

are completed when all the data belong to a task is processed either by edge device or gateway.

We randomly pick delay-sensitive or delay-tolerant tasks from the whole set of tasks. For

delay-sensitive tasks, the task deadlines Dm are assigned randomly from a uniform distribution,

U(0.2,2) seconds. The offloaded data for a given task should not wait in the gateway queues

longer than the assigned deadline.

We conduct experiments based on a practical scenario of human activity recognition

(HAR) [131], implemented on edge devices [92]. The task is to infer the label for one of five

everyday activities (e.g. walking, running, cleaning, etc.) at the edge device using data gathered

from three IMU sensors mounted at the chest, ankle and wrist, along with a heart rate monitor.

The input rates from sensors to the classification task change due to (i) varying number of

inference requests per second (QoS requirement), (ii) differing sampling rates of sensors based

on desired signal quality [92]. We randomly assign the data input rate λ target for a given task and

choose it from a uniform distribution, U(0,1) Mbps. Furthermore, we assume that each gateway

can allocate µG = 3 Mbps processing rate for the offloaded data, deterministically, constant

throughout the experiments.

Topology: In the following, we first present results on an example of local network with a

single gateway and solely demonstrate the performance of the Intra-Gateway Management piece

of our approach. We then consider a large-scale example with multiple gateways for thorough

evaluation. For both scenarios, we set the bandwidth limit to be BW = 5 Mbps for each local

network (per gateway).

3.8.2 Local Network - Single Gateway Results

We perform simulations on a network with single gateway and 8 edge devices ran-

domly distributed over a field of 50m x 50m, with dmax = 25. We compare our Intra-Gateway

Management approach with the following techniques:
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• No ERC-ETC is our solution without the Edge Reliability Controller (ERC) and Edge

Thermal Controller (ETC).

• All Edge is the naive approach which assigns all the computation to the edge devices with

no offloading to the gateway.

• Round Robin is a method where the edge devices take turn offloading data.

• Samie (the name of the author) is the work presented in [38]. At each iteration of the

algorithm, it finds the edge devices with the lowest and the second lowest battery life.

Then, if their lifetimes can be extended by increasing offloading, the edge devices are

allocated more communication bandwidth.

• Pagliari (the name of the author) [45] makes the decision for offloading based on a

combined metric of energy consumption and execution time demands of the tasks.

Reliability and Temperature: We first analyze the reliability gains of adopting our solution.

The target reliability for the edge devices is empirically selected to be 0.85 at tli f e of 3 years

(36 months). Values ranging from 0.6 to 0.9 are commonly selected as the cut-off levels for

3 to 5 years of target lifetime [10]. Fig. 3.14 shows the time it takes for the edge device with

the minimum reliability in the network to violate the target reliability of 0.85. The results are

presented relative to the target lifetime of 36 months. Our approach reaches the target reliability

at 37.7 months, whereas all other approaches fail much sooner, falling short by as much as 20

months, 7 months being the best. Fig. 3.15 shows the reliability curve and temperature vs time

for the edge device with the minimum reliability for our approach. The target reliability is met

very closely at 3 years. As seen from the plots, the Edge Thermal Controller outputs a lower

reference temperature when the average internal temperature of the device increases due to the

varying ambient temperature.

Energy Savings: Fig. 3.16 presents the minimum remaining battery energy in the network.

The values are plotted relative to the All Edge approach which consumes the most energy out
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of all methods. Our approach shows similar quality in terms of energy efficiency compared to

the relative approaches while meeting the reliability requirements. Samie [38] displays good

results because their algorithm is tuned for energy savings, at each iteration of their algorithm, it

specifically tries to improve the energy consumption of the device with the lowest battery energy.

However, Samie’s approach violated reliability target by more than 15 months as can be seen in

Fig. 3.14.

Quality of Service: As described in Section 3.4, there are three QoS constraints: input

data rate, network bandwidth, and task deadlines. The proposed controller satisfies all of them for

a single local network. There are no violations due to the strict constraints in the MPC controller

employed. A detailed evaluation is carried out for multi-gateway networks in the following

subsection.

3.8.3 Multi-Gateway Network Results

We further evaluate our proposed solution including both the Intra-Gateway Management

and the Inter-Gateway Management components on multi-gateway networks. The experiments

are repeated for different number of gateways: 2, 3, 4, and for different number of edge devices:

12, 36. Network devices are assumed to be randomly distributed over a field of 100m x 100m,

with dmax = 50. All other parameters and variables are kept the same as for the local network

simulations.

None of the comparisons in the previous section were proposed for multi-gateway

systems, so we modified them by adding routing and gateway selection capabilities. We select

three baseline methods: All Edge, Fixed + Samie, and Fixed + Pagliari. The prefix label Fixed

means that the routes are static and the topology is fixed. We assign N/M edge devices to

their closest gateways and the assignments do not change over the simulation horizon. We pick

Samie [38] and Pagliari [45] for further evaluation as the former was the approach providing

the best battery lifetime and the latter was the best reliability comparison. For more elaborate

testing, we also implement them on top of our Intra-Gateway Management solution for routing
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and gateway assignment, denoted by IG. This helps us single out and show the contribution of

Intra-Gateway Management when compared with the Fixed versions of the same methods. The

evaluated approaches are summarized below.

• All Edge assigns all the computation to the edge devices with no offloading to the gateways,

only the output of the compute processes are communicated to the gateways.

• Fixed + Samie is Samie’s approach with fixed topology.

• Fixed + Pagliari is Pagliari’s with fixed topology.

• IG + Samie is Samie’s approach with our routing and gateway selection method added.

• IG + Pagliari is Pagliari’s approach with our routing and gateway selection method added.

Reliability: Similar to the local network simulations, the target reliability for edge

devices is selected to be 0.85 at 36 months. In other words, the degradation in the reliability of

edge devices should not exceed 0.15 to achieve desirable MTTF. Fig. 3.17a illustrates how long it

takes for the edge devices to degrade below this desired value. The results are given for a network

of 12 edge devices, but only the minimum lifetime amongst those is plotted. The target reliability

is reached in 39.2, 43.2, and 46.5 months with our approach for 2, 3, and 4 gateways respectively.

All approaches follow the same trend with an improvement in lifetime for increasing number of

gateways. When there are more gateways, offloaded data needs to travel less, either in terms of

the number of routing hops or the actual physical distance. Moreover, edge devices can offload

more data because bandwidth occupation and queue lengths at the gateways are reduced. The

proposed approach delays reliability violation by 5.8 months compared to the closest approach

(IG+Pagliari) for 2 gateways to as much as 7.4 months for 4 gateways. Except the proposed

approach, all approaches fail to meet the target time of 36 months for the configuration with 2

gateways. We also observe that introducing Inter-Gateway Management to other approaches

improves lifetime. For example, Pagliari approach gains 2.3 months with IG over fixed gateway

assignment and routing.
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Figure 3.17. The lifetime until reliability target violation

For the network with 36 edge devices, as shown in Fig. 3.17b, edge devices degrade at

higher rates and reliability target is violated sooner. The bandwidth gets occupied much faster,

queues are filled up, and edge devices can offload much less data to the gateways. As a result,

all approaches tend to behave more like the All Edge approach, because most of the processing

should be done at the edge devices in the lack of offloading opportunities. In this case, the

performance gap between the proposed approach and others is widened, displaying at least 7.4

months difference for 2 gateways.

Energy Savings: The primary goal in this work is to reduce maintenance costs of IoT

systems by means of reliability management. Maintenance costs arise as a result hardware faults,

which require repair, component replacement, or complete node replacement. The hardware

faults can be attributed to power outages caused by battery depletion and failures due to reliability

degradation. Therefore, as in [132], maintenance cost for a network can be formulated as a

function of both energy depletion and reliability degradation. It should be noted that one may
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maximize the time it takes for the batteries to deplete by simply choosing to offload if the

communication power consumption is lower than computation for a given task and input data

rate. This does not necessarily improve device lifetime or maintenance cost as these decisions

can induce higher reliability degradation on the device. Also if there are energy harvesting

sources available, then metrics such as battery lifetime do not carry significance as much.

We are interested in an evaluation criteria that covers both energy savings and reliability

degradation. In particular, we want to answer the question: “The energy savings come at the

cost of how much degradation in reliability?”. Intuitively, the amount of loss in reliability should

decrease with increasing energy savings. However, it is not only the amount of energy saved

that influences reliability; the timing of savings are critical as well. If the device has high power

dissipation during times when its temperature is high (due to ambient conditions), then the

effect of this on its reliability will be detrimental. Ideally, energy savings should come when the

ambient conditions are severe, and power dissipation should occur when device is cooler. This

arrangement would lead up to the least amount of loss in reliability.

In Fig. 3.18a, we evaluate and show energy savings over degradation in reliability for

each approach with a network of 12 devices. The results improve with energy savings and

inversely proportional to degradation. We find energy savings relative to the baseline approach

All Edge where edge devices do all the computation. For example, energy saving value 1.2 means

the battery lifetime is 20% improved over running all the workloads on the edge, without any

offloading. Reliability degradation is calculated in the standard way used throughout the chapter.

It can be seen from the plots that the proposed approach provides high energy savings while

preserving reliability, up to 49.0% improvement over the closest approach for 3 gateways. This

can be attributed to the fact that our approach offloads computation to both reduce thermal stress

and save energy, i.e., the savings come at the right time and in the right amount. The difference

between All Edge and the others is evident with higher number of gateways since offloading

becomes much more efficient compared to local processing.

The same procedure is repeated for a network with 36 edge devices and the results are
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Figure 3.18. Energy savings over reliability degradation
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depicted in Fig. 3.18b. Similar to our reliability results, the improvements decrease when there

are more edge devices in the network. For example, the proposed approach is 6.48x better than

All Edge for the network with 12 edge devices and 2 gateways whereas the gain is 5.32x for 36

edge devices. Deploying more gateways per edge device can extend the lifetime of the edge

devices and reduce their energy consumption.

Quality of Service: All approaches satisfy the bandwidth constraints since each are

strictly forced not to exceed them. We report task deadline miss ratios and gateway utilization

values in Table 3.3. The experiments are simulated for a network of 36 edge devices and 3

gateways. Averaged deadline misses and gateway utilization are given over all devices. We

define gateway utilization as the percentage of time the gateway is busy. A gateway is assumed

busy unless there is no data waiting in its input queue to be serviced. Deadlines are missed if

data of a certain task waits in the gateway queue longer than the task deadline.

Our proposed approach does not miss any deadlines because the queueing dynamics and

maximum deadline constraints were explicitly considered in the solution. As a naive approach,

the tasks can always be executed completely on edge devices at the desired input rates. This

would also yield zero deadline misses, but perform the worst in terms of reliability and energy as

shown above. The proposed approach offloads data to preserve energy and reliability whenever

it is possible to do so without violating deadlines. In such cases when gateway queue lengths

grow and execution times approach maximum deadline values, operation is switched to complete

local processing to avoid any misses. Other approaches are not deadline-aware and produce

misses from 3.8% (IG + Pagliari) up to 22.1% (Fixed + Samie). Fixed routing and gateway

assignments particularly increase deadline misses since it is not possible to reassign edge devices

to different gateways when queues are filled up. Pagliari [45] approach considers task execution

times which improves its performance in comparison to Samie [38].

We explicitly report individual gateway utilization values along with their average to show

the variation between different gateways in the network. For all approaches the gateways are

highly utilized since there is a large number of edge devices per single gateway. It is favorable to
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Table 3.3. Quality of Service

Deadline Misses [%]
Gateway Utilization [%]
G1 G2 G3 Avg

Proposed 0.0 90.6 94.1 92.2 92.3
Fixed + Samie 22.1 62.0 99.9 91.3 84.4

Fixed + Pagliari 7.7 54.5 67.5 66.7 62.9
IG + Samie 8.2 96.4 99.1 98.5 98.0

IG + Pagliari 3.8 80.6 87.1 84.0 83.9

utilize the gateways whenever appropriate by offloading data since it reduces the excessive load

on the edge devices. Our approach has the second highest average utilization with 92.3% after

IG + Samie with 98.0%. Samie approach iteratively increases offloading and uses more gateway

resources if communication is more energy efficient than computation for a given task and data

rate combination. This usually results in completely utilizing the gateways until no available

resources left, which also leads to deadline misses. In comparison, the proposed approach is

more conservative with the gateway use and avoids any adverse overutilization outcome.

The balance of utilization across gateways is an important criteria for QoS as well. For

Fixed + Samie, some gateways are overloaded (99.9% and 91.3% utilization) with offloaded data

despite other gateways being underutilized (62.0% utilization). Such an unbalanced employment

of gateway resources would lead to suboptimal QoS; the load on the gateways should be dis-

tributed evenly. Our approach and the other approaches assisted by Inter-Gateway Management

exhibit low utilization variation between different gateways. The maximum deviation is ±3.5%,

±2.7%, and ±6.5% for Proposed, IG + Samie, and IG + Pagliari respectively. Gateway assign-

ments are based on fairness under Inter-Gateway Management, hence, it balances out bandwidth

and gateway utilizations across local networks.

Delay-Sensitive Tasks. For the above experiments, we picked delay-sensitive or delay-

tolerant tasks randomly from the whole set of tasks. The existence of delay-tolerant tasks helps

edge devices to more flexibly offload data as long queue wait times are not a problem for them.

Intuitively, it is favorable to serve delay-sensitive tasks at the edge devices whereas offload

the delay-tolerant tasks. We conduct further experiments, separately for delay-tolerant and
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delay-sensitive tasks, to elaborate on this intuition. The experiments are simulated for a network

of 36 edge devices and 3 gateways similar to the previous Quality of Service experiments, but

we only report results for our proposed approach. For delay-sensitive tasks, we assign the task

deadlines Dm randomly from a uniform distribution, U(0.2,2) seconds.

Table 3.4. Quality of Service for Different Task Types

Deadline Misses [%]
Gateway Utilization [%]
G1 G2 G3 Avg

Delay-Tolerant 0.0 98.6 97.4 97.4 97.8
Delay-Sensitive 0.0 82.6 86.9 85.4 85.0

Table 3.4 presents the deadline miss and gateway utilization results for the two task types.

For both, we have 0.0% deadline misses because the tasks can always be executed completely

on edge devices at the desired input rates as a naive approach. On the other hand, gateways are

utilized more for the delay-tolerant tasks compared to delay-sensitive tasks, with averages 97.8%

and 85.0%, respectively. If the queue is already filled and the wait times are higher than task

deadlines, then the data of delay-sensitive tasks are processed at the edge device instead of being

offloaded.

Packet Loss. Throughout our experiments, the assumption was that the communication is

perfectly reliable. Therefore, every packet transmission is assumed successful, i.e., no packet

drops. This might not be true in realistic communication scenarios. Here, we consider a more

practical scenario, with probabilistic packet losses where retransmissions are handled with a

mechanism like TCP. For simplicity, we set a link erasure probability, that is, the probability of

losing the complete data that belong to a task, instead of specifying a bit error rate or a packet

error rate. Then, data offloading for a task fails with probability pe. When failure occurs, the

complete task data needs to be communicated again. For example, if the task size is 5 Mb and

data rate is 1 Mbps, then the offloading of this task is delayed by 5Mb
1Mbps = 5sec in case of a failure.

We run simulations for various failure probabilities and report corresponding deadline misses in

Table 3.5. Only delay-sensitive tasks are used for these experiments with the aforementioned
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specifications.

Table 3.5. Quality of Service Under Packet Loss

pe 0.0 0.1 0.2 0.3 0.4 0.5
Deadline Misses [%] 0.0 3.3 6.8 17.2 34.5 72.1

As seen from the table, deadline misses are not 0.0% as we impose transmission failures.

