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Abstract

Finding Critical and Gradient-Flat Points of Deep Neural Network Loss Functions

by

Charles Gearhart Frye

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Associate Professor Michael R DeWeese, Co-chair

Adjunct Assistant Professor Kristofer E Bouchard, Co-chair

Despite the fact that the loss functions of deep neural networks are highly non-convex,
gradient-based optimization algorithms converge to approximately the same performance
from many random initial points. This makes neural networks easy to train, which, com-
bined with their high representational capacity and implicit and explicit regularization
strategies, leads to machine-learned algorithms of high quality with reasonable computa-
tional cost in a wide variety of domains.

One thread of work has focused on explaining this phenomenon by numerically character-
izing the local curvature at critical points of the loss function, where gradients are zero.
Such studies have reported that the loss functions used to train neural networks have no
local minima that are much worse than global minima, backed up by arguments from
random matrix theory. More recent theoretical work, however, has suggested that bad
local minima do exist.

In this dissertation, we show that one cause of this gap is that the methods used to
numerically find critical points of neural network losses suffer, ironically, from a bad local
minimum problem of their own. This problem is caused by gradient-flat points, where
the gradient vector is in the kernel of the Hessian matrix of second partial derivatives.
At these points, the loss function becomes, to second order, linear in the direction of the
gradient, which violates the assumptions necessary to guarantee convergence for second-
order critical point-finding methods. We present evidence that approximately gradient-flat
points are a common feature of several prototypical neural network loss functions.
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To the victims of empires, hegemonies, and masters, large and small, visible and
invisible, across time and around the world. A better tomorrow is possible.

I found it hard, it’s hard to find.
Oh well, whatever, nevermind.

Kurt Cobain,
Smells Like Teen Spirit, May 1991
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Chapter 1

Critical Points and the
No-Bad-Local-Minima Theory of
Neural Network Losses

1.1 Overview

It is typical to present only the polished final products of scientific research, rather than
the process itself. This is exemplified by the advice to “write papers backwards”, from the
results and conclusions to the introduction and rationale. While this perhaps makes the
research more digestible and certainly makes it more impressive, it hides the confusion
and failure that are the day-to-day reality of research. In this brief overview, I will try to
tell the story of the research project laid out in this thesis as it was experienced, warts
and all, and in terms comprehensible to a wide audience. If you’re only interested in the
technical material, proceed to the next section, Section 1.2, to get started, or double back
to the abstract for an overview.

Neural networks are machine learning systems that are, as of the writing of this thesis
in 2020, widely used but poorly understood. The original purpose of the research project
that became this dissertation was to understand how the architecture, dataset, and train-
ing method interact to determine which neural network training problems are easy. The
approach was inspired by methods from chemical physics [9] and based on an analogy
between a physical system minimizing energy and a machine learning system maximizing
performance. Conceptually, the goal is to characterize all of the configurations in which
the system is stable, the critical points or stationary points of the system. The details of
this problem setup are the substance of the remainder of this chapter.

Our intent was to build on the work of [22] and [67], who had reported a character-
ization of critical points in some small, simple neural networks. We hoped to increase
the scale of the networks closer to what is used in practice, to try more types of neural
networks, and especially to examine the role of the dataset.

The first step in characterizing the critical points is finding them. In general, they
can’t be derived or written in elementary mathematical terms, and so need to be discov-
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ered numerically, just as highly-performant neural networks have their parameters set by
numerical algorithms rather than by analytical derivations. Chapter 2 is a didactic sur-
vey of algorithms for finding critical points. Our early attempts to reproduce the results
in [22] and [67] appeared to be failures. The metric usually used to measure how close
one is to a critical point, the squared gradient norm, stubbornly refused to decrease.

The algorithms used to find critical points are complicated — both in terms of their
implementation and in terms of the number of knobs, or hyperparameters, we can twiddle
to configure them. Furthermore, they behave quite differently from typical machine learn-
ing algorithms, and so intuition gained from experience working with those algorithms
can be misleading. We had implemented these critical point-finding algorithms ourselves,
due to the absence, at the beginning of this research project, of important technical tools
in typical neural network software packages. We furthermore had limited expertise and
experience in this domain, so our first thought was that we had either implemented the
algorithms incorrectly or weren’t configuring them properly.

As it turned out, both of those hypotheses were correct, but verifying them became
a research project in itself. The key innovation was the introduction of the deep linear
autoencoder as a test problem. For this very special neural network, the critical points
actually are known mathematically, and have been since the late 80s [8]. With these
“correct answers” in hand, we can check the work of our algorithms. These results were
written up for the arXiV in [30] and rejected from ICML2019. They form the first part
of Chapter 3.

Unfortunately, the process of debugging and tuning critical point-finding algorithms
on the deep linear autoencoder did not solve our performance problems on non-linear
networks. It remained the case that the squared gradient norm metric was abnormally
high, along with other signatures of bad behavior on the part of our algorithms.

However, the exercise of verifying our algorithms on the deep linear autoencoder gave
us the confidence to consider other, more fundamental causes for failure. In reviewing the
literature on the methods used to find critical points, it became clear that a particular
failure mode for these methods was not well-appreciated. Implicit in the literature on
critical point-finding was the fact that, whenever a certain vector (the gradient) was
mapped to 0 by a certain matrix (the Hessian), critical point-finding would fail [34, 12, 71].
We named this condition gradient-flatness and, on reviewing the outputs of our critical
point-finding algorithms when applied to neural networks, we observed it ubiquitously.
The concept of, evidence for, and consequences of gradient-flatness in neural networks are
the focus of the second part of Chapter 3. These results were written up separately for
the arXiV in [29].

The biggest take-home message of our observations for the field is that the famous
results in [22] and [67] need an asterisk: the points characterized by those papers appear
to be gradient-flat points, not critical points, which has distinct consequences for our
understanding of neural networks.

In the remainder of this chapter, I will set up the problem of training neural networks
and describe the critical point-based perspective on it, the no-bad-local-minima theory.
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1.2 Neural Network Losses

Neural networks are a highly flexible class of differentiable functions suitable to a wide
variety of machine learning tasks [47]. Neural networks are constructed by interleaving
parameterized linear transformations with (optionally parameterized) non-linear trans-
formations. In order to be able to apply calculus to our networks, we will assume that
the parameters are stored in a vector, θ, and converted into a function by a network
constructora NN:

NN(θ) : X → Y (1.1)

While neural networks can be used for any machine learning task, we will focus on
the important special case of supervised learning. In supervised learning, a collection of
inputs X and targets Y are provided, and the goal is to find a function from X to Y
such that the value of some cost function c is low, on average, when applied to matching
pairs of targets and inputs after being passed through the network. Optionally, certain
parameter values may be considered more “costly” than others, and this is enforced by a
regularizer r that is added to the cost. The result is called the loss function and is defined
below.

Definition 1.1: Loss Function

Given a neural network constructor NN, a cost function c, a regularizer r, and input
data X and targets Y , we define the loss function as

L(θ)
def
=

1

n

∑
xi,yi∈X,Y

c(NN(θ)(xi), yi) + r(θ) (1.2)

Note that, because the parameters are the thing over which we have control, we think
of this as a function of the parameters θ, even though it might in other contexts be
considered a function of the network architecture, the data, or both.

For example, a fully-connected network has as its parameters a tuple of weight matrices
Wi and applies a non-linear function σ after applying each in turn:

NN (W1, . . .Wk−1,Wk) = Wk ◦ σ ◦Wk−1 ◦ σ ◦ . . . σ ◦W1 (1.3)

The process of “training” a neural network is the process of selecting a value of the
parameters, θ?, that minimizes the loss:

θ? ∈ argmin
θ∈Θ

L(θ) (1.4)

That is, we treat the process of inferring the best parameters for our network, the process
of programming our machine-learned algorithm, as an optimization problem. This is the
variational approach, which is a ubiquitous method in mathematicsb. One might think

aThe notation for this setup is summarized in Table 1.1.
bE.g. the Courant-Fischer-Weyl characterization of eigenvalues, the variational approach to infer-

ence [77], the Lagrangian approach to mechanics, and even the universal construction approach in cate-
gory theory [57].
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Name Symbol : Type

Inputs X : X n def
= Rm×n

Targets, Outputs Y : Yn def
= Rp×n

Parameters θ : Θ
def
= RN

Loss Function L : Θ→ R
Network Constructor NN: Θ→ YX

Cost Function c : Y × Y → R
Regularizer r : Θ→ R

Table 1.1: Definitions of Terms and Symbols for Neural Network Loss Functions.

The “type” of an object is either set of which it is an element or, for a function, the types
of its inputs and outputs, denoted by input type→ output type. The symbol YX denotes
the set of all functions from X to Y .

of machine learning in general as a variational approach to programming computers. An
element of an argmin is known as a global minimum. Finding global minima is generically a
hard problem in the strictest sense, precisely because almost any problem in mathematics
can be formulated as an optimization problem. The variational approach is particularly
useful when the resulting optimization problem has a fast solution algorithm.

Almost all methods for optimizing neural networks are gradient-based. That is, they
use the gradient function, which satisfies the following relation:

Definition 1.2: Gradient Function

The gradient function of a function L : Θ→ R is denoted ∇L : Θ→ Θ and satisfies

L(θ + ε) = L(θ) + 〈∇L (θ) , ε〉+ o(ε) (1.5)

for all θ, ε ∈ Θ. The values returned by this function are called gradients or gradient
vectors.

If a method only uses the function and the gradient, we call it a first-order method.
The gradient at a point θ is a vector that can be used as a linear functional applied to

a perturbation ε that approximates the value of L at θ + ε. If we drop the little-o term,
we obtain this linear approximation, also known as a first-order Taylor expansion:

L̂(θ + ε) = L(θ) + 〈∇L (θ) , ε〉 (1.6)

Since L̂ is unbounded, minimizing it would mean selecting an infinitely-long step ε in
a direction with negative inner product with the gradient. But our goal is to minimize
L, not L̂, and as ε grows, so does the approximation error o(ε), and so we select a finite
length vector. We choose the one that makes that inner product most negative, for its
length. This is the negative gradient. We then typically apply a scaling factor η, called
the learning rate or step size. The resulting optimization method, defined in Algorithm 1,
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is known as gradient descent.

Algorithm 1: Gradient Descent

1Require θ0 ∈ Θ, η ∈ R+,∇L : Θ→ Θ, T ∈ N+

2while t < T do
3θt+1 ← θt − η∇L (θt)
4t ← t+ 1

5end

This method and its stochastic and accelerated variants have some hope of working on
smooth functions because whenever the parameter is a minimizer, the gradient is 0:

θ? ∈ argmin
θ∈Θ

L(θ)⇒ ∇L (θ?) = 0 (1.7)

and so, if initialized from a minimizer, any gradient-based algorithm will stay there.
Below, we will demonstrate that for convex smooth functions, this algorithm, for an
appropriate choice of η, will converge to a minimizer from a random initial point.

Unfortunately, neural network loss surfaces are not convex, and so the theory built
up around convex optimization (see [16, 12]) would suggest that training neural networks
should be hard. And indeed, the experience of practitioners working on neural networks in
the 80s and 90s was that training them was difficult. Nowadays, however, it is recognized
that training large neural networks with gradient-based methods is actually quite easy,
in that many problems can be avoided with a few generic tricks [75]. One key hypothesis
as to why is the no-bad-local-minima theory. To understand it, we need to consider the
kinds of structures that can appear in a non-convex function, and which of them are
compatible with gradient-based optimization.

1.3 Critical Points

One approach to analyzing the behavior of optimization algorithms is to split the task
of determining convergence into two steps: first, identify the points which are stationary,
at which the update is 0, and then determine which of those points are actual targets of
convergence. We call the stationary points of the loss for the gradient descent algorithm
its critical points.

Definition 1.3: Critical Points

The set of all critical points of a loss function L on a domain Θ is denoted ΘL
cp and

defined as
ΘL

cp
def
= {θ ∈ Θ: ∇L (θ) = 0} (1.8)

When unambiguous, the super-script L will be omitted.

In a näıve first pass, it would seem that all θ ∈ Θcp are also targets of convergence.
If we initialize Algorithm 1 to one of these points (θ0 ∈ Θcp), then θt = θ0 for all t.
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Therefore, if initialized from a critical point, the algorithm will converge to that critical
point.

This picture is mis-leading for practical purposes, but even this coarse approach is
sufficient to guarantee that gradient-based methods converge on smooth convex functions.
A smooth function f is convex iff f(y) > f(x) + 〈∇f (x) (y − x)〉 for all x and y in its
domain Ω. The loss functions for linear regression and logistic regression are convex,
including when convex regularization is applied, e.g. LASSO or ridge [36]. See Figure 1.1.

A

L( ) L
cp argmin L

B

Figure 1.1: The Critical Points and Global Minima of a Convex and a Non-Convex
Function

A: The convex function L(θ) = θ2 (black) and its critical points (gold) and minimizers
(blue outline). B: Same as in A, but for the non-convex function L(θ) = cos(θ) + θ+ θ2.

Applying this definition of convexity at a point xcp among the critical points of f , Ωf
cp,

we have that

f(y) > f (xcp) + 〈∇f (xcp) , y − xcp〉 (1.9)

f(y) > f (xcp) + 0 = f (xcp) (1.10)

for any point y. This is part of the power of convexity: local information (encoded in the
gradient) gives global information (in the form of a global lower bound). With it, we can
improve 1.7 from a one-way implication to a biconditional, from “if-then” to “if and only
if”:

L smooth, convex ⇒ θ ∈ argmin
θ∈Θ

L(θ)⇔ ∇L (θ) = 0⇔ θ ∈ Θcp (1.11)

Another way to characterize smooth convex functions is through their Hessian func-
tion. The Hessian function returns matrices that satisfy the relation below:
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Definition 1.4: Hessian Function

The Hessian function of L : Θ → R is denoted ∇2L : Θ → RN×N , where N is the
dimensionality of Θ, is the function that satisfies

∇L (θ + ε) = ∇L (θ) +∇2L (θ) ε+ o(ε) (1.12)

for all θ, ε ∈ Θ. The matrices returned by this function are called Hessians or
Hessian matrices.

It is the “gradient of the gradient”, in that it returns a linear function (a matrix) that
approximates the gradient function, which itself returns a linear functional (a vector) that
approximates the original scalar function.

Combined, the gradient function and the Hessian function produce a quadratic ap-
proximation of the original function L:

L (θ + ε) = L(θ) + 〈∇L (θ) , ε〉+
1

2
ε>∇2L (θ) ε+ o(‖ε‖2) (1.13)

Note that the Hessian appears in Equation 1.13 as a quadratic form: a symmetric
matrix pre- and post-multiplied with the same vector. Quadratic forms are classified, up
to a change of basis, by the eigenvalue spectrum of the underlying matrix: the number
of positive, negative, and 0 eigenvaluesc. We will later classify critical points in the same
fashion.

Smooth convex functions are precisely those functions whose Hessian matrix has no
negative eigenvalues at any point. Such a matrix M is called positive semi-definite, de-
notedd M � 0. If M � 0, then its smallest eigenvalue is positive, and the matrix is
positive definite.

If the Hessian M at a point is positive definite then x>Mx is always positive. This
implies that the second-order term in Equation 1.13 is positive. Since the second-order
term dominates the higher-order terms for sufficiently small ε, at a point θ∗ where the
gradient is 0 and the Hessian is positive definite, we have that

L (θ∗ + ε) = L(θ∗) + 〈∇L (θ∗) , ε〉+ ε>∇2L (θ∗) ε+ o(‖ε‖2) (1.14)

= L(θ∗) + 0 + ε>∇2L (θ∗) ε+ o(‖ε‖2) (1.15)

> L(θ∗) (1.16)

Such a θ∗ is a called a local minimum, since it is a minimizer of L in all its neighbor-
hoods under a given size.

cBecause the matrices are real and symmetric, there are no complex eigenvalues.
dSpecifically, � is the Loewner partial order on symmetric matrices. A � B if the smallest eigenvalue

of A−B is greater than or equal to 0. � is defined using strict inequality.
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Definition 1.5: Local Minima

The set of all local minima of a scalar function L on a domain Θ is denoted ΘL
lm

and defined as
ΘL

lm
def
= {θ ∈ Θ: L(θ + ε) > L(θ)} (1.17)

for some ε > 0. When unambiguous, the super-script L will be omitted.

By a small extension of the above argumente, we come to a final characterization of
why gradient descent converges on smooth, convex functionsf: all critical points are local
minima and all local minima are also global minima, i.e. elements of the argmin:

f : Ω→ R smooth, convex ⇒ Ωlm = argmin
Ω

f = Ωcp (1.18)

From this, we can deduce that any algorithm that converges to a generic critical point
will converge, on smooth convex functions, to a minimizer.

This condition is sufficient, but not necessary, for gradient descent to converge to a
local minimizer. The sticking point is when there are critical points which are not local
minimizers: Θcp ⊃ Θlm. Does gradient descent converge to non-minimizing critical points,
or only to local minimizers?

Reviewing the second order approximation of the loss in Equation 1.13, we see that,
at a critical point θcp, the first order term vanishes

L(θcp + ε) =
1

2
ε>∇2L (θcp) ε+ o(‖ε‖2) (1.19)

leaving only the terms of second order and above. We can therefore classify critical points
according to the eigenvalue spectrum of their associated Hessian. The fraction of negative
eigenvalues is known as the index of the critical point.

Definition 1.6: Index

For a critical point θ ∈ ΘL
cp, we define the index as the number of negative eigen-

values of the Hessian of L at θ:

I(θ) =
1

N

∑
λi∈Λ(∇2L(θ))

I (λi < 0) (1.20)

where Λ: SRk×k → Rk is a function that takes in a symmetric real matrix and
returns its eigenvalues as a vector and I is the indicator function.

eThe extension demonstrates that, for convex functions, points with positive semi-definite Hessians
are still minimizers. See [12]. This is untrue in the non-convex case, and checking whether a point is a
minimum becomes NP-Hard at worst, see [58].

fIn fact the class of functions for which the implication 1.18 holds is broader. They are known as
smooth invex functions, see [39].
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Points with index strictly between 0 and 1 are strict saddle points. These are points
where the gradient is 0 and the local curvature is upwards in some directions and down-
wards in others. See Figure 1.2 for an example. If all eigenvalues are non-zero, then
critical points with index 0 are local minima and critical points with index 1 are local
maxima. If some eigenvalues are zero and the index is 0, then the critical point may be
a local minimum or may be a (non-strict) saddle point, but higher-order derivatives are
needed to disambiguate.