This is expected as our algorithm does not account for the possible connection errors. When

the transmission fails for a task, the queue fills up due to other offloading edge devices until the

retransmission starts. Since the proposed method does not include the retransmission delay in

the overall delay calculation, we start observing deadline misses.

Low-Capability Edge Devices. According to our edge device model and task input rate

specifications, the tasks can always be executed completely on edge devices at the desired input

rates. In other words, the edge devices can support up to 1 Mbps data processing rate, which

is the maximum λ target value we set for our tasks. As a result of this assumption, deadline

misses can be avoided with the naive approach of processing everything on the edge devices

with no offloading. Though, it should be noted that this approach severely degrades edge device

reliability and consumes excessive energy. We now assume low-capability edge devices that

have lower processing data rates than the maximum task input rate. Let us randomly assign the

data input rate λ target for a given task and choose it from a uniform distribution, U(0,1) Mbps

as before, but limit the edge device processing rate µ . Below table shows deadline misses for

various limits µlim on edge device processing rates. Only delay-sensitive tasks are used for these

experiments with the aforementioned specifications.

Table 3.6. Quality of Service Under Packet Loss

µlim [Mbps] - 0.9 0.8 0.7 0.6 0.5
Deadline Misses [%] 0.0 0.0 2.6 4.1 5.8 10.8

The proposed approach can still meet the deadlines perfectly when the edge devices are

only capable of processing data with rate 0.9 Mbps. However, deadline misses increase with
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decreasing µlim as edge devices necessarily need to offload more data.

Communication & Computation Overhead: We evaluate the overhead of the com-

munication for Intra-Gateway Management and Inter-Gateway Management on the actual data

communication between edge devices and gateways. Let Mngmt Data be the total amount of

data exchanged for management and Task Data be the total amount of task-related data offloaded

by the edge devices to gateways. Then, the overhead in the occupied communication bandwidth

is defined as:
Mngmt Data
Task Data

×100% (3.47)

We simulate and log all data exchanges within network devices, then sum the values to find

the total amounts for both management-related and task-related data. The experiment is done

for the same network as previous subsection, consisting of 36 edge devices and 3 gateways.

Data exchanges for management is found to be introducing 2.8% overhead in communication

bandwidth. We also measure the overhead in the number of messages communicated, computed

as follows:
Mngmt Msgs
Task Msgs

×100% (3.48)

where Mngmt Msgs is the total number of messages exchanged for management and Task Msgs is

the total number of task-related messages communicated. Here we assume that data for each task

is sent in a single message, but in practice it should be packetized. Thus, we essentially measure

the number of times a new connection (e.g., a TCP flow) is established between two devices.

Results show that the overhead in the number of exchanged messages is 11.2%. Management

messages are small because they contain a few values whereas task-related messages is large

in volume. Therefore, if the task-related messages are packetized, then they overwhelm the

management messages in count.

The Intra-Gateway Management requires the communication of power consumption and

battery energy values from edge devices to gateways. Then, the gateways communicate back

offloading rate values to the edge devices. This needs to be repeated every medium interval (MI).
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A total of 5N real numbers are communicated per MI seconds. For Inter-Gateway Management,

the subgradient method is fully-distributed and iteratively converges to the solution. Each edge

device exchanges the updated values of optimization variable, decision variable, and Lagrange

multipliers of the subproblems they are solving with their neighbors. A node is then needs to

communicate 3N+M+1 real numbers per neighbor. In the initial run of the distributed algorithm,

it converges to the optimal point after 5000 iterations for a network with 36 edge devices.

However, an optimal solution is not necessarily needed as Intra-Gateway Management carries

out further optimizations. The subgradient method can be terminated within 5% of the optimal

value around 1000 iterations. Moreover, the algorithm converges in much fewer iterations, lower

than 100, when initialized from the previous solution.

We also discuss the computation overhead of our solution. For Intra-Gateway Man-

agement, each edge device runs reliability, thermal, and performance controllers. The Edge

Reliability Controller solves a convex optimization problem. The computation of convex opti-

mization introduces a negligible overhead since the controller activates by intervals in the order

of days. The Edge Thermal Controller and Edge Performance Controller are simply linear

state-feedback controllers that can be implemented with a single floating-point dot-product per

iteration. The Gateway Top-Level Controller solves a standard quadratic programming (QP)

form MPC with a linear system model at intervals in the order of a few seconds. For similar scale

QP problems to ours, commercial solvers can compute the solution under a millisecond [133].

Finally, we have two separate algorithms under Inter-Gateway Management: routing and gateway

assignment. Since the routing algorithm is a distributed implementation of a linear programming

problem, its computation involves solving only a very small scale convex optimization at each

edge device. This incurs a latency in the order of only microseconds. We use a centralized

approximate algorithm that heuristically searches for a solution to gateway assignment. This can

be computed under a second in modern processors in gateway devices [124]. It should be noted

that the frequency of Inter-Gateway Management updates are much lower in comparison.
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3.9 Conclusion

In this chapter, we introduced a dynamic management scheme for IoT edge computing

systems. The goal of our approach is to satisfy the Quality of Service (QoS) and reliability

requirements of the system while maximizing the remaining energy of the edge device batteries.

We considered a multi-gateway network and proposed a scheme with two interconnected com-

ponents: Intra-Gateway Management and Inter-Gateway Management. Together, they control

the offloading rates of edge devices, carry out gateway assignments, and orchestrate the routing

within the network. Each of the problems are handled in a distributed fashion, resulting in a

light-weight and scalable solution. The results indicate that our approach improves the lifetime of

a network with 36 edge devices by 5.8 months compared to the closest approach for 2 gateways

to as much as 7.4 months for 4 gateways. We also evaluated the energy savings and QoS for

various network configurations. Experiments demonstrated similar energy savings compared to

the state-of-the-art approaches while preserving reliability, but fewer task deadline misses.

Chapter 3 contains material from “Dynamic Reliability Management of Multi-Gateway

IoT Edge Computing Systems”, by Kazim Ergun, Raid Ayoub, Pietro Mercati, Tajana Rosing,

which appears in IEEE Internet of Things Journal [2]. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

Reliability-Aware Routing in IoT Net-
works

IoT networks operate in diverse and harsh environments that impose thermal stress on

IoT devices. The lifetime of these networks can be limited by hardware failures resulting from

exacerbated reliability degradation mechanisms at high temperatures. In this chapter, we propose

a novel adaptive and distributed reliability-aware routing protocol based on reinforcement

learning to mitigate the reliability degradation of IoT devices and improve the network Mean

Time to Failure (MTTF). Through routing, we curb the utilization of quickly degrading devices,

which helps to lower the device power dissipation and temperature, thus reducing the effect

of temperature-driven failure mechanisms. To quantify and optimize networking performance

besides reliability, we incorporate Expected Transmission Count (ETX) in our formulations as

a measure of communication link quality. Our proposed algorithm adapts routing decisions

based on the current reliability status of the devices, the amount of degradation they are likely

to experience due to communication activity, and network performance goals. We extend the

ns-3 network simulator to support our reliability models and evaluate the routing performance by

comparing with state-of-the-art approaches. Our results show up to a 73.2% improvement in

reliability for various communication data rates and the number of nodes in the network while

delivering comparable performance.
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4.1 Introduction

The Internet of Things (IoT) continues to rapidly develop as it is adopted progressively

across many domains such as logistics, farming, industrial and environmental monitoring,

healthcare, and smart infrastructures. The number of interconnected IoT devices will reach

40 billion by 2025 and worldwide spending on the IoT is already more than $750 billion [8].

Unfortunately, coupled with such dramatic growth, the inherent large-scale of the IoT brings a

maintainability challenge with high costs. Currently, the operational expenses reach up to 80%

of the overall cost [7], of which a significant fraction is due to hardware failures. While meeting

the needs of a growing range of applications, it is also a crucial requirement for IoT devices and

networks to operate reliably for long periods, otherwise, maintenance investments can become a

critical bottleneck for the growth of IoT.

Recent advances in energy harvesting techniques combined with energy-efficient ap-

proaches at different layers of the networking stack made it possible for IoT devices to have

substantially prolonged battery lifetimes. With batteries continuously being recharged by energy

harvesting sources, energy-neutral operation [134] for the network can be ensured. In such

networks, since the risk of batteries running out of energy is diminished, the limiting factor for

network lifetime are hardware failures due to reliability issues. As a result of aging and degrada-

tion, components in IoT devices lose reliability and eventually fail, leading to a permanent loss

of functionality.

Previous research has shown that reliability degradation of electronics worsens expo-

nentially with increasing temperature due to intensified effects of various mechanisms such

as Time-Dependent Dielectric Breakdown (TDDB), Electromigration (EM), Bias Temperature

Instability (BTI), and Hot Carrier Injection (HCI) [11, 55, 12]. IoT devices are often deployed

in harsh environments, resulting in stress on the hardware to reduce their reliability and mean

time to failure (MTTF). The majority of them typically do not have active cooling to mitigate

the thermal stress. In such cases, curbing power dissipation of devices helps to lower the device
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Figure 4.1. Reliability-driven routing in IoT networks.

temperatures and scaling down the effect of temperature-driven failure mechanisms to achieve a

better MTTF. Network routing can be useful in this regard; it is possible to place the IoT devices

into low-power states by avoiding them in communication paths. In this way, low reliability

devices in the network are utilized less to reduce thermal stress and slow down degradation.

Many energy-based routing algorithms have been proposed [135, 136, 137] with the goal

of extending the battery lifetime of IoT networks, but no work considers the reliability of IoT

devices. Here we refer specifically to the aging and reliability degradation of the hardware of

an IoT device, not the communication reliability or soft errors that are broadly studied. The

literature on network routing does not scrutinize the problem of hardware failures and reliability

issues as a bottleneck for the lifetime of networks. To improve the MTTF of IoT networks, a

reliability-aware routing should be designed following these principles:

1) Avoid the weakest nodes: As shown in Figure 4.1a, there are many situations that

may result in an unbalanced reliability degradation in IoT networks. We call this phenomenon

reliability gap, the situation in which there is a significant reliability difference between different

nodes of the network. Reliability gap can arise as a result of convergecast traffic patterns,

congestion, environmental stress, and disproportionate communication distances (Figure 4.1a).

For networks with convergecast traffic patterns and local congestions, some regions in the

network may have more traffic to forward, and hence, the nodes here are active more often than

the others. Similarly, some nodes may be exposed to higher thermal stress due to their physical
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location, especially in applications such as industrial and environmental monitoring. These nodes

may be the bottleneck for network lifetime since their reliability degrades rapidly and will be the

first to fail because of shortened MTTF. The networking load should be distributed as a function

of the reliability state of the nodes–besides network performance–by using reliability-aware

routing, thus avoiding the weakest nodes.

2) Use efficient communication links: If the communication link is of low quality and

inefficient, then the transmitter node must send many copies of the same packet to be correctly

captured by the receiver. Multiple retransmissions mean that the transmitter and receiver will

stay active and experience reliability degradation until a successful reception takes place. Using

better links improves both communication performance and device reliability. Therefore, the

routing protocol should be aware of the link quality and its influence on device reliability.

The typical approach for routing is to model the network as a weighted directed graph

and then find paths with the minimum cumulative weight. The weights of the graph edges and

vertices traditionally include a variety of node and link metrics: latency, hop count, stability,

bandwidth, throughput, and energy, or may be a composite of multiple metrics [58, 59]. The

impact of degradation mechanisms on device reliability has not been taken into account by

routing techniques to date. A simple example of how reliability might affect routing is shown in

Figure 4.1b. Node 2 is in a location exposed to higher temperature and thus has much higher

thermal stress than the other nodes. A traditional routing solution, shown in yellow, in the

bottom right figure, selects the least hop path between the source (S) and the destination (D)

nodes, routing through node 2, thus causing its early failure. Our solution, shown in the top

right figure, in green, takes a slightly longer path through nodes 1 and 3 but avoids the early

failure of node 2. Performance and reliability trade-off over a continuous sample space of

possible routing strategies is shown on the left of Figure 4.1b. Traditional routing solutions

purely aim at maximizing the aforementioned performance-related metrics. In contrast, the goal

of a reliability-aware routing solution is to find a favorable middle ground between performance

and reliability.
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In recent years, the complexity, dynamism, and heterogeneity of modern IoT networks

have driven a recent development of routing techniques based on reinforcement learning

(RL)[138, 139]. Traditional routing techniques, which are based on statistical assumptions

regarding traffic flows and network conditions, are more and more perceived as inefficient to

suit the diverse, complex, and highly changing conditions of IoT networks. RL-based routing

techniques have been shown to successfully address these challenges; they automatically learn

the dynamics of networks, such as new flow arrivals, congestion points, topology changes, quality

of links, and adapt to it.

In this chapter, we propose R3-IoT, a distributed reinforcement learning based reliability-

aware routing protocol for IoT networks. We maximize the reliability and hence the MTTF

of the most degraded nodes by (i) avoiding them in the communication path to minimize

their traffic, (ii) using high quality, reliable links to reduce retransmissions. Reliability and

Expected Transmission Count (ETX) [140] metrics are incorporated in the reinforcement learning

formulation. The routing policy learns from experience at runtime, using the past routing

decisions and their outcomes, to achieve high performance and to prolong the network lifetime.

To the best of our knowledge, we are the first to present a routing solution that explicitly

addresses the reliability degradation problem in IoT networks. We conduct extensive simulations

using a real-world ambient temperature dataset from the National Solar Radiation Database

(NSRDB) [141]. Our evaluation uses large-scale sensor network data, along with real device

measurements and models from the High-Performance Wireless Research and Education Network

(HPWREN) [76]. Since reliability is difficult to evaluate in practice, we use simulations based

on an extended version of ns-3 [17] to demonstrate that our routing approach can achieve

similar performance compared to the state-of-the-art while showing up to 73.2% improvement in

reliability for various communication data rates and number of nodes in the network.
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4.2 Related Work

4.2.1 Reliability in Routing

The term reliability, especially in networks, is associated with many different types

of failures. Almost all of the literature on network reliability focuses on communication link

reliability, that is, the situations where the connection between two nodes in the network fails.

In some papers, node failures are also included, but they can be categorized into three groups,

none of which handle hard errors: soft errors (causing random bit flips) [50], software reliability

issues [51], or batteries running out of energy [52, 53]. For example, in [51], software failures,

message congestion, VM failures on IoT devices are considered, and the failures are modeled as

a Poisson process with an average failure rate. There are also some hardware failures discussed in

various works (such as [54]), but they consist of superficial models of sensor faults; short faults,

constant faults, and noise faults. These types of failures are transient and can be more easily

fixed, whereas hard failures are not recoverable. We propose a routing solution that explicitly

addresses the reliability degradation due to hardware failure mechanisms, which is different from

previous works.

Hard failures, caused by well-known thermally-driven mechanisms in silicon, such as

TDDB, EM, BTI, result in a need to replace that electronic component in the field, leading to

high maintenance and replacement costs. Hard failure models have been studied extensively at

the circuit and chip level [11, 55, 12], and adopted for dynamic voltage & frequency scaling,

task scheduling, and power gating strategies in multi-core system-on-a-chips [10]. Prior to our

work in [142], nobody has considered how hard failures affect problems at the network level and

how networking might affect the electronics reliability. This work extends and improves [142]

by introducing a new reinforcement learning based protocol, whereas only a routing metric was

proposed in the former.
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4.2.2 Maximum Lifetime Routing

The problem of maximum lifetime routing has been extensively researched over the

last two decades for Wireless Sensor Networks (WSNs) and more recently for IoT networks.

Since the majority of WSN and IoT devices are battery-operated, the works in this domain are

directed towards improving battery lifetimes. In contrast to the approaches that aim at minimizing

the total or average energy consumption (e.g., LEACH [143], GEAR [144], ER-RPL [137]),

maximum lifetime routing can ensure a balanced depletion of energy among the network nodes.

By incorporating the residual energy of node batteries into routing decisions, quickly draining

nodes are avoided in the communication paths, and hence network lifetime is extended. A

detailed survey on this topic can be found in [52, 56, 57]. We next discuss a few representative

publications.

Chang and Tassiulas [53] define the communication link cost as a function of remaining

node energy and the required transmission energy for using that link. By using the Bellman–Ford

shortest path algorithm for the computed link costs, the least cost path – whose residual energy

is the largest – is found. Following similar methodologies, metrics such as link quality [145],

throughput [146], queue utilization [147], and so on were combined with residual energy to

achieve different objectives along with the network lifetime. The authors of [148] and [149]

proposed evolutionary algorithms for balancing the load and energy consumption of the nodes.

In [150], the traffic load is estimated and the optimal data path is computed to avoid energy holes

by efficiently utilizing the nodes that are susceptible to congestion. Although a myriad of studies

analyzed the network lifetime problem from an energy optimization perspective, to date, there is

no work that addresses the reliability issues in the way we do in this work.

Only a small subset of the proposed routing algorithms have found application in prac-

tice. There are prevalent routing protocols that have gone through the standardization process,

which demands a lot of time, effort, and is expensive. Thus, if impact is needed, building a

protocol completely from scratch is undesirable. Following this philosophy, modifications and
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improvements to various standardized protocols such as AODV [151], OLSR [152], RPL [153]

were proposed with a focus on extending network lifetime. Many studies engineered new routing

metrics that take into account residual battery energies [154, 155, 156]. Further modifications

are proposed in [157, 117]. Similarly, in our work we adopt and build upon the AODV (Ad hoc

On-Demand Distance Vector) protocol.

4.2.3 Reinforcement Learning Based Routing

Reinforcement learning based routing is gaining importance with the ever-increasing

complexity and dynamism of IoT networks and the recent advancements in machine learn-

ing [138]. The first application of RL in routing by Boyan and Littman [158] demonstrated that

RL is indeed a promising solution for complex communication networks. Since then, many

studies have been conducted using variants of RL algorithms with different networking objectives

and requirements. Most of the works in RL-based routing have utilized the well-established Q-

routing algorithm [158] as their underlying idea, albeit with some improvement [159, 160, 161].

Q-routing is based on the traditional Q-learning model in which each node makes its routing

decision based on the local routing information. Among many different objectives employed

using Q-routing based algorithms, the work in [161] reduces end-to-end delay. Work in [159]

couples Q-routing with on-policy Monte Carlo to reduce energy consumption and enhance the

network lifetime. The authors of [160] introduce a dynamic discount factor to Q-learning for

reducing the amount of route discovery processes after a link failure occurs.

A few recent works consider a combination of reinforcement learning with AODV

routing. For example, Q-learning AODV (QLAODV) [162] is a routing protocol that considers

link stability and bandwidth efficiency. In [163] the authors use a Bayesian Network to estimate

congestion levels and tune the learning weights where they consider signal to noise ratio, delay,

and throughput for making routing decisions. Residual battery levels and energy efficiency were

also explored as routing objectives in [164], where they are utilized to adjust the willingness of

nodes to participate in AODV routing with the SARSA learning algorithm. In contrast to the
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previous works on RL based routing, we consider the reliability of network devices which was

not studied before and we try to maximize hardware lifetime. Reinforcement learning based

AODV was particularly studied in MANETs and VANETs due to their erratic mobility, energy

consumption, and traffic profiles. It has shown promising results because of its adaptability in

such highly dynamic network conditions. Following this rationale, we propose a novel distributed

Q-learning based adaptive AODV routing approach. In our work, we model the dynamic factors

such as ambient temperature and computation workloads of IoT devices, as well as their effect on

reliability. We assume that IoT devices run various workloads which contribute to their heating,

combined with the thermal stress imposed by the environment. Our proposed approach is able

to adapt these variations in the network and discover better routes without having to know the

network topology and traffic patterns in advance.

To summarize, our main contributions are as follows:

• We explicitly consider hardware reliability in IoT network routing to reduce failures and

improve network lifetime.

• We incorporate node reliability and ETX metrics into Q-learning updates in our reinforce-

ment learning based approach. Through ETX, we assess the expected communication link

performance as well as the expected reliability degradation of a node. Thus, routing deci-

sions are driven by the current reliability of the nodes on the path, amount of degradation

they will experience due to retransmissions, and networking performance.

• We implement our routing mechanism in a novel routing protocol called R3-IoT.

• We model reliability in the ns-3 network simulator. To accomplish this, we include the

ambient temperature and computation workloads of IoT devices in our simulations.

• We compare R3-IoT to state-of-the-art routing protocols and show that the network

reliability is significantly improved while achieving similar performance.
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4.3 Reliability Modeling and Simulation

4.3.1 Device Modeling

Reliability is defined as the probability of not having failures up to a given time t. The

reliability function R(t), in general, can be expressed as a function of failure rate λ f (t) [55]:

R(t) = e−
∫ t

0 λ f (t ′)dt ′ (4.1)

From Equation (4.1), the rate of how quickly reliability is degrading is determined by the failure

rate, which depends on temperature, aging, device power state, and switching frequency between

power states.

In our reliability analysis, we focus on hard failure mechanisms that cause irrecover-

able device failures. Mechanisms such as Time-Dependent Dielectric Breakdown (TDDB),

Electromigration (EM), Bias Temperature Instability (BTI), and Hot Carrier Injection (HCI)

induce reliability degradation, and thus eventually cause failures. Failure rate models have been

developed for each mechanism, which show an exponential dependence on temperature that can

be described as follows:

λq = A0ηqe
− Ea

kTq (4.2)

∀q ∈ {Active, Idle,Sleep, ...

TransitionToSleep,TransitionToActive}

where A0 is an empirically determined constant, Ea is the activation energy, k is the Boltzmann’s

constant, and ηq is a constant depending on the respective mechanism and device. Here, we

consider temperature Tq of a device as a function of its power state, ambient temperature, and

time. When a device switches to a different power state, temperature increases/decreases until

it converges to a new steady-state value after a certain time. We assume that the IoT devices
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can be in various operational states (e.g., Active, Idle etc.) denoted q, characterized by power

dissipation, voltage, and frequency.

Figure 4.2 depicts a sample power state diagram of the device with the state transition

mechanisms and the parameters characterizing the states. Such state-based model is able to

represent the dynamics of IoT devices for many applications, yet convenient and adaptable for

simulation purposes. For IoT devices, switching between power states using duty-cycling and

wake-up radio techniques – usually implemented at Medium Access Control (MAC) layer – is

common for energy saving purposes [165]. The objective of state transitions (represented with

arcs) is to put the IoT device in low power modes when not communicating. In the idle state,

the system-on-a-chip (SoC) of the device is powered on but not communicating or processing

any packets. In the sleep state, most of the SoC subsystems are power-gated. In the active state,

the device is busy transmitting/receiving and processing packets. Power scaling methods such

as DVS policies can be used for transition between active states for some IoT devices, either

down-scaling to reduce power consumption or up-scaling to meet an application performance

criteria [134]. Transition to sleep and transition to active states model the time and power

consumption required to enter and exit the sleep state. Transition times to/from low-power states

follow average transition times tts, tta, respectively. Failure rates and the amount of induced
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reliability degradation change with each power state since different levels of power consumption

result in different temperature profiles. Ambient temperature heavily influences the device’s

internal temperature and has an effect in every operational state.

4.3.2 Reliability Simulation for IoT Networks

Analytical models for power, temperature, and reliability should be used to enable

reliability evaluation and analysis in network simulations. In this work, we leverage the recently

proposed RelIoT [166] framework for the ns-3 simulator and enhance it according to our

reliability modeling discussion.

The original framework offers an application-based power model that characterizes

power consumption of different applications running on IoT devices, particularly targeting edge

computing scenarios. Figure 4.3a depicts the node structure in ns-3 augmented with the RelIoT

framework, our modifications, and new additions. We implement a new power state machine

model as in Figure 4.2, for the communication component of a node’s power consumption

module. The state transitions take place according to the node’s communication activity. To

compute reliability, power/temperature/reliability model flow is initiated by state transitions
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as shown in Figure 4.3b. We adopt RelIoT’s first order differential temperature model, which

incorporates the dependence of node’s internal temperature on power and ambient temperature.

However, we change the temperature update mechanism. The model dynamically updates device

temperature when ambient temperature changes or a state transition occurs. During the transient

period, temperature increases/decreases until converging to the steady-state temperature of the

new operational state. Our modified reliability model dynamically updates the node’s reliability

through Equation (4.3) by recursively subtracting the degradation induced between consecutive

state transitions. The current implementation uses the reliability model presented in [12].

Rq = Rq′ −
(

R(tq′ ,Tq)−R(tq,Tq︸ ︷︷ ︸
degradation

)
)

(4.3)

The subscripts q and q
′
indicate the current and previous states respectively. Tq is the temperature

experienced by the device between two state transitions from time instants tq′ to tq. R(·) is the

static reliability function described in Equation (4.1). Finally, the reliability model connects with

our routing protocol so that reliability values can be monitored by the routing algorithm. Packet

structures are modified to accommodate for the requirements of our learning algorithm, which

are explained into more detail in Section 5.

In real systems, reliability tracking is possible with degradation, stress, or aging moni-

tors [167, 34, 35]. These monitors, based on ring oscillators that convert temperature and voltage

stress into oscillation frequency, give information on the accumulated stress of the SoC, which is

used to estimate failure rates and reliability degradation caused by different mechanisms (e.g.,

TDDB, EM, NBTI) [167, 34]. As an example use for IoT, the authors in [35] implement an

on-chip stress monitor for IoT devices and pave the way for its future usage in IoT maintenance

and management. The system reliability degradation status is usually an input into dynamic

reliability management (DRM) techniques [168] to improve device usage. In our case, we

propose to use reliability status as an input to our network routing protocol to drive routing
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decisions.

4.4 Reliability-Aware Routing with Reinforcement Learning

In the following, we first describe the system model and the problem. We next present

our proposed reinforcement learning based routing algorithm.

4.4.1 System Model

Consider an ad-hoc wireless IoT network deployed in a mesh topology. The network

consists of heterogeneous nodes that we classify into three categories: sensors, gateways, and

servers. Each category can have devices of different types. For example, the sensor node can

have ARM Cortex-M4 or ARM Cortex-A7 processors. The sensor nodes are ‘source’ nodes

that generate data, which needs to be communicated to a sink (i.e. server). Since the network

topology is mesh, nodes can cooperate to distribute and relay data in a multi-hop fashion. We

assume that gateways can do data processing.

We investigate a network with many sensor and gateway nodes but a single sink node,

similar to related works [162, 163, 164]. There are a total of N+1 nodes, where nodes i= 1, ...,N

denote sensor and gateway nodes and i = N +1 denotes the sink node. Source (sensor) nodes

generate data at rates ri, so the sink node receives their sum ∑ri. The distance between nodes i

and j is di, j. Let Ni denote the set of neighboring nodes to which node i can send packets to. Then,

Ni = { j : di, j < dmax}, where dmax is the distance of transmission with maximum power. The

notation j ∈Ni is used to show that node j is a neighbor of node i and they can communicate. The

nodes are static with fixed distances, so neighbors do not change. However, the communication

between neighbors is not perfect at all times because we assume lossy communication links,

which cause random packet drops.

As shown in Figure 4.4, nodes are characterized by their power consumption, temperature,

reliability, and the ambient temperature around them. We assume an energy harvesting network,

so the residual energy of batteries is not included in our model. In a heterogeneous network,
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Figure 4.4. System model.

the power, thermal, and reliability characteristics vary between different nodes. Each node

consumes the power amount Pcomp,i for computation and Pcomm,i for communication. Even

though our routing approach only has an impact on communication power consumption, the

routing decisions are made by taking into account the overall device temperature and reliability.

IoT devices usually run various workloads throughout their operation that contribute to their

power consumption. Therefore, we also consider the computation power consumption for the

nodes. The core temperature Tc,i of the nodes is influenced by their overall power dissipation

Pcomm,i +Pcomp,i and by the ambient temperature Tamb,i. Finally, Ri denotes the reliability, which

is heavily affected by temperature Tc,i. For the routing algorithm, the computation power

consumption Pcomp,i and ambient temperature Tamb,i are ‘external’ factors that influence node

reliabilities. A routing algorithm cannot control these variables, but the routing decisions should

be made in consideration of their effect on the overall reliability.

In such a setting, we seek to improve the network’s mean time to failure (MTTF) by

means of routing, while keeping performance at adequate levels. MTTF of a single node can be

expressed through Equation (4.4) as a function of reliability:

MT T F =
∫

∞

0
R(t)dt (4.4)

where R(t) is the reliability if a device at time t. Then, network MTTF is the minimum of any
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node in the network (i.e. min
i∈N

MT T Fi). Here we assume that the network lifetime is defined as

the time of first node’s failure, which is a common assumption. This definition is one of the

most prevelant in literature [52] and was used in many recent works [117, 118]. Improving the

network’s MTTF, or its lifetime in general, can be accomplished by maximizing the reliability of

the weakest nodes in the network and minimizing the overall reliability degradation on the nodes.

If the weakest node in the network has high reliability, then the time it takes for the first node to

fail on average will be extended. As stated previously, how quickly a node’s reliability degrades

relates to its communication activity, which is influenced by routing decisions. Hence, routing

can help prolong network lifetime.

Our goal is to have a protocol that improves the reliability, and hence the MTTF of the

most degraded nodes, as well as takes into account the performance in its routing decisions. The

routing protocol should (i) help avoiding paths with the minimum reliability nodes, (ii) utilize

efficient communication links, and (iii) lead to decisions that will induce minimal reliability

degradation.

4.4.2 Reinforcement Learning: Background

Reinforcement learning (RL) [169] is a framework in which an agent learns control

policies based on experience, for making decisions in an environment, to optimize a given notion

of rewards. The agent interacts over time with its environment, collects information, and selects

the action to be applied according to its goal and current state. What is good or what is bad for

the agent is defined by the reward signal. The environment returns a reward to the agent on each

time step to provide feedback about the effect of the recent taken action. The total amount of

reward an agent can expect to accumulate, starting from the current state, is estimated by the

value function. Reward signals indicate what is good (or bad) in an immediate sense, whereas

value functions indicate what is good (or bad) in the long run. Therefore, usually value functions

are the primary criteria when making and evaluating action decisions.

The problem of reinforcement learning is mathematically framed using a 4-tuple (S ,A ,
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P,R), where S is the set of states, A the set of actions, P the state transition probabilities,

and R the rewards. The agent and environment interact at discrete time steps (also called epochs),

t = {0,1,2,3, ...}. At each time step t, the agent observes state st ∈S , then selects an action

at ∈A . As a consequence of its action, one time step later, the agent receives a reward, rt+1 ∈R,

and finds itself in a new state, st+1. The probability of moving from state s to state s′ by taking

action a is:

p(s′|s,a) = Pr{st+1 = s′|st = s,at = a}

∑
s′∈S

p(s′|s,a) = 1 (4.5)

The objective of the agent while selecting a certain action is to maximize the total

cumulative reward it receives over its lifetime. Thus, the agent should learn which of its actions

are desirable in the long run. Based on this, actions are selected such that the return Gt , expressed

as the sum of discounted rewards, is maximized:

Gt =
∞

∑
k=0

γ
krt+k+1 (4.6)

where γ ∈ [0,1] is the discount factor. If γ = 0, the agent is called ‘myopic’, only being concerned

with maximizing the immediate reward. As γ approaches 1, the future rewards are taken into

account more.