If all saddle points are strict saddle points, a condition known as the strict saddle
property, then gradient descent converges to a local minimizer [50, 49]. Furthermore,
convergence for a stochastic version of Algorithm 1 is fast [42] and can be accelerated via
momentum [41].

This is a convenient property, but is it satisfied by any losses of practical interest? As
an illustrative example, consider the quartic loss function of two variables, Example 1.1
below, which is based on perhaps the simplest neural network. The example is artificial—
it is using machine learning to multiply by 1, which is excessive even in the contemporary
era of ML hype —but it is closely related to principal components analysis (PCA), as
we will see in Chapter 2. More generally, the strict-saddle property is satisfied by tensor
decomposition problems [31], which covers a number of latent variable models, including
PCA, independent components analysis (ICA [11, 21]), sparse coding [62] and other forms
of dictionary learning, and Hidden Markov models [3].

In many of these cases, all local minima are also global minima, and so gradient
descent is sufficient for those optimization problems. The question of whether this holds
for neural network loss functions is the subject of the next section.

1.4 The No-Bad-Local-Minima Theory

When all local minima of a function are approximately global minima, we will say that the
function has the no-bad-local-minima property, or the NBLM property. While Example 1.1
has the NBLM property, the function in panel B of Figure 1.1 does not, due to the presence
of a non-global local minimum. We will refer to the hypothesis that the loss functions of
large neural networks satisfy the NBLM property as the no-bad-local-minima theory.

Informally, the argument goes as follows: at any critical point, imagine that the eigen-
values of the Hessian are drawn randomly. If there is even a small chance that any
eigenvalue is negative, then for a sufficiently large network, there will be almost surely
at least one negative eigenvalue, by the strong law of large numbers. When the value of
the loss is low, we might expect that the probability of a positive eigenvalue becomes 1,
while when the value of the loss is high, negative and positive values are both possible. A
random loss function drawn according to these rules will have the NBLM property with
a probability that rapidly increases with dimension.

In Section 1.4.1, we will cover the first model of neural network loss functions meant to
formalize this intuition, the Gaussian random field model of [22]. Then, in Section 1.4.2,
we will explain how this model was improved by incorporating observations about the
spectrum of the Hessians of neural networks [67]. Then, we will discuss, in Section 1.4.3,
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Example 1.1: 1-Dimensional Deep Linear Autoencoder

In Definition 1.1, take X = Y = 1, c(y, ŷ) = (y − ŷ)2, r(θ) = 0, and NN(θ) = θ2θ1

for Θ = R2. The resulting loss function L is

L (θ1, θ2) = (θ2θ1 − 1)2 (1.21)

In more standard terminology, it corresponds to the choice of the mean squared
error cost function and no regularization for a linear autoencoder network with
one-dimensional inputs and a one-dimensional hidden layer.

The function is not convex, because the gradient does not provide a global
lower bound at some points, e.g., at the origin where it is the zero vector. The
origin is a critical point that is not a minimizer (the loss takes on value 1 > 0)
but instead a strict saddle point. However, this function can still be optimized
effectively with gradient-based methods.

argmin L L
cp

Figure 1.2: A Loss Function that Satisfies the Strict Saddle Property.

Values of the function defined in Example 1.1 on a domain centered at the origin.
The value of L is represented by color, with low values in black and high values in
white. Contours are logarithmically-spaced for illustrative purposes. Critical points
in blue, and global minima in gold. The isolated critical point at the origin is a
strict saddle.
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weaknesses of and negative analytical results for the broadest versions of the NBLM
theory, and close with a review of the alternatives, in Section 1.4.4.

1.4.1 The Gaussian Random Field Model of Neural Network
Losses

One of the simplest interesting classes of random functions that have the NBLM property
is the class of Gaussian random fields. Gaussian random fields are random functions from
Rn to R. An example of a single draw from a Gaussian random field defined on R2 appears
in Figure 1.3.

With most random variables, discussion can proceed directly from writing down a den-
sity. But with random functions, the situation is more complicated, because it is difficult
to consider densities and integrals over the space of functions. For one, it necessitates
that we typically visualize random functions by looking at a single example realization, as
in Figure 1.3, and hoping that any properties we notice are “typical”, rather than draw-
ing a histogram or density. The difficulty in working with densities further necessitates
a somewhat strange definition for the Gaussian random field. The definition is clearer if
we first introduce an analogous definition for multivariate Gaussian random variables.

Definition 1.7: Multivariate Gaussian

A random k-dimensional vector v is multivariate Gaussian if the random variable
w>v is Gaussian-distributed for all w ∈ Rk.

As a corollary, the family of multivariate Gaussians is closed under all linear transforma-
tions, since the composition of a linear transformation and an inner product is equal to
an inner product with another vector.

We can similarly define a Gaussian random field by requiring that the vectors obtained
by evaluating the random function at any set of test points have the same property.

Definition 1.8: Gaussian Random Field

A random function f from Rk → R is a Gaussian random field if the random
variable w>f⊗n(x1 . . . xn) is Gaussian-distributed for all w ∈ Rn, xi ∈ Rk and for
every n ∈ N.

Here f⊗n is the n-fold product of the function f , which applies the function f to n separate
inputs, returning n outputsg.

There is one example of a Gaussian random field that is familiar to machine learning
practitioners: the Gaussian process.

gSpecifically, f⊗n(x1, . . . , xn)i = f (xi) for all i from 1 to n.
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Example 1.2: Well-Known Gaussian Processes

Choose k = 1 in the Definition 1.8. This special case of a Gaussian random field is
called a Gaussian process.

If f(xi) is independent of f(xj) for all xi, xj ∈ R, then f is a white noise
Gaussian process.

The cumulative integral of a white noise Gaussian process is also a Gaus-
sian process, called a Wiener process or a random walk.

Consider a single unit in a neural network with independent, Gaussian ran-
dom weights θ. The family of Gaussian random variables is closed under linear
combinations, so the random variable θ>x is Gaussian for all x. Such a neuron is
therefore a Gaussian process. With care, this can be extended into a model for
deep nonlinear neural networks with very large layers and non-Gaussian random
weights, see [40].

Usefully, a Gaussian random field can be defined in terms of its mean function µ : Rk →
R and covariance function, or kernel, K : Rk × Rk → R, which must be positive semi-
definite. For many choices of kernel, the field is smooth (and its partial derivatives are also
Gaussian random fields). See Figure 1.3, which depicts a single draw from the ensemble
of smooth Gaussian random fields with a particular squared exponential, or Gaussian,
kernel. Notice that it has local minima, saddles, and maxima. If we are to use this
ensemble as a model of neural network losses that can explain their optimizability, we
would like a statistical description of these critical points.

Figure 1.3: 2-Dimensional Gaussian Random Field.

Note that this is a single realization of a Gaussian random field, akin to a single observation
of a random variable.
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The key work on the critical points of smooth Gaussian random fields is [13]. Their
core result showed that the expected index (Definition 1.6) of critical points is a tight
function of the field’s value at that pointh. Furthermore, for many kernels, including the
squared exponential kernel, the expected index is an increasing function of the loss, and
the deviations are even smalleri.

As a consequence, if a high-dimensional loss function is a typical member of the this
random field ensemble, then when the loss is high, the number of negative eigenvalues
at critical points is high, and so the critical points are all saddles or maxima. Below
a certain value of the loss, all of the critical points will be minima. Furthermore, the
minima, including the global minima, will have approximately the same loss. This is an
effective restatement of the no-bad-local-minima property.

One benefit of this model is that it applies only to high-dimensional loss functions.
This would explain the difference in optimizability of contemporary neural networks,
where parameter counts (dim Θ) are in the hundreds of thousands or millions, and neural
networks in the 80s and 90s, which were orders of magnitude smaller in size.

The hypothesis that neural network loss surfaces might be well-modeled by typical
members of the Gaussian random field ensemble was first put forward in [22]. They
reported numerical results on the critical points of two neural network losses that were
in qualitative agreement with the NBLM property of Gaussian random fields. We will
later see (Chapter 3) that these results have a caveat to them, due to weaknesses of the
numerical methods. Because [22] predated, and to some extent inspired, results on the
convergence of gradient descent in the presence of saddles [50, 42], it focused on defining
an optimization method, saddle-free Newton, that was clearly repelled by saddles.

1.4.2 Improving the Gaussian Random Field Model with
Wishart Matrices

In this section, we will see how the Gaussian random field model misses the mark in
predicting the spectrum of neural network loss Hessians and develop a better model,
following [67]. We begin by considering the random matrix ensembles from which the
Hessians of the Gaussian random field model are drawn. For a fuller treatment of the
theory of random matrices, including proofs of the statements below regarding spectra,
see [27, 76].

The eigenvalues of random matrices enjoy a similar phenomenon to the Central Limit
Theorem for sums of random variables: when the right independence assumption is made,
the details of the random variables don’t matter, and the result has a stereotypical distri-
bution. For averages of random variables, that stereotypical distribution is the Gaussian.
For eigenvalues of random matrices, it is the Wigner semi-circle distribution.

First, let’s define the ensemble of random matrices associated with this distribution:
the symmetric Wigner random matrices.

hDeviations of order O(1/
√
N), where N is the dimension of the field.

iDeviations of order O(1/N).
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Definition 1.9: Symmetric Wigner Random Matrix

A random square n× n matrix M is symmetric Wigner if the random entries Mij

satisfy the following:

∀i, j : 1 6 i < j 6 n

E [Mi,j] = 0

E
[
M2

i,j

]
= 1/n

Mj,i = Mi,j and Mi,j iid

∀i
E [Mi,i] = γ

E
[
M2

i,i

]
= 1/n

Mi,i i.i.d

where iid is short-hand for independent and identically-distributed and γ ∈ R. Note
that the entries along the diagonal, defined in the second block, may have a different
distribution than the entries off the diagonal, defined in the first block, but both
groups are iid.

A single draw from this ensemble is pictured in Figure 1.4, along with its observed
eigenvalue distribution and cumulative distribution. As the size of the matrix n goes to
∞, the observed eigenvalue distribution converges, in the almost sure sense, to a Wigner
semicircular distribution.

Definition 1.10: Wigner Semicircular Distribution

The (γ-shifted) Wigner semicircular distribution is the distribution associated with
the density ν : [−2 + γ, 2 + γ]→ R, defined as

ν(x) =
1

2π

√
4− (x− γ)2 (1.22)

for γ ∈ R. When the shift parameter γ is 0, we drop the prefix of “shifted”.

This distribution is symmetric about the control parameter γ. For γ = 0, this means
that, for a large symmetric Wigner matrix, approximately half of the eigenvalues will be
negative and half of the values will be positive. As γ changes, the fraction of eigenvalues
above and below zero changes.

We can now be a bit more specific about the results of [13]. They found that the
Hessian spectra of critical points of Gaussian random fields have γ-shifted Wigner semi-
circular distributions whose shift parameter γ depends on the value of the random field
at that critical point. This gives an index that is similarly dependent.

How well does this spectrum match up against the observed eigenvalues of neural
network loss Hessians? The expected distribution is a density: i.e. it has no atoms, or
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Figure 1.4: The Wigner Semicircular Distribution.

A: An example 50 × 50 symmetric Wigner random matrix drawn from the ensemble
in Definition 1.9. Entries are Gaussian-distributed. More negative values in black, more
positive values in white. B: The expected spectral density of the matrix in A (gold),
which is given by Equation 1.22, and the histogram of observed eigenvalues (blue). Note
the close match. C: The expected cumulative spectral distribution of the matrix in A
(gold), which is the integral of the density in B, and the cumulative fraction of observed
eigenvalues (blue). Again, the match is close even for a fairly small matrix.

single points with finite probability mass, as is typical for “well-behaved” continuous
random variablesj. In particular, there is no atom at 0, and so the probability that a
random matrix has an exactly zero eigenvalue is 0. This means that their kernel, defined
below, consists only of the zero vector, and the matrices almost surely have inverses.

Definition 1.11: Kernel and Co-Kernel

For a matrix M ∈ Rm×n, we define the kernel of M , denoted kerM , as the set of
all vectors mapped to 0 by M :

kerM
def
= {v ∈ Rn : Mv = 0} (1.23)

We define the co-kernel of M , denoted co kerM , as the subspace spanned by all
vectors not mapped to 0 by M :

co kerM
def
= {v ∈ Rn : Mv 6= 0} ∪ {0} (1.24)

These two subspaces are complementary : their union is Rn and their dimensions add
up to n. The rank of M , rkM , is equal to the dimension of co kerM . A matrix with rank
less than the minimum of its input and output dimension is said to have low rank.

jIn rigorous terms, the distribution is absolutely continuous with respect to the Lebesgue measure.
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The full rank of Wigner random matrices is in stark contrast to that of Hessian matri-
ces of typical neural network loss functions [72]. There are many 0 eigenvalues, along with
some eigenvalues at much larger values, with fewer and lower magnitude negative eigen-
values. Furthermore, the low-rank structure of the Hessian matrix can be read off from
the clear patterns in the values, unlike the clearly independent (aside from symmetry)
values in the matrix in Figure 1.4.

There is an alternative random matrix ensemble that has some of these properties:
the Wishart random matrix ensemble.

Definition 1.12: Wishart Random Matrix

A random square n× n matrix M is Wishart if it can be constructed as

M = XX> (1.25)

where X is a random n× k matrix with iid Gaussian entries

Xij ∼ Normal (0, 1/k) (1.26)

It is the sample covariance matrix of a k-element sample of an n-dimensional Gaus-
sian random vector with iid components.

The rank of a Wishart random matrix is almost surely equal to the minimum of n and k.
When k is less than n, the matrix is low-rank.

The expected spectrum of a Wishart random matrix follows the Marçenko-Pastur
distribution with parameter γ = n

k
, defined below. This distribution places non-zero

probability mass at 0, and so produces non-invertible matrices. It also includes a density
over positive values, and so its definition is somewhat technically involved. A single
draw from this ensemble is pictured in Figure 1.5, along with its observed eigenvalue
distribution and cumulative distribution. Note the presence of a large bulk at 0.

Definition 1.13: Marçenko-Pastur Distribution

The Marçenko-Pastur distribution with parameter γ is defined as

ν(X) =

{
I (0 ∈ X)

(
1− 1

γ

)
+ µ(X), if γ > 1

µ(X), if γ 6 1
(1.27)

where the measure µ, which is absolutely continuous, is defined by its associated
density dµ : [λ−, λ+]→ R:

dµ(λ) =
1

2π

√
(λ+ − λ) (λ− λ−)

γλ
dλ (1.28)

where λ± =
(
1±√γ

)2
.
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Figure 1.5: The Marçenko-Pastur Distribution.

A: An example 100× 100 Wishart random matrix with rank k = 10 drawn from the en-
semble in Definition 1.12. More negative values in black, more positive values in white. B:
The expected spectral density of the matrix in A (gold) outside of the bulk at 0, which is
given by Equation 1.28, with parameter γ = 100/10 = 10. and the histogram of observed
eigenvalues (blue). Note the close match. C: The expected cumulative spectral distribu-
tion of the matrix in A (gold), which is the value of ν ([0, λ]) (defined in Equation 1.27)
and the cumulative fraction of observed eigenvalues (blue).

But this matrix ensemble is on its own inadequate for modeling neural network loss
Hessians, since its members are always positive semi-definite, as the support of the density
dµ in Equation 1.28 is non-negative. A random function whose Hessians are members of
this ensemble will always be convex.

The authors of [67] proposed a parameterized mixture of Wigner and Wishart ran-
dom matrices as a better qualitative model of neural network loss Hessians. The random
Hessians are a sum of random matrices: a Wishart part that contributes singularity and
large positive eigenvalues and a Wigner part that contributes moderately-sized positive
and negative eigenvalues. Just as the Fourier transform allows us to calculate the distri-
bution of a sum of independent random variables from their separate distributions, the
Stieltjes and R transforms combine to allow the calculation of the expected spectrum of
a sum of freely independent random matrices from knowledge of the separate expected
spectra. In this model, the relative weight of the Wishart part increases as the loss de-
creases, so that at low loss the Hessian is almost surely positive semi-definite, while it
is almost surely indefinite at higher values of the loss. The details of this derivation are
in [67], along with a more sophisticated model for the loss of a single hidden-layer ReLU
network.

Even without any additions, this model is able to better match the qualitative features
of neural network loss Hessians (singularity, large positive eigenvalues) while retaining the
NBLM property. Furthermore, [67] includes numerical experiments indicating some match
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between the model and the loss and index of critical points in a moderately-sized neural
network (though we will see, in Chapter 3, that this evidence is somewhat weak).

1.4.3 Criticism of the No-Bad-Local-Minima Theory

While the NBLM theory agrees qualitatively and in some cases quantitatively with ob-
servations of neural network loss functions, it is not without its flaws.

First, the approach based on critical points and smooth Gaussian random fields fails
in the case of non-smooth activations or cost functions. The popular ReLU activation
function, ReLU (x) = max(x, 0), is non-smooth because it is not differentiable at 0, as
is the hinge cost function for binary classification, c(y, ŷ) = max(1 − y · ŷ, 0), where the
two class labels are ±1. Non-smooth functions may have local minima without having
any points where the gradient is 0, as in the Euclidean norm ‖v‖, which specializes to the
absolute value in the one-dimensional case. Because neural networks rely on gradients for
optimization, it is typical for activations and costs to be differentiable almost everywhere,
so it might seem that this is a mere technicality. However, it can be shown that for
networks with that activation and cost, all local minima are either non-differentiable or
constant [46]. An analysis based on differentiable minima would only consider the constant
minima, which would give an overly-optimistic picture of the loss for many non-smooth
losses.

Second, it can be shown that the strict form of the NBLM theory is false. For networks
with ReLU neurons, the theory is clearly false: if the parameters are such that all of the
inputs to the ReLU function are 0 in one layer, e.g. if the biases are large and negative,
then the loss is locally constant but may have arbitrarily high value. Recent work has
further shown that, if biases are intialized to small values, ReLU networks converge to
bad local minima [37].

For some time, it was believed that in the smooth case, despite negative results for
small networks, e.g. [7], a sufficiently-large network had no bad local minima, thanks to
a proof in [80]. However, this proof was incorrect, as shown in [51], and only implies the
non-existence of strict local minima, where the Hessian is positive definite. Further work
demonstrated that non-strict bad local minima are generically present for a wide variety
of activation functions, not just non-smooth activations, for arbitrarily large widths [23].

This suggests that the rosy picture painted by the numerical results in [22] and [67]
was somewhat mis-leading. It remains possible, however, that with the right intialization,
these bad local minima are avoided, and so some form of the NBLM theory holds, perhaps
for the loss restricted to a region in the vicinity of the initial point.

1.4.4 Alternatives to the No-Bad-Local-Minima Theory

The alternative method to demonstrate the convergence of gradient-based methods on
neural network losses is to prove it directly, rather than relying on generic optimiza-
tion proofs by demonstrating that the loss function falls in some privileged class. There
are two closely-related approaches that have born fruit in recent years: an asymptotic
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approach, based on the Neural Tangent Kernel, and a direct approach, based on over-
parameterization.

1.4.4.1 Over-Parameterization

The random matrix theory approach outlined in Section 1.4.1 and Section 1.4.2 was
motivated by the observation that larger networks were easier to train. To some, this
suggested that there were special properties of generic (random, from the right ensemble)
high-dimensional functions.

Alternatively, it could be the case that the optimizability of large neural networks
follows directly from their size. Both [1] and [25] prove that gradient descent applied to
a neural network loss converges to within ε of a global minimum from a random initial-
ization, provided that the number of neurons in each layer is polynomial in a problem-
dependent set of parameters. Furthermore, this occurs within a polynomial number of
steps in terms of a similar set of parameters. In both cases, the convergence rate in terms
of ε is the same as in traditional proofs for gradient methods (i.e. linear, [12]). The result
in [25] has an exponential dependence on depth for networks without residual connections,
which is absent in [1].

While these are useful proofs of principle, polynomial dependence is still too great to
be of practical use if the degree of the polynomial is high, as is noted in [1]. For example,
one of the polynomial terms for the width in [25], which is applied to the number of
samples, has degree 4. For the MNIST dataset [48], which has 6e4 examples, this implies
a minimum width of more than 1e19 neurons, up to linear factors. The same parameter
in [1] has degree 30. Another term in [25], λmin, can be exponentially small in terms of
other natural parameters. The regime in which these claims operate is clearly outside the
realm of practically implementable networks.

1.4.4.2 The Neural Tangent Kernel

With widths so large, they might as well be infinite. In the infinite-width limit, neural net-
works with random weights become Gaussian random fields as in Section 1.4.1, thanks to
a form of Central Limit Theorem. Though the correspondence between shallow Bayesian
neural networks and Gaussian processes dates back to the 1990s [59], it was only recently
that this correspondence was extended to an extremely broad class of neural networks,
dubbed Tensor Programs [79]. This view enabled the automated computation of poste-
riors from these networks [61], akin to the automated computation of gradients provided
by automatic differentiation packages. With the right tricks [52], these posteriors can be
competitive with more traditional networks.

Importantly for the optimization perspective, this approach can be used to analyze
the convergence of non-Bayesian neural networks. Indeed, in this view, neural networks
trained by stochastic gradient descent from random initialization are actually undergoing
kernel gradient descent, which descends a convex function [40], even when the loss is a
non-convex function of the parameters.
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While this approach is exciting and provides a fundamentally different way to think
about and train neural networks, it is asymptotic. Whether the claims apply to finite-
sized networks was at first unclear. The authors of [6] demonstrated equivalence between
certain finite-width networks and their limit with high probability. However, the minimum
layer width was again polynomial in certain problem parameters, and again the degrees
of the polynomials were high (4+). It remains to be seen whether tighter bounds can be
proven.

1.5 Conclusion

Neural networks are, in many cases, easily trained to approximate global minima from
random initializations. This suggests that their loss functions may have a no-bad-local-
minima property: all local minima are nearly global minima. This NBLM property is
shared by a large class of random functions, the Gaussian random fields [13, 22]. Though
the typical Wigner and Wishart ensembles of random matrices are not sufficient alone to
model neural network loss functions, even qualitatively, an ensemble derived by mixing
them is [67].

However, analytical results [23] indicate that this picture is incorrect and that, ana-
lytically speaking, neural network losses have bad local minima, even if they aren’t found
by typical training procedures. Alternative approaches based on overparameterization [1]
and its infinite-width limit [40] have suggested a different path to understanding the
trainability of neural networks, but they require unreasonably large hidden layers.

In the absence of strong theoretical results, it is important to obtain better empirical
evidence, building on the work of [22] and [67]. In Chapter 2, we will develop algorithms
for examining the critical points of neural network loss functions. In Chapter 3, we will
apply these algorithms to some example neural network losses, and observe something
interesting: due to numerical and analytical issues, previously-used algorithms may not
have been characterizing the critical points of loss functions, but instead another class of
points, gradient-flat points.
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Chapter 2

Second-Order Critical Point-Finding
Algorithms

2.1 Chapter Summary

In order to characterize the local curvature properties of neural network loss functions
at critical points, we need first to find critical points. In this chapter, we review two
classes of algorithms for finding critical points: gradient norm minimization methods and
Newton methods. All of these algorithms are numerical, iterative methods. They are
based on finding the zero values of linear approximations of the gradient function. These
linear approximations are given by the Hessian function. We refer to them as second-order
critical point-finding algorithms.

While the analytical critical points exactly satisfy the analytical system of (possibly
non-linear) equations

∇L (θ) = 0 (2.1)

numerical approaches cannot guarantee exact equality. Instead, they can at best guarantee
approximate equality,

‖∇L (θ)‖2 6 ε (2.2)

for some ε > 0. So our algorithms will actually recover approximate critical points:

Definition 2.1: ε-Critical Points

The set of all ε-critical points of a loss function L on a domain Θ for a fixed ε > 0
is denoted ΘL

ε-cp and defined as

ΘL
ε-cp

def
=
{
θ ∈ Θ: ‖∇L (θ)‖2 6 ε

}
(2.3)

When unambiguous, the super-script L will be omitted. See Definition 1.3.

If only introduced in the case of large-dimensional Θ and complex loss function L, this
definition and the problem setup can be somewhat intimidating and intuition can be hard
to build. Section 2.2 demonstrates a close analogy between finding critical points and a
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fundamental arithmetic operation: taking the square root. Specifically, taking the square
root will require us to define approximate square roots, set up a surrogate optimization
problem based on an inequality that relaxes an equality, and develop an inexact, iterative
method for scalar inversion (Section 2.5.1).

This running example is used to intuitively motivate each of three algorithm classes
in turn: gradient norm minimization methods (Section 2.3), exact Newton methods (Sec-
tion 2.4), and inexact Newton methods (Section 2.5). Practical versions of Newton meth-
ods for high-dimensional and non-linear problems require additional tricks, which are
reviewed in Section 2.6.

The presentation of the Newton methods is intentionally didactic and lengthy. This
is because these methods are relatively unfamiliar to the neural network community.
First, second-order optimization methods, like Newton methods for convex functions,
are not commonly used to train neural networks. Second, Newton methods for critical
point-finding are different in motivation and implementation than those used in convex
optimization. It is hoped that the thorough elaboration of these methods in this chapter
will help ease the incorporation of these methods into the toolkits of future neural network
researchers.

2.2 Optimization Approach to Taking Square Roots

Addition (+) and multiplication (×) are simple operations, in the following sense: given
exact binary representations for two numbers, an exact binary representation for the result
of + or × applied to those two numbers can be obtained in finite timea. The symbols a+b
and a× b represent the exact, finite output of a concrete, finite-time algorithm. That is,
both operations define closed monoids over binary strings of (importantly!) finite length.

This is not true of division (÷), inversion (−1), or taking the square rootb (
√

). In
these cases, the operation is actually defined in terms of a promise regarding what happens
when the output of this operation is subjected to ×:

b = a÷ c =⇒ b× c = a (2.4)

b = a−1 =⇒ b× a = 1 (2.5)

b =
√
a =⇒ b× b = a (2.6)

and for an exact representation of a number a, the number that fulfills this promise might
not have an exact representation, as is famously the case for

√
2. This makes algorithm

design for these operations more complex than for + and ×.
There are individual strategies for each, but one general idea that turns out to be very

powerful is relaxation to an optimization problem. That is, we take the exact promises

aSpecifically, for n-digit numbers addition is O(n) and multiplication is O(n log n) [35], courtesy of
the Fast Fourier Transform and the convolution theorem.

bWe take the type signature of
√

to be
√

: R>0 → R>0, i.e. we do not allow non-real or negative
square roots.
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made above, recognize them as statements of the optimality of the output for some cri-
terion, and then use that criterion to define an approximate promise, true up to some
tolerance ε.

For
√

, we rearrange the promise 2.6, denoting its exact solution with a ?, into:

b?
def
=
√
a (2.7)

b? × b? = a (2.8)

b? × b? − a = 0 (2.9)

‖b? × b? − a‖2 = 0 (2.10)

and then recognize that, due to the non-negativity of the norm, Equation 2.10 is a state-
ment of optimality about b?. That is, the value b? that we are looking for is the argument
that minimizes the expression on the LHS:

b? = argmin
b∈R>0

‖b× b− a‖2 (2.11)

Exactly minimizing this expression to arbitrary precision might be impossible, so we
instead consider a set of approximate square roots, to a tolerance ε:

Bε
def
=
{
b ∈ R>0 : ‖b× b− a‖2 6 ε

}
(2.12)

and so the problem of square root finding is the problem of finding a member of Bε.
Analogously, the problem of critical point-finding is the problem of gradient root find-

ing : instead of trying to find a value b such that b × b − a is approximately 0, we are
trying to find a value θ such that ∇L (θ) is approximately 0. This θ is a member of ΘL

ε-cp,
Definition 2.1.

2.3 Gradient Norm Minimization

The simplest way to attack the problem of finding a point in the sets defined by Equa-
tion 2.3 or Equation 2.12 is to apply a first-order optimization algorithm. In the case of
critical point-finding, we define an auxiliary function G, equal to half the squared gradient
norm:

G(θ) =
1

2
‖∇L (θ)‖2 (2.13)

and apply our first-order optimization algorithm to it.
This approach turns out to work poorly, so it is not widely disseminated enough to

have a standard name. However, it is straightforward enough to be repeatedly discovered.
The earliest use, to the best of the author’s knowledge, was in chemical physics [54], where
the problem of finding saddle points arises when computing transition states of chemical
reactions. They gave it the name gradient norm minimization, which we use here. For
several reasons, an alternative method for solving the problem of finding transition states
called eigenvector-following became popular instead [18]. Gradient norm minimization
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was then reinvented by two groups simultaneously in 2000 ([4, 14]) and its poor perfor-
mance quickly noted [24]. The method was apparently then reinvented by the authors
of [67] and applied to the problem of finding critical points of neural networks.

While automatic differentiation can compute the derivatives of g with no issue, it is
still instructive to know its gradients, so let’s derive them by hand.

Theorem 2.1: Gradient of Squared Gradient Norm

Let L be a twice-differentiable function from Θ to R and define G(θ) = 1
2
‖∇L (θ)‖2.

Then the gradient function of G, ∇G (θ), is given by

∇G (θ) = ∇2L (θ)∇L (θ) (2.14)

Proof of Theorem 2.1:
If we apply G to a point θ + ε,

G(θ + ε) =
1

2
‖∇L (θ + ε)‖2 (2.15)

we see that the right-hand-side contains the same expression as the left-hand-side of the
definition of the Hessian function, Equation 1.12. We can therefore replace that expression
with the decomposition on the right-hand-side:

G(θ + ε) =
1

2
‖∇L (θ) +∇2L (θ) ε+ o(ε)‖2 (2.16)

Then, we expand the squared norm into its constituent terms, group like termsc, and
simplify:

G(θ + ε) =
1

2
‖∇L (θ)‖2 +

1

2
‖∇2L (θ) ε‖2 +

1

2
‖o(ε)‖2︸ ︷︷ ︸

o(ε)

+∇L (θ)>∇2L (θ) ε+ o(ε) (2.17)

G(θ + ε) = G(θ) +
(
∇2L (θ)∇L (θ)

)>
ε+ o(ε) (2.18)

which implies, by pattern-matching to Definition 1.2, that the gradient function of g is

∇G (θ) = ∇2L (θ)∇L (θ) (2.19)

�

The minimal form of gradient norm minimization applies Algorithm 1 with these
gradients, giving rise to Algorithm 2.

cImportantly, any ε inside a squared norm makes that term o(ε), as does any o(ε).
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Algorithm 2: Gradient Norm Minimization by Gradient Descent

1Require T ∈ N, α ∈ R>0, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6θt+1 ← θt − αHg
7t← t+ 1

8end

However, one advantage of the gradient norm minimization approach is that, because
it is framed as the optimization of a scalar-valued function, any number of tricks from
the world of optimization can be applied to it: stochastic methods, momentum, adaptive
gradients, and so on. This is in contrast to the Newton methods reviewed below. In
Chapter 3, we will apply back-tracking line search [5] along gradient descent directions
with the Wolfe conditions for line search termination [78] as our optimization algorithm.
For more on back-tracking line search, see Section 2.6.2 and [12, Section 9.2].

2.4 Exact Newton Methods

Gradient norm minimization does not take any advantage of the special structure of our
optimization problem, namely that it was introduced as a proxy for solving a system of
equations. The other major class of algorithms for critical point-finding, Newton methods,
are specifically designed to solve systems of equations. In this section, we review the
fundamental, textbook forms of the method. Then, in the following sections, Section 2.5
and Section 2.6, we introduce extensions that make it feasible for problems with large
dimension and higher-order nonlinearity, like many neural network loss functions.

2.4.1 The Babylonian Algorithm

The very earliest form of Newton’s method dates back perhaps to the 17th century BCE,
based on the evidence of an extremely precise (to within 2e-6) approximation to the square
root of 2 on a Babylonian clay tablet. It was certainly known as a method for computing
square roots by the first century CE, when it appears in the work of Hero of Alexandria.
See [15] for details.

The intuition for this algorithm is geometric: if a square of area x is smaller (larger)
than a square with sides of length θ, then it is larger (smaller) than the square with sides
of length x ÷ θ. In either case, the square with sides equal in length to the average of
θ and x ÷ θ is closer in area to x (see Figure 2.1). Therefore, its side length is a closer
approximation to

√
x. This improvement can be applied iteratively, yielding the below

algorithm:
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Algorithm 3: Babylonian Algorithm

1Require T ∈ N, x, θ0 ∈ R2
>0

2t← 0
3while t < T do
4θt+1 ← θt

2
+ x÷θt

2

5end

Recall that the motivation for considering the square root problem was that
√

, unlike +
and ×, does not have an exact finite-time algorithm. This is also true of ÷, which appears
in Algorithm 3. We will come back to this in Section 2.5.1, in order to better understand
inexact Newton methods. Note that this algorithm converges extremely quickly, as indi-
cated by Figure 2.1B-C. The error goes from order 1 to order 1e-10 in just 5 iterations,
then drops to 0.
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Figure 2.1: The Babylonian Algorithm for Computing Square Roots

A: Depiction of geometric intuition for the method. The square with side length θt (gold)
is larger than that with side length

√
x and area x (black), while that with side length

x ÷ θt (blue) is smaller. The average of these two values is the value θt+1, which results
in a square closer in area to x (red). B: Value of θ across iterations of Algorithm 3 for
arguments T = 6, x = 4, and θ0 = 0.8. The value of 4 was chosen because the exact
square root is known, unlike e.g. 2. The iterations indicated by color correspond to values
in A. x-axis is shared with C. C: Absolute value of the difference between θt and

√
x for

Babylonian algorithm as in B, plotted on log-scale. Difference at iteration 6 is 0, and so
is plotted off the chart.
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2.4.2 Newton-Raphson

If we define
f(θ) = x− θ2 (2.20)

then the update in Algorithm 3 can be written

θt+1 = θt −
x− θ2

t

2θt
(2.21)

= θt −
f(θt)

∇f (θt)
(2.22)

which can be defined for any differentiable f , so long as ∇f (θt) 6= 0. In this form, it is
known as the Newton method or as Newton-Raphson. This is an interesting example of
Stigler’s law of eponymy [73]: Thomas Simpson was the first to notice that this algorithm
could be generalized using calculus, in 1740. However, in part because Isaac Newton
had developed an algebraic version of the method for generic polynomials and Joseph
Raphson had refined it, Joseph Fourier, Carl Runge, and other prominent mathematicians
mistakenly credited them with the technique. See [44] for details.

In the case of critical point-finding, the equivalent of f is a vector and already a gradi-
ent, and so∇f becomes the Hessian matrix and the scalar division becomes multiplication
by an inverse matrix. The resulting algorithm is as follows:

Algorithm 4: Newton-Raphson

1Require T ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6θt+1 ← θt −H−1g
7t← t+ 1

8end

While the problem setup here was for equation solving, this algorithm, in particular
under the name Newton’s method, is better known as an optimization algorithm. It
works as such for the same reason that gradient descent can be a global optimizer on
smooth convex functions: whenever all of the stationary points are also global optima, an
algorithm for finding stationary points is also an optimization algorithm. Unlike gradient
descent, it is a second-order algorithm: in addition to a gradient function, ∇f , it also
needs a Hessian function, ∇2f .