The rewards the agent can expect to receive in the future depend on which actions it

will take. A policy π defines how the agent selects its actions. Formally, the policy π(s,a) :

S ×A 7→ [0,1] is a mapping from states to probabilities of selecting each possible action. The

value function V π(s) is the expected return of following a policy π when at a state s:

V π(s) = Eπ [Gt |st = s] = Eπ

[ ∞

∑
k=0

γ
krt+k+1|st = s

]
(4.7)
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Here, Eπ [·] denotes the expected value if the agent follows the policy π . The function V π is

particularly called as the state-value function. A similar function, denoted Qπ(s,a), is defined

for the expected return of starting from state s and taking action a under policy π . It is called as

the action-value function and expressed as: Qπ(s,a) = Eπ [Gt |st = s,at = a].

The goal of reinforcement learning is to find a policy that results in maximum reward in

the long run. A policy π is better than a policy π ′ if its expected return is greater than that of

π ′ for all states, i.e., π > π ′⇔V π(s)>V π ′(s), ∀s ∈S . The optimal policy π∗ has the optimal

state-value function V ∗ and action-value function Q∗, given as follows:

V ∗(s) = max
π

V π(s), ∀s ∈S

Q∗(s,a) = max
π

Qπ(s,a), ∀s ∈S , ∀a ∈A (s) (4.8)

The optimal value function V ∗(s) can be expressed through Equation (4.9) without reference to

any policy, in a special form called the Bellman equation [169].

V ∗(s) = max
a∈A

[
r+ γ ∑

s′∈S
p(s′|s,a)V ∗(s′)

]
(4.9)

Once V ∗ is obtained, the optimal policy can be determined by solving a system of equations.

However, explicitly solving the Bellman equation is rarely practical due to the large solution space

present in the majority of RL problems. There are many different methods that approximately

solve the Bellman equation at reasonable computational cost. In our problem, we use such a

method –Q-learning– since we deal with large networks and the learning has to take place on

resource-constrained IoT devices.

4.4.3 Q-Learning Based Routing Algorithm Design

In this work, we use Q-learning for routing, which is a model-free off-policy temporal

difference reinforcement learning approach [169]. Q-learning is based on the value of state-action
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pairs Q(s,a), called action-value function. We define the value of taking action a in state s under

a policy π , Qπ(s,a) as the expected return from taking such an action and thereafter following

policy π:

Qπ(s,a) = Eπ [Gt |st = s,at = a]

= Eπ

[ ∞

∑
k=0

γ
krt+k+1|st = s,at = a

]
= r+ γ ∑

s′∈S
p(s′|s,a)V π(s′) (4.10)

Thus, from Equation (4.9) and Equation (4.10), we have:

V ∗(s) = max
a∈A

Q∗(s,a) (4.11)

In Q-learning, the agent learning consists in a sequence of stages, called epochs. In epoch t, the

agent is in state st , it performs action an, it receives a reward rt , and it moves to state st+1. The

action value is updated as follows:

Q(st ,at)← (1−α)Q(st ,at)+α[rt+1 + γmax
a∈A

Q(st+1,at+1)] (4.12)

where α is the learning rate. The agent learns optimal policy with the help of a greedy policy

where an action can be chosen just by taking the one with the maximum Q-value for the current

state. Q-learning is a suitable method for online ‘runtime problems’ such as routing in our case,

because it only uses the most recent decisions to update its policy. Also, it converges to the

optimum action-values with probability 1 as long as all actions can be randomly sampled in all

states [170]. For this reason, it is an effective technique for learning from delayed reinforcement,

i.e. learning based on the reward that can be received far in the future. To map a routing problem

to a Q-learning problem, one needs to design the state space, action space, reward function, and

learning parameters:

126



• State (s): The current state of the agent is the index of the node holding the packet.

• Action (a): Selection of the node for the next hop.

• Reward (r): Higher rewards earned if the action brings the packets closer to the destination

node.

• Learning Parameters (γ ,α): Described in terms of reliability and performance related metrics

of the nodes.

States and Actions

For learning a routing strategy, each node is associated with a state s, and for each of its

neighbor s′, there is a corresponding action. Executing action a at s means forwarding the packet

to the neighbor s′ corresponding to that action. Let s = i denote the node holding a packet P

to forward and Qi(des, j) denote the Q-value of node i forwarding the packet to destination d

through next-hop node s′ = j. Then, the action-value updates are expressed through Equation

(4.13).

Qi(des, j) = (1−α)Qi(des, j)+α[r+ γmax
k∈N j

Q j(des,k)] (4.13)

Node i maintains a table of Q-values Qi(des, j) for each neighbor j and destination des, which

can be regarded as its routing table, telling which neighbor to forward the data. With the help of

this routing table, the optimal routing path can be constructed by a sequence of table look-up

operations. We treat the network as the environment and the nodes as the entities where the

agents reside. For a completely distributed Q-learning based routing, we assume that there exists

an agent at each node. The agents try to improve the current solution while switching between

exploration and exploitation of the solution space. The exploration and exploitation processes of

Q-learning have their own interpretations for routing. In our approach we adopt the ε−greedy

strategy. By default, a node selects the next hop node which has maximal Q-value to forward

data, which is called exploitation. However, with some probability ε it chooses a random node

which does not have maximal Q-value, this is called exploration.
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Reward Function

The reward function is critical to Q-learning, as it determines the behavior and perfor-

mance of the agent. The goal of the routing algorithm employing Q-learning is to get the packet

delivered to the destination (the sink node) with maximum expected return, i.e., minimum cost.

To prevent loops and ensure forwarding the packets towards the destination node, we need

increasing Q-values in the direction of the destination. Hence, we employ the following reward

function:

r =

 1 if i ∈ Ndes

0 otherwise
(4.14)

where Ndes is the set of neighbors of the destination des. This means that if a node receives a

packet from the destination, the reward will be 1 and otherwise 0. Therefore, only the immediate

neighbors of the sink node receives a reward of 1. By using this reward function, closer nodes

to the destination attain high Q-values. This reward propagates to the nodes away from the

destination, but it gets discounted more and more as it travels further.

Reliability-Aware Learning Parameters

To include both reliability and performance aspects in our Q-value updates, we propose

a composite discount factor (γ) function of a node’s reliability and its expected transmission

count (ETX) over communication links. Using this approach, Q-value of a node decreases at

each update if its reliability and link quality is low. The optimal policy is then the one which

picks both reliable nodes and reliable communication links for routing.

ETX is one of the most frequently used metrics in routing protocols. It estimates the

number of data transmissions required to send a packet over a link and get acknowledged,

including retransmissions. It is computed as:

ET X = 1/(pi 7→ j · p j 7→i) (4.15)
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Here, the notation pi 7→ j denotes the probability of successful packet delivery from packet source

node i to destination node j. We obtain both probabilities pi7→ j and p j 7→i with a message

exchange protocol that is explained in Section 5. Through ETX, we assess the link performance

as well as the expected reliability degradation for using that link. To calculate the reliability

degradation induced, we first estimate the traffic that the node has to forward. Let j denote the

node of interest, then the total allocated traffic for j is the sum of traffic it generates T Rgen
j and

the traffic T Rtotal
i incoming from its neighbors i:

T Rtotal
j = T Rgen

j + ∑
i|i7→ j

T Rtotal
i (4.16)

Multiplying this estimate of total traffic T Rtotal
j with the expected transmission count ET X j 7→i

and then dividing by the data rate r j of the node, we compute the expected communication time

through Equation (10).

tcomm
j = (T Rtotal

j ·ET X j 7→i)/r j (4.17)

Finally, in Equation (11), we estimate the reliability degradation D j induced by using Equations

(4.1) and (4.3).

D j = R(ts, j,Ts, j)−R(ts, j + tcomm
j ,Ts, j) (4.18)

Since D is proportional to ET X , its value will be higher for low-quality links. Selecting paths

with the minimum D utilizes efficient links (better performance with fewer packet loss) and

induces minimal reliability degradation.

As the second part of our composite function, we need a component that focuses on

the bottleneck in network MTTF: the node with minimum reliability. Thus, the discount factor

should be directly proportional to the current reliability R j of the nodes. Together with both the

degradation and current reliability metrics, a node computes its discount factor γ as

γ j = R j
2
π

arctan(
γ0

D j
) (4.19)
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where γ0 is a predefined constant. We use inverse tangent function to contain the value of γ j in the

interval [0,1]. Using this discount factor, Q-value is updated based on the current reliability of the

nodes, the amount of degradation they will experience due to retransmissions, and networking

performance (by the implicit use of ETX in the DEG function). The information is discounted for

each node it passes through and is also discounted according to the reliability and the expected

degradation of the nodes. In this way, we ensure that the route selected has less hops and is more

reliable.

Intuitively, by designing such a discount factor we do not only consider individual node

reliabilities at each single hop, on the contrary, we consider the overall system reliability from

the source to the destination. From Equation (4.10) and (4.12), we observe that the discount

factor is multiplied for each node Q-value is computed. A cumulative equivalent discount factor

for the overall system, from a source node src to a destination node des, can be expressed as

γeqv = ∏
des
j=src γ j = ∏

des
j=src R j

2
π

arctan( γ0
D j
). This multiplicative property of the discount factor

exhibits a meaningful resemblance to a common system reliability definition used in industry.

The system of n components fails if any of its components fails – as we have assumed in our

network lifetime definition – for systems organized in a ‘series’ structure. The series system

reliability is then given as follows[55]:

Rsystem(t) =
n

∏
i=0

Ri(t) (4.20)

at any time t throughout the operation of the system. It can be seen that the cumulative discounted

rewards over a packet route has a similar form to Equation (4.20).

In our work, we model the dynamic factors such as ambient temperature and computation

workloads of IoT devices, as well as their effect on reliability. We assume that IoT devices run

various workloads which contribute to their heating, combined with the thermal stress imposed

by the environment. Through this reliability-aware learning parameter, our Q-learning approach

is able to adapt these variations in the network and discover better routes without having to know
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the network topology and traffic patterns in advance.

4.5 R3-IoT Protocol Design

In this section, we describe several design considerations for our routing protocol, which

is a modified version of the Ad-Hoc On-demand Distance Vector (AODV) [151] protocol. We

explain implementation details including the route discovery mechanism, the packet structures,

the routing table, and the metadata exchanged between devices. We also discuss the overhead

involved. Finally, we present results on a small ‘toy’ example to demonstrate the route discovery

process of our approach.

4.5.1 Route Discovery Mechanism

Route discovery is carried out by Route Request (RREQ) and Route Reply (RREP)

packets as in the AODV protocol. The source node floods the network with RREQ packets,

which are forwarded through multiple hops until they reach to the destination. The RREQ

packets are only forwarded to the neighbor with the highest Q-value. When the RREQ packet

reaches the destination, the destination node returns an RREP packet through the same path that

the RREQ packet followed. In the original AODV protocol, each node broadcasts RREQ packets

to all of its neighbors. We choose where the packet should be forwarded independently at each

node based on greedy exploitation, that is, the packet is only sent to a single node of highest

Q-value. This significantly reduces the number of packets need to be communicated as there is

no need for broadcasting.

4.5.2 Packet Structure and Metadata Exhchange

To determine the ETX metric of a link between two nodes, ETX based protocols (e.g.,

AODV-ETX [171]) use Low Power Payload (LPP) packets. The successful packet delivery

probabilities pi 7→ j and p j 7→i in Equation (4.15) are estimated with the LPP packets that are

broadcasted over the network. Each node broadcasts LPP at an average period τ and remembers
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the LPPs received from its neighbors over the last w seconds, allowing to compute the probability

p j 7→i at any time t through Equation (4.21). Using relatively small size LPPs, this process incurs

only a marginal overhead and saves bandwidth.

p j 7→i =
count(t, t−w)

w/τ
(4.21)

where count(t, t−w) is the number of LPPs received by node i and w/τ is the number of LPPs

that was sent by node j during the window w. For the link i 7→ j, this allows node i to simply

estimate p j 7→i by counting successfully received LPPs from j. On the other hand, to compute

pi7→ j, node j includes the number of LPPs it received from i sent during the last w seconds in its

each LPP. This way, node i can also estimate pi 7→ j by using this information.

Table 4.1. Structure of the LPP packet.

Field Name Size Description
Type 8b Indicates that the packet is of type LPP
LPP ID 8b Identification number of LPP

Originator IP Addr. 32b
IPv4 address of the node that generates
the LPP packet

Originator Seq. No. 32b
Sequence number of the node that
generates the LPP packet

No. of Neighbors (n) 8b
The number of neighbors whose LPPs are
received by this node

Neighbor IP Addr.
n*40b

IPv4 address of the neighbor from which an
LPP packet is received in the last w seconds

Forward LPP Count
The number of LPP packets received in
the last w seconds from the neighbor

Max Q-Value 32b
The max Q-value among the neighbors
of the node that generates the LPP packet

Reliability 32b
The current reliability of the node that
generates the LPP packet

We modify the LPP packets to also include the fields that are needed for Q-learning. The

structure of our modified LPP packet is shown in Table 4.1 with the description of the fields. The

fields Neighbor IP Address and Forward LPP Count are repeated for each neighbor. The number

of neighbors is indicated by n. Max Q-Value and Reliability are floating point numbers, so are

not suitable for serialization and deserialization of packets. We represent these values as integers
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by 10k for k decimal digit resolution before the serialization and deserialization processes.

4.5.3 Routing Table

In AODV, the routing table entries are classified by the destination addresses. If there are

more than one route to the destination, the best route is selected as the one with the least number

of hops. We extend the original routing table of AODV with an additional Q-Table. Since we

assumed that there exists an agent at each node for completely distributed Q-learning, every node

has to store and maintain the Q-values of its next-hop neighbors. We use a dynamic Q-Table,

such that the size of the Q-Table of a node is determined by the number of destination nodes and

neighbor nodes.

In addition to Q-values, Equations (7)-(12) show that R, ET X , and the maximum Q-

Values of each neighbor are needed for action-value updates. Every node has a table for their

neighbors with records of this metadata, which is extracted from the LPP packets they receive.

Also, the table needs new fields regarding the forward and reverse LPP counts for each neighbor

of a node to calculate ET X . Overall, the table has the following fields per each neighbor:

• NeighborIpAddress: contains the IP address of the neighbor,

• ReverseLppCount: tracks the number of LPP packets received from the neighbor with respec-

tive IP address,

• ForwardLppCount: tracks the number of LPP packets that the neighbor with respective IP

address received from this node,

• QValue: contains the Q-Value for the neighbor with respective IP address,

• MaxQValue: contains the maximum Q-value in the Q-table of the neighbor with respective IP

address,

• Reliability: contains the reliability value of the neighbor with respective IP address.

The maintenance of the entries of Q-Tables is ensured through LPP packets. Each node

exchanges information with neighboring nodes and updates its Q-Table periodically. ReverseLpp-
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Count is obtained by counting received LPPs from each neighbor. ForwardLppCount is obtained

from the received LPP packets. ETX metric is calculated for each neighbor from these two

values, as shown in Equation (4.21). The entry, MaxQValue, contains the maximum Q-value

in the Q-Table of the neighbor. As shown in Table 4.1., the neighbor node finds the maximum

Q-value of its own neighbors (i.e., max
k∈N j

Q j(des,k)) and puts it in the LPP packet. This value is

received and stored, then is used for learning updates.

4.5.4 Protocol Overhead Analysis

The overhead of communication comes from metadata exchanging with LPP packets.

As Table 4.1 shows, the extra header of each LPP packet includes Q-value, maximum Q-value,

and reliability. All the other metadata is already present in the default LPP packet structure. All

added fields are represented with a 32-bit word. Therefore, in total, there are additional 24 bytes.

The frequency of broadcasting LPP packets is usually very low compared to data communication,

and hence, this part of overhead is negligible. In our experiments, we set the LPP period τ = 1s

so the LPP overhead is only 24 bytes/sec compared to any ETX based protocol.