In the absence of geometric intuition to explain why this is a sensible algorithm, we
turn to calculus. First, we show that this is the best method possible for functions with
constant Hessian function.
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Theorem 2.2: Optimality of Newton Step

Let f be a twice-differentiable function from Θ to R with constant, non-singular
Hessian function. From any point θ, a point θ? that solves the gradient equations 2.1
for f can be obtained by computing

θ? = θ −∇2f (θ)−1∇f (θ) (2.23)

Proof of Theorem 2.2:
The value of the gradient at a point θ + p can be approximated by applying the Hessian
at θ to p:

∇f (θ + p) = ∇f (θ) +∇2f (θ) p+ o(p) (2.24)

By Taylor’s theorem, o(p) is governed by the integral of the third derivative of f evaluated
from p to θ. But the Hessian is constant, and so the third derivative is a zero tensor and
o(p) can be replaced with 0:

∇f (θ + p) = ∇f (θ) +∇2f (θ) p (2.25)

To solve the gradient equations, we need the right-hand side here to be equal to 0.
Denoting the solution p?, we find that

0 = ∇f (θ) +∇2f (θ) p? (2.26)

p? = −∇2f (θ)−1∇f (θ) (2.27)

from which the claim follows, with θ? = θ + p?.
�

We call the value p? the pure Newton step or the exact Newton step. Note the absence
of any step size. We call the linear system of equations in p defined by

0 = ∇f (θ) +∇2f (θ) p (2.28)

the Newton system of equations.
For functions with non-constant Hessian, i.e. those which cannot be represented by

a degree two polynomial, this argument doesn’t hold, and the pure Newton step is not
optimal in the same sense. However, it holds approximately for functions whose Hessian
doesn’t change too quickly. In fact, the rate of convergence for this algorithm, once
sufficiently close to a critical point, is quadratic: for each iteration, the number of bits
of precision doublesd. This is to be contrasted with gradient descent, which has at best
linear improvement: with each iteration, the number of bits of precision increases by a
fixed amounte. This rapid convergence is visible in Figure 2.1C, where the quality of the
solution doubles, from approximately 1e-5 to approximately 1e-10, between iterations 4
and 5. This rate is so fast that for practical purposes, the number of steps required during
this phase can be bounded from above by 6 [12, Section 9.5]. See [60, Chapters 2 & 11]
for proofs of this convergence rate in various settings (in particular, Theorem 11.7).

dIn terms of the error, this is much faster than quadratic: it is squared exponential.
eAgain, in terms of the error, this is much faster: it is exponential.
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2.4.3 Pseudo-Inverse Newton

In defining the Babylonian algorithm, Algorithm 3, it was important that the starting
point not be 0, or else the update would be undefined due to division by 0. Equivalently,
the full Newton method Algorithm 4 required that the Hessian was non-singular, else the
inverse is undefined.

But this is not a fundamental restriction, which is lucky because the loss functions of
neural networks are highly singular [72]. The key property of the update p? was that it
solved the Newton system

0 = ∇f (θ) +∇2f (θ) p (2.29)

which has a solution whenever −∇f (θ) is in the image of ∇2f (θ), the linear subspace of
possible outputs of ∇2f (θ), defined below.

Definition 2.2: Image and Co-Image of a Matrix

For a matrix M in Rm×n, we define the image of M, denoted imM , as

imM
def
= {v ∈ Rm : ∃w : Mw = v} (2.30)

and the co-image of M, denoted co imM , as

co imM
def
= {v ∈ Rm : !∃w : Mw = v} (2.31)

When the rank (Definition 1.11) of M is at least m, the co-image of M is empty.

In this case, the solution p? can be obtained by applying the (Moore-Penrose) pseudo-
inverse [68] of the Hessian to the gradient. We will define this pseudo-inverse by means
of the singular value decomposition. We will need several properties of this matrix later,
so we do this in detail.

2.4.3.1 Pseudo-Inverses and the Singular Value Decomposition

The singular value decomposition of a matrix breaks down a matrix into the product, or
composition, of three matrices.

Definition 2.3: Singular Value Decomposition

For a matrix M in Rm×n with rank r, we define the singular value decomposition
or SVD of M as the triple of matrices V >, Σ, U such that

M = UΣV > (2.32)

where V > ∈ Rr×n, Σ ∈ Rr×r, and U ∈ Rm×r and U and V are orthonormal and Σ is
diagonal. The columns of U are called the left-singular vectors of M , the columns
of V the right-singular. The diagonal entries of Σ are the singular values of M .
This form is sometimes called the compact SVD.
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It can be shown that every matrix has a singular value decomposition [74]. The singu-
lar value decomposition arises from the specialization of the First Isomorphism Theorem
(aka the canonical decomposition, see [2, Theorem 2.7]) to the category of vector spaces
and linear maps. We state it here in terms of functions, for readers not familiar with
category theory, but it is more appropriately set in terms of morphisms.

Theorem 2.3: The First Isomorphism Theorem

Let C be a collection of sets and all functions between them. For any function
f : A → B, where f , A, and B are members of the collection, there is a triple of
functions s, b, and i such that

f = i ◦ b ◦ s (2.33)

where s : A� A/ ∼ is a surjection, b : A/ ∼→ imA is a bijection, and i : imA ↪→
B is an injection (surjectivty and injectivity indicated by arrow type). The elements
of the equivalence relation ∼ are given by pairs (a, a′) ∈ A×A where f(a) = f(a′).

The First Isomorphism Theorem states that every function can be decomposed into
three constituent pieces: an onto mapping, or surjection, that classifies its inputs accord-
ing to which output they are mapped to; a one-to-one mapping, or bijection, that picks
the output corresponding to each class of input; and an into mapping, or injection, that
inserts this output into the target set.

Though this decomposition is of limited use for generic functions, as opposed to
structure-preserving functions like group homomorphisms or linear maps, it is fruitful
to consider a concrete example from the world of generic functions before connecting to
the SVD.

Example 2.1: Decomposition of is odd

Consider the function is odd : N → S, where S is the set of all strings in the
English alphabet, that returns “True” if the number is odd, “False” otherwise.
This function can be decomposed as

is odd = to string ◦ to bool ◦%2 (2.34)

where %2 : N� {0, 1} computes the value mod 2 and

to string(b) =

{
“False” if b = ⊥
“True” if b = >

to bool(k) =

{
⊥ if k = 0

> if k = 1

This decomposition is summarized neatly by the commutative diagram below:
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N S

{0, 1} B

is odd

%2

to bool

to string

Saying that this is a commutative diagram means that any path from one domain to
another results in the same function.

Now, let us view the SVD through this lens. First, V > is a surjection because it
is orthonormal and r 6 n. Second, U is an injection because it is orthonormal and
m > r. Finally, Σ is a bijection because it is a diagonal matrix with non-zero diagonal
entries. This establishes that the (compact) SVD is the same decomposition as in the First
Isomorphism Theorem. Furthermore, for linear functions, two inputs can only be mapped
to the same output if they are both mapped to 0. If we take 0 to be the representative
of that equivalence class, the target of the surjection becomes the co-kernel of M (recall
Definition 1.11). The target of the bijection is the image of M. This set of relationships
is summarized in the commutative diagram below.

Rn Rm

co kerM imM

M

V >

Σ

U

We are now ready to define the pseudo-inverse. We first define it for two simple classes
of matrices, then extend it for all matrices by means of the SVD.

Definition 2.4: Moore-Penrose Pseudo-Inverse

Let O be an orthogonal matrix and let D be a diagonal matrix of full rank. We
define the pseudo-inverses of O and D, denoted O+ and D+, as

O+ def
= O>, D+ def

= D−1 (2.35)

Let M be a matrix in Rm×n and let its singular value decomposition be the triple
V , Σ, U . We define the pseudo-inverse of M , denoted M+ : Rm → Rn, as

M+ def
=
(
V >
)+

Σ+U+ (2.36)

= V Σ−1U> (2.37)

This is sometimes known as the Moore-Penrose pseudo-inverse. The relationships
between these matrices are summarized by the commutative diagram below.
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Rn Rm

co kerM imM

M

V > U>
M+

V

Σ

U

Σ−1

2.4.3.2 Defining Pseudo-Inverse Newton

Let’s return to the problem of solving Equation 2.29 for an update p?. We see that when-
ever a vector g is in the image of the Hessian, ∇2f (θ), we can apply the pseudoinverse,
∇2f (θ)+, to −g to obtain a vector that is the pre-imagef of −g with respect to the Hes-
sian. We choose this as our update, obtaining the algorithm below.

Algorithm 5: Pseudo-Inverse Newton

1Require T ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6θt+1 ← θt −H+g
7t← t+ 1

8end

We will return to the problem of what happens when the gradient is not in the image of
the Hessian in Chapter 3. This will turn out to be critically important for understanding
the behavior of Newton methods on neural network loss functions.

2.5 Inexact Newton Methods

In Section 2.4, we solved the Newton system algebraically and exactly

0 = ∇f (θ) +∇2f (θ) p? (2.38)

But as noted in the beginning of this chapter, numerical methods are generically incapable
of providing exact solutions. While we don’t often think of this as applying to algebraic
operations, we have already seen that it applies to square roots. In Section 2.5.1, we will
see that it also applies to division, which is a special case of the matrix inversion we need
to perform exact Newton methods.

We will then consider how we might replace the matrix inversion in our exact Newton
algorithms, Algorithm 4 and Algorithm 5, with an approximate optimization, based on

fThe pre-image of y ∈ Y with respect to a function f : X → Y is the set of all inputs that map to y:
{x ∈ X : f(x) = y}.
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iterative solutions to linear systems of equations. We will focus on the Krylov subspace
methods (Section 2.5.3).

2.5.1 Optimization Approach to Division

The Babylonian algorithm for computing the square root of a positive real number x,
Algorithm 3, had the following iteration rule:

θt+1 = θt/2 + x÷ θt/2 (2.39)

For binary representations, division by 2 can be done by an O(1) bit-shift, much like
division by 10 in decimal representation. However, division by other numbers is, like the
square root operation, not guaranteed to result in a finite binary string: 1/3, for exampleg.
Note that this is evident in the typical “long division” algorithm taught in elementary
schools: children are often told to simply stop when they hit some number of decimal
places.

To obtain an alternate division algorithm that’s more explicitly an optimization, we
first rewrite the iteration rule as

θt+1 = θt/2 + θ−1
t × x/2 (2.40)

which makes the connection to the Newton algorithm more clear, because it is in terms
of an inverse, but doesn’t solve our problem, because the inverse is also an operation that
takes us outside finite binary strings (e.g., 3−1). Let us denote the inverse of θt as γ?.
This pair satisfies

γ? = argmin
γ∈R

γ−1 − θt (2.41)

to which we can apply Newton-Raphson by introducing the function

g(γ) = γ−1 − θt (2.42)

with gradient
∇g (γ) = −γ−2 (2.43)

This hardly seems like an improvement, but when we plug it into the Newton iter-
ation formula Equation 2.22 and rearrange, we obtain an update entirely in terms of
multiplication and subtraction:

γk+1 = γk −
γ−1
k − θt
−γ−2

k

(2.44)

= γk + γ2
k ×

(
γ−1
k − θt

)
(2.45)

= γk + γk − γ2
k × θt (2.46)

= γk × (2− γk × θt) (2.47)

gWe could commit to exact arithmetic with rational numbers, but the sizes of our number representa-
tions would grow with each operation, which is infeasible for a neural network loss defined on thousands
of examples.
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which results in the approximate inverse algorithm below:

Algorithm 6: Newton Inversion

1Require K ∈ N, (θ, γ0) ∈ (R \ {0})2

2k ← 0
3while k < K do
4γk+1 ← γk × (2− γk × θ)
5k ← k + 1

6end

Our full square-root finding algorithm, then, looks like this: in an outer loop, update
our estimate for the square root by applying Newton-Raphson to the current estimate,
as in Algorithm 3. The division operation requires the computation of the inverse, which
occurs in an inner loop according to Algorithm 6. Note that this inverse is approximate
as well.

2.5.2 Least-Squares Inexact Newton

The motivation for inexact Newton methods is precisely the same as for the optimization
approach to division: we cannot exactly perform the inversion, so we search for a sensible
way to do it approximately.

We proceed slightly differently to Section 2.5.1. We first note that an exact solution
to the Newton system, p?, also satisfies

p? = argmin
p
‖∇f (θ) +∇2f (θ) p‖2 (2.48)

where the expression inside the squared norm is the right-hand-side of the Newton sys-
tem. This is another example of relaxation to an optimization problem, as described
in Section 2.2. We can therefore re-write our exact Newton algorithms in terms of this
argmin operation.

Algorithm 7: Least-Squares Exact Newton

1Require T ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6p? ← argminp ‖Hp+ g‖2

7θt+1 ← θt + p?

8t← t+ 1

9end

Our two exact Newton methods above were different choices of solution to the problem
of computing the argmin in this meta-algorithm, appropriate for different assumptions
about ∇2f . If we relax the requirement to compute the exact argmin, which cannot be
satisfied in a numerical setting anyway, we obtain a new meta-algorithm, which we call



35

least-squares inexact Newton.

Algorithm 8: Least-Squares Inexact Newton

1Require T ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N , lsq-solve
2t← 0
3while t < T do
4p← lsq-solve (θt,∇2f,∇f)
5θt+1 ← θt + p
6t← t+ 1

7end

Here, lsq-solve is a function that takes in the current parameter value, Hessian function,
and gradient function, and applies an approximate method to minimize the least-square
value of the right-hand-side of the Newton system of equations. This setup has several
advantages over the exact setup.

First, it allows for direct control over numerical issues. Iterative methods for com-
puting least-squares solutions generally come with hyperparameters for stopping before
a solution within numerical tolerance is obtained. For example, when a matrix M is
non-invertible, its numerical representation is typically invertible, because its eigenvalues
are non-zero, but very small. The numerically-inverted matrix will have large eigenvalues
and the result of applying it to some vectors will be very large. An iterative solver can
detect that its solution has grown above a threshold and terminate. This is just one of
many ways that iterative solvers can better handle numerical issues.

Second, it transfers immediately to the case where the Hessian matrix is non-invertible.
There are two issues in this case. Firstly, the argmin in Algorithm 7 need no longer be a
single value, but can instead be a set (indeed, a linear subspace!). This occurs because
any portion of p in the kernel of H can take on any value. A least-squares solver will
always return only a single value from this set, typically according to some criterion. The
exact solution computed by pseudo-inverse Newton, Algorithm 5, corresponds to choosing
the element of the argmin with minimum norm, as in the algorithm below. Secondly, the
updates in the exact case were taken to be solutions of the Newton system, which need
not exist in the non-invertible case. When g is in the co-image of H, no vector p satisfies
the Newton system. Such a system is called unsatisfiable, and we will have more to say
about this case in Chapter 3. When the Newton system is unsatisfiable the updates are
not solutions, but merely elements of the argmin in Equation 2.48.



36

Algorithm 9: Least-Squares Exact Newton for Incompatible Systems

1Require T ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6P ← argminp ‖Hp+ g‖2

7p? ← argminp∈P ‖p‖2

8θt+1 ← θt + p?

9t← t+ 1

10end

2.5.3 Krylov Subspace Methods for Least-Squares Inexact
Newton

We now turn to the choice of method for lsq-solve. This discussion closely follows that
in [71].

In principle, the least-squares sub-problem could be solved by generic convex opti-
mization methods. However, this is unwise, because it is a very special type of convex
problem: it is a linear system of equations. Linearity is a powerful property that enables
specialized algorithms to achieve very high performance. These algorithms are called
linear solvers.

The classic choice for linear solver is the conjugate gradient algorithm. On each it-
eration, conjugate gradient produces a step that is conjugate to all previous steps with
respect to the current Hessian H, as defined below. See [60, Chapter 5] for details on this
algorithm.

Definition 2.5: Conjugate Vectors

Two vectors x and y are conjugate with respect to the symmetric matrix M if

x>My = 0 (2.49)

By the symmetry of M , conjugacy is a symmetric relation.

Conjugate gradient has several nice properties as a linear solver for inexact Newton.
With exact arithmetic, it produces an exact solution in no more than N steps, where the
dimension of the system is N × N . This is to be contrasted with generic optimization
approaches, like gradient descent, which need never produce exact solutions, even with
exact arithmetic. Furthermore, conjugate gradient can be implemented entirely in terms
of matrix-vector products, with no need to form any N × N matrices besides the linear
system’s matrix of coefficients, which reduces memory footprint. This is particularly
advantageous when the matrix is a Hessian, because Hessian-vector products can also be
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computed in O(N) time, versus O(N2) time for generic matrix-vector products, and don’t
even require the explicit formation of the N ×N Hessian [65].

These properties stem from the fact that it is a Krylov subspace method, meaning that
it computes its solution in a sequence of special subspaces of increasing dimension, up to
N , defined below.

Definition 2.6: Krylov Subspace Methods

Let M be a matrix in RN×N and x be a vector in RN . The Krylov subspace of order
r for M and x, denoted Kr (M,x), is defined as

Kr (M,x)
def
= span

{
x,Mx,M2x, . . .M r−1x

}
(2.50)

An optimization method is a Krylov subspace method if its iterate at step r, pr, is
an element of the Krylov subspace of order r.

Note that the Krylov subspaces are constructed iteratively, with each new vector produced
by means of matrix-vector multiplication. For more on Krylov subspaces, see [60, Section
5.1].

The choice of conjugate gradient is motivated by the fact that, for a smooth, convex
function f(θ) : Θ → R, the kth iterate of conjugate gradient, pk, applied to the Newton
system at a point θt satisfies

pk = argmin
p∈Kk(∇2f(θt),∇f(θt))

∇f (θt)
> p+

1

2
p>∇2f (θt) p (2.51)

= argmin
p∈Kk(∇2f(θt),∇f(θt))

f̂θt(p) (2.52)

where f̂θt is the second-order Taylor expansion of f at θt. That is, conjugate gradient pro-
duces the point within each Krylov subspace that minimizes the quadratic approxmation
of the function f at θt.

This is ideal for the minimization of convex functions, but our goal is different: we wish
to minimize the gradient. We should therefore like, instead, that our iterates minimize
the norm of our approximation of the gradient, r(p) = ∇f (x) + ∇2f (x) p, within each
Krylov subspace. The quantity r is known as the residual, and so we call a Newton
method that uses a linear solver with that property a minimum residual Newton method, as
defined below. Note that we explicitly consider the possibility that the Newton system is
unsatisfiable in these algorithms and select the final update p? according to some criterion
function c. Furthermore, for simplicity’s sake, we write that the algorithm selects the
optimal iterate in a Krylov subspace of a fixed order, KK , but practical algorithms would
iteratively determine the Krylov subspace based on numerical considerations, e.g. norm
of the residual or the solution.
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Algorithm 10: Minimum Residual Newton for Incompatible Systems

1Require T ∈ N, K ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N ,
c : RN → R

2t← 0
3while t < T do
4g ← ∇f (θt)
5H ← ∇2f (θt)
6K ← KK (H, g)
7P ← argminp∈K ‖g +Hp‖2

8p? ← argminp∈P c(p)

9θt+1 ← θt + p?

10t← t+ 1

11end

There are two major linear solvers that have the minimum residual propertyh: MIN-
RES [63], short for “minimum residual”, and MINRES-QLP [19], also known as MR-QLP,
which is similar to MINRES but uses the QLP decomposition [38] in place of the QR de-
compositioni. In addition to MR-QLP having superior performance on systems that are
ill-conditioned outside of their kernel, it also corresponds to the choice of c(p) = ‖p‖2

in Algorithm 10 above. The exact minimum norm solution is the one computed by the
pseudo-inverse method, Algorithm 9. Therefore, an inexact Newton method with MR-
QLP as its linear solver is a natural relaxation of an exact pseudo-inverse Newton method.

The choice of MR-QLP as a linear solver for inexact Newton methods was proposed
in [71], which noted all of the favorable numerical and analytical properties described
above. The final Newton algorithm proposed in [71] is, however, outside the class of
algorithms considered so far. We next turn to the additional tricks required to define
Newton algorithms used in practice.

2.6 Practical Newton Methods

The definition of the Newton step in the basic Newton-Raphson algorithm in Algorithm 4
was motivated by its optimality for functions with constant Hessian. For functions with
non-constant Hessian, i.e. those with non-zero third or higher partial derivatives, this step
is no longer optimal. Indeed, Newton’s method can diverge, for example when used as
a root finding method on the function f(θ) = θ1/3. It can oscillate, for example when
applied to find the critical points of f(θ) = x4

4
−x2+2x. It can even behave chaotically [34].

We encourage the reader to apply a few iterations of Algorithm 4 to these functions by
hand, using 1 for θ0.

hSYMMLQ, the symmetric LQ method, can also be used as a generic linear solver for compatible
systems, but does not satisfy the minimum residual property [63].

iConjugate gradient methods use the Cholesky decomposition, which is only defined for positive
semi-definite matrices.
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The two most common methods for avoiding these issues are damping (Section 2.6.1)
and back-tracking line search (Section 2.6.2)j. The former takes the approach of generating
multiple Newton-type steps and selecting the best one. The latter uses a standard Newton
step to choose a direction and then performs a one-dimensional optimization to select a
step size. In both cases, candidate updates are selected according to a scalar-valued merit
function. For critical point-finding, the appropriate merit function is based on a norm of
the gradient, here the squared Euclidean norm. For optimization, the appropriate merit
function is the loss.

With these additions, we will have finally defined Newton methods sufficiently robust
to handle the case of linear neural networks, as we will see in the first part of Chapter 3.

2.6.1 Damped Newton

The motivation for damped Newton methods comes from the case of convex functions with
positive semi-definite but not positive definite Hessians. In that case, the Hessian can be
made positive definite by adding an arbitrarily small perturbation γ to the diagional.
However, this results in an inverse matrix with arbitarily large maximal eigenvalue γ−1.
Depending on how much of the gradient lies in the eigenspace corresponding to this
eigenvalue, this could still result in a very large step. Since the Newton step is motivated
by a local analysis, this is undesirable. Therefore, we consider a finite number of possible
perturbationsk, Γ = {γi : γi ∈ R>0} and produce a Newton step for each one, with the
Hessian matrix H replaced by H + Iγi for each i. Here, I is the identity matrix of the
same shape as H.

We provide an example damped Newton method below, in Algorithm 11, based on
the exact minimum residual Newton method, Algorithm 10. Damping can be combined
with any method for computing the Newton iteration and is compatible with fast Hessian-
vector products.

Damping methods are, however, not particularly well-suited to Hessians that are in-
definite, with both positive and negative eigenvalues. Indeed, they can cause the matrix
to become singular, even if it is initially non-singular. The eigenvalues of the matrix
M + γI are equal to the eigenvalues of M plus γ, so any eigenvalue equal to −γ becomes
0. More broadly, the goal of damping in the positive semi-definite case was to reduce
the maximum step size by controlling the maximum eigenvalue of the inverse matrix. In
the indefinite case, this is no longer achieved. This method was, however, used in [22]
as a critical point-finding method on neural network loss surfaces, so we will examine its
performance in Chapter 3.

jThere are also trust-region methods. See [60, Chapter 6 and Section 11.2] for more on practical
Newton methods.

kDenoting the set of all finite subsets of a set S as Pω(S), the type of Γ is written Γ ∈ Pω (R>0)
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Algorithm 11: Minimum Residual Damped Newton Method

1Require T ∈ N, K ∈ N, θ0 ∈ RN , ∇f : RN → RN , ∇2f : RN → RN×N ,
Γ ∈ Pω(R>0)

2t← 0
3while t < T do
4g ← ∇f (θt)
5P ? ← {}
6for γ ∈ Γ do
7H ← ∇2f (θt) + Iγ
8K ← KK (H, g)
9P ← argminp∈K ‖g +Hp‖2

10P ? ← P ? ∪ argminp∈P ‖p‖2

11end
12p? ← argminp∈P ? ‖∇f (θt + p)‖2

13θt+1 ← θt + p?

14t← t+ 1

15end

2.6.2 Guarded Newton

Unlike typical first-order optimization algorithms, the Newton methods presented thus
far have had no step size hyperparameter. These Newton methods are sometimes called
pure Newton methods. Effectively, the step size has been fixed at 1. This is not entirely
artificial. First, the Newton step is invariant to affine transformations of the parame-
terization of the function, and so there is a meaning to unit step size that is absent in
first-order methods [12, Section 9.5]. Second, and more critically, the rapid local con-
vergence of Newton methods requires a unit step size and collapses if non-unit step sizes
are chosen [60, Theorems 11.2, 11.7, & 11.10]. However, when outside the region of local
convergence, the pure Newton step is frequently too long.

One solution is to select the step size adaptively, so that it can be 1 inside the region of
rapid convergence and less than 1 outside it. Such methods are sometimes called guarded
Newton methods : the method is “guarded” against taking steps that are too large. In
particular, one common approach to selecting the step size is back-tracking line search [5],
abbreviated BTLS.

In a line search, the step size α? for a direction p at a point θ is cast as the solution
to an optimization problem:

α?
def
= argmin

α∈R>0

c(θ + αp) (2.53)

for some merit function, c. When selecting a step size for a typical optimization problem,
the natural choice is c(x) = f(x), where f is the loss. For critical point-finding, the
natural choice is c(x) = ‖∇f (x)‖2. Note that damped Newton methods also involve a
choice of merit function, to select between the potential iterates produced by different
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values of γ.
Of course, this problem cannot typically be solved exactly. In back-tracking line search,

the step size is selected by starting with a large value 0 < α 6 1 and then decreasing it
multiplicatively by a factor 0 < β < 1 on each failed iteration. A failed iteration k is
one where the step size choice α× βk produces insufficient decrease in the merit function
c. The degree of decrease considered sufficient is typically an increasing function of the
step size and controlled by another “tolerance” hyperparameter 0 < ρ < 1. The authors
of [71] determined the appropriate criterion for decrease in the case where c is the squared
gradient norm by considering the case of a function with constant Hessian. Effectively,
a step size is chosen when the squared gradient norm decreases by an amount within a
factor of ρ of how much it would decrease in that case.

It is instructive to consider a concrete example. The behavior of pure Newton and
guarded Newton on the function f(θ) = ‖θ‖3/2 are contrasted in Figure 2.2. Starting
at the point θ0 = −1, (gold circle) the pure Newton iteration θ1 + p? (blue star) is 1,
which results in oscillation: θ2 = 1, θ3 = −1 = θ0. Back-tracking line search avoids this
pathology. Only step sizes that result in values of θ that decrease the squared gradient by
a sufficient amount (below dashed gray line in Figure 2.2B) are acceptable. These values
of θ are indicated in dark red. Back-tracking line search starts at the pure Newton step
and decreases its length by a multiplicative factor (black ticks) until it lands inside the
red region. The result is the next iterate, θ1 (gold star).

We present a back-tracking line search appropriate for selecting Newton step sizes in
Algorithm 12. We make a few modifications to the basic scheme described above. First,
we allow the starting value of α to be non-unit, but enforce that, before the multiplicative
BTLS begins, the value of 1 is always checked first. Second, we allow that the criterion
for convergence used in this check, ρ′, is different from the value used in the BTLS, ρ.
Finally, we allow the specification of a minimum step size, ε, below which α is set to 0.
We set this to the largest value for which α = βα.

2.6.2.1 Newton-MR

The combination of MR-QLP for inexact Newton step selection and back-tracking line
search for step size selection is known as Newton-MR [71]. This will prove to be the most
effective algorithm for critical point-finding in Chapter 3, so we provide it in pseudocode
here (Algorithm 13). In this pseudocode, MR-QLP is the minimum residual solver based
on the QLP decomposition from [19] described in Section 2.5.3 and BTLS is the back-
tracking line search method Algorithm 12.

We briefly review the hyperparameters of MR-QLP here. maxit sets the maximum
number of iterations. In exact arithmetic, this would never need be greater than N . We
found that solutions didn’t tend to increase in quality for values above N . maxxnorm sets
the largest acceptable value for the norm of p while acondlim sets the largest acceptable
value for the estimated condition number of the Hessian restricted to the subspace in
which the iterations lie. We found that MR-QLP did not terminate due to violating
these constraints for reasonable values, and so we set them to 1e4 and 1e7, respectively.
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Figure 2.2: Back-Tracking Line Search for Guarded Newton

A: f(θ) = ‖θ‖3/2 is plotted as a solid gold line, and its second-order Taylor approximation
from the point −1 as a dashed blue line. Values of θ that result in sufficient decrease of
the squared gradient with the tolerance parameter ρ = 0.2 indicated in dark red. The
point selected by BTLS with β = 0.9 indicated with a gold star. B: The squared gradient
of f is plotted as a solid gold line. The sufficient decrease criterion that appears in the
line search convergence check in Algorithm 12 is plotted as a dashed gray line. Values of
θ that result in squared gradients below this line in dark red. Tick marks indicate points
possibly visited by the back-tracking line search. Hyperparameters as in A.
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Algorithm 12: Backtracking Line Search for Guarded Newton

1Require ∇f : RN → RN , ∇2f : RN → RN×N , p ∈ RN , θ ∈ RN , α ∈ (0, 1],
β ∈ (0, 1), ρ ∈ (0, 1), ρ′ ∈ (0, 1), ε ∈ R>0

2

3H ← ∇2f (θ)
4Function CheckConvergence(α, ρ):
5θ′ ← θ + αp
6s, s′ ← ‖∇f (θ)‖2, ‖∇f (θ′)‖2

7∆← 2ρα · p>H∇f (θ)
8return s′ 6 s+ ∆

9

10converged ← CheckConvergence (1, ρ′)
11if converged then
12α← 1
13return α

14end
15while not converged do
16converged ← CheckConvergence (α, ρ)
17if not converged then
18α← βα
19if α < ε then
20α← 0
21return α

22end

23end

24end
25return α

The critical hyperparameter for stopping behavior was rtol, short for relative tolerance.
When either the residual or the residual projected onto the Hessian co-kernel is less
than rtol, following suitable normalization, the algorithm terminates. Details on the
definitions of these residuals are deferred to Chapter 3. Not listed above is the trancond

hyperparameter, which determines when the algorithm transitions between using the QR
and QLP decompositions, based on an estimate of the Hessian’s condition number. This
hyperparameter was also not critical for determining stopping behavior of MR-QLP. We
set it to 1e4.

2.7 Conclusion

In this chapter, we introduced two major classes of critical point-finding algorithms: gra-
dient norm minimization methods, which apply first-order optimization algorithms to the
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Algorithm 13: Newton-MR

1Require θ0 ∈ RN , f : RN → R, ∇f : RN → RN , ∇2f : RN → RN×N , T ∈ N,
2maxit ∈ N, maxxnorm ∈ R, rtol ∈ R, acondlim ∈ R, α ∈ (0, 1], β ∈ (0, 1),

ρ ∈ (0, 1), ρ′ ∈ (0, 1), ε ∈ R>0

3

4t← 0
5while t < T do
6g ← ∇f (θt)
7H ← ∇2f (θt)
8p← MR-QLP (H, −g, maxit, maxxnorm, rtol, acondlim)
9α← BTLS (∇f, p, θt, α, β, ρ, ρ′, ε)

10θt+1 ← θt + αp
11if θt+1 == θt then
12break
13end
14α← max(1, β−1α)
15t← t+ 1

16end

squared gradient norm, and Newton methods, which use repeated solution of the Newton
system of equations. Both classes of algorithms use the Hessian matrix of second partial
derivatives, and so are second-order critical point-finding methods. In part because of
the complexity of Newton methods and in part because of the relative lack of experience
and expertise with these methods in the neural network community, the Newton meth-
ods formed the majority of this chapter. We approached their explanation pedagogically,
based on an analogy to the calculation of the square root to high accuracy. We reviewed
exact Newton methods, which use algebraic solutions of the Newton system, and inexact
Newton methods, which use iterative methods to approximate those solutions. Finally, we
developed two inexact Newton methods of sufficient robustness for practical use, damped
Newton and Newton-MR.

In the next chapter, we will apply these algorithms to neural network loss functions.
After a warm up on a linear neural network on which we can check our answers, we apply
these methods to non-linear neural networks. In this case, they will generally fail to
find critical points, which will motivate a re-analysis of the behavior second-order critical
point-finding algorithms when the Hessian is singular.
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Chapter 3

Applying Critical Point-Finding
Algorithms to Neural Network Loss
Functions Reveals Gradient-Flat
Regions

3.1 Chapter Summary

Chapter 2 motivated and defined a number of second-order algorithms for finding the
critical points of neural network loss functions. As described in Chapter 1, information
about the local curvature at these points is useful for understanding the optimizability of
neural networks. For example, the No-Bad-Local-Minima theory (NBLM; see Section 1.4),
based on a random function model of neural network losses (Section 1.4.1, Section 1.4.2),
predicts that critical points with strictly positive curvature should only occur when the
value of the loss is low. This implies that first-order methods like gradient descent can
optimize neural networks [42]. Previous work [22, 67] appeared to verify this theory. More
recent analytical work, however, has indicated that the NBLM theory is false, and there
are in fact bad local minima on neural network loss functions ([23]; see Section 1.4.3).
This disagreement with theory motivates a closer look at the numerical evidence, which
is the substance of this chapter.

First, in Section 3.2, we present a test problem, the deep linear autoencoder, that is
analytically tractable while remaining sufficiently similar to the analytically intractable
problem of interest, viz. non-linear networks. The analytically-derived critical points are
used to verify that the approximate critical points recovered by the numerical algorithms
are accurate. Then, we apply the best-performing of these methods, Newton-MR, to a
non-linear network and observe a tremendous change in its behavior: qualitative signa-
tures of convergence disappear and quantitative metrics sharply decline (Section 3.3).

We return, then, to the analysis of second-order critical point-finding methods and
demonstrate that a large class of spurious targets of convergence has been over-looked:
points where the gradient lies in the kernel of the Hessian. We call these gradient-flat
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points. They are defined in Section 3.4. We present evidence that these points are encoun-
tered by critical point-finding methods applied to neural network losses in Section 3.5.

The gradient-flat points that cause the most trouble are bad local minima of the
gradient norm. The core result of this chapter and this dissertation, then, is that the
second-order methods used to find the critical points of neural network loss functions
in an attempt to prove the no-bad-local-minima theory suffer from a bad-local-minima
problem of their own.

3.2 The Deep Linear Autoencoder Provides a

Useful Test Problem

This section introduces the deep linear autoencoder as a test problem for critical point-
finding methods for neural network loss functions. First, the need for test problems is
explained (Section 3.2.1). Then, the deep linear autoencoder is presented and the critical
points derived Section 3.2.2. Finally, the performance of Newton-MR (Algorithm 13),
damped Newton (Algorithm 11), and gradient norm minimization by gradient descent
with back-tracking line search (BTLS-GNM) are compared (Section 3.2.3).

Additional results regarding these critical point-finding methods and the deep linear
autoencoder are published in [30].

3.2.1 Test Problems are Necessary

In the case of optimization for the solution of engineering problems, the question of
convergence to the neighborhood of a true minimizer is often an academic one. The goal
of the optimization procedure is to find a point at which the loss is sufficiently low to
e.g. allow the airplane to fly or select the better ad to display to users. The problem of
finding critical points is different: our goal is to check analytical properties, which can in
principle require arbitrary precision.

The usual solution is to prove an upper bound on the precision required by means of
inequalities. In our case, we are interested in two quantities: the loss L and the index I
(Definition 1.6) at critical points θcp. For the loss, we might proceed by demonstrating
that the function is K-Lipschitz for some constant K.

Definition 3.1: Lipschitz Continuity

A function f : Rn → R is said to be K-Lipschitz if

‖f(x+ ε)− f(x)‖ 6 K‖ε‖ (3.1)

for some K ∈ R>0 and for all x, ε ∈ Rn.

For an almost everywhere differentiable function, like ReLU, K-Lipschitz continuity is
equivalent to demonstrating that the gradient norm is bounded by K. Using this fact, a
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bound on the difference between the loss at an approximate critical point with gradient
norm ε and any nearby true critical points can be derived.

However, the Lipschitz constants of typical neural network losses are not well-controlled
[33], resulting in worst-case bounds that are overly-pessimistic. The situation is even worse
for calculating the index, which depends both on Lipschitz bounds on the operator norm
of the Hessian and on guarantees that the kernel changes only slowly.

In the absence of these guarantees, the results of numerical algorithms must be in-
terpreted with care and hyperparameters must be tuned cautiously. The behavior of
algorithms during convergence should be closely monitored and reported along with re-
sults. And critically, it is important to test numerical algorithms on problems for which
the answers are known before applying them to problems for which the answers are in
doubt. In addition to allowing for hyperparameters to be set to reasonable starting values
and for the signatures of convergence to be identified, test problems provide an impor-
tant opportunity to debug implementations that is missing in cases without ground truth.
Analytical guarantees are of little value if the algorithms in question are broken.

Furthermore, there are many critical point-finding algorithms that might be chosen.
Chapter 2 presented two Newton methods of sufficient robustness for practical use, plus
gradient norm minimization. Both the damped Newton method [22] and gradient norm
minimization [67] have been used, but sufficient information for comparing performance
was not published.

It is critical that the test problem be designed to be as close as possible to the problem
of interest. The following section introduces such a test problem for neural network loss
functions.

3.2.2 The Deep Linear Autoencoder has Known Critical Points

The key difficulty for deriving analytical expressions for the critical points of non-linear
neural networks is that the gradients of the loss are non-linear in an arbitrary fashion.
This turns the problem of finding critical points into the problem of finding solutions to
generic non-linear equations.