For the Q-learning algorithm, each node has to carry out computations to update Q-

values when an LPP packet exchange occurs. As shown in Equation (6), this computation is

a simple multiply-add operation that introduces very modest delay and power consumption,

much smaller than that of communications. The computation overhead is also negligible.

Additional computations required by our technique involve only two floating-point additions

and multiplications per iteration of Q-learning, which is very minor relative to what is required

for the rest of the computation and communication. This overhead scales linearly with the

number of node’s neighbors. However, even though the number of nodes reach thousands, the

number of neighbors per node stay in the order of tens [172]. Most other routing protocols

have similar communication and computation overhead. Regarding the training overhead of our

Q-learning method, we leverage the distributed structure of Q-learning to reduce this cost where

the training overhead per individual node is small and scales with the number of node’s neighbors.
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Figure 4.5. Simple network example.

In large networks, the traffic distribution is not expected to be uniform across all nodes in most

cases where a fraction of nodes may stay dormant/less active; hence, the frequently accessed

nodes become more critical and can be trained faster by levering the distributed nature of our

Q-learning. The training of the Q-learning model is done completely online (no offline phase)

using temporal difference learning method where the model continues adapting at runtime, using

runtime observations.

Besides exchanging metadata and computing Q-values, nodes need to store these metadata

– some in the form of routing tables – for all of their neighbors. At runtime, the amount of

required metadata storage may vary because the number of neighbors and the communication

paths in the network can dynamically change. Again, this metadata is much smaller compared

to the storage capacity IoT devices have and the data payload they hold. In the case of very

large-scale networks with a high number of nodes, approximate Q-learning can be implemented

to dramatically reduce the size of Q-tables. By using function approximation, Q-learning can

scale to handle very large state-spaces [173]. In particular, deep Q-learning is a promising

solution that proposes neural network function approximation for Q-tables [174, 175].

4.5.5 Small-Scale Example

We use the simple network shown in Figure 4.5 to demonstrate the route discovery

mechanism of our approach. The source node S wants to send packets to the destination node

D. Then, the possible non-cyclic routes that the packet can take are: S-2-D, S-1-2-D, S-1-3-D,
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S-2-3-D, and S-1-2-3-D. The particular route to be selected for packet transmission depends

on the routing protocol. We assume that at the beginning of route discovery node 2 is highly

degraded with a reliability value R2 = 0.70 under the influence of environmental stress, whereas

other intermediate nodes have reliability values R1 = R3 = 0.90. Here, the reliability values

depict the probability of not having failures before the given time instant, defined in the interval

[0,1]. The route discovery procedure for the default AODV and our proposed approach are

shown in Figure 4.6, as a flow diagram of RREQs and RREPs.
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Figure 4.6. Route discovery in the simple network example.

In AODV, the source node S first broadcasts an RREQ, which is received by both node

1 and node 2. In our approach instead, RREQs are not broadcasted, they are forwarded to the

neighbor with the highest Q-value. As node 2 has the lower reliability in this example, its
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Q-value is small as well. Therefore, an RREQ is sent to node 1. As a second step, AODV again

broadcasts RREQs from each node that received RREQ in the previous step. If the received

RREQ packet has the same ID which was already seen, it is discarded, else, the ‘hop count’

value of the RREQ is increased by 1, and the packet is broadcasted again until it reaches the

destination. Since in our approach RREQs have only a single receiver at each step, they are

not discarded at any point. Finally, for both approaches, when the destination node D receives

RREQ, it generates a unicast RREP packet and sends it back to the source node. When the

source node receives this RREP, it then has the route to the destination and can start sending data

packets.

For the example network in Fig. 4.5, the default AODV protocol chooses the least hop

path S-2-D, whereas our proposed approach chooses path S-1-3-D, avoiding the most degraded

node 2. Results show that node 2 degrades much faster than the other nodes using default AODV

and becomes the bottleneck for the network lifetime. When our approach is used, degradation of

node 2 slows down and the reliabilities of all nodes meet at the value R = 0.42. After that point,

all nodes degrade at the same rate. In this way, the MTTF of the simple network is increased by

2.55x. For this particular small network of 5 nodes, this improvement comes with a cost of one

extra hop in the path (from one hop to two hop route) and an increase of 16.7% end-to-end delay.

In general networks have many more hops from the source to destination than this example. The

performance penalty of our approach is not as large with only a few extra hops, for which we

provide detailed results in the following section.

4.6 Evaluation

We conduct simulations based on a scenario of environmental monitoring. We refer to

an example of real-world deployment, the High-Performance Wireless Research and Education

Network (HPWREN) [76]. HPWREN is a heterogeneous wireless sensor network, deployed in

the Southern California area. In HPWREN, there are many types of computing systems ranging
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from the small wireless sensor nodes, single-board computers, to the high-performance server

systems at the UCSD Supercomputer Center. It comprises several subnetworks, but we only

focus on a 2km2 region of the Santa Margarita Ecological Reserve (SMER) network covered with

a mesh topology [176]. We use data collected from HPWREN to model IoT devices in ns-3 and

configure the parameters of the simulation. In our simulations, IoT devices (nodes) are randomly

distributed over a field of 1000m x 1000m. We conduct experiments for networks of 50, 100, 150,

200, and 250 nodes. A subset of 20 nodes generate Constant Bit Rate (CBR) traffic–typical of

sensors that sample at regular intervals–and transmit UDP data with 512 bytes packets to a sink

node in an ad-hoc fashion. We chose data rates of 20, 40, 60, 80, 100, and 120 kbps for evaluation.

Wireless links between nodes are assumed lossy and have a bandwidth of 2 Mbps, so successful

packet transmission is not guaranteed. The lossy communication environment is simulated using

the HybridBuildingsLossModel in ns-3. Experiments last 730 seconds, are repeated 100 times

with different random seeds and averaged to reduce the randomness in results for achieving high

confidence. In our experiments we use the IEEE 802.11b standard for the MAC layer because it

the most matured communication standard implementation in ns-3. There are efforts on modeling

low-rate and low-power standards for IoT, but they are not fully developed yet. Hence, we modify

the 802.11 PHY and MAC layer parameters and scale data rate and power values to imitate

communication in an IoT environment. All the communication-related parameters used in our

simulations are summarized in Table 4.2. For Q-learning, we set the learning rate α = 0.8, the

discount rate constant γ0 = 10−5, and the exploration parameter ε = 0.1. The respective values

were determined by carrying out a grid search and finding the best performing values. Therefore,

the values used in this chapter are optimized and represent the best achievable results using our

method.

Environment: Reliability heavily depends on the temperature of the environment, so we

consider realistic, varying ambient temperature conditions. We use a temperature dataset which

contains half-hourly ambient temperature measurements of 210 locations over a year [141].

Moreover, we consider the effects of the device being placed in different locations by selecting
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Table 4.2. Simulation parameters

Parameter Value
Simulation Area 1000m x 1000m

Number of Nodes 50, 100, 150, 200, 250
Routing Protocol AODV, AODV-ETX, R3-IoT

MAC Layer IEEE 802.11b
Traffic Type CBR UDP
Data Rate 20, 40, 60, 80, 100, 120 kbps

Packet Size 512 bytes
Bandwidth 2 Mbps
Loss Model ns3::HybridBuildingsLossModel

the temperature as Tamb±U(−10,+10), where U is a uniform distribution. For example, a

device placed in a closed container under the sun, with airflow around the device is restricted,

will have a much higher ambient temperature than a device placed under a shade in open air.

Reliability is evaluated considering the TDDB failure mechanism [12], which is a commonly

used model in industry today. Other reliability modes can easily be added as needed, since they

all exponentially depend on temperature. We scale the impact of reliability degradation in the

simulations to reflect 1 year of degradation for 365 seconds of simulation time.

Target Platforms: To capture the heterogeneity of IoT networks, we use models of

3 different embedded devices in our simulations. The target IoT devices are Raspberry Pi 0,

Raspberry Pi 2, and ESP8266 microcontroller. We estimate the CPU and WiFi power consump-

tion and temperature of the edge devices by collecting measurements of various applications

under different ambient temperatures on the actual devices. We configure the parameters of the

heterogeneous node models in ns-3 so that they follow the power, temperature, and reliability

characteristics of the modeled platforms. We randomly choose the number of each device

platform in the network for every simulation instance.

Workloads: We assume IoT devices run various computation workloads as well as

communication data. Therefore, device reliability is also affected by these workloads, which

can be considered as an external factor. In our experiments, we consider the ML classification

and regression tasks characterized for edge computing settings in [41] with their corresponding

power consumption values. The simulated workloads are generated randomly from the measured
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set of tasks with the execution times sampled from an exponential distribution with a mean of 10

seconds.

We compare our proposed approach (referred to as R3-IoT) with the following techniques:

• AODV [151] is the original Ad-Hoc On-demand Distance Vector routing protocol. It routes

the packets through the least hop path.

• AODV-ETX [171] finds the path with the least total expected transmission count. The goal

is to optimize the packet delivery ratio.

• Q-AODV [177] is a Q-learning based energy-aware maximum lifetime routing approach.

Network nodes learn to adjust its route-request packets according to their energy profile.

All the models and solutions are implemented in the ns-3 network simulator, leveraging

RelIoT framework [166] for power, temperature, and reliability simulation. We modified the

original models in this framework to support our routing implementation. We simulate the

following three different scenarios:

(1) Constant Uniform Ambient Temperature and No Computation Workload. When the ambient

temperature is the same for all nodes and they do not run any computation, it is expected that

only communication would make a difference in their reliability and hence lifetime. In this

experiment, we evaluate how good our approach is without the influence of external factors

(workloads, ambient temperature) affecting reliability.

(2) Varying Ambient Temperatures and No Computation Workload. The most important external

factor that affects reliability is the ambient temperature. Since it is an uncontrollable element,

the routing decisions would not change it. However, the routing protocol should still be

aware of the impact of ambient temperature on reliability over time to be able to moderately

utilize the nodes which are under environmental stress. In this experiment, we evaluate if

our approach can learn the pattern of ambient temperature changes and the magnitude of its

impact on reliability over time.
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(3) Varying Ambient Temperatures and Stochastic Computation Workloads. Computation is an

orthogonal component to communication, which also degrades the reliability of IoT devices.

In this case, we model the possible workloads that can be running on IoT devices. These

workloads cause extra heating of the device. The routing protocol should learn to avoid

the devices which heat up because of running high workloads and operating under high

ambient temperatures. We randomly pick workloads from our task dataset and set their

service times by sampling from an exponential distribution. Not all nodes do computation,

we also randomly select the ones that run workloads.

In the following, we present results for reliability (probability of not having failures up to

the given time) and performance (packet delivery ratio, end-to-end delay, and convergence rate).

The reliability results are represented as probabilities that take values in [0,1].

Reliability Results: Fig. (4.7-4.9) show reliability results for different data rates and

number of nodes in all scenarios, averaged over randomized simulation runs. The data rate results

were collected for networks with 100 nodes, then different numbers of nodes were tested at a

data rate of 100 kbps. The reliability values denote the minimum reliability in the network since

we have defined the network lifetime as the time which the first node fails. In all scenarios and

for all approaches, reliability degrades with increasing data rate as expected due to the increased

communication activity. AODV performs the worst because it always chooses the same nodes

which result in the least hop in the communication path. AODV-ETX changes the nodes used

because of randomness in expected transmission counts due to link qualities. This is the reason

why it performs similar to R3-IoT in Scenario 1 (Fig. 4.7), because the only source of degradation

is due to communication and retransmissions due to link losses. Q-AODV also shows a similar

characteristic to AODV-ETX because energy consumption and expected transmission count is

highly correlated, so they inherently have parallel goals. Again in Scenario 1, for the increasing

number of nodes, there is not much difference in the minimum reliability in the network because

the most degraded nodes in this scenario are always the ones closer to the sink.
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Figure 4.7. Scenario 1: Reliability for different data rates and number of nodes.
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Figure 4.8. Scenario 2: Reliability for different data rates and number of nodes.
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Figure 4.9. Scenario 3: Reliability for different data rates and number of nodes.
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Figure 4.10. Scenario 2: Reliability for cities with different average ambient temperatures.

As shown in Fig. 4.8, when an external factor, temperature, that affects reliability is

involved, R3-IoT performs much better than both AODV, AODV-ETX, and Q-AODV. R3-IoT

learns the routes that bypass the nodes under high thermal stress. Q-AODV also results in

fairly high reliability because the nodes that are highly degraded usually also has lower energy.

Hence, Q-AODV avoid the low-reliability nodes too. When there are a high number of nodes

in the network, then R3-IoT can find more routes that include only high-reliability nodes. The

discrepancy between R3-IoT and other approaches is further exacerbated when computation

workloads are added to nodes (Fig. 4.9). In this scenario, at the highest data rate 120 kbps, the

most degraded node has 73.2%, 37.8%, and 26.4% more reliability with R3-IoT compared to

AODV, AODV-ETX, Q-AODV approaches respectively. Similarly, for the networks with 250

nodes, improvements of 51.8%, 38.6%, and 24.9% are observed.

Finally, for scenario 2, we run simulations under various average ambient temperature

values to show its impact on resulting reliability. We use hourly values from 2 years long

temperature data collected for cities: Denver, Los Angeles, Miami, Philadelphia, and Phoenix.

The respective 2 year average temperatures between 2015-2017 of these cities are: 9.8°C, 17.8°C,

25.1 °C, 12.4 °C, and 22.4°C. Fig. 4.10 shows that a network deployed in a city with hot weather

(Miami) can have as much as 42% less reliability after 2 years compared to a network deployed

in a city with cold weather (Denver).
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(b) Packet delivery ratio vs number of nodes

Figure 4.11. Performance results.

Performance Results: We evaluate the performance of all methods under all scenarios.

Fig. 4.11a shows the packet delivery ratios (PDR) for different data transmission rates. Error bars

are omitted for performance results since the variation between simulation runs was negligible

unlike the reliability results. For all cases, PDR drops with the increasing transmission rate,

however, the drop is more severe for AODV and Q-AODV. Both AODV-ETX and R3-IoT chooses

better communication links because they utilize the ETX metric, which results in a fewer number

of packet losses over links. For all three scenarios, AODV, AODV-ETX, Q-AODV performances

do not change because they are agnostic of the changes in node temperature and workloads.

Therefore, we use only a single line on the plots to depict the performance of these approaches

on the three scenarios. On the other hand, as temperature increases and nodes start running

workloads, R3-IoT favors the nodes with higher reliability in the route instead of the nodes with

higher quality links. This is the reason performance drops slightly from scenario 1 (R3-IoT (1)

on the plot) to scenario 3 (R3-IoT (3) on the plot).

In Fig. 4.11b we compare the PDRs for varying numbers of nodes in the network. Similar

to the previous case, Q-AODV performs the worst while R3-IoT performs very close to AODV-

ETX. There is a slight increase in PDR as the number of nodes increases for all approaches.

This is due to the fact that there are more possible routes that packets can take if the number of

nodes is high. For more nodes, the performance of R3-IoT in both Scenario 1 and Scenario 2

approaches to its performance in Scenario 1. Even though R3-IoT tends to choose the nodes with
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Figure 4.12. Average end-to-end delay.

high reliability instead of the ones that can result in better performance, there are more nodes

that satisfy both properties in a network with large number of nodes.

We further present comparison for average end-to-end delay of all methods under all

scenarios in Figure 4.12. The results are plotted only for varying number of nodes because

no significant changes were observed for different data rates. Similar to PDR results, AODV,

AODV-ETX, Q-AODV delays do not change under varying node temperature and workloads.

Q-AODV performs the worst because it does not include any mechanism to determine the shortest

paths or the most reliable links. AODV and AODV-ETX can find paths with minimal number of

hops and hence acquire very small delays. Our approach is similar to AODV in Scenario 1, but it

gravitates toward balancing reliability when ambient temperature and workloads are introduces

to the simulations.

Fig. 4.13 shows the convergence performance of our Q-learning approach for networks

with varying number of nodes. The corresponding experiments were conducted at a data rate

of 100kbps. We omit the results for varying data rates as we have not observed any significant

changes at different data rates, the convergence rates were similar across the board. The values

plotted are the normalized sum of the Q-values of all the nodes in the network. Epochs denote

the number of Q-value updates, that is, the operation described in using Equation (4.12). The

time each epoch takes can be configurable in our approach and is equal to the LPP packet period

since Q-value updates take place when LPP packets are exchanged. In the second plot we
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Figure 4.13. Convergence of Q-values

present convergence in actual clock time metric for different LPP periods, simulated on a 100

node network. Results show that convergence is reached in fairly low iterations, especially for

networks with a small number of nodes. This implies an efficient use of samples, that is, the

sampling complexity of the proposed distributed reinforcement learning approach is low. It

should be noted that these results show a learning curve for a “cold-start”, when the algorithm is

run right after the network is set up. Similar initialization periods are common for many routing

protocols for building their routing tables. After the initial phase, it only needs a few epochs for

the Q-learning algorithm to react to the changes in the system (e.g. variations in the external

factors such as ambient temperature and workloads).

4.7 Conclusion

In this chapter, we explored the problem of maintaining IoT device reliability from the

perspective of network routing. The literature on network routing up to date did not study

hardware related reliability issues. We proposed a distributed reinforcement learning based

routing approach to improve network MTTF, which learns to make its decisions based on the

current reliability of the nodes, the amount of degradation they will experience, and networking

performance. We extended the ns-3 AODV protocol with a Q-learning algorithm and demon-
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strated improved network MTTF compared to AODV, AODV-ETX, and Q-AODV methods. Our

results show up to a 73.2% improvement in reliability for various communication data rates and

the number of nodes in the network while delivering comparable performance.

Chapter 4 contains material from “Reliability-Aware Routing in IoT Networks Using

Reinforcement Learning”, by Kazim Ergun, Raid Ayoub, Pietro Mercati, Tajana Rosing, which

appears in Ad Hoc Networks [3]. The dissertation author was the primary investigator and author

of this paper.
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Chapter 5

Dynamic Optimization of Battery Heath in
IoT Networks

The reliability and maintainability of the Internet of Things (IoT) devices become highly

important as the number of “things” grows rapidly. The majority of the IoT devices have

batteries which age, degrade, and eventually require maintenance. Existing work focuses on

ensuring that batteries have sufficient amount of stored charge to operate until they can recharge,

but does not consider battery degradation. This leads to high replacement and maintenance

costs in large IoT networks. In this chapter, we formulate the problem of minimizing battery

degradation to improve the lifetime of IoT networks and solve it with Model Predictive Control

(MPC) leveraging models for battery dynamics and State of Health (SoH). The battery SoH

is modeled using a realistic non-linear model while taking ambient temperature into account.

We demonstrate that our solution can improve network lifetime up to 68.5% compared to

conventional energy consumption focused algorithms, which use simple linear battery models.

The proposed approach achieves near-optimal performance in terms of preserving battery health,

staying within 8.7% SoH with respect to an ideal oracle solution on average.

5.1 Introduction

The Internet of Things (IoT) is a growing network of heterogeneous devices that have

the ability to process and transfer data. IoT will connect more than 20 billion “things” by 2020
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according to Gartner Inc.[178]. When IoT is fully realized, the maintenance and diagnostics

costs will be enormous, and if not addressed, it can limit the scalability of IoT solutions [179].

Since the majority of these devices are battery-powered, a part of these costs is associated

with battery maintainability. Even though battery itself might be cheap, battery replacement,

especially for large-scale IoT systems, is often not feasible due to logistical constraints. One

example is the High-Performance Wireless Research and Education Network (HPWREN), which

have battery-powered sensors deployed on canyon walls and mountain peaks with no road access

[76]. In such cases battery replacement involves expensive labor & infrastructure, hence the

battery life should be improved to keep the network running for as long as possible.

There is often confusion when discussing battery lifetime because the lifetime for

rechargeable and non-rechargeable batteries are described in different ways. Non-rechargeable

batteries die, and need to be replaced after their initial charge is completely depleted. There-

fore, the indicator for remaining battery life is the State of Charge (SoC). On the other hand,

rechargeable batteries can withstand hundreds of charge-recharge cycles, allowing operation

for extended periods when combined with energy harvesting solutions, such as solar cells or

thermal energy. Despite their ability to be recharged, these batteries still have limited lifetimes,

and require replacement due to aging. In this case, instead of SoC, we need to consider their

State of Health (SoH) which is a figure of merit of the physical condition of a battery. SoH

degrades due to cycle aging (charge-discharge rate & total amount) and calendar aging (ambient

conditions, e.g. temperature) which results in deterioration of battery conditions in the form

of internal impedance increase, open voltage decrease, and most importantly, capacity fading.

Depending on its application, a rechargeable battery reaches its end of life with an SoH between

70%-80% and needs to be replaced.

Most works in the literature concerning lifetime maximization either consider non-

rechargeable batteries and deal with SoC, or assume ideal operation for rechargeable batteries,

neglecting the effects of SoH degradation in their management strategies. Our main insight

is that if maximum lifetime is targeted in the network, specifically the battery SoH should be
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considered. Particularly, we observe that the techniques which focus on optimizing the energy

consumption of a network do not yield optimal battery life. In this work, we formulate the

problem of determining the data flow that minimizes SoH degradation of rechargeable batteries

for an IoT network where battery-powered devices have the capability of sensing, processing, and

communicating data. The amount of data routed through a device affects the power consumed

for communication & computation, which in turn influences the rate of degradation. In our

formulation, we model batteries from two different perspectives:

• Battery Degradation: The focal point of this work is the fact that battery SoH degrades at

different rates depending on how the battery is used. In the light of this, we can intelligently

manage the network to prolong battery lifetime. Hence, we have a model that relates

current rate, SoC, depth of charge/discharge and temperature to how SoH degrades.

• Battery Dynamics: We use the Temperature Dependent Kinetic Battery Model (T-KiBaM)

[108], a dynamic model which can describe the nonlinear characteristics of available

battery capacity. Not just the net amount, but the way in which the power is consumed,

that is, the current-extraction patterns and the employed current levels play a significant

role in battery depletion [107]. Therefore, to realistically capture the influence of power

consumption on the battery, it is inaccurate to assume linear energy depletion with respect

to the power consumed/current drawn, and a dynamic battery model is needed.

As a result of this dynamic behavior, the solution to our problem considers the battery

state over time and therefore, is time-dependent rather than fixed. Hence, we adopt an optimal

control formulation and propose a model predictive controller (MPC) solution to dynamically

control data flow rates in the network to minimize SoH degradation over a predefined horizon.

We evaluate our solution using real-world deployment in a smart home and a large scale IoT

network HPWREN. We show that our solution can achieve comparable performance to an

“oracle” solution which knows all future data. For comparison, we implement a standard network
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lifetime maximization method [62] which adopts an ideal battery model with linear energy

depletion. We also investigate the impact of ambient temperature on SoH degradation and

network lifetime. Furthermore, an example extension to the original problem is presented by

regularizing the objective function with an end-to-end delay function.

The rest of the chapter is organized as follows. In Section 5.2, we review related work

on maximum network lifetime routing and battery degradation management. In Section 5.3,

we first start with outlining the overall problem and describing our network model. Next, we

build the battery dynamics and investigate the mechanisms behind battery degradation to obtain

a closed-form, nonlinear mathematical expression for the SoH of a battery. Lastly, we construct

a finite horizon optimal control problem with the goal of determining the data flow to minimize

the degradation of an IoT network and present our MPC solution. In Section 5.4, we provide

experimental results and conclude our work by discussing these results.

5.2 Related Work

There is a significant amount of literature addressing the lifetime of Wireless Sensor

Networks (WSNs) and IoT networks. Publications in that area usually consider non-rechargeable

batteries with limited energy and maximize the time at which the batteries drain out of energy

[62],[63]. A common issue with such techniques is that they do not consider the battery

dynamics and find a static route based on linear battery energy depletion assumption. Recent

studies [64],[65] involved battery dynamics that are able to capture the “non-ideal” behavior of

actual batteries in their optimization formulations. Even though they show that one can achieve a

significantly longer lifetime with an optimal routing policy using a non-ideal battery model, the

solution does not suit systems with rechargeable batteries.

Another set of publications investigate energy harvesting networks with rechargeable

batteries. This work usually tries to develop control algorithms to optimally utilize available

energy [66],[67]. However, only a handful of studies consider the degradation of batteries, which
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is the major factor in determining the lifetime of a network of devices with rechargeable batteries.

A Markov model based mathematical characterization of harvesting-based battery-powered

sensor devices was provided in [68], particularly focusing on the impact of battery discharge

policy on degradation. The authors show that by using this model, a degradation-aware policy

significantly improves the lifetime of the sensor compared to “greedy” policies. We instead

search for network-level controls (i.e. routing) compared to finding a policy for single sensor

node/device. In [69], the issue of battery degradation is approached from a MAC protocol design

perspective. Random MAC protocols can generate bursts of transmissions and idleness which

may increase battery degradation rate. To solve this problem, they propose an aging aware

binary exponential backoff algorithm to avoid excessive fluctuations. This study is tangential

to our work since it touches upon the degradation problem with a small modification on MAC

protocols. More recently, a technique was presented in [70] to predict SoH in WSN applications

from various battery related parameters, which can contribute to building degradation-aware

management strategies for IoT networks.

The degradation of batteries in a network control problem is studied primarily in battery

energy storage systems, smart grid, and data centers. In [72], the authors include the battery

degradation processes in the optimization and propose a linear programming approach for opti-

mization of degradation & performance in offgrid power systems with solar energy integration.

In [71], a model predictive control (MPC) based algorithm with an explicit cost function con-

sidering battery degradation is implemented for battery energy storage systems. A recent paper

[73] presents a distributed control method that can handle multiple batteries connected to the

grid using a high accuracy nonlinear battery model. In the context of data centers, [74] and [75]

use nonlinear Lithium-ion battery health degradation model for health-aware optimal control.

However, these work are not directly applicable to IoT domain because of the different structure

of the network, and additional constraints that the network possesses. In those areas, batteries

are often modeled in aggregate fashion. In IoT networks, the batteries from different devices

are not physically connected and can only supply energy to the associated device. The devices
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work together to accomplish a network-level task, but their energy demands are individual which

differentiates other domains from IoT.

Network lifetime studies up to this point have been mostly State of Charge (SoC)

optimization for non-rechargeable batteries with ideal linear models for battery dynamics. The

ones that study rechargeable batteries focus on energy management strategies to optimally

utilize energy harvesting solutions. Along with just a few other works, we investigate the State

of Health (SoH) of batteries. Complimentary to previous works in this area, we control the

network to optimize its lifetime by minimizing SoH degradation. To perform a more accurate

optimization, we incorporate battery models which capture the temperature-dependent, nonlinear

charging/discharging and degradation behavior into the system model.

5.3 Optimal Nonlinear Battery Control

5.3.1 Problem Overview

The goal of this work is to optimize battery health in IoT networks by controlling data

flow rates since each device in the network consumes energy for communication and computation

as a function of data flow. The energy amount delivered by the battery depends on both short-term

battery dynamics and long-term battery wear. Therefore, while the battery dynamics determine

the State of Charge, our control algorithm focuses on optimizing State of Health degradation to

ensure long term operation. In the following sections, we start by describing our network model,

then build the battery dynamics and investigate the mechanisms behind battery degradation to

obtain a closed-form, nonlinear mathematical expression for the SoH of a battery. Table 5.1

provides the list of symbols that are used throughout this chapter.

5.3.2 Network Model

We model the IoT networks with three layers: top, middle, and bottom. The top layer

represents the wireless mesh backbone of the network. The bottom layer contains sensor nodes
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Table 5.1. Nomenclature

Symbol Definition
Si Set of nodes which node i can send data

di, j Distance between nodes i and j
wi, j(t) Data flow rate from node i to j
Gi(t) Data generation rate of node i

Cr,Ce,Cc Reception, sensing, computation energy constants
C f ,Cs Transmission energy constants
ui(t) Discharge current of battery i
ri(t) Charge current of battery i
ii(t) Net current of battery i
qA(t) Available charge
qB(t) Bounded charge
hA(t) Available charge well height
hB(t) Bounded charge well height

k Conductance parameter
CR Battery rated capacity

δi(t) Difference between heights of two wells of battery i
γi(t) Total charge of battery i

SoCi(t) State of Charge of battery i
Vi Voltage of battery i
T Temperature

DoD Depth of discharge
Tamb Ambient temperature

SoHi(t) State of Health of battery i
Degi(t) SoH degradation of battery i

and the middle layer is composed of a wireless network of gateways. Each gateway node gathers

the data coming from the underlying sensors and delivers it to the backbone layer. These nodes

can also perform data analysis and processing.

We consider a model with multiple source and gateway nodes, one base station, and

fixed topology. The network consists of N nodes, where nodes from 1 to N-1 denote source

and gateway nodes and N denote the base station. We assume that the energy supply of the

base station is not constrained but all other nodes have a rechargeable battery that can store a

limited amount of energy. SoHi(t) and SoCi(t) are respectively the State of Health and State of

Charge of the battery of node i, i = 1, ...,N at time t, and the dynamics of SoHi(t) is described
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with details in the next section. The distance between the nodes i and j are denoted by di, j, and

is time-independent since we assume fixed topology. Note that relatively infrequent topology

changes can be accounted for by periodically recalculating a new control policy.

Let Si denote the set of nodes to which node i can send packets. Conditions on Si can

be enforced to constrain the behavior of the network, but we only restrict the transmission

distance in our problem. Then, Si = { j : di, j < dmax}, where dmax is the distance of transmission

with maximum power. The notation j ∈ Si will be used to show node i can communicate

with node j. Let wi, j(t) be the data flow rate from node i to node j at time t. The vector

w(t) = [w1,2(t), ...,w1,N(t), ...,wN,N(t)]⊺ defines the control vector in our problem. Let Gi(t)

denote the information generation rate at node i, then we can express the total information that

needs to be communicated to the gateway as GN(t) = ∑i<N Gi(t).