Neural networks without non-linearities, also known as linear networks, avoid this
problem. The network is constructed by raveling the entries of θ into aD-element sequence
of matrices Wi(θ) which multiply an input x in turn. We call these matrices the weight
matrices of the network and say that the network has D layers, each with layer size equal
to the number of rows in the matrix Wi. The layers W1 through WD−1 are called hidden
layers.

NNDLN(θ)(x) = WD(θ)WD−1(θ) . . .W2(θ)W1(θ)x (3.2)

def
= W (θ)x (3.3)

As the second line indicates, this is equivalent to applying a single matrix W (θ). Therefore
the function computed by the network as a whole is linear. Any non-linearity in the
gradient function of the loss of such a network is introduced only by the cost function and
regularizer. For simplicity, we consider only the unregularized case.
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The loss of this network can be construed as a function of any of three quantities. As
before, it is a function of the vector of parameters θ, which we continute to denote L. It
is also a function of the separate weights of each layer, the matrices Wi, which we denote
l and refer to as the layerwise loss. These functions also exist for non-linear networks.
Finally, in the linear case the loss can also be written a function of the “collapsed” matrix
W , which we denote L and refer to as the collapsed loss. We further drop the explicit
dependence of W and the Wi on θ when writing the loss in this way.

With this setup, we can write the gradients of a linear network of arbitrary depth with
arbitrary cost in simple form.

Theorem 3.1: Gradients of a Deep Linear Network

Let l be the layerwise loss and L the collapsed loss of a deep linear network with D
layers. The gradient function of the layerwise loss with respect to layer k, denoted
∇Wk

(l), is
∇Wk

l (W1, . . . ,WD) = W>
k+1:∇L (W )W>

:k (3.4)

where the notation Wi:j, inspired by the slicing syntax of Python and other languages,
stands for the products of matrices i to j − 1, with an empty entry on the left standing
for 1 and an empty entry on the right standing for D + 1.
Proof of Theorem 3.1:
This proof follows closely that in [45]. The gradient is defined in terms of the value of the
function at an input perturbed by ε

l(W1, . . . ,Wk−1,Wk + ε,Wk+1, . . .WD) (3.5)

where here ε is a matrix of the same shape as Wk. We proceed by converting to the
collasped loss L and multiplying through the matrix product.

l(W1, . . . ,Wk−1,Wk + ε,Wk+1, . . .WD) = L (WD . . .Wk+1(Wk + ε)Wk−1 . . .W1) (3.6)

= L (W +Wk+1:εW:k) (3.7)

= ∇L (W ) + 〈∇L (W ) ,Wk+1:εW:k〉+ o(ε) (3.8)

where the last line follows by pattern-matching to the definition of the gradient function,
Definition 1.2. Note that the inner product here is an inner product of matrices. It is the
Frobenius inner product

〈A,B〉 = tr
(
A>B

)
(3.9)

which is defined by unraveling the matrices into vectors and applying the Euclidean inner
product of vectors, i.e. as a pullback of that inner product via a raveling isomorphism.
The trace tr is invariant to cyclic permutations, and so we can re-organize the middle
term of Equation 3.8

〈∇L (W ) ,Wk+1:εW:k〉 = tr
(
∇L (W )>Wk+1:εW:k

)
(3.10)

= tr
(
W:k∇L (W )>Wk+1:ε

)
(3.11)

= 〈W>
k+1:∇L (W )W>

:k , ε〉 (3.12)
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which implies, by pattern-matching to the definition of the gradient function again,

∇Wk
l (W1, . . . ,WD) = W>

k+1:∇L (W )W>
:k (3.13)

�

This suggests that if we wish to be able to come up with an analytic expression for the
critical points, which make this gradient function 0, we choose a collapsed loss function
L that has a simple form that allows us to set Equation 3.4 equal to 0 and solve.

We therefore make several simplifying choices in constructing our test problem. First,
we take the inputs and targets to be the same. This type of network is known as an au-
toencoder. Second, we choose the squared error as the loss function. Finally, we choose the
number of layers D to be 2. We refer to this combination as the deep linear autoencoder.

The critical points of this network can be characterized as follows:

Theorem 3.2: Critical Points of Deep Linear Autoencoder

Let L be the loss function of a linear network such that

L(θ) = ‖X −W2(θ)W1(θ)X‖2 (3.14)

for some matrix X ∈ Rk×n such that XX> is full rank, with W1 : R2kp → Rp×k

W2 : R2kp → Rk×p.

Then the critical points of this network correspond to those θcp such that the
matrix W = W2(θcp)W1(θcp) acts as the identity on a subspace spanned by some
subset of the eigenvectors of XX> and the zero matrix otherwise.

Before diving into the proof, we first consider the interpretation and implications. The
matrix XX> is the sample covariance matrix of the data X when the data has sample
mean 0. The eigenvectors of this matrix are known as the principal components of the
data. A single critical point can be constructed according to the criterion in the theorem
above by choosing m 6 p separate principal components for the rows of W1 (setting the
others to 0 when m < p) and choosing W2 = W>

1 . This allows the construction of a
number of distinct critical points equal to the number of ways to choose from 0 to p
elements from a k element set:

∑p
i=0

(
k
i

)
. When the eigenvectors selected are the m with

largest eigenvalue, this network is performing principal components analysis. This value
corresponds to the global minimum. It can be demonstrated that there are no non-global
local minima [8, 45], and so this loss function has the no-bad-local-minima property. It
is a generalization of Example 1.1.

An uncountable collection of additional critical points can be constructed from the
points corresponding directly to the principal components. Indeed, the key property
in Theorem 3.2 is defined in terms of the collapsed matrix W . Applying any invertible
p × p matrix C after W1 and its inverse C−1 before W2 leaves W unchangeda, and so

aNote that invertible matrices form a Lie group, and therefore so do these critical points. This
situation is shared, to an extent, in ReLU networks [28].
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the resulting new point is also a critical point. The loss and index are unchanged, and
so we can consider these collections to be equivalence classes of critical points, with
representatives given by the choice C = C−1 = I.

Theorem 3.2, which was first proven in [8], is proven in the following section for com-
pleteness. Readers uninterested in the technical details are invited to skip to Section 3.2.3.

3.2.2.1 Proof of Theorem 3.2

The collapsed loss function of the linear network is

L(W ) = ‖X −WX‖2 (3.15)

Expanding the right-hand side, we have that

L(W + ε) = tr
(
X>X

)
− tr

(
2X>(W + ε)X

)
+ tr

(
X>(W + ε)>(W + ε)X

)
(3.16)

= L(W ) + tr
(
2XX>Wε− 2XX>ε

)
+ o(ε) (3.17)

which, after re-arrangement, gives the gradient function for L by pattern-matching to
Definition 1.2:

∇L (W ) = 2XX>(W − I) (3.18)

To find the analytical critical points, we plug this definition into the expressions for
the gradients with respect to the two weight matrices W1 and W2 given by Theorem 3.1
and solve for 0.

We start with W2:

∇lW2 (W1,W2) = ∇L (W )W>
1 (3.19)

0 = ∇L (W )W>
1 (3.20)

0 = 2XX> (W2W1 − I)W>
1 (3.21)

W>
1 = W2W1W

>
1 (3.22)

where the transition to Equation 3.22 used the invertibility of XX>. This equation is
satisfied whenever W2W1 is equivalent to the identity matrix when restricted to the co-
kernel of W1 (i.e. when W2W1 is a projection matrix onto that subspace), which is the
range of W>

1 .
This isn’t sufficient to completely determineW1 andW2, so we proceed to the equations

for W1:

0 = W>
2 ∇L (W ) (3.23)

0 = W>
2 2XX> (W2W1 − I) (3.24)

W>
2 = W>

2 XX
>W2W1

(
XX>

)−1
(3.25)

When the matrix XX> is simultaneously diagonalizable with the matrix W2W1, the
matrices commute, which gives the equation

W>
2 = W>

2 W2W1 (3.26)
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This equation holds when W2W1 is equivalent to the identity when applied to the co-kernel
of W>

2 .
For W2W1 to be simultaneously diagonalizable with XX>, the non-zero eigenvectors

of W2W1 need to be the same as some subset of the eigenvectors of XX>. Together,
these conditions imply that at a critical point of the loss, W2W1 acts as the identity on a
subspace spanned by some subset of the eigenvectors of XX>.

3.2.3 Newton-MR Outperforms Previous Methods on this
Problem

We are now ready to set up the deep linear autoencoder test problem and compare the
performance of our critical point-finding algorithms.

3.2.3.1 Data and Network

Theorem 3.2 gives a characterization of the set of all critical points, Θcp, for a given choice
of dataset X ∈ Rk×n and two-layer network. The key parameters for the dataset are its
covariance matrix, dimension k, and size n. The key architectural hyperparameter of the
network is the size of the hidden layer (p, as in Theorem 3.2).

For simplicity, we choose a multivariate Gaussian distribution for the columns of X,
as this distribution is entirely specified by its mean and covariance. The connection to
PCA required that XX> be the sample covariance matrix of X, and so we enforce that
X has row means exactly 0. Note that this must be done after sampling, as setting
the distributional means to 0 does not result in sample row means of 0. We choose a
diagonal covariance matrix. To obtain maximally-spaced eigenvalues while still controlling
the condition number of XX>, we space the diagonal values linearly between 1 and k,
inclusive. We choose n, the number of samples, to be 1e4.

The parameters k, for the dimension of the data, and p, for the dimension of the
hidden layer of the neural network, directly determine the number of critical points, up to
equivalence. Since this count is effectively given by the number of ways to choose subsets
from a set of size k, it grows nearly as fast as 2k. For this reason, we choose k to be small,
relative to the typical inputs to neural networks: 16, as opposed to order 100 or 1000.
Selecting p also to be small, specifically 4, gives a total number of equivalence classes of
critical points equal to 2517 =

∑4
i=0

(
16
i

)
. Below, we will call the set of all representatives

of the equivalence classes the analytical critical points of the deep linear autoencoder.
With all of these choices in place, we can now calculate the loss and index values

of the analytical critical points for a neural network loss function. These are plotted in
Figure 3.1. The squared gradient norms of these points are generally not 0, but on the
order of 1e-32. Already, this provides a loose lower bound on the precision we need in
order to recover critical points. There is one notable exception: the 0 vector, which is
a critical point for this loss. Here, the gradient is exactly 0. In general, the density of
floating point numbers is greatest near 0, and so critical points near 0 can be recovered
with greater accuracy. Note that, in a numerical setting, the index is defined as the
number of eigenvalues below some small negative value, rather than 0, to account for
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error. We choose -1e-5, based on inspection of the spectra of these analytical critical
points.
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Figure 3.1: The Analytical Critical Points of a Deep Linear Autoencoder.

3.2.3.2 Two-Step Process for Sampling Critical Points

The full set of critical points, Θcp, is uncountably infinite in size, as is the full set of
ε-critical points, Θε-cp. Even the set of critical points up to equivalence is exponentially
large. For a problem as small as this one, it might be feasible to find all of them, but for
larger networks this won’t be the case. Instead, our methods must aim to sample the set
of critical points. If the sample is unbiased, qualitative and quantitative features of the
loss-index relationship (Figure 3.1) should be preserved.

To obtain initial points for our critical point-finding methods, we first apply an opti-
mization algorithm to the loss. This generates a trajectory of values of θ with varying loss,
from near the value of the highest critical point to near the value of the global minimum.
These values are then chosen as initial points for critical point-finding algorithms. We
follow [67] in selecting these points uniformly at random based on their loss value. Due to
the exponential rate of first-order optimization algorithms, selecting points uniformly at
random from the trajectory would over-represent lower loss values. Furthermore, decreas-
ing gradient norms during training mean that later parameter values are closer together,
and so this scheme would heavily over-sample a small region. Both factors should reduce
the variety in recovered critical pointsb. To half of the initial points attained in this man-
ner, we add Gaussian noise of with variance 1e-2 (an SNR of approximately 2.8 dB). In

bThese approaches were directly compared in experiments not presented here and this intuition is
borne out. See [30].
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separate experiments, noise of this magnitude this was found to increase the diversity in
critical points recovered [30].

3.2.3.3 Critical Point-Finding Methods Have Differential Performance

When applied to the problem of finding the critical points of the deep linear autoencoder
problem outlined above, the three critical point finding methods, Newton-MR, damped
Newton, and gradient norm minimization by gradient descent with backtracking line
search (BTLS-GNM), have wildly different performance, even though all three are capable
of finding numerical critical points with the same loss and index as the analytical critical
points.
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Figure 3.2: Newton-MR, Damped Newton, and BTLS-Gradient Norm Minimization
can Recover Critical Points of a Deep Linear Autoencoder.

A-C. Squared gradient norms at each iteration of the three critical point-finding algo-
rithms. Runs that terminate with squared gradient norm below 1e-10 in blue, otherwise
in gold. The y-axis is truncated at 1e-30, since only runs that terminate at or near θ = 0
reach substantially below this value. Horizontal and vertical axes are shared across the
top row and the bottom row of panels separately.

Results for all three algorithms appear in Figure 3.2. The first row of panels, A-C,
presents squared gradient norms for each algorithm across iterations. Results for 100 runs
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of Newton-MR appear in panel A, for 100 runs of damped Newton in panel B, and for 60
runs of BTLS-GNM in panel C. Runs are terminated either due to hitting the maximum
number of iterations or due to hitting the minimum step size of the backtracking line search
without finding an acceptable update. Note that BTLS-GNM is allowed 25000 iterations
before termination, while the Newton methods are only allowed 500. This algorithm only
requires a single Hessian-vector multiplication outside of the backtracking line search
phase, which is much less than the maximum of O(n) multiplications required by the
inexact Newton methods. Traces are plotted transparently to allow a rough estimation of
density. Runs that terminate with squared gradient norm above 1e-10 are in gold, others
in blue. Note that a large number of damped Newton and BTLS-GNM runs terminate in
a small number of iterations and with squared gradient norm above 1e-10.

Notably, a number of runs of all three algorithms, but especially BTLS-GNM, obtain
much lower values of the squared gradient norm. These are runs that terminate at or near
the zero vector, which is a critical point for this problem. Floating point numbers are
much denser near the origin, and so more accurate computations, and so lower gradient
norms, are possible. The loss of this critical point is approximately 8.5 and the index 0.5.

Runs that terminated with squared gradient norm above 1e-10 were considered fail-
ures. This filter value was determined by comparing loss and index values at candidate
critical points to the loss and index at analytical critical points, as in Figure 3.2D-F (only
successful runs shown). A value of 1e-10 was sufficient to obtain the close match there
displayed, while a value of 1e-8 or higher was not. Note the greater number and diver-
sity of critical points recovered by Newton-MR (Figure 3.2D) compared to the damped
Newton method (Figure 3.2E) and especially to BTLS-GNM (Figure 3.2F; but note that
results from BTLS-GNM are based on 60 runs, versus 100 for the Newton methods).

The relative performance of the three algorithms is summarized in Table 3.1. Newton-
MR was clearly superior in terms of the fraction of runs that ended in successes (80%
versus 45% for damped Newton and 35% for BTLS-GNM) and in terms of the elapsed
walltime per success (20 min versus 1hr 45 minutes for damped Newton and 35% for
BTLS-GNM).

Algorithm Pseudocode Fraction Successful Time per Success
Newton-MR Algorithm 13 80% ± 4 20 min

Damped Newton Algorithm 11 45% ± 5 1hr 45 min
BTLS-GNM Algorithm 2c 35% ± 6 1hr 15 min

Table 3.1: Newton-MR Outperforms Damped Newton and BTLS-GNM.

The fraction of successful runs is given as a percentage with a standard error based on a
Gaussian approximation to the sampling distribution of the percentage. Newton-MR and
Newton-TR results based on 100 runs; BTLS-GNM results based on 60 runs. Runtimes are
based on walltime on commodity hardware and are to be regarded as highly approximate.

cThe indicated pseudocode algorithm is for gradient norm minimization by gradient descent. These
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3.2.3.4 Cutoffs Must be Set Strictly

As noted in Section 3.2.1, one of the key purposes of applying our algorithms to a test
problem is to obtain estimates for the value of ε necessary to guarantee that the loss and
index values for members of ΘL

ε-cp are similar to those of ΘL
cp. With such a value in hand,

we can terminate our critical point-finding algorithms early, as soon as they produce a
candidate critical point with squared gradient norm below ε.

We simulate the results of such a procedure by applying a “cutoff” to the traces from
Figure 3.2A. We truncate each run at the first T such that ‖∇L (θT )‖2 < ε. As our
cutoffs, we choose the value used to filter the traces in Figure 3.2, 1e-10, the value used
as a filter in [67], 1e-6, a looser criterion of 1e-4, and ∞. The latter corresponds to no
cutoff, taking the initial points, the iterates of the optimization algorithm, as candidate
critical points. The results are in Figure 3.3.

Notably, using the value of 1e-10 that, as a filter, resulted in accurate recovery of loss
and index values (Figure 3.2), introduces a small amount of error, in particular at low
and high values of the index (Figure 3.3A). This suggests that a strategy of running crit-
ical point-finding methods until termination and then filtering gives better results than
a strategy of early termination. Looser cutoff values (Figure 3.3B,C) result in quantita-
tively worse recovery of loss-index values but qualitatively similar loss-index relationships.
Interestingly, applying no cutoff at all, as in Figure 3.3D, results in a convex upwards re-
lationship between index and loss, much like that reported in [22] and [67] for non-linear
networks, despite the fact that the true relationship is linear.

3.3 Methods that Work on a Linear Network Fail

on a Non-Linear Network

Unfortunately, success on this test problem does not guarantee success on the original
problem of interest. When applied to a nonlinear network, even with the same data,
these methods fail.

Figure 3.4 shows results for Newton-MR applied to a network with two hidden layers
of sizes 8 and 16 and Swish non-linearity [70], but the same data as in Section 3.2.3.
Results for other algorithms are qualitatively similar. The squared gradient norms do not
drop nearly as low (greater than 1e-18, versus 1e-30 in the linear case, Figure 3.2A), even
though the iteration budget is doubled. All runs exhibit a “plateau”, unlike the successful
runs in Figure 3.2A, which exhibited linear or faster convergence to a point at which no
further progess could be made. A handful of experiments with much larger iteration
counts indicated that this plateau persists even as the computational budget increases
(data not shown). It is unclear whether the loss and index values (Figure 3.4B) recovered
in this case are accurate. The results here are just a single example; in Section 3.5, we
will see that these phenomena recur on many neural network losses.

results are for gradient norm minimization by gradient descent with backtracking line search, which adds a
line search step akin to Algorithm 12, but with a convergence criterion based on the Wolfe conditions [78]
applied to the squared gradient norm.
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Figure 3.3: Cutoffs Above 1e-10 are Insufficient to Guarantee Accurate Loss and
Index Recovery.