We assume every node in the network has a sensor, CPUs, digital signal processors

and a radio link. Since we are dealing with nodes that are sensing, computing and receiv-

ing/transmitting, the key energy parameters that contribute to discharge current u(t) of node’s

battery are: the energy needed to sense a bit Esense, receive a bit Erx, transmit a bit Etx, and

compute a bit Ecomp. For a given distance di, j between nodes i and j, we compute the energy

expenditure as follows:

Etx = p(d), Erx =Cr, Esense =Ce, Ecomp =Cc (1)

where Cr, Ce, Cc are given constants dependent on the communication, sensing, and computation

characteristics of nodes respectively, and p(d)≥ 0 is a function monotonically increasing in d;

the most common such function is p(d) =C f +Csdβ where C f ,Cs are given constants and β is a

constant dependent on the medium [180]. For each sensor node i in the network, we can write
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the discharge current ui(t) as in (2), where Vi denotes the voltage of the battery .

ui(t) =
1
Vi

∑
j∈Si

wi, j(t)(p(di, j(t))+Cc)+

1
Vi

∑
j|i∈S j

w j,i(t)Cr +CeGi(t), (2)

5.3.3 Battery Model

Battery Dynamics

In this work we use Temperature Dependent Kinetic Battery Model (T-KiBaM), an

extension to KiBaM [108]. T-KiBaM is able to accurately characterize the two important effects

(Rate Capacity effect, and Recovery effect) that make battery performance nonlinear [107]. The

effective capacity of a battery drops for higher discharge rates. This effect is termed as Rate

capacity effect. If there are idle periods in discharging, the battery can partially recover the

capacity lost in previous discharge periods. This effect is known as Recovery effect. It was

shown in [65] that using battery models which captures these effects results in more accurate

optimization algorithms, and leads to improvements in network lifetime.
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Figure 5.1. Temperature Dependent Kinetic Battery Model

As shown in Fig. 5.1, T-KiBaM models the batteries with two wells, respectively the

Bound Charge Well (BCW) and the Available Charge Well (ACW). Three constants are needed
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for the model: CR, the rated capacity of the battery; c, the fraction of capacity that may hold

available charge; and k, the rate constant. Initially, a part qA(0) = cCR of charge is put in the

ACW, and a part qB(0) = (1− c)CR in the BCW. The charge flow from BCW to ACW through

a “valve” with a conductance k = kArrhenius = Ae−
Ea

RTamb , a temperature dependent rate constant

given by Arrhenius Equation. A is the pre-exponential factor (in s−1), Ea is the activation energy

(in KJ/mol), R is the universal gas constant (8.314×10−3KJ/mol ·K) and Tamb is the ambient

temperature (in Kelvin). The charge flows creating a current i(t) as long as there is a difference

between the heights of two wells, i.e. δ = hB− hA ̸= 0 . The heights of these two wells are

given by hA = qA/c and hB = qB/(1− c). Net current i(t) is the difference between an output

u(t) representing the discharge outflow due to workload, and a recharge inflow r(t) such that

i(t) = u(t)− r(t). The following system of differential equations describes KiBaM.


dqA
dt =−i(t)+ k(hB−hA)

dqB
dt =−k(hB−hA),

(3)

For this work we found it convenient to apply a coordinate transformation to variables for using

them in the problem formulation. We transform the variables from qA and qB to δ = hB−hA

(height difference between wells) and γ = qA + qB (total charge in the battery). Under this

transformation, we can write the new differential equations as:


dδ

dt = i(t)
c − k′δ

dγ

dt =−i(t),
(4)

where k′ = k/c(1− c), with initial conditions δ (0) = 0 and γ(0) =CR. In the new coordinate

system the condition for the battery to be empty is: γ(t) = (1− c)δ (t), meaning that there is

no charge left in the available charge well. The two equations in (5.4) constitute the battery

dynamics that is used in optimization problem formulation.

Since batteries provide higher effective capacities at higher temperatures [108], we use a
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Correction Factor CF to adjust initial battery capacities (CR) according to the ambient temperature.

CF indicates multiplicative gain or loss of the battery capacity at different temperatures. All

parameters (CF , c, k, CR) can be obtained using the battery data-sheets, and through experimental

measurements. In this work, we use the parameters obtained by experimental measurements

obtained in [108] for Li-Ion batteries.

SoH Degradation Model

The State of Health (SoH) refers to the condition of the battery and the value of SoH

declines from 1 (healthy battery) to 0 (dead battery) over time due to degradation. For the SoH

degradation, we employ the model from [181]. Over continuous battery charge/discharge cycles,

significant factors that influence the SoH degradation of a battery are temperature T , open circuit

voltage VOC, and depth of discharge DoD. Knowing that there is a mapping of VOC from State of

Charge (SoC), we can consider three aspects of the battery for estimating its degradation in this

model: T , DoD, and SoC. SoC is defined as the portion of available battery capacity at a given

time and DoD is used to describe how deeply a battery is discharged. The formulation of SoC

directly comes from our Kinetic Battery Model, where we defined γ as the total charge in the

battery. The only difference is that SoC represents the normalized charge level of the battery, i.e.

SoC = γ

CR
∈ [0,1]. The degradation model used in this work makes two assumptions: 1) Each

of these effects is independent of the others, and 2) The effects themselves are independent of

battery age.

Since the effects of T , DoD and SoC on degradation are assumed to be independent, we

can write the total battery degradation as Degtotal = DegSoC +DegDoD +DegT . The SoH at a

given time t is SoH(t) = SoH(0)−Degtotal(t), and can be expressed explicitly as shown in (??).

SoH(t) = 1− [φ1SoCavg(t)+φ2]+ [θ1(∆SoC(t))θ2 ]

−

[∫ t

t ′=0
σ1e−σ2(Tamb+σ3|i(t ′)|)−1

dt ′+σ4Tamb

]
, (5)
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The first bracket expression is the term representing the capacity fade degradation

attributable to SoC. This is based on an approximation that a time period during which the SoC

with an average of SoCavg has the same effect on battery life as simply staying at SoCavg for

the same time period [181]. The second bracket expression is DoD related degradation which

accounts for capacity fade resulting from SoC swing, i.e. maximum SoC minus the minimum

over an interval. Finally, the last bracket expression is the degradation due to temperature

described with a similar exponential model to Arrhenius relation. The temperature change in

the battery is given as a linear function of charge current and ambient temperature (Tamb). The

absolute value of the current i(t) is used so that the expression is both valid for charging and

discharging.

We verified our battery degradation model against NREL Li-Ion battery aging dataset

[182]. The repository contains various experiment scenarios and physical measurements of

cycling batteries until their capacity is reduced below the industry standard of 80% of their

original capacity, which is the point where batteries are considered “dead”. The coefficients in

the expression (5) are obtained by fitting the to the experiments under different temperatures

and charge/discharge profiles. We selected φ1 = −10−3, φ2 = 10−8, θ1 = 25, θ2 = 0.017,

σ1 = 1.4x10−4, σ2 =−75, σ3 = 0.1, σ4 = 4x10−5. Table 5.2 shows the error compared to the

measurements from batteries tested at 3 different temperatures.

Table 5.2. Battery Model Validation

Battery Temperature Error
Li-Ion25 4◦C 3.1%
Li-Ion5 24◦C 1.6%
Li-Ion49 43◦C 4.4%

5.3.4 Optimal Control Problem Formulation

Our objective is to minimize the SoH degradation of a network by controlling data flow

rates wi, j(t). As a common definition, a network is considered dead when any of the nodes
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die. To prevent this, we particularly try to minimize the accumulated degradation on the most

degraded node, since it is the one that will fail the first. Hence, the cost function is minimize
w(t)

max
i∈N

Degi(T ), where degradation at end of interval t is decribed by: Degi(t) = SoHi(0)−SoHi(t).

Next, we define constraints to represent the battery’s physical nature:

• Current Limit: The discharge and charge power of a battery is limited, thus there are

bounds on charge/recharge current, Lpi ≤ ui(t)≤U pi and Lpi ≤ ri(t)≤U pi.

• Charge Limit : The charge cannot exceed the maximum capacity of the battery, and as

stated in Section IIIC the condition for the battery to be empty is: γ(t) = (1− c)δ (t).

Therefore, the corresponding constraint equation is given as Lci ≤ γi(t) ≤ Uci where

Lci = (1− c)δ (t).

Using the battery model, the network model, and constraint equations, the discrete-time opti-

mization problem for a finite interval T is formulated in (6):
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minimize
wt

max
i∈N

Degi,T (6)

subject to δi,t+1 = δi,t +
ui,t− ri,t

c
− kδi,t , δi,0 = 0, (7)

γi,t+1 = γi,t +(ri,t−ui,t), γi,0−C = 0, (8)

ui,t =
1
Vi

∑
j∈Si

wi, j(t)(p(di, j(t))+Cc)+

1
Vi

∑
j|i∈S j

w j,i(t)Cr +CeGi(t), (9)

Gi,t = ∑
j∈Si

wi, j,t− ∑
j|i∈S j

w j,i,t , (10)

0≤ wi, j,t ≤Wmax, (11)

Lpi ≤ ui,t ≤U pi, Lpi ≤ ri,t ≤U pi, (12)

Lci ≤ γi,t ≤Uci. (13)

where (7) and (8) are battery dynamic equations with state variables δi,t and γi,t repre-

senting node i’s charge level at the time instant t. Workload in terms of data flow for each node i

is expressed by equation (9). Constraints on the control variable wt are specified in (10), (11).

Finally, (12) and (13) specifies the constraints due to physical limitations of batteries.

Since the solution is based on a finite horizon, two methods are applicable: i) the algorithm

is executed once for the complete horizon to get the optimal solution and ii) model predictive

control (MPC), where an optimization algorithm is executed at each time interval based on the

predicted horizon values and dynamically updated at the next decision interval. Even though the

first method gives us the optimal solution for the interval T , it requires knowledge of future (e.g.

data generation Gi,t , current generation ri,t , and temperature Tamb), thus it is not applicable in
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Figure 5.2. Block diagram of the proposed MPC solution

practice. For this reason, we employ MPC with the goal of minimizing degradation across the

network, and use the first method as a performance benchmark to compare our solution.

As depicted in Fig. 5.2, the main elements of the discrete time model predictive control

are the optimizer and the model. MPC determines the model outputs for the prediction horizon,

denoted with M. In the same horizon, the optimizer aims to find the optimal control sequence

{wk−1+t , t = 1, ...,M} for the cost function (6), subject to problem constraints. Only the first

element wk of the optimized control sequence is applied to the model and the optimization

process is repeated at each time step. It is assumed that we have predictions of energy generation,

data generation, and ambient temperature for some time into the future within the horizon of the

predictive controller. In other words, given a prediction horizon M, we assume knowledge of ri,t ,

Gi,t , and Tambi,t for all t ∈ {k, ...,k+M−1}. When the prediction horizon is less than 24 hours,

such an assumption is reasonable as energy generation (e.g solar energy) tends to follow daily

patterns and one-day ahead weather predictions can be fairly accurate for ambient temperature.

5.3.5 Regularizations

We can regularize the cost function to obtain many different extensions to the original

problem of minimizing degradation. Consider an utility function φ(w), which can be used to
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model power consumption, delay etc. With a trade-off in network lifetime optimality, the cost

function can be regularized as follows to improve network performance in other aspects.

minimize
wt

max
i∈N

Degi,T +λφ(w) (14)

In the following, we show the use of a regularization function for end-to-end delay of a

network, although many different utility functions are possible.

End-to-end delay: The end-to-end packet delay from a source node to a sink node

depends on the number of hops along its path. As the number of hops increase, the packet will be

received by the sink with a higher delay. Queuing delay on the nodes can be assumed negligible

because the data rate is low enough for most of the IoT applications to make the number of hops

the dominant factor. Instead of directly using the number of hops, we create a metric to provide

similar behavior. For a given node i, if its neighbor j ∈ Si is farther from the sink than another

neighbor k ∈ Si, then the delay for following a path through node j should be greater compared

to node k. Thus, we define:

hi, j =
d j,N

di,N
, i ∈ 1, ...,N−1, j ∈ Si (15)

To attain the lowest delay, a packet must be forwarded to the neighbor with the minimum

h value; the one closest to the sink (node N). A delay function for a node i can be given as:

φi(w) = ∑
j∈Si

hi, jwi, j, i ∈ 1, ...,N−1, (16)

The regularization function should ensure that most of the data traffic is routed through

the minimum hop path. Since we are interested in the average delay of the network, the delay

function in (16) is summed up over all nodes and averaged over time. The regularization function

for end-to-end delay is:
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φ(w) =
1
T

T

∑
t=1

∑
i∈N−1

∑
j∈Si

hi, jwi, j (17)

5.4 Evaluation

5.4.1 Experimental Setup

To illustrate the results of our solution, we consider two examples of real-world deploy-

ments: High-Performance Wireless Research and Education Network (HPWREN) [76], and a

study on IoT Smart Home developed in our lab. We cover the frequently used mesh and clustered

mesh (hierarchical) network topologies with HPWREN and Smart Home cases respectively.

HPWREN

HPWREN is a heterogeneous wireless sensor network, deployed in the Southern Cali-

fornia area. In HPWREN, there are many types of computing systems ranging from the small

wireless sensor nodes, single-board computers, to the high-performance server systems at the

UCSD Supercomputer Center. It comprises several subnetworks, but we only simulate the Santa

Margarita Ecological Reserve (SMER) network which covers a region of 2500m x 1250m with a

mesh topology. There are a total of 15 cameras and 1 acoustic sensor deployed, each generating

data of different sizes and at different sampling rates. Data sizes range from 20kB to 2MB with a

sampling interval 30sec to 1hour. The devices are equipped with solar panels that supply energy

to recharge batteries. We use real temperature data collected from Vaisala WXT520 weather

sensors in our battery models as the ambient temperature (Tamb) and real solar radiation data from

Davis solar sensors to determine the of amount solar power generation (ri,t). Fig. 5.3 depicts the

temperature and solar generation profiles of 16 nodes in HPWREN during a day. We estimated

the power output of solar panels from solar radiation and used it as the battery charging value for

our calculations .
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Figure 5.3. Temperature and normalized solar generation of 16 nodes in HPWREN during a day.

Smart Home

We have a house instrumented with several off-the-shelf heterogeneous sensors as shown

in Fig. 5.4. Each room in the house has several sensors which help in identifying activities local

to that room. These sensors are: (1) kitchen door contact, (2) fridge door contact, (3) kitchen

drawer contacts 1&2, (4) teapot smart-plug, (5) kitchen smart bulb, (6) metasense, (7) airbeam,

(8) kitchen angular motion, (9) kitchen locator beacon 1, (10) kitchen cabinet contact 1, (11)

kitchen cabinet contact 2, (12) kitchen locator beacon 2, (13) kitchen pantry contact, (14) dining

room multi-sensor, (15) dining room locator beacon, (16) living room locator beacon 1, (17)

living room motion 1, (18) TV smart plug, (19) living room angular motion, (20) living room

motion 2, (21) living room locator beacon 2. There are also two data aggregators (smart hubs),

one covering the kitchen and one covering living room & dining room, which aggregate data

from the different sensors and send it to the cloud. Since this deployment has the main goal of

studying edge processing, all the sensors have a Raspberry Pi Zero associated with them which

helps in local processing and data routing. In such a heterogeneous deployment, different sensors

send different types of data at various sampling frequencies. Sensors such as door contacts,

motion sensors do event based sampling, on the other hand, smart plugs, smart bulbs, angular

motion sensors, and air quality sensors sample at constant intervals, ranging from 1/10 sec to 5

sec.
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Figure 5.4. Sensor deployment in smart home.

For both experimental scenarios, the coefficients for energy consumption in equation (4)

are tuned to fit real sensor hardware according to specifications of the devices. For the battery

dynamics model, CF and k parameters are calculated using real ambient temperature data from

the temperature sensors. We took c = 0.5641 based on the analysis in [108] and set different

battery capacities CR for different devices. The parameters for SoH degradation model is fitted

and verified against NREL Li-Ion battery aging dataset [182], and given in Section III.C.

5.4.2 Experimental Results

In this section, we analyze the amount of SoH degradation in the batteries for our proposed

method. For comparison, we have selected: i) an “oracle” optimal solution with knowledge of

complete horizon, and ii) an optimization method which involves no degradation model and

adopts a “linear” energy depletion assumption as presented in [62]. In contrast to our solution,

“oracle” is not applicable in practice, but we use it as a benchmark since it gives the optimal

solution over the finite horizon. The “linear” solution aims to optimize the network lifetime by

minimizing the total energy consumption of the node with maximum energy consumption. This

strategy does not consider the dynamics of the battery or the SoH degradation, and essentially

tries to optimize the SoC of the batteries. We denote this method as “linear” since it assumes
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a linear relation between energy consumption and battery life. We implement all solutions in

MATLAB using the YALMIP [183] toolbox.

The “oracle” method requires the knowledge of energy generation, data generation and

ambient temperature for all nodes at each time interval in the horizon. The control vector is of

size N · (N−1) ·nT , so the solution becomes computationally very expensive for large number

of nodes N and long time horizons T , where T consists of nT time steps. Therefore, we did

our simulations over a horizon of 1 month, and time intervals of 1 hour. The SoH value of the

node with maximum degradation at the end of 1 month horizon for HPWREN and Smart Home

scenarios are given in Table 5.3. Smart Home is divided into kitchen & living room because each

room has their own smart hub, so the nodes only send data to their respective hubs creating two

clusters in the network. Prediction horizon of 6 hours was used for the proposed MPC solution.