As in Figure 3.2, ε-CPs are plotted in blue over analytical CPs in gray. For each panel,
ε-CPs are selected by taking the 100 runs of Newton-MR in Figure 3.2A and taking the
first point whose squared gradient norm is below the cutoff value, ε, in the top-left corner.
Horizontal and vertical axes are shared between panels.

This motivates a re-analysis of the critical point-finding methods, in particular in the
singular case. We will see, in the following section, that the plateau behavior in Figure 3.4
can be recreated on a very simple test problem, so long as that problem has a point where
the gradient lies in the Hessian’s kernel: a gradient-flat point. This analysis, and the
experiments in Section 3.5 that it motivates, are also presented in [29].

3.4 Gradient-Flat Regions can Cause Critical

Point-Finding Methods to Fail

In this section, we introduce and define gradient-flat points and explain why they are
problematic for second-order critical point-finding methods (Section 3.4.1), with the help
of a low-dimensional example to build intuition (Section 3.4.2). In numerical settings and
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Figure 3.4: Newton-MR Fails to Find Critical Points on a Non-Linear Network.

A. Squared gradient norms across iteration for ten runs of Newton-MR applied to a non-
linear network. B. Loss and index values at 1000 iterations for the runs of Newton-MR
in A. Reproduced, with permission, from [29].

in high dimensions, approximately gradient-flat points are also important, and so we define
a quantitative index of gradient-flatness based on the residual norm of the Newton update
(Section 3.4.3). Connected sets of these numerically gradient-flat points are gradient-flat
regions, which cause trouble for second-order critical point-finding methods.

3.4.1 At Gradient-Flat Points, the Gradient Lies in the
Hessian’s Kernel

Critical points are of interest because they are points where the first-order approximation
of a function f at a point x+ δ based on the local information at x

f(x+ δ) ≈ f(x) +∇f (x)> δ (3.27)

is constant, indicating that they are the stationary points of first-order optimization
algorithms like gradient descent and its variants.

We can similarly understand the behavior of our second-order critical point-finding
methods by considering their stationary points. In our construction of these methods in
Chapter 2, we used a linear approximation of the behavior of the gradient function at a
point x+ p given the local information at a point x

∇f (x+ p) ≈ ∇f (x) +∇2f (x) p (3.28)

Solving for the value of p that makes the left-hand side 0 gave us the Newton update

∇2f (x)+∇f (x) (3.29)

which is only 0, for a non-singular Hessian, if ∇f (x) is 0. For a singular Hessian, the
update p is zero iff ∇f (x) is in the kernel of the pseudoinverse.
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In gradient norm minimization, we search for critical points by applying first-order
optimization methods to the squared gradient norm function, g(θ) = ‖∇L (θ)‖2. These
methods also make a linear approximation of the gradient function of L. The gradient
function of g is

∇g (x) = ∇2f (x)∇f (x) (3.30)

As with Newton methods, in the invertible case the updates are zero iff ∇f (x) is 0. In
the singular case, the updates are zero if the gradient is in the Hessian’s kernel.

In the case of invertible Hessians, then, these methods can guarantee convergence to
critical points. However, neural network Hessians are generally singular, especially in
the overparameterized case [72, 32]. In this case, neither class of methods can guarantee
convergence to critical points (for GNM, see [24]; for Newton methods, see [69, 34]).

What are the stationary points, besides critical points, for these two method classes
in the case of singular Hessians? It would seem at first that they are different: for
gradient norm minimization, when the gradient is in the Hessian’s kernel; for Newton-
type methods, when the gradient is in the Hessian’s pseudoinverse’s kernel. In fact,
however, these conditions are identical, due to the Hessian’s symmetry, and so both
algorithms share a broad class of stationary points. A proof, based on the construction
of the pseudo-inverse in Section 2.4.3.1, follows.

Theorem 3.3: Kernel Equals Pseudo-Inverse Kernel for Symmetric M

Let M ∈ Rn×n be a symmetric matrix. Then

kerM = kerM+ (3.31)

Proof of Theorem 3.3:
We first repeat the commutative diagram relating the SVDs of a matrix and its pseudo-
inverse, specialized to a square matrix.

Rn Rn

co kerM imM

M

V > U>
M+

V

Σ

U

Σ−1

Note that imM is also co kerM+, by reading the diagram counter-clockwise. The
SVD of the transpose of M can be attained by transposing each of the elements of the
SVD:

M> =
(
UΣV >

)>
(3.32)

= V ΣU> (3.33)
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This can be summarized in the commutative diagram below.

Rn Rn

co kerM imM

M

V > U>
M>

V

Σ

U

Σ

This implies that imM = co kerM>. But for a symmetric matrix, M = M>, and so
co kerM = co kerM> = imM . But above, we saw that imM = co kerM+, and therefore
co kerM = co kerM+, which further implies that kerM = kerM+.

�

These stationary points have been identified previously, but nomenclature is not stan-
dard: Doye and Wales, studying gradient norm minimization, call them non-stationary
points [24], since they are non-stationary with respect to the function f , while Byrd et
al., studying Newton methods, call them stationary points [17], since they are stationary
with respect to the merit function g. To avoid confusion between these incommensu-
rate conventions or with the stationary points of the function f , we introduce our own
terminology.

Definition 3.2: Gradient-Flat Points

A point θ ∈ Rn is a gradient-flat point of a twice continuously-differentiable function
f : Rn → R if

∇f (θ) ∈ ker∇2f (θ) (3.34)

This name was chosen because a function is flat when its Hessian is 0, meaning every
direction is in the kernel, and so it is locally flat around a point in a given direction
whenever that direction is in the kernel of the Hessian at that point. Note that, because
0 ∈ ker for all matrices, every critical point is also a gradient-flat point, but the reverse
is not true. When we wish to explicitly refer to gradient-flat points which are not critical
points, we will call them strict gradient-flat points. At a strict gradient-flat point, the
function is, along the direction of the gradient, locally linear up to second order.

There is an alternative view of gradient-flat points based on the squared gradient norm
function g. All gradient-flat points are stationary points of the gradient norm: they are
zeroes for ∇g. They may in principle be local minima, maxima, or saddles, while the
global minima of the gradient norm are critical points. When they are local minima of
the gradient norm, they can be targets of convergence for methods that use first-order
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approximations of the gradient map, as in gradient norm minimization and in Newton-
type methods. Strict gradient-flat points, then, can be bad local minima of the gradient
norm, and therefore prevent the convergence of second-order root-finding methods to
critical points, just as bad local minima of the loss function can prevent convergence of
first-order optimization methods to global optima.

Note that Newton methods cannot be demonstrated to converge only to gradient-flat
points [69, 17]. Furthermore, Newton convergence can be substantially slowed when even
a small fraction of the gradient is in the kernel [34]. Below we will see that, while Newton-
MR applied to a neural network loss sometimes converges to and almost always encounters
strict gradient-flat points, the final iterate is not always either a strict gradient-flat point
or a critical point.

3.4.2 Convergence to Gradient-Flat Points in a Quartic
Example

The difficulties that gradient-flat points pose for Newton methods can be demonstrated
with a polynomial example in two dimensions, plotted in Figure 3.5A. Below, we will
characterize the strict gradient-flat (gold) and critical (blue) points of this function (Fig-
ure 3.5A). Then, we will observe the behavior of Newton-MR when applied to it (Fig-
ure 3.5B) and note similarities to the results in Figure 3.4. We will use this simple,
low-dimensional example to demonstrate principles useful for understanding the results of
applying second-order critical point-finding methods to more complex, higher-dimensional
neural network losses.

Example 3.1: A Quartic Polynomial with a Gradient-Flat Point

f(x, y) = 1/4x4 − 3x2 + 9x+ 0.9y4 + 5y2 + 40 (3.35)

Equation 3.35 is plotted in Figure 3.5A, central panel. This quartic function has two
affine subspaces of points with non-trivial Hessian kernel, defined by [±

√
2, y]. The kernel

points along the x direction and so is orthogonal to this affine subspace at every point.
As a function of y, f is convex, with one-dimensional minimizers at y = 0. The strict
gradient-flat points occur at the intersections of these two sets: one strict gradient-flat
point at [

√
2, 0], which is a local minimum of the gradient norm, and one at [−

√
2, 0],

which is a saddle of the same (Figure 3.5A, gold points, all panels). In the vicinity of
these points, the gradient is, to first order, constant along the x-axis, and so the function is
locally linear or flat. These points are gradient-flat but neither is a critical point of f . The
only critical point is located at the minimum of the polynomial, at [−3, 0] (Figure 3.5A,
blue point, all panels), which is also a global minimum of the gradient norm. The affine
subspace that passes through [−

√
2, 0] divides the space into two basins of attraction,

loosely defined, for second-order methods: one, with initial x-coordinate x0 < −
√

2, for
the critical point of f and the other for the strict gradient-flat point. Note that the vector
field in the central panel shows update directions for the pure Newton method, which
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Figure 3.5: Stationarity of and Convergence to a Strict Gradient-Flat Point on a
Quartic Function.

A: Critical and strict gradient-flat points of quartic f(x, y) (defined in Equation 3.35).
Central panel: f(x, y) plotted in black and white (black, low values; white, high values),
along with the direction of the Newton update p as a (notably non-smooth) vector field
(red). Stationary points of the squared gradient norm merit function g are indicated:
strict gradient-flat points in gold, the critical point in blue. Top and bottom panels: The
value (top) and squared gradient norm (bottom) of f as a function of x value with y fixed
at 0. The x axis is shared between panels. B: Performance and trajectories of Newton-
MR on Equation 3.35. Runs that terminate near a strict gradient-flat point are in gold,
while those that terminate near a critical point are in blue. Central panel: Trajectories of
Newton-MR laid over f(x, y). x and y axes are shared with the central panel of A. Initial
values indicated with scatter points. Top and bottom panels: Function values (top) and
squared gradient norms (bottom) of Newton-MR trajectories as a function of iteration.
The x axis is shared between panels. Reproduced, with permission, from [29].
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can behave extremely poorly in the vicinity of singularities [69, 34], often oscillating and
converging very slowly or diverging.

Practical Newton methods, like those introduced in Chapter 2 and used in Section 3.2.3
above, use techniques like damping and line search to improve behavior. To demonstrate
how a practical Newton method behaves on this function, we focus on the case of Newton-
MR. Results are qualitatively similar for damped Newton.

The results of applying Newton-MR to Equation 3.35 are shown in Figure 3.5B. The
gradient-flat point is attracting for some trajectories (gold), while the critical point is
attracting for others (blue). For trajectories that approach the strict gradient-flat point,
the gradient norm does not converge to 0, but converges to a non-zero value near 10
(gold trajectories; Figure 3.5B, bottom panel). This value is typically several orders
of magnitude lower than the initial point, and so would appear to be close to 0 on a
linear scale that includes the gradient norm of the initial point. Since log-scaling of loss
functions is uncommon in machine learning, as losses do not always have minima at 0,
second-order methods apporaching gradient-flat points can appear to converge to critical
points if typical methods for visually assessing convergence are used.

There are two interesting and atypical behaviors worth noting. First, the trajectories
tend to oscillate in the vicinity of the gradient-flat point and converge more slowly (Fig-
ure 3.5B, central panel, gold lines). Updates from points close to the affine subspace where
the Hessian has a kernel, and so which have an approximate kernel themselves, sometimes
jump to points where the Hessian doesn’t have an approximate kernel. This suggests that,
when converging towards a gradient-flat point, the degree of flatness will change iteration
by iteration. Second, some trajectories begin in the nominal basin of attraction of the
gradient-flat point but converge to the critical point (Figure 3.5B, central panel, blue
points with x-coordinate > −

√
2). This is because the combination of back-tracking line

search and large proposed step sizes means that occasionally, very large steps can be
taken, based on non-local features of the function. Indeed, back-tracking line search is a
limited form of global optimization and the ability of line searches to change convergence
behaviors predicted from local properties on nonconvex problems is known [60]. Since the
back-tracking line search is based on the gradient norm, the basin of attraction for the
true critical point, which has a lower gradient norm than the gradient-flat point, is much
enlarged relative to that for the gradient-flat point. This suggests that Newton methods
using the gradient norm merit function will be biased towards finding gradient-flat points
that also have low gradient norm.

Finally, we note that the behavior of the failed runs in the bottom panel of Figure 3.5B
matches that of the runs in Figure 3.4. In particular, after a brief period of rapid improve-
ment, the squared gradient norm plateaus at relatively large value given by the value of
the gradient norm at the gradient-flat point (in this case, 1e1).
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3.4.3 Approximate Gradient-Flat Points Form Gradient-Flat
Regions

Analytical arguments focus on exactly gradient-flat points, where the Hessian has an exact
kernel and the gradient is entirely within it. In numerical settings, it is almost certain
no matrix will have an exact kernel, due to rounding error. For the same reason, the
computed gradient vector will generically not lie entirely within the exact or approximate
kernel. However, numerical implementations of second-order methods will struggle even
when there is no exact kernel or when the gradient is only partly in it, and so a numerical
index of flatness is required. This is analogous to the requirement to specify a tolerance
for the norm of the gradient when deciding whether to consider a point an approximate
critical point or not.

We quantify the degree of gradient-flatness of a point by means of the relative residual
norm (r) and the relative co-kernel residual norm (rH) for the Newton update direction
p. The vector p is an inexact solution to the Newton system Hp + g = 0, where H and
g are the current iterate’s Hessian and gradient. The residual is equal to Hp + g, and
the smaller its norm, the better p is as a solution. The co-kernel residual is equal to the
Hessian times the residual, and so ignores any component in the kernel of the Hessian. Its
norm quantifies the quality of an inexact Newton solution in the case that the gradient
lies partly in the Hessian kernel, the unsatisfiable case, where Hp 6= −g for any p. When
the residual is large but the co-kernel residual is small (norms near 1 and 0, respectively,
following suitable normalization), then we are at a point where the gradient is almost
entirely in the kernel of the Hessian: an approximate gradient-flat point. In the results
below, we consider a point approximately gradient-flat when the value of rH is below 5e-4
while the value of r is above 0.9. We emphasize that numerical issues for second-order
methods can arise even when the degree of gradient-flatness is small.

The relative residual norm, r, measures the size of the error of an approximate solution
to the Newton system:

r(p) =
‖Hp+ g‖

‖H‖F‖p‖+ ‖g‖
(3.36)

where ‖M‖F of a matrix M is its Frobenius norm. Since all quantities are non-negative, r
is non-negative; because the denominator bounds the numerator, by the triangle inequality
and the compatibility of the Frobenius and Euclidean norms, r is at most 1. For an exact
solution of the Newton system p?, r(p?) is 0, the minimum value, while r(0) is 1, the
maximum value. Note that small values of ‖p‖ do not imply large values of this quantity,
since ‖p‖ goes to 0 when a Newton method converges towards a critical point, while r
goes to 0.

When g is partially in the kernel of H, the Newton system is unsatisfiable, as g will
also be partly in the co-image of H, the linear subspace into which H cannot map any
vector. In this case, the minimal value for r will no longer be 0. The optimal solution for
‖Hp + g‖ instead has the property that its residual is 0 once restricted to the co-kernel
of H. This co-kernel residual can be measured by applying the matrix H to the residual
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vector Hp+ g. After normalization, it becomes

rH(p) =
‖H(Hp+ g)‖
‖H‖F‖Hp+ g‖

(3.37)

Note that this value is also small when the gradient lies primarily along the eigenvalues of
smallest magnitude. On each internal iteration, MR-QLP checks whether either of these
values is below a tolerance level (the hyperparameter rtol; in our experiments, 5e-4) and
if either is, it ceases iteration. With exact arithmetic, either one or the other of these
values should go to 0 within a finite number of iterations; with inexact arithmetic, they
should just become small. See [19] for details.

Under this relaxed definition of gradient-flatness, there will be a neighborhood of
approximate gradient-flat points around a strict, exact gradient-flat point for functions
with Lipschitz gradients and Hessians. Furthermore, there might be connected sets of
non-null Lebesgue measure which all satisfy the approximate gradient-flatness condition
but none of which satisfy the exact gradient-flatness condition. We call both of these
gradient-flat regions.

There are multiple reasonable numerical indices of flatness besides the definition above.
For example, the Hessian-gradient regularity condition in [71], which is used to prove con-
vergence of Newton-MR, would suggest creating a basis for the approximate kernel of the
Hessian and projecting the gradient onto it. Alternatively, one could compute the Rayleigh
quotient of the gradient with respect to the Hessian. Our method has the advantage of
being computed as part of the Newton-MR algorithm. It furthermore avoids diagonalizing
the Hessian or the specification of an arbitrary eigenvalue cutoff. The Rayleigh quotient
can be computed with only one Hessian-vector product, plus several vector-vector prod-
ucts, so it might be a superior choice for larger problems where computing a high-quality
inexact Newton step is computationally infeasible.

3.5 Gradient-Flat Regions Abound on Several

Neural Network Losses

To determine whether gradient-flat regions are responsible for the poor behavior of Newton
methods on deep neural network (DNN) losses demonstrated in Figure 3.4, we applied
Newton-MR to the losses of several neural networks. We focused on Newton-MR because
we found that a damped Newton method like that in [22] performed poorly, as reported
for the XOR problem in [20].

3.5.1 Gradient-Flat Regions on an Autoencoder Loss

We first present results for two networks trained on 10k MNIST [48] images downsized
to 4×4, similar to the downsized datasets in [22, 67]. Images were cropped to 20×20 and
rescaled to 4×4 using PyTorch [64], then z-scored. This was done to improve the condition
of the data covariance matrix, which is very poor for MNIST due to the low variance in the
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border pixels. It also reduced the size of the network. Non-linear classification networks
trained on this down-sampled data could still obtain accuracies above 90%, better than
the performance of logistic regression (≈ 87%).

First, we consider a nonlinear autoencoder. This network had two hidden layers
of 8 and 16 units, used Swish non-linearities. Unlike previous networks, this network
had biases, meaning each layer performed an affine rather than a linear transformation.
Gradient norms for the first 100 iterations of Newton-MR applied to this loss appear in
Figure 3.6A. As in the non-linear autoencoder applied to the multivariate Gaussian data
(Figure 3.4), we found that, after 500 iterations, all of the runs had squared gradient norms
over 10 orders of magnitude greater than the typical values observed after convergence
in the linear case (<1e-30, Figure 3.2A). 14% of runs terminated with squared gradient
norm below the filtering value of 1e-10 and so found likely critical points (blue). Twice
as many runs terminated above that cutoff but terminated in a gradient-flat region (28%,
gold), while the remainder were above the cutoff but were not in a gradient-flat region at
the final iteration (black).

The relative residual norm for the Newton solution, r, is an index of gradient-flatness;
see Section 3.4.3 for details. The values of r for every iteration of Newton-MR are shown
for three representative traces in Figure 3.6B. In the top trace, r is close to 0, indicating
that the iterates are not in a gradient-flat region (r � 0.9, black). Newton methods can
be substantially slowed when even a small fraction of the gradient is in the kernel [34] and
can converge to points that are not gradient-flat [17]. By contrast, in the middle trace
(gold), the value of r approaches 1, indicating that almost the entirety of the gradient
is in the kernel. This run terminated in a gradient-flat region, at effectively an exactly
gradient-flat point. Further, the squared gradient norm at 500 iterations, 2e-5, is five
orders of magnitude higher than the cutoff, 1e-10. This is smaller than the minimum
observed during optimization of this loss (squared gradient norms between 1e-4 and 5e1),
indicating the presence of non-critical gradient-flat regions with very low gradient norm.
Critical point-finding methods that disqualify points on the basis of their norm will both
converge to and accept these points, even though they need not be near true critical
points. In the bottom trace (blue), the behavior of r is the same, while the gradient norm
drops much lower, to 3e-13, suggesting convergence to a gradient-flat region around a
critical point that has an approximately singular Hessian.

We found that 99 of 100 traces included a point where at least half of the gradient was
in the kernel, according to our residual measure, while 89% of traces included a point that
had a residual greater than 0.9, and 50% included a point with r > 0.99 (Figure 3.6C,
bottom). This demonstrates that there are many regions of substantive gradient-flatness,
in which second-order critical point-finding methods could be substantively slowed.

The original purpose of applying these critical point-finding methods was to determine
whether the no-bad-local-minima property held for this loss function, and more broadly to
characterize the relationship at the critical points between the loss and the local curvature,
summarized via the Morse index. If we look at either the iterates with the highest
gradient-flatness (Figure 3.6D), we find that the qualitative features of the loss-index
relationship reported in [22] and [67] are recreated: convex shape, small spread at low
index that increases for higher index, no minima or near-minima at high values of the loss.
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Figure 3.6: Critical Point-Finding Methods More Often Find Gradient-Flat Regions
on a Neural Network Loss.

A: Squared gradient norms across the first 100 iterations of Newton-MR for 100 sep-
arate runs on an auto-encoder loss. Gradient norms were flat after 100 iterations.
See app:networks for details. Runs that terminate with squared gradient norm below
1e-10, i.e. at a candidate critical point, in blue. Runs that terminate above that cutoff
and with r above 0.9, i.e. in a gradient-flat region, in gold. All other runs in black. As-
terisks indicate trajectories in B. B: The relative residual norm r, an index of gradient-
flatness, for the approximate Newton update computed by MR-QLP at each iteration
(solid lines) for three representative traces. Values are local averages with a window size
of 10 iterations. Raw values are plotted with reduced opacity underneath. Top: non-flat,
non-critical point (black). Middle: flat, non-critical point (gold). Bottom: flat, critical
point (blue). C: Empirical cumulative distribution functions for the final (top) and max-
imal (bottom) relative residual norm r observed during each run of Newton-MR. Values
above the cutoff for approximate gradient-flatness, r > 0.9, in gold. Observations from
runs that terminated below the cutoff for critical points, ‖∇L (θ)‖2 < 1e-10, indicated
with blue ticks. D: Loss and index for the maximally gradient-flat points obtained dur-
ing application of Newton-MR. Points with squared gradient norm below 1e-10 in blue.
Other points colored by their gradient-flatness: points above 0.9 in gold, points below
in black. Only points with squared gradient norm below 1e-4 shown. Reproduced, with
permission, from [29].



67

However, our analysis suggests that the majority of these points are not critical points
but either strict gradient-flat points (gold) or simply points of spurious or incomplete
Newton convergence (black). The approximately critical points we do see (blue) have
a very different loss-index relationship: their loss is equal to the loss of a network that
has constant output equal to the mean of the data, and their index is low, but not 0.
This suggests that the results presented in [22] and [67] are not evidence of the reported
loss-index relationship at critical points of neural network losses.

3.5.2 Gradient-Flat Regions on a Classifier Loss

We repeated these experiments on a fully-connected classifier (aka a multilayer perceptron
or MLP) trained on the same MNIST images via the cross-entropy cost function. This
network also had two hidden layers of 12 and 8 units, used Swish activations, and included
biases. Unlike all networks considered up to this point, the regularizer r was non-zero.
Losses based on the cross entropy cost function can have critical points of infinite norm
in the absence of regularization, and so we applied `2 norm regularization: r(θ) = ‖θ‖2.

We again found that the performance of the Newton-MR critical point-finding algo-
rithm was poor (Figure 3.7A) and that around 90% of runs encountered a point with
gradient-flatness above 0.9 (Figure 3.7C, bottom row). However, we observed that fewer
runs terminated at a gradient-flat point (Figure 3.7C, top row).

In many traces, the value of r oscillates from values close to 1 to middling values,
indicating that the algorithm is bouncing in and out of one or more gradient-flat regions,
rather than because of another type of spurious Newton convergence. This can occur
when the final target of convergence given infinite iterations is a gradient-flat point, as
in the example in Section 3.4.2. This behavior is evident in the traces presented in the
top and bottom rows of Figure 3.7B. Even for the autoencoding network presented in
Figure 3.6, not all traces exhibit the monotonic behavior for the value of r apparent in
Figure 3.6B.

If we measure the loss-index relationship at the (mostly non-gradient-flat) final points,
we see the same pattern as in Figure 3.6: convex shape, separation of critical points from
gradient-flat points (Figure 3.7D). This also holds if we look at the maximally flat points,
as in Figure 3.6D, or if we look at the final iterates of the traces in Figure 3.6 (neither
results shown). This underlines a particular problem with detecting convergence issues
caused by a gradient-flat region. On any given iterate, the algorithm may be inside or
outside the gradient-flat region, so it is insufficient just to examine the degree of flatness
on one iteration, e.g. the final iteration, as determined by computational budget.

3.5.3 Gradient-Flat Regions on an Over-Parameterized Loss

Many contemporary neural networks have extremely large parameter counts: in the mil-
lions and tens of millions. By varying definitions of the relationship between parameter
count and size or complexity of the dataset, these networks are over-parameterized. As
described in Section 1.4.4, recent theoretical results have suggested that, even in the pos-
sible presence of bad local minima, neural networks might be easily trainable if they are
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Figure 3.7: Gradient-Flat Regions Also Appear on an MLP Loss.

A: Squared gradient norms across the first 100 iterations of Newton-MR for 60 separate
runs on an MLP loss. Runs that terminate with squared gradient norm below 1e-10 in
blue. Runs that terminate above that cutoff and with r above 0.9, in gold. All other
runs in black. Asterisks indicate trajectories in B. B: The relative residual norm r,
for the approximate Newton update computed by MR-QLP at each iteration for three
representative traces. Values are local averages with a window size of 10 iterations.
Raw values are plotted with reduced opacity underneath. Top: non-flat, non-critical
point (black). Middle: flat, non-critical point (gold). Bottom: non-flat, critical point
(blue). C: Empirical cumulative distribution functions for the final (top) and maximal
(bottom) relative residual norm r. Values above the cutoff for approximate gradient-
flatness, r > 0.9, in gold. Observations from runs that terminated below the cutoff for
critical points, ‖∇L (θ)‖2 < 1e-10, indicated with blue ticks. D: Loss and index for the
points found after 500 iterations of Newton-MR. Colors as in top-left; only points with
squared gradient norm below 1e-4 shown. Note that color is determined by the value of
r on the last iteration, rather than on the iteration with maximal r, as in Figure 3.6.
Reproduced, with permission, from [29].
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over-parameterized. It is furthermore known that increasing the number of parameters
while holding the dataset constant increases the size of the Hessian kernel [72]. The loss
function of such networks has not been considered from the critical point perspective.

We repeated our critical point-finding experiments on the loss function of a fully-
connected classifier on a small subset of 50 0s and 1s from the MNIST dataset. The
images were PCA-downsampled to 32 dimensions using sklearn [66] the labels permuted,
turning the classification task into a memorization task, as in [81]. This classifier had two
hidden layers of sizes 32 and 4, no biases, also used Swish activations, and was trained
with `2 regularization. In this setting, the network is over-parameterized in several senses:
it has a hidden layer almost as wide as the number of points in the dataset (32 vs 50), it
has more parameters than there are examples in the dataset (1160 vs 50), and it is also
capable of achieving 100% accuracy on the task of random label memorization.

We again observe that the majority of runs of Newton-MR terminate with high squared
gradient norm (33 out of 50 runs above 1e-8) and a similar fraction (31 out of 50 runs)
encounter gradient-flat points (Figure 3.8A and C, bottom panel). The loss-index rela-
tionship looks qualitatively different, as might be expected for a task with random labels.
Notice the appearance of a bad local minimum: the blue point at index 0 and loss ln(2).

3.6 Conclusion

We began by seeking to understand why neural networks are so easily trained: despite
the substantial non-convexity of their loss functions, first-order optimization methods
produce near-global-optima from random initial points. In Chapter 1, we developed the
“no-bad-local-minima” (NBLM) theory, which posits that, like certain classes of random
functions, the loss functions of neural networks have no local minima that are much worse
than the global minima. While numerical experiments in [22] and [67] agreed with this
hypothesis, more recent analytical results [23] suggest that it is false. These experiments
relied on the ability to find the critical points of the loss function, and so we developed an
understanding of critical point-finding algorithms in Chapter 2 and Section 3.4.1. This
led us to identify gradient-flat regions, where the gradient is nearly in the approximate
kernel of the Hessian, as a source of trouble for these algorithms: effectively, bad local
minima for the problem of critical point-finding. We ended this chapter by observing
that gradient-flat regions are a prevalent feature of three prototypical neural network
loss functions: those of an autoencoder (Figure 3.6), a classifier (Figure 3.7), and an
overparameterized network (Figure 3.8) applied to versions of the MNIST dataset. We
now conclude the thesis by considering the implications of our observations for critical
point-finding experiments, for the nature of neural network loss functions, and for the
optimization of neural networks.

The strategy of using gradient norm cutoffs to determine whether a point is near
enough to a critical point for the loss and index to match the true value is natural.
However, in the absence of guarantees on the smoothness of the behavior of the Hessian
(and its spectrum) around the critical point, the numerical value sufficient to guarantee
correctness is unclear. The observation of gradient-flat regions at extremely low gradient
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Figure 3.8: Gradient-Flat Regions Also Appear on an Over-Parameterized Loss.

A: Squared gradient norms across 500 iterations of Newton-MR for 50 separate runs on
the loss of an over-parameterized network. Runs that terminate with squared gradient
norm below 1e-8 in blue. Runs that terminate above that cutoff and with r above 0.9,
in gold. All other runs in black. Asterisks indicate trajectories in B. B: The relative
residual norm r, for the approximate Newton update computed by MR-QLP at each
iteration for three representative traces. Values are local averages with a window size
of 10 iterations. Raw values are plotted with reduced opacity underneath. Top: non-
flat, non-critical point (black). Middle: flat, non-critical point (gold). Bottom: flat,
critical point (blue). C: Empirical cumulative distribution functions for the final (top)
and maximal (bottom) relative residual norm r. Values above the cutoff for approximate
gradient-flatness, r > 0.9, in gold. Observations from runs that terminated below the
cutoff for critical points, ‖∇L (θ)‖2 < 1e-10, indicated with blue ticks. D: Loss and index
for the points found after 500 iterations of Newton-MR. Colors as in top-left; only points
with squared gradient norm below 1e-4 shown. Reproduced, with permission, from [29].
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norm and the separation of these values, in terms of loss-index relationship, from the
bulk of the observations suggest that there may be spurious targets of convergence for
critical point-finding methods even at such low gradient norm. Alternatively, they may
in fact be near real critical points, and so indicate that the simple, convex picture of
loss-index relationship painted by the numerical results in [22] and [67] is incomplete.
Furthermore, our observation of singular Hessians at low gradient norm suggests that
some approximate saddle points of neural network losses may be degenerate (as defined
in [42]) and non-strict (as defined in [50]), which indicates that gradient descent may
be attracted to these points, according to the analyses in [42] and [50]. These points
need not be local minima. However, in two cases we observe the lowest-index saddles at
low values of the loss (see Figure 3.6, Figure 3.7) and so these analyses still predict that
gradient descent will successfully reduce the loss, even if it doesn’t find a local minimum.
In the third case, an over-parameterized network Figure 3.8, we do observe a bad local
minimum, as predicted in [23] for networks capable of achieving 0 training error.

Our results motivate a revisiting of the numerical results in [22] and [67]. Looking
back at Figure 4 of [22], we see that their non-convex Newton method, a second-order
optimization algorithm designed to avoid saddle points by reversing the Newton update
along directions of negative curvature, appears to terminate at a gradient norm of order 1.
This is only a single order of magnitude lower than what was observed during training. It is
likely that this point was either in a gradient-flat region or otherwise had sufficient gradient
norm in the Hessian kernel to slow the progress of their algorithm. This suggests that
second-order methods designed for optimization, which use the loss as a merit function,
rather than norms of the gradient, can terminate in gradient-flat regions. In this case, the
merit function encourages convergence to points where the loss, rather than the gradient
norm, is small, but it still cannot guarantee convergence to a critical point. The authors
of [22] do not report a gradient norm cutoff, among other details needed to recreate their
critical point-finding experiments, so it is unclear to which kind of points they converged.
If, however, the norms are as large as those of the targets of their non-convex Newton
method, in accordance with our experience with damped Newton methods and that of [20],
then the loss-index relationships reported in their Figure 1 are likely to be for gradient-flat
points, rather than critical points.

The authors of [67] do report a squared gradient norm cutoff of 1e-6. This cutoff is
right in the middle of the bulk of values we observed, and which we labeled gradient-flat
regions and points of spurious convergence, based on the experiments in Section 3.2.3,
which separates a small fraction of runs from this bulk. This suggests that some of their
putative critical points were gradient-flat points. Their Figure 6 shows a disagreement
between their predictions for the index, based on a loss-weighted mixture of Wishart and
Wigner random matrices, and their observations. We speculate that some of this gap
is due to their method recovering approximate gradient-flat points rather than critical
points.

Even in the face of results indicating the existence of bad local minima [23], it remains
possible that bad local minima of the loss are avoided by initialization and optimization
strategies. For example ReLU networks suffer from bad local minima when one layer’s
activations are all 0, or when the biases are initialized at too small of a value [37], but
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careful initialization and training can avoid the issue. Our results do not directly invalidate
this hypothesis, but they do call the supporting numerical evidence into question. Our
observation of gradient-flat regions on almost every single run suggests that, while critical
points are hard to find and may even be rare, regions where gradient norm is extremely
small are neither. For non-smooth losses, e.g. those of ReLU networks or networks with
max-pooling, whose loss gradients can have discontinuities, critical points need not exist,
but gradient-flat regions may. Indeed, in some cases, the only differentiable minima in
ReLU networks are also flat [46].

Other types of critical point-finding methods are not necessarily attracted to gradient-
flat regions, in particular Newton homotopy methods (first used on neural networks in the
90s [20], then revived in the 2010s [9, 55]), which are popular in algebraic geometry [10].
However, singular Hessians still cause issues: for a singular Hessian H, the curve to
be continued by the homotopy becomes a manifold with dimension 1 + co rk (H), and
orientation becomes more difficult. This can be avoided by removing the singularity of
the Hessian, e.g. by the randomly-weighted regularization method in [56]. However, while
these techniques may make it possible to find critical points, they fundamentally alter the
loss surface, limiting their utility in drawing conclusions about other features of the loss.

The authors of [72] emphasize that when the Hessian is singular everywhere, the
notion of a basin of attraction is misleading, since targets of convergence form connected
manifolds and some assumptions in theorems guaranteeing first-order convergence become
invalid [42], though with sufficient, if unrealistic, over-parameterization convergence can
be proven [25]. They speculate that a better approach to understanding the behavior
of optimizers focuses on their exploration of the sub-level sets of the loss. Our results
corroborate that speculation and further indicate that this flatness means using second-
order methods to try to accelerate exploration of these regions in search of minimizers is
likely to fail: the alignment of the gradient with the Hessian’s approximate kernel will
tend to produce extremely large steps, for some methods, or no acceleration and even
convergence to non-minimizers, for others.

Our observation of ubiquitous gradient-flatness further provides an alternative expla-
nation for the success and popularity of approximate second-order optimizers for neural
networks, like K-FAC [53], which uses a layerwise approximation to the Hessian. These
methods are typically motivated by appeals to the computational cost of even Hessian-free
exact second-order methods and their brittleness in the stochastic (non-batch) setting.
However, exact second-order methods are only justified when the second-order model is
good, and at an exact gradient-flat point, the second-order model can be infinitely bad, in
a sense, along the direction of the gradient. Approximations need not share this property.
Even more extreme approximations, like the diagonal approximations in the adaptive
gradient family (e.g. AdaGrad [26], Adam [43]), behave very reasonably in gradient-flat
regions: they smoothly scale up the gradient in the directions in which it is small and
changing slowly, without making a quadratic model that is optimal in a local sense but
poor in a global sense.

Overall, our results underscore the difficulty of searching for critical points of singular
non-convex functions, including deep network loss functions, and shed new light on other
numerical results in this field. In this setting, second-order methods for finding critical
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points can fail badly, by converging to gradient-flat points. This failure can be hard to
detect unless it is specifically measured. Furthermore, gradient-flat points are generally
places where quadratic approximations become untrustworthy, and so our observations are
of relevance for the design of exact and approximate second-order optimization methods
as well.
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