Table 5.3. Minimum SoH in the network

Oracle Proposed (MPC)
HPWREN 0.9986 0.9983

Smart Home (Kitchen) 0.9987 0.9986
Smart Home (Living Room) 0.9985 0.9985

The overall degradation is very small since the simulation horizon is 1 month (Table 5.3).

For the HPWREN experiment, it was observed that the node with the minimum SoH degrades

19.1% more for proposed solution compared to the “oracle”. However, the difference is much

smaller in Smart Home, where both methods show nearly identical results.

End of battery life simulations

Next, we aim to compare with the “linear” method for the time it takes for the first battery

to die. In our solution the prediction horizons of MPC are much smaller than the complete

horizon, hence we can simulate through the end of battery life without being restricted by

computation resources. Since the “linear” method does not consider energy generation and

ambient temperature, it should only know the data generation rates for the whole horizon. In

both experiment scenarios we have constant data generation rates which makes the solution
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Figure 5.5. Minimum SoH in the network simulated until the end of battery life for HPWREN (left) and
Smart Home (right)

time invariant. Therefore, we solve the problem in a short horizon and use the same control

vector to simulate until end of battery life. The minimum SoH traces are depicted in Fig. 5.5

for both HPWREN and smart home scenarios. The points where batteries are considered dead

(SoH = 0.8) shown with vertical lines. By using proposed solution to specifically optimize for

SoH of the batteries, we gain 3 months (17.5%) of network lifetime for HPWREN, 11 months

(68.7%) for Smart Home (Kitchen), and 7 months (25.0%) for Smart Home (Living Room).

Influence of Prediction Horizon Length

To study the effect of prediction horizon length on the MPC performance, and for the

following sections, we simulated a 50-node network distributed randomly in a square region of

size 1000m x 1000m, over 1 month horizon. We assume that we have perfect predictions for

the given horizon. Fig. 5.6b shows that the MPC solution approaches the “oracle” solution as

we increase the prediction horizon. If accurate predictions can be made for the disturbances

(e.g. ambient temperature, solar radiation) over a long horizon, this can be leveraged in the MPC

to improve SoH by increasing the prediction horizon. However, this heavily depends on the

use case. For example, in a smart home the usage patterns of the IoT devices may exhibit high

variance because of the human factor. In this case it becomes difficult to predict data generation

rates of the nodes, and a short prediction horizon should be used. The computation time per MPC
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Figure 5.6. Influence of prediction horizon length on SoH degradation (left) and computation time
(right)

update step increases as shown in Fig. 5.6b. If an hourly update of the controller is preferred as

in our experiments, the increasing computation times does not critically affect the choice of the

prediction horizon since they are at least an order of magnitude smaller.

Effect of Ambient Temperature on Battery Health

We compare three cases to analyze the impact of ambient temperature on network life: 1)

all nodes are assumed to be under same ambient conditions, 2) nodes have changing ambient

temperatures (i.e hourly and daily temperature variations), 3) nodes have constant temperatures,

but ±15°C temperature difference with respect to each other. The first case is going to be our

reference for assessing the impact of ambient temperature. The second case is the closest to

a real life scenario, and the third case may also be plausible if there is an altitude difference

between the nodes of the network (e.g mountain top), or if there is an obstacle blocking the sun

for one node whereas the other node is exposed to direct sunlight.

The first case with the same constant ambient temperatures for all nodes results in 0.104%

SoH degradation for the most degraded node. For varying ambient temperature in case 2, the

SoH degradation is 0.118% and very close to the constant temperature scenario. Compared

to these two cases, having big temperature differences between nodes generates a much faster

degrading network with a SoH degradation of 0.143%.
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Figure 5.7. Normalized delay and normalized degradation by using end to end delay regularization

End-to-end delay

The normalized delay and degradation results with the additional delay regularization

term in the cost function is given in Fig. 5.7. Results show that there is a trade-off between

degradation and delay for different values of λ , which controls the level of regularization.

Depending on the application needs, this trade-off can be exploited to design IoT network routing

schemes with desired performance & lifetime.

5.5 Conclusion

In this chapter, we formulated the problem of minimizing battery degradation to improve

the lifetime of IoT networks. We proposed a solution with Model Predictive Control (MPC),

leveraging models for battery dynamics and State of Health (SoH). Our work includes the

effect of ambient temperature on degradation, and the models we use can accurately capture the

nonlinear behavior of actual batteries.

Chapter 5 contains material from “Dynamic Optimization of Battery Heath in IoT

Networks”, by Kazim Ergun, Raid Ayoub, Pietro Mercati, Tajana Rosing, which appears in

International Conference on Computer Design (ICCD), 2019 [4]. The dissertation author was

the primary investigator and author of this paper.
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Chapter 6

Summary and Future Work

The Internet of Things (IoT) continues to rapidly develop, combining commercial,

industrial, residential, and cloud-fog computing domains. It integrates heterogeneous devices,

ranging from sensors, to smartphones, tablets and edge servers, and can provide a variety of

services, beyond traditional Internet. Unfortunately, due to this unprecedented scale and ubiquity,

IoT faces a maintainability challenge and a set of interrelated problems. It has become extremely

important for IoT systems to operate reliably for long periods while delivering quality service

to users. In this thesis, we focus on novel solutions for energy-efficient and reliability-driven

management of IoT systems.

6.1 Thesis Summary

With the emergence of edge computing, IoT devices consume a significant amount of

power to deliver high quality of service, which can drain their battery in short time. High peak

power increases the device temperature stress, which worsens the impact of transistors and

interconnects reliability degradation mechanisms, such as Time Dependent Dielectric Break-

down (TDDB), Negative Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI) and

Electromigration (EM). Such mechanisms lead to hard failures and are costly to fix as well as

damaging to the manufacturer reputation. These problems worsen with the reduction of transistor

and interconnect dimensions due to continuous CMOS technology scaling. Existing management
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solutions for IoT systems often neglects these problems.

This thesis proposes the design of an exploration, simulation, and optimization framework

for IoT systems and develop end-to-end management solutions to address energy-efficiency

and reliability problems. We first introduced a simulation framework called RelIoT to enable

reliability evaluation and analysis for IoT networks in Chapter 2. The proposed framework is

based on the ns-3 simulator and can be used to explore trade-offs between power, performance,

and reliability of devices in a network. RelIoT is the first framework where these metrics

were evaluated simultaneously. We validated our simulations in two experimental network

setups. Additionally, we motivated the need for reliability-aware management through example

simulation results of energy-optimized and reliability-optimized management strategies. Using

RelIoT , we can simulate, explore, and check the feasibility of different network configurations

in terms of different objectives such as energy efficiency, reliability, and performance. This is

of crucial importance as it paves the way for the development of new network management

solutions, as shown in Chapter 3 and Chapter 4.

Beyond simulation and exploration, there is a need for proper system design and reliability

management strategies at the level of networks of devices. In Chapter 3, we introduced a dynamic

management scheme for IoT edge computing systems. The goal of our approach is to satisfy

the Quality of Service (QoS) and reliability requirements of the system while maximizing the

remaining energy of the edge device batteries. We considered a multi-gateway network and

proposed a scheme with two interconnected components: Intra-Gateway Management and

Inter-Gateway Management. Together, they control the offloading rates of edge devices, carry

out gateway assignments, and orchestrate the routing within the network. Each of the problems

is handled in a distributed fashion, resulting in a light-weight and scalable solution. The results

of edge computing system simulations indicate that our approach improves the lifetime of a

network with 36 edge devices by 5.8 months compared to the closest approach for two gateways

to as much as 7.4 months for four gateways. We also evaluated the energy savings and QoS for

various network configurations. Experiments demonstrated similar energy savings compared to
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the state-of-the-art approaches while preserving reliability and fewer missed task deadlines.

Both computation and communication components play a role in the performance of

an IoT service. It is of great importance to include the contributions of both components in

reliability analysis and then perform optimization accordingly. In Chapter 4, we explored the

problem of maintaining IoT device reliability from the perspective of network routing. The

literature on network routing up to date did not study hardware related reliability issues. We

proposed a distributed reinforcement learning based routing approach to improve network MTTF,

which learns to make its decisions based on the current reliability of the nodes, the amount of

degradation they will experience, and networking performance. We extended the ns-3 AODV

protocol with a Q-learning algorithm and demonstrated improved network MTTF compared to

state-of-the-art methods. Our results show up to a 73.2% improvement in reliability for various

communication data rates and the number of nodes in the network while delivering comparable

performance.

Finally, in Chapter 5, we formulated the problem of minimizing battery degradation to

improve the lifetime of IoT networks. We proposed a solution with Model Predictive Control

(MPC), leveraging models for battery dynamics and the State of Health (SoH). Our work includes

the effect of ambient temperature on degradation, and the models we use can accurately capture

the nonlinear behavior of actual batteries. We demonstrate that our solution can improve network

lifetime up to 68.5% compared to conventional energy consumption focused algorithms, which

use simple linear battery models. The proposed approach achieves near-optimal performance

in terms of preserving battery health, staying within 8.7% SoH with respect to an ideal oracle

solution on average.

6.2 Future Directions

Recent years have witnessed machine learning (ML) diffusing into many different do-

mains, including IoT. It has been shown that data-driven, learning based approaches can out-
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perform model-based approaches in many applications. Therefore, we are witnessing a lot

of opportunities and new business ideas being driven by ML. There has been an increasing

effort on both i) developing data-driven control strategies for IoT and ii) using IoT networks

for machine learning applications. In this section, we provide future directions for the use of

machine learning for IoT and the use of IoT networks for machine learning. We also discuss how

to further improve IoT network reliability management solutions. We address the shortcomings,

then propose extensions for our dynamic reliability management and routing approaches.

6.2.1 IoT for Machine Learning

Edge devices are equipped with increasingly advanced sensing and computing capabilities.

Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for

useful applications, e.g., computer vision, robotics, and natural language processing, in domains

such as healthcare and vehicular networks. In the traditional cloud-centric DL approaches,

data collected by remote clients, e.g., smartphones, is gathered centrally at a computationally

powerful server or data center, where the learning model is trained. This requires large volumes

of data communicated to the cloud. Communicating massive datasets can result in a substantial

burden on the limited network resources. Instead, this process can be split and shared between

cloud and edge by leveraging the increased computational capabilities of modern edge devices.

Our computation offloading framework, presented in Chapter 3, finds the best data

offloading rates from an edge device to a gateway, given the workload characteristics. However,

the algorithm is application-agnostic, meaning, it does not exploit the application structure.

Many machine learning models have proper structures that can be broken up into sequential

parts. For example, neural networks can be split to run the first few layers at the edge and the

rest in the cloud. Features can be extracted at the edge and then be communicated over internet,

which significantly reduces communication costs. Similar to what we proposed in our work, we

can optimize computation offloading and find optimal machine learning workload distribution

between edge and cloud. The goal is to keep model accuracy high while minimizing training
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cost.

Privacy concerns motivate the development of distributed algorithms to allow machine

learning at edge networks without data sharing. Federated learning (FL), proposed in [184], has

recently drawn significant attention as an alternative to centralized learning. FL exploits the

increased computational capabilities of modern edge devices to train a model on the clients’ side

while keeping their collected data local. In FL, each client performs model training based on

its local dataset and shares the model with a central server. The models from all participating

clients are then aggregated to a global model. Two of the main challenges associated with FL

are the computation and communication bottlenecks [185]. With FL, the computation, i.e., the

training process, is pushed to edge devices. However, state-of-the-art ML algorithms, including

deep neural networks (DNN), require a large amount of computing power and memory resources

to provide better service quality. The DNN models have complicated model architectures with

millions of parameters resulting in long training times. Besides computation, the communication

load of DNN based FL suffers from the need to repeatedly convey massive model parameters

between the server and large number of clients over wireless channels [186]. The solutions

proposed in this thesis for efficient computation and communication can be tailored for FL

applications for future work. We can use the dynamic management algorithm proposed in

Chapter 2 to regulate energy and temperature of edge devices during model training, then refine

and leverage our routing approach in Chapter 4 to find optimal paths for communication learning

models.

6.2.2 Machine Learning for IoT

Machine learning techniques are recently being used within IoT systems to provide

efficient solutions such as localization, clustering, routing, data aggregation, and tasks targeting

performance-related challenges, such as congestion control, fault detection, resource manage-

ment, and security. In particular, the complexity, dynamism, and heterogeneity of modern

IoT networks have driven a recent development of routing techniques based on reinforcement
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learning (RL) in recent years [138, 139].

We addressed the challenges of IoT networks with a Q-learning based routing approach.

However, Q-learning can be computationally costly to implement in large-scale networks due

to the growing size of Q-tables. In an ad-hoc network, each node may have to store every

next-hop and destination pair for all of the nodes in the network. If the nodes have very large

number of neighbors, then approximate Q-learning can be implemented to dramatically reduce

the size of Q-tables. By using function approximation, Q-learning can scale to handle very large

state-spaces [173]. In particular, deep Q-learning is a promising solution that proposes neural

network function approximation for Q-tables [174, 175]. In future work, we want to utilize deep

reinforcement learning solutions to overcome such scaling issues.

Our general Q-learning methodology can be adopted and implemented into different

protocols, though with modifications, but the specific implementation in our work is based on

AODV. For example, a more common routing protocol is RPL [153] for many low-power IoT

applications. One of the reasons for using AODV is that it is specifically designed for ‘dynamic’

networks such a MANETs where the topology change over time. There are efforts on modeling

low-power and lossy network protocols such as RPL for IoT, but they are not fully developed yet.

Hence, we aim at extending our approach to such protocols in future work.

Another use case of machine learning solutions is in system design. As future work, we

plan to leverage our framework for design space exploration (DSE) of IoT networks. Specifically,

reinforcement learning can be used for node placement and topology design.

6.2.3 Network Reliability Management

The inherent assumption for our solutions in this thesis is that network Mean Time to

Failure (MTTF) is the minimum of any node in the network. This definition is one of the most

prevelant in literature [52] and has been used in many recent works [117, 118]. Therefore, we

consider the device-level reliability optimization or requirements, and try to keep the reliability

of the most degraded device at high levels. Intuitively, this would be ideal for networks where
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all nodes are equally critical for the system to operate. However, there are interactions between

devices and there might be dependencies in data, or between different devices. Furthermore,

the devices are heterogeneous. There might be redundancy of devices such as backups, hence a

single edge device failure may not result in the failure of operation of the entire network. Other

edge devices with sensors of the same or even different types can substitute their work, such

that the fault goes undetectable. When all aspects are considered, we need more sophisticated

system-level reliability models.

A possible future direction is to incorporate different network reliability models in our

management approach. Different from single device, network-level reliability modeling can be

examined by graph-based models. For example, a simple model is formulized by the serial and

parallel reliability expressions as described in Chapter 3. Commonly used analytical models for

networks include Markov Chains, Fault Tree, Binary Decision Diagram (BDD) and Reliability

Block Diagram (RBD). The first step in assessing the impact of individual device reliability

and failure mechanisms to determine the conditions for network failure. Furthermore, it is

crucial to analyze how these conditions change depending on the IoT application. One can then

identify the reliability bottlenecks in the application and reconfigure the management algorithm

to adapt. There are strategies that rank the devices’ importance within an application and their

criticality towards ensuing the network failure condition (based on certain metrics such as

Birnbaum’s measure [187]). Using techniques such as in [188, 189], we can evaluate the system

reliability, determine the criticality of IoT devices, and construct system-level models that reflect

inter-dependencies between devices.
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